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Abstract

The brain-computer interface (BCI) facilitates a direct communication pathway between the

human brain and external devices, bypassing the need for normal motor output pathways.

Among various BCI methods, the steady-state visual evoked potential (SSVEP)-based BCI

has gained significant attention due to its high signal-to-noise ratio (SNR), short training

time, and rapid communication rate. It has been extensively explored in various applica-

tions, including assistive technologies, rehabilitation, communication, and entertainment.

Despite some progress reported in recent literature, achieving reliable and accurate trans-

lations of user intentions in real-world scenarios remains highly challenging. This is mainly

attributed to the instability of EEG signals and the disruptions encountered in practical

situations. Besides, many existing systems only identify discrete commands, resulting in a

gap between a user’s cognitive intentions and the system’s physical actions.

Within the framework of the SSVEP-based BCI system, the crucial significance of reliability

and accuracy comes prominently to light. These attributes are pivotal for achieving precise

command over external devices, simultaneously enriching the user experience and ensuring

safety. Therefore, this thesis focuses on the development of a reliable and accurate BCI

based on SSVEP technology, and the work is centered on four aspects: 1) To improve the

recognition accuracy of the SSVEP signals; 2) To enhance the reliability of classification

by rejecting low-confidence results; 3) To boost recognition performance for a new user

through the incorporation of knowledge from existing users; 4) To apply the SSVEP-based

BCI for controlling the velocity of the robotic arm according to the user’s intention. To

accomplish these objectives, the following efforts were undertaken: 1) A multi-objective
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optimization-based high-pass spatial filtering method was proposed for improving SSVEP

recognition accuracy. This approach has the potential to extract target-relevant features,

reject target-irrelevant information, and mitigate the impact of volume conduction simul-

taneously. 2) A Bayesian-based classification confidence estimation method is proposed to

improve recognition reliability. This method estimates the probability of correctness for

each classification of the recognition system, allowing the identification and rejection of

low-confidence results. The BCI system can make high-confidence decisions and mitigate

potential errors by incorporating confidence information. 3) An inter-subject transfer learn-

ing method was proposed, leveraging SSVEP signals from source subjects to strengthen the

recognition performance of a target subject. By transferring knowledge from existing users,

this method enhances the adaptability of the BCI system, particularly for the new user

with limited training data. 4) In pursuit of more natural and responsive control, a veloc-

ity modulation method based on stimulus brightness was integrated into the SSVEP-based

BCI system. Unlike conventional approaches with fixed movement direction and speed, this

method dynamically adjusts the movement direction and speed based on the subjects’ inten-

tions. Users can interactively modulate the robotic arm’s movement by focusing on specific

high- or low-brightness stimuli, leading to a more natural and intuitive control experience.

In conclusion, this thesis contributes to the advancement of SSVEP-based BCI technology

by developing a reliable and accurate system while exploring its practical applications.
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Chapter 1

Introduction

1.1 Electroencephalography (EEG)-based Brain-Computer In-

terface (BCI)

The brain-computer interface (BCI) is a communication system that does not depend on the

brain’s normal output pathways of peripheral nerves and muscles [3]. In a BCI system, users

modulate their brain activities to generate commands that interact with the environment

instead of relying on body movements [2, 4]. Therefore, the BCI system offers an oppor-

tunity for paralyzed patients with severe motor disabilities to control external devices [5].

BCI systems were explored in a wide variety of applications, encompassing areas such as

prosthetics, communication, entertainment, and smart home [6–8].

Brain signal recording can be either invasive or noninvasive. Invasive BCIs that require

surgical intervention to implant electrodes and collect data from specific regions of brain

tissue [2, 9]. Although implanted electrodes provide a higher signal quality, they restrict

BCI’s flexibility and convenience. On the contrary, noninvasive BCIs record brain signals

with sensors over the scalp, which is healthier for the subject [10]. Noninvasive BCI systems

normally rely on different modalities of functional neuro-imaging, such as electroencephalog-

raphy (EEG) [11], functional near-infrared spectroscopy (fNIRS) [12], functional magnetic

resonance imaging (fMRI) [13], and magnetoencephalography (MEG) [14]. Among the var-
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ious modalities, EEG is the most commonly used one due to its high temporal resolution,

ease of use, and low cost [15–18]. EEG is the voltage variation on the scalp resulting from

neurons’ electrical activity in the cerebral cortex [2].

1.2 Steady-State Visual Evoked Potential (SSVEP)-based BCI

Four typical paradigms in the EEG signal, namely P300 event-related potential (ERP),

slow cortical potential (SCP), sensorimotor rhythms (SMR), and steady-state visual evoked

potential (SSVEP), are used for the analysis of brain activities [19]. SSVEP-based BCI has

received extensive research interest in recent decades due to its fast communication rate,

higher signal-to-noise ratio (SNR), and few user training requirements [20,21].

The SSVEP-based BCI usually utilizes several visual oscillating stimuli, such as LEDs or

boxes on a computer screen, which are generally modulated at different frequencies and

phases [22,23]. A typical experimental paradigm of the SSVEP-based BCI system contains

M blocks, each containing N trials corresponding to N visual stimuli that flicker in random

order. For example, Fig. 1.1(a) shows a typical stimulation experiment in [1], representing

the setting for one of the highest numbers of stimuli. The user interface is a 5 × 8 matrix of

visual stimuli, including 40 targets modulated by linearly increasing frequencies and phases,

as shown in Fig. 1.1(b). In each experimental block, subjects were required to gaze at each

visual stimulus for 0.5 s and completed 40 trials corresponding to all 40 targets. Each trial

began with a 0.5 s visual cue that showed the target stimulus produced by the stimulus

program. During the target cue period, users were required to shift their attention to the

flickering target on the screen as quickly as possible. The subjects rested for a few minutes

between two consecutive blocks to relieve visual and mental fatigue. Besides, subjects

should avoid eye blinks during the experimental period to decrease artifacts generated by

eye movements.

SSVEPs are periodic neural responses generated in occipital scalp areas of the brain, and the

stimulus frequency will determine the response frequency content, which contains activities

not only at the stimulus frequency but also at its higher harmonics [24]. The SSVEP can
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(a) Scheme of the experimental paradigm. (b) Stimulus design of the 40-target BCI system.

Figure 1.1: The redraw of the experimental paradigm and stimulus design in [1], which
represented the setting for one of the highest numbers of stimuli.

be elicited up to at least 90 Hz [25]. Signal processing algorithms are applied to analyze the

characteristics of SSVEP responses and identify the subject’s intent to control the peripheral

equipment. As a result, subjects can output desired commands by gazing at different target

stimuli sequentially [22].

1.3 Research Motivations and Objectives

Within the context of SSVEP-based BCI systems, the critical importance of reliability

and accuracy is prominently highlighted. These attributes play a pivotal role in attaining

precise control over external devices, thereby enhancing the quality of the user experience

and mitigating potential risks. Therefore, the core motivations of this thesis revolve around

developing a reliable and accurate SSVEP-based BCI system. The following content will

describe each motivation in detail.

The accuracy of recognition stands as a critical indicator to evaluate the effectiveness of

SSVEP-based BCIs [26]. Research on recognition accuracy aids in reducing erroneous com-

mands, enhancing the user experience, and improving communication efficacy. The target

stimulus on which the user is focusing can be identified by analyzing the recorded SSVEP

signals using various target identification methods. As the frequency components within

SSVEP signals are determined by the stimulation frequency, employing frequency domain

analysis facilitates the identification of the intended target stimulus [27, 28]. Additionally,
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cortical source activities can be estimated by applying weighting coefficients to scalp EEG

recordings collected from multiple electrodes [2]. Many methods have been introduced to

extract spatial filters to reconstruct source activities, aiming to enhance the recognition

accuracy of SSVEP-based BCI systems. However, previous spatial filter training commonly

incorporated the signal from a single stimulus, and the knowledge from other stimuli was

rarely included. In addition, EEG signals usually have low spatial resolution due to volume

conduction. The majority of current research on volume conduction primarily concentrates

on other EEG paradigms, neglecting its potential to enhance SSVEP recognition accuracy.

The effectiveness of many advanced recognition methods has been validated in SSVEP-based

BCIs, but these methods generally rely on the largest correlation coefficient to determine

the class. The classification performance can decline when the largest coefficient is insignif-

icantly distinct from the remaining values. Wrong results can cause the external device

to carry out the wrong actions, perhaps resulting in adverse incidents and serious physical

harm to humans. In the practical usage scene, enhancing subjects’ safety and security is es-

sential, particularly in rehabilitation and assistive technology. Therefore, there arises a need

to estimate the confidence level of classification results. Instances of low confidence should

be rejected to enhance recognition reliability in SSVEP-based human-robot interaction.

To attain high performance in SSVEP-based BCIs, a large amount of data is typically re-

quired for model training. However, the process of data recording is time-consuming and

physically exhausting, often leading to visual fatigue among the subjects [29, 30]. One

promising method is to transfer data from one subject to another. Considering that each

person has unique brain patterns [2], sharing EEG data directly from previous subjects to

a new subject is not viable. To address this concern, transfer learning (TL) was developed,

enabling the utilization of data from the source domain to enhance the recognition perfor-

mance of the target domain [31]. By utilizing knowledge gained from previously recorded

data, TL enhances the model’s capacity to recognize SSVEP signals in the new domain,

contributing to more efficient and reliable BCI applications.

A fundamental goal driving the evolution of SSVEP-based BCIs is to facilitate their inte-

gration into practical, real-world scenarios. Practical applications refer to situations where
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the BCI system can provide timely responses based on the user’s intentions or commands.

SSVEP-based BCIs have been explored in various applications, such as wheelchair con-

trol, spelling assistance, and robotic arm manipulation. There remains a critical challenge

to bridge the gap between a user’s cognitive intentions and the system’s physical actions.

Specifically, the robot’s movement direction and speed are generally fixed and prescribed,

which neglects the user’s actual requirements for the velocity adjustments. Users may pre-

fer that the robot can change speed and direction according to their intentions in practical

implementations. By enabling this level of adaptability, SSVEP-based BCIs can enhance

the user experience and empower individuals to interact more naturally and effectively with

the technology.

As a result, the four main objectives of this research are:

1. A target classification method aimed at enhancing SSVEP recognition accuracy will

be introduced. This method utilizes multi-objective optimization high-pass spatial

filtering techniques, with the goal of extracting target-related features, decreasing

irrelevant information, and mitigating the negative effect of volume conduction.

2. A classification confidence estimation method based on Bayesian will be proposed for

enhancing SSVEP detection reliability. The proposed method aims to enhance the

system’s reliability by accepting high-confidence results and rejecting low-confidence

decisions.

3. A cross-subject transfer learning scheme will be proposed which incorporates SSVEP

knowledge from the source subject to effectively strengthen the recognition perfor-

mance for the target subject. By transferring this knowledge, the target subject can

achieve optimized recognition performance without requiring extra calibration proce-

dures.

4. A SSVEP-based BCI-controlled robotic platform with velocity modulation will be

introduced. A stimulus brightness-based method will be designed to control robotic

arm velocity, which has the potential to improve the robot’s responsiveness to human

intents and the user’s interaction experience.
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1.4 Thesis Outline

This thesis consists of 7 chapters. The initial two chapters encompass the introduction and

literature review. Chapter 3 achieves the first objective by developing a multi-objective

optimisation-based high-pass spatial filtering method for improving recognition accuracy.

The second objective is achieved by Chapter 4, which proposes a Bayesian-based classifica-

tion confidence estimation for enhancing SSVEP detection reliability. Chapter 5 establishes

a cross-subject transfer learning method to accomplish the third objective. For the last

objective of this research, a SSVEP-based BCI-controlled robotic platform with velocity

modulation was proposed in Chapter 6. The last chapter presented the conclusion and

future work. Specifically, this thesis is organized as follows.

Chapter 1 provides an introduction that elaborates on the SSVEP-based BCI system and

offers an overview of its working principles. It highlights the research motivations under-

lying this thesis, provides the research objectives, and outlines the structure of the thesis,

alongside presenting the list of publications.

Chapter 2 presents a systematic review of the SSVEP-based BCI system. Existing works on

signal preprocessing and recognition are described in detail. Meanwhile, it encompasses an

exploration of studies centered around classification confidence analysis, transfer learning

methods, and SSVEP-based BCI-controlled robots.

Chapter 3 proposes a multi-objective optimisation-based high-pass spatial filtering method

to improve the SSVEP identification performance. In this method, the filter was derived

by maximising the correlation between the training signal and the individual template from

the same target while minimising the correlation between signals from other targets and

the template. Meanwhile, a constraint was imposed where the sum of spatial filter elements

is zero. This configuration enables the passage of high spatial-frequency SSVEP signals

while attenuating low spatial-frequency signals. Therefore, the proposed approach has the

potential to extract the target-relevant features, reject the target-irrelevant information,

and simultaneously diminish the impact of volume conduction.

Chapter 4 presents the research on classification confidence analysis in the SSVEP-based
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BCI. This chapter proposed a Bayesian-based classification confidence estimation method

for improving recognition reliability. Specifically, By leveraging the differences between the

maximum correlation coefficient and the remaining values generated by a basic target iden-

tification method, a feature vector is constructed during the training phase. The Gaussian

mixture model (GMM) is subsequently employed to estimate the probability density func-

tions of these feature vectors from correct and incorrect classifications. During the testing

procedure, Bayesian inference calculates the posterior probabilities for accurate and false

classifications. Based on these probabilities, a classification confidence value (CCValue) is

presented to estimate the confidence level in the classification. Finally, a decision-making

rule is applied to determine whether the current classification result should be accepted or

rejected.

Chapter 5 introduces an inter-subject transfer learning method for SSVEP recognition.

This method leverages SSVEP signals from source subjects to effectively strengthen the

recognition performance of a target subject. Specifically, the proposed method involves

generating a multidimensional feature vector that combines the transferred spatial filter

and the transferred SSVEP template from the source subject, along with the spatial filter

of the target subject obtained through multiple-covariance maximization. A contribution

score is assigned to each source subject by considering the distance between it and the

target subject during the feature vector construction.

Chapter 6 proposes a velocity modulation method to control the robotic arm in the SSVEP-

based BCI. The current control strategies generally offer velocities with fixed and prescribed

directions and speeds during robot movements. This chapter introduced a velocity mod-

ulation method based on the subject’s intention. The subject could change the velocity

of the robotic arm by focusing on the flickers with different frequencies and brightnesses.

For performance evaluation, online experiments involving single- and multi-target reaching

tasks were conducted.

Chapter 7 concludes the efforts of this thesis. It also discusses some potential directions for

future research exploration.
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Case study

Zhang, Y., Xie, S. Q., Li, Z., Zhao, Y., Qian, K., & Zhang, Z. Q. (2022, September). CCA-

based Spatio-temporal Filtering for Enhancing SSVEP Detection. In 2022 IEEE-EMBS

International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp.

1-4). IEEE.

1.6 Chapter Summary

This chapter introduces the concept of SSVEP-based BCI. This thesis’s main motivations

are: 1) improving recognition accuracy; 2) enhancing classification reliability; 3) reducing

time-consuming calibration; and 4) implementing velocity modulation within the practi-

cal scenario. The main objectives of this research include: 1) designing a multi-objective

optimisation-based high-pass spatial filtering method for improving recognition accuracy;

2) developing a Bayesian-based classification confidence estimation method for enhanc-

ing SSVEP detection reliability; 3) introducing a cross-subject scheme to transfer SSVEP

knowledge from the source subject and enhance the recognition performance of the target

subject; and 4) presenting an SSVEP-actuated velocity modulation method for controlling

a robotic arm. The thesis outline and publication list were also presented in this chapter.
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Chapter 2

Literature Review of Steady-State

Visual Evoked Potential-based

Brain-Computer Interface

This chapter provides a systematic review of the SSVEP-based BCI system. It begins with

signal preprocessing and SSVEP recognition methods, which encompass Fourier transform-

based spectrum analysis, canonical correlation analysis (CCA)-based methods, nonlinear

classification methods, spatial filtering methods, and so on. The chapter then explores the

factors that influence recognition reliability and reviews recent advancements in classifica-

tion confidence analysis. Subsequently, transfer learning methods are discussed, specifically

focusing on template-based transfer and spatial filter-based transfer techniques. The inte-

gration of SSVEP-based BCIs with robotic systems is examined, covering communication

aids, prosthetics control, and environmental control. At the end of this chapter, research

gaps are summarized.

2.1 Signal Pre-processing Methods

The EEG potentials gathered by electrodes come from the brain, which can be easily con-

taminated by muscle activation, eye movement, and external artifacts [32]. Therefore, it is
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necessary to pre-process the raw EEG signal to achieve a higher SNR before the SSVEP

recognition step. Thus far, there are mainly two pre-processing methods: band-pass filtering

and notch filter.

The band-pass filter is the most common pre-processing filtering to remove the noises whose

frequencies are not overlapped with SSVEP responses. The band-pass is utilized to retain

the pertinent parts of the EEG signal, which correspond to the stimulation frequencies

and harmonics. Dividing the SSVEP signal into distinct frequency bands, the sub-band

signal within the designated frequency range can be extracted for further analysis and

interpretation. Many works about SSVEP-based BCI have adopted band-pass filter as the

signal pre-processing algorithm, such as [1, 24,33].

In most countries, power line interference is commonly concentrated near 50 Hz or 60

Hz [34,35]. The most prevalent method might be to filter the data in the respective frequency

band with a notch filter (a band-stop filter with a narrow stop band) [36]. This filter

effectively suppresses power within the specific stop band at 50 Hz or 60 Hz.

2.2 SSVEP Recognition Methods

The primary objective of pursuing high-performance BCI systems is to achieve accurate

SSVEP recognition within a limited time window (TW). This subsection comprehensively

explores various frequently employed SSVEP recognition algorithms, including Fourier trans-

form -based spectrum analysis, signal decomposition-based analysis, basic spatial filtering

methods, canonical correlation analysis-based methods, nonlinear classification methods,

and recent spatial filtering methods. The technical details of these methods are further

summarized in Table. 2.1. Moreover, many classifiers utilized in the SSVEP identification

are also presented in this subsection.

2.2.1 Fourier Transform-based Spectrum Analysis Methods

One of the simplest detection approaches for SSVEP-based BCIs is power spectral density

analysis (PSDA) which is based on the fast Fourier transform (FFT). By transforming
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the time domain EEG signals to the frequency domain, the amplitude of each stimulation

frequency can then be used for further classification [37]. The frequency corresponding to

the peak is taken as the visual stimulus frequency. Many works [27, 38, 39] employ Fourier

transform in SSVEP detection due to its small computation time and simplicity. The

recognition methods based on PSDA rely on the fact that a periodic pattern with the same

frequency as the stimulus frequency or one of its harmonics can be traced back in the brain

signals. When the SSVEP is present in the brain signals, the amplitude of its periodic

pattern is confined to a narrow frequency bandwidth, allowing for easy measurement in the

frequency domain [28].

The PSDA method exhibits sensitivity to noise when using a single or bipolar channel, re-

quiring a comparatively extended time window for accurate spectrum estimation with suf-

ficient frequency resolution [40]. These limitations contribute to relatively reduced SSVEP

recognition accuracy, especially when the time window is insufficient (e.g., less than 3 s) [41].

Despite aiming for high accuracy, the information transfer rate (ITR) is also affected. Some

efforts attempted to improve the performance of PSDA methods through optimising pa-

rameters, such as electrode and time length selection. For example, Bin et al [20] used an

exhaustive method to select the optimized bipolar lead to maximize the stimulus frequency

SNR. Wang et al [42] proposed an adaptive data length regulation method. Real-time

frequency detection is performed every short interval using the buffer data. If the same

frequency is detected consecutively, a decision is made, followed by buffer clearing for new

data input. This method improves the BCI system’s ITR while reducing inter-user variation

and bolstering system flexibility and reliability.

2.2.2 Signal Decomposition-based Analysis Methods

The FT summarizes the signal’s spectrum over the entire data collection period [41]. The

FT method demonstrates its efficacy in scenarios with stationary systems. However, in

non-stationary SSVEP signals, FT cannot establish a direct correlation between the tem-

poral signal changes and the spectrum’s frequency features. The wavelet transform (WT)

is a mathematical approach that gives the time-frequency representation of a signal with
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the possibility to adjust the time-frequency resolution [43]. In other words, it not only

reveals information about the frequency components within a signal but also the time of

their occurrence. The WT is widely acknowledged as an effective time-frequency analysis

tool for analyzing various physiological signals [44]. For example, Rejer et al. [45] employed

wavelet analysis to detect SSVEP frequencies concerning the synchronization time and its

strength. In the WT, a sample function known as the mother wavelet represents the SSVEP

signal in the time and frequency domains. However, there is no universal mother wavelet

function that fits all signals, rendering the selection of an appropriate mother wavelet func-

tion a potential challenge in WT-related studies. Sayilgan et al [46] investigated the effect

of the mother wavelet function in classifying two distinct flickering frequencies for BCI

applications. The findings indicated that the Haar wavelet function emerged as the most

representative, while Symlet 4 performed the worst. Although the WT effectively processes

non-stationary signals, it may be inappropriate for handling highly complex SSVEP signals

that exhibit nonlinear dynamics and chaos [47]. This is because the basic idea of FT is to

represent the EEG sequence as a linear superposition of sinusoidal waves (sines and cosines).

In the WT, a sequence is represented as a linear combination of wavelets [48].

Huang [49] proposed the Hilbert-Huang transform (HHT), which encompasses Empirical

Mode Decomposition (EMD) and the Hilbert Transform (HT). EMD, a non-linear tech-

nique, is adept at handling dynamic and complex signals. EMD adaptively decomposes

signals into a group of intrinsic mode functions (IMFs), showcasing oscillation features in

the non-stationary signals [34]. Subsequently, the HT is applied to each IMF to derive the

amplitude distribution, known as the Hilbert spectrum. Many studies [50,51] have employed

EMD successfully to achieve frequency recognition and enhance classification accuracy in

SSVEP-based BCIs. For example, Zhao et al [52] used the Hilbert spectrum from the dif-

ferent frequency bands to construct energy vectors, which are then input to a classifier for

SSVEP identification. Tello et al [53] calculated the PSD of the IMFs, and then a rule-

based classifier identified the maximum values and determined the selected class through a

majority vote. In addition, the EMD can also be integrated with CCA, in which the IMFs

containing the highest energy levels are chosen and fed into CCA for SSVEP detection. [51].
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Compared with FFT and WT, HHT has better universality to handle nonlinear and non-

stationary signals. It not only absorbs the advantages of multi-resolution in WT but also

overcomes the difficulty of selecting an appropriate wavelet base.

2.2.3 Basic Spatial Filtering Methods

Spatial filtering plays a crucial role in enhancing performance by improving the SNR of

SSVEP signals [2]. The cortical source activities can be estimated by applying weight

coefficients to scalp EEG recordings from multiple electrodes. Built upon this concept,

various approaches have been developed that extract optimal spatial filters (i.e., weight

coefficients) to reconstruct source activities from scalp recordings [54].

Minimum energy combination (MEC) and maximum contrast combination (MCC) are com-

mon spatial filtering algorithms with different objective functions. In the MEC approach,

noise components inherent to the original signals are initially extracted, followed by the

attainment of a linear combination to suppress the noise signal [55]. Finally, this spatial

filter is applied to the original signals, producing signals with reduced noise [56, 57]. The

SNR values are measured for each stimulus frequency, and the frequency that yields the

maximum SNR is considered the frequency of interest [58]. On the other hand, the MCC

approach aims to construct a weight vector that maximizes the ratio between the power of

SSVEP activity and that of non-SSVEP related activity [21,55,59].

Common spatial pattern (CSP) [60, 61] is another spatial filter to improve the distinction

between EEG signals from the stimulus and non-stimulus situations. Two distributions

are in a C-dimensional space, where C is the number of channels. CSP attempts to find

projections minimizing the variance of one class while maximizing the variance of the other.

Specifically, in the context of SSVEP-based BCIs, the presence of a stimulus leads to in-

creased signal variance compared to the non-stimulus state. As a spatial filtering method

to enhance SSVEP signals, CSP is commonly combined with separate steps for feature

extraction and classification, allowing for the differentiation of various stimulation frequen-

cies [21]. For example, in [60], amplitude estimations of filtered SSVEPs at different stimuli

were extracted, followed by applying linear discriminant analysis (LDA) for classification.
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Both MEC and MCC methods compute optimal spatial filters and noise power estimates

for each new EEG data trial. While these strategies are advantageous since it accounts for

the nonstationary nature of unwanted signals, they could lead to extended computational

time during real-time operations, particularly when a substantial number of electrodes are

involved [21].

2.2.4 Canonical Correlation Analysis (CCA)-based Methods

Canonical Correlation Analysis The CCA method is used to find the relationship be-

tween two sets of data, which can be used as a feature extraction algorithm in SSVEP-based

BCIs. The CCA-based spatial filter, first presented by Lin et al. [38], has attracted much

interest in recent years due to better SNR, higher recognition accuracy, and well usage of

harmonic frequencies [21]. The CCA attempts to find a pair of linear combinations of the

multi-channel signals and the artificial reference signals, generally sine and cosine waves,

that have the correlation maximization at each stimulus frequency. Then, the frequency re-

lated to the maximal correlation coefficient is determined as the target [38,62]. Nowadays,

many improved CCA-based methods are proposed due to higher requirements of perfor-

mance or the drawbacks of CCA, e.g., the artificial reference signals lack true information

of EEG data, and multi-channel signals are easily influenced by background noise such as

spontaneous EEG.

Multiway canonical correlation analysis (MwayCCA) Before introducing Mway-

CCA, the concept of tensor should be first referred to. A tensor is a multiway array of data,

and its order is the number of dimensions, also called ways [63]. Tensor CCA is a standard

CCA development that concentrates on calculating the correlation between two multiway

data arrays rather than two sets of variables based on vector [64]. Based on this concept,

MwayCCA optimizes the reference signals by maximizing the correlation between third-

order EEG data tensor (channel × time × trial) and pre-constituted sine-cosine reference

signal matrix (harmonic × time) [65]. Then, target frequency can be recognized by applying

multiple linear regression (MLR) or CCA between test EEG data and optimized reference

signals [65]. In MwayCCA, the EEG tensor is constructed by multiple trials where some
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trials may contain more artifacts which generally have a negative contribution to the ref-

erence signal optimization. Therefore, L1-regularization is implemented on trial-way array

optimization of MwayCCA to remove obstruction trials [66].

MwayCCA and its variation add a reference signal optimization procedure to enrich the

reference signal with more real information about EEG signals, thereby improving the

performance of standard CCA.

Multiset canonical correlation analysis (MsetCCA) The originally constructed ref-

erence signals with sine-cosine waves are generally short of real information of EEG data,

which goes against SSVEP frequency recognition. Multiset canonical correlation analysis

(MsetCCA), proposed by Zhang et al. [67], considers common features shared by EEG sig-

nals may be more real and natural than predefined signals. For a specific subject, some

common characteristics are contained in a set of trials at a certain stimulus frequency, which

can be used to construct optimal reference signals to achieve a higher detection accuracy.

Specifically, MsetCCA learns multiple linear transforms that maximize the overall correla-

tion among canonical variates from multiple sets of random variables [67]. Therefore, in the

SSVEP-based BCIs, the optimal reference signals can be determined by MsetCCA through

the joint spatial filtering of multiple sets of EEG training datasets for each stimulus fre-

quency [68]. Jiao et al. [24] further presented a three-layer model based on MsetCCA, named

multilayer correlation maximization (MCM), which adopts superiorities of both CCA and

MsetCCA to avoid extracting the background noise as common features.

MsetCCA produces fully optimized reference signals based on the EEG signal training set.

It turns out that the averaged classification accuracy and ITR of MsetCCA are better than

those of MwayCCA and CCA [68]. However, one drawback is that it may treat background

noises as common features, so it needs to be used with other denoising algorithms.

Filter bank canonical correlation analysis (FBCCA) Considering those harmonic

SSVEP components are not employed for frequency recognition, Chen et al. [69] incorpo-

rated fundamental and harmonic frequency components to propose a new method called

filter bank canonical correlation analysis (FBCCA). The FBCCA method contains three
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steps. Firstly, a filter bank analysis implemented sub-band decomposition from EEG sig-

nals with multiple filters with different pass-bands. And then, CCA is employed to calculate

the correlation between the sub-band components and the constructed reference signals with

sine-cosine waves related to all stimulation frequencies. Finally, a weighted sum of squares

of the correlation for all sub-band components is combined as the final feature for frequency

identification.

FBCCA was often combined with current innovative methods in [70, 71], thereby further

optimizing them and achieving higher detection performance. It can be seen that FBCCA

is expected to become a new standard paradigm after CCA.

Individual template canonical correlation analysis (IT-CCA)-based methods

The individual template-based CCA (IT-CCA) was first proposed in [72] to optimize the

reference signals with sine-cosine waves by detecting temporal features of EEG data. The

IT-CCA calculates the canonical correlation between test data and individual template sig-

nals acquired by averaging multiple training trials. Nakanishi et al. [73, 74] developed it

and proposed a combination method of CCA and IT-CCA that applies three weight vec-

tors as spatial filters for enhancing the target detection. They are spatial filter between

test data and the individual template, spatial filter between test data and preconstructed

reference signals, and spatial filter between the individual template and preconstructed ref-

erence signals, respectively. Then four correlation vectors as the above spatial filters obtain

recognition features, and an ensemble classifier is employed to combine four vectors to form

a weighted correlation coefficient as the final feature [68].

The individual template-based target identification has frequently been integrated with

various spatial filtering techniques [71, 75, 76]. The diagram of the feature extraction is

illustrated in Fig. 2.1. Spatial filters are obtained from the training data corresponding

to each stimulus. These filters are subsequently applied to individual templates and input

EEG data, thereby improving the SNR of SSVEP signals.
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Figure 2.1: Framework of feature extraction including spatial filtering in the individual
template-based method for detecting SSVEP signals [2].

2.2.5 Nonlinear Classification Methods

The transformation of CCA maximizes the mutual information between extracted multi-

dimension features, but dealing with nonlinear relations in real signals is infeasible. Zhang et

al. [77] presented a kernel CCA (KCCA)-based method for detecting idle states in SSVEP-

based BCI systems. This method provided a practicable way to extract nonlinear char-

acteristics of multi-dimension EEG signals. Through the utilization of a kernel function,

both the EEG signal and reference signal are projected into a higher-dimensional feature

space. Andrew et al. [78] developed deep CCA (DCCA) which processes input data through

the deep network before calculating their correlations. DCCA is designed to learn complex

nonlinear transformations of two data views, aiming to yield highly linearly correlated rep-

resentations. Liu et al. [33] proposed an extension of DCCA, named deep multiset CCA

(DMCCA) for SSVEP frequency recognition, that extracts the information within the real

EEG signals to attain better detection accuracy.

The above CCA-based nonlinear frequency recognition algorithms align with the original

EEG signals’ nonlinear characteristics, leading to better results than the CCA. For KCCA,

choosing the appropriate kernel is still a question worth considering. DMCCA achieved bet-

ter recognition performance by combining the nonlinear method DCCA and linear method
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MsetCCA, which provides a potential research direction.

The convolutional neural network (CNN) is another popular classifier for SSVEP-based

BCIs. For instance, Kwak et al. [79] proposed a CNN-based classifier that uses frequency

features as input for robust SSVEP detection. Guney et al [80] introduced a deep neural

network (DNN) architecture designed to process multi-channel SSVEP data. This architec-

ture employs convolutions across sub-bands of harmonics, channels, and time, ultimately

conducting classification at the fully connected layer. With this background, neural network-

based classifiers are more potential and efficient options to achieve higher accuracy with a

mass of EEG data. Meanwhile, it is worth noting that broader knowledge and more time

or more data are needed for adjusting related parameters and training feasible models [81].

2.2.6 Recent Spatial Filtering Methods

Multivariate synchronization Index (MSI)

Zhang et al [82] proposed a multivariate synchronization index (MSI) method for frequency

recognition. MSI aims to estimate the synchronization between the observed mixed signals

and the reference signals, similar to CCA. The synchronization index is quantified using the

S-estimator [83], which relies on the entropy of the normalized eigenvalues of the correla-

tion matrix of multivariate signals. Considering that the MSI method does not fully exploit

SSVEP-related harmonic components, Qin et al [84] proposed a filter bank-driven MSI

method (FBMSI) to improve the accuracy of SSVEP recognition further. Before the stan-

dard MSI method, the SSVEP signal was decomposed by the filter into multiple subbands.

Extracting the harmonic components from each subband can achieve a better recognition

effect than the standard MSI method.

Sum of Squared Correlations (SSCOR)

Rupnik et al [85] introduced the sum of squared correlations (SSCOR) to obtain a cross-

lingual document similarity measure. G.R. et al [71] further employed it in SSVEP signal

analysis. The SSCOR framework aims to find a mapping that projects the given EEG data

onto a common SSVEP representation space. The method is based on the sum of squared
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correlation formulation, where correlations between pairs (i.e., individual template and each

training trial) are considered. SSCOR has been incorporated in many SSVEP recognition

research papers [75,86] to facilitate performance comparison.

Task-related component analysis (TRCA) Many techniques [87, 88] have been de-

veloped to extract task-related source signals from scalp recordings based on the idea that

cortical source activities can be rebuilt through a weighted linear summation of EEG signals

from multiple electrodes. Tanaka et al. [89, 90] proposed task-related component analysis

(TRCA), which performs better than other task-related methods due to maximizing the re-

producibility of time-locked activities across trials. In 2017, Nakanishi et al. [1] introduced

TRCA-based analysis to EEG study especially SSVEP-based BCI systems, which success-

fully enhanced the SNR of EEG signals by eliminating the background noises and showed

great capacity for different applications in communication and control. SSVEPs are time-

locked photic-driving responses related to repetitive visual stimuli. Therefore, TRCA-based

techniques can achieve higher SNR of EEG signals [2, 22].

Task-Discriminant Component Analysis (TDCA)

Liu et al [91] proposed a novel method called task-discriminant component analysis (TDCA)

to improve the performance of individually calibrated SSVEP-BCI further. In contrast to

the generative model of TRCA, where the projection direction is learned class by class,

TDCA utilizes a discriminative model to learn the projection direction for all data classes.

Furthermore, TDCA incorporates the temporal information of SSVEP into the training and

test samples. TDCA optimizes the spatiotemporal filter by maximizing the between-class

difference while minimizing the within-class difference.

2.2.7 Traditional Pattern Recognition Methods

In addition to the target identification methods as mentioned above, some traditional pat-

tern recognition methods involving classic classifiers such as LDA, SVM, and k-nearest

neighbour (kNN) are also usually used for SSVEP classification scheme [92, 93]. Features

corresponding to different visual stimuli are regarded as the feature vector to train the
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Table 2.1: SSVEP Recognition Method

Categories Methods Technical details References

FT-based spectrum

analysis

PSDA

PSDA is based on the FFT. By transforming the time domain EEG

signals to frequency domain,amplitudes of each stimulation frequ-

ency are obtained, and then the frequency with the largest amplitude

is determined as the target. FT shows poor performance when signals

are non-linear and unstable.

[27, 38,39]

Channel Selection

PSDA

An exhaustive method was used to select the optimized bipolar lead

to maximize the stimulus frequency SNR
[20]

Adaptive PSDA

Real-time frequency detection is performed every short interval us-

ing the buffer data. If the same frequency is detected consecutively,

a decision is made.

[42]

WT
WT gives the time-frequency representation of a signal with the po-

ssibility to adjust the time-frequency resolution
[45,46]

Signal decomposition-

based analysis
HHT

HHT includes EMD decomposition and Hilbert transformation.

EMD adaptively decomposes signals into intrinsic mode functions

(IMFs). The HT is applied to each IMF to derive the amplitude di-

stribution.

[52]

EMD+classifier

It calculated the PSD of the IMFs, and a rule-based classifier iden-

tified the maximum values and determined the selected class thro-

ugh a majority vote.

[53]

EMD+CCA
The IMFs containing the highest energy levels are chosen and fed

into CCA for SSVEP detection
[51]
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MEC

MEC finds a spatial filter projecting the multi-channel signal to a

low-dimensional combined one in order to weaken background

noises.

[56, 57]

Basic spatial filtering

methods
MCC

MCC attempts to make the energy in the SSVEP frequencies is

maximized through the computation of a weight matrix.
[21, 55,59]

CSP
It aims to maximize the SNR of SSVEP responses against the

non-stimulus situation.
[60]

CCA

CCA tries to find a pair of linear combinations of multi-channel

EEG signals and sine-cosine reference signals that have the ma-

ximum correlation with each other.

[38, 62]

MwayCCA
Calculating the correlation between two multiway data arrays

rather than vector variables.
[65]

CCA-based linear

methods
MsetCCA

MsetCCA extracts common features shared by the real EEG

signals to optimize reference signals.
[67]

MCM

In order to avoid extracting the background noise as common

features, the MCM adopts superiorities of both CCA and Mset-

CCA.

[24]

FBCCA
It incorporates fundamental and harmonic frequency components

together for target detection.
[69]

IT-CCA
The reference signal is an individual template acquired by aver-

aging multiple training trials.
[72]

CCA +IT-CCA
Three weight vectors are applied as spatial filters which form

four correlation vectors as recognition features.
[73, 74]
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KCCA

The kernel is applied to project the data to high-dimension space to

solve the problem that CCA is infeasible for nonlinear signals. How

to choose the appropriate kernel is still a question worth thinking

about.

[77,94]

DCCA
In DCCA, deep networks are used to process input data before the

CCA.
[78]

Nonlinear recognition

methods
DMCCA Combining the nonlinear method DCCA and linear method MsetCCA. [33]

CNN
A three-layer CNN-based classifier that uses frequency features as

input for robust SSVEP detection.
[79]

DNN

It employs convolutions across sub-bands of harmonics, channels,

and time, ultimately conducting classification at the fully connected

layer.

[80]

SSCOR
The spatial filter is based on the sum of squared correlation formu-

lation.
[71]

Recent spatial filtering

methods
MSI

MSI aims to estimate the synchronization between the observed EEG

signals and the reference signals. The synchronization index is quan-

tified using the S-estimator, which relies on the entropy of the norm-

alized eigenvalues of the correlation matrix of multivariate signals.

[82, 84]

TRCA
TRCA extracts task-related components efficiently by maximizing

the reproducibility of time-locked activities across trials.
[1]

TDCA

TDCA utilizes a discriminative model to learn the projection direc-

tion for all data classes. It also uses the temporal information of

SSVEP in the training and test samples.

[91]
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classifier based on training data. Then, the experiment is conducted on the testing data

with the trained classifier to determine targets. For example, in [95], the PSD in all possibly

evoked frequency bands is extracted from the SSVEP responses to facilitate the discrimina-

tion task. In this work, three classifiers, namely LDA, SVM, and extreme learning machines

(ELM), are performed at the target detection stage, and the ELM shows a more promising

classification capacity in the context of SSVEP. Therefore, it proves the good generalization

performance of neural network-based methods for SSVEP classification.

2.2.8 Discussion

As previously mentioned, several methods have been developed to classify the SSVEP sig-

nals, mainly including Fourier transform-based spectrum analysis, signal decomposition-

based analysis, and the spatial filtering method. Among these methods, CCA-based tech-

niques have received significant attention for enhancing the SNR of SSVEP signals, conse-

quently leading to improved classification accuracy. Several subsequent studies have focused

on exploring the correlation across training trials of each subject, resulting in the devel-

opment of methods like SSCOR and TRCA. For example, in TRCA, weight coefficients

are optimized by inter-trial covariance maximization. These methods have demonstrated

advanced performance in SSVEP classification tasks. However, current approaches predom-

inantly learn spatial filter parameters for a specific target using only the training data from

the same stimulus. They often overlook incorporating information from other stimuli and

the volume conduction problem during training. Consequently, further relevant efforts are

necessary to improve the classification accuracy in SSVEP-based BCI systems.

2.3 Methods for Improving Recognition Reliability

The last section introduced many studies to improve recognition accuracy in SSVEP-based

BCIs. Several of these methods determine the target class by finding the largest correla-

tion coefficient. However, the classification performance usually degrades when the largest

coefficient is not significantly different from the rest of the values. Additionally, wrong

classifications of user intentions also exist due to various factors in real scenarios, such as
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intra-subject variability and environmental distraction. In this context, improving recogni-

tion reliability is vital for SSVEP-based BCIs, as it ensures safety, enhances user experience,

and prevents errors in practical applications. In this section, several representative distur-

bances that affect the system’s robustness will be presented. Additionally, a literature

review on the methods that enhance the reliability of SSVEP-based BCI systems also will

be provided. The technical details were also shown in Table.2.2.

2.3.1 Disturbances in Practical Scenarios

Intra-subject Variability

As the experiment progresses, the subject may experience mental fatigue due to uncomfort-

able light twinkling and contrast changes in visual stimuli [96]. This can lead to variations

in the subject’s cognitive and electrophysiological state, potentially affecting the consistency

of SSVEP responses. Moreover, the quality of SSVEP signals may be negatively affected,

resulting in a degradation of the practical performance of the SSVEP-based system [97].

On the other hand, some user issues, like the body movement and the head’s orientation,

may also cause intra-subject variability during the experiment [47]. This may change the

position of the electrodes relative to the scalp, leading to reduced signal quality.

Environmental Distraction

The current SSVEP-based BCI recognition methods in the controlled laboratory setting

provide nearly satisfactory performance. In these circumstances, external noises-induced

brain activities were largely avoided, and only the EEG signals evoked by the SSVEP ex-

periments were recorded [98]. However, in practical scenarios, environmental distractions

may divert the user’s attention, compromising their ability to maintain focused and consis-

tent SSVEP responses [99, 100]. On the other hand, the long-term quality of the contact

of the electrode with the scalp skin is essential for EEG measurement. In many SSVEP

applications, it is imperative to ensure a stable and low contact impedance sustained over

extended periods [101]. However, the electrode-skin impedance may vary due to factors

such as sweat or humidity, which can affect the reliability of SSVEP recognition.
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2.3.2 Classification Confidence Analysis

To improve the reliability of SSVEP recognition in real-time scenarios, it is desirable to

mitigate the negative impact of misclassification by analyzing model uncertainty. One

approach to address uncertain decisions is through classification confidence analysis. By

estimating the confidence level of the classification results, a post-decision operation can

be implemented to handle uncertain decisions. For example, Lamti et al [100] presented a

hybrid system for wheelchair control that integrates gaze data and SSVEP. In this system,

the user distraction level was estimated using behavioral entropy. Based on the distraction

levels and the issued commands, the validation module generates validated commands for

the wheelchair control. Zhao et al [102] designed a decision-making module to integrate

classification decisions of different frequency recognition methods based on CCA. To mea-

sure the uncertainty of each decision, feature vectors were extracted using the two methods’

largest and second-largest correlation coefficients. The classification module classifies the

feature vector into two classes, Method 1-false, and Methods 2-false, using a linear SVM

classifier.

On the other hand, as pointed out by [103], it is essential to include a “no-control” state to

handle situations where the user does not intend to generate any command. In such cases, it

would likely be unreliable if the system still outputs a command. Similarly, mental fatigue

can also lead to a “no-control” state. To solve this issue, Cecotti et al [103] incorporates a

reject threshold into the system. The command corresponding to the frequency is produced

if the highest probability is superior to a fixed threshold (in the experiments, it is 0.5).

Similarly, Mora et al [104] introduced a confidence indicator, which enables the system to

discriminate between accepted and rejected EEG epochs. The entire epoch is rejected when

the indicator is less than a certain threshold, and no prediction is made. In the case of

CCA-based methods, the difference between the maximum and second largest correlation

coefficients could be assumed as the indicator. Kalunga et al [105] defined a probability

threshold parameter to determine the acceptance or rejection of a classification decision.

The predicted class that appeared most frequently in the last several classification outputs,

with an occurrence probability surpassing the predefined threshold, is considered the class.
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These techniques allow the BCI system to handle signals where the user’s intention is

unclear or when the user intends not to generate any specific command. By including a

reject option, the system can effectively manage such situations and enhance the overall

usability and reliability of the BCI system.

Another representative direction to enhance recognition reliability is adopting a dynamic

window strategy. Specifically, by estimating the classification confidence, the data length

used for each trial is dynamic to obtain a more reliable output. The main purpose of the

dynamic window is to achieve high accuracy while minimizing the required data length. For

example, Cecotti [106] compared the confidence score obtained by the normalized CCA cor-

relation coefficient with a predefined threshold. If the confidence score is over the threshold,

the decision is validated; otherwise, the decision is rejected, and the time segment should be

increased accordingly. Chen et al [107] projected the correlation coefficients of FBCCA into

probability space by softmax function and created a hypothesis testing model, in which cost

function was used to evaluate the classification result’s reliability. When the cost value of

the rejection hypothesis is lower than the cost value of the recognition result, this algorithm

believes that the current data are not enough to make a decision, and the applied system

needs to collect more data. Jiang et al [108] presented two dynamic stopping strategies

based on Bayes estimation and discriminant analysis. Specifically, the Bayes-based method

tries to estimate the classification confidence by calculating the normalized maximum co-

efficient probability, leading to a correct prediction. Alternatively, the discriminant-based

method employs the LDA algorithm to determine whether the predicted result is correct by

the largest and second-largest coefficients. These methods use adaptively EEG data length

that enhances the classification reliability.

2.3.3 Discussion

As mentioned earlier, the performances of the SSVEP-based BCI system can be negatively

affected by different disturbances, such as intra-subject variation and environmental distrac-

tions. Consequently, even the advanced SSVEP recognition models can result in unintended

classifications, potentially resulting in severe risks to the subject in practical scenarios. The
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Table 2.2: Methods for improving recognition reliability in SSVEP-based BCIs

Categories Method Technical details Reference

Brain and gaze

data fusion

A distraction level module estimates the intention of the user by

behavioral entropy and validates/inhibits the command accordingly.
[100]

Self-paced BCI

The proposed self-paced BCI supports the ”no control” state. The

command corresponding to the frequency is produced if and only

if the highest probability is superior to a fixed threshold.

[103]

Confidence-based

rejection method
CI-CCA

A confidence indicator (the difference between the maximum cor-

relation coefficient and the second-largest coefficient in CCA),

which enables the system to discriminate between accepted and

rejected EEG epochs.

[104]

MDRM

The predicted class that appeared most frequently in the last sev-

eral classification outputs, with an occurrence probability surpas-

sing the predefined threshold is considered to be the class. Other-

wise, it is treated as a resting class.

[105]

Dynamic window

strategy
CCA-DW

To shift the problem of the time segment to the choice of the thr-

eshold for determining if a response has been properly detected.

If the confidence score is over the threshold, the decision is val-

idated; otherwise, the decision is rejected and the time segment

should be increased.

[106]
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FBCCA-DW

The purpose of the ’dynamic window’ (DW) is to achieve high

accuracy while minimizing the required data length. The corre-

lation coefficients of FBCCA were transformed into probability

space using the softmax function and a hypothesis-testing model

was constructed, assessing the ’reliability’ of the classification

results through a risk function.

[107]

Bayes-based DS

Discriminant-

based DS

Two dynamic stopping (DS) strategies were proposed, utilizing

Bayes estimation and discriminant analysis. They aim to estim-

ate classification confidence by considering the first two largest

correlation coefficients.

[108]

Decision fusion
Decision-making

selector (DMS)

The DMS method selects a decision more likely to be correct

from two methods namely M1 and M2 by separating the M1-

false and M2-false trials. To measure the uncertainty of each

decision, feature vectors were extracted using the first two la-

rgest correlation coefficients.

[102]
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classification confidence analysis is beneficial to enhance the reliability of decisions. Sev-

eral methods have been proposed to estimate classification confidence and reduce incorrect

classifications through the rejection module or adaptive time windows. Among these meth-

ods, the maximal coefficient or the largest two coefficients from the recognition method

are commonly used as features [107, 108], but they may not be adequate for constructing

informative confidence estimation features. Specifically, all correlation coefficients can re-

flect the confidence of decisions. Recognizing their efficacy in this aspect, a broader set of

coefficients should be considered in classification confidence analysis.

2.4 Transfer Learning in SSVEP-based BCIs

One significant drawback of SSVEP-based BCI is the long period of calibration. During

the calibration process, the user is guided to engage in a predefined task, like focusing

on a visual stimulus or imagining a specific movement. As a result, a labeled dataset is

created, containing EEG segments paired with their respective correct labels. These EEG

segments and labels are utilized to train a supervised machine-learning method. Once this

training is complete, the BCI system can be effectively employed in the intended practical

applications [2, 109].

Collecting a substantial amount of calibration data is typically necessary to train the model

for the target user due to many reasons. First, the high-dimensional EEG signals are likely

to be contaminated with noise and artifacts such as environmental interference, eye blinks,

heart rate variations, and muscle movements [110,111]. If there are only a few training trials,

extracting features from high-dimensional noisy EEG signals and predicting the right brain

states is hard. Second, EEG signals are non-stationarity [112]. Non-stationarity can arise

from various factors, including lack of concentration and mental fatigue, as described in

Section 2.3. Measurement circumstances, such as changes in electrode impedance due to

sweating [113], may also contribute to non-stationarity. Third, each individual has a unique

brain wave pattern even for similar activities [114], so the direct transfer of EEG signals

across subjects is not feasible. Each subject should participate in the experiments to ensure

accurate calibration and personalized training for the BCI system.
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2.4. Transfer Learning in SSVEP-based BCIs

To address this issue, transfer learning can be a promising solution. By leveraging infor-

mation (such as raw data or features) from different domains, transfer learning can help

overcome the lack of labeled data from the test subject [2]. As described in [30], each subject

is required to undergo a burdensome calibration process to learn model parameters: the

spatial filter and the SSVEP template. The following section will review relevant literature

focusing on these two aspects. The technical details were also shown in Table.2.3.

2.4.1 Transfer Learning Methods

Template-based Transfer

As discussed in Section 2.1, it has been demonstrated in many studies [68,72] that individu-

alized templates obtained from personalized calibration data can more effectively character-

ize user-specific SSVEP signals than artificial templates, i.e., sine-cosine waves. Therefore,

some transfer learning studies focus on template-based SSVEP decoding to leverage data

across multiple domains. For example, Yuan et al [115] proposed a training-free method

known as transfer template CCA (tt-CCA), in which the transferred EEG template was gen-

erated by averaging SSVEP trials across source subjects. CCA was separately performed

between the test data and the transferred EEG template, as well as between the test data

and the reference signal. The Pearson correlation coefficients were calculated between these

projected signals and summed for final recognition. The online transfer template method

(ott-CCA) was further proposed to gradually update the transferred EEG templates. The

greater the difference between the first and second largest coefficients, the higher the like-

lihood of accurately identifying the correct target. If the difference is above a pre-specified

threshold, update the EEG template. Considering the individual difference, Nakanishi et

al [116] employed a session-to-session transfer method (i.e., training data measured from

the same subject on a different day) based on ott-CCA to reduce the training time for the

next day. Waytowich et al [117] proposed the Adaptive Combined-CCA (Adaptive-C3A)

method, which uses an adaptive transfer learner to extend the Combined-tCCA method.

The template construction process exclusively considers high-confidence trials related to

SSVEP signals. Confidence is quantified as the ratio between the highest-predicted and
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2.4. Transfer Learning in SSVEP-based BCIs

second-best predicted classes’ coefficients. Only trials from the source subjects that exceed

a specific threshold are used to adapt the SSVEP template for the target subject. Similarly,

Wang et al [118] proposed an inter- and intra-subject template-based multivariate synchro-

nization index (IIST-MSI) method, in which high-confidence trials are specifically chosen

for transfer learning. For instance, the inter-subject template is derived by averaging high-

confidence trials across subjects, and the high-confidence trial selection relies on a threshold

policy using MSI. These methods overlook the discrepancies in data distribution between

subjects, which may hinder the capacity to transfer data from one subject to another.

Spatial filter-based Transfer

Spatial filter-based transfer learning has also emerged as a promising research direction for

SSVEP-based BCIs, offering potential solutions to alleviate the calibration burden across

various domains. Multiple BCI transfer learning studies cooperating on spatial filters to

learn the common feature representations across different domains [2]. Notably, the deriva-

tion of the transferred spatial filter often involves individual templates. Nakanishi et al [119]

introduced a novel method for transferring shared EEG responses across different devices.

This approach first averages the training trials of SSVEPs acquired using a device to create

individual templates for each visual stimulation tagged with a specific frequency/phase.

Subsequently, spatial filters trained by CCA or TRCA are applied to the individual tem-

plates for transferring them to another device. The transferred templates and data from the

target device were then integrated into the LST to derive the transferred spatial filter for

SSVEP recognition. Liu et al [120] proposed a transfer learning framework named align and

pool for EEG headset domain adaptation (ALPHA), which aligns the spatial pattern and

the covariance for domain adaptation. To improve its performance and reduce the calibra-

tion effort for dry-electrode systems, cross-device transfer learning was used by exploiting

auxiliary individual wet-electrode EEG. Liu et al [121] further explored within-subject (i.e.,

cross-day and cross-electrode type) transfer learning which improves the BCI performance

and reduces the calibration burden via ALPHA.

Except for cross-device and within-subject transfer learning, most studies in SSVEP-based
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2.4. Transfer Learning in SSVEP-based BCIs

BCIs focus on transfer across different subjects. Chiang et al [122] employed the least-

squares transformation (LST) to achieve cross-subject transfer of SSVEP data, resulting in

reduced calibration time and improved recognition performance for new users. Specifically,

the LST method transforms the SSVEP data from existing subjects to fit the SSVEP

templates of a new user using only a small number of the new user’s signals. Based on their

previous work, Chiang et al [123] propose a generalized framework of transfer learning that

can leverage SSVEP data across multiple domains (sessions, subjects, and devices) toward

a practical application. Yan et al [29] proposed a training-free cross-subject spatial filter

transfer (CSSFT) method that leverages existing user data to compute spatial filters using

CCA or FBCCA and transfers them to new user data. The core idea is inspired by the fact

that the reference signal used by new and existing users is the same; both new and existing

users aim to project their EEG data in the most relevant direction to the reference signal.

Considering the amplitude and pattern of brain signals differed across trials, Yan et al [124]

further introduced an enhanced version of CSSFT called Improved-CSSFT. This method

replaced superposition averaging with a trial ensemble or expansion scheme to achieve better

performance.

Compared with training-free methods, training-based methods tend to get higher recogni-

tion accuracy. Tanaka [125] extends the previous method TRCA by maximizing trial-by-

trial reproducibility within single subjects and similarity across a group of subjects. This

extension is referred to as group TRCA (gTRCA). The problem of maximizing the repro-

ducibility of time series across trials and subjects is formulated as a generalized eigenvalue

problem. Inspired by gTRCA, Wang et al [126] proposed an inter- and intra-subject max-

imal correlation (IISMC) based cross-subject assistance framework to enhance the SSVEP

recognition. IISMC employs two sets of spatial filters: intra-subject filters that extract

subject-specific information, and inter-subject filters that capture task-related similarities

across individuals performing the same task. These filters are trained by maximizing cor-

relation, leading to an effective method for extracting meaningful features from SSVEP

data. Wei et al [127] introduced a spatial filtering method based on CCA, named intra-

and inter-subject CCA (IISCCA). This method aims to train three types of spatial filters,
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which the TDCCA estimated [128] with EEG data from the same domain or two different

domains. The IISCCA not only extracts subject-specific information but also integrates

similarities between subjects. To minimize the variability between subjects, an accuracy-

based algorithm for subject selection (ASS) was incorporated with IISCCA. This algorithm

is designed to identify source subjects whose data distributions are more similar to those of

the target subject.

Some studies facilitate intra- and inter-subject transfer learning by investigating the rela-

tionships between different stimuli [129]. Wong et al [130] assumed that the training data

corresponding to neighboring stimuli can be assigned with a common spatial filter. The key

idea of the proposed multi-stimulus CCA (msCCA) is to train the spatial filter using data

from the target stimulus and the neighboring stimuli. Based on this work, Wong et al [30]

further proposed an intra-subject spatial filter and inter-subject SSVEP template transfer

scheme. The subject transfer-based CCA (stCCA) approach introduced a new assump-

tion that the target subject’s spatially filtered SSVEP templates could be approximated

by the weighted summation of spatially filtered SSVEP templates from source subjects.

A multivariate linear regression (MLR) problem calculates the inter-subject spatial filter.

Subsequently, Wong et al [131] explored the feasibility of transferring the model parameters,

namely the spatial filters and the SSVEP templates, across two different groups of visual

stimuli. The authors utilized the common impulse response to reconstruct the transferred

SSVEP template, based on the theory that the steady-state response can be modeled as

the convolution of the impulse response and the periodic stimulus [132].

2.4.2 Discussion

In the past decade, transfer learning has been widely investigated in SSVEP-based BCI,

mainly including template-based transfer and spatial filter-based transfer across different

domains (i.e., sessions, subjects, and devices). While some studies have been inclined

towards direct knowledge transfers across domains [29, 115], others have investigated the

correlations between different domains [126, 127]. Although continuous efforts have been

made to alleviate the calibration effort while maintaining decent decoding accuracy [133],
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Table 2.3: Transfer learning methods in SSVEP-based BCIs

Categories Methods Technical details Reference

tt-CCA
The transferred EEG template was generated by averaging

SSVEP trials across the source subjects.
[115]

ott-CCA
The template was updated depending on the difference be-

tween the first and second largest coefficients.
[115]

Template-based Transfer SSott-CCA

A session-to-session transfer method, which uses templates

obtained from datasets collected from the same subject on

a different day.

[116]

Adaptive-C3A

An extension of Combined-CCA with an adaptive template

learner. High-confidence trials were averaged for transfer

across subjects.

[117]

IIST-MSI

The inter- and intra-subject templates were obtained by av-

eraging high-confidence trials across subjects or within su-

bject. The confidence score depends on a threshold policy

with MSI.

[118]

LST-based

method

The LST method transforms the SSVEP data from the sou-

rce domain to fit the SSVEP templates of the target domain.
[122,123]

Spatial Filter-based Transfer SLD

The transferring is done by projecting the scalp-channel

EEG signals onto a shared latent domain (SLD) across

devices.

[119]

ALPHA
ALPHA aligns the spatial pattern and the covariance for

domain adaptation.
[120,121]
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CSSFT

It leverages existing user data to compute spatial filters us-

ing CCA or FBCCA and transfers them directly to new user

data.

[29]

Improved-CSSFT
It replaces superposition averaging with a trial ensemble or

expansion scheme to achieve better performance.
[124]

IISMC
The inter- and intra-subject spatial filters were trained by

correlation maximization.
[126]

IISCCA
The subject-specific information and similarities between

subjects were extracted by TDCCA.
[127]

ms-CCA
To train the spatial filter using data from not only the target

stimulus but also the neighboring stimuli.
[130]

stCCA

It introduces the intra-subject spatial filter (ms-CCA) and

the inter-subject SSVEP template (MLR) for the CCA-based

method.

[30]

tlCCA

According to the theory that an SSVEP is a superposition of

the impulse responses, tlCCA transfers the spatial filters and

SSVEP templates across two groups of visual stimuli.

[131]
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2.5. SSVEP-based BCI-Controlled Robots

many open questions still need further investigation. For example, during the training of

the transferred spatial filter and transferred template, the optimization problem rarely con-

siders the pairwise relationships between the training trial and two types of templates (i.e.,

individual templates and artificially sine-cosine references) simultaneously. Additionally, in

a cross-subject scenario, the distinct contributions of source subjects to the target subject

have yet to be thoroughly studied.

2.5 SSVEP-based BCI-Controlled Robots

The SSVEP-based BCI has shown significant importance in the field of assistance and

rehabilitation because it enables individuals with severe physical disabilities to regain control

of their daily lives. We will describe the SSVEP-based BCI-controlled applications from

the following three aspects, i.e., communication aids, prosthetics control, and environmental

control. The classification of robots, along with their technical details and corresponding

control commands, were presented in Table 2.4.

2.5.1 Communication Aids

The SSVEP-based BCI offers new communication methods for individuals with limited

or no speech abilities. The speller is a typical application of SSVEP-based BCI, which

allows users to express their thoughts and needs effectively [134]. Bremen Speller is one of

the earliest and most well-known SSVEP-based BCI spellers that presents characters and

stimuli on the screen, respectively [135]. The five flickers at different frequencies are used

to control the cursor’s movement and facilitate character selection.

In subsequent research, the stimuli usually directly represent characters, allowing users to

output different characters by focusing their attention on specific visual cues [136]. De-

pending on whether a stimulus represents multiple characters or a single character, it can

be further classified into two types, namely multi-layer spellers and one-layer spellers [134].

The multi-layer speller has two or more stages and built a screen sequence for selecting the

letters [137–139]. For example, Cecotti et al [103] introduced a three-layer structure where

each layer consisted of five flickering stimuli. A broad range of characters is initially pre-
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sented to the user at the first layer. The system dynamically displays a narrowed selection

on the second layer as the user directs their attention. Finally, at the third layer, the user

can focus on selecting a specific character from the remaining options. Similarly, Nguyen

et al [140] proposed a three-layer keyboard with five flickers in each layer and a total of 58

characters, facilitating precise character selection within the SSVEP-based system.

Unlike the multi-layer speller, the one-layer speller presents a one-to-one correspondence be-

tween commands and characters. This design enhances input efficiency and facilitates com-

munication by streamlining the selection process. For example, Hwang et al [141] adopted

a QWERTY style to lay out a keyboard with 30 LEDs flickering at different frequencies.

The frequency band of 5-7.9 Hz with a span of 0.1 Hz was selected. Chen et al [142] intro-

duced a 45-target BCI speller, where SSVEPs were induced by both low-frequency (7–15.8

Hz) and high-frequency (35.6- 44.4 Hz) stimuli. Chen et al [143] further proved that the

discriminability of SSVEPs could be improved by incorporating both frequency and phase

features. This work introduces two hybrid coding strategies: mixed frequency and phase

modulation and joint frequency and phase modulation (JFPM). The mixed frequency and

phase coding strategy involves eight frequencies (8–15 Hz with a 1Hz interval) and five

phases (0, 0.4 π, 0.8 π, 1.2 π, and 1.6 π). The joint frequency and phase coding employs

frequencies ranging from 8 to 15.8 Hz with a 0.2 Hz interval, and the phase interval between

two adjacent frequencies is 0.5 π. Wang et al [23] presented a 40-target BCI speller using

the same JFPM approach as described in [143]. The difference is that [23] involved more

subjects, focused on collecting a benchmark dataset for the SSVEP-based BCI.

2.5.2 Prosthetics Control

The SSVEP-based BCI can be utilized to control robotic prosthetic limbs, allowing individ-

uals with limb impairments to regain motor control and execute normal movements. Based

on the applicable body part, these prosthetics can be categorized as upper limb prostheses

and lower limb prostheses. The following will introduce the application of SSVEP-based

BCIs in prosthetics control for both classes.
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Upper Limb Prosthetics

SSVEP-based upper limb prosthetics are designed to assist or replace the user’s arm or hand

in performing essential tasks and facilitate the recovery and rehabilitation process through

therapeutic exercises. In the field of assistance, SSVEP-based assistive robotic arms have

been widely studied to help individuals perform practical series of actions, such as reaching

and grasping movements [144]. For example, Chen et al [145] designed a 7-DOF robotic arm

system to execute the move-grasp-lift task of a single object. This study utilized a set of 15

targets (8-15 Hz) that served as specific commands to control the movement and rotation

of the robotic arm. In [146], a 25-target SSVEP-based BCI was designed for the pick and

place tasks of the robotic arm. Each frequency within the range of 8-15.8 Hz corresponded

to one of the 25 locations within the robotic arm’s workspace. To deal with visual fatigue

caused by flickering, a combination of a high-frequency SSVEP-based BCI with computer

vision was proposed for controlling the robotic arm [147]. Computer vision was used to

identify and locate the three objects within the workspace, and a four-stimulus interface

was shown on the screen, where the three flickers were used to choose the corresponding

object for the action, and the left one was used to undo the last operation. The augmented

reality (AR) device was further incorporated to improve the portability of the SSVEP-based

BCI system [148,149]. For example, Chen et al [150] further developed the SSVEP system

in [147] with augmented reality (AR) by a Microsoft HoloLens, where users can see the user

interface of the BCI and the robotic arm simultaneously. The same issue was also studied

in [151], where the flickering stimuli were attached to the robotic arm’s gripper and moved

with it. The experimental results demonstrated that the proposed paradigm outperformed

the conventional approach that used fixed flickering stimuli. In the rehabilitative field,

Muller-Putz et al [152] designed a hand prosthesis to restore the grasp function in spinal

cord-injured people. Four mounted lights are attached to the fingers and the forearm,

corresponding to four movements, i.e., turn left, turn right, hand open, and hand close.

Ortner et al [153] designed a hand orthosis for persons with tetraplegia. The lights are also

mounted on the orthosis for hand open and close tasks. Guo et al [154] designed a SSVEP-

based BCI-controlled soft robotic glove for post-stroke hand function rehabilitation. The
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two stimuli, displayed on both sides of the screen, were utilized to control the left or right

glove, respectively. Zhao et al [155] introduced an integrated framework of SSVEP with

functional electrical stimulation (FES) for motor rehabilitation. The movement intentions

regarding the three operation speed modes are transformed into instructions to trigger FES,

and muscles can be stimulated to induce arm movement. Sakurada et al [156] designed an

occupational therapy assist suit for patients with upper cervical spinal cord injuries (SCIs).

SSVEP signals were used to trigger the grasping-a-ball and carrying-the-ball movements.

Lower Limb Prosthetics

The SSVEP-based lower limb prosthetics can help individuals with lower limb disabilities

walk and restore mobility. Wang et al [157] proposed a lower limb exoskeleton to help people

to perform stand-up, sit down, and walk forward. In this study, assistance is required for the

wearer to hold the display and view the stimulus. Kwak et al [158] developed a SSVEP-based

lower limb exoskeleton control system in which users can achieve programmed motions (e.g.,

walking, turning, sitting, and standing). A visual stimulation device with five light-emitting

diodes mounted to the exoskeleton stimulates the SSVEP. Qi et al [159] designed a lower

limb exoskeleton with seven commands for effectively controlling individuals to perform

leg rehabilitation. Zeng et al [160] introduced an ankle rehabilitation robot that allowed

subjects’ motion intentions (upper, bottom, left, and right) to trigger corresponding passive

training. Wang et al [148] designed a portable AR-BCI system applied to rehabilitation

exoskeleton. A four-class BCI was used to complete rehabilitation movements for the upper

and lower limbs.

The SSVEP-based robotic prosthetic can provide assistance and support to individuals with

disabilities. It can also help these people regain flexibility and perform daily movements.

2.5.3 Environmental Control

The SSVEP-based BCI can also be used to control wheelchair navigation, household ap-

pliances, and other devices, which enhances the quality of life for those with physical re-

strictions. Diez et al [161] presented a BCI system for operating a robotic wheelchair to
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complete reaching tasks with or without obstacles. The LCD screen was installed on the

wheelchair, and four stimuli were attached on the sides of the screen, corresponding to go

forward, turn left, turn right, and stop control commands, respectively. Deng et al [7] de-

signed a probabilistic model of human and robot control commands to provide the optimal

control of a wheelchair robot. In this model, a multi-layer stimulation interface including

four LEDS was employed, in which the first layer is used to determine the preliminary di-

rection, and the second layer is used for more accurate angular control. Sakkalis et al [162]

aimed to develop efficient electric wheelchair navigation combining high accuracy and com-

fort. A SSVEP-based control system featuring AR glasses was proposed to increase ease of

use and patient acceptability. Rivera et al [163] incorporated compressive sensing (CS) in

a robotic wheelchair control, which reduces the data size but preserves the signal’s quality

and increases the ITR. The benchmark data provided by Wang et al [23] were used for

decoding the following four commands: reverse (from 8.0 to 9.8 Hz); right (from 10.0 to

11.8 Hz); left (from 12.0 to 13.8 Hz); and forward (from 14.0 to 15.8 Hz). Considering that

only designated directional commands could be transmitted by the BCI system, Zhang et

al [164] introduced a 2D navigation robot that utilizes the quantified value of brain com-

mands to form an acceleration vector. It improves the flexibility, stability, and efficiency of

BCIs.

SSVEP-based BCI systems also have made progress in the smart home scenarios, which

provides disabled people with more direct interactions with the environment. It allows

people to recognize various commands and control corresponding devices in their houses by

watching different stimuli [165]. In [166], visual stimuli were displayed on AR smart glasses,

which can be easily used to control household devices, such as lights, coffee machines,

and elevators. QR codes were used to identify the equipment to be controlled with the

BCI. Adams et al [167] introduced a more portable BCI system with a lightweight mobile

EEG amplifier. Six devices in a real smart home environment can be controlled with this

BCI system. The SSVEP-based BCI system also assists in reducing domestic pressure and

improving home conditions by helping people accomplish heavy housework. For example,

Shao et al [168] designed a novel EEG-based intelligent teleoperation system for a mobile
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Table 2.4: SSVEP-based BCI controlled robots

Categories Device Technical details Commands Reference

Speller

Bremen Speller: the five flickers at different

frequencies are used to control the cursor to

select characters.

Turn left, right, up, down,

selection
[135]

Communication Aids RC-speller

The row/column (RC) paradigm was used to

increase the number of targets. The target is

detected by subsequently determining the row

and column coordinates.

Choose one row out of six,

then one column out of six.
[136]

Multi-layer

speller

It has two or more stages and built a screen

sequence for the selection of the letters

Choose a group of charact-

ers, then a specific one
[103,137–140]

Lone-layer

speller

It presents a one-to-one correspondence be-

tween commands and characters.
Choose a specific character [23,141,142]

Prosthetics Control

Robotic arm
Subjects control the 7-DOF robotic arm to

reach a specified position in 3D space.

Move forward, backward,

right, left, up, and down
[144]

Robotic arm

A 15-target system allowed users to directly

control the robotic arm to complete the move

-grasp-lift task.

move up, down, left, right,

forward, backward, rotati-

on, and return

[145]

Robotic arm

A 25-target system was developed to control

a robotic arm for picking and placing a plastic

block at the identified location.

Placement location [146]

Robotic arm

+ CV

Pick and place task: the computer vision (CV)

can identify objects and locate positions, while

the BCI allows the user to select one object to

be acted upon by the robotic arm.

Choose the specific object [147]

Robotic arm

+ CV +AR

Augmented reality (AR) environment allowed

users to see both the robotic arm and the user

interface of the BCI.

Choose the specific object [150]
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Robotic Arm

The flickering stimuli were attached to the ro-

botic arm’s gripper and moved with it, so users

do not need to switch their gaze between the

flicker and the actual scene.

move forward, backward,

left, and right
[151]

Hand prosthesis
Four mounted lights are attached to the fingers

and the forearm, representing four movements.

turn left, turn right, hand

open, and hand close
[152]

Hand orthosis
Two lights are mounted on the finger-flexion

hand orthosis.
Hand open and close [153]

Robotic glove
A soft robotic glove for post-stroke hand fun-

ction rehabilitation
Choose left or right glove [154]

FES device

An integrated framework of SSVEP with fun-

ctional electrical stimulation (FES) for motor

rehabilitation.

Speed mode (fast, medi-

um, or slow)
[155]

Therapy assist

suit

A two-class SSVEP-based occupational ther-

apy assist suit for patients with upper cervical

spinal cord injuries.

Grasp-a-ball and carry-

the-ball movements
[156]

Lower limb

exoskeleton

A lower-limb exoskeleton robot was develo-

ped for BCI-based control of exoskeletons.

The wearer requires assistance to hold the

display in place and view the stimulus.

Choose walk, sit, or stand [157]

Lower limb

exoskeleton

A visual stimulation unit consisting of five

light-emitting diodes fixed to the exoskeleton.

Walk forward, turn left,

stand, turn right, and sit
[158]

Lower limb

exoskeleton

Each subject is required to wear protective

equipment and exoskeleton to stand on the

treadmill.

Acceleration, deceleration,

weight loss, aggravation,

left leg, right leg, stop

[159]

Ankle rehabili-

tation robot

Visual reality circumstance is a whack-a-

mole game. Four hamsters are arranged in

four directions as targets and a hammer is

located in the center as the movable cursor.

Turn left, right, upper,

and bottom
[160]
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Exoskeleton +

AR

A sequential logic decoding method is prop-

osed, which can realize 16 control commands

by using a 4-class BCI.

1st layer: group number; 2nd

layer: specific movement
[148]

Wheelchair
To complete reaching tasks with/without obs-

tacles. Stimuli were attached to the wheelchair.

Go forward, turn left, turn

right, and stop
[161]

Wheelchair

It designed a probabilistic model of human

and robot control commands to provide the

optimal control of a wheelchair.

1st layer: preliminary direc-

tion; 2nd layer: angular
[7]

Wheelchair +

AR

a SSVEP-based control system featuring

AR glasses to achieve wheelchair navigation.

Forward, turn left, right,

and back
[162]

Wheelchair

It incorporated compressive sensing (CS),

which reduces the data size but preserves

the signal’s quality.

Reverse, right, left, and

forward
[163]

Environmental Control Wheelchair

It introduced a 2D navigation robot that uti-

lizes the quantified value of brain commands

to form an acceleration vector.

Ten speed direction [164]

Household

devices

The visual stimuli were displayed on AR sm-

art glasses, which can be easily used to control

household devices, such as lights, coffee ma-

chine, and elevators.

Light: on/off; elevator: floor

number; coffee machine: co-

ffee flavor

[166]

Household

devices

The visual stimuli for the BCI were placed

on multiple screens in the smart home (su-

ch as the kitchen and living room).

Thirteen commands for con-

trolling six devices
[167]

Wall-crawling

cleaning robot

The SSVEP system controls the robot to cli-

mb the wall and complete the tasks of cleaning.

Forward, backward, turn left,

and right
[168]

Meal-assist

robot

SSVEP signals were used to decode the

user’s intention of food.
One of the five types of food [169]
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wall-crawling cleaning robot, which uses the crawler type instead of the traditional wheel

type for window or floor cleaning. SSVEP-based BCI also has the potential to alleviate

the requirement for caretakers [170]. For example, Ha et al [169] developed a hybrid BCI

meal-assist robot system in which SSVEP signals were used to decode the user’s intention

of food. Five LEDs with different frequencies were connected to the tray with five kinds

of food. The developments of SSVEP-based BCI in the smart environment field may offer

the prospect of significantly improving the quality of life for disabled people in clinics and

considerably increasing their independence, autonomy, and mobility, leading to reduced

social costs.

2.5.4 Discussion

The SSVEP-based BCI has been widely utilized in various applications, effectively assisting

disabled people in enhancing their communication and control capabilities with the external

environment. In the SSVEP-controlled robot system, the subject can convey their motion

intention by directing his or her focus toward different stimuli. In many research studies,

the BCI system used to control robots often relies on predetermined directional commands,

such as “turn left/right” or “go ahead” [145, 161], as well as instructions to reach specific

locations at a fixed speed [146,154]. It neglects the subject’s requirement for controlling the

direction and speed of the robot. Several studies considered velocity control in the SSVEP

paradigm, including examples like the upper extremity rehabilitation system in [155], and

the robotic wheelchair in [171]. However, since different stimuli correspond to different

velocity modes, the BCI still discretely accomplishes velocity modulation. Meanwhile, it

has yet to explore the quantified value of brain commands fully.

2.6 SSVEP Dataset

This section outlines the frequency band applied in SSVEP data collection and the datasets

utilized in this thesis for performance evaluation. They comprise one public benchmark

dataset [23] and two datasets that were self-collected in the lab. For the datasets, detailed

information is elaborated below.
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2.6.1 SSVEP Frequency Band

Five distinct brain rhythms can be identified in EEG based on their frequency ranges:

delta (1-4) Hz, theta [4-8) Hz, alpha [8-13) Hz, beta [13-32) Hz, and gamma [32-120) Hz

[2,172]. To date, response amplitude is commonly used to guide the selection of stimulation

frequencies [173]. Schielke et al. [172] highlighted that from 1954 to 2021 on PubMed,

SSVEP research distribution across these bands was as follows: delta band accounted for

12 tests (5.26%), theta band 58 tests (25.44%), alpha band 103 tests (45.18%), beta band

51 tests (22.37%), and gamma band 4 tests (1.75%).

Over the past few decades, continuous efforts have been made to contribute to the pub-

lic SSVEP database. These datasets typically focus on frequency bands that evoke the

strongest SSVEP responses. Nakanishi et al. [68] introduced a 12-class dataset collected

from 10 subjects, featuring frequencies ranging from 9.25 Hz to 14.75 Hz in 0.5 Hz incre-

ments. Wang et al. [23] introduced a 40-target database, comprising 64-channel SSVEP

trials from 35 subjects who performed an offline cue-spelling task. The stimulation frequen-

cies ranged from 8 Hz to 15.8 Hz. This dataset has been extensively utilized in numerous

SSVEP studies to compare the performance of various algorithms [80,91,174]. Liu et al. [175]

further presented the Benchmark database Towards BCI Application (BETA), which com-

prises data from 70 subjects performing a 40-target cued-spelling task. The frequency range

for this database extends from 8 to 15.8 Hz with an interval of 0.2 Hz.

2.6.2 Public Dataset

The benchmark dataset in [23] was introduced in this subsection. This dataset was collected

from 35 healthy subjects with 40 visual stimulation modulated at different frequencies

(8–15.8 Hz with an interval of 0.2 Hz), while the phase difference between two neighboring

targets is 0.5 π. The stimulation interface of the 40-class BCI is shown in Fig. 2.2. In

the experiment, each participant underwent six blocks, with each block comprising 40 trials

that corresponded to 40 stimuli. Each trial in the experiment lasted for 6 s, starting with a

0.5 s cue time during which the subject was instructed to shift his or her gaze to the target

stimulus as quickly as possible. After the cue, all stimuli started to flicker concurrently for

46



2.6. SSVEP Dataset

Figure 2.2: The stimulation interface of the 40-target BCI.

5 s. The trial concluded with a 0.5 s rest period before commencing the next trial. More

information about this dataset can be found in [23].

2.6.3 Self-collected Dataset

Participants

In Dataset I, SSVEP signals were recorded from 11 subjects (four females and six males,

mean age: twenty-five years). In Dataset II, eight subjects (four females and four males,

mean age: twenty-seven years) participated in the SSVEP-based BCI experiment. All sub-

jects were in good health, with normal or corrected-to-normal vision. Each participant was

seated in a comfortable chair, facing the visual simulation. The Research Ethics Committee

of the University of Leeds has approved the experiment. All subjects read and signed the

participant consent form before the SSVEP experiment.

Stimulus Design

In Dataset I, the visual stimulation is designed as a 4 × 3 matrix coded by the JFPM

method on a 23.6-inch LCD monitor. Its resolution and refresh rate are 1920 × 1080 pixels

and 60 Hz. The 12 visual stimuli flashed at frequencies ranging from 9.25 Hz to 14.75
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(a) Dataset I (b) Dataset II

Figure 2.3: The stimulation interface of (a) 12-class dataset and (b) 4-class dataset.

Hz with an interval of 0.5 Hz. The phase started from 0π to 1.5π in steps of 0.5π. The

stimulation interface was shown in Fig. 2.3(a). The experiment consisted of 5 blocks for

each subject. Each block includes 12 trials corresponding to 12 stimuli. Each trial began

with a 0.5 s red dot cue which indicates the target flicker. Later, 12 stimuli started to

flash for 5 s simultaneously, during which the subject should stare at the target stimulus

and avoid eye movements. Following this, there is a 0.5 s rest period before the next trial

commences. Additionally, there was a 0.5 s break between two consecutive blocks. The

experimental paradigm is shown in Fig.2.4(a). In Dataset II, the g.SSVEPbox was adopted

for stimulation design, as shown in Fig.2.3(b). It contains 4 LEDs flickering at various

frequencies, namely 14 Hz, 15 Hz, 16 Hz, and 17 Hz. The experiment of each participant

also consists of 5 blocks, and there are 4 trials corresponding to four visual stimulation in

each block. A small green light appeared about 2 mm from one of the LEDs for cue-guided

purposes. In each trial, four stimuli flash in white for 5 s concurrently. The frequency ranges

of [9.25-14.75] Hz and [14-17] Hz were selected as they fall within the theta and alpha ranges

(8-32 Hz), which are known to elicit more responsive and stronger SSVEP signals [172,173].

Even though the 12-class SSVEP dataset has already been gathered in prior research [68],

replicating this experiment is valuable not only for validating existing results but also for

gaining a more comprehensive understanding of the SSVEP data collection process.
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(a) Experimental paradigm (b) Channel location representa-
tion

Figure 2.4: (a) experimental paradigm and (b) channel location of SSVEP recording.

EEG Recording

For the benchmark dataset, all epochs were simply down-sampled to 250 Hz. Nine channel

EEG data (i.e., Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) was selected for analysis.

In the self-collected datasets, SSVEP signals were recorded by the equipment from g.tec

medical engineering GmbH. The g.USBamp amplifier was applied to sample data at 256

Hz. For Datasets I and II, nine channels, including Pz, PO3, POz, PO4, PO7, O1, Oz, O2,

and PO8, were selected for EEG data collection. The ground electrode was located over

electrode FPz, and the right earlobe was the reference channel. The channel location was

shown in Fig. 2.4(b).

2.7 Research Gap

To conclude, the existing research gaps are summarized as:

• One of the main directions for improving the performance of SSVEP-based BCIs is to

enhance target identification algorithms. Initially, FFT-based methods were widely

used to detect the target frequency of SSVEP signals [20, 27]. Additionally, more

efficient methods have been developed by incorporating temporal features of SSVEP

signals, such as CCA and its variations [38, 67]. Later, the inter-trial correlation was

considered in the training process [1, 71]. Among these methods, spatial filters are

typically trained using the signal from a single stimulus, and information from other

stimuli is seldom considered. Additionally, the volume conduction artifact, a common
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problem arising from the coherence among various electrodes [176], does not receive

much attention in SSVEP classification methods. Addressing these limitations is a

crucial step toward further enhancing the performance of SSVEP-based BCIs.

• Many existing SSVEP recognition methods rely on determining the target class by

finding the largest correlation coefficient [69, 72]. However, the classification perfor-

mance degrades when the largest coefficient is not significantly different from the

rest of the values. Therefore, classification confidence analysis becomes essential for

SSVEP recognition, as it enables the rejection of unintended results and reduces

risks in practical scenarios. This, in turn, significantly enhances the reliability of

SSVEP-based BCI systems. Currently, research on classification confidence estima-

tion typically focuses on considering the largest two correlation coefficients [104,108].

However, more is needed to construct informative features for enhancing SSVEP de-

tection. Therefore, thoroughly investigating all correlation coefficients becomes crucial

to improving the system’s reliability, ultimately enhancing users’ safety and security.

• Collecting a substantial amount of calibration data is typically necessary to train

the model for each subject [122]. This process is often time-consuming and trouble-

some [177], potentially affecting the quality of the signals and, consequently, impacting

the recognition reliability and accuracy. Transfer learning has gained much attention

as a potential solution to address this challenge [2]. However, existing transfer learn-

ing papers often design a cross-subject scheme, neglecting the full consideration of the

relation between training data and different types of templates (i.e., the artificial tem-

plate, and the reference signal) in the construction of transferred spatial templates and

transferred spatial filters. Additionally, the distinct contributions of source subjects

to the target subject are rarely taken into account in the recognition process.

• SSVEP-based BCIs have been extensively implemented in various applications by clas-

sifying EEG signals and mapping them to different commands [135,147,161]. Conven-

tional control methods usually provide commands with fixed and predefined movement

directions and speeds [144,145], neglecting the user’s requirement for velocity changes

during real-world implementations. This limitation could restrict the user’s control
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precision and impede the overall user experience. To address this challenge, a po-

tential solution lies in incorporating velocity modulation based on the user’s intent.

The BCI system can respond to their intended movements by allowing the user to

modulate the velocity, providing a more intuitive and interactive control experience.

2.8 Research Contributions

Considering the research objectives and the gaps in existing research, the contributions of

this thesis can be summarized as follows:

• Introducing a novel target classification method using multi-objective optimization

high-pass spatial filtering techniques to enhance SSVEP recognition accuracy by ex-

tracting target-related features and reducing volume conduction effects.

• Proposing a Bayesian-based classification confidence estimation method to improve

SSVEP detection reliability by accepting high-confidence results and rejecting low-

confidence decisions, enhancing the overall system reliability.

• Introducing a novel cross-subject transfer learning scheme for SSVEP-based BCI,

incorporating knowledge from source subjects to effectively strengthen recognition

performance in a target subject, reducing the need for extra extensive individual

calibration procedures.

• Implementing an SSVEP-based BCI-controlled robotic platform with a stimulus bright-

ness-based method for velocity modulation, providing adaptability in robotic move-

ment to better align with users’ intentions, thereby enhancing the user experience and

practical applicability of SSVEP-based BCIs.

2.9 Chapter Summary

This chapter presents a comprehensive survey of previous works on SSVEP-based BCI,

with a particular focus on 1) SSVEP signal preprocessing and recognition techniques, 2)

recognition confidence analysis, 3) transfer learning methods, and 4) SSVEP-based BCI-
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actuated robots. The chapter also highlights some research gaps and challenges in the field.

These insights guide the subsequent sections, which aim to address these issues and develop

a reliable and accurate SSVEP-based BCI system.

52



Chapter 3

Multi-objective Optimisation-based

High-pass Spatial Filtering for

SSVEP Detection

Many spatial filtering methods have been proposed to enhance the target identification per-

formance of the SSVEP-based BCI. The existing approaches tend to learn the spatial filter

parameters of a certain target using only the training data from the same stimulus, and

they rarely consider the information from other stimuli or the volume conduction problem

during the training process. This paper proposes a novel multi-objective optimisation-based

high-pass spatial filtering method to improve SSVEP detection accuracy and robustness.

The filters are derived by maximising the correlation between the training signal and the

individual template from the same target while minimising the correlation between the

signal from other targets and the template. The optimisation will also be subject to the

constraint that the sum of filter elements is zero. The evaluation study on two self-collected

SSVEP datasets (12 and 4 frequencies, respectively) shows that the proposed method out-

performed the compared methods, such as CCA, MsetCCA, SSCOR, and TRCA. The

proposed method was also verified on a public 40-class SSVEP benchmark dataset from

35 subjects. The experimental results have demonstrated the effectiveness of the proposed
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approach for enhancing the SSVEP detection performance.

3.1 Introduction

The BCI establishes a direct communication path between the human brain and external

devices without relying on normal motor output pathways [178–180]. The SSVEP-based

BCI has been widely explored in various applications, such as robot arm [150], commu-

nication [1] and augmented reality (AR) glasses [181] [182] due to its high SNR, minimal

training time, and fast communication rate [183–185].

The main task of the SSVEP-based BCI system is to identify target stimuli and then trans-

late them into corresponding commands for subsequent control actions. Thus far, various

spatial filters applied transformations in the channel domain, which enhanced the SSVEP

identification effectively via removing background artifacts [185–187]. As one of the most

popular spatial filtering methods, CCA seeks a pair of weights to maximise the correlation

between SSVEP signals and sine-cosine reference signals [38]. Some extended versions of

the standard CCA were proposed to improve the performance of SSVEP detection further.

In these methods, one branch starts with brain activity processing, such as FBCCA [69]. As

it decomposes SSVEP signals into various sub-band components, the specific information

contained in harmonic components can be employed for frequency recognition. Another

branch is to optimise the predefined artificial reference signal by incorporating individual

calibration data. For example, Zhang et al. presented MwayCCA [65] and L1-regularized

MwayCCA [66] to construct the new reference template via the third-order EEG data ten-

sor. They later proposed the MsetCCA, which extracts common features shared by multiple

calibration signals to create optimised references, and it outperforms MwayCCA in classi-

fication [67] [68]. The latest SSVEP detection methods tend to learn the spatial filter by

incorporating a training stage. Besides, these methods are commonly based on template

matching, in which the individual template is acquired by averaging multiple training tri-

als [2]. For instance, Wei et al. [128] proposed a training data-driven CCA algorithm that

yields more robust spatial filters to enhance the SNR of SSVEP signals. However, the inter-

trial relationship from the same target was not fully considered. In another study, Nakanishi
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et al. [1] presented TRCA based on the idea that the source signal can be reconstructed

through a linear summation of multi-channel EEG signals. The TRCA-based spatial filter

is learned by inter-trial covariance maximisation. However, during the spatial filter training

process, the methods mentioned above only utilised the signal from a single stimulus, and

they rarely considered the information from other stimuli.

Although multi-channel scalp EEG activities are beneficial to achieve high-quality spatial

filters, the volume conduction artifact may also be introduced due to the coherence among

various EEG channels [188]. It is well known that the measurement of each EEG electrode

is a linear mixture of concurrently multiple brain source activities, not just the activity of

brain source in its vicinity [189]. In other words, since the signal from each brain source

spreads among various EEG channels when passing through the intracerebral area and the

scalp, it is infeasible to connect each electrode with a single brain region [190]. Therefore,

the volume conduction decreases the spatial precision of EEG signals when spatially broad

features are shared among multiple electrodes [176]. The high-pass spatial filter is com-

monly used to reduce the effect of spatial blurring for EEG signals [191]. For example,

the surface Laplacian has been implemented to diminish volume conduction effectively by

attenuating low-spatial-frequency activities whereas highlighting high-spatial-frequency sig-

nals [176] [192]. The surface Laplacian filter has some advantages in EEG signal analysis,

including ease of use and conceptually simple. However, it is still a kind of “stationary”

spatial filter since it assumes that the EEG activity is not variable across time [193] [194].

To solve this problem, Lu et.al [195] designed an adaptive Laplace filter for the sensorimo-

tor rhythms (SMR) analysis, which employs a Gaussian kernel to construct parameters of

the spatial filter. Currently, most existing research on volume conduction focused on other

paradigms of EEG, like event-related potential (ERP) [193] [192] and SMR [195] [196], rather

than SSVEP signals. Therefore, there is still a lack of sufficient studies about the high-pass

spatial filter on the volume conduction phenomenon in SSVEP signals. The feasibility of

this filter to enhance target detection in the SSVEP paradigm remains unclear.

In this study, a multi-objective optimisation-based high-pass spatial filtering method was

proposed to improve the SSVEP identification performance. The filter was derived by max-
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imising the correlation between the training signal and the individual template from the

same target while minimising the correlation between signals from other targets and the

template. Meanwhile, the constraint condition is that the sum of spatial filter elements is

zero. This setting allows the high spatial-frequency SSVEP signals to pass and attenuates

low spatial-frequency signals. Therefore, the proposed approach has the potential to ex-

tract the target-relevant features, reject the target-irrelevant information, and reduce the

effect of volume conduction simultaneously. The method’s performance was evaluated on

two self-collected SSVEP datasets containing 12 and 4 visual stimulation, respectively. The

effectiveness of the proposed approach was verified with an averaged SSVEP recognition

accuracy of 87.58% in Dataset I and 87.5% in Dataset II using a 1s-long data epoch. Many

well-known and state-of-the-art methods such as CCA, MsetCCA, the SSCOR [71], and

TRCA was implemented for extensive comparisons. In addition, a 40-class SSVEP bench-

mark dataset [23] recorded from 35 subjects was also employed to evaluate the feasibility

of the proposed model. The experimental results demonstrate the outperformance of the

proposed method in terms of classification accuracy and ITRs, which is particularly true

when the number of stimuli is small. As the number of stimuli increases, the performance of

the proposed method will downgrade slightly, but it could still achieve better performance

than compared methods.

The remaining paper is arranged as follows: The experiment description and multi-objective

optimisation-based high-pass spatial filtering methodology are described in Section 3.2. The

results and discussion are provided in Section 3.3. Section 3.4 presents the conclusion.

3.2 Materials

3.2.1 Dataset

A public benchmark SSVEP dataset [23] and two self-collected SSVEP datasets, i.e., Dataset

I and Dataset II, are employed in this chapter.
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3.2.2 Data Pre-processing

Considering the latency delay in the visual system of each participant, the data epoch after

0.14 s is extracted for analysis. This study incorporated the Chebyshev Type I Infinite

Impulse Response (IIR) filter to provide a band-pass filter with a band [8 40] Hz for Dataset

I and [13 40] Hz for Dataset II. The frequency band encompasses both the fundamental wave

and the second harmonic, which exhibit a more pronounced amplitude compared to higher

harmonics. The cheb1ord function in MATLAB determines the lowest order for a Chebyshev

Type I filter, ensuring no more than 3 dB of loss in the passband and achieving at least 20

dB attenuation in the stopband. The zero-phase digital filtering was performed in both the

forward and reverse directions.

3.3 Multi-objective Optimization-based High-pass Spatial Fil-

tering Method

This subsection introduces a novel multi-objective optimisation-based high-pass spatial filter

method. The proposed algorithm aims to extract target-relevant features and minimise

target-irrelevant information while reducing the volume conduction artifact.

Denote the single-trial individual calibration signal as χh
i ∈ RNc×Ns (h = 1, 2, ..., Nt,

i = 1, 2, ..., Nf ), where h and i refer to the index of training trial and the stimulus, re-

spectively. Hereafter, Nc represents the number of channels, Ns is the number of samples,

Nt is the number of training trials, and Nf is the number of visual stimulation. There-

fore, the continuous training signal of i-th stimulus yielded by concatenating Nt training

trials is represented as χi = [χ1
i ,χ

2
i , ...,χ

Nt
i ] ∈ RNc×(Ns·Nt). The single-trial individual

template signal is denoted as χi = 1
Nt

Nt∑
h=1

χh
i ∈ RNc×Ns which obtained by averaging mul-

tiple training trials. Therefore, the continuous individual template signal is defined as

Xi = [χi,χi, ...,χi] ∈ RNc×(Ns·Nt). Compared with the artificial reference with sine and

cosine waves, the averaged SSVEP signal can effectively enhance the SNR of EEG data [68].

The multi-objective optimisation-based high-pass spatial filtering method designs objective

functions for each visual stimulation using training signals from not only the same stimulus
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but also others. To be specific, as the model trains the spatial filter ŵi ∈ RNc , i-th stimulus

is regarded as “aim” and the remaining (Nf − 1) stimuli represent “non-aim”. For ease of

reference, signals of (Nf−1) “non-aim” form a new dataset (γ1, γ2, ..., γNf−1). The proposed

method aims to maximise the correlation coefficient between the continuous training signal

χi from “aim” and its continuous individual template Xi, whereas minimise the correlation

between the continuous training signal from each “non-aim” γj (j = 1, 2, ..., Nf − 1) and

Xi. Therefore, Nf objective functions are designed as:

f1(wi) = −ρ(χT
i wi,X

T
i wi),

f2(wi) = ρ(γT
1 wi,X

T
i wi),

f3(wi) = ρ(γT
2 wi,X

T
i wi),

...

fNf
(wi) = ρ(γT

Nf−1wi,X
T
i wi)

(3.1)

where ρ(a, b) refers the Pearson correlation coefficient between vector a and vector b. In

this case, all objective functions are to be minimised. Therefore, the feature related to

the i-th stimulus is maximally extracted. On the contrary, the information relevant to

“non-aim” is minimally included in the spatial filter ŵi. Simultaneously, considering the

effect of volume conduction in SSVEP signals, the model is subject to a linear equality

constraint. That is, the sum of spatial filter elements is zero. It aims to reduce the low

spatial-frequency signal while retaining the high spatial-frequency. Therefore, the multi-

objective optimisation problem is formulated by the following statement:

minimise
wi

F (wi) = [f1(wi), f2(wi), ..., fNf
(wi)],

subject to

Nc∑
c=1

wc
i = 0,wi ∈W

(3.2)

where c is the channel index and wc
i refers to the c-th element of spatial filter vector wi.

The W ⊆ RNc is the feasible set of solution vectors. Therefore, the spatial filter ŵi can be
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Figure 3.1: Flowchart of the proposed SSVEP recognition model. In the training stage,
the spatial filter for each stimulus ŵi, i = 1, 2, ..., Nf , is generated with formulas (3.1)-(3.3),
and the new reference signal, i.e. χ1,χ2, ...,χNf

, is obtained by averaging across multiple
training trials. In the test stage, with spatial filters ŵ1, ŵ2, ..., ŵNf

, the correlation between

a test trial X̃ and each individual template χi, i = 1, 2, ..., Nf , is computed by formula (3.4).
The frequency of the template signal with the maximum correlation coefficient is determined
as that of the test sample by formula (3.5).

acquired as follows:

ŵi = arg min
wi

F (wi). (3.3)

This constrained multi-objective optimisation problem can be solved by the fgoalattain()

function in Matlab. In the test phase, the signal-trial test SSVEP data X̃ ∈ RNc×Ns and

the single-trial template signal χi are both spatially filtered with the optimal solution vector
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ŵi. The correlation coefficient calculated between two optimised signals is shown as follows:

ri = ρ(X̃Tŵi,χ
T
i ŵi), i = 1, 2, ..., Nf (3.4)

The Nf coefficients can be calculated by this formula. The frequency of the template signal

corresponding to the maximal correlation coefficient value is determined as the frequency

f of the SSVEP test trial X̃, and it is can be represented as:

f = arg max
fi

ri, i = 1, 2, ..., Nf (3.5)

The diagram of the whole SSVEP recognition model is shown in Fig.3.1. It includes two

stages, namely training and testing. For each stimulus, the training part provides its spatial

filter and the corresponding template. The test part aims to classify the single-trial test

signal to a specific visual stimulus based on the outputs of the training phase.

3.4 Results and Discussion

In this section, the performance of the proposed multi-objective optimisation-based high-

pass spatial filtering method was first evaluated on two self-collected SSVEP datasets and a

40-target benchmark dataset [23]. In Dataset I, the parameters are set as Nt = 4, Nf = 12;

in Dataset II, they are Nt = 4, Nf = 4; and in the benchmark dataset, the parameters are

Nt = 5, Nf = 40. Extensive comparisons were implemented between the proposed method

and many state-of-the-art SSVEP recognition methods. The ensemble-based methods were

also implemented in this section for comparison purposes. The influences of different pa-

rameters such as the number of electrodes, the number of training blocks, and the number

of frequencies on the performance were also discussed.

3.4.1 Performance Evaluation

The performance comparison was conducted between the proposed model and many recog-

nition methods such as CCA, MsetCCA, SSCOR, and TRCA. The classification accuracy
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Figure 3.2: Averaged recognition accuracy and ITRs across subjects of various methods
using different time windows on (a) Dataset I, (b) Dataset II, and (c) benchmark dataset.
The error bars represent standard error of mean (SEM). The asterisks indicate significant
differences between the five methods obtained by one-way repeated-measures ANOVA (∗
p<0.05, ∗∗p<0.01, ∗ ∗ ∗p<0.001).
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Figure 3.3: Violin plots represent the distributions of classification accuracy of all subjects
achieved by the five methods with various TWs on (a) Dataset I, (b) Dataset II, and (c)
benchmark dataset. The black solid line in each violin indicates the median and two black
dotted lines represent interquartile ranges (25% and 75% percentiles).
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and ITRs were calculated by leave-one-block-out cross-validation to evaluate the recognition

performance of these algorithms. Specifically, the SSVEP signals from four (in Dataset I

and II) or five (in benchmark dataset) blocks were employed as the training data, and the

left-out block was used as test data. Fig. 3.2 illustrates the averaged classification accuracy

and ITRs across all subjects in three datasets with different time windows (TWs). Due to

the different sampling rates in the self-collected datasets and the benchmark dataset, the

data lengths were varied accordingly to ensure the number of samples remained as whole

numbers, without decimals. It is evident that the proposed method can in general achieve

the highest accuracy and ITRs with different data lengths. One-way repeated-measures

analysis of variance (ANOVA) was conducted to investigate the similarity of accuracy or

ITRs of different SSVEP detection approaches. The results indicate that their accuracy

and ITRs have a significant difference in most TWs on the three datasets. For example,

in Fig. 3.2(a), the proposed method improved by 15.78% for CCA, 35.98% for MsetCCA,

10.98% for SSCOR, and 0.68% for TRCA with 1s data length.

In addition to the averaged values, the distribution of numeric data across multiple meth-

ods was further explored. Fig. 3.3 adopts the violin plot to show the probability density

of recognition accuracy of all subjects on (a) Dataset I, (b) Dataset II, and (c) benchmark

dataset, respectively. The plots are based on five methods with different data lengths. Each

density curve can be compared to see the similarities or differences between the methods.

Fig. 3.3(a) and Fig. 3.3(b) show that this method achieves the highest median and most

concentrated distribution with most data lengths. Therefore, to a large extent, the proposed

method provides higher and more consistent accuracy across subjects. In Fig. 3.3(c), all

methods show a more scattered distribution compared with Fig. 3.3(a) and Fig. 3.3(b), be-

cause there are significantly more subjects in the benchmark dataset. The proposed method

provides medians similar to TRCA, but obviously higher than those of other methods.
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Figure 3.4: Averaged recognition accuracy comparison between ensemble methods and standard methods on (a) Dataset I, (b) Dataset
II, and (c) benchmark dataset.
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Figure 3.5: Barcharts of the five methods’ classification accuracy with different number of channels on (a) Dataset I, (b) Dataset II, and
(c) benchmark dataset. The error bars represent SEM.
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3.4.2 Ensemble-based Method Evaluation

This work extends the proposed method with an ensemble version. Ideally, the transforma-

tion coefficients from SSVEP source to the scalp could be treated similarly within the used

frequency range [1] [197] [71]. Hence, Nf different spatial filters should be similar. The

ensemble-based method concatenates all Nf spatial filters to construct an ensemble spatial

filter W ∈ RNc×Nf ,

W = [ŵ1, ŵ1, ..., ŵNf
] (3.6)

Then the (3.4) can be re-defined as follows:

ri = ρ(X̃TW ,χT
i W ), i = 1, 2, ..., Nf (3.7)

The intended target is determined via (3.5). Fig. 3.4 shows the performance comparison

between different standard methods and ensemble methods on (a) Dataset I, (b) Dataset

II, and (c) benchmark dataset. As shown by the blue and purple lines in Fig. 3.4, the per-

formance of the proposed method is improved via the ensemble version in three datasets.

Meanwhile, in Fig. 3.4(a) and Fig. 3.4(c), the classification accuracy of the ensemble pro-

posed method is slightly better than that of ensemble TRCA, but the gap with ensemble

SSCOR is even greater. In Fig. 3.4(b), the standard proposed method shows superiority

compared with ensemble TRCA and ensemble SSCOR with all data lengths.

3.4.3 The Influence of Parameters on Performance

To further assess the performance of the five approaches, an evaluation was conducted

on how the number of electrodes, training blocks, and stimulation levels impact SSVEP

recognition accuracy.

The number of electrodes

Fig. 3.5 depicts the averaged SSVEP classification accuracy with various numbers of chan-

nels using 0.75s-long data on (a) Dataset I, (b) Dataset II, and (c) benchmark dataset. In

Fig. 3.5, the accuracy of each method generally declines as the number of channels decreases.
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Figure 3.6: Heat maps of the classification accuracy of five methods under different number of training blocks on (a) Dataset I, (b)
Dataset II, and (c) benchmark dataset.
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It indicates that the number of channels affects the performance of various SSVEP recog-

nition methods. Specifically, the method with more channels can commonly achieve better

performance. It is worth mentioning that for channels = 5, 6, 7, 8, and 9, the proposed

model (bars in blue) always outperforms the other four methods on all datasets.

The number of training blocks

Additionally, an exploration was conducted to assess how the number of training blocks

affects the target identification performance of five algorithms on three datasets. The heat

maps in Fig. 3.6 illustrate comparison results with 0.75 s TWs. The x-axis refers to the

method with a different number of training blocks. The y-axis is the subject index, and the

color indicates the corresponding performance. The maximal SSVEP detection accuracy

shows the deepest color. For all methods in the three datasets, the color obtained with more

training blocks is usually darker than that obtained with fewer training blocks. In addition,

the proposed method generally shows deeper color compared with the other four methods

for most subjects under the different number of training blocks. The results indicate that, to

some extent, this method is superior to other methods regardless of the number of training

blocks.

The number of frequencies

In this study, an investigation was also conducted into the effect of varying target numbers

on the proposed method. In order to explore more types of target numbers, 40-class bench-

mark dataset was employed in this specific subsection. SSCOR and TRCA significantly

outperform CCA and MsetCCA on the benchmark dataset as shown in Fig. 3.2, so these

two methods are utilized for performance comparison. Fig. 3.7 shows the averaged classifi-

cation accuracy of three methods to classify 8, 16, 24, 32, and 40 stimulation, respectively.

The choice of targets is random. The comparison result indicates that the performance of

this method tends to decrease slightly with the increasing number of stimulation. Under

the same setting, TRCA and SSCOR also show a similar declining trend. However, even

with a large number of targets, the recognition accuracy of the proposed method is always

better than other models. Similar comparison results can also be found in Fig. 3.2(a) with
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Figure 3.7: Performance comparison with various numbers of targets, i.e. 8, 16, 24, 32, and
40 using different data lengths (a) TW=0.2s, (b) TW=0.4s, (c) TW=0.6s, (d) TW=0.8s.
The error bars represent SEM.

12-class Dataset I and Fig. 3.2(b) with 4-class Dataset II.

3.4.4 Discussion

In order to learn the class-specific spatial filter, the traditional SSVEP recognition scheme

generally considers the correlation among training trials from the same class [1] [67] [71]. For

example, TRCA trains the spatial filter by maximizing the sum of covariance of all possible

combinations of training trials from the same stimulation [1]. For the proposed model, it

constructs multi-objective functions creatively not only to decrease the distance between

the training signal and the template from the same class but also to increase the distance

between SSVEP data from other classes and the template, as shown in formulas (3.1)-(3.3).

Therefore, the trained spatial filters have the potential to extract target-related features and
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decrease target-unrelated information. Besides, the optimisation problem is subject to the

constraint that the sum of filter elements is zero so that low spatial-frequency signals can

be alleviated. With the spatial filters, the proposed model could better distinguish between

target and non-target stimulation. The false positive rate (FPR) for a multi-target system

is the percentage of non-targets that are wrongly categorised as the true target [128]. As a

representative example, the confusion matrix in Fig. 3.8 provides the averaged FPR across

all subjects and targets. Clearly, the averaged FPRs of the proposed method and TRCA are

12.5% and 26.25%, respectively. Furthermore, the probability density of detection accuracy

for the proposed method was investigated, as depicted in Fig. 3.3. The frequency of data

points in each region correlates to the width of each curve. The thicker part means that the

corresponding value has a higher frequency. As shown in Fig. 3.3, when the median value

among methods is approximated (e.g. 1 s data length in Dataset II), the proposed method

has a more concentrated distribution. It implies that the proposed method could achieve a

more stable and consistent performance across subjects.

In order to further clarify the effect of stimulation mechanisms on the performance, visual

stimuli are displayed in different ways, i.e. LCD monitor in Dataset I and LEDs in Dataset

II, respectively. As shown by the blue lines in Fig. 3.2, the proposed method always exhibits

the best classification accuracy with various TWs. Blue violins in Fig. 3.3 reflect the similar

result via another form. It illustrates that different choices of stimulation mechanisms do not

affect the performance of the proposed method too much. The choice of varying frequencies

in Dataset I and Dataset II was intentional to broaden the explored frequency band and

investigate performance across a wider spectrum.

As a classical method, CCA has been widely validated by many studies in detecting SSVEPs

[38] [69]. Traditionally, its reference signals, constructed by sine-cosine waves, are employed

to model the visual stimuli [130]. Fig. 3.2 shows that CCA could reach an average recogni-

tion accuracy of 71.81% in Dataset I, 77.5% in Dataset II, and 29.57% in the Benchmark

dataset. It does not achieve as high accuracy as other methods at some TWs. A potential

problem with this method is that the artificially predefined reference signal cannot reflect

subject-specific features [67] [74]. This method adopts the individual training data to con-
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(a) Confusion matrix generated by the proposed model
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(b) Confusion matrix generated by TRCA

Figure 3.8: Confusion matrices of target recognition on Dataset II achieved by (a) multi-
objective optimisation-based high-pass spatial filtering model and (b) TRCA with 1s data
length. Each cell shows the ratio of the number of observations to the total number of test
trials per target.
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struct subject-specific templates. As illustrated in [68], one of the factors in the target

recognition method leads to class and non-class SSVEP signals being more distinguishable

as individual templates.

Although this proposed method provides good recognition performance in SSVEP-based

BCIs, it still has some potential improvement directions. First, as shown in Fig. 3.7, as the

number of stimuli increases, the performance of this approach tends to decline slightly. In

fact, as the number of objectives in a multi-objective optimisation problem increases, the

dimensionality of the model also increases, which makes it difficult to converge [198]. In

addition, the interaction among various objective functions makes the optimisation prob-

lem more intricate. It has been observed that the multi-objective optimisation technique

experiences performance degradation when applied to a problem with a high number of

objective functions [199]. Therefore, the performance comparisons do not show a huge dif-

ference when the proposed approach is applied to an optimisation problem based on a large

number of objective functions. Future work will thus be required to 1) optimise the selection

of non-aim stimuli to reduce the number of minimisation objectives and 2) explore other

algorithms to solve complex multi-objective optimisation problems with a large number of

objectives for the SSVEP-based BCI system. Second, as Fig. 3.6 demonstrated, the train-

ing blocks may not be sufficient for some subjects, resulting in relatively low classification

accuracy. Therefore, future work would transfer information from other subjects to solve

the data insufficiency problem.

3.5 Conclusion

In this study, a novel multiple-objective optimisation-based high-pass spatial filtering method

was proposed to improve the target recognition performance for the SSVEP-based BCI

system. this method defined multi-objective functions for each target by the correlation

between the training signal and the individual template from the same stimulation max-

imisation, whereas the correlation between SSVEP data from others and the template min-

imisation. It aims to effectively extract target-relevant information while decreasing target-

irrelevant features. Meanwhile, the proposed model has the constraint that the sum of filter
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elements is zero. This setting could reduce the negative effect of volume conduction by

alleviating low spatial-frequency signals. Experimental results based on two self-collected

SSVEP datasets and a public benchmark database showed that the proposed model achieved

better classification performance than some state-of-the-art methods.
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Chapter 4

Bayesian-based Classification

Confidence Estimation for

Enhancing SSVEP Detection

The BCI enables paralyzed people to communicate directly with and operate peripheral

equipment. The SSVEP-based BCI system has been extensively investigated in recent years

due to its fast communication rate and high signal-to-noise ratio. Many present SSVEP

recognition methods determine the target class by finding the largest correlation coefficient.

However, the classification performance usually degrades when the largest coefficient is not

significantly different from the rest of the values. This study proposed a Bayesian-based

classification confidence estimation method to enhance the target recognition performance

of SSVEP-based BCI systems. This method uses the differences between the largest and

the other values generated by a basic target identification method to define a feature vector

during the training process. The Gaussian mixture model (GMM) is then employed to

estimate the probability density functions of feature vectors for both correct and wrong

classifications. Subsequently, the posterior probabilities of being an accurate and false

classification are calculated via Bayesian inference in the test procedure. A classification

confidence value (CCValue) is presented based on two posterior probabilities to estimate
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the classification confidence. Finally, the decision-making rule can determine whether the

present classification result should be accepted or rejected. Extensive evaluation studies

were performed on an open-access benchmark dataset and a self-collected dataset. The

experimental results demonstrated the effectiveness and feasibility of the proposed method

for improving the reliability of SSVEP-based BCI systems.

4.1 Introduction

BCI systems can detect brain activity and then translate neural signals directly into com-

mands to operate external devices without relying on peripheral nerves and muscles [75,

178, 200]. The EEG-based BCI is a popular non-invasive technique due to portability, low

cost, and high temporal resolution [185, 201, 202]. Three paradigms in the EEG signal are

most widely explored, namely, the SSVEP, the P300 event-related potential (ERP), and the

event-related desynchronization (ERD) [203]. These paradigms have come to light in several

practical applications, including assistance robots [7], AR glasses [181, 182], and entertain-

ment [204,205]. Among these paradigms, SSVEP-based BCI systems have attracted exten-

sive research attention because of their advantages of high ITR and SNR [86,183,184,206].

In recent decades, many target recognition methods have been proposed to analyze the

SSVEP features and detect the subject’s intent to operate the peripheral device [186]. In

particular, CCA is the most popular target detection method because of its simplicity of

use and robustness [2, 68]. However, the performance of CCA is still influenced by the

interference from spontaneous EEG signals [1]. In recent years, many improved approaches

have been proposed for SSVEP detection. Generally, the literature presents three major

optimization directions, i.e., individual templates [24, 67], time filters [207], and spatial

filters [1, 71]. Among many methods, the SSCOR [71] and TRCA [1] have attained nice

performance in SSVEP detection. In the recognition stage of the methods above, the largest

correlation coefficient identifies the target class. It may lead to misclassification when the

maximum coefficient has a low confidence level. The detection performance may deterio-

rate if the maximum value is not remarkably different from the other values. Therefore,

evaluating the reliability of classification results is another crucial direction for enhancing
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the performance and applicability of SSVEP-based BCI systems.

The classification confidence analysis process could facilitate detection methods to reject

results with a low level of confidence [208]. In recent research, many confidence evaluation

methods for the SSVEP-based BCI system have been introduced. For instance, Zhao et.

al [102] designed a decision-making selector to select a more reliable result from a pair

of CCA-based methods. The overall recognition performance was enhanced by the fusion

strategy, but the average detection time increased accordingly. Currently, many researchers

have focused on confidence estimation based on a single decision. Chen et.al [107] created

a hypothesis testing model for evaluating the credibility of results using the coefficients of

filter-bank CCA. Cecotti [106] investigated the impact of different dynamic time segment

selections on the confidence of CCA’s outputs. Similarly, Jiang et.al [108] estimated the

classification confidence based on the largest two coefficients and then determined the op-

timal data length. According to several previous studies, the difference between the first

and the second-largest feature values provides useful information for the classification esti-

mation [115]. In general, the probability of correct recognition is higher as this difference is

larger [107]. However, these methods simply exploit the first two coefficients or their differ-

ence, which is insufficient to construct informative features for enhancing SSVEP detection.

In this paper, the Bayesian-based classification confidence estimation method was proposed

for improving the recognition reliability of SSVEP-based BCI systems, which is crucial for

SSVEP-based human-robot interaction [209, 210]. Wrong classifications can cause the ex-

ternal device to carry out the wrong actions, perhaps resulting in adverse incidents and

serious physical harm to humans. In the practical usage scene, enhancing subjects’ safety

and security is essential, particularly in rehabilitation and assistive technology. The main

contributions of this work include: 1) In the training step, the feature vector involving the

differences between the largest correlation coefficient and the other values was constructed.

Gaussian mixture model (GMM) was used to estimate feature vectors’ conditional probabil-

ity density functions, given correct and wrong results. 2) In the test step, Bayesian inference

was used to calculate the posterior probabilities of being a correct and wrong classification

using the newly obtained feature vector. A classification confidence value (CCValue) was
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then presented to estimate the classification confidence. 3) The decision-making rule decides

whether the present classification result should be accepted or rejected.

For this study, SSCOR and TRCA were selected as the basic target recognition meth-

ods. The proposed methods incorporating CCValue estimation based on SSCOR/TRCA

are named SSCOR+CCValue and TRCA+CCValue, respectively. The performance was

assessed on a 40-class publicly available benchmark dataset [23] and a 12-class self-collected

dataset. Extensive comparisons were performed among the four methods. The effectiveness

and reliability of SSCOR+CCValue and TRCA+CCValue were demonstrated via experi-

mental evaluation studies on two datasets.

4.2 Materials

4.2.1 Datasets

This chapter utilized an open-access dataset [23] and a 12-class self-collected SSVEP dataset,

i.e., benchmark dataset to evaluate the proposed method’s performance.

4.2.2 Data Pre-processing

To account for the latency delay in the human visual system, the EEG signal in [0.14 s

0.14 + d s] was extracted for method performance evaluation [211]. The variable d in this

context refers to the length of the data that is being used for analysis. The Chebyshev

Type I IIR filter was applied in this work to create band-pass filters. The data was filtered

between eight Hz and eighty-eight Hz for the benchmark dataset. The data was filtered

between eight Hz and forty Hz for Dataset I. In addition, a data standardization step was

performed on both datasets [1].

4.3 Bayesian-based SSVEP Classification Confidence Esti-

mation Method

A Bayesian-based classification confidence estimation method was proposed for improving

SSVEP recognition reliability. As shown in Fig. 4.1, it includes four modules, namely
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Figure 4.1: Diagram of the Bayesian-based SSVEP classification confidence estimation
method.

EEG signal acquisition, feature extraction, classification confidence evaluation, as well as

decision making. The dataset descriptions have been given in the previous section 4.2.1.

In the following subsections, the work procedures of the remaining three modules will be

explained in detail.

Feature Extraction

Denote a four-way tensor χ ∈ RNf×Nc×Ns×Nt , where Nf indicates the number of stimuli,

Nc represents the number of channels, Ns is the number of samples, and Nt is the number

of training trials. Hereafter, i refers to the stimulus index, j refers to the channel index,

m refers to the sample index, and h refers to the index of training trials. Therefore, the

recorded individual calibration signal for i-th stimulus is χi ∈ RNc×Ns×Nt . The spatial

filter wi ∈ RNc for i-th stimulus can be constructed as wi = f(χi) by a basic target

recognition method in SSVEP-based BCIs. f(·) represents the spatial filtering method.

In this study, TRCA and SSCOR were selected. In TRCA [1], weight coefficients are

optimized to maximize inter-trial covariance of brain activities. SSCOR spatial filter learns
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Figure 4.2: The detailed framework of the Bayesian-based classification confidence estima-
tion method for SSVEP detection. The leave-one-block-out cross-validation was performed
in the experiment evaluation.

a common SSVEP representation space through the optimization of the individual SSVEP

templates. It could improve the SNR of the SSVEP components embedded in the recorded

EEG data [71].

The single-trial individual template signal is denoted as χi = 1
Nt

Nt∑
h=1

χih ∈ RNc×Ns . Once

the spatial filter wi is produced, the evaluation SSVEP data X̃ ∈ RNc×Ns and individual

template signal χi can both be optimised. Therefore, the SSVEP feature was further

extracted from recorded EEG signals. The correlation coefficient between the two spatially

filtered signals corresponding to each stimulus is shown as follows:

ri = ρ(X̃Twi,χ
T
i wi), i = 1, 2, ..., Nf (4.1)

where ρ(a, b) refers the Pearson correlation coefficient between vector a and vector b. The

frequency of the individual template related to the largest correlation coefficient is decided

as the frequency f of the test signal:

f = arg max
fi

ri, i = 1, 2, ..., Nf (4.2)

Considering this type of decision-making rule may result in poor classification performance

when the maximal coefficient is not much different from others, a Bayesian-based classi-

fication confidence estimation method was proposed in this study. The coefficient vector
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calculated by (3.4) is denoted as Φ = [r1, r2, ..., rNf
]. The coefficient vector was rearranged

in descending order, resulting in a new vector Φ̃ = [r̃1, r̃2, ..., r̃Nf
]. It means that the largest

coefficient is r̃1, and the smallest one is r̃Nf
. Subsequently, it is possible to calculate the

differences between the largest coefficient r̃1 and other values r̃j , (j = 2, 3, . . . , Nf ), and thus

yield (Nf − 1) differences. Therefore, the difference values ∆ri, (i = 1, 2, . . . , Nf−1) can be

expressed as:

∆r1 = r̃1 − r̃2

∆r2 = r̃1 − r̃3

...

∆rNf−1
= r̃1 − r̃Nf

.

(4.3)

The final feature vector can be expressed as F = [∆r1,∆r2, . . . ,∆rNf−1
] by (Nf − 1)

differences.

Bayesian-based Classification Confidence Evaluation

As illustrated in Fig. 4.2, performance was assessed by the leave-one-block-out cross-validation.

Specifically, for Nb blocks of EEG signals, (Nb − 1) blocks were selected for training condi-

tional probability density functions, and one block was used for testing. Moreover, in the

training process, leave-one-block-out cross-validation was again employed to collect classi-

fication results and construct feature vectors (blue part in Fig. 4.2). Specifically, (Nb − 2)

blocks were selected to train the target recognition method, and the left-out block was used

as evaluation data. The signal in each block is represented as χh ∈ RNf×Nc×Ns . Therefore,

there are total (Nb − 1) × Nf trials that can be evaluated. Thus classification results and

feature vectors can be collected to train GMM accordingly.

The classification results were subsequently separated into two groups. Suppose the cor-

rect classification is represented as C1, and the corresponding feature vectors are Fc. The

wrong classification is denoted as C0, and the corresponding feature vectors are Fw. The

probability density functions of the feature vector for correct and wrong classifications are

represented as p(F |C1) and p(F |C0), respectively. For ease of reference, they can also be
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Table 4.1: A confusion matrix of explanation about four parameters, i.e., TR, FA, FR, and
TA.

The proposed method’s decision

Rejection Acceptance

Target identification
method’s decision (e.g.

TRCA, SSCOR)

Wrong True Rejection (TR) False Acceptance (FA)

Correct False Rejection (FR) True Acceptance (TA)

written as p(Fc) and p(Fw). In this study, GMM was applied to fit feature vectors from

correct and wrong classifications. The GMM is a versatile and efficient probabilistic model

that can build any complicated probability distribution function [212]. Therefore, the two

probability distribution functions can be expressed as follows:

p(F |C1) = p(Fc) =
K∑
k=1

λkN (Fc|θk)

p(F |C0) = p(Fw) =

K∑
k=1

ηkN (Fw|ψk)

(4.4)

where K is the number of mixed components. The λk ∈ [0, 1] and ηk ∈ [0, 1] are the

mixture component weights for the k-th component, with the constraint that
∑K

k=1 λk = 1

and
∑K

k=1 ηk = 1. The Gaussian density functions N (Fc) and N (Fw) are determined by

the parameter θk = (µk,Σk) and ψk = (νk,Γk), where µk and νk refer to the mean,

while Σk and Γk are the covariance matrix, respectively. The GMM parameters, namely,

λk, ηk,µk,Σk,νk and Γk(k = 1, 2, . . . ,K), were estimated by the Expectation-Maximization

(EM) algorithm in this study. The EM algorithm is an iterative method for estimating

parameters in statistical models [213]. Each iteration of this algorithm involves two steps:

the expectation (E) step and the maximization (M) step.

Consider the case of p(Fc), assuming that there are Nco accurate classifications and F t
c , (t =

1, 2, ..., Nco) is the feature vector corresponding to t-th accurate result. A latent variable
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γtk, (t = 1, 2, ..., Nco; k = 1, 2, ...,K) was defined, and its expression is:

γtk =


1, F t

c is from k -th mixed component

0, otherwise

(4.5)

Therefore, the complete data is (F t
c , γ

t
1, γ

t
2, ..., γ

t
K).

E step is to determine the Q function, which is the expectation of the log-likelihood function

for complete data:

Q(θ,θ(s)) = E[log p(Fc,γ|θ)|Fc,θ
(s)] (4.6)

θ(s) represents the parameters obtained by the s-th iteration.

M step is to find the model parameter corresponding to the maximum value of the Q

function:

θ(s+1) = arg max
θ

Q(θ,θ(s)) (4.7)

The updated model parameters µk,Σk, λk, (k = 1, 2, ...,K) are [214]:

µ
(s+1)
k =

∑Nco
t=1 γ̂

t
kF

t
c∑Nco

t=1 γ̂
t
k

(4.8)

Σ
(s+1)
k =

∑Nco
t=1 γ̂

t
k(F t

c − µ
(s+1)
k )(F t

c − µ
(s+1)
k )T∑Nco

t=1 γ̂
t
k

(4.9)

λ
(s+1)
k =

1

Nco

Nco∑
t=1

γ̂tk (4.10)

where γ̂tk is the probability that t-th feature vector F t
c belongs to k-th mixed component.

γ̂tk, (t = 1, 2, ..., Nco; k = 1, 2, ...,K) can be calculated via the following equation:

γ̂tk = E(γtk|Fc,θ) =
λkN (F t

c |θk)∑K
k=1 λkN (F t

c |θk)
(4.11)
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The iteration between the E-step and M-step continues until convergence. Finally, p(Fc),

also known as p(F |C1) can be obtained. Accordingly, the parameters of the probability

density function p(F |C0) can also be calculated by the EM iterations. The distinction is

that the F here refers to the feature vector Fw associated with the wrong classifications.

The prior probabilities of the correct and wrong classifications can be formulated as follows:

P (C1) =
Nco

Nco + Nwr

P (C0) =
Nwr

Nco + Nwr

(4.12)

where Nwr indicates the number of wrong classification results. The target recognition

method is then trained using (Nb − 1) blocks of SSVEP signals, and the trained model

is tested using the left-out block. According to the newly obtained feature vector F̂ ∈

R(Nf−1), Bayesian inference is used to calculate the posterior probabilities of being a correct

classification P (C1|F̂ ) and a wrong classification P (C0|F̂ ):

P (C1|F̂ ) =
p(F̂ |C1)P (C1)

p(F̂ |C1)P (C1) + p(F̂ |C0)P (C0)

P (C0|F̂ ) =
p(F̂ |C0)P (C0)

p(F̂ |C1)P (C1) + p(F̂ |C0)P (C0)

(4.13)

Based on (4.13), the classification confidence value (CCValue) can be defined as:

CCValue(F̂ ) = P (C1|F̂ ) − P (C0|F̂ ) (4.14)

Decision-Making Rule

In the decision-making module, the CCValue needs to be compared with a threshold α.

The classification result should be accepted if the CCValue is greater than α. Otherwise,

this module should reject the classification result. Therefore, the decision-making rule can
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be written as:

Dfinal(F̂ ) =


Accept, if CCValue(F̂ ) > α

Reject, if CCValue(F̂ ) ≤ α

(4.15)

As shown in (4.15), Dfinal(F̂ ) works as a binary classifier. The grid-search method was

used to determine α via (Nb− 1) blocks of training data, with the remaining block reserved

for testing. The range of α is specified as [-1, 1] according to (4.14). An exhaustive search

is performed on the threshold values of the method with an interval of 0.1. In the search

process, leave-one-block-out cross-validation was employed. Finally, the value that provides

the highest average classification reliability across subjects was determined as α. This

trained threshold value was subsequently applied to the untouched test data.

TRCA/SSCOR’s classification result will be compared with the label of this classification.

The classification results will be given a new label, i.e., “correct” or “wrong”, which rep-

resents the ground truth. It is a gold standard that can be used to compare and evaluate

the proposed method’s results. If the proposed detection method can accept the “correct”

classification or reject the “wrong” classification successfully, it means that the proposed

method is effective.

The details of the proposed Bayesian-based classification confidence estimation method are

shown in Fig. 4.2. This framework aims to reduce the number of low-confidence results and

thus improve recognition reliability.

4.4 Results

In this section, the proposed Bayesian-based classification confidence estimation method was

applied to a 40-target benchmark dataset [23] as well as a 12-target self-collected dataset.

TRCA+CCValue, SSCOR+CCValue, TRCA, and SSCOR are compared extensively. The

number of channels and training blocks were set to nine, and five for benchmark dataset

and nine, and four for Dataset I, respectively. The two datasets have different numbers

of training blocks because of their different sizes. The selections of these hyperparameters
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Figure 4.3: Average recognition reliability across subjects of various methods (i.e., SSCOR,
TRCA, SSCOR+CCValue, and TRCA+CCValue) using different time windows (TWs) on
(a) benchmark dataset and (b) Dataset I. The error bars represent SEM, σx = σ√

n
where

σ =
√∑n

i=1(xi−x)2

n−1 . xi is the classification reliability of i-th subject, x is the mean of samples,
and n is the number of subjects. The asterisks indicate a significant difference between the
two methods obtained by paired t-test analysis (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001,
∗ ∗ ∗∗: p<0.0001).

Table 4.2: Reliability comparison between four methods in benchmark dataset

Methods
Averaged Recognition Reliability ± SEM (%)

0.2 s 0.4s 0.6 s 0.8 s 1 s

CCA 3.76 ± 0.21 9.1 ± 0.8 17.8 ± 2.1 30 ± 3 41 ± 4

Msetcca 8.0 ± 1.2 19 ± 3 31 ± 4 46 ± 5 55 ± 5

SSCOR 15.7 ± 1.6 37 ± 3 55 ± 4 70 ± 4 79 ± 3

TRCA 29 ± 3 48 ± 4 63 ± 4 79 ± 4 84 ± 3

SSCOR+CCValue 43.5 ± 2.6 52 ± 4 65 ± 3 75 ± 3 82.0 ± 2.8

TRCA+CCValue 45 ± 4 61 ± 4 71 ± 4 81 ± 3 85.6 ± 2.7

P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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were made to ensure that the model had access to all the available information and to fa-

cilitate the training process for each dataset. The number of Gaussian mixture components

was set to two. The optimal number of components in the GMM was selected using the

Akaike information criterion (AIC), which provides a trade-off between the goodness of fit

of the model and its complexity. The effects of parameters, such as the number of chan-

nels, training blocks and correlation coefficients on recognition performance were further

investigated.

4.4.1 Performance Evaluation

Table. 4.1 introduced four measures: true rejection (TR), false acceptance (FA), false re-

jection (FR), and true acceptance (TA). As indicated in the Table, the wrong classification

results of TRCA/SSCOR can be divided into TR and FA. The correct results of TRCA/SS-

COR can be divided into FR and TA. The significance of the proposed method is that

low-confidence decisions can be detected and rejected so the system can be more robust

and reliable. Therefore, the accuracy of the confusion matrix (i.e., Table. 4.1) [215], also

expressed as the recognition reliability (%) of the proposed method, can be defined as

follows:

Reliability =
TA + TR

TA + FA + TR + FR
× 100% (4.16)

Fig. 4.3 shows the average classification reliability of SSCOR, TRCA, SSCOR+CCValue,

and TRCA+CCValue on (a) benchmark dataset and (b) Dataset I. The sampling rates

are different in the two datasets, so different data lengths were used to keep the num-

ber of samples without decimals. To depict the improvement more intuitively, a pairwise

comparison was performed between SSCOR and SSCOR+CCValue, as well as TRCA and

TRCA+CCValue. The proposed method can attain higher reliability across a wide range

of data lengths. Specifically, SSCOR+CCValue improved SSCOR by 2.90% ∼ 27.74% and

TRCA+CCValue increased TRCA by 2.04% ∼ 21.07% in Dataset I. The classification reli-

ability of SSCOR+CCValue is greater than that of SSCOR by 0.30% ∼ 26.37% in Dataset

I. Similarly, TRCA+CCValue improved TRCA by 1.37% ∼ 17.42%. The paired t-test was

conducted to explore the similarity of reliability between the basic recognition method and
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Table 4.3: Reliability comparison between four methods in Dataset I

Methods
Averaged Recognition Reliability ± SEM (%)

0.25 s 0.5 s 0.75 s 1 s

CCA 13.2 ± 1.2 29 ± 4 49 ± 5 72 ± 5

Msetcca 10.5 ± 1.8 20 ± 4 33 ± 4 51.7 ± 2.4

SSCOR 18.3 ± 1.8 44 ± 4 69 ± 4 83.8 ± 2.4

TRCA 29.7 ± 2.1 57 ± 4 78.2 ± 2.5 89.4 ± 1.7

SSCOR+CCValue 45 ± 4 56 ± 3 71.7 ± 2.6 84.1 ± 2.3

TRCA+CCValue 47.1 ± 1.8 60 ± 4 79.6 ± 2.6 91.2 ± 1.6

P-value <0.0001 <0.0001 <0.0001 <0.0001

the corresponding proposed method. Statistical analysis shows that the reliability of SS-

COR is significantly different from that of SSCOR+CCValue for almost all data lengths.

This conclusion also applies to TRCA and TRCA+CCValue.

Table. 4.2 and Table. 4.3 provides the intuitional numerical results for comparing methods

more clearly [216]. As shown in Tables, TRCA+CCValue always achieves the best per-

formance with various data lengths in each dataset. SSCOR consistently performs worse

than TRCA, whereas the performance of SSCOR+CCValue was improved after accounting

for classification confidence estimation, and finally, SSCOR+CCValue outperforms TRCA

at some TWs. Two popular recognition methods, i.e., CCA and Msetcca, were included

for comparison. It is obvious that the proposed method achieves much higher recognition

reliability than the two methods. A One-way repeated-measures ANOVA was conducted

to investigate the similarity of classification reliability among these methods. The P-value

is always < 0.0001, indicating statistically significant differences between the reliability of

these methods at each TW.

The proposed method enhances recognition performance by accepting highly-trustworthy

results and rejecting unconfident ones. Therefore, the method was further assessed regarding

two other indicators, i.e., the true accept proportion (TAP) and the true reject proportion

(TRP). TAP is defined as the proportion of correct target identification method decisions

to be accepted by Dfinal(F̂ ). TRP is defined as the proportion of wrong decisions rejected

by the proposed method. Therefore, TRP indicates the rejection efficiency, whereas TAP
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Figure 4.4: TAP and TRP of SSCOR+CCValue and TRCA+CCValue on (a) benchmark
dataset and (b) Dataset I with different data lengths. The error bars represent SEM. The
asterisks indicate a significant difference between methods obtained by t-test analysis.

relates to the cost [208]. Fig. 4.4 displays the TAP and TRP of SSCOR+CCValue and

TRCA+CCValue on (a) benchmark dataset and (b) Dataset I using different data lengths.

In Dataset I, with increasing data lengths, SSCOR+CCValue’s TAP increases from 54.81%

to 91.98%, while its TRP decreases from 53.84% to 23.06%. For TRCA+CCValue, TAP

rises from 54.08% to 92.53%, and its TRP changes from 59.79% to 20.01%. Dataset I

exhibits similar results as well. Similarly, in Dataset I, SSCOR+CCValue’s TAP increases

from 50.39% to 97.96%, while its TRP changes from 49.66% to 8.82% with longer TWs. For

TRCA+CCValue, TAP rises from 52.80% to 99.64%, and its TRP changes from 47.10% to

17.78%. The underlying reason is that SSCOR/TRCA provides more correct classification

results as the TW increases. So SSCOR+CCValue/TRCA+CCValue is more inclined to

accept the results of SSCOR/TRCA. It is worth noting that although TRP has dropped,

the False Acceptance in TABLE. 4.1 generally did not increase due to a decrease in the

number of wrong classifications from SSCOR/TRCA. The t-test was used to perform sta-

tistical analysis between TAP or TRP of different methods. The result shows no significant

difference in almost all data lengths. It indicates that the proposed method has similar

effectiveness for TRCA and SSCOR on datasets of different scales.
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Figure 4.5: Barchart of the classification reliability of six methods with different numbers
of electrodes on (a) benchmark dataset and (b) Dataset I. The error bars represent SEM.
The asterisks indicate significant differences between the four methods obtained by one-way
repeated-measures ANOVA.

4.4.2 The Influence of Parameters

The Number of Channels

Fig. 4.5 shows the average classification reliability rate of four methods with different num-

bers of electrodes using 0.6 s-long data on (a) benchmark dataset and 0.75 s-long data on

(b) Dataset I. The number of training blocks is set to five for benchmark dataset and four

for Dataset I, respectively. Generally, the performance of each method improved as the

number of electrodes increased. For Nc = 5, 6, 7, 8, and 9, it is obvious that the proposed

SSCOR+CCValue always outperforms SSCOR. TRCA+CCValue shows higher recognition

reliability compared with TRCA. Meanwhile, these four methods all achieve better perfor-

mance than CCA and Msetcca. A one-way repeated-measures ANOVA showed significant

differences between the six methods at each TW on two datasets. The results in Fig. 4.5

demonstrate that, to some extent, this method is superior to some existing advanced meth-

ods, irrespective of the number of electrodes. Specifically, SSCOR+CCValue improved

SSCOR by 9.31% ∼ 12.32% and TRCA+CCValue increased TRCA by 8.12% ∼ 12.65% in

Dataset I. The classification reliability of SSCOR+CCValue is greater than that of SSCOR

by 0.45% ∼ 7.27% in Dataset I. Similarly, TRCA+CCValue improved TRCA by 0.76% ∼

15.00%.
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Figure 4.6: Heat maps of the classification reliability of four methods under different num-
bers of training blocks on (a) benchmark dataset and (b) Dataset I.
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Table 4.4: Reliability comparison between SSCOR and SSCOR+CCValue with different
numbers of training blocks

Methods

Reliability with different number of training blocks

benchmark dataset Dataset I

3 4 5 2 3 4

SSCOR 45.23 51.01 55.00 46.21 60.04 68.94

SSCOR+CCValue 55.36 62.07 64.80 51.94 65.15 71.67

P-value <0.0001 <0.0001 <0.0001 0.0843 0.1848 0.2255

The Number of Training Blocks

It also investigated how the number of training blocks affects the classification reliability

of six different methods. The heat map is a valuable data visualization tool for displaying

an indicator in color in two dimensions. It offers a method for understanding numerical

numbers visually. The heat maps in Fig. 4.6 show the reliability comparison between SSCOR

and SSCOR+CCValue, as well as between TRCA and TRCA+CCValue, on two datasets

using 0.6 s or 0.75 s data length. For the sake of comparison, the performance of two

other algorithms, namely CCA and Msetcca, were also included. In a heat map, the x-

axis indicates recognition methods with varying numbers of training blocks, and the y-

axis represents the index of the subject. The range of the number of training blocks was

[3, 5] for benchmark dataset and [2, 4] for Dataset I. The shade of color indicates the level

of classification reliability. The darkest color is always displayed at its maximum value.

As demonstrated in Fig. 4.6, with varying numbers of training blocks, the color squares

generated by SSCOR+CCValue and TRCA+CCValue are generally more profound than

those created by SSCOR and TRCA, and notably darker than those generated by CCA and

Msetcca. This indicates that the proposed method produces more reliable and consistent

results compared to the other methods. Furthermore, the color squares generally get darker

as the number of training blocks increases.

Table. 4.4 presents the numerical classification reliability of SSCOR and SSCOR+CCValue,

and the corresponding paired t-test analysis results. Similarly, Table. 4.5 shows the outcome

of TRCA and TRCA+CCValue. The average classification reliability of SSCOR+CCValue

is higher than that of SSCOR by 10.33% across different numbers of training blocks in
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Table 4.5: Reliability comparison between TRCA and TRCA+CCValue with different num-
bers of training blocks

Methods

Reliability with different number of training blocks

benchmark dataset Dataset I

3 4 5 2 3 4

TRCA 49.98 57.67 63.17 45.45 67.42 78.18

TRCA+CCValue 57.54 67.64 71.29 47.98 70.83 79.55

P-value <0.0001 <0.0001 0.0002 0.4825 0.1145 0.1698

benchmark dataset and by 8.55% in Dataset I. Meanwhile, TRCA+CCValue improved

TRCA by 4.52% in benchmark dataset and by 2.44% in Dataset I. The paired t-test analysis

results revealed a statistically significant difference (i.e., P < 0.0001) between the compared

method and the proposed method with all numbers of training blocks for Dataset I. For

Dataset I, although the significant difference is not as large as for Dataset I, the proposed

methods still provide higher recognition reliability than SSCOR and TRCA, respectively.

In conclusion, the effectiveness of the proposed method is further demonstrated by the two

tables, which offer additional quantitative evidence across varying amounts of training data.

The Number of Correlation Coefficients Incorporated in the Feature Vector

In this study, it is also explored how the number of correlation coefficients used for con-

structing the feature vector affects the classification performance. The aforementioned

performance evaluation figures were all generated by (Nf − 1)-dimensional feature vectors.

It implies that the feature vector was constructed using Nf correlation coefficients via (4.3).

In this subsection, a 40-class benchmark dataset was used to evaluate more types of coeffi-

cient numbers. The correlation coefficients were sorted in descending order. The top two,

four, eight, sixteen, thirty-two, or forty values were chosen to construct the feature vector

via (4.3). Here, the number of electrodes and training trials are set to be nine and five,

respectively. Fig. 4.7(a) shows TRP, TAP, and classification reliability of SSCOR+CCValue

for various numbers of correlation coefficients. The reliability of SSCOR (blue bars) was also

incorporated into the performance comparison. The number of correlation coefficients does

not affect the performance of SSCOR. Hence, the corresponding reliability remains constant
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(i.e., SSCOR: 36.58%). Similarly, Fig. 4.7(b) shows the evaluation results of TRCA and

TRCA+CCValue. The reliability of TRCA is represented by the orange bars at 48.18%.

With an increasing number of correlation coefficients, TRP generally climbs fast and then

lowers slightly. TAP gradually decreased and then increased. TRP and TAP are both crit-

ical indicators for a classification confidence evaluation model. TRP indicates the model’s

rejection effectiveness, whereas TAP relates to the cost. As a result, it is preferable to keep

them both at a relatively high level. TAPs have achieved the largest values for two coef-

ficients in Fig. 4.7(a) and Fig. 4.7(b), but TRPs reached relatively low values. Therefore,

two is not an ideal number of coefficients for this dataset. It is worth mentioning that TRP

and TAP for forty coefficients were both within a satisfactory range, and their difference

was not as large as that of other coefficients. Moreover, the reliability also reached superior

values for forty coefficients (i.e., TRCA+CCValue: 61.39% and SSCOR+CCValue: 51.48%

with 0.4 s-long data). The TRCA+CCValue and SSCOR+CCValue provide consistently

higher reliability than TRCA and SSCOR, regardless of the number of correlation coef-

ficients. TRCA+CCValue improves TRCA by 3.84% ∼ 15.84%, and SSCOR+CCValue

increases SSCOR by 1.42% ∼ 12.71%. Moreover, paired t-test analysis showed that statis-

tical differences between the compared algorithms become more significant as the number

of coefficients increases.

4.5 Discussion

4.5.1 Performance of SSCOR+CCValue and TRCA+CCValue

Almost all existing advanced SSVEP recognition methods determine the signal triggered

by which stimulus via the largest correlation coefficient, such as CCA [68], MsetCCA [67],

SSCOR [71], and TRCA [1]. It can easily lead to erroneous results when the maximum

coefficient is slightly larger than the other values. In this study, a classification confidence

estimation method based on Bayesian theory was proposed to improve the SSVEP recog-

nition performance. The feature vector was constructed by differences between the largest

coefficient and the remaining values. This kind of design can make full use of all the co-
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(a) SSCOR and SSCOR+CCValue (b) TRCA and TRCA+CCValue

Figure 4.7: Barchart of the TRP, TAP and classification reliability of SSCOR+CCValue
and TRCA+CCValue with different numbers of correlation coefficients. The error bars
represent SEM. The asterisks indicate significant differences between methods obtained by
paired t-test analysis. The reliability of SSCOR and TRCA were used as a comparison.

efficient information. As a consequence, the proposed method can accept high-confidence

classification results while rejecting results with low confidence. As shown in Fig. 4.3(a),

TRCA+CCValue and SSCOR+CCValue obtained the highest reliability of 85.57% and

81.98% for the data length of 1 s. TRCA+CCValue and SSCOR+CCValue both improved

the performance of the basic target recognition methods.

In Fig. 4.3, the performance of TRCA+CCValue is slightly better than that of TRCA at

1 s TW. Besides, a similar situation is reflected in SSCOR+CCValue and SSCOR. The

underlying reason is that long-length signals generally contain more EEG information and

are thus more likely to lead to correct classification results. The proposed methods can

accept results with high confidence and reject results with low confidence. Therefore, the

proposed method accepted more reliable results and achieved reliability comparable to basic

methods at 1 s TW.

Although the experiment was conducted in a relatively quiet environment and the subjects

were typically requested to avoid movements during signal recording, complete elimination

of environmental and body noises is difficult to achieve. Noise is usually present due to

a variety of factors, including muscle movements, eye blinks, and external sources such

as traffic or other environmental factors. In this study, the fundamental target recogni-
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tion methods employed for feature extraction are TRCA and SSCOR. These two methods

can reduce background EEG activities in different ways [1, 71]. For example, TRCA is a

spatial filtering method, in which weight coefficients are optimized to maximize inter-trial

covariance of brain activities. It can be used for removing background EEG activities from

scalp recordings [1]. TRCA+CCValue and SSCOR+CCValue can improve classification

performance via confidence estimation and take advantage of TRCA and SSCOR to de-

crease background noises. To evaluate the performance of the proposed method, CCA and

Msetcca were used in this study for extensive comparison, and the numerical results of the

six methods are shown in Table. 4.2 and Table. 4.3. Additional experiments were also

conducted to compare the performance of the six methods under various parameters, such

as the number of electrodes and the number of training blocks, as shown in Fig. 4.5 and Fig.

4.6. The evaluation results indicate that the proposed method provides better recognition

performance than the other four methods across a range of different parameter settings. For

example, SSCOR+CCValue improved CCA and Msetcca by 40.00% ∼ 47.10% and 31.17%

∼ 34.48% with the different number of channels. For different number of training blocks,

TRCA+CCValue increased them by 39.88% ∼ 53.59% and 31.34% ∼ 40.84%, respectively.

In the presented method, leave-one-block-out cross-validation was performed in the exper-

iments. The detailed process was shown in Fig. 4.2. Cross-validation is a widely used

technique in machine learning and statistical modeling to estimate the performance of a

model and prevent over-fitting. Cross-validation provides an accurate evaluation of the per-

formance of the proposed method because it uses all the available data for both training and

testing. Therefore, it helps improve the reliability and generalization of the experimental

results.

4.5.2 Ensemble-based Methods Comparison

In the previous sections, the effectiveness and superiority of the proposed method were

demonstrated by comparing TRCA+CCValue and SSCOR+CCValue with the basic target

recognition methods. In this part, the performance comparison of ensemble-based methods

was carried out. Specifically, the target recognition method was enhanced by utilizing an
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Figure 4.8: Comparison of average recognition reliability among ensemble methods on (a)
benchmark dataset and (b) Dataset I. The asterisks indicate significant differences between
the four methods obtained by one-way repeated-measures ANOVA.

ensemble approach, in which Nf spatial filters were concatenated to create an ensemble

spatial filter W ∈ RNc×Nf :

W = [w1,w1, ...,wNf
] (4.17)

The correlation coefficient in (3.4) can be re-defined as follows:

ri = ρ(X̃TW ,χT
i W ), i = 1, 2, ..., Nf (4.18)

The feature extraction, classification confidence evaluation, and decision-making steps are

the same as described in the previous section. Fig. 4.8 shows the classification reliabil-

ity comparison between several ensemble-based methods on (a) benchmark dataset and (b)

Dataset I. As shown by the black line and the purple dotted line, the ensemble TRCA+CCValue

achieved higher reliability than the ensemble TRCA, with almost TWs on two datasets.

The ensemble SSCOR+CCValue also exhibits a superior performance than SSCOR at all

TWs. For example, ensemble TRCA+CCValue improved ensemble TRCA by 3.96%, and

ensemble SSCOR+CCValue increased ensemble SSCOR by 5.13% with 0.4s data length in

Dataset I. Similarly, the classification reliability of SSCOR+CCValue is greater than that

of SSCOR by 14.55%, and TRCA+CCValue improved TRCA by 9.09% with 0.25s data
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Figure 4.9: Barchart of the classification reliability of SSCOR, TRCA, SSCOR+CCValue
and TRCA+CCValue with different numbers of classes considering imbalanced data. The
error bars represent SEM. The asterisks indicate significant differences between methods
obtained by paired t-test analysis.

length in Dataset I. A one-way repeated measures ANOVA revealed a statistically signifi-

cant difference between the compared methods with various data lengths. As a result, the

proposed method can improve the performance of both basic and ensemble-based SSVEP

detection methods.

4.5.3 Feature Vector Construction

Recently, some studies have also focused on estimating classification confidence based on

correlation coefficients for SSVEP-based BCI. These works usually use the largest and the

second-largest values or their difference, such as [106–108]. In this study, Nf correlation

coefficients were incorporated, and then a (Nf−1)-dimensional feature vector was formed by

calculating the differences between the maximum value and the other values. The higher-

dimensional features are beneficial to improving SSVEP detection, which was confirmed

in Fig. 4.7. The Nf of the benchmark dataset is forty. Compared with other numbers

of correlation coefficients, TAP, TRP, and classification reliability generated by the feature

vector with forty correlation coefficients achieve high values. For example, TRCA+CCValue

reached the highest reliability of 61.39%, and SSCOR+CCValue reached the reliability of

51.49% (highest value: 51.79% with thirty-two correlation coefficients) with 0.4 s TW. For

those cases with similar reliability, the gap between TAP and TRP provided by the proposed
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method is relatively smaller. For example, the gap is 4.19% for forty coefficients but 9.56%

for thirty-two coefficients for SSCOR+CCValue. Therefore, it indicates that the proposed

method can achieve high classification reliability while maintaining a better balance between

the model’s rejection efficiency (TRP) and the cost (TAP).

4.5.4 Data Imbalance

Data imbalance is a common issue in real-world datasets, and it occurs when the distribu-

tion of classes in a dataset is uneven. Therefore, it is important to evaluate the effectiveness

of the proposed method on unbalanced datasets to further validate its reliability in real

SSVEP-based BCI systems. In Fig. 4.9, the classification reliability of four methods is

shown under different numbers of classes with imbalanced data. For instance, when the

x-axis is five, it means that five classes are randomly selected with insufficient training data

(i.e., four training blocks), while the other thirty classes have sufficient training data (i.e.,

five training blocks). The evaluation results indicate that the proposed method achieves

consistently better performance. The paired t-test was used to perform statistical analysis

of the recognition performance of different methods. Statistical analysis shows that the re-

liability of SSCOR is significantly different from that of SSCOR+CCValue regardless of the

number of imbalanced classes. The same conclusion applies to TRCA and TRCA+CCValue.

In addition, the performance of the proposed method does not show much difference be-

tween datasets with many imbalanced classes and those without any imbalanced classes. For

example, the recognition reliability of TRCA+CCValue and SSCOR+CCValue are 69.59%

and 63.76% when tested on a dataset with twenty imbalanced classes, while on a dataset

with zero imbalanced class, the recognition reliability of TRCA+CCValue is 71.29% and

SSCOR+CCValue is 64.80%. This suggests that TRCA+CCValue and SSCOR+CCValue

are robust to the number of imbalanced classes in the dataset, indicating their potential for

handling imbalanced datasets in practical situations. Additionally, Fig. 4.6, TABLE. 4.4,

and TABLE. 4.5 in Section 4.3.2 show the experimental evaluation results after balancing

the dataset. It involves adjusting the class distribution so that each class has an equal

number of examples.
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4.6 Conclusion

In this study, a Bayesian-based classification confidence estimation method was proposed

for enhancing the SSVEP recognition performance. The differences between the largest

correlation coefficient and the other values were used to define the feature vector. The

probability density functions of feature vectors given correct and wrong classifications were

then estimated using the GMM model. In the test process, the posterior probabilities of an

accurate and wrong recognition can be calculated using Bayesian inference with the newly

obtained feature vector. The CCValue, the difference between two posterior probabilities,

was applied to evaluate the confidence of the classification result. Eventually, the decision-

making process can determine whether to accept trustworthy results or reject unconfident

results. This method was evaluated on a publicly available benchmark dataset and a self-

collected dataset. The experimental results demonstrated the effectiveness and feasibility

of the proposed method in the SSVEP-based BCIs.
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Chapter 5

Cross-Subject Transfer Learning

for Boosting SSVEP Recognition

Performance

SSVEP-based BCIs have been substantially studied in recent years due to their fast com-

munication rate and high signal-to-noise ratio. The transfer learning is typically utilized

to improve the performance of SSVEP-based BCIs with auxiliary data from the source do-

main. This study proposed an inter-subject transfer learning method for enhancing SSVEP

recognition performance through transferred templates and transferred spatial filters. In

this method, the spatial filter was trained via multiple covariance maximization to extract

SSVEP-related information. The relationships between the training trial, the individual

template, and the artificially constructed reference are involved in the training process. The

spatial filters are applied to the above templates to form two new transferred templates,

and the transferred spatial filters are obtained accordingly via the least-square regression.

The contribution scores of different source subjects can be calculated based on the distance

between the source subject and the target subject. Finally, a four-dimensional feature vec-

tor is constructed for SSVEP detection. To demonstrate the effectiveness of the proposed

method, a publicly available dataset, and a self-collected dataset were employed for per-
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formance evaluation. The extensive experimental results validated the feasibility of the

proposed method for improving SSVEP detection.

5.1 Introduction

EEG-based BCIs provide humans a direct communication path between brain activities and

external equipment without the need to move peripheral nerves or muscles [200, 201, 217].

SSVEP is one of the most popular paradigms in the research area of BCI due to its high

SNR, reliability, and minimal set-up requirement [75, 86, 211, 218]. SSVEP-based BCI has

been broadly employed in various applications, such as communication [218], robot [7,150],

and smart home [219].

By analyzing the information from the measured SSVEP signals, the visual stimulus that

the user is gazing at can be detected, and the corresponding control command can be output

accordingly [185]. In recent years, many target recognition methods have been proposed for

SSVEP-based BCI systems. CCA is the most popular method to classify stimuli due to its

ease of use and robustness [2, 68]. However, as a training-free method, its performance is

easily influenced by interference from spontaneous brain activities. To alleviate this issue,

many improved approaches have been proposed for SSVEP detection. In the direction of

template optimization, to name a few, the L1-regularized multiway CCA (L1-MwayCCA)

[66], MsetCCA [67], ITCCA [72] and MCM [24]. Alternatively, several spatial filtering

methods have also been reported to lower the misclassification rate in SSVEP detection,

such as a combination method of CCA and ITCCA [74], the SSCOR [71], and TRCA [1].

Although the performance of SSVEP-based BCI systems was significantly boosted by these

templates- or spatial filter-based methods, EEG usually suffers from inter-subject variability

problems [31]. Therefore, trained templates or spatial filters can only be used for a single

subject and it is difficult to transmit knowledge directly across subjects. It would prevent

the broad and practical usage of BCIs in our real lives. Recently, the transfer learning (TL)

technique was explored in BCIs to transfer knowledge from old sessions or subjects (the

source domain) to new sessions or subjects (the target domain) so that the performance
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of the target domain can be boosted [120, 220]. As one of the research directions, training

data is usually transferred across different domains to augment the size of calibration data

for new users [122,123]. Template-based transfer learning is also a popular study area, and

several approaches are listed, such as transfer template-based canonical correlation analysis

(tt-CCA) [115], adaptive combined-CCA (Adaptive-C3A) [117] and inter- and intra-subject

template-based multivariate synchronization index (IIST-MSI) [118]. In these methods, the

transferred template is simply generated by averaging multiple trials from source subjects,

which may not contain sufficient SSVEP features. Alternatively, there are multiple BCI

transfer learning studies cooperating on spatial filters to learn the common feature repre-

sentations across different domains [2, 119]. Liu et.al [221] proposed an all-to-one method

to use data from all source subjects to train TRCA-based spatial filters. Wang et.al [126]

presented an inter-subject maximal correlation method to improve the robustness of SSVEP

classification. Wong et.al [30] proposed a subject transfer based CCA method which utilizes

the knowledge within-subject and between subjects. However, these methods rarely con-

sider the correlation among the training data, the individual template, and the predefined

sine-cosine signal simultaneously to enhance the effectiveness of the spatial filter [222].

In this study, the objective was to investigate and leverage a transfer learning architecture

for enhancing recognition performance within the SSVEP-based BCI system. The main

contributions of this paper are as follows: 1) a cross-subject scheme is proposed which

incorporates SSVEP knowledge from the source subject to effectively strengthen the recog-

nition performance for the target subject. 2) a powerful and informative feature vector is

constructed under this scheme. The multidimensional feature vector is driven partly by

the transferred spatial filter and the transferred SSVEP template from the source subject,

and partly by the spatial filter of the target subject obtained by multiple covariance maxi-

mization. 3) a contribution score is introduced to each source subject by further exploring

the distance between the source subject and the target subject. Validation of the perfor-

mance of the proposed method was performed on a publicly available 40-class dataset [23]

and a self-collected 12-class dataset. Extensive evaluations were conducted to demonstrate

its effectiveness in comparison to some well-known methods. The efficiency and reliability
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Figure 5.1: The diagram of the cross-subject transfer learning method for enhancing SSVEP
detection. For i-th stimulus, the spatial filter for n-th source subject ŵn

i and for the target
subject ¨̂wi are firstly calculated based on the correlation maximization between any two of
the three kinds of signals (training trials, the individual template, and the reference signal)
as well as themselves via (5.1) - (5.13). The transferred template Ini , Rn

i and transferred
spatial filter Ŝn

i , T̂ n
i are then be obtained via (5.14) - (5.19). The contribution score

pn,1i , pn,2i are assigned to correlation coefficients of n-th source subject via (5.22) - (5.25).
Finally, four-dimensional feature vector ρi can be formed by (5.26) and recognition results
are determined via (5.27) - (5.28).

were demonstrated with an average classification accuracy of 89.98% and 94.61% on the

two datasets, respectively.

5.2 Materials

5.2.1 Datasets

In this study, the proposed method and comparing methods were evaluated on a publicly

available benchmark dataset [23] and a 12-class self-collected SSVEP dataset.

5.2.2 Data Pre-processing

Due to the effect of visual latency in the human visual system, the data was extracted in

[0.14 (0.14 + d)]s, where d refers to the data length selected for performance analysis. The

data were filtered by the Chebyshev Type I IIR filter to pass signals between eight Hz and

forty Hz for Dataset I.
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5.3 Inter-subject Transfer Learning Method

Assume that the four-dimensional EEG signal is denoted as χ ∈ RNt×Nf×Nc×Ns , where Nt

represents the number of training trials, Nf indicates the number of visual stimuli, Nc is the

number of channels, and Ns is the number of samples. Hereafter, i and j refer to the index

of stimulus and training trial, respectively. Therefore, the two-way tensor χi,j ∈ RNc×Ns

represents the individual EEG signal for the i-th stimulus and the j-th training trial. The

continuous training data is denoted as χ̂i = [χi,1,χi,2, ...,χi,Nt ] ∈ RNc×(Nt·Ns) which is

constructed by concatenating Nt training trials. The single-trial individual template is

obtained by averaging multiple training trails, i.e., χi = 1
Nt

∑Nt
j=1χi,j ∈ RNc×Ns . SSVEP

signals can also be characterized by a series of artificial sine-cosine waves, so the reference

signal Yi ∈ R2Nh×Ns is defined as:

Yi =



sin(2πft)

cos(2πft)

...

sin(2πNhft)

cos(2πNhft)


, t = [1/Fs, 2/Fs, ..., Ns/Fs] (5.1)

where Nh is the number of harmonics, Fs represents the sampling rate, and f is the visual

stimulation frequency.

The spatial filter wi = [uT
i ,v

T
i , z

T
i ]T ∈ R2(Nc+Nh)×1 can be computed by maximizing the

inter-trial covariance, the covariance between training trials and individual template, the

covariance between training trials and artificial reference, as well as the covariance between

the individual template and artificial reference. Therefore, the covariance matrix C could

be represented as:

C =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (5.2)
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where C11 is denoted as the inter-trial covariance:

C11 =

Nt∑
j,h=1,i ̸=h

cov(χi,j ,χi,h) ∈ RNc×Nc (5.3)

C12 and C21 refer to the covariance between the SSVEP training trials and the individual

template, which can be represented as:

C12 = CT
21 =

Nt∑
j=1

cov(χi,j ,χi) ∈ RNc×Nc (5.4)

The similarity between the training trials and artificially constructed reference is also in-

corporated, which can be denoted as :

C13 = CT
31 =

Nt∑
j=1

cov(χi,j ,Yi) ∈ RNc×2Nh (5.5)

C23 and C32 are the covariance between the individual template and reference signal:

C23 = CT
32 = cov(χi,Yi) ∈ RNc×2Nh (5.6)

In addition, C22 and C33 are denoted as:

C22 = cov(χi,χi) ∈ RNc×Nc (5.7)

C33 = cov(Yi,Yi) ∈ R2Nh×2Nh (5.8)

Therefore, the objective function is represented as wT
i Cwi.

The constraint is incorporated in above optimization problem, i.e., wT
i Qwi = 1, where

covariance matrix Q is denoted as follows:

Q = blkdiag(Q1,Q2,Q3) ∈ R2Nh×2Nh (5.9)

where

Q1 = cov(χ̂i, χ̂i) ∈ RNc×Nc (5.10)
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Q2 = cov(χi,χi) ∈ RNc×Nc (5.11)

Q3 = cov(Yi,Yi) ∈ R2Nh×2Nh (5.12)

Therefore, the constrained optimization problem can be formulated as:

ŵi = arg max
wi

wT
i Cwi

wT
i Qwi

(5.13)

The spatial filter ŵi = [ûT
i , v̂

T
i , ẑ

T
i ]T is obtained as the eigenvector of the matrix Q−1C cor-

responding to the largest eigenvalue. The Nf spatial filters are concatenated to make spatial

filters ṽ = [v̂1, v̂2, ..., v̂Nf
]T ∈ RNf×Nc and z̃ = [ẑ1, ẑ2, ..., ẑNf

]T ∈ RNf×2Nh . Hereafter, the

variable with a right superscript n, (n = 1, 2, ..., Nsub) refers to the fact that it is provided

by the n-th source subject. Nsub is the number of transferred source subjects. Therefore,

the two kinds of transferred templates, i.e., transferred individual template Ini ∈ RNf×Ns

and transferred reference template Rn
i ∈ RNf×Ns , provided by n-th source subject can be

represented as:

Ini = ṽ × χi (5.14)

Rn
i = z̃ × Yi (5.15)

Let the variable with the double-dot superscript denote that it is provided by the target

subject. The transferred spatial filters ŝij and t̂ij for the i-th stimulus and the j-th training

trial corresponding to the two kinds of transferred templates can be calculated by solving

the following formula:

ŝnij = arg min
sij

∥Ini − sTijχ̈ij∥
2

2
(5.16)

t̂nij = arg min
tij

∥Rn
i − tTijχ̈ij∥

2

2
(5.17)

ŝnij and t̂nij can be estimated via least-squares regression [119]:

ŝnij = (χ̈ijχ̈
T
ij)

−1
χ̈ijI

n
i
T (5.18)

t̂nij = (χ̈ijχ̈
T
ij)

−1
χ̈ijR

n
i
T (5.19)
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The final transferred spatial filters Ŝn
i and T̂ n

i provided by n-th source subject can be

obtained by averaging all training trials. Suppose that X refers to the test data from the

target subject, the two correlation coefficients can be calculated as:

rn,1i = corr((Ŝn
i )TX, Ini ) (5.20)

rn,2i = corr((T̂ n
i )TX,Rn

i ) (5.21)

According to the distance between the source subject and the target subject, weights will

be assigned to correlation coefficients corresponding to different source subjects. For i-th

stimulus and n-th source subject, the distance is measured by the correlation coefficient

between the spatially filtered training trials of the target subject and the corresponding

transferred template:

dn,1i =

Nt∑
j=1

corr((Ŝn
i )T χ̈ij , I

n
i ) (5.22)

dn,2i =

Nt∑
j=1

corr((T̂ n
i )T χ̈ij ,R

n
i ) (5.23)

Therefore, the weights also called contribution scores are represented as:

pn,1i =
dn,1i∑Nsub

h=1 dh,1i

(5.24)

pn,2i =
dn,2i∑Nsub

h=1 dh,2i

(5.25)

Therefore, for i-th stimulus frequency, the correlation vector ρi is denoted as follows:

ρi =



ρ
(1)
i

ρ
(2)
i

ρ
(3)
i

ρ
(4)
i


=



∑Nsub
n=1 pn,1i corr((Ŝn

i )TX, Ini )∑Nsub
n=1 pn,2i corr((T̂ n

i )TX,Rn
i )

corr(¨̂uT
i X, ¨̂vTi χ̈i)

corr(¨̂uT
i X, ¨̂zTi Yi)


(5.26)

The above correlation coefficients are employed to construct the final feature for target
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Figure 5.2: The average accuracy and ITR obtained by SSCOR, TRCA, and the proposed
method at different time windows on (a) benchmark datasetand (b) Dataset I. The error
bars represent SEM. The asterisks indicate significant difference between the three methods
obtained by one-way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001,
∗ ∗ ∗∗: p<0.0001).

recognition:

βi =

4∑
l=1

sign(ρ
(l)
i )(ρ

(l)
i )2 (5.27)

Therefore, the frequency of test trial can be determined by the following formula:

f = arg max
fi

βi, i = 1, 2, ..., Nf (5.28)

The framework of the proposed cross-subject transfer learning method was shown in Fig. 5.1.
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5.4 Results

5.4.1 Performance Evaluation

Average classification accuracy and ITR are two widely used indicators to evaluate the

performance of SSVEP-based BCIs. ITR (bits/min) can be calculated as follows:

ITR =

(
log2Nf + P log2 P + (1 − P ) log2

[
1 − P

Nf − 1

])
× 60

T
(5.29)

where P is the accuracy of target identification, and T is the average time for a selection,

including gaze shifting time (0.5 s) and gaze time. Fig. 5.2 shows the average accuracy and

ITR for the proposed method and comparing methods. The sampling rates are different

in the two datasets, thus different data lengths were used to keep the number of samples

without decimals. The data lengths ranged from 0.2 s to 1 s with an interval of 0.2 s for

benchmark datasetand 0.25 s to 1 s with an interval of 0.25 s for Dataset I. The accuracy

and ITR were obtained via a leave-one-out cross-validation, where five or four blocks were

used for training and a left-one block was used for testing on benchmark datasetand II.

For the proposed method, source subjects are selected randomly for transfer. In order to

get a general performance of the proposed method, each process was conducted ten times

for benchmark datasetand five times for Dataset I. The different numbers of repeat times

depend on the size of the two datasets being different. The averaged results were shown

for performance evaluation. The number of source subjects is five for both datasets. The

reason was clarified in Section 5.3.2. It is obvious that the proposed method can achieve

higher accuracy and ITR than TRCA/SSCOR with different time windows (TWs) on two

datasets. One-way repeated-measures ANOVA was conducted to explore the similarity of

classification performance among the methods on two datasets. The statistical analysis

results show that there are significant differences among these methods in accuracy and

ITR with each data length.

Fig. 5.3 shows the probability density of classification accuracy for three methods on (a)

benchmark datasetand (b) Dataset I via violin plots. The plots analyzed SSVEP signals with

different data lengths. The violin plot focuses on illustrating the distribution of quantitative
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Figure 5.3: Violin plots represent the distributions of classification accuracy of subjects
achieved by the three methods with various TWs on (a) benchmark datasetand (b) Dataset
I. The thick black line on each violin indicates the median and two black lines on each side
represent interquartile ranges (25% and 75% percentiles).
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Figure 5.4: Comparison between the accuracy of the proposed method, TRCA and SSCOR
for different target subjects with 0.6-long data length. The source subjects were selected
randomly. In this case, the source subjects are [7 12 18 19 33], and the rest are target
subjects.
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Figure 5.5: Feature values of the forty stimuli obtained by the proposed method and TRCA
using a 0.6 s time window for an example subject (S17). The source subjects were selected
randomly. The blue and orange circles represent the recognition results of the proposed
method and TRCA. The hollow circles turned to solid ones as the results were accurate.

data in a visually intuitive way. The thick black line in the middle represents the median

value, and the black lines on either side represent the interquartile range (25% and 75%

percentiles). The wider regions of the violin plot denote values that appear more frequently.

As shown in Fig. 5.3(a) and Fig. 5.3(b), the violin plots provided by the proposed method

(i.e., the pink) generally present higher median values and more concentrated distributions.

Therefore, the experimental results indicate that the proposed method can achieve a more

stable and superb classification performance on various subjects compared with TRCA and

SSCOR.

Fig. 5.4 as an example, shows the accuracy comparison between the proposed method,

TRCA, and SSCOR for different target subjects. The source subjects were randomly se-

lected, and the indexes are [7 12 18 19 33] in this case. The remaining thirty subjects were

used as target subjects for performance comparisons. The experiment result shows that

the proposed method achieves higher SSVEP classification accuracy for almost all target

subjects.
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Fig. 5.5 illustrates the feature values of forty stimuli provided by the proposed method

and TRCA for an example target subject (S17) with 0.6 s data length. In comparison

to SSCOR, the difference in performance between TRCA and the proposed method is

narrower, prompting a more detailed comparison between these two methods. The feature

values of the proposed method were calculated via (5.27). Each sub-figure represents a test

trial, and the sub-title represents the accurate recognition result. The first four trials were

selected and amplified for better viewing details. For each test trial, forty feature values

were calculated, and the stimulus corresponding to the largest value was determined as

the target via (5.28). The blue and orange circles represent the decisions of the proposed

method and TRCA. The hollow circles turned to solid circles as the decisions were accurate.

Obviously, the proposed method provided more accurate recognition results. Besides, for

those trials where both methods provide correct results, the proposed method shows more

distinctive and apparent feature values, such as 2, 6, 8, 14, and 16-th stimuli. It indicates

the effectiveness of the proposed feature vector construction strategy in (5.26).

5.4.2 The Effect of Parameters

The Number of Training Blocks

An important purpose of the proposed method is to reduce the need for individual training

data. The proposed method should classify SSVEP responses with sufficient accuracy even

with a reduced number of individual training data blocks. Fig. 5.6 uses heat maps to show

the SSVEP classification accuracy comparison between TRCA, SSCOR, and the proposed

method with various numbers of training blocks on (a) benchmark datasetand (b) Dataset

I. The heat map acts as a graphical representation of data, displaying values by color in

two dimensions. It provides a more visual path to describe numeric values. In the heat

map, the x-axis refers to the classification method with a corresponding number of training

blocks, and the y-axis indicates the subject index. The accuracy of the target subjects is

provided here. The number range of training blocks is [3, 5] for benchmark datasetand

[2, 4] for Dataset I. The heat maps visualize the highest classification accuracy and lowest

accuracy using colors on a scale from light to dark. As shown in Fig. 5.6(a) and Fig. 5.6(b),
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Figure 5.6: Heatmaps of the classification accuracy of three methods with different numbers
of training blocks on (a) benchmark datasetand (b) Dataset I.

Table 5.1: Accuracy comparison among three methods with different numbers of training
blocks

Methods

Accuracy with different number of training blocks

benchmark dataset Dataset I

3 4 5 2 3 4

SSCOR 45.15 50.37 51.83 52.31 64.31 70.72

TRCA 52.23 59.52 63.69 51.85 74.31 76.11

Proposed 65.81 68.38 70.89 80.74 87.22 88.11

P-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

the proposed method generally provides the squares with the lightest color regardless of

the number of training blocks. Besides, with the increasing training data scale, the squares

generally turn lighter.

Table. 5.1 shows the numerical classification accuracy of three methods and corresponding

one-way repeated-measures ANOVA analysis results. The results revealed that there was a

statistically significant difference (i.e., P < 0.0001) between the methods with all numbers

of training blocks for benchmark datasetand Dataset I. In conclusion, this table further

demonstrates the effectiveness of the proposed method by providing more quantitative evi-

dence.
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Figure 5.7: Barchart of the classification accuracy of three methods with different numbers
of electrodes on (a) benchmark datasetand (b) Dataset I. The error bars represent SEM.
The asterisks indicate significant differences between the three methods obtained by one-
way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).

The Number of Channels

An exploration was conducted to assess how the number of electrodes affects the perfor-

mance of all methods. Fig. 5.7 shows the classification accuracy results for (a) benchmark

datasetand (b) Dataset I. As the number of channels increases, the recognition accuracy

generally increases for all methods. As indicated in Fig. 5.7(a) and Fig. 5.7(b), the pro-

posed method always provides the highest classification accuracy with a different number of

channels ranging from five to nine for each dataset. Besides, the statistical analysis results

show that there is a significant difference between the three methods.

The Number of Source Subject

Fig. 5.8 shows how the number of source subjects affects the performance of methods on

(a) benchmark datasetand (b) Dataset I. The classification accuracy in Fig. 5.8(a) and

Fig. 5.8(b) is calculated by the target subjects, which does not include source subjects.

Therefore, to make the comparison more reasonable, TRCA and SSCOR also show various

accuracy values for a different number of source subjects. As the number of source targets

increases, the recognition performance of the proposed method generally improves slightly

and then decreases. The highest value typically occurs at five, so the number of source

targets is set at that in the analysis. The figure also shows that the number of source targets
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Figure 5.8: Bar chart of the classification accuracy with different numbers of source subjects
on (a) benchmark datasetand (b) Dataset I. The error bars represent SEM. The asterisks
indicate a significant difference between the there methods obtained by one-way repeated-
measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).
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Figure 5.9: Barchart of the classification accuracy and ITR of three methods with a different
number of sub-band. The error bars represent SEM. The asterisks indicate significant
differences between the three methods obtained by one-way repeated-measures ANOVA (∗:
p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).

does not have a significant effect on the performance of the proposed method, making this

parameter choice representative and reasonable. The [126] also has the same setting for the

same dataset.

5.4.3 Filter-bank Analysis

Filter-bank analysis was used to further compare the recognition performance of the pro-

posed method and other methods in this study. The filter-bank technology decomposes the

SSVEP signals into Nb sub-band to investigate the information embedded in the harmonic

components [69]. The cut-off frequency range was set between b × 8 Hz and 90 Hz for

the b-th sub-band, where b = 1, 2, ..., Nb refers to the sub-band component number. The
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Figure 5.10: The average accuracy and ITR obtained by MSCCA, TDCA, and the proposed
method at different time windows. The error bars represent SEM. The asterisks indicate
significant differences between the three methods obtained by one-way repeated-measures
ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).

feature βb
i was extracted from b-th sub-band signals and then a weighted summation was

obtained from all sub-bands as Λi =
∑Nb

b=1(b
−1.25 + 0.25) ·βb

i [30]. The target frequency can

be recognized by the formula:

f = arg max
fi

Λi, i = 1, 2, ..., Nf (5.30)

Fig. 5.9 shows the classification performance comparison of the proposed method and other

methods with different numbers of sub-band on (a) benchmark datasetand (b) Dataset I.

The proposed method provided the highest accuracy and ITRs for all data lengths. One-

way repeated-measures ANOVA was conducted to further compare these methods. The

statistical analysis results indicate that there are significant differences among the three
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methods in terms of accuracy and ITRs in each dataset.

5.4.4 Performance Comparison with Data Augmentation Methods

In this study, the proposed method incorporates SSVEP data from the source subject to

effectively improve the recognition performance of the target subject. In other words, the

data in the target domain was augmented via auxiliary data from the source domain. In

this subsection, the proposed method was further compared with two data augmentation

methods, including multi-stimulus eCCA (MSCCA) [130] and task-discriminant component

analysis (TDCA) [91].

The number of channels and training blocks is set to nine and five for all methods. For

TDCA, the number of subspaces and the number of delayed points are eight and one, re-

spectively. In accordance with the comparison shown in Fig. 5.10, the proposed method

achieved the highest accuracy and ITRs among all compared methods with almost data

lengths. A one-way repeated-measures ANOVA revealed that there was a statistically sig-

nificant difference between the compared methods. The evaluation results further demon-

strated the effectiveness and feasibility of the proposed method for SSVEP recognition of

the BCI system.

5.5 Discussion

5.5.1 Model’s Performance

Almost recognition methods in SSVEP-based BCI fields built spatial filters by considering

the relationship between the EEG signal and the artificial reference or the individual tem-

plate, e.g., CCA and IT-CCA [68] or the relation across training trials, e.g., TRCA and

SSCOR [1, 71]. In this study, the spatial filter was trained with multiple similarity con-

straints. Specifically, maximizing the reproducibility across trials could extract task-related

components [1], but it may also bring task-related noise [223]. It is reasonable to remove

noise and extract more SSVEP-related features by incorporating the covariance maximiza-

tion between the training trial and the individual template, between the training trial and
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Figure 5.11: Performance comparison between the proposed method and the method with-
out transfer learning at different time windows on (a) benchmark datasetand (b) Dataset
I. The error bars represent SEM. The asterisks indicate significant differences between the
two methods obtained by paired t-test. (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗:
p<0.0001).

the artificial reference, as well as between the two templates. As a cross-subject scheme, the

transferred template and transferred spatial filter are used to boost the SSVEP detection

performance for the target subject. As shown in Fig. 5.2, the accuracy of the proposed

method is 7.19% higher than that of TRCA and 19.05% higher than that of SSCOR on

benchmark datasetwith 0.6 s long data length. Besides, the proposed inter-subject transfer

learning scheme does not require massive amounts of training data from the target subject

and still achieves superior SSVEP classification performance. As shown in Fig. 5.6(a), the

accuracy of TRCA with five training trials (i.e., 63.69%) is close to the accuracy of the

proposed method with only three training trials (i.e., 65.81%) on Dataset I.
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5.5.2 Feature Vector Construction

In this study, the feature vector (5.26) includes four types of correlation coefficients, two

of which come from the source subjects and the other two from the target subject. An

exploration was conducted into the difference in classification accuracy and ITR between

this design and feature vector information only provided by the target subject. Fig. 5.11

shows the comparison results on (a) benchmark datasetand (b) Dataset I. The proposed

method shows better SSVEP recognition performance compared with the method without

transfer learning. Paired t-test was used to measure the similarity of these methods. The

statistical results show that there are significant differences in accuracy or ITR between the

two methods at each data length on two datasets. It means that transferred information

from source subjects is beneficial to improving the SSVEP recognition performance of the

target subject.

5.6 Conclusion

In this study, a cross-subject transfer learning scheme was proposed for enhancing SSVEP

classification performance. The spatial filter was first trained via multiple covariance max-

imization. The relationships between training trials, the individual template, and artificial

reference were properly considered in the spatial filter training process. The spatial filters

were then applied to the aforementioned templates to construct two new transferred tem-

plates, on which the transferred spatial filter can be obtained accordingly. The contribution

scores of different source subjects to the feature vector were calculated by their distances

from the target subject. Finally, a four-dimensional feature vector was constructed for each

stimulus to achieve SSVEP recognition. The effectiveness and feasibility of the proposed

method were demonstrated via experimental evaluation on a publicly available dataset and

a self-collected dataset.
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Chapter 6

SSVEP-based Brain-Computer

Interface Controlled Robotic

Platform with Velocity Modulation

SSVEP-based BCIs have been extensively studied due to many benefits, such as non-

invasiveness, high information transfer rate, and ease of use. SSVEP-based BCI has been

investigated in various applications by projecting brain signals to robot control commands.

However, the movement direction and speed are generally fixed and prescribed, neglecting

the user’s requirement for velocity changes during practical implementations. In this study,

a velocity modulation method based on stimulus brightness was proposed for controlling

the robotic arm in the SSVEP-based BCI system. A stimulation interface was designed,

incorporating flickers, a target, and a cursor workspace. The synchronization of the cursor

and robotic arm does not require the subject’s eye to switch between the stimuli and the

robot. The feature vector consists of the characteristics of the signal and the classification

result. Subsequently, the GMM and Bayesian inference were used to calculate the posterior

probabilities that the signal came from a high or low brightness flicker. A brain-actuated

speed function was designed by incorporating the posterior probability difference. Finally,

the historical velocity was considered to determine the final velocity. To demonstrate the
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effectiveness of the proposed method, online experiments, including single- and multi-target

reaching tasks, were conducted. The extensive experimental results validated the feasibility

of the proposed method in reducing reaching time and achieving proximity to the target.

6.1 Introduction

Individuals who experience severe motor impairments encounter challenges in performing

their daily tasks [224, 225]. Many studies attempted to help people achieve mobility with

assistive robotic devices [226]. However, several traditional forms of assistance still require

manual control ability from users. BCIs can establish a direct connection between brain

signals and external devices, eliminating reliance on peripheral nerves and muscles [227].

In recent years, BCIs have been extensively used in various assistance and rehabilitation

applications, such as wheelchair [228], speller [8], and robot arm [229,230].

EEG is broadly employed in BCI research due to many advantages, such as non-invasiveness,

high temporal resolution, and simple operation [231]. SSVEP as one of the EEG paradigms

has attracted significant attention because of its minimal training requirements and high

SNR [86,211,218]. The SSVEP-based BCI system maps the brain signals to robot commands

and then transmits them to the corresponding manipulation [185]. Therefore, SSVEP-based

BCIs have been widely explored in the field of assistive and rehabilitative applications in

recent decades. For example, Guo et.al [154] designed an SSVEP-based BCI-controlled

soft robotic glove for post-stroke hand function rehabilitation. Sakkalis et.al [162] imple-

mented efficient electric wheelchair navigation by utilizing an SSVEP-controlled system. In

a separate study, Wang et.al [148] built a portable SSVEP system specifically designed for

rehabilitation exoskeletons. Chen et.al [147] integrated SSVEP with computer vision to

fulfill robot pick-and-place tasks. Subsequently, Chen et.al [150] further employed the AR

technique that eliminates the need for subjects to switch attention between the stimulation

and the robotic arm. These studies effectively established the connection between SSVEP

signals and external robots with prescribed velocity control. However, modulating the ve-

locity of the robots in response to the user’s intentions can bring more benefits in human

motion assistance and rehabilitative scenarios.
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In recent years, several studies have considered velocity control in SSVEP-based BCI sys-

tems. For instance, Zhao et.al [155] mapped three flashing squares to the three motion

modes, where different frequencies represent fast, medium, and slow speeds. However, by

replacing the stimulus-command pair with the stimulus-velocity pair, the BCI achieves ve-

locity modulation in a discrete manner. To realize continuous velocity mapping, Zhang

et.al [164] introduced stimuli with different frequencies to control a navigation robot. A

self-defined mapping function on the basis of correlation values was proposed to output con-

tinuous control commands. Additionally, Sharma et.al [232] demonstrated that the ampli-

tude of brain signals can be modulated by varying the distances between the subject and the

stimulus. However, only one stimulus was designed for unidirectional robot manipulation

since orthoptic eye accommodation may bring difficulties in multi-class interface design. In

addition to stimulus frequency and distance, voluntary attention increased stimulus-driven

EEG activity [233]. Integrating the attention factor, Molina-Cantero et.al [234] utilized

SSVEP responses obtained from a single-channel EEG headset known as NeuroSky Mind-

wave (NM). The NM was able to provide attention levels, which were then used to modulate

the speed of a controlled cursor. However, the requirement for a specific headset limits its

generalizability and scalability. On the other hand, flicker brightness is another important

component that influences the characteristics of the SSVEP signal; thus, some studies have

investigated the brain response to the modulation of stimulus brightness [235]. For in-

stance, the findings in [236] revealed that SSVEP amplitude generally increases with higher

brightness levels. Zhang el.al found that the PSD of the stimulus maintained a certain

positive correlation with brightness [237]. Nevertheless, studies investigating the feasibility

and effectiveness of employing brightness in robot velocity modulation are still limited to

SSVEP-based BCIs.

This study pursued the exploration of a velocity modulation approach for the control of a

robotic arm in the context of SSVEP-based BCI. The key contributions encompass 1) De-

velopment of a stimulation interface including flickers, a target, and a cursor workspace. It

enables synchronized movement of the cursor and robotic arm. Subjects are not required to

switch their eyes between the stimulus and the robot. 2) Proposal of a stimulus brightness-
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Figure 6.1: The experimental environment of the proposed SSVEP-based BCI system for
robotic arm velocity control.

based velocity modulation model. The feature vector is constructed using the correlation

coefficient and PSD. 3) Devising a speed function that leverages the difference in posterior

probabilities of being a high- or low-brightness flicker. The historical velocity was incorpo-

rated in the velocity determination to avoid occasional misclassification. To evaluate the

performance of the proposed method, online experiments, including single- and multi-target

reaching tasks, were conducted. Two additional control methods were used for comparison.

Extensive evaluations showed that the proposed method enabled the cursor or robotic arm

to complete tasks in a shorter time and get closer to the target.

This paper is organized as follows: Section 6.2 introduces the SSVEP experiment and

the proposed method. Section 6.3 presents the experimental results. The discussion and

conclusion are shown in Sections 6.4 and 6.5, respectively.
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6.2 Experimental Protocol

6.2.1 Experimental Environment

Fig. 6.1 showed the experimental setup of the SSVEP-based BCI system for robotic arm

control. The computer screen displayed the stimulation interface, which includes flickers,

the target, and the cursor workplace. The robotic arm and its workspace were located at

the right hand of the subject. The experimental environment was detailed as follows:

Participants

Ten healthy subjects (five females and five males, mean age: twenty-eight years) volun-

teered for the experiment in this study. All subjects had a normal or corrected-to-normal

vision. The experiment has been approved by the Faculty Research Ethics Committee of

the University of Leeds. Each participant read and signed an informed consent form.

Simulation Interface

The stimulation interface was shown in Fig. 6.2. There are eight stimuli on a 23.6-inch LCD

monitor with a resolution of 1920 × 1080 pixels and a refresh rate of 60 Hz. Two adjacent

stimuli have the same frequency but different brightnesses. For instance, the top two stimuli

flashed at 7 Hz, corresponding to upward movements. The maximum brightnesses were set

at 255 and 180, respectively. The right, bottom, and left stimuli flickered at 8, 9, and 12 Hz,

respectively. The size of the stimulus is 210× 210 pixels. The rectangle with white edges is

1060 × 620 pixels in size. The red circle (radius: 25 pixels) and the white one (radius: 15

pixels) are the target and the cursor. The interface was developed in MATLAB using the

Psychophysics Toolbox Version 3 [238].

Signal Acquisition

The data was recorded using equipment from g.tec medical engineering GmbH, and it was

sampled at a rate of 512 Hz using the g.USB amplifier. Nine electrodes, i.e., Pz, PO3, POz,

PO4, PO7, O1, Oz, O2, and PO8, in the parietal and occipital areas were selected. The

ground electrode was placed over FPz, and the reference electrode was positioned on the
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Figure 6.2: The simulation interface of the eight-target SSVEP-based BCI system. The
frequency and maximal brightness were displayed for each visual stimulus. The workspace
for the random target and the cursor was represented by a rectangle with white edges. The
red circle is the target and the white one is the cursor.

right earlobe.

Robotic Arm

The UR5 robotic arm (Universal Robots) was employed in this study. Its maximum reaching

radius is 850 mm. The workspace for the UR5 robotic arm was set up with a whiteboard

positioned directly in front of the robot. It provides a designated horizontal area (803 mm

× 470 mm) for the arm’s actions and operations. The participants were asked to control

the robotic arm to perform reaching tasks.

6.2.2 Experimental Protocol

Offline

For each subject, the experiment included four blocks, and each block contained eight trials

corresponding to eight stimuli. Each trial began with a 2 s target cue (a red square). After

the cue, all targets flickered for 7 s simultaneously. During the experiment, the subject
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sat in a comfortable chair in a dimly lit and quiet room. The viewing distance from the

computer screen was set at 60 cm. The subject was asked to focus on the stimulus and

avoid eye movement. The subject can take a rest between two blocks.

Online

The online experiments include single- and multi-target reaching tasks. In the single-target

reaching experiment, each subject should complete eight trials. In each trial, the target

was generated randomly within the cursor’s workspace. There is a one-to-one mapping

between the target position in the cursor’s workspace and a specific location in the robotic

arm’s workspace. The subject should move the cursor to reach the target by focusing on

different visual stimuli. Meanwhile, the cursor velocity was transformed and then sent to the

robotic arm, so the robotic arm can map the cursor’s movement in an enlarged workspace.

Therefore, subjects were not required to switch their eyes between the stimulus and the

robotic arm. Fig. 6.3 showed the diagram of the proposed robotic arm velocity modulation

method in the SSVEP-based BCI.

The basic rule for governing reaching tasks is that the cursor/robotic arm should move

quickly when it is far from the target and slow down as it approaches. It ensures that the

cursor/robotic arm approaches the target with greater precision within a shorter duration.

Hence, the subject should focus on the lighter flicker to move the cursor/robotic arm faster

while focusing on the darker flicker to move it slower. When the distance between the

centers of the cursor and the target is consistently below a certain value for four consecutive

times, and the trial time is within 40 s, the target is considered to be hit successfully.

Otherwise, the trial fails. The distance was set to 30 pixels. Two other control methods

were employed for performance comparison. The comparing methods would be described

in the next subsection. In each comparative experiment, the target position is the same.

Therefore, each subject should finish 24 trials in the single-target reaching task.

In the multi-target reaching task, the subject should reach three randomly generated tar-

gets successively within 200 s. After successfully hitting a target, the next target occurs

automatically. Each participant was required to complete three reaching tasks using the
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Figure 6.3: Diagram of the proposed SSVEP-based BCI system for robotic arm velocity
control.

proposed method along with two comparative control methods, for a total of nine trials.

6.2.3 Data Pre-processing

Since the effect of visual latency in the human visual system, the data was extracted in [0.14

(0.14 + d)]s, where d was the data length for performance analysis. The data were filtered

by a Butterworth band-pass filter (5–60 Hz) and a notch filter (50 Hz). The band-pass

range is determined by the visual stimulus frequency and the number of harmonics in CCA.

6.2.4 SSVEP-based BCI Controlled Robotic Platform with Velocity Mod-

ulation

A stimulus brightness-based velocity modulation method was presented for robotic arm

control in the SSVEP-based BCI. The framework, as shown in Fig. 6.4, included two parts:

offline and online experiments. The offline experiment includes data acquisition, feature

extraction, and stimulus brightness-based speed modulation. In the online experiment, the

velocity of the cursor/robotic arm was finally determined by the speed function trained in

the offline and historical velocity. The data acquisition was described in previous sections.

Subsequent content will explain the other modules in detail.
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Figure 6.4: The detailed framework of the proposed velocity modulation process for robotic
arm control in the SSVEP-based BCI.

Feature Extraction

Suppose that X ∈ RNc×Ns represents the two-dimensional SSVEP signal from the offline

experiment. Nc, and Ns are the number of channels and samples, respectively. SSVEP

signals can also be described as sine-cosine waves, so the reference signal Yi ∈ R2Nh×Ns for

the i-th stimulus can be artificially constructed as follows:

Yi =



sin(2πfit)

cos(2πfit)

...

sin(2πNhfit)

cos(2πNhfit)


, t = [1/Fs, 2/Fs, ..., Ns/Fs] (6.1)

where fi, Nh, and Fs refer to the frequency of the stimulus, the number of harmonics, and

the sampling rate, respectively. In this study, the number of harmonics in CCA was set to

five.

This study used canonical correlation analysis (CCA) for feature construction and recogni-

tion. CCA finds two spatial filters wi ∈ RNc×1 and vi ∈ R2Nh×1 to maximize the correlation
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between linear projections wT
i X and vTi Yi:

ρi = max
wi,vi

E[wT
i XY

T
i vi]√

E[wT
i XX

Twi]
√
E[vTi YiY T

i vi]
(6.2)

The correlation coefficient ρi can be calculated between X and each reference signal Yi, i =

1, 2, ..., Nf . The frequency of the reference signal with maximal correlation coefficient is

determined as the frequency of X. If the classification is correct, the maximal correlation

coefficient ρ was recorded for the feature construction. Additionally, the PSD of Xj ∈

R1×Ns , j = 1, 2, ..., Nc was estimated by periodogram() in MATLAB. The PSD at the true

frequency f for j-th channel was presented as PSDj(f). The average PSD value α across

all channels was calculated as:

α =
1

Nc

Nc∑
j=1

PSDj(f) (6.3)

The signals from Nt blocks of the offline experiment were processed using the aforementioned

procedure.

Stimulus Brightness-based Speed Function

As illustrated in Fig. 6.4, the offline signals were divided into two sets. Specifically, (Nt−1)

data blocks were used to train conditional probability density functions, and one block

served as an evaluation dataset to fine-tune the model’s hyperparameters. A sliding time

window with a step of 0.5 s was employed to divide the signals into multiple epochs. In the

(Nt − 1) blocks, ρ, and α were further divided into two sets based on whether they were

obtained from high- or low-brightness flickers:

Φh =

 ρh,1, ρh,2, ..., ρh,Nh

αh,1, αh,2, ..., αh,Nh


T

∈ RNh×2

Φl =

 ρl,1, ρl,2, ..., ρl,Nl

αl,1, αl,2, ..., αl,Nl


T

∈ RNl×2

(6.4)
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where Nh and Nl represent the number of trials where the subject directed their attention

toward high- and low-brightness visual stimuli, respectively. The feature matrices Φh and

Φl are derived from stimuli with high and low brightness. Suppose that when the subject

observed the high and low brightness stimuli, the corresponding trials were labeled as Th and

Tl. The probability density functions of the feature matrices for high and low brightness

stimuli are denoted as p(Φ|Th) and p(Φ|Tl). GMM was used to fit Φh and Φl. The

GMM is an efficient probabilistic model capable of building complex probability distribution

functions [212]. Therefore, two probability distribution functions are expressed as follows:

p(Φ|Th) = p(Φh) =

K∑
k=1

λkN (Φh|θk)

p(Φ|Tl) = p(Φl) =

K∑
k=1

φkN (Φl|ξk)

(6.5)

where K is the number of mixture components, λk and φk are the mixture wights subject

to the constraints
∑K

k=1 λk = 1 and
∑K

k=1 φk = 1. The Gaussian density functions N (Φh)

and N (Φl) are defined by the parameters θk = (µk,Σk) and ξk = (νk,Γk), where µk and

νk are the mean, and Σk and Γk are the covariance matrices. The GMM parameters, i.e.,

λk, ηk,µk,Σk,νk, and Γk, were estimated by the EM algorithm in MATLAB.

The left-one block was used to determine hyperparameters. Specifically, each trial from the

left block was analyzed to form the feature vector ϕ̂ = [ρ̂ α̂]. Bayesian inference was used to

compute the posterior probabilities, indicating the trial was obtained by observing a high

and low brightness stimulus:

P (Th|ϕ̂) =
p(ϕ̂|Th)P (Th)

p(ϕ̂|Th)P (Th) + p(ϕ̂|Tl)P (Tl)

P (Tl|ϕ̂) =
p(ϕ̂|Tl)P (Tl)

p(ϕ̂|Th)P (Th) + p(ϕ̂|Tl)P (Tl)

(6.6)

where P (Th) and P (Tl) are prior probabilities of high and low brightness stimulus. They are

both set to 0.5. The difference between two posterior probabilities is calculated as follows:

d = P (Th|ϕ̂) − P (Tl|ϕ̂) (6.7)
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Subsequently, d is compared with a threshold σ:

L(ϕ̂) =


Th, d > σ

Tl, otherwise

(6.8)

where L(ϕ̂) is the predicted high/low brightness label of ϕ̂. L(ϕ̂) would be compared

with the true brightness label of ϕ̂. If they are equal, it indicates that the above process

successfully recognized the brightness label of the SSVEP trial. The ratio of successfully

predicted trials to total trials in the left block is defined as Acc. The grid-search method was

used to determine optimal values for K and σ via calculation of Acc. The K and σ ranges

are specified as [1, 4] and [-0.5, 0.5], respectively. An exhaustive search was conducted for

the K with an interval of 1 and for σ with an interval of 0.1. The values that yielded the

highest Acc were chosen as optimal values for K and σ.

The speed range of the cursor is set to [vl, vh], so the middle speed is vm = vl+vh
2 . The

brain-actuated speed function based on the brightness label is represented as follows:

v =


fl(d), d < σ

vm, d = σ

fh(d), d > σ

(6.9)

where fl(·) and fh(·) were obtained by polyfit() in MATLAB. For fl(·), polyfit fits a polyno-

mial of degree three to [−1, vl] and [σ, vm]. For fh(·), polyfit fits a same degree polynomial

to [σ, vm] and [1, vh]. vl = 18, vh = 36 in this study.

Velocity Determination

In the online experiment, the feature of signal χ ∈ RNc×Ns was extracted as [ρ̂, α̂]. Following

the above process, χ can be classified as the high or low brightness stimulus based on the

posterior probability difference d̂ in (6.8). Subsequently, the brain-actuated speed v is

obtained using (6.9). So the two-dimensional velocity vector vd can be determined by the
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speed and recognition result:

vd = [vx vy] =



[0, −v], fd = 1

[v, 0], fd = 2

[0, v], fd = 3

[−v, 0], fd = 4

(6.10)

where fd is the predicted class of χ. fd would be compared with the recognition result of

the last trial f ′
d. The final velocity vector of cursor v̂c can be determined as follows:

v̂c =


vd, fd = f ′

d

v̂′c −
v̂′
c
4 + vd, fd ̸= f ′

d

(6.11)

where v̂′c is the cursor’s velocity at the last moment. The cursor moves at a velocity of

v̂c for a duration of 0.5 s. Subsequently, the robotic arm’s velocity v̂a can be expressed

proportionally:

vax =
−Wh × v̂c(2)

wh

vay =
−Ww × v̂c(1)

ww

(6.12)

where Wh and Ww are the height and weight of the robotic arm’s workspace, respectively.

wh and ww are the height and weight of the cursor’s workspace.

Based on the cursor’s and target’s positions, the subject adjusted the speed and direction

via the stimulus’s brightness and frequencies, respectively. The distance between their

centers was calculated for each time duration. If the distance is less than 30 pixels for four

consecutive instances within 40 s, it is considered a successful hit.

6.2.5 Velocity Control Strategies for Comparison

Two additional methods were compared with the proposed method. The first method is

called discrete velocity (DV) control, which is commonly utilized in SSVEP-based BCIs for
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controlling robots [154,162]. The speed is a constant value vcons, and its direction depends

on the recognition result. The second method, named discrete attenuated velocity (DAV)

control, incorporates velocity attenuation in (6.11) based on the configuration of the DV

method. It shares the same setting as the proposed method. The only difference is that

it does not include the proposed SSVEP-based BCI-actuated velocity modulation. Given

that DV and DAV methods do not consider the brightness factor, only high-brightness

stimuli were used for a fair comparison. Therefore, vcons is derived by the d obtained from

high-brightness stimuli. Specifically, the fitdist() function was used to fit these values, and

consequently, the mean value dm can be obtained. Therefore, vcons can be expressed as

follows:

vcons = fh(d̂m) (6.13)

To ensure a fair comparison, vcons is not merely equivalent to vm, but rather obtained

through the above formula. Besides, the two comparison methods also employ the sliding

window, the same as the proposed method.

6.3 Results

6.3.1 Offline Experiment Analysis

Fig. 6.5(a) displays the feature distribution of high- and low-brightness visual stimuli for

the fifth subject. The x- and y-axes represent the PSD value and correlation coefficients,

respectively. The scatter plots reveal distinct feature distributions for the two kinds of stim-

uli. Specifically, high-brightness stimuli generally exhibit higher PSD values and correlation

coefficients. Fig. 6.5(b) presents the classification accuracy of high- and low-brightness stim-

uli. The graph displays the accuracy for each subject, along with the average value (i.e.,

69.1%). Notably, the classification accuracy for each subject is within an acceptable range

in the offline experiment.
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Figure 6.5: (a) Feature distribution of high- and low- brightness stimuli, and (b) brightness
classification accuracy of each subject.
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Figure 6.6: The Euclidean distance between the robotic arms’ positions projected by the
cursor’s movements and its actual arrival positions in single-target reaching tasks. The
scatter points refer to the Euclidean distances provided by different subjects.
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6.3.2 Single-target Reaching Task Performance Evaluation

Fig. 6.6 showed the Euclidean distance between the robotic arm’s positions projected by

the cursor and its actual arrival positions using the high-brightness of the three methods.

The scatters indicated the average distance across tasks for each subject. The Euclidean

distance can also be interpreted as the tracking error of the robotic arm in following the

cursor’s movements. The numeric values were within an acceptable range, i.e., [0.044 0.10]

for the proposed method, [0.050 0.22] for DAV control, and [0.063 0.36] for DV control.

It indicated that the robotic arm largely followed the cursor’s movements. Additionally,

Fig. 6.6 demonstrates that the proposed method resulted in improved accuracy of the robotic

arm in following the projected positions for most subjects. The average Euclidean distances

across subjects were 0.067, 0.088, and 0.13 for the three methods, respectively.

Before the experiment, subjects were informed that when the cursor is far away from the tar-

get, they should concentrate on the high-brightness stimulus to accelerate the cursor/robotic

arm. Therefore, it helps decrease the reaching time. When the cursor is close to the target,

the user should focus on a low-brightness stimulus to initiate cursor/robotic arm decelera-

tion. This ensures that the cursor gets closer to the target center or does not deviate too

much from its intended position. Consequently, the shorter distance between the center of

the target position and the center of the cursor’s final position validates the efficiency of

the deceleration process.

Fig. 6.7 shows the cursor and robotic arm movements in a single-target reaching task per-

formed by subject 8 using the three methods. Each circle represents a movement of the

cursor/robotic arm. The interval between two circles represents the distance covered by two

consecutive movements. Therefore, the density distribution of the dots also reflects velocity

changes. Fig. 6.7(b) illustrates the actual position of the robotic arm, which was obtained

through the robot sensor feedback. Fig. 6.8(a) showed the brain-actuated speeds of the

three control methods. For the DAV and DV control, the constant value was determined

by (6.13). The proposed method enabled the cursor to accelerate when it was distant from

the target. When the cursor was tuning, there were a few speed reduction steps. However,

users can achieve acceleration again by focusing on high-brightness stimuli. Fig. 6.8(b) and
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Figure 6.7: (a) Cursor and (b) robotic arm movements generated by the proposed method
and two compared methods (i.e., DV and DAV) in a single-target reaching task. Each circle
represents a movement. The red cross refers to the target. The interval between two circles
represents the distance covered by two consecutive movements.
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Figure 6.8: (a) The brain-actuated speeds, (b) the horizontal velocity, and (c) the vertical
velocity generated by the proposed method, DAV control, and DV control in a single-target
reaching task.
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Figure 6.9: Robotic arm movements in a single-target reaching task generated by the pro-
posed method. The green circle represents the center of the robotic arm, and the red cross
denotes the center of the target.
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(b) Distance comparison in single-target tasks

Figure 6.10: Performance comparison in single-target reaching tasks. The (a) average
reaching time and (b) average distance were compared between the three methods. The
distance was calculated between the centers of the target and the last cursor. The error bars
are the standard error of the mean (SEM). The asterisks indicate a significant difference
between the three methods obtained by one-way repeated-measures ANOVA (∗: p<0.05,
∗∗: p<0.01, ∗ ∗ ∗: p<0.001, ∗ ∗ ∗∗: p<0.0001).
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Figure 6.11: The (a) average rate of successful deceleration across tasks and (b) the average
number of failures across subjects with different control methods. The SEM was shown as
error envelopes.

Fig. 6.8(c) show the vertical and horizontal velocity comparisons. The proposed method

(blue line) controlled the cursor to initially move downward, leading to higher vertical ve-

locities. As it turned to the horizontal, the velocity in this direction also exceeded that

of other methods. Finally, it achieved deceleration in the last few moments. Overall, this

method exhibited a shorter reaching time compared to other methods. Fig. 6.9 showed the

robotic arm’s actual movements in the proposed method.

The reaching time of the three methods with various subjects were shown in Fig. 6.10(a).

The values were averaged across tasks. It illustrated that the proposed method consistently

achieved the shortest time for each subject. The reaching time of the proposed method

improved that of DAV control by 0.56 s-7.25 s and DV control by 3.05 s-8.76 s. The aver-

age reaching time across subjects of the three methods was 23.37 s, 27.75 s, and 29.72 s,

respectively. A one-way repeated-measures ANOVA was conducted to explore the similar-

ity of reaching time across methods. The statistical results revealed significant differences

in reaching time among the methods for most subjects. Additionally, Fig. 6.10(b) illus-

trated the distance between the centers of the target and the last cursor position for the

three methods. The results indicated that the cursor controlled by the proposed method

demonstrated greater proximity to the target across tasks. For example, the distance of the

proposed method increased DAV control by 4.84 to 13.10 pixels and DV control by 4.96 to

14.91 pixels. The results of the statistical analysis indicated significant differences among
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Table 6.1: Cursor’s average distance of the last four positions in single-target reaching tasks

Subject index
Cursor’s average distance across tasks (pixels)

DV control DAV control The proposed method

Subject 1 22.10 22.42 15.52

Subject 2 18.55 20.48 15.95

Subject 3 17.46 19.30 15.77

Subject 4 16.80 19.40 16.36

Subject 5 18.78 21.79 16.72

Subject 6 20.16 20.48 16.36

Subject 7 19.53 19.50 16.33

Subject 8 16.37 16.10 14.42

Subject 9 18.91 19.28 16.93

Subject 10 18.39 16.96 14.33

Average 18.70 19.57 15.87

the methods for each subject. The difference is particularly pronounced for subject 1 and

subject 5, with a highly significant p-value (P<0.0001).

The rate of successful deceleration from the proposed method was shown in Fig. 6.11(a). It

was calculated based on whether its speeds in the last four steps were lower than those in the

DV/DAV methods. The values were averaged across tasks. The results revealed that as the

cursor/robotic arm approached the target, most subjects completed successful decelerations.

For example, subjects 1, 2, and 8 achieved success rates of 100%, 93.75%, and 90.62%,

respectively. The average rate across subjects was 87.5%. It further demonstrated the

efficacy of stimulus brightness-based velocity control. TABLE.6.1 and TABLE. 6.2 displayed

the cursor’s and robotic arm’s average distances across tasks for the last four positions. The

cursor’s average distances across subjects of the proposed method, DAV control, and DV

control method were 15.87, 19.57, and 18.70 pixels, respectively. Meanwhile, the average

distances across subjects of the three methods provided by the robotic arm were 1.670,

2.163, and 2.552 cm, respectively. The compared methods achieved similar performance,

while the proposed method generally provided the shortest distances. The results indicated

that when utilizing the proposed method, the cursor and robotic arm tended to get closer

or avoid excessive misses in the last four steps. The number of failures before the subject

successfully conducted each task was counted in Fig. 6.11(b). The values were summed
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Table 6.2: Robotic arm’s average distance of the last four positions in single-target reaching
tasks

Subject index
Robotic arm’s average distance across tasks (cm)

DV control DAV control The proposed method

Subject 1 2.277 2.726 1.960

Subject 2 1.701 2.279 1.914

Subject 3 2.175 2.079 1.501

Subject 4 5.641 1.982 1.520

Subject 5 2.217 1.729 1.639

Subject 6 2.293 2.111 1.549

Subject 7 2.193 1.749 1.608

Subject 8 2.039 1.696 1.472

Subject 9 1.920 1.960 1.488

Subject 10 3.064 3.317 2.048

Average 2.552 2.163 1.670

across tasks and averaged across subjects. The results demonstrated that the proposed

method exhibits fewer failures, primarily due to its velocity control, which allows it to reach

the target within a limited time.

6.3.3 Multi-target Reaching Task Performance Evaluation

Fig. 6.12 shows the Euclidean distance between the projected positions of the robotic arm

based on cursor movements and its actual arrival positions for the three methods. It can

represent the cumulative tracking error when the robotic arm moves with the cursor. The

error ranges exhibited by different subjects are [0.11 0.35] for the proposed method, [0.25

0.60] for the DAV control, and [0.26 0.59] for the DV control, respectively. The proposed

method provides relatively small tracking errors for most subjects. It can be attributed

to the fact that the velocity direction of the robotic arm does not change suddenly like in

DV control, resulting in a smoother trajectory. Besides, it provides a shorter tracking time

compared to DAV control.

Fig. 6.13 shows the cursor and robotic arm movements generated by the three methods in a

multi-target reaching task of subject 6. Three targets were generated randomly. The targets

remain consistent across different methods for fair comparisons. Fig. 6.14(a) displayed the

brain-actuated speeds of the methods. DAV and DV methods controlled the cursor or
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Figure 6.12: The Euclidean distance between the robotic arms’ positions projected by the
cursor’s movements and its actual arrival positions in multi-target reaching tasks. The
scatter points refer to the Euclidean distances provided by different subjects.

robotic arm with a constant speed regardless of distance from the target. The speed of the

proposed method was subject-driven and relied on distance. For example, since the first

target was near the cursor’s origin, the cursor accelerated briefly and then approached the

target at a slower speed. The speeds of the last four steps were marked in red. The third

target was far away from the second target, so the cursor experienced a long acceleration

period and then decelerated as it approached the target. The reaching time of the proposed

method (74.82 s) was shorter than others, i.e., DAV control: 88.71 s; DV control: 99.45

s. Fig. 6.14(b) and Fig. 6.14(c) showed the horizontal and vertical velocities, which offer a

more comprehensive view of velocity changes for each method.

The reaching time comparisons of multi-target reaching tasks among these methods were

shown in TABLE. 6.3. The proposed method consistently achieved the shortest reaching

time. For each multi-target trial, three single tasks were included. To further evaluate

its performance, Fig. 6.15 presented the reaching time and distance comparisons for each

single task. The values were averaged across tasks. The results show that the proposed

method provided the shortest reaching time and distance compared with other methods.

The average reaching time across different subjects of the three methods were 28.34 s, 35.81

s, and 47.07 s, respectively. In addition, the average distances between the final position

of the cursor and the target were 16.78, 21.64, and 23.60 pixels for the three methods,
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Figure 6.13: (a) Cursor and (b) robotic arm movements generated by the proposed method,
DAV control, and DV control in a multi-target reaching task. Each circle represents a
movement. Three targets are represented as crosses in different colors. The interval between
two circles represents the distance covered by two consecutive movements.
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Figure 6.14: (a) The brain-actuated speeds (b) the horizontal velocity, and (c) the vertical
velocity generated by the proposed method, DAV control, and DV control in a multi-target
reaching task. The red short lines in (a) refer to the speed of the last four steps for each
target.
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Table 6.3: Average reaching time of three methods in multi-target reaching tasks

Subject index
Average reaching time across trials (s)

DV control DAV control The proposed method

Subject 1 143.34 81.69 76.93

Subject 2 148.33 110.98 92.17

Subject 3 160.49 104.78 82.85

Subject 4 150.80 111.42 87.08

Subject 5 159.27 124.75 90.28

Subject 6 102.94 126.07 80.65

Subject 7 135.90 91.68 78.53

Subject 8 149.32 121.92 104.61

Subject 9 135.78 115.29 86.20

Subject 10 128.51 88.35 73.35

Average 141.47 107.70 85.27

respectively. To investigate the similarity of the average reaching time and distance across

different methods, a one-way repeated-measures ANOVA was conducted. The statistical

analysis revealed significant differences in both performance indicators among these methods

for most subjects.

The cursor’s and robotic arm’s average distances across tasks for the last four positions were

given in the TABLE.6.4 and TABLE.6.5. The results indicated that the proposed method

generally achieved the shortest distance for both the cursor and the robotic arm. Specifically,

the cursor’s average distances across subjects of DV, DAV, and the proposed method were

19.20, 17.95, and 16.62 pixels, respectively. Meanwhile, the robotic arm’s average distances

across subjects were 3.484, 3.450, and 2.740 cm, respectively. The outcomes demonstrated

that the proposed method achieves a higher degree of precision in reaching the target

position.

The average success rate of deceleration across tasks was shown in Fig. 6.16(a). Most

subjects achieved a high rate of successful deceleration. The average rate across subjects

was 76.39%. The numbers of failed trials of the three methods were shown in Fig. 6.16(b).

The figure indicated that subjects encountered fewer failures when utilizing the proposed

method to control the cursor/robotic arm.
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Figure 6.15: Performance comparison in multi-target reaching tasks. The (a) average reach-
ing time and (b) average distance were compared between the three methods. The distance
was calculated between the centers of the target and the last cursor position. The error bars
represent SEM. The asterisks indicate a significant difference between the three methods
obtained by one-way repeated-measures ANOVA (∗: p<0.05, ∗∗: p<0.01, ∗ ∗ ∗: p<0.001).
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Table 6.4: Cursor’s average distance of the last four positions in multi-target reaching tasks

Subject index
Cursor’s average distance across tasks (pixels)

DV control DAV control The proposed method

Subject 1 19.71 17.04 18.64

Subject 2 20.15 17.63 16.13

Subject 3 20.17 19.20 16.15

Subject 4 19.64 16.78 15.62

Subject 5 18.31 17.80 16.48

Subject 6 18.38 19.36 16.86

Subject 7 20.19 17.32 16.57

Subject 8 18.07 16.20 18.25

Subject 9 18.42 20.05 16.47

Subject 10 18.91 18.15 14.98

Average 19.20 17.95 16.62

6.4 Discussion

6.4.1 Model’s Performance

Currently, most brain-controlled robotic platforms use discrete movement commands and

constant velocity [144]. Studies involving velocity modulation explored the effects of factors,

such as attention, distance, and frequency [164,232,234]. Differently, this study focused on

stimulus brightness-based velocity modulation. The proposed method was used to control

the cursor and robotic arm simultaneously to track the randomly generated target. The

velocities in Fig. 6.8 and Fig. 6.14 both depicted that the proposed method achieved ac-

celeration as the cursor was far away from the target and deceleration when their distance

was small. The acceleration process helped reach the target more quickly. For example, the

reaching time of the proposed method, DAV control, and DV control were 74.82 s, 88.71

s, and 99.45 s in Fig. 6.14. The deceleration process assisted the robotic arm in getting

closer to the target or decreasing overshooting. For instance, the DV method exhibited

a shorter distance (21.84 versus 24.10 pixels) between the cursor and the target when it

initially entered the third hit area (i.e., the red circle) in Fig. 6.13. However, the cursor

controlled by the DV method gradually moved away from the target due to the fixed speed,

increasing the distance over time (22.90 versus 17.65 pixels).
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Table 6.5: Robotic arm’s average distance of the last four positions in multi-target reaching
tasks

Subject index
Robotic arm’s average distance across tasks (cm)

DV control DAV control The proposed method

Subject 1 1.967 4.187 2.966

Subject 2 1.957 3.897 4.544

Subject 3 3.392 3.820 3.080

Subject 4 3.116 2.277 2.189

Subject 5 4.442 4.516 2.198

Subject 6 2.157 2.460 2.581

Subject 7 4.999 2.285 1.479

Subject 8 3.220 2.674 2.263

Subject 9 4.396 5.698 3.486

Subject 10 5.190 2.691 2.608

Average 3.484 3.450 2.740

In the single-target task, the cursor’s maximum distance to the target is 840 pixels. The

slowest DV method would reach this position in about 32 s if there were no misclassifications.

However, considering the occurrence of misclassifications, the task duration is set to 40 s

to allow for extra correction time. For each multi-target reaching task, there are three

single-reaching tasks. The first task is the same as the single-target reaching task, while in

the other two tasks, the cursor starts away from the center, doubling the furthest distance.

Consequently, the total duration for the multi-target reaching task is calculated to be 200

s.

6.4.2 Velocity Modulation Design

As described in (6.11), the velocity determination in the proposed method considered previ-

ous moment information when the classification result changed. The reasons are as follows.

Firstly, occasional changes in velocity direction may be misclassified for various reasons,

such as user fatigue and background noise. The proposed method preserved a part of the

speed in the previous direction and then combined it with the speed in the new direction

to determine the final movement of the cursor/robotic arm. If the classification was wrong,

the proposed method can move toward the target while adjusting for the error. If the same

direction was obtained again, it was considered the subject’s intentional behavior, and the
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Figure 6.16: The (a) average success rate of deceleration across tasks and (b) average
number of failures across various subjects with different control methods. The SEM was
shown as error envelopes.

previous velocity would be overwritten without keeping the previous information. The DV

method lengthens the experiment time since it is limited to adjusting erroneous directions

individually and cannot simultaneously move toward the target. Secondly, discrete changes

in direction have adverse effects on practical implementation. The robotic arm will expe-

rience mechanical stress and exhibit jerky movements. As shown in Fig. 6.6 and Fig. 6.12,

the DV control method produced a larger tracking error in two kinds of reaching tasks

with average values across subjects of 0.13 and 0.39. In comparison, the proposed method

achieved lower tracking errors with average values of 0.067 and 0.23. Rapid, discrete di-

rection changes cause discomfort when users conduct reaching tasks assisted by the robotic

arm, especially for individuals with mobility limitations or during rehabilitation exercises.

The proposed method allows smooth movements of the robotic arm.

Compared to the DAV method, the proposed stimulus brightness-based velocity modulation

saves time in reaching tasks. The protocol also reflects the subjects’ practical behaviors.

While observing a distant object, individuals tend to increase their speed, whereas when

nearing the object, they tend to slow down. It can also improve subjects’ motivation

and participation in conducting various activities, such as assistance and rehabilitation.

Intentional participation is important to enhance brain plasticity, thereby increasing the

chances of motor recovery [231].

In this study, a third-order polynomial was used to fit the speed function. The curve
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demonstrates an S-shaped behavior as the posterior probability difference changes. It is

characterized by an initial increase, followed by a smooth transitional stage, and finally

an increase. This indicates that the model outputs at higher speeds when the probability

of the SSVEP signal being excited by a high-brightness stimulus significantly exceeds that

of a low-brightness stimulus. Otherwise, the model outputs at a slower speed. As the

probability difference approaches the training threshold, it becomes challenging to determine

the signal evoked by which brightness stimulus. To address this uncertainty, a middle

speed should be assigned, corresponding to a third-order polynomial that features a smooth

transitional stage in the middle. Meanwhile, this setting aligns with practical scenarios.

In Fig. 6.5(b), the average brightness classification accuracy was 69.1% across subjects.

Therefore, assigning speeds around the median aims to strike a balance in cases where the

model’s uncertainty arises due to the proximity of probabilities to the threshold.

6.4.3 Feature Extraction

In this study, the correlation coefficient and PSD value were integrated into the feature

vector. The correlation coefficient was provided by the CCA recognition method. One

reason for choosing CCA is due to its simple implementation and low computational com-

plexity [69]. Additionally, it offered sufficient features to train probability density functions

and fine-tune hyperparameters in the offline experiment via the sliding window. It also

showed satisfactory performance in the offline experiment’s four-class problem. The aver-

age recognition accuracy across subjects is 90.5%. Thus, it can be a valid choice for the

online experiment.

6.5 Conclusion

In this study, a stimulus brightness-based velocity modulation method was proposed for

robotic arm control in the SSVEP-based BCI system. The flickers with different frequen-

cies and brightnesses were employed to achieve velocity modulation. The feature vector

was constructed from the correlation coefficient and PSD. The GMM model and Bayesian

inference were then used to calculate the posterior probabilities that the signal came from a
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high- and low-brightness flicker. The speed function was designed using the posterior prob-

ability difference, and the velocity from the previous moment was incorporated to derive

the final direction and speed. For performance comparison, two velocity control methods

were included. The effectiveness and feasibility of the proposed method were demonstrated

via online experiments involving single- and multi-target reaching tasks.
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Chapter 7

Conclusion and Future Work

This chapter summarises the research works and contributions of this thesis. Besides, the

limitations of this work and potential future development in the SSVEP-based BCI are also

included.

7.1 Conclusion

This thesis commences with an introductory chapter that offers readers an overview of the

research’s significance of the SSVEP-based BCI and provides an outline of the subsequent

chapters. To better understand the development of the SSVEP-based BCI, studies about

SSVEP signal pre-processing methods, recognition methods, classification confidence anal-

ysis, transfer learning methods, and SSVEP-based BCI-controlled robots are reviewed in

Chapter 2. Following the objectives mentioned in Chapter 1, this thesis presented outcomes

in the SSVEP-based BCI, mainly focusing on the improvement of recognition accuracy and

reliability, the building of an effective cross-subject transfer learning scheme, and the ve-

locity modulation method in the robotic arm control. Technical achievements of this thesis

can be concluded as follows:

1. Multi-objective optimisation-based high-pass spatial filtering method for improving

the SSVEP detection accuracy: Recognition accuracy is a critical aspect of SSVEP-

based BCI systems. Higher accuracy means more precise control of external devices
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through the BCI. It can enhance the user experience and system efficiency. To this end,

Chapter 3 proposed a multi-objective optimisation-based high-pass spatial filtering

method for SSVEP recognition performance enhancement. Specifically, the derivation

of the filter involved maximizing the correlation between the training signal and the

individual template corresponding to the same target, while minimizing the correlation

between signals from other targets and the template. Furthermore, a constraint was

introduced requiring the sum of spatial filter elements to be zero. This setup allows

high spatial-frequency SSVEP signals to pass through while attenuating low spatial-

frequency signals. Consequently, the proposed approach demonstrated the potential

to extract features relevant to the target, reject irrelevant information, and mitigate

the effects of volume conduction simultaneously.

2. Bayesian-based classification confidence estimation method to enhance recognition re-

liability: By analyzing the classification confidence of SSVEP signals, the BCI system

can avoid making incorrect decisions when the confidence level is low. This leads to a

significant reduction in errors, which is critical for improving the reliability of the BCI

and ensuring the safety of the subject. Chapter 4 proposed a Bayesian-based classi-

fication confidence estimation method to solve this issue. In this study, the feature

vector was defined based on the differences between the largest correlation coefficient

and other values. The probability density functions of feature vectors for correct and

wrong classifications were estimated using the GMM model. During the test process,

Bayesian inference was applied to calculate the posterior probabilities of accurate and

wrong recognition using the newly obtained feature vector. The CCValue, represent-

ing the difference between these two probabilities, served as a measure of classification

confidence. The decision-making process utilized the CCValue to determine whether

to accept trustworthy results or reject uncertain ones. By rejecting uncertain results,

the proposed method may enhance the safety of various practical applications, such

as assistive and rehabilitative devices.

3. Cross-subject transfer learning for boosting recognition performance of the target

subject: One of the major limitations of SSVEP-based BCI systems is the long cali-
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bration time required. It necessitates collecting a substantial volume of training data

to train the system’s parameters for each individual user. Direct data transfer between

users is not possible due to the presence of non-stationarity. Chapter 5 proposed a

cross-subject scheme to transfer SSVEP knowledge from source subjects to effectively

strengthen the recognition performance for the target subject. Under this scheme,

an informative multidimensional feature vector is created partly by the transferred

spatial filter and the transferred SSVEP template from the source subject, and partly

by the spatial filter of the target subject through multiple covariance maximization.

Additionally, a contribution score is incorporated for each source subject, based on the

distance between the source subject and the target subject. This study helps reduce

the calibration time required for each individual user. It can also lead to improved

recognition performance of the target subject by transferring SSVEP data from the

source subject. These advancements have the potential to enhance the efficiency and

practicality of the BCI system, as well as user adaptability.

4. SSVEP-based brain-computer interface controlled robotic platform with velocity mod-

ulation: Robotic systems with velocity control play a pivotal role in SSVEP-based

BCIs by facilitating more accurate and natural interactions with the environment.

This is particularly important in tasks that require delicate and precise movements.

Meanwhile, it allows the robotic system to adjust its movement speed according to

the user’s intention, making the interaction more intuitive and personalized. Chap-

ter 6 introduced a velocity modulation method for controlling the robotic arm in the

SSVEP-based BCI. In this chapter, a stimulation interface was created, comprising

flickers, a target, and a cursor workspace, enabling synchronized movement of the cur-

sor and robotic arm. This design eliminates the need for subjects to shift their gaze

between the stimulus and the robot, thus enhancing the user experience. A stimu-

lus brightness-based velocity modulation model was constructed using the correlation

coefficient and power spectral density. Additionally, a speed function was devised, uti-

lizing the difference in posterior probabilities between high- and low-brightness flickers.

The velocity determination incorporates historical velocity data to avoid occasional
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misclassification, ensuring smoother and more reliable robotic movement control.

7.2 Future Work

7.2.1 Hybrid BCIs

One key characteristic of SSVEP-based BCI is the requirement of constant attention to the

light source, which may be challenging and bothersome for people. A promising approach

to address this issue is through Hybrid BCIs, which enhance the quality of BCI systems

by combining two or more BCI paradigms [239]. To be specific, in hybrid paradigms, the

number of control commands can be increased through simultaneous decoding of multiple

brain activities [240]. For example, in a Tetris game study conducted by Wang et al. [241],

the rotating command requires a continuous gaze of visual stimulus to evoke SSVEP signals.

Meanwhile, motor imagery (MI) is employed to generate two control commands, enabling

the movement of bricks towards the left and right. This multi-modal approach effectively

mitigates the discomfort associated with prolonged gazing stimuli. Additionally, hybrid

BCIs have the potential to enhance the accuracy of system classification. For instance, Wang

et al. [242] designed a novel hybrid paradigm (shape-changing and flickering-hybrid) based

on P300 and SSVEP, which demonstrated improved performance for certain subjects. The

research on hybrid BCIs has been increasing in recent years, but there is a need for further

commercialization of portable, wearable, and low-cost products suitable for public use [240].

Additionally, many SSVEP-based hybrid systems currently utilize the standard CCA as

the target detection method [241–243]. However, higher performance can be achieved by

incorporating advanced signal analysis methods, as illustrated in Section 2.2.

7.2.2 Amplitude Modulation

In general, SSVEP-based BCI systems primarily emphasize frequency and phase features,

but several studies have specifically explored amplitude modulation [244]. Sharma et

al. [245] proposed a setup that utilizes amplitude modulation of SSVEP through eye accom-

modation, enabling the generation of multiple commands from a single flickering stimulus.

Autthasan et al. [236] pointed out that the SSVEP amplitude changes as a function of
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stimulus luminance contrast and then proposed an integrated architecture to predict the

frequency and contrast-related amplitude modulations of the SSVEP signal simultaneously.

Moreover, attention generally enhances rhythmic brain responses at the frequency of the

stimulus. For example, Gulbinaite et al. [246] explored the effect of attention on the am-

plitude of SSVEPs in a wide range of temporal frequencies (3-80 Hz). The research results

showed that such influence is frequency-dependent, namely different flicker frequency bands

like theta, gamma, and alpha have various relationships with amplitudes. Considering the

eye fatigue problem, Chang et al. [244] introduced an amplitude-modulated visual stimu-

lation that combines the benefits of both low-frequency SSVEPs, such as high amplitude

and low BCI illiteracy, and high-frequency SSVEPs, such as reduced eye fatigue and a

lower risk of epileptic seizures. Despite achieving good performance in research settings,

these approaches are seldom incorporated into practical scenarios. However, considering

amplitude as a crucial feature of SSVEP signals, it has the potential to enhance the precise

speed control of robots. The reduced eye fatigue and increased control options provided

by amplitude modulation contribute to a more pleasant and comfortable user experience,

making the SSVEP-based BCI system more practical and user-friendly.

7.2.3 Neural Plasticity

Patients with impaired motor function resulting from neuronal injuries require proper reha-

bilitation. Successful rehabilitation is often accompanied by neuronal reorganization, known

as neural plasticity, which refers to the brain’s inherent ability to reorganize its function and

structure in response to training experiences [247]. For instance, several studies [154, 224]

have demonstrated that BCI-based rehabilitation has a positive effect on post-stroke hand

recovery, which is often attributed to the promotion of neural plasticity. The attentive

participation of patients [248] stands as another crucial factor influencing rehabilitation

programs. Many studies have highlighted the critical role of attention as a modulator of

plasticity [249]. They emphasize that sustaining attention during motor exercises enhances

neural plasticity and motor learning, directly influencing the overall outcome of patient re-

habilitation [250]. In Chapter 6, a user-driven velocity modulation method based on SSVEP

was introduced for controlling the robotic arm. By directing their attention to either high-
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brightness or low-brightness stimuli, the user can adjust the speed of the robotic arm. Com-

pared to conventional fixed-speed control methods in the SSVEP paradigm, this method

provides users with higher levels of autonomy and engagement. This more comprehensive

user-driven method may be conducive to neural plasticity. Therefore, future research should

focus on integrating both the user’s attention and intention into the SSVEP-based BCI to

facilitate improved rehabilitation outcomes.
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