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Abstract 
This thesis contributes identification of volatile organic compounds (VOCs) released via 

metabolic mechanisms involved in disease and offers increased precision and accuracy in 

breath diagnostics. By quantifying VOC consumption and production in response to serum, 

glucose and oxygen starvation, more accurate identification of specific VOC signatures is 

made possible. 
  

Chapter 1 explores previously published VOC research and identifies VOC chemical 

functional groups associated with disease. Chapter 2 applies novel methodology of VOC 

sampling over time in static head space chambers to establish VOC metabolic flux in a number 

of cell types and in the breath of mice. Chapter 3 develops the method from chapter 2 to study 

VOC response from breast cancer cells in low oxygen conditions. Chapter 4 develops the 

research of chapters 2 and 3 to link VOC fluctuations to cellular response to serum, glucose 

and oxygen starvation. 
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Thesis Introduction 
This thesis presents a collection of works focused on the development of a novel methodology 

for the detection and development of biomarkers of cellular processes and diseases – 

specifically analyzing volatile organic compounds and quantifying metabolic function in human 

cells, mainly of cancerous origin. On submission, chapters 1-3 are published, and chapter 4 

is prepared for submission, but is currently being held back awaiting the outcome of an 

ongoing human clinical trial. Due to chapters being presented as journal publications there is 

a degree of repetition – for example volatile organic compounds (VOCs) are defined 4 times. 

However, I open this introduction with a brief overview of our current understanding of VOCs 

in diagnostics, which are the main concern of the research. 

VOCs are small, carbon containing compounds which can exist as a gas at room temperature. 

They are of particular interest as they constitute odour, a powerful tool for diagnosis. 

Hippocrates, around 2000 years ago established the usefulness of disease-specific odours in 

his treatise on breath odour and disease identifying Fetor hepaticus, which are sulphur 

compounds, indicating poor liver function (Adams 1994). More recent diagnostic uses of smell 

include the sweet smell of acetone on the breath of diabetic patients, the ability of dogs to 

smell disease and many other examples (Di Francesco et al. 2005; Li and Duan 2015). These 

examples, which are the starting point for most reading around diagnosis by smell, formed the 

entry point for my research journey and presents the intent of the research: to discover VOC 

biomarkers of disease and develop diagnostic tools for improved early diagnosis of disease. 

While humans may recoil at the smell of rotting flesh or salivate from the smell of sweet 

cinnamon buns, our technological application of smell to describe complex processes, such 

as disease, on the whole, remains undeveloped.   

Any fluctuations, or flux, in VOCs driven by organic processes can be said to reflect 

‘metabolism’, whereby VOCs are consumed and produced because of active cellular 

mechanisms. VOCs make up the gaseous part of the metabolome and their study offers 

powerful diagnostic potential. An understanding of metabolomics is therefore required within 

the context of the disease pathology and frames the presented thesis.  

Breath has been the main target for most of the research concerned with VOC diagnosis. The 

lungs are optimised for gas transfer in and out of the blood stream and so analysing the gases 

in breath provides information about metabolic processes occurring throughout the body. The 

human body is a very complex system, and of the large body of research so far conducted 

into breath VOCs the majority focuses on the detection of VOCs produced in large quantities 

rather than the many hundreds and thousands of VOCs actually found (Issitt et al. 2022b). 

The focus of my presented research is an exploration into less studied, or concentrated 
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compounds, inclusive of understanding and quantifying background, to accelerate the 

discovery of markers of metabolic processes involved in cell stress for early diagnosis of 

disease.  

On day one of my PhD research, the question of which VOCs to investigate was raised. There 

are two main approaches for investigating VOCs when using gas chromatography mass 

spectrometry (GC/MS). The targeted approach, where you pick a ‘suite’ of specific molecules 

(VOCs) to investigate (optimising sensitivity and accuracy) or the non-targeted approach, 

where you look for everything within a size range (reduced sensitivity but you don’t miss 

anything). My starting point was, as with most laboratory investigations, an extension of the 

resources and methodologies the lab has been working with and specialising in. Here, I started 

with halogenated compounds (compounds containing chlorine, iodine and bromine), some 

sulphur containing compounds and isoprene. Many of these are useful and powerful individual 

markers, however the ‘suite’ of VOCs with which we initially focussed, changed and evolved 

in the progress of the research. In chapter 1 I describe how we explored and drove a significant 

expansion of the suite of VOCs as research targets, particularly through an increase in the 

range of VOC functional groups, and which thereby informed the research methods and 

targets described in chapter 4 and the ongoing human study. Similarly, the work described in 

chapters 2 and 3 identifies VOCs that change or do not change under stress and thereby 

establish their utility as biomarkers – thus more accurately focussing the research of chapter 

4 and further studies going forward. 

The key method that we used to identify VOCs and their relative levels was to establish VOC 

changes by sampling the air above cells in a static headspace chamber, at multiple time 

points, via pre-evacuated electropolished stainless steel canisters. The samples were 

condensed using a liquid nitrogen trap and then loaded into a gas chromatograph mass 

spectrometer (GC/MS) to analyse gas constituents. Readings were taken at two time points 

allowing changes in VOCs to be measured.  

The results presented in this thesis used GC/MS to quantify VOC metabolisms driven by cell 

stress types specific to diseases, which are represented in human breath, with the ultimate 

aim of providing more effective clinical diagnostic tools. The targets for the thesis, which are 

met in each chapter, are as follows: 

1. To examine volatile biomarkers present in human breath, developing 

recommendations for VOC targets and research frameworks.  
2. To test methodology of volatile metabolic flux in cellular and animal models. 
3. To apply novel methods of volatile analysis to models of cellular stress. 
4. To identify novel, volatile mechanistic pathways which are translatable to breath. 
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Chapter 1 of this thesis, as a meta-analysis and systematic review, provides context of the 

wider published research and recommends VOCs for targeted research in cellular or breath 

studies. Aim 1 is achieved in chapter 1: Volatile compounds in human breath: critical review 

and metanalysis, published in the Journal of Breath Research 2022 (Issitt et al. 2022a). 

Aim 2 is concerned with the development and application of methods that investigate VOC 

flux, allowing comparisons of different cell types and the breath of mice. This is achieved in 

chapter 2: Sampling and analysis of low-molecular-weight volatile metabolites in cellular 

headspace and mice breath, published in Metabolites, 2022 (Issitt et al. 2022b) 

Aim 3 applies the methods described in chapter 2 to a challenging environment of pathological 

relevance, hypoxia. Hypoxia is the state of low oxygen, experienced by cells in a range of 

disease but of note, in growing tumours. Hypoxia is a challenge to study because it requires 

controlled gaseous conditions and therefore investigating VOC flux of cells experiencing 

hypoxia is novel. This aim is achieved in chapter 3: GC/MS analysis of hypoxic volatile 

metabolic markers in the MDA-MB-231 cell line, published in Frontiers in Molecular 

Bioscience, 2023 (Issitt et al. 2023). 

Aim 4 of the thesis is in part an accumulation of, and expansion from, all previous work and 

draws upon observations of VOC flux to inform mechanistic studies in cells under stress, to 

discover mechanisms of VOC consumption and production. This is achieved in chapter 4: 

Cellular response to starvation provides biomarkers for breast cancer through volatile 

metabolites of methylation and methionine metabolism. 

At the inception of this work, which identified the above points, several other avenues were 

also explored which did not enter into this thesis but have developed into separate grant 

applications or masters theses. Of note, this included the study of volatile profiles of glial cells 

from rat brains, which, while being studied, revealed extensive changes as they aged. This 

was then investigated in other cells and over the course of the PhD and with several masters 

students a method was tested, much like the method presented in chapters 2-4, for the 

investigation of drosophila fruit flies pertaining to aging and neurodegenerative disease. 

Further studies using these methods which have been developed in this thesis have been 

applied to human cells derived from acute myeloid leukaemia and with animal models of 

parasite infection, with much success. This highlights how the thesis has changed and grown 

over four years, testing avenues of interesting research which link to metabolic pathology and 

our method. 

The development of the presented work has been aided by a number of reviewers who have 

helped sculpt and drive the design of the finished manuscripts. For example, the section 

‘application to COVID-19’ in chapter 1 was driven by reviewers’ comments about the 
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applicability to the COVID-19 pandemic in which this manuscript was submitted. This has 

helped keep the work current and looking forwards to progress understanding. 

The following works will continue beyond the presented thesis and, with any luck, we shall see 

application of this research in clinics and beyond in the future. 
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Summary of chapters 
 

Research aims 

My PhD project has focused mainly on exploring cellular volatile response to stress. I 

developed a method for investigating volatile flux of cells in culture and in the breath of mice 

with the aim of volatile biomarker discovery for early diagnosis of disease. To this end, I chose 

to model cellular starvation as a model of the tumour microenvironment to describe volatile 

metabolisms which may translate to the breath of patients.  

 

Chapter 1: Volatile compounds in human breath: critical review and meta-analysis 

In this chapter I aimed to cover the background of VOC research in disease, with a focus on 

VOC biomarkers of cancer, to set up for the research in the following chapters. I also spend 

some time considering methodological variations, patient and environmental factors which can 

generate conflicting and confounding information. During the process of researching the field, 

I noticed similarities in reported compounds for cancer, mainly in their chemical class. From 

this, I took all the reported molecules observed in the breath of cancer patients and compare 

it to the breath of patients with varying pathologies. This resulted in successful separation and 

classification of cancer from other diseases based on the functional group of the VOCs being 

reported. This then informed a research framework recommendation, which includes 

compounds from varying chemical functional groups to maximise diagnostic potential. In 

essence, this underpinned the subsequent research approaches, refining my biomarker 

discover approaches to consider diagnostic applications and translatability. 

 

Chapter 2: Sampling and analysis of low molecular weight volatile metabolites in 
cellular headspace and mouse breath 

This chapter tests our methodology of static headspace analysis with two time points to 

determine volatile flux. This is performed for a range of cancerous cell types against 

appropriate non-cancerous cell controls. I demonstrate in this chapter that the method can 

distinguish cell type by the volatile flux of 12 select compounds. Further to this, I test the 

volatile response of those 12 compounds from cells treated with chemotherapeutic agent 

Doxorubicin and show clear response in the volatile flux. The method is shown to be effective 

for identification of volatile flux in the breath and faecal matter in immunocompromised mice. 
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Chapter 3: GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 
breast cancer cell line 

In this chapter we apply our static headspace technique to cells in hypoxic conditions. I set 

out on this project thinking it would be simple, however maintaining low oxygen conditions is 

a challenge and required a redesign of the static headspace chamber. Here, I flush the 

chambers with 1% oxygen, carbon dioxide and nitrogen. This provided a challenge as 

measuring volatile flux requires volatiles of interest to be present at the first time point if active 

metabolic consumption is to be observed. Thusly, I was also able to demonstrate volatile flux 

in the cancer MDA-MB-231 cell using injected, known gases and able to demonstrate active 

metabolisms under low oxygen conditions.  

 

Chapter 4: Cellular response to starvation provides biomarkers for breast cancer 
through volatile metabolites linked to methylation and methionine metabolism 

In this chapter I demonstrate that volatile flux of cells in glucose, serum and oxygen starvation 

induce significant changes in volatile flux. From this I focus on methyl chloride, which has been 

a consistent biomarker throughout the previous two chapters. Consumption of methyl chloride 

by cells translates to the breath of tumour bearing mice. I establish rationale for mechanisms 

which may be responsible for the metabolisms in methyl chloride and show that production is 

link to cellular methylation activity and consumption is linked to methionine synthesis. The 

focus upon methyl chloride is driven partly because I observe lower levels in the breath of 

mice with tumours compared to control and that as tumour size increase, methyl chloride 

levels decrease.  
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Abstract  
Volatile compounds contained in human breath reflect the inner workings of the body. A large 

number of studies have been published that link individual components of breath to disease, 

but diagnostic applications remain limited, in part due to inconsistent and conflicting 

identification of breath biomarkers. New approaches are therefore required to identify effective 

biomarker targets. Here, volatile organic compounds have been identified in the literature from 

four metabolically and physiologically distinct diseases and grouped into chemical functional 

groups (e.g. – methylated hydrocarbons or aldehydes; based on known metabolic and 

enzymatic pathways) to support biomarker discovery and provide new insight on existing data. 

Using this functional grouping approach, principal component analysis doubled explanatory 

capacity from 19.1% to 38% relative to single individual compound approaches. Random 

forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This 

review and meta-analysis provides insight for future research design by identifying volatile 

functional groups associated with disease. By incorporating our understanding of the 

complexities of the human body, along with accounting for variability in methodological and 

analytical approaches, this work demonstrates that a suite of targeted, functional volatile 

biomarkers, rather than individual biomarker compounds, will improve accuracy and success 

in diagnostic research and application.  
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Introduction 
Human breath analysis offers a diagnostic tool that is non-invasive, rich in information, and 

low cost. Identification of the presence and abundance of gaseous biomarkers offers the 

potential for sensitive and accurate clinical diagnosis and long-term monitoring (Kwak and 

Preti 2011; Blanchet et al. 2017; Sagnik Das and Pal 2020). Our ability to ‘translate’ these 

signals into usable diagnostics currently lags behind the body of published research on 

captured breath compounds. Despite challenges faced in human breath research, 

quantification of individual compounds is already used to identify (mal)function of bodily 

processes in limited contexts. A major challenge of this developing field is aligning volatile 

compounds captured from breath with underlying (patho)physiologies. In particular, human 

breath-based clinical trials data is currently insufficiently integrated with our understanding of 

functional and mechanistic physiology. The focus here is on human breath, but gaseous 

biomarkers can be detected from skin, urine, blood, saliva and faeces (Amann et al. 2014; 

Drabińska et al. 2021). 

The majority of breath-linked diagnostic research has targeted respiratory diseases. Attempts 

to identify volatile organic compound (VOC) biomarkers of lung cancer, both in vitro and in 

vivo (Jia et al. 2019; Gasparri et al. 2016; Wojciech Filipiak et al. 2016) are represented by a 

large body of work. Non-cancerous pulmonary diseases such as asthma (Holz et al. 2019; 

Smolinska et al. 2014), chronic obstructive pulmonary disease (COPD) (Gaida et al. 2016; 

Santini et al. 2016), cystic fibrosis (van Mastrigt et al. 2016; Paredi et al. 2000) and tuberculosis 

(Saktiawati et al. 2019; Beccaria et al. 2018) are also targets of research, but to a lesser extent. 

In addition to pulmonary disease, VOC biomarkers from other cancers (Janfaza et al. 2019), 

cardiac disease (Bykova et al. 2019), liver (De Vincentis et al. 2019), gastrointestinal 

(Bannaga, Farrugia, and Arasaradnam 2019), and neurological conditions (Tiele et al. 2020; 

Tisch et al. 2013) have been studied and reported. The breadth of these studies offers an 

opportunity to compare how variable cellular states and pathophysiology correlate and/or differ 

in VOC profile. For example, diabetically linked VOCs (Souvik Das, Pal, and Mitra 2016) give 

insight into metabolic functions that may have implications for other disease-correlating 

phenotypes. 

The diagnosis of infection is a promising field for breath research, in part because 

microorganisms often generate distinct VOCs, which can be discerned within human breath 

profiles (Berna and Odom John 2021; Ghosh et al. 2021). For example; tuberculosis (Michael 

Phillips et al. 2007; Beccaria et al. 2018) and Pseudomonas aeruginosa (Scott-Thomas et al. 

2010; Shestivska et al. 2011), both infections of the lung, are metabolically distinct.  Viral 

infections, separate from microbial infections, may also be detectable due to viral VOC 
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production, or modification of the human host metabolism. Canine detection by scent of 

COVID-19 has been demonstrated (Mendel et al. 2021; Jendrny et al. 2020) and several 

studies have reported on the potential for COVID-19 breath-based diagnosis (Ruszkiewicz et 

al. 2020; H. Chen et al. 2021; Grassin-Delyle et al. 2021; Berna et al. 2021; Wintjens et al. 

2021; de Vries et al. 2021; Shan et al. 2020), with varying accuracies (Subali et al. 2022).  

Differences between disease states can increase the power of diagnostic tests. Bayes’ 

Theorem links probability of disease to prevalence within a population as well as the presence 

or absence of clinical markers (Miettinen, Steurer, and Hofman 2019). This paper aims to 

highlight the need for diagnostic research frameworks that include VOC biomarkers which act 

as comparative controls to increase diagnostic precision and accuracy. 

 

VOCs - The complex pathway from cell to breath 

Human breath contains hundreds of volatile organic compounds. Metabolic processes within 

the human body both consume and generate VOCs, also referred to as the ‘volatilome’- which 

is defined as the volatile fraction of the metabolome (Amann et al. 2014). As a fraction of the 

metabolome, VOCs are recognized to directly reflect gene transcription and protein 

expression. Illness, which is often linked to altered metabolisms and local environmental 

changes, is therefore expected to alter ‘volatilome’ profiles. The available human ‘volatilome’ 

consists of gaseous, low concentration (<1x10-4 %), low molecular weight (<350 amu 

molecular weight), and high-vapour pressure compounds extant within the gas phase at 

human temperatures and ambient pressures.  

The primary target of most breath research are endogenous (internally generated) VOCs 

however, human breath consists of a mixture of both endogenous and exogenous VOCs. 

Exogenous VOCs arise from sources external to the body which include local air volatiles 

(e.g.- car exhaust) as well as metabolic by-products from diet and/or medications. Exogenous 

compounds that persist continually in the environment (i.e. the clinic, or urban streets) must 

be characterised, quantified and separated in order to clarify which endogenous compounds 

are produced or metabolised by the patient. Quantifying metabolism of exogenous VOCs can 

be a powerful diagnostic tool in its own right- for example in organ function, where metabolism 

of limonene (e.g. - produced by air fresheners and various plants) can be used to assess liver 

function (O’Hara et al. 2016).  This technology can be applied to preoperative and 

postoperative assessment of liver function, and drug-induced liver damage (Molina-Molina et 

al. 2021). Alternatively, through utilisation of easily detectable, stable isotopically labelled 

molecules, such as 13-Carbon labelled hydrocarbons, specific bodily processes can be 

monitored and assessed through breath (Gaude et al. 2019) including measurement of gastric 
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emptying through labelled CO2 levels (Sangnes et al. 2019) or labelled Urea in the breath, 

indicative of H. pylori (Savarino, Vigneri, and Celle 1999; Modak 2007). Similarly, levels of 

hydrogen in the breath can accurately assess malabsorption in the gastric tract through 

bacterial processing of administered fructose (Born et al. 1995; Helwig et al. 2019).  

Further to the use of exogenous compounds as molecular probes, some of the most impactful 

and fundamental breath research has focused upon the effect of exogenous VOCs on human 

health, increasing understanding of volatile dynamics (Westhoff et al. 2019). For example, the 

effects of cigarette smoke and carcinogenic VOCs (Capone et al. 2018) or exposure to VOCs 

in firefighters (Wallace et al. 2019). Some of the VOCs outlined here as biomarkers of disease 

have been identified as toxic to human health, such as benzene, 1,3-butadiene, styrene and 

isoprene, the most abundant VOC in human breath (Li, Pal, and Kannan 2021). Therefore 

concentration and context is an important factor when investigating volatile dynamics. 

Microbial emissions also produce quasi-exogenous volatiles that may be revealing of 

pathological conditions or confound diagnosis. Cells of non-human origin outnumber the 

body’s cells by far (Proctor 2011) and their metabolisms form a considerable fraction of the 

VOCs released and metabolised by the human body (Amann et al. 2014; Bos et al. 2016). For 

example, VOCs like acetone can be produced by anaerobic and aerobic bacteria (Sohrabi et 

al. 2014; Seesaard et al. 2020) and residual levels of ethanol and methanol can be either 

exogenous or microbial in origin (Dorokhov et al. 2015). Usefulness of volatile biomarkers is 

therefore defined by pathophysiology and comorbidities since altered microbiomes may be a 

significant and defining source of VOCs. This is especially likely in disorders of the bowel 

(Bannaga, Farrugia, and Arasaradnam 2019; Bodelier et al. 2015). 

Breath analysis therefore requires systemic approaches for successful diagnostic application, 

accounting for both patient variability and environmental effects. Increased understanding of 

volatile metabolic processing in the body will aid in contextualising the qualitative and 

quantitative effects of stress, age, time of day, gender, activity, disease status, and/or transport 

of VOCs to the site of detection, all of which affect VOCs in breath (Wojciech Filipiak et al. 

2016; Blanchet et al. 2017). 

VOCs produced or metabolised by cellular processes, which are not subject to direct diffusion 

to exhaled air, must travel around the body through the bloodstream. They will i) pass tissues 

with varying constitutions and affinities to that volatile, ii) be metabolised through enzymatically 

independent and dependent pathways (the majority of these enzymes are expressed in the 

liver), and iii) diffuse from the bloodstream into the lung air space across the alveolar wall 

(Figure 1). In the lung, VOCs released from the blood mix with all local metabolites and 
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metabolising agents prior to exhalation. In the mouth volatiles from the lung, mouth, nose, 

upper gastrointestinal tract and stomach mix prior to sampling. 

The primary physicochemical properties governing VOC movement within the body are 

blood:air and lipid:air partitioning coefficients, representing how likely a volatile is to solubilize 

in aqueous solutions (e.g. - blood) or dissolve into fat (Kramer et al. 2016). These basic 

thermodynamic properties are governed in human tissues by a molecule's size and polarity. 

For most cells in the body, volatiles initially move between the blood and the cell rather than 

directly diffusing into alveolar airspace (Figure 1). Once a volatile compound enters the 

bloodstream it must pass through the organs and tissues of the body for which it may have 

variable affinities (J. King et al. 2012; Kramer et al. 2016). The relative distribution of tissue 

types is a major source of variability between individuals. Lipophilic volatiles can accumulate 

in fat tissues, while compounds with low affinity for fat drain more efficiently into the blood, 

highlighting body mass index effects on VOCs in breath (Blanchet et al. 2017). 

Further metabolism of released VOCs within the body can substantively modify the available 

volatilome. For instance, altered metabolisms (e.g.- the state of ketosis or fasting) have been 

shown to alter breath VOC profile (Statheropoulos, Agapiou, and Georgiadou 2006). In 

diseases such as diabetes, changes in acetone can be indicative of diabetic ketoacidosis 

(Galassetti et al. 2005). This global change, affecting all cells, contrasts with VOC sinks and/or 

sources that are site specific such as tumours, whereby the local microenvironment may 

present alterations in pH (Strambi and De Milito 2015), hypoxia (Petrova et al. 2018) and 

cellular ion concentrations (Leslie et al. 2019). 

It is important to note that individual VOC biomarkers linked to cellular state may not be able 

to differentiate between causative agents or symptoms. For example; cellular iron overload 

(Issitt et al. 2019), senescence (He and Sharpless 2017) or cell death (Gaschler and Stockwell 

2017) may all produce mitochondrial dysfunction and oxidative stress, producing similar VOC 

biomarkers. Therefore, VOC research should aim to identify differences in volatile metabolic 

outcomes between these states that may translate to the breath.  
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Figure 1. The journey of volatile compounds: from cell to breath. 

Compounds detected in the breath can be traced back to local cellular changes. Volatiles 

interact with tissues, organs and other compounds as they move around the body, influencing 

their expression in the breath.1) Local environmental changes and stimulating factors elicit 

cellular response which in turn alters volatiles both given out and taken up. 2) Volatile 

compounds diffuse in and out of the blood stream to move around the body. 3) As compounds 

move around the body they diffuse in and out of tissues dependent upon saturation and their 

affinity for blood, fat or tissue. 4) Volatile compounds can be metabolised by enzymes such 
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as CYP450s, highly expressed in the liver. 5) Gases diffuse in and out of the blood in the lung 

across the alveolar wall. Volatiles from the blood mix with those released by local lung and 

immune cells, the lung microbiome and infectious bodies. 6) Compounds are inhaled and 

exhaled breath is a mixture of alveolar, lung and mouth air with volatiles from the stomach and 

upper gastrointestinal tract. 

 

Challenges in VOC biomarker comparison and collection 

Volatile-focused biomarker research is confounded by varying behaviours and metabolisms 

between individuals (Blanchet et al. 2017). Volatile biomarkers may well be indicative of an 

isolated cell, in vitro, but within a body, may be subject to further metabolism (Figure 1). Some 

VOCs may therefore be a direct readout of enzymatic activity while others reflect multiple 

enzymatic processes. For example; limonene, which is not produced by human metabolism, 

can be measured in breath to monitor liver function as a read out of cytochrome P450 

(CYP450) activity (O’Hara et al. 2016; De Vincentis et al. 2019). Whereas, peroxidation of 

lipids, hypothesised to be a source of aldehydes and hydrocarbons in the breath (Souvik Das, 

Pal, and Mitra 2016; Amann et al. 2014; M. Phillips, Greenberg, and Awad 1994; Hakim et al. 

2012), can be mediated by enzymes, such as lipoxygenase, cyclooxygenases or cytochrome 

P450 (Massey and Nicolaou 2011) or non-enzymatic peroxidation through oxygen-radical 

oxidative routes (Esterbauer, Schaur, and Zollner 1991). 

The direct processing of functional VOC groups, such as aldehydes, makes several enzymes 

both sources of VOC biomarkers and potential confounding elements in the processing of 

VOCs produced from other cellular mechanisms. Some of these enzymes should be 

considered as confounding factors affecting translation of research, as they may break down 

primary targets. Of this wide array of enzymes, Alcohol Dehydrogenases (ADHs), Aldehyde 

Dehydrogenases (ALDHs), Aldehyde Oxidases (AOX), Aldo-keto reductases (AKRfs) and 

Short-chain dehydrogenases/reductases (SDRs) are examples of classes that directly 

influence commonly detected and targeted VOCs. 

Once endogenous metabolism and associated differences in form/behaviour have been 

addressed there are still methodological approaches which can bias reported outcomes. The 

pro’s and con’s of various techniques have been reviewed previously in the context of human 

breath (Jia et al. 2019; Kim, Jahan, and Kabir 2012). Briefly, variability in reported information 

can occur through analytical approach (i.e.- the instrument through which the data is 

quantified) (Kim, Jahan, and Kabir 2012) or in sampling approach. Sampling modifies reported 

results through changes in temperature, humidity, phase of breath (alveolar vs whole breath) 

or expiratory flow rate (Jia et al. 2019).  
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Analytical and collection methodologies vary across published studies (Table S1). In studies 

where breath samples are taken and concentrated prior to analysis, most studies collect 

breath into specialist polymer bags or use chemical traps. Collection methods should be 

considered when collecting and interpreting as they can affect the VOCs which are collected. 

For example, TedlarⓇ bags can affect breath VOCs through compound degradation and 

interaction with the bag product (Beauchamp et al. 2008; Ghimenti et al. 2015; Liangou et al. 

2021; Ibrahim, Carr, et al. 2021). On the whole, most studies use some form of thermal 

desorption tube (TD) containing a specialized sorbent or solid phase microextraction (SPME) 

fibre (Tables S1/S2). Each available suite of methods results in compound bias. While 

researchers attempt to counter such biases, methodological variability inevitably generates 

inconsistency in published VOC outcomes.  

Variation in reported human breath outcomes, and associated biomarkers, therefore results 

from; 

1. Variability inherent in, and between, sampling methodologies;  

2. Inherent human variability;  

3. Complex interactions between compounds in breath; and  

4. Confounding signals from comorbidities. 

Like any diagnostic tool, precise and accurate interpretation of results depends on our ability 

to statistically link detectable changes to outcomes. Due to the complexities that arise from 

varying individual metabolisms and variability derived from methodological approaches, 

volatile biomarkers have been inconsistently reported, in terms of both presence/absence and 

quantity, for a range of diseases. For example, propanol, isoprene, acetone, pentane, hexanal, 

benzene, ethylbenzene and toluene have individually been reported to be lung cancer 

identifiers in 6 or more studies (Jia et al. 2019). However, increases in isoprene (as one 

example) from lung cancer patient breath compared to control groups (X. Chen et al. 2005; 

Ma et al. 2014; Ulanowska et al. 2011; Poli et al. 2005) conflicts with reports where isoprene 

decreased in lung cancer patients (Wehinger et al. 2007; Bajtarevic et al. 2009). To date, 

published diagnostic compounds from human breath appear to demonstrate little continuity 

with in vitro models (Jia et al. 2019).  

Having outlined the challenges faced by researchers in identification of volatile biomarkers in 

breath, in this paper, we perform a comparative analysis that will allow researchers to identify 

and target biomarkers linked to pathophysiology and to consider their work in the context of a 

range of human diseases. Through considering how disease location, VOC interaction, and 

systemic variability affects end-point breath profiles, research efforts can be more clearly 

focussed and optimised. 
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Methodological approach and rationale 
Breath research is varied and multiple tools and approaches for research exist. Some of the 

most active areas of breath research include; lung cancer, breast cancer, cancers of the 

mouth, throat and upper gastrointestinal tract, diabetes, liver disease and inflammatory bowel 

disease (IBD). Our collation of this data is based on available studies, with lung cancer studies 

outnumbering all other breath research. 

 

Volatile biomarker comparison and data collection 

To demonstrate the challenges researchers face in deriving VOC biomarkers from breath 

research we collected data from four metabolically and physiologically distinct diseases for 

which there exist a number of available studies (Figure 2, Table S1). Several systematic and 

comprehensive reviews; for lung, breast and other cancers (Hanna et al. 2019; Jia et al. 2019), 

irritable bowel studies (Van Malderen et al. 2020; Markar et al. 2015), diabetes (Souvik Das, 

Pal, and Mitra 2016) and liver disease (De Vincentis et al. 2019) were cross referenced to 

widen scope and inclusion of studies (see PRISMA flow chart, supplementary figure 1). 

Detailed exclusion criteria, workflow and transparent methodology can be seen in 

supplementary and in the PROSPERO database (Issitt, TJ, Redeker K 2021). Systematic 

searches of title and abstract were performed for each disease using boolean operators AND 

and OR using the Embase and Medline databases through the OVID platform. Detailed 

information on systematic search terms and results are provided in supplementary methods 

along with PRISMA flow chart (Page et al. 2021). This research can also be found on the 

PROSPERO data base (Issitt, TJ, Redeker K 2021) where clear inclusion criteria, 

methodology and data extraction are given. Risk of bias and data analysis can also be found 

in supplementary materials. 

It is important to note that a range of important studies into the breath of patients with 

pulmonary disease such as asthma (Holz et al. 2019; Smolinska et al. 2014), COPD (Gaida 

et al. 2016; Santini et al. 2016; Christiansen et al. 2016), cystic fibrosis (van Mastrigt et al. 

2016; Paredi et al. 2000) and tuberculosis (Saktiawati et al. 2019) as well as many other 

diseases, infectious or otherwise have been conducted. However, for these diseases, there 

do not yet exist sufficient studies fitting the selection criteria for inclusion here. This is 

highlighted by a systematic review into breath analysis and COPD (Christiansen et al. 2016), 

which identifies 12 papers, many of which use smokers as a control group, and highlights the 

lack of clinical breath biomarkers (Issitt, TJ, Redeker K 2021). Neurodegenerative disease 

also shows promise as a breath diagnostic application, but it is still a developing field and more 

biomarker research into breath needs to be conducted. Infectious diseases also suffer from 
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this same problem with the added element of many different types being investigated, making 

them incompatible for this meta-analysis. Asthma, COPD and parkinsons disease have also 

been searched using our methodology, and the results discussed in the supplementary. 

Reviewer T.I. screened outcomes from electronic searches, their inclusion was based on 

criteria outlined in supplementary methods. This was double checked by reviewer K.R. 

 

Separation of studies based on methodology 

Pilot studies are often employed when investigating VOCs in human breath of diseases that 

have not been investigated before (Hicks et al. 2015; Tiele et al. 2020; Khalid et al. 2013; Patel 

et al. 2014; M. Phillips et al. 1999; Sahota et al. 2016; Alkhouri et al. 2015). These studies 

examine compounds in breath using a more untarged or scanning approach (identified here 

as SCAN). Compared to control groups, statistically significant increases in VOCs often form 

the basis and rationale for investigating identified compounds at more depth in future studies. 

Non-targeted (discovery), or scanning, approaches to gas analyses are useful for identifying 

where signals are substantially altered when compared to control groups. However, the large 

number of compounds in breath (>1000 (Kuo et al. 2020; Amann et al. 2014; Drabińska et al. 

2021)) and the (usually) single temporal sampling approach often means that only compounds 

that exceed substantial signal-to-noise ratios, constrained by sampling and analysis methods, 

and that overcome complexities associated with individual and population variability are 

reported. Informative compounds that exist in smaller quantities or compounds that are 

absorbed and metabolised by the body are often missed from these types of scanning studies 

and therefore subsequent targeted selective-ion mode (SIM) analyses may be searching in 

the wrong place.  

Of the studies utilised in this meta-analysis, only those studies where compounds were 

reported as increased, when compared to control group, have been used. Where studies have 

reported VOC uptake, they have not been included due to the rarity of this approach. This is 

a significant lapse in the published literature as volatile uptake may form a very important 

avenue for biomarker discovery. When combined with longitudinal studies in diagnostic 

applications, this approach may help to overcome systemic issues affecting cohort variability. 

Targeted, or Selected/Selective Ion Monitoring (SIM), MS analyses can provide a more 

sensitive, targeted approach to quantifying volatiles in breath. By focusing on individual 

compounds, researchers achieve substantially greater methodological sensitivity in detection 

and quantification. Monitoring targeted VOCs can provide in-depth information about complex 
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processes, such as the citric acid cycle (Tejero Rioseras et al. 2018) but it is important to focus 

on correct VOCs for accurate diagnosis. 

In the first stage of data collection, papers were considered regardless of detection method 

(Table S1). For further analysis, studies were reduced to SCAN studies as well as those 

studies which searched for a suite of volatiles that were representative of multiple functional 

groups (Table S2). 

 

Categorical variables 

Of the 84 studies retained after selection criteria, 43 focus on lung cancer, five breast cancer, 

13 Diabetes, 13 liver disease and eight IBD. Five further studies that focused on cancers of 

the stomach, mouth, larynx and upper gastrointestinal region, are grouped as upper 

gastrointestinal (UGI) cancers. It is outside the scope of this research to consider pathological 

variability within each group, due to limited study numbers, therefore diseases have been 

grouped. For example; the liver disease group includes studies investigating liver cirrhosis in 

adults and non-alcoholic fatty acid liver disease (NAFLD) in children. Variability in pathology 

has been noted in Table S2. Furthermore, diagnosis and separation of pathologies may cause 

inaccuracies when using breath volatiles, for example, separation of IBD conditions: Crohn’s 

disease and Ulcerative colitis from control groups can be accurate but separating the two 

pathological profiles is less accurate (Tiele et al. 2019). 

Studies investigating limited numbers of compounds generate uninformative outcomes when 

compared with studies investigating different, targeted compounds or studies employing a 

non-targeted approach (Table S1). However, some variability is likely to be due to the range 

of instrumental and collection techniques employed. Most studies listed here utilised Gas 

Chromatography Mass-Spectrometry (GC/MS) as their analytical platform, but other methods 

include Proton-Transfer Reaction Mass-Spectrometry (PTR-MS), Selected Ion Flow-Tube 

(SIFT-MS), Ion-Mobility-Spectrometry (IMS) (Table S1). There may also be further 

subdivisions, for example, standard GC/MS or GCxGC TOF, all of which will have an impact 

upon the observation of compounds (Beale et al. 2018). These methods should be considered 

when comparing reported VOCs between studies.  

 

Meta-Analysis and compound nesting 

For each study, reviewer TI extracted data of VOCs which were identified as 

increased/enhanced in concentration. Volatiles reported from these studies were compared 
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through Principal Component Analysis (PCA) using a binary function - present (1) or not (0) in 

a matrix (Table S2) using R-studio and ggplot2. This data was then used to train two 

classification models, random forest (RF) and linear discriminant analysis (LDA), with 

predictions and classification accuracy scores obtained through leave-one-out cross 

validation. All classification was performed in R-studio, using the randomForest package for 

RF, and the MASS package for LDA. Complete equal weighting of individual compounds 

and/or equal consideration of all possible individual VOCs (i.e when considering each possible 

compound) led to uninformative PCA outcomes. Compound nesting (combining similar/related 

compounds under one heading) was applied to clarify PCA outcomes. As an example of 

compound nesting; monomethylated alkanes, such as methylated variants of undecane (of 

which 4 isomers exist), have been considered as one VOC biomarker in Figure 2. The nesting 

categories can be seen in supplementary tables. 

 

Figure 2. PCA plots of volatiles released by patients for; diabetes (n13), IBD (n9), liver disease 

(n12), lung cancer (n41). a, b show same data, axis/compound identifiers shown in b. Ellipses 

represent 95% CI.  
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Results 
By considering every reported biomarker across a wide variety of studies and methodologies, 

including targeted single biomarker studies, no single or suite of VOC compounds show 

diagnostic potential for lung cancer (Figure 2). Primary PCA axes explain very little of the 

observed variance across all studies (only 19.1% of the variation within the data can be 

explained by PCA axes 1 and 2). IBD, diabetes and liver disease are inseparable (within the 

95% confidence intervals (CI) assigned by the PCA) while lung cancer VOCs overlap all 

groups with several outlying studies (Figure 2). The lack of definitive outcomes when 

comprehensively including all reported data, as represented in the PCA analysis (Figure 2), is 

expected when considering comorbidities, systemic variability and methodological differences.  

Alternative grouping of compounds may be more informative of processes underlying 

production of individual compounds. It may be more appropriate to consider, for example, all 

five carbon alkanes (e.g. pentane or methylated butanes), regardless of methylation or 

ethylation, as indicative of a functional process, inclusive of modification events. These 

aggregated 5 carbon compounds may therefore be more descriptive of specific metabolisms 

than individual compounds, reducing the impacts of individual variability in compound 

metabolism or derivatization.  

We hypothesised that applying a nesting approach (combining compounds with similar 

functional grouping) would reveal distinctive trends between pathologies in VOC data. For 

example, altered levels of alcohols in the breath have been reported often in liver disease, 

including ethanol, methanol and propanol (Hanouneh et al. 2014). Similarly, a number of 

aldehydes have been reported for several cancer types, with hexanal being the most 

commonly reported (Janfaza et al. 2019).Assuming that hexanal (in cancer) or ethanol (in liver 

disease) are the critical, important breath biomarkers and not aldehyde/alcohol metabolisms 

more generally may reduce the information that can be gleaned from single biomarkers. While 

individual VOC biomarkers may increase specificity, there is a need to perform further analysis 

to identify how they relate to functional chemical groups and disease/stress-based 

metabolisms. 
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Figure 3. PCA plot of volatiles released by patients, arranged by functional group as shown 

by axis in (A) for; diabetes (n6), IBD (n5), liver disease (n10) and lung cancer (n18). B as in 

A, with additional groups; breast cancer (n5) and UGI cancers (n5). All studies shown are non-

exclusionary analytical approaches. Ellipses represent 95% CI. 

 

Functional grouping of Volatiles 

Data (barring targeted studies) was grouped into chemical functional groups, as defined in 

table 1 (Hanson 2001). PCA analysis using functional groups was able to explain substantially 

more of the data presented (38.0% from axes 1 and 2, Figure 3) and created a clear separation 

between lung cancer and all other disease states (Figure 3). Primary functional groups which 

separate lung cancer from other diseases include hydrocarbons (notably six carbon 

compounds and above, irrespective of saturation or branching), aldehydes, furans, cyclic 

hydrocarbons and aromatics (Figure 3). Benzene derivatives (aromatics) were reported in the 

breath in every lung cancer study. Isoprene, a commonly reported biomarker for cancer 

(Hanna et al. 2019), has not been included in this analysis due to high variability of published 

outcomes (Julian King et al. 2010). Its inclusion however did not significantly alter PCA 

outcomes.  

Most diabetic studies were defined by the appearance of ketones in the breath, notably and 

unsurprisingly acetone, a volatile commonly associated with diabetes(Souvik Das, Pal, and 

Mitra 2016) as well as alcohols, including butanol, methanol and ethanol.  
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IBD was defined by the presence of hydrocarbons (notably, shorter compounds, eight carbons 

or less), nitrogen and sulphur compounds. The pathophysiology of IBD, such as Crohn's 

disease is characterized by periodic inflammation (linked to oxidative stress and subsequent 

hydrocarbon release (M. Phillips et al. 2000; Ratcliffe et al. 2020)) and an altered microbiome 

(linked to alterations in sulphur metabolism and nitrogen compounds (Hanouneh et al. 2014; 

De Vincentis et al. 2019)). 

Studies investigating forms of liver disease, including NAFLD and cirrhosis, were strongly 

defined by the presence of monoterpenes in the breath, notably limonene and pinene. 

However, this was slightly skewed in the PCA analysis as only 4 out of the 10 included studies 

reported monoterpenes (Table S2). Ketones, nitrogen and sulphur compounds were also seen 

in patients suffering from liver disease. Interestingly, only 4 studies reported alcohols in the 

breath of liver disease patients (one focusing on NAFLD (Hanouneh et al. 2014), one 

comparing between NAFLD and cirrhosis (Netzer et al. 2009), and two investigating cirrhosis 

only, Table S2) and this was less defining of liver disease as a group than other functional 

groups, despite impaired alcohol processing being a hallmark of liver disease and therefore 

purportedly a breath biomarker (De Vincentis et al. 2019).  

 

Cancer comparisons 

To investigate the possibility that grouped lung cancer breath VOC outcomes (Figure 3a) were 

the result of proximity to pulmonary architecture, facilitating direct diffusion of VOCs to lung 

airspace rather than systemically processed VOCs (Figure 1), we compared VOCs reported 

in the breath of breast cancer patients and cancers of the upper GI tract and mouth (UGI) to 

the groups already presented (Figure 3B). Addition of breast and UGI cancer studies reveals 

close correlation of all cancer groups (breast, lung and UGI) along similar axes, while retaining 

significant separation from diabetes, liver disease and IBD outcomes. To clearly demonstrate 

this separation, these subgroups were grouped into cancer vs other (supplementary figure 

2A). The PCA biplot is also provided to show which elements were identified as most 

discriminatory. (supplementary figure 2B). This suggests that PCA separation from other 

diseases is not due to relative location within the pulmonary architecture, mouth and 

oesophagus. Associations of functional VOCs are more consistent between cancer 

pathologies relative to other disease states, suggesting that these signals are disease 

correlated. 
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Further Analyses 

To further expand on the use of PCA and to acknowledge the presence of potential ‘voodoo 

correlations’ in the data (Miekisch, Herbig, and Schubert 2012) we performed random forest 

and LDA for classification of cancerous vs. non-cancerous (other) diseases (figure 4). This 

demonstrated that the functionally grouped VOCs can be used in combination to classify 

cancer with high accuracy. Random forest determined 93% accuracy for cancer and 100% for 

‘other’. LDA determined 93% accuracy for cancer and 81% for ‘other’. 

 

 

Figure 4. Confusion matrices to summarise supervised classification prediction for (A) 
Random forest model and (B) Linear discriminant analysis. Classification accuracy scores for 

each model are also provided.  
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Discussion 
The difficulties faced by breath researchers exploring released VOCs is highlighted by multiple 

reviews investigating lung cancer and pulmonary disorders (Miekisch, Schubert, and Noeldge-

Schomburg 2004; Jia et al. 2019; Hakim et al. 2012; Mazzone 2008; Amann et al. 2011; Hanna 

et al. 2019; Zhou, Liu, and Duan 2012), diabetes, liver disease and IBD (Souvik Das, Pal, and 

Mitra 2016; Minh, Blake, and Galassetti 2012; De Vincentis et al. 2019; Van Malderen et al. 

2020; Markar et al. 2015). Within these reviews, limited consensus has been reached 

regarding the efficacy of individual compounds to identify specific diseases and/or disease-

based metabolisms. These are reviewed in Table 1. In spite of this ongoing and dedicated 

research, sufficiently precise and accurate breath biomarkers for diagnostic application have 

continued to elude researchers for cancer (Jia et al. 2019), liver disease (De Vincentis et al. 

2019), IBD (Markar et al. 2015) or diabetes (Minh, Blake, and Galassetti 2012). We have re-

affirmed the challenges in biomarker identification through our introductory discussion on 

sources of breath VOC variability and through the lack of descriptive potential, as shown in 

Figure 2. 

Functional group analysis, which we show clarifies existing, previously disparate, studies 

(Figure 3), are not to be taken as recommendations for singular biomarker approaches even 

when these single biomarkers exist as components of a larger functional group. Clearly, 

singular volatile approaches are not effective (Figure 2) and this has been recognised by 

researchers previously (Miekisch, Herbig, and Schubert 2012). Functional group analysis 

does, however, provide a guide for further research, described here as a ‘breath print and 

research framework’. We propose that analysis of multiple volatile biomarkers from a range of 

functional classes will provide increased discriminatory power. 

 

Functional Groups of Volatile Biomarkers 

We have improved disease separation within our PCA analyses (Figure 3a), affirmed that 

location of disease does not drive reported outcomes (Figure 3b), and highlighted trends in 

volatiles discovered in human breath by using a functional grouping approach. Successful 

application of functional groups to biomarker discovery implies that functional groups are more 

defining of process or disease (Figure 3), than single volatile markers (Figure 2). A recent 

review has surveyed volatiles released by humans and highlighted functional groups 

(Drabińska et al. 2021).   

Further to PCA analyses, both random forest and LDA confusion matrices revealed high 

accuracy in recognising cancer and ‘other’ (Figure 4). While it should be recognised that 
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grouping very distinct diseases together in this way is confounding within itself, it demonstrates 

the power of this approach. The classification results obtained here are suggestive that VOCs 

could prove a powerful tool for cancer diagnostics, with many providing good discrimination 

between cancerous and non-cancerous diseases. 

A number of metabolic pathways and key characteristics of functional groups associated with 

VOCs in breath have been reviewed (Hakim et al. 2012; Souvik Das, Pal, and Mitra 2016; 

Amann et al. 2014) and some of these pathways, pertinent to diseases investigated here, have 

been highlighted (Table 1). Understanding remains limited and further research into targeted 

cellular metabolisms is needed to disentangle common functional outcomes.  We present here 

a brief analysis of exogenous sources and endogenous metabolisms for several functional 

groups with predictive power in our analysis.  

Only 4 disease outcomes are included here, due to reasons discussed in the methodology 

section. For this reason we have included possible pathophysiological sources of compounds, 

for cross reference to other pathologies in table 1. For example, aldehydes have been linked 

to inflammatory linked stress and subsequent lipid peroxidation in a range of diseases, such 

as COPD (Zhou, Liu, and Duan 2012) and can be seen here in cancer (table 1). Possible 

endogenous sources may then be cross referenced to develop a suite of diagnostic 

compounds dependent upon disease. 
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Class Example 
Compounds Prevalent In Possible Endogenous Source 

Hydrocarbon Butane, Heptane All 
Lipid peroxidation (Riely, Cohen, and Lieberman 1974; Negre-Salvayre et al. 2008; Sobotka et al. 1994; 

Kneepkens, Lepage, and Roy 1994; Hakim et al. 2012; Ratcliffe et al. 2020), ethanol Metabolism (Müller and 
Sies 1982) 

Alcohol Ethanol, 
Propanol 

Cancer, 
diabetes, liver 

Disease 

Alcohol Metabolism, Ketone Metabolism (Miekisch, Schubert, and Noeldge-Schomburg 2004; Bornhorst and 
Mbughuni 2019; Davis, Dal Cortivo, and Maturo 1984), Hydrocarbon Metabolism (Kneepkens, Lepage, and 

Roy 1994; Dadamio et al. 2012) 

Ketone Acetone, 
Butanone 

Cancer, 
diabetes,  liver 

Disease 

Amino acid metabolism to acetone (Pedersen 1929; Janfaza et al. 2019; López-Soriano, Alemany, and 
Argilés 1985; Ruzsányi and Péter Kalapos 2017), isopropanol to acetone (Janfaza et al. 2019; Nordmann et 
al. 1973), fatty acid metabolism and oxidation  (Erhart et al. 2009; Hakim et al. 2012; Janfaza et al. 2019; M. 

Ye et al. 2015) 

Aldehyde Hexanal, 
Acetaldehyde Cancer 

Lipid Peroxidation (Esterbauer, Schaur, and Zollner 1991; Shahidi 2001; Ayala, Muñoz, and Argüelles 2014; 
Ratcliffe et al. 2020), alcohol metabolism (Wickramasinghe et al. 1981), enzymatic function (Mellick 2006) 

(Janfaza et al. 2019; Nordmann et al. 1973) 

Carboxylic Acids Propanoic acid Cancer (breast) Aldehyde oxidation (Larkin 1990), Lipid peroxidation (Callol-Sanchez et al. 2017; Jareño-Esteban et al. 2017; 
Ratcliffe et al. 2020), Microbial (Dryahina et al. 2017) 

Ester/Ether Butyl Acetate, 
Dimethyl-Ether Cancer Enzymatic action i.e. esterases (Hakim et al. 2012; Fukami and Yokoi 2012) 

Isoprenoids Limonene, 
Pinene Liver disease CYP450 activity (O’Hara et al. 2016; De Vincentis et al. 2019) 

Nitrogen Trimethylamine, 
Ammonia 

IBD, liver 
Disease 

Amino acid  metabolism (Miekisch, Schubert, and Noeldge-Schomburg 2004), Microbial (W. Ye et al. 2019; 
Snel et al. 2011) 

Furan Furan Cancer Unclear, microbial action (Trefz et al. 2013) 

Sulphur 

Dimethyl 
Sulphide, 
Hydrogen 
Sulphide 

Cancer (lung), 
IBD, liver 
Disease 

Urea cycle (Shimamoto, Hirata, and Katsu 2000), Microbial (Hanouneh et al. 2014; De Vincentis et al. 2019) 

Aromatic Benzene, Xylene Cancer Released from fatty tissue (Haick et al. 2014), CYP450 (Guengerich, Peter Guengerich, and Shimada 1991),  
unknown endogenous creation 

Cyclic 
Hydrocarbons/Ketones 

Cyclopentane, 
Cyclohexanone Cancer Unclear 

Table 1. Functional groups of volatile compounds seen in breath research studies and possible endogenous sources of variance. The 
data presented here links studies (presented in figure 3) to prevalent functional groups of volatiles to cancer types, irritable bowel 
disease (IBD), diabetes and liver disease. 
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Aromatics, furans and cyclic hydrocarbons 

Cyclic compounds, such as aromatics, cyclic hydrocarbons, and furans, act as important 

compounds in differentiating between lung cancer and other disease states in our analysis 

(Figure 3a). Cyclic compounds have, however, generally been regarded as contaminants in 

breath research (Hakim et al. 2012; Jia et al. 2019) and, because of this, their diagnostic power 

has often been dismissed. Due to common exposure as exogenous compounds, the use of 

these aromatic compounds as diagnostic tools should be taken with caution and use as a 

single compound diagnostic would not be recommended. They retain diagnostic power 

however, in part as a negative marker, within our approach. 

Benzene (and derivatives) and furans are present in cigarette smoke and higher in the breath 

of smokers (Buszewski et al. 2009), a particular consideration for lung cancer breath profiles. 

Studies which addressed this by contrasting VOC screens from smokers/non-smokers 

suffering from lung cancer have found that benzene derivatives and furans were still present 

(Rudnicka et al. 2011). Furthermore, studies have shown that cultured, in vivo cancer cells 

release a range of benzene derivatives (Thriumani et al. 2018; Silva et al. 2017; Hanai et al. 

2012; Jia et al. 2018; Serasanambati et al. 2019; Peled et al. 2013; Kwak et al. 2013). Human 

fibroblasts (Wojciech Filipiak et al. 2010) and human mammary epithelial cells (Silva et al. 

2017) also produce aromatics when grown in culture. This highlights how false positives from 

exogenous sources can confound separation of functionally useful markers from 

contamination.  

Furans have been associated with smoking and these compounds are not associated with 

endogenous origin (W. Filipiak et al. 2012). Appearance in heated food suggests an 

association with diet (Zoller, Sager, and Reinhard 2007). Furan appears in the breath of 

healthy, non-smoking individuals in addition to smoking and non-smoking cancer patients and 

individuals (Rudnicka et al. 2011; Kushch et al. 2008). Furans, have been reported in lung 

cancer, and one study into laryngeal cancer (Fielding et al. 2020) (Table S2). As this 

compound was not seen in breast cancer or other diseases investigated it suggests that there 

might be either a) a pulmonary diffusion aspect to detection, b) a smoking component or c) 

both.  

Cyclic hydrocarbons, such as cyclopentane and cyclohexane, have not been investigated with 

respect to metabolic cellular function but their appearance in the headspace of cell lines such 

as mesothelioma (Little et al. 2020) and their effective use diagnosing cancer patients from 

breath for colorectal (Bhattacharyya et al. 2017), lung (M. Phillips et al. 1999; Handa et al. 

2014) and breast cancer (Barash et al. 2015) suggests that they retain diagnostic capacity 

irrespective of exogenous contaminant sources. Cyclohexanone and other cyclic 
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hydrocarbons are by-products of plastic and fuel combustion (Wahl et al. 1999), and are 

unlikely to be contaminants in cellular headspace analysis. Cyclohexane has been shown to 

be descriptive of malignant pleural mesothelioma when contrasted with subjects with similar 

professional asbestos exposure (de Gennaro et al. 2010). However, oxygenation of 

cyclohexane produces cyclohexanone, thought to be a result of fatty acid oxidation and weight 

loss (Liu et al. 2014). 

Throughout the data presented here, furans, cyclic hydrocarbons, aromatic compounds and 

benzene derivatives have been consistent markers of cancer, irrespective of lung cancer, 

breast cancer or cancers of the mouth and upper GI tract (Figure 3 and Table S2) (X. Chen et 

al. 2007). While these compounds all have exogenous sources, this work highlights their 

diagnostic potential. While in many instances, they may be confounded with smoking related 

diseases, their absence from IBD, liver disease and diabetes studies, may allow 

diagnosticians to remove these diseases from consideration, providing a powerful combination 

of VOC biomarkers and a starting point for comprehensive ‘breath print’ analyses. 

 

Developing a ‘breath-print’ and research framework 

The identification of a single volatile biomarker for diagnosis of complex pathologies, appears 

unlikely considering the unsuccessful outcomes of more than three decades of research on 

diseases such as lung cancer. It seems more likely that multiple biomarkers will provide 

maximum diagnostic accuracy and this has been recognised by breath researchers (Leopold 

et al. 2015; Miekisch, Herbig, and Schubert 2012; Khoubnasabjafari et al. 2021; Politi et al. 

2021). For example, acetone has been a target for diabetic breath research since the 1960s 

(Tassopoulos, Barnett, and Fraser 1969), linked to ketoacidosis (Minh, Blake, and Galassetti 

2012) and characteristic of the sweet smell on the breath (Guo et al. 2012) and found in greater 

concentrations in the breath of diabetics. However, as a single marker it does not optimise 

diagnostic potential, due to concentration variability linked to insulin resistance, lipolytic 

activity, exercise, fasting status and gender (Souvik Das, Pal, and Mitra 2016). Other VOC 

markers can therefore be utilised in tandem to build up a ‘breath-print’, increasing diagnostic 

power and overcoming systematic variability and comorbidities.  

In addition to multiple volatile biomarkers increasing diagnostic accuracy, a ‘breath-print’ may 

potentially include wider breath dynamics and pulmonary function such as flow rate, pressure, 

and gas transfer. Combined, this can build an accurate picture of lung function (Pleil et al. 

2020) and these tools are used frequently in the clinic for assessing patients with COPD, 

asthma or any restriction to breathing (Sylvester et al. 2020; Pleil et al. 2021). Lung function 
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impacts testing and collection of volatiles, creating variability between individuals and so 

consideration of this will increase the power of diagnosis by VOCs. 

Recommendations for volatile compounds as disease diagnostic markers have not yet been 

made for many disease states. This is, in part, due to the variation in approaches (Table S1) 

and systemic complications (Figure 1). In this research we have arranged reported markers 

from non-exclusionary studies into functional groups and substantially improved disease 

separation, generating greater correlation across primary PCA axes (Figure 3). We have also 

shown that cancer studies generate similar outcomes, irrespective of location, lending 

credence to the idea that our reported outcomes are independent of bodily location and, 

therefore, due to common metabolic action. This work agrees with systematic and prospective 

reviews which have identified correlations between disease compounds such as aldehydes 

for cancer diagnosis (Janfaza et al. 2019; Hanna et al. 2019; Jia et al. 2019). We, therefore, 

recommend that research targets consist of a suite of markers that encompass a range of 

functional groups. 

Application of functional group analysis is limited as it can remove specificity. For example, 

butanone and acetone are both ketones but butanone is highly present in the lung cancer 

group but not in the diabetic group (Table S2). Therefore, when selecting compounds for 

investigation, a selection of compounds from several functional groups (i.e. 3 ketones, 3 

aldehydes, 3 hydrocarbons, 3 sulphur compounds etc) may optimise descriptive and 

diagnostic potential.  

Accordingly, a suite of VOCs (a ‘breath-print’) can be utilised to account for variability within 

individuals. However, an understanding of functional groups and how they relate to metabolic 

processes will allow for more effective identification of volatile compounds to serve as 

biomarkers within the ‘breath-print’. Based on group separation in figure 3b, IBD, liver and 

diabetes are separable from lung, breast and OG cancer, but each of these sub-groups 

(cancers versus gut/liver diseases) have a number of overlapping compounds. A suite of 

VOCs for targeted cancer diagnosis would include both positive and negative markers. The 

following outlines a framework for developing cancer diagnostic targets for breath where a 

study might focus on 16 to 20 VOCs. 

Positive markers of cancer would include;  

I. Aldehydes, such as; pentanal, hexanal and heptanal;  

II. Multiple hydrocarbons above 6 carbons such as heptane, octane and decane (there 

appears to be no preference for branched chained hydrocarbons in the data) 

III. Aromatic and cyclic compounds, such as ethyl benzene, furan, cyclopentane and 

cyclohexanone.  
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The ketone, butanone, was also highly reported for cancer studies. Presence of each 

biomarker individually is not confirmation of diagnosis but acts to increase diagnostic 

accuracy.  

Negative markers might include;  

I. Monoterpenes, either limonene or pinene. 

II. Nitrogen-containing compounds such as trimethylamine and methyl nitrate. 

III. Ketones; specifically acetone  

IV. Alcohols such as ethanol or methanol (isopropanol and propanol are common in 

cancer patients).  

For sulphur compounds; dimethyl sulfide was reported by cancer studies while hydrogen 

sulfide appears indicative of liver disease.  

Interpretation of volatile compounds from human breath is multifaceted and complex. Likely 

markers of cellular processes can be identified through knowledge of dominant metabolisms 

and considering systemic alterations and interactions. By considering markers of contrasting 

processes and pathophysiologies, the power of diagnosis will increase. Functional group 

targeting can help overcome variability within individuals and cohorts when looking for breath 

biomarkers of particular cellular functions. The ‘breath-print’ approach takes into account 

variability of biomarker metabolisms, conflicting comorbidities and physiological variations 

within individuals. 

 

Application to COVID-19 

A primary goal of this work is to provide contextual VOC targets, so that future research may 

target compounds with increased likelihood of diagnostic power. We may speculate upon how 

this work may relate to a critical topic in contemporary breath research: the diagnosis of viral 

lung infection, namely COVID-19. At this junction, with the limited published data available, 

we consider the underlying processes involved and compare this with research into other 

infections of the lung.  

Several studies have explored whether COVID diagnosis via breath, using sensors and enose 

approaches (H. Chen et al. 2021; Wintjens et al. 2021; de Vries et al. 2021; Shan et al. 2020), 

is plausible. Currently, 5 studies have been published which a) fit the criteria for inclusion in 

this article and ii) identify specific VOCs as candidates for diagnosis. Substantial variability in 

COVID status exists within the studies undertaken, most notably, age of patients and disease 

severity at the point of breath collection (Berna et al. 2021; Liangou et al. 2021; Ruszkiewicz 
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et al. 2020; Ibrahim, Cordell, et al. 2021; Grassin-Delyle et al. 2021). Severity of disease 

influences VOCs seen in the breath (as shown in table 1). Severely ill patients, including those 

presenting with Acute Respiratory Distress syndrome (ARDs), will have impaired VOC 

diffusion into the lung space, due to the presence of fluid in the lungs. Furthermore, they may 

present with a range of disease complications outside of pulmonary ailments (Grasselli et al. 

2020; Arentz et al. 2020).  

Published reports that fulfil our selection criteria report COVID representative functional 

groups as: aldehydes (notably C7 and over), carboxylic acids, oxygenated species, 

monoterpenes and halocarbons (Ruszkiewicz et al. 2020; Grassin-Delyle et al. 2021; Berna 

et al. 2021; Ibrahim, Cordell, et al. 2021; Liangou et al. 2021). With an awareness of the 

limitations outlined and the large variability in collection and analysis methodology, we 

compared the functional outcomes from these papers against cancer and all other studies 

grouped (supplementary figure 3). COVID-19 revealed clear separation from cancer studies 

and sat within ‘other’ grouped studies with explained variance of 34.7% for PC1 and PC2 

combined. One outlier for the COVID-19 group was identified as Ruszkiewicz et al 2020 due 

predominantly to the lack of hydrocarbons detected.  

Pathophysiology of COVID-19 infections includes inflammatory response, characterised by 

oxidative stress (table 1) which has been linked to aldehydes and hydrocarbons (Ratcliffe et 

al. 2020). Aldehydes are present in all 5 COVID-19 breath studies presented here and 

hydrocarbons are present in 4 studies. In comparison, studies investigating Influenza, a virus 

of the lung, revealed increased hydrocarbons in patients' breath following Influenza A 

vaccination (Michael Phillips et al. 2010) and pigs infected with Influenza revealed aldehydes 

in their breath (Traxler et al. 2018).  

As the volume of research around viral pathogens and volatile profiles grows, targets specific 

to pathogens will increase and the application of targets for early diagnosis aside from those 

targets linked to secondary and tertiary effects of infection will aid early application.. We have 

demonstrated that researchers can consider targets from different functional groups and 

varying disease states  

 

Conclusion 

In conclusion, while mechanistic studies continue to be reported, and collections of cellular 

VOCs compiled (Wojciech Filipiak et al. 2016) and contrasted with human breath databases 

(Kuo et al. 2020; Jia et al. 2019; Agarwal, Sharma, and Fatima 2016; Janfaza et al. 2017), we 

contend that further information can be gained from comparing and contrasting breath profiles 
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already reported within targeted metabolic and physiological contexts and that this approach 

will help inform further research. We have demonstrated that commonality exists in a suite of 

volatiles present in the breath of patients across a range of diseases and that these volatiles 

can also separate disease groups. 
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Supplementary Material 
A transparent method is provided for clarity of data collection and processing. A review 

protocol is available at https://www.crd.york.ac.uk/PROSPERO - Registration number 

CRD42021234660.  

Papers were collected based on an electronic search (title and abstract) using the Embase 

and MEDLINE databases through the OVID platform.  

--- 

The search terms lung cancer, volatile organic compound, VOC, breath, and exhaled were 
used in combination with the Boolean operators AND and OR. 

Abstract - Lung cancer, Breath or exhaled, VOC or volatile organic compound 
Title - lung cancer and breath 

--- 

The search terms Diabetes, volatile organic compound, VOC, breath, and exhaled were 
used in combination with the Boolean operators AND and OR. 

Abstract - diabetes, Breath or exhaled, VOC or volatile organic compound 
Title - diabetes and breath 

--- 

The search terms Liver, volatile organic compound, VOC, breath, and exhaled were used in 
combination with the Boolean operators AND and OR. 

Abstract - liver, Breath or exhaled, VOC or volatile organic compound 
Title - liver disease or liver cirrhosis and breath 

--- 

The search terms IBD, Inflammatory bowel disease, volatile organic compound, VOC, 
breath, and exhaled were used in combination with the Boolean operators AND and OR. 

Abstract - IBD, Breath or exhaled, VOC or volatile organic compound 
Title - inflammatory bowel disease or IBD and breath 

--- 

Results from these searches are shown in PRISMA workflow (supplementary figure 1).  

Inclusion was dependent on patients of the disease group having their breath analysed for 

volatile organic compounds compared with a healthy control group. These volatiles are 

required to be identified for comparison of biomarkers. 

Healthy controls defined In-line with the diagnosis of pathology by trained physician, biopsy or 

appropriate, are included if they reflect comparable controls in demographic. This includes 

age, sex, comorbidities, smoking status and BMI. The control group should reflect the test 

group and if it does not, it is not included. Each study represents some variability in cohort 

recruitment and demographic 
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Results from these searches were compared to results from other systematic reviews of breath 

volatiles pertaining to reviews. Applicability was assessed for additional reviews under the 

same criteria. for lung, breast and other cancers (Hanna et al. 2019; Jia et al. 2019), irritable 

bowel studies(Van Malderen et al. 2020; Markar et al. 2015), diabetes(Das, Pal, and Mitra 

2016) and liver disease(De Vincentis et al. 2019). 

Many studies have been conducted looking at the breath of patients with diseases of the 

respiratory tract, predominantly COPD and asthma. We also conducted literature searches 

following the above guidelines. For Asthma 197 articles were identified of which 3 offered 

breath volatile investigation. COPD searches resulted in 75 articles, and 1 paper was identified 

as appropriate (Van Berkel et al. 2010). Parkinsons disease offered 9 results. 

 

Supplementary search strategy 

Example search strategy through the OVID system. Underlined words represent variables for 

search terms. 

1.  ((((((inflammatory bowel disease and volatile organic compound) or VOC) and 

exhaled) or breath).ab. and inflammatory bowel disease.ti.) or IBD.ti.) and breath.ti. 

2. Limit 1 to abstracts 

3. limit 2 to cochrane library [Limit not valid in Ovid MEDLINE(R); records were retained] 

4. limit 3 to english language 

5. limit 4 to human 

6. limit 6 to (embase or medline) [Limit not valid in Ovid MEDLINE(R); records were 

retained] 

7. limit 6 to abstracts 

8. limit 7 to cochrane library [Limit not valid in Ovid MEDLINE(R); records were retained] 

9. limit 8 to english language 

10. limit 9 to human 

11. limit 10 to (article or article in press or adaptive clinical trial or case reports or clinical 

study or clinical trial, all or clinical trial or comparative study or controlled clinical trial 

or introductory journal article or journal article or pragmatic clinical trial or randomized 

controlled trial) [Limit not valid in Embase,Ovid MEDLINE(R); records were retained] 

12. limit 10 to (embase or medline) [Limit not valid in Ovid MEDLINE(R); records were 

retained] 

Duplicates were removed if they were single markers used with the same analytical platform.
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Risk of bias: For the purposes of this study application of bias is based primarily upon 

analytical platform. Selective Ion Modes (SIM)/targeted analytical approaches reveal 

information pertaining to only the targeted ions. This bias has been split into SIM-narrow, SIM-

wide and SCAN. SCAN or non exclusionary methods are un bias analytical approaches that 

do not focus on VOCs. SIM WIDE have been designated as a medium bias for this study, 

focusing on importance of functional groups, as such these studys target specific VOCs but 

do so from a range of functional groups. Therefore their application for like-like VOC marker 

comparisons are limited but within functional comparisons, they are representative. SIM 

narrow studies are the most bias and may look at either a selection of volatiles from one 

functional group, a single marker or a very restricted selection. More information is available 

in the methodology section in the main text. 
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Supplementary Figure 1. PRISMA flow chart for literature search 
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Supplementary Table 1 (Table S1): Studies collected for initial analysis by PCA. Analytical 

bias is show by SCAN (low) in green, SIM - Wide (medium) in yellow or SIM - Narrow (high) 

in red. 
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Supplementary table 3. QUADAS assessment. 

     Risk of bias Applicability 
concerns 

Author Collecti
on Analysis Diseas

e 
Analyti

cal 
Method 

Patient 
selecti

on 

Inde
x 

test 

Referen
ce 

standar
d 

Flow 
and 

timin
g 

Patient 
selecti

on 

Inde
x 

test 

Referen
ce 

standar
d 

Bajtarevic 
2009 SPME GCMS Lung 

Cancer SCAN L L L L L L L 

Bousamra 
2014 ATM FTICR-

MS 
Lung 

Cancer 
SIM- 

Narrow L ? L L L ? H 

Buszwki 
2011 SPME GCMS Lung 

Cancer SCAN L L L L L ? L 

Buszwki 
2012 SPME GC-TOF-

MS 
Lung 

Cancer SCAN L ? L L L L H 

Callol-
Sanchez SPME GCMS Lung 

Cancer 
SIM - 

Narrow L L L L L L L 

Capuano 
2015 SPME GCMS Lung 

Cancer SCAN L L L L L L L 

Chen 2005 SPME SAW Lung 
Cancer SCAN L H L L L L L 

Corradi 
2015 SPME GCMS Lung 

Cancer 
SIM - 
Wide H L L L ? L ? 

Crohns 
2009 Sorbent GCMS Lung 

Cancer 
SIM- 

Narrow L L L L L L H 

Deng 2004 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Feinburg 
2016 Direct PTR-MS Lung 

Cancer 
SIM- 

Narrow L L L L L L H 

Filipak 
2013 TD GCMS Lung 

Cancer SCAN L L L L L L L 

Fu 2014 ATM 
capture 

FTICR-
MS 

Lung 
Cancer 

SIM- 
Narrow L ? L L L L H 

Fuchs 2010 SPME 
OFD GC-MS Lung 

Cancer 
SIM- 

Narrow L L L L L L H 

Gaspar 
2009 

HS-
SPME GC-MS Lung 

Cancer 
SIM 

Narrow L L L L L L H 

Handa 
2014 Direct IMS Lung 

Cancer SCAN L H L L L ? L 

Kiskel 2010 SPME GCMS Lung 
Cancer SCAN L L H L L L L 

Li 2015 ATM 
FTICR-
MS and 
GC-MS 

Lung 
Cancer 

SIM- 
Narrow L ? L L L ? H 

Ligor 2009 SPME GCMS Lung 
Cancer SCAN L L L L L L L 

Ligor 2015 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 
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& 
Modelli

ng 

Ma 2014 SPME GCx 
GCFID 

Lung 
Cancer 

SIM- 
Narrow L H L L L ? H 

Ma 2015 TD GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Peled 2012 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Peng 2009 SPME GCMS Lung 
Cancer SCAN L L L L L L L 

Peng 2010 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Philips 
1993 TD GCMS Lung 

Cancer 
SIM- 

Narrow L L L L L ? H 

Philips 
2003 TD GCMS Lung 

Cancer SCAN L L L L L ? L 

Philips 
2006 TD GCMS Lung 

Cancer SCAN L L L L L L L 

Phillips 
2007 TD GCMS Lung 

Cancer SCAN L L L L L L L 

Poli 2005 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Poli 2010 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Rudnicka 
2011 SPME GCTOF/

MS 
Lung 

Cancer SCAN L L L L L ? L 

Rudnicka 
2019 SPME GCMS Lung 

Cancer SCAN L L L L L ? L 

Schallsch
midt 2016 SPME GCMS Lung 

Cancer 
SIM - 
Wide L L L L L ? ? 

Schumer 
2015 ATM Silicon 

Chip MS 
Lung 

Cancer 
SIM- 

Narrow L L L L L H H 

Schumer 
2016 ATM Silicon 

Chip MS 
Lung 

Cancer 
SIM- 

Narrow L L L L L H H 

Skeldon 
2006 Direct TDLS Lung 

Cancer 
SIM- 

Narrow L L L L L ? H 

Song 2010 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

Sukumra 
2017 Direct GCMS Lung 

Cancer 
SIM- 

Narrow L L L L L L H 

Ulonwaski 
2011 SPME GCMS Lung 

Cancer SCAN L L L L L L L 

Wang 2012 SPME GCMS Lung 
Cancer SCAN L L L L L L L 

Wehinger 
2007 Direct PTR-MS Lung 

Cancer 
SIM- 

Narrow L L L L L L H 



72 
 

Zou 2014 SPME GCMS Lung 
Cancer 

SIM- 
Narrow L L L L L L H 

K. Yan 
2014 Direct Sensor 

Array 
Diabet

es 
SIM - 

Narrow L L L L L H H 

Fan 2014 Direct HT-
GCMS 

Diabet
es 

SIM - 
Narrow L L L L L ? H 

Grieter 
2010 Direct PTRMS Diabet

es SCAN H L L L ? L L 

Halbritter 
2012 Direct PTRMS Diabet

es SCAN L L L L L L L 

Lee 2009 Direct GCMS Diabet
es 

SIM 
WIDE H L L L H L ? 

Minh 2011 Direct GCMS Diabet
es SCAN L L L L L L L 

Novak 2007 Direct GCMS Diabet
e 

SIM - 
Narrow L L L L L L H 

Saasa 2019 HS-
SPME GCMS Diabet

es 
SIM - 

Narrow L L L L L L H 

Saidi 2018 SPME GC/Q-
TOFMS 

Diabet
es 

SIM 
WIDE L L L L L H ? 

Trefz, 
Oberman 
2019 

Direct PTR-
TOFMS 

Diabet
es 

SIM 
WIDE H L L L H ? ? 

Trefz, 
Schmidt 
2019 

Direct PTR-
TOFMS 

Diabet
es 

SIM 
WIDE H L L L H ? ? 

Turner 
2009 SIFT GCMS Diabet

es 
SIM - 

Narrow L L L L L L H 

Y. Yan 
2014 SPME GCMS Diabet

es SCAN L L L L ? L L 

Fernández 
Del Rio 
2015 

Direct PTRMS LD SCAN L L L L L L L 

Dadamio 
2012 TD GCMS LD SCAN L L L L L L L 

Eng 2015 Direct SIFTMS LD SCAN H L L L H L L 

Haneouh 
2014 Direct SIFTMS LD SIM - 

Wide L L L L L L ? 

Morisco 
2013 Direct PTR-

TOF-MS LD SCAN L L L L L ? L 

Naim 2014 Direct SIFTMS LD SIM - 
Wide H L L L H L ? 

Naim 2015 Direct SIFTMS LD SCAN L L L L L L L 

Netzer 
2009 Direct IMRMS LD SCAN L L L L L H L 
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Pijls 2016 TD GC-TOF-
MS LD SCAN L L L L L H L 

Shimamoto 
2000 Direct Sensor 

Array LD SIM- 
Narrow L L L L L H H 

Solga 2006 TD GCMS LD SIM- 
Narrow L L L L L L H 

Tangerman 
1983 TD GCMS LD SIM - 

Narrow L L L L L L H 

Van de 
Velde 2008 TD GCMS LD SIM - 

Wide L L L L L L ? 

Verdam 
2013 TD GCMS LD SIM - 

Narrow L L L L L L L 

Hicks 2015 Direct SIFTMS IBD SCAN L L L L L L L 

Bodlier 
2015 Direct GC-TOF-

MS IBD SIM 
Narrow L L L L L ? H 

Dryahina 
2017 Direct SIFTMS IBD SIM 

WIDE L L L L L L ? 

Kokoszka 
1993 Direct GCMS IBD SIM 

Narrow L L L L L L H 

Monasta 
2017 Direct IMRMS IBD SIM 

WIDE H L L L H H ? 

Patel 2014 Direct SIFTMS IBD SIM 
WIDE H L L L H L ? 

Pelli 1999 Direct GCMS IBD SIM 
Narrow L L L L L L H 

Reider 
2016 Direct SIFTMS IBD SIM 

WIDE L L L L L L ? 

Sedghi 
1994 Direct GCMS IBD SIM 

Narrow L L L L L L H 

Amal 2013 
TD GCMS 

OG 
Cancer

s 
SCAN H L L L H ? L 

Bouza 2017 
SPME GCMS 

OG 
Cancer

s 
SCAN H L L L H L L 

Chin 2018 
TD GCMS 

OG 
Cancer

s 
SCAN H L L L H L L 

Fielding202
0 

Direct GCMS 
OG 

Cancer
s 

SCAN H L L L H L L 

Garcia 
2014 

SPME GCMS 
OG 

Cancer
s 

SCAN H L L L H L L 

Basrash 
2015 TD GCMS Breast 

Cancer SCAN L L L L L L L 

Peng 2010 TD GCMS Breast 
Cancer SCAN L L L L L L L 
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Phillips 
2006 TD GCMS Breast 

Cancer SCAN L L L L L ? L 

Wang 2014 SPME GCMS Breast 
Cancer SCAN L L L L L ? L 

Zhang 2020 SPME GCMS Breast 
Cancer SCAN L L L L L L L 

 

Supplementary table 4. Modified QUADAS-2 

  
QUADAS-2 QUADAS-2 Modified  

Risk of bias 

Patient 
selection 

Was a consecutive or random 
sample of patients enrolled? 

Were patients sampled 
representative of population? Am 

Was a case-control design 
avoided? 

Does the study include positive 
and negative (healthy) 

populations for comparison? 
Am 

Did the study avoid inappropriate 
exclusions? 

Did the study avoid inappropriate 
exclusions Un 

Index test 

If a threshold was used, was it 
prespecified? Validation of results performed? Am 

Were the index test results 
interpreted without knowledge of 

the results of the reference 
standard? 

Was the index test and 
interpretation of data performed in 

standardised and reproducible 
fashion? 

Am 

Reference 
standard 

Is the reference standard likely to 
correctly classify the target 

condition? 

Is the reference standard likely to 
correctly classify the target 

condition? 
Un 

Were the reference standard 
results interpreted without 

knowledge of the results of the 
index test? 

- Om* 

Flow and 
timing 

Was there an appropriate interval 
between index test and reference 

standard? 

Was there an appropriate interval 
between index test and reference 

standard? 
Un 
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Did all patients receive the same 
reference standard? 

Did all patients receive the same 
reference standard? Un 

Were all patients included in the 
analysis? 

Were all patients included in the 
analysis? Un 

  
      

Applicability 
concerns 

Patient 
selection 

Are there concerns that the 
included patients and setting do 
not match the review question? 

Are there concerns that the 
included patients and setting do 
not match the review question? 

Un 

Index test 
Are there concerns that the index 
test, its conduct, or interpretation 
differs from the review question? 

Are there concerns around 
suitable reproducibility and 

sensitivity of the chosen index 
test? 

Am 

Reference 
standard 

Are there concerns that the 
target condition as defined by the 

reference standard does not 
match the question? 

Are there concerns that the target 
condition as defined by the 

reference standard does not 
match the question? 

Un 

Am = amendment. Om = omitted. Ad = addition. Un = unchanged. *Criteria omitted as not 

applicable in the case of phase 1 biomarker discovery studies.  

REVIEW QUESTION Test population: human subjects Index test(s): VOC analysis within 

exhaled breath only. Reference standard: the accepted standard for diagnosis of disease in 

that field. Target condition: cancer/diabetes/Inflammatory bowel disease/liver disease Setting: 

hospital, medical centre Intended use of the index test: diagnostic Patient presentation: 

routine investigation for symptoms of malignancy/disease Prior testing: not applicable 
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Supplementary Figure 2. PCA plot of volatiles released by patients, arranged by functional 

group (A) for; cancer (n27) vs other (n38). B. Compounds to the left of the image are increased 

in cancer. All studies shownare non-exclusionary analytical approaches. Ellipses represent 

95% CI. 

 

 

 

Supplementary Figure 3. PCA plot of volatiles released by patients, arranged by functional 

group for; cancer (n27), COVID-19 (n5) vs other (n38). Ellipses represent 95% CI. 

Lung Cancer: (Bajtarevic et al. 2009; Bousamra et al. 2014; Buszewski et al. 2011, 2012; 
Chen et al. 2005; Corradi et al. 2015; Crohns et al. 2009; Deng, Zhang, and Li 2004; Feinberg 
et al. 2016; Filipiak et al. 2014; Fu et al. 2014; Fuchs et al. 2010; Gaspar et al. 2009; Handa 
et al. 2014; Kischkel et al. 2010; Li et al. 2015; M. Ligor et al. 2009; T. Ligor, Pater, and 
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Buszewski 2015; H. Ma et al. 2014; W. Ma et al. 2015; Peled et al. 2012; Gang Peng et al. 
2009; G. Peng et al. 2010; Michael Phillips et al. 2003, 2007, 2008; Poli et al. 2005, 2010; 
Rudnicka et al. 2011; Sakumura et al. 2017; Schallschmidt et al. 2016; Schumer et al. 2015, 
2016; Skeldon et al. 2006; Song et al. 2010; Ulanowska et al. 2011; Y. Wang et al. 2012; 
Wehinger et al. 2007; Zou et al. 2014; Capuano et al. 2015; M. Phillips et al. 1999; Callol-
Sanchez et al. 2017) 

 

Diabetes: (K. Yan et al. 2014; Fan et al. 2014; Turner et al. 2009; Minh et al. 2011; Lee et al. 
2009; Greiter et al. 2010; Trefz, Obermeier, et al. 2019; Y. Yan et al. 2014; Saasa et al. 2019; 
Trefz, Schmidt, et al. 2019; Halbritter et al. 2012; Saidi et al. 2018; Novak et al. 2007; Stevens 
et al. 2013) 

 

Liver: (Fernández Del Río et al. 2015; Pijls et al. 2016; Eng et al. 2015; Dadamio et al. 2012; 
Verdam et al. 2013; Shimamoto, Hirata, and Katsu 2000; Solga et al. 2006; Alkhouri et al. 
2014; Hanouneh et al. 2014; Morisco et al. 2013; Netzer et al. 2009; O’Hara et al. 2016; 
Sehnert et al. 2002; Tangerman, Meuwese-Arends, and van Tongeren 1983; Alkhouri et al. 
2015; Van den Velde et al. 2008) 

 

IBD: (Hicks et al. 2015; Dryahina et al. 2017; Patel et al. 2014; Bodelier et al. 2015; Monasta 
et al. 2017; Rieder et al. 2016; Baranska et al. 2016; Kokoszka et al. 1993; Sedghi et al. 1994; 
Pelli et al. 1999) 

 

Breast Cancer: (Barash et al. 2015; Michael Phillips et al. 2006; G. Peng et al. 2010; Zhang 
et al. 2020; C. Wang et al. 2014) 

 

Upper gastro-intestinal (UGI) cancers: (Bouza et al. 2017; Chin et al. 2018; Amal et al. 2013; 
García et al. 2014; Fielding et al. 2020) 
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Abstract  
Volatile compounds, abundant in breath, can be used to accurately diagnose and monitor a 

range of medical conditions. This offers a non-invasive, low-cost approach with screening 

applications; however, uptake of this diagnostic approach has been limited by conflicting 

published outcomes. Most published reports rely on large scale screening of the public, at 

single time points and without reference to ambient air. Here, we present a novel approach to 

volatile sampling from cellular headspace and mouse breath that incorporates multi-time point 

analysis and ambient air subtraction revealing compound flux as an effective proxy of active 

metabolism. This approach to investigating breath volatiles offers a new avenue for disease 

biomarker discovery and diagnosis. Using gas chromatography mass spectrometry (GC/MS), 

we focus on low molecular weight, metabolic substrate/by-product compounds and 

demonstrate that this non-invasive technique is sensitive (reproducible at ~1 µg cellular 

protein, or ~500,000 cells) and capable of precisely determining cell type, status and 

treatment. Isolated cellular models represent components of larger mammalian systems and 

we show that stress and pathology-indicative compounds are detectable in mice, supporting 

further investigation using this methodology as a tool to identify volatile targets in human 

patients. 

  



88 
 

Introduction 
Volatile Organic Compounds (VOCs) are small, carbon containing compounds that are found 

at least partially in the gaseous state at standard temperature and pressure. The human 

‘volatilome’ describes the VOCs that are produced and metabolised within the human body 

(Amann et al. 2014). These compounds provide valuable insights into metabolic processes 

and can be detected from the breath, skin, urine, faeces and saliva (Amann et al. 2014; 

Drabińska et al. 2021), providing an opportunity to diagnose and monitor treatment as well as 

measure bodily functions. 

A large amount of research has been conducted upon human breath with a range of VOCs 

linked to disease (Issitt et al. 2022). However, In the field of breath and ‘smell’ diagnostics, 

more human research (e.g. sampling individually and directly from breath) has thus far been 

conducted than research that tests volatile outcomes from preclinical, pathogenically 

representative, cellular models, limiting mechanistic understanding of VOC metabolism. There 

is a paucity of published research linking cellular processes and VOC metabolisms to identify 

diagnostically powerful and translatable VOC biomarkers of cellular and disease processes 

(Issitt et al. 2022). We focus here upon breath as it provides insights into systemic, internal 

bodily processes via diffusion between the lungs and blood.  

Many methodological approaches for breath VOC collection have been described (Blanchet 

et al. 2017; Lawal et al. 2017; Bruderer et al. 2019; Hanna et al. 2019) and some metabolic 

processes have been linked to the volatilome, such as reactive oxygen species production of 

aldehydes and alkanes (Shibamoto 2006; Liu, Li, and Duan 2019; Amann et al. 2014) and 

microbial function linked to sulphur compounds like dimethyl sulphide (Hanouneh et al. 2014; 

Issitt et al. 2022). Diagnostic applications of VOCs remain limited in the clinic, in part due to 

conflicting and confounding results (Issitt et al. 2022).  

Useful VOC biomarkers should be descriptive of a condition while overcoming environmental, 

individual and methodological variabilities. Reported breath VOC variability accrues from 

individual comorbidities and variations in analytical and collection methods, leading to reduced 

sensitivity and lack of recognition of potentially useful biomarker compounds. Commonly used 

methodological approaches also rely on single time point sampling and do not take into 

account the ambient volatile environment, allowing environmental variability to influence and 

reduce reported outcome precision, relying instead upon substantial deviations from the norm 

and reducing the utility of breath volatiles through loss of information. New approaches and 

perspectives are therefore needed to contextualise the valuable research done so far and to 

identify robust volatile biomarkers to provide fast, non-invasive, low-cost diagnostics.  
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Metabolism of VOCs, defined here as flux (reported in grams compound per gram organism 

weight per time, i.e. g g-1 s-1), considers both release and consumption. Production of 

compounds can be an expression of metabolic products, for example; acetone release in the 

breath from alterations in metabolism (Das, Pal, and Mitra 2016) and carbon dioxide release 

from glucose metabolism. Emissions of VOCs may also be caused by release from saturated 

tissues, such as muscular release of isoprene in human breath during exercise (Hori et al. 

2020). Consumption of VOCs can also be observed through active metabolism, such as with 

CYP450 enzymes in the human liver (O’Hara et al. 2016) or consumption of oxygen. 

Quantifying and understanding healthy human metabolism and its impact on VOCs is a 

developing field and is necessary to define population variability and compound-specific 

standard ranges in human breath.  

Uptake of compounds is not reported as often as release (Issitt et al. 2022) and so volatile 

‘sinks’, the use of VOCs by cells as substrates, may be overlooked, as a result of collection 

methodology and analytical focus using non targeted gas chromatography mass spectrometry 

techniques. Non-targeted approaches primarily detect relatively concentrated material (ppbv) 

whereas targeted approaches are generally capable of quantifying at much lower 

concentrations (pptv).  

In the case of disease, understanding systemic uptake/release is critical in development of 

biomarkers for clinical application. Disease metabolism outcomes depend upon compound 

reactivity, transportation time spent within active metabolic regions or saturated tissues, and 

active metabolic by-products and interactions with the disease pathology (Issitt et al. 2022). 

Alterations in VOC flux stem from cellular environmental changes which influence metabolic 

response, either as a result of dysfunction or as the result of normal processes, such as 

exercise. Identification and separation of these processes in the volatilome is challenging 

because many cellular processes, dysfunctional or otherwise, produce similar changes in 

environmental and physiological state.  For example, a shift towards glycolysis in cancer 

(Feinberg et al. 2017; Sreedhar and Zhao 2018) or mitochondrial dysfunction (Issitt et al. 

2019), may result in similar global/tissue alterations in pH and reactive oxygen species, 

producing VOCs associated with this change. Breath volatiles can also be seen to change as 

a result of normal metabolisms, such as with fasting and eating (Statheropoulos, Agapiou, and 

Georgiadou 2006; Krilaviciute et al. 2019) or circadian rhythms (Wilkinson et al. 2019).  It is 

therefore important to be able to identify and characterise variation in cellular type, status 

(disease) and response to environmental stress. 

To investigate if volatile metabolism of different cell type and status (disease) can be detected, 

we quantified volatile signatures (12 discrete compounds via SIM) of cells derived from two 
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tissues and disease pathologies. We further reveal how environmental and cellular changes 

elicit detectable alterations in the healthy cell volatilome, through treatment with chemotherapy 

drug, doxorubicin. These volatile metabolisms, linked to phenotype and pathophysiology, 

provide potential targets for diagnostic research. We demonstrate how these cellular models 

are applicable in mammalian analysis through quantification of mice and human breath 

volatiles, targeting the specific compounds which have shown most promise in these early 

analyses. 

These analyses rely upon a novel, non-invasive volatile sampling method, which allows multi-

time point analysis of VOC consumption and production from cellular headspace and can be 

used in an ethically appropriate manner with mice volatile sampling. In this work we use 

targeted mass spectrometry, or ‘selective ion mode’ (SIM), and multiple time points to observe 

VOC metabolisms. 
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Materials and Methods 

Cell Culture and Treatment Conditions 

Breast cancer cell lines MDA-MB-231 and MCF7 and kidney-derived cell lines; HEK-293t and 

RCC4 were grown in Dulbecco’s Modified Eagle Medium (DMEM, Thermo Scientific, 

Waltham, MA, USA), 25 mM glucose, supplemented with L-glutamine (4 mM) and 5% foetal 

bovine serum (Thermo Scientific, Waltham, MA, USA). The nontransformed human epithelial 

mammary cell line MCF10A was grown in DMEM/F12 (Thermo Scien-tific, Waltham, MA, 

USA) supplemented with 5% FBS, 4 mM L-glutamine (Thermo Scien-tific, Waltham, MA, 

USA), 20 ng/mL EGF (Sigma-Aldrich, Roche; Mannheim, Germany), 0.5 mg/mL 

hydrocortisone (Sigma-Aldrich, Burlington, MA, USA), 100 ng/mL cholera toxin (Sigma-

Aldrich, Burlington, MA, USA) and 10 µg/mL insulin (Sigma-Aldrich, Bur-lington, MA, USA). 

All cell culture media was supplemented with 0.1 mM NaI and 1 mM NaBr (to model 

physiological availability of iodine and bromide). All cells were grown at 37 °C with 5% CO2. 

MDA-MB-231 and MCF7 cells were a gift from Dr Mustafa Djamgoz. MCF10A were a gift from 

Dr. Norman Maitland, while HEK293t were a gift from Dr. Jared Cartwright and RCC4 were a 

gift from Dr. Dimitris Lagos. 

To initiate the volatile collection, the procedure cells were trypsinised, and ~500,000 cells were 

seeded into 8 mL complete media. Cells were then allowed to attach for 3 h, washed with 

warm PBS 2× and an 8 ml treatment media was applied. Volatile headspace sampling was 

performed 24 h later. 

Doxorubicin was dissolved in DMSO. Doxorubicin treatment was applied in DMEM  25 mM 

glucose, supplemented with L-glutamine (4 mM) and 5% FBS for the MDA-MB-231 cells and 

treatment medium for MCF10A. Appropriate doxorubicin concentration was determined using 

MTT and SRB assays, which assess metabolic activity and protein concentration as a 

measure of growth, respectively. Concentrations for doxorubicin treatment were chosen based 

on no less than 25% reduction in growth of metabolic activity following 24 h of treatment and 

supporting evidence in the literature of similar concentrations, eliciting senescent and 

maintaining growth [61, 56, 57]. This was determined by SRB, MTT and trypan blue exclusion 

assays (Figure S3). An amount of 750 nM was chosen to induce chronic cell stress over this 

time period while reducing the amount of cell death. 
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Headspace and Breath Sampling 

Cellular Headspace Sampling 

Following the incubation period (24 h), 5 mL of supernatant medium was removed and plates, 

with lids removed, were placed into specially constructed chambers (Figure 1B) on a platform 

rocker on its slowest setting. Medium was equilibrated with lab air by flushing the chamber for 

20 min using a Yamitsu air pump with a flow rate of 750 mL per min. Time zero (T0) samples 

were taken using an evacuated 500 mL electropolished stainless steel canister 

(LabCommerce, San Jose, USA) through Ascarite® and Drierite® traps (Redeker et al., 2007). 

The chamber headspace was then isolated by closing the lid valves and the chamber itself 

was left on the rocker for 120 min, at which point another air sample (T1) was collected. Cells 

were removed from the chamber, washed with PBS twice and lysed in 500 µl RIPA buffer 

(NaCl (5 M), 5 mL Tris-HCl (1 M, pH 8.0), 1 mL Nonidet P-40, 5 mL so-dium deoxycholate (10 

%), 1 mL SDS (10%)) with protease inhibitor (Sigma-Aldrich, Roche; Mannheim, Germany). 

Protein concentration of lysates were determined using the Bradford assay [62]. Background 

(medium only) readings were taken for all medium types and treatments, cell free and DMSO 

(vehicle), following 24 h incubation at 37 °C and 5% CO2 (Figure S1). DMSO concentration 

was used equivalent to the highest equivalent dose of doxorubicin; 0.000008%. These 

readings had no significant differences (determined by ANOVA) and were therefore pooled 

and the averages subtracted from each individual cell reading. 

 

Mouse Headspace Sampling 

Nine week old female Rag2−/− Il2rg−/− mice were selected for sampling. This mouse strain is 

an immunocompromised model. Experimental replicates were 2 mice from a cage across 3 

separate litters/cages: 6 mice in total. Experiments have been reported inline with the ARRIVE 

guidelines. 

Using tube handling methods, mice were gently placed with a cardboard tube and blue paper 

into the custom chambers. Flushing the chamber for 10 min using a Yamitsu air pump with a 

flow rate of 750 mL per min in undisturbed conditions, mice were allowed to acclimatise. T0 

samples were then taken, and as with cellular headspace, the chambers were sealed for 20 

min and T1 samples were then taken. 

 

GC-MS, Calibration and Peak Analysis 

Collected canister samples were transferred to a liquid nitrogen trap through a pressure 

differential. Pressure change between beginning and end of “injection” was measured, 
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allowing calculation of the moles of gas injected. Sample in the trap was then transferred, via 

heated helium flow, to a Restek© (Bellefonte, PN, USA) PoraBond Q column (25 m length, 

0.32 mm ID, 0.5 µm diameter thickness) connected to a quadrupole mass spectrometer 

(Aglient/HP 5972 MSD, Santa Clara, CA, USA). All samples here were analysed with a select 

ion mode (SIM) targeting the selected compound’s greatest detected mass unit. All samples 

were run within 6 days of collection. The oven program was as follows: 35 °C for 2 min, 10 

°C/min to 115 °C, 1 °C/min to 131 °C and 25 °C min to 250 °C with a 5 min 30 sec hold. The 

quadrupole, ion source and transfer line temperatures were 280, 280 and 250 °C, respectively. 

Calibration was performed using standard gases (BOC Specialty Gases, Woking, UK) and 

injections of various volumes, equal to different total amounts of compound. Linear regression 

analyses of calibration curves confirmed strong linear relationships between the observed SIM 

peak areas and moles of gas injected for each VOC (r2 > 0.9 in all cases). For compounds 

not purchased as speciality gases with ppbv concentration, 1–2 mL of compound in liquid 

phase was injected into a butyl sealed Wheaton style glass vial (100 mL) and allowed to 

equilibrate for 1 h. An amount of 1 mL of headspace air was then removed using a gas tight 

syringe (Trajan, SGE) and injected into the headspace of a second 100 mL butyl sealed 

Wheaton style glass vial. This was then repeated, and 1 mL of the 2nd serial dilution vial was 

injected into the GCMS system with 29 mL of lab air. This was performed for methanethiol 

(MeSH (SPEXorganics, St Neots, UK)), isoprene (Alfa Aesar, Ward Hill, MA, USA), acetone 

(Sigma-Aldrich, Burlington, MA, USA), 2- & 3-methyl pentane and n-hexane (Thermo 

Scientific, Waltham, MA, USA). 

Nearly all reported compounds detected by the GC-MS were confirmed by matching retention 

times and mass–charge (m/z) ratios with known standards. This is in addition to a compound 

with retention time of 27.3, with masses 57 and 43 (M57), which, by relative distribution 

pattern, was determined, tentatively, to be 2-butanone from the NIST library and the human 

metabolome database (Wallace 2020). 

Concentrations were calculated using peak area. Peak area/moles injected were calculated 

from previously generated calibration curves. Sample VOC concentrations were then 

normalised to CFC-11 concentrations (240 parts-per-trillion by volume (ppt)). CFC-11 was 

used as an internal standard, per sample standard for normalisation as atmospheric 

concentrations of CFC-11 are globally consistent and stable (K. R. Redeker, Davis, and Kalin 

2007). 

To account for differences in rates of proliferation (MCF10a cells proliferate at a higher rate 

than both MCF7 and 231 cells), results from GCMS analysis were normalised to protein 

content at time of sampling per plate using a Bradford assay (Bradford 1976). 
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Molecular Assays 

Sulphorhodamine B Assay 

To determine cell growth, SRB assay was performed. The SRB assay measures cell density 

based on protein content [65]. Following incubation, cell monolayers were fixed with 10% 

(wt/vol) trichloroacetic acid (TCA) and stained for 30 min, after which the excess dye was 

removed by washing repeatedly with 1% (vol/vol) acetic acid. The protein bound dye was 

dissolved in 10 mM Tris base solution for OD determination at 510 nm using a microplate 

reader (Vichai and Kirtikara 2006). 

 

MTT Assay 

MDA-MB-231 and MCF10A cells were seeded onto 96 well plates at a density of 8000 cells 

per well. Serial dilutions across the plate were performed once the cells had attached to the 

plate (4 h). Cells were then placed in cell culture incubation conditions. A total of 24 h later, 

20 µL of MTT solution was added to each well and incubated for 3 h. Medium was removed, 

and precipitates solubilised in 100 µL DMSO. Absorbance was then measured at 570 nm 

using a Clariostar Plus microplate reader (BMG Labtech, Offenburg, Germany). 

 

Trypan Blue Exclusion Assay 

Trypan blue exclusion assay was performed on MDA-MB-231 and MCF10A cells following 

treatment with DOX or DMSO. Following a published protocol [66], trypsinised cells were 

mixed with 0.4% Trypan blue solution and counted to determine the number of unstained 

(viable) and stained (nonviable) cells. 

 

Data Analysis 

Figures were arranged and statistical analyses were performed with GraphPad (Prism). 

Specific statistical analysis can be seen in figure legends. ANOVA with Bonferroni or Tukey 

post hoc analysis was performed for each data set to determine statistical significance. 

 

Ethical Approval 

Approval for all animal procedures was granted by the University of York Animal Welfare and 

Ethical Review Body. All procedures were carried out under authority of a UK Home Office 

Project Licence and associated Personal Licences.  
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Results 

Volatile Flux in Cellular Headspace 

The methodological approach is outlined in Figure 1a. Headspace sampling from custom 

chambers (Figure 1b) from multiple time points allows calculation of cellular volatile fluxes 

(pg/ug/h−1). 

 Headspace analysis was conducted for media only and all supplementation (dimethyl 

sulfoxide (DMSO) and doxorubicin) controls (Figures 1 and S1). No significant variation was 

observed between Dulbecco’s Modified Eagle’s Medium (DMEM), DMEM:F12 media (Figure 

S1E–G) or with the addition of DMSO (Figure S1E–G). Because no variation was observed 

between DMEM and DMEM:F12 with the DMSO addition, DMSO values represent a 

combination of DMEM (n = 3) and DMEM:F12 (n = 3) with the DMSO addition. 

Headspace above cells had appropriate media controls (average) deducted, demonstrated in 

Figures 1C and S1A,B. This was then normalised to protein content (Figures 1D and S1C,D) 

to give the ug of the compound per hour per ug of protein. This is shown for MDA-MB-231 

cells, but the media subtraction process was repeated for each cell line and treatment. 
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Figure 1. Direct volatile sampling of cellular headspace. (A) Schematic overview for 

methodological approach; headspace sampling and generation of VOC flux. (B) Image of 

collection chamber. (C) Selected volatile fluxes (g/h/plate) for 10 cm dishes containing DMEM 

media control only vs. plate containing MDA-MB-231 (mean ± SEM; n = 6). (D) Media 

subtracted and protein normalised VOC flux for MDA-MB-231 cells (mean ± SEM; n = 6). 

ANOVA followed by Bonferroni post hoc test was performed. 

 

Volatile Profiles by Cell Type 

Comparison of cells growing at basal capacity (i.e., in fully supplemented, optimum media) 

within a laboratory setting revealed differences in selected volatiles in the headspace. Methyl 

chloride (MeCl), isoprene and acetone significantly differ between cell lines. Cancer cell lines 

show consistently higher levels of MeCl and acetone compared to non-cancer cell lines. 
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Headspace Volatiles Differ between Breast and Kidney Derived Cells 

For noncancer cells (Figure 2A), HEK293t cells show significant uptake of MeCl compared to 

MCF10A and a significant release of isoprene (Figure 2A). HEK293T cells consumed 

significantly more acetone than MCF10a, and M57 uptake was also increased (Figure 2A). In 

contrast, 2-methyl pentane (2-MP) production appears increased in HEK293T cells compared 

to MCF10A (Figure 2A). 
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Figure 2. Cellular volatile profiles of breast and kidney derived cell lines. (A) Volatile flux 

(g/hr/µg) for noncancerous derived cell lines, from breast; MCF10a and kidney; HEK293t. (B) 
Volatile flux for cancerous breast derived cell lines, MCF7 and MDA-MB-231. (C) Volatile flux 

for cancerous kidney derived cell line RCC4. Media subtracted and protein normalised VOC 

flux for MCF10a (n = 9); MCF7 (n = 4); MDA-MB-231 cells (n = 6). CHCI3 = Chloroform, DMS 

= Dimethyl sulphide, MeBr = Methyl bromide, MeCl = Methyl Chloride, MeI = Methyl iodide, 

MeSH = Methanoethiol. Boxplot whiskers show median ± Tukey distribution. ANOVA followed 
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by Bonferroni post hoc test was performed; * p  <  0.05; ** p  <  0.01; *** p  <  0.001; **** p  < 

0.0001. 

 

Headspace Volatiles Differ between Cancer and Noncancer Breast Epithelial Cells 

When comparing the headspace samples from breast cancer MCF7 and MDA-MB-231 to 

those of noncancer MCF10A cells derived from breast tissue (Figure 2A–C), MeCl levels were 

enhanced over MCF7 and were significantly enhanced over MDA-MB-231 cells compared with 

MCF10A. Methyl bromide (MeBr) and dimethyl sulphide (DMS) levels were increased over 

MDA-MB-231 cells compared to both MCF7 and MCF10A. MCF7 cells exhibited significantly 

increased production of isoprene compared to MCF10A, which exhibited isoprene uptake. 

MDA-MB-231 cells also revealed the production of isoprene rather than consumption. Acetone 

uptake is reduced in MCF7 cells compared to MCF10A and MDA-MD-231 and show significant 

changes in the production of acetone; however, the range is large (Figure 2B). (Figure 2E). 

M57 was increased in MDA-MB-231 cells compared with MCF10A. 

 

Headspace Volatiles Differ between Cancer and Noncancer Kidney Derived Cells 

For cells derived from kidney (Figure 2C), HEK293T cells showed the uptake of MeCl, which 

is unique when compared to all other untreated cells lines. RCC4 cells showed little production 

or consumption of MeCl. Isoprene was significantly more concentrated in the headspace of 

HEK293T cells compared to RCC4, which showed a metabolic uptake. Acetone consumption 

was significantly reduced in RCC4 cells compared to HEK293t (Figure 2C). RCC4 cells 

showed some uptake of 2-MP vs. HEK293T production, with increased production of n-hexane 

vs. HEK293T (Figure 2C). 

 

Effects of Chemotherapeutic Agent, Doxorubicin, upon Cellular Volatile Profiles 

Doxorubicin treatment produced significant alterations in the volatile profile of both MCF10A 

and MDA-MB-231 cells, as shown in Figure 3. The treatment of MDA-MB-231 with 250 nM 

and 750 nM revealed consistent trends with increasing concentrations (Figure S2A). For the 

MDA-MB-231 cells, MeCl switched significantly from production to uptake with increasing 

concentrations of doxorubicin. Methanethiol (MeSH) also showed increased uptake, while 

DMS was significantly increased in its release. The uptake of acetone by the MDA-MB-231 

cells was observed, but it was nonsignificant. Significant uptake by MDA-MB-231 cells was 

observed for M57, with no change in MCF10A. Doxorubicin also produced significant 
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increases in 3-methyl pentane (3-MP) and provoked n-hexane release in MDA-MB-231 cells. 

MCF10A cell volatiles changed in a similar manner as MDA-MB-231 in response to the 

doxorubicin treatment. MeCl showed a similar shift to uptake from production, where DMS 

production was increased, and chloroform (CHCl3) was produced. 

MTT assay was performed as an indication of metabolic activity. MCF10A cells show greater 

metabolic activity than the MDA-MB-231 cells. Treatment with doxorubicin increased the 

metabolic activity by this assay compared to vehicle (Figure S2A). The sulphorhodamine B 

(SRB) assay revealed no significant variations for cell growth at 24 h between treatments. At 

48 h, the doxorubicin treatment suppressed growth in both cell lines (Figure S3). Trypan blue 

exclusion revealed a nonsignificant reduction in cell viability at 370 and 740 nM doxorubicin 

for MDA-MB-231 cells and a similar but significant reduction in cell viability in MCF10a cells 

exposed to 740 nM doxorubicin (Figure S3). 

 

 

Figure 3. Doxorubicin induces volatile response in breast cell lines. (A-C) Boxplot for select 

volatile organic compounds (median ± Tukey distribution; n = 6). ANOVA followed by Tukey 

post hoc test was performed; * p  <  0.05; ** p  <  0.01; *** p  <  0.001; **** p  < 0.0001. 

Doxorubicin has been abbreviated to Dox.  

 

Breath and Faecal Volatiles from Mice 

Collection of breath from 9 week old female Rag2−/− Il2rg−/− mice using the sampling 

chambers (Figure 1B) reveals metabolic interaction with several volatile compounds (Figure 

4). Because the mice were allowed to behave normally in the chambers for 20 min following 

10 min of acclimatisation, the presence of mouse (in white, Figure 4) is representative of both 
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mouse breath and faecal volatiles, whereas faecal (in orange, Figure 4) indicates faecal 

material volatiles only. 

Mice show significant positive production of MeCl compared to faecal material, as well as the 

production of isoprene (Figure 4A). The 3-MP uptake by mice is significant, although the 

uptake is reduced by the presence of faecal matter (which generally produced 3-MP) (Figure 

4C). 

 

 

Figure 4. Volatile organic compounds from mouse breath and faecal material. (A-C) Boxplot 

for select volatile organic compounds from chambers with single mice vs. chambers with mice 

removed and faecal material. Flux in g/h (median ± Tukey distribution; n = 6 mice across 3 

separate cages). ANOVA followed by Bonferroni hoc test was performed; **** p  <  0.0001. 
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Discussion 
This research demonstrates that volatile analysis is capable of separating cellular models by 

cellular type, disease status and response to chemically induced stress. Furthermore, we have 

shown that representative, discrete indicator compounds are found in mouse breath and are 

actively produced or metabolised. A selection of these compounds, including methyl halides 

have also recently been reported in human breath (Shahi et al. 2022). These outcomes 

support further research into their potential use as biomarkers of disease. 

 

Cellular Volatiles and metabolisms 

There are limited data on cellular headspace volatile concentrations, and less on volatile 

metabolites. Headspace volatiles for MCF10A, MCF7 and MDA-MB-231 cells have previously 

been investigated (Silva et al. 2017; Lavra et al. 2015). HEK293T cells have also had some 

limited investigation (Li et al. 2016). This is the first time that RCC4 cell headspace volatiles 

have been reported. In this work we have focused on a novel approach to describing the 

dynamics of 12 select VOCs, reflective of cellular metabolisms, not discovery of new volatiles 

using non targeting approaches. This allows greater precision and resolution in assessment 

of select VOC dynamics, which is well suited to a longitudinal approach.  

A further challenge in volatile breath research is the paucity of data regarding metabolic 

processes and alterations dependent upon compound and/or cellular type/state. For example, 

while chloroform exposure is well documented and the compound is broken down in the liver 

by CYP450 enzymes (Constan et al. 1999), its (normal) metabolic consumption and 

production in mammalian systems has not previously been described. 

Likewise, human erythrocytes contain a glutathione-s-transferase isoenzyme that metabolises 

methyl halides (Redford-Ellis and Gowenlock 1971; Hallier, Deutschmann, et al. 1990) but this 

is not present in all humans (Peter et al. 1989). Methyl halide metabolism remains unidentified 

and undescribed in human systems. All plants and fungi measured to date produce methyl 

halides but the functional reason for this metabolism remains unclear (Manley 2002). A role 

for active metabolism of methyl halides in mammalian systems is presented in this paper, as 

we have shown active production and consumption of MeCl, MeBr and MeI in varying 

situations. Their potential as disease biomarkers however, requires further research. 

In our tested cellular systems, metabolism of MeCl is descriptive of cellular type with cancer 

cells exhibiting increased release relative to their healthy controls. Under treatment of 

doxorubicin, MeCl uptake is seen in response. Furthermore, this compound can be quantified 

in the breath of mice and humans. The association of methyl halides with mammalian systems 
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has been limited, overexposure of MeCl in rats was not linked to DNA adducts where MeI and 

MeBr have been shown to cause systemic DNA methylation (Bolt and Gansewendt 1992). 

Long term exposure of MeCl at high concentrations (1000ppm) produced renal tumours in 

male rats and glutathione depletion (Hallier, Jaeger, et al. 1990).  

MeSH and DMS are linked as sulphur containing compounds and are metabolites for each 

other, with MeSH serving as a precursor to DMS (with a methylating agent) and DMS serving 

as a precursor to MeSH (with a demethylating agent) (Carrión et al. 2017, 2019). Glutathione 

(GSH) based metabolism of MeCl can result in formation of MeSH (Arts et al. 2019). Both 

MeSH and DMS have been linked to bacterial processing (Hanouneh et al. 2014; De Vincentis 

et al. 2019). HepG2 (hepatocarcinoma cells) and TBE have been shown to produce DMS 

(Schivo et al. 2014; Mochalski et al. 2013), whereas we have only shown production in MDA-

MB-231 cells and in MCF10a and MDA-MB-231 cells following treatment with Doxorubicin. 

Sulphur containing VOCs have been shown in human breath for a variety of diseases and 

processes (Issitt et al. 2022). Sulphur is also a dietary requirement (World Health Organisation 

1985) which suggests that diet will impact sulfur volatile metabolism, and breath volatile 

concentrations, in individuals. 

Isoprene and isoprenoids, as endogenous biomarkers, have been shown to be linked in 

patients with muscular dystrophy and are outputs of the mevalonate pathway (King et al. 

2012). Monitoring their levels may be important in a variety of diseases, such as cancer, as 

isoprenoids have been shown to be important compounds in tumour biology (Mo et al. 2019). 

However, large variability between individuals, as demonstrated here and in a recent review 

(Issitt et al. 2022) show that this volatile, while the most abundant VOC in human breath, is a 

challenging biomarker for individual/cohort diagnoses. Longitudinal and metabolic 

approaches, like those described here may prove able to utilise biomarkers with high variability 

between individuals but further research is required. 

Alkanes have been associated with oxidative stress and reactive oxygen species induced lipid 

peroxidation, linked to a range of diseases (Calenic et al. 2015). 2- and 3-methyl pentane have 

been identified as potential markers of cancer (Phillips et al. 2003; Kischkel et al. 2010) as 

has hexane (Corradi et al. 2015). 2-MP has been shown to be produced by the lung cancer 

cell line NCI-H2807 (Sponring et al. 2009) whereas we have only shown production by 

HEK293t cells. 3-MP uptake has been demonstrated in the lung cancer cell line A549 

(Schallschmidt, Becker, Jung, et al. 2015; Schallschmidt, Becker, Zwaka, et al. 2015),  

Alkanes are found in the breath of patients with a range of diseases, but prevalent in cancer 

(Issitt et al. 2022). Methylated alkanes are also descriptive of oxidative stress in transplant 

rejection (Amann et al. 2014; Phillips et al. 2004). However, the interplay between methylated 
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and straight chain alkanes is less understood and so 6 carbon alkanes were targeted here. 

MCF-7 cells have been shown to release alkanes in response to oxidative stress (Liu, Li, and 

Duan 2019)which is supported by the release of 3-MP and hexane in response to Doxorubicin 

Of the compounds reported here, acetone is one of the most well documented, and has been 

identified as a volatile compound associated with altered metabolisms and the development 

of ketosis (Das, Pal, and Mitra 2016). Therefore its dynamics are of interest in models of 

cancer which show altered energy processing. Uptake of acetone has been shown in the 

headspace of A549 and TBE cells (Schallschmidt, Becker, Jung, et al. 2015; Schivo et al. 

2014) but emissions have been shown by VGP (vertical growth phase melanoma cells) (Kwak 

et al. 2013) and A549 cells (Filipiak et al. 2010). We have not shown consistent acetone 

production in any cell lines here but varying levels of consumption across all cells. HEK293t 

cells consumed the most acetone and cancerous cells showed relatively less consumption 

against non cancerous cells. 

We have shown both novel VOC targets and targets previously identified in cellular headspace 

and breath. We propose that characterization of volatiles relative to cell type and status will 

allow utilization of a “breath-print” approach, where multiple volatiles indicative of specific 

healthy states or pathologies are combined to provide accurate and specific disease 

indicators. Refinement of target VOCs will increase with further research and we have 

recommended research frameworks previously (Issitt et al. 2022).  

 

Mouse Volatiles 

Our approach minimises stress in animals, which directly influences the breathing profile (Lim 

et al. 2014; Noble et al. 2017). This longitudinal approach also allows us to view the 

compounds which are being metabolised/absorbed by mice and/or their faecal matter. Like 

humans, these mice show release of MeCl, however it is of note that these mice are 

immunocompromised and their breath volatiles may differ from standard wild type mice 

models.  

Identified active metabolisms of VOCs in mice provide targets for future disease mouse 

models and translates well into the breath of humans (Shahi et al. 2022). Here, we show 

variability over time and individual variability in mouse breath. With further research the 

expected and average human range for each compound may be understood, to produce 

standards for medical application. However, individual variability over time supports a 

longitudinal approach to diagnosis as direct comparisons between individuals may confound 

results. 
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Conclusions 
Here, we have shown a new approach to VOC headspace sampling from cells in culture and 

mice. We present novel compound metabolisms, not observed in cell lines or mice previously, 

notably, methyl halides and direct, quantified metabolic response due to drug treatment. We 

have demonstrated quantified fluxes (both consumption and production), in contrast to 

measurement of presence versus absence (Filipiak et al. 2016; Jia et al. 2019; Issitt et al. 

2022). 

Using this technique, we can identify cells from different tissues and if cells from that tissue 

are cancerous or not. Furthermore, the response to cellular stress, from the chemotherapeutic 

doxorubicin, is clearly defined in the volatile profile of both MDA-MB-231 breast carcinoma 

cells and non-cancer MCF10A cells. However, the cancer cell line MDA-MB-231 revealed 

more significant alterations for MeCl, DMS, M57, 3-MP and n-Hexane. This may have 

implications for monitoring chemotherapeutic treatments.   

Our approach to investigating volatiles considers ambient environmental compounds and the 

processing of those compounds by the body. Ambient compounds which are taken up by cells 

or the body may be active metabolic substrates or accidentally metabolised, however these 

reported metabolisms require further investigation. Volatile metabolisms in mammalian 

systems is an emerging field and the processing of environmentally available VOCs takes into 

consideration the use of these compounds as potential substrates or chemical interactants.  

Using this approach may allow researchers to investigate volatile compounds in a new way 

for volatile biomarker discovery and diagnostic procedures. The compounds investigated here, 

including methyl halides present an opportunity to explore metabolisms as they are processed 

by cells and present in cellular headspace and breath. Methyl chloride is consistently 

enhanced in mammalian breath and cellular headspace and its significant alterations in 

response to cellular stress may translate well into breath. Several compounds presented here 

show similar promise for human diagnosis and further research is required to refine and 

describe the representative conditions that create specific metabolic outcomes. 
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Supplementary Material 

Supplementary figure 1. Cellular volatiles and media backgrounds. Volatiles from cellular 

headspace vs cellular headspace with media control deducted (A, B). Media subtracted and 

protein normalised VOC flux for MCF10a (n = 9); MCF7 (n = 4); MDA-MB-231 cells (n = 6) 

(C,D). Volatiles released from media alone. DMEM (n = 6), DMEM:F12 (n = 4), DMSO addition 

(n = 6) (E, F, G). CHCI3 = Chloroform, DMS = Dimethyl sulfide, MeBr = Methyl bromide, MeCl 

= Methyl Chloride, MeI = methyl iodide, MeSH = Methanoethiol Boxplot whiskers show median 

± Tukey distribution. ANOVA followed by Tukey or Bonferroni post hoc test was performed. 
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Supplementary figure 2. Doxorubicin treatment of MDA-MB-231 and MCF10a. (A) MTT 

assay of varying concentrations of doxorubicin for both MDA-MB-231 and MCF10a. Relative 

levels of vehicle (DMSO) are provided at each stage (mean ± SEM; n = 3). (B, C) 
Sulforhodamine B assay over time for with doxorubicin treatment (DOX) and vehicle (DMSO, 

0.00008%) for MDA-MB-231 and MCF10a cells (mean ± SEM; n = 3). (D, E) Trypan blue 

exclusion assays following 24hr doxorubicin treatment and vehicle (DMSO, 0.00008%) for 

MDA-MB-231 and MCf10a. ANOVA followed by Bonferroni post hoc test was performed; ****p 

< 0.0001. 
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Abstract 
Hypoxia in disease describes persistent low oxygen conditions, observed in a range of 

pathologies, including cancer. In the discovery of biomarkers in biological models, 

pathophysiological traits present a source of translatable metabolic products for the diagnosis 

of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; 

the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose 

disease, however accurate volatile biomarker discovery is required to target reliable 

biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels 

and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to 

hypoxia (1% oxygen) for 24 hours. The maintenance of hypoxic conditions in the system was 

successfully validated over this time period. Targeted and untargeted gas chromatography 

mass spectrometry approaches revealed four significantly altered volatile organic compounds 

when compared to control cells. Three compounds were actively consumed by cells: methyl 

chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of 

styrene. This work presents a novel methodology for identification of volatile metabolisms 

under controlled gas conditions with novel observations of volatile metabolisms by breast 

cancer cells.  
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Introduction 
The human ‘volatilome’ describes the production and metabolism by the human body of small, 

carbon-containing compounds called volatile organic compounds (VOCs) which are gaseous 

at room temperature and pressure (Amann et al. 2014; Drabinska et al. 2021). VOCs can be 

found in abundance in the breath and are reflective of processes within the body (Drabinska 

et al. 2021; Issitt et al. 2022b). Although fluctuations of VOCs vary between individuals and 

throughout the day, disease specific ‘volatile fluxes’, or biomarkers, could provide 

opportunities to non-invasively diagnose disease, monitor treatment and measure bodily 

functions (Issitt et al. 2022a; Issitt et al. 2022b). 

The clinical potential of VOCs in diagnosis has been shown by a number of published breath 

studies (Issitt et al. 2022b). Diagnostic accuracy using breath VOC biomarkers has been 

achieved for a wide range of conditions, including various types of cancer (Jia et al. 2019; 

Issitt et al. 2022b), liver disease (De Vincentis et al. 2019), diabetes (Das et al. 2016), 

transplant rejection (Phillips et al. 2004), infections of the lung (Beccaria et al. 2018; Issitt et 

al. 2022b), liver function (using labelled VOCs) (Sangnes et al. 2019) and other conditions 

(Issitt et al. 2022b). Each study may independently achieve high sensitivity of disease 

detection (i.e. > 90%) but the reported compounds often do not translate between studies, 

slowing clinical application through conflicting and confounding results (Issitt et al. 2022b). 

However, our recent meta-analysis has shown underlying trends in chemical functional groups 

from published studies supporting potential clinical application (Issitt et al. 2022b). It is clear 

that in order to identify effective biomarkers more targeted methodological approaches are 

required to overcome variability (Hanna et al. 2019; Issitt et al. 2022b). 

VOC profiles from cell types associated with pathological conditions have been identified, for 

example, differences between breast (Lavra et al. 2015; Issitt et al. 2022a), liver (Mochalski et 

al. 2013) and mesothelioma (Little et al. 2020) cancer cell lines. However, cellular VOC studies 

tend to be non-stressed cells in high (21%, atmospheric) oxygen conditions, which is not 

consistent with many disease or normal physiological states. To accelerate biomarker 

discovery, we propose models of pathophysiological stress. For example; stress from reactive 

oxygen species (ROS) induces alkane release in breast cancer cells (Liu et al. 2019), VOCs 

which have been observed in the breath of ROS associated conditions (Issitt et al. 2022b).  

Hypoxia is a persistent reduction in oxygen from normal physiological conditions (normoxia). 

It is characteristic of a range of diseases, including, pulmonary hypertension (Young et al. 

2019) and cancer (Samanta and Semenza 2018). It induces a range of metabolic alterations, 

including reduction in adenosine triphosphate generation and inhibition of fatty-acid 

desaturation through hypoxia inducible factor activity (Wheaton and Chandel 2011; Samanta 
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and Semenza 2018; Young et al. 2019), which can produce alterations in a range of 

associated breath volatiles (Harshman et al. 2015; Mazzatenta et al. 2021). Despite its 

relevance to pathophysiology, hypoxic volatiles have yet to be investigated in vitro. This is 

partially due to the challenges associated with development of a headspace sampling tool 

which can maintain an hypoxic environment. While volatile compounds in the available, 

limited, published studies associated with hypoxia show variation in breath (Harshman et al. 

2015; Mazzatenta et al. 2021), translatable studies are required for target biomarker discovery.  

Biomarker discovery in appropriate biological models can accelerate clinical delivery by 

identifying and allowing targeted analytical approaches, separating methodical challenges 

from pathology, and improving sensitivity. Multi-timepoint sampling and approaches 

considering local environment will also accelerate clinical application of breath diagnostics and 

consideration of methodological challenges around clinical application should drive 

experimental design. We have previously demonstrated a platform and method for both 

identification of VOC metabolisms in cellular headspace over time and VOC changes in 

response to cellular stress (Issitt et al. 2022a). However, models of pathological conditions 

require further investigation to ensure biomarker discovery is translatable from cell to human. 

One of the primary sources of variance within the published literature revolves around 

methodology.  Methods of breath VOC analysis can be split into 3 main sections where 

variability between studies can arise: initial collection, sample transfer and analytical 

approach. There are many effective breath collection methods for analysis of VOCs, such as 

simply breathing into a specialised bag or use of specialised technologies (Hanna et al. 2019; 

Di Gilio et al. 2020). Many studies use single time point collection (Issitt et al. 2022b), 

considering presence verses absence, which can miss valuable metabolic information, 

particularly volatile uptake, driven via chemical reactions reflective of cellular state or through 

cellular metabolism. Furthermore, variability in local environment influences and reduces 

reported outcome precision (Doran et al. 2017; Di Gilio et al. 2020; Issitt et al. 2022b) and 

approaches should consider sampling the environment (i.e. ambient air) along with breath 

(Hanna et al. 2019). A sample, once collected, is then transferred, either directly or indirectly 

(such as through chemical traps) to an analytical instrument. There are two main analytical 

approaches for discovery and accurate detection of VOCs: targeted and untargeted. 

Untargeted approaches, investigating the breath of patients, are capable of identifying 

relatively concentrated material (ppbv) whereas targeted approaches generally are capable of 

quantifying lower concentrations (pptv). Untargeted approaches therefore may miss changes 

in important, low concentration compounds, while targeted approaches can only look only for 

a limited number of known compounds of interest, reducing discovery potential.  
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Here, hypoxic stress is applied to a well studied breast cancer cell line with the intent of 

identifying process and disease linked physiological volatile metabolisms specifically linked to 

low oxygen conditions, so that more accurate diagnostic tools can be developed and applied 

in the clinic. Both targeted and untargeted analyses are applied after sampling with a static 

headspace method that accounts for the ambient air background and allows quantification of 

cellular uptake of VOCs. It was predicted that upon successful maintenance of a hypoxic 

environment, cellular VOC profiles from hypoxic versus hyperoxic cellular models would alter 

significantly.  
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Methods 
Methods for culture of MDA-MB-231 cells, headspace sampling from custom chambers and 

GC/MS analysis have been previously described in detail (Issitt et al. 2022a). 

 

Cell culture 

MDA-MB-231 breast cancer cells (a gift from Professor Mustafa Djamgoz, Imperial College 

London) were grown in Dulbecco’s Modified Eagle Medium (DMEM, Thermo Scientific, 

Waltham, MA, USA), 25 mM glucose, supplemented with L-glutamine (4 mM) and 5 % foetal 

bovine serum (Thermo Scientific, Waltham, MA, USA). Cell culture medium was 

supplemented with 0.1 mM NaI and 1 mM NaBr (to model physiological availability of iodine 

and bromide). All cells were grown at 37 °C with 5 % CO2.  

Prior to volatile collection, cells were trypsinised, and 500,000 cells were seeded into 8 mL 

complete media in 10 cm polystyrene cell culture dishes. Cells were then allowed to attach for 

3-4 h, washed with warm PBS and 6 mL treatment media was applied. Volatile headspace 

sampling was performed 24 h later.  

 

Induction of the hypoxic environment and VOC headspace sampling 

Cells were placed in static headspace chambers as previously described (Issitt et al. 2022a) 

with new, clean silicon gaskets. Low oxygen, hypoxic gas (1 % O2, 5 % CO2, 94 % N2; 

purchased from BOC Specialty Gases, Woking, UK) was flushed through the chambers at a 

rate of 4 L/min for 10 min (chamber volume = 25 L). Chambers were then closed and placed 

at 37˚C for 2 hours to allow residual oxygen in the media to equilibrate with chamber 

headspace. Chambers were then flushed again at a rate of 4 L/min for 10 min, sealed and 

returned to 37˚C.  

After a further 24 hours, chambers were flushed again at a rate of 4 L/min for 10 min. 15 ml of 

gas standards (MeCl, 520 ppb (parts per billion); MeBr, 22 ppb; MeI, 26 ppb; DMS, 110 ppb; 

CFC-11, 400 ppb and CHCl3, 110 ppb; BOC Specialty Gases, Woking, UK) were then injected 

into the chambers through a butyl seal and time zero sample taken. Injected compounds are 

either known metabolites for cancer cells, or internal standards (CFC-11) for the analysis and 

quantification of metabolism. Final chamber concentrations were similar to environmental 

concentrations, e.g MeCl, 1.2 ppb and MeBr 0.05 ppb, particularly more polluted urban spaces 

(Redeker et al. 2007). Injected gases are the same as those used for calibration. Compounds 

not injected but detected at first time point, due to residual presence from laboratory air, 
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(including isoprene, acetone, 2-MP, 3-MP and n-hexane) were quantified.  Two time zero (T0) 

samples were taken using an evacuated 500 mL electropolished stainless steel canister 

(LabCommerce, San Jose, USA) through fine mesh Ascarite® traps (Archbold et al. 2005), 

after which the chamber was resealed and left on a platform rocker on its slowest setting for 

120 min, at which point two further air samples (T1) were collected. Duplicate samples were 

analysed with targeted and untargeted MS approaches. 

Cells were removed from the chamber, washed with PBS twice and lysed in 500 µL RIPA 

buffer (NaCl, 5 M; 5 mL Tris-HCl, 1 M, pH 8.0; 1 mL Nonidet P-40; 5 mL sodium deoxycholate, 

10 %; 1 mL SDS, 10 %) with protease inhibitor (Sigma-Aldrich, Roche; Mannheim, Germany). 

Protein concentration of lysates were determined using BCA assay (Thermo Scientific, 

Waltham, MA, USA). 

Media alone was taken through exactly the same process as cells. This has been visualised 

in supplementary Figure 1. Only acetone was shown to have any significant variability between 

conditions. These media blank outcome averages were subtracted from respective cellular 

samples prior to protein normalisation. Comparative controls include lab air blanks and those 

data available from the dataset and collection method published previously which created and 

quantified metabolic fluxes of volatile compounds from MDA-MB-231 under hyperoxic (lab air) 

conditions (Issitt et al. 2022a). 

 

Sample collection and GC/HID analysis 

Ten mL headspace samples were taken from chambers using an airtight syringe (10 mL, SGE, 

Trajan, Milton Keynes, UK). 1 % O2 (BOC Specialty Gases, Woking, UK) was flushed through 

sealed chambers containing 6 ml DMEM as described for cell treatments. Samples were taken 

at 5 and then 10 min post initial flush. In order to replicate cell treatments, the chamber was 

then closed for 2 hours, then flushed for 10 min, after which an air sample was taken. A further 

20 min flush with 1 % O2 air was employed and the chamber was closed, placed at 37 ˚C, and 

left to incubate for 24 hours, at which time the final sample was taken.  

Air samples were immediately analyzed with a SRI 8610C Gas Chromatograph connected to 

a SRI 8690-0030 Helium Ionisation Detector (GC/HID (SRI Instruments Europe GmbH, 

Torrance, CA, USA). Peak separation was achieved using a Restek© PORAPAK Q porous 

polymer column (1.83 m x 2.1 mm ID x 3.175 mm OD), a solenoid switching valve (for 

backflushing CO2) and a Restek© MOLECULAR 5A sieve column (0.91 m x 2.1 mm ID x 

3.175 OD) (Restek©, Bellefonte, PN, USA) connected in series. Helium was used as a carrier 

gas at 18 psi, and the flow rate and column temperatures (50 °C) were maintained during 
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separation. The valve was switched at 1.5 min to backflush the PORAPAK Q column. 

Measurement of compounds eluted from the MOLECULAR 5A sieve was achieved by using 

an SRI 8690-0030 Helium Ionisation Detector. SRI PeakSimple (version 453) software was 

used to generate a digital chromatograph for each sample and O2 was quantified by 

comparing the peak area to known standards. 

The standard curve was developed by flushing 120 mL Wheaton vials with butyl stoppers with 

pure nitrogen (BOC Gases, Woking, UK) for 30 mins. Ten mL of nitrogen only was injected to 

establish a background control. Because atmospheric air at sea level contains 21 % O2, lab 

air was injected at 1 %, 2 %, 10 %, 20 % and 30 % within the N2 filled vial to generate a 

standard curve consisting of 0 %, 0.21 %, 0.42 %, 2.1 %, 4.2 % and 6.3 % and 21 % (lab air 

only). Peak areas were integrated using Graphpad (Prism), and Padé (1,1). Linear regression 

demonstrated an R squared value of 0.96.  

 

GC/MS analysis of VOCs  

Collected canister samples were transferred to a liquid nitrogen trap through pressure 

differential. Pressure change between beginning and end of “injection” was measured, 

allowing calculation of the moles of canister collected air injected  Sample in the trap was then 

transferred, via heated helium flow, to an Aglient/HP 5972 MSD system (Santa Clara, CA, 

USA) equipped with a PoraBond Q column (25 m x 0.32 mm x 0.5 μm film thickness) 

(Restek©, Bellefonte, PN, USA). Targeted samples were analyzed in selected ion monitoring 

(SIM) mode, and untargeted samples in full scan (SCAN) mode with the mass range of 45-

200 amu. The mass spectrometer was operated in electron impact ionization mode with 70 

eV ionization energy, and transfer line, ion source, and quadrupole temperatures of 250, 280 

and 280, respectively. For details on SIM and significantly altered, identified SCAN 

compounds, see Table 1. All samples were analysed within 6 days of collection. The oven 

program for both SIM and SCAN analyses were identical and are as follows: 35 ˚C for 2 min, 

10 ˚C/min to 155 ˚C, 1 ˚C/min to 131 ˚C and 25 ˚C/min to 250 with a 5 min 30 second hold.  
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Table 1. Retention times, mass charge ratios and GC/MS modes used to characterise 

individual VOCs. SIM and SCAN refer to selected ion monitoring and full mass scanning 

(targeted and untargeted) GC/MS modes. 

 

Calibration was performed using standard gases (BOC Specialty Gases, Woking, UK). Linear 

regression of calibration curves confirmed strong, positive linear relationships between 

observed compound peak areas and moles of gas injected for each VOC (r2 > 0.9 in all cases). 

For compounds not purchased in gaseous state (BOC Specialty gases, as above), 1–2 mL of 

compound in liquid phase was injected neat into butyl sealed Wheaton style glass vials (100 

mL) and allowed to equilibrate for 1 h. One mL of headspace air was then removed from neat 

vial headspace using a gas tight syringe (Trajan, SGE) and injected into the headspace of a 

second 100 mL butyl sealed Wheaton style glass vial. This was then repeated, and 1 mL of 

the 2nd serial dilution vial was injected into the GC/MS system with 29 mL of lab air to give ppb 

concentrations. This was performed for methanethiol (MeSH, SPEXorganics, St Neots, UK), 

isoprene (Alfa Aesar, Ward Hill, MA, USA), acetone (Sigma-Aldrich, Burlington, MA, USA), 2- 

& 3-methyl pentane and n-hexane (Thermo Scientific, Waltham, MA, USA). Reported 

compounds detected by the GC/MS were confirmed by matching retention times and mass–

charge (m/z) ratios with known standards.       

 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1:	[𝑉𝑂𝐶](𝑝𝑝𝑡) =
𝐶𝐹	𝑥	10!"	𝑥	𝑃𝑒𝑎𝑘	𝑎𝑟𝑒𝑎	𝑥	𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛	𝑠𝑙𝑜𝑝𝑒

𝑛
 

Compound Retention time (min) Mass charge ratio (m/z)

Methyl chloride (MeCl) 7.6-7.9 50, 52

Methyl bromide (MeBr) 10.3-10.4 94,96

Trichloroflouromethane (CFC-11) 15.0-15.3 101,103

Methyl iodide (MeI) 15.4-15.7 127,142

Dimethyl Sulfide (DMS) 16.2-16.5 62

Acetone 18.2-18.4 58

Isoprene 18.4-18.6 Total ion count 

Trichloromethane (CHCl3) 25.4-25.7 83,85

2-Methyl pentane (2-MP) 27.6-27.8 43, 57

3-Methyl pentane (3-MP) 28.0-28.2 43, 57

n-Hexane (n-Hex) 28.5-28.7 43, 57

Styrene 33.3-33.5 45-200 amu

SIM

SCAN
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Equation 1 outlines the approach to calculating VOC concentrations in parts-per-trillion-by-

volume, or pptv. Here Peak area refers to the combined peak areas for the mass-charge ratios 

identified in Table 1. Multiplying Peak areas by their associated calibration curves (Calibration 

Slope) generate molar amounts which, when divided by the number of moles of headspace 

air injected (n), generate a unitless (moles compound/moles of air) ratio. Pptv concentrations 

are then obtained by multiplying this unitless ratio by 1x1012. For clarity, part-per-billion-by-

volume values would be obtained by multiplying the unitless ratios by 1x109, or one billion. 

Sample VOC concentrations were then normalised to CFC-11 concentrations (240 parts-per-

trillion-by-volume (pptv)) through multiplication by a “correction factor”, or CF, Equation 1). 

CFC-11 was used as an internal standard, since atmospheric concentrations of CFC-11 are 

globally consistent and stable (Redeker et al. 2007). Quantification of Styrene was done as 

above but normalisation to CFC-11 was not possible under flushed, hypoxic conditions.  

To account for differences in rates of cellular proliferation over 24 hours, cellular results from 

GC/MS analyses were normalised to protein content at time of sampling using a BCA assay.  

When comparing media blanks to cellular assays results are reported in grams compound per 

petri dish per hour. 

Data has been made publicly available at the National Institute of Health Metabolomics 

workbench (project PR001638, DOI:  http://dx.doi.org/10.21228/M8ZX4D) (Sud et al. 2016). 

 

Hydrogen peroxide (Amplex red) assay 

Experiments were performed in phenol red free DMEM. DMEM containing 50 μM Amplex Red 

reagent (Thermo Scientific, Waltham, MA, USA ) and 0.1 U/mL horse radish peroxidase (HRP, 

Thermo Scientific, Waltham, MA, USA) was added to cells in 12 well dishes (500 μL per well) 

for 15 min following 24 hours in hypoxic or control conditions. Fluorescence at 590 nm was 

measured with a plate reader (Clariostar, BMG, Ortenberg, Germany) and compared against 

a H2O2 standard curve for quantification.  

 

Statistics 

Figures were assembled and statically analysed in Graphpad Prism version 9.3. VOCs were 

separated based on their flux amount to allow visualisation on the y-axis and were analysed 

this way. Two-way ANOVA with Bonferroni post-hoc analysis was performed for graphs with 

multiple factors was performed (Figure 2A and B, Supplementary Figure 1A and B). One way 

http://dx.doi.org/10.21228/M8ZX4D
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ANOVA with Tukey post hoc analysis was performed for acetone analysis (Figure 2B and 

supplementary Figure 1B). Student’s T-test was performed for Styrene analysis against media 

only as none was detected for control cells, and these were presented on the graph for visual 

information. Amplex red data was analysed using Student’s T-test. 
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Results 

Chambers maintain low oxygen conditions over 24 hours 

To confirm chambers maintained hypoxic conditions over 24 hours we sampled gas from 

chambers throughout our method, measuring O2. When flushed with reduced oxygen air (1%) 

for 5 minutes, oxygen levels rapidly fell from atmospheric 21% to between 6% and 2% (Figure 

1). After 10 min of reduced oxygen flushing, each chamber held less than 5%. Chambers left 

for 2 hours (120 mins) to allow media to equilibrate and flushed for 10 min revealed average 

O2 levels of 1.15% ± 1.03 (Ch 1), 1.34% ± 0.93 (Ch 2) and 1.98% ± 4.07 (Ch 3) respectively. 

Sealed chambers maintained low oxygen levels over 24 hours with average O2 levels of 1.31% 

± 1.31 (Ch 1), 1.76% ± 1.02 (Ch 2) and 1.96% ± 0.28 (Ch 3) respectively. 

 

Figure 1. Chambers maintain hypoxic conditions over 24 hours. (A) Oxygen (O2) content in 3 

custom made chambers containing 6ml media was measured following a 10 min flush, 2 hour 

dwell and another 10 min flush (20 mins) with 1% O2, 5% CO2 gas mix. O2% was then 

measured following chambers being sealed for 1440 mins (24 hours). Mean ± SEM; n=3. (B) 
Image of collection chamber. 

 

Hypoxia induces differing volatile fluxes in breast cancer cell line MDA-MB-231 

Persistent hypoxia over 24 hours induced significant changes in flux for 3 targeted compounds 

(SIM analysis); MeCl, acetone and n-hexane (but not hexane isomers; 2-methyl pentane, or 

3-methyl pentane), when compared to control (Figure 2A-C). MeCl was taken up by cells under 

hypoxia and released by cells under hyperoxic cell culture conditions. n-Hexane was produced 

by hyperoxic control cells while those under hypoxia consumed hexane.  
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FIGURE 2. Cellular volatile response to hypoxia. Volatile flux (pg/hr/µg) for MDA-MB-231 cells 

in control conditions or hypoxia (24 h). Media subtracted and protein normalised VOC flux for 

MDA-MB-231 control cells (n = 6) and cells in hypoxia (n = 6). CHCl3, chloroform; OMS, 

dimethyl sulfide; MeBr, methyl bromide; MeCI, methyl chloride; Mel, methyl iodide; MeSH, 

methanoethiol; 2-MP, 2 methyl pentane; 3-MP, 3 methyl pentane; n-Hex, n-hexane. Boxplot 

whiskers show median ± Tukey distribution, n = 6. Two way ANOVA followed by Bonferroni 

post-hoc test was performed for (A,B). One way ANOVA with Tukey post-hoc test performed 

for B; ***p < 0.001; ****p < 0.0001. 

 

Production of Styrene under hypoxic conditions 

Cells maintained under hypoxic conditions significantly produced styrene as determined by 

untargeted GG/MS approaches (Figure 3A). Styrene was not found in the headspace of 

control cells (ND, or not detected) and styrene fluxes in media blanks were not significantly 

different from zero, while fluxes from hypoxic cells were significantly different from media 

blanks. Styrene was identified through spectral matching, followed by known standard 

injections. No other compounds were found to be significantly altered using the untargeted 

SCAN method.  
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FIGURE 3. Cells under hypoxic conditions produce styrene and exhibit reduced ROS. 

Volatile flux (g/hr−1) for styrene from MDA-MB-231 cells in control conditions or hypoxia and 

media only (24 h). Non Detected (ND) for control cells. Amplex Red assay was performed 

following 24 h incubation as a measure of reactive oxygen species (ROS), H2O2. Shown as 

percentage change from relative control. Boxplot whiskers show median ± Tukey 

distribution, A; n = 6. Student’s T-test was performed for (A,B), ***p < 0.001. 

 

Reactive oxygen species are reduced under hypoxia 

Changes in volatiles, including alkanes, have been linked to increases in ROS (Calenic et al. 

2015). The observed uptake of n-Hexane in hypoxic MDA-MB-231 cells could therefore be 

correlated with alterations in ROS levels in these cells. Following 24 hours exposure to hypoxic 

conditions, ROS, as determined by Amplex Red assay, showed significant reduction 

compared to control (Figure 3B).  
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Discussion 
Static headspace sampling chamber was demonstrated to be capable of maintaining a low 

oxygen environment for >24 hours, as evidenced by chamber concentrations and cellular ROS 

response. Furthermore, VOCs from cells maintained under low oxygen conditions can be 

sampled, and that these cells produce a significantly different volatile profile than either media 

blanks or identical cells exposed to hyperoxic conditions. 

Two out of 10 compounds targeted by SIM revealed quantifiable, differential metabolic 

responses in cells exposed to hypoxic conditions (1% O2) relative to those maintained in 

normal laboratory conditions (21% O2, physiological hyperoxia). Our previous results 

quantified alterations in MDA-MD-231 cells for these volatiles after treatment with the 

chemotherapeutic agent Doxorubicin. When placed under cellular stress through Doxorubicin 

treatment only MeCl showed a similar stress response (enhanced uptake). In contrast, hexane 

(or hexane isomers) were not consumed or degraded significantly (Issitt et al. 2022a).  

Over 24 hours of doxorubicin treatment has been shown to increase ROS (Pilco-Ferreto and 

Calaf 2016) whereas the opposite has been shown in cells maintained in hypoxic conditions 

(Sgarbi et al. 2018). A significant reduction was demonstrated in ROS in MDA-MB-231 cells 

following 24hrs of hypoxia (Figure 3B). Cellular stress response mechanics and differences in 

cellular state could therefore be identified and quantified through volatile metabolic 

approaches. Alkanes have been positively correlated with ROS previously (Calenic et al. 

2015), here a decrease was demonstrated in n-hexane within hypoxic cells (Figure 2C) with 

diminished ROS content while in cells treated with doxorubicin, non-significant increases were 

observed (Issitt et al. 2022a). Metabolic consumption n-hexane is through currently 

unidentified processes, however the demonstration of variable consumption of a compound 

demonstrates a potential biomarker dynamics missed by studies only focusing on production. 

Acetone, hexanes and other compounds shown here are commonly found in urban 

environments (Redeker et al. 2007) and so their expression in the breath is driven through a 

combination of equilibration in the bloodstream and chemical/biological uptake processes 

within the body. 

The production of styrene by cells under hypoxia could be a defining VOC biomarker for 

cancer since hypoxia is characteristic of the tumour microenvironment (Samanta and 

Semenza 2018). Our recent review showed that, despite substantial variability in reported 

outcomes, aromatics are powerful descriptors of cancer (Issitt et al. 2022b). Five studies have 

previously reported styrene in the breath of lung cancer patients using untargeted approaches 

(Phillips et al. 1999; Chen et al. 2005a; Peng et al. 2009; Rudnicka et al. 2011; Corradi et al. 

2015; Koureas et al. 2020). Styrene has also been reported as higher in the breath of lung 
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cancer patients in studies using other approaches (Chen et al. 2005b; Nardi-Agmon et al. 

2016; Wang et al. 2022). However, styrene has been shown to be higher in the breath of 

smokers (Koureas et al. 2020) and so is often considered, along with other aromatics 

compounds, to be a confounding contaminant since high percentages of lung cancer patients 

have a history of smoking. (Issitt et al. 2022b). Styrene has also been reported in the breath 

of patients with ovarian (Amal et al. 2015), gastric (Amal et al. 2013; Amal et al. 2016) and 

liver (Qin et al. 2010) cancers.  

Styrene utilisation as a breath based diagnostic biomarker may be challenging since 

environmental contamination would need to be considered (Hanna et al. 2019).  The 

presented method accounts for environmental VOCs through a flux analysis that incorporates 

two temporal sampling points, a starting sample following equilibration with the local 

atmosphere and a second sample at a later time point. This allows us to determine when 

available environmental volatiles are being added to (metabolically produced) or 

consumed/degraded by cells. This is important where environmental VOCs may mask effects 

or differences, such as high traffic, urban environments or perfumed indoor spaces. It is worth 

stating however, that the observed degradation may be purely non-targeted chemical 

reactivity with available enzymes or active compounds. However, to some degree whether the 

process is substrate specific or nonspecific is unimportant. A different cell response under 

stress was observed, which points to different cellular states, inclusive of differing enzyme 

compositions, and points to new and novel potential biomarkers. 

Environmental correction sampling approaches such as this chamber headspace method may 

present an opportunity to overcome challenges to applications within the clinic, particularly 

with breath samples taken from ambient air as well as exhalate from the patient. The two time 

point sampling approach is particularly important since production of compounds with large 

initial concentrations, or consumption/degradation of compounds are often challenging to 

detect using single time point sampling methods.  

It was observed that cellular consumption of VOCs (MeCl, Acetone and n-Hexane) is 

descriptive of hypoxic stress and that chemotherapeutic stress also induces consumption of 

VOCs (Issitt et al. 2022a); notably MeCl. To our knowledge this is the first example of a 

controlled environment experiment performed under low oxygen conditions that both a) 

quantifies VOC fluxes from a cellular model and b) utilises a VOC injection of gases to monitor 

ongoing anaerobic metabolism of compounds. We have demonstrated a novel method for 

induction and maintenance of low oxygen for the study of volatile fluxes. This approach allows 

new dynamics to be explored for the discovery of cell to patient translational biomarkers. It is 

perhaps worthy of note that many of the published methods for breath research would not 
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have identified or quantified the methyl chloride or hexane results, due to the small changes 

(pptv) observed. 

It was previously reported that cellular ‘volatile metabolic flux’ can separate cell type and 

response to chemotherapeutic stress (Issitt et al. 2022a). This chamber based method has 

also been successfully used with mice models, quantifying both mouse breath and faecal 

volatiles (Issitt et al. 2022a). Here, this chamber based approach was demonstrated to identify 

cells under hypoxic stress. A novel method is demonstrated to identify hypoxia induced VOCs, 

potential biomarkers of cancer. Importantly these biomarkers are both produced and 

consumed by cells under hypoxic stress. MeCl, n-hexane and styrene are clinically interesting 

compounds requiring further investigation. The compounds reported here have been reported 

as present in human breath (Shahi et al. 2022) and we have shown that these compounds 

vary in response to cellular stress, from previously published doxorubicin (Issitt et al. 2022a) 

and here, hypoxic stress. Together this suggests they are able to differentiate cellular 

response due to pathophysiological differences. These compounds are from diverse functional 

chemical groups and we have previously demonstrated the ability of functional chemical 

groups to separate disease groups  with greater ability than individually considered 

compounds (Issitt et al. 2022b). A functionally diverse group of VOCs could give greater power 

when building a ‘breath print’ for diagnosis (Issitt et al. 2022b).  

Conclusion 

The work presented here demonstrates a novel methodology investigating volatile 

metabolisms in a controlled environment for volatile biomarker discovery. Using this method 

we have shown distinct changes in VOCs, demonstrating the potential for VOCs in defining 

metabolic alterations to environmental changes. 

 

  



132 
 

Conflict of Interest 
The authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could be construed as a potential conflict of interest. 

 

Author Contributions 
Conceptualization, T.I., W.J.B. and K.R.R.; Data curation, T.I.; Formal analysis, T.I.; Funding 

acquisition, S.T.S., W.J.B. and K.R.R.; Investigation, T.I.; Methodology, T.I., M.R. and K.R.R.; 

Project administration, T.I. and S.T.S.; Resources, M.R., W.J.B.; Visualization, T.I.; Writing—

original draft, T.I.; Writing—review and editing, S.T.S., W.J.B., M.R. and K.R.R. All authors 

have read and agreed to the published version of the manuscript. 

 

Funding 
This research was funded by the White Rose Mechanistic Biology Doctoral Training Program, 

supported by the Biotechnology and Biological Science Research Council (BBSRC) 

BB/M011151/1. 

 

Acknowledgements 
The authors would like to acknowledge the support provided by Mark Bentley in the University 

of York Department of Biology workshop.  

  



133 
 

References 
Adams, F. (1994) Hippocratic Writings: Aphorism. Vol. 4. New York: Web Atomics. 
Amal, H., Leja, M., Broza, Y. Y., Tisch, U., Funka, K., Liepniece-Karele, I., Skapars, R., Xu, Z. 

Q., Liu, H. and Haick, H. (2013) Geographical variation in the exhaled volatile organic 
compounds. Journal of Breath Research 7 (4). 

Amal, H., Leja, M., Funka, K., Skapars, R., Sivins, A., Ancans, G., Liepniece-Karele, I., 
Kikuste, I., Lasina, I. and Haick, H. (2016) Detection of precancerous gastric lesions 
and gastric cancer through exhaled breath. Gut 65 (3), 400-407. 

Amal, H., Shi, D. Y., Ionescu, R., Zhang, W., Hua, Q. L., Pan, Y. Y., Tao, L., Liu, H. and Haick, 
H. (2015) Assessment of ovarian cancer conditions from exhaled breath. International 
Journal of Cancer 136 (6), E614-E622. 

Amann, A., Costello Bde, L., Miekisch, W., Schubert, J., Buszewski, B., Pleil, J., Ratcliffe, N. 
and Risby, T. (2014) The human volatilome: volatile organic compounds (VOCs) in 
exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 8 (3), 034001. 

Archbold, M. E., Redeker, K. R., Davis, S., Elliot, T. and Kalin, R. M. (2005) A method for 
carbon stable isotope analysis of methyl halides and chlorofluorocarbons at pptv 
concentrations. Rapid Communications in Mass Spectrometry 19 (3), 337-342. 

Beccaria, M., Bobak, C., Maitshotlo, B., Mellors, T. R., Purcaro, G., Franchina, F. A., Rees, C. 
A., Nasir, M., Stevens, W. S., Scott, L. E., Black, A. and Hill, J. E. (2018) Exhaled 
human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive 
gas chromatography-mass spectrometry and chemometric techniques. J Breath Res 
13 (1), 016005. 

Calenic, B., Miricescu, D., Greabu, M., Kuznetsov, A. V., Troppmair, J., Ruzsanyi, V. and 
Amann, A. (2015) Oxidative stress and volatile organic compounds: interplay in 
pulmonary, cardio-vascular, digestive tract systems and cancer. Open Chemistry 13 
(1), 1020-1030. 

Chen, X., Cao, M., Hao, Y., Li, Y., Wang, P., Ying, K. and Pan, H. (2005a) A Non-invasive 
detection of lung cancer combined virtual gas sensors array with imaging recognition 
technique. Conf Proc IEEE Eng Med Biol Soc 2005, 5873-6. 

Chen, X., Cao, M. F., Li, Y., Hu, W. J., Wang, P., Ying, K. J. and Pan, H. M. (2005b) A study 
of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors 
array and imaging recognition method. Measurement Science and Technology 16 (8), 
1535-1546. 

Corradi, M., Poli, D., Banda, I., Bonini, S., Mozzoni, P., Pinelli, S., Alinovi, R., Andreoli, R., 
Ampollini, L., Casalini, A., Carbognani, P., Goldoni, M. and Mutti, A. (2015) Exhaled 
breath analysis in suspected cases of non-small-cell lung cancer: a cross-sectional 
study. Journal of Breath Research 9 (2). 

Das, S., Pal, S. and Mitra, M. (2016) Significance of Exhaled Breath Test in Clinical Diagnosis: 
A Special Focus on the Detection of Diabetes Mellitus. J Med Biol Eng 36 (5), 605-
624. 

De Vincentis, A., Vespasiani-Gentilucci, U., Sabatini, A., Antonelli-Incalzi, R. and Picardi, A. 
(2019) Exhaled breath analysis in hepatology: State-of-the-art and perspectives. World 
J Gastroenterol 25 (30), 4043-4050. 

Di Francesco, F., Fuoco, R., Trivella, M. G. and Ceccarini, A. (2005) Breath analysis: trends 
in techniques and clinical applications. Microchemical Journal 79 (1-2), 405-410. 

Di Gilio, A., Palmisani, J., Ventrella, G., Facchini, L., Catino, A., Varesano, N., Pizzutilo, P., 
Galetta, D., Borelli, M., Barbieri, P., Licen, S. and de Gennaro, G. (2020) Breath 
Analysis: Comparison among Methodological Approaches for Breath Sampling. 
Molecules 25 (24), 5823. 

Doran, S. L. F., Romano, A. and Hanna, G. B. (2017) Optimisation of sampling parameters for 
standardised exhaled breath sampling. J Breath Res 12 (1), 016007. 

Drabinska, N., Flynn, C., Ratcliffe, N., Belluomo, I., Myridakis, A., Gould, O., Fois, M., Smart, 
A., Devine, T. and Costello, B. L. (2021) A literature survey of all volatiles from healthy 
human breath and bodily fluids: the human volatilome. J Breath Res 15 (3). 



134 
 

Hanna, G. B., Boshier, P. R., Markar, S. R. and Romano, A. (2019) Accuracy and 
Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests 
for Cancer Diagnosis: A Systematic Review and Meta-analysis Jama Oncology 5 (7), 
1070-1070. 

Harshman, S. W., Geier, B. A., Fan, M., Rinehardt, S., Watts, B. S., Drummond, L. A., Preti, 
G., Phillips, J. B., Ott, D. K. and Grigsby, C. C. (2015) The identification of hypoxia 
biomarkers from exhaled breath under normobaric conditions. J Breath Res 9 (4), 
047103. 

Issitt, T., Sweeney, S. T., Brackenbury, W. J. and Redeker, K. R. (2022a) Sampling and 
Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and 
Mouse Breath. Metabolites 12 (7). 

Issitt, T., Wiggins, L., Veysey, M., Sweeney, S. T., Brackenbury, W. J. and Redeker, K. 
(2022b) Volatile compounds in human breath: critical review and meta-analysis. 
Journal of Breath Research 16 (2). 

Jia, Z., Patra, A., Kutty, V. K. and Venkatesan, T. (2019) Critical Review of Volatile Organic 
Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. 
Metabolites 9 (3). 

Koureas, M., Kirgou, P., Amoutzias, G., Hadjichristodoulou, C., Gourgoulianis, K. and 
Tsakalof, A. (2020) Target Analysis of Volatile Organic Compounds in Exhaled Breath 
for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons. 
Metabolites 10 (8). 

Lavra, L., Catini, A., Ulivieri, A., Capuano, R., Baghernajad Salehi, L., Sciacchitano, S., 
Bartolazzi, A., Nardis, S., Paolesse, R., Martinelli, E. and Di Natale, C. (2015) 
Investigation of VOCs associated with different characteristics of breast cancer cells. 
Sci Rep 5, 13246. 

Li, W. W. and Duan, Y. X. (2015) Human Exhaled Breath Analysis Trends in Techniques and 
Its Potential Applications in Non-Invasive Clinical Diagnosis. Progress in Chemistry 27 
(4), 321-335. 

Little, L. D., Carolan, V. A., Allen, K. E., Cole, L. M. and Haywood-Small, S. L. (2020) 
Headspace analysis of mesothelioma cell lines differentiates biphasic and epithelioid 
sub-types. Journal of Breath Research 14 (4). 

Liu, Y. L., Li, W. W. and Duan, Y. X. (2019) Effect of H2O2 induced oxidative stress (OS) on 
volatile organic compounds (VOCs) and intracellular metabolism in MCF-7 breast 
cancer cells. Journal of Breath Research 13 (3). 

Mazzatenta, A., Pokorski, M. and Di Giulio, C. (2021) Volatile organic compounds (VOCs) in 
exhaled breath as a marker of hypoxia in multiple chemical sensitivity. Physiol Rep 9 
(18), e15034. 

Mochalski, P., Sponring, A., King, J. L., Unterkofler, K., Troppmair, J. and Amann, A. (2013) 
Release and uptake of volatile organic compounds by human hepatocellular 
carcinoma cells (HepG2) in vitro. Cancer Cell International 13. 

Nardi-Agmon, I., Abud-Hawa, M., Liran, O., Gai-Mor, N., Ilouze, M., Onn, A., Bar, J., Shlomi, 
D., Haick, H. and Peled, N. (2016) Exhaled Breath Analysis for Monitoring Response 
to Treatment in Advanced Lung Cancer. Journal of Thoracic Oncology 11 (6), 827-
837. 

Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y. Y., Billan, S., Abdah-
Bortnyak, R., Kuten, A. and Haick, H. (2009) Diagnosing lung cancer in exhaled breath 
using gold nanoparticles. Nat Nanotechnol 4 (10), 669-73. 

Phillips, M., Boehmer, J. P., Cataneo, R. N., Cheema, T., Eisen, H. J., Fallon, J. T., Fisher, P. 
E., Gass, A., Greenberg, J., Kobashigawa, J., Mancini, D., Rayburn, B. and Zucker, M. 
J. (2004) Heart allograft rejection: detection with breath alkanes in low levels (the 
HARDBALL study). J Heart Lung Transplant 23 (6), 701-8. 

Phillips, M., Gleeson, K., Hughes, J. M. B., Greenberg, J., Cataneo, R. N., Baker, L. and 
McVay, W. P. (1999) Volatile organic compounds in breath as markers of lung cancer: 
a cross-sectional study. Lancet 353 (9168), 1930-1933. 



135 
 

Pilco-Ferreto, N. and Calaf, G. M. (2016) Influence of doxorubicin on apoptosis and oxidative 
stress in breast cancer cell lines. Int J Oncol 49 (2), 753-62. 

Qin, T., Liu, H., Song, Q., Song, G., Wang, H. Z., Pan, Y. Y., Xiong, F. X., Gu, K. S., Sun, G. 
P. and Chen, Z. D. (2010) The Screening of Volatile Markers for Hepatocellular 
Carcinoma. Cancer Epidemiology Biomarkers & Prevention 19 (9), 2247-2253. 

Redeker, K. R., Davis, S. and Kalin, R. M. (2007) Isotope values of atmospheric halocarbons 
and hydrocarbons from Irish urban, rural, and marine locations. Journal of Geophysical 
Research: Atmospheres 112 (D16). 

Rudnicka, J., Kowalkowski, T., Ligor, T. and Buszewski, B. (2011) Determination of volatile 
organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and 
chemometrics. Journal of Chromatography B-Analytical Technologies in the 
Biomedical and Life Sciences 879 (30), 3360-3366. 

Samanta, D. and Semenza, G. L. (2018) Metabolic adaptation of cancer and immune cells 
mediated by hypoxia-inducible factors. Biochim Biophys Acta Rev Cancer 1870 (1), 
15-22. 

Sangnes, D. A., Softeland, E., Teigland, T. and Dimcevski, G. (2019) Comparing radiopaque 
markers and (13)C-labelled breath test in diabetic gastroparesis diagnostics. Clin Exp 
Gastroenterol 12, 193-201. 

Sgarbi, G., Gorini, G., Liuzzi, F., Solaini, G. and Baracca, A. (2018) Hypoxia and IF(1) 
Expression Promote ROS Decrease in Cancer Cells. Cells 7 (7). 

Shahi, F., Forrester, S., Redeker, K., Chong, J. and Barlow, G. (2022) Case Report: The effect 
of intravenous and oral antibiotics on the gut microbiome and breath volatile organic 
compounds over one year [version 2; peer review: 1 approved, 1 approved with 
reservations]. Wellcome Open Research 7 (50). 

Sud, M., Fahy, E., Cotter, D., Azam, K., Vadivelu, I., Burant, C., Edison, A., Fiehn, O., Higashi, 
R., Nair, K. S., Sumner, S. and Subramaniam, S. (2016) Metabolomics Workbench: 
An international repository for metabolomics data and metadata, metabolite standards, 
protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44 (D1), D463-
70. 

Wang, P. Y., Huang, Q., Meng, S. S., Mu, T., Liu, Z., He, M. Q., Li, Q. Y., Zhao, S., Wang, S. 
D. and Qiu, M. T. (2022) Identification of lung cancer breath biomarkers based on 
perioperative breathomics testing: A prospective observational study. 
Eclinicalmedicine 47. 

Wheaton, W. W. and Chandel, N. S. (2011) Hypoxia. 2. Hypoxia regulates cellular metabolism. 
Am J Physiol Cell Physiol 300 (3), C385-93. 

Young, J. M., Williams, D. R. and Thompson, A. A. R. (2019) Thin Air, Thick Vessels: Historical 
and Current Perspectives on Hypoxic Pulmonary Hypertension. Front Med (Lausanne) 
6, 93. 

 

  



136 
 

Supplementary Material 

 

Supplementary figure 1. Volatile flux of media controls. Volatile flux in grams per hour (g/hr) 

for control media (n = 8) or media in hypoxia (n = 6) in 10cm dishes. CHCl3, chloroform; OMS, 

dimethyl sulfide; MeBr, methyl bromide; MeCI, methyl chloride; Mel, methyl iodide; MeSH, 

methanoethiol; 2-MP, 2 methyl pentane; 3-MP, 3 methyl pentane; n-Hex, n-hexane. Boxplot 

whiskers show median ± Tukey distribution, n = 6. Two way ANOVA followed by Bonferroni 

post hoc test was performed for (A,B). One way ANOVA with Tukey post-hoc test performed 

for B; ***p < 0.001. 
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Highlights 
 

• Glucose, serum and oxygen starvation induce significant changes in volatile flux 

• Consumption of methyl chloride by cells translates to the breath of tumour bearing 

mice 

• Methyl chloride production is linked to cellular methylation activity 

• Methyl chloride consumption is linked to methionine synthesis   
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Abstract 
Volatile organic compounds (VOCs) demonstrate promise as non-invasive diagnostic tools, however, 

lack of mechanistically linked VOCs with biomarker discovery platforms limit delivery to the clinic. 

Previously identified putative VOC biomarkers were investigated in breast cancer cell lines under 

tumour pathophysiological conditions, in which they were deprived of serum, glucose or oxygen. VOCs 

in breast cancer cell cultures were significantly altered when placed under physiologically relevant 

cellular conditions. In particular, significant reduction of methyl chloride (MeCl) production, and in 

many cases consumption, is a consistently informative marker for cellular stress. The role of MeCl in 

cellular methylation activity was investigated and its production described in the context of cellular 

methylation potential and methyl-transferase activity. Blocking cellular methylation with 5-

azacytidine effectively prevented MeCl production. A new "push-pull" model for cellular production 

and consumption of MeCl in human tissues is presented. Furthermore, clear separation by breath of 

MDA-MB-231 xenograft tumour bearing mice using the same suite of VOCs was observed where, 

consistent with this model, reduced MeCl production was a key biomarker. This work presents both a 

novel mechanism for cellular metabolism of available, ambient atmospheric VOCs, a new substrate 

for methionine synthesis and a potentially powerful translational breath biomarker for cancer.  
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Introduction 
Volatile metabolomics utilise volatile organic compounds (VOCs) released or consumed by 

biological processes to describe metabolic changes in organisms or systems. VOCs are small, 

carbon containing compounds which are gaseous at room temperature, often with a distinct 

odour, such ethanol or acetone. These characteristics present an attractive approach for non-

invasive diagnostic approaches using VOCs, especially those present in human breath. While 

many studies have been conducted using human breath and are able to define disease in 

humans through changes in VOCs, understanding of the biological and mechanistic processes 

driving these changes remains limited (Issitt et al. 2022b).  

To describe and monitor alterations in compounds linked to diseases, such as cancer, 

knowledge of volatile compounds linked to mechanistic process are required to improve 

diagnostic accuracy. VOC discovery through cellular models, such as cell type comparisons 

(Little et al. 2020; Issitt et al. 2022a), response to drugs(Issitt et al. 2022a), oxidative stress 

(Liu et al. 2019) and hypoxia (Taware et al. 2020; Issitt et al. 2023) provide focal points for 

pathologically linked VOCs in breath. There has been a range of cellular VOC studies for cells 

such as lung (Hanai et al. 2012; Thriumani et al. 2018), breast (Lavra et al. 2015; Issitt et al. 

2022a) and liver (Mochalski et al. 2013) cancer, stem cells (Klemenz et al. 2019) and umbilical 

vein endothelial cells (Mochalski et al. 2015). The microbiome and infectious agents also drive 

VOC metabolisms (Sagar et al. 2015; Ahmed et al. 2017). Some metabolic processes have 

been linked to VOCs (Janfaza et al. 2019; Issitt et al. 2022b), such as ADH1 potentially driving 

trans-2-hexenol production in A539 cells (Furuhashi et al. 2020), CYP450 metabolism of 

limonene (Miyazawa et al. 2002) and alkane production linked to oxidative stress (Liu et al. 

2019), however more studies into VOC metabolic mechanisms are required. 

We have previously described a method for investigating volatile fluxes from cells and mice 

using a static headspace chamber with multiple time point sampling (Issitt et al. 2022a; Issitt 

et al. 2023). In these studies, variations in cell type (cancer vs non cancer) was clearly evident 

in the volatile profiles of these cells (Issitt et al. 2022a). However, it was also evident that 

cellular response to stress, from doxorubicin (Issitt et al. 2022a) or low oxygen (Issitt et al. 

2023) produced clear changes in cellular VOC profile, markedly, metabolic transformation for 

some volatiles from production to consumption.  

Cell type volatiles flux comparisons are warranted, useful and able to determine variability 

between cell type (Lavra et al. 2015; Issitt et al. 2022a), for example, biphasic and epithelioid 

sub-types in mesothelioma cells (Little et al. 2020). This highlights the power of volatile 

metabolomics, however, translation of these signals into more complex systems i.e. the 

human body introduces many confounding and conflicting signals (Issitt et al. 2022b). Cell 
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type comparisons are powerful tools for comparing variability inherent between cell types but 

may be lacking in modelling the environmental pathological conditions experienced by cells. 

Through-out our previous work, translational characteristics in the VOC profile, were more 

tightly determined by models of what cells might experience In situ. From this we hypothesise 

that pathophysiological models are more appropriate for VOC biomarker discovery. 

In previous studies (Issitt et al. 2022a; Issitt et al. 2023) and throughout the presented 

research, methyl chloride (MeCl) is a consistently descriptive VOC biomarker. MeCl is exhaled 

in human breath (Keppler et al. 2017), produced from s-adensylmethionine dependent 

methylation activity in plants (Rhew et al. 2003) and consumed by bacteria for a range of 

processes (McAnulla et al. 2001). This VOC is therefore a potential target for mechanistically 

linked studies and we hypothesise that its observed production from cells in culture and in 

breath of mice (Issitt et al. 2022a) is linked to methylation activity. 

In this study we set out to determine translation of the aggressive, double negative breast 

cancer cell line MDA-MB-231 VOC profile in culture to mice with MDA-MB-231 xenograft 

tumours. This study aims to model the substrate starvation experienced by a growing tumour 

(Osawa et al. 2009). Serum, glucose and hypoxic starvation are applied MDA-MB-231 breast 

cancer cells and non-transformed MCF10a breast derived cells to determine VOC response 

in a suite of volatiles previously described (Issitt et al. 2022a; Issitt et al. 2023). Methylation 

activity and methionine levels are investigated in the context of MeCl to determine potential 

mechanisms to explain observed variations in the same volatiles detected in the breath of 

MDA-MB-231 tumour bearing mice. 
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Methods 

Cell Culture and treatments 

MDA-MB-231 breast cancer cells (a gift from Professor Mustafa Djamgoz, Imperial College 

London) were grown in Dulbecco’s Modified Eagle Medium (DMEM, Thermo Scientific, 

Waltham, MA, USA), 25 mM glucose, supplemented with L-glutamine (4 mM) and 5 % foetal 

bovine serum (Thermo Scientific, Waltham, MA, USA). The nontransformed human epithelial 

mammary cell line MCF10A (a gift from Dr. Norman Maitland) was grown in DMEM/F12 

(Thermo Scientific, Waltham, MA, USA) supplemented with 5% FBS, 4 mM L-glutamine 

(Thermo Scientific, Waltham, MA, USA), 20 ng/mL EGF (Sigma-Aldrich, Roche; Mannheim, 

Germany), 0.5 mg/mL hydrocortisone (Sigma-Aldrich, Burlington, MA, USA), 100 ng/mL 

cholera toxin (Sigma-Aldrich, Burlington, MA, USA) and 10 µg/mL insulin (Sigma-Aldrich, 

Burlington, MA, USA). Both of these formulations were considered control conditions. Cell 

culture medium was supplemented with 0.1 mM NaI and 1 mM NaBr (to model physiological 

availability of iodine and bromide). Serum free media and glucose free media were prepared 

in the same way but without those individual components. All cells were grown at 37 °C with 

5 % CO2.  

Prior to volatile collection, cells were trypsinised, and 500,000 cells were seeded into 8 mL 

complete media in 10 cm polystyrene cell culture dishes. Cells were then allowed to attach for 

3-4 h, washed with warm PBS and 6 mL treatment media was applied. Volatile headspace 

sampling was performed 24 h later.  

Cells were treated with 10 µM (Thakur et al. 2012) 5-Azacytidine (5-AZA, prepared in sterile 

water, Sigma-Aldrich, Germany) to block methylation events; the MAT2A inhibitor to block 

production of MAT (the enzyme which primarily catalyses the synthesis of S-

adenosylmethionine), FIDAS-5 (prepared in DMSO, Sigma-Aldrich, Germany) or sodium 

nitroprusside to block methionine synthase activity (SNP, prepared in water, Sigma-Aldrich, 

Germany) where stated. S-adenosylmethionine (SAM) treatment was performed at a 

concentration of 50µM, determined to produce significant effects upon MDA-MB-231 without 

considerable cell death or cell growth (Ilisso et al. 2015; Mahmood et al. 2018). Drug 

concentrations were determined as producing a significant effect without excessive cell death 

over 24 hours, from the literature and with alamar blue assay; 5-AZA treatment was performed 

at 10 µM (Thakur et al. 2012), FIDAS-5 at 10 µM(Zhang et al. 2021), SNP at 400 µM(Nicolaou 

et al. 1997). 
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VOC headspace sampling 

The method of headspace sampling has been described in detail (Issitt et al. 2022a; Issitt et 

al. 2023). Briefly, cells placed in static chambers were flushed with lab air (4 L/min for 10 mins) 

and time zero sample taken into evacuated electro polished steel canisters (LabCommerce, 

San Jose, USA). Samples were then left on a rocker for 120 mins at the slowest setting, at 

which point another sample was collected. Cells were removed from the chamber, washed 

with PBS twice and lysed in 500 µL RIPA buffer (NaCl (5 M), 5 mL Tris-HCl (1 M, pH 8.0), 1 

mL Nonidet P-40, 5 mL sodium deoxycholate (10 %), 1 mL SDS (10%)) with protease inhibitor 

(Sigma-Aldrich, Roche; Mannheim, Germany). Protein concentration of lysates were 

determined using BCA Assay (Thermofisher, USA). Background (medium only) readings were 

taken for all medium types following 24 hours incubation 37 °C and 5% CO2 (supplementary 

Figure 3A).  

 

GC/MS analysis of VOCs 

Headspace samples were condensed in a liquid nitrogen trap before being transferred, via 

heated helium flow, to and Aglient/HP 5972 MSD system (Santa Clara, CA, United States) 

equipped with a PoraBond Q column (25m x 0.32mm x 0.5 µm film thickness) (Restek©, 

Bellefonte, PN, United States), as previously detailed (Issitt et al. 2022a; Issitt et al. 2023). 

Samples were analysed in selected ion monitoring (SIM) mode, specific details of which are 

available at Issitt et al. 2023.  

Peak area/moles injected were calibrated from known standard injections. Sample moles 

injected were calculated using these peak area-based calibration curves, and concentration 

determined by moles of compound/moles of air injected. Sample VOC concentration were 

then normalised to CFC-11 concentrations (240 parts-per-trillion-by-volume (ppt)). CFC was 

used as an internal standard, per sample standard for normalisation as atmospheric 

concentrations of CFC-11 are globally consistent and stable (Redeker et al. 2007). Detailed 

equations are available (Issitt et al. 2022a; Issitt et al. 2023).  

Media backgrounds were subtracted from cellular plus media volatile fluxes which were then 

normalised to protein concentration. No variation between media types was observed (Figure 

S1) and so these were pooled to create an average media blank value. As an extension of 

this, we have previously demonstrated no variation in DMSO containing media volatile flux for 

the compounds discussed in this research (Issitt et al. 2022a). 
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MTT assay 

MDA-MB-231 and MCF10A cells were seeded onto 96-well plates at a density of 8000 cells 

per well. Serial dilutions across the plate were performed once the cells had attached to the 

plate (4 h). Cells were then placed in cell culture incubation conditions. A total of 24 h later, 

20 µL of MTT solution was added to each well and incubated for 3 h. Medium was removed, 

and precipitates solubilised in 100 µL DMSO. Absorbance was then measured at 570 nm 

using a Clariostar Plus microplate reader (BMG Labtech, Offenburg, Germany) across 

duplicate technical with triplicate experimental replicates. 

 

Sulphorhodamine B assay 

To determine cell growth, SRB assays were performed. The SRB assay measures cell density 

based on protein content (Vichai and Kirtikara 2006). Following incubation, cell monolayers 

were fixed with 10% (wt/vol) trichloroacetic acid (TCA) and stained for 30 min, after which the 

excess dye was removed by washing repeatedly with 1% (vol/vol) acetic acid. The protein-

bound dye was dissolved in 10 mM Tris base solution for OD determination at 510 nm using 

a microplate reader (Vichai and Kirtikara 2006) using duplicate technical with triplicate 

experimental replicates. 

 

Trypan blue exclusion assay 

Trypan blue exclusion assay was performed on MDA-MB-231 and MCF10A cells following 

treatment. Following a published protocol (Strober 2015), trypsinised cells were mixed with 

0.4% Trypan blue solution and counted to determine the number of unstained (viable) and 

stained (nonviable) cells. Cells were counted at 20x magnification across 10 fields of view 

using duplicate technical and triplicate experimental repeats. 

 

Ion Chromatography  

A previously published protocol was adapted to quantify chloride contents of cells and tissues 

(Chapp et al. 2018). Cells were grown to 80% confluency in a 10cm dish and treated for 24 

hours, as appropriate. Cells were washed in 10 mL pH 7 phosphate buffer twice and lifted 

using a cell scraper in 5 mL phosphate buffer. Cells were then pelleted by centrifugation (200g 

5 mins), supernatant aspirated and cells resuspended in 1 mL ddH2O. Pellet was then snap 

frozen in liquid nitrogen, thawed and pulse sonicated (5 second pulse for 20 seconds), a 
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sample of 50 µL was removed at this point for protein quantification using BCA. The mixture 

was then added to 5ml ddH2O and syringe filtered through 0.2 µm prerinsed (with ddH2O) 

PTFE filter. Tumour and mammary fat pad samples were weighed, washed in phosphate 

buffer, snap frozen, thawed and sonicated and treated as above. 

Ion chromatography was performed using a Dionex ICS-2000 ion chromatograph fitted with 

an EGC III KOH Eluent generator cartridge, ADRS 600 2 mm suppressor, DS6 heated 

conductivity cell and AS40 autosampler. Dionex IonPac AS18 (2 mm i.d. x 250 mm length) 

analytical column fitted with an IonPac AG18 (2 mm i.d x 50 mm length) guard. Mobile phase 

gradient:  2 mM potassium hydroxide (hold 1 min) to 41 mM over 35 min (hold 4 min) at a flow 

rate of 0.25 ml/min column. A suppressor current of 26 mA, column temperature of 30 °C, 

detector temperature of 35 °C and a sample injection volume of 15 µL. Instrument control and 

data processing performed using Chromeleon software. Samples were quantified against 

calibration curves derived from known standard injections. 

 

Methylation ELISA 

All samples were tested for global DNA methylation using the MethylFlash™ Methylated DNA 

Quantification Kit (Colorimetric) (Epigentek, Farmingdale, NY, USA). MethylFlash uses an 

enzyme-linked immunosorbent assay (ELISA) based method to quantify global DNA 

methylation. For each sample, 200 ng of DNA was used, in duplicate, as recommended by 

Epigentek. DNA was isolated from cell pellets or tissue using DNA extraction kit for tissue and 

blood (Qiagen).  The ELISA was performed following manufacturers instructions. Absorbance 

readings from each plate were calculated at 450 nm using Clariostar (BMG) and Mars software 

(BMG) across duplicate technical with triplicate experimental replicates. 

 

HPLC 

Cells were grown to 80% confluence in 6 well plates and treated. Cells were then washed with 

PBS (5mL x 2) and stored, sealed at -80 ̊ C. Samples were prepared in ice cold 90% methanol 

with 0.1% triflouroacetic acid (Korinek et al. 2013). The following authentic standards were 

used: L-methionine (Met), L-homocysteine (Hom), cyanocob(III)alamin (B12), S-(5′-adenosyl)-

L-homocysteine (SAH) and S-(5′-Adenosyl)-L-methionine chloride dihydrochloride (SAM), all 

supplied by Merck. 

Standard stock solutions were prepared in water with 0.1% TFA at the following 

concentrations: Met 4 mg/mL, HCY 5 mg/mL, B12 6 mg/mL, SAH 4 mg/mL, SAM 2 mg/mL, 
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and stored at -20ºC for up to two weeks. Eight-level standard curves were constructed in 90% 

methanol at the following concentration ranges: Met 2.1 ng/mL-40 µg/mL, HCY 24 ng/mL-100 

µg/mL, B12 38 ng/mL-2.4 µg/mL, SAH 9.8 ng/mL-40 µg/mL, SAM 0.31-20 µg/mL (the lower-

end concentration was that at which a peak was clearly visible, and serves as an 

approximation of LOD). 

A Waters Acquity IClass UPLC was interfaced to a Waters Synapt G2-Si, operated in positive 

ESI sensibility mode, scan rate 0.6 sec, mass range 50-1600 m/z. Lock mass leucin-

enkephalin was used. Mobile phase A) was 10 mM ammonium formate, pH 3.0 (adjusted with 

ammonium hydroxide) and 1% acetonitrile, mobile phase B) acetonitrile. The gradient started 

at 90% B and decreased to 35% B over 19 min, where it remained until 24 min, to return to 

90% B at 25 min and to re-equilibrate until 35 min; flow rate was 0.5 mL/min. A MilliporeSigma 

SeQuant® ZIC-HILIC column (100x4.6 mm, 200 Å, 5 µm) was used at 40ºC. The autosampler 

was kept at 7ºC, injection volume was 10µL. Analytes were identified according to accurate 

mass (all [M+H]+ adducts) and retention time, compared to authentic standards using Skyline 

software v22.2.0.351. Samples were stored at -80ºC and loaded into the autosampler 20 mins 

before each run as SAM degrades rapidly at room temperature.  

 

RNA sequencing analysis 

Public RNA sequencing data was available for MCF10A and MDA-MB-231 cell lines 

(SRA:PRJNA302668; (Messier et al. 2016)), as well as MDA-MB-231 cells grown in normoxic 

and hypoxic conditions (1% O 2 ) from either total RNA sequencing after ribodepletion (SRA: 

PRJNA604033; (Chen et al. 2021)) or mRNA sequencing after polyA enrichment (SRA: 

PRJNA530760; (Wang et al. 2020)). Following standard quality control, including adapter 

removal and removal of low-quality reads using Trimmomatic v0.36 (Bolger et al. 2014), gene-

level expression values in transcripts per million (TPM) were derived against the Gencode v41 

human transcriptome using kallisto v0.46.1(Bray et al. 2016). TPMs were recalculated after 

exclusion of non-coding and mitochondrial genes. Differentially expressed genes in each 

experimental condition were identified using sleuth v0.30.0 (Pimentel et al. 2017) in R studio. 

MDA-MB-231 hypoxia datasets were also combined to provide a higher sample number, 

controlling for experimental design as a batch effect. Between experiment comparisons were 

drawn using π-values(Xiao et al. 2014), a product of fold change and significance value. 

Methyl transferases were selected for using identified methyl transferases (Petrossian and 

Clarke 2011), the gene list is available in supplementary information (supplementary table 1). 

π-values were used to direct a ‘prerank’ gene set enrichment analysis using a curated list of 
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198 methyltransferase genes (list provided in supplementary) using GSEApy v1.0.5 (Fang et 

al. 2023). 

 

Transfection 

Cells were transfected using the transfection reagent TransIT-siQuest (Mirusbio reagents) in 

OPTIMEM (Gibco). Scrambled (control) siRNA and siDNMT (SMARTpool) were purchased 

from ThermoFischer and used at a concentration of 25nM with cells grown to 80% confluency, 

following manufacturers (Mirusbio) instructions. Knockdown was confirmed with western blot. 

 

Western blot 

Cell were prepared for immunoblotting (Western blot) by lysing in RIPA buffer with 

phosphatase and protease inhibitor cocktails (Sigma-Aldrich, UK). 35 µg of protein lysate was 

resuspended in laemmli buffer, denatured for 5 minutes at 95˚C, separated by SDS PAGE 

and transferred to nitrocellulose membrane (Whatman, USA). Nitrocellulose membranes were 

immunoblotted with the following primary antibodies: rabbit polycolonal antihuman DNMT1 

(Novus Biologicals, UK), mouse monclonal antihuman MAT I/II (F-12, Santa Cruz 

Biotechnology, USA), mouse monoclonal antihuman PRMT1 (B2, Santa Cruz Biotechnology, 

USA), mouse monoclonal antihuman α-tublulin (Cell signalling, USA). HRPconjugated 

secondary antibodies were used for chemiluminescence detection with Luminol Santa Cruz 

Biotechnology, USA) and protein levels were quantified by densitometry with ImageJ (NIH, 

Bethesda US).  

 

Hydrogen peroxide (amplex red) assay 

Experiments were performed in phenol red free DMEM. DMEM containing 50 μM Amplex Red 

reagent (Thermo Scientific, Waltham, MA, United States) and 0.1 U/mL horse radish 

peroxidase (HRP, Thermo Scientific, Waltham, MA, United States) was added to cells in 12 

well dishes (500 μL per well) for 15 min following 24 h in starvation, starvation plus SAM or 

control conditions. We have previously reported no change in ROS using this assay following 

24 hours of hypoxia (Issitt et al. 2023). Fluorescence at 590 nm was measured with a plate 

reader (Clariostar, BMG, Ortenberg, Germany) and compared against a H2O2 standard curve 

for quantification. 
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Orthotopic xenograft breast tumour model 

Tumour model has previously been reported by our group (James et al. 2022). Rag2−/− Il2rg−/− 

(bred in-house) mice were housed in individually ventilated cages with enrichment (3-5 mice 

per cage) in temperature-controlled rooms with access to water and food ad libitum. At 6 

weeks of age, female mice were anaesthetised (2% isoflurane in oxygen (2 L/min)) and 5 × 105 

MDA-MB-231 cells (suspended in Matrigel, 50% v/v in saline, 50 µL of volume) were injected 

into the left inguinal mammary fat pad. Animal weight, condition and tumour growth (calliper 

measurement) were monitored daily. Mice were euthanized at 5 weeks after cell implantation 

or at 15-mm tumour diameter and tumours and isolated. Mammary fat pad, without tumour 

was also collected from the same animals (contralateral side).  

We have previously published our method for sampling mouse headspace (Issitt et al. 2022a). 

Nine-week-old female Rag2−/− Il2rg−/− mice were selected for sampling. Experimental 

replicates were 2 mice from a cage across 3 separate litters/cages: 6 mice in total for each 

experimental group (control or with tumour as littermates). Mice were chosen randomly for 

experimental groups in each litter, blinding was not possible with animal care, sampling and 

analysis performed by TI. Experiments have been reported in-line with the ARRIVE guidelines  

(Percie du Sert et al. 2020). 

Using tube handling methods, mice were gently placed with a cardboard tube and blue paper 

into the custom chambers. Flushing the chamber for 10 min using a Yamitsu air pump with a 

flow rate of 750 mL per min in undisturbed conditions, mice were allowed to acclimatise. T0 

samples were then taken, and as with cellular headspace, the chambers were sealed for 20 

min and T1 samples were then taken. This was performed for all mice, once, 4 weeks post 

implantation, in chambers, first with mice and then again without the mice present but with 

their faecal material. Number of faecal pellets recorded once mice were removed from 

chamber, this was used to normalise faecal VOCs for comparison in supplementary Figure 

S7.  

 

Database searching and alignment 

The methyl chloride transferase (Batis maritima, UNIPROT ID: Q9ZSZ7) and cmuA 

methyltransferase (UNIPROT ID: F8J7J8 (Goulding et al. 1997)) were aligned against the 

human proteome using Clustal (1.2.4) multiple sequence alignment by UNIPROT BLAST. 
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Data analysis 

Graphs and statistics were generated/performed in Graphpad (Prism). Details of specific tests 

are provided in figure legends. RNA seq data was arranged in R studio following analysis 

(described above).  

 

Ethical approval 

Approval for all animal procedures was granted by the University of York Animal Welfare and 

Ethical Review Body. All procedures were carried out under authority of a UK Home Office 

Project Licence and associated Personal Licences.  
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Results 
The work presented attempts to model pathophysiological environments experienced by cells 

in a growing tumour. Starving cells of serum, glucose and oxygen (hypoxia) models one part 

of tumour pathophysiology as growing tumours experience poor availability of substrate 

delivery (Li et al. 2021). The dynamics of this cellular metabolic response to resource 

starvation was explored through volatile profiles and associated metabolites investigated 

which are linked to the most informative VOCs. These changes were then compared to the 

breath of mice bearing tumours of the same cells investigated under stress conditions. 

 

 

Figure 1. Starvation of breast derived cells produces detectable changes in select 
volatile organic compounds. Volatile flux (pg/hr/µg) for the cancerous MDA-MB-231 (A-C) 

and noncancerous MCF10a (D-F). Media subtracted and protein-normalised. (-)Serum = 

media without serum, (-)Glucose = media without glucose. CHCI3 = Chloroform, DMS = 

Dimethyl sulphide, MeBr = Methyl bromide, MeCl = Methyl chloride, MeI = Methyl iodide, 



150 
 

MeSH = Methanoethiol. Boxplot whiskers show median ± Tukey distribution (n=6). Two-way 

ANOVA with Bonferroni post hoc test was performed for A, C, D and F. One-way ANOVA with 

Tukey post hoc test was performed for B and E; * p  <  0.05; ** p  <  0.01; *** p  <  0.001; **** p  

< 0.0001. 

 

Starvation produces detectable changes in volatile flux for select volatile compounds 

MDA-MB-231 and MCF10a cells were exposed to starvation medium to compare VOC 

responses to starvation stress. Cells in starvation medium (without serum or without glucose) 

over 24 hours exhibit significant changes in flux for 5 compounds. 

MDA-MB-231 cells under serum starvation exhibited a significant reduction in fluxes of MeCl 

(Figure 1A) and acetone (Figure 1B) flux compared to control. Serum starvation also produced 

an increase in MeI, and these fluxes were significantly different from glucose starvation (Figure 

1A). Further to this, a non-significant increase in n-Hex was observed (Figure 1C). Glucose 

starvation of MDA-MB-231 cells produced a significant metabolic transformation, from 

production to consumption, for MeCl (Figure 1A). Consumption of isoprene and acetone was 

also observed in glucose starved cells (Figure 1A and B). Glucose starved cells had an 

increased 3-MP flux and a non-significant increase in n-Hex (Figure 1C). 

Glucose and serum starved MCF10a cells exhibited significantly greater uptake of MeCl 

compared with control (Figure 1D). Uptake of acetone was also observed in MCF10a serum 

starved cells (Figure 1E). Serum starved cells also generated significantly more isoprene when 

compared to control (Figure 1D). Glucose starvation in MCF10a led to greater consumption of 

acetone (Figure 1E) and a non-significant, but greater, uptake of MeCl. Glucose starved cells 

n also generated substantially more 3-MP and n-Hex when compared to both control and 

serum starvation (Figure 1F).  

Growth and metabolic activity of both cell lines under starvation was investigated to determine 

cellular responses to these stresses over time. At 24 hours, there was a considerable 

reduction in cells following serum starvation (Figure S1B and C). Glucose starvation produced 

no changes in growth for MDA-MB-231 cells and an increase in MCF10a over 24 hours, with 

relatively less growth after 48 hours compared to control (Figure S1B and C). Metabolic activity 

of cells was measured using MTT assay (Figure S1D and E). A reduction in metabolic activity 

was observed in all starvation conditions for both cell lines with the only significant difference 

recorded for glucose starved MCF10a (Figure S1D). Starvation of MDA-MB-231 cells showed 

reduction in viability by MTT, without significance (Figure S1E). Cell death in these conditions 

was investigated using trypan blue assay. Both cell lines showed significant reduction in 
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percentage viable cells in both serum and glucose free medium of between 70 and 50% 

(Figure S1F and G). 

 

Figure 2. Methyl chloride flux corresponds with chloride content and DNA methylation 
in breast derived cells. (A) Methyl chloride (MeCl) flux only in pg/μg/hr-1, statistical analysis 

performed within expanded data set; two-way ANOVA with bonferonni post hoc test 

represented here independently (n=6). (B) Cellular chloride content in parts per million (ppm) 

for different cell types. (C) Percentage of 5-methylcytosine (5-mC) of total DNA loaded for 

each cell type. (D) Volcano plot of RNA seq data for -log10 LRT (likelihood ratio test) q values 

(corrected p values using Benjamini-Hochberg) of methyl transferase genes shown vs mean 

log2 fold change of MDA-MB-231 vs MCF10a (E) Transcripts per million (TPM) of RNA seq 
data for DNA methyl transferases (DNMT) for different cell lines. Bar plots shown with mean 

± SEM for A-C and mean ± SD for E. One-way ANOVA with Tukey post hoc test was 

performed for B, C and E; * p  <  0.05; ** p  <  0.01; *** p  <  0.001; **** p  < 0.0001. 

 

Methyl chloride flux correlates with methylation in breast cell types 

MeCl flux is increased significantly in MDA-MB-231 compared with MCF10a and MCF7 

(Figure 2A and Issitt et al. 2022). Because of this, intracellular chloride was investigated with 
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ion chromatography, which showed a similar trend to MeCl flux between these cell lines, with 

MCF7 and MDA-MB-231 intracellular chloride significantly increased compared with MCF10a 

(Figure 2B).  

There are no defined pathways for methyl chloride metabolism in humans, despite reports of 

its elevated concentration in human breath and interaction with the human gut microbiome 

(Shahi et al., 2022). MeCl production has been linked to s-adenosyl methionine dependent 

methylation in plants (Rhew et al. 2003) and Maritime seawort (Ni and Hager 1998; Ni and 

Hager 1999), therefore a protein:protein alignment was performed with BLAST from UNIPROT 

(Coudert et al. 2023) for methyl chloride transferase (Batis maritima, UNIPROT ID: Q9ZSZ7) 

against the human database. The top result was thiopurine methyltransferase (TPMT, 

UNIPROT ID P51580), which was subsequently aligned, producing 24.8% similiarity (Figure 

S2A). This alignment indicates some similarity between proteins, with some conservation in 

the binding domain of TPMT (Figure S2A) suggesting a potential avenue for MeCl interaction. 

DNA methylation content of the three cell lines, MCF10a, MCF7 and MDA-MB-231 cells was 

investigated to determine any correlation with MeCl levels. 5-methyl cytosine residue 

percentage, determined by ELISA, of total DNA content within cells was seen to significantly 

increase from 1.8% for MCF10a, to 3% for MCF7 and 3.6% for MDA-MB-231 cells in control 

conditions (Figure 2C).  

As human methyl chloride metabolism is unclear and plant studies suggest multiple methyl 

transferases may be involved in methyl chloride production, RNA sequencing data was 

investigated to identify variation in the TPMT gene and methyl transferases generally. Methyl 

transferase RNA variation is shown as a volcano plot (Figure S2B). Differential expression 

analysis (Figure 2D) revealed 20  (red) and 19  (blue) methyl-transferase (from a report list in 

Petrossian & Clarke, 2011) genes which were relatively and respectively up- and down-

regulated in the MDA-MB-231s. Of these the most 6 significantly upregulated were HNMT, 

PRDM8, SUV39H2, DNMT1, PRDM8. The 6 significantly upregulated in MCF10a were 

METTL7A, PCMTD1, COMT, NSUN5P1, ASMTL and COMTD1. Whilst individual methyl-

transferase gene expression differed between these divergent cell lines, gene seat enrichment 

analysis (GSEA) found no significant shift across the entire gene family (NES (normalised 

enrichment score): 0.971; FDR (false discovery rate): 0.503). To further describe observable 

increases in DNA methylation seen between cell types, DNA methylation specific genes were 

investigated as transcript per million (TPM) from the same public dataset. Increases in DNMT1 

for MCF7 and MDA-MB-231 were seen compared to MCF10a (Figure 2E) which was 

comparable to changes seen in DNA methylation (Figure 2E). DNMT2 was slightly increased 
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for MDA-MB-231 compared to other cells and MCF7 shows increases in DNMT3a/b (Figure 

2E). 

 

 

Figure 3. Methyl chloride (MeCl) flux correlates with starvation and methylation levels. 
(A) MeCl flux (pg/hr/μg) of MDA-MB-231 cells without (-) serum, glucose or hypoxia. Data 

presented from figure 1 and hypoxia data from previously published data for comparative 

purposes, statistics for A are from Two-way ANOVA in the presence of the whole dataset 

(n=6). (B) Intracellular chloride content of cells under starvation conditions in part per million 

(ppm) (n=4). (C) DNA methylation of cells under starvation conditions given as percentage 5-

methylcytosine of total DNA (n=4). (D) Pi-chart of RNA data, comparing MDA-MB-231 

(upwards on y-axis), MCF10a (down on y-axis), normoxia (right, x-axis) and hypoxia (left, x-

axis), pi-values. (E) Ratio of S-adenosylmethionine (SAM) to s-adenosyl-homocysteine (SAH) 

for cells under starvation conditions (n=4). (F) Ratio of methionine (MET) to homocysteine 

(HCY) for cells under starvation conditions (n=4). (G) Vitamin B12 (nM) for cells under 

starvation conditions (n=4). (H) MeCl flux (pg/hr/μg) of cells treated with 10 μM 5-azacytadine 

(5-AZA), 10 μM FIDAS-5 or 400 μM sodium nitroprusside (SNP) (n=6). Bar plots shown with 
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mean ± SEM. One-way ANOVA with Tukey post hoc test was performed for B, C, E-H; * p  < 

 0.05; ** p  <  0.01; **** p  < 0.0001. 

 

Methyl chloride flux correlates with methylation response in MDA-MB-231 

We have demonstrated MeCl reduction in response to serum starvation and uptake in glucose 

starvation (Figure 1A) and previously reported a MeCl uptake in response to oxygen starvation 

in MDA-MB-231 (Issitt et al. 2023), outlined in Figure 3A. This reduction/consumption 

correlated with accumulation of chloride for all conditions Figure 3B.    

Analysis of global DNA methylation revealed a reduction in all conditions with significance 

found in the glucose starvation condition alone (Figure 3C), correlating with results seen in 

Figure 2. Interestingly, differential analysis between MDA-MB-231 cells grown in hypoxic 

rather than normoxic conditions found only one significantly different gene: downregulation of 

NOP2 (log2FC= -1.30; q=1.81) in hypoxia. Whilst no other genes met our significance 

thresholds (Figure S3A), including DNMT1 (log2FC= -0.92; q=1.73), the data suggested an 

overall downregulation of methyl-transferase genes in hypoxia, supported by GSEA (NES: -

1.701; FDR q: 0.0001, Figure S3B) Under normoxia, MCF10a MeCl levels are lower than 

MDA-MB-231 in normoxia (Figure 1), we investigated the similarities between MT gene 

expression in MCF10a with hypoxic MDA-MB0231s using a π-plot: a method for comparing 

multiple differential expression analyses by combining fold change and significance value 

(Figure 3C). The only significantly changed gene was DNMT1, which was significantly down-

regulated in both hypoxic conditions and in MCF10a cells when compared with MDA-MB-231 

in normoxic conditions. 

HPLC analysis of SAM and SAH can be expressed as a ratio to show methylation potential in 

cells (Caudill et al. 2001; Castro et al. 2003). SAM:SAH ratio increased our cells in starvation 

conditions (Figure 3E) SAH is described as a potent inhibitor of methylation (Castro et al. 

2003) and decreases relative to SAM show potential for methylation increasing and a lack of 

consumption of SAM. SAM increased slightly, without significance following starvation (Figure 

S3C) and SAH decreased (Figure S3D).  

 

Active consumption of MeCl linked to methionine synthesis 

The observed reduction/consumption of MeCl suggests an entirely different metabolism in use 

by cells, potentially using MeCl as a metabolic substrate rather than a metabolic output. As 

with methyl chloride production, methyl chloride consumption has not been described or 
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detailed in humans. Use of MeCl as a substrate has, however, been demonstrated and 

described in methylotrophic bacteria, via the cmuA methyltransferase (Goulding et al. 1997; 

McAnulla et al. 2001; Studer et al. 2001). The chloromethane methyltransferase protein 

(UNIPROT ID: F8J7J8 (Goulding et al. 1997)) was therefore compared to the human 

proteasome via UNIPROT BLAST. The top result with 31.08% alignment was methionine 

synthase (MTR, UNIPROT ID: Q99707), alignment for these two proteins was then performed 

(Figure S4). High conservation was observed, with some conserved regions lying in the 

binding domains of the MTR structure, providing confidence that similar substrates are used 

for both proteins. 

MTR generates methionine from homocysteine, using vitamin b12 to add a methyl group. To 

investigate if there was potential MeCl consumption relating to MTR, methionine, 

homocysteine and vitamin B12, the molecule which facilitates MTR’s consumption of 

homocysteine to methionine, were investigated. A similar trend was see in methionine (Figure 

S3E) and homocysteine (Figure S3F), as SAM and SAH changes. The ratio of methionine to 

homocysteine (MTH:HCY) increased for all starvation conditions with significance seen for 

cells in hypoxic environments (Figure 3F). Vitamin B12 levels were not shown to change under 

starvation conditions (Figure 3G). 

 

Preventing methylation with 5-Azacytadine blocks MeCl production  

Because results indicated a role for methylation in MeCl production and alterations to 

SAM:SAH and MTH:HCY, MDA-MB-231 cells were treated with 5-AZA (to block methylation 

(Muller and Florek 2010)), FIDAS-5 (to block cellular generation of SAM (Zhang et al. 2013)) 

and SNP (which has been shown to block methionine synthase (Nicolaou et al. 1997)). 5-AZA 

treatment clearly generated a MeCl uptake response (Figure 3H), similar to effects of glucose 

or hypoxic starvation (Figure 1 and 2A). FIDAS-5 produced no change in MeCl flux and SNP 

treatment generated a slight increase in MeCl flux (Figure 3X). The viability of cells under 

these conditions was investigated using trypan blue assay, 5-AZA and SNP treatment 

produced a significant reduction in viability of 10-20% (Figure S3G). 



156 
 

 

Figure 4. SAM recovers MeCl flux in starvation conditions. (A) MeCl flux (pg/hr/μg) of 

MDA-MB-231 cells treated S-adensylmethionine (SAM) under control conditions or without (-

) serum, glucose, hypoxia. (n=6). (B) Intracellular chloride content of cells under starvation 

conditions or control, treated with SAM, in part per million (ppm) (n=4). (C) DNA methylation 

of cells under starvation conditions or control, treated with SAM, given as percentage 5-

methylcytosine of total DNA (n=4). (D) Ratio of SAM to s-adenosyl-homocysteine (SAH) for 

cells under starvation conditions or control, treated with SAM (n=4). (E) Ratio of methionine 

(MET) to homocysteine (HCY) for cells under starvation conditions or control, treated with 

SAM (n=4). (F) Vitamin B12 (nM) for cells under starvation conditions or control, treated with 

SAM (n=4). ). (G) MeCl flux (pg/hr/μg) of glucose starved cells treated with 400 μM sodium 

nitroprusside (SNP) (n=6). (H) MeCl flux (pg/hr/μg) of untreated cells or those treated si-

Control or si-DNMT1 (n=6). Bar plots shown with mean ± SEM. One-way ANOVA with Tukey 

post hoc test was performed. * p  <  0.05; ** p  <  0.01; *** p  <  0.001; **** p  < 0.0001. 
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S-adenosylmethionine treatment recovers methyl chloride flux response under 

starvation 

Because MeCl release by cells was suspected of being a product of methyl transferase 

activity, treatment with the primary substrate for methyl transferases, SAM, was performed for 

cells under starvation and MeCl levels quantified. In contrast to untreated cells, treatment of 

MDA-MB-231 (starved and control) with SAM resulted in no significant differences in MeCl 

fluxes between starved and unstarved cells (Figure 4A). While there was an observable 

decrease in MeCl within all treatments compared to control, glucose starved cells which, when 

untreated, actively consumed MeCl, no longer consumed MeCl under SAM treatment (Figure 

4A). 

Control and glucose starved cells show no change in chloride content following SAM treatment 

(Figure 4B). Serum starvation with SAM treatment produced a slight accumulation of chloride 

(Figure 4B), but to a lesser extent than serum starvation alone (Figure 3B). Cells in hypoxia 

with SAM supplementation, showed a significant reduction in chloride accumulation (Figure 

4B), far reduced compared to cells in hypoxia alone (Figure 3B). SAM supplementation, in all 

cases reduced the accumulation of chloride in starved MDA-MB-231. SAM supplementation 

in serum and glucose starvation media produced no significant changes in media background 

volatile profiles (Figure S5A-C). 

SAM is synthesised by methionine adenosyltransferase (MAT) (Lu 2000), and levels were 

investigated in starvation and SAM supplemented MDA-MB-231. Starvation of serum and 

glucose revealed a lower level of expression, shown by western blot (Figure S5D), which was 

significant when quantified (Figure S5E). SAM supplementation alone revealed little change 

compared to control and starvation with SAM revealed a similar trend, however slightly 

reduced (Figure S5D and E).  

 

S-adenosylmethionine treatment recovers methylation response under starvation 

Protein arginine methyl transferase 1 (PRMT1) was investigated, to see if this methyl 

transferase also altered under starvation. Western blot revealed PRMT1 reduced considerably 

under starvation conditions (w/o serum or glucose) compared with control (Figure S5D), 

however this was not statically significant with 3 replicates (Figure S5F). SAM supplementation 

appeared to increase PRMT1 in control conditions and recover this effect in starvation 

conditions (Figure S5D and F). Further to this, DNMT1 mRNA clearly shows a decrease in 

hypoxic conditions (Figure S5G).  
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Cells under starvation showed no significant changes in DNA methylation when treated with 

SAM (Figure 4C). Methylation potential (SAM:SAH ratio) increased in cells treated with SAM 

and was further increased in cells under starvation (Figure 4D), however, this increase was 

not as pronounced as that seen in cells under starvation without SAM (Figure 3E). Intracellular 

SAM, increased to a lesser extent in cells under starvation with SAM supplementation (Figure 

S5H) than cells under starvation alone (Figure S3C). Effects upon intracellular SAH were also 

reduced in cells under starvation with SAM supplementation (Figure S5I) than those under 

starvation alone (Sigure S3D).  

 

Methionine and homocysteine under starvation conditions with s-adensylmethionine  

Methionine to homocysteine ratio in MDA-MB-231 cells was drastically reduced under 

starvation conditions with SAM treatment (Figure 4E) in stark contrast to the increases seen 

in cells under starvation alone, where this ratio increased (Figure 3F). Methionine levels 

increased, but not significantly in all SAM treated cells (Figure S5J), as with cells under 

starvation alone but homocysteine levels drastically increased (Figure S5K), whereas they 

decreased under starvation alone (Figure S3F). Further to this, methionine synthase (MTR) 

levels from public RNA data, show no change under hypoxia compared to normoxia (Figure 

S6A). Vitamin B12 levels did not change under treatment with SAM (Figure 4F). 

To determine if consumption of MeCl, which is pronounced in glucose starved cells is a result 

of MTR activity, cells were treated with sodium nitroprusside (SNP) in control and glucose 

starvation conditions (Figure 4G). SNP treatment produced a slight increase in MeCl flux, a 

similar amount to that consumed under glucose starvation (Figure 4G and 3A). Treatment of 

glucose starved cells with SNP effectively removed consumption of MeCl by these cells 

(Figure 4G). 

This data shows that SAM is linked to MeCl production but not methionine metabolism. 

 

Knockdown of DNMT1 does not alter MeCl flux in MDA-MB-231  

To determine if DNMT1 was driving MeCl production, cells were treated with siRNA for DNMT1 

or a si-scramble as control. Knockdown was successful, shown by western blot (Figure S6B), 

however no change was observed in MeCl flux in these conditions (Figure 4H). 

 



159 
 

Glutathione and reactive oxygen species are not linked to methyl chloride flux under 

starvation 

Glutathione synthesis is driven by methionine and it is linked to epigenetic changes and 

methylation activity (Garcia-Gimenez and Pallardo 2014; Sedillo and Cryns 2022). Glutathione 

levels were investigated to see if their levels corresponded with MeCl flux. In glucose 

starvation, glutathione reduced compared to serum and control conditions (Figure S6C). 

Treatment with SAM did not alter glutathione levels in control cells and produced no changes 

under serum or glucose starvation (Figure S6C). Therefore, alterations in MeCl were not 

associated with glutathione 

Reactive oxygen species (ROS) have been linked to VOCs in the breath and in cellular 

headspace (Issitt et al. 2022b). To check for changes in ROS, as increases could be 

responsible for observed increases and decreases in VOCs an amplex red assay was 

performed for cells under starvation conditions and with SAM treatment. Previously we have 

published a significant reduction in ROS for MDA-MB-231 in hypoxic conditions for 24 hours 

(Issitt et al. 2023). Under serum and glucose starvation following 24 hours, ROS was slightly 

elevated compared to control (Figure S6D). Treatment with SAM produced a slight increase 

in ROS in control cells, a significant increase in serum starved and no change in glucose 

starvation (Figure S6D). Together with previously published results (Issitt et al. 2023), these 

results suggest the VOCs studied here are not associated with variations in cellular ROS. 
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Figure 5. Volatile flux (g/hr/g) of mice breath in control and MDA-MB-231 xenograft 
tumour bearing mice. (A-C). Faecal VOCs subtracted and normalised to mouse weight. (D) 
Intra-tumour and contralateral mammary fat chloride content in ppm. (E) Methyl chloride 

(MeCl) flux (pg/hr/g) of mouse breath (faecal MeCl flux subtracted and mouse weight 

normalised) for tumours of varying size (mm3). CHCI3 = Chloroform, DMS = Dimethyl sulphide, 

MeBr = Methyl bromide, MeI = Methyl iodide, MeSH = Methanoethiol. Boxplot whiskers show 

median ± Tukey distribution (n=6). Bar plot (D) shown with mean ± SEM. Two-way ANOVA 

with Bonferroni post hoc test was performed for A and C. Students T-test performed for D. 

Pade (1,1) approximant, least squares fit with non-linear fit test performed, shown by line of fit 

in E.  

 

Volatile flux is altered in the breath of MDA-MB-231 tumour xenograft mice 

The breath of mice with and without tumour xenografts was investigated to determine if VOC 

profiles of MDA-MB-231 would transfer to the breath of mice. These mice are age and sex 

matched, with consistent sampling time point sampling at 4 weeks post protocol. Two VOCs 

were altered (Figure 5), MeCl was significantly reduced (Figure 5A) and 3MP was significantly 
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increased (Figure 5C) compared with control mice. This method requires the subtraction of 

faecal headspace from the chamber without the mice in, and no variations were seen in the 

VOCs from faecal material (Figure S7A).  

Because we have shown consumption or reduced levels of MeCl correlating with accumulation 

of intracellular chloride, chloride was investigated in tumours compared to the mammary fat 

pad without xenograft. Using this comparator, chloride was significantly increased in tumours 

compared with the contralateral mammary fat pad (from 3 ppm to 5 ppm, Figure 5D). 

Tumour size was compared to MeCl flux, which revealed MeCl flux reducing as tumour size 

increased (Figure 5E). A non-linear regression with padé fit, showed this trend to be significant 

(p=0.0004). Chloride and DNA methylation content of these same tumours was investigated, 

however no significant trends were observed (Figure S7D and E). 

Overview of results 

Briefly, cellular volatiles are significantly altered under serum and glucose starvation. 

Consistently, methyl chloride (MeCl), which is produced by cells, is taken up under stress. 

This uptake is matched by chloride accumulation. Variations in baseline cell type MeCl release 

correlates with DNA methylation, but not activity of the methyl-transfersome as a whole. 

Starvation induced MeCl uptake, with reduction in global DNA methylation, increases in 

methylation potential and changes in associated metabolites. Publicly available RNA 

sequencing data supports these findings by revealing DNMT1 as a commonly reduced gene 

between starvation conditions and cell types where MeCl is reduced. Blocking methylation 

activity in cells produces a switch from production to uptake of MeCl but knockdown of DNMT1 

produced no change. RNA data reveals significantly reduced enrichment of the 

methytransfersome under starvation conditions, suggesting MeCl production is a result of 

global methyl transferase activity and not DNMT1 alone. This is further supported by 

supplementation with SAM in starvation conditions lessening the effect of starvation upon 

MeCl. Further to this, active consumption of MeCl is linked to methionine synthase, which is 

supported by methionine synthase blocking agents removing starvation effects upon MeCl. 

The usefulness of these volatile biomarkers is further validated in the breath of cancer bearing 

mice, which show significantly reduced MeCl. 
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Figure 6. Proposed mechanisms of methyl chloride (MeCl) consumption and 
production. MeCl consumption by cells is through the action of methionine synthase (MTR), 

generating methionine (MET) through the addition of a methyl group from MeCl to 

homocysteine (HCY), resulting in an accumulation of chloride ions. Production of MeCl by 

cells through the activity of S-adenosylmethionine (SAM) dependent methyl transferases 

which use SAM as a methyl donor, producing S-adenosyl-L-homocysteine. 
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Discussion 
This research has utilised a methodology capable of measuring cellular metabolism of VOCs 

in models of tumour pathological environment, namely serum, glucose and oxygen starvation, 

to discover biomarkers capable of distinguishing cancer in the breath of tumour bearing mice. 

DNA methylation profiles within cancer, manifesting as hypomethylation across the genome 

and hypermethylation for specific loci, present a current emerging technology for cancer 

diagnostics (Papanicolau-Sengos and Aldape 2022; Li et al. 2023), with large scale ongoing 

human trials (Neal et al. 2022; Pons-Belda et al. 2022). We present, through this work, methyl 

chloride (MeCl) production as a novel biomarker of methylation, present in human breath. 

 

Cellular processing of VOCs – biomarkers of methylation 

Volatile flux linked to mechanistic process has been demonstrated in this research, primarily 

MeCl both as a product of methyl transferase activity and as a potential substrate for 

methionine synthesis. To highlight this process, a schematic is presented in Figure 6. Here, 

the activity of methyl transferases, generates MeCl and the consumption of MeCl is driven by 

methionine synthase, in place of vitamin b12, resulting in the observed accumulation of 

chloride ions. We have demonstrated that MeCl levels rise and fall alongside DNA methylation 

levels, however, knockdown of DNMT1, the primary enzyme for DNA methylation, did not alter 

MeCl flux. Protein alignment of MeCl producing enzymes in plants with the human database 

revealed a methyl transferase (TPMT) as a likely candidate. We determined that DNA 

methylation alone may not drive MeCl production as publicly available data shows a down 

regulation of methyl transferases under hypoxic conditions and treatment with 5-AZA, which 

blocks a range of methylation events, prevented release of MeCl. Furthermore, treatment with 

SAM, prevented the significant reduction of MeCl production under starvation conditions. 

Additional SAM, in this instance may promote methyl transferase activity, increasing MeCl 

production. Which is supported by evidence that cells under hypoxic conditions are hypo 

methylated (Shahrzad et al. 2007), potentially through the impairment of the production of 

SAM in hypoxic conditions (Chawla et al. 1996; Avila et al. 1998).  

MeCl, is a potent methylating agent and is exhaled in human breath in the range of 2.5 to 33 

parts per billion by volume (ppbv), 60 times that of inhaled air (Keppler et al. 2017). Isoprene 

is the most studied VOCs in human breath (Mochalski et al. 2023), with reported 

concentrations of 100ppbv (at rest) and much higher concentrations following exercise 

(Mochalski et al. 2023). Compared to isoprene and other compounds such as acetone (1.2-

1880 ppbv), methanol (160-2000 ppbv) and ethanol (13-1000 ppbv) (Fenske and Paulson 
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1999), MeCl, is found in lower amounts but is still a considerable component of human breath. 

MeCl described in the breath of healthy humans (Statheropoulos et al. 2005; Keppler et al. 

2017; Drabinska et al. 2021), appears to be altered little in the breath of smokers (Filipiak et 

al. 2012) but we have yet to find evidence of it altered in the breath of cancer patients.  

Because starvation of glucose, hypoxia and treatment with 5-AZA not only prevented 

production of MeCl but generated an active consumption by cells, we propose that MeCl is 

both used and produced by cells. This ‘push-pull’ model presents a novel method for 

methionine generation, an essential amino acid for protein synthesis and other biochemical 

reactions required for cell viability and growth (Sedillo and Cryns 2022). Methionine is used 

heavily by cancer cells in growth and response to stress (Sedillo and Cryns 2022) and the 

stress responses shown here could be linked to this dependence. MDA-MB-231 cells under 

hypoxic conditions have been shown to have increased levels of methionine (Tsai et al. 2013), 

in line with our findings. Furthermore, we have shown cells under variable stress consuming 

MeCl, including chemotherapeutic stress with Doxorubicin (Issitt et al. 2022a), which has been 

shown to increase intra and extra cellular methionine in skeletal muscle cells (Fabris and 

MacLean 2018).  

The balance between production and consumption of MeCl is observed through the breath of 

mice in this study, where by larger tumours have increased levels of cells persisting in 

conditions with low nutrient delivery. This is observed in the breath of mice with larger tumours 

having reduced levels of MeCl compared to smaller tumours (Figure 5E). Increased 

methionine levels and decreased methylation in cells under stress, may explain reduced MeCl 

in the breath of tumour bearing mice. MeCl consumption through methionine synthesis 

coupled with a decrease in release through reduced methylation may explain the observed 

trends, supporting the mechanism presented in figure 6. Furthermore, intra-cellular methionine 

levels have been shown to increase with tumour size (Kawaguchi et al. 2018). 

 

Limitations of the study 

More research is required to describe these mechanisms in detail and here we present a 

hypothesis upon which to build. We have shown across multiple models, VOC flux in response 

to stress and generated evidence to describe the consumption and production of methyl 

chloride as a cellular mechanism. However, we have presented a consistent and translational 

biomarker of cellular stress and pathology both in this work and in previously published work 

(Keppler et al. 2017; Issitt et al. 2022a; Shahi et al. 2022; Issitt et al. 2023), and provided 

evidence to begin to describe the mechanism of metabolism. 
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Conclusion 

The methodology described here for both mouse breath (static headspace) and cellular 

headspace, as previously described (Issitt et al. 2022a; Issitt et al. 2023), takes two headspace 

samples to determine flux of VOC over time. This methodology varies from the majority of 

breath and cellular VOC approaches which often concentrate VOCs onto materials for thermal 

desorption of a single time point (Issitt et al. 2022b). While the presented method is less 

automated, it allows description of active consumption, which we have shown here to be 

important, descriptive characteristics of stress. In mice breath for example, while levels of 3-

MP in the breath of tumour bearing mice is no different from zero, it is significantly different 

from control, where mice are consuming this VOC. How these results will translate to a clinical 

application remains to be seen but it highlights the need for alternate approaches for volatile 

biomarker discovery, while considering international benchmarking (Wilkinson et al. 2021).  

By attempting to model tumour environment in cell models, measuring select VOCs and then 

testing the breath of tumour bearing mice for those same targets, we identified two VOCs 

(MeCl and 3-MP) out of seven which were significantly altered in the cellular model (Figure 1), 

which translated to the mouse model (Figure 5). We have then attempted to describe likely 

mechanisms for MeCl flux (Figure 6), within the context of methylation and methionine 

synthesis, both of which are altered in cancer (Klutstein et al. 2016; Xie et al. 2019; Sedillo 

and Cryns 2022).  
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Supplementary Material 

 

Supplementary Figure 1. Volatile flux for media backgrounds and cell response to 
starvation. Select volatile compound flux (g/hr-1) for media control conditions (A). SAM, S-

adensolymethionine; CHCl3, chloroform; DMS, dimethyl sulfide; MeBr, methyl bromide; MeCI, 

methyl chloride; Mel, methyl iodide; MeSH, methanoethiol; 2-MP, 2 methyl pentane; 3-MP, 3 

methyl pentane; n-Hex, n-hexane. Boxplot whiskers show median ± Tukey distribution (n=6). 

(B,C) Cell growth curves measured by sulphorhodamine B assay for MCF10a (B) and MDA-

MB-231 (C) (n=3). (D) MTT assay for cells following 24 hour starvation (n=3). (D) Cell 

viability/death measured by trypan blue assay for MCF10a (F) and MDA-MB-231 (G) (n=3). 

Mean One-way ANOVA with tukey post hoc analysis performed for D-G, error bars are mean 

± SEM, *p  <  0.05; **p  <  0.01; ***p  <  0.001; ****p  < 0.0001. 

 

  



173 
 

 

Supplementary Figure 2. Protein alignment for TPMT and methyl chloride transferase and 
volcano plot. (A) Alignment results from UNIPROT for human TPMT (thiopurine 

methyltransferase, UNIPROT ID: P51580) and plant methyl chloride transferase (Batis 

maritima, UNIPROT ID: Q9ZSZ7). Alignment results revealed 24.8% similiarity, the most 

similar protein in the UNIPROT human proteasome against methyl chloride transferase. * = 

same residue : , . =closely linked residues. Underlined and red sections show binding 

domains. (B) Volcano plot of RNA seq data for -log10 LRT (likelihood ratio test) q values 

(corrected p values using Benjamini-Hochberg) vs mean log2 fold change of MDA-MB-231 vs 

MCF10a. 
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Supplementary Figure 3. Effects of starvation upon mRNA and methylation metabolites 
in MDA-MB-231. (A) Volcano plot of RNA seq data for -log10 LRT (likelihood ratio test) q 

values (corrected p values using Benjamini-Hochberg) vs mean log2 fold change of hypoxia 

vs normoxia. (B) Gene set enrichment analysis results of RNA data from (A). S-

adenosylmethioine (SAM) (C), S-adenosyl-L-homocysteine (SAH) (D), Methioine (E) and 

homocysteine (F) intracellular MDA-MB-231 content in μg/ml/ug, for cells under starvation 

conditions or control. (G) Percentage viable cells for MDA-MB-231 cells following 24 hours 

treatment with 10 μM 5-azacytadine (5-AZA), 10 μM FIDAS-5 or 400 μM sodium nitroprusside 

(SNP), 50 μM SAM or 0.00005% DMSO measured by Trypan blue assay.  Bar plots shown 

with mean ± SEM, n=4 . One-way ANOVA with Tukey post hoc analysis performed for all bar 

charts. *p  <  0.05; **p  <  0.01. 
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Supplementary Figure 4. Protein alignment of the methylotroph cmuA protein and human 
methionine synthase. Alignment results from UNIPROT for human MTR (methionine 

synthase, UNIPROT ID: Q99707) and bacterial chloromethane (methyl chloride) 

methyltransferase (UNIPROT ID: F8J7J8). Alignment results revealed 31.08% similarity, the 

most similar protein in the UNIPROT human proteasome against chloromethane methyl 

transferase. *= same residue : , . =closely linked residues. Underlined and red sections show 

binding domains.    



176 
 

 

Supplementary Figure 5. Effects of S-adenosylmethionine (SAM) treatment upon MDA-
MB-231 cells. (A-C) Volatile flux (pg/hr/µg) for MDA-MB-231 in control media, media without 

serum or media without glucose, all supplemented with 50 μM SAM. Media subtracted and 

protein-normalised. (D) Representative western blot of MDA-MB-231 cell lysates probed for 

MATI/II, PRMT1 and α-Tubulin in starvation conditions with or without SAM. (E) Quantification 

of MATI/II western blots by densitometry analysis of conditions in D normalised to α-tubulin 

and expressed as fold change compared to control (F) ) Quantification of PRMT1 western 

blots by densitometry analysis of conditions in D normalised to α-tubulin and expressed as 

fold change compared to control. (G) DNMT1 RNA levels in transcripts per million (TPM) of 

MDA-MB-231 cells in normoxic or hypoxic conditions from publicly available data. S-

adenosylmethioine (SAM) (H), S-adenosyl-L-homocysteine (SAH) (I), Methioine (J) and 

homocysteine (K) intracellular MDA-MB-231 content in μg/ml/ug, for cells under starvation 

conditions or control supplemented with SAM. (-)Serum = media without serum, (-)Glucose = 
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media without glucose. CHCI3 = Chloroform, DMS = Dimethyl sulphide, MeBr = Methyl 

bromide, MeCl = Methyl chloride, MeI = Methyl iodide, MeSH = Methanoethiol. Boxplot 

whiskers show median ± Tukey distribution (n=6). Two-way ANOVA with Bonferroni post hoc 

test was performed for A-C. Bar plots shown with mean ± SEM. One way ANOVA with Tukey 

posthoc analysis performed for bar charts E, F, H-K. Students T-test performed for G. *p  < 

 0.05; ***p  <  0.001. 

 

 

 

 

Supplementary Figure 6. Glutathione and reactive oxygen species investigation and 
DNMT1 knockdown in MDA-MB-231. (A) MTR (methionine synthase) RNA levels in 

transcripts per million (TPM) of MDA-MB-231 cells in normoxic or hypoxic conditions from 

publicly available data. (n=3) . (B) Representative western blot of MDA-MB-231 cell lysates 

probed for DNMT1 and α-Tubulin in treated with si-RNA targeting DNMT1 or scrambled control 

at 24 hours or 48 hours post treatment. (C) Glutathione content of MDA-MB-231 cells, 

normalised to protein content (GSH/mg) in nMoles, for cells in control, serum or glucose 

starvation with our with out S-adenslymethioine (SAM) treatment (n=3). (D) Amplex red assay 

for reactive oxygen species. Treatment conditions as with C, expressed as percentage change 

compared to control (n=3). Bar plots shown with mean ± SEM. One way ANOVA with Tukey 

posthoc analysis performed for bar charts C and D. *p  <  0.05; **p  <  0.01. 
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Supplementary Figure 7. Volatile flux and tumour chloride and DNA methylation content 
from MDA-MB-231 tumour xenograft bearing mice. (A-C) . Volatile flux (g/hr/pellet) of 

mouse faecal pellets from control and MDA-MB-231 xenograft tumour bearing mice. 

Normalised to number of pellets (n=6). (D) Chloride content in parts per million (ppm) 

normalised to weight of sample in mg compared to total tumour size in mm3. (E) 5-methyl 

cytosine (5-mc) content as percentage of total DNA for tumours compared to total tumour size 

in mm3. 
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ENSEMBL ID Gene ID Approved 
symbol Approved name Location 

ENSG00000188573.8 FBLL1  FBLL1 fibrillarin like 1 5q34 

ENSG00000169519.21 METT5D1  METTL15 methyltransferase like 15 11p14.1 

ENSG00000244026 FAM86D  FAM86DP family with sequence similarity 86 member D, 
pseudogene 3p12.3 

ENSG00000214756.8 METTL12  CSKMT citrate synthase lysine methyltransferase 11q12.3 

ENSG00000227835 CARM1L  CARM1P1 coactivator associated arginine 
methyltransferase 1 pseudogene 1 9p24.2 

ENSG00000107614.22 TRDMT1  TRDMT1 tRNA aspartic acid methyltransferase 1 10p13 

ENSG00000100462.16 PRMT5  PRMT5 protein arginine methyltransferase 5 14q11.2 

ENSG00000101654.18 RNMT  RNMT RNA guanine-7 methyltransferase 18p11.21 

ENSG00000132275.11 RRP8  RRP8 ribosomal RNA processing 8 11p15.4 

ENSG00000071462.12 WBSCR22  BUD23 BUD23 rRNA methyltransferase and ribosome 
maturation factor 7q11.23 

ENSG00000168806.8 LCMT2  LCMT2 leucine carboxyl methyltransferase 2 15q15.3 

ENSG00000145194 ECE2  ECE2 endothelin converting enzyme 2 3q27.1 

ENSG00000185238.13 PRMT3  PRMT3 protein arginine methyltransferase 3 11p15.1 

ENSG00000241644.2 INMT  INMT indolethylamine N-methyltransferase 7p14.3 

ENSG00000171806.12 C1orf156  METTL18 methyltransferase like 18 1q24.2 

ENSG00000169093.16 ASMTL  ASMTL acetylserotonin O-methyltransferase like Xp22.3_Yp11.3 

ENSG00000145002.13 FAM86B2  FAM86B2 family with sequence similarity 86 member B2 8p23.1 

ENSG00000174912 METT5D2  METTL15P1 methyltransferase like 15 pseudogene 1 3q25.31 

ENSG00000141744.4 PNMT  PNMT phenylethanolamine N-methyltransferase 17q12 

ENSG00000093010.15 COMT  COMT catechol-O-methyltransferase 22q11.21 

ENSG00000120265.19 PCMT1  PCMT1 protein-L-isoaspartate (D-aspartate) O-
methyltransferase 6q25.1 

ENSG00000105202.9 FBL  FBL fibrillarin 19q13.2 

ENSG00000130816.17 DNMT1  DNMT1 DNA methyltransferase 1 19p13.2 

ENSG00000166741.8 NNMT  NNMT nicotinamide N-methyltransferase 11q23.2 

ENSG00000111641.12 NOP2  NOP2 NOP2 nucleolar protein 12p13.31 

ENSG00000196433.13 ASMT  ASMT acetylserotonin O-methyltransferase Xp22.3_Yp11.3 

ENSG00000169710.9 FASN  FASN fatty acid synthase 17q25.3 
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ENSG00000150540.14 HNMT  HNMT histamine N-methyltransferase 2q22.1 

ENSG00000160310.19 PRMT2  PRMT2 protein arginine methyltransferase 2 21q22.3 

ENSG00000037474.15 NSUN2  NSUN2 NOP2/Sun RNA methyltransferase 2 5p15.31 

ENSG00000130005.13 GAMT  GAMT guanidinoacetate N-methyltransferase 19p13.3 

ENSG00000124713.6 GNMT  GNMT glycine N-methyltransferase 6p21.1 

ENSG00000164603.12 C7orf60  BMT2 base methyltransferase of 25S rRNA 2 homolog 7q31.1 

ENSG00000126814.7 TRMT5  TRMT5 tRNA methyltransferase 5 14q23.1 

ENSG00000291151 NSUN5P1  NSUN5P1 NSUN5 pseudogene 1 7q11.23 

ENSG00000110871.15 COQ5  COQ5 coenzyme Q5, methyltransferase 12q24.31 

ENSG00000203791.15 METTL10  EEF1AKMT2 EEF1A lysine methyltransferase 2 10q26.13 

ENSG00000162639.16 C1orf59  HENMT1 HEN methyltransferase 1 1p13.3 

ENSG00000101247.18 C20orf7  NDUFAF5 NADH:ubiquinone oxidoreductase complex 
assembly factor 5 20p12.1 

ENSG00000203740.4 METTL11B  NTMT2 N-terminal Xaa-Pro-Lys N-methyltransferase 2 1q24.2 

ENSG00000139780.8 C13orf39  METTL21C methyltransferase 21C, AARS1 lysine 13q33.1 

ENSG00000005194.15 NSUN5C  NSUN5P2 NSUN5 pseudogene 2 7q11.23 

ENSG00000005194 CIAPIN1  CIAPIN1 cytokine induced apoptosis inhibitor 1 16q21 

ENSG00000165055.16 METTL2B  METTL2B methyltransferase 2B, methylcytidine 7q32.1 

ENSG00000164169.13 PRMT10  PRMT9 protein arginine methyltransferase 9 4q31.23 

ENSG00000150756.14 FAM173B  ATPSCKMT ATP synthase c subunit lysine N-
methyltransferase 5p15.2 

ENSG00000170439.8 METTL7B  TMT1B thiol methyltransferase 1B 12q13.2 

ENSG00000146834.15 MEPCE  MEPCE methylphosphate capping enzyme 7q22.1 

ENSG00000003509.16 C2orf56  NDUFAF7 NADH:ubiquinone oxidoreductase complex 
assembly factor 7 2p22.2 

ENSG00000121486.12 TRM1L  TRMT1L  tRNA methyltransferase 1 like 1q25.3 

ENSG00000066651.20 TRMT11  TRMT11 tRNA methyltransferase 11 homolog 6q22.32 

ENSG00000186666.6 BCDIN3D  BCDIN3D BCDIN3 domain containing RNA 
methyltransferase 12q13.12 

ENSG00000143919.15 C2orf34  CAMKMT calmodulin-lysine N-methyltransferase 2p21 

ENSG00000165644.11 COMTD1  COMTD1 catechol-O-methyltransferase domain 
containing 1 10q22.2 

ENSG00000127804.13 METT10D  METTL16 methyltransferase 16, N6-methyladenosine 17p13.3 
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ENSG00000142453.12 CARM1  CARM1 coactivator associated arginine 
methyltransferase 1 19p13.2 

ENSG00000181038.14 C17orf95  METTL23 methyltransferase like 23 17q25.2 

ENSG00000139160.13 C12orf72  ETFBKMT electron transfer flavoprotein subunit beta 
lysine methyltransferase 12p11.21 

ENSG00000108592.17 FTSJ3  FTSJ3 FtsJ RNA 2'-O-methyltransferase 3 17q23.3 

ENSG00000155275.19 C4orf23  TRMT44 tRNA methyltransferase 44 homolog 4p16.1 

ENSG00000180917.18 FTSJD1  CMTR2 cap methyltransferase 2 16q22.2 

ENSG00000099899.15 TRMT2A  TRMT2A tRNA methyltransferase 2 homolog A 22q11.21 

ENSG00000137200.13 FTSJD2  CMTR1 cap methyltransferase 1 6p21.2 

ENSG00000156017.13 C9orf41  CARNMT1 carnosine N-methyltransferase 1 9q21.13 

ENSG00000165171.11 WBSCR27  METTL27 methyltransferase like 27 7q11.23 

ENSG00000127720.8 C12orf26  METTL25 methyltransferase like 25 12q21.31 

ENSG00000010165.20 METTL13  METTL13 methyltransferase 13, eEF1A lysine and N-
terminal methyltransferase 1q24.3 

ENSG00000186523.15 FAM86B1  FAM86B1 family with sequence similarity 86 member B1 8p23.1 

ENSG00000179299.17 NSUN7  NSUN7 NOP2/Sun RNA methyltransferase family 
member 7 4p14 

ENSG00000138780.15 GSTCD  GSTCD glutathione S-transferase C-terminal domain 
containing 4q24 

ENSG00000206562.12 METTL6  METTL6 methyltransferase 6, methylcytidine 3p25.1 

ENSG00000241058.4 NSUN6  NSUN6 NOP2/Sun RNA methyltransferase 6 10p12.31 

ENSG00000104885.19 DOT1L  DOT1L DOT1 like histone lysine methyltransferase 19p13.3 

ENSG00000029639.11 TFB1M  TFB1M transcription factor B1, mitochondrial 6q25.3 

ENSG00000144401.14 FAM119A  METTL21A methyltransferase 21A, HSPA lysine 2q33.3 

ENSG00000123427.17 FAM119B  EEF1AKMT3 EEF1A lysine methyltransferase 3 12q14.1 

ENSG00000137760.15 ALKBH8  ALKBH8 alkB homolog 8, tRNA methyltransferase 11q22.3 

ENSG00000117481.11 NSUN4  NSUN4 NOP2/Sun RNA methyltransferase 4 1p33 

ENSG00000143303.12 C1orf66  METTL25B methyltransferase like 25B 1q23.1 

ENSG00000166166.13 TRMT61A  TRMT61A tRNA methyltransferase 61A 14q32.33 

ENSG00000118894.15 FAM86A  EEF2KMT eukaryotic elongation factor 2 lysine 
methyltransferase 16p13.3 

ENSG00000188917.15 TRMT2B  TRMT2B tRNA methyltransferase 2 homolog B Xq22.1 

ENSG00000087995.16 METTL2A  METTL2A methyltransferase 2A, methylcytidine 17q23.2 
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ENSG00000198890.9 PRMT6  PRMT6 protein arginine methyltransferase 6 1p13.3 

ENSG00000168300.14 PCMTD1 PCMTD1 protein-L-isoaspartate (D-aspartate) O-
methyltransferase domain containing 1 8q11.23 

ENSG00000130305.17 NSUN5  NSUN5 NOP2/Sun RNA methyltransferase 5 7q11.23 

ENSG00000137574.11 TGS1  TGS1 trimethylguanosine synthase 1 8q12.1 

ENSG00000130731.16 C16orf13  METTL26 methyltransferase like 26 16p13.3 

ENSG00000126457.22 PRMT1  PRMT1 protein arginine methyltransferase 1 19q13.33 

ENSG00000103254.10 FAM173A  ANTKMT adenine nucleotide translocase lysine 
methyltransferase 16p13.3 

ENSG00000137364 TPMT  TPMT thiopurine S-methyltransferase 6p22.3 

ENSG00000138050.15 THUMPD2  THUMPD2 THUMP domain containing 2 2p22.1 

ENSG00000067365.15 C16orf68  METTL22 methyltransferase 22, Kin17 lysine 16p13.2 

ENSG00000134077.16 THUMPD3  THUMPD3 THUMP domain containing 3 3p25.3 

ENSG00000148335.15 METTL11A  NTMT1 N-terminal Xaa-Pro-Lys N-methyltransferase 1 9q34.11 

ENSG00000171103.11 TRMT61B  TRMT61B tRNA methyltransferase 61B 2p23.2 

ENSG00000197006.15 METTL9  METTL9 methyltransferase like 9 16p12.2 

ENSG00000162851.8 TFB2M  TFB2M transcription factor B2, mitochondrial 1q44 

ENSG00000178694.10 NSUN3  NSUN3 NOP2/Sun RNA methyltransferase 3 3q11.2 

ENSG00000165792.18 METT11D1  METTL17 methyltransferase like 17 14q11.2 

ENSG00000123600.21 METTL8  METTL8 methyltransferase 8, methylcytidine 2q31.1 

ENSG00000100483.14 C14orf138  VCPKMT valosin containing protein lysine 
methyltransferase 14q21.3 

ENSG00000185432.12 METTL7A  TMT1A thiol methyltransferase 1A 12q13.12 

ENSG00000214435.9 AS3MT  AS3MT arsenite methyltransferase 10q24.32 

ENSG00000111218.12 PRMT8  PRMT8 protein arginine methyltransferase 8 12p13.32 

ENSG00000138382.15 METTL5  METTL5 methyltransferase 5, N6-adenosine 2q31.1 

ENSG00000122435.11 CCDC76  TRMT13 tRNA methyltransferase 13 homolog 1p21.2 

ENSG00000203880.12 PCMTD2  PCMTD2 protein-L-isoaspartate (D-aspartate) O-
methyltransferase domain containing 2 20q13.33 

ENSG00000132600.18 PRMT7  PRMT7 protein arginine methyltransferase 7 16q22.1 

ENSG00000104907.13 TRMT1  TRMT1 tRNA methyltransferase 1 19p13.13 

ENSG00000132423.12 COQ3  COQ3 coenzyme Q3, methyltransferase 6q16.2 
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ENSG00000250305.9 C8orf79  TRMT9B tRNA methyltransferase 9B (putative) 8p22 

ENSG00000037897.17 METTL1  METTL1 methyltransferase 1, tRNA methylguanosine 12q14.1 

ENSG00000068438.15 FTSJ1  FTSJ1 FtsJ RNA 2'-O-methyltransferase 1 Xp11.23 

ENSG00000122687.19 FTSJ2  MRM2 mitochondrial rRNA methyltransferase 2 7p22.3 

ENSG00000205629.12 LCMT1  LCMT1 leucine carboxyl methyltransferase 1 16p12.1 

ENSG00000086189.11 DIMT1L  DIMT1 DIM1 rRNA methyltransferase and ribosome 
maturation factor 5q12.1 

ENSG00000156239.12 N6AMT1  N6AMT1 N-6 adenine-specific DNA methyltransferase 1 21q21.3 

ENSG00000114735.10 HEMK1  HEMK1 HemK methyltransferase family member 1 3p21.31 

ENSG00000150456.11 N6AMT2  EEF1AKMT1 EEF1A lysine methyltransferase 1 13q12.11 

ENSG00000168228.16 ZCCHC4  ZCCHC4 zinc finger CCHC-type containing 4 4p15.2 

ENSG00000165819.12 METTL3  METTL3 methyltransferase 3, N6-adenosine-
methyltransferase complex catalytic subunit 14q11.2 

ENSG00000101574.15 METTL4  METTL4 methyltransferase 4, N6-adenosine 18p11.32 

ENSG00000145388.15 METTL14  METTL14 methyltransferase 14, N6-adenosine-
methyltransferase subunit 4q26 

ENSG00000085276.19 MECOM  MECOM MDS1 and EVI1 complex locus 3q26.2 

ENSG00000167548.18 MLL2  KMT2D lysine methyltransferase 2D 12q13.12 

ENSG00000099381.19 SETD1A  SETD1A SET domain containing 1A, histone lysine 
methyltransferase 16p11.2 

ENSG00000101945.17 SUV39H1  SUV39H1 SUV39H1 histone lysine methyltransferase Xp11.23 

ENSG00000057657.17 PRDM1  PRDM1 PR/SET domain 1 6q21 

ENSG00000109685.19 WHSC1  NSD2 nuclear receptor binding SET domain protein 2 4p16.3 

ENSG00000141956.14 PRDM15  PRDM15 PR/SET domain 15 21q22.3 

ENSG00000118058.24 MLL  KMT2A lysine methyltransferase 2A 11q23.3 

ENSG00000116731.23 PRDM2  PRDM2 PR/SET domain 2 1p36.21 

ENSG00000085276.19 MECOM TTLL12 tubulin tyrosine ligase like 12 22q13.2 

ENSG00000100304.13 TTLL12  SETDB1 SET domain bifurcated histone lysine 
methyltransferase 1 1q21.3 

ENSG00000143379.13 SETDB1  EZH2 enhancer of zeste 2 polycomb repressive 
complex 2 subunit 7q36.1 

ENSG00000106462.12 EZH2  KMT5B lysine methyltransferase 5B 11q13.2 

ENSG00000110066.15 SUV420H1  SETMAR SET domain and mariner transposase fusion 
gene 3p26.1 

ENSG00000170364.13 SETMAR  SMYD5 SMYD family member 5 2p13.2 
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ENSG00000135632.12 SMYD5  SETD3 SET domain containing 3, actin histidine 
methyltransferase 14q32.2 

ENSG00000183576.13 SETD3  KMT5C lysine methyltransferase 5C 19q13.42 

ENSG00000133247.14 SUV420H2  ZFPM1 zinc finger protein, FOG family member 1 16q24.2 

ENSG00000179588.9 ZFPM1  SMYD4 SET and MYND domain containing 4 17p13.3 

ENSG00000186532.12 SMYD4  KMT2E lysine methyltransferase 2E (inactive) 7q22.3 

ENSG00000005483.22 MLL5  SMYD1 SET and MYND domain containing 1 2p11.2 

ENSG00000115593.15 SMYD1  SETD9 SET domain containing 9 5q11.2 

ENSG00000155542.12 C5orf35  KMT2C lysine methyltransferase 2C 7q36.1 

ENSG00000055609.21 MLL3  SETD6 SET domain containing 6, protein lysine 
methyltransferase 16q21 

ENSG00000103037.12 SETD6  SETD7 SET domain containing 7, histone lysine 
methyltransferase 4q31.1 

ENSG00000145391.14 SETD7  ZFPM2 zinc finger protein, FOG family member 2 8q23 

ENSG00000169946.14 ZFPM2  EZH1 enhancer of zeste 1 polycomb repressive 
complex 2 subunit 17q21.2 

ENSG00000108799.13 EZH1  EZH2 enhancer of zeste 2 polycomb repressive 
complex 2 subunit 7q36.1 

ENSG00000204371 EHMT2  EHMT2 euchromatic histone lysine methyltransferase 2 6p21.33 

ENSG00000165671.22 NSD1  NSD1 nuclear receptor binding SET domain protein 1 5q35.3 

ENSG00000136169.17 SETDB2  SETDB2 SET domain bifurcated histone lysine 
methyltransferase 2 13q14.2 

ENSG00000181555.22 SETD2  SETD2 SET domain containing 2, histone lysine 
methyltransferase 3p21.31 

ENSG00000147548.17 WHSC1L1  NSD3 nuclear receptor binding SET domain protein 3 8p11.23 

ENSG00000168137.20 SETD5  SETD5 SET domain containing 5 3p25.3 

ENSG00000147596.4 PRDM14  PRDM14 PR/SET domain 14 8q13.3 

ENSG00000112238.12 PRDM13  PRDM13 PR/SET domain 13 6q16.2 

ENSG00000130711.5 PRDM12  PRDM12 PR/SET domain 12 9q34.12 

ENSG00000152455.16 SUV39H2  SUV39H2 SUV39H2 histone lysine methyltransferase 10p13 

ENSG00000185420.19 SMYD3  SMYD3 SET and MYND domain containing 3 1q44 

ENSG00000181090.21 EHMT1  EHMT1 euchromatic histone lysine methyltransferase 1 9q34.3 

ENSG00000175213.3 ZNF408  ZNF408 zinc finger protein 408 11p11.2 

ENSG00000142611.17 PRDM16  PRDM16 PR/SET domain 16 1p36.32 

ENSG00000183955.14 SETD8  KMT5A lysine methyltransferase 5A 12q24.31 
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ENSG00000019485.14 PRDM11  PRDM11 PR/SET domain 11 11p11.2 

ENSG00000170325.16 PRDM10  PRDM10 PR/SET domain 10 11q24.3 

ENSG00000164256.11 PRDM9  PRDM9 PR/SET domain 9 5p14.2 

ENSG00000152784.16 PRDM8  PRDM8 PR/SET domain 8 4q21.21 

ENSG00000126856.16 PRDM7  PRDM7 PR/SET domain 7 16q24.3 

ENSG00000061455.11 PRDM6  PRDM6 PR/SET domain 6 5q23.2 

ENSG00000138738.11 PRDM5  PRDM5 PR/SET domain 5 4q27 

ENSG00000116539.14 ASH1L  ASH1L ASH1 like histone lysine methyltransferase 1q22 

ENSG00000143499.14 SMYD2  SMYD2 SET and MYND domain containing 2 1q32.3 

ENSG00000185917.14 SETD4  SETD4 SET domain containing 4 21q22.12 

ENSG00000110851.12 PRDM4  PRDM4 PR/SET domain 4 12q23.3 

ENSG00000272333.8 WBP7  KMT2B lysine methyltransferase 2B 19q13.12 

ENSG00000139718.12 SETD1B  SETD1B SET domain containing 1B, histone lysine 
methyltransferase 12q24.31 

ENSG00000059588.10 TARBP1  TARBP1 TAR (HIV-1) RNA binding protein 1 1q42.2 

ENSG00000198917.13 C9orf114 SPOUT1 SPOUT domain containing methyltransferase 1 9q34.11 

ENSG00000278619 MRM1  MRM1 mitochondrial rRNA methyltransferase 1 17q12 

ENSG00000165275.10 RG9MTD3  TRMT10B tRNA methyltransferase 10B 9p13.2 

ENSG00000174173.7 RG9MTD1  TRMT10C tRNA methyltransferase 10C, mitochondrial 
RNase P subunit 3q12.3 

ENSG00000145331.14 RG9MTD2  TRMT10A tRNA methyltransferase 10A 4q23 

ENSG00000126749.16 EMG1  EMG1 EMG1 N1-specific pseudouridine 
methyltransferase 12p13.31 

ENSG00000171861.11 RNMTL1  MRM3 mitochondrial rRNA methyltransferase 3 17p13.3 

ENSG00000162623.16 TYW3  TYW3 tRNA-yW synthesizing protein 3 homolog 1p31.1 

ENSG00000145692.15 BHMT  BHMT betaine--homocysteine S-methyltransferase 5q14.1 

ENSG00000132840.10 BHMT2  BHMT2 betaine--homocysteine S-methyltransferase 2 5q14.1 

ENSG00000116237.16 ICMT  ICMT isoprenylcysteine carboxyl methyltransferase 1p36.31 

ENSG00000137404 NRM  NRM nurim 6p21.33 

ENSG00000133027.18 PEMT  PEMT phosphatidylethanolamine N-methyltransferase 17p11.2 

ENSG00000116984.15 MTR  MTR 5-methyltetrahydrofolate-homocysteine 
methyltransferase 1q43 
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ENSG00000117543 DPH5  DPH5 diphthamide biosynthesis 5 1p21.2 

ENSG00000145996.11 CDKAL1  CDKAL1 CDK5 regulatory subunit associated protein 1 
like 1 6p22.3 

ENSG00000101391.21 CDK5RAP1  CDK5RAP1 CDK5 regulatory subunit associated protein 1 20q11.21 

ENSG00000134014.17 ELP3  ELP3 elongator acetyltransferase complex subunit 3 8p21.1 

ENSG00000136444.10 RSAD1  RSAD1 radical S-adenosyl methionine domain 
containing 1 17q21.33 

 

Supplementary Table 1. Identified methyl transferase genes used for analysis of RNA 

sequencing data. 
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Thesis Conclusion 
This research has explored the presence of volatile organic compounds (VOCs) linked to 

diseases in humans with a focus on cancer biomarkers in breath. Research aims were 

progressively fulfilled through the thesis’s four chapters, three of which are published papers 

and the fourth is in publication format, awaiting additional clinical data not included in this 

thesis.  

In brief, chapter 1 identified trends in VOC chemistry in the breath of cancer patients compared 

with patients with other diseases. Using the results of chapter 1, chapters 2 and 3 applied 

novel methods to sampling VOCs in cellular and animal models, successfully identifying VOC 

flux which are not only descriptive of cell type, but also cellular state. In the final chapter and 

using the results and insights of chapters 1, 2 and 3 a model is presented to describe the 

mechanism of VOC metabolism for methyl chloride (MeCl), which offers the potential to act as 

a powerful biomarker of cellular malfunction and disease.  

In the first chapter, the research landscape was contextualised and investigated to reveal 

trends and methodologies which compromise and limit the accuracy of biomarker discovery. 

This meta-analysis increased success of biomarker targeting and discovery and informed the 

approaches used throughout the research particularly by targeting biomarker discovery in 

cellular models of starvation. Chapter 1 recommends inclusion of as many functional groups 

as possible and during the research inclusion of a suite of alkanes, ketones and aromatics 

has evolved to represent these findings, evident in the subsequent chapters.  

The range of functional groups considered as potential biomarkers is likely to change with 

ongoing research but my current study of the breath of breast cancer patients at York hospital 

has applied the results of results detailed in chapters 1-4 to search for an updated suite of 

compounds as potential biomarkers. The study removed methyl bromide, methane thiol and 

isoprene, molecules which have not shown to be of interest, and replaced them with 

dichloromethane, butanone and styrene This method also now includes, halogenated 

compounds, sulphur containing compounds, ketones, alkanes and aromatics. The inclusion 

of aldehydes would have been ideal, however the column used in the method, which allows 

good identification of halogenated compounds, did not easily allow aldehyde identification.  

Chapter 2 presented successful methodology and demonstrated how volatile profiles 

described response to stress in the form of chemotherapeutic, doxorubicin. This highlighted 

that simple cell:cell comparisons may not provide all the biomarkers required for clinical 

applications. As such this drove the research in chapter 3, where stress is applied to the cells 

in the form of low oxygen, to mirror stress which cells in a growing tumour might experience. 

Chapter 4 expands on this research by inducing stress through serum and glucose starvation 
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which revealed specific stress responses in the volatile profile for comparison with results from 

chapters 2 and 3.  

 

Future directions 
The most successful conclusion of this research has been the award from the Elsie May Sykes 

fund to conduct the pilot study in the breath of breast cancer patients at York District Hospital 

using the methodologies developed in the research detailed above – this research is currently 

in progress.  

My research has highlighted MeCl as a mechanism of VOC processing integral to cellular 

metabolism and epigenetic response. The first next step is to identify the function of MeCl, 

which can then lead to further investigations of MeCl flux.  The determination of mechanisms 

linked to, in particular, MeCl consumption and production are potentially useful in the 

identification of cancer and offer the diagnostic potential.  

To further investigate MeCl production and the methyl transferase activity there are several 

experiments to conduct. Treatment with 5-AZA and SAM to test if recovery of MeCl flux seen 

in other conditions treated with SAM still persists (if methyl transferases are responsible for 

MeCl production then we would expect no change in MeCl levels in 5-AZA and SAM treated 

cells). An expanded range of knockdowns would also be ideal in order to target those methyl 

transferases most changed under hypoxic conditions, such as NOP2. The next experiment, 

could be to determine if Carbon-13 labelled SAM integrates to  produce MeCl with a carbon-

13. 

Experiments to validate targets of MeCl consumption, namely methionine synthase and 

integration of the methyl group of MeCl to homocysteine, generating methionine could include 

a knockdown of methionine synthase, first in control cells, which may generate a slight 

increase in MeCl production. This could then be examined in cells under conditions of 

starvation. 

In time, the peppermint breath test should be conducted to assess our gas chromatography 

mass spectrometry (GC/MS) methods1,2. This test seeks to inform the standardisation of 

breath and VOC analysis methods. Peppermint oil capsules are consumed and breath 

samples taken over time to determine sensitivity to metabolic products. The products, 

including menthol and α-pinene, may not be seen with the GCMS equipment we are currently 

using, however this method of standardisation for breath VOC testing, could be applied to our 

condensation trap to better understand variations between our approach and thermal 

desorption approaches in breath collection. 
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Of the most interesting results presented in this thesis is the finding that deviation from MeCl 

baseline metabolism, to lesser production or even flipping to consumption, increases with 

tumour size. To expand on this finding and for future directions in human work, blood work 

investigating chloride content would have been ideal, as I found no intracellular tumour 

changes in chloride content compared to tumour size. This is unsurprising as cells in a tumour 

may work to remove their chloride content, therefore an investigation into blood chloride 

content would be warranted. 

 

Final Reflection 
This research has added new knowledge to the rapidly expanding field of metabolomics and 

breath science. Through my research and interactions with the wider research community, I 

have recognised the need for the precise identification of more mechanisms under pinning 

VOC metabolisms in order to accurately target breath diagnostics. My first chapter shows that 

the vast majority of previous research into VOCs associated with disease have been through 

quantification of the production of VOCs released in the breath of patients. By quantifying flux 

and investigating starvation as a model of tumour microenvironment, this PhD demonstrates 

that more accurate models are possible and are required for biomarker discovery and that 

time point based methods of collection allow biomarker discovery in the context of both 

metabolic consumption and production. 
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