
 

 

 

 

Artificial Intelligence based Assessment of Oral 

Precancer to Aid Early Detection of Oral Cancer 

 

 

Hanya Mahmood 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

 

Supervisors: Professors Syed Ali Khurram, Nasir Rajpoot & Daniel Lambert 

 

 

Academic Unit of Oral & Maxillofacial Surgery 

Faculty of Medicine, Dentistry and Health 

School of Clinical Dentistry, University of Sheffield 

 

November 2023



 

I 
 

Dedication 

 

     ﷽ 
 

This thesis is dedicated to my parents, Rehana and Zaigham Mahmood. 

My father, especially, has inspired me to continue a path of life-long learning; to 

discover, seek knowledge and acquire wisdom. 

I am infinitely grateful for their unrelenting love, support and encouragement. 

I hope I have made you both proud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

II 
 

Acknowledgements 

 

First and foremost, I thank Professor Syed Ali Khurram, my primary supervisor, for his exceptional 

supervision, training, and guidance throughout my PhD. Professor Khurram has given me 

invaluable opportunities to excel as a researcher and advance my clinical, academic and 

professional skills and learning. He has taught me the importance of pushing boundaries, and I 

cannot thank him enough for his persistent encouragement, kindness, and patience. 

I also wish to thank Professor Nasir Rajpoot, for whom I have great admiration and respect. 

Professor Rajpoot has provided expert knowledge, direction and technical support in key aspects 

of my research, particularly in the application of computer vision.  

I also extend my gratitude to a number of other individuals and teams who have made valuable 

contributions to this work: 1) NIHR Clinical Research Network and Research Design Service, for 

assistance with developing the initial fellowship proposal; 2) Sheffield Hospitals Charity, for funding 

preliminary research that led to this work; 3) Patient and Public Involvement groups (Sheffield 

Hospitals Patient Advisory Panel, Independent Cancer Patients' Voice Group, Yorkshire and 

Humber Consumer Research Panel, Swallows Head and Neck Cancer Group) for continuous 

feedback and engagement with my work; 4) Mr Mike Bradburn, from Sheffield Clinical Trials 

Research Unit, for ongoing statistical support; 5) Dr Adam Shephard, from Warwick University, for 

computational support; 6) Professor Zoe Marshman, my academic mentor, for pastoral care; 7) 

Professor Daniel Lambert, for support towards my professional development and 8) Dr Simon 

Atkins, my Educational Supervisor, for giving me the opportunity to maintain surgical exposure 

during this fellowship.  

I must also acknowledge the NIHR for funding this research as part of a Doctoral Training 

Fellowship and giving me the opportunity to undertake this important research.  

Finally, I thank my siblings and my husband, Arif Zafar, my biggest pillar of strength and positivity, 

without whom this journey would not have been possible. I am eternally grateful for your 

extraordinary love, compassion and kindness.  

 

 

 

 

 

 

 



 

III 
 

List of Outputs 

 

Published articles related to this work: 

• Hankinson P*, Mahmood H*, Walsh H, Speight PM, Khurram SA. Demystifying oral epithelial 

dysplasia: a histological guide. Pathology. 2023 Nov 16. *Joint first authorship. 

• Sathyamoorthy H*, Mahmood H*, Zubir AZ, Hankinson P, Khurram SA. Prognostic importance 

of mitosis quantification and PHH3 expression in oral epithelial dysplasia. Virchows Archiv. 

2023 Oct 26:1-3. *Joint first authorship. 

• Mahmood H, Shephard A, Hankinson P, Bradburn M, Araujo AL, Santos-Silva AR, Lopes MA, 

Vargas PA, McCombe KD, Craig SG, James J, Brooks J, Nankivell P, Mehanna H, Rajpoot N, 

Khurram SA. Development and validation of a multivariable model for prediction of malignant 

transformation and recurrence of oral epithelial dysplasia. British Journal of Cancer. 2023 Sep 

27:1-9. 

• Bashir RM, Shephard AJ, Mahmood H, Azarmehr N, Raza SE, Khurram SA, Rajpoot NM. A 

digital score of peri‐epithelial lymphocytic activity predicts malignant transformation in oral 

epithelial dysplasia. The Journal of Pathology. 2023 Feb 22. 

• Mahmood H, Bradburn M, Rajpoot N, Islam NM, Kujan O, Khurram SA. Prediction of malignant 

transformation and recurrence of oral epithelial dysplasia using architectural and cytological 

feature specific prognostic models. Modern Pathology. 2022 Sep 1;35(9):1151-9.  

• Mahmood H, Shaban M, Rajpoot N, Khurram SA. Artificial Intelligence-based methods in head 

and neck cancer diagnosis: an overview. British Journal of Cancer. 2021 Apr 19:1-7.  

• Mahmood H, Shaban M, Indave BI, Santos-Silva AR, Rajpoot N, Khurram SA. Use of artificial 

intelligence in diagnosis of head and neck precancerous and cancerous lesions: A systematic 

review. Oral Oncology. 2020 Nov 1;110:104885.  

• Camalan S, Mahmood H, Binol H, Araújo ALD, Santos-Silva AR, Vargas PA, Lopes MA, 

Khurram SA, Gurcan MN. Convolutional Neural Network-Based Clinical Predictors of Oral 

Dysplasia: Class Activation Map Analysis of Deep Learning Results. Cancers. 2021; 13(6):1291.  

 

Published abstracts related to this work: 

• Shephard AJ, Mahmood H, Raza SE, Araujo AL, Santos-Silva AR, Lopes MA, Vargas PA, 

McCombe K, Craig S, James J, Brooks J. Transformer-based Model for Oral Epithelial 

Dysplasia Segmentation. arXiv preprint arXiv:2311.05452. 2023 Nov 9. 

• Shephard AJ, Bashir RM, Mahmood H, Jahanifar M, Minhas F, Raza SE, McCombe KD, Craig 

SG, James J, Brooks J, Nankivell P. A Fully Automated and Explainable Algorithm for the 



 

IV 
 

Prediction of Malignant Transformation in Oral Epithelial Dysplasia. arXiv preprint 

arXiv:2307.03757. 2023 Jul 6. 

• Bashir RM, Shephard A, Mahmood H, Azarmehr N, Raza SE, Khurram A, Rajpoot N. A digital 

score of peri-epithelial lymphocytic activity predicts malignant transformation in oral epithelial 

dysplasia. medRxiv. 2023:2023-02. 

• Azarmehr N, Shephard A, Mahmood H, Rajpoot N, Khurram SA. A Neural Architecture Search 

Based Framework for Segmentation of Epithelium, Nuclei and Oral Epithelial Dysplasia Grading. 

InMedical Image Understanding and Analysis: 26th Annual Conference, MIUA 2022, 

Cambridge, UK, July 27–29, 2022, Proceedings 2022 Jul 25 (pp. 357-370). Cham: Springer 

International Publishing. 

• Shephard A, Azarmehr N, Bashir RM, Raza SE, Mahmood H, Khurram SA, Rajpoot N. A Fully 

Automated Multi-Scale Pipeline for Oral Epithelial Dysplasia Grading and Outcome Prediction. 

InMedical Imaging with Deep Learning 2022 Apr 22. 

• Azarmehr N, Shephard A, Mahmood H, Rajpoot N, Khurram SA. Automated Oral Epithelial 

Dysplasia Grading Using Neural Networks and Feature Analysis. InMedical Imaging with Deep 

Learning 2022 Apr 22. 

• Shephard AJ, Graham S, Bashir RM, Jahanifar M, Mahmood H, Khurram SA, Rajpoot NM. 

Simultaneous Nuclear Instance and Layer Segmentation in Oral Epithelial Dysplasia. arXiv 

preprint arXiv:2108.13904. 2021 Aug 31. 

• Mahmood H, Shaban M, Indave I, Santos-Silva A, Rajpoot N, Khurram SA. Artificial intelligence 

to aid the diagnosis of head and neck precancerous and cancerous lesions: a systematic review. 

InVIRCHOWS ARCHIV 2020 Dec 1 (Vol. 477, pp. S37-S37).  

• Bashir RS, Mahmood H, Shaban M, Raza SE, Fraz MM, Khurram SA, Rajpoot NM. Automated 

grade classification of oral epithelial dysplasia using morphometric analysis of histology images. 

InMedical Imaging 2020: Digital Pathology 2020 Mar 16 (Vol. 11320, p. 1132011).  

 

Presentations to learned societies: 

• Mahmood H, Rajpoot N, Khurram SA. ‘Digital analysis of oral dysplasia to aid early cancer 

detection’ (Oral Presentation). British Society for Oral and Dental Research (BSODR) Meeting, 

6-8th September 2023, London. 

• Mahmood H, Rajpoot N, Khurram SA. ‘Development and validation of a multivariable model 

for prediction of malignant transformation and recurrence of oral epithelial dysplasia’ (Poster 

presentation). Academy of Medical Sciences Clinical Academics in Training Annual Conference, 

7th June 2023, Cambridge. 

• Mahmood H, Rajpoot N, Khurram SA. ‘Histological models for outcome prediction of oral 

epithelial dysplasia’ (Oral Presentation). Association of British Academic Oral and Maxillofacial 

Surgeons (ABAOMS) Scientific Meeting, 24-25th November 2022, Glasgow. 



 

V 
 

• Mahmood H, Rajpoot N, Khurram SA. ‘Quantitative histological analysis in oral epithelial 

dysplasia’ (Oral Presentation) Pan European Region of the International Association of Dental, 

Oral, and Craniofacial Research (PER-IADR) Congress, 15-17th September 2022, Marseille   

• Mahmood H, Rajpoot N, Khurram SA. ‘Prediction of malignant transformation and recurrence 

of oral epithelial dysplasia using architectural and cytological feature specific prognostic models’ 

(Oral Presentation). British Society of Oral & Maxillofacial Pathology (BSOMP) Scientific 

Meeting, 28-29th April 2022  

 

Invited Talks  

• ‘Digital analysis of oral dysplasia for early cancer detection’. ABAOMS Conference, 9th 

November 2023, London. 

• ‘Machine learning based analysis of oral epithelial dysplasia for prediction of malignant 

transformation’. Tissue Image Analysis Centre Research Seminar Series, 20th March 2023  

• ‘AI in cancer: Fad or Future?’ 13th Annual Royal Marsden Head & Neck Conference, 11th 

November 2022, London. 

 

Prizes & Awards  

• BSODR Senior Colgate Prize (BSODR Meeting, September 2023) with invitation to represent 

the British Division in the Hatton Competition at IADR 2024 in New Orleans, USA 

• ABAOMS Best Oral Presentation Prize (ABAOMS Conference, November 2022) 

• BSODR Oral Pathology / Oral Medicine Research Prize (PER-IADR Congress, September 

2022) 

• BSOMP Potts Prize for Best Research Presentation (BSOMP Conference, April 2022)  

• First year PhD Research Presentation Runner-Up (School of Clinical Dentistry, March 2022) 

 

Grants & Fellowships: 

• Research Fellowship award for project entitled ‘Single cell sequencing and spatial biomarker 

analysis in oral epithelial dysplasia’ funded by Faculty of Dental Surgery (Royal College of 

Surgeons of England) & ABAOMS (2023) 

 

 

 

 

 

 



 

VI 
 

Abstract 

Background: Oral epithelial dysplasia (OED) carries an increased risk of malignant transformation 

to oral squamous cell carcinoma (OSCC), which is amongst the leading cancers worldwide. The 

diagnostic gold standard for OED is histopathological assessment and grading, which is 

challenging with unreliable behaviour and progression prediction. Advancements in digital 

pathology and Artificial Intelligence (AI) provide opportunities to uncover novel data from whole-

slide imaging (WSI) through automated detection, pattern recognition and quantitative analysis.  

Aims: This research uses a range of digital, computational, and quantitative approaches to reveal 

novel insights into OED progression and develops OSCC risk prediction models which are 

compared to existing clinical grading systems.  

Methods: Retrospective samples of OED and non-dysplastic WSI (with five-year clinical follow-up) 

were used to develop malignant transformation prediction models based on analysis of 

conventional architectural and cytological histological features (n=109), novel digital morphometric 

features (n=100) and mitotic features assessed on haematoxylin and eosin (H&E) WSI and 

immunohistochemistry for Phosphohistone H3 (n=68). Machine learning models were trained to 

detect dysplastic, immune, and stromal cells in OED (n=220-248). Deep learning neural networks 

were trained to segment OED epithelium (n=434) and validated on external unseen datasets. 

Prognostic relationships were explored, and spatial analysis conducted.  

Results: Six conventional histological features were significant for transformation (p<0.036) and 

recurrence (p<0.015). Significant differences in cytoplasmic eosin, nuclear eccentricity and 

circularity were seen in basal epithelial cells of OED (p<0.05). Nucleus circularity was associated 

with recurrence (p=0.018) and epithelial perimeter with malignancy (p=0.03). The developed 

models demonstrated better predictive strength for malignant transformation risk (AUROC:0.74-

0.81) compared to ‘gold-standard’ histological grading (AUROC:0.60-69) with superior 

performance maintained on unseen external datasets.  Trained AI models segmented and 

classified OED epithelium, immune and stromal cells with good accuracy (F1 scores:0.80-0.87). 

Peri-epithelial lymphocyte count was associated with malignant transformation and reduced 

progression free survival (p<0.05).  

Conclusions: This novel research shows correlations between individual OED histological 

features, digital morphometric features, and prognosis for the first time on the largest digital 

multicentre cohort to date.  

 



 

VII 
 

Table of Contents 

Dedication ............................................................................................................................. I 

Acknowledgements ............................................................................................................. II 

List of Outputs .................................................................................................................... III 

Abstract ............................................................................................................................... VI 

List of Abbreviations .......................................................................................................... XI 

List of Figures ................................................................................................................... XIII 

List of Tables .................................................................................................................... XIV 

Chapter 1 Introduction ......................................................................................................... 1 

1.1 Research Summary, Aims & Hypothesis ...................................................................... 2 

1.1.1 Research Objectives .............................................................................................. 3 

1.1.2 Research Methods ................................................................................................. 4 

1.2 Thesis Contributions ..................................................................................................... 5 

Chapter 2 - Background ...................................................................................................... 9 

2.1 Oral squamous cell carcinoma.................................................................................... 10 

2.1.1 State and scope of condition ................................................................................ 10 

2.1.2 Epidemiological trends ......................................................................................... 11 

2.1.3 Public awareness and early detection .................................................................. 13 

2.1.4 Risk factors .......................................................................................................... 14 

2.2 Oral epithelial dysplasia .............................................................................................. 14 

2.2.1 Histological grading .............................................................................................. 16 

2.2.2 Diagnostic challenges and alternative systems .................................................... 17 

2.2.3 Biomarkers ........................................................................................................... 20 

2.3 Diagnostic aids for early cancer detection .................................................................. 21 

2.3.1 Toluidine blue staining ......................................................................................... 22 

2.3.2 Exfoliative cytology............................................................................................... 23 

2.3.3 Salivary diagnostics ............................................................................................. 24 

2.3.4 DNA Ploidy .......................................................................................................... 24 

2.3.5 Optical imaging .................................................................................................... 25 

2.3.5.1 Chemiluminescence: ViziLite ......................................................................... 25 



 

VIII 
 

2.3.5.2 VELscope ...................................................................................................... 25 

2.3.6 Electrical impedance spectroscopy ...................................................................... 26 

2.3.7 Digital pathology and artificial intelligence ............................................................ 26 

2.3.7.1 Machine learning ........................................................................................... 28 

2.3.7.2 Deep Learning & Semantic Image Segmentation .......................................... 29 

Chapter 3 – Literature Review ........................................................................................... 31 

3.1 Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview33 

3.2 Use of artificial intelligence in diagnosis of head and neck precancerous and cancerous 

lesions: A systematic review ............................................................................................. 41 

3.3 Demystifying Oral Epithelial Dysplasia: A Histological Guide ...................................... 51 

Chapter 4 – Conventional Histological Feature Analysis ................................................ 65 

4.1 Prediction of malignant transformation and recurrence of oral epithelial dysplasia using 

architectural and cytological feature specific prognostic models ....................................... 67 

4.2 Validation of feature-based scoring and histological grading for the prediction of malignant 

transformation of oral epithelial dysplasia ......................................................................... 77 

4.2.1 Background .......................................................................................................... 78 

4.2.2 Methods ............................................................................................................... 79 

4.2.2.1 Validation dataset and clinical data collection ................................................ 79 

4.2.2.2 Histological Feature Assessment ................................................................... 80 

4.2.2.3 Statistical Analysis & Outcome Measures ...................................................... 80 

4.2.3 Results ................................................................................................................. 81 

4.2.3.1 Feature Prevalence ....................................................................................... 82 

4.2.3.2 Observer Agreement ..................................................................................... 83 

4.2.3.3 Malignant Transformation Incidence and Prediction ...................................... 84 

4.2.3.4 Kaplan Meier Analysis for Time to Transformation ......................................... 86 

4.2.3.5 Effect of Clinical Characteristics on Prognostic Models .................................. 88 

4.2.3.6 Univariate Associations of Individual Features ............................................... 89 

4.2.3.7 Prognostic Performance by Assessors .......................................................... 91 

4.2.4 Discussion ........................................................................................................... 91 

Chapter 5 - Novel Morphometric Digital Feature Analysis .............................................. 94 



 

IX 
 

5.1 Development and validation of a multivariable model for prediction of malignant 

transformation and recurrence of oral epithelial dysplasia ................................................ 96 

Chapter 6 – Mitotic Feature Analysis .............................................................................. 106 

6.1 Prognostic importance of mitosis quantification and PHH3 expression in oral epithelial 

dysplasia ........................................................................................................................ 108 

Chapter 7 – Machine Learning Models ........................................................................... 122 

7.1 Application of machine learning and digital image analysis for assessment and 

quantification of dysplastic, immune and stromal cells in oral epithelial dysplasia ........... 124 

7.1.1 Background ........................................................................................................ 125 

7.1.2 Methods ............................................................................................................. 126 

7.1.2.1 Study Design & Clinical Samples ................................................................. 126 

7.1.2.2 Preparation of Digital Datasets .................................................................... 127 

7.1.2.3 Training of Machine Learning Models .......................................................... 127 

7.1.2.4 Classification Performance .......................................................................... 128 

7.1.2.5 Quantitative Spatial & Stromal Analysis ....................................................... 129 

7.1.2.6 Statistical Methods ...................................................................................... 129 

7.1.3 Results ............................................................................................................... 132 

7.1.3.1 Performance of ML classifiers ...................................................................... 132 

7.1.3.2 Spatial Analysis in OED ............................................................................... 136 

7.1.3.3 Quantitative stromal analysis ....................................................................... 139 

7.1.4 Discussion ......................................................................................................... 143 

Chapter 8 –  Deep Learning Models ................................................................................ 146 

8.1 Development and Validation of an Artificial Intelligence-based Pipeline for the Prediction of 

Malignant Transformation in Oral Epithelial Dysplasia: A Retrospective Multi-Centric Study148 

8.1.1 Introduction ........................................................................................................ 149 

8.1.2 Methods ............................................................................................................. 150 

8.1.2.1 Study Design ............................................................................................... 150 

8.1.2.2 Study Cohorts .............................................................................................. 151 

8.1.2.3 Deep Learning Pipeline ............................................................................... 154 

8.1.2.4 Statistical analysis ....................................................................................... 157 

8.1.2.5 Role of the funding source ........................................................................... 157 



 

X 
 

8.1.3 Results ............................................................................................................... 158 

8.1.3.1 Dysplasia segmentation ............................................................................... 158 

8.1.3.2 OED classification ....................................................................................... 161 

8.1.3.3 Malignant transformation prediction ............................................................. 161 

8.1.4 Discussion ......................................................................................................... 164 

8.1.5 Conclusion ......................................................................................................... 165 

Chapter 9 – General Thesis Discussion ......................................................................... 167 

9.1 Discussion ................................................................................................................ 168 

9.1.1 General thesis summary .................................................................................... 168 

9.2 Limitations ................................................................................................................ 175 

9.3 Ongoing & Future Research ..................................................................................... 176 

9.3.1 Model validation ................................................................................................. 176 

9.3.2 Multiplex imaging and spatial biomarker analysis ............................................... 177 

9.4 Research Impact & Conclusions ............................................................................... 179 

References ....................................................................................................................... 180 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XI 
 

List of Abbreviations 
 

AC   Alternating current 

AI   Artificial Intelligence 

ANN   Artificial Neural Network 

ANN-MLP  Artificial Neural Network-Multilayer Perceptron 

ANOVA  One-way Analysis of Variance  

AUROC  Area Under the Receiver-Operator Characteristic 

CAMELYON  Cancer Metastases in Lymph Nodes 

CNN    Convolutional Neural Network 

CT   Computed Tomography 

DCE-MRI  Dynamic Contrast Enhanced Magnetic Resonance Imaging 

DL    Deep Learning 

DNA   Deoxyribonucleic acid 

EBV   Epstein-Barr Virus 

EIS   Electrical Impedance Spectroscopy 

FDA   Food and Drug Administration 

FFPE   Formalin Fixed Paraffin Embedded Tissue 

H&E   Haematoxylin and Eosin 

HER2   Human Epidermal Growth Factor Receptor 2 

HNC   Head and Neck Cancer 

HPV   Human Papilloma Virus 

HR   Hazard Ratio 

HSI   Hyperspectral Imaging 

IARC   International Agency for Research on Cancer 

IHC    Immunohistochemistry  

InHANSE  Institute of Head and Neck Studies and Education 

LN   Layer Normalisation  

ML   Machine Learning 

MSA   Multi-head self-attention 



 

XII 
 

NPV   Negative Predictive Value 

OD   Optical Density 

OED   Oral Epithelial Dysplasia 

ONS   Office of National Statistics 

OR   Odds Ratio 

OSCC    Oral Squamous Cell Carcinoma 

PANDA  Prostate Cancer Grade Assessment 

PELs   Peri-epithelial Lymphocytes 

PET-CT   Positron Emission Tomography 

PHE   Public Health England 

PHH3   Phosphohistone H3 

PPV   Positive Predictive Value 

PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

PROM1  Prominin-1 

QUADAS  Quality of Diagnostic Accuracy Studies 

RF   Random Forest 

RNA   Ribonucleic acid 

ROI   Region of Interest 

SCC   Squamous Cell Carcinoma 

SD   Standard Deviation  

SE   Standard Error 

TB   Toluidine Blue 

TCGA   The Cancer Genome Atlas 

TGF-β    Transforming Growth Factor-β  

TNOM   Total Number of Mitoses 

TRIPOD Transparent Reporting of a Multivariable Prediction Model for Individual 

Prognosis or Diagnosis 

US   Ultrasound 

WHO   World Health Organisation 

WSI   Whole Slide Image 



 

XIII 
 

List of Figures 

Figure 1. Range of digital, computational, and quantitative methods used for early diagnosis. ... 3 

Figure 2. Overview of research methods. ................................................................................... 4 

Figure 3. The percentage of mouth cancer by anatomical site.................................................. 10 

Figure 4. Chances of survival based on early and late diagnosis. ............................................ 13 

Figure 5. Clinical photographs demonstrating variable appearances of OED. .......................... 15 

Figure 6. A simplified overview of histological progression of OED to malignancy. ................... 16 

Figure 7. Architectural features seen in OED. .......................................................................... 18 

Figure 8. Cytological features seen in OED. ............................................................................. 19 

Figure 9. Variations in mitotic figures. ....................................................................................... 20 

Figure 10. TB staining of a suspicious oral lesion. .................................................................... 23 

Figure 11. Conversion of tissue section to digital whole slide image......................................... 27 

Figure 12. Branches of Artificial Intelligence. ............................................................................ 29 

Figure 13. Different image analysis approaches. ...................................................................... 30 

Figure 14. Histological features forming the ‘six-point’ and ‘two-point’ models. ......................... 80 

Figure 15. Malignant transformation incidence in relation to scoring approaches. .................... 85 

Figure 16. AUROC for malignant transformation in relation to scoring approaches. ................. 86 

Figure 17. Kaplan Meier curves for time to transformation for different scoring approaches. .... 87 

Figure 18. Comparison of malignant transformation prediction between studies. ..................... 89 

Figure 19. Univariate association between time to transformation and individual features. ....... 90 

Figure 20. Geometric and mathematical principles for spatial analysis ................................... 130 

Figure 21. Overview of study design and methods. ................................................................ 131 

Figure 22. Classification of dysplastic cells............................................................................. 133 

Figure 23. Classification of immune and stromal cells in OED. ............................................... 134 

Figure 24. Delaunay spatial analysis ...................................................................................... 136 

Figure 25. Number of neighbouring cells in OED. ................................................................... 137 

Figure 26. Cell centroid distances in OED .............................................................................. 139 

Figure 27. Stromal cellularity in OED (at ROI-level) ................................................................ 140 

Figure 28. Nuclear features analysis of stromal cells in OED (at ROI-level). .......................... 142 

Figure 29. CONSORT flowchart illustrating samples. ............................................................. 154 

Figure 30. Overview of ODYN-scoring pipeline ...................................................................... 156 

Figure 31. Dysplasia segmentation heatmap using ODYN model. ......................................... 159 

Figure 32. ODYN model performance by scanner and histological grade. .............................. 160 

Figure 33. Kaplan Meier curves for ODYN compared to other grading system ....................... 162 

Figure 34. Quantitative analysis of keratin thickness (perimeter) in OED. .............................. 171 

Figure 35. Preliminary spatial transcriptomic analysis. ........................................................... 178 

Figure 36. Cell DIVE™ workflow pipeline. .............................................................................. 179 



 

XIV 
 

 

List of Tables 

Table 1. Age-standardised incidence rates per 100,000 person-year. ...................................... 12 

Table 2. Diagnostic aids for early oral cancer detection. ........................................................... 22 

Table 3. Characteristics of the study sample. ........................................................................... 82 

Table 4. Feature-specific prevalence with comparison to previous stud.y ................................. 83 

Table 5. Interobserver agreement with comparison to previous study ....................................... 83 

Table 6. Malignant transformation incidence in relation to individual histological features. ........ 84 

Table 7. AUROC by scoring system with inclusion of additional variables. ............................... 88 

Table 8. Prognostic performance by individual assessor and overall. ....................................... 91 

Table 9. Classification accuracy of dysplastic cells (n=25 WSI; 35 ROI) ................................. 132 

Table 10. Classification accuracy of immune and stromal cells (n=32 WSI; 67 ROI) ............... 132 

Table 11. Nuclear feature analysis using ANN-MLP classifier................................................. 135 

Table 12. Spatial analysis in OED with comparison to control and prognostic associations. ... 138 

Table 13. Prognostic relationships of nuclear features in stromal cells (at ROI-level) ............. 141 

Table 14. Overview of OED samples included in this study. ................................................... 153 

Table 15. Internal testing of ODYN model............................................................................... 158 

Table 16. External testing of ODYN model. ............................................................................ 158 

Table 17. ROI-level classification of OED based on dysplasia scores. .................................... 161 

Table 18. WSI-level classification of OED, based on dysplasia scores. .................................. 161 

Table 19. Slide-level results for transformation prediction. ...................................................... 163 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 
 

1.1 Research Summary, Aims & Hypothesis 

 

Oral epithelial dysplasia (OED) is associated with an increased prevalence of oral squamous cell 

carcinoma (OSCC) which is amongst the top ten cancers worldwide, and a leading cause of death. 

Since a large proportion of OED lesions can progress to OSCC (2.6% - 36%), early detection is critical 

to reduce cancer burden and improve patient outcomes.  

Despite research advancements, there are still no proven biological or molecular markers predictive 

of malignant transformation of OED. Clinical and histopathological features, though informative, are 

unreliable indicators of behaviour and progression. Despite being the ‘Gold Standard’, OED grading 

has been criticised as being subjective, poorly reproducible and associated with significant intra-

observer inconsistencies, making it inadequate for clinical management. Furthermore, little is known 

about the prognostic significance of individual histological features used in grading, and there are an 

increasing number of other cytological and architectural abnormalities in OED, which have not been 

quantitatively analysed or correlated to clinical outcomes before. As such, there is a clinical need to 

identify better predictive markers of transformation to guide treatment and aid early cancer 

diagnosis/detection.  

Several diagnostic aids (such as vital tissue staining, chemiluminescence, exfoliative cytology, 

salivary diagnostics, impedance spectroscopy) have been developed and explored for early 

recognition of oral potentially malignant disorders (OPMD) and OSCC. However, due to limitations in 

their sensitivity and specificity, none of these tools have been employed as point-of-care tools and 

they lack strong supportive evidence for routine clinical use. Furthermore, these tools do not provide 

new knowledge or insight to advance our understanding of OED progression to malignancy.  

Advancements in Artificial Intelligence (AI) provide unique opportunities to uncover novel diagnostic 

and prognostic patterns from whole slide images (WSI) of haematoxylin and eosin (H&E) stained 

tissue, through automated feature detection and quantification. The use of digital methods to aid early 

cancer detection has been recognised as an important area of research by the Department of Health, 

Cancer Research UK, and the TOPOL review1,2,3 . More specifically, exploring effective methods for 

increasing early detection/diagnosis of OSCC and the utilisation of digital technologies to improve oral 

health has been highlighted amongst the top 10 Oral and Dental Health priorities by the NIHR James 

Lind Alliance4,5. This emphasises the importance and timeliness of this research, particularly in the 

current NHS workforce climate6.  

This research aims to use a range of digital, quantitative and computational approaches to study OED 

progression (Figure 1) and identify novel digital markers predictive of malignant transformation and 

recurrence. The research hypothesis is that AI and digital analysis can reveal novel prognostic 

information about OED progression to malignancy.  

An overview of the study methods presented in this thesis are shown in Figure 2. 
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Figure 1. Range of digital, computational, and quantitative methods used for early diagnosis. 

 

1.1.1 Research Objectives 

The research hypothesis will be tested via the following objectives: 

1. To perform a systematic review of the existing literature on the application of AI/ML methods for 

detection and grading of precancerous and cancerous head and neck lesions. 

2. To explore the prognostic relationships of established histological features in OED using digital 

pathology and explore feature-specific scoring models. 

3. To evaluate mitotic activity in OED based on H&E and immunohistochemistry for PHH3, and 

evaluate the prognostic importance of mitosis number, type and intraepithelial location.  

4. To conduct digital quantitative analysis of novel morphometric features in OED and identify 

features important in prognosis prediction.  

5. To develop multivariable models for prediction of malignant transformation and OED recurrence 

(for each objective 2, 3, 4), evaluate the impact of clinical variables and compare performance 

against existing clinical grading systems.  

6. To train ML models for classification of dysplastic, immune and stromal cells, explore spatial 

patterns and conduct digital stromal analysis in OED.  

7. To develop and test a novel DL pipeline for OED segmentation, classification and transformation 

prediction in H&E-stained whole slide images. 
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1.1.2 Research Methods  

 

Figure 2. Overview of research methods. 

(1) Individual histological feature analysis in OED and feature-specific associations with clinical outcomes; (2) Digital quantification of novel morphometric features in 

OED; (3) Mitotic activity analysis in OED based on H&E and IHC-PHH3 analysis; (4) ML application for classification of cells and spatial analysis in OED; (5) DL 

application for automated OED detection and digital feature exploration.
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1.2 Thesis Contributions 

This thesis takes the form of an alternative ‘publication format thesis’. It is composed of nine chapters, 

including a collection of peer-reviewed publications, manuscripts prepared for journal submission and 

conventional monograph chapters. In brief, Chapter 2 provides a background to the research topic; 

Chapters 3-6 are reproduced by five peer-reviewed publications and a prepared manuscript; Chapters 

7-8 comprise manuscripts prepared for journal submission incorporating materials from related 

publications in which the candidate has made significant contributions. Chapter 9 provides a general 

thesis discussion and conclusive summary to the presented research and highlights study limitations 

and future directions for research.  

A chapter-by-chapter overview has been provided below with citations of the published works and the 

explicit contributions of the candidate. For clarity, this information has been re-presented at the 

beginning of each chapter.  

The candidate confirms that the work submitted in this thesis is original and their own, and that they 

are aware of the University’s Guidance on the Use of Unfair Means. Where reference has been made 

to the work of others, due credit has been given. 

 

Chapter 2 

This chapter provides a background to the subject matter including the global scale and epidemiology 

of oral cancer, complexities related to oral epithelial dysplasia (OED) diagnosis, emerging tools for 

early cancer detection and introduces digital pathology and artificial intelligence (AI).  

 

Chapter 3 

This chapter has been reproduced from three published narrative literature reviews. The first, a 

scoping review on AI-based methods in head and neck cancer diagnosis7 published in the British 

Journal of Cancer (a Nature Journal) under the terms of a CC BY 4.0 license. The second, a 

systematic review conducted in conjunction with the International Agency for Research on Cancer 

(IARC) on the application and diagnostic accuracy of AI methods for detection and grading of 

potentially malignant and cancerous head and neck lesions8 published in Oral Oncology. This article 

was reproduced in full print for non-commercial purposes, as permitted by Elsevier. The candidate is 

the first author for both these articles. Under the guidance of supervisors, the candidate developed 

the reviews and was responsible for conducting the electronic literature searches, article screening, 

data collection, narrative synthesis, and led on writing and editing of the manuscripts with contributions 

from co-authors.   

The third paper is a review published in Journal of Pathology and has been reproduced under the 

terms of a CC BY-NC-ND 4.0 license. The candidate shares joint first authorship with Dr Paul 
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Hankinson, an Academic Clinical Fellow Oral Pathology at the University of Sheffield. The article 

discusses OED histological features and provides an overview of the common mimics of this condition. 

It also highlights the paucity of evidence defining these features and offers suggested definitions. The 

whole slide image examples from this article have been shared as a cloud-based open access dataset, 

available at: https://www.pathogenesis.co.uk/r/demystifying-dysplasia-histology-dataset.  

 

Mahmood H, Shaban M, Rajpoot N, Khurram SA. Artificial Intelligence-based methods in head and 

neck cancer diagnosis: an overview. British Journal of Cancer (2021) 

Mahmood H, Shaban M, Indave BI, Santos-Silva AR, Rajpoot N, Khurram SA. Use of artificial 

intelligence in diagnosis of head and neck precancerous and cancerous lesions: a systematic review. 

Oral Oncology (2020) 

Hankinson P, Mahmood H, Walsh H, Speight PM, Khurram SA. Demystifying oral epithelial dysplasia: 

a histological guide. Pathology. 2023 Nov 16. 

 

Chapter 4 

This chapter is formed by two studies. The first, a study reproduced from an article published in 

Modern Pathology (a Nature Journal) under the terms of a CC BY 4.0 license. The study explores the 

prognostic relationships of conventional histological features in OED and develops feature-specific 

prognostic scoring models for clinical outcome prediction9. The second study aims to validate these 

feature-based prognostic scoring models and has been presented in a format ready for journal 

submission.  

The candidate is the first author for both studies. Under the guidance of supervisors, the candidate 

was responsible for study design, obtaining ethical approval, sample retrieval and preparation, re-

analysis of histological grading and clinical data collection. The candidate conducted the statistical 

analysis with support from a statistician at the Clinical Trials Research Unit, University of Sheffield and 

led on writing and editing of the manuscript with contributions from co-authors.  

 

Mahmood H, Bradburn M, Rajpoot N, Islam NM, Kujan O, Khurram SA. Prediction of malignant 

transformation and recurrence of oral epithelial dysplasia using architectural and cytological feature 

specific prognostic models. Modern Pathology (2022) 

 

Chapter 5 

This chapter has been reproduced from an article published in the British Journal of Cancer (a Nature 

Journal) under the terms of a CC BY 4.0 license. The study explores the prognostic relationships of 

https://www.pathogenesis.co.uk/r/demystifying-dysplasia-histology-dataset
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novel digital morphometric features in OED, develops and externally validates a multivariable digital 

model for prediction of malignant transformation and OED recurrence10. 

The candidate is the first author for this publication. Under the guidance of supervisors, the candidate 

was responsible for study design, obtaining ethical approval, sample retrieval and preparation, clinical 

data collection, digital quantitative and statistical analyses, multivariable model development and 

validation and led on writing and editing of the manuscript with contributions from the co-authors.  

 

Mahmood H, Shephard A, Hankinson P, Bradburn M, Araujo AL, Santos-Silva AR, Lopes MA, Vargas 

PA, McCombe KD, Craig SG, James J, Brooks J, Nankivell P, Mehanna H, Rajpoot N, Khurram SA. 

Development and validation of a multivariable model for prediction of malignant transformation and 

recurrence of oral epithelial dysplasia. British Journal of Cancer (2023) 

 

Chapter 6 

This chapter has been reproduced from an article published in Virchows Archiv under the terms of a 

CC BY 4.0 license. The study evaluates mitotic activity in OED assessed on haematoxylin and eosin 

(H&E) stained whole-slide images (WSI) and immunohistochemical staining for Phosphohistone H3 

(PHH3)11. The candidate shares joint first authorship with Hrishikesh Sathyamoorthy, a previous MSc 

student at the University of Sheffield, for whom the candidate was a co-supervisor.  

The candidate co-designed the study with the senior author, and was responsible for obtaining ethical 

approval, sample retrieval/preparation, clinical data collection and conducted the final statistical 

analysis that led to the development of the transformation risk prediction models presented in this 

paper. The candidate also led on writing and editing of the manuscript with contributions from the co-

authors. Hrishikesh Sathyamoorthy is acknowledged for undertaking the immunohistochemistry and 

manual mitosis counting.  

Sathyamoorthy H, Mahmood H, Zubir AZ, Hankinson P, Khurram SA. Prognostic importance of 

mitosis quantification and PHH3 expression in oral epithelial dysplasia. Virchows Archiv. 2023 Oct 

26:1-3. 

 

Chapter 7 

This chapter takes the form of a manuscript in preparation for a journal submission, for which the 

candidate is the first and primary contributing author. The first part of the study explores the application 

of machine learning (ML) for classification of dysplastic, stromal and immune cells in OED. The second 

part evaluates spatial patterns in OED and conducts a digital quantification of stromal cellularity with 

analysis of nuclear features and exploration of prognostic relationships.  
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Under the guidance of supervisors, the candidate designed the study and was responsible for retrieval 

and preparation of the digital dataset, clinical data collection, training and testing of the ML models, 

quantitative analysis and downstream statistical evaluation. The candidate led on writing and editing 

of the manuscript with contributions from the co-authors.  

 

Chapter 8 

This chapter takes the form of a manuscript ready for journal submission, for which the candidate 

shares joint first authorship with Dr Adam Shephard, a data scientist at Warwick University.  This study 

develops a novel deep learning (DL) pipeline for OED segmentation, classification and transformation 

prediction using H&E-stained whole slide images.  

Under the guidance of supervisors, the candidate co-designed the study and was responsible for 

obtaining ethical approval, digital dataset preparation, clinical data collection and ground-truth slide 

annotations. The candidate worked closely with Adam Shephard to co-develop, train and test the DL 

models and conduct downstream statistical analysis. The candidate made a significant contribution to 

the writing and editing of the manuscript.  

 

Chapter 9 

This chapter provides a general thesis discussion, incorporating salient points from all aspects of the 

presented research. It describes the study limitations, challenges, ongoing work, and highlights 

opportunities for future research.  
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2.1 Oral squamous cell carcinoma 

 

2.1.1 State and scope of condition 

Oral squamous cell carcinoma (OSCC) forms part of a larger group of diverse head and neck cancers 

(HNC) which are amongst the top ten leading groups of cancers worldwide, accounting for more than 

650,000 cases and 33,000 deaths annually12. The majority of HNC are squamous cell carcinomas 

(SCC) (90%) which predominantly arise from the epithelial tissues of the oral cavity, nasal cavity, 

paranasal sinuses, pharynx and larynx13 . OSCC are the most common type of HNC14  with an 

increasing incidence and worsening prognosis15,12. It can affect any part of the oral cavity (tongue, 

floor of mouth, buccal/labial mucosa, palate, gingivae, tonsils)14 (Figure 3) and smoking16, betel quid 

chewing17 and high alcohol intake18 are the three most well-recognised risk factors by the World 

Health Organisation (WHO). OSCC is often preceded by abnormal maturation of the epithelial lining 

and stratification of the surface epithelium, a disorder known as oral epithelial dysplasia (OED) 19. OED 

describes a spectrum of histological changes, both architectural and cytological, which is usually 

triggered by an accumulation of genetic alterations, chronic exposure to environmental carcinogens 

or viral infections19.  

 

 

 

Figure 3. The percentage of mouth cancer by anatomical site.  

Original source: State of Mouth Cancer UK Report, 2022. Reproduced with permission of the rights 

holder, Oral Health Foundation. 
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In early stages, OSCC can be treated with surgical resection and targeted radiotherapy. If, however, 

there are delays in diagnosis and/or treatment, OSCC can rapidly progress causing significant 

destruction of tissues and bone in the oral and maxillofacial region20. Survival is directly linked to its 

clinical stage and spread (metastasis) to regional or distant structures, therefore early recognition and 

treatment is critical6. The effects of surgery and oncological treatment can be severe and debilitating, 

resulting in a range of life-changing morbidities including difficulties in mastication, speech, swallowing, 

altered facial appearance and a reduced quality of life21.  

 

2.1.2 Epidemiological trends  

Almost half a million new cases of OSCC are diagnosed globally each year. The Office for National 

Statistics (ONS) registry reports OSCC figures as a single grouping of ‘lip, oral cavity, and pharynx’ 

(pharynx including oropharynx, nasopharynx and hypopharynx) and Table 1 demonstrates age-

standardised incidence rates per 100,000 person-year using the 2013 European Standard 

Population22. Statistics reveal a total of 42,997 cases of oral and oropharyngeal cancers between 

2000 and 201622. Although due to the continuing accrual of late registrations and ‘opt out’ registration 

by some individuals, in addition to the exclusion of data from private hospitals, primary care services 

and nursing homes, these figures are likely to underrepresent the actual numbers. 

The recent State of Mouth Cancer UK report (2022) published by the Oral Health Foundation uses 

ONS data and reports >8,000 new diagnoses of OSCC each year in the UK, reflecting a 34% rise in 

the last decade and almost 103% rise compared with 20 years ago23. With time, it is expected that 

OSCC incidence will continue to increase, with 9,200 annual cases predicted in the UK by 203024.  

The International Classification of Diseases version 10 (lip, oral cavity and pharynx, C00-C14 and oral 

cavity, C00-C06), Public Health England (PHE) reports 10,908 deaths from OSCC alone between 

2012 and 201622,25, excluding head and neck precancers and other malignancies of bone, connective 

tissue and soft tissue. Despite the rising mortality from OSCC, there are few studies reporting the 

effect of independent risk factors on mortality rates in England. A cluster-randomised controlled trial 

conducted in India showed that regular oral screening could lower death rates amongst high-risk 

individuals with the potential to prevent approximately 37,000 deaths from OSCC globally26. The study 

showed greater death rates amongst those who smoke and drink excessive alcohol (mortality rate 

ratio 0·66 [95% CI 0·45–0·95])26. 
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Table 1. Age-standardised incidence rates per 100,000 person-year. 

Original source: European Standard Population. Office for National Statistics, England (2000-2016), reproduced under an Open Government Licence 

v3.0. 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Oral cavity cancer Sex

Male Count 1,177 1,174 1,067 1,233 1,219 1,237 1,369 1,435 1,511 1,584 1,601 1,603 1,776 1,843 1,779 1,838 1,779

Rate 6.2 6.0 5.4 6.2 6.0 6.1 6.6 6.8 7.0 7.3 7.2 7.1 7.8 8.0 7.5 7.7 7.3

Female Count 807 807 757 837 856 878 948 972 1,116 1,071 1,144 1,152 1,249 1,292 1,309 1,248 1,309

Rate 3.5 3.4 3.2 3.5 3.6 3.7 3.9 4.0 4.5 4.3 4.5 4.5 4.8 4.9 4.9 4.6 4.8

Person Count 1,984 1,981 1,824 2,070 2,075 2,115 2,317 2,407 2,627 2,655 2,745 2,755 3,025 3,135 3,088 3,086 3,088

Rate 4.7 4.7 4.2 4.8 4.8 4.8 5.2 5.3 5.7 5.7 5.8 5.8 6.3 6.4 6.2 6.1 6

Oropharyngeal cancer

Male Count 745 790 814 905 912 992 1,128 1,137 1,299 1,381 1,540 1,584 1,740 1,823 1,891 2,140 2,265

Rate 3.7 3.9 4.0 4.4 4.4 4.6 5.2 5.2 5.9 6.1 6.7 6.8 7.4 7.6 7.8 8.7 9.1

Female Count 284 283 307 309 340 369 385 387 402 468 533 505 570 591 594 674 712

Rate 1.2 1.2 1.3 1.3 1.5 1.6 1.6 1.6 1.7 1.9 2.1 2.0 2.2 2.3 2.3 2.6 2.7

Person Count 1,029 1,073 1,121 1,214 1,252 1,361 1,513 1,524 1,701 1,849 2,073 2,089 2,310 2,414 2,485 2,814 2,977

Rate 2.4 2.5 2.6 2.8 2.8 3.0 3.3 3.3 3.7 3.9 4.3 4.3 4.7 4.9 4.9 5.5 5.8
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2.1.3 Public awareness and early detection 

In recent years there has been an attempt to improve patient and public awareness of OSCC through 

campaigns such as ‘mouth cancer action month’, and government legislations such as public smoking 

bans and the uptake of Human Papillomavirus (HPV) vaccinations23. That said, an alarming proportion 

of the UK population (80%) do not ever recall seeing a public health message around oral cancer23. 

Whilst general awareness may be slowly increasing (88% of UK adults have at least now heard of 

mouth cancer), awareness of the major signs and symptoms of OSCC are as low as 17%, and 

awareness around risk factors is as low as 9%23 indicating the need for improvements.  

Aside from poor public awareness, there are several other major barriers to dental access, including 

the rising cost of living which may deter people from making dental appointments, the dwindling NHS 

dental workforce resulting in a national dental access crisis, and the ongoing difficulties faced by 

special population groups such as the elderly, people with mobility difficulties, and individuals living in 

geographically isolated areas or from minority ethnic backgrounds27. These factors all contribute to 

late detection, which means OSCC may have already developed or progressed to a higher clinical 

stage (with metastasis) at the time of presentation, significantly reducing the success of treatments 

and patient survival14,23. Statistics indicate that >3,000 people die from OSCC each year in the UK23 

and the ten-year survival rate could be as low as 19% depending on the stage of disease at initial 

presentation28. Early detection of OSCC has been directly linked to improved survival23 with 80% 

chance of survival for stage I OSCC compared to 20-30% for stage IV OSCC29.  

Improving access to NHS dental care, recognising early signs of cancer, and improving national public 

health policies remain a key focus in the prevention and early detection of OSCC. 

 

 

Figure 4. Chances of survival based on early and late diagnosis.  

Original source: State of Mouth Cancer UK Report, 202223. Reproduced with permission of the rights 

holder, Oral Health Foundation. 
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2.1.4 Risk factors  

Tobacco smoking/chewing, high alcohol consumption and use of areca (betel) nut or paan are three 

major risk factors for OED and OSCC development17,18. Secondary risk factors include gamma and 

ultraviolet radiation, heightened exposure to sunlight, immunodeficiency, and a positive family history 

of HNC30. The Human Papilloma Virus (HPV) and Epstein-Barr virus (EBV) have been implicated in 

the development of oropharyngeal31 and nasopharyngeal SCC32 and may also play a role in the 

development of some cases of OSCC16.  

The reported incidence of OSCC amongst males (68%) is greater than females, and there is a strong 

age-related association with people aged >55 (80%)23. The latter is thought to be related to a greater 

exposure to environmental risk factors, genetic alterations and immunosenescence over time33,34. 

Living in areas of greater social deprivation and lower socioeconomic groups also presents an 

increased risk, with a rise in incidence by 68% for those living in the most deprived parts of the UK23. 

This is likely to be related to a lack of awareness of OSCC risk factors, signs and symptoms23.   

The effect of independent risk factors on OSCC is well documented. Pooled analysis from large case-

control studies included in the International Head and Neck Cancer Epidemiology Consortium 

(n=25,500+ HNC patients and 37,100 controls) confirms the mutagenic effects of tobacco and alcohol 

to be dependent on dose, frequency and duration of use with increased risk with concurrent use35,36. 

Smoking duration was shown to be more important than smoking frequency, although alcohol 

frequency was shown to be more important than duration of alcohol use37. Those drinking in excess 

of 1.5 – 6 units per week were shown to have an increased risk by 81%38. Another multicentre case-

controlled study which included fourteen different England hospitals found significantly raised odds 

ratios (OR) (14.3 [95% CI: 1.1–178.8]) amongst males (mean age of 38.5 years, SD ¼ 7.0) with OSCC 

if they had started smoking before 16 years of age, and there was a significant risk reduction also 

seen in ex-smokers (OR ¼ 0.2; 95% CI: 0.5–0.8) 39. Consumption of alcohol showed an increased risk 

amongst males ≤45 years (OR ¼ 8.1; 95% CI: 1.6– 40.1) as did excessive alcohol drinking or having 

ever smoked (OR ¼ 4.4; 95% CI: 1.1–17.7)39 

 

2.2 Oral epithelial dysplasia  

OED is a precursor epithelial disorder of the oral mucosa, associated with a statistically increased risk 

of malignant progression to OSCC19. The literature reports 2.6% - 12.1% of all OED lesions progress 

to OSCC40,41, highlighting the importance of early and accurate detection. 

Clinically, OED can have a variable presentation which can make diagnosis challenging42. It can arise 

at the margins of ulcers or present as a persistent white patch (leukoplakia), red patch (erythroplakia) 

or a mixed white-red patch (erythroleukoplakia) (Figure 5). Leukoplakia is regarded as the most 

common clinical presentation, with OED present in almost 50% of biopsied lesions42. Malignant 

transformation rates of leukoplakia vary between populations but are reported at approximately 9.5% 
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(99% CI 5.9% to 14.00%) or 1.56% per year43. OED may also be seen in other oral potentially 

malignant disorders (OPMD) such as oral submucous fibrosis, actinic keratosis, and oral lichen 

planus44,45. The presence of OED in these lesions is associated with an increased risk to malignancy46. 

Whilst attempts have been made to correlate certain clinical features in OED to malignant 

transformation (lesion size ⩾200 mm, speckled, nodular or verrucous appearance, presence of 

multiple lesions, lateral/ventral tongue or floor of mouth subsites)47,48,49 the supportive evidence is 

weak, and there is no single definitive feature shown to be reliably predictive50,51. OSCC may also 

arise from seemingly healthy, non-dysplastic oral epithelium46. The matter is further complicated by 

the lack of clinically proven predictive biomarkers and uncertainty of OED grading54. 

 

 

Figure 5. Clinical photographs demonstrating variable appearances of OED.  

A) Diffuse leukoplakia involving gingival tissues; B) Focal raised leukoplakia with corrugated surface 

on right buccal mucosa; C) Raised leukoplakia with nodular area in floor of mouth; D) Diffuse 

erythroleukoplakia on ventral tongue extending to floor of mouth; E) Ill-defined leukoplakia with 

surrounding erythema on lower lip. Images acquired for purpose of thesis, with ethical approval (Ref: 

18/WM/0335).  
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2.2.1 Histological grading 

Diagnosis of OED is currently achieved through histopathological analysis of a biopsy tissue sample 

using light microscopy. Over the years, there have been several grading systems proposed with 

numerous iterations. The most widely accepted system is the World Health Organisation (WHO, 2017) 

classification which categorises lesions into ‘mild’, ‘moderate’ and ‘severe’ grades based on the 

presence and severity of a wide range of histological abnormalities and the extent to which these 

features extend upwards through the epithelial layers52. This is achieved by ‘splitting’ the epithelium 

into ‘thirds’ (Figure 6) 53. Using this approach, a diagnosis of mild dysplasia is made if the dysplastic 

changes are confined to the basal and parabasal layers (lower third), whereas in moderate dysplasia 

the changes extend to involve the middle third of the epithelium, and in severe dysplasia the changes 

extend through the entire thickness (or at least more than half) of the epithelium (upper third) (Figure 

6). However, this approach is arguably over simplistic, since the presence of a single feature in 

abundance, irrespective of its location in the epithelium, may be sufficient to upgrade a lesion. In the 

most recent iteration of the WHO classification of head and neck tumours, the range of features used 

to grade OED has been expanded to 28 features in total52. Not only is it difficult and impractical for 

pathologists to analyse such a wide variety of features, but it also increases the risk of inaccuracies 

and widens variability and grading consensus between pathologists54. 

In the early stages of OED, cessation of risk factors can result in regression of the lesion, but if there 

is constant exposure to carcinogens that promotes genetic alterations and chromosomal instability, 

histological atypia may progress to a higher grade or transform to malignancy. A recent meta-analysis 

showed that moderate/severe OED was associated with a greater risk of malignant transformation 

risk compared to mild OED with an odds ratio of 2.4 (99% CI1.5-3.8)43. However, due to lack of 

consensus on the most clinically appropriate grading system55 histological grading is not a reliable 

indicator of malignant transformation. The mechanisms by which dysplasia progression (and 

regression) occurs is still unclear, and there remains a lack of understanding about which individual 

histological features have the greatest (and least) prognostic value.  

 

 

Figure 6. A simplified overview of histological progression of OED to malignancy.  

Black dotted line demonstrates division of the epithelium into ‘thirds’ for grading lesions. Note: lesions 

do not always need to progress through to the worst OED grade for transformation. 
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2.2.2 Diagnostic challenges and alternative systems 

There are several limitations of the WHO (2017) classification, despite it being in routine use56. Firstly, 

there is significant inter- and intra-observer variability amongst pathologists. This variability may arise 

due to the wide range of histological features (Figure 7, Figure 8, Figure 9) that can be seen in OED, 

subjectivity in dividing the epithelium into ‘thirds’ (Figure 6) as well as an inherent ambiguity of certain 

ill-defined features. As a result, there is likely to be differences in interpretation and agreement of 

features, which may lead to inconsistencies in grading and risk stratification of OED lesions57.  

Secondly, the classification system does not ascribe prognostic weight to individual features. This is 

likely due to a limited knowledge of which histological features (individually or in combination) are 

important in malignant progression. This means that even when grading is done correctly, it may not 

reliably predict prognosis, since mild grade lesions may transform, whereas some severe grade 

lesions may remain static4,10.  

Thirdly, the WHO (2017) system relies on the histological identification of architectural and cytological 

abnormalities, but many of these features are relatively non-specific and overlapping and may be 

present in a host of other conditions which mimic dysplasia, such as reactive atypia in inflammatory 

and ulcerative conditions, or fungal infections28. In addition to this, whilst some cases of OED are 

straightforward with obvious cytological abnormalities, the so called ‘differentiated’ or ‘architectural 

dysplasia’ tends to lack frank cytological atypia with architectural changes being the predominant 

feature, making these cases more challenging to diagnose54. A more detailed review attempting to 

demystify OED features is presented in the Appendix.  

Finally, not all OSCCs are preceded by OED46, suggesting that grading is less important than the 

biological mechanisms underpinning the disease process itself. It is well documented that OED 

development occurs due to a complex interaction between genetic and molecular alterations and 

histological atypia, but the exact mechanism of its progression to cancer is still poorly understood58,59. 

To overcome grading irreproducibility, an alternative binary grading criteria has been proposed60. This 

system uses the same histological features as that listed in the WHO criteria, but grades lesions based 

on the total number of features present (“low” risk: < 4 architectural features; < 5 cytological features 

and “high” risk: ≥ 4 architectural features; ≥ 5 cytological features). This system does not consider 

verrucous lesions though, or the extent of features present, limiting its clinical use. Some studies have 

demonstrated this system to have improved reproducibility in comparison to the WHO classification 

(unweighted and weighted kappa agreements for WHO grading Ks = 0.22 [95% CI: 0.11-0.35], Kw = 

0.63 [95% CI: 0.42-0.78], respectively, versus K = 0.50 [95% CI: 0.35-0.67] for binary system) 60,61. 

However, the strength of evidence to support its clinical utility is weak and conflicting. A recent 

systematic review and meta-analysis, comparing the binary classification with the WHO classification 

showed inconclusive results with regards to its prognostic value62. As such, this system is not deemed 

robust enough for routine clinical use on its own at present. 
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Figure 7. Architectural features seen in OED.  

A) Irregular stratification; B) Premature keratinisation; C) Abrupt transition; D) Keratin pearl formation; 

E) Loss cell epithelial cohesion and basal cell polarity; F) Extension of OED along a salivary duct; G) 

Verrucous surface architecture; H) Superficial mitosis – black arrow; a mitotic figure is identified 

outside of basal compartment. I) Bulbous rete processes and generalised premature keratinisation; J) 

Papillary architecture; K) Basal cell nesting and clustering; L) Multiple patterns of dysplasia. Original 

magnifications: A, B, C, D, H, I, K, L (x10), E (x20), F, G, J (x4).  

Original source: Hankinson P, Mahmood et al (2023)63 reproduced under a CCBY-NC-ND license. 
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Figure 8. Cytological features seen in OED. 

Severe OED; an abundance of cytological features of OED are seen in this bulbous rete process 

including: abnormal variation in nuclear size and shape, abnormal variation in cell size and shape, 

increased mitotic activity, increased nuclei: cytoplasm ratio, atypical mitotic figures, increased number 

and size of nucleoli, nuclear hyperchromasia and abnormal mitoses, B) Abnormal mitosis and 

apoptosis; black arrow – shows an apoptotic cell with pyknotic nucleus, brightly eosinophilic cytoplasm 

and retraction from neighbouring keratinocytes, white arrow – showing an abnormal mitotic figure with 

asymmetrical chromatin, C) Single cell keratinisation – black dotted arrow;  there is generalised 

premature keratinisation seen in this example of OED giving the epithelium a strongly eosinophilic 

appearance, the black arrow highlights single cell keratinisation with even more eosinophilic 

cytoplasm and retraction from adjacent keratinocytes. Original magnifications: A, B (x20), C (x10).  

Original source: Hankinson P, Mahmood et al (2023)63 reproduced under a CCBY-NC-ND license. 
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Figure 9. Variations in mitotic figures.  

Normal (A-E) and abnormal mitotic figures (F-J) from OED (original magnifications x40). A) 

Prometaphase mitosis in a basal keratinocyte, B) Two basal keratinocytes in metaphases of mitosis, 

C+D) Anaphase mitoses in prickle cell layer keratinocytes, E) Early telophase mitosis in prickle cell 

layer F+G) Abnormal mitosis in OED showing abnormal chromosome segregation, fragments of 

chromatin are separate from the larger aggregate, H-J) Abnormal mitosis in OED showing mitotic/polar 

asymmetry with chromosomes aligning along more than two spindle poles, if these cells survive 

mitosis they will become aneuploid if not already as the distribution of chromosomes across daughter 

cells is uneven.  

Original source: Hankinson P, Mahmood H et al (2023)63 reproduced under a CCBY-NC-ND license. 

 

2.2.3 Biomarkers 

The process by which OED transforms to cancer is poorly understood54. It is thought that OSCC occurs 

through an aggregation of progressive molecular changes in key tumour suppressor genes and 

oncogenes. This is supported by the marked genetic alterations and chromosomal derangements that 

occur in OED as the lesion progresses, until eventually there is a final malfunction in the genotype to 

trigger cancer and invasion58. Whilst an increasing number of biomarkers have been implicated in 

OED, none of these have been clinically proven to predict oral carcinogenesis40,64.  

An extensive systematic review and meta-analysis identified four biomarkers in OED to be statistically 

associated with OSCC development64. This included loss of heterozygosity particularly at the 3p ± 9p 

loci (RR 17.60 (2.77, 108.37) p < 0.001), survivin (RR 30 (4.25, 197.73), p ⩽ 0.001), matrix 

metalloproteinase (RR 19.00 (1.56, 209.38) p = 0.02) and DNA content (RR 12.00 (1.17, 82.10) p = 

0.03). Other analysed biomarkers (p53, p73, MMP 1 and 2 and cathepsin L mRNA) were weakly 

associated with malignant transformation64. These findings should be treated with caution though, due 

to methodological weaknesses among the included studies, which largely comprised small, 

retrospective, single-centre studies.  
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In another systematic review, the over-expression of ALDH1A1, PROM1 and PDPN65 was linked to 

an increased malignant potential of OED. However, this review was based on the inclusion of just four 

studies with a weak overall strength of evidence66. ALDH1A1 has demonstrated a predictive role in 

advanced dysplasia of Barrette’s oesophagus as well as high-grade cervical dysplasia and lung, 

oesophageal and breast malignancies67,68,69. Inhibition of PROM1, a membrane glycoprotein, has 

been shown to interfere with angiogenesis and cell proliferation which could be relevant in cancer 

development70. Similarly, PDPN, a specific marker for lymphatic endothelial cells, has been shown to 

play a role in the promotion of cancer cell clonal capacity, invasion, and metastasis71. However, further 

work is still required to validate the significance of these proteins in the prediction of OED progression 

to OSCC.  

To summarise, the existing body of research exploring predictive biomarkers in OED is largely of 

mechanistic exploration, with weak clinical application and contribution to the overall understanding 

of OED progression. The lack of proven biomarkers means that histological grading is the main 

measure of cancer risk prediction, and therefore used by surgeons to inform treatment decisions4.  

This reinforces the need to explore new predictive markers to help improve the prognostic strength of 

existing diagnostic criteria’s and optimise management protocols for patients with OED. 

 

2.3 Diagnostic aids for early cancer detection  

Visual and tactile oral screening is regarded an important step in the early detection of OPMD. 

However, as clinical appearances of OPMD are variable, it can be challenging for clinicians to know 

which lesions are at higher risk of progression to malignancy. As such, patients will often undergo 

further investigation in the form of a surgical biopsy to confirm the histopathological diagnosis. Whilst 

oral biopsies are regarded as minor surgical procedures, they can be unfavourable to patients, and 

are associated with surgical risks such as post-operative pain, swelling, bleeding, bruising, infection, 

scar and nerve injury. It is also possible that a biopsy sample does not provide the necessary 

information to confirm a definitive histological diagnosis. For example, if the biopsy sample is too small, 

of poor quality, or does not capture the severity of the lesion due to a sampling error. Multiple biopsies 

can be difficult to perform, can increase surgical risk, and are often not tolerated well by the patient.  

Several suggestions have been proposed to overcome the reliance on histological grading, such as 

the use of molecular markers72,73, morphological descriptors74 and computer aided analyses75. To 

aid oral visual examination, several adjunctive techniques have been explored (Table 2). These 

methods include vital tissue staining with toluidine blue (TB) or Lugol’s iodine, acetowhite staining of 

tissues, chemiluminescence, veloscope visualisation, OralCDx brush test and impedance 

spectroscopy. Some of these methods, along with their limitations, have been described in further 

detail below. 
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Table 2. Diagnostic aids for early oral cancer detection.  

Modified from Masthan et al. (2012)76 

Clinical Methods 

Vital staining - Toludine Blue, Lugol's Iodine 
Cytopathology – Exfoliative Brush Biopsy (Oral CDX) 

Salivary transcriptome diagnostics 

Molecular methods - tumour markers & biomarkers 
DNA Ploidy 
PCR-based diagnostics 

Visualisation/Photo Aids 

Chemiluminescence -ViziLite 
VELscope 
In vivo Confocal Microscopy 
Autofluorescence Spectroscopy 

Electrical Methods 

Electrical Impedance Spectroscopy 

Digital Methods 

Digital Pathology  
Quantitative digital analysis 
Computational approaches – Artificial Intelligence/Machine Learning/Deep Learning 

 

 

2.3.1 Toluidine blue staining 

The use of TB staining as an adjunctive tool for early OSCC detection was first proposed in the early 

1980s. TB is an acidophilic metachromatic dye which forms part of the thiazine group. It selectively 

stains acidic tissue components and is partially soluble both in water and alcohol. Since neoplastic 

cells contain higher concentrations of nucleic acid, the dye works by positively binding to 

deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) within these cells to give a dark blue colour, 

which can improve visualisation of high-risk OPMD and OSCC77.  

Whilst a number of small-scale studies have reported high sensitivity rates for TB, this relates mainly 

to the assessment of ‘high-risk’ oral lesions, many of which will already have carcinoma in situ (Figure 

10). A systematic review demonstrated a variable sensitivity of TB staining from 38% to 98% and an 

even more variable specificity ranging from 9% to 93%78. TB was associated with a high false-positive 

rate, a positive predictive value (PPV) between 33% to 93% and negative predictive value (NPV) 

between 22% to 92%78. As such, TB is not widely employed in clinical practice, and may have greater 

use as a diagnostic aid in remote regions where access to dental care is more restricted.  
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Figure 10. TB staining of a suspicious oral lesion.  

Clinical photos demonstrating a) Erythroplakia on right lateral border of tongue; (b) Same lesion 

following application of TB stain which is retained (dark blue colour) in localised areas. Biopsy of these 

stained regions confirmed as a well differentiated squamous cell carcinoma. TB (toluidine blue).  

Original source: Messadi DV (2013)77. Reproduced with permission of the rights holder under CC BY-

NC-ND 3.0 DEED license. 

 

2.3.2 Exfoliative cytology  

Cytopathology is the microscopic study of cells collected from the surface of mucosal tissues, 

traditionally via smears, scrapings, lavage or from internal sites via fine-needle aspiration. The oral 

brush biopsy (OralCDx Brush Test) uses the concept of cytopathology or ‘exfoliative cytology’ to 

analyse a transepithelial sample of cells from suspected oral lesions. For analysis, the extracted 

sample of cells is fixed onto a glass slide and stained with a modified Papanicolaou test and analysed 

using a computer-based imaging system77. Results are reported as “negative or benign”, “positive or 

atypical”. Reported results are variable across studies with inconsistencies in specificities and PPVs 

of OralCDx. A systematic review reports varied sensitivities of 71% to 100%, and specificities of 27% 

to 94%. The reported PPVs ranged from 38-88% and NPVs from 60-100%78. Findings also indicated 

that OralCDx was better at detection of ‘low-risk’ lesions and in populations where oral malignancy is 

less common, in comparison to ‘high-risk’ lesions which was associated with higher false-positive 

rates. 

Whilst the OralCDx has the advantage of being a minimally invasive chairside intervention and may 

be effective as an adjunct to visual oral screening, it does not replace the need for a surgical biopsy 

for a definitive histological diagnosis. Another limitation of this method is that exfoliative cytology 

samples can only be taken from oral lesions already visible to the naked eye, and therefore long-

standing or submucosal lesions less visible would still require a standard biopsy79,80. As such, this 

method does not have a significant place in clinical practice.  
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2.3.3 Salivary diagnostics  

Saliva contains constituents that can reflect disease and the physiological state of the human body 

and is therefore considered a useful medium for extracting cancer biomarkers77. Saliva has already 

demonstrated good promise with respect to detection of patients at risk of dental caries, periodontal 

disease, salivary gland disorders and other systemic conditions such HPV and Hepatitis C infections81. 

It has several useful properties in that it is an inexpensive, non-invasive, readily accessible, and a 

quick approach. More than 100 salivary biomarkers have already been implicated in OSCC 

development82, however, none of these have yet been validated in large-scale prospective studies. 

The lack of strong evidence for many of these disease markers and their relatively small 

concentrations in saliva compared to serum, means the diagnostic value of saliva in oral cancer 

detection is not yet fully established.  

 

2.3.4 DNA Ploidy 

Ploidy refers to the number of complete sets of chromosomes within a cell, and DNA ploidy is the 

measure of a cell’s nuclear DNA content that indicates the extent of genetic damage and chromosomal 

instability. During mitosis, if the chromosomes are not uniformly distributed to the daughter cells, some 

parts of chromosomes become detached, and chromosomal segregation becomes unbalanced, 

resulting in aneuploidy. Chromosomal instability and DNA aneuploidy are fundamental to the 

development of malignancy83, and the presence of aneuploidy in precancerous oral lesions increases 

the risk to transformation84. These changes can be measured using DNA flow cytometry, image 

analysis and molecular analysis of loss of heterozygosity85.  

A study evaluating image-based DNA ploidy analysis in predicting malignant transformation risk of 

OED, demonstrated that combining DNA ploidy status with dysplasia grading gave a higher predictive 

value than either of these techniques alone85. The PPV for malignancy risk based on DNA aneuploidy 

status was 38.5% (sensitivity 65.2% and specificity 75%) in comparison 39.5% (sensitivity 30% and 

specificity 98%) for severe OED prediction. DNA diploid and tetraploid status had negative predictive 

values of 90% to 96%85. In another study, a significant correlation was found between DNA index and 

mitoses, cellular response and the degree of oral cancer differentiation, but not the ploidy status86. 

The authors concluded that DNA analysis may be a useful tool to support pathological analysis of 

HNC by reducing subjectivity, but ploidy status alone was not associated with tumour differentiation. 

Whilst DNA ploidy analysis may have potential, research is ongoing in this field, and more work is 

needed to understand the molecular characteristics of OSCC to help develop more effective and 

reliable diagnostic tools. Clinical examination, imaging, and surgical biopsy, remain important 

measures for the diagnosis and staging of oral cancers. 
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2.3.5 Optical imaging 

2.3.5.1 Chemiluminescence: ViziLite 

ViziLite is a hand-held, single-use chemiluminescent light stick which emits light at varying 

wavelengths, intended to aid visualisation of healthy tissue from leukoplakia. Typically, healthy 

epithelial tissue will absorb more light and appear darker in comparison to hyperkeratinised or 

dysplastic lesions which will penetrate less light and appear whiter. The differences in light absorption, 

and therefore visual colour, is related to differing thickness of the lesions and may also be linked to 

altered nuclear structure and content that preferentially reflects the low energy blue-white light 

generating an “acetowhite” change. ViziLite Plus with TBlue systems have been approved for use by 

the Food and Drug Administration (FDA) as an adjunct to visual oral screening but the evidence to 

support its use is lacking and demonstrates conflicting results77. Several case series/convenience 

sample studies have explored the role of ViziLite in high-risk populations only, in cases where the oral 

lesions are already present. The reported sensitivity rate in these studies was 100% but due to the 

high level of sample bias, these figures may have been over-estimated and cannot be extrapolated to 

the general population. The other accuracy values were also inconsistent: 0-14% specificity, PPVs of 

18-80% and NPVs of 0-100%78. 

 

2.3.5.2 VELscope  

The VELscope system is a hand-held scope which allows screening of tissues visually to assess for 

changes in tissue fluorescence. The concept behind this system is that mucosal tissues have a 

reflective and absorptive pattern reflecting the naturally occurring fluorophores in the tissue. This 

method has already been well documented for the early detection of precancerous lesions in the lung, 

uterus, cervix and skin87,88,89. However, there are several factors that can affect variability in tissue 

fluorescence in the oral cavity, including alterations in epithelial tissue structure and composition, 

metabolism, vessel dilatation and inflammation90,91. The loss of autofluorescence in dysplastic and 

cancerous tissue is thought to be related to alterations to intrinsic tissue fluorophore distribution due 

to tissue remodelling, as well as alterations to metabolism.  

The evidence for use of VELscope in patients in OPMD thus far has been to support detection of 

lesion margins, and therefore has a purpose for surgical planning.  Aside from this, there is very little 

by means of research to support the usefulness of this system as a diagnostic adjunct in the general 

population, and particularly in lower-risk patient groups78. Given the variability of tissue fluorescence 

of the oral mucosa and the risk of false positives with benign lesions that may show loss of 

fluorescence, further research is still needed in this area.  
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2.3.6 Electrical impedance spectroscopy  

Electrical impedance spectroscopy (EIS) is a technique based on the measurement of the frequency-

dependent electrical response (or impedance) when a small alternating current (AC) is passed through 

a material. If the frequency of the AC signal is varied, it is possible to detect the response of multiple 

components within a material, depending on their capacitance and resistance92. All biological tissues 

have some degree of electrical impedance based on the tissue’s components (cells, matrix, etc.) that 

have both resistive and capacitive (charge storage) properties. Since the size of the impedance and 

the dependence of impedance on frequency are related to tissue composition, different tissue 

structures are associated with different frequencies within an impedance spectrum.   

EIS has been developed as a point-of-care screening tool for the detection and assessment of 

Barrett’s oesophagus93, cervical intraepithelial neoplasia94, cutaneous malignancies95,96, prostatic 

changes97 and bladder pathology98 but there is a paucity of high-quality evidence supporting its role 

as an adjunct for assessment of OPMD. In one study, EIS data was taken from a range of lesions 

including OSCC, OED, benign pathology (n=47) and compared with control sites (n=51). Findings 

demonstrated significant differences in the EIS of OSCC and high-risk OPMD versus low-risk PML 

and controls. There were no significant differences observed between benign lesions and normal 

controls99. EIS has also shown reduced potential in differentiating between individual OED grades, 

and between OED and OSCC.  

Whilst there are some potential advantages of EIS, in that it is a non-invasive technique and provides 

real-time data allowing for immediate analysis during diagnostic procedures, it is associated with 

several practical limitations, such as equipment cost, the need for user training and results 

interpretation. These factors make EIS a less suitable point-of-care tool, and further research is 

needed to support its application and effectiveness in clinical practice.  

 

2.3.7 Digital pathology and artificial intelligence 

Over the last decade there have been significant technological advancements in computational 

software, artificial intelligence (AI) and digital image analysis. AI is a branch of computer science which 

relates to the use of smart machines that simulate processes which would typically require human 

intelligence, for example language processing, voice recognition, visual perception. The application 

of AI in everyday life is rapidly increasing, and more recently, the use of AI in precision medicine has 

seen a surge of interest100-101.   

There is a growing amount of evidence supporting the role of AI and digital analyses in removing 

subjective variability in cancer classification by ensuring standardisation, in addition to providing 

quantifiable outputs for cancer risk prediction and prognosis. The increasing ubiquity of patient data, 

wholeslide digital scanners and evolution of computational power has provided opportunities to 

uncover novel data from whole-slide images (WSI) through automated detection, pattern recognition 
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and quantitative analysis100,102. AI can obtain ‘big data’ from digital WSIs (Figure 11) and various image 

analysis platforms have been developed which allow for automated cell nuclei detection and extensive 

feature evaluation for more objective histological and morphometrical feature analysis.  

Many studies have highlighted improved accuracy and efficiency of AI models in predicting diagnosis, 

treatment response, recurrence and cancer survival in a range of malignancies103,104,105,106,107108,109. 

CAMELYON (Cancer Metastases in Lymph Nodes) is a landmark study in which AI algorithms were 

shown to perform better than 11 experienced pathologists in detection of metastatic breast cancer in 

lymph node WSIs110. In another study, human epidermal growth factor receptor 2 (HER2) expression 

in breast cancer was more accurately scored by AI algorithms compared to the expert analysis by 

several pathologists111. Several pioneering AI-based cancer diagnostic algorithms have also been 

clinically deployed including the prostate cancer grade assessment (PANDA) tool112 and an Image 

Biomarker Explorer (IBEX) software platform for detection and grading of breast malignancies113. 

These algorithms demonstrate the promise of such methods, and their potential to achieve better than 

pathologist-level accuracies. A more detailed review of the existing literature for application of AI in 

detection and diagnosis of precancerous and cancerous head and neck lesions is presented in 

Chapter 3. 

 

 

Figure 11. Conversion of tissue section to digital whole slide image.  

Each whole slide image provides multi-gigapixel-level information for data leverage and algorithm 

training. A single 2.5x7.5cm slide converted at resolution of 0.25µm/pixel at x40 can generate 100,000 

x 300,000 pixels which equates to ~90GB of raw data. A single WSI yields approximately 85,000+ 

pixels compared to conventional chest x-ray.  
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2.3.7.1 Machine learning  

Machine learning (ML) is a branch of AI in which computational algorithms ‘learn’ information and 

patterns directly from data. There are various types of ML algorithms including supervised, 

unsupervised and semi-supervised (Figure 12) 114. Supervised ML involves the training of models 

where the data input and output are already known, whereas unsupervised ML involves mining and 

extraction of hidden patterns from input data without any pre-defined information or linked 

examples115. Semi-supervised learning combines both labelled and unlabelled examples to enable 

the machine to generate an output. As more training data is provided, ML algorithms adaptively 

improve their performance through experiential learning. 

Classification is an example of a traditional ML approach, which involves organising objects or 

observations based on matched attributes and characteristics and using this learning to predict a class 

label8. This technique is commonly used in computer vision tasks and has become increasing popular 

in cancer research, due to its ability to compute reliable quantifiable outputs for downstream statistical 

analyses from large scale imaging data114. Examples of commonly used classification algorithms 

include:  

i. Linear Classifiers: Logistic Regression, Naive Bayes Classifier 

ii. Nearest Neighbour 

iii. Support Vector Machines 

iv. Decision Trees 

v. Random Forest 

vi. Neural Networks 

The application of these methods is the diagnosis of head and neck precancerous and cancerous 

lesions is presented in Chapter 3. Some of these approaches will also be discussed in further detail 

in Chapters 7 and 8. 
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Figure 12. Branches of Artificial Intelligence.  

Machine learning (ML) is a branch of AI and Deep learning (DL) is a further subfield of ML. ML models 

can be supervised or unsupervised.  

 

2.3.7.2 Deep Learning & Semantic Image Segmentation  

Deep learning (DL) is a further subfield of ML (Figure 12) in which algorithms learn high-level 

abstractions in data by utilising hierarchical architectures116. It works by using highly structured set of 

algorithms which model the brain’s neural network system to form input layers, output layers and 

multiple layers in between117. Artificial neural networks (ANNs) and convolutional neural networks 

(CNNs) are well-established models used in a diverse range of computer vision applications116.  

Image classification, semantic segmentation, object detection/localisation and instance segmentation 

are all examples of DL tasks used in the field of computer vision and digital image analysis. Whilst 

these terms are used interchangeably, there are some distinct differences in these techniques.  

Image classification has been described in 2.3.7.1 and essentially involves ascribing labels to image 

features based on the organisation of characteristics/objects. Semantic segmentation aims to classify 

individual pixels of an image by grouping together objects (or regions) which have similar 

characteristics115. To achieve this, WSI are split into regions of interest (ROI) and tessellated into 
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smaller sub-images (‘patches’) by a process known as ‘patch extraction’. More precisely, the end point 

of semantic image segmentation is to label each pixel of the image into a predefined set of classes118. 

Some of the well-known algorithms that will be explored and discussed in Chapter 8 include CNN-

based models (U-Net, DeepLab) and Transformers.  

Object detection does not operate at the pixel level, but rather classifies objects in an image by 

localising it and enclosing all detected objects in a bounding box and giving a label to it. Instance 

Segmentation aims to combines object detection and semantic segmentation algorithm, which can be 

relatively difficult118. The method aims to classify the pixels of interest in the image and box-select the 

location of each object simultaneously. It should be noted that the same category will also be divided 

into different objects. The differences between semantic segmentation and the instance segmentation 

algorithms are illustrated in Figure 13. 

 

 

Figure 13. Different image analysis approaches.  

Image classification, semantic segmentation, object detection/localisation and instance segmentation 

are all examples of DL tasks used in the field of computer vision and digital image analysis. These 

methods involve ascribing labels to image features based on the organisation of 

characteristics/objects. 
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Chapter 3 – Literature Review 

 

This chapter has been reproduced from three peer-reviewed publications for which the candidate is 

first and primary contributing author for the first two articles (3.1 and 3.2) and shares joint first 

authorship for the third presented article (3.3).   

The first paper provides an overview of the published literature (between 2009–2020) relating to the 

application of AI/ML methods to aid diagnostic evaluation of head and neck cancers (HNC). An outline 

of the different anatomical sites for HNC lesions, the type of diagnostic imaging modality and the AI/ML 

method used is reviewed.   

The second paper is a focussed systematic review conducted with Blanca Iciar Indave Ruiz, a 

Systematic Reviewer for WHO/IARC Classification of Tumours Group. This review follows the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for review 

of the scientific literature (between 2009-2020) on the application and diagnostic accuracy of AI/ML 

methods for detection and grading of potentially malignant and cancerous head and neck lesions. 

The third paper provides a comprehensive discussion of OED histological features and an overview 

of the common mimics. It highlights the paucity of evidence defining these features while offering 

suggested definitions. The whole slide image examples presented in this article has been shared as 

a cloud-based open access dataset, available at: https://www.pathogenesis.co.uk/r/demystifying-

dysplasia-histology-dataset.  

 

The candidate’s contributions for both articles include:  

i. performing the electronic literature search 

ii. performing the screening and selection of eligible articles for inclusion in the reviews 

iii. performing risk of bias and quality assessment for all the included articles 

iv. data extraction and synthesis 

v. writing up the manuscripts 

 

For the first two articles (3.1 and 3.2), Dr Muhammad Shaban assisted with article screening and risk 

of bias assessment, and the senior authors confirmed final article selection. The search strategy was 

developed in collaboration with a medical information specialist from the Health Sciences Library, 

University of Sheffield.  

 

 

 

https://www.pathogenesis.co.uk/r/demystifying-dysplasia-histology-dataset
https://www.pathogenesis.co.uk/r/demystifying-dysplasia-histology-dataset
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3.1 Artificial Intelligence-based methods in head and neck cancer 

diagnosis: an overview 

 

 

 

 

 

 

 

 

 

 

 



ARTICLE
AI Applied to Cancer

Artificial Intelligence-based methods in head and neck cancer
diagnosis: an overview
Hanya Mahmood 1, Muhammad Shaban2, Nasir Rajpoot2 and Syed A. Khurram3

BACKGROUND: This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for
diagnostic evaluation of head and neck cancers (HNC) using automated image analysis.
METHODS: Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles
using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging
modality used.
RESULTS: In total, 32 articles were identified. HNC sites included oral cavity (n= 16), nasopharynx (n= 3), oropharynx (n= 3), larynx
(n= 2), salivary glands (n= 2), sinonasal (n= 1) and in five studies multiple sites were studied. Imaging modalities included
histological (n= 9), radiological (n= 8), hyperspectral (n= 6), endoscopic/clinical (n= 5), infrared thermal (n= 1) and optical (n=
1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep
learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%).
CONCLUSIONS: There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging
modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data
predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice.

British Journal of Cancer https://doi.org/10.1038/s41416-021-01386-x

BACKGROUND
Head and neck cancers: incidence and diagnosis
Head and neck cancers (HNC) comprise a heterogeneous group of
cancers, most commonly squamous cell carcinomas (SCC), that
typically arise from the epithelial lining of the oral cavity, sinonasal
tract, pharynx, larynx and salivary glands.1 Most HNC are already at
an advanced stage when diagnosed, which significantly reduces
the survival rate, even after curative treatment.2 Major risk factors
include tobacco smoking/chewing,3 excessive alcohol consump-
tion,4 areca (betel) nut, paan masala (Gutkha),5 gamma and
ultraviolet radiation, overexposure to sunlight, a family history of
cancer and increasing age.6 The role of human papillomavirus
(HPV)7 and Epstein–Barr virus (EBV) has also been implicated in
the development of oropharyngeal and nasopharyngeal SCC.3,8

The global incidence of HNC continues to rise9,10 with more than
half a million cases annually11 and ~12,000 new cases in the UK
each year, an increase of 20% in the last decade.12 Prognosis
remains poor, with a 28–67% chance of survival at five years,
depending upon the stage at presentation.12

Public health screening/awareness programmes, withdrawal of
environmental carcinogens and early detection of precancerous
lesions remain the focus for primary and secondary prevention.3

However, early detection of some HNC can be difficult due to vague
histories and indistinctive diagnostic features. Conventional diagnosis
of HNC is based on histopathological evaluation of tissue sections
from biopsies or surgical resections, in addition to clinical and

radiological examinations. These methods can be time-consuming
and are prone to errors in observation or variations in interpreta-
tion,13–15 which can result in inconsistencies in cancer grading and
prognostication.16 Consequently, this can cause delays and/or
inaccuracies in diagnosis, which can have significant implications
on patient management and survival. Indeed, improvements in HNC
prediction accuracy and disease outcomes could greatly assist
healthcare professionals in the early detection and planning of
patient-specific optimal treatments to reduce the disease burden.

Artificial intelligence: machine learning and medical image
analysis
Recent technological advancements in Artificial Intelligence (AI)
algorithms, computer hardware and big medical imaging datasets
have enabled computer scientists and healthcare researchers to
collaborate closely to improve consistency in cancer risk
stratification over the use of multi-factor analysis, conventional
logistic regression and Cox analyses.17

The recent advent of Machine Learning (ML) has seen a surge of
interest with the exponential growth of evidence to support its
wide applications in a range of cancers.18–24 ML is a branch of AI
that uses computational methods to detect patterns, gather
insight and make predictions about new data by using historical
information that has been ‘learnt’. As the volume of training data
increases, ML algorithms can produce more accurate and efficient
predictions.25 Deep learning (DL) is a subfield of ML in which
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algorithms are structured to create artificial neural networks with
multiple hidden layers. These methods have also gained
significant popularity in recent years due to their achieving
relatively high accuracy of prediction.
Much of the recent focus in cancer diagnostics has centred on

digital image analysis and processing, which involves extraction of
meaningful information from images to enable delineation of
features of clinical interest (segmentation) or description of labels
(classification).26,27 A number of ad hoc (or hand-crafted) feature
analysis-based ML approaches have been shown to be successful
in different diagnostic applications, by explicitly defining a prior
set of features and processing steps28 (Fig. 1). Detection of HNC
can be achieved using these ML methods by obtaining clinically
important information from primary diagnostic imaging modal-
ities, in which high-dimensional, mineable images can be input to
train algorithms. For example, radiomic data can be derived from
radiographs, ultrasound (US), computed tomography (CT), mag-
netic resonance (MR), positron emission tomography (PET) and
nuclear medicine imaging methods, such as single-photon
emission computed tomography (SPECT). Similarly, histological,
cytological and immunohistochemical data can be obtained from
high-resolution whole-slide images (WSI) of stained tissue sections
from biopsies or surgical resections. Other emerging tools for non-
invasive detection of HNC include multispectral narrow-band
imaging, Raman spectroscopy, confocal laser endomicroscopy
(CLE) and infrared thermal imaging.
This paper seeks to provide an overview of the recently

published literature relating to the application of AI/ML methods
to aid diagnostic evaluation of HNC. An outline of the different
anatomical sites for HNC lesions, the type of diagnostic imaging
modality and the AI/ML method used will be presented.

METHODS
Literature search
Electronic database searches using MEDLINE via OVID, EMBASE
and Google Scholar were conducted to retrieve articles published
in the English language over the last eleven years (2009–2020).
This period was chosen due to the evolving application of AI/ML
methods in diagnostic cancer research over the last decade.

The search strategy was developed in collaboration with a
medical information specialist (Health Sciences Library, University
of Sheffield, UK) to ensure keywords were appropriately chosen
for optimal identification of articles. A combination of tailored
search strings containing database-specific medical subject head-
ings (MeSH) and controlled vocabulary was used (see Supplemen-
tary Information), and grey literature screened. Whilst not
intended as a formal systematic review, the recommendations
of the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement and checklist were followed where
possible.

Study selection
The selection criterion was jointly developed by the authorship
team. The principal inclusion criteria were studies applying AI/ML
methods to aid diagnosis of HNC using image analysis, with no
restrictions placed on the types of methods or imaging modalities
used. Due to the anticipated small number of studies in the field, a
broad range of studies such as those using AI/ML to identify or
differentiate between benign/pre-malignant/malignant pathol-
ogy, classify disease subtype, segment cancer regions or predict
disease outcome.
Studies using AI/ML to predict cancer susceptibility, metastasis,

recurrence, survival or treatment efficacy were not included in this
review. Studies focussing solely on the evaluation of oesophageal
or thyroid cancers were excluded, unless they were included as
part of a larger study that included other HNC lesions. Narrative
reviews, letters to editors, commentaries, conference abstracts and
animal studies were also excluded. All articles were independently
screened by two authors (H.M. and M.S.). The first screen involved
the assessment of study title and abstracts and the removal of
duplicate articles. The second screen involved comprehensive full-
text examination against the predefined criterion. In the case of
author discrepancy, two further authors (NMR, SAK) were
consulted to make a final decision on article inclusion.

Data capture and synthesis
Relevant data were extracted, tabulated and processed in
Microsoft Excel® (Microsoft Corporation, Washington, USA). Data
collection included
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Fig. 1 Feature extraction from primary diagnostic imaging modalities to train ML/DL algorithms to aid outcome prediction. Source: The
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● Study details (date of publication, authors, study location
and aims)

● Study methods (anatomical sites for HNC lesions, diagnostic
imaging modality, dataset sizes and application of AI/ML
methods to aid cancer diagnosis/outcome)

● AI/ML algorithm performance (reported accuracy measures)

A narrative synthesis with the relevant graphical display is
presented. Due to the variations in study outcomes and
heterogeneity of data, a meta-analysis for the calculation of
adjusted pool estimates was not performed.

RESULTS
The electronic database search retrieved 771 scientific articles.
After the removal of duplicates and screening of study titles and
abstracts, 698 articles were excluded. Detailed full-text examina-
tion of remaining articles excluded a further 41 studies, resulting
in 32 articles for inclusion (see Supplementary Table). Among the
selected articles, 9 were published between 2009 and 2014, and
the remaining 23 articles published between 2015 and 2020. The
primary outcomes of interest were anatomical sites of the HNC
lesions, diagnostic imaging modalities used for algorithm training/
optimisation and the type of AI/ML method.

Anatomical sites for HNC lesions
Figure 2 illustrates the different anatomical sites for the HNC
lesions in the selected studies, with the largest proportion
(16 studies) involving the oral cavity. Amongst these, nine studies
focussed on the assessment of oral squamous cell carcinoma
(OSCC) and seven studies focussed on the evaluation of, or
differentiation between, oral potentially malignant disorders
(OPMD) and OSCC. The remaining studies focussed on assessment
of nasopharyngeal SCC (n= 3),29–31 laryngeal SCC (n= 2),32,33

oropharyngeal SCC (n= 3),34–36 parotid gland neoplasms (n=
2)37,38 and differentiation between sinonasal SCC from inverted
papilloma (n= 1).39 In four studies,40–42 tissue sections of HNC
from various different sites (tongue, floor of mouth, soft palate,
mandible, gingivae, alveolar ridge, supraglottis, maxillary sinus,
nose, thyroid and parotid gland) were evaluated. One of these
studies did not specify the anatomical sites of the HNC lesions.43

Diagnostic imaging modalities for algorithm training/optimisation
Histology WSI of haematoxylin and eosin (H&E)-stained tissue
sections was used to train AI/ML algorithms in nine studies (Fig. 3).
Radiology image data were used in eight studies and obtained
from dynamic contrast-enhanced MRI (DCE-MRI) (n= 3),31,39,43 CT
(n= 2),36,37 PET/CT (n= 1),29 US (n= 1)38 and plain film intraoral
radiographs (n= 1).44 Other imaging modalities included hyper-
spectral imaging (HSI) (n= 6), endoscopic/clinical imaging (n= 5),
infrared thermal imaging (n= 1)45 and multimodal optical
imaging (n= 1).46 In the remaining two studies, clinicopathologic,
genomic and exfoliative cytological data were used to predict
outcomes based on traditional statistical analysis methods.47,48

Histology whole-slide imaging
In nine studies, histology WSI was used to develop algorithms for
evaluation of OSCC (n= 2),49,50 OPMD (n= 4),51–54 laryngeal SCC
(n= 1),32 oropharyngeal SCC (n= 1)35 and multiple HNC sites
(n= 1).55

These studies used a variety of different ML approaches to
delineate specific histological features of interest with down-
stream statistical analysis to compare differences in spatial
architectural patterns for differentiation between benign and
malignant lesions. ML tools were developed to assess differences
in detection of quantity, geometry, compactness and eccentricity
of sub-epithelial connective tissue cells and to identify textural
differences between normal and oral submucous fibrosis tissue

(with and without dysplasia or atrophy) using approaches
including Brownian motion.51–53

In one study, unsupervised ML methods were used for the
automated identification of tissue compartments in oropharyn-
geal SCC (OPSCC) tissue microarrays.35 Morphological measure-
ments of cell and nuclei were used for the classification of
epithelial and stromal tissue achieving a pixel-level F1 score of
80–81%. A further study showed that stimulated Raman scattering
histology integrated with DL algorithms provided the good
potential for delivering a rapid intraoperative diagnosis of
laryngeal SCC with an accuracy of 90%.32 Findings showed that
this method could identify tissue neoplasia at the simulated
resection margins that appear grossly normal with the naked eye,
highlighting the potential to enhance surgical resection and
reduce disease recurrence.
A recent systematic review highlights emerging evidence to

support the role of ML methods for histology images as a
potentially useful diagnostic aid for the detection of OSCC and
some OPMD, but identifies a lack of evidence for other head and
neck precancerous or cancerous lesions.44 However, the overall
quality of evidence in these studies is low, mainly due to the use
of small unicentric datasets and a high risk of bias that could have
overestimated model accuracy rates.

Radiological imaging
Three studies used radiomic-based feature prediction from MRI to
aid assessment of various HNC lesions,43 including nasopharyn-
geal31 and sinonasal SCC.39 Deng et al.43 proposed an automatic
segmentation method using traditional ML techniques for

18

16
16

5

3 3
2 2

1

14

12

N
um

be
r 

of
 s

tu
di

es

10

8

6

4

2

0

Oral cavity

Larynx

HNC (multiple sites) Nasopharynx Oropharnyx

SinonasalSalivary glands

Fig. 2 HNC anatomical site distribution. A bar chart showing the
proportion of included studies based on head and neck cancer
anatomical subtype.

Histology whole slide images

1 1
2

5

6
8

Radiological imaging

Hyperspectral imaging

Endoscopic/clinical imaging

Clinicopathologic and genomic data

Multimodal optical imaging

Infrared thermal imaging

9

Fig. 3 Type of imaging modality/input data used. A pie chart
showing the proportion of identified studies based on the type of
maging modality/input data used to train AI/ML algorithms.

Artificial Intelligence-based methods in head and neck cancer diagnosis:. . .
H Mahmood et al.

3

36



evaluation of HNC lesions demonstrating superior segmentation
performance (area overlap measure of 0.76+ /−0.08 and accuracy
of 86 ± 8%), which outperformed previous similar studies. Huang
et al.31 evaluated the performance of two region-based segmen-
tation methods for the evaluation of nasopharyngeal SCC.
Ramkumar et al.39 found that MRI-based textural analysis had
the potential to differentiate sinonasal SCC from inverted
papilloma (accuracy 89.1%) with results comparable to manual
assessment by neuroradiologists (P= 0.0004).
Three studies used CT-based textural analysis for the evaluation

of HNC. Ajmi et al.37 developed an approach using spectral dual-
energy CT (DECT) data from multi-energy virtual monochromatic
image datasets to capture the energy-dependent changes in
tissue attenuation for the classification of common benign parotid
gland neoplasms (Warthin tumour and pleomorphic adenoma)
with an accuracy of 92%. Whereas Ranjbar et al.36 used CT-based
texture analysis to classify the HPV status of oropharyngeal SCC
(accuracy 75.7%). In another study, Wu et al.29 developed an
automated algorithm for the identification of nasopharyngeal SCC
on PET/CT examination with 100% accuracy for detection of
hypermetabolic lesions larger than 1 cm in size.
Only one study used textural features derived from an ultrasound

(US) using radio-frequency echo signals and image data to enable
automatic differentiation between malignant and benign parotid
gland lesions (accuracy 91%) based on a supervised classification
system.38 In another study, gravitational search-optimised echo-state
neural networks were developed for early prediction of OSCC from
intraoral X-rays with a detection accuracy of 99.2%.56

Endoscopic/clinical imaging
Four studies used clinical data from endoscopic imaging for the
detection of oral,57 nasopharyngeal,30 oropharyngeal34 and
laryngeal cancers.33 Amongst these, two studies employed DL
methods. The first study developed algorithms for early detection
of nasopharyngeal malignancies (accuracy of 88.7%)30 providing
surgeons with useful biopsy guidance. The second study
demonstrated the superior performance of DL compared to
textural feature-based ML methods (accuracy 88.3%, sensitivity
86.6% and specificity 90%) in recognition of sub-surface micro-
anatomical in vivo cell structures using confocal laser endomicro-
scopy (CLE) in OSCC patients.56

In two studies, traditional ML approaches were used for the
detection of oropharyngeal and laryngeal SCC. Mascharak et al.34

used multispectral narrow-band imaging and white-light endo-
scopy (WLE) to quantify the lymphoepithelial tissues of the
oropharynx. The results showed a promising ability to differentiate
between oropharyngeal SCC and healthy mucosa based on
differences in colour (accuracy 65.9% compared to 52.3% under
WLE, P= 0.0108), presumably a reflection of surface angiogenic
and local inflammatory changes. Whereas Moccia et al.33 used
traditional ML techniques to classify laryngeal tissues (normal vs
malignant) in narrow-band endoscopic images by exploiting
textural information (classification recall 93–98%). These studies
demonstrate a promising step towards an endoscope-based
processing system to support the early-stage diagnosis of HNC
lesions that may go unnoticed by the human eye.
Song et al.58 developed a smartphone-based intraoral dual-

modality imaging platform to classify OPMD and malignant
lesions based on autofluorescence and white-light images using
a convolutional neural network (CNN). The results demonstrated
an accuracy of ~86.9%, although the training sample was relatively
small (66 normal samples and 64 suspicious). Other limitations,
including training the CNN algorithms on tissue from different
anatomical regions (for normal, dysplastic and malignant tissues),
are likely to exhibit different autofluorescence characteristics due
to the varying tissue structural and biochemical compositions.

Other imaging modalities
Six studies used HSI for AI/ML training. Three of those studies
focussed on early detection and diagnosis of OSCC. Liu et al.59

used HSI to measure the reflectance spectra in the tongue to
enable differentiation between normal and cancerous tissue, with
a recognition rate of 96.5%. Roblyer et al.46 used multispectral
wide-field optical imaging—which included white-light reflec-
tance, autofluorescence, narrow-band reflectance and cross-
polarised imaging modalities—to distinguish between oral
cancer/precancer and non-neoplastic mucosa by evaluating image
contrast. Their results showed that autofluorescence imaging at
405-nm excitation wavelength provided the greatest image
contrast, and the ratio of red-to-green fluorescence intensity
computed from these images provided the best classification of
dysplasia/cancer versus non-neoplastic tissue (sensitivity of 100%,
specificity of 85%). Although this approach accurately distin-
guished malignant from benign tissue, the ability to separate
precancerous lesions from cancers was found to be limited. In the
third study, Quang et al.60 also used multimodal optical imaging,
in which autofluorescence imaging was used to identify high-risk
regions within the oral cavity, followed by high-resolution
microendoscopy to confirm or exclude the presence of neoplasia
(defined by the authors as diagnoses of moderate dysplasia or
worse). Data from 92 sites (n= 30) were used to develop
algorithms for the automatic identification of OSCC in vivo.
Diagnostic performance was evaluated prospectively using
images from 114 sites (n= 70) and the confirmed histological
diagnosis based on either a biopsy or an excised surgical
specimen. Amongst the sites that were biopsied (n= 56), the
classification accuracy for detection of benign and cancerous
lesions was 100 and 85%, respectively. Amongst the sites that
corresponded to a surgical specimen (n= 58), multimodal
imaging correctly classified 100% of benign and 61% of
neoplastic sites.
Jeyaraj et al.45 developed a convolutional neural network (CNN)

classifier for OSCC detection using multidimensional HSI (accuracy
of 91.4%). Similarly, Halicek et al.41 also developed a CNN classifier
that was trained using HSI of HNSCC surgical specimens, including
thyroid cancer, and normal head and neck tissue samples. This
model showed the potential to produce near-real-time automatic
tissue labelling for intraoperative cancer detection using HSI.
One study explored the viability of digital infrared thermal

imaging (DITI) for screening and detection of OSCC.61 DITI is a
non-invasive, non-ionising, radiation hazard-free modality that
essentially produces a heat map of an object by capturing its
radiated thermal energy. The authors developed a semi-
automated screening framework for OSCC by extracting signifi-
cantly discriminating textural features from facial thermograms for
classification into normal, precancerous or malignant categories
achieving an accuracy rate of 85.42%.
Another study developed diagnostic algorithms for HNSCC

detection using ML constructed by mass spectra obtained from
non-cancerous (n= 15, 114 mass spectra) and HNSCC (n= 19, 141
mass spectra) specimens by probe electrospray ionisation mass
spectrometry. The clinical validity of this approach was evaluated
to discriminate tumour-specific spectral patterns using intraopera-
tive specimens of HNSCC and normal mucosa with positive and
negative-ion modes showing accuracies in HNSCC diagnosis of
90.48% and 95.35%, respectively.
In another study,48 exfoliative cytology, histopathology and

clinical data of normal subjects (n= 102), oral leukoplakia (OLK)
patients (n= 82) and OSCC patients (n= 93) were collected for
quantitative risk stratification of OLK lesions. This involved expert-
guided data transformation and reconstruction for automatic data
processing to reveal a risk index for OSCC prediction (sensitivity:
median >0.98, specificity: median >0.99).
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Type of AI/ML method
Figure 4 illustrates the proportion of AI methods used in the
selected studies. Traditional ML methods were employed in
22 studies (69%) with common approaches, including Support
Vector Machine, Logistic Regression, Random Forest, Decision
Tree, K-Nearest Neighbour, Bayesian Classifier and Linear Dis-
criminant Analysis. DL-based neural networks were employed in
eight studies (25%), and a combination of traditional ML and DL
methods were used in two studies (6%).
Figure 5 provides a breakdown of the selected studies by

combining the anatomical site of lesion, imaging modality and AI

methods used in the recently published literature. Traditional ML
methods were most frequently used for the detection of precancer-
ous or cancerous lesions of the oral cavity (11 studies), and
specifically in studies using histology WSI (four studies). DL methods
were used for detection of HNSCC lesions of the oral cavity (five
studies), nasopharynx (one study), larynx (one study) and various
other head and neck sites as specified in a study by Halicek et al.41

DISCUSSION
This paper provides an insight into the recent application of AI/ML
for the evaluation of HNC lesions using digital image analysis. It has
shown, primarily, a wide breadth of imaging modalities that have
been used to retrieve input data for algorithm training in the last
decade. Whilst a detailed statistical analysis of the heterogeneous
dataset samples has not been undertaken, most studies have
indicated that ML can achieve high degrees of accuracy and
precision that can exceed the abilities of standard statistical
techniques and human judgement in making predictions about
data. This supports seminal claims made by Meehl in 1954,62 and
more recent meta-analyses,63,64 which propose that correctly used
mechanical (i.e., algorithmic) methods make more efficient
and reliable decisions and predictions about patient outcomes and
treatment. However, despite findings highlighted by our paper, very
few ML tools have actually been deployed into clinical practice.
Whilst a formal risk of bias analysis has not been conducted for the

cited studies, the reported accuracy rates should be interpreted with
caution. This is because most studies have used small unicentric
datasets that may be biased towards a particular patient demo-
graphics. Multi-centric research will inevitably allow a more diverse
dataset with the inclusion of patients from different geographical
locations, populations and demographics that will enhance algorithm
performance by incorporating biological and technical variance.

Both
6%

Deep learning
25%

Traditional
machine learning

69%

Fig. 4 Types of AI methods used. Proportion of studies using
traditional ML methods, modern deep learning methods and a
combination of both types of methods.
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Findings demonstrate the greatest proportion of studies to
have evaluated the detection of OPMD and cancerous lesions
within the oral cavity (Fig. 2) with histology WSI and radiological
imaging being the most frequently used modalities for algorithm
training (Fig. 3). This is consistent with the increasing ubiquity of
digital slide scanners in pathology laboratories and the emergence
of radiomics that has broadened the scope of routine medical
imaging in clinical oncology.
With the continued evolution of AI algorithms and computa-

tional power, a plethora of computational methods has been
developed for fast and reproducible diagnosis and prognosis of
HNC, as exemplified in this paper. The emergence of various high-
resolution imaging modalities (i.e., multimodal optical, microen-
doscopic, hyperspectral and infrared thermal) has provided an
unprecedented opportunity for quantitative feature extraction by
conversion into mineable images at relatively low cost and non-
invasively. Having said this, histology WSI remains the most
superior imaging modality for data leverage. This is because each
image provides multi-gigapixel-level information, thereby result-
ing in hundreds of thousands of sub-images (image patches) per
WSI for analysis and algorithm training.
Early work has been largely based on the development and

application of traditional ML methods (Fig. 4); however, in recent
years, the use of DL for HNSCC diagnosis and prognostication has
evolved. This opens the opportunity to develop state-of-the-art DL
techniques that can be combined with traditional approaches to
improve detection accuracy of head and neck precancerous and
cancerous lesions, as well as predict the course of a precancerous
or cancerous lesion learning from retrospective data. Another
exciting research avenue would be the development of new data
fusion algorithms that combine imaging modalities such as
radiologic, histologic and molecular measurements to aid disease
detection, classification and outcome prediction.
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A B S T R A C T

This systematic review analyses and describes the application and diagnostic accuracy of Artificial Intelligence
(AI) methods used for detection and grading of potentially malignant (pre-cancerous) and cancerous head and
neck lesions using whole slide images (WSI) of human tissue slides. Electronic databases MEDLINE via OVID,
Scopus and Web of Science were searched between October 2009 – April 2020. Tailored search-strings were
developed using database-specific terms. Studies were selected using a strict inclusion criterion following
PRISMA Guidelines. Risk of bias assessment was conducted using a tailored QUADAS-2 tool. Out of 315 records,
11 fulfilled the inclusion criteria. AI-based methods were employed for analysis of specific histological features
for oral epithelial dysplasia (n = 1), oral submucous fibrosis (n = 5), oral squamous cell carcinoma (n = 4) and
oropharyngeal squamous cell carcinoma (n = 1). A combination of heuristics, supervised and unsupervised
learning methods were employed, including more than 10 different classification and segmentation techniques.
Most studies used uni-centric datasets (range 40–270 images) comprising small sub-images within WSI with
accuracy between 79 and 100%. This review provides early evidence to support the potential application of
supervised machine learning methods as a diagnostic aid for some oral potentially malignant and malignant
lesions; however, there is a paucity of evidence using AI for diagnosis of other head and neck pathologies.
Overall, the quality of evidence is low, with most studies showing a high risk of bias which is likely to have
overestimated accuracy rates. This review highlights the need for development of state-of-the-art deep learning
techniques in future head and neck research.

Introduction

Head and neck cancers (HNC) encompass a large group of cancers,
most commonly squamous cell carcinomas (SCC) (90%) of the oral
cavity, nasal cavity, sinuses, salivary glands, pharynx and larynx.
Primary risk factors include tobacco and betel nut use [1], alcohol
consumption [2], radiation [3], immunodeficiency [4] and specific
viruses including Human Papillomavirus (HPV) 16 and 18 (for or-
opharyngeal squamous cell carcinoma, OPSCC) [5] and Epstein-Barr
virus (for nasopharyngeal squamous cell carcinoma, NPSCC) [6,7].
Chronic exposure to these carcinogenic factors and/or infection status

can result in dysplastic changes in the oral, oropharyngeal, nasal or
nasopharyngeal mucosa, which may lead to the development of HNC.
The incidence of HNC continues to rise, making it the sixth leading
group of cancers worldwide [8,9]. In 2018, HNC accounted for more
than 650,000 new cases and 33,000 deaths annually worldwide [10]. In
the UK, the number of new patientshas increased by 22% over the last
decade, with almost 12,000 new diagnoses every year (33 every day)
[11].

Despite advancements in medical and surgical techniques, prognosis
of HNC remains poor with a five-year survival rate between 28 and 67%
[11]. Due to late presentation, even successful treatment of HNC is
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associated with multiple functional problems including masticatory,
speech and swallowing impairments which can significantly reduce the
quality of life [12]. Early diagnosis of potentially malignant head and
neck lesions can prevent cancer development in up to 88% of cases
[11], however most patients are diagnosed at a late stage of disease
(62% diagnosed at stage III or IV) [13]. The conventional diagnosis of
suspicious head and neck lesions involves clinical, radiological and
histopathological assessment. The latter is the gold standard providing
important prognostic information (i.e. grade for dysplasia and cancers)
which can guide clinical treatment decisions [14,15]. However, histo-
logical interpretation can be subjective with differences in interpreta-
tion [16], variation in consistency [17] and may not provide effective
risk stratification or management guidance. This highlights the im-
portance of novel methods and technologies for more consistent, effi-
cient and accurate diagnosis to aid clinical decision-making and to
improve HNC related patient survival.

Over the past decade, Artificial Intelligence (AI) has gained popu-
larity in cancer research where it has been shown to increase diagnostic
accuracy and efficiency by providing quantifiable outputs to predict
cancer behaviour and prognosis [18–20]. Machine learning (ML), a
branch of AI, has been shown to reduce variability in grading of dys-
plasia and cancers by ensuring standardisation and consistency in ad-
dition to informing treatment decisions [21]. ML uses computational
methods to ‘learn’ information and patterns directly from data. This
learning can be supervised (involving training of ML models on a known
data input and output i.e. histology slides with associated diagnostic
annotations) or unsupervised (which involves mining and extraction of
hidden patterns from input data without any pre-defined information).
ML algorithms adaptively improve their performance with an in-
creasing number of ‘learning or training’ samples, enabling the com-
puter to essentially ‘learn from experience’. Classical supervised ML
approaches include semantic segmentation and classification. Segmenta-
tion involves dividing high-resolution digital whole slide images (WSI)
of human tissue into regions of clinical relevance followed by decon-
struction of the WSI into smaller patches (sub-images) by a process
known as ‘patch extraction’. This enables ML algorithms to compute
local and global features which can be explored for significance during
the ‘learning or training’ phase. Classification involves organising and
classifying new observations based on specific attributes (e.g. mor-
phology of nuclei) learnt from previous data input. Both techniques are
commonly used approaches in cancer research, providing useful diag-
nostic and prognostic outputs. Other relevant computational pathology
terms have been described in Table 1.

With the evolution of computational power and image analysis al-
gorithms, there is now an increasing amount of evidence demonstrating
the success of AI-based image analysis from WSI of human tissue slides
[22]. Several studies have demonstrated the potential for AI-based

methods to reliably predict diagnosis, prognosis, mutational status, and
response to treatment in a range of cancers including colorectal, lung,
skin and breast malignancies [23–27]. These studies highlight the po-
tential for AI-based methods in provision of faster, consistent, accurate
and reproducible information regarding cancer diagnosis and prognosis
which can complement the conventional (and largely subjective) light
microscopy analysis by experienced pathologists.

The alarming rise in global HNC incidence and its poor prognosis
makes it ideally suited for application of AI-based methods to aid ob-
jective diagnosis and provide valuable prognostic information. We
performed a systematic review of literature published in the last ten
years, to assess the application and diagnostic accuracy of AI/ML
methods for detection and grading of potentially malignant and can-
cerous head and neck lesions. To the best of the authors’ knowledge,
this is the first study reviewing the use and application of AI-based
methods for head and neck lesions.

Materials and methods

The systematic review was conducted using a predetermined pro-
tocol which followed the recommendations of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
and checklist28. The protocol was registered in the International
Prospective Register of Systematic Review (PROSPERO) database,
CRD42019153023.

Outcome definitions

The primary outcomes were the specific histopathological features
used for diagnosis and grading of the head and neck lesion under study,
in addition to the methods and performance of the proposed AI/ML
techniques. Descriptive analysis was conducted on these outcomes and
the reported diagnostic performance measures (i.e. sensitivity, specifi-
city, accuracy, F1-score) where possible.

Literature search

Electronic databases search of MEDLINE via OVID, Scopus and Web
of Science was conducted to retrieve articles published in the English
language between October 2009 and April 2020. The Cochrane library
was also consulted. This time period was chosen due to the rapid
evolution of AI methods and their application to cancer diagnostics over
the last decade.

The search strategy was jointly developed by the multidisciplinary
authorship team in collaboration with a medical information specialist
(librarian from University of Sheffield, UK). Input from an expert Oral
and Maxillofacial Pathologist (SAK, University of Sheffield, UK) and a

Table 1
Glossary of relevant computational pathology terms.

Term Description

Artificial Intelligence (AI) A branch of computer science concerned with building smart machines that can perform tasks which typically require human intelligence.
Machine Learning (ML) The ability for machines to ‘learn’ information and patterns directly from data without being programmed explicitly.
Supervised Learning Training of ML algorithms from labelled (e.g. annotations) input and output data.
Unsupervised Learning Training of ML algorithms by mining and extracting hidden patterns from input data that has not been labelled.
Deep Learning (DL) DL is a subfield of ML in which algorithms learn from input data through example (without supervision).
Neural Network A highly structured set of algorithms which models the brain’s neural network system (deep learning) designed to recognise patterns from input

data.
Whole slide image (WSI) A high-resolution microscopy image of human tissue section.
F1 Score A statistical analysis of binary classification to measure the accuracy of a test, considering the weighted average of the precision (p) and recall (r) of

the test to compute the overall score.
Precision (p) The number of correct positive results divided by the number of all positive results returned by the classifier
Recall (r) The number of correct positive results divided by the number of all relevant samples (all samples that should have been identified as positive
Classification A ML technique which categorises a set of data (structured or unstructured) into classes based on certain attributes.
Patch extraction Deconstruction of a WSI into smaller pixelated patches known as ‘sub-images’.
Semantic segmentation The process of dividing WSI’s into regions of interest and clustering data into distinct groups based on similarities.
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Professor of Computational Pathology (NMR, University of Warwick,
UK) ensured adequate selection of clinical and technical terms and
controlled vocabulary for optimal identification of articles.

Tailored search strings containing keywords and database-specific
medical subject headings (MeSH) for the two major topics (AI/ML and
potentially malignant or cancerous head and neck disorders/lesions)
were developed. Multiple variations of search terms were combined to
produce different sets of results and the final search strategy was pilot-
tested and modified accordingly (Appendix 1). Grey literature and the
reference lists of selected articles were also screened for relevant studies
that may not have been identified through the database searches. The
electronic databases search was conducted with assistance from an
experienced Librarian at the University of Sheffield, UK. Article cita-
tions were exported to EndNote® reference manager software (Clarivate
Analytics, Philadelphia, USA) and duplicate articles were removed.

Study selection

Two independent reviewers (HM, MS) retrieved the literature, and
screened titles and abstracts. Where insufficient information was
available to determine eligibility, the full report was obtained for fur-
ther assessment. Articles that did not meet the eligibility criteria were
excluded. In the second stage of study selection, the same two reviewers
(HM, MS) independently assessed the full-text reports to obtain a
shortlist of relevant articles. The shortlists were compared, and differ-
ences discussed, obtaining a final selection of studies. In case of any
discrepancies in article selection, a discussion with senior members of
the review team (NMR, SAK) took place to reach a mutual final deci-
sion. For relevant articles with overlapping datasets or results, the most
recent publication was included.

The following criteria were applied for the selection of eligible
studies for this review:

Inclusion criteria:

• Studies using AI for automated detection, grading and classification
of potentially malignant and cancerous head and neck disorders/
lesions.
• Studies exploring diagnostic accuracy of the applied AI/ML method
providing sensitivity, specificity, accuracy, F1-scores as outcome
measures.
• Studies published in indexed journals between October 2009 - April
2020.

Exclusion criteria:

• Studies not using WSI of human tissue slides.
• Studies not using histological image modalities (e.g. radiographic,
photographic, cytology, genomic data etc.).
• Studies using AI/ML to predict disease progression, prognosis, me-
tastasis, recurrence, survival or treatment efficacy (i.e. those not
primarily investigating detection, grading and classification of head
and neck lesions).
• Studies using AI/ML for detection and diagnosis of thyroid or oe-
sophageal cancer.
• Narrative reviews, letters to editors, commentaries and conference
abstracts.
• Studies not available in the English language.

Data extraction

Relevant data from selected articles was extracted, processed and
tabulated into a pre-developed data collection form in Microsoft Excel®
(Microsoft Corporation, Washington, USA) by two reviewers (HM, MS).
The following information was recorded:

• Study details (authors, year and country of publication, aims)

• Study methods (design, dataset size and selection)
• Description of outcome variables (AI/ML methods used, head and
neck lesion and histological parameter under study, training and
validation sample details) and its outcome measures (reported di-
agnostic accuracy, effect measures)
• Other relevant details (funding information, sources of support,
conflict of interest disclosure)

Methodological quality and risk of bias assessment

The methodological quality of individual studies and risk of bias
was assessed using the Quality Assessment of Studies of Diagnostic
Accuracy – Revised QUADAS-2 tool [29]. This tool is designed speci-
fically for use in systematic reviews to evaluate the risk of bias and
applicability of the primary diagnostic accuracy studies. The tool was
adapted with input from an Oral and Maxillofacial Pathologist (SAK)
and a Professor of Computational Pathology (NMR) to ensure relevant
signalling questions were included to reliably and fairly assess the
quality of included studies in relation to: 1) sample selection 2) index
test and 3) reference standard. The tailored QUADAS-2 tool was piloted
on five studies by two independent reviewers (HM, MS) and differences
were resolved with consensus. The overall score for each study was
determined by combining the number of satisfied criteria, with a higher
score representing higher methodological quality. The outcome of the
methodological quality assessment is presented graphically in Table 3
and the influence of bias risk on our results was discussed where ap-
plicable.

Data synthesis

A narrative synthesis of the main study findings is presented. Due to
the large variation in outcome definitions and heterogeneity of re-
trieved data, a meta-analysis for calculation of adjusted pool estimates
was not carried out.

Results

Search results

The electronic database search retrieved a total of 314 articles
(MEDLINE via OVID: 154, Scopus: 81 and Web of Science: 79). In ad-
dition, one article was identified through citation searching. Following
removal of duplicate studies, 288 articles were selected. After the first
screen based on title and abstract, 259 articles did not satisfy the in-
clusion criteria and were therefore excluded. A comprehensive full-text
examination of the remaining [29] articles excluded a further 18; re-
sulting in 11 eligible articles for inclusion in this review paper (Figure
1).

Out of 315 articles, 277 were excluded, with a large proportion not
eligible due to the use of imaging modalities other than histology
(n = 157). Many studies did not address the research question directly
(n = 67) as they focussed on the application of AI algorithms to predict
disease prognosis, recurrence, metastasis or treatment success. Other
reasons for exclusion included studies which did not use AI based
methods (n = 52) or human tissue (n = 1).

Description of studies

Table 2 summarises the main findings for the included studies. In six
studies, AI-based methods were used to detect oral potentially malig-
nant disorders (OPMD) [52,54,55,57,58,62] with five of these focussing
on the detection of oral submucous fibrosis (OSF) specifically. Four
studies aimed to detect oral squamous cell carcinoma (OSCC)
[53,56,59,60] and one study aimed to classify OPSCC [61]. Overall,
seven studies were conducted in India [53,54,55,57,58,59,62], two in
China [60,61], one in USA [52] and one in Germany [56]. Eight studies
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were published between 2009 and 2015 [52,54,55,57,58,60,61,62] and
three were published after 2015 [53,56,59].

Results of the selected studies have been presented based on the
type of head and neck lesion being analysed, which includes OPMD,
OSCC, and OPSCC. Following this, the methods used in the selected
studies will be presented, which will describe the type of AI/ML tech-
nique, dataset sample and the diagnostic performance for each.

Detection of OPMD

Baik et al. [52] quantified nuclear phenotypic changes in oral epi-
thelial dysplasia (OED) lesions using an automated nuclear phenotypic
score (a-NPS). The a-NPS was used to classify suspicious oral lesions
based on the risk of progression to OSCC. The tissue samples used for
algorithm training compared relatively normal oral mucosa (i.e.
amalgam tattoo or melanotic macule, 34%) to OSCC from high risk
intra-oral sites (floor of mouth and lateroventral tongue, 66%). Fol-
lowing training, the algorithm was tested on biopsies diagnosed as
hyperplasia, mild or moderate dysplasia including almost an equal re-
presentation of transformed and untransformed lesions. The study used
a robust experimental design to produce good accuracy (78% sensitivity
and 71% specificity) highlighting the a-NPS as a potentially useful
prognostic adjunct.

Five other studies focussed on detection of OSF [54,55,57,58,62]
using a variety of supervised ML methods to differentiate between
normal tissue, OSF with dysplasia or atrophy and OSF without dysplasia
or atrophy (Table 2). Krishnan et al. [57] classified the number of sub-

epithelial connective tissue (SECT) cells (excluding endothelial cells) in
oral mucosa of normal and OSF tissue. Specific histological features
including SECT cell shape, size and dimensions were evaluated with
focus on round shaped cells (e.g. macrophages, lymphocytes, mast cells
and neutrophils) and spindle shaped cells (fibroblasts, fibrocytes, his-
tiocytes and endothelial). In addition, geometric properties such as the
compactness and eccentricity of these cells were considered for classi-
fication. The results demonstrated a classification accuracy of 88.69%,
although this was based on a small dataset. In another study, Krishnan
et al. [58] used a texture-based method for segmentation of the con-
stituent layers of the epithelium in OSF tissue (based on density and
thickness of individual layers) to distinguish it from normal tissue. The
standard performance measures were not reported in this study
(Table 2).

Detection of OSCC

Das et al. [53] aimed to detect OSCC using a two-stage approach.
This involved segmentation of constituent layers of the oral mucosa
(into epithelial, subepithelial and keratin layers) followed by texture-
based classification of keratin pearls from segmented keratin regions.
The detection accuracy for keratin pearls was reported as 96.88%
however this was based on a small dataset comprising small patches
(sub-images) within WSI.

Rahman et al. [59] used a texture-based classifier to distinguish
between normal and cancerous cells achieving an accuracy of 100%
using small patches within WSI. In another study, Sun et al. [60]

Fig. 1. PRIMSA flowchart (diagram adapted from PRISMA group, 2009. [28]) demonstrating the study selection process.
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developed an automated colour-based feature extraction system to
segment and classify OSCC stained with anti-CD34 antibody. Specific
histological features (vessel area/number/density and nuclei area/
number) were computed to enable quantitative differentiation between
different OSCC stages. Results demonstrated sensitivities of 49.11%,
64.17%, 58.55%, 79.60% for OSCC stages I-IV, respectively.

Detection of OPSCC

Fouad et al. [61] used unsupervised ML methods for automated
identification of specific tissue compartments (cells and nuclei) in
OPSCC tissue microarrays. Measurements of cell and nuclei colour and
morphology were used for classification of epithelial and stromal tissue.
This study compared their results with other standard segmentation
methods and reported relatively low recognition accuracy (pixel-level
F1 score of 80–81%) attributed to the lack of pre-defined manual an-
notations often used in supervised learning methods.

ML methods used in selected studies

ML algorithms can be divided into two groups: classical and modern.
The classical methods require small amounts of training data and
computational resources for pattern recognition in comparison to
modern methods. However, modern methods often outperform classical
methods in addressing most ML problems. Deep learning is a modern
ML approach, in which algorithms mimic the brain’s neural networks to
learn without supervision however it can suffer from the ‘black box’
problem, unlike classical ML methods which are easier to interpret. A
hierarchical classification of ML methods used in the selected studies is
presented in Fig. 2.

In most of the selected studies, classical supervised ML approaches
have been used although three classical unsupervised methods have
also been employed, including Otsu and Watershed (for image seg-
mentation into two or more classes) and Clustering (e.g. K-Mean and
Agglomerative Hierarchical Clustering). The most frequently applied
ML methods were from the classical supervised group, which included
nine different techniques (Fig. 3). The majority of these supervised
methods belong to the handcrafted feature-based classical ML group,
although in four studies [53–55,62] modern ML methods (neural net-
works) were employed. These nine methods differ significantly in their
learning strategies, as outlined below:

• Sugeno Fuzzy [30] involves ML of fuzzy rules from the training da-
taset.
• Decision Tree [31] generates a binary tree based on training features
for classification.
• Random Forest [32] builds a classification model using a set of de-
cision tree-based classifiers.
• K-Nearest Neighbour [33] classifies an input image based on its si-
milarity with other training set images, which enables the most
dominant class of K to be assigned to the input image.
• Bayesian Classifier [34] use the Bayes rules to calculate the prob-
ability of an input sample to be a member of a specific class where
the final label is assigned to the most probabilistic class for the given
input image.
• Linear Discriminant Analysis [35] learns a linear combination of the
features from training images to predict the label of test images.
• Support Vector Model (SVM) [36] learns a set of parameters from the
training image to find a hyperplane which splits the training images
into two classes. Same parameters are then used to classify test
images.
• Gaussian Mixtures Model [37] learns multiple models from the
training images to classify it into multiple classes.
• Neural Network [38] methods learn the representation of the
training images using a gradient descent-based learning method.
These methods require large training datasets compared to otherTa
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aforementioned supervised based learning methods.

A combination of classification and segmentation methods were
used to detect potentially malignant and cancerous head and neck le-
sions (Fig. 3). Overall, five studies used AI based classifiers
[52,54,56,59,62], four studies used segmentation methods
[53,58,60,61] and two studies used a combination of classification and
segmentation methods [55,57]. The most frequently used methods in-
cluded SVM [36], Neural Network [38], Random Forest [32] and
clustering. In the majority of studies, multiple methods were used for
intermediate and final stages of the proposed AI framework, although
there were considerable variations in the overall number of methods
used between studies. For example, in one study Krishnan et al. [54]
compared five different classification approaches to obtain the best
performing method, whereas in another study only two methods were
trialled [58].

Image datasets used in the selected studies

Figure 4 illustrates the dataset sizes (for training and validation) and
spatial dimensions of images (in pixels) for the selected studies.

There is apparent variability in sample sizes, with training samples
ranging from 8 to 216 images and validation samples ranging from 0 to
208 images. The overall dataset size (including both training and test
samples) ranges from 40 to 270 images (mean ~ 139 images).

The spatial dimensions of images ranged from 262,144 to
10,890,000 pixels; this excludes three studies where the image di-
mensions were not described [52,56,62]. Although the image sizes are
measured in pixels, the actual size of the tissue sample (in microns) will
differ due to the varying resolutions of different scanners and the
magnification level chosen for the images. However, in five studies
[54,55,57,58,62] the dataset samples were obtained from the same
centre and in two studies [54,58] the same dataset was used.

Figure 2. Hierarchical classification of the methods used in the selected studies.

Figure 3. A bar chart representing the frequency of different methods used in the selected studies. The colours correspond to the individual studies (as per key on
right).
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Quality appraisal assessment

The quality of selected studies was assessed using a tailored
QUADAS-2 tool. The overall score for each study was determined by
combining the number of satisfied criteria, with a higher score re-
presenting higher quality evidence (Table 3). There was considerable
variability in the methodological quality of included studies. Baik et al.
[52] scored the highest for including the use of a separate validation
and test set for optimal model selection and evaluation [52], whereas
Sun et al. [60] scored the lowest across the 13 areas of assessment,
largely due to the description of their approach without the use of
reasonable dataset and results [60]. In all applicable studies, except for
Lorsakul et al. [56], the methods and intermediate results were clearly
presented. Rahman et al. [59] was the only study to have used a multi-
centric dataset [59].

Discussion

In order to safely and effectively implement automated AI-based
methods in diagnostic and clinical practice, it is vital to validate these
algorithms using a robust and fair experimental setup. This setup
should include a clinically representative dataset and suitable evalua-
tion metrics for validation.

The ideal dataset should represent clinical practice and take into
account the whole tissue section. Tissue samples from multiple centres
will enable greater diversity and biological variance through inclusion
of cases from different geographical locations, patient populations and
demographics. Furthermore, the ground truth should include meticu-
lous annotations from multiple pathologists to minimise subjectivity
and take into account inter-pathologist variation. In this review, seven
studies described more than one expert to be involved in providing
ground truth, however it is not clear whether these refer to experienced
pathologists, trainees, non-clinical researchers or other allied

Figure 4. Graph demonstrating dataset sizes for selected studies. The area of the circle represents the spatial dimensions (in pixels) of the images used within the
dataset whereas horizontal and vertical axis represent the number of images used for training and validation, respectively. Studies in which the image dimension is
not provided have been marked as ‘unknown.’

Table 3
Quality assessment of the selected studies using modified QUADAS-2 tool. The ‘✓’ demonstrates a favourable response to the question and the ‘X’ demonstrates an
unfavourable response to the question. The overall score reflects the quality and risk of bias for each study.

Study Number
Quality Assesment Questions 1 2 3 4 5 6 7 8 9 10 11

Does the dataset include the complete digitised biopsy section or a complete resection? ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Does the dataset consist of more 100 samples? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
If not, does it consist of more than 50 unique samples? ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗
Is the test dataset separate to the training and validation datasets? ✓ ✗ ✗ ✗ ✗ ✗ — ✗ ✗ ✗ ✗
Is the biopsy case selection representative of the condition being assessed in the study? ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
Does the study involve more than one pathologist for annotations? ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
Is the dataset multi-centric? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
Does the study use an independent reference/test set? ✓ ✗ ✗ ✗ ✗ ✗ — ✗ ✗ ✗ ✗
Does the study use an independent validation set for optimal model selection? ✓ ✗ ✗ ✗ ✗ ✗ — ✗ ✗ ✗ ✗
Does the study fairly compare the outcomes of the AI methods to the existing methods? ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗
Are the compared methods state-of-the-art at the time of the publication of the article? ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗
Was the method described in sufficient detail to reproduce the presented results? ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Were the results of the intermediate stages reported? ✓ ✓ ✓ ✓ — ✓ — — — ✓ ✓
Overall Score 9 4 7 2 2 3 4 5 1 5 3
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healthcare professionals. In most cases, the number of experts involved
has also not been clearly stated. Furthermore, multi-centric data and
WSI were used in only two studies (Rahman et al. [59] and Lorsakul
et al. [56] respectively). The majority of studies therefore used uni-
centric datasets mostly comprising smaller sub-images within WSI,
which may have introduced bias and would offer limited applicability.

In supervised ML methods, the ideal dataset should be divided into
three groups for 1) model training 2) optimal model selection and 3)
validation or evaluation. In this review, most of the assessed studies
used the same dataset for both optimal model selection and evaluation.
This indicates a high risk of bias which is likely to have contributed to
the high accuracy rates (ranging from 79 to 100% across all studies).
This bias could have been easily avoided by dividing these datasets into
the three defined sub-sets or adding more unseen cases to the test and
validation sets. The overall size of a dataset mainly depends on the type
of AI method used. Traditional AI methods require small datasets
whereas modern machine/deep learning methods require a larger da-
taset for model training. This concept is also known as the model
generalisability and is concerned with the replication of model accuracy
when applied to a new and diverse cohort of cases.

Most of the reviewed studies used AI methods which were regarded
as the state-of-the-art at the time of publication and described these in
sufficient detail to ensure reproducibility. Various evaluation metrics
were utilised (accuracy, sensitivity, specificity etc.) to report the overall
performance on the test set. However, in one study (Krishnan et al.
[55]) the performance of individual images was measured, which
makes it difficult to gauge the overall average performance of the entire
test set. In four studies [53,54,58,61] a direct comparison of proposed
techniques has been made to existing methods which should give some
credibility to their proposed techniques. However, only three studies
[53,54,61] compared their methods with the best performing methods
at the time of publication.

Most of the selected studies were published before 2015, therefore,
the methods employed were mainly classical ML methods [32,33,36].
This was somewhat surprising as the ML and AI fields have significantly
progressed in the last decade, resulting in the development of numerous
state-of-the-art algorithms for different real-world problems such as
object detection in natural images [39,40,41], human voice recognition
[42] and natural language processing [43]. These methods have mul-
tiple applications including medical image analysis which have been
used to reliably predict diagnosis [18], mutational status [44] and
treatment response [45] in a range of malignancies including breast,
lung and colorectal cancers. However, our review shows that these
latest AI methods have not been applied for detection of head and neck
lesions, despite the ever-increasing global incidence and poor prognosis
of HNC.

Our review highlights that a huge opportunity (and need) for
medical image analysis and computational pathology researchers to
develop novel methods to aid HNC diagnosis using modern AI ap-
proaches such as deep learning. Early work in this field appears to show
potential for reliable detection between normal, potentially pre-
malignant and cancerous lesions from histology WSI using classical
classification methods [46,47]. Customised deep learning techniques
have been used for segmentation of the epithelium [48,49] and cell
segmentation has shown successful morphological analysis in HNC
[50,51].

Conclusion

This review provides early evidence to support application of su-
pervised ML methods as an aid to detection and grading in a limited
number and types of OPMD. Furthermore, there is limited evidence
exploring the use of AI to aid diagnosis of other potentially pre-
malignant and cancerous head and neck lesions. Having said this, most
of the described AI/ML methods have the potential be modified for
application to other clinical sites, including other head and neck

lesions. The overall performance of the AI methods appears comparable
to conventional light microscopic histopathological assessment but with
added advantages of a faster, objective and reproducible evaluation.
However, integration of these methods in the digital pathology work-
flow requires comprehensive evaluation of each method based on large
multi-centric datasets. Future avenues include the use of deep learning
methods for development of digital biomarkers and discovery of novel
predictive features which will aid early detection of HNC and improve
patient stratification. Ultimately, this will aid the development of tar-
geted, patient-specific diagnostics and therapeutics to reduce HNC as-
sociated mortality.
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Appendix 1. . MEDLINE via OVID search strategy

1. artificial intelligence.mp. or exp Artificial Intelligence/
2. machine learning.mp. or Machine Learning/
3. deep learning.mp. or Deep Learning/
4. Image Processing, Computer-Assisted/ or automated de-

tection.mp. or Diagnosis, Computer-Assisted/
5. “Neural Networks (Computer)”/ or neural networks.mp.
6. automated image analysis.mp.
7. digital image analysis.mp.
8. 1 or 2 or 3 or 4 or 5 or 6 or 7
9. Mouth Neoplasms/ or oral epithelial dysplasia.mp. or

Leukoplakia, Oral/
10. oral leukoplakia.mp.
11. oral neoplasm.mp.
12. oral precancer.mp.
13. oral cancer.mp.
14. “head and neck cancer”.mp. or “Head and Neck Neoplasms”/
15. “head and neck malignancy”.mp.
16. 9 or 10 or 11 or 12 or 13 or 14 or 15
17. Diagnosis/ or diagnosis.mp.
18. diagnostic performance.mp.
19. 17 or 18
20. 8 and 16 and 19
21. limit 20 to (english language and humans and last 10 years)
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Summary
Oral epithelial dysplasia is a histologically diagnosed
potentially premalignant disorder of the oral mucosa, which
carries a risk of malignant transformation to squamous cell
carcinoma. The diagnosis and grading of oral epithelial
dysplasia is challenging, with cases often referred to
specialist oral and maxillofacial pathology centres for
second opinion. Even still there is poor inter-examiner and
intra-examiner agreement in a diagnosis. There are a total
of 28 features of oral epithelial dysplasia listed in the 5th
edition of World Health Organization classification of tu-
mours of the head and neck. Each of these features is
poorly defined and subjective in its interpretation. More-
over, how these features contribute to dysplasia grading
and risk stratification is even less well defined. This article
discusses each of the features of oral epithelial dysplasia
with examples and provides an overview of the common
mimics, including the normal histological features of the
oral mucosa which may mimic atypia. This article also
highlights the paucity of evidence defining these features
while offering suggested definitions. Ideally, these defini-
tions will be refined, and the most important features
identified to simplify the diagnosis of oral epithelial
dysplasia. Digital whole slide images of the figures in this
paper can be found at: https://www.pathogenesis.co.uk/r/
demystifying-dysplasia-histology-dataset.

Key words: Oral epithelial dysplasia; oral pre-cancer; malignant trans-
formation; oral cancer; oral squamous cell carcinoma; histological grading.
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INTRODUCTION
Oral epithelial dysplasia (OED) is a disorder of oral mucosa
that is diagnosed by histological identification of architectural
and cytological abnormalities of the oral epithelium.1 Some
of these abnormalities are long established,2,3 whereas others
are described in more recent diagnostic criteria.1,4,5 OED
carries a risk of malignant transformation to oral squamous
cell carcinoma (OSCC), though reported transformation rates
vary.6,7 OED develops as a result of genomic alterations
which are often shared with the later carcinoma if trans-
formation occurs.8 However, most OED do not transform and
many regress without intervention.7 OED is usually initiated
by chemical carcinogens such as tobacco smoke and
3025/Online ISSN 1465-3931 © 2023 The Author(s). Pub
is an open access article under the CC BY-NC-ND license
rg/10.1016/j.pathol.2023.10.002
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alcohol,3 with a smaller number driven by high-risk human
papilloma virus (HPV) infection.9 This is in contrast to cer-
vical dysplasia where HPV is the most common cause,10 or
epidermal dysplasia where ultraviolet light exposure plays a
significant role.11

OED manifests clinically as white, red or mixed lesions,
though other presentations can be seen. Attempts have been
made to correlate clinical appearances of OED to malignant
transformation;12 however, the supportive evidence is weak.7

Diagnosis of OED is complex and there are many mimics,
due to the phenomenon of reactive atypia in many inflam-
matory diseases of the oral cavity. A diagnosis is reached by
identification of a range of architectural and cytological
features, though in some cases an individual feature, if
extensive enough, may qualify a diagnosis. Some cases of
OED are straightforward with obvious cytological abnor-
malities. However, the so called ‘differentiated’ or ‘archi-
tectural dysplasias’ tend to lack frank cytological atypia with
architectural changes being the predominant feature making
these cases more challenging to diagnose.4 In the latest World
Health Organization (WHO) classification of head and neck
tumours1 there are 28 histological features listed, most of
which are poorly defined and with limited evidence of cor-
relation to clinical outcomes.4 OED is graded to assist with
prognostication and treatment planning, with higher graded
lesions believed to have a higher risk of malignancy.6

However, OED grading is an unreliable predictor of cancer
risk, complicated by the multiple proposed grading sys-
tems,1,13 and wide inter- and intra-examiner variability.14–17

Complicating matters further, there is no minimum agreed
number or ‘extent’ of features required for a diagnosis in the
WHO classification, and no consideration to the importance
of individual features is given. The binary grading system
proposed to simplify this by suggesting two categories with a
minimum number of features for grading. However, the
‘extent or abundance’ of a feature, correlation of individual
features and analysis of verrucous and differentiated
dysplasia are still not considered, hence robust evidence to
support its routine use is lacking.13 The complexity of OED
diagnosis often leads to referrals to specialist centres by pa-
thologists inexperienced in examining oral mucosa.18 How-
ever, variabilities and inconsistencies exist even amongst
these specialists.17

The advent of digital pathology, artificial intelligence (AI)
and machine learning (ML) has increased opportunities to
explore tissue sections through automated and quantitative
means, allowing more objective analysis of histological
lished by Elsevier B.V. on behalf of Royal College of Pathologists of
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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features of disease. These methods are increasingly used to
study OED and may help with defining the histological
criteria. At present, there remain many questions with regards
to a diagnosis: how many basal cells constitute basal cell
crowding; how superficial does a high mitotic figure need to
be, and how much variation in nuclear size constitutes
pleomorphism? Without strict definitions, there will continue
Table 1 Proposed definitions for the architectural and cytological features of oral e
edition classification of head and neck tumours1

Features

Architectural features (Fig. 4/5)
1. Irregular stratification (Fig. 4A) Disturba

difficu
2. Loss of basal cell polarity (Fig. 4E) Abnorm

nucleu
3. Drop shaped rete processes (Fig. 5C) The rete
4. Basal cell clustering/nesting (Fig. 5E) This feat

buddi
excee

5. Expanded proliferative compartment Thicken
6. Mitoses high in the epithelium (Fig. 5B) Mitotic fi

the m
with m

7. Mitoses in maturing cells (Fig. 5B) Mitotic fi
eviden

8. Generalised premature keratinisation (Fig. 4B/5C) Increase
is nor

9. Keratin pearls in rete processes (Fig. 4D) The form
It is b

10. Reduced keratinocyte cohesion (Fig. 4E) A spectr
acanth

11. Altered keratin pattern for oral sub-site An incre
subsit

12. Verrucous/papillary architecture (Fig. 5A/5C) Verrucou
with k

Papillary
13. Extension along salivary ducts (Fig. 4F) Features

epithe
14. Sharply defined lesion (Fig. 4C) Abrupt t

dyspla
15. Multiple patterns of dysplasia (Fig. 5F) Multiple

either
16. Multifocal or skip lesions Multiple

norma

Cytological features (Fig. 6)
17. Abnormal variation in nuclear size Variation

epithe
variat

18. Abnormal variation in nuclear shape Variation
epithe

19. Abnormal variation in cell size Variation
there

20. Abnormal variation in cell shape Variation
layer,
polyg

21. Increased mitotic activity Readily
epithe

22. Increased nuclear size Larger n
norma
nuclea

23. Increased nucleus: cytoplasm (N:C) ratio Increase
epithe

24. Atypical mitotic figures Readily
25. Increased number and size of nucleoli A greate

norma
known

26. Single cell keratinisation Individu
appea

27. Nuclear hyperchromasia Keratino
locatio

28. Apoptotic mitoses This rela
appea
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to be subjectivity for the diagnosis and grading of OED. In
Table 1 we have proposed working definitions for individual
OED features listed in the 5th edition WHO classification, as
these features are considered the ‘gold standard’ at present.1

We believe that the list of proposed features in this classifi-
cation is somewhat academic and excessive with poor sci-
entific evidence and prognostic correlation. Though many of
pithelial dysplasia presented in the upcoming World Health Organization 5th

Proposed definition

nce of the stratified layers of the epithelium, with haphazardly organised and
lt to distinguish layers.
al nuclear location (away from the basement membrane) and abnormal
s orientation (no longer parallel with other basal cell nuclei).
process is broader at the base than at the apex.
ure is better defined in skin with crowding of atypical basal cells, followed by
ng into the lamina propria, eventually taking on an irregular outline and
ding the thickness of the epithelium.26,27

ing of the basal cell layer with evidence of mitotic activity.
gures present outside the basal cell layer. No consensus or evidence about
inimum number for dysplasia. There may be value in combining this feature
itoses in maturing cells.
gure present in the prickle cell or granular cell layers. No consensus or
ce about the minimum number for dysplasia.
d prickle cell cytoplasmic eosinophilia due to keratinisation in excess of what
mally expected at that oral cavity site.
ation of an intra-epithelial collection of keratin with no surface connection.
etter to consider any keratin pearl formation as dysplastic.
um of changes; begins with widening intercellular junctions and ends with
olysis.
ase in the amount or change in the type of keratin from the normal at that
e, in the absence of features of trauma.
s: hyperkeratinised surface composed of sharp or blunt epithelial projections
eratin filled invaginations without fibrovascular cores.
: exophytic projections of epithelium with fibrovascular cores.
of dysplasia observed within salivary ducts adjacent the dysplastic surface
lium.
ransition between the normal epithelium and one with the features of
sia.
regions of dysplasia each with a distinct collection of dysplastic features,
adjacent each other or separated by areas of normal epithelium.
epithelial lesions with features of dysplasia clearly separated by areas of
l epithelium.

in the size of keratinocyte nuclei beyond that expected in a normal
lium, there is no current definition of normal oral epithelial nuclear size
ion.
in the shape of keratinocyte nuclei beyond that expected in a normal

lium, usually deviation from a circular to oval or an irregular shaped nucleus.
in the size of keratinocytes beyond that expected in a normal epithelium,

is no current definition of normal oral keratinocyte size variation.
in the shape of keratinocytes beyond that expected within that epithelial
basal cells are usually more cuboidal, prickle cells are usually more
onal and granular cells are usually the most squamoid.
identifiable, numerous, normal mitotic figures throughout the thickness of the
lium.
uclear size beyond what would be normal for that epithelial location, the
l nucleus size has not been defined. It may be best to combine increased
r size with increased nucleus to cytoplasmic ratio.
in the nuclear size leading to reduction of the cytoplasmic area normal for the
lial location. The normal nuclear to cytoplasmic ratio has not been defined.
identifiable mitoses which do not have a normal morphology.
r number of nucleoli or a larger size of at least one nucleolus, beyond what is
l in the oral epithelium. The normal number and size of nucleoli is not
.
al cells with keratinisation giving the cytoplasm a strongly eosinophilic
rance with retraction from neighbouring keratinocytes.
cyte nuclei with greater basophilia than would be normal for the epithelial
n, the normal degree of basophilia has not been defined.
tes to the observation of a mitotic catastrophe, though the histological
rance is not well defined in the literature.
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these features can be seen in OED, future research should
focus on determining which features are most common, the
threshold of these features for diagnosis, and which of these
are most important prognostically. By reducing the number in
this list to only the most important, merging some of the
overlapping cytological and architectural features and
assessing the quantification/weighting of features with
prognostic importance, some clarity may be gained not only
for reporting pathologists but also for the surgical teams
involved in treatment.
The main aim of this paper is to review the currently known

and suggested histological features of OED and offer defini-
tions which may be less opaque to pathologists, students,
trainees and patient-facing clinicians. In this context, the au-
thors also report on the histology of healthy oral tissue and
other histological mimics to highlight the complexity of OED
diagnosis. Digital whole slide images of all the figures pro-
vided in this paper can be found at: https://www.pathogenesis.
co.uk/r/demystifying-dysplasia-histology-dataset. Finally, the
authors comment on the challenges and limitations of the
current diagnostic criteria and existing grading systems for
prediction of malignant transformation risk.

NORMAL ORAL MUCOSA
The first step in OED diagnosis is recognising variations of
the normal oral epithelium (Fig. 1–3). Each subsite has
unique features that may be misinterpreted as OED. Oral
mucosa can be placed into three broad categories: (1)
masticatory mucosa (gingivae, hard palate), (2) lining
mucosa (labial, buccal, ventral tongue, floor of mouth, soft
palate), and (3) specialised mucosa (dorsal tongue, vermillion
lip border)19 (Fig. 1–3). Although oral stratified squamous
epithelium has the same layers as the epidermis (basal cell
layer, prickle cell layer, granular cell layer and keratinised
layer) these vary in extent, and may not always be apparent.19

The specialist mucosa of the tongue is highly variable and
most likely to be confused with OED, though OED accounts
for less than 5% of cases at this site.20 In the anterior tongue
the filiform papillae form sharp projections of parakeratin and
the filiform papillae of the posterior tongue form broader
projections with fibrovascular cores. These structures must
not be mistaken for verrucous or papillary changes associated
with some OED lesions.21
Fig. 1 Examples of the masticatory mucosa of the oral cavity. The masticatory muco
orthokeratinised surface, has a thicker epithelium than lining mucosa and a denser lami
eosinophilic than lining mucosa. If eosinophilia is seen in the lining mucosa, however, i
variation in normal oral mucosa may be mistaken for OED or a potential OED missed. (
comprises orthokeratinised stratified squamous epithelium. There is a visible granular c
Gingivae: this is a form of masticatory mucosa comprising parakeratinised stratified sq
propria is more densely collagenous at this site.
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ARCHITECTURAL FEATURES OF OED
Irregular stratification

Irregular stratification is the first architectural feature listed in
the recent WHO criteria.1 This feature is long established,2,3

though poorly defined. Keratinocytes mature as they
approach the surface of the normal oral epithelium, having a
distinct morphology in each of the layers. The thickness of
each epithelial layer varies by site, but each layer should be
easily identified. Irregular stratification describes disorder of
this maturation, giving the epithelium a haphazard appear-
ance. Cells from each layer become admixed making the
layers harder to distinguish (Fig. 4A).22 There is no definition
for how much disorder is required to count this feature,
though the epithelial thickness can be used to inform OED
grading.1,4 The tastebuds of the posterior tongue may give a
disordered appearance to the epithelium, but this should not
be mistaken for irregular stratification of OED (Fig. 3D,E).
Irregular stratification is best identified at low power to allow
comparison with adjacent normal epithelial layers.

Abnormalities of the basal compartment

Architectural abnormalities of the basal cell layer are
common in OED and account for three of the listed features
mentioned in the WHO criteria.1 In the normal epithelium,
basal keratinocytes are cuboidal with round to oval nucleus
positioned adjacent to the basement membrane (Fig. 2B).23 In
OED, this regular arrangement is lost, and the nuclei of basal
cells become abnormally located away from the basement
membrane (known as loss of basal cell polarity) (Fig. 4E).1–3

This feature gives a disordered appearance to the basal layer
as the basal cell nuclei no longer occupy a consistent location.
Unfortunately, basal cell palisading is variable in the oral
cavity and may not be fully appreciated in crosscut sections,
making interpretation difficult. Additionally, a lichenoid
pattern of inflammation, often present in OED and inflam-
matory oral diseases, causes disruption of the basal cell layer,
further complicating interpretation.1,3,4,24

Bulbous (or tear drop) rete processes are a long-described
feature of OED (Fig. 4B, 5C).1–4 These can be defined as an
increase in the width of the rete processes, leading to a
broader base with a narrow isthmus where the rete process
joins the superficial epithelium. Normal rete processes
sa is exposed to friction during mastication and possesses a parakeratinised or
na propria. As a result of the keratinisation, masticatory mucosa is usually more
t may represent the premature keratinisation of OED. This is one example where
A) Hard palate: the hard palate is a site subjected to high masticatory forces and
ell layer in this epithelium, which is often not present in the oral epithelium. (B)
uamous epithelium with elongated and branching rete ridges. Note the lamina

https://www.pathogenesis.co.uk/r/demystifying-dysplasia-histology-dataset
https://www.pathogenesis.co.uk/r/demystifying-dysplasia-histology-dataset


Fig. 2 Examples of lining mucosa of the oral cavity. The lamina propria of the
lining mucosa is looser and the submucosa often contain abundant minor
salivary gland lobules. The epithelium is non-keratinised, lacks a granular layer
and the keratinocytes may contain significant cytoplasmic glycogen. The
thickness of the epithelium and length of rete processes is variable with the
labial and buccal mucosa being thicker (with longer rete processes) than the
floor of mouth and ventral tongue which generally have a flat interface with the
lamina propria. The buccal mucosa is also more prone to keratinisation because
of trauma than other lining mucosa sites. This must not be mistaken for
abnormal keratinisation in OED. (A) Buccal mucosa: this is a form of lining
mucosa from an area not usually subjected to highly abrasive forces, therefore
the epithelium is non-keratinised with mildly branching rete ridges. (B) Ventral
tongue: similar to the buccal mucosa the ventral tongue is a type of lining
mucosa which is non-keratinised and is approximately 10–14 cells in thickness
with a flat basal compartment lacking rete ridges. The basal keratinocytes can
be seen to have a regular arrangement and orientation towards the basement
membrane. The underlying submucosa is loose and when combined with the
epithelial features makes it a useful site for rapid absorption of various medi-
cations. (C) Soft palate: the soft palate is a form of lining mucosa composed of
non-keratinised stratified squamous epithelium with small rete ridges and looser
submucosa.
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maintain an even width or become narrower with depth.
Even in reactive or inflammatory lesions, rete processes may
increase in length but do not significantly increase in width.
At some oral sites (floor of mouth, ventral tongue) the
normal basal layer is essentially flat with few or small rete
processes (Fig. 2B).25 As such, any degree of bulbosity
should raise concern at these sites. There is no definition of
how broad a rete process must be, or how narrow its
isthmus, to consider it bulbous.
Basal cell clustering and nesting (Fig. 5E) is a recently

proposed feature of OED.1 This feature has been described in
epidermal dysplasia, with three defined stages.26 First,
crowding of atypical basal cells within the epithelium,
followed by slight budding of basal cell nests into the
papillary dermis, and finally rounded nest of atypical basal
cells extending beyond the deepest epidermis without fea-
tures of frank invasion.26,27 The presence of this feature in
skin has shown to be more important for malignant trans-
formation than upward spread of dysplasia throughout the
epidermis.26 This budding may be suggestive of the kerati-
nocytes moving towards an invasive phenotype;4 however, it
has not been reported in OED to date, nor has its association
with malignant transformation been proven in the oral cavity.
Another feature common in epidermal dysplasia is extension
along adnexal structures.26,27 Rarely, OED can be seen
extending downwards into and along salivary ducts28

(Fig. 4F). This must not be confused with invasion; useful
clues include identification of duct lumen and a lack of
stromal reaction around the dysplastic duct.
Tangentially sectioned bulbous rete processes or nested

basal cells may simulate invasion. It may be particularly
difficult in some cases to distinguish between OED and early
invasive OSCC. Further tissue levels are often of benefit as it
may reveal that the apparently invasive islands are crosscut
rete processes which join up with the epithelium, or alter-
natively that true invasion exists. In some cases, it is
impossible to completely rule out invasion and so a report
expressing this uncertainty must be issued. Communication
with the surgical team can allow an appropriately conserva-
tive excision on which interpretation is often easier.

Number, type and location of mitoses

The next three architectural features of OED are related to
mitoses. The first is expansion of the proliferative compart-
ment.1 In the normal epithelium, the basal cells are the only
mitotically active keratinocytes. The basal cell layer is
normally only a few cells thick but is often thicker in OED,
leading to an increased thickness of the epithelium occupied
by mitotically active cells. Some authors have suggested the
use of adjuncts such as Ki-67 staining to highlight the altered
distribution of keratinocytes in the cell cycle.4 Positive Ki-67
staining can be seen in S, G2 and M phases of the cell cycle,
with variable staining in the G1 phase.29 Some evidence
suggests suprabasal expression can be indicative of
dysplasia.30 However, Ki-67 as an adjunct to dysplasia
diagnosis is not widely used due to lack of robust validation.
Specific mitosis markers have been investigated in many
other tumours and may be more valuable in highlighting



Fig. 3 Examples of specialised mucosa of the lip and tongue. The dorsal tongue epithelium is parakeratinised, thicker than at other sites with long rete processes and
forms several types of papillae depending on location. In the anterior tongue, there are filiform papillae with sharp parakeratin projections. The more posterior fungiform
papillae have broader projections with an associated specialised lamina propria rich in blood vessels. The epithelium of the fungiform papillae tends to be thinner, and
taste buds may be present. Where taste buds are present, there is often disruption of the epithelium, giving it a somewhat disordered appearance, which may be mistaken
for dysplasia. The identification of taste buds, however, helps rule out OED. (A) Lip vermillion border, (B) lip skin: the lip is a unique site of the oral cavity as on one
aspect it is lined by non-keratinised lining mucosa and on the other aspect is lined by orthokeratinised skin. The transition between these two types of epithelium is called
the vermillion border. The vermillion border comprises parakeratinised stratified squamous epithelium with branching rete ridges. The underlying lamina propria is thin
and tightly bound to the underlying muscle. (C) Dorsum tongue: showing filiform papillae; the dorsum tongue is subject to masticatory forces and thus comprises
parakeratinised stratified squamous epithelium overlying variably dense fibrous connective tissue. The dorsum tongue is also where structures such as filiform papillae
are identified. Filiform papillae are heavily parakeratinised with a narrow core of connective tissue. (D) Posterior tongue: showing several structures of the normal
posterior tongue; blue ring (subgemmal neurogenous plaque, arrow) serous glands of von Ebner. The subgemmal neurogenous plaque is a neural plexus that serves the
overlying taste buds. The polypoid appearance of the mucosa is due to the presence of fungiform papillae. (E) Posterior tongue: showing the surface epithelium of the
posterior tongue (taste bud, arrow). The adjacent epithelium is disrupted by the taste bud mimicking disordered stratification.
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abnormally distributed mitoses in the oral epithelium.31

Finally, it should be noted that an increased number of
normal mitotic figures limited to the basal layer does not
qualify a diagnosis of OED as this can be seen in reactive and
inflammatory conditions.
Mitoses high in the epithelium (Fig. 5B), which are

referred to as superficial mitotic figures are another feature of
OED.1–3 Any mitotic figure observed superficial to the basal
layer can be considered aberrant and the location may range
56
from immediately adjacent to the basal layer through to the
surface. These superficial mitoses may be in maturing kera-
tinocytes (as discussed below) or immature cells which have
retained a basal cell morphology.
Finally, mitoses in maturing cells can be considered

distinct from mitoses high in the epithelium.1 For example, a
mitosis immediately adjacent to the basal cells, and therefore
not high in the epithelium, but occurring in a mature cell
(such as a prickle cell keratinocyte) is abnormal and can be a



Fig. 4 Examples of the range of architectural abnormalities seen in OED. (A) Irregular stratification: in this example the regular stratification of the epithelium is
disordered, and it is difficult to identify and distinguish the basal cell and prickle cell layers. (B) Premature keratinisation: a group of cells in the prickle cell layer show
bright eosinophilic cytoplasm and retraction from neighbouring keratinocytes, highlighting premature keratinisation. Only cells within the superficial keratin layer should
exhibit such an eosinophilic appearance. (C) Abrupt transition: a sharp and defined change from normal epithelium to dysplastic epithelium is seen. The dysplastic
epithelium shows a change in keratin pattern (from parakeratinised to orthokeratinised), and shows bulbous rete ridge morphology alongside basal cell hyperplasia and
nuclear and cellular pleomorphism in the basal compartment. (D) Keratin pearl formation: intra-epithelial spherical collections of keratin without extension to the
overlying epithelium are identified within the spinous layer of the epithelium. (E) Loss cell epithelial cohesion and basal cell polarity: retraction between adjacent
keratinocytes and subsequent loss of cohesion is identified in the prickle cell layer; in addition the nuclei in the basal compartment are seen in an abnormal location (i.e.,
away from the basement membrane). (F) Extension of OED along a salivary duct: OED is observed in the epithelium in this section with similar features identified in a
salivary gland duct (such as loss of cell cohesion) in the underlying connective tissue. In deeper tissue sections the salivary gland duct would show communication with
the surface epithelium.
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feature of OED.4 This is also the case for mitotic figures
present in the granular layer. However, in order to provide
clarity and reduce the extensive number of OED criteria it
may be valuable to group superficial mitoses and mitoses in
maturing cells as one feature (abnormally located mitotic
figures).
It may be difficult to interpret these features in practice.

Assessment of the location of mitotic figures may be
hampered by cross cutting of the epithelium, giving mitotic
figures a more superficial appearance. There is also no defi-
nition for the minimum number of abnormally located mitotic
figures to qualify an OED diagnosis, therefore this feature
needs to be taken in the context of other features. Finally,
reactive and inflammatory conditions often lead to increased
mitoses and basal cell hyperplasia which may mimic the
expanded proliferative compartment of OED.
Abnormal keratinisation

Abnormal keratinisation is another important feature of OED
that bridges both cytological and architectural changes. A
change in the thickness or type of keratin abnormal for that
oral mucosal site, for example, from parakeratin to ortho-
keratin or non-keratinised to keratinised, may be part of the
spectrum of abnormal keratinisation. This feature is often
present in differentiated dysplasias, where an abrupt ‘clonal’
change between parakeratin and orthokeratin is seen with
57
limited or no atypia.4,32,33 This feature must be interpreted
with caution as it can appear similar in reactive processes
such as traumatic (frictional) keratosis or inflammatory con-
ditions such as lichen planus, although the change in kerati-
nisation pattern in these reactive lesions is usually more
subtle and not abrupt. Anecdotally, excessive keratinisation
(in particular presence of orthokeratinisation) of the floor of
the mouth is worrying, particularly when paired with atrophic
epithelium.5 Another useful clue for OED is generalised
premature keratinisation within the prickle cell layer.1,2,4

Where early keratinisation is present, cells in the prickle
cell or even the basal cell layer will become larger with a
more eosinophilic cytoplasm (Fig. 4B,D, 6C). This feature is
relative, as some sites in the oral cavity are more keratinised
than others, making comparison with the adjacent normal
epithelium crucial. Keratin pearl formation in the rete pro-
cesses (Fig. 4D) is a particularly alarming feature of OED1,3,4

as it closely mimics the appearance of the invasive squamous
cell carcinoma.34 Keratin pearls appear as an eosinophilic
acellular collection of keratin with no connection to the sur-
face. Some authors have suggested that requiring keratin
pearls to be within the rete processes is inappropriate and
keratin pearls anywhere in the epithelium should be consid-
ered concerning.3 Abnormal keratinisation may also take the
form of single cell keratinisation (also referred to as dysker-
atosis) (Fig. 6C), though it is listed as a cytological feature.1 It
is usually easily identified, as dyskeratotic keratinocytes have



Fig. 5 Further examples of the range of architectural abnormalities seen in OED. (A) Verrucous surface architecture: in this example the epithelium is hyperplastic and
orthokeratinised with sharp and pointed epithelial projections. (B) Superficial mitosis (black arrow): a mitotic figure is identified outside of basal compartment. There is
no consensus on the number required to arrive at a diagnosis of dysplasia. (C) Bulbous rete processes and generalised premature keratinisation: this example dem-
onstrates rete processes that are wider at the base than at the apex giving a bulbous and drop-shaped architecture. Cells within the spinous layer also show premature
keratinisation with deeply eosinophilic cytoplasm, a feature that should only be seen in the surface keratin layer. (D) Papillary architecture: the epithelium is folded into
exophytic projections with central fibrovascular connective tissue cores. Basal cell hyperplasia and nuclear and cellular atypia can be seen in the basal compartment of
this example. (E) Basal cell nesting and clustering: the basal compartment of the epithelium shows the pleomorphic cells to be tightly packed together in small nests. This
feature is better described and more frequently seen in skin biopsies. (F) Multiple patterns of dysplasia: within one specimen it is possible to see more than one pattern of
dysplasia. Here we can see more ‘conventional’ dysplastic changes in the epithelium on the left side of the image with basal cell crowding, hyperchromatism and nuclear
and cellular pleomorphism observed. Towards the right side of the image the epithelium shows marked loss of keratinocyte adhesion (acantholysis) alongside basal cell
hyperplasia and nuclear and cellular pleomorphism.

Fig. 6 Cytological abnormalities seen in OED. (A) Severe OED: an abundance of cytological features of OED are seen in this bulbous rete process including abnormal
variation in nuclear size and shape, abnormal variation in cell size and shape, increased mitotic activity, increased nucleus:cytoplasm ratio, atypical mitotic figures,
increased number and size of nucleoli, nuclear hyperchromasia and abnormal mitoses. (B) Abnormal mitosis and apoptosis: an apoptotic cell with pyknotic nucleus,
brightly eosinophilic cytoplasm and retraction from neighbouring keratinocytes (black arrow); an abnormal mitotic figure with asymmetrical chromatin (white arrow).
(C) Single cell keratinisation: there is generalised premature keratinisation seen in this example of OED giving the epithelium a strongly eosinophilic appearance. Black
dotted arrow highlights single cell keratinisation with even more eosinophilic cytoplasm and retraction from adjacent keratinocytes.
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a strongly eosinophilic cytoplasm and a clear halo around the
cell, due to retraction from the neighbouring keratinocytes.
However, if only a single cell is independently keratinising it
58
is difficult to ascribe this to dysplasia; therefore, multiple
instances of single cell keratinisation usually need to be
identified alongside other features of OED.
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Loss of epithelial cell cohesion

A loss of cohesion between keratinocytes (Fig. 4E) appears to
be important in the prediction of malignant transformation
risk and recurrence,22 and has been described in OED for a
long time.1–3,5 This feature initially appears as a widening of
the space between keratinocytes before leading to complete
separation (acantholysis) of epithelial cells (Fig. 4E). Acan-
tholysis is also seen in vesiculobullous diseases (i.e.,
pemphigus vulgaris). However, acantholysis is much more
pronounced in vesiculobullous disease than OED and does
not tend to show atypia. Contact inhibition of epithelial cell
locomotion and proliferation through intercellular adhesion
complexes such as E-cadherin is well described.35 Loss of
cohesion may give OED a proliferative advantage through
loss of contact inhibition.

Verrucous and papillary architecture

A verrucous or papillary surface architecture on its own may
be enough to make a diagnosis of dysplasia as these changes
are highly abnormal for oral mucosa. Often these patterns,
though dysplastic, may have only subtle cytological
atypia.3,5 A verrucous architecture is characterised by a
hyperkeratinised surface composed of sharp or blunt
epithelial projections with keratin-filled invaginations
without fibrovascular cores36,37 (Fig. 5A). A verrucous
pattern may be seen in the keratin alone with the epithelial
rete processes maintaining their normal shape. However, in
some cases the epithelial morphology may also be affected,
leading to an undulated appearance with broad and some-
what ‘pushing’ rete processes. These changes may be seen in
proliferative verrucous leukoplakia (PVL) which will be
discussed later.1,38 A papillary pattern comprises projections
of the epithelium supported by fibrovascular connective
tissue cores (Fig. 5D). Though both of these patterns are
features of dysplasia they may be present in other benign
diseases of the oral cavity.21 Attention must also be paid to
the site of the specimen as the filiform papillae of the dorsal
tongue may superficially resemble a verrucous surface ar-
chitecture, and the fungiform papillae show a papillary
pattern (Fig. 3C,D,E).21 Similarly, it is important to be
mindful of squamous papilloma like lesions in unusual lo-
cations (i.e., gingivae) and clinicopathological correlation is
needed to rule out a verrucous lesion.

Abrupt transition, multifocal OED and multiple
patterns of OED

The way that the architectural and cytological features
manifest can be suggestive of OED. An abrupt transition
from normal epithelium to abnormal is very telling of a clonal
population and a feature highly suggestive of OED
(Fig. 4C).5,38 It is a recently added feature to the WHO
classification.1 Reactive atypia tends to taper off with
increasing distance from the insult, rather than having an
abrupt border.
Another feature recently included in the WHO classifica-

tion is the presence of several different patterns of OED in
one lesion (Fig. 5F).1,4 This is suggestive of several
competing clonal keratinocyte populations. Histologically,
this is seen as regions of dysplasia each with a distinct
collection of atypical features. For example, one area may be
basaloid with obvious cytological atypia, whereas another
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area may show abnormal keratinisation and bulbous rete
processes with limited cytological atypia. These regions may
be adjacent to each other or separated by areas of normal
epithelium. Another recently proposed feature is the presence
of multiple epithelial lesions with a consistent pattern of OED
separated by regions of normal oral epithelium.1,4,5
CYTOLOGICAL FEATURES OF OED
Most OED will display cytological changes, alongside
architectural changes (Table 1). In normal oral epithelium,
there is little variation in the appearance of the keratinocytes
within each epithelial layer as each basal cell will be a similar
size, shape, and colour to another basal cell. A well reported
cytological feature of OED is pleomorphism.1,2 This appears
as variation in the shape and size of the keratinocytes and
their nuclei1 (Fig. 6A). It is useful to compare the suspected
dysplastic keratinocytes to normal keratinocytes within the
same epithelial layer when assessing pleomorphism. This
accounts for variation in cell morphology over the maturing
layers of the epithelium, where basal cells tend to be
cuboidal, prickle cells polygonal, and granular cells flat-
tened.23 There is no defined degree of acceptable variation in
normal epithelium, making assessment of pleomorphism
highly subjective.
Nuclear variation accounts for several of the cytological

features of OED and has many forms1 (Table 1, Fig. 6). The
nucleus may be hyperchromatic, appearing darker, due to
increased chromatin content. Variation in nuclear haema-
toxylin staining within and between laboratories makes
hyperchromatism difficult to interpret. Amongst all OED
features, hyperchromasia has the lowest interobserver
agreement,22 but comparison with adjacent normal epithe-
lium is useful to account for staining variation. There may be
an increase in the nucleus size, either as an absolute increase
or an increase compared to the whole cell size (increased N:C
ratio).1 However, both animal and human pathological
studies have questioned the use of nuclear to cytoplasmic
ratio as a feature of dysplasia.39,40 Usually, an increased N:C
ratio is due to an increase in nuclear size, so having both as
separate criteria is likely superfluous.3 Pleomorphism of
nuclei is also an important feature, but similar to cellular
pleomorphism is poorly defined. Both hyperchromatism and
nuclear pleomorphism are features which have recently been
correlated with risk of malignant transformation and recur-
rence of OED.22 An increase in the number and size of
nucleoli can also be seen in OED, though these changes may
also manifest in reactive epithelium and are again poorly
defined.
Atypical mitoses, regardless of location, are a feature of

OED.1,4,5 There are many forms of abnormal mitoses
including: aneuploid mitoses (tripolar mitoses), asymmetrical
mitosis, chromosome bridging and chromosome lagging41

(Fig. 6; Supplementary Fig. 1, Appendix A). An abnormal
mitosis suggests a cell has abnormal chromosome numbers, a
failure of chromosome segregation or a general failure of
DNA replication. Abnormal mitosis likely leads to further
acquisition of oncogenic mutations.42 Unfortunately there is
no evidence to suggest how many abnormal mitoses are
required before being ascribed as a diagnostic feature. A
recent addition to the diagnostic criteria is the presence of
apoptotic mitoses.1,4 These are also known as mitotic
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catastrophes, are generally recognised within the spectrum of
abnormal mitoses, and are thought to be indicative of chro-
mosomal instability.4 To standardise the diagnosis and keep
the list of OED features concise and clear, it would be best for
this to be considered under the broader category of abnormal
mitotic figures.

HPV-RELATED ORAL DYSPLASIA
It is estimated that 27% of OED harbour HPV infection with
the majority having high-risk HPV (HPV16, 18).9 These le-
sions have distinct histological features when compared with
OED caused by traditional risk factors such as tobacco and
alcohol consumption. The discussion so far has been focused
on OED caused by traditional risk factors and the features
discussed here (though not all are specific to HPV-related
OED) are clues that further testing is warranted. HPV-
related OEDs often have extensive architectural and cyto-
logical changes.43 The keratinocytes are basaloid due to a
high nuclear to cytoplasmic ratio and the epithelium is often
parakeratinised, with the keratin being densely eosinophilic
(Supplementary Fig. 2, Appendix A).1,4,43 Karyorrhectic
keratinocytes known as mitosoid bodies and apoptotic kera-
tinocytes are characteristic of HPV-related OED.1,4,43 A
mitosoid body has condensed nuclear chromatin and a peri-
cellular halo, giving the appearance of a mitotic figure.43

Apoptotic keratinocytes will have a strongly eosinophilic
cytoplasm with a pyknotic nucleus43 (Supplementary Fig. 2,
Appendix A). Though apoptotic cells may be seen in OED,
the above-mentioned features are not common in conven-
tional OED and can be helpful in distinguishing HPV-related
OED from other causes.43 In summary, if OED is generally
basophilic with bright parakeratin, mitosoid bodies and
apoptosis, HPV should be suspected as the causative factor
rather than the traditional risk factors.
Ultimately, as HPV infection in the oral cavity is uncom-

mon, it requires confirmation by a combination of p16
immunohistochemistry which is positive in 62% of HPV-
infected cases,9 and the detection of high-risk HPV by poly-
merase chain reaction (PCR) or in situ hybridisation
(Supplementary Fig. 2D, Appendix A).1 Almost 20% of HPV-
negative OED can show p16 staining and up to 40% of HPV-
positive OED are p16 negative, making p16 staining alone an
unreliable surrogate for HPV infection in OED.9 At present
there is limited research into the outcomes of these lesions; as
such, they should be graded and managed the same as con-
ventional OED lesions.1 The malignant transformation rate of
these lesions has been reported to be approximately 15%.43

DIFFERENTIATED DYSPLASIA
Differentiated dysplasias present an area of diagnostic diffi-
culty, as they tend to lack cytological atypia.4,33 Despite this
lack of cytological change, some suggest they account for a
significant portion of OED which transforms to OSCC.33

They have also been referred to as architectural dysplasias4

and are often considered a subtype of dysplasia rather than
a distinct entity.4,33 Although there is little consensus on
what features constitute a differentiated dysplasia, they can
include hyperkeratosis in the presence of an atrophic
epithelium, abrupt change when compared with the adjacent
mucosa, multiple skip lesions,32 premature keratinisation and
loss of epithelial cell cohesion.33,44 The requirement for
cytological atypia to be present is debated and most classify
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lesions with similar features but a verrucous architecture as
distinct.4,32–44 Practically, the presence of an unusual pattern
of keratin for the oral subsite being examined and an abrupt
transition are incredibly useful clues for the presence of
differentiated OED, even in the absence of any cytological
atypia (Supplementary Fig. 3, Appendix A). However,
clinicopathological correlation is important as similar
changes are seen in the early stages of PVL.1,32 Grading of
these lesions is difficult as the thickness of the epithelium
affected by atypia is often limited, with very few lesions
having full thickness dysplasia despite undergoing malignant
transformation.33 As such, a good ‘rule of thumb’ is to assign
the lesion one grade higher than it would be given based on
traditional ‘thirds’ assessment, and clinical follow-up should
also be recommended.

PROLIFERATIVE VERRUCOUS
LEUKOPLAKIA
PVLs can only be diagnosed by careful clinicopathological
correlation.45 They are distinct entities from OED with a high
risk of transformation to OSCC.1 PVL is characterised clin-
ically by flat or verrucous leucoplakias, a long clinical his-
tory, multiple lesions and a predilection for the gingivae
(Supplementary Fig. 4A,B, Appendix A).1,45,46 The histo-
logical features are variable and broadly separated into the
categories ‘hyperkeratotic lesions’ and ‘lesions with epithe-
lial proliferation’ (Supplementary Fig. 4C,D, Appendix
A).1,45 Although these two categories are often considered
as early and late phases of the disease,1 there is no evidence to
suggest one category progresses to the other.45 The hyper-
keratotic lesions show hyperkeratosis possibly with a corru-
gated, or verrucous surface.1,45 These changes may be
accompanied by a verrucous morphology in the epithe-
lium.1,45 Alternatively, the verrucous pattern might be absent
and there is hyperkeratosis with epithelial atrophy and an
abrupt transition45 in a similar pattern to differentiated
dysplasia.4,32 The ‘proliferative epithelium’ category often
shows less significant keratinisation, but has bulky epithelial
hyperplasia, often with both exophytic and endophytic
expansion.1,45 The rete processes are usually broad and may
coalesce, and a lichenoid pattern of inflammation is also
commonly encountered.45 In both categories cytological
atypia is often limited.45,46 Distinguishing the proliferative
epithelium category from verrucous OSCC is challenging.
Extension of the lesion deeper than the adjacent epithelium is
suggestive of transformation to OSCC,1 but this may be
difficult to assess or may not be always present.45 Due to the
histological similarities between OED and PVL, communi-
cation between the pathologist and the clinician managing the
patient is essential where PVL is suspected by either party.

MIMICS OF OED
The features of OED can overlap with several other entities,
primarily inflammatory diseases where the epithelium dis-
plays so called ‘reactive atypia’.38 In these instances, there is
limited or no risk of malignant transformation, and the atypia
will resolve with removal of the cause. A diagnosis of OED
given to these mimics will lead to over-treatment, whereas
failure to diagnose true OED in a lesion mimicking a reactive
process will lead to under-treatment. It is often difficult in
these contexts to distinguish mild OED from these reactive
changes.
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Reactive atypia is commonly seen in oral candida in-
fections;5 however, there are usually features of candida
infection as well, and fungal hyphae visible with special
stains such as periodic acid–Schiff (Supplementary Fig. 5,
Appendix A). Testing on multiple tissue levels may be useful.
However, it is important to be mindful of the fact that candida
can get trapped on the surface of dysplastic lesions and the
atypia present may not always be reactive. There is also a
correlation between a diagnosis of OED and the presence of
candida,47,48 though this complex relationship and how one
impacts the other is not fully understood. In difficult cases
where the atypia is deemed too prominent to confidently call
it reactive, clinicopathological correlation becomes vital. A
useful tool is to defer the decision to a second later biopsy
soon after treatment with antifungal therapy.4,5,38 Such
treatment will resolve or reduce fungal-related reactive
atypia, whereas changes related to OED will persist.
Oral lichen planus (OLP) and oral lichenoid tissue re-

actions (LTR) are inflammatory diseases of the oral cavity.
Both can display features which overlap with OED clinically
and histologically49 (Supplementary Fig. 6, Appendix A).
OLP and LTR are characterised by a lichenoid pattern of
inflammation. Unfortunately, OED and OSCC often have
lichenoid inflammation and other features of OLP/LTR in up
to 29% of cases, particularly in mild and moderate OED le-
sions.1,4,24,50 Lichenoid dysplasia (OED with features of
OLP) has been suggested as a distinct entity,51 although this
is not widely accepted, with recent molecular studies
demonstrating significant transcriptional overlap between
OLP and lichenoid dysplasia.52 Ultimately, despite the
presence of a lichenoid infiltrate or other features of OLP or
LTR, if any features of dysplasia are seen, a diagnosis of
OED should be given, as OLP/LTR should not show any
‘true’ features of dysplasia.50

Ulcers are common in the oral cavity and are frequently
biopsied to rule out the possibility of OED or OSCC.
Supplementary Fig. 7 (Appendix A) shows an example of
reactive atypia in an ulcer, while Supplementary Fig. 8
(Appendix A) shows true OED with ulceration. Although
there are limited studies which aim to distinguish reactive
atypia from true atypia,38 a useful clue is resolution of atypia
with distance from the area of ulceration. This is a feature
usually seen in reactive atypia; conversely, OED atypia will
persist beyond the epithelium immediately adjacent to the
ulcer.
Other mimics of OED include hyperkeratosis and epithelial

hyperplasia (HK+EH) (Supplementary Fig. 9, Appendix A)
which may have overlapping architectural features with OED
such as altered keratinisation,5,53 oral hairy leukoplakia
(OHL) (Supplementary Fig. 10, Appendix A) which is driven
by Epstein–Barr virus (EBV) infection54 and multifocal
epithelial hyperplasia which is cause by HPV13 and
HPV321,55 (Supplementary Fig. 11, Appendix A).
HK+EH may be particularly difficult to distinguish from

mild OED. Both usually present clinically as a leukoplakia
and they may show similar histological architectural
changes.5 HK+EH should show hyperkeratosis associated
with acanthosis, basal cell hyperplasia, and intracellular
oedema53 with an absence of disordered stratification and
basal cell pleomorphism, though some basal cell hyper-
chromatism is acceptable.38 It may be challenging to distin-
guish the basal cell hyperplasia seen in HK+EH from mild
cytological atypia. The context of the lesion and other
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features suggestive of trauma are helpful in this scenario. In
HK+EH the underlying lamina propria is often more densely
collagenous in reaction to the traumatic causes of these le-
sions, whereas this may be absent in OED. Another consid-
eration is the site of lesion, for example buccal mucosa and
lateral tongue are often exposed to trauma, making them
frequent sites for HK+EH. However, if thick keratin is seen,
particularly in the absence of other traumatic features
(epithelial acanthosis and oedema, denser extracellular matrix
in the lamina propria) in a site not prone to trauma such as the
floor of mouth or ventral tongue, dysplasia must be highly
suspected, even where limited cytological atypia is seen.
GRADING ORAL EPITHELIAL DYSPLASIA
Grading of OED was first introduced in 196956 with the
purpose of stratifying lesions based on risk of malignant
transformation. Ironically, the value of histological grading in
prediction of cancer risk has been somewhat limited due to
subjectivity and lack of reproducibility.57,58 Numerous
grading classifications have been proposed, amongst which
the WHO criteria remains the most widely accepted system.59

This system originally had five tiers but now has three (mild,
moderate and severe dysplasia). This simplification aimed to
reduce bias and simplify management by grouping ‘severe
dysplasia’ and ‘carcinoma in situ’ into the ‘severe’ category,
and hyperplasia and mild OED into the ‘mild’ category.59

This method is in part based on analysis of epithelial
‘thirds’ i.e., ascribing a grade based on the collective ap-
pearances of a wide range of features and their location (or
height) within the epithelium. In mild dysplasia, the
dysplastic changes are confined to the basal and parabasal
layers, whereas in moderate dysplasia, the changes extend to
the middle third of the epithelium, and in severe dysplasia,
the changes extend through the entire thickness (or more than
half) of the epithelium. However, this method is unreliable,
and arguably over-simplistic. Furthermore, the presence of a
single feature in abundance, irrespective of its location in the
epithelium, may be sufficient to upgrade a lesion. The WHO
grading system historically has also not been fit for grading
verrucous lesions or differentiated dysplasia where marked
architectural changes may arise without significant cytolog-
ical atypia. This ambiguity and subjectivity results in wide
inter- and intra-observer variability,14–17 and consequently
may lead to inaccurate diagnosis and inadequate manage-
ment. However, this problem is not specific to oral dysplasia,
and extends to other parts of the body including cervical
intraepithelial neoplasia,60 vulvar intraepithelial neoplasia61

and Barrett’s oesophagus.62

An alternative binary grading system was proposed in
2006 with the aim of increasing diagnostic reproducibility.13

This classification graded lesions based on the total number
of histological features (‘low’ risk: <four architectural fea-
tures, < five cytological features; ‘high’ risk: � four archi-
tectural features, � five cytological features). A recent
systematic review and meta-analysis, however, comparing
this system with the WHO classification showed inconclusive
results with regards to its prognostic value.63 This system
does not consider verrucous lesions or the extent of features
present. As such, the binary system is not deemed robust
enough for routine clinical use at present.
Historically, no prognostic weight had been ascribed to one

feature over another. However, a recent study has indicated
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that certain features may be associated with an increased risk
of progression to OSCC, including bulbous rete processes,
hyperchromatism, loss of epithelial cohesion, loss of strati-
fication, suprabasal mitoses and nuclear pleomorphism.22

These six features were also statistically associated with
OED recurrence, in addition to dyskeratosis. In this study,
two prognostic scoring models were developed and tested.
The first, a ‘six-point’ model allocated one point for the
presence of each of the six OED features which were asso-
ciated with a greater incidence of transformation and recur-
rence. Using this model, a score of ‘4–6 points’ produced the
highest risk of malignant transformation and recurrence at
five years, estimated at 38% and 49%, respectively. This
model demonstrated greater prognostic performance than that
achieved by the WHO (2017) grading system for both
transformation and recurrence, but only a marginal
improvement over binary grading.22 The second ‘two-point’
model allocated a point for each of the two features that had
the highest inter-rater agreement and were also associated
with transformation and recurrence (loss of epithelial cohe-
sion and bulbous/drop shaped rete pegs). The presence of
both features was associated with an increased risk of ma-
lignant transformation at 5 years, in comparison to each
single feature in isolation.22 This study also evaluated the
individual prognostic relationships of less conventional but
commonly observed features of OED, including verrucous
architecture, lymphocytic band (lichenoid-like inflammatory
infiltrate) and abrupt orthokeratosis. Whilst the inter-observer
agreement for these features was better (Cohen’s kappa
0.60–0.73) than other conventional features, interestingly,
none of these were associated with malignant transformation
or OED recurrence.
Several suggestions have been proposed to overcome the

reliance on grading, such as the use of molecular markers,64–67

morphological descriptors68 and computer-aided analyses.69

The latter has seen a surge of interest, particularly with the
increasing ubiquity of digital slide scanners in pathology lab-
oratories. Various image analysis platforms have been devel-
oped which allow for automated cell nuclei detection,
extensive feature evaluation and quantitative approaches for
more objective histological and morphometrical feature anal-
ysis. Machine learning, a branch of AI, has been shown to
reduce variability in classification of precancerous and
cancerous lesions by ensuring standardisation and providing
quantifiable outputs for risk stratification.70,71 However,
further research is needed to correlate histological features
with OED progression to malignancy and to discover novel
digital markers important in prognostication. This may support
the development of new and improved prognostic models to
assist with clinical decision making. However, no molecular,
digital or histological features (singly or combined) have been
well correlated with malignant transformation in prospective
studies. Due to this lack of evidence, though the features of
dysplasia have been extensively described, listed and here
defined, OED is still poorly understood.
CONCLUSION
The diagnosis of OED is complicated by the great variety of
features, most of which are poorly described and have
limited support by good quality evidence. Therefore, it is
not surprising that OED diagnosis and grading can show
such significant inter- and intra-observer variations. The
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many features of OED must be interpreted in the context of
other factors including the extent of any one feature, the
presence of inflammatory disease which may mask or
enhance the changes seen, and the clinical scenario in which
the lesions have arisen. Strict definitions do not exist for
most of the features listed in the WHO criteria, but it is
hoped the descriptions provided in this paper will help
improve the understanding of these features. Digital whole
slide images of all figures have been provided to aid the
reader in their understanding of the range of features which
may be seen in OED (https://www.pathogenesis.co.uk/r/
demystifying-dysplasia-histology-dataset). Efforts should
be made to create clear definitions for all features to aid
diagnosis, training and future research. There is great po-
tential for automation and objective quantitative assessment
of histological features using digital and computational
methods. When properly assessed in real-world clinical
settings, such approaches may assist decision making and
improve patient management by yielding more reliable
prognostic information to aid risk stratification. Future di-
rections should be to work closely with the WHO and
stakeholders to simplify the current criteria, unify under-
standing, and study the possibility of quantitatively using
OED features as prognostic indicators.
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The first part of this chapter has been reproduced from a peer-reviewed publication for which the 

candidate is first and primary contributing author. This article conducts a comprehensive analysis of 

conventional architectural and cytological histological features in OED to evaluate individual feature 

prevalence, observer agreement and statistical associations with malignant transformation and OED 

recurrence. Histological feature-specific prognostic models are developed and tested for OED 

outcome prediction. 

The second part of this chapter takes the form of a publication-ready manuscript for which the 

candidate is first author. This study conducts validity testing of the proposed histological feature-

specific prognostic models that are presented in the preceding study.  

The candidate’s contributions to these studies were: 

i. obtaining ethical approval

ii. slide retrieval and sample preparation

iii. clinical data collection and histological re-grading

iv. working with pathologists to organise feature scoring

v. conducting histological feature scoring (for validity testing study)

vi. statistical analysis, model development and testing

vii. writing up the manuscripts

The study was conceptualised with guidance from supervisors. 

Professor Syed Ali Khurram, Dr Nadim Islam and Dr Omar Kujan contributed to histological feature 

analysis and scoring.  

Statistical support was provided by Mike Bradburn, senior statistician at the Clinical Trials Research 

Unit, University of Sheffield.  
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Prediction of malignant transformation and recurrence of oral
epithelial dysplasia using architectural and cytological feature
specific prognostic models
Hanya Mahmood 1, Mike Bradburn2, Nasir Rajpoot 3, Nadim Mohammed Islam4, Omar Kujan 5 and Syed Ali Khurram6✉

© Crown 2022

Oral epithelial dysplasia (OED) is a precursor state usually preceding oral squamous cell carcinoma (OSCC). Histological grading is
the current gold standard for OED prognostication but is subjective and variable with unreliable outcome prediction. We explore if
individual OED histological features can be used to develop and evaluate prognostic models for malignant transformation and
recurrence prediction. Digitised tissue slides for a cohort of 109 OED cases were reviewed by three expert pathologists, where the
prevalence and agreement of architectural and cytological histological features was assessed and association with clinical
outcomes analysed using Cox proportional hazards regression and Kaplan–Meier curves. Within the cohort, the most prevalent
features were basal cell hyperplasia (72%) and irregular surface keratin (60%), and least common were verrucous surface (26%), loss
of epithelial cohesion (30%), lymphocytic band and dyskeratosis (34%). Several features were significant for transformation (p <
0.036) and recurrence (p < 0.015) including bulbous rete pegs, hyperchromatism, loss of epithelial cohesion, loss of stratification,
suprabasal mitoses and nuclear pleomorphism. This led us to propose two prognostic scoring systems including a ‘6-point model’
using the six features showing a greater statistical association with transformation and recurrence (bulbous rete pegs,
hyperchromatism, loss of epithelial cohesion, loss of stratification, suprabasal mitoses, nuclear pleomorphism) and a ‘two-point
model’ using the two features with highest inter-pathologist agreement (loss of epithelial cohesion and bulbous rete pegs). Both
the ‘six point’ and ‘two point’ models showed good predictive ability (AUROC ≥ 0.774 for transformation and 0.726 for recurrence)
with further improvement when age, gender and histological grade were added. These results demonstrate a correlation between
individual OED histological features and prognosis for the first time. The proposed models have the potential to simplify OED
grading and aid patient management. Validation on larger multicentre cohorts with prospective analysis is needed to establish their
usefulness in clinical practice.

Modern Pathology; https://doi.org/10.1038/s41379-022-01067-x

INTRODUCTION
Oral epithelial dysplasia (OED) is a chronic, progressive precursor
epithelial disorder of the oral mucosa, characterised by abnormal
maturation and stratification of the surface epithelium1. It is
associated with a statistically increased risk of progression to oral
squamous cell carcinoma (OSCC) which is among the topmost
common cancers worldwide and has an increasing incidence and
worsening prognosis2,3. Clinically, OED most commonly presents as a
white patch/plaque (leukoplakia) with up to 50% of biopsied lesions
showing dysplasia4 and malignant transformation rate of 9.5% [99%
CI 5.9–14.00%] or 1.56% per year5. OED can also be seen in other oral
potentially malignant disorders (OPMD), a group of lesions and
conditions characterised by an increased risk of malignant transfor-
mation, including oral submucous fibrosis, actinic keratosis, erythro-
plakia and erythroleukoplakia6,7. The presence of OED in these
disorders increases their risk of malignant transformation8.

At present, there are no biological or molecular markers proven
to be prognostically significant (or in routine diagnostic use) for
OED4. Histological grading remains the gold standard for
predicting malignancy risk and is used to inform patient treatment
and prognosis9. Over the years, OED grading systems have
substantially evolved, and the current World Health Organisation
(WHO) classification (2017) grades dysplasia based on the
presence of sixteen different histological features10. The ‘severity’
of these features, both in terms of frequency and location in the
epithelium, are used to classify lesions into ‘low’, ‘moderate’ and
‘high’ grades, representing an increasing risk for malignant
transformation9. A recent meta-analysis showed moderate/severe
OED to be associated with a greater risk of malignant
transformation compared to mild OED with an odds ratio of 2.4
(99% CI 1.5–3.8)5. However, it remains unclear which lesions will
progress, and which will recur, as the mechanisms for OED
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progression are poorly understood9. Furthermore, the histological
features can individually be considered relatively non-specific, and
some (or all) of the features may be seen in different grades of
dysplasia, of which some lesions will transform, and others will not
(irrespective of grade).
In addition to these issues, there are a number of other

problems related to the current grading system11. Firstly, there is
substantial subjectivity in histological interpretation between
pathologists, which can result in wide inter- and intra-observer
variability, with potential for an incorrect grade being assigned12.
This variability can arise since individual features are ill-defined,
and this is further complicated by division of the epithelium into
‘thirds’ which can be challenging. Secondly, grading does not
reliably predict prognosis which means that lower grade lesions
may progress to OSCC whereas higher grade lesions may
remain static4,10. Thirdly, several of the established histologic
features can also be seen in reactive lesions, such as the margins
of ulcers or candida infections. It is accepted that a complex
interaction exists between a combination of features including
histological atypia, progressive molecular changes and chromo-
somal derangements to trigger cancer development, but the
individual importance of these features in OED progression is not
well established13,14.

More recently, an alternative binary grading system (low/high
grade) has been proposed15. This system grades dysplasia based
on the overall number of cytological and architectural changes
observed, and several studies have shown its improved reprodu-
cibility, inter-observer agreement and clinical utility as compared
to the WHO system15,16. Despite these improvements though,
neither systems consider the importance of individual histological
features, or specify which of the features (in isolation or
combination) are of greatest relevance for transformation and
recurrence. Some older studies have compared OPMDs that did
not transform to lesions that did17, and others have linked certain
histology features to a higher transformation risk18. However,
conclusions from these studies should be treated with caution due
to weaknesses in the proposed methodologies.
The aims of this study are twofold: first, to conduct a detailed

histological assessment (and inter-observer agreement) of indivi-
dual OED features to identify which were most prevalent and
associated with a higher risk of malignant transformation and
recurrence; second, to develop and propose feature-specific
prognostic models for OED outcome prediction. To the best of
our knowledge, this is the first study to explore histological
feature-specific prognostic prediction of OED.

MATERIALS/SUBJECTS AND METHODS
Case selection, tissue preparation and conversion to digital
images
A retrospective sample of sequential OED cases were retrieved
between 2008 and 2013 from the Oral and Maxillofacial Pathology
archive at the School of Clinical Dentistry (Sheffield, UK) using a
local digital database (ethical approval: 18/WM/0335). To confirm
cases which had progressed to OSCC at the same clinical site, a
regional head and neck cancer (HNC) electronic records system
was accessed which is a repository for HNC cases within South
Yorkshire. Newly stained 4 µm Haematoxylin and Eosin (H&E)
sections of the selected cases were obtained from formalin fixed
paraffin embedded blocks and a digital slide scanner (Aperio CS2,
Milton Keynes, UK) was used to obtain whole slide images (WSI) at
x40 magnification.

Inclusion and exclusion criteria
The principal inclusion criteria were varying grades of OED
retrieved from the Sheffield Oral and Maxillofacial Pathology
archive with sufficient available tissue and availability of minimum
five-year follow-up data. Where multiple biopsies had been taken

over a period of follow-up, only the initial biopsy was selected
for the study. The unit of Oral and Maxillofacial Pathology at
Sheffield is a regional and national referral centre which receives
referrals from a wide geographical area, however, following a
confirmed tissue diagnosis any necessary treatment is provided
by a local core Oral and Maxillofacial team and therefore cases
treated outside this unit were by default excluded in this study.
Additionally, cases were excluded if there was insufficient
tissue for histological analysis, incomplete minimum follow up
data or histological evidence of positive tissue margins on the
subsequent excision (to avoid any bias in the recurrence data).
The H&E slide and clinical records for all selected cases were
reviewed by two authors (HM, SAK) to ensure the inclusion criteria
was met.

Clinical data collection
Minimum five-year follow-up data was obtained from clinical
notes and biopsy forms by HM. Data collection included patient
demographics/characteristics (age, gender, intraoral site), histolo-
gical OED grade and two main clinical outcomes of interest (time
to transformation and recurrence). Transformation was defined as
a dysplastic lesion which had progressed to OSCC at the same
clinical site and within the follow-up period, and recurrence was
defined as a dysplastic lesion which occurred again in the same
clinical site following active treatment (i.e. surgical excision or laser
treatment) within the follow-up period. All data was recorded by
HM in a structured proforma using Microsoft Excel (2016) in an
anonymised-linked format.

Histological evaluation and examiners
Three experienced oral and maxillofacial pathologists (NMI, OK,
SAK) working in different international centres performed
independent histological examination of the OED cohort. All
pathologists were provided access to the WSIs via a cloud-based
system. Each WSI was labelled with an anonymous-linked number,
and all pathologists were blinded to the original diagnosis and
clinical outcomes. The examiners were asked to independently
assess the cases and identify which histological features amongst
the WHO criteria were present and informed the diagnosis. They
were also encouraged to specify any additional histological
features which were considered important in influencing their
diagnosis.
To determine which OED features were most prevalent, the

examiners were asked to provide a binary score to record the
presence (or absence) of individual features; a score of 1 was given
if the feature was abundantly visible (and influenced diagnosis),
and a score of 0 if the feature was absent or rare/focal. The
topmost common histological OED features (as per consensus
scoring) were further explored to determine feature-specific
observer agreement and prognostic significance. To minimise
examiner bias, no formal calibration exercises were attempted,
although there was an informal discussion between the examiners
to discuss their approach to this task. For consistency and to
prevent double counting of similar appearing histological features,
the pathologists agreed on general definitions for individual WHO
features (as well as other commonly presenting features). For
example, basal cell hyperplasia was considered if crowding/
proliferation involved 1–2 layers of basal cells, whereas loss of
epithelial stratification was considered if there was a disturbance
in the organised ‘stratified’ layers of the epithelium and the layers
were haphazardly organised or difficult to separate.
Finally, the original OED histological grades were independently

reviewed by HM and where necessary, an updated grade was
assigned. A standardised score sheet was designed in Microsoft
Excel (2016) to record all examiner scoring and aid systematic
analysis. All participating pathologists were clinical-academic
pathologists with long-standing experience in the diagnosis of
OED and OSCC.

H. Mahmood et al.

2

Modern Pathology69



Statistical evaluation
Statistical analyses were conducted using the Stata Statistical
Software19 (Version 17, 2021). The prevalence of OED features was
calculated overall and for each examiner. Observer agreement was
summarised as the percentage of patients for whom all three
examiners agreed, and by two chance-corrected measures (Cohen’s
Kappa and Gwet’s AC), where a value of 1 denotes perfect
agreement and 0 relates to no agreement beyond chance alone.
Univariate associations between pathological features and

clinical outcomes (transformation and recurrence) were visualised
by Kaplan–Meier curves and analysed using a Cox proportional
hazards regression model with Efron’s correction for tied times.
Thereafter, two prognostic models were developed in which the
outcome of interest was event (transformation and recurrence) at
any time. The prognostic performance of the two models were
compared against each other as well as against patient/clinical
characteristics (age, gender, intraoral site) and histological OED

grade alone by generating the area under the receiver-operator
characteristic curve (AUROC). All statistical tests were two-tailed
and p < 0.05 were considered statistically significant.

RESULTS
Characteristics of the study cohort
151 previously diagnosed cases of OED were retrieved during the
study period, of which 42 were excluded due to either insufficient
tissue availability or incomplete minimum five-year clinical follow
up data. Amongst the patient cohort, 67 (61%) were male and 42
(39%) were female with a median age of 67 years (IQR 57–77).
Breakdown based on intraoral site were as follows: tongue 44
(40%), floor of mouth 23 (21%), buccal mucosa 17 (16%), gingivae
7 (6%), soft palate 6 (6%), hard palate 6 (6%) and lower lip 6 (6%).
The clinical records showed that 34 (31%) of OED lesions were
clinically monitored, 70 (64%) were surgically excised and 5 (5%)
were treated with laser.

Prevalence and agreement of OED features
The final study cohort (Table 1) comprised 109 OED cases which
were blindly re-evaluated to confirm 34 (31%) mild, 48 (44%)
moderate and 27 (25%) severe dysplasia cases. Binary grading of
these cases showed 73 (67%) to be low grade and 36 (33%) as
high-grade lesions. Table 2 summarises the prevalence and
observer agreement for the twelve most prominent OED features
that were observed as per consensus scoring. The most common
features were basal cell hyperplasia (72%) and irregular surface
keratin (60%). The latter feature refers to any irregularity of the
keratin layer, including a corrugated, shaggy or desquamative
appearance. This feature was included since all pathologists
highlighted it as a prominent feature in certain cases, and at
present it is not on the list of WHO criteria. The least common
were verrucous surface morphology (26%), loss of epithelial
cohesion (30%), lymphocytic band (34%) and dyskeratosis (34%).
All other features ranged between 36% and 57%.
Verrucous surface morphology had the highest agreement

between pathologists (Kappa= 0.73, Gwet’s AC1= 0.83). Gwet’s
AC1 measurements were comparable for abrupt orthokeratosis
(0.66), lymphocytic band (0.67) and loss of epithelial cohesion
(0.69). Agreement for all other features was typically modest, with
the worst agreement for hyperchromatism (Kappa and Gwet’s AC1
both= 0.32) and suprabasal mitoses (Kappa and Gwet’s AC1
both= 0.34) for which all three pathologists agreed for approxi-
mately half the patients.

Table 1. Characteristics of the study cohort.

Characteristic Number (%) or median (IQR)

Age 67 (57–77)

Gender

Female 42 (39%)

Male 67 (61%)

WHO grade

Mild 34 (31%)

Moderate 48 (44%)

Severe 27 (25%)

Binary grade

Low 73 (67%)

High 36 (33%)

Site of disease

Tongue 44 (40%)

Floor of mouth 23 (21%)

Buccal mucosa 17 (16%)

Gingivae 7 (6%)

Hard palate 6 (6%)

Lower lip 6 (6%)

Soft palate 6 (6%)

Table 2. Observer agreement for OED feature analysis.

Prominent OED Features Overall prevalence* Complete agreement Cohen’s Kappa Gwet’s AC1

Basal cell hyperplasia 236 (72%) 63 (58%) 0.30 0.53

Bulbous/drop shaped rete pegs 187 (57%) 72 (66%) 0.54 0.56

Dyskeratosis 110 (34%) 68 (62%) 0.44 0.55

Hyperchromatism 176 (54%) 53 (49%) 0.32 0.32

Irregular surface keratin 196 (60%) 68 (62%) 0.48 0.52

Loss of epithelial cohesion 98 (30%) 80 (73%) 0.58 0.69

Loss of stratification 138 (42%) 61 (56%) 0.41 0.43

Suprabasal mitoses 148 (45%) 54 (50%) 0.34 0.34

Nuclear pleomorphism 118 (36%) 62 (57%) 0.38 0.47

Abrupt orthokeratosis 174 (53%) 81 (74%) 0.66 0.66

Lymphocytic band 112 (34%) 79 (72%) 0.60 0.67

Verrucous surface 85 (26%) 92 (84%) 0.73 0.83

*Denominator for overall prevalence is the number of assessments (327; 109 patients each with 3 assessments). Complete agreement is the percentage of
patients (out of 109) where all three assessors agreed.
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OED feature-specific incidence of transformation and
recurrence
Table 3 summarises feature-specific incidence for transformation
and recurrence. Overall, 20 (18%) OED lesions transformed, and 27
(25%) lesions recurred following treatment. A higher incidence of
transformation was seen when bulbous/drop shaped rete pegs
(30%), loss of epithelial cohesion (35%), loss of stratification (34%)
and nuclear pleomorphism (32%) were observed. The incidence of
recurrence was also higher related to these same four features, as
well as suprabasal mitoses (37%) and nuclear pleomorphism (41%).

Feature-specific correlation to clinical outcomes
Table 4 summarises the hazard ratios and p values of individual
OED features for their time to the two clinical outcomes of interest
(malignant transformation and recurrence). Six features were
associated with a greater rate of transformation: bulbous/drop
shaped rete pegs (p= 0.005) hyperchromatism (p= 0.036), loss of
epithelial cohesion (p= 0.003), loss of stratification (p= 0.001),
suprabasal mitoses (p= 0.022) and nuclear pleomorphism (p=
0.005).

These same six features (bulbous/drop shaped rete pegs p=
0.036, hyperchromatism p= 0.015, loss of epithelial cohesion p=
0.001, loss of stratification p < 0.001, suprabasal mitoses p= 0.006,
nuclear pleomorphism p= 0.002), in addition to dyskeratosis (p=
0.042), were also positively associated with recurrence.

Proposed prognostic models for OED
Two prognostic models were explored to assess the potential for
reliably predicting clinical outcomes of OED. In all cases, the
number of covariates was minimised to limit the impact of
overfitting.

Prognostic model 1: Six-point scoring system. The first scoring
system allocated one point for the presence of each of the six OED
features which were associated with a greater incidence of
transformation and recurrence (bulbous/drop shaped rete pegs,
hyperchromatism, loss of epithelial cohesion, loss of stratification,
suprabasal mitoses, nuclear pleomorphism). Since the hazard
ratios for these features (Table 4) are reasonably similar, each
feature is allocated equal weight.

Table 3. Incidence of transformation and recurrence by OED feature.

Overall Transformation 20 (18%) Recurrence 27 (25%)

Prominent OED Features Positive Negative Positive Negative

Basal cell hyperplasia 15 (18%) 5 (20%) 19 (23%) 8 (32%)

Bulbous/drop shaped rete pegs 18 (30%) 2 (4%) 20 (33%) 7 (14%)

Dyskeratosis 8 (24%) 12 (16%) 12 (36%) 15 (20%)

Hyperchromatism 15 (26%) 5 (10%) 20 (34%) 7 (14%)

Irregular surface keratin 10 (15%) 10 (24%) 16 (24%) 11 (26%)

Loss of epithelial cohesion 11 (35%) 9 (12%) 14 (45%) 13 (17%)

Loss of stratification 15 (34%) 5 (8%) 19 (43%) 8 (12%)

Suprabasal mitoses 14 (27%) 6 (10%) 19 (37%) 8 (14%)

Nuclear pleomorphism 13 (32%) 7 (10%) 17 (41%) 10 (15%)

Abrupt orthokeratosis 10 (17%) 10 (20%) 14 (23%) 13 (27%)

Lymphocytic band 9 (25%) 11 (15%) 12 (33%) 15 (21%)

Verrucous surface 6 (20%) 14 (18%) 8 (27%) 19 (24%)

For each feature, a consensus definition was used whereby the feature was assumed to be present if 2/3 observers rated it as being prominent, otherwise it
was assumed absent.

Table 4. Hazard ratios and p values of individual OED features for their time to malignant transformation and recurrence.

Prominent OED features Transformation Recurrence

Hazard ratio p value Hazard ratio p value

Basal cell hyperplasia 0.88 (95% CI 0.32, 2.42) 0.806 0.65 (95% CI 0.29, 1.49) 0.310

Bulbous rete pegs 8.27 (95% CI 1.92, 35.68) 0.005* 2.52 (95% CI 1.06, 5.96) 0.036*

Dyskeratosis 1.68 (95% CI 0.69, 4.11) 0.257 2.20 (95% CI 1.03, 4.70) 0.042*

Hyperchromatism 2.96 (95% CI 1.08, 8.15) 0.036* 2.90 (95% CI 1.23, 6.86) 0.015*

Irregular surface keratin 0.62 (95% CI 0.26, 1.49) 0.286 0.92 (95% CI 0.43, 1.99) 0.841

Loss of epithelial cohesion 3.78 (95% CI 1.57, 9.14) 0.003* 3.50 (95% CI 1.64, 7.46) 0.001*

Loss of stratification 5.35 (95% CI 1.94, 14.73) 0.001* 4.50 (95% CI 1.97, 10.30) 0.000*

Suprabasal mitoses 3.06 (95% CI 1.17, 7.96) 0.022* 3.17 (95% CI 1.39, 7.24) 0.006*

Nuclear pleomorphism 3.74 (95% CI 1.49, 9.38) 0.005* 3.45 (95% CI 1.58, 7.54) 0.002*

Abrupt orthokeratosis 0.78 (95% CI 0.32, 1.87) 0.572 0.85 (95% CI 0.40, 1.81) 0.680

Lymphocytic band 1.80 (95% CI 0.75, 4.35) 0.191 1.74 (95% CI 0.82, 3.73) 0.151

Verrucous surface 1.09 (95% CI 0.42, 2.85) 0.855 1.11 (95% CI 0.49, 2.53) 0.807

*Denotes a statistically significant finding.
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Figure 1A and B (see Supplementary Material) present the
Kaplan–Meier survival curves for time to transformation and time
to recurrence in relation to the number of features present using
the six-point scoring model. The predicted transformation rate at 2
years is estimated at 2% (95% CI 0–16%) for 0–1-point scoring, 0%
for 2–3-point scoring and 31% (95% CI 19–48%) for 4–6-point
scoring. At 5 years, these figures increase to 5% (95% CI 1–18%)
for 0–1-point scoring and 38% (95% CI 25–55%) for 4–6-point
scoring; there is no change in the rate for 2–3-point scoring (0%).
For recurrence of OED, the respective predicted rates at two and
five years were shown to be: 5% (95% CI 1–18%) and 7% (95% CI
2–21%) for 0–1-points; 3% (95% CI 0–22%) and 7% (95% CI 2–25%)
for 2–3-points; 36% (95% CI 23–53%) and 49% (95% CI 34–65%)
for 4–6 points. The lower recurrence and transformation rate seen
for 2–3-point scoring compared to 0–1 points is unexpected but is
likely to be related to the much lower number of cases in the 2–3
point category compared to the others. Validation on a more
balanced larger cohort would be useful to determine the
significance of these findings.
Few transformations and recurrences occurred more than five

years post-baseline, and for simplicity the prognostic performance
was assessed on the basis of whether the event happened rather
than the time taken to occur. Figure 2 (see Supplementary
Material) shows the receiver-operator characteristic curve (ROC)
for these. The sensitivity and specificity appeared best balanced
by using a cut off for either 4 or 5 points, with less events (for
transformation and recurrence) when fewer features were present.
The AUROCs for transformation and recurrence were 0.799 and
0.776, respectively.

Prognostic model 2: Reduced two-point scoring system. The second
scoring system selected two features with the best inter-rater
agreement, and which were also associated with transformation

and recurrence (i.e. loss of epithelial cohesion and bulbous/drop
shaped rete pegs). Figure 1C and D (see Supplementary Material)
show Kaplan–Meier survival curves for time to transformation and
recurrence based on the presence or absence of these two features.
The combined presence of both features appeared to be associated
with a higher risk of malignant transformation (39%, 95% CI
23–62%) at five years, in comparison to the presence of a single
feature alone (loss of epithelial cohesion [16%, 95% CI 8–33%],
bulbous/drop-shaped rete pegs [25%, 95% CI 7–69%]). However,
the presence of bulbous/drop shaped rete pegs showed a higher
risk of recurrence at five years (50%, 95% CI 23–85%) as compared
to the presence of loss of epithelial cohesion (22%, 95% CI 11–39%)
or when both of features were present in combination (43%, 95% CI
26–66%).

Effect of patient/clinical characteristics on prognostic models
The association between patient characteristics (age, gender,
intraoral site), OED histological grade and clinical outcomes were
also assessed. Overall, there was a modest association between
patient characteristics and clinical outcomes. However, there was
a trend for higher rates of transformation and recurrence amongst
older patients compared to younger, and generally with higher
graded lesions as well. Moderate OED lesions were associated with
a marginally higher rate of malignancy and recurrence in
comparison to severe OED lesions (31% vs 15%, 38% vs 26%,
respectively, Table 5). The rates for intraoral clinical sites were, at
best, modestly associated with dysplasia outcomes. None of the
features had an AUROC as high as that achieved by the two
scoring systems.
Table 6 illustrates the effect of adding the clinical characteristics

(age, gender) and histological grade (WHO and binary) to each of
the prognostic models, as represented by the AUROC. Adding age
and gender into the models only marginally improved the

Fig. 1 Kaplan–Meier curves for time to transformation and recurrence for feature count based on the six-point scoring system (A, B) and the
two-point scoring system (C, D).
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predictive ability of the scoring (6-point model: 0.810 transforma-
tion, 0.804 recurrence; 2-point model: 0.810 transformation, 0.759
recurrence), reflecting the modest association of these character-
istics with transformation and recurrence. Adding the histological
grade improved the models further, particularly with the WHO
grade compared to the binary grade (6-point model: 0.837 vs
0.812 for transformation, 0.812 vs 0.790 for recurrence; 2-point
system: 0.843 vs 0.805 for transformation, 0.780 vs 0.755 for
recurrence). The number of intraoral site categories and the
relatively sparse number of patients for some sites meant it was
not possible to jointly model this along with the proposed scoring
approaches.

Comparison of proposed models to existing grading systems
The prognostic ability of the two proposed models were compared
against the existing grading systems20. Both the ‘six-point’ and ‘two-
point’ proposed models yielded a higher AUROC than achieved by
either WHO or binary grading systems, although not all these
differences were statistically significant. The more detailed six-point
model demonstrated a statistically significantly higher AUROC than
achieved by the WHO grading system for both transformation and
recurrence, but a more marginal improvement over binary grading.
The two-point model showed a significant improvement over WHO
grading for transformation alone (Table 7).
Finally, the prognostic performance of the new models was

calculated separately for each of the three raters, reflecting how
the models are likely to be used in clinical practice. Both models
showed reduced prognostic ability when used by a single rater,

indicating a greater risk for misclassification compared to models
that were based on consensus agreement. Of the 12 single-rater
AUC measures derived from the proposed models, 11 remained
higher than those derived from corresponding WHO or binary
grade (Table 8). Nevertheless, this analysis indicates that
significant improvements on existing grading requires greater
levels of agreement by assessors.

DISCUSSION
This study reveals important and novel information about the
prognostic significance of individual histological features of OED. We
have demonstrated histological feature-specific correlation of OED
to malignant transformation and recurrence, which has allowed us
to propose two prognostic scoring models with a potential to
simplify and aid OED diagnosis and grading in the future.
Overall, nine histological features were shown to be most

prevalent amongst our OED cohort (Table 2). The top two most
common features were basal cell hyperplasia (crowding) and
irregular surface keratin; neither of which are currently part of the
WHO criteria for OED diagnosis, although our study did not show
them to be strongly linked to transformation or recurrence. The
least prevalent features were verrucous surface morphology,
lymphocytic band, loss of epithelial cohesion, dyskeratosis and
nuclear pleomorphism. Interestingly, the latter three of these
features were positively associated with clinical outcomes of
interest; loss of epithelial cohesion (transformation p= 0.003,
recurrence p= 0.001), nuclear pleomorphism (transformation p=

Fig. 2 ROC curves for transformation and recurrence for feature count based on the six-point scoring system (A, B) and the two-point scoring
system (C, D).
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0.005, recurrence p= 0.002) and dyskeratosis (recurrence p=
0.042) indicating that the presence of the features and not the
frequency within the cohort was more important. It is evident that
certain architectural features may be consistently easier to detect
(even at lower magnification) as compared to other features at
cellular or nuclear level. The use of immunohistochemical markers,
such as Phosphorylated Histone H3 (PHH3) and Ki67 can be
considered as adjuncts for the assessment of mitosis and cell
proliferation21, although more extensive evaluation of their
usefulness as a prognostic indicator in OED is needed.
Our study showed observer agreement to be the highest for

verrucous surface morphology, abrupt orthokeratosis, lymphocytic
band and loss of epithelial cohesion, and worst for hyperchroma-
tism and suprabasal mitoses, further highlighting the difficulty in
objective analysis of certain features in clinical practice, particularly
the more ambiguously defined cytological atypia. Several studies
have investigated the variability in inter- and intra-observer
agreement in the diagnosis and grading of OED, with substantially
different outcomes ranging from poor to high observer agree-
ment22–25. One of the challenges that arises in analysing inter-rater
agreement is the variation that exists in pathologists’ understanding
and definitions of features due to their inherently subjective nature
further complicated by the numerous changes to classifications and
reporting definitions over the years. Although digital WSIs were
used to mitigate the issue of variations in staining of glass slides for
each pathologist, the experience of digital reporting/analysis may
have caused some variation. In this study, apart from informal
discussions there were no formal calibration exercises arranged
prior to histological examination, as we had intended for grading
and feature scoring to be most reflective of the real world and
routine clinical practice. To overcome any deficiencies in feature
prevalence and agreement, two chance-corrected measures were
used, including bias adjusted Kappa and Gwet’s AC1, as per
statistical recommendation26.
We found six histological features (bulbous/drop shaped rete

pegs, hyperchromatism, loss of epithelial cohesion, loss of
stratification, suprabasal mitoses, nuclear pleomorphism) to be
associated with a greater incidence of transformation and
recurrence. Although it is well acknowledged that atypical
verrucous hyperplasia and/or keratoses are a subset of OPMD,
and that proliferative verrucous leukoplakia has a high reported
rate of malignant transformation27,28, we did not find a statistical
association between verrucous surface morphology and clinical
outcomes in our study.
Although there was a modest association between patient

characteristics and clinical outcomes, there is a statistical trend for
higher rates of transformation and recurrence amongst older
patients as well as higher graded lesions. This trend is well
supported in the literature and is thought to be related to the
aggregation of genetic alterations, immunosenescence and
chronic exposure to environmental risk factors with advancing
age29,30. Interestingly though, lesions graded as moderate
dysplasia were associated with a marginally higher rate of
malignancy and recurrence in comparison to severe dysplasia
grades (31% vs 15%, 38% vs 26%, respectively, Table 5). These

Table 5. Incidence for transformation and recurrence by patient
characteristics and OED histological grade.

Model N Transformation Recurrence

Age

<55 23 3 (13%) 3 (13%)

55–64 20 4 (20%) 5 (25%)

65–74 31 5 (16%) 6 (19%)

>=75 35 8 (23%) 13 (37%)

AUROC 0.526 0.591

Gender

Female 42 8 (19%) 10 (24%)

Male 67 12 (18%) 17 (25%)

AUROC 0.509 0.510

WHO grade

Mild 34 1 (3%) 2 (6%)

Moderate 48 15 (31%) 18 (38%)

Severe 27 4 (15%) 7 (26%)

AUROC 0.601 0.624

Binary grade

Low 73 8 (11%) 12 (16%)

High 36 12 (33%) 15 (42%)

AUROC 0.665 0.650

Site of disease

Tongue 44 10 (23%) 14 (32%)

Floor of mouth 23 3 (13%) 3 (13%)

Buccal mucosa 17 3 (18%) 5 (29%)

Gingivae 7 3 (43%) 4 (57%)

Hard palate 6 0 0

Lower lip 6 1 (17%) 1 (17%)

Soft palate 6 0 0

AUROC 0.544 0.547

Table 6. AUROC for each model incorporating age, gender and
grading.

Model Transformation Recurrence

6-point score only 0.799 0.776

6-point score+ age+ gender 0.810 0.804

6-point score+WHO grade 0.837 0.800

6-point score+ binary grade 0.812 0.790

2-point score only 0.774 0.726

2-point score+ age+ gender 0.810 0.759

2-point score+WHO grade 0.843 0.780

2-point score+ binary grade 0.805 0.755

Table 7. Comparison of AUROC between two-point and six-point models with existing grading systems.

Transformation Recurrence

AUC p value v WHO grade p value v binary grade AUC p value v WHO grade p value v binary grade

WHO grade 0.601 - - 0.624 - -

Binary grade 0.665 - - 0.650 - -

Two-point model 0.774 <0.001 0.082 0.720 0.083 0.207

Six-point model 0.799 <0.001 0.082 0.776 0.003 0.050
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findings could be explained by differences in treatments and
clinical follow-up, particularly in relation to moderately graded
OED lesions which are both challenging to diagnose/grade and
treat. The lack of robust treatment guidelines means there is huge
disparity in the management of such lesions between surgeons.
Although our patient cohort was diagnosed at a single centre,
differences in treatment regimens between regional hospitals, and
medical/social risk factors are likely to have contributed to
potential differences in their management. This further highlights
the need for improved diagnostic methods which are indepen-
dent of grade for more objective OED prognostication as well as
more standardised treatment pathways.
We developed and assessed the potential of using two

relatively simple point-based scoring systems, based on the
presence or absence of certain histological features. Using the six-
point model, patient scoring ‘4–6 points’ were predicted to be at
the highest risk of malignant transformation and recurrence at five
years, estimated at 38% (95% CI 25–55%) and 49% (95% CI
34–65%), respectively. For the two-point model, predictions
suggest that the presence of bulbous/drop shaped rete pegs
alone have a greater predictive association with transformation
(25%, 95% CI 7–69%) and recurrence (50%, 95% CI 23–85%) at five
years, compared to the presence of loss of epithelial cohesion
alone (transformation at five years: 16%, 95% CI 8–33% and
recurrence at five years: 22%, 95% CI 11–39%).
Comparing the two systems, the six-point model had a greater

discriminant performance with more separation of the survival
and ROC curves (Figs. 1 and 2, see Supplementary Material).
Although it is important to highlight that based on the modest
agreement between pathologists seen in this study, it is inevitable
that the performance of this system may be weakened if there
was only a single assessor conducting the analysis. In contrast, the
two-point model is a simplified approach that focusses only on the
two features with the best inter-rater agreement (presence of loss
of epithelial cohesion and/or bulbous/drop shaped rete pegs
which are easier to identify). This model retained predictive ability
contained in the groupings (especially for transformation) whilst
being less susceptible to inter-rater disagreement.
The authors acknowledge a few limitations of this study. The

first relates to the relatively small sample size which was obtained
from a single centre. However, the department in question is a
regional and national referral centre in the UK and therefore
receives tissue samples from multiple hospitals covering a wide
geographical area, thereby providing a sufficiently varied cohort
for this pilot study. Furthermore, whilst the sample size may be
considered small, it is larger than other studies which have
explored OED analysis or proposed alternate OED grading
classifications12,16,21. Nevertheless, application of these findings
to substantially larger multicentre cohorts will allow more robust
validation of the proposed potential prognostic models31.
To the best of our knowledge, this is the first study to propose

feature specific prognostic scoring models for OED. The proposed
models have the potential to provide pathologists with greater
insight into the risk of individual OED lesions based on feature-
specific analysis, which will in turn aid clinical decision making with
regards to treatment and follow-up. Larger validation of the models
is required on multicentric cohorts, with prospective analysis to
explore the impact of other clinical determinants such as medical/
social risk factors as well as effects of treatment and frequency of

monitoring. There is clearly potential for strengthening the
predictive ability of the models by incorporating such measures.
Greater clarity on the definitions (and examples) for individual

architectural and cytological features will greatly benefit pathol-
ogists with OED diagnosis/grading and help to improve intra-
observer agreement. There is clearly a need for the development
of a universal minimum dataset for the reporting of OED lesions,
as well as benefit in double/consensus reporting by two
pathologists to ensure accurate diagnosis and early treatment.
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Abstract 

Background: Oral epithelial dysplasia (OED) is a histopathological diagnosis given to lesions of the 

oral cavity that have an increased risk of progression to malignancy. Histological grading is used for 

prediction of malignant transformation risk of OED. However, grading is associated with significant 

subjectivity, observer variability, and inconsistency in prognosis prediction. Previously developed 

histological feature-specific models (‘six-point’ and ‘two-point’) demonstrated consistently better 

predictive performances compared to conventional grading systems. This study aims to validate these 

feature-based models on independent OED datasets. 

Methods: Consecutive OED cases (dating 2012 – 2017) were acquired from four different centres. 

The six histological features used to formulate the models (‘bulbous/drop shaped rete pegs’, 

‘hyperchromatism’, ‘loss of epithelial cohesion’, ‘loss of stratification’, ‘suprabasal mitoses’, ‘nuclear 

pleomorphism’) were independently scored by three observers. Histological feature prevalence and 

observer agreement were calculated. Malignant transformation risk was measured using AUROC 

curves, Kaplan Meier and Cox regression analysis.  

Results: 102 OED were included (13 (13%) from Sheffield, 40 (39%) from Belfast, 30 (29%) from 

Birmingham and 19 (19%) from Brazil). 28 (27%) were graded as mild OED, 41 (40%) as moderate 

OED and 33 (32%) as severe OED. The ‘six-point’ system demonstrated superior performance for 

transformation prediction (AUROC of 0.81) compared to the ‘two-point’ system (AUROC=0.73, 

p=0.004), WHO grading (AUROC=0.71, p=0.03) and binary grading (AUROC=0.68, p=0.009). The 

predicted transformation rate for the ‘six-point’ model was 50% (95% CI 27 to 78%) when all 6 features 

were present compared to 35% (95% CI 23 to 53%) when 4-5 features were present and 14% (95% 

CI 5 to 32%) when 2-3 features were present. 

Conclusion: This study validates the superior performance of the ‘six-point’ system for transformation 

risk on a multicentric sample of OED cases. Findings indicate that feature-specific models may be 

more reliable than existing histological grading systems for prognosis prediction and could help 

standardise treatment protocols and improve clinical outcomes for patients with OED.  
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4.2.1 Background 

Oral epithelial dysplasia (OED) is a premalignant histopathological condition given to lesions of the 

oral cavity that have an increased risk of progression to malignancy. Histological grading of OED 

presents significant challenges and uncertainties, particularly in relation to the prediction of malignant 

transformation risk. Grading is also associated with significant subjectivity and irreproducibility. 

However, despite the dubious reliability of this approach, it remains the mainstay for cancer risk 

prediction, influencing clinical treatment decisions for patients with OED. Another limitation of current 

grading systems, both WHO (2017) and the alternative binary system, is that they fail to ascribe 

prognostic value to individual histological features. In fact, until recently, there has been very little by 

means of research into histological predictors for OED progression. 

In a recent study by Mahmood et al. (2022)9, a correlation between individual OED histological 

features and prognosis was demonstrated, for the first time. The authors found six histological features 

(‘bulbous/drop shaped rete pegs’, ‘hyperchromatism’, ‘loss of epithelial cohesion’, ‘loss of stratification’, 

‘suprabasal mitoses’, ‘nuclear pleomorphism’) to be associated with a greater risk of malignant 

transformation (p <0.036) and OED recurrence  (p < 0.015)9. These features were used to develop 

the ‘six-point’ and ‘two-point’ feature-based scoring models, in which a single point is allocated for the 

presence of each of the significant features. Both models demonstrated significantly better predictive 

ability (AUROC ≥ 0.774 for malignant transformation and 0.726 for recurrence) than the WHO (2017) 

and binary grading systems.  

This study conducts validity testing of the ‘six-point’ and ‘two-point’ scoring models on independent 

external OED cases. There were three main objectives: first, to independently validate the prognostic 

ability of the ‘six point’ and ‘two-point’ scoring models for prediction of malignant transformation risk 

of OED; second, to evaluate the inter-observer variability of the ‘six-point’ and ‘two-point’ scoring 

models compared with the WHO (2017) and binary grading systems; third, to analyse the impact of 

clinical variables on the prognostic abilities of the ‘six-point’ and ‘two-point’ scoring models compared 

to existing clinical grading systems.  
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4.2.2 Methods 

4.2.2.1 Validation dataset and clinical data collection  

A multicentric retrospective sample of 104 OED cases were acquired in the form of digital whole slide 

images (WSI) from four different centres, as below.   

i. School of Clinical Dentistry, University of Sheffield, UK (n=13)

ii. Precision Medicine Centre, Patrick G. Johnston Centre for Cancer Research, Queen’s

University Belfast, UK (n=40)

iii. Institute of Head and Neck Studies and Education (InHANSE), University of Birmingham, UK

(n=30)

iv. Piracicaba Dental School, UNICAMP, Brazil (n=19)

Purposive sampling was used to acquire consecutive cases from these centres dating between 2012 

and 2017. In the case of two samples from the Sheffield cohort, malignant transformation occurred 

within three months of OED diagnosis and due to the difficulty in reliably confirming whether underlying 

malignancy was already present, these cases were excluded from analysis. The resulting sample 

therefore comprised 102 OED cases for independent model validation. Further details of the validation 

cohort are provided in Table 3. 

Prior to the inclusion of cases in this study, they were blindly reviewed by a Consultant Oral and 

Maxillofacial Pathologist to ensure tissue quality and to review the original histological grade. Where 

necessary, an updated grade using the WHO (2017) and binary systems were assigned. The 

inclusion criteria were varying grades of OED with sufficient epithelial tissue for analysis and 

availability of minimum three-year follow-up data. Cases demonstrating histological atypia secondary 

to inflammatory conditions (i.e. candida albicans infection or lichen planus) were excluded. OED 

lesions positive for the Human Papilloma Virus and lesions with verrucous surface morphology were 

also excluded as they are distinct entities with reportedly different behaviour that could introduce bias 

into the sample. Ethical approval was granted by the West Midlands - Edgbaston Research Ethics 

Committee (reference: 18/WM/0335) and the research was carried out in compliance with the Helsinki 

Declaration. 

Clinical data collection included patient age, sex, biopsy site, original histological OED grade and the 

time to transformation in months (if applicable). As per the previous study, transformation was 

confirmed as an OED lesion which had progressed to OSCC at the same clinical site within the follow-

up period. Due to difficulty in confirming OED recurrence status from collaborating centres, the authors 

decided to exclude this outcome measure for the presented study. Data from the four different centres 

was recorded in a structured proforma using Microsoft Excel (2016) in an anonymised-linked format. 

The TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis) guidelines119 were used to strengthen the methodology and conclusions of this study. 
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4.2.2.2 Histological Feature Assessment 

Three assessors, including two experienced clinical-academic Oral and Maxillofacial Pathologists (NI, 

SAK) and a clinician with extensive expertise and a specialist interest in OED analysis (HM) conducted 

independent histological feature examination. The assessors were given access to the WSI sample 

via a secure cloud-based system and were blinded to the original diagnosis and clinical outcomes. 

The assessors independently scored the six histological features identified in the previous study as 

having adequate inter-rater agreement and being associated with malignant transformation risk 

(Figure 14). These six features are a subset of the original 12 histological features evaluated in the 

previous work: 

i. Bulbous rete pegs

ii. Hyperchromatism

iii. Loss of epithelial cohesion

iv. Loss of stratification

v. Nuclear pleomorphism

vi. Suprabasal mitosis

Feature scoring was conducted using a similar approach to the initial study, whereby the assessors 

were asked to provide a binary score to record the presence or absence of individual features. A score 

of 1 was given if the feature was abundantly visible, and a score of 0 was given if the feature was 

absent or rare/focal. Scores were entered into a pre-developed Microsoft Excel (2016) spreadsheet. 

Figure 14. Histological features forming the ‘six-point’ and ‘two-point’ models. 

4.2.2.3 Statistical Analysis & Outcome Measures 

Statistical analyses were conducted using the Stata Statistical Software (Version 17, 2021)120. All tests 

were two-tailed and p < 0.05 were considered statistically significant. Three outcomes were measured: 

1) Histological feature prevalence

The prevalence of a feature was calculated separately for each assessor, and also by “consensus” 

which was defined as the number of patients for whom at least two assessors considered a feature 

“present”. 
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2) Observer agreement

Agreement was summarised as the percentage of patients for whom all three raters agreed, and by 

two chance-corrected measures (Cohen’s Kappa coefficient and Gwet’s AC). For the latter two 

measures, a value of 1 denotes perfect agreement whilst 0 relates to no agreement beyond chance 

alone. The kappa scores were interpreted based on historical standards, with scores ≤0.2 representing 

“slight”, 0.2-0.4 “fair”, 0.4-06 “moderate”, 0.6-0.8 “substantial”, and 0.8-1.0 “near perfect” agreement121. 

Whilst the Kappa statistic is commonly used, it can be affected by prevalence, therefore the alternative 

Gwet AC1 measure was also used in this study122.  

3) Malignant transformation

Malignant transformation was analysed using two approaches. The first approach measured the 

incidence of transformation using the area under the receiver-operator characteristic (AUROC) curve 

to assess predictive ability. The second incorporated the follow up duration using Kaplan Meier to 

visualise associations between individual pathological features and time to transformation and used 

Cox regression to calculate Hazard Ratios with 95% confidence intervals. 

4.2.3 Results 

Characteristics of the Validation Sample 

102 cases, each from a different participant, were used for independent model validation and analysis. 

The sample included 13 (13%) cases from Sheffield, 40 (39%) from Belfast, 30 (29%) from 

Birmingham and 19 (19%) from Brazil. Overall, 28 (27%) were graded as mild OED, 41 (40%) as 

moderate OED and 33 (32%) as severe OED. Binary grading confirmed 37 (36%) as low grade and 

65 (64%) as high grade lesions. There was a slightly higher proportion of females (55, 54%) compared 

to males (47, 46%) with an average age of 58.9 years (IQR 12.7) (Table 3).  



82 

Table 3. Characteristics of the study sample. 

Feature N (%) or mean [SD] 

Centre 
Sheffield 13 (13%) 

Belfast 40 (39%) 

Birmingham 30 (29%) 

Brazil 19 (19%) 

Age 58.9 [12.7] 

Sex 
Female 55 (54%) 

Male 47 (46%) 

Grade (WHO) 

Mild 28 (27%) 

Moderate 41 (40%) 

Severe 33 (32%) 

Grade (binary) 

Low 37 (36%) 

High 65 (64%) 

4.2.3.1 Feature Prevalence 

With the exception of suprabasal mitoses, all six histological features were notably more prevalent in 

this study compared with the previous study which proposed the two new models (Mahmood et al. 

2022)9. The most prevalent features in this study were ‘hyperchromatism’ (97%) and ‘nuclear 

pleomorphism’ (90%) and the least prevalent features were ‘loss of epithelial cohesion’ (45%) and 

‘suprabasal mitoses’ (24%) (Table 4). 
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Table 4. Feature-specific prevalence with comparison to previous stud.y 

Feature prevalence presented as consensus (defined as two or more assessors recording a positive 

assessment) and separately for each rater. *Denominator is N=306, or 102 patient samples x 3 raters. 

Present study 
Mahmood et al 
(2022) 

Consensus* Assessor 1 Assessor 2 Assessor 3 

Bulbous rete Pegs 72 (71%) 68 (67%) 67 (66%) 85 (83%) 57% 

Hyperchromatism 99 (97%) 97 (95%) 98 (96%) 97 (95%) 54% 

Loss of epithelial 
cohesion 

46 (45%) 49 (48%) 28 (27%) 73 (72%) 30% 

Loss of stratification 63 (62%) 70 (69%) 61 (60%) 46 (45%) 42% 

Nuclear pleomorphism 92 (90%) 94 (92%) 92 (90%) 80 (78%) 36% 

Suprabasal mitoses 24 (24%) 23 (23%) 21 (21%) 93 (91%) 45% 

4.2.3.2 Observer Agreement 

Interobserver agreement was typically modest for all six histological features, although the agreement 

of certain features, differed notably when compared to the previous study by Mahmood et al. (2022)9 

(Table 5). Two features in particular demonstrated greater interobserver variability in this study, 

namely ‘loss of epithelial cohesion’ (Gwet’s AC1 0.29) and ‘suprabasal mitosis’ (Gwet’s AC1 0.06). 

Table 5. Interobserver agreement with comparison to previous study 

Complete agreement Cohen’s Kappa Gwet’s AC1 

Present 
study 

Mahmood et 
al (2022) 

Present 
study 

Mahmood et 
al (2022) 

Present 
study 

Mahmood et 
al (2022) 

Bulbous rete Pegs 70 (69%) 72 (66%) 0.49 0.54 0.65 0.56 

Hyperchromatism 93 (91%) 53 (49%) 0.33 0.32 0.94 0.32 

Loss of epithelial cohesion 48 (47%) 80 (73%) 0.34 0.58 0.29 0.69 

Loss of stratification 64 (63%) 61 (56%) 0.50 0.41 0.52 0.43 

Nuclear pleomorphism 70 (75%) 62 (57%) 0.26 0.38 0.78 0.47 

Suprabasal mitoses 29 (28%) 54 (50%) 0.21 0.34 0.06 0.34 
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4.2.3.3 Malignant Transformation Incidence and Prediction 

The incidence of malignant transformation (based on the “consensus” definition) demonstrated that 

‘nuclear pleomorphism’ and ‘hyperchromatism’ were commonly recorded both among transformed 

and non-transformed cases with little distinction between the two. But the remaining four features, 

whilst common, demonstrated more apparent separation between those that did and did not transform 

(Table 6). 

Table 6. Malignant transformation incidence in relation to individual histological features. 

Feature Transformed (N=41) Not transformed (N=61) 

Bulbous rete Pegs 38 (93%) 34 (56%) 

Hyperchromatism 40 (98%) 59 (97%) 

Loss of epithelial cohesion 25 (61%) 21 (34%) 

Loss of stratification 35 (85%) 28 (46%) 

Nuclear pleomorphism 41 (100%) 51 (84%) 

Suprabasal mitoses 19 (46%) 5 (8%) 

As per the previous study, the six studied histological features were used to develop two scoring 

systems: a ‘six-point’ system in which each feature is given a single point if present, and a more 

simplified ‘two-point’ system based on the two features originally identified as having the best rater 

agreement (‘loss of epithelial cohesion’ and ‘bulbous rete pegs’). It should be noted that, in this study, 

‘loss of epithelial cohesion’ was among the least well agreed features.  

Figure 15 demonstrates the incidence of malignant transformation in relation to the two scoring 

approaches, in addition to the WHO and binary grading systems. Whilst differences were apparent in 

relation to both, the most immediately obvious was the ‘six-point’ system which had an increasing 

proportion of cases that transformed as the score increased.  
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Figure 15. Malignant transformation incidence in relation to scoring approaches. 

A) Incidence by count of features using six-point system; B) Incidence by count of features using two-

point system; C) Incidence by WHO grading; D) Incidence by binary grading. Bar key: Navy blue = 

Transformed, Maroon = not transformed.  

Figure 16 demonstrates the AUROC curves for the ‘six-point’ and ‘two-point’ scoring approaches 

compared with the WHO and binary grading systems. All four systems showed significantly better 

than chance discrimination (p<0.0001), but with varying degrees of prognostic strength. The ‘six-point’ 

system demonstrated the highest among these with an AUROC of 0.81 and was statistically 

significantly higher than the ‘two-point’ system (AUROC=0.73, p=0.004), WHO grading system 

(AUROC=0.71, p=0.03) and binary grading system (AUROC=0.68, p=0.009). On univariate analyses, 

‘bulbous rete pegs’ alone had an AUROC of 0.68, with ‘loss of stratification’ (AUROC 0.70) and 

‘suprabasal mitosis’ (AUROC 0.69) being similar. 
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Figure 16. AUROC for malignant transformation in relation to scoring approaches.  

All four systems showed significantly better than chance discrimination (p<0.0001), but with varying 

degrees of prognostic strength. The ‘six-point’ system demonstrated the highest among these with an 

AUROC of 0.81 and was statistically higher than the ‘two-point’ system (AUROC=0.73, p=0.004), 

WHO grading system (AUROC=0.71, p=0.03) and binary grading system (AUROC=0.68, p=0.009). 

Line Key: Navy blue = six-point model, Red = two-point model, Green = WHO grading, Pale Blue = 

Binary grading. 

4.2.3.4 Kaplan Meier Analysis for Time to Transformation 

Figure 17 shows the Kaplan Meier survival curves for time to malignant transformation for each of 

scoring approaches, in which the curves maintain the separation. Overall, an estimated 28% (95% 

CI 20 to 39%) had transformed within five years. For the ‘six-point’ model, the predicted 

transformation rate when all 6 features were present was 50% (95% CI 27 to 78%) compared to 35% 

(95% CI 23 to 53%) when 4-5 features were present and 14% (95% CI 5 to 32%) when 2-3 features 

were present. No transformations were recorded among patients with fewer than 2 features present. 
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Figure 17. Kaplan Meier curves for time to transformation for different scoring approaches. 

An estimated 28% (95% CI 20 to 39%) had transformed within five years. For the ‘six-point’ model, the predicted transformation rate when all 6 features 

were present was 50% (95% CI 27 to 78%) compared to 35% (95% CI 23 to 53%) when 4-5 features were present and 14% (95% CI 5 to 32%) when 2-

3 features were present. No transformations were recorded among patients with fewer than 2 features present. 
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4.2.3.5 Effect of Clinical Characteristics on Prognostic Models 

The models were also fitted with clinical characteristics (age, sex, histological grading) to see if any 

combination could improve predictive ability as characterised by the AUROC (Table 7). The ‘six-point’ 

model retained the best predictive ability compared to other models, with minor improvements when 

combined with other histological grading systems and clinical variables. The ‘two-point’ model along 

with the WHO and binary grading systems demonstrated modest improvements when combined with 

other clinical variables.  

Table 7. AUROC by scoring system with inclusion of additional variables. 

Models AUROC 

6-point model 0.807 

6-point + age + sex 0.814 

6-point + WHO grade 0.813 

6-point + binary grade 0.820 

2-point model 0.729 

2-point + age + sex 0.742 

2-point + WHO grade 0.763 

2-point + binary grade 0.761 

WHO grade 0.714 

WHO grade + age + sex 0.740 

Binary grade 0.681 

Binary grade + age + sex 0.728 

Figure 18 demonstrates AUROC and 95% confidence intervals for the different scoring approaches 

with comparisons between the presented study and the previous one by Mahmood et al. (2022)9.  
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Figure 18. Comparison of malignant transformation prediction between studies. 

 

4.2.3.6 Univariate Associations of Individual Features 

Based on the assumption that each of the six histological features carry the same weight, the hazard 

ratios for the individual features are presented in Figure 19. Overall, the hazard ratios from the present 

study are similar to those observed in the previous study (Mahmood et al. 2022)9 but do suggest that 

different features have different levels of association with malignant transformation risk. With regards 

to ‘nuclear pleomorphism’, since most cases had this feature present (92/102) and none of the 

remaining 10 cases transformed, it was not possible to reliably estimate a hazard ratio. 
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Figure 19. Univariate association between time to transformation and individual features. 

Since the majority of cases (92/102) had nuclear pleomorphism, and none of the remaining 10 

transformed, the hazard ratio could not be reliably estimated.
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4.2.3.7 Prognostic Performance by Assessors 

Similar to the previous study, the prognostic performance of the ‘six-point’ and ‘two-point’ models were 

calculated separately for each of the three raters, reflecting how the models are likely to be used in 

diagnostic practice (Table 8). The AUROC was almost identical for two of the three assessors, whilst 

the AUROC for the third rater was slightly lower. Overall, the ‘six-point’ model demonstrated better 

prognostic ability for the individual raters compared with the ‘two-point’ model. 

Table 8. Prognostic performance by individual assessor and overall. 

Overall Assessor 1 Assessor 2 Assessor 3 

6-point model 0.81 0.81 0.80 0.75 

2-point model 0.73 0.72 0.72 0.70 

4.2.4 Discussion 

This study conducts validity testing of the previously proposed ‘six-point’ and ‘two-point’ scoring 

models for malignant transformation prediction in OED. Findings demonstrate the ‘six-point’ model as 

being the most predictive system (AUROC 0.81) compared to the ‘two-point’ model, WHO and binary 

grading systems (AUROC 0.68-73). Whilst the ‘two-point’ model did perform better than the WHO and 

binary grading systems, this was to a lesser extent (AUROC 0.73). The addition of clinical variables 

further improved model performance for both the ‘two’- and ‘six-point’ models, albeit marginally.  

A key aspect of histological grading is to assist clinicians with the management of individual patients 

with OED. However, it is evident from this study that existing grading systems are less reliable at 

predicting prognosis, and there is a need for improvement. Currently, diagnosis and grading of OED 

using the ‘gold standard’ WHO (2017) classification relies on identification of a wide range of 

histological architectural and cytological features (28 in total) but this approach places little value on 

the strength of individual features. The ‘six-point’ model was first developed by Mahmood et al. (2022) 

using features identified as having adequate inter-rater agreement and a statistical association with 

clinical outcomes. This model demonstrates that, assessment of just six histological features with 

attributed strength, can significantly improve predictive ability, and may be more prognostically reliable 

than identification of a wider range of features.  

Having said this, when using the ‘six-point’ model, the allocation of single point per feature implies 

that the six features each have the same importance, a choice that was made pragmatically on two 

grounds: to avoid overfitting to the data, and for ease of use of the eventual score. The assumption of 

equal weighting has been verified by evaluating the hazard ratio of each feature individually (Figure 

19) demonstrating that different features have different levels of association with malignant
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transformation. Therefore, any future improvements of this scoring model may consider giving 

different weights to the individual features, or even removing ‘redundant’ features entirely from the 

model. That said, the incremental benefit of doing so for the data presented in this study would have 

been relatively small. Re-fitting the model to allow the different weights for these features produced 

an AUROC of 0.82, compared to the 0.81 observed from allocating equal weight to the six individual 

features. 

Interrater reproducibility is a potentially important feature of grading, however, reproducibility does not 

necessarily reflect accuracy, because it is possible to be reproducibly incorrect. In the present study, 

despite the considerable interobserver variability for certain histological features (i.e. ‘loss of epithelial 

cohesion’ - Gwet’s AC1 0.29; ‘suprabasal mitosis’ - Gwet’s AC1 0.06) (Table 4), the ‘six-point’ model 

still retained good prognostic strength, further supporting its robustness and credibility as a prognostic 

tool.  

Another point of consideration for the newly proposed models is that they are based on the consensus 

of three raters; for instance, ‘bulbous rete pegs’ is defined as present if at least two of the three 

assessors considered it present, and otherwise absent.  This may well overestimate how well the 

model works in practice where an assessment is made by a single pathologist; introducing 

measurement error will typically lessen associations. To address this, the ‘two’- and ‘six-point’ models 

were calculated separately for each assessor (Table 8) and findings have shown that the ‘six-point’ 

model has better prognostic ability for the individual raters compared with the ‘two-point’ model. 

The addition of clinical variables only marginally improved model performance (Table 7), supporting 

findings from the previous study by Mahmood et al. (2022)9. Due to the retrospective nature of the 

study, it was not possible to consistently and reliably obtain social history information, therefore the 

impact of smoking, tobacco use and alcohol on prognostic ability could not be investigated.  

Prospective validation of the proposed models should aim to consider evaluation of these variables, 

which are known to be important risk factors for OED and subsequent cancer development.  

This study independently validates the prognostic ability of the ‘six-point’ model for OED progression 

on a multicentric sample of cases. Our findings highlight that the presence of a smaller number of 

features with high prognostic strength, may be potentially more important than the presence of a larger 

number of features of low to moderate prognostic strength. It is hoped that this approach will provide 

pathologists, clinicians and patients with more reliable information about the behaviour and 

progression of OED lesions and guide treatment decisions. Based on the findings from this study, the 

authors encourage the informal integration of the ‘six-point’ model alongside existing grading systems. 

Meanwhile, a larger scale multi-centre prospective study is required prior to establishing its formal use 

in clinical practice.  
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Chapter 5 – Novel Morphometric Digital Feature Analysis 

This chapter has been reproduced from a peer-reviewed publication for which the candidate is first 

and primary contributing author. This study conducts a digital quantitative analysis of cellularity, nuclei 

morphometry, cell cytoplasm colour intensity and thickness/perimeter in OED epithelium and explores 

the prognostic value of these features to develop a predictive model for OED recurrence and malignant 

progression. Independent external validation of the proposed model was conducted using unseen 

datasets from three other national and international centres. 

The candidate’s contributions to this study were: 

i. obtaining ethical approval

ii. slide retrieval, dataset preparation and clinical data collection

iii. digital quantitative and statistical analysis

iv. multivariable model development, testing and validation

v. writing up the manuscripts

The study was conceptualised with guidance from supervisors. 

Datasets for model validation were acquired from external national and international centres including: 

1) Precision Medicine Centre, Patrick G. Johnston Centre for Cancer Research, Queen’s University

Belfast, UK; 2) Institute of Head and Neck Studies and Education (InHANSE), Birmingham, UK and 

3) Piracicaba Dental School, UNICAMP, Brazil.

Statistical support was provided by Mike Bradburn, senior statistician at the Clinical Trials Research 

Unit, University of Sheffield.  
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BACKGROUND: Oral epithelial dysplasia (OED) is the precursor to oral squamous cell carcinoma which is amongst the top ten
cancers worldwide. Prognostic significance of conventional histological features in OED is not well established. Many additional
histological abnormalities are seen in OED, but are insufficiently investigated, and have not been correlated to clinical outcomes.
METHODS: A digital quantitative analysis of epithelial cellularity, nuclear geometry, cytoplasm staining intensity and epithelial
architecture/thickness is conducted on 75 OED whole-slide images (252 regions of interest) with feature-specific comparisons
between grades and against non-dysplastic/control cases. Multivariable models were developed to evaluate prediction of OED
recurrence and malignant transformation. The best performing models were externally validated on unseen cases pooled from four
different centres (n= 121), of which 32% progressed to cancer, with an average transformation time of 45 months.
RESULTS: Grade-based differences were seen for cytoplasmic eosin, nuclear eccentricity, and circularity in basal epithelial cells of
OED (p < 0.05). Nucleus circularity was associated with OED recurrence (p= 0.018) and epithelial perimeter associated with
malignant transformation (p= 0.03). The developed model demonstrated superior predictive potential for malignant
transformation (AUROC 0.77) and OED recurrence (AUROC 0.74) as compared with conventional WHO grading (AUROC 0.68 and
0.71, respectively). External validation supported the prognostic strength of this model.
CONCLUSIONS: This study supports a novel prognostic model which outperforms existing grading systems. Further studies are
warranted to evaluate its significance for OED prognostication.

British Journal of Cancer; https://doi.org/10.1038/s41416-023-02438-0

BACKGROUND
Oral epithelial dysplasia (OED) is a ‘pre-cancerous state’ histolo-
gically characterised by cellular atypia with loss of normal
maturation and stratification of stratified squamous epithelium
[1, 2]. Its progression to malignancy (oral squamous cell carcinoma
or OSCC) is a progressive multi-step process which can be initiated
by chemical carcinogen exposure (such as tobacco) [3], genetic
mutations [4–6] and in a small subset of cases, by high-risk human
papilloma virus (HPV) [7]. The progression of OED to OSCC is
variable (mild OED 1.7%; severe OED 3.57%, annually) [8, 9] and
difficult to predict due to poor understanding of the disease
pathway [10, 11].
Conventionally, a diagnosis of OED is reached following

identification of a wide range of histological architectural (whole
epithelium) and cytological (individual keratinocyte) abnormalities
using the World Health Organisation (WHO) criteria [12]. This

three-tier grading system (mild, moderate, severe) was recently
updated from the fifth edition of the WHO classification to further
expand the range of diagnostic features to twenty-seven in total
(14). However, the prognostic strength of these features remains
poorly understood [13, 11] and, individually, many of them are
relatively non-specific [11] and evident in a host of other non-
dysplastic conditions (such as reactive atypia in inflammatory and
ulcerative conditions or fungal infections) [11, 14]. As such,
conventional grading is an unreliable predictor of cancer risk,
further complicated by inter and intra-observer inconsistencies
[15], variations in interpretation of findings [11], and alternative
proposed grading systems [16, 17]. Grading should, therefore, not
be used as a sole indicator for treatment selection.
In addition to the ‘conventional’ OED features, there are also a

range of other features seen in OED, which are not routinely
quantified or analysed by the pathologist, nor known to be
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correlated to clinical outcomes. Such features include alteration in
cell numbers, differences in lesion architecture and thickness,
variations in nuclei geometry and staining intensity of cell
cytoplasm. The importance of these features in OED progression
to malignancy has not been given much attention, perhaps due to
difficulty in their visual assessment using conventional microscopy
methods, and the time consuming and laborious nature of cellular
level analysis.
Whilst several studies have focussed on the strength of grading

alone, it is important to acknowledge that the ‘global’ grade is not
always representative of feature severity, nor does it consider clinical
variables (such as age, gender or clinical site). More recently, the ‘six-
point’ and ‘two-point’ prognostic models were developed using
cytological and architectures features associated with malignant
transformation and recurrence with good inter-observer agreement
[18]. The authors found that the strength of these models increased
when combined with histological grading and clinical characteristics,
outperforming conventional grading systems alone. This highlights
the need to further explore prognostic associations of novel
histological variables in a similar manner, through development
and testing of multivariable models. With the advancement of
digital pathology methods, it is now possible to conduct detailed
quantitative histological analyses of digitised whole-slide images (or
WSI) of Haematoxylin and Eosin (H&E) stained tissue sections using
computer-assisted approaches [19]. WSIs contain large volumes of
data which can be useful for exploration of prognostic markers.
Digital image analysis allows automated detection of cell nuclei and
subsequent quantification assessment of subcellular compartments
[20] generating data in an objective and reproducible manner for
downstream analysis.
This study consists of three parts. First, we conduct a digital

quantitative analysis of cellularity, nuclei morphometry, cell
cytoplasm colour intensity and thickness/perimeter in OED
epithelium, to explore differences between dysplasia grades and
non-dysplastic oral epithelium. Secondly, we explore the prog-
nostic value of these features and develop a predictive model for
OED recurrence and malignant progression. Finally, we conduct
external validation of the proposed model using three indepen-
dent datasets from other national and international centres.
Whilst the application of digital image analysis to study oral

premalignant disorders is increasing, few studies have applied
these methods for exploration of histological predictors in OED.
This study provides novel insight into OED progression, identifying
new and potentially important features for clinical outcome
prediction.

MATERIALS AND METHODS
Training dataset and clinical data
A retrospective sample of 75 OED cases (one representative H&E slide per
case) were used for quantitative histological feature analysis and develop-
ment of the multivariate predictive models. Where feature-specific compar-
isons are made, a control sample of 25 non-dysplastic oral tissue sections
(including hyperplasia and traumatic hyperkeratosis) were used. These slides
were obtained from the local pathology archive (School of Clinical Dentistry,
University of Sheffield, UK, dating 2008–2013). Purposive sampling was used
to include equal numbers for mild, moderate and severe grades and controls
(n= 25 each). A minimum of 5-year clinical follow-up was required. Cases
were also re-graded using the binary OED grading system.
Prior to the inclusion of cases, slides were independently reviewed by

two pathologists (SAK, PH) to ensure tissue sections were of suitable
quality for analysis. HPV-related OED and verrucous lesions were excluded,
based on morphological analysis, as they are distinct entities with
reportedly different features and behaviour. Cases were also excluded if
(1) there was no associated H&E slide, (2) there was insufficient epithelial
tissue for analysis, (3) the slide was of poor staining quality, appeared
distorted/blurred, had tissue artefacts/folds or (4) there was incomplete or
irretrievable follow-up data. Ethical approval was obtained (18/WM/0335)
and experimental methods were conducted in line with the Declaration of
Helsinki.

Clinical data were obtained from patient case notes and various online
hospital clinical systems. Collected data included demographic details and
relevant diagnostic information including intra-oral biopsy site, original
histological OED grade (WHO, 2017), treatment information, and whether
the lesion had transformed or recurred. The clinicians abstracting this data
were blinded to patient outcomes. We defined transformation as a
dysplastic lesion which had progressed to OSCC at the same clinical site,
and recurrence as a dysplastic lesion which had occurred at the same
clinical site following surgical excision within the follow-up period.

Quantitative histological feature analysis
New 4 µm H&E sections of the selected cases were digitised to high-
resolution WSIs using Aperio CS2 (Leica Biosystems, Germany) and
Hamamatsu NanoZoomer 360 (Japan) scanners. QuPath (version 0.3.0)
bioimage analysis software [21] was used for quantitative histological
analysis. This platform was chosen due to its powerful annotation,
visualisation and built-in cell and nuclear detection tools [21], in addition
to its reported reproducibility in tissue-based biomarker studies [22].
Regions of interest (ROIs) corresponding to histologically representative

areas were identified for each image and confirmed by several authors
(HM, PH, SAK). Within each ROI, the full thickness of the epithelium was
demarcated for localised quantitative analysis. For consistency, a minimum
of three and a maximum of four ROIs were selected per whole-slide image,
with a closely matched area (300,000 ± 400 µm^2). A standardised cell
detection threshold of 0.04 was set (at ×10 magnification) and other
default parameters were kept consistent across all ROIs. The cell detection
algorithm in QuPath was utilised to quantify cell numbers and extract a
range of other features as outlined below:

i. Number of epithelial cells
ii. Nuclear geometry: nuclear circularity, nuclear eccentricity, nucleus to

cell area ratio
iii. Staining intensity: nuclear haematoxylin optical density (OD),

cytoplasm eosin OD
iv. Epithelium architecture/thickness: Perimeter (µm)

Due to the inherent nature of OED, ROI-level analysis was considered
better than WSI-level analysis, as dysplasia is not always visualised
throughout the tissue section. In total, 325 ROIs were generated for
analysis and model development (mild OED n= 84, moderate OED n= 83,
severe OED n= 85, control n= 73). Extracted data were systematically
recorded in an Excel spreadsheet (Microsoft Corporation, 2018).

Measuring cell detection accuracy
To assess the reliability of QuPath’s cell detection algorithm, we conducted
a measure of accuracy based on 10 ROIs (Fig. 1). Ground-truth nuclear
segmentations within these 10 ROIs were generated semi-automatically.
An expert oral pathologist (SAK) clicked on each nucleus in the 10 ROIs.
These nuclear ‘clicks’ were then passed through NuClick [23], a deep
learning model that takes ‘click’ inputs as a guiding signal to generate
nuclear boundaries. These segmentations were then further refined
manually, where necessary, to ensure accurate nuclear segmentations.
On comparison of the QuPath nuclear segmentations to the ground-truth
segmentations, the results were promising, producing a raw Dice score of
0.73 (nuclei vs. background), a detection quality score of 0.67, a
segmentation quality score of 0.72 and a panoptic quality of 0.49. These
scores are in line with more recent nuclear instance segmentation
papers such as HoVer-Net [24], HoVer-Net+ [25] and PanNuke [26], where
Dice score and segmentation quality measure the performance of nuclei
segmentation and detection quality, panoptic quality and aggregated
jaccard index give measures of the individual nuclear detections.

Development and validation of prognostic models
Multivariable logistic regression analysis was conducted to model the
different histological features for prediction of malignant transformation
and OED recurrence. The models were developed using different
combinations of parameters, and for clinical interest we did not restrict
these combinations to only features that were statistically significant.
Model performance was visualised by measuring the Area Under the
Receiver Operating Characteristic (AUROC) curve.
External validation was performed using further OED cases pooled from

four different centres (n= 121, 287 ROI: 79 mild, 106 moderate and
112 severe) (Table 1); these cases were not part of the original model
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development. 60 patients were female (49.5%) and 61 were male (50.5%),
with a mean age of 59 years (S.D 12.55). Intra-oral sites included ventral/
lateral tongue (60%, n= 72), buccal mucosa (14%, n= 17), floor of mouth
(16%, n= 20), palate (6%, n= 7) and alveolar ridge (4%, n= 5).
Independent grading confirmed 27% mild (n= 33), 36% moderate
(n= 43) and 37% severe (n= 45) OED lesions. Binary grading confirmed
43 low grade (36%) and 78 high grade (64%) lesions. 39 lesions progressed
to OSCC (32%), with an average time to transformation of 45 months
(median 42, S.D 33, IQR 54) (Table 1). Amongst the 121 cases, only 34 cases
were used for validation of the recurrence model; the remainder could not

be used to reliably predict recurrence status due to incomplete follow-up
data. The average time to recurrence was 19 months (median 12, S.D 17,
IQR 28).

Statistical analysis
GraphPad Prism® statistical software (version 9.3.1) was used for analysis.
Descriptive statistics were performed for all histological variables.
Continuous data were tested for normality using Shapiro–Wilk or
D'Agostino & Pearson tests. Where normal distribution was assumed, an
unpaired two-tailed T-test or one-way ANOVA with an applicable post-hoc
analysis (Tukey’s or Dunnett’s) was performed for pairwise comparisons.
Individual histological feature associations with clinical outcomes were
determined using binary logistic regression, and multivariate regression
analysis for the development and testing of the models. Prognostic
discrimination was visualised by AUROC curves with a 95% confidence
interval. All tests were two-tailed, and p values adjusted for multiple
comparisons testing.

RESULTS
Quantitative analysis and model development
Amongst the OED dataset used for quantitative feature analysis
and model development (n= 75), independent grading assess-
ment confirmed 25 each for mild, moderate and severe WHO
grades (Table 1). Binary grading revealed 33 low grade and 42
high grade lesions. 47 patients (63%) were male and 28 (37%)
females with a median age of 65 years (IQR 21). Intra-oral sites
included the floor of mouth (n= 15, 20%), buccal/labial mucosa
(n= 13, 17%), tongue (n= 39, 52%), gingivae (n= 4, 5%) and
hard/soft palate (n= 4, 5%). 25% of lesions (n= 19) progressed to
OSCC, with an average transformation time of 31 months (median
24, S.D 26.14, IQR 48). 35% of lesions recurred (n= 26) with an
average recurrence time of 35 months (median 24, S.D 35.42, IQR
24) (Table 1).

Quantitative analysis of cellularity
Increased epithelial cellularity was seen in OED compared to
control (mean cell number: mild OED 1773 [95% CI 1541–2005],
moderate OED 1776 [95% CI 1637–1915], severe OED 1909 [95%
CI 1600–2076] vs. control 1508 [95% CI 1302–1728]), though these
differences were not significant (Fig. 2). In contrast, the cellularity
in OED was reduced in the basal epithelial layer of OED compared
to control (mild OED+moderate OED+ severe OED vs. control
p= 0.02; low grade OED+ high grade OED vs. control p= 0.01).
Further differences were observed between individual grades:
moderate OED vs. control (p= 0.02, 95% CI 5.66–90.99) and high
grade OED vs. control (p= 0.007, 95% CI 11.75–82.87) (Fig. 2).
There was no statistical association between epithelial cellularity
(in the full thickness of the epithelium or basal epithelial layer)
with clinical outcomes (Table 2).

Quantitative analysis of nuclear and cytoplasmic features
Grade-related differences in cytoplasmic eosin OD were seen in
OED epithelium (mild OED vs. moderate OED vs. severe OED
p= 0.03 and low grade vs. high grade OED p= 0.02) with higher

Table 1. Cohorts for model development and validation with
respective grade (WHO, 2017) breakdown and clinical outcomes.

N Transformation Recurrence

DEVELOPMENT COHORT

School of Clinical Dentistry, Sheffield, UK

Mild 25 1 (1%) 2 (3%)

Moderate 25 9 (12% 11 (15%)

Severe 25 9 (12%) 13 (17%)

Total 75 19 (25%) 26 (35%)

Overall Total 75

VALIDATION COHORT

School of Clinical Dentistry, Sheffield, UK

Mild 4 0 (0%) 0 (0%)

Moderate 6 2 (13%) 2 (13%)

Severe 5 3 (20%) 2 (13%)

Total 15 5 (33%) 4 (27%)

Piracicaba Dental School, UNICAMP, Brazil

Mild 8 2 (11%) 1 (5%)

Moderate 7 1 (5%) 1 (5%)

Severe 4 1 (5%) 1 (5%)

Total 19 4 (21%) 3 (15%)

Queen’s University Belfast, UK

Mild 1 1 (2%) Not recorded

Moderate 16 10 (22%)

Severe 28 14 (31%)

Total 45 25 (55%)

Institute of Head and Neck Studies and Education (InHANSE),
Birmingham, UK

Mild 20 0 (0%) Not recorded

Moderate 14 3 (7%)

Severe 8 2 (5%)

Total 42 5 (12%)

Overall Total 121

The total number in the development and validation cohort are in bold.

Ground Truth QuPath

Fig. 1 A comparison of the ground truth (middle) vs. QuPath’s cell detection tool (right) for nuclear detection and segmentation. The raw
image is displayed on the left. Colour key: green nuclei= true positives; blue nuclei= false negatives; red nuclei= false positives.
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detection levels in the more severe lesions (Fig. 2). No significant
grade-related differences were seen for nuclear circularity, nuclear
eccentricity, nuclear haematoxylin OD or nucleus/cell area ratio
(Fig. 2). Basal epithelial layer analysis demonstrated significant

differences between WHO grades for nuclear eccentricity
(p= 0.02) and cytoplasm eosin (p= 0.04). These two features
were also significant between binary grades (p= 0.0004 and
p= 0.04, respectively) in addition to nuclear circularity
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Fig. 2 Grade-wise analysis of cellularity, nuclear and cytoplasmic features and perimeter in OED with comparison to control. Displayed
values represent mean values ± standard error. Asterisk denotes statistically significant result (* p ≤ 0.05, ** p ≤ 0.01).
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(p= 0.0005) (Fig. 2). There was no statistical association between
individual nuclear and cytoplasmic features (for either full
epithelium or basal epithelial layer) and malignant progression.
However, nuclear circularity in the full epithelium was associated
with OED recurrence (p= 0.02, AUROC 0.69, 95% CI 0.56–0.82)
(Table 2).

Quantitative analysis of thickness/perimeter of OED
epithelium
There were no significant differences in the perimeter/thickness of
the full epithelium between OED grades (WHO or binary) or
comparison to controls (Fig. 2). However, there was a statistical
association between the perimeter of OED epithelium and
malignant transformation (p= 0.02, AUROC 0.61 with 95% CI
0.47–0.75) (Table 2).

Prediction of malignant transformation
Comparisons between the various models demonstrated that
increasing the number of histological variables strengthened the
models’ predictive performance, both for malignant transforma-
tion and OED recurrence (Table 3). Model 6 (“epithelial cellular-
ity”+ “nuclear circularity”+ “nuclear eccentricity”+ “nucleus
haematoxylin OD mean”+ “cytoplasm eosin OD mean”+ “
nuclear/cell area ratio”+ “perimeter of epithelium”) showed good
prognostic value for prediction of malignant transformation
(AUROC 0.77, 95% CI 0.65–0.90, p= 0.0004) compared to models
with fewer histological variables (Table 3, Fig. 3). This model
demonstrated a negative predictive power of 81.25% and a
positive predictive power of 63.64%. The odds ratios for individual
features formulating this model are presented in Supplementary
Table 1. The strength of this model was further improved by
incorporating histological grading systems. The addition of “WHO
grading” (model 7) increased AUROC to 0.85 (95% CI 0.74–0.96, p
<0.0001), and the addition of “Binary grading” (model 8) produced
an AUROC of 0.86 (95% CI 0.77–0.96, p < 0.0001) (Table 3, Fig. 3).
These models performed better than WHO grading (AUROC 0.68,
95% CI 0.56–0.81, p= 0.014) and binary grading systems alone
(AUROC 0.72, 95% CI 0.60–0.84, p= 0.003) for prediction of
malignancy.
External validation was conducted on 121 additional cases

using the same features as in model 6. Doing so showed a similar
AUROC of 0.76 (95% CI 0.68–0.85, p < 0.0001) for malignant
transformation (Table 3).

Prediction of OED recurrence
Model 6 (“epithelial cellularity” + “nuclear circularity” + “nuclear
eccentricity” + “nucleus haematoxylin OD mean” + “cytoplasm

eosin OD mean” + “nuclear/cell area ratio” + “perimeter of
epithelium”) also demonstrated good performance for prediction
of OED recurrence with an AUROC of 0.74 (95% CI 0.62–0.87,
p= 0.0006) in comparison to models 1–5 where AUROC ranged
between 0.69 and 0.72 (Table 3, Fig. 3). This model demonstrated
a negative predictive power of 74.58% and a positive predictive
power of 68.75%. The odds ratio for individual features formulat-
ing this model are presented in Supplementary Table 2. Similar to
the malignant transformation models, the incorporation of current
grading systems increased model performance. The addition of
“Binary grading” (model 8) increased AUROC to 0.81 (95% CI
0.72–0.91, p < 0.0001), and addition of “WHO grading” (model 7)
optimised the performance further, yielding an AUROC of 0.82
(95% CI 0.72–0.91, p < 0.0001) (Table 3, Fig. 3).

External validation was limited to 34 individuals with confirmed
recurrence status. Model 6 retained its superior performance with
an AUROC of 0.93 (95% CI 0.81–1.00, p= 0.0005) for OED
recurrence (Table 3).

DISCUSSION
In this study, we use digital image analysis to explore and extract
quantitative data for several histological features (cell number,
nuclear and cytoplasm geometric and intensity features, lesion
thickness/perimeter) in OED epithelium to determine their
diagnostic importance and relationship with clinical outcomes.
We focussed the analysis on the full thickness of the epithelium, as
opposed to conventional epithelial ‘thirds’ used with WHO
grading, to remove layer restriction and subjectivity.
The unique aspect of this study is the development of

multivariate models for outcome prediction using the digitally
quantified histological data. Our findings demonstrated that the
combination of all the major digital histological features (Model 6:
“epithelial cellularity” + “nuclear circularity” + “nuclear eccen-
tricity” + “nucleus haematoxylin OD mean” + “cytoplasm eosin OD
mean” + “nuclear/cell area ratio” + “perimeter of epithelium”) was
associated with greater predictive performance for both malignant
transformation and OED recurrence in comparison to conventional
histological grading systems (Table 3, Fig. 3). Model 6 yielded good
predictive performance for malignant transformation (AUROC of
0.77, 95% CI 0.64–0.90, p= 0.0004) and OED recurrence (AUROC of
0.74, 95% CI 0.61–0.86, p= 0.0006) which exceeded that of WHO
grading (AUROC 0.69, p= 0.01) and binary grading (AUROC 0.72,
p= 0.0037) alone. External validation of model 6 supported its
superior performance (AUROC of 0.76, 95% CI 0.68 –0.85,
p < 0.0001 for malignant transformation and AUROC of 0.93, 95%
CI 0.81–1.00, p= 0.0005 for OED recurrence) (Table 3). The

Table 2. Statistical association of individual histological features with clinical outcomes for the full thickness of the epithelium and basal epithelial
layer (n= 75).

Full epithelium Full epithelium Basal epithelial layer Basal epithelial layer

Event MT R MT R

AUROC p value AUROC p value AUROC p value AUROC p value

Cellularity 0.5075 0.7877 0.5188 0.841 0.5241 0.7824 0.5137 0.6818

Perimeter 0.6118 0.0336* 0.5683 0.1012 not assessed

Nucleus circularity 0.6471 0.0645 0.6903 0.0180* 0.535 0.7659 0.5534 0.6668

Nucleus eccentricity 0.6405 0.0639 0.5687 0.2975 0.5145 0.9563 0.5573 0.2392

Nucleus haematoxylin OD 0.5348 0.8844 0.5553 0.5495 0.5464 0.6162 0.5522 0.5059

Cytoplasm eosin OD 0.5531 0.4115 0.5856 0.1747 0.5559 0.5787 0.5895 0.1915

Nuclear/cell area ratio 0.5428 0.2621 0.5114 0.6103 0.5423 0.3326 0.5353 0.3967

Asterisk denotes statistically significant result (* p ≤ 0.05, ** p ≤ 0.01).
MT malignant transformation, R OED recurrence AUROC area under receiver operating characteristic.
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performance of this model was further enhanced by adding
individual grading systems (Models 7 and 8, Table 3), which yielded
even better predictive potential than each alone, highlighting the
potentially valid contribution of grading to clinical outcome
prediction. More extensive validation on larger datasets is needed
to establish the clinical utility of these features and models.
With regards to epithelial cellularity, there was an increased cell

number in OED epithelium (compared to control) with more
pronounced cellularity in severe/high grade OED lesions (Fig. 2). In
contrast, a reduced basal cellularity was seen in OED epithelium
compared to control (p= 0.02) with similar differences between
moderate OED vs. control (p= 0.02) and high grade OED vs.
control (p= 0.007). This is contrary to what we had expected,
since basal cell crowding is thought to be associated with
dysplasia severity. This finding can be explained by the increased
level of cellular disarrangement and pleomorphism seen in more
dysplastic regions, which in turn, may have resulted in fewer cells
being detected. Whilst there were no significant prognostic
correlations for cellularity in our study, further investigation of
its diagnostic importance is worth exploring, considering the
quantitative differences observed against non-dysplastic lesions.
Epithelial thickness was quantitatively evaluated by measuring

the perimeter (length/distance) of the lesion margin/periphery, as
an indirect measure of rete process/ridge morphology, a common
feature of OED. Findings demonstrated the perimeter of OED
epithelium to be particularly associated with malignant transfor-
mation (p= 0.03, AUROC 0.61 with 95% CI 0.47–0.75) (Table 2)
indicating that epithelial thickness (or indirectly, curvature) may
be a potentially important predictor of OED progression.
Whilst some studies have explored the effect of histomorpho-

logical characteristics, such as lesion thickness and cellularity in
the diagnosis of premalignant lesions, few have studied this

specifically in OED. One study showed differences in maximum
lesion thickness and cellularity in high grade cervical squamous
intraepithelial lesions compared to p16-positive cervical tissue
biopsies [27]. In another study, microscopic analysis of oesopha-
geal squamous dysplasia showed increased cellularity, disordered
cell arrangement and loss of polarity in the basal layer [28]. Further
analysis of keratin thickness, pattern and morphology in OED
would be interesting to explore, particularly as abrupt orthoker-
atosis and verrucous surface architectures are frequently seen in
oral potentially malignant disorders.
Analysis of nuclear and cytoplasmic features highlighted certain

features to be more pronounced in OED with some differences
between grades (Fig. 2). Relevant features include cytoplasm eosin
OD (full epithelium, p= 0.025–0.035; basal layer, p= 0.037–0.039),
nucleus eccentricity (basal layer, p= 0.0004 for binary grades,
p= 0.016 for WHO grades) and nucleus circularity (basal layer,
p= 0.0005 for binary grades). Eosin is a common synthetic dye
used in H&E tissue analysis. It is a negatively charged dye which
stains basic components of a cell, mainly positively charged
proteins (or acidophilic) structures such as amino groups in the
cytoplasm a bright pink colour, which contrasts with blue
haematoxylin staining [29]. There is a lack of published research
to explain the clinical relevance of increased cytoplasm eosin
levels, particularly concerning OED diagnosis. However, our
findings may be explained by the altered nuclear morphometry
in dysplastic cells, which in turn, could affect eosin amount and
representation. For example, an increase in cell size (cellular
pleomorphism) may relate to increased cytoplasm eosin content.
Furthermore, the presence of dyskeratosis and premature/
individual cell keratinisation may contribute, giving the cytoplasm
a more eosinophilic cytoplasm. Other potentially relevant clinical
features relate to nuclear eccentricity (the displacement of the

Table 3. Multivariate histological models for prediction of malignant transformation (MT) and OED recurrence (R).

Model Malignant Transformation OED Recurrence
AUROC 95% CI p value AUROC 95% CI p value

"WHO Grade" 0.688 0.5643 to 0.8116 0.0148a 0.7159 0.5993 to 0.8324 0.0022a

"Binary Grade" 0.7242 0.6022 to 0.8461 0.0037a 0.719 0.6001 to 0.8379 0.0019a

1
"Epithelial cellularity" "nuclear circularity" 0.6419 0.5048 to 0.7791 0.0658 0.6931 0.5653 to 0.8209 0.0062a

0.7117 0.6131 to 0.8103 0.0002a 0.7778 0.5883 to 0.9672 0.0253a

2
"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity" 0.6617 0.5197 to 0.8036 0.0361a 0.6939 0.5655 to 0.8223 0.0060a

0.7367 0.6446 to 0.8289 <0.0001a 0.836 0.6422 to 1.000 0.0068a

3

"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity"
"nuclear haematoxylin OD" 0.6607 0.5178 to 0.8037 0.0372a 0.6923 0.5634 to 0.8212 0.0064a

0.7473 0.6579 to 0.8367 <0.0001a 0.9048 0.7912 to 1.000 0.0011a

4

"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity"
"nuclear haematoxylin OD mean" "cytoplasm eosin OD mean" 0.6983 0.5486 to 0.8481 0.0102a 0.7143 0.5849 to 0.8437 0.0024a

0.7467 0.6574 to 0.8360 <0.0001a 0.8995 0.7833 to 1.000 0.0013a

5

"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity" 
"nuclear haematoxylin OD" "cytoplasm eosin OD mean" 
"nuclear/cell area ratio" 0.7491 0.6134 to 0.8847 0.0012a 0.7292 0.6037 to 0.8547 0.0012a

0.7692 0.6832 to 0.8553 <0.0001a 0.9153 0.8045 to 1.000 0.0008a

6

"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity"
"nuclear haematoxylin OD" "cytoplasm eosin OD mean"
"nuclear/cell area ratio" "Perimeter of epithelium" 0.7744 0.6463 to 0.9026 0.0004a 0.741 0.6164 to 0.8656 0.0006a

0.7692 0.6833 to 0.8552 <0.0001a 0.9312 0.8103 to 1.000 0.0005a

7

"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity"
"nuclear haematoxylin OD" "cytoplasm eosin OD mean"
"nuclear/cell area ratio" "Perimeter of epithelium" "WHO Grade" 0.8506 0.7428 to 0.9583 <0.0001a 0.8155 0.7184 to 0.9127 <0.0001a

0.788 0.7085 to 0.8762 <0.0001a 0.963 0.9011 to 1.000 0.0002a

8

"Epithelial cellularity" "nuclear circularity" "nuclear eccentricity"
"nuclear haematoxylin OD" "cytoplasm eosin OD mean"
"nuclear/cell area ratio" "Perimeter of epithelium" "Binary Grade" 0.8647 0.7666 to 0.9628 <0.0001a 0.814 0.7174 to 0.9105 <0.0001a

0.7946 0.7035 to 0.8724 <0.0001a 0.9418 0.8465 to 1.000 0.0004a

Histological Variables

Each model is developed using 75 OED slides (252 ROI; 84 mild, 83 moderate, 85 severe). The first two rows indicate the prognostic strength of individual
grading systems without additional variables, for reference. The rows highlighted in grey indicate the external validation results for model prediction (MT,
n= 121; R, n= 34).
aDenotes a statistically significant finding.
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nucleus from the centre of the cell) and nuclear circularity (the
degree to which the nucleus has deviated from circularity). Both
these features are of diagnostic relevance in dysplastic lesions, in
addition to other nuclear morphological features such as
circularity, compactness, density and nuclear-cell ratio [30, 31]. In
our study, nuclear circularity was also found to be associated with
OED recurrence (p= 0.02, AUROC 0.693 with 95% CI 0.56–0.82)
(Table 2).
The authors acknowledge some limitations of the current

study. The first relates to the training sample used for
quantitative analysis and model development, which includes
cases from a single centre. However, the department in question
is a UK national referral centre receiving OED cases from a wide
geographical region, thereby incorporating varied samples from
different patient groups. Whilst the sample size may be
considered small, it must be highlighted that the digital
quantitative evaluation has been conducted on 252 OED ROIs
which is considered sufficient to draw initial conclusions. The
second limitation relates to the selection of cases through
purposive sampling, which may introduce an element of bias.

However, we have tried to mitigate this risk, as our models have
been tested on WSIs from four different national and interna-
tional centres. These cases include a variable mix of dysplasia
grades, a large proportion of transformed cases and have been
scanned using different scanners. As such, the sample has
increased biological and technical diversity which improves the
robustness and generalisability of the developed models.
Another limitation relates to potential staining variations
between WSI cohorts. This has been somewhat overcome by
using a training sample from a single centre, which follows
consistent staining protocols. Whilst stain variation may intro-
duce problems when machine learning algorithms are being
developed, it is less problematic in purely quantitative digital
image analysis. Slide stains are also not ‘normalised’ in routine
diagnostic practice, so it is a more representative reflection of
real-world approaches.
As we progress towards a digital pathology workflow, this

study highlights the potential of digital image analysis tools for
the study and prognostication of complex oral diseases. Our
findings provide novel insights into OED progression, by
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Fig. 3 ROC curves for multivariate models for malignant transformation (MT) and OED recurrence (R).
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identifying new histological predictors that are not routinely
considered in diagnostic practice. To the best of the authors’
knowledge, this is the first study to quantify and correlate
cellularity, geometric, colour and perimeter features in OED to
clinical outcomes. Further analysis on larger multicentric cohorts
is needed to validate and refine our findings to determine the
full prognostic value of the studied features for wider clinical
application.
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Abstract
Oral epithelial dysplasia (OED) is diagnosed and graded using a range of histological features, making grading subjective 
and challenging. Mitotic counting and phosphohistone-H3 (PHH3) staining have been used for the prognostication of vari-
ous malignancies; however, their importance in OED remains unexplored. This study conducts a quantitative analysis of 
mitotic activity in OED using both haematoxylin and eosin (H&E)-stained slides and immunohistochemical (IHC) staining 
for PHH3. Specifically, the diagnostic and prognostic importance of mitotic number, mitotic type and intra-epithelial loca-
tion is evaluated. Whole slide images (WSI) of OED (n = 60) and non-dysplastic tissue (n = 8) were prepared for analysis. 
Five-year follow-up data was collected. The total number of mitosis (TNOM), mitosis type and intra-epithelial location was 
manually evaluated on H&E images and a digital mitotic count performed on PHH3-stained WSI. Statistical associations 
between these features and OED grade, malignant transformation and OED recurrence were determined. Mitosis count 
increased with grade severity (H&E: p < 0.005; IHC: p < 0.05), and grade-based differences were seen for mitosis type and 
location (p < 0.05). The ratio of normal-to-abnormal mitoses was higher in OED (1.61) than control (1.25) and reduced with 
grade severity. TNOM, type and location were better predictors when combined with histological grading, with the most 
prognostic models demonstrating an AUROC of 0.81 for transformation and 0.78 for recurrence, exceeding conventional 
grading. Mitosis quantification and PHH3 staining can be an adjunct to conventional H&E assessment and grading for the 
prediction of OED prognosis. Validation on larger multicentre cohorts is needed to establish these findings.
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Introduction

Oral epithelial dysplasia (OED) describes a spectrum of 
histologically identified architectural and cytological dis-
turbances involving the oral epithelium [1]. These lesions 
may progress to oral squamous cell carcinoma (OSCC) [2]. 
Higher grade lesions have higher risk of transformation, 
highlighting the need for an early and accurate diagnosis [1]. 
OSCC is the most common malignant neoplasm of the oral 
cavity associated with a myriad of environmental aetiologies 
and genetic alterations [3–5].

Because of the direct relationship between OED and 
malignant transformation, the dysplasia grade is consid-
ered the most important prognosticator for malignant 
transformation [5]. However, the current grading system 
(WHO, 2017) is associated with poor reproducibility, 
which can result in an inconsistent and unreliable diag-
nosis [6]. Suggestions to mitigate these shortcomings 
include the use of clinical determinants and molecular 
markers [7]. The binary grading system is an alternative 
criteria proposed to improve observer reproducibility 
by quantifying the minimum number of cytological and 
architectural features required for a diagnosis [8]. How-
ever, this classification uses the same histological features 
listed in the WHO Classification, and there remains a lack 
of high-quality evidence to support the prognostic impor-
tance of many of these features [2]. The recent update 
from the 5th Edition of the WHO Classification includes 
additional features, such as apoptotic mitoses and single 
cell keratinisation. However, the clinical relevance for 
inclusion of these features is unclear [9]. A recent study 
explored histological feature-specific associations in 
OED with clinical outcomes. The predictive performance 
of the proposed models for OED progression exceeded 
conventional grading [10]. However, a more detailed and 
prospective analysis of individual histological features 
is still needed to establish a more objective predictive/
grading system.

Mitotic figure counting is used for diagnosis and prognos-
tication of various malignancies [11–14] including breast, 
gastric and neuroendocrine carcinomas [13, 15–17]. How-
ever, its importance in precancer diagnosis and progression 
is yet to be explored. The main limitation of mitosis count-
ing is the tediousness of the manual approach, in addition 
to interpretation differences due to variations in chromatin 
arrangements in the different mitotic stages, and the resem-
blance of apoptotic bodies and pyknotic nuclei with mitotic 
bodies (Fig. 1) [18]. Many of these limitations can now be 
overcome by the increasing number of digital/computational 
tools which allow for automated quantification, providing 
more objective, efficient and reliable outputs [19]. However, 
in the case of mitotic cell counting, attention also needs to 

be given to the presence of abnormal mitotic forms, char-
acterised by mitotic asymmetry or an abnormal segregation 
of chromosomes [20].

Various biomarkers have been implicated in OED pro-
gression, but the evidence to support their routine use is 
still lacking [21]. Phosphohistone-H3 (PHH3) is a specific 
protein phosphorylated during chromatin condensation in 
mitosis [22]. It stains positively during the late G2 phase and 
M phase. Phosphorylation of the histone H3 starts to occur 
just before prophase which is not identifiable on haematoxy-
lin and eosin (H&E) examination [18], lending to the role of 
PHH3 a useful marker.

The aims of this study were threefold: first, to conduct a 
quantitative analysis of mitotic activity in OED (including 
number, type and intra-epithelial location of mitoses) using 
digitised H&E sections and immunohistochemical (IHC)-
stained tissue with PHH3; second, to evaluate changes in 
mitotic activity relative to OED progression; and third, to 
develop and explore multivariable models using mitotic 
features for prediction of OED recurrence and malignant 
transformation, with comparison to conventional grading.

Material and methods

Case selection and tissue processing

Following ethical approval (reference 18/WM/0335), a ret-
rospective sample of 68 H&E-stained tissue sections were 
retrieved from the department archive. The sample com-
prised OED sections (n = 60) of varying grades (mild, mod-
erate, severe) with 5-year post-diagnosis data, in addition 
to non-dysplastic control samples (n = 8) which included 
cases of benign hyperplasia, scar tissue and inflammatory 
oral lichen planus. Verrucous and HPV-related OED lesions 
were excluded based on morphological features, as they are 
distinct entities with reportedly different behaviours.

Prior to the inclusion, cases were independently reviewed 
by a consultant oral and maxillofacial pathologist (SAK) 
to ensure there was sufficient epithelial tissue for analysis. 
Cases with insufficient tissue, gross artefact or tangentially 
cut sections were excluded. All cases were then blindly re-
evaluated by SAK, HM (clinician with extensive expertise 
and specialist interest in OED analysis) and PH (trainee oral 
and maxillofacial pathologist) to confirm the original diag-
nosis and where necessary assign an updated OED grade 
(using WHO and binary systems). Grading variability was 
measured by a Cohen’s kappa score, which resulted in a 
value of 0.900, demonstrating good interobserver agreement.

New 5-μm-thick formalin-fixed paraffin-embedded sections 
of the selected cases were obtained for H&E and IHC stain-
ing. The sections were scanned at 40 × magnification using an 
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Aperio-CS2 scanner (Leica Biosystems, Milton Keynes, UK) 
to obtain high-resolution whole slide images (WSI) produc-
ing 68 H&E slides and 67 IHC slides for analysis. The IHC 
sample had one less case due to technical scanning/imaging 
difficulties, resulting in its exclusion at the final stage.

Clinical data collection included patient age at diag-
nosis, sex, biopsy site, original histological grade (WHO, 
2017), status of malignant transformation and recurrence 
(lesion that progressed to OSCC or recurred at the same 
clinical site following treatment within 5 years).

Fig. 1  Photomicrographs (40 ×) 
demonstrating the different 
mitotic stages observed in OED 
(black arrows) based on H&E 
(A) and PHH3-IHC staining 
(B). Photomicrographs (20 ×) 
demonstrating the different 
OED grades (WHO, 2017) 
on H&E (C) and PHH3-IHC-
stained images (D). H&E 
photomicrographs (40 ×) dem-
onstrating ‘normal’ appearance 
of mitosis (E) and ‘abnormal’ 
appearance of mitosis (F) high-
lighted by black arrow
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Immunohistochemical staining for PHH3

IHC staining was carried out for the mitosis marker PHH3 
(Ser10) using a previously described protocol [23]. A pri-
mary rabbit anti-human PHH3 polyclonal antibody (#9701; 
Cell Signalling Technology, 1:100 dilution) and a secondary 
goat anti-rabbit antibody was used. Following IHC, counter-
staining with haematoxylin and mounting in DPX was done 
for further analysis.

Analysis of mitosis activity in OED

QuPath software (v.0.3.2) was used for identification of 
regions of interest (ROI) and subsequent mitotic feature 
analysis [24]. For all slides, five rectangular-shaped ROIs 
of a consistent size (area≈165,000  mm2) corresponding to 
representative dysplastic and non-dysplastic regions were 
selected at 20 × magnification and verified by two experi-
enced clinicians (HM, SAK).

For the H&E sample (n = 68), two observers (HS, SAK), 
blinded to clinical outcomes, were asked to independently 
count and record (i) the total number of mitoses (TNOM), 
(ii) the number of ‘normal’ and ‘abnormal’ mitoses and (iii) 
the intra-epithelial mitosis location (‘basal’ or ‘suprabasal’) 
in each field. An agreement between the observers was made 
on how to qualify a ‘normal’ and ‘abnormal’ mitosis. An 
equational bipartition of the chromosomal material was used 
as standard for ‘normal’ mitosis [25], whereas the presence 
of abnormalities like binucleation, pyknotic nuclei, micro-
nuclei and broken-egg appearances qualified the mitoses to 
be ‘abnormal’ [26]. A kappa score of 0.646 was obtained 
between the two observers for independent mitosis count-
ing. In cases of wide disagreement, a consensus score was 
agreed/used for the downstream analyses. The means and 
standard deviation for the mitosis variables (TNOM, type 
and location) from the five ROIs were recorded and an aver-
age obtained for each case.

For the PHH3-IHC sample (n = 67), QuPath’s inbuilt 
‘positive cell detection’ algorithm was applied for automated 
quantification of positively stained mitoses, and intra-epithe-
lial mitosis location recorded through manual assessment 
(by HS, SAK). Due to the nature of the automated detection, 
the mitosis type could not be confirmed in the IHC sample. 
All data were exported onto a pre-structured spreadsheet in 
Microsoft Excel® (v.2206).

Statistical analyses

Statistical analyses were conducted in GraphPad Prism (v9) 
and IBM SPSS Statistics (v29.0.1.0). Data was tested for 
normality following which appropriate statistical tests were 
selected. Unpaired Student’s t-tests and one-way ANOVA 
were performed to compare differences in the TNOM, 

mitosis type and intra-epithelial location between OED 
grades and relative to control. Where relevant, an appro-
priate post hoc analysis (Tukey’s/Dunnett’s) was performed 
for pairwise comparisons. For the H&E analysis, the mean 
mitosis number and ratio of normal-to-abnormal mitoses 
were measured and compared between grades. Paired sam-
ple t-tests were conducted to compare the number of normal 
and abnormal mitoses across OED grades.

Multivariable logistic regression models were explored 
separately for H&E and PHH3-IHC samples, to assess statis-
tical relationships between individual and combined mitotic 
variables (TNOM, mitosis type, intra-epithelial location) 
with clinical outcomes (malignant transformation and OED 
recurrence). The effect of adding clinical variables (age, 
sex, intraoral site) and histological grade (WHO, binary) 
on model performance was assessed. The area under the 
receiver operator characteristic (ROC) curve was used to 
assess model accuracy and visualise performance. A p value 
of < 0.05 was considered statistically significant. Figure 2 
depicts the workflow methodology for this study.

Results

Characteristics of the OED cohort

Amongst the 60 OED cases, 39 (65%) were male, and 21 
(35%) were female, with a mean age of 61.73 years (IQR 
18.5). The clinical intraoral site distribution was the tongue 
n = 28 (46.67%), floor of mouth n = 15 (25%), buccal mucosa 
n = 8 (13.33%), gingivae n = 5 (8.33%) and palate n = 4 
(6.67%). The WHO histological grade distribution (follow-
ing blind re-analysis) was mild OED = 20 (33.33%), mod-
erate OED = 17 (28.33%) and severe OED = 23 (38.33%). 
Binary grade distribution was low-grade OED = 25 (41.7%) 
and high-grade OED = 35 (58.3%). A total of 14 cases 
(23.33%) transformed to OSCC, amongst which 8 (57.1%) 
were moderately dysplastic and 6 (42.9%) were severely dys-
plastic. Of the 19 (31.67%) cases that recurred after treat-
ment, 8 were moderately dysplastic (42.1%), and 11 were 
severely dysplastic (57.9%).

Analysis of H&E and PHH3 mitotic count

Both the H&E and IHC analyses yielded a statistically 
significant difference in the TNOM between WHO grades 
(H&E: p = 0.0005; IHC: p = 0.0073) and binary OED grades 
(H&E: p = 0.0012; IHC: p = 0.0403) (Fig. 3). A significant 
difference was also seen when comparing TNOM between 
the following groups: mild OED vs severe OED (H&E: 
p = 0.0006; IHC: p = 0.0197), moderate OED vs severe OED 
(H&E: p = 0.0113; IHC: p = 0.0181), severe OED vs control 
(H&E: p = 0.0004; IHC: p = 0.0009) and high-grade OED 
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Fig. 2  Overall workflow meth-
odology of the study. A Identi-
fication, retrieval and prepara-
tion of H&E sample (n = 68). 
B Preparation of PHH3-IHC 
sample (n = 67). Conversion of 
tissue sections to digital WSI 
and identification of ROI for 
H&E (C) and PHH3-IHC analy-
sis (D). E Manual assessment of 
mitosis activity (number, type, 
location) on H&E. F Auto-
mated mitosis quantification for 
PHH3-IHC sample. G Statisti-
cal analysis to assess mitotic 
activity in OED with correlation 
to clinical outcomes
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vs control (H&E: p = 0.0022; IHC: p = 0.0064) (Fig. 3).The 
remaining pairwise comparisons (mild OED vs moderate 
OED, mild OED vs control, moderate OED vs control and 

low-grade OED vs control) were not statistically significant. 
The mean mitosis number increased with grade severity 
(H&E: mild OED 1.32, moderate OED 2.09, severe OED 

Fig. 3  Analysis of the TNOM based on H&E sections (A, B) and 
PHH3-IHC sections (C, D) with comparisons between histologi-
cal grades and relative to control. Analysis of intra-epithelial mito-
sis location based on H&E sections (E) and PHH3-IHC sections (F) 

with comparisons between histological grade and relative to con-
trol. Asterisk indicates a statistically significant finding (*p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001, **** p ≤ 0.0001)
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4.93, low-grade OED 1.32, high-grade OED 4.07) and rela-
tive to control (0.20). A similar trend was seen in IHC analy-
sis (mild OED 3.47, moderate OED 3.26, severe OED 7.16, 
low-grade OED 3.36, high-grade OED 5.84, control 0.825).

H&E analysis of mitosis type

Normal mitotic figures

There was a significant difference in the average number 
of ‘normal’ mitoses between WHO grades (p = 0.0016) 
and binary grades (p = 0.0040) (Table 1). Significant differ-
ences were also seen between the following groups: control 
vs severe OED (p = 0.0004), control vs high-grade OED 
(p = 0.0023), mild OED vs severe OED (p = 0.0026) and 
moderate OED vs severe OED (p = 0.0143) (Table 1).

Abnormal mitotic figures

Similar trends were seen for the presence of ‘abnormal’ 
mitoses between WHO grades (p = 0.0010) and binary 
grades (p = 0.0016) (Table 1) in addition to comparisons 
between control vs severe OED (p = 0.0032), control vs 
high-grade OED (p = 0.0116), mild OED vs severe OED 
(p = 0.0010) and moderate OED vs severe OED (p = 0.0322) 
(Table 1).

Normal‑to‑abnormal mitosis ratio

The ratio of normal-to-abnormal mitoses was higher in OED 
(1.61) compared to control (1.25). This ratio was found to 
reduce with increasing grade severity. The ratios for mild, 
moderate and severe grades were 3.26, 1.49 and 1.43, and 
for low and high grades, 2.75 and 1.44, respectively. Sta-
tistically significant differences were observed when com-
paring the ratio of normal/abnormal mitoses across dif-
ferent grades (p = 0.0001 mild OED, p = 0.0289 moderate 
OED, p = 0.0470 severe OED, p < 0.0001 low-grade OED, 
p = 0.0137 high-grade OED).

Analysis of H&E and PHH3 mitosis location

Basal mitoses

A higher number of basal mitoses were observed with 
increasing grade severity, for WHO (mild OED = 1.3, mod-
erate OED = 1.905882353, severe OED = 3.269565217) 
and binary grading (low-grade OED = 1.296, high-grade 
OED = 2.89) and relative to control (0.2) on H&E assess-
ment (p < 0.0001). A similar trend was also seen on PHH3-
IHC assessment between WHO grades and relative to 
control (p = 0.0287) (Fig. 3). Further comparisons demon-
strated significance differences between mild OED vs. severe 
OED (H&E: p < 0.0001), moderate OED vs. severe OED 
(H&E: p = 0.0076; IHC: p = 0.0383), moderate OED vs. 
control (H&E: p = 0.0163), severe OED vs. control (H&E: 
p < 0.0001; IHC: p = 0.0005), low-grade OED vs. control 
(IHC: p = 0.0495) and high-grade OED vs. control (H&E: 
p < 0.0001; IHC: p = 0.0024) (Fig. 3). The remaining pair-
wise comparisons were not statistically significant.

Suprabasal mitoses

An increasing number of suprabasal mitoses were also 
observed with grade severity. Significant differences were 
shown between WHO grades (H&E: p = 0.0174; IHC: 
p = 0.0076) and binary grades (H&E: p = 0.0364; IHC: 
p = 0.0202) as well as between the following groups: mild 
OED vs. severe OED (H&E: p = 0.0302; IHC: p = 0.0123), 
moderate OED vs. severe OED (only IHC: p = 0.0446) and 
severe OED vs. control (only IHC: p = 0.0435) (Fig. 3). 
The remaining pairwise comparisons were not statistically 
significant.

Multivariable model development exploration

The association between mitosis variables, clinical char-
acteristics, histological grades and clinical outcomes was 
assessed (for H&E and PHH3-IHC analysis) using multiple 

Table 1  H&E analysis of 
mitosis type (measured by 
the presence and number 
of ‘normal’ and ‘abnormal’ 
mitoses) between individual 
grades of dysplasia (WHO and 
binary) and relative to control

Asterisk indicates statistical significance

Test parameters Normal mitoses Abnormal mitoses

p value 95% CI p value 95% CI

Mild vs moderate OED 0.9051  − 1.655 to 1.158 0.5612  − 1.674 to 0.6705
Mild vs severe OED 0.0026*  − 3.198 to − 0.5906 0.0010*  − 2.811 to − 0.6383
Moderate vs severe OED 0.0143*  − 3.009 to − 0.2817 0.0322*  − 2.360 to − 0.08647
Control vs mild OED 0.3911  − 2.527 to 0.7569 0.9543  − 1.579 to 1.159
Control vs moderate OED 0.2359  − 2.817 to 0.5490 0.4349  − 2.114 to 0.6909
Control vs severe OED 0.0004*  − 4.390 to − 1.168 0.0032*  − 3.278 to − 0.5920
Control vs low-grade OED 0.3361  − 2.391 to 0.7048 0.8349  − 1.535 to 1.031
Control vs high-grade OED 0.0023*  − 3.774 to − 0.7875 0.0116*  − 2.806 to − 0.3312
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logistic regression. For comparative purposes, the prognostic 
strength of conventional grading systems (WHO and binary) 
was also evaluated (Tables 2 and 3).

Prognostic potential of TNOM on H&E and PHH3‑IHC 
sections

The TNOM alone had a modest association with malignant 
transformation (H&E: AUROC 0.5753; IHC: 0.5468) and 
OED recurrence (H&E: AUROC 0.6297; IHC: 0.5197), 
though the strength of association increased when com-
bined with WHO grading (H&E: AUROC 0.7065 for trans-
formation, 0.7401 for recurrence; IHC: AUROC 0.7460 for 
transformation, 0.7783 for recurrence) and binary grading 
(H&E: AUROC 0.722 for transformation, AUROC 0.6926 
for recurrence; IHC: AUROC 0.7484 for transformation, 
AUROC 0.7184 for recurrence). The addition of clinical 
variables to TNOM had little or no effect on model perfor-
mance (Table 2).

Prognostic potential of mitosis location on H&E 
and IHC‑PHH3 sections

‘Basal’ mitosis was modestly associated with malignant 
transformation (H&E: AUROC 0.5815; IHC: AUROC 
0.6381) and recurrence (H&E: AUROC 0.6175; IHC: 
0.5411). In comparison, ‘suprabasal’ mitosis had a margin-
ally weaker prognostic association (H&E: AUROC 0.5388 
for transformation, AUROC 0.5854 for recurrence; IHC: 
0.6278 for transformation, AUROC 0.6217 for recurrence). 
Whilst the addition of clinical variables had little overall 
effect on the prognostic strength of mitosis location, the 
incorporation of histological grading improved predictive 
strength, particularly for ‘suprabasal’ mitoses on H&E 
(‘suprabasal mitoses’ + ‘WHO grade’ = AUROC of 0.736 
for transformation and 0.7458 for recurrence) (Table 2).

Prognostic potential of mitosis type on H&E sections

‘Abnormal’ mitoses alone had a greater predictive strength 
than ‘normal’ mitoses on H&E for transformation (AUROC 
0.6856 vs 0.5016, respectively) and recurrence (AUROC 
0.7022 vs 0.5552, respectively). However, incorporation 
of histological grading improved the predictive strength 
for ‘normal’ mitoses to a greater extent than for ‘abnor-
mal’ mitoses (‘normal mitoses’ + ‘WHO grade’ = AUROC 
0.7469, p = 0.0055 vs ‘abnormal mitoses’ + ‘WHO 
grade’ = AUROC 0.6537, p = 0.0836). The addition of clini-
cal variables had little or no effect on model performance 
(Table 3).

Prognostic models using combined mitosis features

Combining the different mitosis variables with histologi-
cal grading produced the most predictive models. The most 
superior model for prediction of transformation (‘abnor-
mal mitoses’ + ‘suprabasal mitoses’ + ‘TNOM’ + ‘WHO 
grade’) produced an AUROC of 0.8113 (p = 0.0005, 95% 
CI 0.6987 to 0.9239), and the most superior model for 
prediction of recurrence (‘abnormal mitosis’ + ‘basal 
mitoses’ + ‘TNOM’ + ‘WHO grade’) achieved an AUROC 
of 0.7895 (p = 0.0003, 95% CI 0.6777 to 0.9013). Both 
these models outperformed conventional grading systems 
(Table 3).

Discussion

This study highlights the potential importance of mitosis 
assessment and quantification in OED diagnosis and prog-
nostication. Mitosis counting has been effectively imple-
mented in the diagnosis of various malignancies [13, 17, 
27–29], but its diagnostic importance in oral precancers 
remains largely unexplored. Due to the limitations of manual 
mitotic figure counting, PHH3 was explored to evaluate its 
role as a diagnostic and prognostic adjunct to conventional 
H&E assessment.

The role of various oncogenes in OED progression to 
cancer still remains unvalidated [30]. Ki-67 being a cell 
cycle marker, rather than a specific marker of mitosis, has 
shown conflicting results. In one study, the value of PHH3 
and Ki-67 for measuring mitotic activity in OSCC dem-
onstrated a significant association between expression of 
PHH3 (p = 0.016) and mitotic activity (p = 0.031) with sur-
vival time; however, no similar relationship was found with 
Ki-67 (p = 0.295) [31]. In another study, the presence, loca-
tion and pattern of Ki-67 positivity demonstrated variable 
results for differentiation between normal tissue, OED and 
OSCC [32]. The unreliability of Ki-67 [32, 33] and the suc-
cessful use of PHH3 as an independent biomarker in various 
different malignancies [13, 15, 17, 22, 34] led us to explore 
this marker further.

The TNOM was shown to increase proportionally with 
grade severity on both H&E and PHH3-IHC analyses, 
supporting findings in the existing literature [35–38. This 
could be explained by the increased stem cell turnover 
and quantity of abnormal mutations [39]. Overall, PHH3 
mitotic count was greater than H&E, likely due to the 
inclusion of early prophase stage, which cannot be reli-
ably distinguished on H&E-stained sections. In a previous 
study, a comparison in mitotic count between H&E and 
crystal violet-stained sections demonstrated significant 
differences between non-dysplastic oral mucosa, OED 
and OSCC [39]. Whilst our findings revealed a greater 
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difference between mild and severe OED, control and 
high-grade/severe OED, promising differences were also 
observed between the more ‘demanding’ groups (moderate 
vs severe OED) in terms of mitosis number, mitosis type 
and mitosis location.

H&E analysis of mitosis type demonstrated a higher ratio 
of normal-to-abnormal mitoses in OED than control, which 
decreased with grade severity. Mitosis location assessment 
on H&E and IHC analysis demonstrated significant differ-
ences in the number of ‘basal’ and ‘suprabasal’ mitoses 
between grades. ‘Suprabasal’ mitoses were shown to be 
more predictive than ‘basal’ mitoses on PHH3-IHC. A study 
on meningioma demonstrated that PHH3 mitotic counts had 
a better interobserver correlation than H&E mitotic counts 
(Rm = 0.83 vs 0.77, respectively) [40], with good discrimi-
nation between grades (AUROC 0.91). Our study sug-
gested similar findings, with better generally performance 
for PHH3-IHC models than H&E models, particularly for 

TNOM and mitosis location (Table 2). This is likely to be 
related to greater objectivity of mitosis assessment with 
PHH3 staining.

Prognostic models combining TNOM, mitosis type, 
location and histological grading showed better prediction 
for transformation and recurrence. Generally, the addition 
of clinical variables had minimal impact on model perfor-
mances, whereas histological grading boosted predictive 
potential. Such a trend was also observed in a study by 
Mahmood et al. where inclusion of grades improved prog-
nostic strength of histological OED models [10].

The most predictive H&E models for malignant 
transformation (‘abnormal mitoses’ + ‘suprabasal 
mitoses’ + ‘TNOM’ + ‘WHO grade’ = AUROC 0.8113) 
and OED recurrence (‘abnormal mitosis’ + ‘basal 
mitoses’ + ‘TNOM’ + ‘WHO grade’ = AUROC 0.7895) 
(AUROC 0.65) incorporated multiple mitotic features and 
outperformed conventional WHO grading on its own. In 

Table 3  Exploration of multivariate prognostic models based on the type of mitoses, clinical variables and histological grading systems on H&E 
assessment (n = 68 − 5 ROI per WSI)

The first two rows indicate the prognostic values for existing grading systems for comparative purposes. Highlighted rows indicate the top most 
predictive models overall. Asterisk indicates a statistically significant finding. AUROC area under receiver operating characteristic
Text in bold indicate the most significant values/models

Model features H&E models

Malignant transformation OED recurrence

AUROC p value 95% CI AUROC p value 95% CI

WHO grading 0.6537 0.0836 0.5163 to 0.7911 0.7202 0.0064* 0.5950 to 0.8453
Binary grading 0.6786 0.0444* 0.5289 to 0.8282 0.6893 0.0191* 0.5501 to 0.8286
Normal mitoses 0.5016 0.9861 0.3383 to 0.6648 0.5552 0.4944 0.3983 to 0.7121
Normal mitoses + WHO grading 0.7469 0.0055* 0.6229 to 0.8709 0.7548 0.0016* 0.6358 to 0.8738
Normal mitoses + binary grading 0.7663 0.0027* 0.6479 to 0.8847 0.7298 0.0044* 0.6053 to 0.8543
Normal mitoses + age 0.5901 0.3107 0.4386 to 0.7415 0.6354 0.0936 0.4897 to 0.7812
Normal mitoses + sex 0.58 0.3681 0.4306 to 0.7294 0.5019 0.981 0.3478 to 0.6561
Normal mitoses + age + sex 0.6693 0.0568 0.4979 to 0.8406 0.6316 0.1033 0.4804 to 0.7827
Normal mitoses + clinical site 0.5613 0.49 0.4082 to 0.7145 0.552 0.5198 0.4041 to 0.6999
Abnormal mitoses 0.6856 0.0367* 0.5441 to 0.8270 0.7022 0.0123* 0.5648 to 0.8396
Abnormal mitoses + WHO grading 0.6537 0.0836 0.5169 to 0.7906 0.7163 0.0074* 0.5901 to 0.8425
Abnormal mitoses + binary grading 0.6475 0.0968 0.4777 to 0.8173 0.6444 0.0738 0.4942 to 0.7947
Abnormal mitoses + age 0.6071 0.2278 0.4532 to 0.7611 0.6515 0.0608 0.5139 to 0.7890
Abnormal mitoses + sex 0.632 0.1374 0.4760 to 0.7880 0.6354 0.0936 0.4874 to 0.7834
Abnormal mitoses + age + sex 0.6281 0.1493 0.4502 to 0.8060 0.6393 0.0847 0.4912 to 0.7874
Abnormal mitoses + clinical site 0.6328 0.1351 0.4802 to 0.7853 0.6207 0.1352 0.4809 to 0.7605
Abnormal mitoses + suprabasal mitoses 0.7616 0.0032* 0.6162 to 0.9071 0.6823 0.024* 0.5311 to 0.8335
Abnormal mitoses + suprabasal mitoses + WHO 0.7888 0.0012* 0.6762 to 0.9014 0.7715 0.0008* 0.6554 to 0.8876
Abnormal mitoses + suprabasal mitoses + TNOM 0.7803 0.0016* 0.6331 to 0.9275 0.6643 0.0419* 0.5114 to 0.8172
Abnormal mitoses + suprabasal mitoses + TNOM + WHO 0.8113 0.0005* 0.6987 to 0.9239 0.7747 0.0007* 0.6598 to 0.8896
Abnormal mitoses + basal mitoses 0.6157 0.1929 0.4636 to 0.7677 0.5796 0.3245 0.4234 to 0.7358
Abnormal mitoses + basal mitoses + WHO 0.6778 0.0454* 0.5407 to 0.8149 0.7208 0.0063* 0.5950 to 0.8466
Abnormal mitosis + basal mitoses + TNOM 0.7143 0.0159* 0.5500 to 0.8786 0.6457 0.0713 0.4893 to 0.8021
Abnormal mitosis + basal mitoses + TNOM + WHO 0.764 0.003* 0.6406 to 0.8873 0.7895 0.0003* 0.6777 to 0.9013
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the case of PHH3-IHC models, the most superior models 
utilised fewer mitotic features for prediction of transforma-
tion (‘basal mitoses’ + ‘binary grading’ = AUROC 0.7714) 
and recurrence (‘TNOM’ + ‘WHO grading’ = AUROC 
0.7783). These findings indicate that PHH3-IHC may be 
important for prognostication of OED, complementing 
H&E analysis.

The authors acknowledge a few limitations. First, the 
follow-up period comprised 5 years. Whilst transforma-
tion may occur later [41], a number of studies have shown 
transformation incidence to be highest during the first 
5 years. [5, 41–44] A study by Hankinson et al. (2021) 
reported a median transformation time of 22 months (IQR 
46.0) for a cohort of OED cases (n = 150) retrieved from 
the same centre as that used for this study [45]. Second, 
cases were from a single-centre, and the sample size could 
be regarded as small [46, 47]. However, the unit in ques-
tion is a national tertiary centre providing service to a 
large geographical region, thereby increasing the biologi-
cal diversity of the sample. Furthermore, the sample has 
an equitable distribution of dysplasia grades with inclusion 
of transformed and non-transformed cases. For an early 
exploratory study that serves as a basis for future work, 
our sample is similar to many other studies [31, 48, 49] 
of this kind. The control cases were included for clinical 
interest and early comparative analysis, hence the small 
numbers. They did not contribute to the prognostic work, 
which was the important and novel aspect of this study.

In conclusion, we report increased mitotic activity with 
OED progression. Mitotic quantification using PHH3-IHC 
is potentially more reliable than H&E analysis, with typi-
cally greater predictive strength, even with inclusion of 
fewer variables. The addition of histological grading fur-
ther improved performance of PHH3-IHC models, more 
so than the H&E models. To the best of our knowledge, 
this is one of the first studies to utilise mitosis quantifica-
tion and compare H&E with PHH3-IHC for OED analysis 
and prognosis prediction. The promising results call for 
further exploration of H&E and IHC markers to contribute 
to a more objective grading of OED and reliable prognosis 
prediction. Further studies with larger multicentre cohorts 
are required for clinical validation.
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Chapter 7 – Machine Learning Models 

This chapter is formed by a publication-ready manuscript for which the candidate is first author. This 

study explores supervised ML techniques for classification of dysplastic, immune, and stromal cells in 

OED. The study also aims to explore spatial arrangements of cells in OED and conducts a digital 

quantitative analysis of stromal cellularity in OED and evaluates the prognostic importance of nuclei 

morphometry in these cells.   

The candidate’s contributions to these studies were: 

i. obtaining ethical approval

ii. slide retrieval and digital dataset preparation

iii. clinical data collection

iv. training and testing of the ML models

v. digital quantification and data extraction

vi. statistical analyses

vii. writing up the manuscript

The study was conceptualised with guidance from supervisors. 
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7.1 Application of machine learning and digital image analysis for assessment 

and quantification of dysplastic, immune and stromal cells in oral epithelial 

dysplasia  

 

Authors: H. Mahmood1, A. Shephard2, N. Rajpoot2, S. A. Khurram3 

1 Academic Unit of Oral & Maxillofacial Surgery, School of Clinical Dentistry, University of Sheffield 

2 Tissue Image Analytics Centre, Department of Computer Science, University of Warwick, UK 

3 Unit of Oral & Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield 

 

Abstract 

Background: Histopathological analysis of oral epithelial dysplasia (OED) to predict malignant 

transformation remains problematic due to poorly constructed grading systems with unreliable 

predictive value. Modern digital image analysis tools and machine learning (ML) algorithms can be 

utilised for automated detection and cell quantification, in addition to providing valuable spatial 

information about cell arrangement and distribution. This study explores ML models for automated 

classification of dysplastic, immune, and stromal cells in OED and conducts a spatial analysis and 

digital quantification of stromal cellularity and nuclei morphometry. 

Methods: ML models were trained to classify dysplastic (n=185) and immune cells in OED (n=215). 

The training datasets comprised whole-slide images of OED (n=135), non-dysplastic oral tissue (n=50) 

in addition to a lymph node section (n=1) and oropharyngeal carcinoma (n=29) cases acquired from 

The Cancer Genome Atlas for immune cell training. Algorithm performance was tested on unseen 

images (n=25-32) and the top-performing classifier used to extract spatial data for dysplastic cells. A 

digital quantitative analysis of stromal cellularity and nuclei morphometry was also conducted (n=100) 

and features correlated to clinical outcomes.  

Results: Artificial Neural Network-Multilayer Perceptron model achieved high predictive accuracies 

for detection of dysplastic, immune and stromal cells (F1 scores 0.78-0.94). The distance and area 

between OED cells were lower than non-dysplastic cells (p<0.03) and reduced with grade severity. 

Stromal cellularity in OED was higher than control (p<0.0001) and increased with grade severity. 

Analysis of the nuclei in stromal cells of OED indicated that ‘nuclear circularity’, ‘nuclear eccentricity’, 

‘nuclear to cell area ratio’ and ‘cytoplasm eosin OD’ were potentially associated with an increased risk 

of malignant transformation (p<0.05). 

Conclusion: This study demonstrates the promising potential for traditional ML algorithms to reliably 

detect dysplastic, immune, and stromal cells in OED, and reveals novel findings pertaining to the 

spatial arrangements of cells and prognostic importance of stromal features in OED.  
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Keywords: Oral epithelial dysplasia; malignant transformation; histological grading; prognosis; 

machine learning; artificial intelligence. 

 

7.1.1 Background 

The study of oral epithelial dysplasia (OED) is gaining more attention as oral cancer incidence rates 

rise53. OED, often diagnosed in oral potentially malignant disorders (OPMD), is associated with an 

increased prevalence of oral squamous cell carcinoma (OSCC)54 which is amongst the most common 

cancers worldwide, and a leading cause of death53,23. Histopathological analysis of haematoxylin and 

eosin (H&E) stained tissue is still the accepted practice for diagnosis of OED, and histological grading 

using the WHO (2017) system remains the main measure of malignant transformation prediction53. 

However, this system lacks objectivity, reproducibility, and evidence to support its prognostic value57. 

Recent iterations of the WHO system further complicates OED grading by expansion of the histological 

criteria54, resulting in the potential for greater irreproducibility and observer disconcordance28,42,54. 

Notably, OED cases are referred to specialist centres for second opinions due to the risk of 

misdiagnosis123,124.  

With recent advancements in artificial Intelligence (AI) and digitisation of histology imaging data into 

whole slide images (WSI), there are increasing efforts to generate models towards computer-aided 

diagnosis. These methods have the potential to increase accuracy and efficiency in diagnosis in 

addition to providing quantifiable outputs which can increase our understanding of tissue architecture 

in complex histopathological conditions and aid discovery of novel cancer predictors8.  

Machine learning (ML) is a branch of AI, in which computational algorithms are trained to learn 

patterns directly from data. In the context of predictive modelling, ‘classification’ refers to a supervised 

learning approach that requires the use of ML algorithms to predict a class labels. With high throughput 

data, ML algorithms can adaptively improve predictive performance to overcome many of the 

limitations associated with manual approaches, such as reducing subjectivity, bias and 

misclassification. An increasing number of studies have applied ML methods for analysis of OPMD 

using H&E WSI125,126,127,128,129. These studies have mostly focussed on analysis of geometric and 

morphological characteristics of tissue components, such as cell or nuclei number, shape, staining 

intensity or surface texture. Beyond this, there has been little exploration of structural and tissue 

organisational characteristics, both in OPMD125,130 and other types of precancers131,132,133. 

This study had three main aims. First, to explore supervised ML techniques for classification of 

dysplastic, immune, and stromal cells in OED; second, to explore spatial arrangements of cells in OED 

using geometric principles of Delaunay Triangulation and spatial clustering; third, to conduct a digital 

quantification of stromal cellularity in the subepithelial layer of OED and evaluate the prognostic 

importance of nuclei morphometry in these cells.   
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7.1.2 Methods 

 

7.1.2.1 Study Design & Clinical Samples 

Various traditional ML models were trained to detect and classify dysplastic, immune and stromal cells 

in OED. Specifically, two object classifiers were built: 

1. Classifier D-ND: for binary classification of dysplastic (D) and non-dysplastic cells (ND) (n=185) 

2. Classifier S-I: for binary classification of stromal cells (S) (including fibroblasts and endothelial cell 

types) and immune cells (I) in the subepithelial layer of OED (n=215) 

The classifiers were trained on high resolution digital histopathology images retrieved from the Unit of 

Oral Pathology, School of Clinical Dentistry, Sheffield, UK during the period of 2008 to 2013. Approval 

of the institutional ethical committee was obtained (reference: 18/WM/0335) and all experiments were 

conducted in accordance with the Declaration of Helsinki. 

Due to the different classification tasks, slightly different training datasets were prepared for the two 

classifiers. The training dataset for Classifier D-ND comprised 185 cases total including histologically 

confirmed cases of OED (n=135) with equal numbers of mild, moderate and severe WHO grades in 

addition to non-dysplastic oral tissue (n=50). The same dataset was also used for training of Classifier 

S-I with the addition of a head and neck lymph node section (n=1) and cases of oropharyngeal 

squamous cell carcinoma (OPSCC) (n=29) acquired from The Cancer Genome Atlas (TCGA) dataset 

generating a total of 215 cases.  

For the spatial and quantitative stromal analysis, the same sample as that described in the study by 

Mahmood et al. (2023)10 presented in Chapter 5 was used. This retrospective sample comprised 75 

OED cases (one representative H&E slide per case) in addition to 25 non-dysplastic oral tissue 

sections (including hyperplasia and traumatic hyperkeratosis) for comparative analyses. 

Prior to the inclusion of slides, each H&E tissue section was re-evaluated by a certified Oral and 

Maxillofacial Pathologist, blinded to clinical variables, to confirm the original diagnosis and ensure: 1) 

a histologically representative sample with sufficient tissue for reliable classification and analysis; 2) 

availability of minimum five-year clinical follow up data and 3) absence of tissue artefacts and staining 

defects. Cases with features suggestive of human papilloma virus (HPV) or lesions with a verrucous 

morphology were excluded from this study.  

Demographic and clinic-pathological data was acquired for each case from patient records. Collected 

information included: i) sex; ii) age at time of histological diagnosis; iii) WHO 2017 OED grade (mild, 

moderate or severe); iv) binary OED grade (low or high grade); v) clinical outcome of lesion (malignant 

transformation and recurrence of OED). 
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7.1.2.2 Preparation of Digital Datasets 

New 4µm H&E sections were obtained for each case and converted to high resolution whole slide 

images (WSI) at 20x (0.4952 microns-per pixel) using Aperio CS2 (Leica Biosystems, Germany) and 

Hamamatsu NanoZoomer 360 (Japan) digital slide scanners. Each image was assigned a unique 

anonymised-linked identifier and saved as SVS/NDPI files compatible for uploading in QuPath® 

software (version 0.4.1)134. This powerful platform was chosen due to its flexible annotation tools and 

in-built functions for automated nuclei detection and cell classification.  

7.1.2.3 Training of Machine Learning Models 

Two projects were created within QuPath® (one for each classifier) and the histology images were 

uploaded as brightfield H&E images. To overcome stain variability, the automatic “estimate stain 

vectors” feature within QuPath was used. This feature digitally separates the stains in the image using 

a method of colour deconvolution135. Representative regions containing relatively clear examples of 

the stains were selected to set the estimate stain vector and when the most optimal results were 

obtained, this was applied to the training sample.  

The training slides were meticulously annotated and labelled into classes to highlight representative 

regions of interest (ROI) corresponding to dysplastic and non-dysplastic epithelial tissue, and immune 

and stromal cells in the subepithelial layer. Following the annotation phase, the cell detection algorithm 

in QuPath was run across all ROI using standardised nuclear (sigma 1.5 µm, minimum area 10 µm^2, 

maximum area 400 µm^2) and intensity parameters (threshold 0.04) at 10x magnification.  

The following traditional ML classification algorithms were trained, and performances between the 

learned classifiers compared. Details of each model type are described below: 

1) Artificial neural network-multilayer perceptron (ANN-MLP) – ANN mimic the human brain

architectures. Each ANN consists of units (neurons) which are arranged in layers. Each unit takes

an input, applies a function (often nonlinear) to it and then passes the output on to the next layer.

Generally, outputs are fed forwards to the next layer, with no feedback to the previous layer.

Hidden layers help solve more complex computational tasks, when a model includes more than 1

hidden layer, it is called a deep ANN. In this study, the number of hidden layers was optimised to

achieve the best model accuracy. The final model had five hidden layers, 0 nodes, maximum

iteration of 1000, and Epsilon of 0.01.

2) Random Forest (RF) – RF or random decision forests operate by constructing a multitude of

decision trees at training time and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the individual trees. Random decision forests

correct for decision trees’ habit of over fitting to their training set. In this study, the model included

50 trees at a depth of 10 with a sample count of 10.
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3) K nearest neighbour– this algorithm uses labelled points as a means of learning how to label new 

observations. In this way, the model learns the class label of the closest point or ‘nearest 

neighbour’. Closeness is typically expressed in terms of a dissimilarity function. Once it checks 

with ‘k’ number of nearest neighbours, it assigns a label based on whichever label most of the 

neighbours have. In this study, the K value was adjusted to reach the most optimal results (K value 

of 10).  

 

Using the top-performing classifier, analysis of nuclear features pertaining to the detected stromal and 

immune cells were extracted and evaluated. Grade-wise comparisons were made, and prognostic 

association of individual features analysed.  

 

7.1.2.4 Classification Performance 

The accuracy of the learned models was tested on representative ROI on unseen slides obtained from 

the School of Clinical Dentistry, Sheffield, UK. For reliable assessment, the number of cells in each 

ROI was kept consistent (300,000 +/- 5000 µm^2) across all test images. A breakdown of the test 

samples for each classifier is as follows: 

• Classifier D-ND - 25 WSI; 35 ROI including 10 mild OED, 12 moderate OED, 9 severe OED and 

4 non-dysplastic. 

• Classifier S-I: 32 WSI; 67 ROI including 27 mild OED, 16 moderate OED and 24 severe OED.  

Standard performance metrics including sensitivity, specificity, accuracy, precision, recall and F1 

score were calculated to assess the model’s ability to correctly identify the different classes. Individual 

class performance was measured for each ROI to generate an average score determined per image. 

The mean scores were aggregated to produce an overall accuracy, and comparisons made between 

models. Several of the classification performance metrics are mathematically defined below. 

 

Precision: Ability of model to distinguish what portion of positive were actually positive. 

Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall: Determines what proportion of actual positives are identified correctly.  

Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

F1-score: A weighted mean between the precision and recall: 

F1 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
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7.1.2.5 Quantitative Spatial & Stromal Analysis  

Quantitative spatial and stromal analysis was conducted on the same sample as that described in the 

study by Mahmood et al. (2023)10 presented in Chapter 5. Measurements corresponding to the 

distribution and density of cells were extracted using the inbuilt functions in QuPath® which measures 

two-dimensional distances to cell annotations and distances between cell centroids using principles 

of Delaunay Triangulation (µm) (Figure 20). Spatial cluster data was also extracted which included the 

number of neighbouring cells. 

Cellularity quantification was conducted in the subepithelial ROI in OED area by counting the number 

of nuclei per unit area (in mm3). Associated nuclear data (circularity, eccentricity, haematoxylin optical 

density, cytoplasm eosin optical density and nuclear to cell area ratio) were extracted and correlated 

to clinical outcomes. Similar stromal features, in addition to nuclear area and perimeter, were also 

analysed at the WSI-level using a deep learning-based pipeline in Python. OED segmentations were 

generated for each WSI using a Transformer model136 and a Convolutional Neural Network-based 

method (HoVer-Net+137) used for the segmentation of epithelium and nuclei in the WSIs. Individual 

feature metrics were generated, and an average obtained for all nuclei in the stromal area to produce 

an overall WSI-level value.  

 

7.1.2.6 Statistical Methods 

Statistical comparisons between OED grades were conducted, and feature-specific associations with 

malignant transformation and recurrence determined. All statistical tests were conducted using 

GraphPad Prism® (version 9.3.1). Continuous data was tested for normality using the Shapiro-Wilk or 

D'Agostino & Pearson tests. Where normal distribution was assumed, an unpaired Student T test or 

one-way ANOVA with an applicable post hoc analysis (Tukey’s or Dunnett’s) was conducted for 

pairwise comparisons. Otherwise, an equivalent non-parametric test (Mann-Whitney or Kruskal-Wallis) 

was conducted with Dunn's pairwise comparisons based on rank sums. Feature-specific correlation 

to malignant transformation and OED recurrence was conducted using binary logistic regression. All 

tests were two-tailed, and p values < 0.05 considered significant.  An overview of the study design is 

demonstrated in Figure 21. 
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Figure 20. Geometric and mathematical principles for spatial analysis 

A) centroid of a two-dimensional triangle; B) Delaunay-based triangle connections; C-D) Delaunay 

spatial cluster analysis based on cell centroid detections. A Delaunay triangulation is a point-wise 

structure consisting of non-overlapping triangles. Where there is a discrete set of points (P) in 

Delaunay triangulation DT(P) no point in P is inside the circumcircle of any triangle in DT(P). 
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Figure 21. Overview of study design and methods. 
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7.1.3 Results 

7.1.3.1 Performance of ML classifiers 

The performance of the trained models for classification of dysplastic oral epithelial cells (n=25; 35 

ROI) is presented in Table 9. The ANN-MLP classifier demonstrated the highest overall F1 score 

(0.89) followed by K nearest neighbour (0.77) and Random Forest (0.70) (Figure 22). demonstrates 

performance of the top performing ANN-MLP classifier on a range of cases including moderate OED 

(A), mild OED (B) and non-dysplastic control tissue (C). 

Table 9. Classification accuracy of dysplastic cells (n=25 WSI; 35 ROI) 

Classification of dysplastic epithelial cells 

Model F1-score Recall Precision Specificity Sensitivity 

ANN-MLP 0.897 0.978 0.844 0.844 0.978 

K Nearest Neighbour 0.771 0.735 0.862 0.762 0.735 

Random Forest 0.701 0.806 0.744 0.618 0.806 

The ANN-MLP model was then trained to detect immune and stromal cells in the subepithelial layer 

of OED. The F1 score for classification of immune cells was 0.78, with good recall and precision scores 

of 0.97 and 0.71, respectively. Similarly, classification of stromal cells (including endothelial and 

fibroblasts) based on the ANN-MLP model was good, with an F1 score of 0.94, recall of 0.92 and 

precision of 0.96 (n=32 WSI; 67 ROI) (Table 10). Examples of cell classifications are shown in Figure 

22.  

Digital nuclear feature analysis demonstrated significant differences in ‘nuclear eccentricity’ in immune 

cells between OED grades (mild vs moderate vs severe OED; p=0.0203) and between mild vs 

moderate OED (p=0.0256) (Table 11). There were no significant prognostic associations between 

nuclear features in either immune or stromal cells in OED using Classifier S-I. 

Table 10. Classification accuracy of immune and stromal cells (n=32 WSI; 67 ROI) 

Classification Performance 

ANN-MLP Model F1-score Recall Precision Specificity Sensitivity 

Immune cells 0.785 0.971 0.718 0.904 0.971 

Stromal cells 0.941 0.921 0.967 0.953 0.921 
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Figure 22. Classification of dysplastic cells  

Performance of ANN-MLP model (n=210: training n=185; testing n=25). (A-B) dysplastic vs non-dysplastic cells with heat map highlighting region of 

greatest dysplastic activity; (C) non-dysplastic tissue including oral lichen planus (left) and hyperkeratosis/inflammation (right). Red = dysplastic cells; 

green = non-dysplastic cell. 
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Figure 23. Classification of immune and stromal cells in OED. 

Performance of ANN-MLP model (n=250: training n=215; testing n=32). Cyan = immune cells; navy blue = other stromal cells (fibroblasts, endothelial 

cells). 
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Table 11. Nuclear feature analysis using ANN-MLP classifier.   

Classifier S-I: training n=215; testing n=32 WSI; 67 ROI. OD = optical density. Asterisk highlights a statistical significance (*p<0.05) and displayed p 

values are corrected for multiple pairwise comparisons. 

 
Nuclear area Nuclear  

Perimeter 
Nuclear  

circularity 
Nuclear  

Eccentricity 
Nuclear 

haematoxylin OD 
Cytoplasm  
eosin OD 

Nucleus to cell 
area ratio 

  Immune 
cells 

Stromal 
cells 

Immune 
cells 

Stromal 
cells 

Immune 
cells 

Stromal 
cells 

Immune 
cells 

Stromal 
cells 

Immune 
cells 

Stromal 
cells 

Immune 
cells 

Stromal 
cells 

Immune 
cells 

Stromal 
cells 

WHO grading   0.288 0.5828 0.9044 0.184 0.0655 0.3504 0.0203* 0.2104 0.9533 0.337 0.3278 0.2653 0.0961 0.0854 

Mild vs  
Moderate OED 

0.2785 >0.9999 0.9385 0.9686 0.064 0.9988 0.0256* 0.9177 0.9921 >0.9999 0.9976 0.4747 0.0893 0.1486 

Mild vs  
Severe OED 

0.5029 0.6385 0.9059 0.2049 0.1998 0.4065 0.0616 0.2111 0.9808 0.4029 0.7851 0.9023 0.2825 0.1125 

Moderate vs  
Severe OED 

0.9031 0.6403 0.9961 0.3018 0.8231 0.4322 0.9161 0.3867 0.9495 0.4082 0.7469 0.2575 0.7962 0.9879 

Binary grading 0.4695 0.8918 0.503 0.2721 0.2995 0.2103 0.1464 0.1406 0.6957 0.2225 0.2566 0.3229 0.0988 0.1404 
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7.1.3.2  Spatial Analysis in OED 

 

Distance between cells 

There was a significantly reduced distance between cells in OED (mild, moderate and severe grades 

combined) compared with non-dysplastic cells (p=0.026). The average distance between cells 

reduced as OED grade severity increased, and statistical differences were seen on pairwise 

comparisons between moderate OED vs control (p=0.0475), severe OED vs control (p=0.0169) and 

high-grade OED vs control (p= 0.0141) (Figure 24 and Error! Reference source not found.).  

Area between cells 

Similar trends were seen for the area between cells, with a significantly lower mean triangle area 

between cells in OED (mild, moderate and severe grades combined) compared with cells in the control 

group (p= 0.0289). The area between OED cells also decreased as the grade worsened. Pairwise 

comparisons demonstrated significant differences in triangle area between moderate OED vs control 

(p= 0.0396), severe OED vs control (p= 0.0178) and high-grade OED vs control (p= 0.0074) (Figure 

24 and Error! Reference source not found.).  

 

 

 

Figure 24. Delaunay spatial analysis  

Grade-based analysis (WHO and binary) demonstrating triangle distance (A) and triangle area (B) 

between cell nuclei (OED n=75, control n=25).  

Data expressed as mean values with 95% CI error bars. Asterisk highlights a statistical significance 

(*p<0.05). 
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Number of neighbouring cells 

The number of neighbouring cells in OED was marginally higher in moderate and severe OED groups 

(mean 5.965 and 5.97 respectively) compared mild OED (mean 5.95, SD 0.07951), though this 

difference was not statistically significant. There were no significant differences when comparing 

neighbouring cell number between OED groups and control group (p=0.33) (Figure 25).  

Individually, none of the examined Delaunay features were statistically associated with either 

malignant transformation or OED recurrence within the studied cohort (Error! Reference source not 

found.). 

 

 

 

Figure 25. Number of neighbouring cells in OED.  

Grade-based analysis (WHO and binary) of number of neighbouring cells (OED n=75, control n=25). 

Data expressed as mean values with standard deviation error bars.  
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Table 12. Spatial analysis in OED with comparison to control and prognostic associations. 

Asterisk highlights statistical significance (*p<0.05). 

 

  No. neighbour cells Triangle distance Triangle area 

WHO grades 0.4936 0.3166 0.3139 

Mild vs moderate OED >0.9999 0.9436 0.5043 

Mild vs severe OED 0.8299 0.4119 0.3122 

Moderate vs severe OED >0.9999 >0.9999 0.9358 

Binary grades 0.2983 0.5138 0.2332 

OED vs control 0.2561 0.026* 0.0289* 

Mild OED vs control >0.9999 0.5032 0.3079 

Moderate OED vs control 0.3271 0.0475* 0.0396* 

Severe OED vs control 0.2618 0.0169* 0.0178* 

Low grade OED vs control 0.773 0.0836 0.1053 

High grade OED vs control 0.1166 0.0141* 0.0074* 

Transformation association 0.3423 0.387 0.9059 

Recurrence association 0.3687 0.4411 0.7576 
 

 

Distance between cells using Classifier D-NP 

Distances between dysplastic and non-dysplastic cells were generated using the ANN-MLP model for 

Classifier D-ND (test sample n=25, 35 ROI). Measurements of relative distance were calculated based 

on cell centroid detections. Findings demonstrated the average distance between detected dysplastic 

cells was 11.4507 µm (SD 12.876). Distances between mildly dysplastic cells were the greatest 

(20.3374 µm, SD 30.44), followed by severely dysplastic cells (10.9326 µm, SD 6.800). Distances 

between moderately dysplastic cells were the lowest (3.008 µm, SD 2.721). The average distance to 

detection between non-dysplastic cells amongst the selected ROI was 21.5155 µm (SD 17.6729) with 

highest centroid distances between cells in moderate OED (30.7892 µm, SD 20.51), followed by mild 

OED (24.166 µm, SD 27.43) and severe OED (7.6038 µm, SD 9.434). There were no grade-wise 

differences for distances between either dysplastic or non-dysplastic cells in the studied test sample.  
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Figure 26. Cell centroid distances in OED  

Measurements based on ANN-MLP model detection using Classifier D-NP (n=25; 35 ROI) 

Values expressed as mean with error bars representing standard error.  

 

7.1.3.3 Quantitative stromal analysis 

 

Stromal cellularity  

Quantitative analysis at ROI-level demonstrated a significantly higher number of stromal cells in the 

subepithelial layer of OED (mild, moderate and severe groups combined) compared to control 

(p<0.0001). The mean number of stromal cells was also found to increase with grade severity; mild 

OED 2956 (SD 1044), moderate OED 3085 (SD 986.4), severe OED 3091 (SD 1029) compared to 

968.8 (SD 652.1) for control. Further pairwise comparisons demonstrated statistical differences 

between mild OED vs control (p<0.0001), moderate OED vs control (p<0.0001) and severe OED vs 

control (p<0.0001). Evaluation of binary grading showed similar trends of significance between low-

grade OED vs control (p<0.0001) and high-grade OED vs control (p<0.0001). Similar trends were also 

seen at WSI-level, but these findings were not statistically significant.  
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Figure 27. Stromal cellularity in OED (at ROI-level) 

Grade-based analysis demonstrating stromal cellularity in OED compared to control (OED n=75, 

control n=25). (A) WHO grade comparisons; (B) Binary grade comparisons.  

Data expressed as mean values with 95% CI error bars. Asterisk highlights a statistical significance  

(*p ≤ 0.05, **p ≤ 0.01, ***p < 0.001, ****p ≤ 0.0001). 

 

Nuclear feature analysis in stromal cells  

At the ROI-level, two features were shown to be statistically different between OED and non-

dysplastic/control groups, these being ‘nuclear haematoxylin OD’ and ‘nuclear to cell area ratio’ 

(Figure 28). There was a significantly higher detection of ‘nuclear haematoxylin OD’ in OED (mild, 

moderate and severe grades combined) compared to the control group (p=0.0062), with further 

significance when comparing control vs moderate OED (p=0.0393) and control vs severe OED 

(p=0.0019). Similar findings were also seen on binary grades, with statistical differences observed 

between high-grade OED vs control (p=0.0013) (Figure 28). The ‘nuclear to cell area ratio’ was also 

significantly different between OED groups (mild, moderate and severe grades combined) and the 

control group (p<0.0001). Pairwise comparisons showed further differences between moderate OED 

vs control (p=0.0024) and severe OED vs control (p<0.0001). A similar statistical trend was also seen 
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when comparing binary OED grades (low grade and high grades combined) to control (p<0.0001) as 

well as high-grade OED vs control (p<0.0001) and low grade vs high grade OED (p=0.0052) (Figure 

28).  

WSI-level analysis demonstrated a contrasting finding, with a statistically lower detection of ‘nuclear 

haematoxylin OD’ in OED compared to control (p<0.0001). The nuclear ‘contour area’ and ‘perimeter’ 

were also significantly smaller in OED (all grades combined) compared to control (p<0.0001).  

Prognostic relationships of stromal features 

Stromal cellularity in OED was not shown to be statistically associated with either malignant 

transformation or recurrence within this cohort (both at ROI and WSI-level). However, several nuclear 

features of stromal cells in OED were shown to be statistically correlated to clinical outcomes at ROI 

level (Table 13). Specifically, ‘nuclear circularity’ (p=0.001), ‘nuclear eccentricity’ (p=0.003), 

‘cytoplasm eosin OD’ (p=0.045) and ‘nuclear to cell area ratio’ (p=0.003) were associated with an 

increased incidence of malignant transformation. These same features, with the exception of 

‘cytoplasm eosin OD’, were also associated with an increased risk of lesion recurrence (p<0.05) (Table 

13).  

WSI-level analysis also showed that ‘nuclear circularity’ and ‘nuclear eccentricity’ were associated 

with an increased risk of malignant transformation (p<0.05).  

Table 13. Prognostic relationships of nuclear features in stromal cells (at ROI-level) 

Analysis conducted on OED n=75. Asterisk highlights statistical significance (*p<0.05). OD = optical 

density. 

Nuclear feature 
Malignant transformation 

(p value) 
OED Recurrence 

(p value) 

Nuclear circularity 0.001* 0.040* 

Nuclear eccentricity 0.003* 0.022* 

Nuclear haematoxylin OD 0.092 0.580 

Cytoplasm eosin OD 0.045* 0.089 

Nuclear to cell area ratio 0.003* 0.009* 
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Figure 28. Nuclear features analysis of stromal cells in OED (at ROI-level). 

Grade-based analysis of nuclear features pertaining to stromal cells in subepithelial layer of OED (n=75) compared to control (n=25). (A) WHO grading; 

(B) binary grading. Data expressed as mean values with error bars representing minimum to maximum ranges. Asterisk highlights statistical significance 

(*p ≤ 0.05, **p ≤ 0.01, ***p < 0.001, ****p ≤ 0.0001).
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7.1.4 Discussion 

A large proportion of OSCC diagnoses are made at a late stage of disease, impacting on patient 

mortality and morbidity138. It is therefore important that OED, the precursor disorder, is detected early 

and accurately so that optimal intervention can be provided139. Digital pathology represented by whole 

slide imaging has gained attention for its potential to overcome subjectivity in diagnosis and reduce 

misclassification by providing quantifiable outputs for more objective risk prediction. This study 

demonstrates the promising potential for ML algorithms to reliably classify dysplastic, immune, and 

stromal cells in OED, and conducts a quantitative analysis to reveal novel findings pertaining to the 

spatial arrangements of cells and prognostic relationships between nuclei features in stromal cells of 

OED. 

Among the ML models explored in this study, the ANN-MLP algorithm demonstrated the best detection 

accuracy for classification of dysplastic cells in OED epithelium. This model was therefore also trained 

to classify immune cells and other stromal cells in OED (i.e. fibroblasts and endothelial cells). ANN-

MLP is a traditional supervised ML model which mimics the operation of a human brain, featuring 

three component layers, namely an input layer (like human dendrites), a hidden layer, and an output 

layer (like human axons)49. The hidden layers are designed to solve more complex computational 

tasks, and where a model includes more than 1 hidden layer, it is called a deep ANN. In this study, 

five hidden layers were used to achieve the best classification results yielding F1 scores >0.78 for 

classification of dysplastic, immune and stromal cells in OED (Table 9, Table 10). The optimised 

classifiers were then used to extract quantitative data related to nuclei morphometry for both immune 

and stromal cells in the test sample. Findings demonstrated grade-based differences (mild vs 

moderate vs severe OED) for ‘nuclear eccentricity’ in immune cells (p=0.0203) (Table 11) but there 

were no prognostic associations for these features with malignancy in the explored dataset.  

The authors were also interested in understanding the spatial patterns of cells in OED tissue. One of 

the perceived challenges in evaluating the spatial arrangements of cells in a three-dimensional space 

is how to reliably capture true biological relationships from two-dimensional tissue sections. Several 

studies have shown that certain aspects of spatial organisation can be recognised and conceptualised 

using mathematical models131, 140 . Delaunay-based cluster spatial analysis is a computational 

geometric technique that applies an algorithm to detect cells based on their centroid location (Figure 

20). This helps to identify clusters of cells neighbouring one another and allows the potential to extract 

measurements between cells based on centroid locations141. This approach can help measure cellular 

density and organisation based on cell centroid detection in tissue. In this study, quantitative spatial 

analysis demonstrated a reducing Delaunay triangle area and distance as the OED grade severity 

increased. Unsurprisingly, these differences were notably more prominent between extreme groups 

(control and severe OED; mild and severe OED) and less prominent between groups where greater 

ambiguity in grading is likely to occur (moderate and severe OED). These findings could also be 

explained by the increased level of cellular pleomorphism and disorganisation in more extensively 
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dysplastic lesions54,42. If the number and size of cells is increased per unit area, then it may explain 

why the relative triangular area and distance between dysplastic cells to be relatively less. 

Furthermore, cell crowding (particularly in the basal layer) is commonly seen in dysplasia142, so the 

more organised and densely packed dysplastic cells are, the relatively smaller the triangle 

area/distance between cells is likely to be (in comparison to normal keratinocytes). Significant 

differences were also seen in the triangle distance and area between cells in the control group in 

comparison with cells in OED groups (p= 0.026 – 0.028). Pairwise comparisons demonstrated further 

statistical differences between moderate OED vs control (p= 0.039 – 0.047), severe OED vs control 

(p= 0.016 – 0.017) and high-grade OED vs control (p= 0.0074 - 0.0141). There were no statistical 

associations with malignant transformation or OED recurrence with the studied Delaunay features 

though further exploration on larger datasets is needed to establish this. Spatial clustering analysis 

demonstrated the number of neighbouring cells in moderate and severe OED to be marginally greater 

than in mild OED, however, this difference was not statistically significant.  

Quantitative analysis of stromal cells in the subepithelial layer of OED demonstrated a significantly 

higher number of cells compared to control, which was also consistently seen when comparing 

individual grades (using WHO and binary systems) to the control group as well (p<0.0001). Nuclear 

feature analysis in stromal cells showed that ‘nuclear haematoxylin OD’ and ‘nuclear to cell area ratio’ 

were statistically different between OED and non-dysplastic/control groups (p=0.0001-0.0062). Whilst 

stromal cellularity itself was not shown to be a prognostic feature, several nuclear features pertaining 

to stromal cells in OED were associated malignant transformation, including ‘nuclear circularity’ 

(p=0.001), ‘nuclear eccentricity’ (p=0.003), ‘cytoplasm eosin OD’ (p=0.045) and ‘nuclear to cell area 

ratio’ (p=0.003). These features (except for cytoplasm eosin OD) were also associated with an 

increased risk of lesion recurrence (p<0.05).  

The authors acknowledge a few limitations of this study. First, the analysis of nuclear features in 

stromal and immune cells (using Classifier S-I) and spatial clustering (using Classifier D-ND) was 

conducted at the ROI-level on relatively small test sets. The main benefit of ROI-based analysis in this 

work was that it provided a focussed analysis of dysplastic epithelium and the subepithelial stromal 

region in OED. This was particularly useful since the study included a varying cohort of OED lesions 

in which dysplasia was not necessarily present throughout the tissue section, and it also allowed us 

to avoid regions which could affect model training, such as regions of ulceration or inflammation. As 

ROIs were selected manually, to minimise the risk of bias, the ROI were verified by a Consultant Oral 

& Maxillofacial Pathologist (SAK) and Senior Specialist Registrar (PH). With regards to the sample 

size, it is important to also highlight the application of ML in this study was mainly focussed on 

evaluating the performance of models to classify cells in OED, and the downstream statistical analysis 

was largely exploratory work. Future work should expand the test set to further assess model 

generalisability and evaluate the studied features, particularly since the latter part of our study (in 
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which quantitative stromal analysis was conducted) identified potentially important nuclear features in 

stromal cells for prediction of malignancy transformation risk in OED.  

This work provides a novel insight into the local spatial architecture of cells in OED tissue, based on 

quantitative digital WSI analysis. Further investigation using such approaches on larger independent 

datasets with inclusion of OSCC tissue will allow a greater understanding of the relative importance 

of the examined features for diagnostic and prognostic purposes. This study demonstrates the 

promising potential for ML models to accurately detect and classify dysplastic, immune and stromal 

cells in OED, and we learn that general spatial arrangements and more local interrelations between 

cells may have potential importance in OED progression. Cell organisation in tissue is critical to 

understanding complex disease pathology, and this work highlights the need for further research in 

this regard.  
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Chapter 8 – Deep Learning Models  

 

This chapter is formed by a publication-ready manuscript for which the candidate is joint first author 

with Dr Adam Shephard, a Data Scientist at the University of Warwick. This study develops a novel 

AI pipeline for OED segmentation, classification and transformation prediction using H&E-stained 

whole slide images.  

 

The candidate’s contributions to these studies were:   

i. obtaining ethical approval 

ii. slide retrieval and digital dataset preparation  

iii. clinical data collection  

iv. ground-truth slide annotations 

v. co-development, training and testing of DL models  

vi. downstream statistical analyses 

vii. writing up and editing the manuscript 

 

The computational aspects of the study (including writing of the code) were led by Dr Adam Shephard 

under the guidance of Dr Shan Raza and Professor Nasir Rajpoot at the Tissue Image Analytics 

Centre, University of Warwick.   

 

Datasets for model validation were acquired from external national and international centres including: 

1) Precision Medicine Centre, Patrick G. Johnston Centre for Cancer Research, Queen’s University 

Belfast, UK; 2) Institute of Head and Neck Studies and Education (InHANSE), Birmingham, UK and 

3) Piracicaba Dental School, UNICAMP, Brazil.  
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Abstract 

Background: Oral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to 

lesions of the oral cavity that have an increased risk of progression to malignancy. The grading of 

OED is subject to wide inter/intra-rater variability, and does not reliably predict prognosis, potentially 

resulting in sub-optimal treatment decisions. To address this, we developed an artificial intelligence 

(AI) pipeline for OED segmentation, classification and transformation prediction in haematoxylin and 

eosin (H&E) stained whole slide images (WSIs).   

Methods: We have developed a novel transformer-based pipeline (ODYN) that can both classify OED 

and assign a predictive score (ODYN-score) to quantify the risk of malignant transformation. We use 

a shallow neural network to assign slide-level ODYN-scores, based on patch-level nuclear features in 

dysplastic tissue. The model was trained on a large digital dataset using three different scanners 

(Sheffield, 358 OED WSIs, 105 control WSIs) and externally validated on cases from three 

independent centres (Birmingham and Belfast, UK, and São Paulo, Brazil; 108 OED WSIs).    

Findings: Model testing yielded an F1-score of 0.71 for OED segmentation, and 0.96 for classification 

of dysplastic vs non-dysplastic tissue. Our AI pipeline gained an AUROC of 0.75 for malignancy 

prediction, outperforming other state-of-the-art methods, and existing clinical grading systems.   
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Interpretation: We present a new Transformer-based model for the semantic segmentation and 

classification of OED using the largest multi-centric OED dataset to date (496 WSIs). This is the first 

study to use transformers for semantic segmentation in oral histology WSI, demonstrating reliable and 

promising results to aid OED diagnosis and prognosis prediction. This study demonstrates the promise 

of computational pathology for the automatic detection, diagnosis and prognosis of OED.  

Funding: Cancer Research UK Early Detection Project Grant (grant no. C63489/A29674) and 

National Institute for Health Research (NIHR300904).  

Keywords: Oral epithelial dysplasia; transformer; semantic segmentation; dysplasia detection; 

malignant transformation; artificial intelligence; deep learning 

 

8.1.1 Introduction  

 

Oral epithelial dysplasia (OED) presents a significant challenge in the realm of oral pathology, where 

accurate diagnosis and early detection are paramount for effective intervention and the prevention of 

malignant progression54. OED is a premalignant histopathological diagnosis encompassing various 

lesions of the oral mucosa, typically manifesting as white (leukoplakia), red (erythroplakia) or mixed 

red-white (erythroleukoplakia) lesions42,46.  

Histopathological grading of haematoxylin and eosin (H&E) stained tissue using the World Health 

Organisation (WHO, 2017) classification system remains the current accepted practice for diagnosis 

and risk stratification of OED lesions52. This is a three-tier system for grading OED into mild, moderate 

and severe groups based on the presence, severity and location of a wide range of cytological and 

architectural histological features (28 in total) 28,54. This approach suffers from significant intra- and 

inter-observer variability and has unreliable predictive strength for malignant transformation risk, 

subsequently impacting on patient treatment. An alternate binary grading system, categorising lesions 

as low- or high-risk, based on the number of cytological and architectural features (as listed in the 

WHO criteria) aimed to improve the reproducibility of grading57,60. However, studies have shown 

significant variability in grading using both systems, highlighting the need for a more objective and 

reproducible method that can better predict malignant transformation in OED54,61.   

To address challenges in subjectivity and misclassification of precancerous and cancerous lesions, 

there is a growing interest in leveraging advanced technologies, particularly deep learning (DL), which 

has seen extensive use in medical image analysis over the past decade143,144,145. Several state-of-the-

art models, such as U-Net146 and DeepLab147 have been developed to perform image classification 

and segmentation. These models typically use convolutional neural networks (CNN) as feature 

extractors, such as ResNet 148 . However, despite their success, these models often suffer from 

limitations such as high computational overhead and difficulty in capturing long-range dependencies 

in images.  
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Transformers have gained widespread attention in recent years as they have been successfully 

applied in several natural language processing and computer vision tasks such as 

classification149,150,151. A typical Transformer encoder consists of a multi-head self-attention (MSA) 

layer, a multi-layer perceptron (MLP), and a layer normalisation (LN). This MSA layer empowers 

Transformers to capture long-range dependencies, making them a strong candidate for semantic 

segmentation in medical images152153154. Transformers therefore have the potential to overcome some 

of the limitations of traditional CNNs. However, only a handful of methods have applied Transformers 

for semantic segmentation in medical images152,155. Their application in histology has primarily been 

constrained to classification tasks156,157, with semantic segmentation left relatively unexplored. This 

raises the question of whether Transformers can be harnessed for semantic segmentation of 

histological images. 

In this study, we aimed to develop a novel, weakly supervised, DL pipeline that could reliably and 

objectively segment and classify OED, whilst predicting the risk of malignant transformation in OED, 

using H&E-stained WSIs. Specifically, we aimed to do this using interpretable nuclear features, from 

dysplastic regions on the WSI. Moreover, we aimed to rigorously evaluate the performance of our 

pipeline by comparing it to other state-of-the-art methods. To demonstrate the robustness and 

generalisability of our approach, we aimed to develop our model based on a large cohort and extend 

our validation on unseen datasets acquired from three other national and international centres 

(Birmingham and Belfast, UK, and Brazil). 

 

8.1.2 Methods  

8.1.2.1 Study Design 

In this retrospective multicentre study, we have developed an innovative weakly supervised method 

for predicting the progression of OED lesions to malignancy. We additionally aimed to produce a 

model that classifies oral tissue slides as being dysplastic vs non-dysplastic. We achieved this by 

analysing H&E-stained WSIs obtained from oral tissue biopsies, using a CNN, a Transformer and a 

MLP, in what we have called our Oral DYsplasia Network, “ODYN”. 

In many cases of OED, histological atypia is not present across the entire tissue section, and thus, 

the first step of this work was to identify only the regions where dysplastic changes were present. A 

fine-tuned Transformer (based on Trans-UNet152) was used to detect and segment the different 

dysplastic areas in a given WSI. Next, we used a pretrained CNN (HoVer-Net+137) to segment the 

epithelium and the nuclei in the WSI. 

For OED classification, we calculated the proportion of the epithelium mask that was segmented as 

dysplastic and used an empirically determined threshold to classify slides as being dysplastic vs. non-

dysplastic. The remainder of the pipeline was then used for ODYN-scoring, with OED cases alone. 

We generated patch-level morphological features in the dysplastic regions, which were used as input 
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to a MLP to calculate a risk-score for malignancy progression (named the ODYN-score). Both the 

Transformer and MLP were trained during this experiment and then used for inference in the ODYN -

scoring pipeline. However, HoVer-Net+ was used for inference alone, as it is a state-of-the-art model 

for epithelium and nuclear segmentation and classification, that has been extensively pre-trained on 

OED data. 

 

8.1.2.2 Study Cohorts 

Development and Internal Validation Cohort  

The training cohort consisted of a retrospective sample of histology tissue sections (dating 2008 to 

2016 with minimum five-year follow-up data) collected from the Oral and Maxillofacial Pathology 

archive at the School of Clinical Dentistry, University of Sheffield, UK (referred to as the internal centre, 

hereafter). After microscopic inspection of the tissue sections by a Consultant Oral & Maxillofacial 

Pathologist (SAK), newly cut 4 µm sections of the selected cases were obtained from formalin fixed 

paraffin embedded blocks and stained with H&E for analysis. Ethical approval was obtained by the 

NHS Health Research Authority West Midlands (Ref: 18/WM/0335) and experiments were conducted 

in compliance with the Declaration of Helsinki. 

In total, 509 slides were collected from 406 patients. The slides were digitised to high-resolution WSI 

at 40× objective power using one of three scanners: NanoZoomer S360 (Hamamatsu Photonics, 

Japan; 0.2258 mpp), Aperio CS2 (Leica Biosystems, Germany; 0.2520 mpp), Pannoramic 1000 

(P1000, 3DHISTECH Ltd, Hungary; 0.2426 mpp). Further inspection of the WSIs excluded cases with 

poor staining quality, artefacts, distortions or blurring. The resulting cohort comprised 358 WSIs 

(n=277 patients) with a confirmed histological diagnosis of OED and 105 WSIs (n=81 patients) 

confirmed as non-dysplastic (controls). Due to incomplete follow-up data for five patients with OED (7 

WSIs), these cases were only used for training and excluded from clinical outcome analysis. Thus, 

the final cohort included 351 WSIs (n=272 patients) amongst which 64 patients (79 WSIs) exhibited 

malignant transformation. Slides from the same patients were assigned to the same fold during 

algorithm training/testing. An overview of the dataset is provided in Table 14, and a CONSORT 

diagram given in Figure 29. 

Clinical follow-up data for the OED cohort included patient age (at time of diagnosis), sex, intraoral 

site, OED grade (using binary and WHO 2017 systems) and transformation status. Transformation 

was defined as the progression of a dysplastic lesion to OSCC at the same clinical site within the 

follow-up period, and transformation time was measured in months. To ensure diagnostic consistency, 

all cases were initially evaluated for diagnosis by a certified pathologist (PMS, PMF, DJB, KH), who 

provided an initial diagnosis based on the WHO grading system (between 2008-2016). To confirm the 

WHO (2017) grade and assign binary grades, the cases were blindly re-evaluated by SAK and a 

clinician with a specialist interest and expertise in OED analysis (HM).  
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HM exhaustively delineated regions of interest (ROI) representative of dysplasia in the 260 OED WSIs, 

in addition to the entire epithelium in the 96 control WSIs, using in-built annotation tools in the QuPath® 

software134. 

 

Independent Validation Cohorts   

The ODYN model was tested on three external datasets acquired from: 

i. Precision Medicine Centre, Patrick G. Johnston Centre for Cancer Research, Queen’s 

University Belfast, UK (47 WSIs) 

ii. Institute of Head and Neck Studies and Education, Institute of Cancer and Genomic Sciences, 

University of Birmingham, UK (42 WSIs) 

iii. Oral Diagnosis Department, Semiology and Oral Pathology Areas, Piracicaba Dental School 

University of Campinas (UNICAMP), São Paulo, Brazil (19 WSIs) 

Owing to the limited size of these datasets we combined them into a single multi-institutional external 

test set. Prior to the inclusion of external cases in the study, all WSIs were checked for suitability. 

Slides of poor quality, insufficient epithelium and cases positive for Candida Albicans or suggestive of 

Human Papilloma Virus infection were excluded. The WSI cohorts from Birmingham and Belfast were 

scanned at 40× objective power using a Panoramic 250 (P250, 3DHISTECH Ltd., Hungary; 0.1394 

mpp) and Aperio AT2 (Leica Biosystems, Germany; 0.2529 mpp) whole-slide scanner, respectively, 

to obtain digital WSIs. The Brazil cases were scanned at 20× objective power, by an Aperio CS (Leica 

Biosystems, Germany; 0.4928 mpp) scanner. The same clinical follow-up information was collected 

as that for the development/internal cohort. Amongst the OED cases, 44 lesions transformed to 

malignancy. The external dataset did not include any control cases. A summary of this cohort is 

provided in Table 14, and a CONSORT diagram in Figure 29. HM exhaustively delineated ROIs of 

dysplasia in 30 cases each from both Birmingham and Belfast, and an additional 18 cases from Brazil, 

using the QuPath® software. 
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Table 14. Overview of OED samples included in this study.  

 Sheffield Birmingham Belfast Brazil 

OED Cases, n 277 47 42 19 

OED Slides, n 358 47 42 19 

Median Agea (IQR) 63 (54 – 72) 61 (50 – 70) 62 (52 – 71) 53 (45 – 58) 

Sex, n (%)     

     Female 167 (48) 24 (51) 21 (50) 13 (68) 

     Male 183 (52) 23 (49) 21 (50) 6 (32) 

Site, n (%)           

      Buccal Mucosa 45 (13) 6 (12) 0 (0) 7 (37) 

      Tongue 158 (45) 30 (64) 29 (69) 8 (42) 

      Floor of Mouth 68 (19) 3 (6) 9 (21) 0 (0) 

      Other 80 (23) 8 (17) 4 (10) 3 (16) 

WHO grade, n (%)     

     Mild 118 (33) 24 (51) 6 (14) 11 (58) 

     Moderate 134 (38) 18 (38) 25 (60) 4 (21) 

     Severe 99 (28) 5 (11) 11 (26) 4 (21) 

Binary grade, n (%)     

     Low-risk 218 (62) 28 (60) 7 (17) 11 (58) 

     High-risk 133 (38) 19 (40) 25 (83) 8 (42) 

Transformationb, n (%) 79 (23)  10 (21)  30 (71)  4 (25)  

Scanner, n (%)     

     Aperio CS2 180 (50) 0 (0) 0 (0) 0 (0) 

     NanoZoomer S360 98 (27) 0 (0) 0 (0) 0 (0) 

     P1000 80 (22) 0 (0) 0 (0) 0 (0) 

     Aperio CS 0 (0) 0 (0) 0 (0) 19 (100) 

     P250 0 (0) 47 (100) 0 (0) 0 (0) 

     Aperio AT2 0 (0) 0 (0) 42 (100) 0 (0) 

 

a Median age at OED diagnosis  

b 5 Sheffield cases (7 slides) and 3 Brazil cases (3 slides) had no follow-up data and are excluded from the 

transformation figures. 
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Figure 29. CONSORT flowchart illustrating samples. 

 

 

8.1.2.3 Deep Learning Pipeline 

 

Dysplasia segmentation  

Since dysplastic changes may not be widespread across the entire tissue section in a slide, the first 

step of developing the DL pipeline involved identification and localisation of the dysplastic tissue 

regions for semantic segmentation. To achieve this, a fine-tuned Transformer, based on Trans-

UNet152 was used to automatically detect and segment the different dysplastic regions in each WSI 

across the training dataset. The model takes an input image of size 512 × 512 (at 1.0 micron per pixel, 

mpp, resolution) and outputs a dysplasia segmentation map. 
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For internal model testing, the dataset was split at 80/20, and controlled for both scanner type and 

OED grade. This resulted in 206 OED and 75 control WSIs in the training set, and 54 OED and 21 

controls WSIs in the internal testing set, with ground truth annotations. Note, a higher proportion of 

controls were kept in the test set to ensure high specificity of OED segmentation in the control sample. 

After tessellating the WSIs and region masks into smaller patches (512 x 512 pixels, 184 pixels 

overlap, 10X magnification, 1.0 mpp), a total of 19,063 OED and 11,756 non-dysplastic patches were 

generated for model training/validation on the internal discovery cohort. This totalled 6,341 patches 

with ground truth annotations from the 78 WSIs in the external cohort. Model testing has been reported 

at the ROI level. Various stain augmentation algorithms were tested during the development of the 

final model, using the TIAToolbox158. 

 

OED classification  

A pretrained CNN-based HoVer-Net+137 model was used to segment the epithelium and the individual 

nuclei across each WSI. To classify OED, the proportion of the epithelium mask that was segmented 

as dysplastic was calculated and an empirically determined threshold used to classify slides as being 

dysplastic vs. non-dysplastic (dysplasia-epithelium ratio, REpith). We found thresholds for this ratio 

based on all the WSIs used for training the dysplasia segmentation model (281 WSIs). We therefore 

tested the model internally on the remaining 182 WSIs, and externally on all 108 WSIs.   

 

Malignant transformation prediction (ODYN-scoring) 

The WSIs were tessellated into smaller patches (512 x 512 pixels, 256 pixel overlap, 0.5 mpp) using 

tissue in the dysplastic regions alone. The nuclear segmentations from HoVer-Net+ were used to 

generate a total of 168 nuclear-based morphological and spatial features for each (dysplastic) patch. 

These patch-level features were used as input to an MLP to calculate a risk-score for malignant 

transformation (ODYN-score). The MLP model had three layers with 168 nodes in the input layer, 64 

nodes in the hidden layer, and 2 nodes in the output layer. It used a leaky ReLU activation function 

and dropout (0·2) after the hidden layer. The MLP was trained by Monte Carlo iterative-draw-and-rank 

sampling IDARS159, using a symmetric cross-entropy loss function and the Adam optimiser. 

This loss function was chosen as it has been shown previously to help overcome errors associated 

with weak labels159,160. IDaRS sampling was performed with parameter values of k = 5 for top predictive 

patches and r = 45 random patches, using a batch size of 256. On inference, the trained MLP 

calculated a prediction score for each patch in the dysplastic regions of the WSI, which can be 

considered the likelihood of a tile belonging to the positive class in the classification task (i.e. 

transformation). Slide-level scores were then obtained by taking the average prediction score across 

the top 50% ranked tiles. We used interpretable nuclear features with the aim of making the model 

interpretable. However, we additionally provided comparison to a ResNet classifier (trained with 
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Macenko stain augmentation), using deep features, to show the impact on performance. We 

additionally include the OMTscore137 as part of our ODYN model. The OMTscore uses the epithelium 

segmentation in place of the dysplasia segmentation for generating features patches. An overview of 

the ODYN-scoring pipeline is presented in Figure 30. 

 

 

 

 

Figure 30. Overview of ODYN-scoring pipeline  

An input WSI is used with HoVer-Net+ to generate an epithelial mask and nuclear segmentations. 

ODYN is then used to generate the dysplasia segmentation. These patches are then used within the 

OMTscoring pipeline to predict malignant transformation. This includes the WSIs being tessellated 

into smaller patches and morphological/spatial features being generated for each patch within 

dysplastic regions. These patch-level features are then used within a MLP to predict whether the 

lesion transformed to malignancy.  

 

 

 



 

157 
 

8.1.2.4 Statistical analysis 

For the evaluation of OED segmentation, large ROIs centred on the annotated tissue section were 

generated, and the remaining tissue was regarded redundant and excluded. Both internal and external 

testing was performed on these large ROIs, which in the majority of cases, encapsulated all tissue on 

the WSI. Dysplasia segmentation performance (aggregated across all ROIs) was measured by 

calculating the F1-score, recall and precision. For internal testing of controls, a single measure of 

specificity for OED segmentation was reported, since a single incorrectly predicted pixel (e.g. 

incorrectly predicted as OED), would result in an F1-score, Recall, and Precision values of 0; thus not 

giving an accurate representation of the model performance. For the evaluation of OED classification 

(dysplastic vs non-dysplastic) the F1-score, Recall, and Precision across all ROIs (and slides) were 

measured. Area under the receiving operating characteristic (AUROC) score was calculated for 

internal testing across all ROIs. 

We used five-fold cross-validation in our ODYN-scoring internal experiments based on the internal 

cohort. We then tested our model externally, by training across the entire internal cohort and validation 

on the external cohort. For the evaluation of the ODYN-scoring pipeline, we provide an AUROC score 

across all slides. Survival analyses were additionally conducted to assess the prognostic significance 

of the ODYN-score in predicting transformation-free survival. The ODYN-score indicated whether the 

algorithm predicted the case to have transformed (high-risk) or not transformed (low-risk). Kaplan-

Meier curves were generated, and long-rank tests were used to determine the statistical significance 

of grading (for ODYN-score, WHO and binary grades). A multivariate Cox proportional hazards model 

was employed, incorporating sex, age, lesion site, binary and WHO grade, to predict transformation-

free survival. Transformations were right censored at eight years across these analyses to ensure 

consistency between internal and external cohorts. 

 

8.1.2.5 Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data interpretation, 

or in the submission or writing of the report. 
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8.1.3 Results 

8.1.3.1 Dysplasia segmentation  

Internal testing of the ODYN dysplasia segmentation model demonstrated an F1-score of 0.807 

(Recall = 0.845, Precision = 0.773) on OED cases and a specificity of 0.998 on controls (Table 15). 

On external testing, the ODYN model achieved a F1-score of 0.708 (Recall = 0.764, Precision = 0.660) 

(Table 16). The results of the ODYN model were superior (F1 = 0.81) to that of other state-of-the-art 

methods including U-Net146, HoVer-Net+137, DeepLabV3+161, Efficient-UNet162, and Swin-UNet155 with 

good generalisability. Examples of dysplasia segmentation heatmaps are shown in Figure 31. 

 

 

Table 15. Internal testing of ODYN model 

 OED cases Controls 

Model F1-score Recall Precision Specificity 

U-Net 0.775 0.796 0.755 0.996 

HoVer-Net+ 0.789 0.827 0.754 0.996 

DeepLabV3+ 0.802 0.817 0.788 0.998 

Efficient-UNet 0.790 0.834 0.751 0.998 

Swin-UNet 0.795 0.845 0.750 0.997 

ODYN 0.807 0.845 0.773 0.998 

 

 

Table 16. External testing of ODYN model.  

 Combined (n = 78) 

Model F1-score Recall Precision 

U-Net 0.685 0.694 0.676 

HoVer-Net+ 0.668 0.719 0.623 

DeepLabV3+ 0.704 0.704 0.705 

Efficient-UNet 0.700 0.777 0.638 

Swin-UNet 0.680 0.728 0.638 

ODYN 0.708 0.764 0.660 
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Figure 31. Dysplasia segmentation heatmap using ODYN model.   

 A) Severe OED (binary grade: high-risk) which transformed; B) Mild OED (binary grade: low risk) which did not transform. The green line depicts the 

ground truth dysplasia segmentation.
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Figure 32. ODYN model performance by scanner and histological grade.  
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8.1.3.2 OED classification 

We calculated the classification accuracy of ODYN, given a H&E-stained oral tissue WSI, based on 

the proportion of the epithelial mask that was dysplastic. On internal testing, we achieved an F1-score 

of 0.98 (AUROC = 0.96, Recall = 0.97, Precision = 0.97). The performance remained high on external 

testing, gaining an F1-score = 0.96 (Recall = 0.93, Precision = 1.00), showing the robustness and 

generalisability of the proposed method. ROI-level classification performance is shown in Table 17, 

and WSI level classification in Table 18. 

 

Table 17. ROI-level classification of OED based on dysplasia scores.  

*AUROC values not determined for external testing as this dataset did not include control 

 Internal Validation (n = 89 ROIs) External Validation (n = 87 ROIs) 

Score F1-score AUROC Recall Precision F1-score AUROC* Recall Precision 

         

Dysplasia-Tissue 0.96 0.95 0.98 0.93 0.98 - 0.96 1.00 

Dysplasia-Epithelium 0.98 0.99 0.95 1.00 0.94 - 0.89 1.00 

Dysplasia-Layer:         

  Basal 0.98 1.00 0.97 1.00 0.91 - 0.84 1.00 

  Epithelial 0.91 0.97 0.83 1.00 0.94 - 0.89 1.00 

  Keratin 0.74 0.78 0.59 0.98 0.89 - 0.80 1.00 

 

Table 18. WSI-level classification of OED, based on dysplasia scores. 

 Internal Validation (n = 463 WSIs) External Validation (n = 108 WSIs) 

Score F1-score AUROC Recall Precision F1-score AUROC Recall Precision 

Dysplasia-Tissue 0.97 0.96 0.95 0.98 0.96 - 0.93 1.00 

Dysplasia-Epithelium 0.98 0.96 0.97 0.97 0.96 - 0.93 1.00 

Dysplasia-Layer:         

  Basal 0.97 0.98 0.96 0.96 0.96 - 0.93 1.00 

  Epithelial 0.97 0.96 0.97 0.97 0.97 - 0.94 1.00 

  Keratin 0.75 0.78 0.62 0.62 0.86 - 0.76 1.00 

 

8.1.3.3 Malignant transformation prediction 

For the prediction of malignant transformation (our ODYN-score), we performed both internal cross-

validation on the development cohort and external validation. On internal cross-validation we attained 

an AUROC of 0.74, which increased to 0.75 on external validation (Table 19). These scores are 

significantly higher than existing clinical grading systems including WHO (2017) and binary (Figure 

33). We additionally compared them to other recently published methods such as IDaRS159 (trained 

with stain augmentation, over dysplastic patches) and the OMTscore137. 
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Figure 33. Kaplan Meier curves for ODYN compared to other grading system
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Table 19. Slide-level results for transformation prediction. 

 

 

 

 

 

 

   Internal Validation   External Validation   
   

Model   AUROC  C-Index  AUROC  C-Index   

WHO Grade 1   0.61 (0.06)   0.60  0.56  0.56  

WHO Grade 2   0.67 (0.03)   0.67  0.65  0.61  

Binary Grade   0.73 (0.05)   0.69  0.68  0.62  

ODYN: ResNet34  0.75 (0.09)   0.73  0.71 (0.01)  0.59  

ODYN: OMTscore   0.73 (0.09)   0.70  0.71 (0.02)  0.58  

ODYN-score   0.74 (0.07)   0.72  0.75 (0.01)  0.60  
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8.1.4 Discussion 

 

Several studies have explored the application of machine learning, including DL, to study OED. The 

general focus of these methods has been to segment the epithelium (and the nuclei), either manually 

or via DL models137,163,164. These segmentations have then been used in further DL models to predict 

grade or transformation10,137 ,163 or for pathologist-curated features based on digital images9. However, 

there has been little focus on segmenting dysplastic regions only for downstream prediction of 

malignant transformation.  

In this study, we introduce ODYN, a novel transformer-based pipeline built on the Trans-UNet 

architecture152 for OED segmentation, classification and malignant transformation prediction. This 

pipeline has been developed using the largest and most diverse multicentric OED dataset to date, 

digitised using six different scanners. The results obtained through rigorous testing and validation 

demonstrate the effectiveness of our models in the diagnosis and prognostication of OED. The ODYN 

dysplasia segmentation performance has consistently outperformed other state-of-the-art DL models, 

as evidenced in both internal and external testing. Furthermore, the ODYN model has demonstrated 

good generalisability across external unseen datasets, indicating its robustness for diverse clinical 

setting. This highlights the potential of transformer-based architectures in accurately delineating 

regions of dysplasia in H&E stained WSIs of OED tissue. This novel ground-breaking approach has 

the potential to redefine the landscape of OED diagnosis by providing more precise and consistent 

results that may also help reform treatment guidelines and standardise patient care.  

ODYN has also demonstrated promising results for OED classification. In this study, we used the 

predicted dysplastic proportion of the epithelium in a WSI to determine a diagnosis of OED. We chose 

this method to classify a WSI as dysplastic, rather than classifying a WSI as dysplastic solely based 

on the presence of any predicted dysplasia. We made this choice because our model predictions often 

included small areas of false positives. This decision to define a threshold, proved to be successful 

on both internal and external testing. The high precision and recall achieved in classifying OED 

indicates the potential for automated diagnosis, which has the potential to increase diagnostic 

efficiency. 

The application of ODYN-produced segmentation maps in predicting malignant transformation 

represents a significant advancement in computational pathology. Notably, this approach outperforms 

the OMTscoring pipeline proposed by Shephard et al. (2023)165 with a substantial improvement in 

AUROC score.  

We believe that the application of cutting-edge DL techniques, such as the ODYN pipeline, has huge 

translational potential which could help improve the accuracy and objectivity of OED diagnosis and 

grading. In addition to this, AI-based pipelines can improve prognostic reliability for prediction of 

cancer risk to improve patient outcomes. Future research should explore the scalability of the ODYN 
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model to accommodate a broader range of oral conditions (such as those which can mimic OED) and 

tissue variations to assess whether it can accurately discriminate OED from other similar appearing 

conditions whilst still accurately predicting malignancy risk. This will enhance the clinical utility of the 

model and ultimately help provide more personalised patient care.  

The authors acknowledge some challenges and opportunities for future research based on this study. 

A potential challenge highlighted by this work is the need to address the interpretability of DL models 

in clinical practice. We have therefore used an interpretable model for transformation prediction, that 

takes into account known histological features (e.g. shape and size variations of nuclei) to generate 

predictions from dysplastic ROIs. We provide heatmaps for each slide to help explain model decisions. 

We believe such approaches can enhance trust and acceptance amongst healthcare professionals. 

The authors additionally acknowledge limitations associated with a retrospective study. It would have 

been of interest to further explore the model performance for predicting OED recurrence. However, 

as there is no standardised treatment protocol for OED, there may have been variations in patient 

management between centres, and it can be difficult to reliably distinguish between a lesion that truly 

recurred from a lesion that has developed at the same clinical site due to field change. We would have 

additionally liked to incorporate social risk factors (e.g. smoking, alcohol consumption) in the 

multivariable modelling, however, it was not possible to acquire consistent information between the 

different centres retrospectively. These issues could be addressed by a future prospective validation 

study. Despite this, the external validation of our models across multiple centres and scanners is a 

notable strength of this study. Future research could explore the application of ODYN in even more 

diverse clinical settings and expand its utility to other histopathological tasks beyond OED analysis. 

We suggest testing the method on other head and neck precancerous lesions, such as laryngeal 

dysplasia, as an interesting future direction of research. 

 

8.1.5 Conclusion 

In conclusion, our study signifies a substantial leap forward in the field of digital oral and head and 

neck pathology, offering a powerful tool in ODYN for the detection, segmentation, and classification 

of OED, which we have made publicly available. This technology, underpinned by DL and transformer-

based architectures, showcases the potential of computational pathology to revolutionise the 

diagnosis and management of OED. The model's exceptional performance in both internal and 

external testing, along with its ability to improve transformation prediction, underscores its potential to 

impact clinical practice positively. By addressing challenges and continuing to refine the model, we 

envision ODYN playing an important role in improving the diagnosis and management of OED and 

potentially other head and neck precancerous lesions in the future. 
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Chapter 9 – General Thesis Discussion 
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9.1 Discussion 

This thesis has presented a comprehensive body of work comprising two literature reviews and five 

studies. Each of the studies has used a different digital approach to inform the next component, 

culminating in the development of prognostic models and identification of novel digital markers. As the 

key findings, points of discussion, study limitations, challenges and areas for future research have 

been discussed at the end of each study, this chapter will provide a general summary of the entire 

work and the salient messages arising from it.  

 

9.1.1 General thesis summary 

Prior to the commencement of the research studies, it was imperative to evaluate the existing body of 

literature to gain an insight into the application of AI/ML/DL for detection, diagnosis and grading of 

head and neck precancerous and cancerous lesions. Two comprehensive literature reviews were 

undertaken to examine the published literature between 2009-2020.  

The first, a scoping review, which highlighted a wide breadth of computational methods and imaging 

modalities (i.e. multimodal optical, micro-endoscopic, hyperspectral, infrared thermal, clinical) used 

for algorithm training in the last decade, amongst which histology WSI and radiological imaging were 

the most frequently used modalities for detection of OPMD and cancerous oral lesions. This finding 

was consistent with the increasing ubiquity of digital slide scanners in pathology departments, and the 

emergence of radiomics that has broadened the scope of medical imaging in clinical oncology. Due 

to the heterogeneity of the datasets included in the review, a detailed statistical analysis could not be 

undertaken, though most studies demonstrated high degrees of accuracy and precision of the 

presented ML models which were shown to exceed the abilities of standard statistical techniques and 

human judgement in making predictions about data.  

Since the scoping review provided a general overview of AI application with no restrictions on the type 

of imaging modalities used, the systematic review aimed to focus on the use of histology WSI only. 

This review additionally conducted a formal risk of bias assessment using a tailored QUADAS-2 tool 

to evaluate the quality of evidence supporting the use of AI. Most studies evaluated histological 

features in OPMD and head and neck cancers, with only one study focussing on the detection of OED 

specifically. A combination of heuristics, supervised and unsupervised learning methods were 

employed, including more than 10 different classification and segmentation techniques. Overall, the 

quality of evidence was low, with most studies showing a high risk of bias, likely to have overestimated 

accuracy rates. Most studies used uni-centric datasets (range 40-270 images) comprising small sub-

images within WSI with accuracy between 79-100%.  

Since most studies included in the reviews were published prior to 2015, they largely employed 

classical ML methods, despite there being significant advancements in the medical image analysis 

field. The evolution of the computational pathology has since seen a rise in the use of DL algorithms 
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for tackling complex computer vision tasks; with many state-of-the-art methods already being applied 

for early detection of breast, prostate, lung and skin malignancies. However, these reviews highlight 

that these latest methods have not been explored to the same extent in head and neck cancers and 

pre-cancers. The findings from these review studies helped inform the design of the subsequent set 

of studies presented in this thesis, and particularly the work described in Chapters 8 which develops 

a novel DL pipeline for automated detection, diagnosis, and transformation prediction in OED, for the 

first time, using a Transformer model.  

 

Analysis of individual histological features 

The next stage of work aimed to evaluate individual histological features in WSIs of OED, including 

nine established features listed in the WHO (2017) criteria, in addition to other commonly observed 

features, such as ‘abrupt orthokeratosis’, ‘lymphocytic band’ and ‘verrucous surface architecture’.  

Basal cell hyperplasia (crowding) and irregular surface keratin were shown to be the most prevalent 

features in OED, despite them not being formally part of the WHO criteria. Interestingly, these features 

were not strongly linked to clinical outcomes and therefore did not form part of the proposed predictive 

models. Six other histological features were significantly associated with an increased risk of 

malignant transformation (p<0.036) and OED recurrence (p<0.015) including ‘bulbous rete pegs’, 

‘hyperchromatism’, ‘loss of epithelial cohesion’, ‘loss of stratification’, ‘suprabasal mitoses’ and 

‘nuclear pleomorphism’. These features led to the development of two prognostic scoring systems 

including a ‘six-point model’ using all six of the significant features and a simplified ‘two-point model’ 

in which a single point would be given to each of the features which had the highest inter-pathologist 

agreement amongst the six features (‘loss of epithelial cohesion’ and ‘bulbous rete pegs’). Both the 

‘six-point’ and ‘two-point’ models showed good predictive ability (AUROC > 0.774 for transformation 

and 0.726 for recurrence) exceeding conventional grading systems. Validity testing of the ‘six-point’ 

and ‘two-point’ models was conducted to assess model performance on unseen independent datasets 

including OED cases from three national UK centres and a centre in Brazil. Findings supported the 

prognostic strength of both models, particularly the ‘six-point’ model which maintained its predictive 

ability on the validation cohorts (AUROC 0.81 compared to AUROC 0.68-73 for other models). Further 

improvements were seen with the addition of patient age, sex and histological grade. Future 

modifications of these models may consider giving different weights to the individual features, based 

on our findings from univariate feature analysis, which showed that different features carry different 

levels of association with malignant transformation. Validation on a larger scale is needed to assess 

the incremental benefit of doing so, since re-fitting the model to allow the different weights made a 

small difference in our validation study (AUROC of 0.82, compared to the 0.81 when equal weighting 

was given to the six features). 

Following on from this study which analysed ‘conventional’ OED features, the next stage of work 

aimed to evaluate a range of other features seen in OED, which have not been previously analysed, 
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quantified, or correlated to clinical outcomes before. This study conducted a digital quantitative 

analysis of epithelial cellularity and thickness, nuclei geometry and staining intensity of cell cytoplasm. 

The prognostic relationships of these features were explored, and multivariable digital models 

developed and validated for prediction of malignant transformation and OED recurrence. Key findings 

demonstrated that epithelial cellularity increased with grade severity. In contrast, basal epithelial 

cellularity was lower in OED compared to control. Increased cellularity is a common feature observed 

in many types of cancers (such as gliomas 166 , meningiomas 167 , lymphomas 168 , hepatocellular 

carcinomas169) and forms an important component of some diagnostic criterion as it can indicate 

tumour growth, progression and metastatic potential. Despite increased cellularity being a common 

feature in OED, it is not routinely quantified for diagnosis, mainly due to the difficulty in doing so using 

conventional microscopy. However, understanding cell number and density in OED may be important 

in risk stratification and also the surveillance of lesions, particularly to help inform treatment decisions 

and the need for re-biopsies. A possible explanation for the reduced basal cellularity in OED, is that it 

may correspond to the increasing level of cellular pleomorphism (and larger size) seen in OED, which 

in turn, may have resulted in fewer cells being detected by the software algorithm. This may also 

explain the finding of a reduced triangle area and distance between cells in OED as grade worsens, 

as noticed in the quantitative spatial analysis described in Chapter 6.  

Another relevant finding of this work was that OED epithelial thickness was associated with an 

increased risk of malignant transformation (p=0.03). Whilst there was no significant difference with 

regards to epithelial thickness between OED grades, the keratin thickness/perimeter was statistically 

increased in OED compared to control (p < 0.05) (Figure 34). These results suggest that epithelial 

and surface thickness (or curvature/architecture) may be important histological features in risk 

stratification of OED lesions. Keratin is a structural protein that is a natural component of the epithelial 

lining of the oral mucosa. Hyperkeratosis can be observed in benign oral lesions in response to various 

stimuli, including chronic irritation or inflammation such as from tobacco use or chronic trauma but it 

can also be seen in leukoplakia that can result in the development of OPMD. Further analysis of 

keratin pattern and morphology in OED would be interesting to explore, particularly since verrucous 

surface morphology is commonly seen in some OPMD.  
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Figure 34. Quantitative analysis of keratin thickness (perimeter) in OED.  

Data expressed as mean values with 95% CI error bars. Asterisk highlights a statistical significance 

(*p ≤ 0.05, **p ≤ 0.01, ***p < 0.001). 

Analysis of nuclear and cytoplasmic features highlighted significant differences in ‘cytoplasmic eosin’, 

‘nuclear eccentricity’ and ‘circularity’ in basal epithelial cells of OED (p<0.05). ‘Nucleus circularity’ was 

associated with OED recurrence (p=0.018). The altered eosin concentration in cytoplasm may be 

explained by the altered nuclear morphometry in dysplastic cells, which in turn, could affect eosin 

representation. The presence of dyskeratosis and premature/individual cell keratinisation may also 

contribute, giving the cytoplasm a more eosinophilic cytoplasm. The unique aspect of this study was 

the development of a multivariate model for outcome prediction using the digitally quantified 

histological data which produced a superior predictive model (Model 6: AUROC of 0.77 for malignant 

transformation and AUROC of 0.74 for recurrence) that outperformed conventional clinical grading 

systems (WHO grading for malignant transformation prediction AUROC 0.69). External validation 

supported the strength of the superior ‘Model 6’ (AUROC 0.76 for malignant transformation; AUROC 

0.93 for OED recurrence).  
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Mitotic activity 

The next study conducted a quantitative analysis of mitotic activity in OED (including number, type, 

and intraepithelial location of mitoses) using digitised H&E sections and IHC stained tissue with PHH3. 

Mitotic figure counting has been used for diagnosis and prognostication of various malignancies 

including brain167, breast170 and neuroendocrine carcinomas171. However, this was the first study to 

explore its prognostic role in OED. Key findings from this study demonstrated the total number of 

mitoses (TNOM) increased with OED grade severity both on H&E and PHH3-IHC analysis, which may 

be explained by the increased stem cell turnover and quantity of abnormal mutations as dysplasia 

progresses. The PHH3 mitotic count was greater than H&E, likely due to the inclusion of early 

prophase stage, which cannot be identified on H&E-stained sections. TNOM, mitosis type and intra-

epithelial location were important prognostic features, with greater predictive strength when combined. 

Multivariable models incorporating multiple mitotic features demonstrated better predictive strength 

for prediction of malignant transformation (H&E model: AUROC 0.8113; PHH3-IHC model AUROC 

0.7714) and OED recurrence (H&E model: AUROC 0.7895; PHH3-IHC model: AUROC 0.7783) than 

WHO grading alone (AUROC 0.65).  In the case of PHH3-IHC models, the most superior models 

utilised fewer mitotic features compared to the H&E models indicating that PHH3-IHC may be 

important for prognostication of OED, complementing H&E analysis.  

PHH3 was chosen as the single most reliable marker of mitotic activity. Alternative markers such as 

Ki-67 were considered, but not used in this study. This is because Ki67 is a general cell cycle marker 

of proliferation which limited sensitivity since the proliferative activity of cells may not directly correlate 

with the clinical behaviour of the lesion. Interpretation of Ki67 staining can also be subjective, leading 

to inter-observer variability, which might affect its reliability as a standalone diagnostic or prognostic 

tool. Furthermore, a number of studies comparing PHH3 to Ki67 in OSCC progression have shown 

conflicting results.  

 

Multivariable predictive models 

The findings from Chapters 3, 4 and 5 highlight the benefits of multivariable models for prognosis 

prediction of oral precancers. Firstly, these models have been developed by integrating multiple 

histological and digital features which have been generated through objective quantification, and 

secondly, the incorporated variables have been statistically analysed and individually correlated to 

clinical outcomes. Whilst some features included in the models have greater levels of prognostic 

strength than others, overall, the integration of multiple features has strengthened the predictive 

accuracy and value of the models. Another benefit of these models is that they are easy to adapt, and 

are conducive to ongoing research and development as they can be regularly updated and refined as 

new data and insights emerge to maintain their relevance and effectiveness in clinical practice. In the 

context of precancerous lesions, these models aid in more precise risk assessment and decision-
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making, potentially leading to improved patient outcomes through early detection, appropriate 

monitoring, and timely intervention when necessary. 

Application of ML to OED 

The next two arms of work (Chapters 7 and 8) explored the application of AI algorithms for OED 

detection, diagnosis, and discovery of novel digital markers of transformation. First, traditional ML 

models were trained to segment and classify OED epithelium, immune and stromal cells 

demonstrating good accuracy (F1 scores: 0.78-0.89, at ROI level). The optimised classifiers were 

used to study nuclei morphometry in the detected sub-epithelial immune cells and stromal cells in 

OED. Findings demonstrated significant grade-based differences for ‘nuclear eccentricity’ in 

subepithelial immune cells (p=0.0203); none of the other nuclear features were shown to be 

significantly associated with clinical outcomes of interest. A potential limitation of this analysis is that 

it was performed at the ROI-level on a relatively small test sample, with a modest proportion of 

transformed cases. As such, the sample may have lacked sufficient power to draw out subtle or 

meaningful differences in the studied features, which lends to the need to further explore immune cell 

quantification and architecture on larger samples, ideally at the WSI-level. 

The main reason for investigating immune infiltration in OED was because emerging evidence has 

indicated a role for the immune system in OPMD disease progression. A number of studies have 

shown that the presence and behaviour of certain types of immune cells may indicate a higher risk of 

dysplastic lesions progressing to OSCC. In one study, there was an objective increase in the infiltration 

of CD4, CD8, CD14, CD19+20, and HLA/DR positive cells in the epithelium of tongue lesions that 

progressed from hyperkeratosis to dysplasia and carcinoma, with the most pronounced increase in B 

lymphocytes, that was in accordance with the transformation level (p<0.001)172. In another study, 

moderate and severe OED exhibited a high lymphocyte infiltration and upregulation of genes involved 

in immune surveillance (major histocompatibility complex-I, T cells, B cells and cytolytic activity) and 

immune suppression (immune checkpoints, T regulatory cells, and tumour-associated macrophages). 

The study found three distinct subtypes of moderate and severe OED: immune cytotoxic, non-

cytotoxic and non-immune reactive173. In a study by Bashir et al. (2023)163 (for which the candidate 

was a co-author) a weakly supervised DL model was trained on OED cases to reveal certain nuclei 

features in the epithelium and per-epithelial lymphocytes (PELs) to be significant prognostic factors 

for prediction of malignant transformation, including the PELs count (p<0.05). Progression-free 

survival using the PELs count (p < 0.05, C-index = 0.73) showed a strong association with malignant 

progression of OED on univariate analysis. These findings highlight the need to better understand the 

underlying immune mechanisms in OED to aid discovery of specific immune cell profiles important in 

malignant transformation. This may help develop more targeted treatment and the role of 

immunotherapy in high-risk lesions, which would be particularly useful for patients not suitable for 

surgery.  
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In the same arm of work, a quantitative analysis of stromal cells in OED was also conducted. Findings 

demonstrated increased stromal cellularity the subepithelial layer in OED compared to control, which 

was also consistently seen when comparing individual grades to control (p<0.0001). Analysis of 

nuclear features in the stromal cells showed that ‘nuclear haematoxylin OD’ and ‘nuclear to cell ratio’ 

were also statistically different between OED and control (p=0.0001-0.0062). Whilst stromal cellularity 

was not shown to be a prognostically significant feature for malignant transformation prediction, 

several nuclear features pertaining to the stromal cells in OED were statistically associated with an 

increased risk of malignancy, including ‘nuclear circularity’ (p=0.001), ‘nuclear eccentricity’ (p=0.003), 

‘cytoplasm eosin OD’ (p=0.045) and ‘nuclear to cell area ratio’ (p=0.003). With the exception of 

‘cytoplasm eosin OD’, these same features were also associated with an increased risk of OED 

recurrence (p<0.05). 

Classical ML methods, whilst powerful and versatile, are subject to some limitations. Whilst the D-ND 

and S, I classifiers demonstrated good reliability and cell classification accuracy on internal testing, 

model performance worsened somewhat on external testing. It is likely that differences in scanner 

types and slide staining would have contributed to this reduced performance, and attempts were made 

to address this by adding external cases to the training dataset with application of stain augmentation. 

However, this had little effect on the model performance overall. While classical ML models can 

perform well on training data, these methods can struggle to generalise to unseen images, especially 

when faced with images that differ significantly from the training dataset. Another limitation with 

classical ML models is that they can be highly sensitive to data quality. Due to variations in slide quality 

between the internal and external cases, background “noise” may have negatively impacted on model 

performance resulting in less accurate predictions. A significant increase in the volume and diversity 

of training data would be an obvious way to overcome such issues, and to reduce bias in the sample. 

However, during experimentation, the ML models were struggling to handle larger datasets, which 

required greater computational demand and memory, potentially reducing scalability and external 

interpretability of the models.  

 

Application of DL to OED 

Newer AI approaches and DL models can overcome many of the challenges associated with 

traditional ML methods and have been shown to handle complex data more effectively. The final arm 

of the work, described in Chapter 8, focussed on the application of DL methods, and developed a 

novel transformer-based pipeline (ODYN) that can both classify OED and assign a predictive score 

(ODYN-score) to quantify the risk of malignant transformation. Model testing yielded an F1-score of 

0.71 for OED segmentation, 0.96 for classification of dysplastic vs non-dysplastic tissue and an 

AUROC of 0.75 for malignancy prediction, outperforming other state-of-the-art methods, and existing 

clinical grading systems.  The ODYN model was developed using the largest and most diverse 

multicentric OED dataset to date, incorporating digitised slides from six different scanners. These 
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factors contributed to good generalisability across external unseen datasets, indicating model 

robustness and applicability in the clinical setting.  

 

9.2 Limitations  

Specific limitations related to the different components of work presented in this thesis have been 

discussed in the respective chapters. Here, some general limitations are acknowledged and discussed.  

One of the main limitations across the studies relates to the use of retrospective data. However, in 

order to develop and test the statistical, digital and computational models, it was necessary to have 

clinical follow-up data to assess the prognostic abilities of the models and make comparisons with 

existing clinical grading systems. It would not have been practical to collect data prospectively to 

achieve these aims. Other limitations of retrospective data relate to the potential for incomplete and 

inconsistent information due to variations in the quality of clinical record keeping between clinicians 

and centres. Gaps in data meant that it was not possible to acquire comprehensive social history 

information (tobacco and alcohol use) which would have been interesting to evaluate and incorporate 

into the multivariable models, particularly as they are established risk factors for OED and OSCC 

development. It was also difficult to acquire accurate information regarding OED recurrence, partly 

due to the variations in treatment protocols between surgeons in different centres, and since it is 

difficult to reliably know which lesions truly recurred and which developed secondary to oral field 

change. Without controlling the clinical, genetic, molecular and histological variables that can influence 

the development of dysplasia, it would not be possible to establish the cause of an OED lesion arising 

at the same clinical site after surgical removal. Whilst OED recurrence was evaluated in some parts 

of the work, the sole focus in the later studies was to identify predictors of malignant transformation.  

Another limitation relates to the clinical follow-up period, which was set at a minimum of five years. 

This was chosen on balance between availability and access of clinical data and reported mean 

malignant transformation rates. Whilst malignant transformation of OED can occur five years after 

diagnosis, the literature indicates the greatest risk of progression to occur within the first five 

years40,46,174.  

Another limitation relates to the varying cohort sizes between the studies. Typically, this would make 

it difficult to make direct comparisons between studies, but in this case, we do not feel it has affected 

the reliability or generalisability of the presented results since the datasets were developed in 

accordance with the different tasks, goals and approaches for each individual studies. For the AI-

based studies (Chapters 7 and 8) a power calculation was performed with support from a statistician 

in the NIHR Research Design Service team. A sensitivity of 90% was set for the prediction of 

malignancy risk, resulting in the need for a sample of at least 330 WSI for training (95% CI 0.068) and 

200 WSI for validation and testing (95% CI 0.088). The digital datasets used for developing the DL 
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pipeline exceeded these numbers and is the largest and most diverse OED dataset to date, bigger 

than samples used in some landmark studies, such as CAMELYON110.  

A potential limitation of the ML work (Chapter 6) is that the analysis was performed at the ROI-level, 

as appose to WSI-level. Whilst both are useful methods of examining tissue samples, the benefit of 

ROI-level analysis is that it provides a focussed analysis on a targeted region of interest which in the 

case of my work was the dysplastic epithelium and subepithelial stromal region in OED. This method 

requires less computational resources, memory and can save time. It is also particularly useful for 

studying OED of varying severity, particularly as dysplasia is not always present throughout the entire 

tissue section and there may be areas important to avoid – such as ulcerated or inflamed regions. 

However, this method may introduce some level of subjectivity especially if the ROI selection is not 

automated. To overcome the risk of bias, the candidate received extensive training in analysis and 

diagnosis of OED and all ROIs were verified by a Consultant Oral & Maxillofacial Pathologist or a 

Senior Registrar in Oral and Maxillofacial Pathology. The DL analysis (Chapter 7) using the ODYN 

pipeline was performed at WSI level for prediction of malignant transformation which means the entire 

tissue section was represented at high-resolution, capturing all histological details to inform the 

outcome. This method of analysis has the added benefit of uncovering hidden predictive histological 

patterns in the tissue, would otherwise be difficult to visualise, examine and objectively explore.  

 

9.3  Ongoing & Future Research 

9.3.1 Model validation 

Ultimately, it is intended that the proposed prognostic model will be validated prospectively in the 

clinical setting. Prior to doing so, it would first be necessary to refine the developed models, and 

potentially combine variables of greatest prognostic weight to formulate a single multivariable ‘super’ 

model for transformation prediction. In doing so, redundant, or irrelevant variables, that do not 

contribute much to the model’s overall predictive power may be removed. Feature selection for the 

final model will be achieved using statistical methods or AI techniques to identify the most clinically 

important features in OED progression. The resulting model would benefit from further testing, initially 

using multicentric retrospective OED datasets that are representative of the general population 

affected by this condition. Wider validation will be achieved through collaboration with clinical experts 

both nationally and internationally, to allow a better understanding of the clinical application, reliability, 

and generalisability of the model’s predictions. For the AI-assisted models, the use of large datasets 

from different geographic regions will increase biological diversity and model training, further 

enhancing the quality of predictions.  

Any future trials to validate the proposed prognostic model will involve critical stages to ensure patient 

safety, clinical efficacy, regulatory and ethical compliance. Support will be obtained from the NIHR 

Research Design Service and Sheffield Clinical Trials Research Unit to help develop future research 
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projects. Clinical experts, statisticians, regulatory specialists, PPI groups and other relevant 

stakeholders would be engaged with throughout the development and implementation of future trials. 

Health economists at the University will also be consulted to integrate a cost-benefit analysis of the 

proposed tool to ensure it is economically viable within the NHS. Broadly speaking, it is anticipated a 

future clinical trial will comprise three arms for patient recruitment: 1) control group: pathologist led 

OED analysis and transformation prediction using conventional grading systems; 2) test group: digital 

OED analysis and transformation prediction using the proposed model; 3) augmented group: digital/AI 

analysis with pathologist supported prediction. To undertake the above work, the candidate intends to 

apply for post-doctoral grants/fellowships such as an NIHR Advanced Fellowship, an Academy of 

Medical Sciences Starter Grant or an MRC Early Investigator Grant. 

 

9.3.2 Multiplex imaging and spatial biomarker analysis 

The work presented in this thesis has been focused purely on histopathological predictors in OED. 

This is because, despite advancements in omic research, there are still no proven biological or 

molecular markers predictive of OED progression to malignancy. Nonetheless, the role of biomarkers 

in OSCC development is important to explore, however most studies have been largely mechanistic 

and do not consider the spatial architecture of the tissue. Spatial biomarkers can help deepen our 

understanding of the tissue microenvironment by giving an insight into the spatial distribution and 

organisation of cells, structures and gene expressions that may be important in cancer development.  

To explore the role of spatial markers in OED, spatial transcriptomic analysis was conducted on 

formalin-fixed paraffin-embedded tissue (FFPE) tissue samples of severe OED (n=1) and OSCC (n=1) 

using 10x Genomics® Visium technology. The laboratory processes involved in this work were 

conducted by Dr Amir Zaki Abdullah Zubir (Research Associate, University of Sheffield) whom the 

candidate shadowed to gain technical insight. Preliminary findings demonstrated more than 200 gene 

expressions in OED, including the upregulation of cytokeratin in epithelial cells and downregulation of 

TGFβ in stromal cells (Figure 35). These findings sparked interest to further explore top relevant 

candidate markers in OED. 



 

178 
 

 

Figure 35. Preliminary spatial transcriptomic analysis.  

Spatial transcriptomic heatmap visualisation on a histological section of OED tissue indicating the 

number of altered genes. Clusters 1 and 3- Epithelial (blue, green), Cluster 2, 4 and 5- Stroma (Orange, 

Red and Purple). Graph showing fold change in gene expression. Unpublished data (2023). 

 

Whilst spatial transcriptomics is a highly powerful technique with brilliant potential to map the whole 

transcriptome and analyse gene profiling information in the morphological context of tissue175,176. It is 

an extremely expensive and time-consuming technique, presenting unique analytical challenges that 

require complex computational processes. Cell DIVE™ (Leica, Microsystems) technology provides an 

alternative multiplex imaging solution for spatial biomarker analysis, integrating the powers of cell 

biology, software algorithms and precision imaging (Figure 36). The candidate has been successfully 

awarded a Fellowship jointly funded by the Faculty of Dental Surgery and Association of British 

Academic Oral and Maxillofacial Surgeons to study spatial biomarkers in OED and explore multiplex 

imaging using this innovative technique. As part of this work, markers identified through preliminary 

work as being potentially relevant (such as cytokeratin 5/6, TGFβ, CD34, CD4/8/20/45, p53, Ki67, PD-

L1) will be visualised, quantified and correlated to clinical outcomes. This work will form the foundation 

of future grant applications for further multicentre analysis to improve clinical treatment decisions, by 

assisting with risk stratification of OED lesions, helping improve patient outcomes. 

 

 



 

179 
 

 

 

Figure 36. Cell DIVE™ workflow pipeline.  

Image Source: Cell DIVE™ Open Multiplexed Imaging Solutions, Leica Microsystems. 

 

9.4 Research Impact & Conclusions 

Research presented in this thesis shows correlations between individual OED histological features, 

digital morphometric features, and prognosis for the first time on the largest digital multicentre cohort 

to date. The developed models have demonstrated better predictive strength for malignant 

transformation risk in OED (AUROC: 0.74-0.81) compared to ‘gold-standard’ histological grading 

(AUROC: 0.60-69) with superior performance maintained on unseen external datasets.  Trained AI 

models segmented and classified OED epithelium, immune and stromal cells with good accuracy (F1 

scores: 0.78-0.89). A novel transformer-based pipeline (ODYN) was developed for reliable detection 

and diagnosis of OED (F1-score of 0.71 for OED segmentation, 0.96 for classification of dysplastic vs 

non-dysplastic tissue) and prediction of malignant transformation risk (ODYN-score) demonstrating 

good accuracy (AUROC of 0.75), outperforming other state-of-the-art methods, and existing clinical 

grading systems. The thesis findings are strongly translational with a significant potential to aid OED 

diagnosis, predict the risk of malignant transformation to allow early detection of ‘at risk’ lesions and 

inform treatment decisions. Prospective validation on larger multicentre cohorts is required to further 

explore and establish the clinical utility of our developed tools.   
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