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Abstract

Leishmaniasis, a neglected tropical disease caused by infection with Leishmania parasites,

affects millions of people annually across the globe. Leishmania transmission is facilitated

by the sand fly vector, thus occurring across a range of climates with notable hotspots

in Brazil and India. Its persistence despite ongoing eradication efforts underscores the

importance of a complete understanding of the transmission dynamics in a range of en-

vironments. Developing this understanding requires tailored tools as the transmission

dynamics are affected by heterogeneity at multiple scales, giving rise to a complex web of

interactions. At the micro-scale, transmission is influenced by the heterogeneous parasite

distributions of the host’s skin as well as the complex parasite life cycle in the sand fly and

its link to sand fly biting behaviour. We derive and parameterise a simple model incor-

porating these factors, finding that their interactions give rise to unexpected transmission

opportunities. The communities in which leishmaniasis typically propagates are highly

heterogeneous but also ideal candidates for deploying network models. We test analytic

estimates for two epidemiologically relevant quantities, the R0 (the average number of

secondary infections caused by a single infected individual over their entire duration of in-

fection) and the endemic equilibrium, in the context of heterogeneous networks. Although

both prove to be unreliable for these structured communities, they have the potential to

improve our understanding of when and where epidemics are likely to occur and be more

severe. We also demonstrate the potential of using survival analysis to investigate medium

and large-scale dynamics, first by confirming the role of distance in leishmaniasis trans-

missibility at the community level, and then by highlighting the role of social vulnerability

in creating endemic hotspots. We then offer guidance for optimal application of survival

analysis to future leishmaniasis research. Finally, these findings are synthesised with the

wider literature to identify potential methodological improvements and further avenues of

inquiry to further develop our knowledge of leishmaniasis transmission.
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sis and plotting can be found within my online GitHub repository (plain text version:
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Chapter 1

Introduction

1.1 Overview of Leishmaniasis

Leishmaniasis is one of a number of neglected tropical diseases [1], responsible for approxi-

mately 3.32 million disability-adjusted life years (DALYs) and more than 50,000 deaths [2]

every year. Despite years of elimination efforts [3], from deploying insecticide-treated

bednets (ITNs) [4] and indoor residual spraying [5] to on-going vaccine development [6],

leishmaniasis remains endemic across the globe, from Brazil [7] and Ethiopia [8] to Iran [9]

and India [10]. In affected regions it remains a scourge of vulnerable people, ensnaring

vulnerable laborers (agricultural [11] or otherwise [12]) in a cycle of poverty [13, 14] and

compounding the suffering experienced by refugees fleeing conflict zones [15, 16]. As its

range shifts and expands with climate change [17], it remains imperative that we thor-

oughly understand the transmission dynamics of leishmaniasis.

Leishmaniasis is caused by protozoan parasites of the Leishmania genus, which can

infect a broad array of different mammalian species [18] including domestic dogs [19]

and wild mammals such as deer [20]. Transmission between hosts is facilitated by their

vector, the sand fly [21] (although some studies have identified other potential vectors [22],

none are officially recognised). There is a spectrum of different forms of leishmaniasis

[23]. Visceral leishmaniasis is often asymptomatic [24] but symptomatic cases present a

prolonged fever and enlarged organs [25] and bear a high mortality rate [26] especially if

untreated or if co-infecting with HIV/AIDS [27]. Cutaneous leishmaniasis is more varied,

but often manifests as slow-healing and painless skin ulcers [28] and is rarely fatal [29].

Post-kala-azar dermal leishmaniasis (PKDL) similarly forms skin lesions [30], but usually

emerges after infection with visceral leishmaniasis [31] (see also [32]) and is thought to

play a role in maintaining it [33]. The specific pathology of the disease is often determined

by the Leishmania species responsible [34, 35]; thus, which form is more prominent in a

given area is usually dictated by which species are prevalent there [36].
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Leishmania parasites have a sophisticated lifecycle. In their mammalian hosts, the

parasites persist in the form of amastigotes [37] that primarily infect macrophages [38]

(but can infect other immune cells too [39]). Whilst discussion of the intricacies of this

lifecycle stage are best left to others (see [40, 41] for example), it is worth noting that

the resulting dissemination of the amastigotes throughout the skin [42] and blood [43] of

the host facilitates their uptake by feeding sand flies [44, 45]. Sand flies primarily feed on

sugar-rich plants [46], but females require a blood meal before oviposition can occur [47].

It is to this cycle of blood meals that the Leishmania parasites have attuned their life-

cycle in the sand fly vector. Once the amastigote-infected macrophages are ingested by

the sand fly the amastigotes differentiate into procyclic promastigotes [48] and, after a

brief period of replication, subsequently differentiate into nectomonad promastigotes [49].

The nectomonads migrate through to the thoracic midgut [50] where they differentiate

into leptomonad promastigotes. The leptomonads replicate further and migrate to the

stomodeal valve [49] where they differentiate into either metacyclic promastigotes or hap-

tomonad promastigotes. The metacyclics are especially mobile [49] and positioned such

that when the sand fly takes another blood meal, they will be regurgitated into the host

and can infect new macrophages (and differentiate back into amastigotes [49]). The hap-

tomonads, on the other hand, are bound to the stomodeal valve. They are thought to

be important to degrading the function of the valve [51] to enhance outward transmis-

sion [52] but remain relatively enigmatic [53]. Each time the sand fly takes a blood meal,

any metacyclics that are not regurgitated undergo reverse metacyclogenesis and become

retroleptomonads [54], which replicate rapidly for a few days before differentiating once

more into metacyclics [54].

The behaviour of the sand flies has substantial influence over the transmission of leish-

maniasis. Sand flies are a diverse group of roughly 1000 species [55] from 6 genera [21]

found across a broad range of climates, from tropical forests [56] to arid farmland [57] and

from desert caves [58] to more temperate climes [59]. Sand flies can also live in our set-

tlements, in particular in the local vegetation [60] and around livestock pens [61]. Given

the diversity of habitats, it is perhaps unsurprising that the different species can have

very distinct blood feeding preferences: Phlebotomus orientalis has a diverse diet [62] but

appears to prefer bovines, donkeys and humans [63, 64] whereas P. perniciosus displayed

a preference for rabbits [65], and some species may choose a meal based more on host

prevalence [66]. Indeed, not every species will feed upon humans and in the context of

human leishmaniasis transmission focus is usually placed on a few genera: Lutzomyia [67]

in the New World, and Phlebotomus [68] and Sergentomyia [65] in the Old World.

Feeding preference is not the only relevant behaviour: sand fly mobility is another
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key factor. Sand flies display a preference for short-distance flight [69], usually remaining

close to the ground [70] but are capable of higher, longer-distance flights to overcome

natural barriers if necessary [71]. As a result, the sand fly population is heterogeneously

distributed across a given region. Individuals cluster in proximity to their chosen blood

meal source [72] if possible, as well as near sites that are suitable for oviposition [73, 74].

Daytime resting spots [75] are also typically hotspots: this includes vegetation [75, 76],

caves or burrows [77, 78] and man-made structures such as latrines [79] and livestock

shelters [61].

The traits discussed thus far do not act in isolation. Studies have demonstrated that

the odour of Leishmania-infected canines is more attractive to female sand flies [80, 81]

compared with that of their uninfected peers, and that this is also true for other mammals

[82]. Combined with the propensity of sand flies to remain near blood sources [72], this

creates regions of higher infection risk around reservoir hosts [78] and habitat fragments

[83]. The parasites also influence the behaviour of the sand flies directly. Infected sand

flies are more persistent in their attempts to feed [84] and, crucially, are more likely to bite

a different host if disturbed [84]. The promastigote secretory gel (PSG) plug makes it more

difficult to feed [49] and is regurgitated into the host along with a mixture of metacyclics

and non-metacyclic parasite forms, thought to enhance transmission [85]. The PSG has

also been reported to amplify the recruitment of macrophages to the site of a sand fly

bite [86] and exacerbate cutaneous leishmaniasis in mice [87].

1.2 Leishmaniasis Modelling Efforts

The spread of Leishmania parasites is thus not only affected by their life cycle in both the

host and vector, but also by the environment in which they exist and the specific actors

involved. Our understanding of this array of underlying factors is fraught with lingering

unknowns, and their many interactions create a complex and often poorly charted web

that, along with the multi-scale nature of leishmaniasis transmission, renders capturing

the dynamics in full an almost impossible challenge. Instead, studies have been inspired

by (and limited to) individual facets of the greater problem. The aim of these studies is to

employ a diverse arsenal of modelling techniques, informed by the work of empirical scien-

tists, to identify specific pieces of the jigsaw of leishmaniasis transmission. Together, these

studies have illuminated many aspects of the transmission dynamics, and we summarise

some of the key outcomes of this endeavor below.

Considerable effort has been devoted to identifying and understanding regions of par-

ticularly intense leishmaniasis transmission. Recently, Karunaweera et al. [88] analysed the
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incidence rates of cutaneous leishmaniasis rates in Sri Lanka, identifying two hotspots (ar-

eas of particularly high incidence rate) and a coldspot (an area of particularly low incidence

rate). Studies have also used the Getis-Ord GI* statistic to identify hot and coldspots of

cutaneous leishmaniasis transmission in Iran [89] and Pakistan [90] and zoonotic visceral

leishmaniasis transmission in China [91], and similar regions of higher-intensity transmis-

sion have been identified in Brazil [92] by examining the incidence rates in the mesoregions

of Minas Gerais. These findings are complemented by studies of the associated risk factors.

Recent work in Sri Lanka highlighted a link between precipitation and leishmaniasis trans-

mission using a spatio-temporal regression-autoregression model [93], a finding reflected

by studies using Bayesian geostatistical analysis [94,95].

Modelling efforts have also sought to understand the distribution of the sand fly vectors.

Ecological niche modelling (ENM) [96], a diverse tool used to predict species ranges [97]

and distributions [98] (and particularly how they evolve over time [99]) using ecological

niche theory [96, 100], has been often applied to sand fly distributions. Ferro et al. [101]

found factors such as elevation and precipitation to be important to the distribution of

several sand fly species in Colombia, and it has also provided evidence for Lutzomyia

intermedia as the main cutaneous leishmaniasis vector for southeastern Brazil [102]. ENM

has been used to evaluate how the ranges of different sand fly species will be affected by

climate change, predicting their potential expansion further into North America [103] as

well as in Morocco [104] and Central Europe [105]. Such models provide a means to identify

populations that could become at risk from leishmaniasis [106], though they must be used

carefully [107,108] to avoid common mistakes [109] and ensure proper reproducibility [110].

Another valuable modelling tool is survival analysis. Survival analysis identifies risk

factors that increase the likelihood of an event of interest happening in a given time pe-

riod [111] by analysing the ‘event times’ of cohorts of individuals. It has seen a range of

applications, from identifying risk factors of equine influenza transmission [112] to mod-

elling Aedes aegypti lifespan [113] and the survival time of cystic fibrosis patients [114].

It has also been applied to leishmaniasis: survival analysis has evaluated the potential

for thermotherapy to treat cutaneous leishmaniasis [115] and pentamidine in preventing

relapses [116], highlighted the role of age [117] and arsenic exposure [118] in visceral leish-

maniasis mortality, and investigated the emergence of PKDL after visceral leishmaniasis

recovery [119]. Another less conventional application is to identify risk factors associ-

ated with the transmission of leishmaniasis. Previously, Coura-Vital et al. used survival

analysis to link the presence of unplastered walls to canine visceral leishmaniasis trans-

mission [120] and more recently Oliveira et al. highlighted the role of major roads in sand

fly dispersal and the expansion of leishmaniasis in Brazil [121].
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A more commonly used tool for identifying risk factors is logistic regression [122]. It has

been applied in a range of contexts [123–125] including leishmaniasis transmission. Logistic

regression models have identified a range of risk factors associated with leishmaniasis

infection. Household proximity to forest [126] and other vegetation [127] increases the

risk of infection for both human [128] and canine [129] leishmaniasis, as does the presence

of poor quality [11, 130] or damaged [131, 132] walls. Agricultural work has also been

highlighted as a risk factor [133] especially for migrant workers [134] or those who sleep in

temporary shelters [135]. Farm work also appears to pose a particularly acute risk during

the weeding and harvesting seasons [136,137], perhaps due to increased exposure to sand

fly resting places [138]. Logistic regression has found positive factors too, demonstrating

the protective benefits of insecticide treated bed-nets [139] and properly screened windows

[140], as well as the benefit of sleeping upstairs [141]. Not all factors are so simple,

however: some studies have reported that owning livestock or dogs [142, 143] increased

the risk of visceral leishmaniasis infection whereas others found livestock to have no such

effect [144]. Studies have also suggested that the risk may be influenced by the type of

animal present [127], and one study indicated that the presence of sheep could have a

protective effect [145], contrasting with earlier work [143].

Other modelling techniques have also seen application to leishmaniasis. Chapman et

al. [146] used spatiotemporal SEIR model parameterised using a Monte Carlo Markov

Chain (MCMC) approach to evaluate how transmission is affected by distance between

individuals and found that the transmission rate decreases rapidly with increasing dis-

tance [146], reflecting similar findings from studies using logistic regression [128, 147].

Doehl et al. [45] captured the heterogeneous distribution of Leishmania parasites in the

skin of a mammalian host. Using a model motivated by earlier work on predator-prey

encounter rates [148], they concluded that a model including heterogeneity at both micro-

scales (within a given patch of skin) and macro-scales (across the whole skin of the host)

most accuraty predicted the outward transmissibility of the host to the sand flies [45].

Collectively, this array of different techniques has yielded insights into the many different

facets of leishmaniasis transmission and pathology.

1.3 Overview of Thesis

Several recent experimental and theoretical developments have arisen which present new

opportunities for leishmaniasis research. Serafim et al. identified a new form of parasite

in the sand fly vector, the retroleptomonad promastigote, which emerges after subsequent

blood meals, highlighting its role in amplifying the parasite burden of the sand fly [54]. In
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a similar vein, Doehl et al. demonstrated the potential importance of skin heterogeneity

in outward transmission [45]. At larger scales, Chapman et al. found that the distance be-

tween individual mammalian hosts has an important role in determining the transmission

rate [146] and Ribeiro et al. illustrated the connection between leishmaniasis transmission

in Brazil and regions of high social vulnerability [149]. Network models also present op-

portunities: in addition to existing R0 estimates for heterogeneous networks [150], recent

work by Corcoran and Hastings [151] found an analytic solution to the Super Compact

Pairwise Model [152] of disease transmission on networks, which may have applications in

leishmaniasis transmission. In this work, we build upon these findings to investigate the

role of heterogeneity at multiple scales in leishmaniasis transmission.

The focus of Chapter 2 is on micro-scale heterogeneity: how the heterogeneous distri-

bution of parasites in the skin of a mammalian host, identified by Doehl et al. [45], and

the life cycle of the parasites in their sand fly vector (particularly the newly identified

retroleptomonads [54]) interact to allow transmission even in contexts that were typically

regarded as unfeasible. To assess the relative importance of these factors, a simple model

is derived and compared with prior experimental results to ensure the parameterisation is

appropriate, and then applied with numerical simulation to explore how transmission is

influenced by different biting regimes and skin heterogeneity values.

Chapter 3 focuses on heterogeneity at larger scales, such as communities or regions.

Survival analysis is applied to a range of publicly available datasets to assess its potential

and limitations within the context of leishmaniasis. Echoing the work of Chapman et

al. [146] at the community-scale, the role of distance to nearest infection is examined as

well as the presence of an infection within the household. At regional scales, focus is

instead placed on social vulnerability factors such as urban infrastructure and access to

healthcare (inspired by the work of Ribeiro et al. [149]). Finally, at the largest scales the

limits of survival analysis are highlighted using global case distributions.

In Chapter 4, the focus shifts towards the potential for network models in capturing

and exploring the dynamics of leishmaniasis transmission. An analytic estimate for the

basic reproduction rate (R0) in the context of heterogeneous networks, presented by Lloyd

and Valeika [150], is explored and specific estimates are derived for a range of transmission

rate distributions of interest. The accuracy of these estimates is tested using numerical

simulation, as well as the potential application of the R0 value in identifying an epidemic

threshold for the transmission rate.

Chapter 5 continues to explore the applications of network models, now in the context

of the endemic equilibrium. A recent estimate for the endemic equilibrium of an SIS model

on heterogeneous networks, derived by Corcoran and Hastings [151] is examined and its
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accuracy tested under a range of networks designed to mimic a spectrum of different

structures (from fully structured networks inspired by real-world communities to fully

randomised configuration networks). The limitations of the estimate are discussed, and

scenarios where it could be beneficial in restricting the transmission of leishmaniasis are

highlighted.

Finally, Chapter 6 presents an overarching discussion and synthesis of the key findings

of the preceding chapters, with the aim of grounding them in the wider research context.

It also seeks to provide suggestions for the prioritisation of future research work and other

efforts intended to minimise the harm, and maximise our understanding, of leishmaniasis

transmission.
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2.1 Abstract

Leishmaniasis is a neglected tropical disease which kills an estimated 50,000 people each

year, with its deadly impact confined mainly to lower to middle income countries. Leish-

mania parasites are transmitted to human hosts by sand fly vectors during blood feeding.

Recent experimental work shows that transmission is modulated by the patchy landscape

of infection in the host’s skin, and the parasite population dynamics within the vec-

tor. Here we assimilate these new findings into a simple probabilistic model for disease

transmission which replicates recent experimental results, and assesses their relative im-

portance. The results of subsequent simulations, describing random parasite uptake and
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dynamics across multiple blood meals, show that skin heterogeneity is important for trans-

mission by short-lived flies, but that for longer-lived flies with multiple bites the population

dynamics within the vector dominate transmission probability. Our results indicate that

efforts to reduce fly lifespan beneath a threshold of around two weeks may be especially

helpful in reducing disease transmission.

2.2 Author summary

Two recent discoveries hold particularly important ramifications for Leishmania trans-

mission. First, parasites are heterogeneously distributed within the skin of an infected

host. Second, the discovery of a new lifecycle stage known as the retroleptomonad pro-

mastigote changes the within-vector parasite dynamics. It is not yet known how these

newly identified factors may interact to influence transmission. In this study, we design a

tractable model for parasite population dynamics in the sand fly vector that consolidates

these new results into a single system. We first demonstrate that our model can repli-

cate established experimental results. We then interrogate this model, both analytically

and numerically, to draw conclusions about Leishmania transmission in an ecological and

epidemiological context. We conclude that the relative importance of the two focal fac-

tors depends critically on sand fly lifespan. In short-lived sand flies the heterogeneity in

the number of parasites initially taken up by a sand fly is typically the crucial factor in

Leishmania transmission, whereas for longer-lived sand flies the retroleptomonad lifecycle

stage is likely to drive transmission. In a practical context these results suggest that min-

imising the expected sand fly lifespan could be an effective strategy to reduce Leishmania

transmission.

2.3 Introduction

Leishmaniasis is caused by parasites of the Leishmania genus. Details of the infection

depend on the particular species [153], but all species share the same general vector-borne

lifecycle, with distinct and complex life cycle stages in the mammalian host and sand fly

vector [48]. Leishmania parasites have two main morphological forms. Broadly speak-

ing, amastigotes (ovoid, non-flagellated) dominate the mammalian stage of the lifecycle.

Promastigotes (larger, flagellated) are found in the vector, and are divided into multiple

developmental subclasses [49,154].

Sand flies in natural settings are often opportunistic feeders, capable of feeding on a

variety of mammalian and avian species [18,65]. Mature female sand flies require a blood

meal during each oviposition cycle. When an uninfected female sand fly bites an infected
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mammal, it ingests amastigote-infected macrophages from the host’s skin or blood [45].

Within the first few days, amastigotes differentiate into procyclic promastigotes, which are

resistant to the digestive enzymes of the sand fly midgut [48]. Procyclics then exponen-

tially replicate before differentiating into nectomonad promastigotes [49]. Nectomonads

are able to migrate towards the thoracic midgut [48] and bind to the midgut epithe-

lium [50] where they differentiate into leptomonad promastigotes [49]. Leptomonads are

the second replicative stage, and migrate through the thoracic midgut to the stomodeal

valve [49] where these differentiate into metacyclic promastigotes, the human-infectious

stage. Metacyclics have a short cell body and long flagellum to enhance motility [49], and

can be transmitted to a new host where they infect host macrophages via phagocytosis,

which is a requirement for the parasite life cycle in the host (the full infection dynamics

in the host are similarly complex [41,155], but are not relevant to this investigation which

focuses on transmission potential from vector to host). Two recent key findings concerning

details of Leishmania biology offer new insights into the possibility of understanding, and

possibly controlling, the spread of the disease. They are described below.

Patchy landscape of infection in the host Transmission from host to vector occurs

when a sand fly consumes a blood meal from an infected host. Doehl et al. [45] examined

amastigote Leishmania donovani infections in immunodeficient mice. By evaluating the

correlation of the sand fly parasite burden with multiple measures of host parasite burden,

they showed first that the parasite load in mammalian host skin, rather than blood, is the

major determinant of successful sand fly infection. They further found that skin parasite

burden is highly variable within and between mammalian hosts and developed a modelling

approach to investigate the consequences of this patchiness. For a host with a low mean

parasite burden, a patchy skin landscape enhanced outward transmission (although the

overall probability of successful transmission remained low), whereas for a host with a

high parasite burden a homogenous distribution favoured transmission.

Retroleptomonads A new lifecycle stage was identified by Serafim et al. [54], the

retroleptomonad promastigote [54]. When a sand fly with a mature (metacyclic en-

riched) infection takes another blood meal, the metacyclic stage can de-differentiate into

a leptomonad-like stage, termed the retroleptomonad. These replicate for 3-4 days before

differentiating back into metacyclics [54]. This serves to greatly amplify the parasite load

prior to the next bite (4.5 fold increase in the number of metacyclics 18 days post infection

in comparison to a sand fly that has fed only once) and thus increases the probability of

disease transmission [54], a finding confirmed experimentally under laboratory conditions.

Doehl et al. [45] observed that often the sand flies would only carry a relatively small

infection after a single feed, suggesting that perhaps sand flies may only be expected to
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infect once they had taken 2 previous bites (and thus had their infection amplified via the

the retroleptomonad stage [54]), but the correlation between these two mechanisms has

not yet been fully explored.

The objective of the work presented here is to build a mathematical model to in-

corporate these new findings and assess the impact upon Leishmania transmission. A

simple differential equation model, parameterised by data from [49], was developed to de-

scribe the population dynamics of nectomonad, leptomonad and metacyclic promastigote

stages within the vector (Model A). This model was then refined by the addition of the

retroleptomonad lifecycle stage, using data and observations from [54] (Model B). These

models of population dynamics within the sand fly provide a framework for a series of

stochastic simulations which describe the random processes of feeding and parasite inges-

tion across multiple blood meals. Such simulations allow the consequences of changes in

disease prevalence at the epidemiological scale and the thresholds of disease transmission

to be quantifiably predicted.

2.4 Model Details

2.4.1 Modelling Approach

The modelling strategy is summarised in Fig 2.1. First, we develop a simple, algebraically

tractable and computationally efficient model for parasite population dynamics within a

single infected sand fly, and then parameterise this model according to the available infor-

mation. This model then forms a key ingredient in a series of larger stochastic simulations

intended to extract useful details about the transmission of Leishmania.

Figure 2.1. Flowchart overview of the modelling approach. Two dynamic
models, calibrated to replicate prior results, evaluate parasite population dynamics in
the sand fly vector. These can be used as part of larger simulations to obtain insights
into Leishmania transmission.

In order to create a tractable model, several key assumptions are made. In addition

to those represented in Fig 2.1, we also assume that differentiation between parasite life
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cycle stages occurs at 100% efficiency and that there is a single globally applied sand fly

carrying capacity of Leishmania parasites.

2.4.2 Model Definitions

Model A describes the dynamics of Nectomonads (N), Leptomonads (L) and Metacyclics

(M) using a simple set of near-linear ordinary differential equations (ODEs),

dN

dt
= −αN (2.1)

dL

dt
= αN + rL

(
1 − N + L + M

C

)
− sL (2.2)

dM

dt
= sL− uM (2.3)

The assumptions are biologically parsimonious: N differentiate into L at rate α, L replicate

at rate r (limited by a carrying capacity C) and differentiate to M at rate s, and M are

also subject to mortality at rate u.

Model B extends Model A to incorporate the dynamics of the Retroleptomonads (R)

[54] using two sets of near-linear ODEs. Initially, Model B consists of Equations 2.4-2.7:

dN

dt
= −αN (2.4)

dL

dt
= αN + rL

(
1 − N + L + M + R

C

)
− sL (2.5)

dM

dt
= sL + vR− uM (2.6)

dR

dt
= qR

(
1 − N + L + M + R

C

)
− vR (2.7)

In addition to the original assumptions, it is assumed that any existing R differentiate

to M at rate v and replicate at rate q limited by carrying capacity C. For a four-day

period after subsequent bites, we exchange Equations 2.6 and 2.7 for Equations 2.8 and

2.9 respectively:

dM

dt
= sL− gM − uM (2.8)

dR

dt
= qR

(
1 − N + L + M + R

C

)
+ gM (2.9)

Now, M dedifferentiate to R at rate g and R no longer differentiate to M .

Parameterisation of Model A was performed using data obtained from Rogers et al [49]
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(see S1 Method) but due to a lack of suitable data, it was not possible to perform similar

parameter fitting for the new parameters in Model B.

Table 2.1 includes a summary of the default parameter values chosen.

Table 2.1. Table of default model parameter values.

Parameter Name Default Value Source

α Nectomonad differentiation
rate

1.52 [A]

r Leptomonad replication rate 1.45 [A]
s Leptomonad differentiation

rate
1.65 [A]

u Metacyclic decline rate 1.61 [A]
C Carrying capacity 2 ∗ 106 [A]
v Retroleptomonad differentia-

tion rate
4.0 [B]

q Retroleptomonad replication
rate

3.5 [B]

g Metacyclic dedifferentiation
rate

4.0 [B]

All parameters and their default values. [A]: Values are derived from parameterisation
based on data from Rogers et al. [49], see S1 Method. [B]: Parameter estimates chosen to
ensure that simulated population dynamics are consistent with experimental
observations from Serafim et al. [54].

For a more thorough examination of the parasite population dynamics see Section

A.1.1, and for an implementation of the above models see Supplementary S1 Code.

2.5 Results

Replicating experimental results on sand fly feeding schedules and mammalian

infection heterogeneity

In order to verify that our retroleptomonad-inclusive Model B is capable of replicating the

experimental results observed by Serafim et al. [54], we ran a set of 20,000 Monte Carlo

simulations designed to imitate their experimental setup. In this scenario, all flies take a

bite at day 0 from an infected host. Half the flies take an additional bite at day 12 from

an uninfected host, the other half take no subsequent bites. We fix the mean skin parasite

burden to 2 × 106 and let the skin homogeneity k = 2 to mimic the blood source used by

Serafim et al. After the initial bite, we take up a number of amastigotes determined using

a negative binomial distribution with P (probability of a positive result) and R (number

of required successes) such that:
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R =
µ2
N

σ2
N − µN

P =
µN

σ2
N

.

where:

µN = PBVBM σ2
N = (µN )(1 +

µN

k
)

and we define PB to be the mean skin parasite burden and VBM to be the blood meal

volume. The conversion of amastigotes to nectomonads is not covered directly by our

models, but the number of nectomonads is approximately three times greater than the

number of amastigotes [49] and thus we simply multiply the number of amastigotes by

three. See Section S2 Method for further details and examples of the distribution of

amastigotes under varying k values.

In this example, the initial number of nectomonads N0 is determined using a distribu-

tion with mean µ and variance σ2:

µ = 9, 600 σ2 = 46, 108, 800

and we assume that VBM = 1.6 × 10−3 throughout.

Of particular interest are the numbers of metacyclics and retroleptomonads present in

each fly throughout their adult lifespan. Fig 2.2A compares the numbers of metacyclics

and retroleptomonads at each day sampled by Serafim et al.

Figure 2.2. Replicating the results of [45] and [54]. A) Comparison of the
numbers of metacyclics (top) and retroleptomonads (bottom) at specific days throughout
the lifespan of the simulated flies. Blue represents flies that bite only at day 0, orange
represents flies that take a subsequent blood meal at day 12. The two categories are
combined prior to day 12. B) Number of simulated sand flies considered infectious at 7
days post-infection for RAG mice 10-18, parameterised according to Doehl et al. (see S1
Table)
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Fig 2.2A reflects the qualitative dynamics observed in the experiments of Serafim et

al. We observe a similar reduction in the number of metacyclics immediately after the

bite at day 12 and a corresponding increase in the number of retroleptomonads over the

same time period. Similar behaviour can be observed for the proportions of metacyclics

and retroleptomonads (Fig A.7), and this behaviour is sufficiently robust to be observed

even with parameter randomisation (Fig A.8).

We also wish to verify that our model can describe the role of heterogeneity in the skin

parasite distribution as reported by Doehl et al [45]. To do so, we ran sets of 1000 Monte

Carlo simulations for parameter combinations corresponding to mice 10-18 as calculated

by Doehl et al (S1 Table). Each simulated fly fed on an infected host at t = 0. We

then sampled the number of metacyclics in each fly after 7 days. Based on the work of

Sadlova et al. [156], we consider a sand fly to be infectious if 500 metacyclics are present

at day 7 post-infection. This is a distinct, but similar, approach to that of Doehl et al. [45]

Whereas Doehl et al. predicted the number of flies with mature infections based upon

amastigote uptake, we evaluate this number directly using a comparable threshold. Fig

2.2B compares the number of infectious sand flies for each mouse.

We observe that heavily infected mice, such as mouse 13, result in a large proportion,

if not all, of the sand flies being mammalian-infectious at day 7 post-infection

(S1 Table). Relatively smaller infections, such as those of mice 10 and 16, typically

lead to negligibly-infectious sand flies. This matches the observations made by Doehl et

al [45] and verifies that our model successfully captures the relationship between outward

transmission potential and skin patchiness.

2.5.1 Analytic results

In this section we provide analytically-derived properties and consequences of simplified

versions of our models. These serve to reinforce and validate the numerically derived be-

haviours discussed in Section 2.5.2 and to highlight the key processes driving transmission.

In particular, we present expressions bounding implied disease transmission probabilities

in a range of hypothetical scenarios.

In order to render it analytically tractable, it is necessary to make two simplifications to

our model. Explicitly, we assume that 1) blood meals only occur at specific predetermined

times, rather than at random gamma-distributed times as in the full model, 2) no sand

fly mortality occurs during our simulations. This simplifies the probabilistic model such

that the only random variables affecting the parasite transmission events are the initial

number of parasites present in the sand fly, and the presence or absence of a second blood

meal.
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More specifically, we restrict our attention to scenarios in which a sand fly takes either

two or three blood meals over a period of 12 days. In all scenarios let N0 be the number of

nectomonads present in the sand fly 4 days post-blood meal. We choose t = 0 such that

each sand fly initially carries N0 nectomonads. We also assume that the fly feeds on an

uninfected host at time t = 12, when it deposits M12 parasites in the metacyclic life cycle

stage. N0 is considered a random variable. M12 is considered a deterministic function

of N0, and so inherits probabilistic behaviour from this random variable. A transmission

event is associated with the sand fly depositing a number of parasites (M12) exceeding

a threshold T . Thus transmission is also a random variable inheriting probabilistic be-

haviours from N0.

The scenarios we consider differ in terms of the occurrence of an additional blood

meal from an uninfected host at time t = 6. In our model, this 2nd ingested blood meal

triggers differentiation to the retroleptomonad lifecycle stage, associated replication and

re-differentiation back to metacyclic stage, impacting the number of metacyclics that can

be deposited at time t = 12.

Given that there are blood meals only at times 0 and 12, the structure of the model

described in Section 2.4 is such that M12 is proportional to N0 i.e.

M12 = C2N0 (2.10)

where C2 is a constant derived by solving the system of equations in Section 2.4 (the

system is far from carrying capacity so this assumption of linearity provides a good ap-

proximation). It is implicitly a function of the model’s differentiation rate parameters and

the time elapsed between blood meals.

If an additional blood meal at time t = 6 does occur, a different set of equations that

involve the retroleptomonads (specifically Equations 2.4-2.9, which comprise Model B)

is used to determine the resulting number of metacyclics at time t = 12. M12 is now

determined by N0 and a correspondingly different multiplicative constant

M12 = C3N0 (2.11)

Expressions (2.10) and (2.11) can be combined to give

M12 = C3N01B + C2N0(1 − 1B) (2.12)

where 1B is an indicator function taking value one when the t = 6 blood meal occurs, and

zero otherwise.
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We can now, for instance, consider the expectation of M12

E(M12) =C3 E(N0)E(1B) + C2 E(N0)(1 − E(1B))

= [C2 + (C3 − C2)E(1B)]E(N0) (2.13)

which follows on the assumption that 1B and N0 are considered probabilistically indepen-

dent. Note that E(1B) is the probability that the blood meal bite takes place.

Eq (2.12) can also be used to produce an expression for the transmission probability

at time t = 12

P (Transmission) =P (M12 ≥ T )

=P (M12 ≥ T | second bite)P ( second bite)

+ P (M12 ≥ T | no second bite)P ( no second bite)

=P (N0 ≥ T/C3)E(1B) + P (N0 ≥ T/C2)(1 − E(1B)) (2.14)

We will use Eq (2.14) to express how the variability in N0, which was the subject of

interest in Doehl et al. [45], and the variability in the blood meal availability, which was

the subject of interest in Serafim et al. [54], both contribute to the probability of disease

transmission.

To help progress our arguments here we appeal to Chebyshev’s inequality, which tells

us that a random variable takes values close to its expectation with high probability, more

precisely it says that the probability of the random variable being further than w > 0

standard deviations from the expectation is smaller that w−2 i.e.

P (|X − E(X)| ≥ w
√

var(X)) ≤ 1/w2 (2.15)

or equivalently

P (|X − E(X)| ≥ w) ≤ var(X)/|w|2+ (2.16)

where we have introduced the rectifier function

|w|+ =


w w > 0

0 w ≤ 0

(2.17)

In order to accommodate negative w.

In the case when there is no bite at time t = 6 Chebyshev’s inequality allows us to put

39



an upper bound on the transmission probability

P [Transmission | no second bite] =P [M12 ≥ T | no second bite]

=P [C2N0 ≥ T ]

=P [N0 − E(N0) ≥ T/C2 − E(N0)]

≤P [|N0 − E(N0)| ≥ T/C2 − E(N0)]

≤ var(N0)/|T/C2 − E(N0)|2+ (2.18)

Such an upper bound is useful because it suggests ways the transmission probability can,

in principle at least, be forced down. We could, for example, force down the variance of

the number of parasites ingested at time t = 0. Alternatively, by decreasing the conversion

rate from nectomonads at time t = 0 to metacyclics at time t = 12 we would decrease C2

which also serves to bring down the upper bound.

Considering the average over cases in which the blood meal bite does and does not

occur at time t = 6, Chebyshev’s inequality leads us to an expression of the form

P [Transmission] =P [M12 ≥ T ]

≤ var(N0)

(
ρ

|T/C3 − E(N0)|2+
+

1 − ρ

|T/C2 − E(N0)|2+

)
≤ var(N0)

1

|T/(ρC3 + (1 − ρ)C2) − E(N0)|2+

= var(N0)
1

|T ′/C2 − E(N0)|2+
(2.19)

where the second line follows from Jensen’s inequality and ρ is the probability that the

blood meal bite occurs. Since C3 > C2, the second bite/retroleptomonad phenomenon

effectively leads to a version of Eq (2.18) in which the transmission threshold has been

lowered from T to

T ′ = T × 1

1 + ρ(C3/C2 − 1)
(2.20)

As well as providing quantitative predictions, this ‘equivalent threshold’ result is intended

to provide another angle from which to interpret the significance of the retroleptomonad

reproduction mechanism. Specifically, the retroleptomonads do not negate the capacity

for skin heterogeneity to increase metacyclic numbers to transmission-sufficient levels for

a subset of flies. Rather, they make these levels easier to attain. We see the effects of skin

heterogeneity and the retroleptomonads act together to contribute to disease transmission.

An alternative expression linking the retroleptomonads to the transmission probability
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follows from assuming that the number of metacyclics derived from retroleptomonads is

very large relative to the transmission threshold (i.e. C3N0 ≫ T ). In this case we can

consider the transmission probability, given the blood meal bite at t = 6, is close to one

P (M∗
12 ≥ T | second bite) ≈ 1 (2.21)

Then, using Chebyshev’s Inequality we see that

P (M∗
12 ≥ T ) ≤ρ + (1 − ρ)

µM∗(1 + µM∗/k)

(T/C2 − µM∗)2

=ρ + (1 − ρ)
var(N0)

(T/C2 − E(N0))2
(2.22)

where µM∗ is the mean number of metacyclics present at day 12 post-infection.

This bound provides another way to assess the relative influences of key parameters on

the probability of transmission. For cases in which the transmission threshold is high rela-

tive to the number of metacyclics produced without the retroleptomonads (i.e. C2N0 ≪ T )

and the blood meal bite probability ρ is reasonably large, the rightmost expression in Eq.

(2.22) dominates. We then see the transmission probability reduced to the blood meal bite

probability. When ρ is very small, however, the variance of N0, and the skin heterogeneity

that drives it, becomes important again. In this case it is this heterogeneity that provides

each sand fly with the greatest likelihood of depositing a sufficient number of Leishmania

parasites at time t = 12 to cause transmission.

Our simplified model, via Eq. (2.22), re-frames the competing roles of the second blood

meal and the skin heterogeneity in a mathematically precise way. The simulations and

discussions below do the same at increasing levels of realism, but necessarily decreasing

levels of mathematical formalism.

2.5.2 Simulation study

This simplified model is useful because it allows us to make analytical predictions about the

behaviour of our system. However such predictions are useful only where their implications

can be related to more sophisticated systems. Let us once more consider the full system

for both models as originally defined (Model A: Eqs 1-3; Model B: Eqs 4-9). Each sexually

mature female fly has a predetermined lifespan drawn from an exponential distribution

with a mean and standard deviation of 13 days. These sand flies bite throughout their lives,

with inter-bite times drawn from a gamma distribution of mean 6 days, standard deviation
√

3 days and with bite loads as previously defined (S2 Method). We also reinstate a 3-day

delay before the emergence of nectomonads and assume that all sand flies are initially
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uninfected.

We require a suitable metric to assess the infectiousness of Leishmania under a variety

of mean skin parasite burden and k values. One such metric commonly used in epidemiol-

ogy is the R0 [157] defined as ”the number of secondary infections generated from a single

infected individual introduced into a susceptible population” [158]. As we do not explicitly

model individual hosts, this measure is unsuitable. Let us instead consider a proxy value:

mean sand fly transmission capacity (hereafter referred to as mean R0), defined to be the

average number of infections caused by a single sand fly. Though this is not strictly an R0

value, higher mean R0 values imply a higher R0 value for the disease assuming that the

number of sand flies biting a given infected host remains unchanged.

We determine that a transmission has occurred at a given bite using either a binary

threshold or a smooth ’threshold function’. In the case of the binary threshold, we assume

that if the number of metacyclics transferred (MT) exceeds some fixed threshold T, an

infection is guaranteed (and if not an infection never occurs). For the smooth ’threshold

function’, we assume the chance of infection PT at a given bite depends on MT such that:

PT = 0.5(tanh(0.015(MT − 200)) + 1) (2.23)

Unfortunately, little is known about the true threshold for infection with leishmaniasis, but

our chosen function possesses useful traits. Even if very few metacyclics are transferred,

the probability of transmission is non-zero (if low), allowing mildly infected sand flies to

occasionally infect a mammalian host (which is important because sand flies have been

shown to often transmit between 10 and 100 parasites [159]). The probability then rises

rapidly, reaching a probability of 1 at a dose of 400 parasites. This means that very high

doses of parasites will always infect the host.

Whilst the binary threshold is easier to relate to our analytical work it is very unlikely

to be applicable to a real situation, especially as it disregards any nutritional or genetic

variation between potential hosts. Thus, let us consider the smooth threshold function.

Corresponding figures for the binary threshold function can be found in the supplementary

information, and we observe qualitatively similar behaviour with both the binary and

smooth thresholds.

We compare our two models’ outputs for a range of different scenarios. Assume that

some proportion of hosts is initially infected and that this proportion is fixed with no

dependence on time or transmissions. Initially, we will consider two scenarios where our

simulated flies bite at random from a population of hosts in which either 100%, or 25%,
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of hosts are infected (see Fig 2.3; for further scenarios see Fig A.9 and for the binary

threshold equivalent see Fig A.10).

Figure 2.3. Retroleptomonad dynamics dominate over skin heterogeneity and
result in elevated mean R0 values. Heatmaps of the mean R0 for simulated sand
flies for both Model A (left half) and B (right half) with 100% (top half) or 25%
(bottom half) chance of biting an infected host. Note that each model utilises a different
scale for clarity (see Fig A.15 for a version with unified scales, and Fig A.16 for a version
of the top-right panel with greater sample size). Each tile represents 10,000 independent
simulations.

Although the simplest conclusion we can draw from these heatmaps is that introducing

retroleptomonads increases our mean R0 value, there are several other notable results. We

observe that for Model A there is a peak in the mean R0 value for low skin homogeneity

and high mean skin parasite burden for both scenarios. Though our analytic approach

does not deal directly with Model A, we could consider Model A to simply be the scenario

where flies never take 3 blood meals (and thus where the retroleptomonad lifecycle stage

has no significant role in day 12 transmission). In this context, we note that a low skin

homogeneity increases the probability of transmission as some flies are able to ingest a

sufficient number of parasites to become infectious by the next blood meal. In contrast,

more homogeneous skin environments reduce the probability that any individual sand fly

would ingest sufficent parasite numbers for strong transmission capacity. These findings

support the prediction of Doehl et al. [45].

The peak is entirely absent from the corresponding heatmaps for Model B; instead

we have a plateau spanning most of the parameter space with a slight decrease in mean

R0 for very low k values (i.e. very patchy environments). We note from our analytical

section that as ρ (the chance of taking 3 bites) increases, k (skin homogeneity) has a
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progressively reduced impact. Thus, given that ρ effectively remains constant (and non-

zero) regardless of k one might anticipate that the mean R0 would be independent of k.

Similarly, considering the magnitude of the amplification of the metacyclics (Fig 2.2A) it is

reasonable to expect that the mean skin parasite burden would be relatively unimportant.

This does not hold for very low skin homogeneity and/or parasite burdens, because under

these conditions it is possible that the sand fly may fail to be initially infected or may not

remain infected by the time of their second blood meal. In such instances, the Leishmania

parasite burden may not increase sufficiently for transmission despite the retroleptomonad-

dependent population boost.

Accordingly, skin homogeneity has a particularly reduced role in very long lived sand

flies that bite many times. In these flies, the number of metacyclics are repeatedly ampli-

fied, resulting in almost guaranteed parasite transmission to mammalian hosts at the third

and subsequent blood meals for the majority, rendering such sand flies potential ”super

spreaders”. To assess the impact of such flies, let us restrict the lifespans of the simulated

flies to 20 days (Fig 2.4A, and see Fig A.11 for the binary threshold equivalent). Restrict-

Figure 2.4. Retroleptomonad dominance is dependent on having a
sufficiently large maximum lifespan. A, B) Heatmaps of the mean R0 for simulated
sand flies in Model B with 100% chance of biting an infected host and with lifespans
restricted to 20 days (A) or 15 days (B). Crosses indicate the mean skin parasite burden
and skin homogeneity (k) of various mice from [45]. C) Mean R0 value against maximum
lifespan for RAG mice 1-18 from Doehl et al. [45] (S1 Table). See Fig A.17 for a version
where the heatmaps share a common z-scale.

ing the lifespan of the flies to 20 days appears to have minimal effect on the influence of

skin homogeneity, though a reduced plateau in mean R0 value is achieved. This impact is

predominantly due to the abbreviated capacity for metacyclic-enhancing blood meals in
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female sand flies with reduced lifespans. It should be noted that with a mean inter-bite

time of 6 days, it is not unlikely that a given individual could take 3 blood meals in 20

days.

We next consider a further restriction of the lifespan to 15 days (Fig 2.4B, and see Fig

A.12 for the binary threshold equivalent). Under this new, harsher restriction we see that

skin homogeneity has much stronger influence on the mean R0 value. The peak observed

in Model A is present again. The mean R0 value does not drop to zero away from that

peak, however. This is likely because some flies will still manage to bite three times and

thus benefit from the retroleptomonad replicative cycle (this could also be interpreted as

having a low, but non-zero, ρ and thus we would expect a similarly low but non-zero mean

R0).

Further simulations based on the Doehl et al. mice help elucidate the transition be-

tween these two states. Using the parameterisation for mice 1-18 from Doehl et al. [45]

(S1 Table), we ran sets of 5,000 sand flies for each mouse for a range of different maxi-

mum lifespans and calculated the mean R0 value for each set. We can then compare the

trajectory taken by the mean R0 value for each population of simulated sand flies as we

increase the maximum lifespan (Fig 2.4C).

We note that the mean R0 value increases with the maximum sand fly lifespan for all

mice, especially once it exceeds 15 days, as anticipated from Fig 2.4A and 2.4B. As sand fly

longevity increases it stimulates a smooth transition away from a patchiness-dominated

scenario and towards a retroleptomonad-dominated scenario. Thus the conclusions of

Doehl et al [45] do not hold for flies with unrestricted lifespans, but provide valuable

insight into the transmission potential of shorter-lived sand fly populations. Reducing the

maximum lifespan of the sand flies (and thus enlarging the shorter-lived portion) can have

a tangible impact on the mean R0 value.

It is important to consider the sensitivity of our conclusions to certain model assump-

tions. Firstly, we have not fully addressed the effect of Leishmania infection on the sand

fly vector. It has been documented that sand flies experience a reduction in their lifes-

pan when infected [84], although the effect is not yet fully understood. In S3 Method,

we modify the model to incorporate a 20% reduction in sand fly lifespan once infected.

Supplementary Fig A.13 demonstrates a quantitative reduction in mean R0 but no quali-

tative changes to the behaviour of our system: we maintain the single peak exhibited by

Model A, and the plateau of Model B. Though reduced, parasite infection and transmission

dynamics are essentially unchanged.

We have also assumed that there exists a standard sand fly carrying capacity, suggest-

ing a constant tolerance for infection by all parasite lifecycle stages. Supplementary Fig
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A.14B shows the mean R0 against maximum lifespan for a representative subsample of the

RAG mice used by Doehl et al., as in Fig 2.4C, but in simulations where no limit to popu-

lation size is imposed. We note that the results are almost indistinguishable from those of

the full system (Fig A.14A, Fig 2.4C). Our final sensitivity check removes the assumption

of 100% efficiency in parasite differentiation. To represent this reduction in efficiency, we

include a population sink at each lifecycle stage (see S3 Method for model specification

and parameters). Supplementary Fig A.14C and Fig A.14D correspond to the small and

large sinks, respectively. Although Supplementary Fig A.14D shows a marked decrease in

mean R0, in all cases we still observe the same qualitative relationship between mean R0

and maximum lifespan.

2.6 Discussion

We observe both numerically and analytically that the inclusion of retroleptomonads allows

sand flies which take multiple bites to transfer more parasites on subsequent bites and thus

be more effective at transmitting leishmaniasis, as anticipated by Serafim et al [54]. Less

trivially, we also observe that the inclusion of retroleptomonad-dependent amplification in

the model alters the relationship between the mean R0 and skin homogeneity. In scenarios

where the retroleptomonad life cycle stage is absent (Model A) or play a substantially

reduced role (Fig 2.4B) we see a strong dependence on skin homogeneity, with patchy

environments leading to more transmissions as some flies take up many parasites and can

then cause infections, as predicted by Doehl et al [45]. In scenarios where retroleptomonads

are more important however, we see the opposite: skin homogeneity is unimportant to the

transmission of the disease, as even small numbers of parasites initially present can be

amplified greatly.

This result may reduce the perceived importance of the predictions made by Doehl et

al. [45], yet there are important considerations that highlight its relevance. Doehl et al.

predicted that patchy skin distributions would enhance transmissions because sand flies

could occasionally take up higher parasite loads and then can lead to increased sand fly

and subsequent mammal infections. Homogeneous skin environments, on the other hand,

would reduce the likelihood of the Leishmania parasite establishing an initial sand fly in-

fection. While we observe the loss of the relationship between skin homogeneity and mean

R0 for the full system there are scenarios where it re-emerges. Flies with short lifespans

(Fig 2.4B) cause more transmissions with patchy than even skin distributions. Such sand

flies are unlikely to live long enough to bite three or more times and thus the parasite pop-

ulations do not typically benefit from the amplification step of the retroleptomonad stage
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in the model. This is reflected in our analyses. Consider the short-lifespan flies to have a

low chance of taking three bites (IE a low ρ), then from Eq 2.22 we see that low k values

increase the chance of transmission. Thus, there are conditions under which the scenario

posed by Doehl et al. is relevant to the spread of the parasite. Perhaps an important

caveat to the in vivo infection study is that immunodeficient mice from Doehl et al. may

not properly represent a typical immunocompetent individual. While patchiness has not

be reported in immunocompetent mice, the phenomenon of patchy skin parasite distribu-

tions remains applicable to clinically symptomatic Post-Kala Azar Dermal Leishmaniasis

(PKDL) patients.

The extent to which our model’s outcomes apply to parasite transmission in natural

settings is uncertain. Multiple lab-based studies suggest that female sand flies have fairly

short adult lifespans (<20 days) [160] with further reductions when infected [84]. Lab-

based sand fly viability estimates are confounded by numerous challenges in maintaining

sand fly colonies [47] and additional mortality associated with factors such as oviposi-

tion [161] and bacterial infection [162] that do not appear to impact wild populations

as prominently. Release-recapture studies in natural settings suggest that flies may live

much longer than in lab environments [163]. To address this uncertainty, we have incorpo-

rated parasite-induced mortality for an exemplar scenario to begin to assess its influence

upon Leishmania transmission. Though this new addition did not alter the qualitative

behaviour of this system for our exemplar scenario, we did observe a reduction in mean R0

in all tested parameter combinations. This mean R0 reduction will grow in magnitude for

more severe lifespan reductions. We would also observe a loss of the plateau in Model B

if the parasite-induced mortality was sufficiently severe to prevent the retroleptomonads

from emerging. Such scenarios are, however, unlikely to be reasonable. In order to prop-

erly model the impact of parasite-induced mortality on the transmission potential of sand

flies, it will be crucial for future studies to discern the true expected lifespan of wild sand

flies and the full extent to which this lifespan is reduced by Leishmania parasite infection.

Transmission dynamics are further complicated by the feeding behaviour of the sand

flies. We chose to model the time between subsequent blood meals (in days) using a

gamma distribution of mean 6. Though this is a reasonable approximation for our model,

in reality there is little information available about how often sand flies feed. It is likely

that the feeding rate is linked to the oviposition cycle (given the dependence of oviposition

on a blood meal) and the abundance of potential blood sources and promiscuous feeding

behaviour exhibited by sand flies [65]. The scenario of regular feeds posed by Serafim et

al [54] is a significant improvement upon theories which incorporate only a second blood

meal at day 12. This seems appropriate for sand flies with abundant sources of blood
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meals, yet it is not uniformly true for all populations. We also consider human populations

with different proportions of initially infected hosts (Pi) including values such as 25%

and 10% which are more applicable to populations where leishmaniasis is endemic [164,

165]. Although we observe that our results hold for such scenarios, we assume that hosts

are evenly distributed throughout the populations and this is unlikely to be biologically

accurate.

There is significant evidence that the behaviour of the sand flies is also altered once

infected. A notable component of Leishmania infection known to alter sand fly behaviour is

Promastigote Secretory Gel (PSG), a filamentous proteophosphoglycan-based gel secreted

into the thoracic midgut and stomodeal valve [48, 49]. The occupation of the midgut

by PSG causes the sand flies to feed ineffectively, taking smaller blood meals [49, 166]

and demonstrating increased persistence when disturbed (with an increased likelihood of

biting a second host after a disturbance) [84]. PSG also acts as a filter allowing only

metacyclics to pass through [49], and impedes the unidirectional flow of blood through

the stomodeal valve, causing the sand fly to regurgitate PSG and the parasites within it

into the bite. This may amplify the number of infectious parasites transferred to a new

host on a successful bite [49, 52]. Giraud et al. [85] recently investigated the complexity

of this impact upon transmission. They reported that sand flies could regurgitate high

”quality” (metacyclic-enriched) parasite doses even after multiple successive bites in a

feed, likely due to PSG acting as a filter [49], but subsequent maintenance varies as the

infection progresses in the fly. They also report that differences in dose quality have

tangible impacts on the trajectory of the resulting infection in a mouse host, with lower

quality bites often leading to larger, but less outwardly infectious lesions.

The interactions between PSG, fly feeding behaviour, and Leishmania population dy-

namics could have important implications for transmission. Sand flies that do feed on

multiple hosts during a feed [84] could cause multiple infections given the enriched doses

they may transmit, and the variable dose quality [85] may contribute to the emergence

of variable patchiness in the skin of mammalian hosts observed by Doehl et al [45]. Al-

though we model the regurgitation of parasites by increasing the number of transferred

metacyclics for heavily infected flies [159], we do not directly model the PSG due to insuf-

ficient information regarding its production and how it interacts with the parasites in the

midgut. Similarly the role of superspreading in Leishmania transmission, though beyond

the scope of this study, may have significant implications for future models.

Another avenue of future enquiry that holds potential value relates to improving the

parameterisation of our model. As the discovery of the retroleptomonad lifecycle stage is

very recent [54] we have insufficient data to parameterise Model B with accuracy. Although
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our chosen parameters are informed by the population graphs of Serafim et al. and we

can demonstrate that our model produces similar behaviour to that of the experimental

system, it would be preferable to have more data to base our parameters upon. Future

studies may seek to improve the identification of retroleptomonads using transcriptomics

tools as has been done for previous life cycle stages [167]. Alternatively, they may seek

to provide more information about the two lifecycle stages we omit from our model, the

amastigotes and procyclic promastigotes. Either of these options would greatly improve

predictions from future models.

2.7 Conclusion

This work has produced a basic population dynamic model for nectomonad, leptomonad

and metacyclic promastigotes and integrated the recently discovered retroleptomonad pro-

mastigote. This model can be further enhanced via the addition of missing life cycle stages

or additional parameter to improve the fit. This provides a basic tool that can be expanded

upon depending on the aims of a study. For example, a similar model may prove useful if

modelling the impact of interventions on promastigote dynamics. Through using Monte

Carlo Simulations, we have demonstrated that the addition of retroleptomonads to the

model greatly enhances transmission from the second bite onwards. This could suggest

that retroleptomonads are a good stage to target in control efforts, potentially through

interventions that reduce the number of bites a sand fly takes. We have also demon-

strated that skin parasite heterogeneity does have an impact on Leishmania transmission,

although a much smaller impact than retroleptomonads. A patchy distribution slightly

enhances transmission when retroleptomonads are not present (such as the first bite), but

a non-patchy distribution enhances transmission when retroleptomonads develop.

2.8 Materials and methods

Model parameterisation was performed in RStudio v1.2.5019 (R version 3.6.1) with the

digitize package [168] using data from [49] (see Supplementary Method S1 for full details).

All Monte Carlo simulations were performed in MATLAB R2019b. Data analysis was

performed in RStudio v1.2.5019 (R version 3.6.1).
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Chapter 3

The use of Survival Analysis in

assessing the factors governing

leishmaniasis transmission in

empirical data sets.

3.1 Abstract

Leishmaniasis demonstrates considerable spatial heterogeneity at large scales through the

clustering of cases within both individual settlements and broader administrative regions.

Preivous studies have uncovered some of the factors underpinning the clustering, such as

the presence of habitat fragments like parks in urban regions. However, our understanding

remains incomplete. A valuable tool that could aid in clarifying this matter is survival

analysis. This methodology has previously demonstrated links between the emergence

of leishmanaisis and the presence of major transport routes. We examine three publicly

available datasets of leishmaniasis cases at different spatial and temporal scales through the

lens of survival analysis. We find that proximity to prior infections increases the likelihood

of infection, and that poorer access to stable work and education increases the likelihood

that the disease may become endemic. We also discuss the limitations of survival analysis,

and explain how some of these limitations can be remedied as new data become available.

3.2 Introduction

The ongoing efforts to contain the spread of leishmaniasis depend upon a thorough un-

derstanding of its transmission, both within human populations and between different
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mammalian hosts. Leishmaniasis is a vector-borne disease with a single vector: the sand

fly. At first glance, transmission may appear quite simple: the sand fly takes up Leishmania

parasites in a blood meal from an infected individual, and deposits them in a suscepti-

ble individual on a subsequent blood meal. In reality the transmission process is much

more complex. There are three key aspects of transmission that we need to understand

to properly grasp the spread of leishmaniasis.

Firstly, the uptake of the parasites from the host. It was often assumed that blood

parasitemia was an ideal measure of host infectiousness [169] with bites being equally

infectious for a given host [170], but more recent work has highlighted that skin parasite

load is important to outward transmission [44, 171]. In contrast to blood, the skin has a

highly patchy distribution of parasites [45] resulting in bites taking up unequal quantities

of parasites.

Second, the life cycle of the parasite. Leishmania parasites have a complex multi-stage

life cycle in their sand fly vector that differs from that in their hosts. Once taken up as

Amastigotes, the parasites must transition through at least 3 non-infectious forms to reach

the infectious Metacyclic stage [48,49]. It was previously believed that the Metacyclic stage

was the final life cycle stage, but recent work by Serafim et al. [54] identified another stage,

the Retroleptomonad, responsible for amplifying the numbers of parasites available after

subsequent blood meals. Thus, the timing of blood meals can be crucial to successful

transmission and even sand flies with initially light infections can end up heavily infected

[172].

Finally, the preferences and behaviour of the sand flies. Sand fly species have long been

categorized as anthropophilic or zoophilic depending upon their feeding preferences [173],

though which blood source is chosen depends on factors such as movement cost [174].

The combination of differing blood preferences [174], variable sand fly flight capabilities

[68, 69, 175] and the necessity of finding a breeding site after each feed makes it hard to

accurately model sand fly movements, especially with highly variable sand fly population

sizes [176,177] and habitat preferences [178].

Capturing every facet within a single model is unfeasible. Other diseases, such as

malaria, have seen more success in probing transmission dynamics [179, 180] and the ef-

fects of key factors like climate [181] and immunity [182] using simpler approximations

that avoid modelling the full intricacies of transmission. Similar models have seen success

with leishmaniasis also, tackling areas such as zoonotic transmission [183], the relevance

of asymptomatic individuals [184] and the effectiveness of intervention strategies [185]. A

similarly focused approach will be beneficial to our understanding of leishmaniasis trans-

mission.
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One region of particular interest to modelling is the Indian Subcontinent (ISC). The

ISC has historically been a highly endemic region for visceral leishmaniasis [3] with typ-

ically anthroponotic transmission. Emphasis has been placed on intervention strategies

[185,202] since leishmaniasis was targeted for elimination in the ISC [3]. However, research

has also highlighted the prevalence and perceptions of visceral leishmaniasis [147,203] and

key risk factors underpinning its transmission [147]. More recently, Chapman et al. [146]

used distance kernels fitted by a Markov-chain Monte Carlo (MCMC) algorithm to eval-

uate plausible relationships between infection risk and distance from existing infections,

building upon earlier work of Bern et al. [147].

Although the MCMC method employed by Chapman et al. found considerable suc-

cess, the approach has drawbacks. In many contexts MCMC methods are prohibitively

expensive, requiring substantial computational power and time (though can be made more

efficient, see [197, 198] for example). Any chosen MCMC method must be tailored cor-

rectly to the context, otherwise they may not converge [199] or may suffer even greater

inefficiencies [200]. The expertise needed to perform this tailoring often means it is more

practical to use pre-built models instead, but these are often ‘black-box’ methods that can

be difficult to interpret and optimise.

Survival analysis has the potential to be a simpler and computationally cheaper alter-

native, especially in the context of risk evaluation. Survival analysis has been applied to

various situations such as equine influenza transmission [112], mosquito survival times [186]

and mortality during a plague epidemic [187]. It has been used to explore the dispersal

of Lutzomyia longipalpis through São Paulo State, Brazil [121] and the emergence of post

kala-azar dermal leishmaniasis (PKDL) after a visceral leishmaniasis infection [119]. Pack-

ages for performing survival analysis are widely available and versatile (see, for example,

the ‘survival’ package for RStudio [188]). Even older methods such as the Cox propor-

tional hazards model [189] have seen a wide array of applications [190–192] and there has

been much exploration of alterations to handle missing data [193] or large datasets [194],

as well as other more recent alternative models [195,196]. The ease of choosing alternative

methods and the flexibility of survival analysis packages renders it a useful, if underused

tool.

Here we apply survival analysis to three data sets that focus on leishmaniasis preva-

lence in different regions and at multiple scales [147,149,204]. We evaluate the relationship

between transmission risk and proximity to infected individuals with particular empha-

sis on the impact of sharing a household with an infected individual. We examine the

link between social vulnerability and endemic visceral leishmaniasis in Brazil [149] and

demonstrate how ‘individuals’ may refer to entities beyond single patients. Finally, we
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also highlight and discuss the strengths and limitations of survival analysis, with a focus

on identifying common pitfalls and strategies to improve the suitability of a dataset for

use with survival analysis.

3.3 Data

The subsequent analysis focuses on three publicly available datasets of visceral and/or

cutaneous leishmaniasis cases at different spatial and temporal scales. Though full details

are provided elsewhere [147,149,201,204,205] we highlight the relevant methodology and

recorded data here for clarity.

3.3.1 Dataset 1: Fulbaria thana cross-sectional study.

The primary dataset used by this study is a publicly available dataset [147] originally

collected via cross-sectional surveys in Fulbaria thana, Mymensingh district, Bangladesh

between January 2002 and June 2004 with additional details of historic cases of leish-

maniasis dating back to 1998. The original studies applied logistic regression to this

dataset [147, 201] and provide full details of the study design and data collection, we

summarise the main details here.

The community is subdivided into nine sections known as “paras”, and the survey was

restricted to the three paras with the highest incidence rate of visceral leishmaniasis over

several years prior to the study. Only individuals who had lived within these paras for

at least 6 months in the three years prior to the study were included. Where possible,

the month of symptom onset, diagnosis, treatment, relapse and any relapse treatment

were recorded for each incidence of visceral leishmaniasis (retrospectively for cases prior

to 2002). Births and deaths were recorded by annual census. A Global Positioning System

(GPS) was used to map all houses present in 2002 (accurate to +/- 10m), and all indi-

viduals were allocated the GPS positions of the household to which they belonged. These

positions were used to calculate pairwise distances for each individual (with individuals in

the same household considered to be 0m apart).

Information about potential risk factors such as bed net usage, presence of livestock,

diet, house construction materials, as well as socio-economic factors such as income and

land ownership were collected via surveys. Univariate analysis was initially used to identify

significant risk factors, and multivariate models were constructed by stepwise addition

of all factors that were significant in the univariate analysis. All models accounted for

household clustering using Generalised Estimating Equations. Their key findings were that

being aged between 3 and 45 years old and being in proximity to previous cases increased
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the risk of developing visceral leishmaniasis, but that the risk was reduced by the presence

of cattle and the consistent usage of bed nets (particularly during the summer). This

is likely because both reduce human exposure to the sand flies: the bed nets physically

prevent the sand flies from biting, and the cattle represent a more convenient and thus

more appealing blood source for the sand flies [201].

For the dataset to be amenable to survival analysis, all visceral leishmaniasis cases

need a symptom onset month. Cases with only an onset year were subsequently assigned

a symptom onset month drawn from a uniform random variable such that it lies within

the onset year but before any diagnosis/death month and after any birth month, where

relevant (in line with the multiple imputation approach [206,207]). Cases recorded as prior

infections (i.e. infections which occurred before 1999) were not included in the analysis,

but were considered for the purposes of determining if a household contains an infection.

3.3.2 Dataset 2: Global leishmaniasis incidence database.

Section 3.5.2 provides two examples of the wider applications of survival analysis. The first

part of Section 3.5.2 examines a database of global leishmaniasis cases (both cutaneous and

visceral) assembled by Pigott et al. [204] for the purpose of producing global leishmaniasis

distribution maps [205]. For full details of its creation see [204, 205], we summarise the

key methods and findings.

The database contains a list of cutaneous and visceral leishmaniasis cases, as well as any

reported instance of post Kala-azar dermal leishmaniasis (PKDL), between 1960 and 2012,

derived from literature searches via PubMed and Web of Knowledge. Only autochthonous

cases were included, with imported cases excluded if they could not be traced to their

origin [204]. For each case, several details are recorded: the year of onset, the country in

which it occurred, an associated latitude and longitude, and information about whether it

was cutaneous or visceral leishmaniasis (PKDL cases were considered to be visceral) are

the most relevant to our analysis. Additionally, each entry is categorised as either a ‘point’

(where a specific location was known) or a ‘polygon’ (where it is ascribed to a particular

region and the coordinates are those of the centroid of the polygon encompassing that

region).

The evidence of the presence of both cutaneous and visceral leishmaniasis cases was

used to produce global distribution maps. Each map was subdivided into administrative

regions, each of which was coloured according to the consensus on whether leishmaniasis

was present in the region. In addition, boosted regression trees [208] incorporating pseudo-

data [209] were used to predict the occurrence of leishmaniasis, and determine key risk

factors. These methods identified that people living in peri-urban environments as well as
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areas with greater vegetation cover were most at risk from both forms of leishmaniasis.

3.3.3 Dataset 3: Visceral leishmaniasis incidence rates in northeastern

Brazil.

The second part of Section 3.5.2 focuses on visceral leishmaniasis incidence in the Brazilian

Northeast region between 2000 and 2017, using a dataset originally assembled and analysed

by Ribeiro et al. [149]. For full details consult the original paper [149], we summarise the

key methods and findings below.

The database contains annual population and visceral leishmaniasis case counts for

each municipality in the Brazilian Northeast region, along with x and y coordinates and

the social vulnerability index (SVI), drawn from [210]. The SVI is represented by an overall

SVI score and by its three components: urban infrastructure (access to basic sanitation,

commuting times), human capital (access to education and childcare) and income/work

(dependence on child/elderly labour, availability of permanent employment). For each,

a higher SVI value represents greater vulnerability, with 0 being an ideal scenario and

1 being the worst possible scenario [210]. The overall SVI score is an average of the

component scores.

Long-term changes to leishmaniasis incidence rates were identified using segmented

linear regression with statistical significance identified via the Monte Carlo permutation

test, following the methodology of prior studies [211, 212]. This identified a long-term

increase in the proportion of municipalities infected with leishmaniasis but a reduction

in the prevalence within the general population (alongside other trends specific to factors

such as age and sex). Focus was also put on identifying spatial and spatiotemporal trends

in visceral leishmaniasis transmission. The crude transmission rates were smoothed using

the local Bayesian empirical method, and then spatial autocorrelation was identified using

the global Moran’s I index [213]. Subsequently, the local Moran’s index (LISA) was used

to identify spatial clusters of municipalities with high transmission rates. Together, these

methods identified that although visceral leishmaniasis transmission is broadly distributed

across the region, there are high risk clusters in six states.

Spatiotemporal cluster analysis was performed using Kulldorff’s retrospective space-

time scan, following prior studies [214–216]. This analysis identified 12 significant spa-

tiotemporal clusters, with 7 clusters located in Bahia state, and the primary cluster dis-

tributed across the centre and west of the region. Finally, bivariate spatial cluster analysis,

incorporating the Spearman’s correlation test and bivariate LISA, was used to identify cor-

relations between the SVI indices and leishmaniasis transmission [213]. This identified a

number of significant clusters, in particular a large cluster of high SVI-high transmission
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municipalities in the north west of the region and a number of low SVI-low transmission

clusters in the north east of the region.

3.4 Survival Analysis Methods

In survival analysis, we are typically interested in how the ‘survival time’ (the time taken

for an individual to experience an event of interest) of an individual is affected by various

factors known as ‘risk factors’. To investigate this, we introduce two functions: the survivor

function S(t) and the corresponding hazard function h(t). It is informative to discuss

these functions briefly in general terms before introducing the specifics relevant to our

case studies. For a more thorough overview, consider reading [111,217,218].

Definition 1 (Survivor Function). The survivor function S(t) is the probability that an

individual survives longer than time t. For individual survival time T :

S(t) = Pr(T > t).

The survivor function is also referred to as the survival function. A useful counterpart

to this is the hazard function:

Definition 2 (Hazard Function). The hazard function h(t) is the instantaneous potential

for an individual to experience an event given that the individual has survived until time

t. For individual survival time T :

h(t) = lim
∆t→0

P (t ≤ T < t + ∆t|t ≤ T )

∆t
.

Thus, the hazard increases when an individual is more likely to experience an event of

interest. It is also to introduce now the cumulative hazard H(t):

Definition 3 (Cumulative Hazard). The cumulative hazard is the total hazard experi-

enced by an individual up to time t:

H(t) =

∫ t

0
h(u)du.

These three functions are linked, and one can be used to derive the other two:
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h(t) =
−d log(S(t))

dt

H(t) = − log(S(t))

S(t) = exp(−H(t))

Usually we place emphasis on the hazard function because we are mainly interested in the

hazard experienced by an individual over a given time period. The exact form taken by

the hazard function depends on the context in which it is used, but it must possess the

following characteristics:

• h(t) ≥ 0

• h(t) has no upper bound.

This study performs survival analysis with time-dependent covariates using the Cox pro-

portional hazards model extended to incorporate both time-independent and time-dependent

covariates. When the hazard depends on one or more covariates, we label it h(X, t) instead

of h(t). For the extended Cox proportional hazards model, the hazard function takes the

form:

h(X, t) = h0(t) exp

 ∞∑
i=1

βiXi +

∞∑
j=1

δjXj(t)

 (3.1)

where βi is a constant coefficient corresponding to time-independent covariate Xi, δj is a

constant coefficient corresponding to time-dependent covariate Xj , and h0(t) is a generic

base hazard function.

In some situations, one may wish to consider the possibility of interactions between fac-

tors. Such interactions terms are possible and reasonably intuitive; consider the following

example with two interacting covariates:

h(X, t) = h0(t) exp (β1X1 + β2X2 + γX1X2) (3.2)

where γ is the constant coefficient corresponding to the interaction between X1 and X2.

All coefficients are fitted via maximum likelihood procedure. In the case of the Cox

proportional hazards model, we maximise the partial likelihood L. For a system with k

possible failure times, L is defined to be:

L = L1 × L2 × L3 × ...× Lk =

k∏
j=1

Lj (3.3)
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where Lj is the likelihood of failure occurring at time j, given the risk set R(tj), the set

of individuals at risk of failure at time j [111]. Usually, the natural log of L is maximised

by solving the system of equations:

∂ logL

∂βi
= 0 (3.4)

for all parameters βi. We start with an initial estimate of each βi (which is often but

not necessarily 0) and then solve the system of equations represented by Equation 3.4 by

gradient descent.

Initial analysis is performed using univariate analysis, with the models taking the form:

h(X, t) = h0(t) exp (βX)

where X is a binary variable indicating the presence of an infected individual with a

specified distance band, and β represents the associated log hazard ratio. Additionally, we

utilise a multivariate model involving all factors identified as significant by the univariate

analysis. This is an extended version of Equation 3.2, taking the form:

h(X, t) = h0(t) exp (β1X1 + β2X2 + β3X3 + γ12X1X2 + γ13X1X3 + γ23X2X3 + γ123X1X2X3)

where βi is the log hazard ratio associated with variable Xi and γij , for example, is

associated with the interaction between variables Xi and Xj (in this context, the additional

hazard of having an individual in both band i and j).

3.5 Results

3.5.1 Case proximity in Fulbaria thana.

We begin our analysis by focusing on the first dataset, the leishmaniasis case data from

Fulbaria thana, Bangladesh (see Section 3.3.1). Initially we restrict our analysis to a

simple scenario: a single binary indicator function (indicating the presence of an infection

within a specified distance of an individual) as our only covariate. Following the lead of

Bern et al. we consider the following distances: within-household, 0-25m, 25-50m, 50-75m

and 75-100m. Table 3.1 contains the hazard ratios and associated P-values.

Firstly, consider the result for the presence of an infected household member. We find

that having an infected individual in your household increases your hazard of infection
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Factor Hazard Ratio 95% CI P-value

Infected household member 2.2355 (1.9039,2.6251) < 0.001
Infection within 25m 1.5084 (1.316,1.7288) 0.00259

Infection between 25m and 50m 1.4832 (1.3006,1.6915) 0.00271
Infection between 50m and 75m 1.0973 (0.955,1.2608) 0.504
Infection between 75m and 100m 1.1536 (1.009,1.3189) 0.288

Table 3.1. Individuals in close proximity to an infected individual experience
greater hazard of infection. Summary of hazard ratios, confidence intervals and
p-values for each covariate fitted via univariate analysis.

approximately two-fold. We can see the effect more clearly by plotting the cumulative

hazard for individuals with or without infected households (Figure 3.1). We notice that,

as suggested by our hazard ratio, the cumulative hazard of infection for those in an in-

fected household is approximately double that of individuals without an infection in their

household. Although this figure corresponds well to the hazard function fitted by the Cox

proportional hazards model, it is typically more informative to look at the survival of

individuals instead (Figure 3.2).

Figure 3.1. Individuals sharing a household with an infected individual are
more likely to become infected than those that do not. Cumulative hazard of
infection for individuals with (red) or without (blue) an infected individual in their
household.

Figure 3.2 shows that individuals in households with an active infection experience

reduced survival, that is to say that such individuals become infected faster than their peers

in uninfected households. We next consider the same graph but for our second covariate,
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Figure 3.2. A greater proportion of individuals sharing a household with an
infected individual are infected at a given time than those who do not.
Survival of individuals in households with (red) or without (blue) infections. Solid line is
mean survival, dotted lines are +/- 2 s.e.

the presence of an infection between 1 and 25m away, resulting in Figure 3.3. Once again,

we observe that survival decreases faster for individuals with an infection between 1 and

25m away, albeit at a slower rate than we observed when considering the presence of an

infection in the household. This would be expected given the slightly reduced hazard

ratio (approximately 1.5 versus approximately 2.2). Thus, we may conclude that although

having an infection between 1 and 25m away increases your hazard of infection, it does

not incease it as much as having an infection within your household.

Considering the final significant covariate, the presence of an infection between 25 and

50m away, leads to Figure 3.4. We once again see decreased survival for individuals with

an infection present in our chosen distance band. In this case, we conclude that having

an infection between 25 and 50m away has almost the same effect as having an infection

between 1 and 25m away.

It would be informative to see how the survival curves differ if we consider a non-

significant covariate, such as the presence of an infection between 50 and 75m away; the

results of such an analysis are shown in Figure 3.5. In this case, we observe that although

the survival curves differ slightly the mean survival for each consistently lies within 2
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Figure 3.3. Individuals are infected at a greater rate if a prior infection
exists within 25m than if one does not. Survival of individuals with (red) or
without (blue) an infected between 1 and 25m away. Solid line is mean survival, dotted
lines are +/- 2 s.e.

Figure 3.4. Individuals are infected at a greater rate if a prior infection
exists between 25 and 50m away than if one does not. Survival of individuals
with (red) or without (blue) an infected between 25 and 50m away. Solid line is mean
survival, dotted lines are +/- 2 s.e.
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s.e. of the other, as would be expected from our p-values and hazard ratio (which is

approximately 1). This strongly suggests that having an infection between 50 and 75m

away has minimal impact on your hazard of infection.

Figure 3.5. Individuals experience similar hazards of infection irrespective of
the presence of an infection between 50 and 75m away. Survival of individuals
with (red) or without (blue) an infected between 50 and 75m away. Solid line is mean
survival, dotted lines are +/- 2 s.e.

Our univariate analysis provides an informative way to interpret a set of models, al-

lowing insights into risk factors of interest. However, it is important to consider the

possibility of interactions between different factors. To do so, we now assemble a multi-

variate model using the covariates we identified as significant in our univariate analysis.

Table 3.2 contains the final model hazard ratios and associated p-values:

Factor Hazard Ratio 95% CI P-value

Infected household member (A) 3.35 (2.6551,4.227) < 0.001
Infection within 25m (B) 2.3579 (1.9915,2.7918) < 0.001

Infection between 25m and 50m (C) 2.0822 (1.7819,2.4329) < 0.001
Interaction term: AB 0.6737 (0.4572,0.9929) 0.30852
Interaction term: AC 0.5688 (0.4068,0.7953) 0.09232
Interaction term: BC 0.4832 (0.3758,0.6213) 0.00382

Interaction term: ABC 1.3428 (0.8053,2.2394) 0.5644

Table 3.2. Hazard of infection does not increase additively due to infections
in multiple distance bands. Summary of hazard ratios, confidence intervals and
p-values for each covariate and all interaction terms, fitted via multivariate analysis.
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As with the univariate analysis we find that all three covariates increase the hazard

of infection. However, we observe that the magnitude of this increase is greater for all

covariates. This is because in univariate analysis we cannot control for the presence of

other ‘confounding’ covariates of interest that could alter the hazard ratio [111]. For

example, when we calculated the hazard ratio for the presence of an infected housemate

in our original univariate analysis, the presence of an infection within 25m would have

been a confounding covariate. The multivariate analysis allows us to control for these

factors, and thus gives a more accurate (and in this case higher) estimate for the hazard

ratio [111].

Additionally, we find that there exists an interaction between two of the covariates:

the presence of an infection within 25m, and the presence of an infection between 25-

50m away. As the interaction reduces the hazard of infection, we may conclude that the

presence of an infection in both bands does not increase the hazard of infection that far

beyond having an infection in only one of the bands.

Although we have thus far omitted any time delay from our analysis, it is important

to note that leishmaniasis has an incubation period, often thought to be approximately

1-6 months in length [146, 147, 288]. An incubation period can be incorporated into the

hazard function of the Cox proportional hazards model; the resulting hazard function for

a system with a single covariate then takes the form:

h(X, t) = h0(t) exp δX(t− τ)) (3.5)

where δ is the coefficient corresponding to covariate X, h0(t) is the base hazard function

and τ is the length of the delay.

In order to assess the impact of such an incubation period, we now introduce a time-

delay of 4 months to our model. The hazard ratios and associated p-values can be found

in Table 3.3:

Factor Hazard Ratio 95% CI P-value

Infected household member 2.1734 (1.8281,2.5839) < 0.001
Infection within 25m 1.5419 (1.3371,1.778) 0.00238

Infection between 25m and 50m 1.5107 (1.3142,1.7367) 0.00308
Infection between 50m and 75m 1.1347 (0.9822,1.3108) 0.3839
Infection between 75m and 100m 1.1492 (0.999,1.3221) 0.3234

Table 3.3. The relationship between infection proximity and hazard of
infection is unmodified by incorporating an incubation period. Summary of
hazard ratios, confidence intervals and p-values for each covariate fitted via univariate
analysis, with the inclusion of a delay of 4 months.
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We observe no changes to which covariates achieve significance, and only slight varia-

tions in the hazard ratios, with all new values remaining comfortably within the original

95% confidence intervals. Figure 3.6 shows the survival for individuals with or without an

infected household member.

Figure 3.6. Individuals with an infected household member experience
greater cumulative hazard of infection, even with a delay. Survival of
individuals with (red) or without (blue) an infected household member, with a 4 month
delay. Solid line is mean survival, dotted lines are +/- 2 s.e.

Mirroring the results for the same covariate without the 4 month delay, we observe that

individuals sharing a household with an infected individual experience reduced survival,

and we observe that the mean survival for one category consistently falls outside of +/-

2 s.e. of the other. If we compare this to the original version without the delay, Figure

3.7, we observe that the delay introduces minimal differences between the survival curves.

The mean survival curves with the delay included lie comfortably within +/- 2 s.e. of

their counterparts without the delay. Thus, we may conclude that incorporating a delay

into the model did not introduce any major changes to the hazard of infection, and can

continue to use a delay of 0.

3.5.2 Wider applications of survival analysis

In order to demonstrate the variety of potential applications of survival analysis, we will

now apply it to other datasets. Although it has seen similar application with other diseases
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Figure 3.7. The cumulative hazard experienced by an individual is
qualitatively similar with or without a delay. Survival of individuals with or
without an infected household member, comparing the scenario with a 4 month delay
with the scenario without. Solid line is mean survival, dotted lines are +/- 2 s.e.

such as equine influenza [112], studies involving leishmaniasis have rarely used it (see [121]

for one example). To address this, we now direct our attention to two other publicly

available datasets. First we will demonstrate that pitfalls can accompany even a well-

formatted dataset such as the global case database [204], and then we will show that

datasets which initially appear ill-suited to survival analysis [149] can be effectively used

if handled carefully. We will demonstrate that, with careful consideration, survival analysis

is flexible enough to apply to a variety of datasets and yield meaningful insights.

Application 1: Global leishmaniasis incidence.

The first dataset we examine is the global leishmaniasis case database assembled by Pigott

et al. [204] (see Section 3.3.2). For the purposes of broadening the scope of our survival

analysis application, we will use analyse the cutaneous leishmaniasis data. We also restrict

our analysis to include only cases of the ‘point’ category. For this analysis we will use

the onset year as the survival time for each individual (but see Section 3.5.3) and their

latitude as a covariate of interest. The latitude is a continuous variable, therefore we will

fit a penalised spline (with the degrees of freedom determined using the AIC) to determine

if there is a nonlinear relationship between it and the hazard of infection.

We first consider the latitude, with the results shown in Figure 3.8. This spline in-
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Figure 3.8. Peaks in relative hazard of infection correspond to regions of
emphasis in the literature, not necessarily areas of greater hazard. Relative
hazard against latitude for cutaneous leishmaniasis. Solid line is mean hazard, dotted
lines are +/- 2 s.e.

dicates a few peaks in relative hazard, the three most prominent located approximately

at latitudes of 0, 13, and 22. We also note an increase at approximately -30, however

this is accompanied by very large standard error (and can attributed to a lack of data).

These results must be interpreted with caution. Leishmaniasis is particularly prevalent in

India [3], so the peak at a latitude of 20 would be expected. However, there is a trough

located at approximately latitude 8 coinciding with Ethiopia, which is actually another

known hotspot [295]. Hazard also remains low beyond 20 latitude, despite the presence of

leishmaniasis in the Mediterranean [233]. Indeed, the peaks appear to coincide with older,

well-documented hotspots.

This is in part due to our somewhat naive assumption that the onset year would

make a viable event time (and thus would be suitable for determining the survival times).

Unfortunately, this is not the case. The studies from which these cases were drawn did

not occur in parallel. Thus, it would be inaccurate to take 1960 as the start time for every

individual, and as such the majority of the survival times we used are artificially inflated.

Alas, it is not possible to correct the start times using this dataset alone and we should

instead consider the dataset unsuitable for survival analysis. This example hence serves to

highlight that although a dataset may appear very amenable to survival analysis at first

glance, care must be taken to assess its suitability before drawing conclusions. Perhaps

future work could collect a larger, suitably formatted dataset and use it to create a map

of global leishmaniasis infection risk (which could yield insights if combined with more a
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more traditional map of disease prevalence).

Application 2: Endemicity in northeastern Brazil.

We now redirect our attention to another publicly available dataset, the leishmaniasis

incidence rates for the municipalities of northeastern Brazil [149] (see Section 3.3.3). At

a glance, this dataset may appear unsuitable for survival analysis as we do not track

individual cases and survival times. In reality, this is not necessarily a barrier: we may

consider the municipalities as individuals instead. For this to be possible, there are a

couple of components we must suitably define.

Firstly, we require a suitable ‘failure criterion’ that we can use to determine the ‘sur-

vival time’ of each municipality. Naturally, the presence of an infection would make for a

poor criterion since this is a region with high visceral leishmaniasis mortality [26], and thus

many of the municipalities would fail at t = 0. Instead, we follow the example of Ribeiro

et al. [149] and use the Brazilian government categories for leishmaniasis transmission as

the basis of our criterion. For completeness, we shall consider a few viable thresholds and,

in the absence of any noticeable differences, will then focus on a single one.

In 2019, the Brazilian government proposed a scheme to categorise municipalities into

different intensities of visceral leishmaniasis transmission, based on the most recent 3-

year average incidence rate for each municipality [219]. The categories are constructed

as follows: sporadic transmission (< 2.4 cases per 100000 people), moderate transmission

(2.4 − 4.4 cases per 100000 people), and intense transmission (>= 4.4 cases per 100000

people). Informed by these categories, we use the following candidates for our threshold:

2.0 cases per 100000, 3.0 cases per 100000, and 4.5 cases per 100000 people (one within

each category of transmission). To facilitate the use of a 3-year average, we now choose

the reference point t = 0 to be 2003 (with the data for 2000, 2001, and 2002 used to

calculate the first average), and omit any municipality for which the first 3-year average

exceeds our chosen threshold. Throughout, we will refer to any municipality exceeding

our threshold as ‘endemic’ and will typically refer to ‘hazard of endemicity’ rather than

hazard of infection as we did previously.

We also need to choose suitable covariates for our analysis. For this analysis we shall

initially focus on the SVI of the municipalities (we will consider covariates such a proximity

to ‘endemic’ municipalities later). To ensure we capture the full picture, we will consider

both the overall SVI and the individual components in separate analyses.

First we briefly examine the distribution of SVI values for the municipalities, shown

in Figure 3.9. The overall SVI, the human capital component, and the income/work

component all display a similar distribution: the vast majority of municipalities lie between
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0.25 and 0.75, clustering strongly around 0.5, with a much smaller number of outliers. For

the urban infrastructure component, the majority of municipalities lie between 0.0 and

0.5, with a long tail extending towards 1.0.

Figure 3.9. Distribution of overall SVI (top left), urban infrastructure SVI (top right),
human capital SVI (bottom left) and income/work SVI (bottom right) values for all
municipalities in northeastern Brazil.

We will consider the overall SVI for our initial analysis. SVI is a continuous variable,

and although municipalities are categorised depending on their SVI value [210], we shall

instead fit penalised splines (in the same manner as for the previous dataset) this time

with a fixed 3 degrees of freedom. Throughout, we will consider a municipality to be

endemic when it exceeds 3.0 cases per 100000 people. For details of the other endemic

thresholds we consider see Section A.2.

Component Coefficient Standard Error Chi Squared P-Value

Linear 0.871 0.448 3.783 0.052
Non-linear NA NA 3.878 0.151

Likelihood Ratio Score: 9.95 P-Value: 0.02

Table 3.4. The relationship between overall SVI and hazard of endemicity is
linear. Summary of spline components: coefficients and standard error (where
applicable), chi-squared value and associated p-values.

The fitted coefficients and associated p-values for the spline can be found in Table 3.4.

First, a comment on the p-values reported here. We may conclude from the likelihood
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ratio test that there is a significant relationship between overall SVI and hazard, but we do

not see this reflected in the other p-values. This is likely because the p-values for the linear

and non-linear components are based on the Wald statistic instead. Since the likelihood

ratio test is typically more reliable [111], and the p-value for the linear component is very

nearly significant, we should accept the verdict of the LR test. Thus, we conclude that

the hazard increases almost linearly with overall SVI.

If we examine the resulting spline (Figure 3.10a) we observe that the hazard of en-

demicity increases with overall SVI, although there is a slight decrease at the upper reaches

of the SVI scale. The decrease coincides with a region of minimal data which is likely to

have impacted the fitting of the spline (Figure 3.10b). Overall, we conclude that munici-

palities with greater social vulnerabilities are more likely to become endemic for visceral

leishmaniasis within a given time period. Similar behaviour is observed for the other two

thresholds (see Section A.2).

Figure 3.10. The linear relationship remains visible, though weakened, under
the increase endemic threshold. Relative hazard against overall SVI, with an
endemic criterion of 3.0 cases per 100000. Solid line is mean hazard, dotted lines are +/-
2 s.e. (top) along with a histogram of the overall SVI values for all municipalities
included in the analysis (bottom).
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As the overall SVI is an average of its three components, there may be greater nuance

present in the individual components than is captured by the overall SVI spline. Therefore,

we will now consider each component individually, starting with the ‘urban infrastructure’

component. Table 3.5 shows the fitted coefficients and associated p-values. We conclude

from this that there is a non-linear relationship between urban infrastructure SVI and the

hazard of endemicity. For further details, we must examine the resulting spline (Figure

3.11a). Until approximately SV I − UI = 0.6, we observe that the hazard increases with

the SVI-UI values. After that, it decreases sharply (with greatly increased standard error,

as before, due to the lack of data). In fact, this pattern quite strikingly resembles the

pattern for overall SVI.

Component Coefficient Standard Error Chi Squared P-Value

Linear 0.333 0.23 2.097 0.148
Non-linear NA NA 6.125 0.049

Likelihood Ratio Score: 9.75 P-Value: 0.02

Table 3.5. The relationship between urban infrastructure SVI and hazard of
endemicity is non-linear. Summary of spline components: coefficients and standard
error (where applicable), chi-squared value and associated p-values.

The second component of the SVI is the ‘human capital’ SVI: a measure of access to

education and childcare, and for individuals to advance through and integrate with society.

If we perform the same analysis as before (Table 3.6) we conclude that there is a non-linear

relationship between SVI-HC and hazard of endemicity. If we examine the resulting spline

(Figure 3.12a) we see the same qualitative relationship as before, though with a more

definite peak at approximately 0.55 SVI-HC. We conclude that the hazard increases with

increasing SVI-HC: municipalities with poorer access to childcare and education are more

susceptible to the spread of visceral leishmaniasis.

Component Coefficient Standard Error Chi Squared P-Value

Linear 0.35 0.497 0.495 0.48
Non-linear NA NA 9.235 0.01

Likelihood Ratio Score: 12.4 P-Value: 0.006

Table 3.6. The relationship between human capital SVI and hazard of
endemicity is non-linear. Summary of spline components: coefficients and standard
error (where applicable), chi-squared value and associated p-values.
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Figure 3.11. The relative hazard of endemicity apepars to peak at an SVI-UI
of 0.6. Relative hazard against the urban infrastructure SVI component, with an
endemic criterion of 3.0 cases per 100000. Solid line is mean hazard, dotted lines are +/-
2 s.e. (top) along with a histogram of the urban infrastructure SVI values for all
municipalities included in the analysis (bottom).
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Figure 3.12. The relative hazard peaks at approximately 0.5 SVI-HC. Relative
hazard against the human capital SVI component, with an endemic criterion of 3.0 cases
per 100000. Solid line is mean hazard, dotted lines are +/- 2 s.e. (top) along with a
histogram of the human capital SVI values for all municipalities included in the analysis
(bottom)
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Finally, let us consider the ‘income/work’ component of SVI (Table 3.7). Unlike the

previous two components, we would conclude that there is an entirely linear relationship

between hazard of endemicity and SVI-I/W. We can see this more clearly in the resulting

spline (Figure 3.13a). This spline shows a much simpler relationship than the previous

ones. Hazard of endemicity increases almost linearly with SVI-I/W as anticipated (al-

though we still observe the greatly increased standard error at each end of the parameter

scale). Thus, we conclude that municipalities with poorer access to stable employment

are more vulnerable to the spread of leishmaniasis.

Component Coefficient Standard Error Chi Squared P-Value

Linear 1.53 0.5 9.41 0.0022
Non-linear NA NA 1.18 0.5622

Likelihood Ratio Score: 11.6 P-Value: 0.009

Table 3.7. The relationship between hazard of endemicity and income/work
SVI is linear and positive. Summary of spline components: coefficients and standard
error (where applicable), chi-squared value and associated p-values.

It is important to establish whether there exist correlations between the different SVI

components, as this could partially explain the similarities in the hazard of endemicity

for each component. We test for such correlations between each pair of SVI components

using Pearson’s product moment correlation coefficient (Table 3.8), which shows that all

3 components are positively correlated to a greater or lesser extent. This can also be

observed if we plot the SVI component scores as a scatter plot (Figure 3.14).

Component 1 Component 2 Correlation Confidence Interval P-Value

SVI-UI SVI-HC 0.4013 (0.3617, 0.4395) < 0.0001
SVI-UI SVI-I/W 0.2842 (0.241, 0.3262) < 0.0001
SVI-HC SVI-I/W 0.5468 (0.5134, 0.5784) < 0.0001

Table 3.8. The components of the SVI index are all positively correlated
with each other. Pearson’s product moment correlation coefficient, with associated
confidence interval and p-values, for all pairwise inter-component comparisons.

Next, we will briefly focus our analysis on some time-dependent covariates. In a similar

manner to our analysis of the Bern et al. dataset (Section 3.3.1), we will examine the effect
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Figure 3.13. Relative hazard of endemicity increases linearly with the
income/work SVI score. Relative hazard against the income/work SVI component,
with an endemic criterion of 3.0 cases per 100000. Solid line is mean hazard, dotted lines
are +/- 2 s.e. (top) along with a histogram of the income/work SVI values for all
municipalities included in the analysis (bottom).
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Figure 3.14. The SVI component scores for all three components are
positively correlated. Scatter plot showing pairwise comparisons of the three SVI
components for all municipalities.
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that proximity to prior endemic municipalities has on the hazard of endemicity. We will

use the latitude and longitude coordinates provided with the Ribeiro et al. dataset [149]

to calculate the distance between the municipalities. As before, we will consider specific

discrete bands (rather than a single ‘proximity’ covariate that is continuous). These bands

must be sufficiently narrow that we avoid a scenario where all municipalities begin with

an endemic municipality in both bands; we choose one band to be 0 - 1 unit of distance,

and the other to be 1 - 1.5 units for this particular analysis.

In order to allow for an interaction between the two covariates, we will begin with

a bivariate analysis (Table 3.9). We observe no significant relationship between either

covariate and the hazard of endemicity. For completeness, we will also consider the covari-

ates individually. First, the presence of an endemic municipality with 1 unit (Table 3.10),

where as anticipated we observe that having an endemic municipality within 1 unit does

not significantly affect the hazard experienced. Next, the presence of an endemic munici-

pality between 1 and 1.5 units away (Table 3.11). This, too, remains non-significant.

Factor Hazard Ratio 95% CI P-value

Endemic municipality within 1 unit 2.5063 (0.8498,7.392) 0.396
Endemic municipality between 1 and 1.5 units 5.031 (1.7404,14.5429) 0.128

Interaction term 0.3008 (0.0964,0.939) 0.291

Likelihood Ratio Score: 4.66 P-Value: 0.1987

Table 3.9. Bivariate analysis suggests that hazard of endemicity does not
depend on proximity to an endemic municipality. Summary of hazard ratios,
confidence intervals and associated p-values for both distance band covariates and their
interaction term.

Factor Hazard Ratio 95% CI P-value

Endemic municipality within 1 unit 1.06846 (0.7627,1.4967) 0.844

Likelihood Ratio Score: 0.04 P-Value: 0.8426

Table 3.10. Endemic municipalities within 1 unit do not increase the hazard
of endemicity. Summary of hazard ratios, confidence intervals and p-values for the
nearest distance band.

Factor Hazard Ratio 95% CI P-value

Endemic municipality between 1 and 1.5 units 1.8226 (1.2462,2.6658) 0.114

Likelihood Ratio Score: 3.06 P-Value: 0.08038

Table 3.11. Endemic municipalities between 1 and 1.5 units away do not
increase the hazard of endemicity. Summary of hazard ratios, confidence intervals
and p-values for the further distance band.
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From these analyses, we may conclude that proximity to a municipality which we

already consider endemic does not increase the hazard of a municipality becoming endemic.

Though this may seem counter-intuitive, it may be due to the fact that many ‘susceptible’

municipalities already experience low levels of transmission at the start of the study period

(insufficient cases to be considered endemic, but cases nonetheless). The proximity to an

endemic municipality may be more important for establishing leishmaniasis cases in a naive

municipality, but once a municipality is infected with leishmaniasis, the case numbers

increase with minimal dependence on endemic neighbours. Alternatively, perhaps any

effect of proximity to an endemic municipality is countered by human interventions taken

as a response to the proximity. Future studies may be able to provide further illumination

on this matter.

3.5.3 Limitations of survival analysis.

Our applications of survival analysis demonstrate the flexibility of the method. However

they also highlight the limitations of the method. It is important to discuss these limita-

tions in more detail, as an understanding of them can be crucial to properly applying the

method. One limitation has been particularly evident in our examples thus far: the poor

handling of sparse parameter ranges.

Consider once more the spline of relative hazard against latitude generated during

our analysis of the Pigott et al. dataset (Figure 3.8). The spline had a notable region

with particularly large standard error: latitude < −25. If we examine the distribution of

latitudes for recorded cases (Figure 3.15) we observe that the region with especially large

standard error is also the region of the distribution containing the least data: few cases

occurred with latitude < −25. Interestingly, another less populated region of the data

is located around latitude 20, for which we also observe increased standard error. This

means we have a very small sample of survival times (especially since we do not track

any individuals that ‘survived’ in this dataset) which causes problems for the fitting of

the spline. For regions with many survival times, such as −70 < x < −40, we find that

the standard error is very small. A similar pattern is observed with the Ribeiro et al.

dataset. For regions of the SVI parameter space represented by very few municipalities

(for example, SVI < 0.2 for the overall SVI, see Figure 3.9 for details), we also typically

observed larger standard error in the fitted spline.

An alternative to fitting penalised splines is to subdivide the parameter space into

discrete categories. This approach would be reasonable for the Ribeiro et al. dataset,
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Figure 3.15. Cases in the Pigott et al. dataset are not distributed uniformly
across the range of latitudes. Histogram of latitudes for all cutaneous leishmaniasis
cases belonging to the “point” category.

for example, since the SVI of municipalities is typically categorised as very low (0.0-

0.2), low (0.201-0.3), medium (0.301-0.4), high (0.401-0.5), and very high (> 0.5) [210].

Figure 3.16 shows how the distribution of municipalities would look under such a scheme.

Unfortunately, we observe that the poorly represented region of the parameter space (SVI

< 0.2) remains poorly represented even under the discrete system (as would be expected,

since that region is assigned its own category).

To further illustrate this point, we repeat the survival analysis from Figure 3.10 using

overall SVI as the only covariate, now discretised, and taking our failure criterion to be 3.0

cases per 100000 people as before. For the purposes of highlighting the model limits, we

also take the “very low” SVI category as our reference category, resulting in Table 3.12.

It is clear that we were unable to successfully fit the Cox PH model to this data. This

is because our choice of reference category is the least represented category. We should

instead use a more populated category, for example the “very high” category, as in Table

3.13. This greatly improves our fitted hazard ratios. However, we observe that the “very

low” category still causes the same error as before, and thus we cannot obtain the proper

hazard ratio.
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Figure 3.16. Not all official categories of SVI are equally well represented.
Histogram of municipality SVI values, under the categorisations scheme recommended
by (Brasil2019).

SVI Category Hazard Ratio Coefficient Standard Error of Coefficient P-value

Low SVI 227938.55 12.34 781.0 0.987
Medium SVI 394539.07 12.89 781.0 0.987

High SVI 461920.81 13.04 781.0 0.987
Very High SVI 470732.93 13.06 781.0 0.987

Table 3.12. A poorly represented reference category prevents calculation of
the Wald statistic. Summary of hazard ratios, coefficients and their standard errors,
with the associated p-values for all SVI categories. The reference category is the “very
low” SVI.

Let us make an additional modification, and define different categories: for example,

let us use low ([0.0, 0.3]), medium ((0.3, 0.5]), high ((0.5, 0.7]) and very high ((0.7, 1.0]).

The distribution of municipalities is now shown in Figure 3.17. We find that although our

low and very high categories are both less populated than the other two categories, they

are much better than the original “very low” category. Repeating the survival analysis

results in Table 3.14. We find that we are now free of the fitting error. Additionally,

we now observe a significant effect: we observe that areas with high SVI values have a

significantly higher hazard than those with low SVI, although this does not remain true

for the municipalities with very high SVI values.

These issues with data quantity or handling are relevant beyond leishmaniasis. A

recent study linking risk factors such as age to health outcomes for anal squamous cell
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SVI Category Hazard Ratio Coefficient Standard Error of Coefficient P-value

High SVI 0.9799 -0.02026 0.08869 0.819
Medium SVI 0.8381 -0.1766 0.1136 0.12

Low SVI 0.4842 -0.7252 0.3841 0.059
Very Low SVI 2.124x10−6 -13.06 781.0 0.987

Table 3.13. Choosing an alternative reference category mitigates the issues
calculates the Wald statistic. Summary of hazard ratios, coefficients and their
standard errors, with the associated p-values for all SVI categories. The reference
category is the “very high” SVI.

Figure 3.17. Histogram of municipality SVI values, under our alternative
categorisation scheme.

carcinoma [220] drew criticism for having an insufficient number of events for the analysis

performed [221]. Previous studies have highlighted the increasing risk of bias as the number

of events per variable tested decreases [222] and have proposed a few target thresholds to

mitigate this [223, 224], though employing them mandates estimating how many events

one expects to observe prior to the study [225] and may be difficult for studies with

smaller cohorts or infrequent events [220] for which it would be beneficial to consider

alternatives to the Cox proportional hazards model [225]. The categorisation of continuous

variables has similarly seen both applications and problems elsewhere [226], with poorly

chosen categories shown to reduce the power of the test [227] especially if the choices

were motivated by a desire to minimise the p-values produced [228], underscoring the

importance of caution when choosing categories.

These examples demonstrate that although including under-represented regions of pa-

rameter space in a survival analysis can have detrimental effects of the fitting of models

such as the Cox PH model (with both discrete and continuous covariates), it is possible

to overcome some of the issues through careful handling of the parameters. Survival anal-
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SVI Category Hazard Ratio Coefficient Standard Error of Coefficient P-value

Medium SVI 2.0349 0.7105 0.3811 0.0623
High SVI 2.2209 0.7979 0.3842 0.0378

Very High SVI 1.1673 0.1547 0.5855 0.7916

Table 3.14. Using alternative SVI categories allows for the calculation of the
coefficients and associated Wald statistics. Summary of hazard ratios, coefficients
and their standard errors, with the associated p-values for all SVI categories. The
reference category is the “low” SVI.

ysis also has the ability to combine time-dependent covariates and the use of penalised

splines such that we can assess continuous time-dependent covariates without needing the

discrete bands we have used thus far. However, this approach is very sensitive to a lack of

data: if any region of the parameter space is represented by very little data, it typically

proves impossible to fit the penalised splines. Additionally, if the covariate changes too

frequently, the time period is broken up into many small windows. This also prevents

fitting coefficients to the data. We attempted to apply the method to both the original

Bern et al. [147] and the Ribeiro et al. [149] sets, without success in either case.

3.5.4 Considerations for a good survival analysis dataset.

Using our examples, we have demonstrated the flexibility of survival analysis. However,

we have also shown that it is a tool which must be applied with suitable consideration to

avoid drawing misleading conclusions, and that has limitations that must be appropriately

handled. In order to facilitate the application of survival analysis elsewhere, we conclude

with a discussion of some of the factors that should be consider when choosing or collecting

data for use with survival analysis.

The core feature of any dataset intended for use with survival analysis is the presence

of survival times for all individuals. Although every individual must have a survival time,

survival analysis is flexible in terms of how the survival time is formatted. Individuals are

often right-censored (i.e. the study ended before an event occurred), but this is not the

only acceptable format. As seen in the Bern et al. dataset [147], some individuals may join

part way through the study (in this case, are born after the study began) and this can be

handled by assigning them a start time. The main requirement is that the survival time

accurately reflects the period in which we would have detected an event if it had occurred.

Specifically, there are two main considerations. Firstly, the start time must represent the

earliest time point that we could have detected an event (either the start of the study

or the time the individual joined, whichever is most appropriate). Secondly, censoring

should be non-informative (i.e. the cause of the censoring must not be related the event of

interest). Informative censoring typically renders most standard survival analysis methods
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invalid, and should be avoided if possible.

The consequences of using inappropriate survival times is best demonstrated by our

analysis of the Pigott et al. dataset [204]: in the absence of start times, we naively assume

all start times to be 1960. This means that infections occurring in 2000 have survival

times of 40 years, when in fact some of the affected individuals may not have been alive

in 1960, let alone monitored for infection. Thus, cases that occurred more recently have

artificially increased survival times, which leads to misleading results.

Although survival analysis allows for considerable flexibility in choosing covariates of

interest, there are a few important considerations. Deciding whether to use a discrete or

continuous covariate is usually intuitive, though if the parameter space includes regions

poorly represented in the data it may be preferable to use a discrete covariate even if one

may initially wish to use a continuous one. Almost any factor can be chosen as a covariate,

but there are pitfalls that one must be wary of. Firstly, the value of a covariate at a given

time T cannot depend on information from after that time. It would be inappropriate to,

for example, measure a time-dependent covariate at the end of the study and then use this

value as a time-independent covariate, because this implies that the hazard experienced

at the beginning of the study depends on something from the end of the study, which

is not possible. Secondly, a covariate must not be a consequence of the event of interest

happening. For example, imagine we have a treatment applied only to patients who are

near-death. If we took death as the event of interest, and then considered whether this

treatment had been applied as a covariate, we would find a significant relationship. We

might then imply that administering the treatment made patients more likely to die, when

in fact we are only administering the treatment because they are going to die: the event

has already begun to happen.

3.6 Discussion

Using the Cox proportional hazards model, extended for use with time-dependent covari-

ates, we have confirmed that individuals sharing a household with an existing leishmaniasis

case experience increased hazard of infection. We also find that cases close to, but outside

of, the household of an individual also increase the hazard of infection to a lesser extent.

Additionally, our multivariate model suggests that once an infection is present within 25m

of an individual, further infections beyond 25m away contribute minimally to their hazard

of infection. Finally, we note that cases more than 50m away from an individual provide

no significant contribution to their hazard of infection. We also demonstrate the extending

the model fitting to incorporate a delay of 4 months does not result in meaningful changes.
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Our survival analysis demonstrates that, whether we incorporate the incubation period

of leishmaniasis or not, sharing a household with an infected individual increases the

hazard of infection. This confirms the findings of previous studies. Bern et al. [147] used

logistic regression to show individuals in the same house as an infected individual were

much more likely to become infected than those whose nearest infected neighbour was

more than 50m away. Similarly, Chapman et al. [146] reported that infected individuals

exert greater infectious pressure on susceptible individuals in the same household, though

were uncertain as to the true magnitude of the effect. Additionally, we find that infections

which are close to an individual but not in the same household as them also increase the

hazard of infection, mirroring the findings of Bern et al. and Chapman et al. [146,147].

These results are not unexpected, given the spatial clustering of cases typically observed

in leishmaniasis outbreaks. Although we often consider clustering the form of large-scale

hotspots such as those reported in China [91], Iran [89] and Sri Lanka [88], smaller-scale

clustering is also observed. Clustering within districts in Sri Lanka has been documented

[229] and modelled [93] highlighting that although some subdistricts are worse affected

than others, cases are rarely evenly distributed. It has also been reported that clustering

occurs in specific hamlets [12] at scales of a few hundred meters, showing a similar pattern

to that seen in Fulbaria thana [146, 147]. The distance-dependent hazard of infection

observed both here and by Chapman et al. provides some clarity as to how such clustering

emerges, at least at smaller scales.

The observed dependence of infection hazard on proximity to existing cases may arise

from the behaviour of the sand flies. Sand flies have a limited flight range [69], and

although they are capable of travelling long distance during dispersal [175] many travel

much shorter distances [68], especially after feeding [175] or when suitable sources of blood

are abundant [174]. Additionally, different species of sand fly have different habitat and

resting spot preferences [77, 230, 231] leading to further small-scale heterogeneity in sand

fly densities: for example, some sand flies prefer specific types of vegetation such as banana

trees [232]. Some studies have reported clustering of cases due to proximity to sand fly

habitat [233] and this may be further augmented by the potential for site and/or host

loyalty in sand flies [234], which has long been known to contribute to maintaining other

parasitic diseases such as malaria [235].

The proposed relationship between hazard of infection and distance appears to render

it difficult to establish more distant infections (and thus new clusters). One possible com-

patible mechanism capable of generating new clusters is human migration. Some regions

which have recently experienced new leishmaniasis epidemics contain a large number of

migratory workers [12], which travel between their home village and potentially regions
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where leishmaniasis is endemic. In Brazil, the spread of leishmaniasis has followed the

movement of migratory construction workers [236]. Migration of infected people into re-

gions such as Nepal [141], Turkey [237] and Ethiopia [238,239] has also been proposed as

a key aspect in the emergence of new epidemics, not to mention the role played by the

movement of infected dogs, the presence of which is known to be a risk factor [240]. A

related possibility is the migration of individuals with post kala-azar dermal leishmaniasis

(PKDL). PKDL typically, but not always, emerges after recovery from visceral leishma-

niasis [31], manifesting as a rash in otherwise healthy individuals. It is thought to be

infectious towards sand flies [241] and an important leishmaniasis reservoir [242] (but see

also [32]). Potentially, an otherwise healthy individual could move to a region with min-

imal leishmaniasis presence, develop PKDL, and become a reservoir capable of seeding a

new cluster of leishmaniasis cases.

At larger scales we can draw useful conclusions about the likelihood that leishmaniasis

becomes endemic in a given administrative region. We observe that, in the case of the

northeast Brazil region, municipalities with higher social vulnerability are more vulnerable

to the spread of leishmaniasis and more likely to experience endemic leishmaniasis. This

conclusion is reflected across a variety of different measures of social vulnerability, from

urban infrastructure to work/income stability and holds for a range of different endemicity

thresholds informed by the governing policy of Brazil.

It is tempting to think it intuitive that increasingly developed urban infrastructure

would reduce the likelihood of leishmaniasis becoming endemic in a municipality. Other

vector-borne parasitic diseases such as malaria [243, 244] have shown greater reductions

in urbanised regions than in their rural counterparts and it is possible that leishmaniasis

experiences the same threat. However, the link between urbanisation and vector-borne

disease transmission is far from straightforward. For example, urbanisation can facilitate

the spread of dengue [245] by creating suitable habitats for species such as Aedes aegypti

[246,247]. Typically, where urbanisation is to the benefit of vector-borne diseases it is due

to the associated high density of humans [248] which sustain higher vector densities (and

the associated diseases).

In the case of leishmaniasis specifically, it is likely that the impact of urbanisation is due

to the loss of suitable habitats for the sand fly vector. Human exploitation of naive wooded

areas has been shown to increase the prevalence of cutaneous leishmaniasis [249] due to ex-

posure to reservoirs and sand fly habitat, and clustering of cases around habitat fragments

in urban areas has been reported [233], especially for those with preferred vegetation [232].

Livestock have also been associated with vector abundance and occurrence [250]. These

factors are likely diminished by intensifying urban infrastructure. Additionally, the ur-
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ban infrastructure component of the SVI score incorporates access to sanitation (and thus

healthcare). Lack of access to sufficient sanitation and healthcare [251] and damaged or

underdeveloped housing [130] have been demonstrated to be key risk factors in the spread

of visceral leishmaniasis, and are greatly improved at the lower end of the SVI-UI scale.

The role of unstable employment, in the form of a dependence on temporary and po-

tentially migratory labour (i.e. short-term farm work and other seasonal work), may also

be important to maintaining leishmaniasis in a muncipality. Such individuals have been

found to be at greater risk of contracting leishmaniasis [131, 252] due to misconceptions

about the disease [253] and living conditions which leave them exposed to sand flies [11]

(but see also [254]). The reliance on transient jobs potentially forces individuals to work

in multiple places over the course of a year, presenting more opportunities for them to be

exposed to infected sand flies (particularly if their job places them in proximity to wild

reservoir species [249]). Additionally, high SVI-I/W values can indicate greater depen-

dence on child/elderly labour, thus exposing a greater proportion of the population to

leishmaniasis. These age groups are known to be more likely to die from visceral leishma-

niasis [255–257] and it is believed that younger individuals develop higher parasite burdens

and more severe infections [258] than their older peers. Thus, having children exposed to

leishmaniasis may have significant ramifications for transmission.

The enhancement of leishmaniasis transmission in regions of unstable employment

mimics similar observations for diseases such as malaria. Employment-related human

migration at various scales is known to be important [259] with seasonal work in areas of

high vector density [260] and smaller-scale movement between outdoor areas [261] often

highlighted as a gap in the targeting of malaria prevention strategies. Similarly, Chagas

disease is known to have a higher burden in rural regions [262] particularly due to seasonal

movement of workers [263] or activities such as hunting [264]. Although these diseases

also maintain transmission in urban environments with more stable employment [265], the

increased burden in rural communities highlights the impact of unstable employment.

Previous studies have highlighted the role that perceptions and knowledge of leish-

maniasis may influence risk of transmission. In Ethiopia, migrant workers are aware of

leishmaniasis from prior experience but have reservations about some preventative mea-

sures [253]. Elsewhere, lack of awareness and misconceptions about treatment efficacy

contribute to poor uptake and adherence to treatments [266] and reliance upon poten-

tially harmful alternative treatments [267]. The mental impacts of leishmaniasis [268] are

known to be worsened in contexts with poorer access to education [269] due to a more

intense social stigma associated with the disease. Similar issues with perceptions of risk

and disease behaviour are documented globally [270]. Although in this case, we could not
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confirm a definite relationship between hazard of endemicity and education access, there

is precedent for it in the context of leishmaniasis.

Such a relationship is present for other vector-borne parasitic diseases too. Better

access to education has enabled greater awareness of malaria even in areas in which it is in

decline [271] leading to enhanced reporting of the disease [272] and better implementation

of preventative measures [273, 274] and use of treatments [275]. In the case of Chagas

disease, access to education have improved recognition of the link between the disease and

the triatomine bug vector [276] but misconceptions regarding the treatment of the disease

have negative impacts on the health outcomes for infected individuals [277].

Knowledge of the scales at which transmission operates will be crucial to our ongoing

efforts to eliminate leishmaniasis. Elimination of leishmaniasis has long depended strongly

on indoor residual spraying (IRS) to kill sand flies [278]. Recent studies have questioned

the efficacy of IRS [279, 280] and a leading alternative, long-lasting insecticide-treated

bednets (LLINs) [281,282] (but see also [283]), potentially in part due to rising insecticide

resistance in some sand fly species [284, 285]. While improvements [286, 287] are being

developed it is possible to use our knowledge of transmission to enhance how we apply our

existing methods by focusing their application appropriately.

Although it is tempting (especially in areas with limited access to preventative meth-

ods) to restrict application of IRS and LLINs to infected houses only, our findings suggest

it is pertinent to expand the coverage to all houses within 50m of the infected house-

hold. In areas with vegetation known to support a high sand fly density, such as banana

plants [232] or acacia trees [11, 143], there may be benefits from also applying insecticide

carefully to the vegetation to eliminate, or reduce, it as a viable habitat fragment. This

bears semblance to the hotspot-targeting approach used against malaria [289], which has

proven successful in reducing transmission. Another similar approach would be to ensure

that any accommodation within 50m of known sand fly habitat and/or reservoir species

is treated with IRS, supplied with LLINs, and where possible) built to be appropriately

resistant to sand fly colonisation [130,290].

Additionally, interventions could be targeted at the scale of municipalities. Munici-

palities with high SVI scores are more susceptible to the spread of leishmaniasis, though

the specific interventions must be tailored to local conditions. Regions with a high depen-

dence on seasonal, especially migratory, workers would benefit from an increased focus on

education campaigns (which have seen prior success at improving awareness of leishmania-

sis [291]) and from making testing and treatment more readily available. The combination

of improved health messages [292] and access to screening [293] have been highlighted as

important to counter Chagas disease, and gaps in screening of canines for visceral leish-
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maniasis is thought to have undermined control of the disease in Brazil [294]. By ensuring

that seasonal workers have good access to testing and knowledge of effective treatment, we

would be able to reduce the transmission of leishmaniasis with the municipality and reduce

the risk of exporting cases to other municipalities. This may be especially important for

situations where migration happens across a variety of distances [12, 88] and cases could

be exported over greater distances.

There are a few useful avenues that future work in this area may choose to explore.

One recurring factor we have encountered in this work is the potential role of employment

type (and stability) in leishmaniasis transmission. A longer-term monitoring study of

individuals in different types of employment could allow future analysis to reveal higher-

risk jobs or industries, as well as further explore the relationship between job stability and

leishmaniasis transmission. It would also be beneficial to be able to repeat the analysis we

performed for Northeastern Brazil in other regions where leishmaniasis is endemic, such as

the Indian Subcontinent or Ethiopia. This would allow us to test whether our conclusions

remain applicable in other geographical contexts.

3.7 Conclusion

Through the application of survival analysis to publicly available datasets, we have demon-

strated and discussed some of the strengths and weaknesses of the method in the context

of understanding leishmaniasis transmission. We also identify some of the factors that

underpin leishmaniasis transmission at different scales. We highlight that leishmaniasis

spreads more readily to individuals within 50m of a prior case, especially if they share

a household. We also highlight that larger-scale administrative regions can have varying

levels of vulnerability to leishmaniasis depending on their urban infrastructure quality,

access to education, and dependence on seasonal work. We use these identified behaviours

to suggest possible methods of targeting our available intervention strategies to maximise

their effectiveness in situations were they may not be universally applied due to factors

such as cost.

3.8 Materials and Methods

All survival analysis was performed in RStudio v2022.07.1 Build 554 (R version 4.1.0)

using the survival package [188] v3.4-0. All further analysis was also performed using

RStudio v2022.07.1, Build 554 (R version 4.1.0).
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Chapter 4

Applications and limitations of an

analytic R0 estimate for

heterogeneous network models.

4.1 Abstract

Despite ongoing elimination efforts, leishmaniasis persists across the globe, both in en-

demic communities and by establishing new clusters of infections. Studies portray en-

demic communities as heterogeneous environments of mystery reservoirs, short-range sand

fly vectors and varied habitat fragments; they are complex and only partially understood.

The heterogeneous transmission landscape makes leishmaniasis an appealing target for the

much-explored network models, often employed in contexts with structured communities

such as those endemic for leishmaniasis. We replicate the derivation of a general analytic

estimate for the basic reproduction number R0 for heterogeneous networks. We produce

context-specific estimates to assess its suitability for predicting the spread of leishmania-

sis. We find that the estimate consistently overestimates the value of R0 even on simpler

heterogeneous networks. However, we find that the estimate can be repurposed to predict

the epidemic threshold transmission rate with reasonable accuracy. We propose scenarios

where this estimate could be beneficial for understanding leishmaniasis transmission as

well as potential methods that could improve upon or be used in conjunction with the

estimate in future.
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4.2 Introduction

Leishmaniasis is a disease of surprisingly many forms [296–299] caused by parasites of the

Leishmania genus. Despite its global burden [300, 301] it remains a neglected tropical

disease, less studied than more prominent vector-borne diseases such as malaria. It is

targeted for eradication [3], especially on the Indian Subcontinent, but despite concerted

efforts to achieve this [302–304] it maintains a substantial presence in many countries across

the world [9,305–307], often in more vulnerable groups such as refugees [16,308] and rural

communities [309,310]. Such groups often have restricted access to medical care [311,312]

resulting in worse health outcomes as a result of infection with leishmaniasis [313], making

prediction and prevention an imperative.

Our knowledge of leishmaniasis transmission has advanced greatly in recent years.

Studies have revealed that Leishmania parasites are distributed heterogeneously in the

skin of mammalian hosts [314] and that skin parasites may be more important for out-

ward transmission than those in the blood [45]. The life cycle of the parasite is influenced

strongly by the biting behaviour of their sand fly vectors [54], but also influences the sand

flies in return by encouraging more persistent biting [84]. These factors appear to interact

to further enable transmission even in seemingly unlikely scenarios [172]. Larger scale

transmission on the other hand is a diorama of endemic communities [93, 147] and newly

established clusters [315], its range expanding with climate change [17,106], infrastructure

expansion [121] and intensifying land use [316] and sustained by habitat fragments [233]

and partially-understood reservoirs [18, 242, 317]. Combined with factors such as housing

material [130,290] and working patterns [76], a complex, multifaceted portrait of leishma-

niasis transmission emerges. Even if we overcome the remaining mysteries [53], capturing

this in full would likely produce an entirely intractable system. Advancements are more

easily made using abstracted systems and specific tools to gleam particular insights about

transmission. Tools like survival analysis [111] highlight the risk factors underpinning

the large-scale spread of leishmaniasis [121], much as ecological niche modelling [96, 318]

has charted the potential spread of its vectors [102, 319], and at smaller scales logistic

regression [147, 201] has identified similar risk factors. Thus, we can avoid much of the

complexity of the full system and yet still discern useful information.

An oft-applied metric that may be of use here is the ‘R0’ value, which represents the

expected number of secondary infections caused by a typical infection in a naive population

[320]. It is a convenient measure of how rapidly a disease is expected to spread, with

higher R0 values associated with faster transmission. The R0 value has been estimated

for a vast array of diseases [321–323] and circumstances [324, 325], seeing applications
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in predicting the minimum vaccine uptake required to prevent an outbreak [326, 327]

and identifying particularly vulnerable areas [328, 329]. Often, the R0 value is calculated

using data from outbreaks [330, 331], though this can sometimes produce widely varying

estimates [320]. In the context of leishmaniasis, such calculations are likely to be stymied

by the abundance of asymptomatic cases [332] and the ongoing uncertainty as to their role

in transmission [146,170,317,333]. This is further complicated by the restrictive conditions

for transmission [146]. Any R0 estimate must be properly tailored to this situation.

Given the structured nature of the communities that leishmaniasis spreads through,

network models present an opportunity. Network models possess a variety of useful

traits [334] and have seen applications in a wide array of epidemiological contexts. Mod-

ular networks have been used in the context of both human [335] and animal [336] social

groups, bipartite networks are widely applied to host-vector dynamics [337, 338], and in

some contexts even quite simple models can capture disease transmission through contact

networks [339]. Important aspects of transmission have been explored using networks,

ranging from the role of bridge nodes in inter-community transmission [340] and the im-

pacts of modularity on the transmission of co-infections [341] to the variable effects of

vaccination strategies [342] and the importance of social behaviours [343]. Despite this

versatility, network models have seen minimal applications to leishmaniasis transmission

thus far.

We derive a number of analytic estimates for the R0 value of an outbreak on a het-

erogeneous network with a range of different transmission rate regimes and evaluate the

accuracy and limitations of these estimates using numerical simulations. We also identify

a potential application for the estimate in the context of predicting future leishmaniasis

transmission.

4.3 Derivation of the R0 Estimate

We will focus initially on following the steps of previous work by Diekmann and Heester-

beek [344] and Newman [345] to derive a general analytic form of our R0 estimate which

we will then define more explicitly for a specific set of scenarios. Specifically, we aim to

derive:

R0 = T ×

(
k̂ − 1 +

ˆ̂
k

k̂

)
(4.1)

as presented by Lloyd and Valeika [150], where:
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T ∈ [0, 1] k̂,
ˆ̂
k ≥ 0.

Here, T is the ‘transmissibility’, the average probability of transmission occurring between

an infected individual and an uninfected individual [345], k̂ is the mean degree of individ-

uals in the network, and
ˆ̂
k is the variance of the degree distribution. This formula is best

interpreted in two parts:

R0 = T × (k̂ − 1) + T ×

(
ˆ̂
k

k̂

)
. (4.2)

The first term is fairly straightforward: the transmissibility T multiplied by the average

number of individuals that could be infected (one less than the mean degree k̂, as for a

fixed network all infected individuals have a single infected neighbour whom they were

infected by). This term is reminiscent of older R0 estimates for well-mixed populations

[150]. The second term is less intuitive: a correction term that incorporates network

heterogeneity [344] in the form of the variance of the degree distribution (
ˆ̂
k) allowing the

estimate to be applied beyond simple homogeneous networks. Without this correction

term, it is anticipated that the estimate would be an underestimate of the R0 value in

heterogeneous cases.

4.3.1 Transmissibility

The transmissibility of a disease, T , can be considered to be the average probability

of transmission occurring between an infected individual and an uninfected individual

[345]. Consider two individuals: an infected individual i and a susceptible individual j.

The individuals have disease-causing contacts at rate rij per unit time and an individual

remains infectious for a some time period τi.

For some small period of time δt, the probability of individual j not being infected is:

P = 1 − rijδt.

If we consider the infectious duration τi to be divided into many such ‘chunks’ of length δt,

then the probability of j remaining uninfected is the probability that no infection occurs

in any of the chunks:

P = (1 − rijδt)
τi
δt .

Finally, if we take these chunks to be infinitesimally small, we find that:
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1 − Tij = lim
δt→0

(1 − rijδt)
τi
δt = e−rijτi (4.3)

where 1 − Tij is the probability that individual j is not infected at any point during the

infectious duration of i and where we assume continuous time. Thus, the probability of

infection is:

Tij = 1 − e−rijτi (4.4)

We can derive a similar equation for discrete time. For this, we now define ρij to be the

probability that an infectious contact occurs between individual i and individual j in a

single timestep and define λi to be the number of timesteps that individual i is infectious

for (i.e. the infectious duration). Thus, Tij now takes the form:

Tij = 1 − (1 − ρij)
λi (4.5)

If we once again consider ρij and λi as i.i.d. according to some distributions P (r) and

P (λ) respectively, we obtain:

T = ⟨Tij⟩ = 1 −
∫ ∞

0
dρ

∞∑
λ=0

P (ρ)P (λ)(1 − ρ)λ (4.6)

We will use this expression for transmissibility in the construction of a number of estimates

for R0. For a summary of our notation, see Supplementary Table 1.

4.3.2 Expected Number of Contacts

In order to derive the rest of Equation (4.1) we follow the work of Diekmann and Heester-

beek [344]. They begin by introducing the concept of the “h-state”: information about

an individual that is relevant to transmission but not directly related to the disease. The

h-state can be discrete (for example, encoding details such as sex or species) or continuous

(for traits such as age) as the situation demands. For clarity, we first consider a scenario

with finitely many discrete h-states. In this case, Diekmann and Heesterbeek define kij to

be the number of individuals with h-state i infected by a single individual with h-state j

over their entire infectious duration. They also define the ”next-generation matrix” to be:

K = (kij).

These are best illustrated with a simple example: consider a sexually transmitted infection

in an entirely heterosexual population. Individuals have a h-state of one of two types, male
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or female, and individuals of one type can only infect individuals of the other type. For

simplicity, assume that each infected individual of either h-state can be expected to infect

3 people over their infectious duration. Then, the next generation matrix takes the form:

K =

kmm kmf

kfm kmm

 =

0 3

3 0


This matrix can be used to predict how the number of infections will change from one

generation to the next. Imagine a population (denoted ϕ) in which 6 males and 3 females

are infected, s.t.:

ϕ1 =

6

3


which represents the initial infections. The number of infections in the next generation is

then:

ϕ2 = Kϕ1 =

0 3

3 0

6

3

 =

 9

18


where Kϕ1 denotes matrix multiplication.

For an arbitrary h-state space, which may have continuous or discrete elements, Diek-

mann and Heesterbeek [344] perform a similar derivation. Let Ω be the space containing

all h-states. For some h-state η and region θ of h-state space, they define Λ(η)(θ) to be

the expected number of individuals with h-state in θ caused by a single individual with

h-state η over their entire duration of infection. They also define the number of cases with

h-state in θ for a given generation to be some m(θ).

In this context, they define K to be the “next-generation operator” which once again

describes the change in the number of infections between generations and thus:

(Km)(θ) =

∫
Ω

Λ(η)(θ)m(dη).

In both contexts, the R0 value is defined to be the spectral radius of K and although one

can extract it directly (see, for example, [344,349] for details), Diekmann and Heesterbeek

instead introduce a further assumption that simplifies the process: that the h-state of a

new infection is independent of the h-state of the individual responsible for infecting them.

In the contexts we have discussed, we thus have:
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kij = aibj

Λ(η)(ω) = α(ω)b(η).

For conciseness, we focus on the more general context. Consider a generic eigenvector

v(ω) upon which K operates. We thus have:

(Kv)(ω) = λv(ω)

where λ is the corresponding eigenvalue. Therefore:

(Kv)(ω) =

∫
Ω

Λ(η)(ω)v(dη) = λv(ω)∫
Ω
α(ω)b(η)v(dη) = λv(ω)

α(ω)

∫
Ω
b(η)v(dη) = λv(ω).

This implies that v(ω) = α(ω) and thus:

v(ω)

∫
Ω
b(η)α(dη) = λv(ω)

=⇒ λ =

∫
Ω
b(η)α(dη).

Since λ is the only eigenvalue, we thus denote:

R0 = λ =

∫
Ω
b(η)α(dη). (4.7)

The final part of the derivation of Equation (4.1) is best demonstrated by following a final

example from Diekmann and Heesterbeek [344]. Let all individuals have some contact rate

ζ. We assume that any infected individual could infect any susceptible individual (rather

than having distinct, incompatible subpopulations) and that ζ remains unchanged as a

result of infection. Let m(θ) be the probability that, for any θ ⊂ Ω, an individual has

ζ ∈ θ as discussed above. Diekmann and Heesterbeek define:

ζ̂ =

∫
Ω
ζm(dζ) (4.8)

to be the mean contact rate and:
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ˆ̂
ζ =

∫
Ω
ζ2m(dζ) − ζ̂2 (4.9)

to be the variance. Suppose we are interested in a formula for the number of new infections

with h-state in θ in the next generation caused by an infected individual with h-state η;

that is to say, we wish to find an expression for Λ(η)(θ). Diekmann and Heesterbeek

represent this by:

P (transmission) × (contact rate) × (proportion contacts with ζ ∈ θ) (4.10)

They take the average probability of transmission to be the transmissibility of the disease

T (see Section 4.3.1) and the average contact rate is simply ζ̂. The proportion of contacts

with contact rate ζ ∈ θ is given by:

α(θ) =

∫
θ ζm(dζ)∫
Ω ζm(dζ)

=

∫
θ ζm(dζ)

ζ̂
(4.11)

Thus we have:

Λ(η)(θ) = T × ζ̂ × α(θ) (4.12)

and if we denote b(ζ) = T ζ̂ then:

Λ(η)(θ) = b(ζ)α(θ) (4.13)

Recall Equation (4.7), we thus have:

R0 =

∫
Ω
b(η)α(dη) (4.14)

which is:

R0 =
T

ζ̂

∫
Ω
ζ2m(dζ) = T ×

(
ζ̂ +

ˆ̂
ζ

ζ̂

)
. (4.15)

In the context of a network model, we can take the degree k of each individual to be their

contact rate. We also note that each individual, with the exception of those introduced to

a naive population, will have a single neighbour (the individual that infected them) that

is not susceptible to infection because they are either still infected or have recovered and

are now immune. Thus, we have:
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R0 = T ×

(
k̂ − 1 +

ˆ̂
k

k̂

)
, (4.16)

which is Equation (4.1) as originally desired. We now use this general form of R0 to

derive context-specific estimates for a selection of different transmission rate regimes. We

will focus on estimates for the discrete time case, for continuous time counterparts see

Supplementary Methods 1.

4.4 Analytic Approximations of R0: Discrete Time

Next, we will derive a set of R0 estimates for a range of transmission probability regimes

of interest. Specifically, we consider three scenarios: one in which all transmission proba-

bilities are some fixed value ρ∗, one in which they are uniformly distributed between 0 and

1, and finally one in which they follow a strict bimodal distribution. Recall that our R0

estimate is provided by Equation (4.1), with the transmissibility given by Equation (4.6).

For simplicity we restrict our analysis to the case where the infectious duration is fixed,

that is to say:

λ = λ∗

and thus:

T = 1 −
∫ ∞

0
dρP (ρ)(1 − ρ)λ

∗
. (4.17)

4.4.1 Fixed Transmission Probability

Consider the scenario where all connections between individuals have equal probability of

transmitting the disease per timestep, such that

P (ρ) =


1 ρ = ρ∗,

0 otherwise.

(4.18)

Thus, we have:

T = 1 − (1 − ρ∗)λ
∗
. (4.19)

Substituting this into Equation (4.1) we have:
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R0 = (1 − (1 − ρ∗)λ
∗
)

(
k̂ − 1 +

ˆ̂
k

k̂

)
. (4.20)

4.4.2 Uniform Random Infection Probability

A more interesting scenario is provided by allowing the probability of infection for each

connection to vary according to a uniform distribution with minimum value a and maxi-

mum value b. We continue to assume that λ = λ∗ as before and that ρ remains invariant

in time. Thus, we have:

P (ρ) =
1

(b− a)
(4.21)

and therefore:

T = 1 −
∫ b

a

(1 − ρ)λ
∗

(b− a)
dρ

T = 1 −
[

−(1 − ρ)λ
∗+1

(λ∗ + 1)(b− a)

]b
a

⇒ T = 1 − (1 − a)λ
∗+1 − (1 − b)λ

∗+1

(λ∗ + 1)(b− a)

Substituting this in Equation (4.1), as before, we have:

R0 =

(
1 − (1 − a)λ

∗+1 − (1 − b)λ
∗+1

(λ∗ + 1)(b− a)

)(
k̂ − 1 +

ˆ̂
k

k̂

)
. (4.22)

4.4.3 Bimodal Infection Probability

Consider a scenario where the probability of infection for the connections is distributed

according to a strictly bimodal distribution s.t.:

P (ρ) =


p1 ρ = a

p2 ρ = b

0 otherwise,

where a << b and p1 >> p2. In this context, P (ρ) is a probability mass function and we

have:

T = 1 −
∑
ρ∈υ

P (ρ)(1 − ρ)λ
∗

(4.23)
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where υ is the set of possible values taken by ρ. We assume as before that λ = λ∗ is a

fixed constant and that r is invariant in time. We now have:

T = 1 − p1(1 − a)λ
∗ − p2(1 − b)λ

∗
(4.24)

and thus:

R0 = (1 − p1(1 − a)λ
∗ − p2(1 − b)λ

∗
)

(
k̂ − 1 +

ˆ̂
k

k̂

)
. (4.25)

4.5 Numerical Simulations

We next evaluate the accuracy of these analytic predictors using a set of numerical simu-

lations for sets of different transmission rate distributions and individual degree distribu-

tions. Focus is placed on the discrete time context, but see the supplementary materials

(Section S2) for the continuous time setting.

All simulations generate an independent network of 800 individuals, each with a degree

that determines the number of individuals it can connect to (for details see Section 4.5.1).

Every connection between two individuals is assigned a transmission rate drawn from an

associated distribution (see Section 4.4). In the discrete time context, this transmission

rate is the probability of transmission occurring along that edge per timestep (where one

timestep is equivalent to a week of real-time). Each simulation begins with 20 initial in-

fections distributed randomly across the population and runs for 120 timesteps, stopping

prematurely if no infected individuals remain. At each timestep, all infected individuals

check each connected susceptible individual to evaluate whether transmission occurs ac-

cording to their edge-specific transmission rate. All infected individuals remain infected

(and infectious) for a fixed duration of 40 timesteps (i.e. for our R0 estimates we assume

λ∗ = 40) and become immune to reinfection upon recovering.

Throughout our analysis, we consider the R0 to be the expected number of secondary

infections caused by a single infected individual throughout their infectious duration. To

aid in examining how the accuracy of our R0 estimates changes over time, we divide

infections into distinct generations. The initial infections are denoted ‘Generation 1’ and

subsequent infections are always one generation higher (i.e. all individuals infected by the

initial infections are generation 2 infections). For each simulation, we then calculate the

mean number of secondary infections caused by an individual of each generation.
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4.5.1 Network Structure and Degree Distributions

All networks generated for these simulations have a degree distribution that belongs to

one of three different categories: homogeneous, geometric distribution, and community

structure. The specifics are detailed below.

Homogeneous Network

The simplest network is fully homogeneous with all individuals generated with degree 5.

Individuals are assigned ‘stubs’ according to this degree and these stubs are then paired up

at random following a standard configuration model approach (see [334]). For an example

network see Figure 4.1.

Figure 4.1. Sample network generated using the homogeneous degree distribution.
Each node is an individual, edges represent viable routes of transmission.

Geometric Distribution Network

Individuals in this network type has a degree drawn from a geometric distribution with

success probability p, where the degree of the individual is the number of trials recorded

before the first success. Thus, the probability that an individual has degree k is:

Pr(X = k) = p(1 − p)k−1, (4.26)

with:
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Mean(X) =
1

p
, V ar(X) =

1 − p

p2
. (4.27)

For these simulations, p = 0.2577. Thus, the degree distribution has mean 3.88 and

variance 11.17. As in the homogeneous case, all individuals have stubs according to their

degree and these stubs are paired randomly to produce the network. See Figure 4.2 for

an example network.

Figure 4.2. Sample network generated using the geometric degree distribution. Each
node is an individual, edges represent viable routes of transmission.

Community Structure Network

The most sophisticated network used in these simulations replicates a real-world commu-

nity. Individuals are each assigned to a household. Household sizes are drawn from a

uniform distribution with maximum 6 and minimum 2. All individuals are connected to

all other individuals in their household and two individuals in each household are cho-

sen to connect to an adjacent household (such that each household is connected to two

neighbouring households by a single connection). Since these networks possess structure

beyond that provided by the degree distribution, we also generate a second version in

which all the edges are removed and the resulting stubs are then randomised as in the

previous networks. For sample networks see Figure 4.3.
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Figure 4.3. Sample networks generated for the fully structured (A) and fully random
(B) versions of the community structured simulations. Each node is an individual, edges
represent viable routes of transmission.

4.6 Results

It is prudent to begin by evaluating our analytic estimates for R0 under a comparatively

mundane set of conditions. We first consider the homogeneous case where all individuals

possess identical degree. In its most generic form, the estimate for R0 is reduced from:

R0 = T ×

(
k̂ − 1 +

ˆ̂
k

k̂

)
to the more familiar:

R0 = T × (k̂ − 1). (4.28)

In this homogeneous context, we note that the estimate for R0 no longer depends on the

variance of the degree distribution; indeed, it now depends only on the mean degree and

the transmissibility T . We begin with the simplest regime of transmission rates: all edges

possess an identical, fixed transmission rate. In this scenario, Equation (4.20) reduces to:

R0 = (1 − (1 − ρ∗)λ
∗
)(k̂ − 1), (4.29)

for a given transmission rate ρ∗ and infectious duration λ∗. We first consider a transmission

rate of 0.03 per neighbour, per timestep. If we examine the mean number of secondary

infections for the first 8 generations of our simulations (Figure 4.4A) we observe that the

approximation slightly underestimates for the initial infections (generation 1), but then

overestimates for all subsequent generations (performing worse as the generation number
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increases). We observe similar results for a reduced transmission rate of 0.015 (Figure

4.4B).

Figure 4.4. The estimate for R0 is reasonable for the initial infections, but
overestimates greatly for later generations. Mean number of secondary cases
caused by infections of different generations (black) compared with the analytic estimate
from Equation (4.29) (red). Whiskers indicate the mean across all replications +/- 1
standard deviation.

The decline in accuracy is not unexpected. This is an estimator for R0 and thus only

intended for the very beginning of an outbreak (when t = 0) and thus would be expected to

perform poorly as the outbreak progresses. Despite this, the estimator performs reasonably

well for the initial generation. The slight underestimation is also not entirely unexpected.

In deriving Equation (4.28), we assume that all infections would have at least one infected

neighbour (the person that infected them). This is accounted for by the use of k̂−1 rather

than k̂. However, this assumption does not hold for the initial infections.

Henceforth, focus will be placed on the higher transmission rate (see the supplementary

figures for the lower-transmission counterparts). Consider now a scenario where transmis-

sion rates for each connection are drawn from a uniform random variable. We assume that

the edges are not directional (i.e. transmission from individual i to individual j occurs at

the same rate as from j to i). For our homogeneous network, Equation (4.22) reduces to:

R0 =

(
1 − (1 − a)λ

∗+1 − (1 − b)λ
∗+1

(λ∗ + 1)(b− a)

)
(k̂ − 1), (4.30)

for minimum rate a and maximum rate b. To maintain a mean transmission rate of 0.03,

we set a = 0.02 and b = 0.04. If we once again examine the mean number of secondary

infections (Figure 4.5), we see similar results to those for the fixed transmission rate system.

The estimate performs reasonably for the first generation but greatly overestimates for

later generations of infections.
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Figure 4.5. With uniformly distributed transmission rates the R0 estimate
still performs reasonably for generation 1, and overestimates thereafter. Mean
number of secondary infections caused by infections of different generations (black)
compared with the analytic estimate from Equation (4.30) (red), for a homogeneous
degree distribution and uniformly distributed transmission rates. Whiskers indicate the
mean across all replications +/- 1 standard deviation.

Consider also the scenario where transmission rates are strictly bimodal; that is to

say, most edges have low transmission rates but rarely an edge will have a much higher

transmission rate. We once again assume transmission is symmetric for a given edge. For

a homogeneous network, Equation (4.25) reduces to:

R0 = (1 − p1(1 − a)λ
∗ − p2(1 − b)λ

∗
)(k̂ − 1). (4.31)

In order to maintain a mean transmission rate of 0.03, we choose our bimodal distribution

to be:

P (ρ) = 0.98 ρ = 0.0122 (4.32)

P (ρ) = 0.02 ρ = 0.9 (4.33)

P (ρ) = 0 otherwise. (4.34)

Examining the mean number of secondary cases once more (Figure 4.6) we observe a similar

underestimation for the first generation but overestimation for subsequent generations

as we did for the fixed and uniformly distributed transmission rate scenarios.We now

examine a scenario that is more complex but more applicable to real-world scenarios: the

community structure network.
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Figure 4.6. With a strictly bimodal distribution of transmission rates the R0

estimate underestimates slightly for generation 1, and overestimates
thereafter. Mean number of secondary infections caused by infections of different
generations (black) compared with the analytic estimate from Equation (4.31) (red), for
a homogeneous degree distribution and bimodally distributed transmission rates.
Whiskers indicate the mean across all replications +/- 1 standard deviation.

We begin with the fully structured simulations, as detailed in Section 4.5.1, and start

with the most basic transmission regime as before: the fixed transmission rate. If we com-

pare the mean secondary infections caused for the two different transmission rates (Figure

4.7), we observe remarkably similar results for both. This suggests that the limiting factor

is the number of neighbours, rather than the transmission rate itself. More importantly,

we also note that the analytic estimate (Equation (4.20)) greatly overestimates in both

cases for all generations of infections.

Figure 4.7. For community structure networks, the R0 estimate consistently
overestimates for all generations. Mean number of secondary cases caused by
infections of different generations (black) compared with the analytic estimate from
Equation (4.20) (red). Whiskers indicate the mean across all replications +/- 1 standard
deviation.
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It is possible that this poor performance is attributable to the highly structured nature

of the simulations (it is well-documented that the R0 is typically lower on structured

networks [346] particularly if individuals are highly clustered [347,348]). To evaluate this

possibility, we instead examine their fully random counterparts. In these simulations the

degree distribution is unchanged, but individuals are now randomly connected (see Section

4.5.1 and Figure 4.3). If we consider both transmission rates once more (Figure 4.8), we

observe no real real difference between the fully random and fully structured (Figure 4.7)

simulations. Thus, the structured nature of the network appears to have no discernible

impact on the performance of the analytic estimator.

Figure 4.8. The R0 estimate consistently overestimates for all generations,
even once the community structure has been replaced with random
connections. Mean number of secondary cases caused by infections of different
generations (black) compared with the analytic estimate from Equation (4.20) (red).
Whiskers indicate the mean across all replications +/- 1 standard deviation.

If we examine the other two transmission rate distributions for the fully structured

simulations (Figure 4.9) we once again observe that the analytic estimate greatly overesti-

mates the true number of secondary cases caused for all generations, although it performs

slightly better for the bimodal distribution (Figure 4.9B) than for the uniform distribution

(Figure 4.9A).

It would be informative to also examine a more conventional degree distribution and

for this purpose we choose the geometric distribution (see Section 4.5.1). Returning once

more to the fixed transmission rates (Figure 4.10) we note that the analytic estimate

(Equation 4.20) still consistently overestimates the number of secondary infections caused

for all generations and once again performs better for the lower transmission rate than the

higher transmission rate.
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Figure 4.9. With either uniformly distributed or bimodally distributed
transmission rates, the R0 estimate consistently overestimates. Mean number of
secondary cases caused by infections of different generations (black) compared with the
analytic estimate from Equation (4.20) (red). Whiskers indicate the mean across all
replications +/- 1 standard deviation.

Figure 4.10. The R0 estimate consistently overestimates for all generations,
for both high and low fixed transmission rates and a geometric degree
distribution. Mean number of secondary cases caused by infections of different
generations (black) compared with the analytic estimate from Equation (4.20) (red).
Whiskers indicate the mean across all replications +/- 1 standard deviation.
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If we also examine the behaviour under the other two distributions (Supplementary

Figure 1) we once again see this consistent overestimation, with better performance for the

bimodal distribution than the uniform distribution. These results suggest that, regardless

of the degree or transmission rate distribution chosen, the incorporation of the variance

of the degree causes the estimate to overestimate the performance of the disease.

Nevertheless, there is another potential use of the analytic R0 estimator: identifying

the ‘epidemic threshold’. This threshold represents the minimum transmission rate for

which one would expect the disease to spread successfully within the population. A simple

requirement for this is:

R0 ≥ 1.

At the threshold we have R0 = 1. If we consider the fixed transmission rate scenario and

recall Equation (4.20), we have:

1 = (1 − (1 − ρ∗)λ
∗
)

(
k̂ − 1 +

ˆ̂
k

k̂

)
1

k̂ − 1 +
ˆ̂
k
k̂

= 1 − (1 − ρ∗)λ
∗

1 − ρ∗ =

1 − 1

k̂ − 1 +
ˆ̂
k
k̂

 1
λ∗

Consider again the geometric degree distribution. We once again use a fixed infectious

duration of 40 and recall that our degree distribution has (approximately) mean 3.88 and

variance 11.17. Thus, we have:

ρ∗ ≈ 1 − (1 − 1

5.76
)

1
40

≈ 0.0048.

It is important to note that this threshold does not represent a hard limit on transmission;

that is to say, even if the transmission rate is below this value the disease is likely to persist

in the population for a while. We would instead anticipate that such outbreaks would go

extinct faster than those with transmission rates that are greater than the threshold. If we

now examine a spectrum of transmission rates that spans both sides of the threshold we can
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evaluate whether this expectation holds for our simulations. Consider first the proportion

of simulations that go extinct within the first 120 timesteps (Figure 4.11A). We observe

a marked difference between the transmission rates above and below the threshold, with

a much greater proportion of lower transmission simulations going extinct (especially for

the minimum value of 0.0015). Measuring the time to extinction (Figure 4.11B) reveals

that simulations with lower transmission rates also go extinct earlier on average than those

with transmission rates greater than the threshold.

We can calculate a similar threshold for the community structure simulations. It is

trivial to demonstrate that we have:

ρ∗ ≈ 0.0038. (4.35)

This threshold is identical for both the fully structured and fully randomised variants

of the network because both share the same degree distribution. If we first examine

the fully randomised community structure network (Figure 4.12) we observe a similarly

marked difference between the above threshold and below threshold transmission rates.

Once more, those below the threshold go extinct more often and faster than those above

the threshold, also the transition appears more gradual than for the geometric degree

distribution.

If we now examine the fully structured simulations (Figure 4.13), we can see the im-

pact of the network structure. Although we do still observe a difference between the two

halves, this difference is subdued in comparison; there is now a smooth transition from

lower to higher transmission rates that renders that concept of a ‘threshold’ somewhat

less applicable. This is likely due to the increase difficulty of maintaining the infection

on a structured network, where the modular nature of the community creates additional

opportunities for the disease to end up isolated with no further accessible susceptible in-

dividuals. Thus, we conclude that while the R0 estimate is largely suitable for identifying

the epidemic threshold rate of transmission for networks with heterogeneous degree dis-

tributions, caution must be taken if applying it to the most structured networks. For

such networks, rather than having a threshold beyond which epidemics become likely (or

even possible), there is instead a gradual increase in the likelihood of an epidemic over a

broader range of transmission rates.
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Figure 4.11. The R0 estimate can successfully predict the epidemic threshold
for a fixed transmission rate on a geometric degree distribution network. A:
Proportion of simulations which experience extinction within the first 120 timesteps for
various transmission rates. Vertical grey line indicates the predicted epidemic threshold.
B: Time to extinction for individual simulations for various transmission rates. Solid
black line indicates the predicted epidemic threshold. Both A and B apply to simulations
with fixed transmission rate and geometric degree distribution.
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Figure 4.12. The R0 estimate can successfully predict the epidemic threshold
for a fixed transmission rate on the ”fully random” community structure
networks. A: Proportion of simulations which experience extinction within the first 120
timesteps for various transmission rates. Vertical grey line indicates the predicted
epidemic threshold. B: Time to extinction for individual simulations for various
transmission rates. Solid black line indicates the predicted epidemic threshold. Both A
and B apply to simulations with fixed transmission rate and randomised community
structure network.

110



Figure 4.13. The R0 estimate can still successfully predict the epidemic
threshold for a fixed transmission rate on the ”fully structured” community
structure networks. A: Proportion of simulations which experience extinction within
the first 120 timesteps for various transmission rates. Vertical grey line indicates the
predicted epidemic threshold. B: Time to extinction for individual simulations for
various transmission rates. Solid black line indicates the predicted epidemic threshold.
Both A and B apply to simulations with fixed transmission rate and community
structure network.
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4.7 Discussion

Our numerical simulations suggest that our analytic R0 estimators are poorly suited to

predicting how a disease will spread on a heterogeneous network, even for the simplest

transmission rate regimes (Figure 4.7) and well-known degree distributions (Figure 4.10),

despite performing well for the initial infections on homogeneous networks (Figure 4.4).

However, our results also suggest that it can be used to successfully predict the location

of the epidemic threshold for heterogeneous networks (Figure 4.11), and thus is still a

valuable tool for understanding disease transmission on such networks.

The extent to which our analytic estimate of R0 overestimates for our simulations is

striking. For example, in the context of the community structure simulations with the

higher fixed transmission rate of 0.03 (Figure 4.7A), the analytic estimator predicted an

R0 of approximately 5. However, the mean degree for these simulations is 3.88 and thus

it seems unreasonable to expect 5 secondary infections per infection on average, even

if we assume a fully naive population (such that no two infections are neighbours). An

explanation for this inaccuracy may be found in how the estimates were derived. Originally,

Diekmann and Heesterbeek [344] used a measure of ‘activity’ ξ that, in the context of

sexually transmitted infections, represented the number of contacts per unit time. In

our derivation, we use the degree of the individual in the same manner as a measure

of ‘activity’. A notable distinction between these approaches is that in our context, an

individual is always connected to the same individuals and thus does not merely have k

contacts per unit time, but rather the same k contacts every unit of time. In the original

context, on the other hand, each contact is with a random individual (with more active

individuals being more likely to be chosen).

One consequence of this is that the pool of accessible susceptible individuals is depleted

potentially much faster in this context than in the free-mixing case. Consider, for example,

the community structure: in each ‘household’ all individuals are interconnected. As a

result, every individual infected by one member of the household is prevented from being

infected by any other individual in the household. Thus, it is unlikely that any individual

would cause as many secondary infections as one would expect from its degree; indeed, even

if an individual did manage to do so, this would greatly reduce the number of infections

that the other household members could cause. This is true more so for later generations

of infections rather than for the initial infections (for whom the population is almost

entirely naive). This effect has been documented in other analytic contexts [350, 351] as

well as for diseases such as rabies [352]. It has important implications both to the spread

of the disease [353] and to control measures such as contact tracing [354], and explains
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why the analytic estimates derived here perform progressively worse over the course of the

outbreak.

This effect cannot account for the overestimation of the R0 value for the initial infec-

tions (for whom the population is almost entirely naive). Considering that the estimate

does perform well for generation 1 of the homogeneous case (Figure 4.4), it seems likely

that it is overvaluing the contributions of high-degree individuals to the R0 value. This

resembles previous findings that, without proper consideration, the contributions of highly

active individuals to the R0 value are overestimated [355]. In our context, although higher-

degree individuals can cause more infections than lower-degree individuals, they are still

restricted by their degree. Thus, so-called ‘superspreaders’ are only possible if there are

individuals with suitably high degree present in the network. It is possible that in a more

dynamic network, where the connections are shuffled periodically, the R0 estimate would

be more accurate.

On the other hand, the R0 proved to be effective at predicting a suitably-defined

epidemic threshold for both simpler degree distributions (Figure 4.11) and the community

structured simulations (Figure 4.8), even when the network is highly structured (Figure

4.7). Care must be taken in defining and predicting epidemic thresholds: as Li et al. [356]

remark and our results demonstrate, a disease can spread even if R0 < 1 and may go

extinct if R0 > 1. This is why our epidemic threshold does not represent a hard limit on

transmission, rather the approximate location of a ‘bifurcation’ of sorts in the behaviour

of the system; as the transmission rate is reduced below it, the proportion of simulations

that go extinct in a given time period increases rapidly.

If suitable care is taken in defining the threshold, it can prove a valuable tool. Previous

studies have identified epidemic thresholds for a range of different systems [357–359], in-

cluding bipartite networks [360] (particularly relevant to vector-borne diseases [361,362]),

as well as highlighting the vanishing of such thresholds for scale-free networks [363]. Net-

work features such as the maximum degree [364], weighted edges [365] and degree hetero-

geneity [366] have all been found to be important to determining the epidemic threshold.

Another priority has been to identify how the epidemic threshold is influenced by real-

world factors such as behaviour. Studies have highlighted the importance of the movement

of individual animals [367], the link between concurrent relationships and the spread of

HIV [368] and the impact of behavioural changes in response to an emerging disease [369].

This interest is not restricted to disease outbreaks: misinformation, for example, has epi-

demics of its own [370] and given its role in hampering disease control [371], identifying

methods to reduce the epidemic threshold for misinformation outbreaks has seen much in-

terest [372], especially in the context of network segregation [373] and edge removal [374].
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The primary aim of identifying the factors that influence the epidemic threshold is the

same for both contexts: to devise methods (ideally, simple ones) of bringing transmission

rates below the threshold and thus preventing an epidemic, for example by calculating the

proportion of the population that needs to be vaccinated [375].

We can employ an epidemic threshold for leishmaniasis for a similar purpose. Previous

studies have identified a wealth of potential risk factors (e.g. [147, 376] that could be

incorporated into network models similar to those used here. The use of insecticide-

treated nets (ITNs) [377] could be easily accounted for, with different scenarios of uptake

or distribution represented by different transmission rate distributions. This could be used

to evaluate the extent to which transmission between neighbours must be dampened by a

net to prevent an epidemic, or perhaps what proportion of individuals need to use nets,

providing another lens through which to examine the outstanding questions surrounding

ITNs [4, 378] and to enhance the cost-effectiveness of insecticide-based approaches [282,

379]. Similarly, aspects such as the presence of habitat fragments [316, 380] and exposed

resting spots [127] can be captured by suitably chosen network structures. Treatment of

such areas to reduce the presence of sand flies could be represented via edge removal,

allowing one to evaluate the extent to which the vector must be suppressed (see also

[381]). Factors such as distance [146] may require more careful choices in terms of both

transmission rates and degree distribution, but may yield insights in prioritising treatment

or preventative methods and provide another alternative to expensive MCMC methods

[198].

An estimate for the epidemic threshold may also prove useful in understanding the

clustering of leishmaniasis. Leishmaniasis exhibits spatio-temporal clustering both at the

community scale [12] and at the scale of larger provinces [382] (for both human [383] and

zoonotic [91] leishmaniasis). Although studies have identified large-scale risk factors such

as poor access to healthcare and stable employment [149], expansion of infrastructure

(such as roads and pipelines) [121] and climate-related factors such as temperature [93],

it remains non-trivial to identify specific vulnerable communities. Given the importance

of smaller-scale factors such as sand fly population density [384] and housing conditions

[131] it is likely that susceptibility to leishmaniasis invasion will vary from settlement

to settlement, even under consistent large-scale conditions (for example, within a given

municipality). If one could represent communities of interest as networks, informed by

factors such as inter-household distances or sand fly densities, then the epidemic threshold

estimate could be used to evaluate which communities are most likely to experience an

epidemic in the event that leishmaniasis where to be introduced to the community (via

human migration [242, 385], for instance). This would allow the prediction of potential
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transmission hotspots, and thus the targeting of interventions, which would be particularly

useful in areas with fewer resources for monitoring and suppressing leishmaniasis [386].

It is unfortunate that our R0 estimates proved unsuitable beyond the initial infec-

tions. Leishmaniasis exists at an endemic state across many communities [387, 388]. The

prevalence of the infection can vary greatly across different endemic communities: rural

communities in Ghana [389] and Ethiopia [309] experience very high rates of leishmaniasis

infection and communities in Bihar, India have been found to display moderate levels of

post-kala-azar dermal leishmaniasis (PKDL) [390], whereas in southern France [391] and

Spain [392] leishmaniasis persists at much lower levels (though can still cause acute out-

breaks [393]). The remains much debate as to how leishmaniasis is maintained in the many

endemic communities, despite concerted elimination efforts [394, 395]. Repeated spillover

events from wild [396], synanthropic [18] and domestic [397] reservoir species are often

cited as an important factor. Questions linger also on the importance of asymptomatic

infections [398, 399] and cases of PKDL [242]. The conundrum is further complicated by

the sometimes low infection prevalence within the sand fly vectors [400] and potential for

other vector species [22]. If we are to fully eradicate leishmaniasis, it is clear we must

further our knowledge of this endemic state and how it persists.

There are other more promising approaches to capturing the endemic state. Identifying

endemic states for network models has a long history [401] in a range of contexts [402–

404]. Previous work focusing on SIS dynamics [405] have yielded insights by identifying

an endemic threshold [406] or using the quasi-stationary distribution for Markovian SIS

dynamics [407] to link invasion probability to the endemic state. SIR models [408] are less

studied; more prone to cycles of local extinction and reintroduction [409] than ending in

an endemic state, but introducing population turnover or dynamic networks has yielded

interesting results [410, 411]. Recently, an analytic estimate [151] of the endemic state of

the Super Compact Pairwise model [152] has also been derived. Thus, there are a number

of opportunities for further study of the endemic state of leishmaniasis that future studies

could explore.

4.8 Conclusion

Although the analytic estimates for R0 proved ineffective at predicting the true number of

secondary cases caused by a single infection, they were not without application. We find

that they can be repurposed to predict an epidemic threshold for the rate of transmission

with reasonable accuracy (though it should be acknowledged that network structure still

impacts their performance). In future, these thresholds could be used to identify neigh-
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bourhoods that are particularly at risk of invasion, if suitable networks are constructed

(ideally informed by data about transmission factors of interest, such as inter-household

distance or vector densities).

4.9 Materials and Methods

All numerical simulations were performed using MATLAB R2021b (v9.11.0.1769968). All

associated data analysis was performed using RStudio v2022.07.1, Build 554 (R version

4.1.0).
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Chapter 5

Heterogeneity in individual degree

distributions allows spontaneous

deviations from a stable

equilibrium in Leishmania

epidemics on networks.

5.1 Abstract

Leishmaniasis is a neglected tropical disease caused by Leishmania parasites that is respon-

sible for thousands of deaths every year in countries across the world. Despite advances in

sand fly control and a better understanding of leishmaniasis transmission dynamics, full

elimination remains an elusive goal in the many communities where the disease is endemic.

For this goal to be achieved, we require better knowledge of how the disease persists at low

levels. Network models represent a useful tool for approaching this matter, having seen

prior success in modelling disease transmission in structured communities. We evaluate

the efficacy of an analytic estimator for the endemic equilibrium of the Super Compact

Pairwise model when applied to networks of varying structure. We also assess the trans-

mission dynamics around this equilibrium and use this to highlight scenarios of particular

concern for transmission of leishmaniasis, such as high-density, poor-quality housing or

communities that depend strongly on agricultural work or seasonal migrant labour.
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5.2 Introduction

The global burden of endemic diseases has garnered much attention over the last decade.

This burden is perhaps most keenly felt in less economically developed regions. The

impact of diseases such as cholera [412] and norovirus [413] is compounded further by a

myriad of tropical diseases, ranging from well-known threats such as malaria [414,415] and

dengue fever [416] to the more obscure lymphatic filariasis [417]. These impacts are far-

reaching, with both health [412] and economic [418] implications. Of particular concern

are the neglected tropical diseases [419–421]. Considerable effort has been devoted more

recently to monitoring [422], diagnosing [423, 424] and treating [425] them, often as part

of elimination drives [426]. Despite this, our understanding of their transmission and the

full extent of their impacts remains incomplete.

One such disease is leishmaniasis, which remains a disease with global presence [427],

despite ongoing efforts to eliminate it. Countries such as Brazil [428] and India [429] bear

much of the burden, though its reach is far wider [9, 430]. Although progress towards

the elimination targets has been made [395], due to intervention methods such as indoor

residue spraying and insecticide-treated bed nets [431] and advancements in treatment and

diagnosis [432], leishmaniasis continues to manifest as low-level transmission and sporadic

novel outbreaks. Such outbreaks are present even in regions with minimal transmission,

such as Spain [433].

Leishmaniasis transmission appears to be heterogeneous at multiple scales. At large

scales, cases cluster in regions of greater social vulnerability [149] and areas with favourable

conditions for the sand fly vectors [93], with expansion potentially facilitated by transport

links [121] and urbanisation efforts [434]. Similar clustering of cases has long been reported

at the scale of individual communities, too [147]. Early studies identified numerous risk

factors associated with transmission [147, 201], though a complete understanding of com-

munity transmission yet eludes us. A few factors have attracted particular attention. The

first is the proximity to existing infections, oft-reported as having a strong effect on the

likelihood of transmission [141, 147, 435], and this was further supported by recent mod-

elling efforts [146]. A related factor is the role of reservoir species. Dogs are a well-studied

reservoir species in urban environments [19] and the variety of viable mammalian hosts [18]

has spurred efforts to identify other potential wild reservoir species [20]. The role of sand

fly habitat fragments is also of interest [436], given the clustering of cases in proximity to

them [233] and increasing land use intensification [316]. The core strand that connects

these is proximity, perhaps unsurprising as sand flies are typically ineffective fliers [70]

that prefer to travel only short distances [69,72].
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This strand presents a challenge for modelling, but also an opportunity: to represent

a community as a network of individuals connected based on factors such as distance.

Network models [334] are well suited to capturing transmission dynamics that would be

difficult to capture using traditional mass action models [437]. They have a rich history of

applications to modelling disease transmission [438–440]. The well-known SIS [441] and

SIR [442] models have translated well onto networks, and can be comfortably expanded

to include aspects such as infection delays [443]. Networks need not be static [444] and

such dynamic networks can capture changes in behaviour [445], particularly in terms of

social contacts [351, 446]. Bipartite networks have been used to capture the dynamics of

some vector-borne diseases [361], often in pursuit of an estimate for the basic reproduction

number R0 [362,447]. Despite this success, network models have seen minimal application

in the context of leishmaniasis.

Network structure has been explored through a variety of measures [448]. One measure

with potential in modelling leishmaniasis is ‘modularity’ [449]. Modularity appears to be

especially important in the context of social groups ranging from those of ants [450] to

those of humans [451]. The impact of modularity is nuanced [452], especially when com-

bined with other structural factors [453,454], and has implications for the maintenance of

endemic disease [343, 455]. Also of interest are ‘small-world’ networks, which are struc-

tured similarly to modular networks but also have long-range connections [438]. Relevant

to disease transmission in both animal [336] and human [335,456] populations, modelling

efforts have shown small-world networks to be surprisingly vulnerable to disease transmis-

sion [336, 457]. Both have relevance in the context of leishmaniasis: many communities

in which leishmaniasis is endemic [147] appear modular, but long-distance routine migra-

tion [12] opens the possibility for small-world behaviour. These networks can be captured

by a spectrum of ‘structuredness’, with very structured modular networks at one end, fully

random configuration networks (where all individuals are connected at random with no

predetermined organisation beyond their degrees) at the other, and small-world networks

falling somewhere between the two. Insights can be gleamed from assessing how different

models perform across this spectrum.

We evaluate the performance of a recently derived analytic estimate [151] for the en-

demic equilibrium of the Super Compact Pairwise (SCPW) model [152] under a spectrum

of differently structured networks. We compare the expected endemic equilibrium with

the output of numeric simulations and then determine how epidemiologically relevant

quantities are affected by the structuredness of the system.
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5.3 Endemic Steady State, Analytic Predictions

Consider first the SIS Model, where each individual is either infected or susceptible and

reverts to the susceptible state upon recovery. We assume that an infected individual

infects a susceptible neighbour at some rate τ and recovers at some rate γ, both of which we

initially assume are constant. We also assume that either there is no long-term immunity

to the disease, or that the population turnover rate is sufficient to render any immunity

negligible to the transmission dynamics.

One of the most tractable pairwise models is the Super Compact Pairwise (SCPW)

Model, derived by Simon and Kiss [152]. It is defined as:

˙[S] = γ[I] − τ [SI], (5.1)

˙[I] = τ [SI] − γ[I], (5.2)

˙[SI] = γ([II] − [SI]) − τ [SI] + τ [SI]([SS] − [SI])Q, (5.3)

˙[SS] = 2γ[SI] − 2τ [SI][SS]Q, (5.4)

˙[II] = −2γ[II] + 2τ [SI] + 2τ [SI]2Q (5.5)

where:

Q =
1

nS [S]

(
⟨k2⟩(⟨k2⟩ − ⟨k⟩nS) + ⟨k3⟩(nS − ⟨k⟩)

nS(⟨k2⟩ − ⟨k⟩2)
− 1

)
, nS =

[SI] + [SS]

[S]
, (5.6)

and ⟨kn⟩ is the nth moment of the degree distribution, τ the transmission rate and γ

the recovery rate. In this notation, [S] is the number of susceptible individuals, [I] is

the number of infected individuals, [SI] is the number of edges connecting a susceptible

individual to an infected individual, [SS] is the number of edges connecting two susceptible

individuals, and [II] is the number of edges connecting two infected individuals. ⟨kn⟩, and

Q as a whole, emerge from the choice of closure at the level of triples used by Simon and

Kiss [152]. The derivation is lengthy and beyond the scope of our work, but see [152] for

full details and note also that they refer to ⟨k⟩ as n1, ⟨k2⟩ as n2 and ⟨k3⟩ as n3 throughout.

Simon and Kiss then compared the performance of the SCPW with that of both the

original pairwise and compact pairwise models for an array of networks. The first set of

networks chosen were bimodal networks in which each node was either of a low (k1 = 5)

or high (k2 = 35) degree. Three different bimodal networks were considered: one with

10% k1 nodes and 90% k2 nodes, one with an equal proportion of k1 and k2 nodes, and

one with 90% k1 and 10% k2 nodes. The SCPW was found to be almost identical to

the compact pairwise model in all contexts, and performed much better than the original
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pairwise model. The second set of networks examined were constructed such that the

nodes follow a cutoff power law degree distribution with minimum degree kmin, maximum

degree kmax and some power α. The probability of taking a given degree is:

p(k) = Ck−α ∀k = kmin, kmin + 1, ..., kmax (5.7)

where:

1

C
=

kmax∑
k=kmin

k−α. (5.8)

Both a sparse (kmin = 5,kmax = 30) and dense (kmin = 10,kmax = 140) case were consid-

ered (with α = 2 in both cases). In each case, the SCPW was found to provide excellent

agreement with the compact pairwise model and much better performance than the orig-

inal pairwise model.

Recently, Corcoran and Hastings [151] sought to identify implications for disease con-

trol by deriving an estimate for the endemic equilibrium of the SCPW and evaluating its

sensitivity to network parameters such as the mean degree. First, they obtained an esti-

mate for the threshold in transmission rate at which a stable endemic equilibrium emerges.

By defining:

v =
[S]

N
, w =

[I]

N
, x =

[SI]

⟨k⟩N
, y =

[SS]

⟨k⟩N
, z =

[II]

⟨k⟩N

they converted Equations 5.1-5.5 into the following dimensionless form:

v̇ = w − ⟨k⟩δx, (5.9)

ẇ = ⟨k⟩δx− w, (5.10)

ẋ = z − (δ + 1)x +
αδvx(y − x)

⟨k⟩(x + y)2
+

βδx(y − x)

(x + y)
, (5.11)

ẏ = 2x− 2αδvxy

⟨k⟩(x + y)2
− 2βδxy

x + y
, (5.12)

ż = −2z + 2δx +
2αδvx2

⟨k⟩(x + y)2
+

2βδx2

x + y
, (5.13)

where:
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δ =
τ

γ
, α =

⟨k2⟩2 − ⟨k⟩⟨k3⟩
⟨k2⟩ − ⟨k⟩2

, β =
⟨k3⟩ − ⟨k2⟩⟨k⟩
⟨k2⟩ − ⟨k⟩2

− 1.

In this dimensionless form, w represents the proportion of individuals that are susceptible,

v represents the proportion of individuals that are infected, x is the proportion of edges

that connect a susceptible individual to an infected individual, y is the proportion of edges

that connect two susceptible individuals and z is the proportion of edges that connect two

infected individuals.

This gave rise to two key results. The first is the ‘endemic threshold’ δc. δc gives

a measure of the minimum transmission rate required for a disease to become endemic

within a population and thus persist long-term. In this context, δc is given by:

δc =
⟨k⟩

⟨k2⟩ − ⟨k⟩
. (5.14)

For all δ < δc the only stable fixed point is the disease-free equilibrium (DFE) and the

endemic equilibrium is unstable, whereas for δ > δc the endemic equilibrium is stable and

strictly positive (i.e. w > 0) and the DFE is unstable. Thus, a transcritical bifurcation

occurs at δc: a stable and an unstable fixed point converge as δ increases, coalescing at δc

and separating having swapped their stabilities (for further details see [458], for example).

Although it was not possible to obtain an analytic estimate of the endemic equilibrium for

all scenarios, Corcoran and Hastings [151] did find suitable estimates for two important

cases. When δ ≈ δc, the proportion of the population infected at endemic equilibrium

(w∗) was:

w∗ ≈ ση

λσ + µδc + µ− δc
+ O(η2), (5.15)

where:

σ = ⟨k⟩δc, λ =
αδc
⟨k⟩

, µ = βδc, η = 1 − δc
δ
.

For δ ≫ δc, on the other hand, they found that:

w∗ ≈ 1 +
δc + µ− σ

λσ
ϵ + O(ϵ2), (5.16)

where:
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ϵ =
δc
δ
.

They then tested the sensitivity of the endemic equilibrium to changes in ⟨k⟩ and ⟨k2⟩,

with the aim of identifying conditions in which the endemic equilibrium could be reduced.

In the case where δ ≈ δc, they found that the endemic equilibrium could be reduced by

increasing ⟨k⟩ or reducing ⟨k2⟩, whereas in the case where δ ≫ δc the opposite was true.

5.4 Application to Leishmania Transmission

5.4.1 Network models in the context of leishmaniasis transmission.

We build upon the work of Corcoran and Hastings [151] by evaluating the accuracy of

their analytic estimates for the endemic equilibrium under different regimes of network

‘structuredness’. Initially, a fully structured network is generated. Individuals are assigned

to a specific household and para (a collection of households that are clustered together).

This approach is intended to mimic the structure of the community examined by Bern

et al. [147]. In order to replicate conditions where transmission typically occurs over

short distances [146] we initially connect each individual to all other individuals in their

household. Within each household, two individuals will have a single connection to an

individual in another household. All other individuals have no inter-household connections.

This configuration of individuals is the ‘fully structured’ community.

In order to produce a spectrum of differently structured networks, we then remove

different proportions of the edges in the network, leaving stubs for the individuals in-

volved. These stubs are then reconnected at random, following standard procedure for a

configuration model [334]. The proportion of edges randomised runs from the minimum

of 0% (the fully structured community, resembling a highly modular network) to 100%

(the completely random configuration model) in increments of 10%. For some example

networks and an associated set of epidemic trajectories, see section 5.4.2. Throughout our

analysis, we define ‘structuredness’ as follows:

structuredness = 1 − ρ, ρ ∈ [0, 1], (5.17)

where ρ is the proportion of edges randomised, such that a fully random network (ρ = 1)

has a structuredness value of 0, and the fully structured network (ρ = 0) has a value of 1.

Each simulation uses an independent network. In each run, the population is con-

structed using 1200 individuals, divided into 3 ‘paras’ (collections of households) and into
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households of varying sizes. Household size is drawn from a uniform random variable

with maximum 6 and minimum 3 (the exception is the final household, which uses all

remaining individuals once less than 6 remain to be allocated). Each simulation begins

with 30 randomly chosen individuals as initial infections. The transmission dynamics are

simulated in discrete time, where one timestep is equivalent to a week. The simulation

then runs for 2000 timesteps, and we sample the final 500 timesteps to acquire the endemic

equilibrium (with extinct simulations discarded). Each timestep, every infected individual

has a fixed recovery chance and each neighbour has a fixed chance of being infected (a

per-neighbour, per-timestep infection chance). All simulations use a fixed recovery rate of

0.025 per timestep for an average duration of infection of 40 weeks, informed by prior work

indicating that outward transmission can occur months or even years after infection [459].

The per-neighbour, per-timestep transmission rates used here range from 0.008 to 0.015 in

increments of 0.0007. The minimum value was chosen to be slightly higher than the min-

imal possible value for which the endemic equilibrium was stable (see Equations 5.9-5.14

for details). The maximum value was chosen to be small: although transmission is com-

plex [45, 54, 146, 172] and there are many unknowns, it appears to be rare, with few sand

flies found to be infected [460] and low leishmaniasis incidence rates [133, 461]. Finally,

for our analysis we use sets of 50 independent simulations for each level of structuredness

and each transmission rate.

5.4.2 Sample Networks and Trajectories

It is beneficial at this point to examine some sample networks and their corresponding

disease transmission dynamics. The starkest differences exists between the two extremes

of our spectrum. If we compare the fully random network (Figure 5.1A) to the fully

structured network (Figure 5.1B) we see pronounced differences in both network layout

and the associated transmission dynamics. The structured network is effectively a ring

of small groups of well connected nodes. Such networks can be considered modular (see

[449]). The unstructured network more closely resembles a single, large cluster of randomly

connected individuals with minimal other organisational features. We also note that the

structured simulations typically have fewer concurrent infections than their unstructured

counterparts.

It is also informative to examine certain intermediate values. Consider another pair:

one with 50% of edges randomised (Figure 5.2A) and one with 10% of edges randomised

(Figure 5.2B). We observe that with 50% of edges randomised, we have mostly lost the
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Figure 5.1. Example infection trajectory (top) and sample network (bottom) for the
fully random (left, structuredness = 0.0) and fully structured (right, structuredness
= 1.0) simulation types, as detailed in Section 5.4.1. Each node in the network samples
represents an individual.

modular structure, though small clusters of interconnected individuals can still manifest.

With 10% of edges randomised, the modular structure is still mostly visible, though some

of the modules are now more firmly connected. We notice that, as in Figure 5.1, the

more structured simulations have fewer concurrent infections than their more random

counterparts.

5.5 Results

We first examine the mean endemic equilibrium values for our simulations for different

structuredness values and transmission rates (Figure 5.3). We find that as the struc-

turedness of the simulation increases, the analytic prediction (given by Equation 5.15)

increasingly overestimates the proportion of infected individuals at endemic equilibrium.

Although the endemic equilibrium of less structured simulations is predicted more accu-

rately (particularly in the case of the fully random network), the analytic estimate is still

an overestimate. We also see this reflected in Figure 5.4 which uses a log scale (allowing us

to more easily examine the difference between the simulations at lower infection/recovery

rates).
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Figure 5.2. Example infection trajectory (top) and sample network (bottom) for the
moderate structure (left, structuredness = 0.5) and high structure (right, structuredness
= 0.9) simulation types, as detailed in Section 5.4.1. Each node in the network samples
represents an individual.

Figure 5.3. The analytic predictor has greater accuracy on simulations with
lower structuredness. Average proportion of individuals infected at endemic
equilibrium under various transmission rates. Output from numeric simulations of
varying structuredness (see figure legend, Equation 5.17) is compared to the analytic
estimate (red, dashed) provided by Equation 5.15.
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Figure 5.4. The analytic predictor has greater accuracy on simulations with
lower structuredness. Average proportion of individuals (plotted as a log scale)
infected at endemic equilibrium under various transmission rates. Output from numeric
simulations of varying structuredness (see figure legend, Equation 5.17) is compared to
the analytic estimate (red, dashed) provided by Equation 5.15.

Whilst the location of the endemic equilibrium provides valuable knowledge it is also

beneficial to understand how robust the endemic equilibrium is (where we consider a

robust equilibrium to be one where the number of infections typically remains close to

the equilibrium with fewer, mostly short-lived, deviations). One measure of interest is the

frequency at which the number of infections makes an ‘excursion’ away from the endemic

equilibrium. We define an excursion to begin when the number of infections exceeds a

specific threshold: 1 standard deviation higher than the endemic equilibrium. For an

example of an excursion, see Figure 5.5. We consider now 3 different transmission rates:

the maximum value of 0.015, the moderate value of 0.0115, and a low value of 0.0087.

We first examine the behaviour of the maximum transmission rate simulations. If we

examine the number of excursions per simulation (Figure 5.6) we find that the most struc-

tured simulations have, on average, slightly fewer excursions than the unstructured simula-

tions. We can further examine this by applying the two-sample Kolmogorov-Smirnov test.

If we take the number of excursions for the unstructured simulation to be our reference,

we can compare it to the distributions of the other structuredness values and identify any

significant differences. The p-values for all significant tests are summarised in Table 5.1.
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Figure 5.5. Sample excursion from a simulation with structuredness 0 and transmission
rate 0.015. Excursion start/end times are denoted by the vertical red dashed lines, the
endemic equilibrium is denoted by a horizontal dotted red line, and the threshold that
must be exceeded to start an excursion is the solid blue line.

The K-S tests draw the same conclusion: highly structured simulations experience fewer

excursions on average than their unstructured counterparts.

Figure 5.6. Highly structured simulations experience fewer excursions on
average. Combined boxplot and violin plot of the number of excursions per simulation,
grouped according to simulation structuredness. All simulations have the maximum
transmission rate of 0.015 per timestep per neighbour.
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Structuredness P-value

1.0 0.01195
0.9 < 0.001
0.8 0.02222

Table 5.1. Kolmogorov-Smirnov tests verify that very structured simulations
experience more excursions than the unstructured simulations. Output from
two-sample Kolmogorov-Smirnov tests comparing all structuredness values to the
unstructured (structuredness = 0) category, with maximum transmission rate 0.015.
Non-significant tests are excluded from this table.

This is also visible for the moderate transmission rate (Figure 5.7). The most struc-

tured simulations once again have a lower number of excursions. This is confirmed by the

K-S test (Table 5.2) which once again finds that structured simulations have significantly

fewer excursions than the unstructured ones. The lowest transmission rate simulations also

show this trend (Figure 5.8, Table 5.2), although many of the most structured simulations

now go extinct.

Figure 5.7. Under a reduced transmission rate, highly structured simulations
still experience fewer excursions on average. Combined boxplot and violin plot of
the number of excursions per simulation, grouped according to simulation
structuredness. All simulations have the moderate transmission rate of 0.0115 per
timestep per neighbour.
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Structuredness P-value

1.0 < 0.001
0.9 < 0.001
0.8 0.0062

Table 5.2. Kolmogorov-Smirnov tests verify that very structured simulations
experience more excursions than the unstructured simulations. Output from
two-sample Kolmogorov-Smirnov tests comparing all structuredness values to the
unstructured (structuredness = 0) category, with moderate transmission rate 0.0115.
Non-significant tests are excluded from this table.

Figure 5.8. Highly structured simulations experience fewer excursions on
average, even at a low transmission rate. Combined boxplot and violin plot of the
number of excursions per simulation, grouped according to simulation structuredness.
All simulations have the low transmission rate of 0.0087 per timestep per neighbour.

Another metric of interest is the average duration of the excursions; that is to say,

the amount of time before the number of infected individuals falls below the threshold

again. Once again, we examine the maximum transmission rate simulations first (Figure

5.9). We observe minimal change in the average excursion duration as the structuredness

increases, however the high structuredness simulations display greater variation than the

low structuredness ones. This is supported by the K-S tests (Table 5.4), which show that

the most structured simulations are significantly different to the least structured ones.

At the moderate transmission rate (Figure 5.10) this trend persists, although it appears

slightly less pronounced. The K-S testing (Table 5.5 once again confirms that the most

structured simulations are significantly different to the least structured ones.
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Figure 5.9. Highly structured simulations display greater variation in
excursion duration. Combined boxplot and violin plot of the average excursion
duration per simulation, grouped according to simulation structuredness. All simulations
have the maximum transmission rate of 0.015 per timestep per neighbour.

Figure 5.10. Under a reduced transmission rate, highly structured
simulations still display greater variation in excursion duration. Combined
boxplot and violin plot of the average excursion duration per simulation, grouped
according to simulation structuredness. All simulations have the moderate transmission
rate of 0.0115 per timestep per neighbour.
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Structuredness P-value

1.0 < 0.001
0.9 < 0.001

Table 5.3. Kolmogorov-Smirnov tests verify that very structured simulations
experience more excursions than the unstructured simulations. Output from
two-sample Kolmogorov-Smirnov tests comparing all structuredness values to the
unstructured (structuredness = 0) category, with low transmission rate 0.0087.
Non-significant tests are excluded from this table.

Structuredness P-value

1.0 < 0.001

Table 5.4. Kolmogorov-Smirnov tests verify that the most structured
simulations experience longer excursions on average than the unstructured
simulations. Output from two-sample Kolmogorov-Smirnov tests comparing all
structuredness values to the unstructured (structuredness = 0) category, with max
transmission rate 0.015. Non-significant tests are excluded from this table.

Structuredness P-value

1.0 < 0.001

Table 5.5. Kolmogorov-Smirnov tests verify that the most structured
simulations experience longer excursions on average than the unstructured
simulations. Output from two-sample Kolmogorov-Smirnov tests comparing all
structuredness values to the unstructured (structuredness = 0) category, with moderate
transmission rate of 0.0115. Non-significant tests are excluded from this table.

At the low transmission rate (Figure 5.11, Table 5.6), we observe a greatly reduced

average excursion duration for the most structured simulations as well as much lower

variation. This is likely partially due to the fact that the endemic equilibrium is only just

stable.

Finally, it would be interesting to consider the size of the excursion; specifically, the dis-

tance between the maximum number of infections and the endemic equilibrium. Starting

once more with the maximum transmission rate (Figure 5.12), we observe that the most

structured simulations display a lower average excursion distance than their less structured

counterparts. This is once again confirmed by the K-S tests (Table 5.7, which find that the

0.9 and 1.0 structuredness simulations are significantly different to the 0.0 structuredness

ones. Similar behaviour is also observed for both the moderate transmission rate (Figure

5.13, Table 5.8) and the low transmission rate (Figure 5.14, Table 5.9).
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Figure 5.11. At the low transmission rate, highly structured simulations now
display much lower variation in excursion duration. Combined boxplot and violin
plot of the average excursion duration per simulation, grouped according to simulation
structuredness. All simulations have the low transmission rate of 0.0087 per timestep per
neighbour.

Figure 5.12. Highly structured simulations experience less severe excursions.
Combined boxplot and violin plot of the average excursion distance per simulation,
grouped according to simulation structuredness. All simulations have the maximum
transmission rate of 0.015 per timestep per neighbour.
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Structuredness P-value

1.0 < 0.001
0.9 < 0.001

Table 5.6. Kolmogorov-Smirnov tests verify that the most structured
simulations experience longer excursions on average than the unstructured
simulations. Output from two-sample Kolmogorov-Smirnov tests comparing all
structuredness values to the unstructured (structuredness = 0) category, with low
transmission rate of 0.0087. Non-significant tests are excluded from this table.

Structuredness P-value

1.0 < 0.001
0.9 0.02171

Table 5.7. Kolmogorov-Smirnov tests verify that the excursions of the most
structured simulations do not reach as far on average as those of the
unstructured simulations. Output from two-sample Kolmogorov-Smirnov tests
comparing all structuredness values to the unstructured (structuredness = 0) category,
with max transmission rate of 0.015. Non-significant tests are excluded from this table.

Figure 5.13. Under a reduced transmission rate, highly structured
simulations experience less severe excursions. Combined boxplot and violin plot
of the average excursion distance per simulation, grouped according to simulation
structuredness. All simulations have the moderate transmission rate of 0.0115 per
timestep per neighbour.
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Structuredness P-value

1.0 < 0.001
0.9 0.00584

Table 5.8. Kolmogorov-Smirnov tests verify that the excursions of the most
structured simulations do not reach as far on average as those of the
unstructured simulations. Output from two-sample Kolmogorov-Smirnov tests
comparing all structuredness values to the unstructured (structuredness = 0) category,
with mid transmission rate of 0.0115. Non-significant tests are excluded from this table.

Figure 5.14. Even at the lowest transmission rate, highly structured
simulations still experience less severe excursions. Combined boxplot and violin
plot of the average excursion distance per simulation, grouped according to simulation
structuredness. All simulations have the low transmission rate of 0.0087 per timestep per
neighbour.

5.6 Discussion

5.6.1 Insights from the SCPW

We observe that the analytic estimate derived by Corcoran and Hastings [151] (Equation

5.15) is much less accurate for very structured networks than for traditional configuration

models (Figure 5.3). We also observe that high structuredness considerably alters the

behaviour of the system. The former result is not unexpected; it was anticipated that more

structured networks would present issues for the SCPW [152] and thus our community

networks may be among those for which the estimate may prove ineffective [151]. The

presence of nonrandom elements in networks has long been an obstacle for mean-field

models that requires specific efforts to overcome [462]. Nevertheless, it is informative to
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Structuredness P-value

1.0 < 0.001
0.9 < 0.001
0.8 < 0.001
0.7 0.00618

Table 5.9. Kolmogorov-Smirnov tests verify that the excursions of the most
structured simulations do not reach as far on average as those of the
unstructured simulations. Output from two-sample Kolmogorov-Smirnov tests
comparing all structuredness values to the unstructured (structuredness = 0) category,
with low transmission rate of 0.0087. Non-significant tests are excluded from this table.

see the magnitude to which this estimate over-predicts in contexts that mimic the real

world.

Our results also suggest that highly structured communities would experience fewer

(Figures 5.6-5.8) and gentler (Figures 5.12-5.14) outbreaks, but ones of less predictable

duration (Figures 5.9-5.11). That we observe noticeable changes only once the simulations

are heavily structured echoes previous work [463,464]. In particular, Wren and Best [464]

demonstrated that metrics such as the peak number of infected individuals and total

proportion infected decreased on more structured networks, but that significant differences

were only observed once the networks were sufficiently structured, particularly when the

R0 is high. Previous studies have also observed that highly ‘modular’ communities (that

is, communities consisting of weakly connected groups of densely connected individuals)

experience less severe peaks under SIR model dynamics [465], especially in comparison

to more random alternatives such as Erdõs-Rényi networks [466]. Similar results are also

observed in the context of animal social groups, where more modular networks experience

smaller outbreaks [467], but ones that are potentially longer [448]. This has been attributed

to the difficulty of spreading between modules, which causes a disease to either go extinct

quickly or slowly spread through a number of groups [465,468].

5.6.2 Implications for leishmaniasis modelling.

Many of the communities in which leishmaniasis is endemic could be considered to have

high modularity. Sand flies are typically nocturnal or crepuscular [469,470] (though there

are exceptions [471]), so most often feed on sleeping individuals. Their preference for

shorter-distance flight [69] restricts their ability to travel between distant houses, thus

creating a scenario where transmission can only easily be facilitated between members

of the same house, or with very nearby houses. This dynamic is captured by our most

structured simulations. Our findings suggest that real world communities are therefore

conducive to low-level, long-term transmission. This may partially explain the limited

success of the KalaNet trial [302]. Despite the effectiveness of insecticide-treated nets at
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reducing visceral leishmaniasis incidence [4], they were insufficient to completely prevent

transmission. Modelling efforts have suggested that elimination may require almost com-

plete coverage using the nets [304] combined with other interventions [185]. The effort

required is more understandable if this community structure is favourable for low-level

transmission.

In contexts where individuals are either connected to many neighbours or have con-

nections that span great distances across the network, our results suggest that outbreaks

could be more frequent and severe, however. This would be expected in denser settlements

with humid houses of low quality [290], which are more accommodating for sand flies and

provide protection from indoor residue spraying [472], and larger household sizes [252]. An

abundance of sand fly habitat [128] and other blood sources such as hyraxes [78,309] further

amplify the issue by increasing the local sand fly density. Another relevant context would

be non-agricultural industry that is dependent on migratory laborers. Recent studies have

identified migratory work at brick kilns as a risk factor in leishmaniasis transmission [252].

Kumar et al. [12] suggested that this it was most likely a factor in developing the disease

(rather than in transmission directly) due to the associated stress and poverty, given the

need for damp organic-rich soils for sand fly oviposition [473], but brick kilns do display

a surprisingly high sand fly species richness [474]. If laborers were to be housed in poor

quality, high-density communal accommodation [130,140], with low bed-net usage due to

a lack of affordable nets [475], limited access to education about leishmaniasis or difficulty

using the bed-nets [253], then amplify the risk of leishmaniasis transmission (with impli-

cations for seeding outbreaks elsewhere [12, 476]). Transmission in these urban contexts

may be curbed effectively through application of indoor residue spraying around affected

households [146], coupled with synthetic sand fly pheromone to increase efficiency [287]

and improved access and utilisation of bednets [475].

A more difficult context is when there is repeated or prolonged outdoor contact between

individuals of different households in settings where sand flies are present. Evening activity

is associated with increased transmission risk [128] as the sand flies are more active [477],

and similar transmission opportunities are presented during the day. Sand flies have

daytime resting spots [478], particularly near vegetation [479] but also in shaded areas

such as latrines [79]. Activity around these resting spots could disturb the sand flies,

which may opportunistically seek a blood meal. Acacia trees, a known sand fly resting

site [58, 76], are associated with increased transmission [127] especially for people resting

beneath them during the day [295]. Routine activity by a number of people could facilitate

greater inter-household connectivity, and thus faster transmission. Though bednets would

be largely ineffective in this context, targeted application of insecticide has previously
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proven very effective at reducing sand fly numbers [480], despite concerns about insecticide

resistance [481].

An important facet of transmission not captured here is the behaviour of the sand fly

vector. Often, models have captured the role of the vector by using bipartite networks [361]

or by handling numbers of individuals that bite and die at some fixed rates [482, 483].

Transmission between the sand fly and a mammalian host is very heterogeneous, however.

Sand flies may have greatly differing parasite burdens depending on host skin parasite

density [45] and feeding success [54], with direct consequences for their own infectiousness

[172]. When coupled with altered feeding efficiency and tenacity [84, 484], and varied

feeding preferences [65], this gives rise to a complex scenario where individual sand flies

can have much greater importance to transmission than their peers. In the wild, sand flies

appear rarely infected with Leishmania parasites [485, 486], emphasising the importance

of rare individuals in transmission. Modelling this accurately was beyond the scope of this

work.

In a similar vein, we also use an SIS model in which there is no long-lasting immunity.

In reality, the interactions between Leishmania parasites and the host immune system

are complex [487]. Visceral leishmaniasis sometimes transitions into post-kala-azar dermal

leishmaniasis (PKDL) [488] which may be important in transmission [242], and individuals

can relapse after treatment [489], especially if also infected with HIV [490]. There are

also lingering questions about the importance and dynamics of asymptomatic individuals

[32,146,398]. Capturing these dynamics would greatly reduce the tractability of the model,

and given the magnitude of unknowns involved, is also best left to future studies.

5.7 Conclusion

Although the highly structured networks used in this study limited the efficacy of the

analytic estimator derived by Corcoran and Hastings [151], the SCPW model has yielded

insights. We highlight that very structured communities, for which the network displays

high modularity, would be expected to experience milder but prolonged outbreaks. We use

these findings to predict that rural communities with poorer-quality accommodation and

a dependence on agricultural work, especially if combined with seasonal migrant labour,

would experience more severe leishmaniasis transmission and thus which would benefit

from tailored, priority responses and study.
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5.8 Materials and Methods

All numerical simulations were performed using MATLAB R2021b (v9.11.0.1769968). All

associated data analysis was performed using RStudio v2022.07.1, Build 554 (R version

4.1.0).
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Chapter 6

Discussion

6.1 Overview

In this chapter, the key findings and implications of the preceding chapters are summarised.

The overall outlook is synthesised in the context of the wider literature, and a range of

future work is proposed with reference to recent work.

6.2 Chapter 2

Our numerical simulations revealed that the heterogeneous distribution of Leishmania

parasites across the skin of a mammalian host [45] was particularly important for trans-

mission in the context of short-lived sand flies, but that the life cycle of the parasites in

their sand fly vector [54] was more important if the sand flies could live sufficiently long

to bite multiple times. This was because the number of parasites in the sand fly increases

dramatically after second and subsequent bites, allowing even lightly infected sand flies to

accrue a significant parasite burden.

That subsequent bites are important to such an extent presents an opportunity: by

reducing the sand fly lifespan to less than two weeks, it is possible to greatly inhibit the

transmission of leishmaniasis. Although the true sand fly lifespan is uncertain [160] studies

suggest that wild sand flies could reasonably exceed two weeks in age [163]. A range of

methods to reduce the lifespan could be employed, from creating unfavourable conditions

[47] in known sand fly hotspots [478] to using natural enemies [162] or insecticide treatment

regimes tailored to regions and times of especially high sand fly densities [384, 480] to

prevent the sand flies achieving their third or fourth bite. The findings also emphasised

the importance of understanding the role of asymptomatic infections [184] or post-kala-azar

dermal leishmaniasis (PKDL) cases [119] in maintaining leishmaniasis within a community.

Their relevance remains unclear [32, 241] but our findings lent support to the suggestion
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that they are a potential reservoir of leishmaniasis.

6.3 Chapter 3

We used survival analysis to identify a few important factors in leishmaniasis transmis-

sion. At the community-scale, we found that proximity to previous cases of leishmaniasis

increased the risk of infection, especially if a susceptible individual shared a household

with an infected individual. At larger scales, communities with poor access to stable em-

ployment and education were more vulnerable to leishmaniasis becoming endemic. We

also highlighted the limitations of survival analysis, demonstrating how data that appears

suitable for survival analysis may not necessarily yield meaningful insights and that if dis-

crete categories of data are to be used, they must be chosen appropriately (with a suitable

reference category).

The relationship we identified between case proximity and infection risk echoes prior

work by Chapman et al. [146] but was found using a more approachable [188] and less com-

putationally intense [198] method. It has implications for the control of leishmaniasis: it

underscores the role of insecticide-treated bed nets (ITNs) [283] but also highlights the im-

portance of extending preventative measures beyond the household (perhaps most relevant

to indoor residue spraying (IRS) [278]). Such within-house measures have an important

role, and we can improve [287] and more effectively deploy [289] them to further impede

leishmaniasis transmission. Our findings at larger scales emphasised the importance of

awareness campaigns [291] and medical screening [293,294], as well as improved construc-

tion techniques [130] in preventing leishmaniasis from becoming endemic. A combination

of techniques at different scales is thus essential to further our leishmaniasis eradication

efforts.

6.4 Chapter 4

Following the work of previous studies [344,345] we repeated the derivation of an analytic

estimate of the basic reproduction number R0 for heterogeneous networks, and used it to

produce context-specific versions for a range of networks and transmission rate regimes.

We used numerical simulation to test the accuracy of these analytic predictors, finding

that they were largely ill-suited beyond the fully homogeneous context. However, we

identified another potential application, finding that they were effective at predicting the

approximate location of an ‘epidemic threshold’ for the transmission rate, beyond which

an outbreak was likely to persist for several generations of infections.

Given the prominence of R0 as a measure of disease transmission [491,492], it is a shame
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that these estimates proved unreliable. However, their potential in predicting whether a

disease will establish itself in a naive community is still valuable, especially in contexts

where local extinction of the disease is a significant risk [493] and thus transmission is

maintained by invading new clusters [494, 495]. The establishment of new clusters of in-

fections [91] is important both for maintaining leishmaniasis [233] and for expanding its

range into new regions [93]. With the ability to predict vulnerable communities comes the

opportunity to target interventions to maximise their impact, for example by prioritising

improvements to healthcare access (both for treatment [496] and diagnosis [497]) or san-

itation [149] in the most vulnerable areas. Such targeting is important to the on-going

elimination efforts [459, 498], especially for regions with limited funding or fragile health

systems [149,496].

6.5 Chapter 5

We tested how the inclusion of network structure impacted the accuracy of a recently

derived analytic estimate for the endemic equilibrium [151] of the Super Compact Pairwise

(SCPW) model [152]. We demonstrated that as the network becomes more structured the

estimate overestimated by a progressively greater amount, but was reasonably accurate for

a fully random network. We then explored the dynamics of our SIS model on networks of

varying ‘structuredness’, finding that epidemics on more structured networks experience

rarer, less severe deviations from their endemic equilibrium, but that such excursions

would display greater variation in their duration, than similar epidemics on fully random

networks.

Leishmaniasis is endemic in many regions [9, 428, 429] and identifying tools to inves-

tigate its endemic state is an important part of the elimination effort. This particular

approach may have proven ill-suited to a typical structured community [12, 147] but it

could still yield insights for less structured scenarios such as shared sleeping areas [499]

or communal latrines [79], especially those with poor construction materials [140] or in

proximity to vegetation [126, 130]. Our results suggested that such situations would also

permit more severe (though less long-lived) outbreaks, which could have ramifications for

communities across a wide area [12] if the affected individuals are migrant workers or

refugees [308] that could then disperse. By focusing our monitoring [497] efforts, as well

as the deployment of bed nets [475] and infrastructure improvements [290], in and around

these settings we have the potential to efficiently prevent multiple clusters of leishmaniasis

infections from emerging.
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6.6 Synthesis and Future Perspectives

Together, these findings indicate a nuanced relationship between leishmaniasis and hetero-

geneity at multiple scales. At large scales, factors such as urbanisation (Figure 3.11) and

the types of employment available (Figure 3.13), as well as climate [93], create a patchwork

of regions with differing susceptibilities [149] to leishmaniasis transmission. This heteroge-

neous landscape includes coldspots that hinder transmission [93], but also rural hotspots

(Figure 3.11) where the mixing of reservoirs [18, 500], exposed humans [137] and suitable

vegetation [60, 479] present the opportunity for effectively maintaining and spreading the

disease. Such hotspots may be especially important to transmission if human migration

enables longer-distance transmission [121] into other regions. The typically structured

communities within which leishmaniasis persists are highly heterogeneous, with sand flies

traveling short distances [69] and facilitating equally short-range transmission [146]. Indi-

viduals are thus able to infect only those close to them, giving rise to transmission networks

akin to those we study in Chapters 4 and 5. Transmission appears to be hampered by

such networks, but outbreaks may take longer to run their course (Figure 5.9) and rarer,

highly connected individuals are potential superspreaders [501] that could cause many new

infections. Even at the micro-scale, heterogeneity has a complex role: the heterogeneous

skin parasite distribution [45] allows some flies to take up many parasites but also means

that many flies will take up very few parasites and be less infectious (although minimally

infected sand flies can still become very infectious if multiple bites are taken [54, 172]).

Thus, heterogeneity is both a blessing and a curse to leishmaniasis transmission; it presents

barriers at multiple scales, but also creates valuable transmission opportunities in certain

circumstances.

The findings also challenge some of the intuitive associations between ‘density’ and

disease transmissibility. We would intuit that a high density of humans would benefit

leishmaniasis transmission, as it does for many airborne human-to-human diseases [502,

503]. Yet, Figure 3.11 implies that the densest environments, our urban centres, are

less conducive to transmission. This is likely due to reduced sand fly population densities

[504,505], which require an abundance of suitable soil and vegetation [74,75], and improved

construction techniques that exclude sand flies from our buildings [290]. Thus, using

human population density alone as a proxy for transmissibility would produce inaccurate

expectations. A similar effect can be observed at the level of communities: a high density of

adult sand flies is associated with increased transmission risk [384,484], but the distribution

of sand flies throughout a settlement is also crucial. Transmission risk is elevated if sand

fly-friendly habitat is located near human houses [506] (this motivates measures such
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as indoor residual spraying [5]), thus settlements with similar average sand fly densities

may experience different transmission rates depending on where the flies are located.

Therefore, considering average sand fly population density alone is insufficient to capture

the transmission dynamics, and it is important to also consider the location of the sand

fly population hotspots. The role of ‘density’, be it of humans, vectors, or parasites, is

scale-dependent and consideration of the specific context is vital to accurately capturing

the transmission dynamics.

The overall picture that emerges is one of a disease for which transmission is slow and

rare, but which can capitalise on any favourable situation that arises (as might be expected

for a disease in a spatially structured host landscape with low turnover [507]). Yet, there

remain many questions surrounding leishmaniasis transmission that require answers if we

are to fully understand this picture.

6.6.1 Prospects at the Micro-Scale

The interplay of patchy skin parasite distributions and sand fly biting behaviour [172]

presents a number opportunities for further work, both in iterating upon the model and in

informing other areas of leishmaniasis research. Our model omitted the role of promastig-

ote secretory gel (PSG) [49] due to lingering uncertainty surrounding its production and

interactions in the gut of the sand fly. However, it has a well-documented role in trans-

mission [87,166,508] and given that it both influences [84] and is influenced by [509] sand

fly feeding behaviour its inclusion in future models would be desirable, assuming suffi-

cient supporting data could be obtained to parameterise it. Similarly, more data would

be beneficial for improving our parameterisation of the retroleptomonad life stage. De-

spite much recent discussion of retroleptomonads [51,510], questions remain: for example,

what specifically causes the metacyclics to differentiate into retroleptomonads [54], and

are there other factors that would cause the reproductive rate of the retroleptomonads

to vary? Future studies that contribute to answering these questions, or simply provide

more data to aid in parameterising the model, would be beneficial. Further iterations of

our model may also incorporate the recent finding that patches of parasites in the skin

cluster around older patches [314], which may have implications for parasite uptake.

It would also be beneficial to further investigate the life expectancy and biting rate

of wild sand flies. Studies often take the typical lifespan to be approximately 14 days

[172, 304], with biting occurring once every 5-6 days [511]. However, prior work provides

variable estimates for lifespan [512,513] and indicates that it may be temperature depen-

dent [514]. Leishmania infection also appears detrimental to sand fly survival [84] yet

conveys protection against certain pathogens that would infect the sand fly [515], so the
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true impact on lifespan is unclear. Understanding this impact is important for determining

whether reducing the sand fly lifespan is a viable control method. Reducing the lifespan

could simply select for faster-replicating parasites, but this outcome is less likely if parasite

replication imposes significant costs on the sand fly (or is otherwise constrained by some

unknown factor). Blood meals are usually thought to occur once per oviposition cycle,

but some species may feed more than once per cycle [516] and cycle length may depend

on a range of factors including blood source [517] and temperature [514,518]. Future work

that clarifies some of this uncertainty, even if only for a single sand fly/parasite species

combination, would be valuable to understand the true impact of the retroleptomonads

on transmission.

The importance of the retroleptomonad state is of relevance to other work, too. Stud-

ies have long partitioned humans into different groups based on infection stage [519] with

varying outward infectiousness [170], using the resultant models to inform diagnosis [520]

and elimination strategies [431, 498]. Yet, even recent models incorporating PKDL treat-

ment [304] and vaccination [521] assume all infected sand flies to be equally infectious

towards humans. Our model suggests that future work would benefit from distinguishing

between initially infected sand flies and those which have taken two or more bites (which

are potentially much more infectious) to avoid underestimating their transmission poten-

tial. Further potential lies with the possible role of ‘superspreading’. It is often assumed

that sand flies bite (and thus can infect) a single person when taking a blood meal. How-

ever, Rogers and Bates [84] previously found that infected sand flies were much more likely

to bite another individual when disturbed while feeding than their uninfected peers. This

raises the possibility for superspreading [501] events to occur, in which multiple individ-

uals are bitten and potentially infected by a single, highly infectious fly during a blood

meal (especially if the enlarged PSG plug [54] further lengthens the feeding process and

makes disturbance more likely). As this would allow some flies to cause multiple infec-

tions without living an exceptionally long life, it would be enlightening for future work to

investigate the potential impact of such events on leishmaniasis transmission.

6.6.2 Future Inquiries at Larger Scales

The R0 estimate and associated epidemic threshold tested in Chapter 4 present two main

avenues of prospective work. It is tempting to focus on correcting [522] the R0 estimate

given its prominence in the public eye, but since it can be misleading for structured

populations [523] and is easy to mis-use [524], future studies are likely better served by

other measures. Velázquez-Castro et al. [525] define the number of secondary cases caused

by hosts and vectors to be ‘risk indices’ for each patch. Although these are components
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of the R0 for a vector-borne disease [362], and thus should be handled with appropriate

caution, they could incorporate information about factors such as sand fly breeding/resting

sites [73,79], ITN usage [4] or sand fly densities [526,527] for different neighbourhoods to

produce an estimate of the vulnerability to leishmaniasis invasion. This would enable the

tailoring of measures such as insecticide-spraying [5] to reduce the spread of leishmaniasis

into new areas, and could serve as a model for use across the endemic regions.

The endemic equilibrium we tested in Chapter 5 proved unsuitable for use on structured

networks, but it may be possible to introduce some form of correction term to account

for these types of networks. Studies of disease transmission in animal groups, which can

be highly structured [528], make use of a measure called Newman modularity [449, 528].

Perhaps it would be possible for future work to calculate a correction term that uses the

Newman modularity of a network to adjust the endemic equilibrium, as one might correct

an R0 to account for bias [529] or factors such as population density [530], and thus

improve its accuracy on these networks. Studies examining contexts in which population

turnover is largely irrelevant may also want to examine alternative models. The SIS model

for which the endemic equilibrium applies to contexts such as a migrant workforce [12],

where infection may mean an individual leaves for treatment [253] and thus long-term

immunity is not necessarily relevant. For other populations, an SIRS model would be

more applicable (immunity is not thought to be permanent [521]). The SCPW forms of

the SIS and SIR models have previously been constructed [152,531] and perhaps the SIR

model could be extended to account for temporary immunity, thus producing an SIRS

model. If the resulting model is sufficiently tractable, an endemic equilibrium could be

extracted from it as Corcoran and Hastings did for the SIS model [151].

6.6.3 Closing Remarks

Ultimately, advancements in these areas will provide a more complete understanding of

leishmaniasis transmission. This will be an essential part of optimising our eradication

efforts, which have already seen success: although not fully eradicated [307], the incidence

rate has been greatly reduced [303] due to developments in treatment and preventative

measures [10, 432]. With further research, we will be able to better target preventative

measures [278,283] and perhaps, eventually, vaccine deployment [532] to limit the spread

of leishmaniasis into new areas [533] and finally reach the elusive eradication target. Only

through increasing our knowledge and redoubling our efforts to eliminate leishmaniasis

can we hope to break its grip on the communities it affects and render the Leishmania

scourge a more manageable threat, or even a thing of the past.
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the risk of infectious diseases transmitted by Aedes aegypti using survival and aging

statistical analysis with a case study in Colombia. Mathematics 2021; 9(13): 1488.

[114] Assael, B.M., C. Castellani, M.B. Ocampo, P. Iansa, A. Callegaro, and M.G. Valsec-

chi. Epidemiology and survival analysis of cystic fibrosis in an area of intense neonatal

screening over 30 years. American Journal of Epidemiology 2002; 156(5): pp. 397-401.

[115] Reithinger, R., M. Mohsen, M. Wahid, M. Bismullah, R.J. Quinnell, C.R. Davies, J.

Kolaczinski, and J.R. David. Efficacy of thermotherapy to treat cutaneous leishmani-

asis caused by Leishmania tropica in Kabul, Afghanistan: A randomized, controlled

trial. Clinical Infectious Diseases 2005; 40(8): pp. 1148-1155.

[116] Diro, E., K. Ritmeijer, M. Boelaert, F. Alves, R. Mohammed, C. Abongomera,

R. Ravinetto, M.D. Crop, H. Fikre, C. Adera, R. Colebunders, H. van Loen, J.

Menten, L. Lynen, A. Hailu, and J. van Griensven. Use of pentamidine as secondary

prophylaxis to prevent visceral leishmaniasis relapse in HIV infected patients, the

156



first twelve months of a prospective cohort study. PLoS Neg. Trop. Dis. 2015; 9(10):

e0004087.

[117] Maia-Elkhoury, A.N.S., G.A.S. Romero, S.Y.O.B. Valadas, M.L. Sousa-Gomez,

J.A.L. Lindoso, E. Cupolillo, J.A. Ruiz-Postigo, D. Argaw, and M.J. Sanchez-

Vazquez. Premature deaths by visceral leishmaniasis in Brazil investigated through

a cohort study: A challenging opportunity? PLoS Neg. Trop. Dis. 2019; 13(12):

e0007841.

[118] Perry, M.R., V.K. Prajapati, J. Menten, A. Raab, J. Feldmann, D. Chakraborti,

S. Sundar, A.H. Fairlamb, M. Boelaert, and A. Picado. Arsenic exposure and out-

comes of antimonial treatment in visceral leishmaniasis patients in Bihar, India: A

retrospective cohort study. PLoS Neg. Trop. Dis. 2015; 9(3): e0003518.

[119] Uranw, S., B. Ostyn, A. Rijal, S. Devkota, B. Khanal, J. Mentel, M. Boelaert, and

S. Rijal. Post-kala-azar dermal leishmaniasis in Nepal: A retrospective cohort study

(2000-2010). PLoS Neg. Trop. Dis. 2011; 5(12): e1433.

[120] Coura-Vital, W., A.B. Reis, S.L. Braga, B.M. Roatt, R.D. de O. Aguiar-Soares, M.J.

Marques, V.M. Veloso, and M. Carneiro. Canine visceral leishmaniasis: Incidence and

risk factors for infection in a cohort study in Brazil. Veterinary Parasitology 2013;

197(3-4): pp. 411-417.
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tors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia.

Am. J. Trop. Med. Hyg. 2009; 81(1): pp. 34-39.

[296] Chappuis, F., S. Sundar, A. Hailu, H. Ghalib, S. Rijal, R.W. Peeling, J. Alvar, and

M. Boelaert. Visceral leishmaniasis: what are the needs for diagnosis, treatment and

control? Nature Reviews Microbiology 2007; 5: pp. 873-882.

[297] Ives, A., C. Ronet, F. Prevel, G. Ruzzante, S. Fuertes-Marraco, F. Schutz, H. Zang-

ger, M. Revaz-Breton, L.-F. Lye, S.M. Hickerson, S.M. Beverley, H. Acha-Orbea, P.

Launois, N. Fasel, and S. Masina. Leishmania RNA virus controls the severity of

mucocutaneous leishmaniasis. Science 2011; 331(6018): pp. 775-778.

[298] Bailey, F., K. Mondragon-Shem, P. Hotez, J.A. Ruiz-Postigo, W. Al-Salem, A.

Acosta-Serrano, and D.H. Molyneux. A new perspective on cutaneous leishmani-

asis - Implications for global prevalence and burden of disease estimates. PLoS Neg.

Trop. Dis. 2017; 11(8): e0005739.

[299] Hasker, E., P. Malaviya, V.K. Scholar, P. de Koning, O.P. Singh, S. Kansal, K.

Cloots, M. Boelaert, and S. Sundar. Post kala azar dermal leishmaniasis and leprosy

prevalence and distribution in the Muzaffarpur health and demographic surveillance

site. PLoS Neg. Trop. Dis. 2019; 13(10): e0007798.
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Appendix A

Supplementary Information

A.1 Chapter 2 Supporting information

S1 Table RAG Mouse Parameter Combinations The skin heterogeneity and mean

skin parasite burden values for RAG mice 1-18 used throughout our simulations, as origi-

nally calculated by Doehl et al.. [A]: Values derived from Doehl et al. [45].

Mouse K Value Mean Skin Parasite Burden Source

RAG 1 1.2697 1 ∗ 103.2 [A]
RAG 2 0.9156 1 ∗ 103.1 [A]
RAG 3 1.2474 1 ∗ 103.2 [A]
RAG 4 3.296 1 ∗ 103 [A]
RAG 5 0.9523 1 ∗ 103 [A]
RAG 6 0.7229 1 ∗ 104 [A]
RAG 7 0.6561 1 ∗ 105 [A]
RAG 8 0.8124 1 ∗ 105 [A]
RAG 9 0.7222 1 ∗ 104 [A]
RAG 10 0.9081 1.057 ∗ 104 [A]
RAG 11 0.7723 6.2977 ∗ 103 [A]
RAG 12 1.1523 9.424 ∗ 103 [A]
RAG 13 1.0874 8.6053 ∗ 106 [A]
RAG 14 1.2146 6.7356 ∗ 104 [A]
RAG 15 0.5017 2.1384 ∗ 104 [A]
RAG 16 1.2758 1.6032 ∗ 104 [A]
RAG 17 1.2462 1.1973 ∗ 105 [A]
RAG 18 1.644 9.315 ∗ 104 [A]

S1 Method Parameterisation of Model A

The basic model (Model A) produced in this study focuses on three promastigotes

stages, nectomonads, leptomonads and metacyclics. Differential equation based models

were produced based on the lifecycle described by Rogers et al [49]. This method assumes
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that the parameters used for rates are all constant. Parameterisation was achieved by

fitting data from Rogers et al to the model. Data was collected from Figure 1 of this

paper using the digitize function in R as this data wasn’t readily available [49, 168]. The

digitize function is used to manually collected data from plots. The data collected were

the total number of parasites in the sand fly and the percentage of each promastigote

stage (nectomonad, leptomonad, metacyclic) present in the sand fly over a course of 10

days. This was then used to calculate the number of each promastigote stage. This data

was then exported into MATLAB where the function ”lsqcurvefit” was used to produce

the best fitting parameter values. The quality of fit was assessed via an R2 value, which

defines the proportion of variation that is explained by a model. A high R2 is indicative

of a good fit where as a low R2 is indicative of a poor fit.

S2 Method Bite Mechanics

In this section, we explore a few examples of the negative binomial distribution that

determines the uptake of amastigotes during a blood meal. For convenience we repeat the

definition of the negative binomial distribution from the main text before we begin the

example.

Bite loads were generated from a negative binomial distribution using the ’nbinrnd’

function in MATLAB. This function outputs a random value from a negative binomial

distribution. This takes the following inputs: P (Probability of a positive result) and R

(the number of successes required). R and P are defined as follows:

R =
µ2
N

σ2
N − µN

P =
µN

σ2
N

.

where:

µN = PBVBM σ2
N = (µN )(1 +

µN

k
)

as outlined in the main text. For this example, we assume a fixed mean skin parasite

burden PB = 105 and blood meal volume VBM = 1.6 ∗ 10−3 and consider three different k

values: k = 0.2 corresponding to a heterogeneous distribution, k = 2.0 corresponding to a

homogeneous distribution, and an intermediate value of k = 1.0 (Figure A.1).
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Figure A.1. Distribution of amastigote numbers drawn from negative binomial
distributions with varying skin homogeneity k: a heterogeneous environment
(k = 0.2,top), a homogeneous environment (k = 2.0, bottom) and an intermediate
environment (k = 1.0, middle). Extremely large values are depicted using crosses.
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S3 Method Population Sink Mechanics

In order to assess the sensitivity of our models to the assumption that we have 100%

efficiency in converting between lifecycle stages, we present an adapted form of the model

which incorporates a population sink at each lifecycle stage. For simplicity we assume that

the population sinks are some constant death rate per parasite per day (or equivalently a

loss of parasite differentiation capacity) and that this rate does not vary between lifecycle

stages. With the inclusion of the population sinks, Model A is now:

dN

dt
= −αN − γN (A.1)

dL

dt
= αN + rL

(
1 − N + L + M

C

)
− sL− γL (A.2)

dM

dt
= sL− uM − γM (A.3)

where we assume γ to be constant. Model B can be modified similarly. Normal mode

is now:

dN

dt
= −αN − γN (A.4)

dL

dt
= αN + rL

(
1 − N + L + M + R

C

)
− sL− γL (A.5)

dM

dt
= sL + vR− uM − γM (A.6)

dR

dt
= qR

(
1 − N + L + M + R

C

)
− vR− γR (A.7)

and dedifferentiation mode is:

dM

dt
= sL− gM − uM − γM (A.8)

dR

dt
= qR

(
1 − N + L + M + R

C

)
+ gM − γR (A.9)

We shall consider two different exemplar values of γ. To represent a small population

sink, we consider γ = 0.05. For a larger sink, we choose γ = 0.15.
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A.1.1 Population Dynamics

In order to understand the population dynamics for Model A (Eqns 2.1-2.3) and Model

B (Eqns 2.4 - 2.9), we consider a simple example. We examine a single fly with initially

contains 200 nectomonads, and takes a blood meal from an uninfected host at day 6 (such

that no further parasites are introduced to the population). We focus our attention initially

on the proportion of the parasites in each category. Figure A.2 shows the dynamics for

Model A:

Figure A.2. The proportion of different parasite life stages in the sand fly vector for
the first 12 days post-infection under the system outlined in Model A (Eqns 2.1 - 2.3).
An additional bite at day 6 is indicated by the vertical line.

The initial peak of nectomonads decreases over time as they differentiate into lep-

tomonads (and then into metacyclics). If we now examine the dynamics for Model B

(Figure A.3):

The primary difference between the two models is that in Model B we see a dramatic

shift to a population dominated by retroleptomonads at day 12, which lasts for 4 days

until they begin differentiating back into metacyclics. We can gleam further insights into

the population dynamics by examining the total numbers of parasites of each life stage.

If we once again examine the behaviour of Model A (Figure A.4):

It is worth noting that the number of metacyclics and leptomonads decrease steadily

after an initial peak and this is because the leptomonads differentiate into metacyclics, the

population of which then declines slowly with time. We can now consider the dynamics

in Model B. The pre- and post-bite dynamics in Model B are very different, and for ease
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Figure A.3. The proportion of different parasite life stages in the sand fly vector for
the first 12 days post-infection under the system outlined in Model B (Eqns 2.4 - 2.9).
An additional bite at day 6 is indicated by the vertical line.

Figure A.4. The number of parasites in each life stage in the sand fly vector for the
first 12 days post-infection under the system outlined in Model A (Eqns 2.1 - 2.3). An
additional bite at day 6 is indicated by the vertical line.
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of viewing are separated into different graphs. First, consider the dynamics for the first 6

days post-infection (Figure A.5):

Figure A.5. The number of parasites in each life stage in the sand fly vector for the
first 6 days post-infection under the system outlined in Model B (Eqns 2.4 - 2.9).

This behaviour is identical to that of Model A (Figure A.4). The distinction between

the models becomes apparent if we consider the post-bite dynamics (Figure A.6):

Figure A.6. The number of parasites in each life stage in the sand fly vector from day 6
to day 12 post-infection under the system outlined in Model B (Eqns 2.4 - 2.9).

The rapid replication of the newly-emerged retroleptomonads greatly increases the

population of parasites in the sand fly, and the resulting number of metacyclics by day 12

is much higher in Model B than it was in Model A.
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S1 Code

Supplementary Code. All MATLAB and R code comprising our implementation of the

models and simulations used in this investigation.
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A.1.2 Supplementary Figures

Figure A.7. Replicating the results of [54] (parasite proportions). Comparison
of the proportions of metacyclics (top) and retroleptomonads (bottom) at specific days
throughout the lifespan of the simulated flies. Blue represents flies that bite only at day
0, orange represents flies that bite at day 12. The two categories are combined prior to
day 12.

Figure A.8. Evaluating model robustness by randomising parameters. Number
of metacyclics within the sand flies at specific days, with all parameters randomised prior
to the start of each simulation. Parameters lie within 10% of the default value (Table 1).
Blue represents flies that bite only a day 0, orange represents flies that bite at day 12.
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Figure A.9. Additional infected host proportions reflect the retroleptomonad
dominance. Heatmaps of the Mean R0 for simulated sand flies for both Model A (left
half) and B (right half) with 100% (top row), 50% (second row), 25% (third row), and
10% (bottom row) chance of biting an infected host, with the smooth transmission
threshold function.

201



Figure A.10. Heatmap dynamics remain qualitatively similar under a binary
transmission threshold. Heatmaps of the Mean R0 for simulated sand flies for both
Model A (left half) and B (right half) with 100% (top row), 50% (second row), 25%
(third row), and 10% (bottom row) chance of biting an infected host, with the binary
transmission threshold.
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Figure A.11. Reduced lifespan (20 days) dynamics remain qualitatively
similar under a binary transmission threshold. Heatmap of the Mean R0 for
simulated sand flies in Model B with 100% chance of biting an infected host and with
lifespans restricted to 20 days, with the binary transmission threshold.

Figure A.12. Reduced lifespan (15 days) dynamics remain qualitatively
similar under a binary transmission threshold. Heatmap of the Mean R0 for
simulated sand flies in Model B with 100% chance of biting an infected host and with
lifespans restricted to 15 days, with the binary transmission threshold.
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Figure A.13. The inclusion of parasite induced mortality results in
quantitative, but not qualitative, changes. Heatmaps of Mean R0 for simulated
sand flies for both Model A (left half) and B (right half) with 100% (top row) or 25%
(bottom row) chance of biting an infected host, with a smooth transmission threshold.
After infection, sand flies receive a 20% reduction to their remaining lifespan.

Figure A.14. Removing crucial assumptions of the model has minimal
influence. Mean R0 against maximum lifespan for a representative subsample of RAG
mice. A) Full model adapted from Fig 4c. B) Full model, but with no carrying capacity.
C) Full model, but with additional small population sinks. D) Full model, but with
larger population sinks.
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Figure A.15. Retroleptomonad dynamics dominate over skin heterogeneity
and result in elevated mean R0 values. Heatmaps of the mean R0 for simulated
sand flies for both Model A (left half) and B (right half) with 100% (top half) or 25%
(bottom half) chance of biting an infected host. Each tile represents 10,000 independent
simulations.

Figure A.16. A variant of the top-right heatmap of Figure 2.3, with 40000 runs per tile
instead of 10000 runs per tile.
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Figure A.17. Retroleptomonad dominance is dependent on having a
sufficiently large maximum lifespan. A, B) Heatmaps of the mean R0 for simulated
sand flies in Model B with 100% chance of biting an infected host and with lifespans
restricted to 20 days (A) or 15 days (B). Crosses indicate the mean skin parasite burden
and skin homogeneity (k) of various mice from [45]. C) Mean R0 value against maximum
lifespan for RAG mice 1-18 from Doehl et al. [45] (S1 Table).

A.2 Chapter 3 Supplementary Materials

First, let us consider a municipality to be endemic when it exceeds 2.0 cases per 100000

on average for the previous 3 years. Table A.1 shows the fitted coefficient and p-values for

the spline.

Component Coefficient Standard Error Chi Squared P-Value

Linear 1.13 0.431 6.862 0.0088
Non-linear NA NA 2.966 0.2375

Likelihood Ratio Score: 12.1 P-Value: 0.007

Table A.1. Penalised spline fitting suggests a linear relationship between
hazard of endemicity and overall SVI. Summary of spline components: coefficients
and standard error (where applicable), chi-squared value and associated p-values, for
penalised spline fitting with a threshold of 2 cases per 100000.

From the coefficient of the linear component of the spline, we would expect the hazard

of endemicity to increase with the SVI of the municipality. This may be complicated

by the non-linear component; however, we find this component to be non-significant and

conclude that the relationship is purely linear.
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Figure A.18. Relative hazard of infection increases almost linearly with
overall SVI. Relative hazard against overall SVI, with an endemic criterion of 2.0 cases
per 100000. Solid line is mean hazard, dotted lines are +/- 2 s.e. (top) along with a
histogram of the overall SVI values for all municipalities included in the analysis
(bottom).
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The resulting spline is depicted in Figure A.18a. As anticipated, we see that the hazard

of endemicity increases with overall SVI. The spline is almost linear, with minor deviations

occurring at each end. This, along with the increased standard error, arises due to there

being few municipalities with very high or low SVI values (Figure A.18b) which impacts

the fitting of the spline. The overall conclusion remains unchanged: municipalities with

greater social vulnerability are more like to become endemic in a given time period.

Repeating this analysis for the last threshold, 4.5 cases per 100000, results in Table

A.2). As with the threshold of 3.0, the likelihood ratio test finds a significant relation-

ship. This time, we conclude that the linear component is not significant (i.e. that the

relationship is non-linear).

Component Coefficient Standard Error Chi Squared P-Value

Linear 0.674 0.473 2.032 0.154
Non-linear NA NA 5.257 0.075

Likelihood Ratio Score: 9.75 P-Value: 0.02

Table A.2. For the maximum endemic threshold, penalised spline fitting
suggests a non-linear relationship. Summary of spline components: coefficients and
standard error (where applicable), chi-squared value and associated p-values.

We can gain a greater insight from examining the spline, as shown in Figure A.19a.

This spline resembles the previous two splines: generally an increase in hazard with overall

SVI, with a slight reduction at very large SVI values, and much larger standard error at

the far ends of the parameter space. The main difference we observe here is that the spline

more closely resembles a plateau for SVI > 0.6. Thus, although we can no longer conclude

that the relationship would be sufficiently represented by a linear term in the model, the

overall qualitative relationship between hazard and overall SVI remains the same. Given

the similarities between the thresholds, we henceforth restrict our analysis to the threshold

of 3.0 cases per 100000 people.

A.3 Chapter 4 Supplementary Materials

A.3.1 Supplementary Table 1
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Figure A.19. The previous linear relationship remains possible despite the
lack of significance in the spline fitting. Relative hazard against overall SVI, with
an endemic criterion of 4.5 cases per 100000. Solid line is mean hazard, dotted lines are
+/- 2 s.e. (top) along with a histogram of the overall SVI values for all municipalities
included in the analysis (bottom).
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Table A.3. Summary of parameter definitions.

Parameter Symbol

Transmissibility T
Infectious Duration (Continuous Time) τ

Infectious Contact Rate r
Infectious Duration (Discrete Time) λ
Per-timestep Infection Probability ρ

A.3.2 Supplementary Methods 1: Analytic Approximations of R0 in

Continuous Time

In continuous time, we use a different form of T:

T = 1 −
∫ ∞

0

∫ ∞

0
drdτP (r)P (τ) exp−rτ . (A.10)

If we once again assume that the duration of infection τ is a constant τ∗ as before, we

have:

T = 1 −
∫ ∞

0
P (r)e−rτ∗dr. (A.11)

Fixed Contact Rate

For the fixed contact rate scenario, we assume r to be some fixed value for all individuals.

This simplifies T to:

T = 1 − e−rτ∗ (A.12)

As in the discrete time case we have:

R0 = T (k̂ − 1 +
ˆ̂
k

k̂
) (A.13)

Thus, for a fixed contact rate:

R0 = (1 − e−rτ∗)(k̂ − 1 +
ˆ̂
k

k̂
) (A.14)

Uniform Random Contact Rate (Time Invariant)

We assume that r is distributed according to a random uniform variable with minimum

value a and maximum value b. Thus, we have:
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P (r) =
1

b− a
∀r ∈ [a, b] (A.15)

and therefore:

T = 1 −
∫ ∞

0
P (r)e−rτ∗dr

= 1 −
∫ b

a

e−rτ∗

b− a
dr

= 1 − [
−e−rτ∗

τ∗(b− a)
]ba

= 1 − (
e−aτ∗

τ∗(b− a)
− e−bτ∗

τ∗(b− a)
)

⇒ T = 1 − (
e−aτ∗ − e−bτ∗

τ∗(b− a)
)

Finally, we have:

R0 = (1 − (
e−aτ∗ − e−bτ∗

τ∗(b− a)
))(k̂ − 1 +

ˆ̂
k

k̂
) (A.16)

Bimodal Contact Rate

We once again consider the bimodal case where:

P (r) = p1 r = a

P (r) = p2 r = b

P (r) = 0 otherwise.

We assume that a << b and p1 >> p2 as before. Thus:

T = 1 −
∞∑
0

P (r)e−rτ∗

⇒ T = 1 − (p1e
−aτ∗ + p2e

−bτ∗)

Therefore we have:

211



R0 = (1 − (p1e
−aτ∗ + p2e

−bτ∗))(k̂ − 1 +
ˆ̂
k

k̂
) (A.17)

Power Law Infection Probability

We now assume that r is distributed according to the Pareto distribution with minimum

rm s.t.:

P (r) =
αrαm
rα+1

∀r ≥ rm (A.18)

We consider first the case where α = 2. Substituting this into our equation for T we

have:

T = 1 −
∫ ∞

0
P (r)e−rτ∗dr

= 1 −
∫ ∞

rm

2r2m
r3

e−rτ∗dr

= 1 − ([
−r2me−rτ∗

r2
]∞rm −

∫ ∞

rm

r2m
τ∗r2

e−rτ∗dr)

= 1 − e−rmτ∗ − ([
−r2me−rτ∗

τ∗r
]∞rm −

∫ ∞

rm

r2m
τ∗2r

e−rτ∗dr)

= 1 − e−rmτ∗ − rm
τ∗

e−rmτ∗ − ([
r2m ln(r)e−rτ∗

τ∗2
]∞rm +

∫ ∞

rm

r2m
τ∗3

ln(r)e−rτ∗).

If we now assume that rm is small, we thus have:

∫ ∞

rm

r2m
τ∗3

ln(r)e−rτ∗ =
r2meτ

∗

τ∗3

∫ ∞

rm

ln(r)e−r∫ ∞

rm

ln(r)e−r ≈
∫ ∞

0
ln(r)e−rτ∗ = −γ

⇒
∫ ∞

rm

r2m
τ∗3

ln(r)e−rτ∗ ≈ −r2meτ
∗
γ

τ∗3

where γ is Euler’s Number. Substituting this into our previous equation we have:

T ≈ 1 − e−rmτ∗ − rm
τ∗

e−rmτ∗ − r2m
τ∗2

ln(rm)e−rmτ∗ +
r2mγeτ

∗

τ∗3
. (A.19)
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