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Abstract

Ubiquitous vortical structures are considered to act as a natural source of
various solar plasma phenomena, e.g., a wide range of magnetohydrodynamic
(MHD) waves and jet excitation. This work aims to develop an advanced
vortex detection algorithm based on the Γ method and using a separable con-
volution kernel technique. This method is applied to detect and analyze the
photospheric vortices in 3D realistic magnetoconvection numerical and obser-
vational data. We present the advanced Γ Method (AGM), and our results
indicate that the AGM performs with better accuracy in comparison with the
original Γ method. The AGM allows us to identify small and large-scale vor-
tices with no vortex interposition without requiring changing the threshold.
Thereby, the nondetection issue is mostly prevented. It was found that the Γ
method failed to identify the large and longer-lived vortices, which were de-
tected by the AGM. The size of the detected vortical structures tends to vary
over time, with most vortices shrinking towards their end. The vorticity at the
center is also not constant, presenting a sharp decay as the vortex ceases to
exist. Due to its capability of identifying vortices with minimum nondetection,
the vortices’ properties–such as lifetime, geometry, and dynamics–are better
captured by the AGM than the Γ method. In this era of new high-resolution
observation, the AGM can be used as a precise technique for identifying and
performing statistical analysis of solar atmospheric vortices.

Next, this Thesis introduces a novel vortex analysis method, that is, the dis-
crete Fréchet distance vortex visualization method (DFDVVM). The DFDVVM
is developed to analyze the time-dependent behavior of vortices while quan-
tifying each detected vortex’s vorticity evolution in a high-dimensional space
(the DFD space). We also developed a vortex clustering algorithm for vor-
tices and clustered them into different clusters. As a result, each cluster’s
average vorticity pattern is calculated, and each cluster’s statistical analysis is
presented.
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4.2.4 The Discrete Fréchet Distance Vortex Visualization Method 93

4.3 The Vortex Clustering Results and Statistical Analysis . . . . 97
4.3.1 The Determination of the Optimal Cluster Number . . 99
4.3.2 The Vortex Clustering Results . . . . . . . . . . . . . . 99
4.3.3 Statistical Results . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS viii

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Conclusions 111
5.1 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Summary of Chapter 3 . . . . . . . . . . . . . . . . . . 112
5.2.2 Summary of Chapter 4 . . . . . . . . . . . . . . . . . . 112

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Appendices 115

A The General Format of the Convolution Kernels 116

B Proof of Separable Convolution Kernel 118

C Computational Cost 121

D Unnomalized AGM versus CGM (ks = 33) 122

E The Calibration of the CSA and the WCSA 125

F The Algorithm dF 131
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Chapter 1

Introduction

1.1 The Sun

In the universe, the Sun is a common star with an absolute stellar magnitude
of 4.8; its spectral type is G2 V. The Sun is unique to our solar system, and
99.86 % of the solar system’s mass comes from the Sun. The Sun plays a
critical role in the Earth. Thanks to the Sun and the heat and energy this star
provides, the Earth has become an energetic planet with different inhabiting
lifeforms. Therefore, investigating the Sun is crucial to revealing the solar
system’s origin and the foundation for humans to explore outer space in the
future.

The Sun was born around 4.6 billion years ago. Initially, a cloud of inter-
stellar material performs rotation motion and keeps contracting, accompanied
by collapse. Then, the gravity and internal pressure of the protostar gradually
reach balance, and the contraction slows down. Heat and luminosity are emit-
ted during these processes. The internal structure and core of the star become
settled down. The high internal temperature then facilitates hydrogen fusion
to helium, providing the Sun’s heat, energy, and luminosity. After the forming
stage, the Sun entered its main stable stage until now. It is estimated that
the Sun will continue this stage for another 5 billion years until it runs out
of its internal hydrogen. After that, the Sun will expand and become a red
giant (the radius would expand about 200 times the current radius of the Sun),
which would swallow other planets of the solar system; it would collapse and
end as a white dwarf with a size similar to the Earth. Table 1.1 lists some
general physical properties of the Sun.

The Sun consists of two primary parts: the interior and the atmosphere.
Figure 1.1 is a simplified diagram of the Sun’s structure. In the following

1
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Property Value

Age 4.6 billion years
Mass (M⊙) 1.99 × 1030 kg

Radius (R⊙) 695.5 Mm
Mean density 1.4 × 103 kg/m3

Mean distance from Earth 1 AU = 1.496 × 1011 m = 215R⊙
Surface gravity (g⊙) 274 m/s2

Escape velocity at surface 618 km/s
Radiation (luminosity L⊙) 3.86 × 1026 W (= 3.86 × 1033 erg/s)

Equatorial (synodic) rotation period 26.24 days
Mass loss rate 109 kg/s

Angular momentum 1.7 × 1041 kg ·m2/s
Effective temperature 5785 K

1 arcsec (≡ 1
′′
) ≈ 726 km

Table 1.1: Physicial properties of the Sun. Courtesy of Priest (2014).

Sections, we will review the structure of the Sun.

1.1.1 The Solar Interior

The Sun’s interior, being unobservable directly, poses a challenge for studying
its properties. However, helioseismology offers a valuable method to infer in-
ternal characteristics. The solar interior is generally divided into three regions:
the core, the radiative zone, and the convection zone, each characterized by
distinct physical processes and properties (see Figure 1.1). This categorisa-
tion allows for a comprehensive understanding of the Sun’s complex internal
dynamics and structure.

The core, situated at the Sun’s central region, is characterized by extreme
conditions, featuring a temperature of approximately 16 million degrees Kelvin
and a density reaching 150 g/cm3. Conventionally, the region from the Sun’s
center to 0.25 R⊙ is defined as the core (see Figure 1.1). This core region
contains about 34% of the Sun’s total mass, resulting in a tremendous inner
pressure of around 265 billion bars. Combining this immense pressure with
high temperature facilitates the ongoing fusion of hydrogen into helium—a
remarkable process expected to persist for another 4 billion years.

The next region outside the core is the radiative zone, extending from
0.25R⊙ to 0.7R⊙ of the Sun (see Figure 1.1). In contrast to the core, the
density and temperature in the radiative zone decrease significantly as the
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Figure 1.1: The diagram of the structure of the Sun. Courtesy
of Priest (2014).
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solar radius increases. Typically, the density of the radiative zone ranges
between 20 g/cm3 and 0.2 g/cm3, with a temperature difference that could
reach 5 million K (see Figure 1.2). Photons generated in the core traverse this
region through radiation and conduction. Countless collisions occur between
photons and particles in the zone, leading to energy loss and changes in the
direction of photon travel after each collision. It is estimated that photons
may require up to a million years to escape from this zone.

The convection zone is above the top of the radiative zone, where heat
and light are transferred through the convective process. This zone’s depth is
nearly 200,000 km (see Figure 1.1). In this region, energy is transported as
hot plasma moves upward from below toward the Sun’s surface, releasing heat
in the process. After cooling, the cooler plasma returns to the bottom of the
zone to repeat the cycle.

In addition to the three classic zones, the latest model of the Sun intro-
duces a thin layer known as the tachocline. The tachocline is characterized
by a strong radial differential rotation of the plasma and serves to distinguish
between the radiative and convection zones. This layer is believed to play a
significant role in generating the solar magnetic field. The investigation of
the tachocline contributing to our understanding of the mechanisms behind
the creation of the solar magnetic field through processes such as dynamo
mechanisms.

1.1.2 The Solar Atmosphere

Compared to the internal part of the Sun, especially in the radiative zone
where photons encounter countless collisions and might need 1 million years
to escape, photons can escape into outer space directly once they reach the so-
lar atmosphere. Therefore, the solar atmosphere is defined as the solar region
where photons can easily escape into space. Conventionally, the solar atmo-
sphere consists of four parts, i.e., the Photosphere, Chromosphere, transition
region, and Corona. Each part’s physical properties diverge from the other.
Such as each region’s plasma pressure and magnetic field are different. In
plasma physics, plasma-β is defined as the ratio between plasma pressure and
magnetic pressure, and it is usually used to determine which pressure effect is
dominant. The mathematical expression of the plasma-β is below:

β =
nkBT

B2/µ0

, (1.1)

where n is the total number of density; kB ≈ 1.38 × 10−23JK−1 denotes the
Boltzmann constant; T denotes the temperature; B represents the density of
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Figure 1.2: A diagram of the mean variation of temperature and
density as a function of height in the solar atmosphere. Courtesy
of Avrett and Loeser (2008).



CHAPTER 1. 6

the magnetic flux; µ0 = 4π × 107N/A2 denotes the magnetic permeability of
free space.

Figure 1.3 depicted the variation of plasma-β in a different region of the
solar atmosphere. In the Photosphere and the lower Chromosphere, the corre-
sponding plasma-β is greater than 1. In contrast, the corresponding plasma-β
in the upper Chromosphere and the Corona is smaller than 1.

Figure 1.3: Plasma-β model depending on the height in the solar
atmosphere. Courtesy of Gary et al. (2001).

The Photosphere is the lowest part of the solar atmosphere and is a thin vis-
ible layer (around several hundred kilometers thick) of plasma. The meaning of
its name came from ’light’ in Greek. Most solar radiation in solar atmospheres
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comes from the Photosphere, which is relatively dense and opaque compared
to other upper parts of solar atmospheres. The Photosphere’s temperature
is decreasing along with the solar radius (see Figure 1.2). At the bottom,
the temperature is about 6400 K, and 4400 K at the top. The state of the
Photosphere is not stationary. Various convection motions of plasma of differ-
ent spatial and temporal scales are found in the Photosphere. The granules
are found everywhere in the Photosphere, and they appear when the internal
hot plasma bubbles up. Their central area contains hot rising plasma and its
boundary region is relatively cool, and a part of that cool plasma follows the
granule downflow near the edge and returns to the bottom part of the Photo-
sphere. The granules exhibit an irregular appearance with a width range from
0.3 to 2 Mm, and their life varies from 5 to 10 minutes. photospheric vortices
are also found in the Photosphere. They are rotating plasma structures char-
acterized by strong vorticity. They have been discovered in different scales
and periods and are considered a building block of other solar phenomena (see
Section 1.2 for more details).

The Chromosphere is the second stratum within the solar atmosphere di-
rectly above the Photosphere. The thickness of it surpasses that of the Pho-
tosphere, averaging approximately 2000 km (refer to Figure 1.1). It conveys
the heat from the Sun’s interior to the transition region and Corona. In the
Chromosphere, the atmospheric density decreases, and temperature increases
with altitude. This layer exhibits a non-uniform temperature profile, typically
falling within the temperature range of 4500 K to 20000 K, with a conceivable
minimum temperature as low as 3800 K. Unlike the Photosphere, magnetic
pressure takes precedence over plasma pressure (i.e., plasma-β < 1), result-
ing in the dominance of magnetic fields in driving plasma motion. Notably,
chromospheric vortices are influenced by twisted magnetic fields, with their
footpoints manipulated by the photospheric vortices below (see Section 1.2
for more detail). Solar spicules are plasma jet features widely observed in
the Chromosphere when analysing chromospheric spectral lines (such as H-α);
they span from the Photosphere to the Chromosphere (Bray et al., 1974; Zirin,
1998; Tavabi et al., 2012; Porfir’eva and Yakunina, 2016). It is estimated that
at least 100,000 spicules coexist in the Chromosphere at any time. There are
two types of spicule, i.e., type I and type II. The type I spicules have a lifetime
ranging from 3 to 10 minutes, with a diameter varying from 120 km to 700
km, and their jet velocity is around 10 to 50 km/s. Type I spicules might
reach 3 to 4 Mm height in active regions and even 5 Mm in the quiet Sun
before fading away (Beckers, 1972; de Pontieu et al., 2007). Compared to type
I, type II spicules exhibit more behaviors (the jet velocity is about 30 to 150
km/s), and they might reach 10 Mm height and fade much quicker (lifetime of
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about 10 to 180 s). The chromospheric plasma is partially ionized, with weak
ionization at the bottom and strong ionization at the top of this layer.

The transition region is another thin layer (about 100 km) next to the
Chromosphere but below the Corona. The temperature changes dramatically
within the transition region, and a typical transition region model shows its
temperature can increase from 3 × 104 K to 3 × 105 K within 30 km (Priest,
2014).

The Corona is the last and outermost part of the solar atmosphere, ex-
tending millions of kilometers toward outer space (e.g. Burton et al., 1971;
Boehm-Vitense, 1984; Kerr, 2012; Witze, 2017). The Corona has the highest
average temperature compared to other inner parts of the solar atmosphere
(see Figure 1.2). In contrast, the density in the Corona is 10 million times
less than the surface of the Sun. Therefore, the brightness of the Corona is
much lower than that of the solar surface. During eclipses, the Corona can
be observed as a faint halo. As noted before, the magnetic pressure is more
significant than the plasma pressure in the Corona (see Figure 1.3), and the
magnetic field significantly influences phenomena observed in the Corona. A
coronal loop is a remarkable feature observed in the Corona. This giant feature
is a magnetic arc originating from the Photosphere, across the Corona, and
ending in the Photosphere. The scale of the coronal loop may reach thousands
of kilometers, and its temperature is exceptionally high. Besides the coronal
loop, other dynamic phenomena exist, such as coronal mass ejection. Most of
them have a strong connection with the magnetic field. To date, revealing the
Corona’s mysterious high temperatures is still a challenging problem in solar
physics (see e.g., Bingert et al., 2008; Rappazzo and Velli, 2010; Winebarger
et al., 2012; Bourdin et al., 2014).

1.2 Solar Vortex

Solar vortices play a crucial role in the dynamic processes of the solar at-
mosphere. They potentially contribute to the excitation of magnetohydrody-
namic (MHD) waves (Schüessler, 1984; Attie et al., 2009; Fedun et al., 2011;
Kitiashvili et al., 2011; Yadav et al., 2022) and the generation of plasma jets
(Kitiashvili et al., 2013; Iijima and Yokoyama, 2017; Snow et al., 2018; Skirvin
et al., 2022) . Additionally, these vortices may serve as conduits for the trans-
fer of energy to the solar corona (Wedemeyer-Böhm et al., 2012; Shelyag et al.,
2012; Yadav et al., 2021). Therefore, a comprehensive understanding of solar
vortices is crucial for gaining insight into the dynamics of the solar atmosphere.
This section first reviews solar vortices observed in the Photosphere (Section
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1.2.1) and the Chromosphere (Section 1.2.2). Subsequently, the formation
mechanism of solar vortices is discussed in Section 1.2.3. Finally, the role of
solar vortices in the broader context of the solar atmosphere is presented in
Section 1.2.4.

1.2.1 Vortices Observed in the Photosphere

At the Photosphere, the swirling motion of the turbulent flow has been widely
reported at different locations and observed on various scales (e.g., Brandt
et al., 1988; Wang et al., 1995; Bonet et al., 2008; Attie et al., 2009; Bonet
et al., 2010; Vargas Domı́nguez et al., 2011; Wedemeyer-Böhm et al., 2012).

In intergranular lanes, vortex flow was identified as rotation motions of
magnetic bright points (BPs; Riethmüller et al., 2014). They are also known
as magnetic field concentrations. By analysing G-band images obtained from
the Swedish Solar Telescope (SST; Scharmer et al., 2003a), Bonet et al. (2008)
reported numerous small-scale (0.5 to 2 Mm), short lifetime (5 to 15 min) vor-
tices when tracing the motions of magnetic BPs. These vortices were found
concentrated on the downdrafts of intergranular lanes. Therefore, they related
the granulation downdraft to the formation of these swirls. With the help of
the SUNRISE (Solanki et al., 2010; Barthol et al., 2011; Gandorfer et al., 2011;
Berkefeld et al., 2011) that equipped with Imaging Magnetograph eXperiment
(IMaX, Mart́ınez Pillet et al., 2011), Steiner et al. (2010) have identified vor-
tices in the intergranular lanes with much smaller scale (the mean radius is
around 150 km). According to their statement, detected vortices might have
a smaller scale while there is a limitation in the resolution of the equipment.
Steiner et al. (2010) found various moving horizontal lanes characterized by
bright and dark edges. After comparing the observational data with the solar
surface convection simulation, Steiner et al. (2010) concluded that these struc-
tures were horizontal vortex tubes. Via visually inspecting the magnetograms
of the observational data, vortices with a mean lifetime of about 8 min were
detected by Bonet et al. (2010). They concluded that the angular momentum
transported to the intergranular lanes drives the vortex. Balmaceda et al.
(2010) identified solar vortices with a radius of around 0.25 to 1 Mm in the
Photosphere. Vargas Domı́nguez et al. (2011) also identified a similar scale
of vortex flow in the quiet-Sun region when analysing the G-band image from
SST.

Swirling motions are also found in granular and supergranular junctions
with much larger scales. Attie et al. (2009) have detected vortical motions
in supergranular junctions of the quiet-Sun region when analysing G-band
images obtained from Solar Optical Telescope/Filtergraph (Ichimoto et al.,
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2008) on the Hinode (Kosugi et al., 2007). These vortical structures were
reported on a much larger spatial (15 to 20 Mm) and temporal scale (1 to 2 h)
than those vortices near the intergranular lane. Requerey et al. (2018) have
detected long-lasting (24 h) supergranular vortices by analysing data acquired
by the Narrowband Filter Imager/Hinode. These vortices are interpretations
of converging flows near the supergranular junctions.

1.2.2 Vortices Observed in the Chromosphere

In addition to vortex flow detected in the Photosphere, their imprint is also
found in the Chromosphere. Analysing chromospheric spectral lines obtained
from the CRISP Imaging Spectro-Polarimeter (Scharmer et al., 2008a) at the
SST, Wedemeyer-Böhm and Rouppe van der Voort (2009) detected apparent
swirling motion near the center of the Ca II 854.2 nm. They name them
chromospheric swirls. These swirls had an average size of about 1.5 Mm, and
a speed of up-flow of around 2 to 7 km/s. Moreover, they might relate to
the photospheric magnetic BPs found in intergranular lanes. Shetye et al.
(2019) found that these chromospheric swirls exhibit various appearances on
different scales, and these structures seem to have a tight connection with
magnetic concentrations at downdraft centers. Chromospheric swirls were also
identified by Wedemeyer-Böhm et al. (2012) when analysing Ca II 854.2 nm
spectral processed from CRISP. They postulated that the detected swirls and
the photospheric vortices below are the different parts of a vortex tube across
several solar atmospheres. And the vortex tube might further extend to the
Corona, and its cross-sectional area increases with height.

1.2.3 The Formation of Vortex Flow

Formation mechanism of intergranular vortex flow and atmospheric
vortex flow

Based on a solar convection simulation, Nordlund (1985) associated the ‘bath-
tub effect’ as a possible formation mechanism of photospheric vortex flow. The
effect refers to the granulation downdraft motion when plasma diverges from
the neighboring granular center and converges on an intergranular lane. Dur-
ing the process, a considerable amount of angular momentum is transported
via the motion of plasma, and fluid elements might perform rotation at various
scales when approaching the downdraft center. Therefore, photospheric vortex
flow might be initiated. This flow type is also known as intergranular vortex
flow (IVF), which extends from the Photosphere to the upper part of the
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convection zone and was introduced by Wedemeyer and Steiner (2014). How-
ever, downdraft centers do not always guarantee the vortex dynamic. Vortical
motion is possible only when there is sufficient vorticity in the sink region.

Besides the IVF, Wedemeyer and Steiner (2014) also suggested another
type of vortex flow system, that is, atmospheric vortex flow (AVF), when
analysing the connection between the observed chromospheric swirls and pho-
tospheric BPs below. They proposed that the AVF and the IVF spatial cor-
relate with each other with the help of a coincided rotating magnetic field.
Figure 1.4 demonstrates the whole picture of these two types of flow. In the
convection zone where the plasma pressure dominates the magnetic pressure,
i.e., plasma-β > 1, the gas undergoes substantial ionization, resulting in the
magnetic field essentially entrapped and transported along with the convec-
tive motion of plasma flow. Thus, the plasma flow inside an IVF would drag
the surrounding magnetic field and force them to co-rotate, and, as a result,
a twisted magnetic field structure that coincides with the IVF is established
(Wedemeyer and Steiner, 2014). If the twisted magnetic field structure persist
with the vortical motion of the corresponding IVF long enough, the upper
part of the magnetic field structure might induce an AVF (see Wedemeyer and
Steiner (2014) for further details).

Vortex tube formation in the near-surface layers

Besides the suggested formation mechanism for IVF and AVF mentioned
above, Kitiashvili et al. (2012b) proposed two other basic formation mech-
anisms for vortex flow while analysing vortex obtained from the SolarBox–a
3D radiative MHD code developed by Jacoutot et al. (2008). These two mech-
anisms are (1) the instability of the convective granule and (2) the Kelvin
Helmholtz instability within intergranular lanes.

The instability of convective granule: Analysing the numerical simu-
lation described above, small-scale upflowing plumes inside the granules might
trigger small-scale vortex flow. Firstly, vortex sheets may be produced by
these upflowing plumes. Then, neighboring turbulence flow would overturn
these vortex sheets, and vertically oriented vortex flows may form during the
process.

The Kelvin Helmholtz instability within intergranular lanes: The
interaction between strong downflows and horizontal sheering flow along gran-
ules’ peripherals is complicated in intergranular lanes. Therefore, the Kelvin-
Helmholtz instability of shearing flow might induce vortex flow. In general,
the region’s Richardson number distribution can be used to characterize its
Kelvin–Helmholtz instability and the small distribution indicates the region
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Figure 1.4: A schematic representation of the double-nature of
vortex flows. An intergranular vortex flow (IVF) usually extends
from the Photosphere to the above part of the convection zone.
It might initiate a corresponding atmospheric vortex flow (AVF),
also introduced as a ‘magnetic tornado’ by Wedemeyer-Böhm et al.
(2012). An AVF can exist on top of an IVF. The imaginary bor-
ders of both vortex flows are denoted with thick solid lines. Plasma
within AVF can swirl up and down (thin lines with arrows), while
plasma within IVF can only swirl down to the downdraft center.
The environment to establish an AVF requires low plasma-β con-
ditions, whereas high plasma-β conditions are required for an IVF.
In general, the core line of AVF and IVF might not perfectly align;
that depends on where the twisted magnetic field is. Courtesy of
Wedemeyer and Steiner (2014).
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would have vortex flow.

1.2.4 The Role of Solar Sortices

By analysing observational and simulation data, solar vortices have been as-
sociated with the heating mechanism of the solar atmosphere and have been
inferred to play a significant role in the dynamic of the solar atmosphere. In
this Section, we overview vortex analysis, whether based on observational data
or realistic simulation, and the corresponding findings of the role of the solar
vortices.

The intricate interaction between solar vortices and surrounding magnetic
fields in the solar atmosphere is a complex and dynamic process that signif-
icantly influences the behavior of solar phenomena. Based on the numerical
simulation generated by the SolarBox, Kitiashvili et al. (2012c) highlights the
thermodynamic properties of magnetized vortex tubes in the quiet Sun. Solar
vortices were found to play a crucial role in twisting nearby magnetic fields.
The mutual influence between them is crucial; the vortical motion of plasma
intensifies the twisted magnetic field’s strength; subsequently, the magnetic
field stabilizes the kinetic motion of the vortices and mitigates the impact of
turbulent flows in the periphery. Furthermore, utilizing CO5BOLD simulations
(a 3D MHD simulation code), Wedemeyer-Böhm et al. (2012) and Wedemeyer
and Steiner (2014) show that chromospheric swirls are excited by the twisted
magnetic field and the scale of these swirls depending on the magnetic field
strength. Analysing observational data obtained from Hinode, Requerey et al.
(2018) found magnetic flux preferentially dragged in the vortex region and
twisted by the vortical motion, supporting the idea that a magnetic flux tube
gains stability when surrounded by vortex flows, influencing various magneto-
hydrodynamic wave modes in the solar atmosphere. Additionally, Rappazzo
et al. (2019) also found that the magnetic field coexisted with a kinematic
vortex and was twisted by the vortical plasma flow based on the simulation.

Solar vortices are found to correlate with plasma jet excitation (see, e.g., Ki-
tiashvili et al., 2013; Iijima and Yokoyama, 2017; Snow et al., 2018). Through
analysing observational data acquired from the Swedish Solar Telescope (SST),
De Pontieu et al. (2012) underscores the connection between solar vortices in
the Photosphere and the formation of spicules. Simulation studies, such as
those conducted by Kitiashvili et al. (2013) using SolarBox, reveal that small-
scale jet-like ejections in the Chromosphere can be associated with spontaneous
upflows within vortex tubes. Additionally, Iijima and Yokoyama (2017) con-
cluded vortex flow as a possible formation mechanism for chromospheric jets
and spicules based on the simulation employing the numerical code RAMENS3.
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They pinpoint the crucial role of the Lorentz force from twisted magnetic field
lines in producing chromospheric jets. These collective findings suggest that
despite originating within downflowing intergranular lanes, solar vortices play
a significant role in supporting intense plasma upflows, interacting with mag-
netic fields, and forming chromospheric jet-like features.

Apart from interacting with magnetic fields and being responsible for ex-
citing chromospheric jet-like features, vortex tubes, potentially extending into
the Corona, serve as conduits for plasma and energy transfer within the solar
atmosphere. This transportation process results in the heating of the upper
solar atmosphere. Simulation studies, exemplified by Kitiashvili et al. (2012c),
illustrate that vortices featuring strong upflows in their centers can propel ma-
terial toward higher atmospheric layers. Additionally, a considerable amount
of Poynting flux transported upward through the vortex flow contributes sig-
nificantly to the heating, as indicated by Wedemeyer-Böhm et al. (2012). In
addition to simulation analysis, Park et al. (2016) link chromospheric heat-
ing with solar vortices activity while investigating observational data obtained
from CRISP/SST. Furthermore, solar vortices have the potential to induce var-
ious magnetohydrodynamic (MHD) waves, including torsional Alfvén, kink, or
sausage modes (see Fedun et al., 2011; Shelyag et al., 2013). And a certain
amount of energy transported by these MHD waves (see e.g., Mumford and
Erdélyi, 2015; Mumford et al., 2015).

1.3 The Outline of Thesis

The Thesis aims to contribute practical and efficient methods for identifying
and analysing solar vortices, with a primary focus on the accurate detection of
solar vortices and developing novel analysis strategies. The Thesis is structured
as follows:

Chapter 2 provides the theoretical foundation for establishing existing vor-
tex identification methods and introduces fundamental knowledge in clustering
analysis. The primary objective of the Thesis is to develop a practical and ef-
ficient vortex identification method. A thorough understanding of vortex def-
inition and identification is necessary to achieve this. This Chapter begins by
reviewing critical theoretical knowledge related to vortex identification. Subse-
quently, it explores essential and representative vortex identification techniques
currently being applied. The second goal of the Thesis involves devising a cre-
ative and suitable analysis strategy to enhance our comprehension of solar
vortices. Inspired by clustering analysis, new findings may be discovered by
comparing solar vortices; that is, solar vortices with similar characteristics
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would be naturally grouped through clustering analysis. Therefore, the last
part of this Chapter is dedicated to clustering analysis. Specifically, represen-
tative and fundamental clustering techniques will be reviewed and discussed.
Additionally, the last Section of this Chapter focuses on evaluating clustering
performance for different clustering techniques in different scenarios.

Chapter 3 focuses on accomplishing the first goal of the Thesis, that is,
developing a practical vortex identification method. This Chapter introduces
the advanced Γ method (AGM), an enhancement of the Γ method (Graftieaux
et al. (2001)), drawing inspiration from the fast convolution Γ1 (Zigunov et al.
(2020)). The AGM shows robustness in the identification of vortex structure
through the use of various sizes of the convolution kernel. Additionally, two
novel algorithms, the circular sector algorithm (CSA) and the whole-circular
sector algorithm (WCSA), are introduced for extracting an accurate vortex
boundary. Our results show that the AGM identified a better vortex bound-
ary, and the extracted vortex boundary aligns well with the velocity field. In
order to examine the capability of the AGM, the method is applied to identify
solar vortices simulated by StellarBox, a 3D radiative MHD code. A com-
parative analysis is conducted with the detection results obtained from the Γ
method. The AGM and the Γ method are also applied to observational data,
demonstrating that the AGM outperforms the Γ method in both cases.

Chapter 4 corresponds to the second goal of the Thesis, introducing the
discrete Fréchet distance vortex visualization method (DFDVVM) as a novel
vortex analysis technique. This innovative method is applied to analyse the
time-dependent behavior of simulated solar vortices identified by the AGM
in Chapter 3, with a specific focus on vorticity evolution. Utilizing the dis-
crete Fréchet distance metric, the DFDVVM systematically quantifies each
vorticity pattern in a high-dimensional space, namely the DFD space. The
method facilitates the visualization of differences between vorticity patterns
and provides an intuitive means of understanding the variance among detected
vortices. Furthermore, this Chapter introduces a practical vortex clustering
algorithm based on the K-means algorithm. This innovative clustering method
is applied to analyse each identified vortex processed by the DFDVVM. Con-
sequently, solar vortices with similar vorticity evolution are grouped into the
same cluster, allowing for a further investigation of the underlying vorticity
patterns. Additionally, the introduced clustering analysis method calculates
the average vorticity pattern of each cluster and presents corresponding sta-
tistical analyses. These methods are expected to significantly contribute to a
comprehensive exploration of solar vortex dynamics, offering valuable insights
into the intricate behavior of solar vortices.

Chapter 5 serves as the conclusion to this Thesis, providing a comprehen-
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sive summary of the research and its outcomes. It offers an overview of the
entire Thesis, encapsulating the key achievements from each Chapter. Fur-
thermore, this Chapter outlines potential avenues for future research and ex-
ploration in the field.



Chapter 2

Overview of Vortex Analysis
Techniques and Clutsering
Analysis

Vortices typically refer to a phenomenon in which particles perform rotational
motion around a shared central axis. Proper observation of this phenomenon
often requires consideration of an appropriate reference frame (Lugt, 1979;
Robinson, 1991). Nature provides numerous examples of vortices, including
solar vortices, ocean eddies, and tornadoes. Establishing a universally appli-
cable definition for the vortex region is still challenging due to variations in
fluid properties (e.g., viscosity) across different scenarios. Additionally, there
is no clear boundary between the vortical structure and its surrounding envi-
ronment.

The foundational step in analysing solar vortices is defining the vortex re-
gion and delineating its boundary. This precise identification is crucial for
gaining profound insights into the intricate dynamics of solar vortices. The
first goal of this Thesis is to develop an efficient and practical method for
vortex identification. To achieve this, the following Sections will discuss the
foundational concepts underpinning vortex identification. Section 2.1 will lay
the groundwork by investigating the vector field, vector calculus, and Jacobian
of the vector field. Subsequently, Section 2.2 will introduce the topology of a
vector field. Section 2.3 concerns the critical aspect of reference frame invari-
ance since its strong influence on vortex observation and extraction. Section
2.4 will comprehensively review representative and popular vortex extraction
techniques. The second goal of this Thesis is to develop a novel analysis
method for detecting vortices, which is expected to facilitate the investigation
of solar vortices. In pursuit of the second goal, Section 2.5 will discuss various

17
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clustering techniques widely used in data analysis.

2.1 Theory of Vector Field

2.1.1 Vector Field

Steady and unsteady vector fields are distinguished based on their temporal
variability. A steady vector field remains constant over time, exhibiting time
independence. On the other hand, an unsteady vector field changes over time,
displaying time-dependent characteristics. The mathematical representations
of steady and unsteady fields in a 3D space are provided below:

Steady : v(x, y, z) =

[u(x, y, z)
v(x, y, z)
w(x, y, z)

]
, (2.1)

Unsteady : v(x, y, z, t) =

[u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

]
, (2.2)

where x, y, and z denote the coordinates of space; t denotes the time; u, v,
and w represent components of vector field.

2.1.2 Vector Calculus

In this Section, we will review operators associated with vector calculus and
explore their properties. We begin with the definition of the gradient operator,
denoted as ∇, which is expressed as follows:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)⊺

. (2.3)

The operator ∇ is commonly employed to simplify partial differential equations
(PDEs) involving specific partial derivative quantities. When applied to a
scalar field, the gradient yields a vector field. For example, taking the gradient
of a temperature field results in a vector field that signifies the rate of change
of the temperature field and the direction of that change at each point in the
field.

The divergence of a vector field is a scalar field, with each scalar quantity
representing the volume change of a virtual finite-sized sphere associated with
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the vector field. The mathematical expression for the divergence of v is given
by:

∇ · v =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= ux + vy + wz. (2.4)

When the vector field represents a flow field, the divergence of the vector field
is associated with the volume change at each point in the flow field. The sign of
∇·v indicates the nature of the change: positive signifies volume increase, while
negative signifies volume decrease. In particular, if ∇ · v(x, y.z) = 0 holds for
the entire domain of the flow field, then the flow is considered incompressible
or divergence-free.

The curl of a vector field describes the rotation or spin of a vector field at
each point. For a 3D vector field, the curl, denoted as ∇× v , is given by:

∇× v =

 ∂w
∂y

− ∂v
∂z

∂u
∂z

− ∂w
∂x

∂v
∂x

− ∂u
∂y

 =

 wy − vz
uz − wx

vx − uy

 . (2.5)

Geometrically, the curl represents the tendency of the vector field to rotate
around a point. The magnitude of the curl at a specific point is proportional
to the local rotation intensity, and the curl vector’s direction indicates the
rotation axis. In physics and fluid dynamics, the curl is used to characterize
the vorticity of a fluid flow. Vorticity measures the local rotation of fluid
particles within the flow. a vector field is considered curl-free or irrotational
if its curl is the zero vector everywhere in the domain.

2.1.3 Jacobian and Jacobian Invariants

For a 3D steady flow in a Cartesian system, the mathematical format of the
spatial Jacobian J is defined as follows:

J = ∇v = (vx, v y, v z) =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 . (2.6)

The eigenvalue and eigenvector of the Jacobian are usually related to analysing
the local flow pattern at a given location. The Jacobian matrix can be decom-
posed into the symmetric matrix (S) and the corresponding anti-symmetric
matrix (Ω). They are also known as the strain rate tensor and the vorticity
tensor, respectively.

J = S + Ω, (2.7)
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where S and Ω have the following forms:

S =
J + J ⊺

2
(2.8)

and

Ω =
J − J ⊺

2
. (2.9)

In addition to capturing the local flow pattern, computing the invariants
of the Jacobian matrix helps provide various definitions of vortex regions. It
facilitates the design of relevant measures for vortex extraction. In the case
of a 3D steady flow, the eigenvalues (λ) of the Jacobian matrix of the vector
field satisfy the following condition:

λ3 − Pλ2 + Qλ−R = 0, (2.10)

where P , Q, and R are Jacobian’s invariants quantites. And they are defined
as follows:

P = tr(J ) = ∇ · v , (2.11)

Q =
1

2
(P 2 − tr(J 2)) =

1

2
P 2 +

1

2
(∥ Ω ∥2 − ∥ S ∥2), (2.12)

R = det(J ). (2.13)

The ∥ · ∥ notion represents Euclidean norm. When analysing a 2D steady
flow, the corresponding Jacobian matrix only has two invariants, i.e., P and
Q, where Q = R = det(J ).

2.2 The Topology of Vector Field

The essential part of understanding the vector field topology is calculating
the first-order critical points. In vector field topology, critical points usually
refer to local minima, maximum, or saddle of a specific type of scalar field.
According to Helman and Hesselink (1989), critical points of a velocity field
are typically characterized by zero velocity magnitude. Thus, if x c is such a
critical point, then:

v(x c) = 0 . (2.14)

In addition, Helman and Hesselink (1989) point out that these critical
points are ideally isolated, i.e., their surrounding velocity field has a nonzero
velocity magnitude. Moreover, analysing their properties and categorising
them will further require the corresponding field to be differentiable, and the
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Jacobian of critical point is non-singular. Once those requirements are met,
the corresponding eigenvalues and eigenvectors will indicate the neighboring
flow pattern of the critical point. For this thesis, we are only focusing on 2D
vortical behavior.

Six specific critical points for a 2D steady field are summarized and dis-
played in figure 2.1. They can be classified according to the eigenvalues (Hel-
man and Hesselink, 1989) of the Jacobian matrix of the velocity field at the
position of the critical point. These patterns can be categorised into two groups
regarding the imaginary part of the eigenvalues. Usually, the nonzero imagi-
nary part relates to a local spirling pattern. The sign of the corresponding real
parts would further indicate whether the detected vortical center is attracting
focus, repelling focus, or center. The concept of critical points could also be
extended to a 3D steady field. In that scenario, an additional eigenvector and
corresponding eigenvalue are required to compute the types of critical points
(Helman and Hesselink, 1991). Moreover, these points may perform a specific
movement (e.g., parabolic, hyperbolic, and elliptic motion) in the nearby 3D
field (Scheuermann et al., 1998). However, this technique is for finding critical
points in a steady field. For an unsteady flow field, motions of fluid particles
are time-dependent and, thus, do not contain any critical points. In addition,
attracting and repelling nodes do not exist when the flow is incompressible.

2.3 The Invariance of Reference Frame

Choosing the proper reference frame is crucial to observing the vortex properly,
as the relative motion between the vortex flow and the observer significantly
influences the detection results. Günther and Theisel (2018) have summarized
existing vortex extraction methods according to the reference frame invariance
into four major categories, i.e., No invariance, Galilean invariance, Rotation
invariance, and Objectivity.

No invariance: Identification techniques of no invariance imply that it
is only suitable for the steady flow, or the correct reference frame was se-
lected when the flow behaves approximately steady. Except for the first cate-
gory, techniques of the remaining three categories are invariant when reference
frames perform selected motion types.

Galilean invariance: A vortex extraction technique is considered Galilean
invariant when the chosen reference frame undergoes equal-speed translation
motion and the observed flow appears steady. In other words, Galilean invari-
ant techniques can accurately measure vortices during equal-speed translation
motion. However, if the reference frame or vortex undergoes different types of
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Figure 2.1: Six typical critical points of a 2D steady vector field.
R1 and R2 represent the real parts of the eigenvalues of the Ja-
cobian at critical points, and I1 and I2 denote the corresponding
imaginary parts, respectively. For instance, if R1 and R2 are pos-
itive and I1 and I2 are not equal to 0, it corresponds to a repelling
focus. On the other hand, R1 and R2 are negative, while I1 and I2
are not equal to zero, corresponding to an attracting focus. Image
adapted from Menelas et al. (2009).
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motion, the methods in this category may incorrectly measure vortices.
Rotation invariance: In contrast to Galilean invariance, Rotation in-

variance refers to the reference frame performing an equal angular speed of
rotational motion around a known center, i.e., the rotational invariant method
can identify vortices that perform an equal angular speed of rotations. How-
ever, without a known rotation center in advance, the methods of this category
will fail to measure vortices.

Objectivity: In a real scene, vortices may perform any motion that com-
bines translation and rotation. Thus, vortex extraction techniques desire to
be objective when analysing them (Haller, 2015; Haller et al., 2016; Günther
et al., 2017). Objectivity, in this context, implies that measurements remain
consistent when the reference frame undergoes a combination of smooth ro-
tation and translation. Objective extraction methods can accurately identify
vortices during smooth rotations and translations. A formalized definition of
objectivity can be found in Truesdell and Noll (1965).

2.4 Overview of Vortex Identification Meth-

ods

This Section provides an overview of primary vortex identification techniques.
In nature, a vortex region is characterized by fundamental properties such
as pressure and vorticity. Consequently, vortex identification typically in-
volves extracting the vortex region based on thresholds for these characteris-
tics. Basic methods include the pressure threshold method and the vorticity
threshold method. More sophisticated approaches incorporate computations
of the velocity gradient (Jacobian) and the corresponding Jacobian invariant.
Notable examples are the Q-criterion (Hunt, 1987), λ2-criterion (Jeong and
Hussain, 1995), and ∆-criterion (Chong et al., 1990). Additionally, popular
methods include the Γ method (Graftieaux et al., 2001), the Instantaneous
Vorticity Deviation (IVD, Haller et al. (2016)), and its Lagrangian version,
the Lagrangian-Averaged Vorticity Deviation (LAVD) (Haller et al., 2016).
Table 2.1 summarises and categorises these vortex identification techniques
based on their reference frame invariance.

2.4.1 Pressure Method

If the viscosity of a 2D steady flow is neglectable, a vortex region and a low-
pressure region usually coincide. In this case, the vortex center can be found
at the pressure minimum of the region. Via estimating a reasonable pressure
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Reference frame invariance Vortex identification technique

Galilean invariance vorticity magnitude
Q-criterion (Hunt, 1987)

∆-criterion (Chong et al., 1990)
λ2-criterion (Jeong and Hussain, 1995)
Swirling strength (Zhou et al., 1999)
Γ method (Graftieaux et al., 2001)

Objectivity Pressure method (Hunt et al., 1988)
IVD (Haller et al., 2016)

LAVD (Haller et al., 2016)

Table 2.1: Popular vortex identification techniques.

criterion (pt), a region with pressure below the threshold (i.e., pt) in 2D flow
is extracted and regarded as a vortex region by Hunt et al. (1988):

p ≤ pt. (2.15)

However, the criterion might fail in the case of unsteady viscous flow or 3D
flow. The reason is that the pressure minimum may not exist in those cases
(Cucitore et al., 1999). In addition, the criterion might fail to distinguish each
vortex when the flow field has muti-vortices that coexist and are adjacent.

2.4.2 Vorticity Method

The vorticity, denoted by ω, of a vector field is equivalent to the curl of the
vector field and can be directly employed to identify vortices:

ω = ∇× v . (2.16)

As previously mentioned, strong vorticity is a crucial characteristic of vor-
tex flow. In the vorticity method, a region is considered a vortex flow if its
vorticity is above a certain reasonable threshold (|ωt|, typically determined by
the specific scenario):

|ω| ≥ ωt. (2.17)

In this approach, the vorticity maximum is regarded as the vortex center.
In a 2D flow field, the vorticity vector is perpendicular to the horizontal

flow field, with its sign indicating the flow’s direction (positive for counterclock-
wise, negative for clockwise). However, a notable drawback of this thresholding
method is its susceptibility to the false positive detection problem of shear ro-
tation (Lugt, 1979; Robinson, 1991). It struggles to differentiate between a
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swirling pattern and shear flow, as both are characterized by strong vorticity.
The method merely captures the isocontour above the pre-defined threshold,
making it insufficient to delineate the vortex’s proper boundary accurately.
Additionally, setting a vorticity threshold may result in non-detection during
vortices’ early or ending stages, especially when characterized by weak vortic-
ity.

2.4.3 Q-criterion and Okubo–Weiss Criterion

When dealing with a 3D steady flow field that is divergence-free, expressed as
∇·v = 0, the Q-invariant (see Equation (2.12)) of the spatial Jacobian matrix
of the velocity field can be written in the following form:

Q =
1

2
(∥ Ω ∥2 − ∥ S ∥2). (2.18)

Hunt (1987) introduced Q-criterion when comparing the magnitude be-
tween vorticity tensor Ω and strain rate tensor S . If the Q value exceeds 0, i.e.,
Ω is greater than S , the region will be extracted as a vortex region. Moreover,
the pressure minimum requirement (i.e., the vortex region has lower pressure
than the ambient pressure) is auxiliary to defining a vortex region properly.

Okubo (1970) and Weiss (1991) introduced the Okubo–Weiss criterion
independently when identifying a vortex region within a 2D divergence-free
steady flow. The mathematical definition of the criterion is defined as follows,
and it is equal to the negative of the determinant of the corresponding 2D
spatial Jacobian J :

W =
∂u

∂y

∂v

∂x
+

∂v

∂y

2

= −det(J ) < 0. (2.19)

Considering the flow in 2D and divergence-free, Equation (2.12) can be further
simplified in the following form:

Q =
1

2
(P 2 − tr(J 2)) = det(J ). (2.20)

Obviously, the Okubo–Weiss criterion is equivalent to a 2D version of the
Q-criterion.

2.4.4 λ2-criterion

Jeong and Hussain (1995) introduced the λ2-criterion to identify the vortex
region when searching for a pressure minimum. When dealing with the incom-
pressible flow, the reduced strain rate transport equation can be expressed in
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the following form after ignoring the viscosity effect and the unsteady irrota-
tional straining:

S 2 + Ω2 = −1

ρ
∇(∇p), (2.21)

where ρ denotes the flow’s density, and p denotes the pressure. Jeong and
Hussain (1995) consider a region as vortex region when S 2 + Ω2 has two neg-
ative eigenvalues. Let λ1 ≥ λ2 ≥ λ3 represent the eigenvalues of S 2 +Ω2. The
λ2-criterion refers to λ2 < 0. In addition, Jeong and Hussain (1995) noticed
that the Q-criterion and the λ2-criterion have the following relationship:

Q = −1

2
tr(S 2 + Ω2) = −1

2
(λ1 + λ2 + λ3). (2.22)

2.4.5 ∆-criterion and the Swirling Strength Criterion

The ∆ criterion introduced by Chong et al. (1990) is related to computing
Jacobian’s characteristic Equation (see Equation 2.10) and defines a vortex
region if it has complex eigenvalues. The characteristic Equation described
above has the following discriminant, and it is called the ∆-criterion:

∆ =

(
Q̃

3

)3

+

(
R̃

2

)2

, (2.23)

where

Q̃ = Q− P 2

3
(2.24)

and

R̃ = −R− 2P 3

27
+

PQ

3
. (2.25)

In the case of divergence-free flow, i.e., P = ∇ · v = 0, thus, Q̃ = Q and
R̃ = −R. Equation (2.23) become

∆ =

(
Q

3

)3

+

(
R

2

)2

. (2.26)

A vortex region is extracted if the corresponding ∆ > 0 implies the cor-
responding characteristic Equation has complex solutions (i.e., one real eigen-
value and the remaining two eigenvalues are conjugate complexes). Through
analysis of the compressibility effect on the vortex extraction, Ko lár (2009) de-
rived a compressible version of the ∆-criterion, which can be used to identify
the vortex region when the flow is compressible.



CHAPTER 2. 27

Stem from the ∆-criterion, Zhou et al. (1999) introduced a similar vortex
extraction criterion, i.e., the swirling strength criterion, to detect the region
of a vortex. The criterion would extract a vortical structure when a pair of
complex conjugate eigenvalues of the corresponding velocity gradient exists.
The magnitude of imaginary parts of the eigenvalues indicates the detected
region’s swirling strength. For 2D flow, the real part of the complex conjugate
solution indicates whether the vortex region is diverging or converging (see
Figure 2.1). Like the ∆-criterion, the swirling strength criterion is extendable
and can be applied to compressible flows (Ko lár, 2009). In addition, the Q-
criterion, ∆-criterion, and λ2-criterion yield similar detection results when
detecting vortex within incompressible 2D flows (Jeong and Hussain, 1995).

The swirling strength method has been applied to identify solar vortices
simulated on the solar atmosphere by Moll et al. (2011). Besides, the method
was also adopted by Kato and Wedemeyer (2017), Yadav et al. (2020), and
Canivete Cuissa and Steiner (2020) when analysing the properties of solar
vortices.

2.4.6 Γ Method

Different from the above methods based on the velocity derivatives, Graftieaux
et al. (2001) introduced Γ1 and Γ2 to detect the center and boundary of a
vortex, respectively. Γ methods can identify vortical structures when proper
thresholds are chosen. The Γ1 method has the following form:

Γ1(P ) =
1

N

∑
S

(PM ×UM) · n
∥ PM ∥ · ∥ UM ∥

=
1

N
sin(θM), (2.27)

where N denotes the number of discretely sampled velocity points of a 2D
rectangular region S surrounding P . M is a point or a set of points lies within
S, and PM denotes the displacement vector from P to M . UM denotes the
velocity vectors at location of M , and n is the unit vector normal to the flow
field. The angle between UM and PM denoted in θM .The || · || represents the
Euclidean norm.

The Γ1 function derives a signed scalar field in the region S, and each
field value measures the topology of the flow surrounding P . Notably, a |Γ1|
maximum appears to coincide with the vortex center. Moreover, the sign of
Γ1 at the center indicates the rotation direction of the vortex, i.e., negative
indicates clockwise rotation and positive for anti-clockwise. The |Γ1| values
have been normalized between 0 and 1. The vortex center will have |Γ1| values
equal to 1 in the ideal case when the vortex is axisymmetric. However, the
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appearance of the vortex contains a broad range of irregular shapes due to
their dynamics and interaction with the surrounding environment. Thus, the
threshold of Γ1 function for the vortex is less than 1.

In contrast to Γ1, the Γ2 function considers the local velocity field neigh-
boring the vortex center. The definition of the discrete version of Γ2 is:

Γ2(P ) =
1

N

∑
S

[PM × (UM −U P )] · n
∥ PM ∥ · ∥ UM −U P ∥

. (2.28)

Here, U P refers to the local average velocity around the point P , i.e.,

U P =
1

N

∑
S

U . (2.29)

In the case of incompressible flow, for a tiny 2D region (S → 0), Γ2(P ) function
has a strong relationship with the rotation rate Ω, and the eigenvalue of the
symmetrical matrix (µ). This relationship shows that if |Γ2| > 2/π, the current
flow is dominant by rotation, and |Ω/µ| > 1. The exact relationship is not
defined when varying the size of the rectangular region S (Graftieaux et al.,
2001). The definition of Γ2 ensures it is Galilean invariance.

2.4.7 Fast Computation of Γ1

To accelerate the computation efficiency when processing a huge volume of
data, Zigunov et al. (2020) introduces the fast computation of Γ1, which is
based on the Graftieaux et al. (2001)’s Γ1 method (see Equation (2.27)). When
analysing the 2D flow and assuming the field lies in the x− and y− horizontal
plane of a Cartesian coordinate system, the unit normal vector n is parallel
to the z− axis and denoted as unit vector z . Thus, by separating the x and y
components of PM (the displacement vector) and UM (the velocity vector),
respectively, Equation (2.27) can be rewritten into the following form:

Γ1(P ) =
1

N

∑
S

(PMxUMy − PMyUMx)

∥ PM ∥ · ∥ UM ∥
, (2.30)

where UMx and UMy correspond to the x and y components of the velocity
vector at the point M . PMx and PMy are the corresponding components of
displacement vectors from P to M . Further, separating the numerator parts
allows the 2D version of Γ1 expressed as the operation of two convolutions:

Γ1(P ) =
1

N

[∑
S

PMx

∥ PM ∥
⊛

UMy

∥ UM ∥
−
∑
S

PMy

∥ PM ∥
⊛

UMx

∥ UM ∥

]
, (2.31)
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where ‘⊛’ denotes the convolution operator. The trigonometric representation
of two convolution kernels is shown below:

PMx

∥ PM ∥
= cos (θPM) ,

PMy

∥ PM ∥
= sin (θPM) . (2.32)

Analogously, velocity vectors have the following geometric representation forms:

UMx

∥ UM ∥
= cos (θUM

) ,
UMy

∥ UM ∥
= sin (θUM

) . (2.33)

Therefore, the 2D trigonometric representation of Γ1 is:

Γ1(P ) =
1

N

[∑
S

cos (θPM) sin (θUM
) −

∑
S

sin (θPM) cos (θUM
)

]
. (2.34)

Thus, the form given in Equation (2.31) is still an analysis of the geometry of
the velocity field in the region S. This form of representation is straightforward,
and current algorithms/libraries of mathematical tools have optimized their
convolution operation efficiently. Figure 2.2 is a graphical diagram of Γ1.

2.4.8 Instantaneous Vorticity Deviation (IVD)

Any subtraction of two vorticity values that sample at the same instance will
erase the constant rotation motion of the coordinate of reference (Haller et al.,
2016). In other words, subtraction between two vorticity values yields ob-
jective quantities, and their spatial derivatives are also objective. Therefore,
Haller et al. (2016) introduces the instantaneous vorticity deviation (IVD)
method to define a vortex region objectively from the vorticity. This method
relates to performing a subtraction between each sampled vorticity (ω) and
their spatial mean of vorticity (ωavg) within a nearby region. The mathemat-
ical form of IVD is below:

IV D(x , t) = |ω(x , t) − ωavg(t)|. (2.35)

In a 2D flow field, the vortex’s center is located at a local IVD maximum,
and the vortex boundary is extracted when the center is enclosed by the outer
closed convex contour of the IVD field (Haller et al., 2016). This closed contour
also relates to particle trajectories, while those flow particles have nearly the
same intrinsic rotational rate (Haller et al., 2016). Therefore, IVD defines the
vortex boundary such that the particles inside the boundary rotate coherently
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Figure 2.2: Graphical interpretation of the integrand of the Γ1

computation as defined by Graftieaux et al. (2001). Courtesy of
Zigunov et al. (2020).
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in an elliptical trajectory. The IVD is convenient and is only needed to deter-
mine the convexity deficiency before the calculation. The convexity deficiency
is defined as the maximum deviation from convexity that a trajectory of those
particles can have. The convexity deficiency is defined in the following form:

ε =
Ac − Ach

Ac

. (2.36)

Here Ac indicates the area enclosed by a closed curve, and the area enclosed
by the corresponding convex hull is given by Ach.

2.4.9 Lagrangian-averaged Vorticity Deviation (LAVD)

Besides the IVD, Haller et al. (2016) also introduced the Lagrangian version
of the IVD, i.e., Lagrangian-averaged vorticity deviation (LAVD), which takes
into account the evolution of the coherent structure by integrating the IVD.
The mathematical expression of the LAVD is below:

LAV Dt
t0(x ) =

∫ t

t0

|ω(x , t) − ωavg(t)|dt. (2.37)

Like the IVD, the LAVD is an objective measurement, and Haller et al. (2016)
has provided further details about it. The detection result depends on the size
of the local region that is used to calculate the ωavg. However, the IVD and the
LAVD may yield false detection in shear flow rotation, while the strong shear
flow region is also characterized by high vorticity. Based on the streamlines of
the displacement vector, Silva et al. (2018) introduced a novel parameter d to
remove the false detection result from the IVD and the LAVD. Notices, the
analysis of Haller et al. (2016) shows that the LAVD requires the flow to be
incompressible.

2.5 Overview of Clustering Algorithms

Advances in observation and storage technology have already assisted in solar
research. Huge-volume data sets have been created and stored on the way of
exploration. With such a massive scale of data, there is an urgent need to
develop a suitable, automatic, efficient, and practical data analysis strategy
for the given data. In machine learning, data analysis deals with predictive
modeling; given the training data generated by a system, the goal is to pre-
dict the behavior of the unseen data. This process is also called learning.
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There are two major categories of learning problems: supervised and unsuper-
vised. In supervised learning, the training data set has been labeled. In other
words, examples of a system’s input (training data) and output (labels) are
provided. The goal is to build a model that approximates this system and is
used to deal with unseen data so that the model’s output is similar to those
example labels. Conversely, unsupervised learning tasks lack labeled data,
requiring a principled approach to discern patterns and clusters within the
data. Data clustering, fundamental to unsupervised learning, involves parti-
tioning data based on similarities, revealing natural groupings, and enhancing
our understanding of underlying structures. This Section will overview several
fundamental clustering techniques and evaluate them in different scenarios.

2.5.1 The K-means Clustering Algorithm

The K-means algorithm, developed by Lloyd (1982), is one of the most fun-
damental clustering techniques that aims to partition a group of data into K
different clusters, and it is required to determine K before the calculation.

Let X = {xi|i = 1, ..., N}, and xi is n-dimensional data; let C = {Cj|j =
1, ..., K} and Cj stand for the jth cluster; for all clusters and each data in Cj,
the K-means algorithm aims to calculate the minimum value of within-cluster
sums of squares (WCSS) defined below

J(C) = min
K∑
j=1

∑
xi∈Cj

∥ xi − µj ∥2, (2.38)

where µj stands for the centroid of Cj. The K-means algorithm is an iterative
calculation. The calculation steps of this algorithm are as follows

1. Initialize cluster centroid of K cluster.

2. Calculate the distance between each data and each centroid.

3. Assign each data to the cluster with the closest centroid.

4. Calculate the average of the data of each cluster and update all cluster
centroid.

5. Iterate steps 2 to 4 until the sum of WCSS does not change significantly
or exceed the maximum number of iterations.

Figure.2.3 shows an example of the K-means partitioning. In panel (a), green
points indicate the data set before partitioning, and two black crosses denote
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two initial cluster centroids. Panel (b) displays the partition result after the
initial clustering. Panel (c) shows an intermediate partition result. The final
result is shown in panel (d).

(a) (b)

(c) (d)

Figure 2.3: Example of the K-means clustering for a 2D dataset
(green) into two clusters (red and blue). The Black cross indicates
cluster centroids. (a) Datas before clustering (b) Initial clustering
result. (c) Intermediate clustering result. (d) Final clustering
result.

The optimal number of clusters can be determined using the elbow point
method. This involves calculating the overall within-cluster sum of squares
(WCSS) for different numbers of clusters (k) and plotting it against k. The
resulting plot typically resembles the shape of an elbow. The optimal k cor-
responds to the point where the slope of the WCSS plot changes significantly,
known as the elbow point. WCSS is a measure used to quantify the varia-
tion of the data within their clusters. A low WCSS value indicates that data
within clusters are compact, while a high value suggests significant variability.
In Chapter 4, we introduce a novel vortex categorizing strategy based on the
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K-means algorithm and apply it to the clustering analysis of solar vortices
behaviour.

2.5.2 Gaussian Mixture Models

Mixture models are a powerful tool for unsupervised clustering. It assumes
that the data results from a combination of different probability distributions.
Let xi represent a data point in dataset X. The mixture model defines the
probability density function (PDF) of xi (that is, f(xi,Θ)) as a linear combi-
nation of a series of unknown distributions, and corresponding coefficients are
weighting these distributions:

f(xi,Θ) =
k∑

p=1

αpfp(xi,Θp), (2.39)

where p is the index of the current probability distribution of xi; fp(·) is the
pth individual PDF of the xi; k is the total number of all individual proba-
bility distributions being used to assume in the calculation; each fp(·) has its
parameter Θp; αp is a weight coefficient corresponding to the fp(·), so that
the overall PDF of xi (characterized by parameter Θ), that is, f(xi,Θ), less
than or equal to 1.

Before clustering, the mixture model is required to make an assumption
about the total number of distributions (k) for the given data and the form
of these distributions (fp(·)). In particular, when the Gaussian distribution
model is being applied as a form of every fp(·), the mixture model becomes
the Gaussian mixture model (GMM). The form of the GMM is shown below

f(xi,Θ) =
k∑

p=1

αpNp(xi, µp, σp), (2.40)

where µp and σp refer to the mean and the standard deviation of the Gaussian
distribution Np(·), respectively.

After determining the form of fp(·), the next step is determining the cor-
responding αp and Θp of each distribution in order to fit the given data best.
In the case of the GMM, the Θp for each fp(·) refer to the µp and the σp. The
mixture models use the maximum-likelihood estimation (MLE) algorithm to
estimate the Θp of the given data. The MLE algorithm calculates the value of
Θ when taking the derivative of the log-likelihood function for Θ and setting
it equal to zero, that is,

∂L(Θ)

∂Θ
= 0, (2.41)
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where the log-likelihood function defined below

L(Θ) =
n∑

i=1

log f(xi,Θ). (2.42)

And n is the total number of observations. The log operation shown here
would simplify the calculation when canceling out the exponential operation
inside the PDF. The optimal solution for the mixture model of the given
data can be computed through an iterative optimization process, that is, the
Expectation-Maximization (EM) algorithm.

Given an initial estimate of the parameters (k, Θ and αp), the EM algo-
rithm begins the iterative calculation with two main procedures, that is, the
E-step and the M-step.

1. E-step: for each data, the algorithm calculates the corresponding poste-
rior probability of component membership of xi in the pth distribution
with the current estimate of Θ, that is, τp(xi,Θ) (see Equation (2.43)).

τp(xi,Θ) =
αpfp(xi,Θp)

f(xi,Θ)
. (2.43)

In the case of the GMM, with the initial αp, µp, and σp, Equation (2.43)
becomes

τ (k)p (xi) =
α
(k)
p Np(xi, µ

(k)
p , σ

(k)
p )

f(xi,Θ(k))
. (2.44)

2. M-step: with the calculated τ
(k)
p (xi) in the E-step, the algorithm up-

dates the weights and parameters, correspondingly (see Equation (2.45),
(2.46), and (2.47)).

α(k+1)
p =

1

n

n∑
i=1

τ (k)p (xi), (2.45)

µ(k+1)
p =

∑n
i=1 xiτ

(k)
p (xi)∑n

i=1 τ
(k)
p (xi)

, (2.46)

Σ(k+1)
p =

∑n
i=1 τ

(k)
p (xi)(xi − µ

(k+1)
p )(xi − µ

(k+1)
p )T∑n

i=1 τ
(k)
p (xi)

, (2.47)

where Σ
(k+1)
p refer to the covariance matrix that contains the correspond-

ing variance of each of the Gaussian models.

The GMM algorithm categorising data by iterating over these two steps
until convergence.
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2.5.3 Density-based Spatial Clustering of Applications
with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
clustering technique introduced by Ester et al. (1996). The most distinctive
feature of this method is its clustering of data according to the local den-
sity of each data point. Therefore, both data clustering in arbitrary shapes
with different densities and noise data can be identified and separated by the
DBSCAN algorithm. Different from the K means algorithm and the GMMs al-
gorithm, the DBSCAN algorithm would specify the optimal number of clusters
automatically during clustering.

Besides clustering data, data are also identified into three categories of
points, that is, core points, border points, and noise points, in the DBSCAN.
These three kinds of points are related to two hyperparameters, that is, epsilon
and minpts. Both are numeric parameters where epsilon is used to specify the
radius of the search region around a point, and minpts is used to specify the
minimum number of neighboring data required for a core point. The definitions
of the three kinds of points are below

1. Core point: a core point in a cluster is surrounded by at least minpts
points, and all these neighboring points are within epsilon of this point.

2. Border point: a border point in a cluster has neighboring points fewer
than minpts within the epsilon of this point.

3. Noise point: A point that does not satisfy the condition of the core point
and border point is a noise point. Such an outlier is not associated with
any cluster.

The clustering procedure of the DBSCAN algorithm is below:

1. Pick the first data (x1) from the whole dataset as the current point and
initialize the first cluster with label C1.

2. Calculate the relationship between the current point and its neighboring
points within epsilon.

(a) If the number of those neighboring points is more than minpts, the
current point is one of the core points of the current cluster.

(b) Otherwise, the current point is regarded as a noise point, and skip
to step 4.
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3. Update the current point by iterating over each neighboring point and
repeat the examination procedure in step 2. Go to the next step once
no new neighboring points are found that can be assigned to the current
cluster.

4. Pick the subsequent fresh data as the current point and create a new
cluster.

5. Iterate steps 2 to 4 until all data have been examined.

Caution: If a noise point later satisfies the condition of the border point of a
cluster. The DBSCAN algorithm would relocate that noise point as a border
point for that cluster.

As described above, the DBSCAN algorithm is required to determine the
value of minpts and epsilon before the calculation. Ester et al. (1996) suggests
an appropriate value of minpts should always be larger than the number of
dimensions of the input data. As for epsilon, Ester et al. (1996) uses the
k-distance graph to estimate the proper value of it. For each data within
the dataset, calculate the average distance between it and the k points near
it; sort the data point according to the average distance; plot the k nearest
average distance as a function of points sorted with that nearest distance. The
graph typically exhibits a ’knee,’ and the corresponding location indicates the
optimal epsilon value.

2.5.4 Silhouette Value Criterion

Rousseeuw (1987) develops the Silhouette method to evaluate the clustering
result when calculating the corresponding Silhouette value of each data of
different clusters. The Silhouette value ranges from -1 to 1, quantifying the
wellness of clustering of the current data; that is, a high value implies data is
well assigned to the current cluster, while a low value implies ill-assignment,
and this data might have a higher silhouette value in other clusters. The
Silhouette value of data i is defined below

Si =
bi − ai

max(ai, bi)
, (2.48)

where ai is defined as the mean distance between data i and the other data
belonging to the same cluster as data i; bi is the minimum value of the mean
distance between data i and other data belonging to different clusters. Besides
measuring the clustering result of each data, the Silhouette value as a function
of the cluster number can be used to determine the optimal cluster number
for other clustering methods.
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2.5.5 Calinski-Harabasz Criterion

Dedicated to evaluating the number of clusters for the given data, Caliński and
Harabasz (1974) introduces the Calinski-Harabasz criterion values to estimate
the optimal number of clusters. The Calinski-Harabasz criterion is also called
the variance ratio criterion (VRC) and is defined as the following form

V RCk =
SSb

SSw

× (N − k)

(k − 1)
, (2.49)

where SSb is the between-cluster sum of squares; SSw is the within-cluster
sum of squares; N is the total number of the data; k is the cluster number.

The between-cluster sum of squares is defined as

SSb =
k∑

i=1

ni ∥ mi −m ∥2, (2.50)

where ni is the number of data belonging to ith cluster; the centroid of the ith

cluster is denoted as mi; m is the total mean of the data; and ∥ · ∥ denote the
L2 norm.

The within-cluster sum of squares is defined as

SSw =
k∑

i=1

∑
x∈Ci

ni ∥ x−mi ∥2, (2.51)

where x refers to a data point; Ci denote the ith cluster.
A well-clustering result is characterized by a large SSb and a small SSw.

Therefore, the highest Calinski-Harabasz value relates to the optimal number
of clusters.

2.5.6 Comparison of Clustering Techniques

This Section provides three examples to illustrate how to select the optimal
clustering technique for the given data. In particular, the three clustering
techniques described above (the K-means algorithm, the GMM algorithm, and
the DBSCAN algorithm) are being applied and compared. Moreover, we use
the Silhouette value criterion and the Calinski-Harabasz criterion to evaluate
the corresponding clustering results.
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Example 1

In Figure 2.4, the example data (blue) is synthesized from four bivariate Gaus-
sian distributions with different means vectors and the same covariance matrix.

The corresponding covariance matrix is Σ =

[
0.3 0
0 0.3

]
. Each distribution

generates 200 data points.

Figure 2.4: Data set 1: synthesis data (blue) generated from four
bivariate Gaussian distributions.

Before applying the three clustering techniques, it is required to determine
some pre-request parameters for different methods. In this example, it is
intuitive to cluster data into four groups without knowing the distributions.
Therefore, we assume the total number of distributions is 4 for the GMM
algorithm; we set the epsilon equal to 1 and the minpts equal to 5 for the
DBSCAN algorithm; for the K-means algorithm, the optimal cluster number
is set equal to 4. With these parameters, the corresponding clustering results
are displayed in Figure 2.5. The left column panels ((a), (c), and (e)) are
the clustering results corresponding to the GMM algorithm, the DBSCAN
algorithm, and the K-means algorithm, respectively. The right columns panels
((b), (d), and (f)) are the corresponding Silhouette values of each clustered
data of the four clusters classified by the three methods. All methods have
successfully clustered data into four groups denoted by four different colors
(see panel (a), (c), and (e)). Most of the clustered data of the four clusters
have high positive Silhouette values, which implies that those data are well
categorized by the corresponding clustering methods (see panel (b), (d), and
(f)). However, the DBSCAN algorithm incorrectly assigns three data points
to noise clusters (purple points in panel (c)). In panel (d), their high negative
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Silhouette values that are near -1 (cluster ”-1” refers to the noise cluster) also
imply they do not belong to the noise cluster. This is because the DBSCAN
algorithm is susceptible to the choice of parameters (epsilon and minpts).
In this example, an inappropriate epsilon is used to check the neighboring
relationship of each data, which makes these three purple points neither satisfy
the condition of the core point nor the border point defined by the DBSCAN
algorithm. Therefore, they clustered into the noise cluster. This issue will be
addressed if a proper epsilon is used.

A comprehensive evaluation is conducted through multiple independent
tests to assess the performance of the three clustering methods on the given
dataset. Figure 2.6 illustrates the mean Silhouette value obtained from 100
independent tests on dataset 1. The blue, red, and yellow data correspond to
the GMM, DBSCAN, and K-means algorithms, respectively.

A lower mean Silhouette value may indicate that some data points are
inaccurately assigned to the wrong cluster. In this example, the DBSCAN al-
gorithm exhibits the most stable clustering membership, consistently yielding
the same mean Silhouette value of 0.986 in all 100 tests. It is crucial to note
that this mean value, although slightly below 1, is influenced by the fact that
the DBSCAN algorithm consistently assigns the same data points as outliers
due to inappropriate parameters, as seen in Figure 2.5 (c) and (d).

The clustering results obtained from the K-means algorithm indicate that
the majority of the mean Silhouette values are high across 100 tests, with only
one instance showing a low value. The GMM algorithm produces a slightly
inferior result compared to the K-means algorithm, with three tests showing a
low mean Silhouette value. These occurrences of low mean Silhouette values
can be attributed to the tendency of the K-means and GMM algorithms to
converge to a local optimum solution. In other words, the initial parameter
estimates (initial centroids for the K-means algorithm; initial Θ and αp for
the GMM algorithm) play a crucial role in influencing the solution result.
Excluding these instances, the mean Silhouette values of the clustering results
obtained from both the K-means and GMM algorithms are greater than 0.99,
surpassing that of the DBSCAN algorithm.

Example 2: Clustering Dense Data

In Figure 2.7, the blue data points represent the example data set 2, which is
generated from four bivariate Gaussian distributions (each of them synthesises
200 data points). The covariance of these distributions is identical to that of
data set 1. Notably, in contrast to data set 1, the means of these distributions
are designed to be closer, making it less intuitive to distinguish them into four
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Three clustering results of data set 1 from the GMM
algorithm, the DBSCAN algorithm, and the K-means algorithm.
(a) the clustering result of the GMM algorithm; (b) the Silhou-
ette plot of the clustered data corresponding to panel (a); (c) the
clustering result of the DBSCAN algorithm; (d) the Silhouette plot
of the clustered data corresponding to panel (c); (e) the cluster-
ing result of the K-means algorithm; (f) the Silhouette plot of the
clustered data corresponding to panel (e);
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Figure 2.6: The mean Silhouette value of the GMM algorithm
(blue), the DBSCAN algorithm (red), and the K-means algorithm
(yellow) in 100 independent tests in data set 1.

clusters. To address this challenging scenario, we applied the three clustering
techniques, i.e., GMM, DBSCAN, and K-means to data set 2 and evaluated
the clustering results.

Figure 2.7: Data set 2: synthesis data (blue) generated from four
bivariate Gaussian distributions.

As noted earlier, the only difference between data sets 1 and 2 lies in the
means of each Gaussian distribution used to generate the data. Given this
similarity, we utilize the same parameters as in example 1 when applying the
clustering techniques to data set 2. The clustering results for the three tech-
niques (GMM, DBSCAN, and K-means) are presented in Figure 2.8, with the
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left column panels illustrating the clustering outcomes and the right column
panels showing the corresponding Silhouette plots. The first row of panels cor-
responds to the application of GMM algorithm. Panel (a) shows data grouped
into 4 clusters as intended, as we specified the initial estimate of the number
of mixture models (k) to be 4. However, the GMM algorithm does not yield a
satisfactory result, as a substantial portion of data in the 4th cluster (yellow)
exhibits a high negative Silhouette value (see panel (b)), indicating that they
are incorrectly assigned.

Moving to the second row of panels (DBSCAN algorithm), it becomes
evident that the DBSCAN produces an unsatisfactory clustering result, almost
failing to cluster data with the specified parameter settings. Although the
corresponding Silhouette plot suggests that most data belong to cluster 1 and
have a positive value, this result contradicts the actual distribution. This
outcome highlights the unsuitability of the DBSCAN algorithm for dense data,
as it struggles to identify clusters in dense regions.

Clustering results of the K-means algorithm are presented in the third row
of panels, yielding the most favorable clustering result, effectively dividing the
data into 4 clusters denoted by distinct colors (see panel (e)). The locations
of the four centroids provided by K-means (black crosses) are only slightly
different from the means of the Gaussian distributions used to generate data
set 2. In panel (f), the distribution of the 4 clusters is uniform, exhibiting
similar Silhouette value behaviors. Low positive Silhouette values imply that
these data points are near the border of their respective clusters. Compared
to panels (b) and (d), the Silhouette plot in panel (f) aligns more closely with
the actual distribution.

Similarly to example 1, we apply the three clustering techniques to data
set 2 and conduct 100 independent tests to evaluate their performance. Figure
2.9 presents the mean Silhouette values from these 100 independent tests for
the three methods, with blue, red, and yellow denoting the GMM, DBSCAN,
and K-means algorithms, respectively. The DBSCAN algorithm consistently
achieves the same Silhouette value (0.74) across the 100 tests, employing the
same parameter settings. While this value is the highest among all clustering
results by different methods, it is worth noting that the DBSCAN algorithm
performs poorly on dense data, and the highest mean Silhouette values may
not accurately reflect its effectiveness. This result suggests that the Silhouette
value criterion might not be suitable for evaluating the DBSCAN algorithm
when applied to dense data.

For the GMM algorithm, the mean Silhouette value (blue) fluctuates with
a relatively large magnitude compared to other methods. This variability
indicates that the GMM algorithm may not be a suitable clustering solution
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Three clustering results of data set 2 from the GMM
algorithm, the DBSCAN algorithm, and the K-means algorithm.
(a) the clustering result of the GMM algorithm; (b) the Silhou-
ette plot of the clustered data corresponding to panel (a); (c) the
clustering result of the DBSCAN algorithm; (d) the Silhouette plot
of the clustered data corresponding to panel (c); (e) the cluster-
ing result of the K-means algorithm; (f) the Silhouette plot of the
clustered data corresponding to panel (e);
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for dense data. Although we expect that the GMM algorithm yields the best
clustering result as the data set 2 generated from four bivariate Gaussian
distributions, the result reflects that the GMM algorithm may fail in clustering
dense data even if they are Gaussian distribution data.

In contrast, the K-means algorithm produces the most favorable clustering
result, with only two tests exhibiting mean Silhouette values below 0.4. This
outcome suggests that the clustering membership provided by the K-means
algorithm remains stable even in dense data sets.

Figure 2.9: The mean Silhouette value of the GMM algorithm
(blue), the DBSCAN algorithm (red), and the K-means algorithm
(yellow) in 100 independent tests in data set 2.

In some scenarios, minimal information might be available about the given
data, making it challenging to estimate the optimal number of clusters for
the data intuitively. Unlike the GMM algorithm and the K-means algorithm,
which require providing initial estimates for the number of mixture models
and clusters, respectively, the DBSCAN algorithm autonomously determines
the number of clusters based on the corresponding parameters. When the data
generation process for data set 2 is unknown, and some unknown information
may be revealed through data categorization into similar groups, a common
question arises: how can unknown data be classified effectively? In other
words, what is the optimal number of clusters for the given data?

Continuing with the dense data set 2, we apply the K-means algorithm with
different cluster numbers and evaluate the corresponding clustering results.
In Figure 2.10 (a), the blue data indicates the mean Silhouette values for
clustering results as a function of different cluster numbers. The highest mean
Silhouette values occur when the cluster numbers are equal to 3. If we solely
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evaluate the K-means with the Silhouette values criterion, the optimal cluster
number for the algorithm in this task would be 3, clustering the data set into
three groups. However, this contradicts that data set 2 is generated from four
distributions.

In Figure 2.10 (b), the blue data represents the within-cluster sum of
squares (WCSS) as a function of cluster numbers, and the red data indicates
the Calinski-Harabasz value as a function of cluster numbers. According to
the elbow points method, the location of the elbow points of the WCSS in-
dicates the optimal choice of the cluster number for the K-means algorithm.
In this case, the blue data decline smoothly along the number of clusters (k)
with no clear elbow points. However, we can still estimate that the elbow
point corresponds to k = 4 or 5. The Calinski-Harabasz criterion considers
both the within-cluster sum of squares (SSw) and the between-cluster sum
of squares (SSb) to evaluate the clustering result. A high Calinski-Harabasz
value suggests that the data are under better clustering than those with low
Calinski-Harabasz values. The highest Calinski-Harabasz value corresponds
to k = 4. Therefore, both the elbow point method and the Calinski-Harabasz
criterion indicate that the optimal number of clusters is 4, which aligns with
the actual data distribution.

(a) (b)

Figure 2.10: (a) Mean Silhouette values as a function of cluster
numbers of the K-means algorithm on data set 2; (b) the blue data
denote the Within-cluster sum of square (WCSS) as a function of
cluster numbers of the K-means algorithm on data set 2. The red
data is the corresponding Calinski-Harabasz value.
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Example 3: Clustering Data in Arbitrary Shapes

In Figure 2.11 (a), data set 3 (depicted in blue) comprises two groups of data
with varying densities arranged in two arbitrary shapes: one group congregates
around the origin of the 2D coordinate, and the other circular data group has
a radius of approximately 5. We apply three clustering algorithms—GMM,
DBSCAN, and K-means—to data set 3. For the GMM and K-means algo-
rithms, we assume a Gaussian mixture with 2 components and set the optimal
cluster number to 2, respectively. For the DBSCAN algorithm, we use the
same parameter setting as in examples 1 and 2. The clustering results corre-
sponding to the three methods are shown in the remaining panels of Figure
2.11: panel (b) for the GMM algorithm, panel (c) for the DBSCAN algorithm,
and panel (d) for the K-means algorithm. Only the DBSCAN algorithm suc-
cessfully identifies the data clusters correctly. Both the GMM and K-means
algorithms fail in the clustering task. For the GMM algorithm, it assumes the
data is related to a range of distribution models. When the data is gathered
in different arbitrary shapes, it is challenging to use a mixture of Gaussian
distribution models to fit it. Therefore, the GMM algorithm is unsuitable
for these scenarios. The K-means algorithm works well on convex data sets,
assuming clusters have spherical shapes. In this case, the circular cluster is
not a convex data set; therefore, the K-means algorithm fails to provide the
expected result.

Summary

In clustering analysis, the K-means algorithm demonstrates efficiency and sim-
plicity, making it suitable for large datasets with well-defined spherical clus-
ters. However, it assumes equally sized and convexed clusters, and its results
are sensitive to initialization. The DBSCAN offers flexibility in identifying
clusters with arbitrary shapes and adapts to varying densities, handling noise
robustly. Nevertheless, the clustering result is sensitive to parameter choices.
In other words, data points may be incorrectly assigned to the noise cluster
with inappropriate parameter choice. The mixture model allows the capture
of clusters with various probability distributions but is sensitive to initializa-
tion and assumes data follows specific probability distributions. For instance,
GMM only assumes clusters within data follow Gaussian distribution. In prac-
tical applications, K-means with optimal cluster numbers performed well on
datasets with convexed clusters, DBSCAN with suitable parameters excelled
in handling noise and arbitrary shapes, and GMM faced challenges on data sets
that are densely collected or non-Gaussian data. In summary, the selection of
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(a) (b)

(c) (d)

Figure 2.11: (a) Data set 3 (blue); (b) the clustering result of
the GMM algorithm; (c) the clustering result of the DBSCAN al-
gorithm; (d) the clustering result of the K-means algorithm;
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the clustering method depends on the characteristics of the data set.



Chapter 3

Advanced Γ-method for
small-scale vortex detection in
the solar atmosphere

3.1 Introduction

In the solar atmosphere, vortical plasma motions are an important part of its
dynamics. They may be responsible for magnetohydrodynamic (MHD) wave
excitation (Schüessler, 1984; Attie et al., 2009; Fedun et al., 2011; Kitiashvili
et al., 2011; Yadav et al., 2022) and the formation of plasma jets (Kitiashvili
et al., 2013; Iijima and Yokoyama, 2017; Snow et al., 2018; Skirvin et al., 2022)
and act as a channel for energy transfer to the solar corona (Wedemeyer-Böhm
et al., 2012; Shelyag et al., 2012; Yadav et al., 2021). To understand the mech-
anism of vortex formation and its role in the plasma processes mentioned
above, the precise automated identification of a vortex structure is essential
(Tziotziou et al., 2023). However, the identification of vortices in solar numeri-
cal and observational data is still a challenge, as there is no universal definition
for vortex motion (e.g., Günther and Theisel, 2018). Numerous identification
approaches have been developed based on distinct definitions of what con-
stitutes a vortex. Initially, investigations of vortical structures in the solar
atmosphere were based on visual inspection of the velocity field (Brandt et al.,
1988; Nordlund, 1985; Attie et al., 2009; Bonet et al., 2010) or detected motion
of magnetic elements (Bonet et al., 2008; Balmaceda et al., 2010). Automated
methodologies for vortex identification in solar physics were only introduced in
the last decade by Moll et al. (2011) when they detected photospheric vortices
using the swirling strength (Zhou et al., 1999), which was also used in posterior
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studies by Yadav et al. (2020) and Canivete Cuissa and Steiner (2020). For
a velocity field U , the swirling strength is based on the velocity field tensor,
D = ∇U , and it determines the vortex as a region where the eigenvalues of
D are complex. Kato and Wedemeyer (2017) introduced a similar criterion,
the vorticity strength, where a vortex region is identified as a local area where
the eigenvalues of D are imaginary. The problem with such methods is that
they provide a swirling region of the velocity field without giving proper infor-
mation on the vortex boundary and centers. Thereby, the analysis of plasma
properties and dynamics across the vortex using such techniques is not precise.

The first study on identification of a well-defined boundary and center
for vortical structures in the solar photosphere was presented by Giagkiozis
et al. (2018), who analysed a quiet Sun region by applying the Γ method
(Graftieaux et al., 2001), which is based on local analysis of velocity vector
field, to CRisp Imaging SpectroPolarimeter (CRISP, Scharmer, 2006; Scharmer
et al., 2008b). Other identification methods that provide the vortex center
and boundary are the Lagrangian averaged vorticity deviation (LAVD) and
its Eulerian version, Instantaneous Vorticity Deviation (IVD), both defined
by Haller et al. (2016). Those methods are based on vorticity and have been
used to analyse vortices from observations (Silva et al., 2018; Chian et al., 2019,
2020) and simulations (Silva et al., 2020, 2021; Aljohani et al., 2022). Silva
et al. (2018) compared the performance of three vortex identification methods.
It was found that LAVD and vorticity strength are prone to false identifications
without an additional requirement, whereas the Γ method may not detect or
provide false detection of some vortex structures. Silva et al. (2018) addressed
these issues by introducing a novel criterion ‘d’ when applying the LAVD and
vorticity strength. This criterion can also be combined with other detection
methods to address the false detection in shear flow.

All the vortex methods briefly described above have their advantages, de-
pending on the goal of the analysis to be performed. Günther and Theisel
(2018) have summarised existing methods according to the reference-frame in-
variance. Noninvariant detection techniques, such as visual inspection of the
velocity field, refer to those methods that are suitable to the situation only
when investigating the steady flow or the flow appears to be steady when
choosing the right reference frame. Besides those noninvariant techniques,
the remaining vortex detection methods are invariant under specific types of
reference-frame motion. The vortex identification technique vorticity/swirling
strength and Γ method are Galilean-invariant. Objective methods like LAVD
or IVD are invariant when the reference frame is undergoing constant rota-
tion and translation motion (see e.g., Günther and Theisel, 2018). Another
approach, that is, the morphological method, which is applicable to the detec-
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tion of chromospheric vortical motions was recently proposed by (Dakanalis
et al., 2021, 2022).

Applying different vortex detection methods to solar data, both observa-
tional and simulation, has provided important information on vortex prop-
erties. By visual inspection of magnetic bright points from G-band images
obtained from the Swedish Solar Telescope, Bonet et al. (2008) found several
plasma vortices with sizes ranging from 0.5 to 2 Mm and lifetimes between 5
and 15 minutes in regions near the downdrafts of intergranular lanes. However,
using magnetic bright points to identify vortices is not precise, as it can also
overestimate the size of vortical structures and may interpret two close-by con-
secutive vortices as the same structure. The study by Giagkiozis et al. (2018)
found an average lifetime of 17 s for intensity vortices detected by Γ method,
and their statistical analysis also indicated the vortices have a diameter of
around 568 km. In MURaM simulations, vortex identification with IVD indi-
cated a longer average lifetime, around 84.7 s, and a diameter approximately
seven times smaller. At supergranular scales, vortices have been detected by
visual inspection (Attie et al., 2009), cork tracking (Requerey et al., 2018)
and LAVD (Chian et al., 2019, 2020). While visual inspection provided sizes
around 15 to 20 Mm, the LAVD identified vortices with a smaller range, 5 to 10
Mm. In all the supergranular analyses, there are persistent vortical structures
that last for a couple of hours.

In this Chapter, we introduce the advanced Γ method (AGM), which is
based on the original Γ method proposed by Graftieaux et al. (2001). By
comparing the Γ method and the AGM, we show that our technique reduces the
influence of threshold choices. The AGM is applied to detect solar vortex in a
simulated solar surface obtained by ‘StellarBox’ (3D radiative MHD code). We
investigate the lifetimes, sizes and dynamics of the velocity field components
of the detected vortices. The new detection method is also applied to CRISP
observational data and compared with the numerical data results.

This Chapter is structured as follows. First, in Section 3.2, we describe the
AGM technique and the algorithm construction. Then, two novel algorithms
dedicated to extracting the proper boundary of vortex structure are introduced
in Section 3.3, that is, the circular sector algorithm (CSA) and the whole-
circular sector algorithm (WCSA). In Section 3.4, we provide detection results
and statistical analysis and compare the performance of the AGM with the Γ
method. Last, the discussion and conclusions are given in Section 3.5.
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3.2 Vortex Identification

3.2.1 Description of Simulation Data

For the numerical modelling we use a 3D radiative MHD code, StellarBox
(see, e.g., Kitiashvili et al., 2012a; Wray et al., 2015), developed for realistic
simulations of the upper convective zone and lower atmosphere. The size of
the simulation area is 6.4 × 6.4 Mm, and it initially had an imposed uniform
vertical magnetic field around 10 G. The simulation has a cadence of 5 s
and the analysed data have a total duration of 625 s. For our investigations,
we used the horizontal velocity field from the simulated solar surface with
a resolution of 12.5 km in x- and y-directions. An example of a simulated
horizontal velocity field snapshot is shown in Figure. 3.1.

3.2.2 Vortex Identification by Γ method

For vortex identification, that is, its center and boundary, Graftieaux et al.
(2001) introduced two dimensionless scalar functions, Γ1 and Γ2, respectively.
It was shown that these two functions are able to detect large-scale vortices in
turbulent flows.

The discrete version of Γ1 at a given point P (within the numerical domain)
can be represented as

Γ1(P ) =
1

N

∑
S

(PM ×UM) · z
∥ PM ∥ · ∥ UM ∥

=
1

N
sin(θM), (3.1)

where N is the number of discretely sampled velocity field points of a 2D area
S centered on P . Point M lies within S, and PM denotes the displacement
vector from point P to M . The variable UM denotes the velocity vectors at
point M , and z is a unit vector normal to the horizontal plane. θM represents
the angle between UM and PM . The || · || notation represents magnitude.

The Γ1 function defined in Equation (3.1) provides a scalar field that quan-
tifies the topology of the flow in the neighboring region of P . At the vortex
center, |Γ1|, the cross-product value PM ×UM has a maximum, leading to
the highest value of |Γ1|. The sign of Γ1 value at the vortex center indicates the
direction of the vortex rotation; that is, negative indicates that the rotation
is clockwise rotation and positive means it is counterclockwise. The vortex
center will have |Γ1| values > 0.9 and = 1.0 in the ideal case when vortex
is axisymmetric. In real turbulent flows, the vortex’s appearance contains a
broad range of irregular shapes. Thereby, we set a threshold for a vortex cen-
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Figure 3.1: A snapshot of the magnetoconvection simulation at
t = 5 s, displaying the simulated solar surface coloured by the
vertical velocity field. The black arrows show the direction of the
horizontal velocity field.
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ter |Γ1| ≥ 0.75. More precisely, a point P will be considered as vortex center
if the |Γ1| value is above 0.75 and if it is a local maxima within the region S.

The function Γ2 considers the contribution of the average local velocity
field around the vortex center. The definition of the discrete version of Γ2 is

Γ2(P ) =
1

N

∑
S

[PM × (UM −U P )] · z
∥ PM ∥ · ∥ UM −U P ∥

. (3.2)

Here, U P is the local average velocity around the point P , that is,

U P =
1

N

∑
S

U . (3.3)

It can be shown that in the case of incompressible flow, for a very small
2D vortex area (S → 0), function Γ2 depends on the antisymmetrical and
symmetrical parts of the velocity gradient ∇U tensor at point P . Locally, the
flow is dominated by rotation if |Ω/µ| > 1, which implies |Γ2| > 2/π. Here, Ω
(the rotation rate) and µ (the eigenvalue) correspond to the antisymmetrical
part and symmetrical part of the ∇U, respectively. It is important to note
that such classification has not yet been defined in the case of a finite region
S (Graftieaux et al., 2001).

3.2.3 Vortex Identification with the Convolution Γ Method

The discrete Γ1 function for the 2D convolution version of the Γ1 method
(hereafter convolution version of Γ1, CGM) is proposed by Zigunov et al.
(2020):

Γ1(P ) =
1

N

[∑
S

PMx

∥ PM ∥
UMy

∥ UM ∥
−
∑
S

PMy

∥ PM ∥
UMx

∥ UM ∥

]
=

1

N

[ PMx

∥ PM ∥
⊛

UMy

∥ UM ∥
− PMy

∥ PM ∥
⊛

UMx

∥ UM ∥

]
, (3.4)

where UMx and UMy correspond to the x- and y- components of the velocity
vector starting from the point M within the rectangular region S. Analogously,
PMx and PMy are the corresponding components of displacement vectors from
the point P to a point M . The potential vortex center P is regarded as the
origin of this coordinate system defined inside S. The variable N is the number
of discrete grid points around the point P within the S region. The ‘⊛’ is the
convolution operator. We can write the first terms in the convolutions in a
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trigonometric representation:

PMx

∥ PM ∥
= cos (θPM) ,

PMy

∥ PM ∥
= sin (θPM) . (3.5)

Thus, the two convolutions in the Equation (3.4) can be represented as multi-
plications of convolution kernels by the sines and cosines of the angles between
the vectors UM and the x axis, i.e., sin(θUM

) and cos(θUM
), respectively (see

Zigunov et al., 2020, for more details). Therefore, this equation can be rewrit-
ten as

Γ1(P ) =
1

N

[∑
S

cos (θPM) sin (θUM
) −

∑
S

sin (θPM) cos (θUM
)

]
. (3.6)

In other words, the form presented in Equation (3.4) is still an analysis on
the geometry of the velocity field in the region S. In fact, Equation (3.6) can
be directly recovered from Equation (3.1) by substituting θM = π − θUM

+
θPM . The practical advantage of the Equation (3.4) is the use of convolution
operations, which enable the use of small convolution kernels within the region
S. It is also important to mention that a small convolution kernel helps to
identify the vortices that are close to each other, which is difficult in the case
of direct use of Γ1 function (see Equation (3.1)).

The full displacement matrix for the x- components of the displacement
vectors PM for a small area—for example, 7×7 points M—within the region
S can be represented as

PMx =



−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3
−3 −2 −1 0 1 2 3


. (3.7)

Each element of this matrix corresponds to the normalized distance between
two discrete points P and each M inside the convolution kernel. The displace-
ment matrix PMy can be represented as PMx

⊺. The general form of PMx,
PMy, and ∥ PM ∥ are shown in Appendix A. The size of these matrices is
(2n + 1) × (2n + 1), where n ∈ Z+.

Based on the Equation (3.2), and similarly to the Equation (3.4), the con-
volution version of Γ2 function can be introduced as the following:

Γ2(P ) =
1

N

[
PMx

∥ PM ∥
⊛

UMy − Upy

∥ UM −U p ∥
− PMy

∥ PM ∥
⊛

UMx − Upx

∥ UM −U p ∥

]
. (3.8)
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Here, Upx and Upy are the x- and y- components of the local average velocity
(U P ) around point P , respectively.

3.2.4 Advanced Γ Method

Based on the convolution Γ method, we derived the advanced Γ method (AGM)
in this Section. In Appendix A, we present the general form of the full dis-
placement matrices for the x- and y-components of the displacement vectors
PM (PMx and PMy). From their structure, we notice that they are rank 1
matrices. This implies that these matrices, for example, PMx and PMy, are
separable. Therefore, they can be represented as

PMx = w 1 ⊗w 2 (3.9)

and

PMy = (w 1 ⊗w 2)
⊺ = w ⊺

2 ⊗w ⊺
1, (3.10)

where w 1 is a column unit vector and w 2 is a row vector. The general form
of w 1 and w 2 of size 2n + 1 can be represented as

w 1 =
[
1 · · · 1 1 1 1 1 · · · 1

]⊺
, (3.11)

w 2 =
[
−n · · · −2 −1 0 1 2 · · · n

]
. (3.12)

By substituting Equations (3.9) and (3.10) into Equation (3.4), Γ1(P ) can be
presented as

Γ1(P ) =
1

N

[
w 1 ⊗w 2

∥ PM ∥
⊛

UMy

∥ UM ∥
− w ⊺

2 ⊗w ⊺
1

∥ PM ∥
⊛

UMx

∥ UM ∥

]
. (3.13)

Then, by taking into account that the outer product w 1⊗w 2 (for the 2D case)
can be replaced by the convolution of these two vectors (see Appendix B), we
arrive at

Γ1(P ) =
1

N

[
w 1 ⊛w 2

∥ PM ∥
⊛

UMy

∥ UM ∥
− w ⊺

2 ⊛w ⊺
1

∥ PM ∥
⊛

UMx

∥ UM ∥

]
. (3.14)

Similarly to the original Γ method, here we consider a small region S, such
that the values of ∥ PM ∥ (at all the points in S) present only minor variations
compared with its mean value. Therefore, ∥ PM ∥ at every point can be
approximated by a given constant value Z1; that is, Z1 replaces the components
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of the matrix ∥ PM ∥ in the region S. This approximation simplifies the
calculations, which is needed for the better performance of computation on
larger data sets. According to the Equation (A.3), one may consider that there
are some difficulties with satisfying this condition, but later on, in Section
3.2.5, it is shown that this approximation provides both valid and accurate
results.

By applying the commutative and associative properties of the convolution
operation, Equation (3.14) can be represented as

Γ1(P, S1) =
1

Z1N1

[(
w 1 ⊛

UMy

∥ UM ∥

)
⊛w 2 −(

w⊺
2 ⊛

UMx

∥ UM ∥

)
⊛w ⊺

1

]
. (3.15)

Here, we define S1 as a subset of S (e.g., S1 ⊂ S) and S1 is a small enough
region to satisfy ∥ PM ∥≈ Z1; N1 is the number of grid points within the
region S1. The use of Equation (3.15) has several advantages. First, as demon-
strated in Section.3.2.5, there is no need to compute ∥ PM ∥. Second, due to
the separation of the convolution kernel, the AGM for the calculation of Γ1 is
computationally faster than CGM (see Equation (3.4)) by ks/2 times, where
ks is the kernel size (see Appendix C for more details). The ks represents the
dimension of the displacement matrix, for example, PMx, PMy. Analogously,
Γ2 can be represented in the following form:

Γ2(P, S2) =
1

Z2N2

[(
w 1 ⊛

UMy − Upy

∥ UM −U p ∥

)
⊛w 2−(

w⊺
2 ⊛

UMx − Upx

∥ UM −U p ∥

)
⊛w⊺

1

]
, (3.16)

where

UP =
1

N2

∑
S2

U

is the local average velocity within region S2 surrounding a point P , N2 is
the number of grid points in the region S2, Z2 is the average of ∥ PM ∥
inside the region SP , and Upx and Upy are the x- and y-components of the Up

defined within region S2, respectively. The Γ method and the CGM use the
same region S for calculating Γ1 and Γ2. However, the velocity values at the
grid points which are close to the corners of the region S do not significantly
influence the true vortex boundary, and, therefore, use of those points in the
average calculation of Up may lead to an unwanted contribution to the Γ2
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calculation. As a result, we apply a different geometry to the subset of the
region S—that is, S2—when calculating Γ2 in the AGM. For a point P in the
domain, the region S2 includes the vortex center, its boundary, and neighboring
regions that truly contribute to the actual value of the local average velocity.

The size of region S1 is defined in such a way that it encompasses only one
vortex at each time. In other words, a set of vortices originally found in region
S will be separated into individual vortices where each vortical structure is
within a region S1. To achieve this, S1 is set to have the same size as its
convolution kernel. Figure 3.2 presents the detection results obtained by the
AGM, using two different single kernel sizes—that is, ks = 3 (blue contours)
and ks = 7 (orange contours)—in a region where multivortices are close to
each other. The AGM with ks = 3 detected five vortex structures, and the
AGM with ks = 7 (orange) only detected two of them. It is also clear that the
center’s locations (indicated by the cross signs) change slightly depending on
the kernel size. This is due to the fact that a larger S1 area, such as the one
for ks = 7, leads to the contribution of irrelevant flow areas when computing
Γ functions, thereby introducing errors.

The boundaries shown in Fig.3.2 are obtained by applying the advanced
Γ2 method to a different region S2. The first step in defining S2 is to consider
S2 = S1; that is, S2 is rectangular and has the same size as the kernel used for
the calculation of Γ1. In this way, we obtain an initial vortex boundary, which
is defined by Γ2. Then, we analysed the velocity points surrounding point P
just outside the initial vortex boundary. To check whether a point M outside
the initial boundary meets the Γ2 criteria, we recalculate Γ2 with the changed
S2 region to encompass the M -point. In other words, we take into account
the M point contribution to the local UP . This procedure is repeated until
the points outside the new boundary do not obey the original Γ2 criteria. The
slightly different shapes for the two vortices identified by the use of ks = 3
and ks = 7 are related to their identified center’s location and corresponding
customized S2 (see Section 3.3 for more details).

3.2.5 The Estimation of the Z Value

In order to compare the detection performance between the AGM and the
CGM, both were applied to the same magnetoconvection simulation data set
(Fig. 3.1). The corresponding values of the Γ1 and Γ2 fields calculated for the
horizontal velocity field are shown in Figure 3.3. To analyse the influence of
Z1 and Z2, first, we calculate the AGM using Z1 = Z2 = 1, and we call the
map of those Γ values the ‘unnormalised’ AGM (see Figure 3.3 (a) and (c), re-
spectively). For comparison, panels (b) and (d) of the same figure display the
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Figure 3.2: Vortex detection by the AGM using different kernel
sizes (ks). The blue contours (cross) indicate the vortex bound-
aries (centers) obtained by applying the AGM with ks = 3. The
orange contours (cross) indicate the vortex boundaries (centers)
obtained by applying the AGM with ks = 7.
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results obtained by the CGM. Both the AGM and CGM were applied using
the same kernel size ks = 11; that is, each separable convolution kernel has
the same size of 11 × 11. Both the AGM and CGM provide the same spatial
distribution of Γ1 and Γ2 functions, differing only in the absolute values. The
CGM provides the same range as the classical Γ method, which is expected
since one can easily recover the original Γ method from CGM functions. The
separation of kernels introduced by the AGM changes the maximum and min-
imum range of its functions if the correct values of Z1 and Z2 are not applied,
but it does not change the Γ functions’ spatial distribution.

Figure 3.4 presents distributions of ratios (i.e., C1 and C2) between the
unnormalised AGM and CGM for Γ1 and Γ2. The mean values of the C1 and
C2 distributions are 4.625 and 4.5, respectively. In other words, the Γ values
detected by the unnormalised AGM are on average µ(Ci) times larger than the
corresponding Γ values detected by the CGM. Therefore, in general, to obtain
the AGM within the same range as the CGM for ks = 11, one should apply
the values obtained for µ(C1) and µ(C2) to Z1, Z2, respectively. The variance
of the C1,2 distributions reflects how good the approximation provided by the
Z1,2 values to the ∥ PM ∥ values; that is, if V ar(C1,2) = 0, Z1,2 is identical to
∥ PM ∥. In Appendix D, we present the same analysis for the case ks = 33.

Figure 3.5 presents a series of mean ratios of C1 (blue squares) and C2

(orange circles) versus the corresponding size of the convolution kernel (ks).
Both dependencies show near-linear behaviour which indicates that the mean
ratio increases with ks.

Based on the analysis performed, we can conclude that Z1 and Z2 can be
chosen to be equal to the mean values of C1 and C2. In other words, such
assumptions will provide the AGM functions within the expected range of -1,
1. Moreover, in cases where the difference between Z1 and Z2 is small enough,
one can set Z1 = Z2, which can simplify the algorithm further. Our results also
indicate that the selection of kernel size will influence the detection efficiency
(see Equation (C.1)) and accuracy. For instance, by comparing Figs. 3.3 and
Figs. D.1, we have found that the small-scale processes are better captured in
Fig. 3.3.

The vortex detection by the AGM can be optimized by using an adaptive
version of the AGM, which is based on a sequence of different kernel sizes, for
example, 3, 5, 7, 9, and 11, and so on. Ideally, the kernel is located at the
center of the potential vortical structure. For small odd-size kernels—that is,
ks = 3—this may lead to nondetection (a failure to detect), and the use of
a sequence of growing kernel sizes increases the chance of detection. This is
illustrated in Figure 3.6(a), where the AGM with ks = 5 detected the vortex
center (blue cross) outside the grid points. The same region would have a
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(a) (b)

(c) (d)

Figure 3.3: The distribution of the Γ functions values obtained
by the AGM ((a), (c)) and CGM ((b), (d)) which were applied to
the photospheric horizontal velocity field, as shown in Figure 3.1.
For both cases, a convolution kernel size ks = 11 was applied. As
here the values of Z1 and Z2 for the AGM were equal to 1, the
AGM was unnormalised.
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Figure 3.4: The distribution of the ratios between the unnor-
malised AGM (Figure 3.3 panels(a) and (c)) and CGM (Figure
3.3 panels(b) and (d)) for Γ1 (C1 is shown in blue) and Γ2 (C2 is
shown in red). For both cases, the convolution kernel is equal to
11.

Figure 3.5: The relationship between the estimated Z values and
convolution kernel size (ks). Blue squares indicate the mean ratios
of C1 and orange circles correspond to the mean ratios of C2. The
black dashed line is the linear regression between them.
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Γ1 value lower than the threshold when applying the AGM with ks = 3, as
illustrated in Figure 3.6(b), where the corresponding Γ1 values of the grid
points surrounding the vortex center are indicated with black dash arrows.
The blue and red dash squares show two kernel domains that can be applied
when calculating the corresponding Γ1 values. When the kernel size increases
to ks = 5, which is depicted in Figure 3.6(c), the Γ1 value is above the threshold
and the vortex center is finally detected.

As discussed above, several kernel sizes may yield values of Γ1 greater
than the threshold; therefore, the result with the maximum value of Γ1 will be
selected to be the detection result. The maximum of the Γ1 value indicates the
most accurate location of the vortex center, as illustrated by Figure 3.2 and 3.6.
As the vortex boundary is influenced by the kernel size (see Figure 3.2), the
final area of the vortex is affected by the choice of the kernel. Therefore, some
statistical features of the vortex, like size and center properties, are affected
as one applies the most appropriate kernel size to describe a given vortex. For
example, larger kernel sizes are better suited to describe vortices presenting
greater areas and the opposite is found for small kernels. Therefore, varying
the kernel size for each vortex, as done by the adaptive AGM, provides us with
better identification and leads to the more accurate statistical results of the
vortex parameters.

3.3 The Circular Sector Algorithm and the

Whole-Circular Sector Algorithm

This Section introduces two boundary detection algorithms dedicated to cal-
culating a more precise boundary for each detected vortex when applying with
the AGM: the circular sector algorithm (CSA) and the whole-circular sector
algorithm (WCSA).

The CSA algorithm is effectively illustrated in Figure 3.7. Initially, the
AGM calculates the initial boundary of an example vortex (depicted in gray
in panel (a)) by setting S1 = S2. The blue cross represents the detected vor-
tex center, while the red cross marks a point on the initial boundary. The
black dashed line denotes the current displacement vector for the red cross.
Subsequently, the CSA systematically reevaluates all velocity points outside
the initial boundary using the boundary criterion and a series of customized
S2. Panel (b) illustrates the outer neighboring points of the current red cross
in yellow, with one highlighted in green to exemplify the corresponding cus-
tomized S2. In the CSA, the customized S2 region comprises two subset parts
within the entire velocity domain. The first part encompasses the velocity field
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(a) (b)

(c)

Figure 3.6: (a) Vortex detected with the adaptive AGM. The
vortex center and boundary are indicated with a blue cross and
contour, respectively. (b) The Γ1 map is detected with ks = 3
of panel (a). The blue and red squares indicate two 3 × 3 kernel
domains that were used to calculate Γ1. (c) The Γ1 map is detected
with ks = 5 of panel (a). The blue and red square indicate two 5
× 5 kernel domains that were used to calculate Γ1.
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surrounding the vortex center (depicted by orange points in panel (c)). The
second part relates to the velocity field near the current displacement vector
(indicated by blue points in panel (d)). Notably, the first subset velocity field
remains constant for all outer candidate velocity points, while the second part
varies for different candidates. Panel (e) provides an example of the second
part (blue) for a different candidate (green). After examining all nearest outer
velocity points of the initial boundary, the CSA proposes a new vortex region
whenever these points satisfy the boundary criteria. In the given example,
the newly identified vortex region is enclosed in magenta in panel (f). Addi-
tionally, a green boundary is proposed based on the magenta one. The CSA
iteratively explores and proposes new vortex regions until no outer velocity
points meet the criterion.

The WCSA follows a procedure analogous to the CSA for calculating the
boundary of a detected vortex. Unlike the CSA, which considers the velocity
field surrounding the vortex center and a customized radial part of the velocity
field (see Figure 3.7(c), (d), and (e)), the WCSA incorporates all velocity points
enclosed by the current boundary. In Figure 3.8, the orange velocity points
enclosed by the initial boundary are taken into account when calculating the Γ2

value for the green point in the WCSA. This calculation involves considering
the contribution of all velocity points to the entire vortex region.

In Figure 3.9, the AGM’s final results using the CSA and the WCSA are
represented by the green and dark red boundaries, respectively. An evident
overestimation issue arises with the CSA, as indicated by the green boundary
enclosing some weak vorticity regions. This issue stems from the CSA’s as-
sumption that the vortex is axisymmetric, where each radial sector velocity
field of each S2 is independently calculated. Consequently, this assumption ne-
glects the constraints and contributions of the entire vortex region. The CSA
performs well under axisymmetric conditions, where the vortex and its outer
velocity field are axisymmetric. However, it may yield improper boundaries
when these conditions are not met. The WCSA, which considers all veloc-
ity points within the vortex region, produces a more conservative boundary,
preventing overestimation issues. Nevertheless, the WCSA tends to extract a
circular or axisymmetric vortex boundary. To address this, we introduce the
combination algorithms using both CSA and WCSA, resulting in the light blue
boundary shown in Figure 3.9. This combination algorithm employs CSA to
calculate the Γ2 value, then computes the Γ2 value using WCSA, comparing
the results. If both Γ2 values are close to each other and exceed the threshold,
the algorithm continues exploring the outer region. However, if the CSA’s Γ2

value significantly exceeds that of the WCSA, the algorithm terminates the
calculation. In Appendix E, we calibrate the algorithm using a vortex with a
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Illustration of the CSA. (a) Initial boundary (gray)
calculated by the AGM when setting S1 = S2. A blue cross indi-
cates the vortex center, and a red cross denotes one point on the
boundary. (b) Neighboring points (yellow and green) of the red
cross. (c) Neighboring points of the vortex center (orange). (d)
Velocity points between the vortex center and the green point. (e)
Velocity points between the vortex center and another green point.
(f) The magenta boundary is proposed based on the initial bound-
ary, and the green boundary is proposed based on the magenta one.
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Figure 3.8: Velocity points (orange) within the initial boundary
(gray) of the same example shown in Figure 3.7.

known boundary.

Figure 3.9: The CSA extracts the green boundary, and the
WCSA extracts the dark red boundary. The light blue boundary is
extracted by the combination algorithm of the CSA and the WCSA.

3.4 Vortex Detection Results and Statistical

Analysis

In this Section, the vortex detection was performed with the use of the AGM
method with a maximum of five different convolution kernel sizes. The candi-
date for a vortex center is located at the center of the kernel, and, therefore,
it is surrounded by an even number of grid points in the x- and y-directions,
which correspond to ks =3, 5, 7, 9, and 11. For convenience, we set Z1 = Z2

(see Section. 3.2.5). For different kernel sizes, the values of Z1 and Z2 were
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set equal to the values of the linear regression function (see Figure 3.5). For
example, for ks = 11, these values correspond to Z1 = Z2 = 4.597. The
threshold of |Γ1| is set equal to 0.75. As in the classical Γ method, a candidate
for a vortex center will be considered a true center if |Γ1| > 0.75 and if |Γ1|
value at that point is larger than in other surrounding grid points. Similarly,
for Γ2, we apply the threshold of 2/π.

3.4.1 Detection Results

The AGM algorithm was applied to the whole simulated photospheric velocity
field (see Figure 3.1), but here we will focus on the detection results of a single
vortex. Figure 3.10 shows the identification obtained by applying the AGM
with ks = 7. In all the panels, the vortex boundary is indicated by a red
curve, and we see that the AGM provides a boundary that aligns well with
the velocity streamlines (shown in blue). Based on the velocity field arrows
(shown in black), it is clear that the vortex center, represented by a red cross,
is also well detected by the AGM. The radial velocity component changes sign
with the flow, as displayed in panel (a), and the tangential velocity component
decreases from the boundary toward the center (see panel (b)). As expected,
the vortex covers the area with the maximum vorticity, panel (c), and the
high value of the angular velocity component, panel (d). In particular, this
vortex is located in a downflow region, panel (e), and in the region of the low
compressible plasma, panel (f).

The averaged (over angular directions) radial and tangential velocity pro-
files as a function of time and radius for the vortex shown in Figure 3.10 are
shown in Figure 3.11(a) and (b), respectively. The vertical axis represents the
distance from the vortex center to the mean maximum vortex radius (green
dashed line), and the horizontal axis indicates the lifetime scale of the vor-
tex. The radial and tangential velocity components show a maximum value
just after the vortex appearance, and then they tend to decrease as the vor-
tical structure disappears. The value of the tangential velocity component is
approximately five times larger than the corresponding radial velocity compo-
nent. Furthermore, the tangential component has larger values closer to the
boundary; that is, plasma decelerates as it approaches the center. This result
is in good agreement with previous results (Silva et al. (2020)) The change
in sign of the radial velocity component close to the average boundary (see
Figure 3.11(a)) indicates that the AGM detection might have slightly overes-
timated the vortex boundary. The AGM identifies vortices at each time frame,
but it does not automatically provide the time evolution of a detected vortical
structure. To analyse the vortex behaviour during its lifetime, it is necessary
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: The vortex number 1 as it was detected by the
AGM using ks = 7 at the moment t = t0. The orange plus sign
indicates the vortex center, and the orange contour depicts the
corresponding boundary. The direction of the horizontal velocity
field is indicated by the streamlines and the arrows in blue. The
background is coloured by (a) the radial velocity component, (b)
the tangential velocity component, (c) the vorticity, (d) the angular
velocity component, (e) the vertical component of the velocity field,
(f) the divergence of the velocity.
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(a) (b)

Figure 3.11: The radial and tangential velocity components (av-
eraged over angular directions) as a function of time and radius
are shown in panels (a) and (b), correspondingly. The vertical
axis indicates the distance from the vortex center to the mean vor-
tex radius calculated at the corresponding time (green dashed line).
The horizontal axis indicates the lifetime scale of the vortex shown
in Figure 3.12.
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to make sure that tracking of the vortex center and the boundary is applied
to the same vortex over a period of time. To satisfy this, it was assumed
that the maximum displacement distance of the vortex center between two
successive frames of this numerical simulation would be 50 km (equivalent to
four pixels of the simulation grid). This strategy is based on Giagkiozis et al.
(2018), where the speed of the vortex center was assumed to be near the speed
of sound in the photosphere (i.e., 10 km/s, given by Nordlund et al., 2009).
Therefore, if in two consecutive frames, a vortex centre is detected within
50 km from another vortex centre in the previous frame, they are the same
vortical structure.

The temporal evolution of the boundary and center of vortex number 1 is
presented in Figure 3.12. The position of the vortex center is mostly oscillating
during its lifetime (i.e. between t0 and t7) around the initial position. This
means that the vortex does not show significant displacement in space. The
boundary tends to shrink close to the end of the vortex lifetime (t7). The
decrease in the vortex area is shown in Figure 3.12(b). The blue and orange
curves depict the area and average radius of the vortex as functions of time,
respectively. An identified average radius around 35-45 km is in accordance
with previous findings for lower photospheric vortices in MURaM magneto-
convection simulations (Silva et al., 2020; Aljohani et al., 2022). The vorticity
and Γ1 as functions of time are shown in Figure 3.12(c). This result can be
explained in the following way. The vorticity does not start at zero, due to
the fact that the velocity field lines start to curl even before the detection by
Γ1. Due to the threshold, the vortex is only considered to start to exist when
its Γ1 is greater than the threshold. Close to the end of its lifetime, there is
a steep decrease in the vorticity magnitude, which starts at t5 = 30 s close to
the vortex decay at t7 = 40 s. As expected, the Γ1 value (orange curve) shows
a similar behavior.

3.4.2 Statistical Results

First, to evaluate how different kernel sizes affect the statistics of the identified
vortices, the AGM with ks = 3, 7 and 11 and the Γ method were applied to the
same simulation data. Figure 3.13 summarizes the obtained results. The green,
yellow, and purple curves correspond to the results of AGM ks = 3, 7, 11,
respectively. The blue curve indicates the instantaneous detection result by
the adaptive AGM. The Γ method identification results are shown in red. All
results show a similar curve trend as a function of time, but they provide a
different number of detections. Among the different ks applied for the AGM,
the lowest average number of vortex detections—that is, on average 51.1 at
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(a) (b)

(c)

Figure 3.12: The time-dependent behaviour of the vortex num-
ber 1, which is shown in Figure 3.10. (a) A series of detected
centers of the vortex (blue plus sign) and its boundaries (orange
contour) are shown for times t0 − t7 from the bottom to the top.
(b) The evolution of the vortex area (blue curve) and mean radius
(orange curve). The error bar shows the maximum and minimum
of the radius at the corresponding time. The dark blue dashed line
indicates the mean area of the vortex. (c) The evolution of the
vorticity at the center of the vortex (blue curve) and the corre-
sponding evolution of Γ1 value (orange curve).
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each time frame—is obtained when using ks = 11, followed by ks = 7, with
95.1 detections and ks = 3, with 124.6. The Γ method presents results similar
to the AGM with ks = 3, with an average detection number of 112.4. The
higher number of detected vortices by the adaptive AGM appears to be due
to the use of different kernel sizes in the same region of interest (ROI). This
makes it possible to detect vortices even if they are very close to each other.
By comparing the total number of detected vortices, it was found that the
Γ method detects only 69.7% of the actual vortical structures in the ROI
compared with the AGM. The AGM ks = 3 identifies 77.3%, while AGM
ks = 7 and AGM ks = 11 identifies 59% and 31.6%, respectively. These
percentage values can be used to provide an estimate of the actual number
of vortical structures present in the photospheric flow and also the number of
nondetections of each method applied.

In total 3390 vortices were identified for a time interval of 625 s by the
adaptive AGM. Most of the detected vortices tend to anchor around a local
region with slight spatial displacement during their lifetime. Figure 3.14(a)
shows the spatial and temporal behaviour of a number of identified vortices
in the ROI. The evolutions of their boundaries and centers are plotted as a
function of time (vertical axis). A zoom-in of the selected area (3×3 Mm) is
shown in Figure 3.14(b). Identified vortical motions have similar behaviours
to vortex number 1 shown in Figsure 3.12; that is, little spatial displacement
in time and a tendency toward boundary shrinking. The majority of the
detected vortices have a lifetime below 50 s, which justifies why it is hard to
see 150 vortices in Figure 3.14. We have only two vortices presenting a lifetime
larger than 200 s, which is in accordance with previous studies, for example,
Giagkiozis et al. (2018) and Silva et al. (2021). From Figure 3.13, it is clear
that the number of instantaneous detections of vortices by the AGM is larger
than the detections by the Γ method, but, at the same time, the lifetimes of
the vortices detected by the AGM are also larger. Therefore, the total number
of vortices detected by the AGM (3390) is not considerably larger than the
number detected by the Γ method (3211).

3.4.3 Comparison of Identification Results Obtained by
the AGM and the Γ Method

In this Section, we compare the vortex detection performance between the
adapted AGM and the Γ method. Figure 3.16 shows the distributions of var-
ious vortex parameters—that is, lifetime, mean area, and diameter—detected
by the adaptive AGM (shown in blue) and the Γ method (shown in red).
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Figure 3.13: The instantaneous number of vortices detected by
the AGM with the use of different kernel sizes: ks = 3 (green),
ks = 7 (yellow), and ks = 11 (purple). The results obtained by
the adaptive AGM (ks = 3, 5, 7, 9, and 11) are shown in blue,
and those by the Γ method are shown in red.

These distributions were obtained by analysing 625 s of numerical data. The
left column panels, that is, Figure 3.16(a), (c), and (e), show the distribution
of counterclockwise vortices, and the right panels (b), (d), and (f) depict the
clockwise direction vortices. The adaptive AGM detected slightly more vor-
tices than the Γ method; that is, 3390 versus 3211, respectively. The ratio
between the counterclockwise and clockwise vortices is nearly 1 : 1: the AGM
identified 1697 counterclockwise and 1693 clockwise; the Γ method detected
1608 counterclockwise and 1603 clockwise vortices. The distributions for the
detected number, lifetime, mean area, and diameter are independent of the
vortex’s direction. There are small differences at the tail of the distributions;
however, these may appear due to the limitations of the size of our time se-
quences and do not represent the real physical properties of the vortices. The
average lifetimes of detected vortices are 29.72 s for the adaptive AGM and
21.82 s for the vortices detected by the Γ method. This difference relies on the
fact that the AGM performs better on the identification of both small- and
large-scale vortices when varying kernel size. As it has been shown, close to its
lifetime, the vortex tends to shrink and a small convolution kernel enables the
AGM to capture this behaviour better than the Γ method. Also, the vortex
may start at a smaller size that is not easy to capture by the Γ method.

The mean area distributions are shown in Figure 3.16(c) and (d), and
they display nearly Gaussian distribution behaviour. The vortex’s mean area
detected by the Γ method is 7.28×103 km2 and the corresponding value given
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Figure 3.14: Time evolution of 150 detected vortices (some of
them are less visible, due to their short lifetimes; see Figure 3.16)
in simulation data. The size of the analysed region is 6.4 Mm
× 6.4 Mm. The vertical axis indicates the time, and the black
arrow indicates the horizontal velocity field at the initial moment
of time. The vortices were detected by the AGM using ks=3,5,7,9
and 11. The orange and the blue contours indicate clockwise and
counterclockwise rotation vortices, respectively. The close view of
the region enclosed by a red rectangle is presented in Figure 3.15.
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Figure 3.15: The close view of the analysed region enclosed by
the red rectangle in Figure 3.14.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Statistical comparison between vortices detected by
the AGM (blue) and the Γ method (red) in numerical data. (a)
Probability Mass function of the lifetimes of detected counterclock-
wise (‘CC’) vortices. (b) Probability Mass function of the lifetimes
of detected clockwise (‘C’) vortices. (c) Probability Mass function
of the mean area of detected counterclockwise (‘CC’) vortices. (d)
Probability Mass function of the mean area of detected clockwise
(‘C’) vortices. (e) Probability Mass function of the mean diameter
of detected counterclockwise (‘CC’) vortices. (f) Probability Mass
function of the mean diameter of detected clockwise (‘C’) vortices.
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by the AGM is 4.67 × 103 km2. On the other hand, the tail distribution
indicates that the AGM has a higher number of defections presenting larger
areas. Another pair of Gaussian-like distributions is obtained for the mean
diameter of the detected vortex, as depicted in Figure 3.16(e) and (f). The
AGM gives a smaller value of the detected vortex’s mean diameter than the Γ
method; that is, AGM, 83.51 km versus Γ, 110.31 km.

The difference in sizes and shapes for vortices detected by the AGM and the
Γ method is illustrated in Figure 3.17, which presents the detections obtained
for a selected time frame, t = 35 s. The color bar indicates the vorticity
scale of the region, and the arrows indicate the direction of the horizontal
velocity. The AGM detection is depicted in blue, and the Γ method vortex
identification is shown in red. We selected three ROIs, that is, R1, R2, and R3,
for comparison. The AGM-detected vortex boundaries were always smoother
than those provided by the Γ method, and most of the AGM detections do not
overlap, even if vortices are near each other. The Γ method exhibits a sparse
detection result within the same region; that is, it has several nondetection
issues when the vortices are too close to each other. Also, the Γ method tends
to overestimate the vortex region compared to the AGM, but it also depends
on the chosen threshold value.

3.4.4 Comparison of Observational Data Analysis with
Numerical Data Results

In order to test the performance of the adaptive AGM method on the high-
resolution observational data, we used the data set from the CRISP instrument
mounted on the Swedish 1-m Solar Telescope (SST, Scharmer et al., 2003b,
2008b). The identification results were compared with the results of the Γ
method applied to the same observational time sequence. The analysed data
were collected between 08:07:24 and 09:05:46 UT on 2012 June 21, with a
resolution 0.”059 per pixel with a mean cadence of 8.25 s. Only part (8.5
× 8.5 Mm) of the whole domain (55” × 55”), with a of duration 2425.5 s,
was selected for analysis. The adaptive AGM detected 1449 vortices within
the ROI, with 709 clockwise and 746 counterclockwise vortices. In contrast,
the Γ method detected 982 vortices (464 clockwise and 518 counterclockwise).
The ratio between the number of vortices with different directions of rotation
(clockwise/counterclockwise) is similar for both methods; that is, 0.95 for the
adaptive AGM and 0.9 for the Γ method. Therefore, the flexibility of utilizing
different kernel sizes in the adaptive AGM when analysing observational data
shows good improvement in the identification of small-scale vortices, especially
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(a) (b)

(c) (d)

Figure 3.17: Comparison of detected results between the adaptive
AGM method and the Γ method. The blue and orange contours in-
dicate vortices detected by using the adaptive AGM and Γ method,
respectively. Blue dots indicate vortices center identified by the
AGM, while orange dots indicate those identified by the Γ method.
The black arrow indicates the horizontal velocity field. Three ROIs
(R1, R2, and R3) were selected to zoom in on and are presented
with the details in (b), (c), and (d). (a) Spatial domain when time
= 35 s. (b) Zoom-in view of region R1. (c) Zoom-in view of region
R2. (d) Zoom-in view of region R3.
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those with weak vorticity, which may be missed by the Γ method. This is sim-
ilar to the results obtained from the analysis of numerical magnetoconvection
simulations (see Section 3.4.3).

The mean lifetime of the vortices detected by both methods is nearly equal,
with 11.79 s for the adaptive AGM and 11.68 s for the Γ method. We also
found that the mean area of the vortices detected by the adaptive AGM (0.164
Mm2) is comparable to the mean area of the vortices detected by the Γ method
(0.2 Mm2). Additionally, the adaptive AGM provided a smaller mean vortex
diameter than the Γ method; that is, 504 km and 540.5 km, respectively (see
Figure 3.18).

Comparison of Figure 3.16 and 3.18 shows that the ability of the adaptive
AGM to detect smaller- and larger-scale vortices is preserved even in the case
of the more irregularly shaped vortices. Although the observation data have a
lower resolution (42.75 × 42.75 km2) compared with the numerical data (12.5
× 12.5 km2), the mean lifetime of the vortices found by both methods is rather
similar. The observed vortex lifetimes are most likely longer since crucial
parts of the vortex lifetimes (the beginning and end) are missed by the lower
resolution. A key difference found between the results of the numerical and
observational analysis is that the number of detected vortices in CRISP data is
around 12 times smaller than that obtained from the ‘StellarBox’ simulations
(see Figure 3.13 and 3.19). This is in accordance with the difference in the
spatial resolution, as the resolution of the simulation data is approximately
12 times higher than that of the observational data. Figure 3.20 shows the
identified vortices in the observational data at t = 231 s. The Zoom-in views
of the three selected regions, namely, R1, R2, and R3, are shown in panels (b),
(c), and (d). The adaptive AGM provided more precise vortex detection and
showed better performance in comparison with the Γ method in regions with
weak vorticity (see Figure 3.20 (d)).

3.5 Conclusions

In this work, we have presented a new and improved method for vortex identi-
fication, based on the previously proposed Γ method (Graftieaux et al. (2001)).
The CGM (Zigunov et al., 2020) was extended to provide Γ2 functions, and the
CGM was used to develop the AGM. We have proved that the CGM is mathe-
matically the same as the Γ method and that the AGM provides similar maps
to the CGM. The advantage of using the AGM relies on choices of kernel sizes,
which allows the detection of vortices at both small and large scales. Moreover,
the adaptive AGM, which uses different kernel sizes for identification, provides
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(c) (d)

(e) (f)

Figure 3.18: Statistical comparison between vortices detected by
the adaptive AGM (blue) and the Γ method (red) in observational
data. Three results are shown: lifetime probability mass function
of the detected counterclockwise (‘CC’) (a) and clockwise (‘C’)
(b) vortices; Mean area probability mass function of the detected
counterclockwise (‘CC’) (c) and clockwise (‘C’) (d) vortices; and
mean diameter probability mass function of the detected counter-
clockwise (‘CC’) (e) and clockwise (‘C’) (f) vortices.
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Figure 3.19: The instantaneous number of vortices detected in
the observational data (CRISP) by the adaptive AGM and the Γ
method. The results obtained by the adaptive AGM with kernel
sizes ks = 3, 5, 7, 9, and 11 are shown in blue, and those obtained
by the Γ method are shown in red.

a smoother and more accurate vortex center and a smoother boundary and is
more successful at preventing nondetections. For better identification results,
the Γ method requires the customized tuning of parameters separately; that
is, for small- and large-scale vortices. Hence, this method is onerous and may
lead to overfitting for a specific vortex. Since the AGM is better suited to
detecting both small-scale and large-scale vortex behavior, the values of the
mean area and diameter given by the AGM are more reliable. Note that the
adaptive AGM algorithm selects the optimal vortex profiles and produces the
most accurate results but is more computationally expensive. Although AGM
limits the nondetections caused by threshold choices, there are still limitations
on the detections caused by the application of the threshold. More precisely,
to be considered as a vortex center, the grid point should present a minimum
curl of velocity field lines, and this may lead to the nondetection of weak vor-
tices. Another issue is that it is based on the Γ method, which was developed
for divergence-free flows, and therefore the AGM may not work as well in
compressible plasma. However, both Giagkiozis et al. (2018) and our results
indicate that the Γ method and the AGM perform well in the flow conditions
found in the solar atmosphere.

Using the adaptive AGM, we detected and analysed vortices from a nu-
merically simulated photosphere obtained using the 3D radiative MHD code
‘StellarBox’ (see e.g., Kitiashvili et al., 2012a; Wray et al., 2015). We found
that the vortical structures had a size, a mean radius of about 41.75 km, which
was similar to previous vortex studies based on MURaM simulation (Silva
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(a) (b)

(c) (d)

Figure 3.20: Results of vortex detection by the adaptive AGM
and the Γ methods. Both methods were applied to observational
(CRISP) data at t = 231 s (a). The blue and red contours in-
dicate vortices detected by the adaptive AGM and the Γ methods,
respectively. The detected vortex centers from both methods are
shown in blue and red colors as well. The black arrows indicate
the horizontal velocity field. Three ROIs (R1, R2, and R3) are
selected to zoom in on and are presented in panels (b), (c), and
(d).
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et al., 2020; Aljohani et al., 2022). Therefore, our results suggest that the
different vortex detection methods were comparable in calculating the average
vortex size. However, the tail distribution of the mean radius indicates that
the Γ method and the AGM lead to considerable differences in the maximum
size of vortices detected in the photosphere. Another discrepancy was found
for the average lifetimes, as the adaptive AGM indicated an average lifetime
that was much shorter than the one found using IVD in MURaM data (Silva
et al., 2021). Those differences may be due to distinct definitions proposed for
vortices by different methods, as well as the particularities of the simulation
configurations. For instance, Giagkiozis et al. (2018) applied the Γ method to
an observational data set and found the average lifetime of detected vortices
to be around 17 s, whereas applying the same methodology to ‘StellarBox’
data, we found 21 s. However, in all the studies there is a general tendency
toward most of the vortices being short-lived, regardless of the type of data
set or identification methodology.

To further assess the adaptive AGM’s detection ability, we applied the
method to selected observational data obtained from CRISP instrument, found
on the Swedish 1-m Solar Telescope (Scharmer et al., 2003b, 2008b). The AGM
and Γ methods were applied to the same observational data set, and statistical
results were compared to the previously obtained numerical results. It was
found that the adaptive AGM extracted more vortices than the Γ method
and was more capable of capturing both smaller- and larger-scale vortices.
Both methods obtained comparable vortex sizes: the adaptive AGM, 0.164
Mm2 versus the Γ method, 0.2 Mm2. The adaptive AGM found a smaller
mean diameter than that calculated by the Γ method, in accordance with the
results from numerical data. Also, the adaptive AGM was able to detect both
smaller- and larger-scale vortices, as indicated by the tails of the distributions
in Figure 3.18, reproducing similar results to the numerical data. Therefore,
the adaptive AGM works for the identification of realistic irregular vortices.
The ratio of average lifetimes calculated by both methods was nearly equal
to 1; however, compared with the corresponding statistical analysis with the
numerical data, we found that the mean lifetime of detected vortices in the
observational data is smaller than that in numerical data. Moreover, the
instantaneous vortex detection rate in the observational data is smaller than
that in the numerical data. The reason behind this is that the resolution of the
observational data used for comparison is 12 times smaller than the numerical
simulation data resolution and does not involve any limitations of the adaptive
AGM.

The vortices extracted by the AGM tend to have an oval boundary with
a vortex core located near the center of the vortical structure. By analysing
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vortex properties, the mean tangential velocity component is larger than the
corresponding radial velocity component, and the magnitude of the tangential
velocity component increases when the component is further from the vortex
center. This result is consistent with the previous finding by Silva et al. (2020).
By tracking vortices detected by the AGM over a period of time, we found that
the size of the vortical structure ceases to exist. The vorticity at the center
of the vortex is not constant, oscillating as a function of time and steeply de-
caying close to the end of the vortex lifetime. Therefore, vortices exhibiting
a fast vorticity decay are likely to be at the end of their lives. The velocity
components, radial and tangential, also display a distinct radial profile at the
beginning and the end of the life of a vortex. In particular, both components
tend to decrease around the vortex center as the vortical structure is decay-
ing. In summary, the developed adaptive AGM is able to precisely capture a
number of essential aspects of the vortex geometry and dynamics. Therefore,
the proposed automated algorithm can be used to recover crucial information
on photospheric vortices and statistical results. In the era of high-resolution
observational data—for example, DKIST (Rast et al., 2021), the European So-
lar Telescope (EST, Quintero Noda et al., 2022), and SULIS (Scullion et al.,
2022)—we expect that the proposed algorithm and methodology will provide
the necessary accuracy for the photospheric vortices detection.



Chapter 4

Vortex categorising for
small-scale vortex in the solar
atmosphere

4.1 Introduction

Solar vortices are dynamic and swirling structures that play a crucial role in
shaping the complex dynamics of the solar atmosphere. They contribute to
the magnetohydrodynamic (MHD) waves excitation (Schüessler, 1984; Attie
et al., 2009; Fedun et al., 2011; Kitiashvili et al., 2011; Yadav et al., 2022) and
plasma jets excitation (Kitiashvili et al., 2013; Iijima and Yokoyama, 2017;
Snow et al., 2018; Skirvin et al., 2022) . Solar vortices also act as dynamic
channels for energy transfer (Wedemeyer-Böhm et al., 2012; Shelyag et al.,
2012; Yadav et al., 2021). These vortical motions extend across various scales
and are found in different regions of the solar atmosphere. At smaller scales,
short-lived vortices are believed to be abundant, although their direct obser-
vation remains challenging due to limitations in spatial resolution (Kato and
Wedemeyer, 2017; Giagkiozis et al., 2018; Liu et al., 2019; Yadav et al., 2020).
G-band observations from the Swedish Solar Telescope (SST; Scharmer et al.,
2003a) have provided valuable insights, revealing the existence of swirling mo-
tions around the intergranular lane, characterized by sizes of approximately
500 km and lifetimes with an average lifetime of about 5 minutes (Bonet et al.,
2008). On a larger scale (15 - 20 Mm), long-lasting (1-2 h) vortex flows at su-
pergranular junctions have been identified through observations obtained from
the Solar Optical Telescope/Filtergraph (SOT/FG) equipped on the Hinode
satellite (Attie et al., 2009). Chromospheric observations using instruments
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like the CRisp Imaging Spectro-Polarimeter (CRISP) at the SST have further
unveiled the presence of chromospheric swirls, presenting a diverse array of
vortices with scales ranging from 1.5 - 4 Mm and lasting for 5 - 10 minutes
(Wedemeyer-Böhm et al., 2012).

With advances in the observation of solar vortices, the volume of observed
vortice structures continues to increase. With such a large scale of data, there
is an urgent need to develop an automatic, efficient, and practical analysis
strategy for the observed solar vortices. In Chapter 3, we developed an ef-
fective vortex identification algorithm, the advanced Γ method (AGM). The
adaptive version of the AGM is applied to identify and analyse the photo-
spheric vortices in 3D realistic magnetoconvection numerical and observational
data. We compare the detection result with the Γ Method. As a result, the
AGM performs better on the vortex detection rate and extracts more accurate
boundary profiles for each detected vortex. In other words, the AGM better
captures the properties and time-dependent dynamic behavior of vortices.

Clustering analysis is fundamental in data analysis, particularly when data
has no label. This analytical technique involves clustering data points with
similar characteristics into clusters, revealing underlying patterns and struc-
tures within complex datasets. The importance of clustering analysis lies in
its ability to discover hidden relationships and categorise intricate phenomena
systematically. In the context of solar vortex studies, where vast and dynamic
datasets are standard, clustering offers a method to categorise vortices based
on shared features. This categorisation facilitates a clearer understanding of
the diverse behaviors of solar vortices and enables researchers to identify com-
monalities and variations among different vortex groups. By unveiling inherent
structures and patterns, clustering analysis enhances the efficiency of data in-
terpretation, allowing researchers to go deeper into the investigation of solar
vortices. Ultimately, the application of clustering in vortex studies contributes
to a more informed and targeted exploration of these complex solar phenom-
ena, advancing our comprehension of their roles and behaviors within the solar
atmosphere.

Fundamental clustering techniques, such as the K-means algorithm (Lloyd,
1982), the Gaussian mixture models (GMM), and the density-based spatial
clustering of applications with noise (DBSCAN, Ester et al., 1996), are widely
applied in clustering analysis. The K-means algorithm is a centroid-based
method that partitions data into K clusters by minimizing the total squared
distances between data points and their assigned cluster centroids. While
computationally efficient, the algorithm may be sensitive to the initialisation
of cluster centroid and is limited in handling non-convex clusters. The GMM
assumes that data points are generated from a mixture of Gaussian distribu-
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tions, allowing for more flexible cluster shapes. However, the GMM requires
estimating parameters, making it sensitive to initialization and susceptible to
convergence to local optima. The DBSCAN, a density-based method, identifies
clusters based on data point density, making it robust against noise and capa-
ble of discovering clusters of arbitrary shapes. Nevertheless, the DBSCAN may
struggle with varying densities and require careful parameter tuning. In sum-
mary, these clustering techniques have different advantages and limitations,
and their suitability depends on the data’s characteristics and the analysis’s
goals. In Section 2.5.6, we have applied these clustering techniques to different
datasets and evaluated their performance in various scenarios.

Inspired by the clustering analysis, we present the discrete Fréchet distance
vortex visualisation method (DFDVVM) as an innovative approach dedicated
to quantifying the specific time-dependent behaviour of solar vortices, mainly
focusing on their vorticity evolution. Additionally, we introduce a vortex cat-
egorisation algorithm based on the K-means method to analyse solar vortices
systematically. The solar vortices under examination are simulated by the Stel-
larbox (a 3D radiative MHD code), and the adaptive AGM identified them.
This Chapter is organized as follows: Section 4.2 provides a detailed descrip-
tion of the discrete Fréchet distance vortex visualization method (DFDVVM).
Subsequently, Section 4.3 presents the vortex categorisation method based on
the K-means algorithm and applies it to solar vortices. The clustering results
are thoroughly discussed in this Section. Finally, Section 4.4 concludes this
Chapter, summarizing the essential findings and implications.

4.2 Methodology

4.2.1 Description of Simulation data

In Chapter 3, we applied the adaptive advanced Γ method (AGM) to a horizon-
tal velocity field of the solar surface simulated by the StellarBox, a 3D radiative
magnetohydrodynamic numerical modeling code, (see, e.g., Kitiashvili et al.,
2012a; Wray et al., 2015). As a result, 3390 vortical structures were identified.
The size of the simulated velocity field is 6.4 × 6.4 Mm, and the resolution in
the horizontal directions is 12.5 km. The cadence of the simulation data is 5 s,
and the duration of the simulation data is 625 s. The AGM has recorded the
properties, such as the evolution of vorticity, diameter, and area of each de-
tected vortex during its lifetime. An example of the time-dependent behavior
of a detected vortex is shown in Figure 3.12. By investigating the evolution
of vorticity profiles of each detected vortex, we find out that vortex exhibit
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different vorticity patterns. In this Chapter, we perform cluster analysis on
the vorticity behavior of those simulated solar vortices identified by the AGM
in Chapter 3.

4.2.2 The K-means Algorithm

In this Chapter, we applied the K-means clustering technique to classify spe-
cific time-dependent behavior, that is, the evolution of vorticity of the detected
vortex. Lloyd (1982) introduced the K-means algorithm dedicated to parti-
tioning a data group while assigning each observation into K clusters.

In the K-means algorithm, let X represent an n-dimensional data set, and
the size of the data set is N, that is, X = {xi|i = 1, ..., N}; let C = {Cj|j =
1, ..., K} stands for the K clusters in the algorithm and the jth cluster is de-
noted by Cj. The objective of the K-means algorithm is to optimize the
within-cluster sums of squares (WCSS) while allocating data into K clusters.
The objective function of the K-means algorithm is defined below

J(C) = min
K∑
j=1

∑
xi∈Cj

∥ xi − µj ∥2, (4.1)

where the centroid of Cj is denoted by µj. The K-means algorithm optimizes
the corresponding clustering results through an iterative procedure. The iter-
ative process is below:

1. Initialize K cluster centroids.

2. Compute the pairwise distance between each observation and each cen-
troid.

3. Allocate each observation to the cluster with the nearest centroid.

4. Compute the means of the observations within each cluster and update
all cluster centroids.

5. Repeat steps 2 to 4 until the clustering membership stays mostly the
same or exceeds the maximum number of iterations.

The K-means algorithm requires determining the objective cluster number
before the calculation. The common ways to determine the optimal number
of clusters are the elbow point method, the Silhouette value criterion, and the
Calinski-Harabasz criterion.
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The Elbow Point Method

The K-means algorithm optimises the clustering result while minimizing the
overall WCSS value. Therefore, the value of the WCSS will continue to de-
crease during clustering. The elbow point method refers to tracking the value
of the WCSS as a function of the cluster numbers. The plot of the function
would exhibit an elbow shape. The location of the elbow point relates to the
optimal cluster number.

Silhouette Value Criterion

The Silhouette value criterion, introduced by Rousseeuw (1987), is used to
evaluate the clustering result when computing the silhouette value of each
observation. The definition of the Silhouette value is below

Si =
bi − ai

max(ai, bi)
, (4.2)

where ai is the average distance between data i and the other data within the
same cluster; bi is the minimum value of the average distance between data i
and other data from different clusters. The range of the Silhouette Value is
between -1 and 1. A high positive value implies that the current data are well
allocated. In contrast, a low negative value implies improper data clustering,
which might belong to another cluster. Therefore, the Silhouette value can
be used to determine the optimal cluster number of the given data set. The
optimal cluster number corresponds to most data having a positive Silhouette
value.

Calinski-Harabasz Criterion

The Calinski-Harabasz criterion, or the variance ratio criterion (VRC), is de-
veloped by Caliński and Harabasz (1974) and is utilized to assess the optimal
number of clusters for a given dataset. The Calinski-Harabasz criterion is
defined as follows:

V RCk =
SSb

SSw

× (N − k)

(k − 1)
, (4.3)

where SSb refers to the between-cluster sum of squares and SSw refers to the
within-cluster sum of squares; N is the total number of the observations; k is
the number of clusters.

The definition of between-cluster sum of squares in VRC is

SSb =
k∑

i=1

ni ∥ mi −m ∥2, (4.4)
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where ni is the number of data within ith cluster; mi denote the centroid of the
ith cluster; m denote the total mean of the data. The SSb is used to evaluate
whether cluster and cluster are well split. A larger value of it indicates clusters
are well separated.

The definition of within-cluster sum of squares in VRC is

SSw =
k∑

i=1

∑
x∈Ci

ni ∥ x−mi ∥2, (4.5)

where x refers to a observation; Ci represent the ith cluster. The SSw is used
to quantify the data variation within their clusters. A low SSw implies that
clusters are compact. In contrast, a high SSw implies that the data set is
diverse.

From Equation (4.3), we know that both the SSw and SSb have been taken
into account for evaluating the clustering result. A result with a large SSb and
a small SSw indicates well-clustering. Therefore, the optimal cluster number
of given data is related to the highest Calinski-Harabasz value.

4.2.3 The Fréchet Distance

The Fréchet distance is designed by Fréchet (1906) and applied to calculate
the similarity between two curves. The following intuitive example is most
often used to explain the concept: A man is walking with his dog while they
walk along two different paths; their walking speed may vary, and moving
back is not allowed. The minimum length of any dog leash during their walk
is defined as the Fréchet distance between them.

Let P and Q denote two polygon curves; the formal definition of Fréchet
distance between these curves is expressed as follows:

δF (P,Q) = inf
α,β

max
t∈[0,1]

∥ P (α(t)) −Q(β(t)) ∥, (4.6)

where α(t) and β(t) represent non-decreasing functions with respect to t. The
initial point of P is denoted as α(0), and α(1) signifies its corresponding end-
point. Similarly, β(0) and β(1) denote Q’s starting point and endpoint, re-
spectively. In the definition of the Fréchet distance, the concept of similarity
between two curves incorporates the evolution of their respective points as
functions of t.

Continuing with P and Q, two sequences of points are used to represent
the endpoints on the two curves. Sequence σ(P ) = (u1, u2, · · · , up) denotes
each endpoint of P , where the start point of P is u1 and the endpoint is
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up. Similarly, sequence σ(Q) = (v1, v2, · · · , vq) represents each endpoint of Q,
where the start point of Q is v1 and the endpoint is vq. In addition to these two
sequences, a new sequence, coupling L, is defined to represent specific distinct
pairs between σ(P ) and σ(Q).

(ua1 , vb1), (ua2 , vb2), · · · , (uam , vbm).

where ua1 and vb1 corresponds to u1 and v1, respectively; uam and vbm corre-
sponds to up and vq, respectively. Moreover, for all i = 1, · · · , p, ai+1 = ai or
ai+1 = ai + 1; for all i = 1, · · · , q, bi+1 = bi or bi+1 = bi + 1. Therefore, the
order of the points in σ(P ) and σ(Q) has been considered. The length of the
coupling L is defined as the length of the longest link among all distinct pairs
shown in L:

∥ L ∥= max
i=1,··· ,m

d(uai , vbi), (4.7)

where d(uai , vbi) represent the Euclidean distance between point uai and vbi .
Therefore, the discrete Fréchet distance between P and Q is:

δdF (P,Q) = min {∥ L ∥,L is a coupling between P and Q} . (4.8)

To compute the discrete Fréchet distance, Eiter and Mannila (1994) de-
velop a simple and highly efficient algorithm, that is, the algorithm dF, to
do the calculation. The pseudocode of the algorithm dF is provided in Ap-
pendix F. Furthermore, Appendix G presents a detailed example to illustrate
the calculation procedure of the discrete Fréchet distance when applying the
algorithm dF.

In summary, the Fréchet distance between P and Q, the corresponding dis-
crete Fréchet distance, and the function dF are interconnected in the following
manner:

δF (P,Q) approximated by δdF (P,Q) = dF(P,Q). (4.9)

The discrete Fréchet distance exhibits the following properties: suppose P
and Q represent two discrete polygonal sequences. If δdF (P,Q) = 0, it implies
that P is identical to Q. In this context, we employ the discrete Fréchet
distance to measure the difference in the vorticity evolution of each identified
vortex.

4.2.4 The Discrete Fréchet Distance Vortex Visualiza-
tion Method

In this Section, we present a novel method for vortex analysis known as
the discrete Fréchet distance vortex visualization method (DFDVVM). The
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DFDVVM utilizes the discrete Fréchet distance as a metric to quantify dis-
tinctions in the time-dependent behavior, specifically focusing on the evolution
of vorticity of detected vortices. This method facilitates the visualization of
differences between solar vortices, contributing to a more comprehensive ex-
ploration of their characteristics.

A series of essential preprocessing steps are undertaken to ensure robust
analysis before applying the discrete Fréchet distance to measure the differ-
ence in the vorticity pattern between vortices. Firstly, an approximation step
involves fitting a polynomial curve to approximate the vorticity evolution,
preserving the vortex’s underlying trend. The vorticity as a function of time
of an example clockwise vortex is presented in Figure 4.1(a). The lifetime
of this vortex is 65 s. The blue data indicate the vorticity evolution of the
example vortex, and the yellow data is the corresponding polynomial curve
fitting. Subsequently, a normalization step accounts for the diverse temporal
scales observed in solar vortices, ensuring consistency across different scales
and directions by rescaling lifetime and vorticity to the range [0, 1]. Lastly,
a sampling step finalizes the preparation, where discrete points are uniformly
sampled from the normalized data, concisely representing the vorticity pattern.
Each set of normalized data is sampled with 21 discrete points, as exemplified
in Figure 4.1(b). This systematic approach ensures a robust and uniform basis
for measuring and comparing vorticity patterns across varied temporal scales
and directions.

(a) (b)

Figure 4.1: (a) The vorticity evolution at the center of an exam-
ple clockwise vortex (blue curve) and the corresponding polynomial
curve-fitting (yellow dashed curve). (b) The normalized vorticity
evolution corresponds to panel (a).
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The choice of the discrete Fréchet distance as the metric for comparing two
vorticity data series is based on the consideration that the order of points in
the discrete data series is introduced into the calculation. This unique prop-
erty of the discrete Fréchet distance holds particular significance in capturing
the intricate temporal evolution process of solar vortices. In the DFDVVM,
three artificial vorticity evolution data series are introduced for comparison,
as depicted in Figure 4.2. The purple data represent a vortex with a stable
vorticity evolution, the red data correspond to a vortex with an increasing
vorticity evolution, and the yellow data illustrate a vortex with a decreasing
vorticity evolution. Each artificial data series is treated as a distinct dimen-
sion in the DFDVVM analysis. These three dimensions measure the discrete
Fréchet distances between processed vorticity data and these three artificial
data series, respectively. For instance, the discrete Fréchet distance between
processed vorticity data and the purple data is treated as one of the three
dimensions. Therefore, these three dimensions focus on measuring the overall
vorticity evolution of the vorticity data.

Recognizing that vorticity behavior may vary across different time inter-
vals, we further divide each discrete sampling series into seven groups, each
containing three consecutive discrete sampling points. For clarity, in Figure
4.2, black dashed lines indicate the division of discrete sampling series. Dis-
crete Fréchet distances between processed vorticity data and those three data
series are then calculated in these corresponding small time intervals, respec-
tively. For example, one of those calculations is to compute the discrete Fréchet
distance between the first three consecutive discrete sampling points of a vor-
ticity data series and the purple data’s first three consecutive discrete sampling
points. These segment calculations result in additional measurements, and the
DFDVVM treats these measurements as additional dimensions. Notably, dif-
ferent from the first three dimensions, these additional dimensions emphasize
measuring different local vorticity evolution of the vorticity data. Therefore,
there have 21 additional dimensions.

Combining the 21 additional dimensions described above with the initial
three dimensions, the DFDVVM operates in a 24-dimensional space, termed
the DFD space, to comprehensively describe the differences in each vortic-
ity evolution data series. This sophisticated strategy facilitates an in-depth
investigation into vorticity variations across temporal scales, enhancing the
method’s capability to capture intricate patterns in solar vortices.

The adaptive AGM has identified 3390 vortices in the simulation data;
1365 of those vortices have a lifetime below 10 s, while the cadence of the
simulation data is 5 s. The DFDVVM requires the analysed vortices to have a
lifetime at least longer than twice the cadence of the simulation data. There-
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Figure 4.2: Three artificial normalized discrete vorticity evolu-
tion data series. The purple data represent a vortex exhibiting a
stable vorticity evolution in its lifetime. The red data represent a
vortex with an increasing vorticity evolution in its lifetime. The
yellow data represents a vortex with a decreasing vorticity evolu-
tion in its lifetime. The black dashed lines show that each vorticity
data is separated into seven groups with three sampling points.
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fore, only the remaining 2025 vortices fulfill this requirement. Utilizing the 24
dimensions described previously, the DFDVVM calculates the position of each
vortex in the DFD space. Figure 4.3 illustrates a 3D subspace of the DFD
space, with Axis 1, Axis 2, and Axis 3 representing the discrete Fréchet dis-
tances between the vorticity evolution of the detected vortex and the purple,
yellow, and red data from Figure 4.2, respectively. In this subspace, each green
point signifies the unique vorticity evolution of an individual vortex, while the
purple, yellow, and red points correspond to the artificial vorticity evolution
patterns. The blue point corresponds to the clockwise vortex shown in Figure
4.1. Vortices with similar vorticity patterns are positioned closer in the DFD
space. By selecting specific dimensions, the DFDVVM provides an intuitive
and compact visualization of the differences in vorticity behavior across vari-
ous temporal and spatial scales. Thus, the DFDVVM offers an effective means
of visually exploring the distinctions in vorticity behavior among vortices of
different temporal and spatial scales.

4.3 The Vortex Clustering Results and Statis-

tical Analysis

To analyse the vorticity pattern of detected vortices and categorise them, we
employ the K-means algorithm to cluster each vorticity pattern measured in
the DFD space by the DFDVVM. The reason for clustering with the K-means
algorithm is that the given data are relatively uniform distributed and posi-
tioned close to each other in the DFD space (see Figure 4.3); it is not intuitive
to identify the difference in density of the distributed data or assume whether
mixtures Gaussian models govern the distribution of clusters within the data
set; as a result, clustering methods, such as the density base method (e.g., DB-
SCAN) and mixture models method (e.g., GMM) fail to distinguish different
pattern or identify similar pattern into a same cluster; moreover, density based
method and mixture models method might yield different clustering result for
the given data in each independent test; therefore, the K-means algorithm is
applied as the location of each vortex in the DFD space corresponds to their
difference between each other.



CHAPTER 4. 98

(a) (b)

(c) (d)

Figure 4.3: The spatial distribution of vorticity evolution (green
points) of detected vortices in the first three dimensions of the
DFD space. Axis 1, Axis 2, and Axis 3 are the three dimensions
that calculate the discrete Fréchet distance between the vorticity
evolution of the detected vortex and the purple, yellow, and red
data shown in Figure 4.2, correspondingly. The purple, yellow,
and red points correspond to the purple, yellow, and red data in
Figure 4.2, respectively. The blue point corresponds to the example
clockwise vortex shown in Figure 4.1.
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4.3.1 The Determination of the Optimal Cluster Num-
ber

The first step in applying the K-means algorithm is determining the optimal
cluster number (k) for the given data. To achieve this, we employ the elbow
point method, the Silhouette value criterion, and the Calinski-Harabasz crite-
rion to evaluate the clustering result of different cluster numbers and determine
the optimal one with the best result. Figure 4.4 shows the within-cluster sum
of square (WCSS) as a function of cluster numbers (k). The elbow plot shows
that the elbow point is located around k = 5, which implies that the optimal
choice of the cluster number of the given data is around k = 5.

Figure 4.5 and Figure 4.6 display the mean Silhouette value and the Calinski-
Harabasz value of 100 independent tests of the K-means algorithm with dif-
ferent cluster numbers (k). The blue, red, green, and purple data correspond
to k = 4, 5, 6, and 7, respectively. Figure 4.5 shows the red data (k = 5)
consistently demonstrated the highest and most stable mean Silhouette value
(around 0.46) over 100 independent tests, indicating robust cluster assign-
ments and stable memberships. In contrast, the mean Silhouette values for
k = 4, 6, and 7 were smaller, exhibiting more significant fluctuations (see blue,
green, and purple data in Figure 4.5). Therefore, the Silhouette value criterion
suggests that the optimal cluster number for the given data is k = 5.

In Figure 4.6, all data shows a stable Calinski-Harabasz value in this 100
test. The red data (k = 5) have a smaller Calinski-Harabasz value than the
blue data (k = 4). Both have a more considerable Calinski-Harabasz value
than green (k = 6) and purple (k = 7) data. As noted before, the Calinski-
Harabasz criterion suggests that the optimal cluster number of the given data
corresponds to the highest Calinski-Harabasz value. Therefore, the Calinski-
Harabasz criterion suggested that k = 4 or 5 is a suitable choice for the cluster
number, with a slight preference for k = 4. Although the Calinski-Harabasz
criterion suggested k = 4, the overall stability of cluster membership, lower
WCSS value, and elbow point at k = 5 led us to select k = 5 as the optimal
cluster number for obtaining stable and meaningful clustering results.

4.3.2 The Vortex Clustering Results

In this Section, we employ the K-means algorithm with a cluster number (k)
of 5 to analyse the vorticity evolution data of each detected vortex measured
by the DFDVVM. As previously explained, the DFDVVM quantifies the vor-
ticity evolution of each vortex in a 24-dimensional space (DFD space). Similar
to Figure 4.3, Figure 4.7 displays a three-dimensional subspace of the DFD
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Figure 4.4: The within-cluster sum of square (WCSS) as a func-
tion of cluster numbers of the K-means algorithm.

Figure 4.5: The mean Silhouette value of the K-means algorithm
with different number of clusters (k) in 100 independent tests.
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Figure 4.6: The Calinski-Harabasz value of the K-means algo-
rithm with different numbers of clusters (k) in 100 independent
tests.

space, where these three dimensions correspond to the first three dimensions
of the DFD space. Each point in this space represents an individual vortex’s
vorticity evolution, and five distinct colors are used to indicate the clusters
suggested by the K-means algorithm. The black crosses within each cluster
signify the centroids calculated by the algorithm, representing the average vor-
ticity pattern of those clusters. Figure 4.8 presents these distinctive average
vorticity patterns in associated color. Vortices in cluster 1 (blue) demonstrate
a declining vorticity evolution throughout their lifetime. In contrast, cluster
2 (yellow) vortices exhibit an increasing vorticity behavior. The green cluster
(cluster 3) displays a vorticity pattern with two phases: an initial increase
peaking around 70% of their lifetime, followed by a decrease in the remaining
30%. Similarly, cluster 4 (red) vortices exhibit increasing vorticity in the first
35% of their lifetime, with a subsequent decrease in the remaining 65%. Fi-
nally, vortices in cluster 5 (purple) show a relatively stable vorticity behavior
characterized by slight fluctuations throughout their lifetime.

In Figure 4.9, we plot the corresponding Silhouette value of the vorticity
evolution of each detected vortex. The black dashed line indicates the mean
Silhouette value (0.4618) of the overall data. According to the Silhouette value
criterion, data with high positive values implies that they are near the current
cluster centroid, and this value corresponds to the data allocation quality.
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(a) (b)

(c) (d)

Figure 4.7: The clustering result of detected vortices’ vorticity
evolution (points) in the first three dimensions of the DFD space.
Axis 1, Axis 2, and Axis 3 are the three dimensions that calcu-
late the discrete Fréchet distance between the vorticity evolution
of the detected vortex and the purple, yellow, and red data shown
in Figure 4.2, correspondingly. Five colors are used to denote the
five clusters: cluster 1 (blue), cluster 2 (yellow), cluster 3 (green),
cluster 4 (red), and cluster 5 (purple). The black crosses within
each cluster denote the corresponding cluster centroid.
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Figure 4.8: The five average vorticity patterns that are suggested
by the K-means algorithm. The blue, yellow, green, red, and purple
data corresponds to clusters 1, 2, 3, 4, and 5 shown in Figure 4.7,
respectively.

Most data have a positive Silhouette value higher than 0.45, implying the K-
means algorithm with k = 5 allocates them well. Vortices allocated in clusters
1 and 2 have no negative Silhouette value, implying their allocation is not
ambiguous. In contrast, some vortices in clusters 3, 4, and 5 exhibit slight
negative Silhouette values, suggesting that these specific vorticity patterns are
positioned near the border regions of their respective clusters. This proximity
results in a subtle overlap with neighboring clusters. In other words, there is
some degree of proximity between those vorticity patterns, and the magnitude
of the Silhouette value quantifies this proximity. In Figure 4.7, clusters 3, 4,
and 5 are situated next to each other, with a minor overlap region. The width
of each cluster in the Silhouette plot reflects the quantity of data assigned to
those clusters. Interestingly, clusters 1 and 2, while having a similar quantity
of data, exhibit larger widths compared to clusters 3, 4, and 5.

Examining the widths of the clusters in the Silhouette plot provides addi-
tional insights into the data distribution. Notably, the varying widths of the
clusters in the Silhouette plot (Figure 4.9) provide insights into differences in
data distribution within each cluster. Despite having a similar quantity of data
and nearly no negative Silhouette value, clusters 1 and 2 exhibit larger widths
than clusters 3, 4, and 5. This difference in the widths of each cluster and the
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Silhouette value may indicate variations in the internal relation of vorticity
patterns within these clusters. In other words, vortices within clusters 1 and
2 have less variation in the vorticity pattern than clusters 3, 4, and 5.

Figure 4.9: The Silhouette plot of the five clusters. Cluster 1, 2,
3, 4, and 5 corresponds to the blue, yellow, green, red, and purple
clusters shown in Figure 4.7, respectively. The black dashed line
indicates the overall data’s average Silhouette value (0.4618).

4.3.3 Statistical Results

This Section presents the statistical results of five clusters suggested by the
clustering algorithm. Figure 4.10, 4.11, 4.12 shows the distributions of various
vortices parameters of the five clusters, including lifetime, mean area, and
mean diameter. Here, two colors were used to indicate the direction of the
vortex: blue for counterclockwise (CC) and orange for clockwise(C).

Table 4.1 summarizes the parameters of each cluster, revealing a nearly
1:1 ratio between counterclockwise and clockwise vortices in every cluster.
Notably, Clusters 1 (blue) and 2 (yellow) exhibit the highest quantity of vor-
tices, each comprising around 500 vortices. Similarly, Clusters 3 (green) and
4 (red) contain approximately 360 vortices each, while Cluster 5 (purple) has
the fewest vortices at 288. These quantities align with the widths of the cor-
responding clusters observed in the Silhouette plot (see Figure 4.9).
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The distributions of lifetime, mean area, and mean diameter are indepen-
dent of the vortex’s direction. An interesting observation is that the average
vorticity evolution of Clusters 1 and 2 exhibits mirror symmetry about x =
0.5, as does the evolution of Clusters 3 and 4 (see Figure 4.8). These pairwise
clusters also have similar numbers of vortices. Specifically, the mean lifetimes
of Clusters 1 and 2 are 34.1 s and 39.1 s, respectively, while Clusters 3 and 4
have longer mean lifetimes at 48.2 s and 45.1 s, respectively. Cluster 5 has the
most considerable mean lifetime, reaching 65.2 s.

Cluster 1 2 3 4 5

Number of counterclockwise 249 259 163 185 151
Number of clockwise 241 272 184 184 137

Mean lifetime [s] 34.1 39.1 48.2 45.4 65.2
Mean area [km2] 4733 4989 5164 4932 5376

Mean diameter [km] 83.74 86.11 86.78 85.47 87.55

Table 4.1: Physicial properties of five different clusters

The mean area distributions of the five clusters exhibit a near Gaussian
distribution (see Figure 4.11). Cluster 1 has the smallest mean area among the
five clusters, measuring 4.73×103 km2. Clusters 2, 3, and 4 have similar mean
areas, and they are larger than those of cluster 1, with values of 4.89 × 103

km2, 5.64 × 103 km2, and 4.93 × 103 km2, respectively. Cluster 5 has the
largest mean area, 5.37 × 103 km2. The mean diameter distributions of the
five clusters also exhibit a Gaussian-like pattern (see Figure 4.12). All clusters
present mean diameters in close proximity: 83.74 km (Cluster 1), 86.11 km
(Cluster 2), 86.78 km (Cluster 3), 85.47 km (Cluster 4), and 87.55 km (Cluster
5).

The instantaneous number of vortices for each cluster is depicted in Figure
4.13. The blue, yellow, green, red, and purple data correspond to Clusters
1, 2, 3, 4, and 5, respectively. The purple data indicates that Cluster 5 has
the highest average number of vortex detections, averaging 34.5 at each time
frame. Cluster 2 closely follows with 32.1 detections. Clusters 1 and 4 show
similar detection rates, with 27.64 versus 26.1 detections, respectively. Cluster
3 exhibits the lowest average number of vortex detections, with 24.7 detections.
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(a) (b)

(c) (d)

(e)

Figure 4.10: Probability Mass function of lifetime of detected
vortices of different clusters. The blue indicates a counterclockwise
direction (CC), and the orange indicates a clockwise direction (C).
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(a) (b)

(c) (d)

(e)

Figure 4.11: Probability Mass function of mean area of detected
vortices of different clusters. The blue indicates a counterclockwise
direction (CC), and the orange indicates a clockwise direction (C).
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(a) (b)

(c) (d)

(e)

Figure 4.12: Probability Mass function of mean diameter of de-
tected vortices of different clusters. The blue indicates a coun-
terclockwise direction (CC), and the orange indicates a clockwise
direction (C).
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Figure 4.13: The instantaneous number of vortices of the five
clusters.

4.4 Conclusion

In this study, we explored the complex domain of solar vortex dynamics, em-
ploying innovative methodologies to investigate the time-dependent behaviors
of vortices simulated by ’StellarBox.’ The discrete Fréchet distance vortex
visualization method (DFDVVM) emerged as a powerful tool, providing a de-
tailed comprehension of vorticity evolution in a 24-dimensional space (the DFD
space). The DFDVVM not only measures variations in the vorticity patterns
of solar vortices but also offers an intuitive visualization of these differences in
selected dimensions.

The vortex categorising strategy, featuring the application of the K-means
algorithm, has demonstrated its capability to organize vortices into meaningful
clusters. In this Chapter, the vortex categorising algorithm is applied to cluster
solar vortices processed by the DFDVVM. The careful evaluation of clustering
results, considering the elbow point method, Silhouette value criterion, and
Calinski-Harabasz criterion, led us to the optimal cluster number of k = 5. This
categorisation revealed distinct clusters with varying quantities of vortices,
summarizing the five most representative vorticity patterns.

The statistical analyses of these clusters provided insights into key param-
eters, including lifetime, mean area, and mean diameter. The average vortic-
ity evolution of clusters that exhibit mirror symmetry to each other added a
unique layer to our findings.

The DFDVVM, combined with the K-means-based vortex categorising
strategy, opens new avenues for comprehending solar vortices observed in vari-
ous temporal and spatial scales. Our approaches provide a practical framework
for researchers in the field, offering unique insights into the relations and vari-
ations between and within vortex clusters.
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In conclusion, our study contributes innovative methods and meaningful
perspective to analysing solar vortex dynamics. The richness of information
extracted by the DFDVVM and the categorising achieved through vortex clus-
tering pave the way for a deeper understanding of these fascinating solar phe-
nomena, advancing the frontier of solar vortice research.



Chapter 5

Conclusions

5.1 Overview of thesis

This thesis is devoted to developing practical and effective analysis methods
that assist in investigating solar vortices. Chapter 1 introduced the background
of solar vortices, including the observation of solar vortices, reviews of possible
formation mechanisms, solar vortices’ role in the solar atmosphere, and related
analysis.

In Chapter 2, we first reviewed the fundamental properties and principles of
differential on which most vortex identification techniques depend. Then, we
reviewed several famous vortex identification techniques. We also discussed
essential clustering techniques and evaluated their performance in different
scenarios.

Chapter 3 introduced a highly efficient and practical vortex identification
method, the advanced Γ method based on the Γ method. Additionally, two
novel vortex boundary extraction techniques were proposed: the circular sector
algorithm and the whole-circular sector algorithm.

In Chapter 4, we extend our analysis methods further by proposing the
discrete Fréchet distance vortex visualisation method (DFDVVM) and apply-
ing clustering techniques to explore the vorticity evolution of detected vortices
in the DFD space.
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5.2 Summary of results

5.2.1 Summary of Chapter 3

In Section 3.2, the advanced Γ method (AGM) is developed and applied to
identify solar vortices in both simulation and observational data. Using a se-
ries of different kernel sizes, the adaptive AGM provides better identification
of the vortices structures than the Γ method and prevents nondetection of
the vortex as much as possible. Section 3.3 introduced the circular sector al-
gorithm (CSA) and the whole-circular sector algorithm (WCSA). These two
algorithms are devoted to extracting a smooth and accurate boundary of vor-
tice structures. The vortex boundary proposed by the CSA and the WCSA
is much more accurate since they only consider the regions responsible for a
vortex boundary. Therefore, vortex behavior detected by the adaptive AGM
is more reliable than those detected by the Γ method. The AGM is applied to
detect and analyse the dynamics behavior of vortices simulated by the Stellar-
Box, a 3D radiative MHD code, and the result is discussed in Section 3.4. In
particular, an individual vortex’s detection is discussed, and the overall sta-
tistical result obtained by the two methods, i.e., the adaptive AGM and the
Γ method, is compared. It shows that the adaptive AGM has detected more
vortices than the Γ method, and the lifetime recorded by the adaptive AGM is
slightly longer than the Γ method. Both identification methods show vortices
tend to be short-lifetime, which is consistent with other previous simulation
research(such as vortex analysis based on MURaM simulation(e.g., Silva et al.
(2020); Aljohani et al. (2022))). Moreover, we also analysed observational
data obtained from CRISP, and the result of the analysis is compared with
the simulation data.

5.2.2 Summary of Chapter 4

In Section 4.2, we introduced the discrete Fréchet distance vortex visualisa-
tion method (DFDVVM). It is a novel approach dedicated to quantifying the
vorticity patterns of detected solar vortices in the DFD space (a designed
24-dimensional space). In this Chapter, we analyse solar vortices simulated
by Stellabox, previously identified by the adaptive AGM in Chapter 3. The
DFDVVM is applied to these detected vortices, revealing that the method
systematically captures the vorticity characteristics of each vortex in the DFD
space. Furthermore, the spatial distribution of vortices in the DFD space cor-
relates with the differences in their vorticity patterns. In Section 4.3, a vortex
clustering algorithm inspired by K-means clustering was introduced to group
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solar vortices based on their vorticity patterns. This algorithm was subse-
quently applied to the solar vortices processed by the DFDVVM. At first, we
systematically evaluated the clustering results with different numbers to de-
termine the optimal clustering number for the given data, ensuring robust and
meaningful categorization. Then, we applied the algorithm with the optimal
cluster number to cluster detected vortices. Our result shows that the vortex
clustering algorithm has effectively categorized vortices with similar vorticity
characteristics into the same clusters. The outcomes of this categorization
are summarized, including the average vorticity patterns for each cluster and
corresponding statistical results. These analysis methods enhance our com-
prehension of the time-dependent behaviors of solar vortices, and they are
expected to contribute valuable insights into the complex dynamics of these
phenomena.

5.3 Future work

The research of this thesis is dedicated to developing practical and efficient
analysis techniques that assist in the identification of solar vortices and the
investigation of their properties. The investigation presented in the thesis is
the first step toward the goal and far away from the objective. Therefore, this
research can be extended in the following directions in the future:

In Chapter 3, the advanced Γ method (AGM) is presented and applied to
extract the contour of the solar vortex in simulation and observational data.
As a result, the method has detected most of the vortex compared to the
original Γ method. Each vortex boundary extracted by the method aligned well
with the streamline, i.e., the AGM method can accurately capture the vortex
geometry and dynamics. The next step is to apply the AGM to high-resolution
observational data obtained from DKIST, EST, and other instruments. As
noted, the nondetection issue is prevented when utilizing the AGM, and the
vortex boundary is much more accurate; therefore, future work is also related
to utilizing the mighty computing power of deep learning and neural networks
with label data provided by the AGM.

In Chapter 4, the discrete Fréchet distance vortex visualisation method
(DFDVVM) and the vortex clustering algorithm were presented and applied
to those simulated solar vortices identified by the AGM in chapter 3. In par-
ticular, these two algorithms have shown their powerful capability to measure
solar vortices, categorize them into different groups, and summarize the cor-
responding dynamic patterns of each cluster. In this thesis, the DFDVVM
quantifies the vorticity pattern of detected vortices in the DFD space. The
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future work is related to further developing the DFDVVM, which considers
other essential properties of solar vortices and finds a new way to represent
the solar vortices.
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Appendix A

The General Format of the
Convolution Kernels

PMx =



−n · · · −2 −1 0 1 2 · · · n
...

...
...

−n · · · −2 −1 0 1 2 · · · n
−n · · · −2 −1 0 1 2 · · · n
−n · · · −2 −1 0 1 2 · · · n
−n · · · −2 −1 0 1 2 · · · n
−n · · · −2 −1 0 1 2 · · · n

...
...

...
−n · · · −2 −1 0 1 2 · · · n


, (A.1)

PMy =



−n · · · −n −n −n −n −n · · · −n
...

...
...

−2 · · · −2 −2 −2 1 2 · · · −2
−1 · · · −1 −1 −1 1 −1 · · · −1
0 · · · 0 0 0 0 0 · · · 0
1 · · · 1 1 1 1 1 · · · 1
2 · · · 2 2 2 2 2 · · · 2
...

...
...

n · · · n n n n n · · · n


, (A.2)
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∥ PM ∥=
√

(PMx).2 + (PMy).2

=



√
2n2 · · ·
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n2 + 12 n
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2n2

...
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...√
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5 2

√
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2 1

√
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√
2 · · ·

√
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√
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√
5 2

√
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√
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...
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...√
2n2 · · ·

√
n2 + 12 n

√
n2 + 12 · · ·

√
2n2


, (A.3)

where n ∈ Z+.



Appendix B

Proof of Separable Convolution
Kernel

If h(m,n) is a matrix of size m × n and its rank is equal to 1, then matrix h
can be represented as the outer product of two vectors, w 1(m, 1) and w 2(1, n)
as

h(m,n) = w 1(m, 1) ⊗w 2(1, n), (B.1)

where w 1(m, 1) is a column vector of size m× 1 and w 2(1, n) is a row vector
of size 1 × n.

(a)

Figure B.1: The outer product between column vector a and row
vector b.

Gonzalez et al. (2004) have shown that the outer product a⊗b can be rep-
resented as convolution a⊛b (’padded’ convolution operation). The graphical
explanation of this is presented in Figures B.1 and B.2. Here, a and b are
column and row vectors of size 5, respectively. Figure B.1 shows the result of
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the outer product between a and b; that is, a matrix of 5 × 5 elements. The
convolution procedure is detailed in Figure B.2(a)–(d), where the operation
performed in this example is referred to as the ‘padded convolution’. The first
step of this operation is to rotate the row vector b by 180◦ and perform mul-
tiplication sequentially between the rotated row vector and the first element
of the column vector to compute each element in the first row of the output
matrix; see Figure B.2(a). Then, the same procedure is applied between the
rotated row vector b and the column vector a ’s second element (Figure B.2(b))
to compute the second row of the output matrix. This procedure continues
until the last element of the column vector (Figure B.2(c)). Figure B.2(d)
shows the result of the convolution.
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(a)

(b)

(c)

(d)

Figure B.2: Convolution between column vector a and row vec-
tor b. (a) The output of the first row of the convolution between
column vector a and row vector b. (b) The output of the second
row of the convolution between column vector a and row vector b.
(c) The output of the fifth row of the convolution between column
vector a and row vector b. (d) The output of the convolution be-
tween a and b.



Appendix C

Computational Cost

When applying the convolution operation between a matrix of size M × N
and a separable convolution kernel of size m × n, the result will require ap-
proximately M ×N ×m× n multiplications and additions without using the
kernel’s separability. If the separability of the kernel is being applied—that is,
the above kernel is being decomposed into a column vector of size m× 1 and
a row vector of size 1 × n - then the calculation will have two steps. The first
step is applying the convolution between the matrix and the column vector,
and the corresponding multiplications and additions are about M × N × m.
The second step will perform the convolution between the output result of the
first step (the output size of the first step remains M×N) and the row vector.
The second step will have M × N × n multiplications and additions. Thus,
the total multiplications and additions of the calculation when applying the
kernel’s separability will be MN(m+n). When m = n, the convolution kernel
is square. By comparing the computational complexity between the direct and
the separable convolution, the estimated computational advantage is

MNmn

MN(m + n)
=

mn

(m + n)
=

m

2
. (C.1)

This ratio means that the AGM Γ1 is expected to be m
2

times faster than the
CGM Γ1 in each convolution operation between the velocity domain and each
separable kernel.
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Unnomalized AGM versus
CGM (ks = 33)

Figure D.1 displays a set of Γ value intensity maps when applying the AGM on
the simulation data shown in Figure 3.1, and the corresponding kernel size is
set equal to 33. In Figure 3.3, panels in the left column correspond to the un-
normalized AGM; panels in the right column correspond to the CGM. Figure
D.2 displays the corresponding distributions of ratios between the unnormal-
ized AGM and CGM when using ks = 33. The mean values of C1 (shown in
blue) and C2 (shown in red) are 13.63 and 13.15, respectively. The variance
of C1 (shown in blue) and C2 (shown in red) is 8.97 and 9.13, respectively.
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(a) (b)

(c) (d)

Figure D.1: The distributions of the Γ functions values obtained
by the AGM ((a) and (c)) and CGM ((b) and (d)) that were ap-
plied to the photospheric horizontal velocity field are shown in Fig-
ure 3.1. For both cases, a convolution kernel size ks = 33 was
applied. As here, the values of Z1 and Z2 for the AGM were equal
to 1, and the AGM was unnormalised.
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Figure D.2: The distribution of the ratios between the unnor-
malized AGM (Figure D.1(a) and (c)) and CGM (Figure D.1 (b)
and (d)) for Γ1 (C1 is shown in blue) and Γ2 (C2 is shown in red).
For both cases the convolution kernel is equal to 33.



Appendix E

The Calibration of the CSA and
the WCSA

In this Appendix, we calibrate the CSA and WCSA using a vortex with a
known boundary. Figure E.1 displays a horizontal velocity field with five
axisymmetric vortices, each having a diameter of 13 pixels. The colormap
represents vorticity. The blue contour and the blue cross denote the central
vortex’s boundary and center, respectively. The only difference among these
vortices lies in their rotation—the central vortex is counterclockwise, and the
four peripheral vortices are clockwise. The AGM employs various odd kernel
sizes (ranging from ks = 3 to 31 pixels) to calculate the center and boundary
of the central vortex.

Figure E.2 illustrates the corresponding Γ1 values of the vortex center of
the central vortex based on different kernel sizes. For an axisymmetric vor-
tex, the Γ1 value of the center is 1 (indicated by the blue line), and the black
dashed line indicates the Γ1 threshold (0.75). The red curve depicts the Γ1

values calculated by the AGM for different kernel sizes. Initially, the Γ1 value
increases with the kernel size, peaking at 0.9906 with ks = 13 pixels. Subse-
quently, the Γ1 value decreases with further increases in kernel size. Notably,
all calculated Γ1 values are below 1 because the square kernel domain is not
axisymmetry in all directions.

Figure E.3 displays the Γ1 value map for four different kernel sizes (5, 13,
21, 27) of the velocity field. In each panel, the black square indicates the
kernel domain used to calculate the Γ1 value at the vortex center. Panel (a)
illustrates an example with the entire kernel domain within the vortex region.
Panel (b) depicts a kernel domain (13 pixels × 13 pixels) comparable to the
actual size of the vortex region. In this case, the calculated Γ1 value is closest
to 1. However, it remains below 1 because the square kernel domain introduces
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Figure E.1: Horizontal velocity field (black arrows) of five ax-
isymmetric vortices. The central vortex’s center and boundary are
indicated by the blue cross and blue contour, respectively.

Figure E.2: Γ1 value at the center of the central vortex as a
function of kernel sizes. The blue line indicates the axisymmetric
vortex’s actual Γ1 value at the center. The red curve indicates the
Γ1 value calculated by the AGM with different kernel sizes. The
black dashed line indicates the threshold of the Γ1 function.
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velocity field points at the four corners, which are outside the vortex region.
Panels (c) and (d) show results when the corresponding ks is larger than the
vortex region, implying that the kernel domain includes peripheral velocity
points (bias) outside the actual boundary during calculation. Consequently,
these panels’ Γ1 value is less than 1. When the kernel domain is significantly
larger than the vortex region (see panel (d)), the adaptive AGM may fail in
detection (ks = 27 pixels and Γ1 = 0.704). Therefore, the adaptive AGM’s
initial step for vortex detection involves determining a suitable kernel size
for different vortices. This kernel size corresponds to the maximum Γ1 value
among different kernel sizes.

Figure E.4 presents the corresponding Γ2 value map when setting S1 = S2

in the calculation. The white boundaries in each panel indicate the initial
boundary calculated by the AGM with the corresponding kernel size, and the
blue contour represents the actual boundary of the central vortex. Different
kernel sizes yield varying initial boundaries. In panel (a), the initial boundary
is identical for the central vortex and the four spherical vortices. The reason
is that all kernel domains are within the vortex region; therefore, no bias is
introduced in calculating the initial boundary. However, there is a substantial
difference between the initial and actual boundaries. In comparison, the ini-
tial boundaries in panel (b) are larger than those in panel (a). The difference
between the initial shown in this panel and the actual boundaries is reduced.
Initial boundaries shown in panels (c) and (d) have a larger difference from the
actual boundary compared to the initial boundaries shown in panels (b). Ad-
ditionally, the initial boundaries of the four peripheral and central vortices are
not identical in these two panels. This discrepancy arises from the influence
of the velocity field outside the vortex region on calculating the initial bound-
ary. In other words, errors are introduced in the calculation. The original Γ
method does not consider this circumstance, introducing bias and resulting in
an inaccurate vortex region calculation. The CSA and WCSA address these
issues using the customized S2 region to calculate Γ2.

It is necessary to calibrate the CSA and WCSA before applying them to
vortex detection. The calibration involves applying the AGM with a proper
kernel size (e.g., ks = 13 pixels) to detect the axisymmetric vortex (e.g., the
diameter is 13 pixels) and adjusting CSA and WCSA parameters (such as the
customized S2 region) until the AGM produces a boundary close to the actual
boundary. In Figure E.5, the green contour indicates the boundary detected by
the AGM with the assistance of CSA and WCSA after calibration. Compared
to the initial boundary (white), there is less difference between the green and
blue contours.
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(a) (b)

(c) (d)

Figure E.3: The distributions of the Γ1 functions values obtained
by the AGM (with ks = 5, 13, 21, and 27) that were applied to
the horizontal velocity field shown in Figure E.1. The black square
in each panel indicates the kernel domain that is used to calculate
the Γ1 value at the center of the central vortex. (a) ks = 5; (b)
ks = 13; (c) ks = 21; (d) ks = 27.
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(a) (b)

(c) (d)

Figure E.4: The distributions of the Γ2 functions values obtained
by the AGM (with ks = 5, 13, 21, and 27) that were applied to
the horizontal velocity field shown in Figure E.1. White contours
indicate the initial boundaries of each vortex. The blue contour
in each panel indicates the actual boundary of the central vortex.
The black square in each panel indicates the kernel domain that
is used to calculate the initial boundary of the central vortex. (a)
ks = 5; (b) ks = 13; (c) ks = 21; (d) ks = 27.
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Figure E.5: The black arrows indicate the horizontal velocity
field of five axisymmetric vortices. The center and boundary of
the central vortex are indicated by the blue cross and blue contour,
respectively. The AGM calculates the green contour using the CSA
and the WCSA. The black square indicates the kernel domains that
are used to calculate the Γ1 value at the vortex center.



Appendix F

The Algorithm dF

Figure F.1 is the pseudocode of the algorithm dF. Here, c(p, q) refers to calcu-
lating the Euclidean distance between point p and q; ca(p, q) is a p×q matrix,
denoting the calculation of the coupling length ∥ L ∥ for each distinct pair in
P and Q. Each element of it is initialized to -1 before the calculation. The
discrete Fréchet distance is equal to ca(p, q) through the recursive operation.

Figure F.1: The algorithm dF (Eiter and Mannila, 1994).
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Computing the Discrete Fréchet
Distance with the use of the
Algorithm dF

This Section provides an example of calculating the discrete Fréchet distance
using the algorithm dF. For illustrative purposes, two 2D curves are consid-
ered. In Figure G.1, the polygonal curve P is shown in red and has four
endpoints, while the polygonal curve Q is in blue and has three endpoints.
The coordinates of each point for the two curves are provided below:

P : [p1(1, 1), p2(2, 1), p3(3, 2), p4(4, 1)],

Q : [q1(1, 0), q2(2, 0), q3(3, 0)].

The following steps outline how to calculate the discrete Fr’echet distance
between curves P and Q:

1. Calculate the Euclidean length of all distinct coupling pairs between P and
Q. In Figure G.2, d(pi, qj) denotes the length between point pi and qj;

2. Calculate the coupling length ∥ L ∥ by applying the algorithm dF. In
Figure G.3, D(pi, qj) denotes the coupling length between point pi and
qj;

3. Calculate the discrete Fréchet distance after considering all endpoints in P
and Q. Thus,

δdF (P,Q) = dF(P,Q) = D(p4, q3) = 2.
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Figure G.1: Two discrete polygonal curves: P (shown in red)
and Q (shown in blue).

Figure G.2: Euclidean length of all distinct coupling pairs be-
tween P and Q.
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(a)

(b)

Figure G.3: Coupling length ∥ L ∥ of each distinct pairs in P
and Q.
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In algorithm dF, Equation (G.1) shown below is used to calculate the
coupling length ∥ L ∥ of the current location.

Dp,q = max {dp,q,min {Dp−1,q, Dp,q−1, Dp−1,q−1}} . (G.1)

This operation described suggests that the coupling length of the current end-
point in P and Q is determined by taking the maximum value between the
length for the current location and the minimum value of all neighboring cou-
pling lengths prior to the current location. Here, Dp−1,q, Dp,q−1, and Dp−1,q−1

represent the coupling lengths of the current location’s neighbors, specifically
coming from the three neighbor points: (p − 1, q), (p, q − 1), (p − 1, q − 1),
respectively.
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Fabry-Pérot filtergraphs. , 447(3):1111–1120.

Scharmer, G. B., Bjelksjo, K., Korhonen, T. K., Lindberg, B., and Petterson,
B. (2003a). The 1-meter Swedish solar telescope. In Keil, S. L. and Avakyan,
S. V., editors, Innovative Telescopes and Instrumentation for Solar Astro-
physics, volume 4853 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, pages 341–350.

Scharmer, G. B., Bjelksjo, K., Korhonen, T. K., Lindberg, B., and Petter-
son, B. (2003b). The 1-meter Swedish solar telescope. In Keil, S. L. and
Avakyan, S. V., editors, Innovative Telescopes and Instrumentation for So-
lar Astrophysics, volume 4853 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, pages 341–350.

Scharmer, G. B., Narayan, G., Hillberg, T., de la Cruz Rodriguez, J.,
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