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Abstract 

Ligand-field theory (LFT) is a quantum-mechanical model which calculates the physical 

properties associated with the presence of an incomplete d shell. In this work, the development 

of a contemporary ligand-field program for 3dn transition-metal complexes is reported. The 

program, Kestrel is designed to be easy-to-use and performs real time calculations of the d-d 

transition energies, EPR g-factors, paramagnetic susceptibilities, and single-ion molecular 

magnetic (SiMM) behaviour of a complex using its real molecular geometry. Kestrel also 

features the prediction of UV-Vis, circular dichroism (CD), and magnetic circular dichroism 

(MCD) spectra in non-centrosymmetric systems. The ligand-field model uses metal-ligand 

bonding parameters to parameterise the ligand field and Racah parameters are used to 

simulate the effects of interelectronic repulsion. The multiconfigurational effects arising from 

spin-orbit coupling are also treated. Spectroscopic intensities arising from the electronic dipole 

mechanism are simulated using transition dipole moment parameters calculated for each 

ligand using metal-ligand polarisation parameters. Herein, the application of Kestrel to three 

contemporaneous case studies demonstrates the practical use of the software. First, the 

program is used to analyse how the SiMM behaviour of three homoleptic cobalt(II) complexes 

changes with variation in the molecular geometry and metal-ligand bonding. The study outlines 

suggestions for future synthetic work to enhance the SiMM behaviour of these systems. The 

second case study focuses on the reproduction of the variable-temperature MCD spectrum of 

a characterised intermediate-spin (S=1) iron(IV) oxo complex. The analysis shows that 

Kestrelôs assignment of the d-d bands, which differs from that in the literature, can reproduce 

the reported experimental data. Lastly, the program is used to analyse the full reported 

experimental characterisation of the resting state and substrate bound lytic polysaccharide 

monooxygenase (LPMO) enzyme LsAA9. The analysis was able to characterise the electronic 

structure of the copper(II) ion in this enzyme. 
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1 Introduction 

1.1 Why ligand-field theory? 

Quantum chemistry provides chemists the means to predict and understand the physical 

properties of their molecules. The results of these calculations, when correlated with 

experimental data, inform chemical design by linking aspects of electronic structure with the 

moleculeôs or substanceôs physical properties.1  

Understanding the electronic structures of 3dn transition-metal complexes can aid the 

rational design of biomimetic catalysts, single-ion molecular magnets, and quantum qubits.2ï5 

However, the electronic structures of such complexes are complicated by the presence of 

unpaired electrons occupying the 3d orbitals on the metal ion. These electrons exhibit 

complicated behaviour as they quantum-mechanically entangle under the effects of 

interelectronic repulsion and spin-orbit coupling. The culmination of these effects means that 

simple one-electron, single-determinant theories in quantum chemistry are not often sufficient 

to accurately calculate the physical properties of a transition-metal complex, since electron-

correlation is handled following orbital construction and cannot accommodate the mixing of 

low-lying excited states.  As such, a multiconfigurational approach is required, Figure 1.1.6 

 

 

Figure 1.1. An illustrative example of multiconfigurational descriptions of a fictitious d7 

system. 
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 In the literature it is common to see the use of either density-functional theory (DFT) 

or ab initio methods for predicting the physical properties of 3dn transition-metal complexes. 

The issues of using DFT to describe electronic structures are well known. For instance, DFT 

is usually a single-Slater determinant method, meaning it considers only one configurational 

arrangement.  Moreover, the method suffers from the so-called self-interaction error, which 

leads to several artefacts, most notably delocalisation error and the overestimation of 

covalency.7ï9 In response to such issues, multiconfigurational ab initio methods have gained 

popularity and wider use in the literature. Specifically, complete active space self-consistent 

field (CASSCF) and N-electron valence perturbation theory (NEVPT2) have been successfully 

applied to a range of 3dn transition-metal complexes.10,11 However, despite quantitatively good 

results, the underlying electronic structure is not easily linked to the spectroscopy/physical 

properties. Put another way, ab initio methods alone do not easily provide chemical insight 

into the system. 

 LFT, as originally defined, is multiconfigurational. Indeed, the importance and 

application of configuration interaction in LFT has been observed as far back as the 1940s 

when Van Vleck analysed the spin-forbidden excited states of chrome alum.12 Since then, LFT 

has been successfully applied to a range of 3dn transition-metal complexes, reproducing and 

explaining their electronic spectroscopy and magnetism.13 It is now a standard tool for 

analysing the results of ab initio calculations.10 Despite being a parameterised semi-empirical 

method, its continued success and relevance is attributed to the grounding of the model in ab 

initio theory. Hence, through parameterising the electronic structure and comparing the 

predicted physical properties to experimental data, the link between spectroscopy can be 

made back to the electronic structure. Provided that the parameters are chemically intuitive 

and meaningful, multiconfigurational space can also be translated into ñchemical languageò, 

such as sigma-donor and pi-acceptor properties of ligands.  

In addition to the multiconfigurational basis of LFT, the small d-orbital basis set  (upon 

which the theory is based) offers the possibility for real-time calculations of ligand-field 

properties. This would provide direct feedback to the chemist as to how changes in the 

chemical environment of the transition-metal complex affect the spectroscopic and magnetic 

properties of their system. Through this, one can understand how augmenting ů/ˊ bonding 

can tune desired properties of their system and how this mixes electronic configurations 

together.  

It is in this context that the work reported in this thesis is founded. The advantages of 

the ligand-field model offer to fulfil a quantum-chemical niche that can be made accessible 
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and available to the practicing (bio)inorganic chemist interested in 3d transition-metal systems. 

Not only does a simple model hold such potential, but it can also be used to calculate a wide 

range of physical properties, probing both the ground state and excited state electronic 

structures. The ligand-field model presented herein can compute d-d transition energies, EPR 

g-factors, paramagnetic susceptibilities, and transition dipole moments. 

 

1.2 The ligand field 

It is well known that the predecessor of LFT was crystal-field theory. The development of an 

electrostatic crystal-field theory can be traced back to Hans Bethe who, in 1929, published a 

paper describing the splitting of an atomôs spectroscopic term symbols by an electric field of a 

given symmetry.14 Further development was made by most notably J. H. Van Vleck, William 

G. Penney, Robert Schlapp, and others in connection to the magnetic properties of transition-

metal ion crystals.15,16 The electrostatic crystal field was unable to rationalise the trend in the 

magnitude of d-orbital splitting that has now come to be recognised by the spectrochemical 

series.  

It was not until 1935 that the concept of a ñligandò field, rather than an electrostatic 

crystal field, was introduced when Van Vleck sought to reconcile the hybridisation models of 

Linus Pauling and Mullikenôs molecular orbitals to rationalise the strengths of the crystal-field 

splitting.17 Since then, reviews have sought to compare, contrast, and discuss the physical 

implications of a crystal field versus a ligand field.18,19 The literature has for a long time 

considered these two approaches as wholly distinct. It should be stressed that when 

discussing differences of ñcrystalò and ñligandò field theories, it is generally meant that the 

theoretical picture of the underlying bonding or metal-ligand interactions differ. In practice, as 

has been highlighted recently, LFT is, mathematically speaking, a freely-parameterised form 

of crystal-field theory.20 It would not be correct to say LFT ñincorporatesò aspects of, or is, 

molecular orbital theory, as no extension of the d-orbital basis set is carried out, nor are 

molecular orbitals constructed.  

 

1.2.1 Ligand-field theory is not molecular orbital theory: the primogenic effect 

in 3dn transition-metal ions. 

When calculating the excited states of 3dn transition-metal complexes, Carl Ballhausen said 

that ñneither the valence bond method nor the molecular orbital theory can hope to do as well 
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[as ligand field theory] within an order of magnitude.ò21 This was because the 3d electrons 

primarily reside in the 3d orbitals on the metal where the effects of interelectronic repulsion 

are handled by the parameterisation of the free-ion interelectronic repulsion. Sources in the 

literature wrongly describe LFT as a hybridisation of crystal-field theory and molecular orbital 

theory.22,23 Ligand-field calculations do not construct or use molecular orbitals. Instead, the d 

orbitals are subjected to an effective electrostatic and electrodynamic potential created by the 

ligands. The empirical success of the restricted basis set and the ability to achieve it using the 

free-ion interelectronic repulsion and spin-orbit coupling integrals implies that contamination 

of ligand functions into the 3d orbitals is minimal.24 

The pseudo non-bonding behaviour of 3d electrons is due to the primogenic effect of 

the 3d orbitals.25 As the 3d orbitals are the first atomic orbitals of their l quantum number they 

are nodeless and radially contracted, exhibiting unique physical properties. An article by 

Professor Martin Kaupp details the primogenic effect in 3d transition-metal complexes and 

their consequences for metal-ligand bonding.26 The radially contracted nature of the 3d orbitals 

results in relatively long metal-ligand bonds lengths and poor metal 3d and ligand valence 

orbital overlap due to greater Pauli repulsions between the metal core and the ligand. Indeed, 

this effect has been cited as the primary cause as to why 3d transition-metal chromophores 

do not engage in photoinduced electron transfer chemistry, unlike their 4d and 5d 

counterparts.27  

 

1.2.2 The paradigm of ligand-field theory 

The evidence of óuncoupledô 3d electrons from other functions in a transition-metal complex 

requires special treatment in a quantum mechanical context. Having reviewed the unique 

physical properties of this class of complex, attention is turned to the ligand-field treatment of 

transition-metal complexes. Although LFT is an old model, it was not until the 1980s when R. 

G. Woolley, J. H. Harding, and M. Gerloch presented a formal development of LFT from 

quantum chemistry.13,24,28 Their work established the formal connection between aspects of 

quantum chemistry and the parameters used in ligand-field analysis. The behaviour of 

parameters was also derived within this framework. This work separated LFT from the usual 

criticisms of other semi-empirical theories, the parameters of which are ill-defined and their 

underlying physical interpretations are unclear. 

LFT recognises the unique situation of the 3d orbitals and treats them specifically. 

Woolley, Harding, and Gerloch showed that all other functions (both metal and ligand) need 

not be defined explicitly and the effects that these functions have on the d orbitals can be 
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treated as a perturbation. These perturbations define the radial changes of the d orbitals upon 

interaction with their surroundings but leave the free-ion angular properties (l = 2) unchanged. 

Put another way, perturbations from the d orbital surroundings alter the values of the ligand-

field parameters. 

It is this explicit neglect of all other metal and ligand functions which makes LFT an 

appropriate model for 3d, rather than 4d or 5d, transition-metal complexes, as discussed in 

section 1.2.1. The successful application of this model to a range of 3d transition-metal 

complexes corroborates this observation and justifies the use of a free ion angular basis.29 

 

1.2.3 Metal-ligand bonding 

In LFT, it is possible to parameterise the ligand field using metal-ligand bonding parameters 

by so-called ñe-valuesò. These e-values are labelled as eɚ, where ɚ = ů, ˊ, and ŭ. The 

symmetries of the eů and e ́parameters are shown in Figure 1.2. In practice, one can 

associate a set of eɚ values at the coordinating atom position of a ligand and fit the strength of 

its bonding with the metal by a numerical quantity (typically given in units of cm-1). The signs 

of the parameters also reflect the chemical concept of donor/acceptor properties of a given 

ligand. A positive eɚ parameter is associated with a ɚ-donor interaction, destabilising the 

interacting d orbitals. In contrast, a negative eɚ parameter is associated with a ɚ-acceptor 

interaction, stabilising the interacting d orbitals. One can easily appreciate the chemical 

transparency in this parameterisation scheme.  

 

 

Figure 1.2. The interaction symmetries of the eů and e  ́interactions 
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If one were to assign a unique eů, éx, éy, eŭxy, and eŭxĮïyĮ for each ligand, the number 

of freely adjustable parameters quickly surpasses the amount of data points to fit to; the 

parameterisation will likely not be unique. Fortunately, there are some chemically sensible 

assumptions that can be made to reduce the number of adjustable parameters. The first and 

most obvious is that similar ligands likely share similar metal-ligand bonding parameters and 

can be approximated to engage in equivalent bonding with the central metal ion. The second 

assumption is the neglect of the eŭ parameters by setting them to 0 cm-1, on the justification 

that ligands rarely have functions of ŭ-symmetry to interact with. Instead, the remaining eů and 

é parameters should be read as being normalised by eŭ, such that eɚ = eɚô ï eŭô. 

Application of this model, and its assumptions, has led to the successful ligand-field 

analysis of experimental/computational data using metal-ligand bonding parameters. Tables 

of compiled eɚ values taken from experimental and computational analysis in the literature are 

given in Table 6.1 (Appendix). In general, an eů parameter is typically > 0 cm-1 and has a 

magnitude in the 1000s cm-1. The e ́parameters are typically in the range of ï2000 to 2000 

cm-1 and near 0 cm-1 for formally non ˊ bonding interactions. There are, of course, exceptions 

to this rule of thumb. The types of exceptions, when they arise, and how to treat them are 

found in chapter 2.3.4, which details the theoretical aspects of parameterising the metal-ligand 

bonding of a range of ligands. Despite this, the values in Table 6.1 typically conform to 

chemically intuitive ideas of metal-ligand bonding in 3d transition-metal complexes. 

 This model of parameterising the ligand field is known in the chemical literature as the 

angular overlap model (AOM) or the cellular ligand-field model. They are, at their core, 

mathematically identical. However, their assumptions of the parameter magnitudes and the 

chemical interpretation of the parameterisation are different. The AOM was formulated by  C. 

E. Schªffer and C. K. Jßrgensen who sought to reformulate the original incarnation of the AOM 

(vide infra) to be a ligand-field procedure, involving explicitly the d orbitals only acting as a first 

order perturbation on the d-orbital manifold. However, care has been made in this work to 

distinguish the general metal-ligand bonding situation described above from the AOM model 

as the latter was borne out of the so-called Wolfsberg-Helmholz model.30 The Wolfsberg-

Helmholz model is an explicit semi-empirical molecular orbital model which required 

evaluation of the direct overlap of ligand functions and metal d orbitals. The model relied on 

an assumption that the energy of the antibonding d orbital is directly proportional to the square 

of the overlap integrals. The model featured other assumptions, such as an added ill-defined 

Fɚ factor which took an approximate value of 2.00, which ultimately led to its decline in the 

chemical literature. It should be stressed that the metal-ligand bonding parameterisation used 

in this work is not a molecular orbital model, nor is it the Wolfsberg-Helmholz model. 
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 There are extensions to the parameterisation to include effects of misdirected valence 

eů ,́ stabilisation effects of d-s and d-p mixing eds, edp, and differential ˊ contributions from 

bidentate ligands with conjugated ˊ networks using eɣ and eɢ. The primary downside with the 

general metal-ligand bonding framework in LFT is the degree of parameterisation. The number 

of eɚ parameters can quickly become large unless certain assumptions are made or the range 

of experimental data to be fitted expands. However, notwithstanding the potential issues of 

over parameterisation, the eɚ parameters enable a chemist to simply see how changing the 

bonding of a given ligand at a given geometry can affect the physical properties. This 

seemingly trivial point is not so easily accomplished using other quantum chemical methods. 

It is not always straightforward to change a ligand in a molecular model without first editing 

the structure by hand inside of a molecular editor, which often requires a geometry optimisation 

before a sophisticated calculation of the electronic structure is ever performed. With this 

model, that problem is circumvented; the insight is achieved by simply changing the magnitude 

and/or sign of the parameter. The change in the eɚ parameter is also clear and unambiguous. 

It is not always clear from the results of an ab initio calculation to evaluate how the bonding in 

the molecule has changed. Many of the issues of over parameterisation can be circumvented 

with the advent of ab initio LFT. 

 

1.2.4 Ab initio ligand-field theory  

LFT, despite being an old model, continues to enjoy a healthy resurgence in the chemical 

literature. An important work, published in 2011, compared the performance of LFT to state of 

the art ab initio calculations using CASSCF wavefunctions with NEVPT2 improved energies.31 

The authors developed the ab initio ligand-field theory (AILFT) method which allowed an 

unambiguous determination of ligand-field parameters from the results of correlated 

multireference wavefunctions. The procedure allows one to extract interelectronic repulsion B 

and C, and spin-orbit coupling ɕ - if relativistic effects are included in the calculations. The 

ligand field is extracted in the form of the symmetric 5³5 one-electron ligand-field potential 

(VLFT) matrix. One can directly fit the VLFT matrix by generating a corresponding matrix using 

eɚ parameters and a molecular geometry. AILFT is restricted to wavefunctions produced from 

a minimal active space of n electrons in five d orbitals. Hence, the AILFT analysis is limited by 

the quality of the minimal active space wavefunctions and energies. Nevertheless, the method 

extracted eɚ values which reproduced the chemical trends in eɚ values extracted from 

experiment. Hence, LFT is validated theoretically by ab initio theory and the former is now a 

common tool for analysing the results of CASSCF/NEVPT2 calculations. The results of 
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CASSCF/NEVPT2 calculations are not easily interpretable on their own, whereas the ligand-

field parameters are more chemically transparent. 

 The AILFT has been successful in analysing the metal-ligand bonding trends for a 

range of 3d transition-metal complexes.10 Collections of eɚ parameters found in the literature 

are reported in the tables of appendix 6.1, some of which are extracted from AILFT. In 

comparison with experimentally extracted eɚ, B, and C parameters the Racah parameters 

reported by AILFT are nearly always overestimated, due to not correctly balancing the 

contributions of static and dynamical correlation effects. Interestingly, comparing the 

parameters from ab initio results with ligand-field parameters extracted from well resolved 

experimental data has provided validation of the ab initio calculations and further development 

of multiconfigurational correlated wavefunctions methods, not the other way around. However, 

there are still limitations to this approach and the NEVPT2 level of correction to the dynamical 

correlation is constrained by not allowing the CASSCF states to mix under dynamical 

correlation. This effect, which can be carried out using DCD-CAS(2) and HQD-NEVPT2 

methods, allow better agreement between AILFT and calculated ab initio results.32 Despite 

this, LFT has emerged as a general tool for use in conjunction with state of the art quantum 

chemical calculations where it converts those results into chemical language. 

 

1.3 Available ligand-field programs 

Constructing expressions for ligand-field electronic states for each case or symmetry is 

inconvenient and difficult. Ligand-field calculations are generally performed using a computer 

program. There are several programs for transition-metal complexes that are used in the 

literature. They have different features and uses. In this section, the programs AOMX, 

CAMMAG, LIGFIELD, and the orca_lft module are reviewed and compared. These programs 

represent the most widely used ligand-field programs in the literature. A summary of their 

features is presented in Table 1.1. 

 CAMMAG (which stands for ñCAMòbridge ñMAGònetism) was developed for analysing 

the magnetic properties of single-crystal samples of dn transition-metal complexes.33,34 The 

program developed as far as CAMMAG5 which featured: calculation of d-d transition energies 

with their irreducible representation and spin-projections; calculation of EPR g-factors for 

Kramers systems and molecular/crystal paramagnetic susceptibility tensors; and d-d 

intensities of electronic absorption and CD spectroscopies. The ligand-field was 

parameterised using the cellular ligand-field model. The program has been extensively used 

to characterise a range of systems from their optical and magnetic properties.29 A recently 
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developed program BonnMag with similar features and syntax to CAMMAG was designed to 

compute the spectroscopic properties of f complexes.35 

 AOMX was developed by Heribert Adamsky and uses the AOM parameterisation.36 

The program uses an alternative approach to CAMMAG and constructs the final Hamiltonian 

in the basis of Slater determinants. This means that the n-electron configurational occupations 

of the final d orbitals can be extracted from the eigenfunctions. The program does not compute 

magnetic properties but does feature direct fitting to transition energies (with symmetry labels) 

and anisotropic interelectronic repulsion and spin-orbit coupling. The program is used 

consistently in the analysis of AILFT results. 

 LIGFIELD was developed by Jesper Bendix in the 1980s and computes the ligand-

field Hamiltonian for all possible pn, dn, and some fn configurations.37 To the authorôs 

knowledge, this ligand-field program is the only example that features a graphical user 

interface. It shares similarities in its features with AOMX and has been used to analyse the 

optical spectroscopy and zero-field splitting spin Hamiltonian parameters extracted from 

experiment for a range of systems.38ï40 

 The ñorca_lftò program is a module of the larger ORCA program introduced with the 

recent version 5.0 release.41,42 The program is a script based command line tool. Its intended 

use is to submit the ligand-field results of an AILFT analysis of a previous calculation into this 

module and start varying ligand-field parameters. Unlike the previous programs, orca_lft does 

not use metal-ligand bonding parameters but instead uses a direct parameterisation of the 15 

unique elements of the symmetric 5³5 one-electron ligand-field matrix. To extract eɚ 

parameters, a different program must be used, such as AOMX. The module also uses B, C, 

and ɕ. The module can also simulate ligand-field spectra of essentially any type using the 

available basis sets in ORCA. 

Each program has their advantages and disadvantages, and they each contribute a 

set of useful features, which makes them distinct and useful in their own respect. Except for 

LIGFIELD, each program is command line based, which introduces a barrier to entry for the 

non-specialist user. On the other hand, LIGFIELD does not compute d-d intensities. This 

shows that there is a need for a new contemporaneous program that provides these features 

along with a user-friendly interface to explore ligand-field analysis. 
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Table 1.1. Summary of available features of the major available ligand-field programs. 

Features AOMX CAMMAG LIGFIELD orca_lft (5.0.3) 

eɚ parameters Yes Yes Yes No 

Magnetic field Yes No Yes Yes 

Anisotropic 

interelectronic 

repulsion 

Yes No No No 

Anisotropic 

spin-orbit 

coupling 

Yes No No No 

Calculates 

Energies 

Yes Yes Yes Yes 

Calculates 

Magnetism 

No Yes Yes Yes 

Calculates 

Intensities 

No Yes No Yes 

Configuration 

Projection 

Yes No Yes No 

Symmetry 

Projection 

Yes Yes No No 

Optimisation Yes No Yes Planned 

Mapping No Yes No No 

Parameter 

variation 

Yes Yes Yes Yes 

Graphical user 

interface 

No No Yes No 

p configs No No Yes No 

f configs No No Yes No 

Crystal frames No Yes No No 

 

1.4 This work 

Thus far, a brief overview of LFT and its place in the contemporary chemical literature has 

been outlined. Historically, LFT was focussed on reproducing experimental data; however, the 

model is often used nowadays to analyse the results of ab initio calculations. The reason for 
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this shift in focus stems from a lack of user-friendly software that was freely available and 

made multiconfigurational language accessible to synthetic chemists. There is also a 

perception that LFT is not a sophisticated model and therefore second to ab initio models. 

However, the success of LFT, spanning nearly a century, means one should not be so quick 

to disregard the model. 

The increased computational power available to chemists along with the renewed 

interest in LFT has given fertile ground for a new contemporary ligand-field program. The 

software developed in this thesis, called Kestrel, is designed to address the link between 

spectroscopy and electronic structure first. That means the program is ultimately intended to 

be applied to experimental data where available. Kestrel aims to compute d-d transition 

energies, EPR g-factors, paramagnetic susceptibilities, and UV, CD, and MCD intensities. The 

program has been designed to feature an integrated graphical user interface that runs óout of 

the boxô with minimal setup. 

This thesis presents the development of Kestrel and its application to three case 

studies. Chapter 2 describes in more detail the theoretical background of the ligand-field model 

and provides a more thorough description of the chemical interpretation of the ligand field. 

Chapter 3 reviews the features of Kestrel and serves as a guide to using the program. Finally, 

Chapter 4 provides three applications of the program. The first of these is an application of the 

program to facilitate rational chemical design of some cobalt(II) single-ion molecular magnets, 

to enhance the axiality of their electronic structure. The second study is a reanalysis of a non-

heme iron(IV) oxo complex, where an attempt to falsify a reassignment made using an 

experimental version of the program was instead able to simulate the experimental data. 

Finally, the program is applied to the fully spectroscopic characterisation of a copper(II) lytic 

polysaccharide monooxygenase (LPMO) enzyme. 
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2 Theory 

LFT concerns itself with the evaluation of an effective Hamiltonian, described by states 

constructed from the free-ion angular d-orbital basis. There are four main sources of energetic 

contribution that must be accounted for: interelectronic repulsion; spin-orbit coupling; Zeeman 

splitting; and the ligand field. The effective Hamiltonian operator (described formally in section 

2.1) is written as 

 eff

IR LF SOC ZeeH H V H H= + + + . (2.1) 

For 1st row dn transition-metal ions, the contribution from the ligand field typically dominates, 

with contributions in the order LF IR SOC ZeeV H H H> > . For 2nd and 3rd row transition metals 

the spin-orbit coupling can be large enough to no longer be considered as a relatively small 

perturbation. 

 This chapter begins by reviewing the mathematical formalism and origin of the effective 

Hamiltonian and discusses its application and limitations. Following this, the mathematics of 

angular momentum coupling are reviewed along with the final expression for the evaluation of 

the operators in (2.1) in an angular momentum basis. Next, the methods and definitions that 

are used to parameterise the ligand-field interactions are reviewed and a more in-depth look 

is taken into the different types of metal-ligand interactions. Finally, the different post-

diagonalisation operations for calculating the configuration projection, magnetism, and 

spectroscopic intensities are discussed. 

 

2.1 Effective Hamiltonians 

In electronic structure theory, effective Hamiltonians (Figure 2.1) are constructed to model a 

region of eigenstates of a more complete ñeigenspectrumò.43 LFT is concerned with 

eigenstates that are solutions of an effective Hamiltonian acting within a restricted basis of 

metal d orbitals. These states are connected primarily with the unique spectroscopic properties 

of dn transition-metal ion complexes. 
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Figure 2.1 The sampling of eigenstates via an effective Hamiltonian, which represent a 

ñwindowò of states in the full Hamiltonian. 

 

 The effective ligand-field Hamiltonian can be constructed by the partitioning of the full 

eigen spectrum of the molecule into two subspaces: a and b.44 The former is the model 

space, which includes many-electron states arising from pure angular d-orbital states and their 

configurational occupations. The latter is the outer space, which represents the eigenstates 

arising from all other functions in the molecule and is typically much larger than the model 

space. The partition begins with the full many-electron Schrºdinger equation, 

 ĔɊ ɊH E=  (2.2) 

where it is assumed that the eigenfunctions can be constructed from a linear combination of 

a complete and orthonormal set of basis functions, such that 

 Ɋ i i

i

cű=ä . (2.3) 

It is convenient to rewrite the original Schrºdinger equation in its matrix representation as 

 E=Hc c . (2.4) 

The full many-electron Schrödinger equation describes all electronic states. From Löwdin, it 
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is possible to partition the Hamiltonian into the two subspaces defined prior.45 In doing so, the 

eigenvalue equation of (2.4) then turns into a partitioned eigenvalue problem 

 
aa ab a a

ba bb b b
E

å õå õ å õ
=æ öæ ö æ ö

ç ÷ç ÷ ç ÷

H H c c

H H c c
 (2.5) 

where the outer space coefficients can be solved for explicitly 

 ( )
1

b bb bb ba aE
-

= Ö -c 1 H H c . (2.6) 

The outer space coefficients can be substituted back into (2.5) to yield 

 1( )a aa a ab bb bb ba aE E -= + Ö -c H c H 1 H H c  (2.7) 

where the original Schrödinger equation can now be rewritten as 

 ()eff a aE E=H c c . (2.8) 

The result is an exact reformulation of the original Schrºdinger equation where the solutions 

of the model space can be modelled. Impressively, no approximations have been made in this 

derivation. However, within this effective Hamiltonian is an energy dependent term 

1( )bb bbE -Ö -1 H , which encapsulates the influence of the outer space on the model space. 

Providing that this term is small, the effective Hamiltonian is a good one. In other words, 

providing that the solutions of the outer space do not cross into the model space then this term 

remains relatively small. Assuming that the full many-electron Hamiltonian can be divided into 

a 0th and 1st order perturbation operator results in 

 
() ()( )0 1

Ɋ Ɋ ɊH H H E= + = . (2.9) 

By also assuming that the solutions of (2.8) are good, then the Hamiltonian can be replaced 

with the outer space eigenvalues, bbE . Doing so, it is possible to rewrite effH as 

 ( )
1

eff aa ab bb baE E
-

= - - ÖH H H 1 H  (2.10) 

whose matrix elements can be expanded as 

 ( )
(0) (1) (0) (0) (1) (0)

(0) (0) (1) (0)

(0)

Ɋ Ɋ Ɋ Ɋ
Ɋ Ɋ

i k k jeff

ij i i jij
k b k a

H H
ŭ E H

E EÍ

= + -
-

äH  (2.11) 

Where the full form of the effective Hamiltonian has been derived. From (2.11) the 1st order 

perturbation constitutes two parts, as given by (2.10). There is a perturbation that 

encapsulates the interaction of the functions within the a space. The second-order term 

describes the influence of the b space on the a space. The zeroth order contribution, (0)

ij iŭ E

represents the unperturbed energies. 
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On this basis, 3d transition-metals make good candidates for the effective Hamiltonian 

of LFT.43 From equation (2.5) there is a clear division to be made between ligand-field states 

(a space) and other electronic states (e.g. charge transfer), the former being primarily related 

to the spectroscopic properties of those systems. Also, the primogenic nature of the 3d 

orbitals, as discussed in section 1.2.1, means that the d orbitals are sufficiently decoupled 

from all other functions in Werner-type complexes. Hence, the crossover of the b space 

functions with the ligand-field space functions should be small, resulting in a small 

1( )bb bbE -Ö -1 H  term. 

 

2.2 Angular momentum & tensor operators 

LFT is concerned with the calculation of matrix elements between a basis set of angular 

momentum quantum numbers. The evaluation is carried out by a series of operators 

represented as tensor operators. This section deals with spherical tensor operators within a 

spherical basis. However, this section does not intend to cover the full scope of tensor operator 

methods (which are detailed elsewhere) but covers the equations and mathematics used to 

compute the integrals appearing in the effective Hamiltonian, equation (2.1).46 

 

2.2.1 Angular momentum coupling 

For first row transition-metal complexes where spin-orbit coupling is a small perturbation when 

compared to the size of the ligand field, Russell-Saunders coupling is used. We define a 

quantum number, j and a z-projection m written as a ket jm . A state with two quantum 

numbers uncoupled from one another is written as 

 
1 2 1 2 1 1 2 2j j m m j m j m= . (2.12) 

Upon coupling, the new state is defined with a total angular momentum,1 2j j j= + and the 

resulting ket is written as 
1 2j j jm . These coupled functions are eigenvectors of the operators 

2J  and ZJ , representing the total angular momentum squared, and the z-projection, defined 

by34 
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( )
22

1 2

1 2z z zJ J J

= +

= +

J J J

 (2.13) 

where the uncoupled set of angular momentum numbers are eigenfunctions of their respective 

iJ  and 
izJ  operators. The eigenvalues of the operators in (2.13) are 

 

( )2

1 2

1 2

1

z

j j j j jm

J m j j jm

= +

=

J

. (2.14) 

 In the Russell-Saunders coupling scheme, the coupling of total orbital angular 

momentum, L and total spin angular momentum, S form a total angular momentum set 

spanning47 

 { }, 1, ,J L S L S L S= + + - -. (2.15) 

Likewise, the coupling of the z-projections of both the orbital and spin angular momentum (

LM  and SM  respectively) combine to form a total projection J L SM M M= + , as defined in (2.13)

. The result is that the JM  spans the set 

 { }, 1, ,JM J J J= - -. (2.16) 

Hence, we can write the uncoupled basis as 
L S L SLSM M LM SM=  and the coupled basis 

as 
JLSJM . 

 However, there are often different sets of quantum numbers that can couple to give the 

same resulting ket. For example, both the uncoupled bases 1 1
2 22,1 ,-  and 1 1

2 22,0 ,  

result in the coupled ket 51 1
2 2 22, , , . The coupled set of angular momentum quantum numbers 

are built from a linear combination of the uncoupled set of quantum numbers. Writing generally, 

the relation between a coupled basis and an uncoupled basis is given by 

 
2 2

2 1 2 2

1 2 1 1 2 2 1 1 2 2 1 2

j j

m j m j

j j jm j m j m j m j m j j jm
=- =-

=ä ä  (2.17) 

where the unit dyadic has been used 
1 1 2 2 1 1 2 2j m j m j m j m =1. The scalar product 

1 1 2 2 1 2j m j m j j jm  is the Clebsch-Gordan coefficient (also denoted 1 2

1 2

j j j

m m mC ) which is an 

expansion coefficient of a coupled basis in terms of its uncoupled basis. Note that equation 

(2.17) is simply the transformation from one basis to another. It is equally possible to write the 

uncoupled basis in terms of coupled functions 

 1 2 1 2 1 2 1 2 1 2 1 2
jm

j j m m j j jm j j jm j j m m=ä . (2.18) 
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In principle, there is no right or wrong choice in choosing a coupled or an uncoupled basis, 

both are related by a unitary transformation.  

 There are relationships that can be deduced to determine whether the Clebsch-Gordan 

coefficient will be zero or not. From (2.15), if j lies outside the bounds of 
1 2 1 2j j j j j+ ² ² - 

then the 1 2

1 2
0j j j

m m mC = . Also, from (2.13) and (2.16), if the z projections do not sum to zero, then 

1 2

1 2
0j j j

m m mC = . This means that upon coupling, the z projections of the uncoupled basis are not 

conserved and instead are replaced by a total z-component. 

 An expression is quoted for the evaluation of the Clebsch-Gordan coefficient that was 

given by Racah48 

 

( )( )( )( )( )( )( )

( ) ( )( )( )( )

( )

1 21 2 1 2 , 1 2 3

1/2

1 1 1 1 2 2 2 2

1 1 2 1 2 2 1 2

1

1 2

ȹ( )

2 1 ! ! ! ! ! !

1 ! ! ! !

! !

m m m

z

z

j j m m jm ŭ j j j

j j m j m j m j m j m j m

j m z j j m z j m z j j m z

z j j j z

+

-

=

è ø³ + + - + - + -ê ú

è³ - - - - + + + - - - +ê

ø³ + - -ú

ä

 (2.19) 

where z  in (2.19) sums over integer values which lead to non-negative factorials. The 
1 2ȹ( )j j j  

function is given by 

 
( )( )( )

( )

1/2

1 2 1 2 1 2

1 2

1 2

! ! !
ȹ( )

1 !

j j j j j j j j j
j j j

j j j

è ø+ - - + - + +
=é ù

+ + +é ùê ú

. (2.20) 

 The Clebsch-Gordan coefficient possesses strange symmetry relations. Because of 

this, it is convenient to work with Wigner symbols, which are related to the Clebsch-Gordan 

coefficient but feature convenient symmetry properties.  

 

2.2.2 Wigner symbols 

To evaluate the coefficients of angular momentum coupling, Wigner 3j and 6j symbols are 

used. These Wigner symbols are required for the evaluation of the ligand field, spin-orbit 

coupling, and magnetic moment operator matrix elements. The 3j symbol, which couples two 

sets of angular momenta together, is related to the Clebsch-Gordan coefficient, given by49 

 ( ) ( )1 2 3 1/21 2 3

3 1 2 1 2 3 3

1 2 3

1 2 1
j j mj j j

j j j m m j m
m m m

- - -å õ
= - + -æ ö

ç ÷
 (2.21) 

where the Clebsch-Gordan coefficient is to be evaluated using equations (2.19) and (2.20). 
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The Wigner 6j symbol represents the coupling between three sets of angular momenta 

and is written with curly brackets. The expression for calculating Wigner 6j symbols is given 

by50 

 ( ) ( )1 ;
a b c da b c

W a b c d e f
d e f

+ + +ë û
= -ì ü

í ý
 (2.22) 

in which the symbol is related to the Racah W-coefficient48 

 

( ) ( )( )( )( )

( )( ) ( )

( )( )( )

( )( )
1

; ȹ ȹ ȹ ȹ

1 1 ! !

! ! !

! !

z

z

W a b c d e f abc acf bdf cde

a b c d z z e f a d z

e f b c z a b e z c d e z

a c f z b d f z
-

=

è³ - + + + + - + - - +ê

³ + - - + + - - + - -

ø³ + - - + - -ú

ä
 (2.23) 

where the ȹ function is defined in equation (2.20). 

 

2.2.3 Rotations of angular momenta and tensor operators 

The rotation of angular momenta states is of the upmost importance. Computing physical 

observables, represented by operators, requires an understanding of how an operator acts 

under a given coordinate scheme. Two observers, with different frames of reference (which 

are related by a unitary transformation) must still observe the same magnitude of the physical 

observable. The orientation of the physical observable will be described differently, however, 

for a different (but still) complete basis set. 

 We define an operator, ĔT  represented by an irreducible spherical tensor kT  of order 

k with 2 1k+ operators, which share similar properties to angular momentum numbers. For 

example, the operator spans projections { }, 1, ,q k k k= - - and is given by34 

 
k

k k

q

q k

T
-

=

=äT . (2.24) 

The physical observable must be invariant under rotation, which can be written as a unitary 

transformation: 

 À ÀĔ Ĕ ĔT U TU UTU= = . (2.25) 

Now, the rotation of an angular momentum eigenstate, jm  under a rotation operator, ĔD can 

be written as a linear combination of the ( )2 1j+  states, 
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 Ĕ
j

j

m m

m j

D jm D jm¡

¡=-

¡=ä  (2.26) 

where the expansion coefficients j

m mD ¡  are matrix elements of the Wigner rotation matrix.46 

Likewise, a tensor operator of rank k  and projection q  also transform under rotation by 

 ÀĔ
k

k k k k

q q q q q

q k

DT DT D D T¡ ¡

¡=-

= =ä . (2.27) 

This means that under a general rotation, a tensor operator transforms as a linear combination 

of the 2 1k+ elements of the irreducible tensor operator of rank k. For our purposes, the 

explicit form of the Wigner rotation matrices, defined for a complex basis, are only required for 

the evaluation of spectroscopic intensities in section 2.4.3.1. However, rotation matrices 

defined for the real basis are also required for evaluating the ligand-field potential matrix in the 

one-electron basis (section 2.3.2).  

Thus far, no mention of the definitions of the rotations have been made. For rotations 

in three dimensions, it is convenient to work in Euler angles ( ), ,Ŭ ɓ ɔ using a z-y-z convention, 

as shown in Figure 2.2. Note that the Euler angles are directly related to the spherical polar 

coordinates in the ISO convention with an extra spherical angle ɣ, such that ( )( ), , , ,Ŭ ɓ ɔ ɗ ɣ= f

. 

 

 

Figure 2.2. The stepwise rotation of a coordinate scheme X (green), Y (blue), and Z (red) 

by Euler angles in the z-y-z convention 

 

 The full transformation from an initial coordinate scheme ( ), ,X Y Z to a final coordinate 

scheme ( ), ,X Y Z¡¡¡ ¡¡¡ ¡¡¡ is given by the product of three separate rotation operators 
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 ( ) () () ()Ĕ Ĕ Ĕ Ĕ
Z Y ZR ɗɣ R ɣ R ɗ R¡¡ ¡f = f (2.28) 

where the primes indicate the transformed axes after the primed operation. The transformation 

proceeds as thus: 

1. A rotation about Z  by an angle ◖ (Ŭ) to give the coordinate scheme ( ), ,X Y Z¡ ¡ ¡. 

2. A rotation about Y¡ by an angle ɗ (ɓ) to give the coordinate scheme ( ), ,X Y Z¡¡ ¡¡ ¡¡. 

3. A rotation about Z¡¡ by an angle ɣ (ɔ) to give the coordinate scheme ( ), ,X Y Z¡¡¡ ¡¡¡ ¡¡¡

. 

Note that a positive rotation about an axis is defined as a clockwise rotation when looking 

down the axis from the origin. Similarly, we define an inverse rotation as, 

 ( ) ( ) ( ) ( )
1Ĕ Ĕ Ĕ Ĕ

Z Y ZR ɗɣ R R ɗ R ɣ
-

¡ ¡¡f = -f - - (2.29) 

where, 

 1Ĕ ĔRR- =1. (2.30) 

The form of the rotation operator is given by 

 Ĕ( ) niɤl

nR ɤ e=  (2.31) 

where n  is the axis ( ), ,x y z , ɤ is the angle in radians, 1i = -, and nl  is the orbital angular 

momentum operator for axis n . Equations for the evaluation of these terms in the complex 

and real bases are given by Wigner and Schaffer respectively.50,51  

 

2.2.4 Evaluation of the operators of the effective Hamiltonian 

To evaluate the effective Hamiltonian, an expression for the matrix elements of each 

perturbation acting within a basis of angular momentum quantum numbers is required. Each 

matrix element is then multiplied by a radial coefficient and summed to form the matrix 

representation of the effective Hamiltonian. From equation (2.1), the final effective Hamiltonian 

matrix equation is given by 

 ( )
0,2,4 , , ,

,eff k k kq Ŭ

IR kq LF SOC Ŭ Zee

k k q Ŭ x y z

F B C c ɕ B
= =

= + + +ä ä äȼ H V H H (2.32) 

where ( ),kF B C  is the Condon-Shortley radial integral calculated from Racah B and C 

parameters, 
kqc  is the global multipole expansion coefficient of order k and projection q, ɕ 

is the spin-orbit coupling constant, and ŬB  is the magnetic field strength in the cartesian 

direction Ŭ. Note that with exception of the multipole expansion coefficients of the ligand-field 

perturbation (see section 2.3), all other coefficients are parameters that are directly inputted. 
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 Operators belonging to a Hamiltonian must themselves be scalar quantities. We have 

seen in section 2.2.3 how an operator can be represented by a tensor of arbitrary rank in any 

coordinate scheme (which is related to another via a rotation) by a linear combination of tensor 

operators in the starting frame. This is used directly for the evaluation of the ligand-field 

potential, 
LFV . However, both the coulombic operator of the interelectronic repulsion and the 

spin-orbit coupling operator are assumed to be spherical and are therefore invariant under a 

rotation of the coordinate scheme. 

 The evaluation of the matrix elements between a coupled angular momentum basis 

set for the ligand field, interelectronic repulsion, spin-orbit coupling, and magnetic moment 

operators are solved and have been adapted from the work of Gerloch et al.33 The final 

expressions are standalone and can be used without prior knowledge of their formulation. 

 

2.2.4.1 The Wigner Eckart theorem 

For the largest case of d5 with a basis size of 252 and up to 24 operators in total including 18 

ligand field, 2 interelectronic repulsion, 1 spin-orbit coupling, and 3 magnetic field, the 

calculation would require the evaluation of 1,524,096 matrix elements, which would then need 

to be stored. The operators, represented as either scalars, vectors, or tensors, must conserve 

angular momentum. This conservation of angular momentum, that is implicit within the Wigner 

3j and 6j symbols, allows for the symmetry of the SO(3) rotation group to be fully exploited 

and reduces the number of matrix elements that require evaluation and storage. 

 The Wigner Eckart theorem states that a matrix element of a tensor operator of 

arbitrary rank k is proportional to the Clebsch-Gordan coefficient. The theorem is written as52ï

54 

 k k

q qj m T j m j mk q j m j T j¡ ¡ ¡ ¡ ¡=  (2.33) 

where the general matrix element is related to a ñreducedò matrix element (denoted by the 

double bar) and the Clebsch-Gordan coefficient. The Clebsch-Gordan coefficient is related to 

the Wigner 3j-symbol, given by equation (2.21). Hence, we write 

 ( )1
j mk k

q q

j k j
j m T j m j T j

m q m

- ¡å õ
¡ ¡ ¡= - æ ö

¡-ç ÷
. (2.34) 

The evaluation of these reduced matrix elements in the suitable quantisation has been 

tabulated by Nielson & Koster for each of the required reduced operators (Uk, Fk, and V11; vide 

infra) between Russell-Saunders terms of the form 2 1S L+ .55 Since the number of Russell-
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Saunders terms are much smaller than the full basis size (spanning the full J, JM space), 

these reduced matrix elements only require evaluation once. Use of the rules of the Wigner 3j 

symbol can determine, just by examining the quantum numbers involved and the rank of the 

operator, whether the matrix element is zero or not, avoiding needless computation. 

 

2.2.4.2 The ligand-field potential 

As will be detailed in section 2.3, the ligand-field perturbation is represented by a multipole 

expansion. This expansion requires evaluation of the basis function under spherical harmonic 

operators, of the form k

qY . This means that the effective ligand-field potential operator, 
LFV  in 

the many electron basis is constructed using the expression33 

 Ĕ
k

k

J LF J kq J q J

k q k

L S J M V L S J M c L S J M Y L S J M
=-

¡ ¡¡ ¡ ¡ ¡=ää  (2.35) 

where 
kqc  is the global radial multipole expansion coefficient of rank and order k  and q  (see 

section 2.3 for detail of their construction) and unlike the other radial parameters is not directly 

inputted. Application of the Wigner-Eckart theorem and expansion of the reduced matrix 

elements gives the final expression33 

 

( ) ( )( )( )
2 1

1 2 1 2 1 2 1
4

0 0 0

J

k

J q J

J J L S M k l

k

J J

L S J M Y L S J M

k
J J l

ˊ

J k J l k l L J S
LS L S

M q M J L k

¡+ + + - + +

¡¡ ¡ =

+
¡- + + +

¡å õå õë û
¡³ ì üæ öæ ö

¡ ¡- ç ÷í ýç ÷
U . (2.36) 

 

2.2.4.3 Interelectronic repulsion 

The interelectronic repulsion involves the two electron coulombic repulsion operator, which is 

a function of the inverse of the distance between any two electrons written as 1 ijr  in atomic 

units.34 It is possible to expand the angular part of the operator of 1 ijr  into a linear combination 

of Legendre polynomials:34 

 
1

1
(cos )

k

kk
kij

r
P ɤ

r r

<

+

>

=ä  (2.37) 

where the Legendre polynomial can be expressed as the scalar product of two spherical tensor 

operators, (1) (2) (cos )k k

kP ɤÖ =C C , resulting in the coulombic repulsion operator given by 



50 
 

 ( )1

1
( ) ( )

k
k k

k
kij

r
i j

r r

<

+

>

= Öä C C . (2.38) 

The angular integral of (1) (2)k kÖC C  between a bra and ket of angular momentum quantum 

numbers is given by:34 

 ( )

(1) (2)

1 (1) (2)

k k

L S J k k

JJ MM

LSJM L S J M

L S J
ŭ ŭ L L S S

L S k

¡ ¡+ +

¡ ¡

¡ ¡ ¡ ¡Ö =

ë û
¡ ¡- ì ü

¡ ¡í ý

C C

C C . (2.39) 

The operator can be expressed by a tensor of order k (like with the spherical harmonic 

operators of the ligand field in section 2.2.4.2, are truncated at k = 0, 2, and 4). The radial 

parameter given in (2.32), the kF  parameters, are Slater-Condon parameters. These kF  

parameters are parameterised expressions of the double integral56: 

 () ()2 2 2

1 2 1 21

0 0

k
k

k

r
F e R r R r dr dr

r

¤ ¤

<

+

>

= ññ  (2.40) 

where < and > denote the lesser and greater of the distances 
1r  and 2r  and 2R  is the radial 

part of the electron orbital. These parameters are related to 
kF  which are normalised versions 

of the kF  parameters, given by the relation: 

 

0

0

21
2 49

41
4 441

F F

F F

F F

å õå õ
æ öæ ö
=æ öæ ö

æ öæ ö
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 (2.41) 

An alternative parameterisation scheme to the Slater integrals are the Racah parameters A, 

B, and C. The Racah parameters are related to the Slater-Condon parameters and a 

transformation can be written as48 

 

0

21
49

41
441

1 0 49

0 1 5

0 0 35

A F

B F

C F

å õ-å õ å õ
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 (2.42) 

where simple algebra allows us to find the transformations, 

 

0 7
5

2

4 63
5

49 7

F A C

F B C

F C

= +

= -

= . (2.43) 

By combining both equations (2.40) and (2.39), the final form of the matrix element is given 

by:33 

 
1

J J

k

J J J J LL SS JJ M M
i j kij

LSJM L S J M LSJM L S J M F ŭ ŭ ŭ ŭ
r

¡ ¡ ¡ ¡
<

¡ ¡¡ ¡ ¡ ¡ ¡ ¡=ä ä kF  (2.44) 
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2.2.4.4 Spin-orbit coupling 

The spin of an electron has associated with it a magnetic dipole, as does the orbital motion of 

the charge. In a one-electron system, the interaction of the two magnetic dipoles is given by 

the operator ɕÖl s, where ɕ is the radial parameter given in (2.32). The effective mean radial 

parameter is given by the expression56 

 ()2 2

0

nl nlɕ R ɝ r dr
¤

= ñ  (2.45) 

where 

 () 2 2

1 1

2

dU
ɝ r

r drɛ c

å õ
= æ ö

ç ÷
. (2.46) 

By using a coulombic potential, 2U Ze r=-  and the hydrogenic radial wavefunction, equation 

(2.46) becomes: 

 
( )( )

2 4

2 2 3 3 1
202 1

nl

e Z
ɕ

ɛ c a n l l l
=

+ +
. (2.47) 

The radial parameter is proportional to 4Z  and inversely proportional to 3n . Hence, the 

parameter is larger for elements down a group and across a period. For the many electron 

case, the spin-orbit coupling operator is written as: 

 Ĕ
SOC i i

i

H = Öäl s  (2.48) 

which is a compound scalar operator and so can be expressed using equation (2.39). The 

final angular matrix element is given by33 

 ( ) ( )( )1 1 2 1
1J J

J i i J

i

L S J

JJ M M

LSJM L S J M

L S J
ŭ ŭ l l l LS LS

S L

¡+ +

¡ ¡

¡¡ ¡ ¡Ö =

ë û
¡ ¡è ø- + +ì üê ú¡ ¡í ý

ä

11

l s

V  (2.49) 

where a factor of 3
2  is subsumed into the reduced matrix element; the factor has to be used 

explicitly when computing spin-orbit coupled matrix elements for d1 or d9 using (2.49). 

 

2.2.4.5 Zeeman interaction 

The Zeeman interaction involves the use of the magnetic moment operator and represents 

the interaction of the basis functions with an external magnetic field. The magnetic moment 
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operator is used to compute magnetic properties (2.4.2), magnetic dipole transition intensities, 

and CD spectra (2.4.3.4). the Zeeman interaction is used to compute MCD intensities 

(2.4.3.5). 

 The magnetic moment operator itself is the sum of the orbital and spin angular 

momentum operators, ɛ kL g S
e

= + , given by33 
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1
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 (2.50) 

where 2.0023eg =  is the Land® g-factor and k is the orbital reduction factor. The spherical 

basis is used throughout so a conversion to cartesian directions proceeds via the relations 

( )( )1 11 2xɛ ɛ ɛ
- +

= - , ( )( )1 12yɛ i ɛ ɛ
- +

= + , and 
0z

ɛ ɛ=  to yield: 
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. (2.51) 

One can simply apply the Zeeman splitting by the multiplication of the magnetic field in the 

cartesian directions: 

 x x y y z z

B

ɛ B ɛ B ɛ B
ɛ

Ö
= + +

ɛ B
. (2.52) 

where Bɛ  is the Bohr magneton in units of cm-1 T-1. 

 

2.3 The ligand-field model 

The expression for the ligand-field contribution in equation (2.36) describes the angular matrix 

element for a series of spherical harmonic operators. The radial contribution is given by 

multipole expansion coefficients. The details and physical significance of this are presented in 

the proceeding chapter. The ñligand fieldò refers to a potential field generated by the ligands 

which are bound to the central metal ion. The ligand field is physically distinct when compared 

to the more typical forms of bonding from molecular orbital theory, or valence bond theory.  
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In the case of representing a ́-bond in ethylene with molecular orbital theory, for 

example, we require explicit descriptions of the two pz orbitals that overlap to form a bonding 

orbital occupied by bonding electrons. Hence, the description of those electrons requires a 

Hamiltonian that describes the overlap of two pz orbitals on different atomic sites. This type of 

description is unnecessary for Werner-type complexes, where only the angular description of 

the free-ion d orbitals is required. The d electrons and their configurations belong wholly, or 

primarily, to the central metal-ion. Their unique properties result from the fact that they do not 

often pair with electrons on other atomic centres. 

 To formulate this theory fully in a predictive way, one must know the radial forms of the 

d orbitals, the ligand orbitals, and the rest of the metal orbitals. The radial forms are not known 

a priori; the angular integrals, as given by equation (2.36), are known and complete. Hence, 

the parameterisation of the radial part of the ligand field serves to circumvent the difficult and 

relatively computationally expensive approach of optimisation, aiming to extract that 

information from experiment itself.  

 

2.3.1 The multipole expansion 

In LFT, the field generated around the central metal ion at the origin is given by a distribution 

of potentials, or charges. This type of distribution can be represented by a multipole expansion 

that is built from a linear combination of spherical harmonics34 

 ( , , ) ( ) ( , )
k

k k

q q

k q k

V r ɗ ű c r Y ɗ ű
¤

=-

=ää  (2.53) 

where V is a scalar effective potential and k

qc  are the local expansion coefficients that 

subsume the radial integrals.  

Now, the ligand-field potential must act within a basis of d orbitals. This can be 

represented by a potential, approximated by the multipole expansion, acting on the one-

electron d-orbital spherical harmonics. Using a d-orbital one electron basis that spans the lm  

space, where { }2, 1, 0, 1, 2m= - - , the potential can be written as 

 ( ) ( )
4

0

, , ( ) ,
k

k k

q q

k q k

lm V r ɗ ű lm lm c r lm lm Y ɗ ű lm
= =-

¡ ¡ ¡=ää . (2.54) 

Observing that the matrix element ( ),k

qlm Y ɗ ű lm¡ contains the Wigner 3j symbol 

0 0 0

l k lå õ
æ ö
ç ÷

 which is only non-zero for 0, 2, 4k =  when l is even, means that the summation 
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over kcan be truncated. McMeeking et al. have written the relationship between the 

expansion coefficients k

qc  and the general matrix elements of the potential lm V lm¡.33 

 

2.3.2 The one-electron ligand-field matrix 

Having established that the global multipole expansion coefficients can be computed from 

matrix elements of the ligand-field potential between the one-electron d orbitals, the question 

of how to construct the matrix and its elements immediately follows. In general, the method of 

parameterisation of the 5 Ĭ 5 one-electron ligand-field matrix, VLFT is what separates the global 

methods of crystal-field theory (with parameters of Dq, Ds, Dt, etc) and other models such as 

the AOM. McMeeking et al. have tabulated the inversion of the multipole expansion, which 

expresses the expansion coefficients of (2.54) in terms of the matrix elements of the one-

electron ligand-field matrix.33 It is this general conversion from a potential V in a one-electron 

basis, to the potential acting on a many-electron basis, that allows for the evaluation of the 

ligand-field potential in (2.32) and (2.36). 

 It is useful to compute the real form of VLFT explicitly. Computing the matrix explicitly 

with the ligand-field model means that comparisons can be made with the same matrix 

computed from AILFT to extract eɚ values from the results of ab initio calculations.10,31 The 

second reason is that the eigenvalue solutions of the one electron VLFT matrix furnish the 

energies of the five mixed one-electron d orbitals and their eigenvectors in the real d-orbital 

basis. 

The energies are invariant under the rotation of the coordinate scheme. However, the 

eigenvector coefficients change. This means that the interpretation of the d-orbital character 

is sensitive to the choice of cartesian axes. To illustrate this with a simple example, we can 

imagine a dzĮ orbital in the conventional scheme, aligned along the Z axis in a cartesian 

orientation (XYZ). If we were to rotate about the Y axis by 45Á, it is possible to construct the 

new orientated dzĮô (the prime indicates the new rotated scheme XôYôZô) in terms of the d 

orbitals in the original XYZ scheme. In Figure 2.3, the linear combination of the dzĮ, dxz and dxĮï

yĮ in XYZ can reproduce the shape and orientation of the new dzĮô orbital. However, visualising 

spherical harmonic mixing is not easy and hence a suitable coordinate scheme should be 

chosen to make chemical sense of the resulting ligand-field splitting. 
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Figure 2.3 The mixing of the angular Y(l,m) (l=2, m=2, 1, 0) spherical harmonics in one 

coordinate frame (XYZ) to reconstruct the spherical harmonics in a rotated coordinate 

frame (XôYôZô). 

 

 We are now concerned with the parameterisation of the 15 unique matrix elements of 

the one-electron ligand-field potential matrix in terms of eɚ parameter, which have a tangible 

and physical (chemical) meaning attached to their parameter values and can be applied to 

any molecular geometry. 

 

2.3.3 Angular overlap model 

The AOM is one possible method of parameterising the VLFT matrix. The parameterisation 

requires only two parameter sets: the angular geometry { }, ,ɗ ɣf , which is known from either 

x-ray crystallography or from a calculated structure; and the individual metal-ligand bonding 

parameters { }ɚe  for each ligand.57 

 The AOM aims to reproduce the energetic perturbations experienced by a d electron 

on the metal via an electrostatic potential over the entire metal, which is constructed from the 

sum of a series of local electronic perturbations. This is simply the consequence of using a 

multipole expansion in (2.53). Technically speaking, it is possible to decompose this global 
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field into an infinite number of spatial regions. It is the task of the user to choose a sensible 

decomposition. Hence, assuming some sort of interaction between the central metal ion and 

a ñcoordinatingò atom exists, a potential must arise from that spatial region that the ligand 

occupies. Explicit equations for the extraction of the angular geometry are presented and an 

overview of the various metal-ligand bonding e-parameters are given. 

 

2.3.3.1 Spherical polar coordinates 

The model requires angular, rather than cartesian, coordinates. There exists simple 

expression relating the spherical polar coordinates ɗ and ◖ to the cartesian coordinates of a 

given coordinating atom: 
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There also exists a simple relationship between the spherical polar coordinates and the Euler 

angles in the z-y-z convention as described in section 2.2.3: Ŭ=f andɓ ɗ= .  

 

 

Figure 2.4. The angular geometry of a ligand and the definitions of its spherical polar 

coordinates. 
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 This description of the angular geometry is complete for any ligand that engages in 

linear  ́bonding, or is void of ˊ bonding, but incomplete for ligands which asymmetrically ˊ 

bond (e.g., pyridine). In doing so, we must align one of the local frames (x or y) with another 

plane. This angle is given by the final Euler angle ɔ. The definition is simply defined as the 

dihedral between the plane formed by the unit z-coordinate axis (Z), the central metal-ion (M), 

and the coordinating atom (L), and the plane formed by the central metal-ion, the coordinating 

atom, and the final coordinate that defines the local x-direction (O). In other words, the final 

Euler angle is given by the dihedral Z-M-L-O. The final complete angular description of the 

geometry of a metal-ligand bond is illustrated in Figure 2.4. 

 

2.3.3.2 Diagonal perturbations 

Considering the diagonal frame, centred on some point, one can define a series of local matrix 

elements34 
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where the operator v  is the local potential in the frame of the angular coordinate. These 

perturbative potentials are symmetric about the metal-ligand axis and as a result the pseudo-

symmetry of these interactions can represent the metal-ligand bonding modes of the ligand. 

These diagonal perturbations are then rotated by means of a Schaffer rotation matrix ( , , )ɗ ɣfR

, transforming the local perturbation matrix elements to the global perturbation frame51 

 ( ) ( )
1

, , , , , ,
N

T

LFT i i i i i i

i

l m V l m ɗ ű ɣ ɗ ű ɣ
=

¡=äR vR  (2.57) 

where the sum is over all ligands. The additivity to the global ligand field of all ligands is a key 

assumption of the model. 

 It must be remembered that no explicit overlap has occurred between metal d orbitals 

and ligand functions. There of course will be some overlap but it is generally small. The explicit 

first principles derivation of the magnitude of the eɚ is quoted as31 
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where the parameter features a first order and second order term. The first order term is 

referred to as the electrostatic contribution and the second order term is referred to as the 

electrodynamic contribution. These two physical effects have fundamentally different origins. 

The electrostatic contribution is more akin to a ñcrystal-fieldò like perturbation; it is the static 

electric field generated by all the other electrons in the molecule perturbing the d electrons. 

The electrodynamic contribution arises from the correlation energy that occurs when the d 

electrons instantaneously approach electrons in a metal-ligand (anti)bonding orbital, illustrated 

in Figure 2.5. 

 

 

Figure 2.5 The electrodynamic contribution arising from a metal-ligand bonding orbital 

with the d orbitals (left) and the corresponding pseudo-symmetry representation within 

LFT from the minimal basis set of d orbitals (right). 

 

The chemical notion of bonding arises from the electrodynamic contribution. It is the 

interaction between the metal d orbitals and the electrons contained in metal-ligand bonds 

(formed from a combination of ligand and other metal functions). For electrons to 

instantaneously approach in a dynamic electric field they must spatially overlap (occupy the 

same volumes). The denominator term in equation (2.58) determines the sign of the 

interaction. If the bond orbital is of a higher energy than the mean d-orbital energy, this 

contribution is negative, and vice versa if the bond orbital is of a lower energy. Hence, a strong 

and stable ů bond would be expected to be lower in energy than the d orbitals and hence be 

a positive contribution (eɚ > 0). A ́ anti-bonding orbital has electron density in an orbital which 
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is higher in energy and would result in a negative contribution (eɚ < 0). This is in line with the 

notional donor and acceptor behaviour of ligands. An illustration of this concept is shown in 

Figure 2.6. 

 

 

Figure 2.6 The formation of metal-ligand bonding and antibonding orbitals between a 

ligand ů function and a combination of the metal 4s/4p functions and its perturbation 

on the d orbitals (A); the competing ˊ-acceptance and ˊ-donation from both 

donor/accepting capabilities of a metal-ligand bonding and anti-bonding ˊ function (B). 

 

It is not trivial untangling the electrostatic and electrodynamic contributions from one 

another. Gerloch and Wooley have argued that the electrostatic part is probably sizeable in 

the eů parameter but negligible in the e ́parameter.24 However, Singh et al. have argued that 

the electrostatic part (which they associate as belonging to calculated CASSCF energies and 

electrodynamic contributions being attributed to the NEVPT2 contribution) is a much larger 

contribution to the eɚ parameter.31  
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2.3.3.3 Misdirected valence 

There is also the notion of a ñmisdirectedò bond where a local perturbation does not sit 

symmetrically about a metal-ligand axis. Examples of this are lone non-bonding electron pairs, 

or geometric constraints that physically misdirect a ů or ́ function on the ligand. These 

perturbations are represented by the local matrix element 2 2xz xz ˊůxz z
d v d d v d e= =  and 

2 2yz yz ˊůyz z
d v d d v d e= = .  

 

 

Figure 2.7 Illustrative representation of a destabilising misdirected bond projected into 

the negative XZ quadrant of the local ligand frame resulting in a positive misdirected 

parameter value. 

 

 Unlike with the diagonal perturbations (vide supra), a simple relationship does not exist 

between the sign of the parameter and its notional donor/acceptor behaviour. Rather it is a 

function of both the donor/acceptor behaviour and the directed quadrant that the misdirected 

interaction is placed. The electrodynamic contribution to the eˊů parameter can be derived by 

equation (2.58) and is written as58 
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where the numerator is not necessarily always positive since the dz² and dxz in this case may, 

or may not, be in-phase. Imagine a ligand function projected into the positive local x direction 

(Figure 2.7) and its perturbation represented by the eˊůx parameter. Assuming (as would often 

be the case) the function is a destabilising interaction, the denominator in (2.59) contribution 

is defined as positive. In these instances, the eˊůx parameter would also be positive. However, 

If the destabilising interaction is projected into the negative local x direction instead, the 

parameter will be negative. 

 

2.3.3.4 4s-3d mixing 

Early evidence of 4s mixing with the 3dzĮ orbital, in effective square planar complexes, was 

presented by spin Hamilton analysis of EPR spectroscopy. In those works, the analysis of the 

Fermi term suggested that there was 4s mixing into the 3dzĮ orbital.59,60 The implications that 

this mixing would have for ligand-field analysis was later demonstrated by Hitchman and 

Cassidy who were able to unambiguously assign the d-orbital energy sequence of square 

planar CuCl42- as dxĮïyĮ >> dxy > dxz > dyz > dzĮ.61 They showed that the AOM model, which 

assigned an eů and e ́to each chloride ligand, could not account for the relatively low energy 

of the dzĮ orbital. Since then, the stabilisation of the dzĮ orbital in axially weak ligand fields has 

been well documented.62 Within the ligand-field literature, two methods have been developed 

to deal with this phenomenon. 

The first method was to use a so-called ñcoordination voidò, where a potential (eů) is 

placed at the distant ligand, or in a region absent of any ligation, above and below the 

equatorial plane.62 The stabilisation is accounted for by a negative eů parameter at the 

coordination void. There have been recent suggestions that a negative e ́value should also 

be attributed to these coordination voids.63 The primary issue with this method is that it is not 

always straightforward to decide where the coordination void should be placed. 

The alternative approach of accounting for this stabilisation is to evaluate the angular 

matrix elements of the 3d-4s interaction and parameterise this. Practically, this would involve 

placing a shared eds parameter on each ligand. The interaction perturbation is written as:64 

 
4, , n n n

s m m ds

n

l m V l m F F e¡¡=ä  (2.60) 

where the elements of the angular overlap, mF  are: 
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The 4s perturbation is a stabilising effect on the overall ligand-field matrix. Thus, the matrix 

elements of the 4sV  operator are subtracted from the matrix elements belonging to the 5Ĭ5 

global ligand-field potential 
LFTV  operator, given by equation (2.57), to yield: 

 
total 4, , , , , ,LFT sl m V l m l m V l m l m V l m¡ ¡ ¡= -  (2.62) 

 

2.3.4 A theoretical guide to the parameterisation of metal-ligand bonding 

The preceding sections detail the theoretical groundwork for the metal-ligand bonding 

framework. However, the choice of the types of (or how many) interactions to assign to the 

ligand-field parameterisation is not always obvious. This section collates the main bonding 

interactions for a wide range of metal-ligand bonds and offers a rationale for how one might 

choose to define the bonding in those metal-ligand interactions. Finally, a short example is 

given, which shows how a ligand-field parameterisation scheme might be configured for a real 

molecule. 

 

2.3.4.1 Bonding interactions of ligands 

Common to every ligand-field analysis, except those carried out on isolated free-ions, is the 

assignment of bonding interactions to ligands. Inorganic chemistry features a diverse range of 

ligands with different bonding modes. Although it is impossible to cover every possible ligand, 

the most common ligand classes from inorganic and organometallic chemistry are considered 

here as a useful reference and guide. The aim is to not only allow a user to check a 

parameterisation scheme for a type of ligand but to also see the rationalisation, so that one 

can determine what bonding parameters and likely interaction types (donor or acceptor) can 

arise for similar or different classes of ligands. The general eɚ parameterisation scheme for a 

range of ligands is given in Table 2.1. The table is not meant to cover every scenario or to be 

used without context. Some interactions might not be included depending on the chemical or 
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parametric context (reducing the number of free adjustable parameters in the latter case, for 

example). 

 

 

 

Table 2.1. General eɚ parameterisation schemes for classes of ligands. (L.P.) = lone pair 

interaction. 

Ligand eů e  ́ eˊx , eˊy eů  ́(L.P) eŭ 

Saturated 
amines 
(NR3) 

Donor 0 0 0 0 

H2O Donor 0 Donor or 0 Donor or 0 0 

OHï Donor 0 Donor Donor or 0 0 

Fï, Clï, Brï, 
Iï 

Donor Donor 0 0 0 

CN, CO, 
SCN- 

Donor Donor or 
acceptor 
(linear) 

Donor or 
acceptor 

(bent 
bonding) 

0 0 

Phosphines Donor Acceptor 0 0 0 

Thiolates65 
(bent) 

Donor 0 Donor Donor 0 

Oxo (M=O) Donor Donor 0 0 0 

Heterocyclic 
ligands 

Donor 0 Donor or 
acceptor 

0 0 

Carbenes Donor 0 Donor or 
acceptor 

0 0 

Conjugated 
bidentate 
ligands 

Donor 0 Donor or 
acceptor 

Donor or 0 Donor or 
acceptor 

ɖ5-Cp Donor Donor 0 0 Acceptor 

ɖ2-Olefin Donor 0 Acceptor 0 0 
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A visual summary of the key interactions for different ligand types are given in Figure 

2.8. The following subsections discuss the different classes of ligands in more detail. In 

general, one can often get a sense for the types of interactions and their respective 

donor/acceptor properties by considering the frontier valence orbitals. 

 

 

Figure 2.8. The key types of bonding interactions for different classes of molecules. 

The subscripts óxô refer to a direction parallel to the intra-ligand bonds shown and óyô 

refers to the direction perpendicular to that. The * next to an eɚ assigns that interaction 

as an acceptor interaction. 

 

2.3.4.1.1 Saturated donors 

Saturated donors contain ligands that are often presumed to be ů-donor only ligands. 

Examples include ammonia, primary amines, secondary amines, tertiary amines, and alkyl 

ligands. This class of ligand is the simplest requiring only one variable parameter eů, illustrated 

by Figure 2.8 (A). 

 There are cases where an e ́parameter might arise from this class of donor. The first 

relates to the possibility of large electrostatic contributions to the metal-ligand bond. The size 

of this perturbation is a matter of current debate.66 A ligand-field analysis of the experimental 

data of a linear dialkyl cobalt(II) complex later in this thesis provides evidence for a small 

electrostatic contribution to the e ́value. The second possibility comes from apparently 
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saturated ligands that do engage in -́bonding (e.g., phosphines as shown in Figure 2.8 (B)). 

The third possibility is in the formation of a partial double metal-ligand bond from an agnostic 

effect that has been described in MïCïH (M = metal) bonds.67 

 It is also possible for these ligands to have an eů  ́parameter due to misdirected 

valence of the ů bonding orbital. There are multiple uses of this reported in the literature.58,68ï

71 In these instances, the misdirected valence will be a destabilising interaction. 

 

2.3.4.1.2 Cylindrical ˊ bonding 

Cylindrical ˊ interactions are equal ˊ perturbations about a metal-ligand axis (i.e. ex́ = eý), 

illustrated in Figure 2.8 (C). This is common for ligands with a single atomic centre (e.g. the 

halides) or for linear ligands coordinating in a linear fashion (CO, ïCN, acetonitrile, etc). Other 

examples include ligands with local C3v symmetry, such as the -́acceptance of phosphines. 

Even in ligands with a lower local symmetry it can be useful to approximate the ligand as 

engaging in cylindrical ˊ bonding to lower the number of free parameters. 

 The relative donor or acceptor capability of some ligands is well known: halides, for 

example, are ˊ donors; phosphines are ́ acceptors. However, for some ligands (e.g. cyanide, 

acetonitrile, and azide), the e ́parameter measures the net donor/acceptor capability.72 It is 

possible to have a value that is small or near 0 cm-1 and indicates either a lack of -́bonding, 

or more likely, that the donor and acceptor functions cancel each other out. It is impossible 

with the ligand-field model to separate out the separate donor and acceptor interactions. 

 

2.3.4.1.3 sp2 hybridised ligands 

Ligands whose coordinating atoms are essentially sp2 hybridised engage in asymmetric -́

bonding, the example bonding diagram is given in Figure 2.8 (D). These ligands require 

definitions of their local x direction which is aligned with one of the atoms bonded to the 

coordinating atom. Examples of this type of ligand are imines, pyridines, pyrroles, thiolates, 

and hydroxides. Typically, the ex́ parameter is set to 0 cm-1 as it is often associated with 

occupied sp2 orbitals engaged in ů-bonding with the ligand framework. Sometimes one of the 

sp2 orbitals is not engaged in ů-bonding and instead houses a lone pair. This is common for 

ligands such as thiolates, or phenolates, where the coordinating atom features one intra-ligand 

bond. That lone pair will have associated with it an in-plane lone pair e ́and, if 

parameterisation will allow, a misdirected éů parameter, as illustrated in Figure 2.8 (E). 
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 Typically, these ligands are often found to be -́donors, particularly if they are anionic 

or possess occupied -́orbitals. However, some ligands might have functions of -́symmetry 

which are unoccupied or are depleted via electron-withdrawing groups, such as that found in 

some carbenes. Again, in those systems the eý parameter measures the net donor or 

acceptor properties of the ligand as discussed in 2.3.3.2. 

 

2.3.4.1.4 Phase-coupled ligators 

The class of phase-coupled ligators are thought to engage in differential p bonding. Although 

there have been attempts to explain the spectroscopic properties of these complexes using 

misdirected valence58,68, this parameterisation was not able to account for the spectroscopic 

properties of Cr(acac)3, where acac = acetylacetone.67 Instead, the ligand-field 

parameterisation of the acac ligands was extended to consider the phase coupling of the 

delocalised ˊ bonding networks. This phase coupling ï referred to as the ñOrgel effectò73 ï 

has been successfully applied within the ligand-field model to the reproduction the physical 

properties of Cu(acac)2.74 

 

 

Figure 2.9. The out-of-phase ɢ-type and in-phase ɣ-type interactions with the dyz and 

dxz orbitals for the Orgel effect of phase-coupled ligation. The red and blue arrow 

represent the molecular Z and Y axes respectively. 
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An illustration of the Orgel effect is presented in Figure 2.9. The ˊ bonding of the 

conjugated ˊ networks produce two sets of ˊ interactions: an out-of-phase interaction (ɢ-type, 

Figure 2.9 left); and an in-phase interaction (ɣ-type, Figure 2.9 right). These two phases 

differentially interact with the dxz and dyz orbitals of local ˊ symmetry and given that the in-

phase and out-of-phase ˊ networks would be of different energies, the individual perturbations 

will be of different magnitudes according to equation (2.58). 

 

 

Figure 2.10. The parameterisation scheme of a phase-coupled ligator ligand from the 

ñOrgel effectò. 

 

A question arises: how do we parameterise the Orgel effect in the metal-ligand bonding 

parameterisation scheme? The parameterisation scheme of the Orgel effect for a ligand like 

acac- is presented in Figure 2.10. In total, three bonding parameters are required: an eů 

parameter to measure the ů bonding strength; an eý parameter (where the local x direction 

is directed parallel to the ů bonding plane), which parameterises the ɣ-type in-phase ˊ 

interaction; and an eŭxy parameter, placed at a coordinate which bisects the XïMïX triad 

(where X = the coordinating atom and M = the central metal ion) in the plane of the ů bonding 

framework, representing the ɢ-type out-of-phase ˊ interaction. Some authors have used 

specific eɢ and eɣ parameters, introduced as a rhombic perturbation.74 The method described 

above is equivalent and does not require the definition of new parameters. 

If one places a simple potential at the coordinating atom positions and parameterises 

it with eů and eý, but does not include the non-local eŭxy perturbation, then a (near) degenerate 

dxz/dyz pair results. However, the one-electron energetic splitting of the dxz/dyz orbital pair has 

been determined to be approximately 1500 cm-1 in cobalt(II) Schiff base complexes.75 Other 

work carried out on the same system, which does not recognise the Orgel effect but instead 

parameterises the in-plane electron lone pair with an eů x́ value, manages to provide an 
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alternative fit of the experimental data.58 One should note, however, the work that provides an 

alternative fit of the experimental data reports best fit parameters which are unphysical (a 

negative Racah B parameter). Hence, their parameterisation scheme should be interpreted 

cautiously. A more detailed discussion between these two methods can be found by 

Bridgeman and Gerloch.29 

 

2.3.4.1.5 Cyclopentadienyl ligands. 

A common class of organometallic ligand is the cyclopentadienyl ligands. As far as the author 

is aware, these ligands have never been parameterised with bonding parameters directly. In 

terms of parameterisation, it depends on the coordination mode. The most common bonding 

mode is the ɖ5 bonding mode. If the available bonding interactions are rationalised using a 

simple frost cycle, we can see that the cyclopentadienyl has five orbitals that could perturb the 

d orbitals, as shown in Figure 2.8 (F). In this case, it is convenient to place a potential in the 

centre of the ring. The cyclopentadienyl then has one donor interaction of ů-symmetry and 

two degenerate donor interactions of -́symmetry. The ligand also has two degenerate 

acceptor interactions of ŭ symmetry. 

 An issue arises with the possibility of three separate ů, ˊ, and ŭ interactions. It has 

been established that eɚ are ñrenormalisedò such that eɚ = eɚô ï eŭô, where the primes indicate 

the unnormalized parameters. Given it is often a requirement to set eŭ to 0 cm-1 and since it 

might be non-zero (< 0 cm-1) it might enhance the size of the donation of the eů and e ́

parameters. However, in a mixed ligand system, it may be unsuitable to set eŭ of the Cp ligand 

to 0 cm-1 because it might take a value < 0 cm-1 compared to the eŭ systems of the other 

ligands in the molecule, which are likely to be of a similar value. More research is required in 

this area before a conclusion can be reached. 

 

2.3.4.1.6 Olefin ligands 

Olefin ligands typically coordinate via the centre of their ˊ bond, as illustrated in Figure 2.8 

(G). The p bond acts as a ů donor relative to the central metal ion; the ˊ* anti-bonding orbital 

acts as a p acceptor interactor with respect to the central metal ion. The epx parameter is 

orientated along the C=C vector and is assigned a value < 0 cm-1. Little is known about the 

magnitudes of these parameters and few analyses have been carried out on transition-metal 

complexes with olefin ligands.76 
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2.3.4.2 Choosing ligands 

The first step of a ligand-field analysis is defining the minimal number of ligand types in a 

molecule. In general, this is as simple as looking at the chemical nature of the coordinating 

groups within the molecule. If there are multiple phosphines, or amines, etc of a similar bond 

length then it is an obvious choice to group these together as a single ligand type. Consider, 

as way of an example, the x-ray structure of a five-coordinate vanadium complex in Figure 

2.11.77 There are three distinct functional groups: the axial tBuNC, the axial tertiary amine, and 

the equatorial amides. We would define these three as separate ligands. In doing so, we are 

assuming that the equatorial amides are similar and engage in similar bonding with the central 

metal ion. 

 

 

Figure 2.11. The x-ray crystal structure of (C6F5)3trenVCNtBu (left, CSD: WAFGOD) and 

the representative molecular drawing with the three functional groups coloured in blue, 

red, and pink (right).77 

 

 Having defined our three unique ligands in the molecule, one then considers the 

bonding modes of the ligands. The axial tBuNC ligand would engage in ů bonding and would 

likely engage in approximately cylindrical -́bonding as it coordinates linearly. The axial amine 

would be presumed to engage in ů bonding only. Finally, the equatorial amides are presumed 

ů donors and likely asymmetric -́donors, -́bonding out of the CïNïC plane. In all, that 

leaves us with a total of five ligand-field parameters: eů(tBuNC), e(́tBuNC), eů(Nax), eů(Neq), 

éy(Neq), where Nax and Neq are labels for the axial amine and equatorial amides respectively. 

Where possible, it is desirable to try and reduce the degree of parameterisation further. In the 

crystal structure, the tBuNC and Nax coordinating atoms are approximately trans to one another 
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forming an angle of 177Á between the two. As a result, their ů bonding will be correlated (due 

to  holohedral symmetry) and it is possible to set eů(tBuNC) = eů(Nax). In total, we are left with 

four freely adjustable ligand-field parameters. 

 

2.4 Post-diagonalisation methods 

The preceding sections have detailed the construction of an effective Hamiltonian, constructed 

from ligand-field parameters, which when solved produce a set of eigenfunctions. The 

solutions produce a set of energy levels (eigenvalues) and their linear combination of angular 

momentum coupling coefficients (eigenvectors). These eigenfunctions can be used to 

compute magnetic and spectroscopic properties. This section deals with the linear algebra 

and equations required to compute these quantities and how one can extract other information 

such as spin, configurational mixing, and irreducible representation projections.  

 

2.4.1 Projection methods 

2.4.1.1 Spin projection 

The eigenvectors obtained from the diagonalisation of the full effective Hamiltonian can be 

characterised by their spin projection. In the absence of spin-orbit coupling, the spin quantum 

number is a good quantum number and can be used to distinguish ñspin-allowedò and ñspin-

forbiddenò transitions. For transition metals, even with spin-orbit coupling, the spin quantum 

number is typically well behaved, especially for 1st row transition metals which have spin-orbit 

coupling constants < 830 cmï1.  However, one can quantify the degree of spin contribution to 

an electronic state via a projection operator, Ĕ( )P S  where S is the spin quantum number. The 

projection operator acting on a ket with a defined spin is: 

 Ĕ( ) J S SP S LSJM ŭ¡¡ =  (2.63) 

Applying the projection operator to an eigenvector and taking the scalar product returns the 

spin-projection, 

 ĔɊ ( )ɊSQ P S= . (2.64) 

Where Ɋ is the eigenvector. Since the eigenvector is orthonormal, the resulting projection will 

be between 0 and 1 (inclusive). Although the spin-quantum number is well behaved for 1st row 
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transition metals, two electronic states close in energy can mix significantly and the 

assignment as a spin singlet, or triplet, etc, is meaningless. 

 

2.4.1.2 Configuration projection 

Implicit in the calculation of the matrix elements between free-ion quantum numbers is the 

mixing of electronic configurations in the five calculated ñmixedò d orbitals. However, projection 

of these mixing quantities is not trivial and cannot be ñback calculatedò out of the eigenvectors 

easily. Those calculations would proceed via the transformation of the eigenvectors from the 

, , , JL S J M  basis to a linear combination of slater determinants 
1, ...,l lim m  that are built from 

the free-ion d-orbitals, not the final mixed d orbitals from the ligand-field diagonalisation. This 

task is not easy, especially with the construction of the slater determinant couplings using 

recursion, which becomes increasingly complicated for dn systems where n > 2. Instead, a 

different approach was used to construct the configuration projection.  

The developed approach produces eigenvectors from the diagonalisation of the many-

electron effective Hamiltonian constructed using just the ligand-field potential, where 

contributions from interelectronic repulsion and spin-orbit coupling are ignored. These 

eigenfunctions will be labelled as ( )Ɋ LF. Because the ligand-field splitting is a one-electron 

calculation, there should be a one-to-one mapping between the relative energies of ( )Ɋ LF 

and a linear combination of the relative energies of the five d orbitals.  

For example, in a spin singlet (S=0) d2 system, there is a possible configuration where 

d-orbital 1 is doubly occupied and d-orbital 2 is vacant. Likewise, there is another possible 

electronic configuration where both d orbitals are singly occupied. Therefore, the eigenfunction 

of ( )Ɋ LF associated with the former electronic configuration (the Aufbau ground state) will be 

the lowest energy spin singlet eigenfunction. Likewise, the eigenfunction of ( )Ɋ LF which has 

a corresponding relative energy of ( ) ( )2 1E orbital E orbital- , representing the one-electron 

transition from orbital 1 to orbital 2, is assigned to the latter eigenfunction. A list of the possible 

spatial orbital occupation for each dn configuration is given in appendix 6.2. Worked examples 

of this mapping from the d-orbital splitting to the eigenfunctions of ( )Ɋ LF are given in sections 

4.1.3.2 and 4.2.4.3.1. Note that in the event of degeneracies between one-electron orbitals, 

their separate occupations cannot be distinguished. 
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 It is recognised that the final eigenfunctions [labelled as ( )Ɋ full] obtained by 

diagonalisation under the effects of the ligand field, interelectronic repulsion, and spin-orbit 

coupling are just a linear combination of the ( )Ɋ LF eigenfunctions, such that: 

 ( ) ( )Ɋ full Ɋ LF
N

i

i

c=ä  (2.65) 

where i  spans the size of the number of unique spatial electronic configurations (appendix 

6.2) and 
ic  is the coefficient. Therefore, one can solve for the linear combination of coefficients 

using linear algebra: 

 

( ) ( )

( ) ( )
1

LF Ɋ full

LF Ɋ full
-

=

=

Ɋ c

c Ɋ  (2.66) 

Where ( )LFɊ  are the columns of the ( )Ɋ LF eigenvectors and c is the column of linear 

coefficients.   

 

2.4.2 Magnetism 

2.4.2.1 EPR g-factors 

Calculation of EPR g-factors can be carried out by the construction of a second-order 2g  

tensor over the cartesian basis, an element of which is given by78 
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 (2.67) 

where , , ,Ŭ ɓ x y z=  and i  and j  are the indices of the eigenfunctions. The summation in the 

denominator extends over the effective spin degeneracy of the level. An effective Ms projection 

of S=1/2 is used for calculations over a Kramerôs doublet, where the calculated g-factors are 

ñeffectiveò g-factors. Otherwise, the sum over S adopts the value of the spin quantum number 

of the level and the summation over eigenfunctions is extended to the full non-relativistic 

degeneracy. Solving the tensor gives the three principal 2g  values and their orientations. The 

principal g-factors extracted from experimental simulations are simply the square roots of the 

eigenvalues. 
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2.4.2.2 Paramagnetic susceptibilities 

Paramagnetic susceptibilities ɢ, are a special case of magnetic susceptibility that measure the 

response of an object to the application of a magnetic field. In other words, paramagnetic 

susceptibilities measure whether a material is repelled or attracted to an external magnetic 

field. Paramagnetic materials, which require unpaired electrons, are repelled by an external 

magnetic field (ɢ > 0). 

 The paramagnetic susceptibilities can be computed through the construction of a 

second rank tensor, which includes a first-order and second-order Zeeman term. The tensor 

is computed and diagonalised for each temperature. An element of the tensor can be 

computed using the Van Vleck equation78 

 
Ŭ ɓ Ŭ ɓ Ŭ ɓ

j k i
Ŭɓ i

i B k i

i ɛ j j ɛ ii ɛ k k ɛ i i ɛ k k ɛ i

ɢ Z
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ç ÷

ä ä
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where , , ,Ŭ ɓ x y z= ; the i  and j  indices map over eigenfunctions that are thermally populated; 

the k  indices extend to all other higher lying eigenfunctions, though one can truncate the 

summation for computational reasons; 
Bk  is the Boltzmann constant; 

iE  is the thi  eigenvalue 

in the absence of any Zeeman perturbation; and ( ) ( )exp expi i B k B

k

Z E k T E k T= - -ä . 

 

2.4.2.3 Mapping eigenvectors on to the magnetic moment operators 

Equations (2.67) and (2.68) in this section use matrix elements of the magnetic moment 

operators acting between two eigenfunctions. No mention has been made thus far of how 

these quantities are computed. Recall that the matrix elements defined in equation (2.51) are 

acting between the basis set functions not eigenvectors. For our purposes, one may evaluate 

the required matrix elements using the relationship: 

 ( )* ū ū ū ūŬ ia jb Ŭ a Ŭ b e a Ŭ b

a b

i ɛ j c c k L g S= +ää  (2.69) 

where i and j are the usual eigenfunctions of the effective Hamiltonian; a  and b  are indices 

over the basis set; ic  and 
jc  are the eigenvector coefficients; ū are the basis functions 

defined by the L , S , J , and JM  quantum numbers; ŬL and ŬS  are the orbital and spin angular 

momentum operators defined by equations (2.50); and , ,Ŭ x y z= . 
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2.4.3 Spectroscopic intensities 

Transition-metal ions give rise to a range of interesting electronic spectra. The phenomenon 

of optical activity is concerned with the interaction of the external and perpendicular electric 

and magnetic fields Eand H of the radiating light with the electric (m) and magnetic (ɛ) 

dipole moments of the molecule. Since the wavelengths that are used in optical spectroscopy 

are typically much larger than the molecule (or at least the metal ion whose absorptions we 

are modelling) then we can assume a uniform magnetic and electric field from the radiating 

light. From Schellmanôs perturbative approach, three contributions arise that contribute to the 

total interaction Hamiltonian between the radiating light and the molecule79 

 ( )
( ) ( )

( )
2 2

2
2 2

0 0 0 0

2

3 3 3

I J I J

I J I J I JV E H E H

­ ­

­ ­ ­

°
= + °

m ɛ
m ɛ   (2.70) 

where the three components refer to the electric dipole moment strength, the magnetic dipole 

moment strength, and the rotary strength; V  represents the interaction Hamiltonian between 

the molecule and the radiation; and 0E  term and 0H  terms are the amplitudes of the radiating 

electric field. These interactions are for a transition between two levels I  and J , where the 

former is lower in energy, comprised of the set of states i  and j . The magnetic dipole moment 

is readily evaluated, and its expression is found in section 2.2.4.5. However, the main 

contribution to spectroscopic intensity is the electric dipole moment, the matrix element of 

which are formally forbidden between pure angular d states due to the Laporte selection rule. 

The computation of spectroscopic intensities is concerned with the evaluation of non-zero 

values of the electric dipole moment operator acting between formally same parity ligand-field 

states. 

 Computing electric dipole moments (and spectroscopic intensities) within LFT for 

transition metals has not received as much attention as it has for the f block80. Duer et al. and 

Brown et al. have reviewed the developments in the field and have developed their own 

methodology for parameterising spectroscopic intensities in a similar fashion to e-values in 

the ligand-field model.81,82 They have applied both the static and dynamic (vibronic) 

contributions of their model to several systems with success. Another method developed by 

Whittaker et al., based on the work of Gerstman and Brill, involves extending the basis set to 

include the angular states of the metal p (and f) coupling to the d-orbital manifold.83,84 The 

explicit d-p and d-f matrix elements are computed and solved for the extended Hamiltonian. 

In principle, this latter method is not truly a ligand-field method, given the extension of the 

minimal basis set from just d-states. However, this method has only been applied to the 

computation of absorption and magnetic circular dichroism spectra of d9 cupric systems. 
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 This subsection proceeds with an expression for the explicit computation of the 

magnetic dipole moment transition tensor. Then the origin of the electric dipole moment 

operator, acting within a same parity basis, is reviewed along with the expression for their 

evaluation from the eigenfunctions of the effective Hamiltonian. The Pɚ and Fɚ parameters that 

are used to compute electric dipole moment operators are then discussed in terms of their 

properties and physical meaning, Finally, expressions for the absorption, CD and MCD 

intensities are given. Only a ñstaticò model of intensities is considered; contributions that arise 

from bending and vibrational modes are ignored. 

 

2.4.3.1 Electric dipole moment operator 

The strength of a transition between electronic states requires the evaluation of the electric 

transition dipole moment operator. The electric dipole moment acting between electronic 

states of the same parity is formally forbidden according to the Laporte selection rule. 

Recalling that the electric dipole moment operator can be represented as a rank-1 tensor, the 

transition dipole moment can be evaluated explicitly for an electric dipole transition between 

two Russell Saunders states using the Wigner-Eckart theorem (2.34). The matrix element 

contains the Clebsch-Gordan coefficient 0 0 0 2010 20 0l k l = =. It is this Wigner 3j symbol 

that enforces the Laporte selection rule. 

The evaluation of the electric dipole moment operators ( , , )
Ŭ

m Ŭ x y z=  between many 

electron states can be written as81 

 *

, ,

Ɋ Ɋ ū ū
n n k k
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n k q q i j Ŭ
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where n is the ligand index, n

k q Ŭ
c ¡ ¡ is the local multipole expansion coefficient (vide infra), k

q q
D ¡ 

is the Wigner rotation matrix for the angles , ,Ŭ ɓ ɔ, a  is the complex eigenvectors from the 

diagonalisation of the effective Hamiltonian, and the matrix element ū ū
k

i q j
Y  refers to the 

spherical harmonic matrix elements that are used for the construction of the ligand-field 

contribution to the effective Hamiltonian. The ū  are the free-ion basis functions. The rotation 

matrix n

Ŭ Ŭ
R ¡, relates the local x, y, and z frames of the ligand to the global cartesian frame, 

given by34 

 ( )

Ŭ ɓ ɔ Ŭ ɔ Ŭ ɓ ɔ Ŭ ɔ ɓ ɔ
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æ ö
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 (2.72) 

where c  and s  here are cosine and sine functions and the subscript refers to the Euler angle 
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argument. The rotation matrix is equivalent to the direction cosines of the local ligand x, y, and 

z frames with their vectors belonging to the first, second, and third rows respectively. 

 The n
kq Ŭc ¡ ¡ refer to the multipole expansion representation of the local electric dipole 

moment operator induced within the region of the potential. In general, these are centred on 

ligands and represent the electric dipole moment as a charge distribution about the metal-

ligand axis. In the next chapter, the parameters that are used to evaluate the local multipole 

expansion of the electric dipole moment are defined and discussed. 

 

2.4.3.2 The transition dipole moment parameters 

The multipole expansion coefficient representation of the transition dipole ñfieldò is defined by 

Pɚ and Fɚ parameters (referred to as L

ɚt  in the literature, L = {P, F, R}).81 These parameters 

represent the polarisation of the d-orbital basis for a given metal-ligand bond. Since the 

Laporte selection rule requires that ȹ 1l =°, only 1l = or 3l =  can contribute to d-d transition 

intensity. 

 The P and F contributions to the transition dipole moment from a metal-ligand bond 

does not imply physical mixing of explicit P and F orbitals into the basis. Rather it is recognised 

that the electric dipole moment of a metal-ligand bond is a complicated function; the polarity 

and charge distribution of the (anti)bonding orbitals are not known a priori. In the same way 

that the symmetry/angular features of a metal-ligand energetic perturbation can be 

represented by an angular 2l =  spherical harmonic basis, so too can the total electric dipole 

expansion be represented by 1l = and 3l =  angular momentum. 

 It is possible to represent the charge distribution and polarity of a metal-ligand bond 

via a linear combination of functions. The form of a wavefunction representing a ů bond Ɋů, 

for example, can be constructed using a linear combination of metal-centred functions as given 

by81 

 Ɋ s p d f

ů s ů p ů d ů f ůc Y c Y c Y c Y= + + +  (2.73) 

 

where c are the expansion coefficients and Y are the spherical harmonics. Higher order 

functions are ignored.  

Following the rationalisation put forth by Brown et al., Figure 2.12 illustrates the effect 

that the polarisation of a metal-ligand bond has on the d-orbital basis.81 On the left hand side, 

the canonical dzĮ orbital is shown. It is centrosymmetric. In the middle of Figure 2.12, an 
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illustrative metal-ligand ligand function with sp character, is shown above the dzĮ orbital. The 

antibonding dzĮ orbital is polarised away from the metal-ligand bond via the induction of p 

polarisation into the dzĮ orbital. On the right hand side of Figure 2.12, the same metal-ligand 

bond is shown with added f polarisation, polarising the metal-ligand bond more towards the 

ligand. This induces f polarisation into the antibonding dzĮ orbital, shifting the d electron density 

further away from the metal-ligand bond. 

 

 

Figure 2.12 The reconstruction of a metal-ligand ů bonding function Ɋů using a linear 

combination of metal-centred spherical harmonics of s, p, and f character and the result 

polarisation effect on the dz² orbital. 

 

It is easy to see how variation in the expansion coefficients could effectively recreate 

both the shape and polarity of the metal-ligand bonding wavefunction.81 In general, and with 

all other things being equal, a dipole polarised more towards the ligand than the metal should 

have a smaller P/F ratio. It is also customary that the signs of P or F parameters should match 

those of e parameters.82 

 Unless concerned with absolute intensities, the P and F parameters are given relative 

to one another. It is often useful to set one of these values to some arbitrarily fixed value (e.g. 

100) and vary all others. The parameters also differ to conventional eɚ parameters in that two 

diametrically opposed P (or F) parameters cancel rather than sum. This is because, unlike d 

orbitals, p and f orbitals are not centrosymmetric. The consequence of this is that highly 
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symmetric (and homoleptic) systems (a pure octahedral or linear geometry, for example) 

would generate little to no electric dipole moment intensity. In these systems, it has been 

shown that electric dipole intensity is gained through vibrational and bending modes, a 

parametric system which is not considered here. 

 

2.4.3.3 Absorption spectroscopy 

The absorbance f of a system between a ground level I and an excited level J, which are 

comprised of electronic states {}i  and {}j  respectively, is given by Piepho and Schatz85 

 ( )2 2

1 1

i I j J

f
ɔ i m j i m j

E
+ -

Í Í

= +ää  (2.74) 

along a given direction, where E  is the incident photon energy, ɔ is a collection of constants, 

and 
1m
°

 is the electric transition dipole moment operator in the spherical basis. 

 For a solution spectrum, which is a collection of randomly orientated molecules, the 

principal absorbances can be computed by the construction of a second-rank tensor I J­f  

whose elements are given by81 

 ()I J

Ŭɓ Ŭ ɓ

i A j B

f ɔE i m j j m i­

Í Í

= ääm . (2.75) 

where Ŭ and ɓ belong to the cartesian directions x, y, and z. The subsequent diagonalisation 

yields the three principal absorbances (oscillator strengths) which are averaged 

 ( ) 1 2 3

3

I J

avg

f f f
f E­ + +

= . (2.76) 

Although equations (2.74) and (2.75) use the electric transition dipole moment operator, the 

expressions can easily be substituted for the magnetic moment operators in section 2.2.4.5. 

 

2.4.3.4 Circular dichroism 

CD is the differential absorption of left and right circularly polarised light and are only observed 

in chiral molecules. Computing CD spectra requires the computation of the rotary strength, 

I JR ­ which is given by the scalar product of the electric and magnetic dipole moment vectors 

over the cartesian basis79,86 
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Again, the term is multiplied by the energy of the transition. Being a pseudoscalar, the intensity 

changes sign under inversion of the molecular frame. 

 

2.4.3.5 Magnetic circular dichroism 

The MCD signal is defined as the differential absorption of left and right circularly polarised 

light in the presence of an external magnetic field.87,88 For transition metals, the key 

mechanism for intensity is C-term intensity. C-term intensity dominates at low temperatures 

due to the differential occupation of the ground state levels, which are energetically split by a 

magnetic field (Zeeman splitting). 

For a transition between a thermally occupied level I and an excited level J, the MCD 

intensity is given by85 

 ( )( )2 2

,

ȹ
i j LCP RCP

i j
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ɔ N N i m j i m j
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where i  labels the initial occupied state and j  labels the excited state index. The Boltzmann 

populations of states i  and j  are given by iN  and 
jN  respectively. The operators LCPm  and 

RCPm  are the transition dipole moment operators of the left and right circularly polarised light, 

respectively. E  is the transition energy, ɔ is a collection of constants, and Ů is the molar 

absorption coefficient where ȹŮ Ů Ů
- +

= - . 

 The perturbative expansion of equation (2.78) reveals three contributing mechanisms 

in the linear response of a magnetic field89 
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The A1, B0, and C0 terms describe three different contributions that result from different 

physical phenomena shown in Figure 2.13.90 The A1 term results from the relatively small 

energetic Zeeman splitting of the excited level J, which causes an incomplete cancellation of 

MCD intensity resulting in a derivative shaped band. The B0 term is due to the mixing between 

a third electronic state, K with either the ground or excited state level, due to the application 

of the external magnetic field. The B0 term compounds the ñoffsetò of a band. Finally, the C0 
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term is a result of the differential populations of the ground state levels, as given by the 

Boltzmann distribution. 

 

 

Figure 2.13 The A1, B0, and C0 origins of MCD intensity as given by the perturbative 

expansion. 

 

Since the transition dipole moment operators of 2.4.3.1 are computed in the coordinate 

x, y, and z frames, it is convenient to express (2.78) in terms of cartesian operators. Using the 

conversions 
1LCP x ym m m im
-

= = -  and 1RCP x ym m m im
+

= = + , the MCD intensity can be 

expressed as91 
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where Im  is the imaginary part, the real parts of the scalar products are lost upon negation. 

Equation (2.80) expresses the MCD intensity within the defined cartesian frame. Hence, to get 

an average spectrum for a series of a randomly orientated molecules the cartesian coordinates 

of the atoms are rotated about the fixed coordinate frame and the effective Hamiltonian is 

solved for each iteration over the angular grid. The averaged spectrum is then given by the 

double integral91 
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3 The Kestrel program 

A core aspect of this work is the development of a contemporary ligand-field program aimed 

at both the specialist and non-specialist alike. A ñspecialistò refers to someone who is a 

trained/practicing quantum-chemical researcher or spectroscopist; a ñnon-specialistò would be 

a researcher who does not specialise in quantum-chemical methods of spectroscopic 

analysis. LFT has already proved to be useful to the quantum-chemical community, but its 

potential is still yet to be exploited by the wider chemical community. A computer program that 

offers accessible multiconfigurational LFT calculations to the non-specialist, would allow 

chemists to quickly see how changes in geometry or bonding would alter the physical 

properties of their molecules. They could perform numerous simulations quickly and receive 

real time feedback to changes they make to the chemistry of their molecule. For the specialist, 

the program offers a feature-rich Python module, which can be used as part of custom Python 

scripts. The computer program developed in this work aims to fulfil this niche. 

When designing a computer program that can provide a link between spectroscopy 

and theory whilst appealing to both the specialist and non-specialist user alike, the design 

must adhere to some core principles: 

1. The program must have a graphical user interface (GUI) and the interface must be 

intuitive and easy-to-use. 

2. The program, where possible, must perform calculations óon-the-flyô in response to 

a change in its parameters; in doing so, physical properties can be correlated with 

the electronic structure in real time. 

3. The program must be flexible for advanced users who wish to analyse their 

systems further than the inherent limitations imposed by having a GUI. 

Details of the underlying code, algorithms, and application programming interface (API) must 

be hidden. It cannot be assumed that the user knows how to use command lines, code/script, 

or make API calls. The role of the GUI is to make the program accessible to anyone. The 

program that has been designed in accordance with these principles is called Kestrel. Kestrel 

is formed of two components: 

1. KestrelPy. The object-orientated module which allows the user to build molecules 

and run calculations. The module is written in Python (denoted by the suffix ñPyò) 

and accesses Fortran functions and subroutines by fortran-2-python (F2PY).92ï94 
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This module allows users to write their own scripts for running ligand-field 

calculations in a Python environment. 

2. The graphical-user-interface. The GUI is a stand-alone application that does not 

require installation and can run out of the box. It is built using the PyQt5 library.95 

This allows the non-specialist to run a range of common calculations and 

visualise/report their results quickly and easily. 

The two components are uncoupled, residing in separate codebases. KestrelPy is a 

standalone Python library that can be called into any Python script and relies only on a small 

number of popular scientific libraries. The GUI relies on KestrelPy, but KestrelPy is 

independent of the GUI. 

This chapter is devoted to reviewing the construction of Kestrel, along with a practical 

guide to ligand-field analysis. The aim is to not to describe the full explicit detail of the 

programôs construction. Doing so is not possible due to the size and complexity of both 

KestrelPy and the GUI. However, a general overview is provided, and points of interest or 

importance are discussed. Where necessary snippets of code or scripting are included. First, 

the Python module KestrelPy is analysed to understand the underlying computational 

implementation. 

 

3.1 KestrelPy 

KestrelPy is a Python module developed in Python and Fortran.92ï94 The package is designed 

to be the computational core of Kestrel by handling the code that performs the quantum 

mechanical calculations and data analysis. The module has a minimal number of 

dependencies. The package requires Python 3.8+ with two common 3rd-party Python 

packages (NumPy and SciPy) and the compiled Fortran dynamic library housing the 

computational and linear algebra routines.92ï94,96 The Fortran library can either be compiled 

locally or pre-built and shared from a similar machine architecture. KestrelPy, being a Python 

module (which requires knowledge of Pythonôs object-orientated programming) is not targeted 

at the non-specialist. However, it is designed to be straight forward to run and allows flexibility; 

all programmatic objects of the molecule and the results of calculations can be accessed, 

altered, or used. KestrelPy is best suited for the advanced user who wishes to write their own 

Python scripts to perform ligand-field calculations. 
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The module bundles aspects of the ligand-field calculations into Python classes. The 

input to every calculation is the Molecule class, which stores all the information of the molecule 

being studied including the ligand field, interelectronic repulsion, and spin-orbit coupling 

parameters etc. The molecule gets passed to a calculations wrapper which can perform many 

calculations on the electronic structure, magnetism, and intensities. The results of those 

calculations are returned in a convenient object, which allow for easy access and extraction 

of those results. 

 

3.1.1 Framework of the package 

KestrelPy consists of multiple submodules. Each of these submodules are responsible for 

housing classes and functions dedicated to a specific task or theme. These submodules are: 

¶ data. Contains the classes that store external data that the program can fit to. The program 

can fit to 5×5 ligand-field matrices, many-electron transition energies, g2 tensors, and 

paramagnetic susceptibilities. 

¶ energy_barrier. Contains the functions and routines to compute the rate of Quantum-

Tunnelling of Magnetisation and the effective barrier of the reversal of magnetisation for 

single-ion molecular magnets with Kramerôs ions. 

¶ fitting. Contains the functions and algorithms for carrying out optimisations and 

parameter-space searches. 

¶ fortran. Contains the Fortran90 source code, compiled libraries, and Pythonic interface to 

the Fortran code. 

¶ intensities. Contains the routines to compute spectroscopic intensities of UV-Vis, CD, and 

MCD. 

¶ molecules. Contains all the classes and routines for constructing and interacting with a 

molecule and its parameters. 

¶ orca. Contains the routines for reading ORCA output files. The results extracted from the 

ORCA output files are then converted to KestrelPy class objects, such as a 5×5 one-

electron ligand-field object, which can be used in optimisation calculations. 

¶ printing. This submodule handles the input/output of the program. 

¶ results. Contains the result objects, which act as a convenient means to interact with the 

output of the program, rather than interfacing with the Fortran objects directly. 
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3.1.2 The Molecule class. 

The molecule is stored in the Molecule class. The molecule class has a host of attributes and 

methods that can be called. Each ligand-field parameter associated with either the metal or 

the ligands and their coordinating atoms are stored in this class. A schematic overview of the 

Molecule class and its child classes Metal, Ligands, Calculation and Geometry is presented 

in Figure 3.1. The Molecule class provides a convenient object to store the parameters of the 

molecule. 

 

 

Figure 3.1. Schematic representation of the molecule class object orientated hierarchy 

and the important class attributes. 

 

3.1.3 Running calculations 

KestrelPy contains the code that carries out the actual calculations of the ligand-field model. 

When the user submits their molecule, either via the GUI or a Python script, KestrelPy handles 

the parameter extractions and submission of the job. The ligand-field calculations are split into 
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three steps: 1) construct the ligand-field basis; 2) diagonalise the effective Hamiltonian under 

contributions from the ligand field, interelectronic repulsion, spin-orbit coupling, and an 

external magnetic field; and 3) carry out further analysis on the eigenfunctions of the effective 

Hamiltonian. The third step involves, if desired, computing magnetic properties, spin and 

configurational projections, and calculating spectroscopic intensities.  

Efficient computation is required to make these calculations perform in real-time. 

Python alone is not quick enough to make use of real-time computation for the evaluation of 

the relevant integrals and diagonalisation of the effective Hamiltonian matrix. A core part of 

the KestrelPy module is the use of a custom Fortran 90 library, converted into a Python module 

using NumPyôs Fortran-2-Python (F2PY) package.93 F2PY provides an interface between 

Python code and Fortran objects. Fortran is sufficiently fast enough to achieve real-time 

computation and is supported by a well-established library of linear algebra routines 

(LAPACK), which are used to optimise the performance of the calculations.97 

 

 

Figure 3.2.  The KestrelPy workflow of calculating the eigenfunctions of the effective 

Hamiltonian 

 

 The algorithmic workflow presented in Figure 3.2 shows the steps taken to construct 

and diagonalise the effective Hamiltonian. When the user passes their molecule (and the 

relevant parameters: molecular geometry; metal-ligand bonding; interelectronic repulsion; 

spin-orbit coupling, and the external magnetic field) to the run function, the software first 

checks if the dn config has already been run before. If the current dn config has not been run 

before, the program constructs the basis set and computes the angular matrix elements under 

the operators enumerated in chapter 2.2.4. With the basis set specified and the matrix 

elements computed, the program then calculates the global multipole expansion coefficients. 
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The program proceeds to construct the final effective Hamiltonian according to equation (2.32) 

and then diagonalises the Hermitian matrix to get the eigenvalues and eigenvectors of the 

system. 

 

3.1.3.1 Construction of the basis set 

The start of any calculation involves constructing the basis set. If a previous calculation has 

been run for a given dn configuration, the basis and matrices are already computed, and this 

step can be skipped. However, if a new dn/d10-n configuration is specified then a new basis 

must be constructed. For the evaluation of the integrals in chapter 2.2.4, the basis must be 

defined by J, JM , L, and S quantum numbers. The complete set of Russell-Saunders terms 

are stored as character arrays, where elements are of the form ñ2Dò, for example. The full 

Russell-Saunders terms, as given by Nielson & Koster, are listed in Table 3.1.55 

 

Table 3.1. The list of free-ion Russell-Saunders 2S+1L terms used to specify the basis 

set. The subscript value is not the conventional J value, but a separate index used to 

distinguish between sets of terms. 

dn                 

1 2D                

2 1S 1D 1G 3P 3F            

3 2P 2D1 2D2 2F 2G 2H 4P 4F         

4 1S1 1S2 1D1 1D2 1F 1G1 
1G2 1I 3P1 3P2 3D 3F1 3F2 3G 3H 5D 

5 2S 2P 2D1 2D2 2D3 2F1 2F2 2G1 2G2 2H 2I 4P 4D 4F 4G 6S 

 

From each term one can extrapolate the complete set of J, JM , L, and S values 

using the rules for coupling angular momenta detailed in section 2.2.1. The code reads in the 

Russell-Saunders term as a string, saves a reference to it, and extracts the spin multiplicity 

and orbital angular momentum. The size of the full basis (accounting for each spin multiplicity) 

can be calculated from the knowledge of the given dn configuration. Let n be the number of 

electrons occupying the five d orbitals, the number of permutations of n electrons occupying 

10 sites (spin up and spin down per orbital) is 

 ( )(10, ) 10! ! 10 !C n n n= -  (3.1) 

which is the familiar equation for the number of combinations of n objects in r positions. 
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3.1.3.2 Evaluating matrix elements and solving the effective Hamiltonian 

With the basis specified, it is possible to start evaluating the integrals for the various operators 

appearing in the effective Hamiltonian. The calculation of the integrals requires evaluation of 

the reduced matrix elements for spherical harmonic, interelectronic repulsion, and spin-orbit 

coupling operators. These reduced matrix elements are calculatable for the free-ion Russell-

Saunders terms as tabulated by Nielson & Koster.55 There is the opportunity for computational 

saving here as the reduced matrix elements only depend on the Russell-Saunders term, not 

the J or MJ quantum numbers. Hence, these values need only be computed once for each 

possible pair of Russell-Saunders terms. These values are stored in an array called RME of 

shape (5, NSTATES, NSTATES) where the first index is for specifying the reduced matrix 

element operator (U2, U4, F2, F4, and V11) and NSTATES is the number of Russell-Saunders 

terms appearing in the basis set as given in Table 3.1, e.g. for d2/d8, NSTATES=5. 

The final effective Hamiltonian matrix to be solved can be as large as 252 x 252 (for 

d5, equation (3.1)) involving 63,504 elements alone. These 63,504 elements are each a linear 

combination of 23 sources (ignoring the spherical 0

0Y  operator), which would result in storing 

1,460,592 separate matrix elements before summating. This requires a lot of memory and is 

inefficient, as not all matrix elements will be non-zero. Due to the power of the Wigner Eckart 

theorem, it is possible by the application of simple selection rules between angular momentum 

states to know whether a matrix element is zero or not, as detailed in section 2.2.2. It is 

therefore efficient to store only non-zero values of the final Hamiltonian matrix rather than 

storing explicit zero values. An array, called KQMAT, stores the non-zero matrix elements for 

each operator that appears in the final Hamiltonian along with their corresponding row and 

column indices. These values are then multiplied by the relevant radial coefficients, for 

example the multipole expansion coefficients, before being summed together to construct the 

final Hamiltonian matrix. The final unitary (complex) Hamiltonian matrix is then diagonalised 

using the ZHEEV function from LAPACK.97 
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3.1.4 Calculation of UV-Vis, CD, and MCD 

3.1.4.1 Calculation of electric transition dipole moment integrals 

Fast simulations of ligand-field d-d spectra require the efficient evaluation of electron dipole 

moment integrals between eigenfunctions. As a result, the code which evaluates these 

integrals is written in Fortran. 

 When a method requires the electric transition dipole moment integrals, then a 

get_electric_dipoles method is called, which passes all the required information to the Fortran 

routines. The program computes the local multipole representations of the transition dipole 

moments per ligand, which are then rotated using Wigner rotation matrices (as described in 

section 2.2.3) to construct the global electric transition dipole multipole representation. From 

there, the program cycles through the valid combinations of k and q values of the spherical 

harmonic matrix elements used to construct the ligand-field contribution to the effective 

Hamiltonian (see section 2.2.4.2). 

 

3.1.4.2 Spectrum object 

Before discussing the functions that compute the d-d spectra, a quick overview is provided of 

the Spectrum object which holds the results of these calculations. The Spectrum object is a 

convenient interface to the results of intensity calculations. The object can be saved and 

loaded to a file, which means it is unnecessary to carry out the same calculation every time if 

the user wishes to replot the spectrum. The object also has useful plot_spectrum and 

plot_bands methods which allow for quickly generating a spectral trace for a given set of x-

values and a FWHM value. 

 

3.1.4.3 Calculation of UV-Vis and CD spectra 

The calculation of UV-Vis and CD are carried out using KestrelPy functions absorption and 

circular_dichroism. Spectra at different temperatures can be computed quickly by supplying 

an array of temperatures. The results are returned as a list of Spectrum objects. 
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3.1.4.4 Calculations of MCD spectra 

MCD calculations are performed using the KestrelPy magnetic_circular_dichroism function. 

MCD, as given by the name, relies on the application of a magnetic field and hence this must 

be specified (in units of Tesla).  

 

 

Figure 3.3. The computational workflow for computing the orientationally averaged 

MCD intensities (left) and an example of a molecular rotation with the full angular grid 

with a grid size of 15×15 (right) . 

 

 Orientationally averaged spectra (in instances with an applied magnetic field) must be 

computed numerically. This method is the only way to calculate MCD intensity in KestrelPy. 

This method constructs a spherical angular grid for 0 Ò ɗ Ò ˊ and 0 Ò ű Ò 2ˊ over a defined 

number of integer steps and rotates the molecule with respect to the global coordinate frame. 

The angular grid and an example of a molecular rotation are illustrated in Figure 3.3. The 

rotations of the individual coordinating atoms are performed by using the rotate_atoms method 

of the molecule class. The spectroscopic intensities are computed for each orientation over 

the grid and numerically averaged before returning a Spectrum object. The calculations make 
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use of a computational saving method involving the double integral present in equation (2.81)

, which can be approximated using the relationship89 

 ( ) ( )
2

,0 0

, sin , sin
ˊ ˊ

ɗ ű

f ɗ ű ɗdɗdű f ɗ ű ɗºäññ . (3.2) 

The calculations are accurate for larger iterations over the angular grid. A grid size of 100 (10 

steps over ɗ and ű each) is typically the minimum grid size to get a good approximation of the 

MCD spectrum. 

Despite best attempts, it was not possible for MCD simulations to be performed quickly 

enough for real-time applications. This is because the molecule must be rotated over an 

angular grid and the ligand field evaluated for each orientation. However, the MCD simulation 

is still quick enough for general use. 
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3.2 Graphical user interface 

The GUI implementation of KestrelPy is constructed using the PyQt5 library and is a fully 

functional standalone application for Windows 10 and Mac.95 The program is ñfrozenò using 

PyInstaller, which allows for the application to run without any prior set up on the target 

machine.98 This makes it portable for sharing and hosting. 

 

 

Figure 3.4 An example of the Kestrel window with its molecular visualiser and some of 

the available dock widgets. 

 

 An example of the main window is given in Figure 3.4. In the centre of the window is a 

tab widget with two tabs. The first tab, labelled as ñViewò, features a molecular visualiser 

constructed from PyQtGraphôs fast GlView widget.99 This molecular visualiser will display the 

molecular geometry and if requested: the x and y frames of each coordinating atom; the 

orientations of the g-factor and principal paramagnetic susceptibility frames; the shapes and 

orientations of the d orbitals; and the ligand-field multipole expansion. The second tab, labelled 

ñSearchò, is a host for sub windows which contain the results of parameter scans (section 

3.2.4.3) and parameter-space searches (section 3.2.12.5). 

 The main window also hosts dock windows, which can be docked to the left or the right 

of the main window. There are four dock widgets shown in Figure 3.4. The two dock windows 
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on the left-hand side of the window (labelled ñParametersò and ñDisplay Optionsò) are where 

the user can alter the input parameters of the ligand-field calculations and display extra 

information in the molecular visualiser. On the right-hand side of the main window are 

examples of two dock windows containing some of the results of Kestrelôs ligand-field 

calculations. The first of these is the ñTransition Energiesò dock window, which displays the 

relative energies of spin-allowed and spin-forbidden d-d bands of the molecule. The second 

dock window contains the calculated g-factors of the ground state KD. 

 

3.2.1 Saving, loading, and starting new files 

Kestrel can save and load dedicated save files. These files have a .kes extension and each 

file hosts a single molecule and a set of ligand-field parameters. The save file also contains 

GUI specific information. It is also possible to load .mol files, which are the save files of the 

Molecule object from KestrelPy as mentioned in section 3.1.2. 

 

3.2.2 Setting up a molecule in Kestrel 

This section covers the process of importing a molecular geometry and defining the ligands 

for the ligand-field model. For consistency with the theoretical chapter on identifying ligands 

in a molecule (section 2.3.4.2) the same molecule (C6F5)3trenVCNtBu will be used here as an 

example.77 
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3.2.2.1 Import an xyz file 

 

Figure 3.5. The procedure for importing the coordinates of an xyz file. 

 

Every analysis must start with the input of a molecular geometry stored in an xyz file. The user 

may import a molecular geometry by selecting the ñImport Geometryò from the ñMoleculeò drop 

down menu, as shown in Figure 3.5. This will open a new window, shown on the right-hand 

side of Figure 3.5.  
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Figure 3.6. The process of importing a molecular geometry stored in an xyz file (CSD: 

WAFGOD) into Kestrelôs GUI.77 

 

The user can proceed to import an xyz file by clicking the ñImportò button in the bottom 

left-hand corner, as shown in Figure 3.6. This will prompt the user to select an xyz file. After 

browsing to the xyz file and selecting it, the contents of the file will be displayed in the window. 

The user can confirm that the xyz file is the correct one by pressing ñOKò. 
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Figure 3.7. The ligand-field parameterisation setup window. 

 

By confirming the xyz file to be read, a new window appears, as shown in Figure 3.7. 

The window features a rendering of the molecule in the xyz file and labels each atom by its 

element and index. Note that if one cannot see their molecule, it is likely because the molecule 

in the xyz file is not located near the origin of the coordinate scheme. 
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3.2.2.2 Selecting the central metal ion 

 

Figure 3.8. Selecting a central metal ion as part of setting up the molecule using 

Kestrelôs GUI. 

 

The first step is to define the central metal ion of the molecule. To do this, the user clicks the 

ñSelectò button under the ñMetalò section, as shown in Figure 3.8. This will open a new window 

which allows the user to select the central metal ion from the list of atoms in the xyz file. 

Selecting an atom will highlight it, as is shown for the vanadium atom in Figure 3.8. Selecting 

ñOKò will assign the central metal ion to the selected atom. 

 Once the central metal ion is selected, the camera will centre on that atom. The next 

step is to define the different ligand functional groups in the molecule. 

 

3.2.2.3 Defining the ligands 

The final step is to define what ligands exist in the molecule and what coordinating atoms are 

to be assigned to those ligands. The considerations and methods for choosing a ligand-field 
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parameterisation scheme are given in chapter 2.3.4 and will not be covered here. However, it 

is pertinent to remind oneself of the ligand-field parameterisation that was derived for the 

example vanadium complex (see section 2.3.4.2). Three ligands were identified: the axial tert-

butyl isocyanide (tBuNC), the axial amine, and the equatorial amides. In the case of the 

equatorial amides, we will have to orientate the out-of-plane ˊ bonding direction. 

 

 

Figure 3.9. The ligand-field parameterisation setup window after successfully selecting 

a central metal ion in Kestrelôs GUI. 

 

 Having successfully assigned a central metal ion (for details of which see the previous 

section, 3.2.2.2) the ñLigandsò box will enable, as shown in Figure 3.9. The next step is to add 

the three ligands which were identified in this molecule (vide supra).  
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Figure 3.10. The process of adding a ligand by assigning the ligand a label. 

 

To add a ligand, the user selects the ñAdd Ligandò button. This will prompt the user to 

select a ligand label, as shown in Figure 3.10. Once the user has chosen a sensible label, 

they can confirm their choice by selecting ñOKò. 

 

 

Figure 3.11. The process of assigning a coordinating atom to a ligand. 

 

 Once the ligand label is submitted, the user is prompted to select the coordinating 

atoms which belong to that ligand. In this instance, there is only one coordinating atom we 

wish to assign to the ñtBuNCò ligand, which is carbon atom number 44. Selecting this atom 

from the list, as shown in Figure 3.11, and selecting ñOKò will add that atom to the ñtBuNCò 

ligand. If one wishes to remove a selected atom, the user can right-click on the atom and 

select ñRemoveò. Likewise, one can also remove the ligand altogether by right-clicking on the 

ligand label and selecting ñRemove Ligandò. Conversely, there is also an option to assign more 
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atoms to this ligand. This process of adding a ligand label and assigning atoms to that label is 

repeated to include the axial amine and the three amide ligands. 

 

 

Figure 3.12. Orientating the amide ligand x direction via Kestrelôs GUI. 

 

 Often, ligands ˊ bond asymmetrically. In the example, the amide ligands ˊ bond 

perpendicular to the ů bonding framework. To orientate the ˊ bond we can define the local x 

direction for the amide atoms. The process of orientating the local x direction for the nitrogen 

atom number 17 is shown in Figure 3.12. By right clicking the atom and selecting ñAssign x-

atomò we can choose an atom to orientate the local x direction with. In this example, the local 

x direction is chosen to align with carbon atom 35. This process is repeated for each amide 

atom. 
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Figure 3.13. The final ligand-field parameterisation setup for the example molecule 

(C6F5)3trenVCNtBu. 

 

 Once the ligand-field parameterisation is setup, as shown in Figure 3.13, the user can 

select ñOKò in the bottom right-hand corner to load the molecular geometry and ligand-field 

parameterisation into the program. 
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3.2.3 Molecular visualiser and display options. 

 

Figure 3.14. The process of opening the display options for the molecular rendering in 

Kestrelôs GUI. 

 

Once the geometry has been imported and the choice of coordinating atoms and ligands has 

been made, the user is returned to the main window where the imported molecule is rendered, 

as shown on the right hand side of Figure 3.14. By clicking and dragging around the molecule 

using the left mouse, the user can rotate freely around the central metal ion. The user can also 

zoom in and out by scrolling the mouse wheel. 

 The program also hosts extra display options, as shown in Figure 3.14. These can be 

opened by selecting ñDisplay Optionsò from the ñMoleculeò drop down menu, which will open 

a new dock window. The dock window contains the options to show/hide, alter the lengths, 

and change the colours of the molecular coordinate xyz axes and the local ligand x and y 

directions. The user can show/hide and change the font size of the labels of the coordination 

atoms. 
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3.2.4 Parameters 

 

Figure 3.15. The process of opening the parameter dock window in Kestrelôs GUI. 

 

The ligand-field parameters can be viewed and changed by selecting ñParametersò from the 

ñMoleculeò drop down menu, as shown in Figure 3.15. This will open the parameter dock 

window. Within the dock window is a tree widget, divided into sections, with the ligand-field 

parameters and their values. Hovering over a parameter in this widget will provide information 

about that parameter. 

 The first of these sections, in Figure 3.15, contains the metal parameters, the header 

of which displays the element of the central metal ion, its oxidation state, and dn configuration. 

In Figure 3.15, the header reads ñV(III), d2ò, despite the program importing the molecular 

geometry with a ñV(II), d3ò electronic configuration which is not shown. The dn electronic 

configuration can be altered by right clicking on the header and selecting the ñSet dconfigò 

option. The section beneath the header contains all the parameters for defining the 

interelectronic repulsion, spin-orbit coupling, and angular momentum quenching. 
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 The second section in Figure 3.15 contains the metal-ligand bonding and intensity 

parameters for each ligand. By right clicking on a ligand label a menu will allow the user to 

populate the ligand with some illustrative starting eɚ parameters and enable or disable 

alternative bonding modes (misdirected valence, for example). 

 The final section in Figure 3.15 holds the geometric ɗ, ű, ɣ, and bond length 

parameters for each potential. By changing any of these values, the geometry of the potentials 

are updated in the molecular visualiser. It is possible by right clicking on the header and 

selecting ñRestore Geometryò to reset the spherical polar coordinate angles of the atoms to 

their original values. 

 Right clicking on a parameter displays a menu with extra options. One of these options, 

is the ability to link parameters together by a linear relationship. There is also an option to set 

a step value so that when you select a parameter you can adjust it by a given amount using 

the mouse wheel. It is possible to also perform a scan on a parameter between a starting and 

final value over a number of steps. 

 

3.2.4.1 Initialising starting ñguessò parameters 

 

Figure 3.16. The process of generating illustrative starting parameters via Kestrelôs GUI. 

 

Kestrel features the ability to assign illustrative parameter values to a ligand. The process is 

presented in Figure 3.16. By right clicking on a ligand name and selecting ñInitialise 

parametersò, a window will open with a drop-down widget. From this widget, the user can 

choose a ligand, or ligand type, which best represents their ligand. This will automatically 

populate the eɚ parameters with fixed crude parameter values of a typical magnitude and sign. 
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Future work could improve this feature by generating starting parameters based on bond 

length, averaging across values in literature, or utilising machine learning algorithms. 

 

3.2.4.2 Linking parameters together 

 

Figure 3.17. The process of linking two ligand eɚ parameters together via Kestrelôs GUI. 

 

The GUI is designed to allow the user to easily link the values of any two parameters together. 

The workflow is presented in Figure 3.17. By right clicking a parameter and selecting the ñLinkò 

option, the user is presented with a window of all the parameters which can be linked to. These 

are parameters of the same type (vide infra). Any parameter which would cause a circular link. 

if linked to, are not included. The user can select a parameter to link to and choose a ñfactorò 

and ñconstantò, which define the linking behaviour. The equation used, which links any two 

parameters together is given by: 

 1 0p mp c= + (3.3) 

where 
1p  is the parameter being linked; 0p  is the parameter which 

1p  is linked to; m  is the 

gradient; and c  is the constant. 

A ligand-field parameter can only be linked to other parameters from the same type. 

To clarify, the parameters associated with ligands (eɚ, Pɚ, and Fɚ) can only be linked to those 

parameters either belonging to the same ligand or other ligands. Parameters associated with 

the metal (Racah B and C, ɕ, and kiso) can only be linked together. Likewise, the same rules 

apply to the parameters controlling the angular geometry about the central metal ion. 
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3.2.4.3 Scanning parameters 

 

Figure 3.18. The process of scanning a parameter via Kestrelôs GUI. 

 

The user can easily perform a parameter ñscanò, in which a parameterôs value is varied from 

a starting value to a final value. The process for initiating a parameter scan is presented in 

Figure 3.18. By right clicking a parameter and selecting ñScanò, a dialog window will open 

where the user can submit the starting value and final value of the parameter, and the number 

of steps taken between the two values. 

 

 

Figure 3.19. The output of a ligand eů parameter scan in Kestrelôs GUI (left) and the 

corresponding plot of the d-orbital energies (right). 
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 Once the parameter scan setup in Figure 3.18 has been submitted, the calculation 

begins. A progress bar will appear showing the user the progress of the scan, which the user 

can abort. When the parameter scan is completed, the results are displayed in the central 

window of the GUI, as shown in Figure 3.19. The window features two tabs labelled ñLigand 

Fieldò and ñTransition Energiesò, where each tab contains a plot with the corresponding energy 

variation of either the d orbitals or the d-d transitions energies respectively. 

 

3.2.5 The ligand-field splitting 

 

 

Figure 3.20. The process of opening the ligand-field dock window. 

 

From the ñResultsò drop down menu at the top of the main window, click ñLigand Fieldò and a 

new dock widget appears, as shown in Figure 3.20. This dock widget contains the output of 

the one-electron ligand-field calculations. The widget contains two tables: the first is the 5Ĭ5 

one-electron ligand-field matrix; the second is the one-electron ligand-field eigenfunctions. 

 The one-electron ligand-field eigenfunctions list the energies and linear combination of 

d orbitals for each final orbital. The first column lists the energies. The remaining columns 

show the linear combination for the given d orbital in the header. The percentage contribution 

of a given d orbital to a given final orbital is given by the square of the value multiplied by 
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100%. As warned in section 2.3.2,  this linear combination is a function of the orientation of 

the molecular xyz frame, as the functions are constructed from the d orbitals orientated in that 

frame. However, the energies are independent of the choice of frame. Hence the linear 

combination is only informative if the frame is orientated sensibly. 

 At the top of the dock window is a value of the ligand-field trace which is simply the 

sum of the diagonal matrix elements. Finally, at the bottom of the dock widget is the option to 

render the final mixed d orbitals (and multipole expansion) on top of the molecular rendering. 

Checking this box will render the object specified in the drop-down combo box. 

 The final rendered object will appear on top of the rendering of the molecule in the 

molecular visualiser (see 3.2.3). The objects labelled as ñɊ1ò, ñɊ2ò, etc are the ligand-field 

eigenfunctions in order of ascending energy. That is ñɊ1ò is the lowest energy d orbital, and 

so on. The ñMultipole Expansionò is the electron charge density of the system. The final shapes 

and orientation of either the ligand-field eigenfunctions or the multipole expansion do not 

depend on the orientation of the molecular frame. 

 

3.2.6 Relative energies of many-electron states 

The energies of the many-electron states that arise from the different configurational 

occupations of the final d orbitals under the perturbations of the ligand field, interelectronic 

repulsion, and spin-orbit coupling can be inspected in the ñTransition Energiesò dock widget. 

To open the dock widget, click the ñTransition Energiesò button from the ñResultsò drop-down 

menu at the top of the main window, as shown in Figure 3.21. 
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Figure 3.21. The process of opening the transition energies dock widget. 

 

 The output window contains a single table of information. The table lists the energies, 

degeneracies, spin projections, and configurational projections for each level, as shown in 

Figure 3.21.  

The degree of mixing of the spin multiplicities under spin-orbit coupling are show. The 

spin projections (given by the column labelled ñQuartetò and ñDoubletò) are to be read as 

follows: level 1 (at 0 cm-1) is a 100% pure spin quartet; level 15 (at 11906 cm-1) is 98% quartet 

with 2% doublet spin character mixed in. Using this, one can rationalise the presence or 

absence of weak spectral features in an experimental UV-Vis spectrum, an example of which 

is demonstrated in the analysis presented in section 4.1.4.1. 
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Figure 3.22. The definition of the elements of the configuration projection output (A) 

and the corresponding 22111 electronic occupation in terms of the five d orbitals in 

ascending order of energy (B). 

 

The configuration projection shows the electronic occupation of the five d orbitals. The 

definition of the output is given in Figure 3.22 (A). The first part defines the spin multiplicity of 

the electronic occupation. The second part is the electronic occupation string, which is to be 

read in ascending order such that the first occupational number represents the occupation 

number of the lowest energy d orbital; the second occupation number represents the 

occupation of the second lowest energy d orbital, and so on. This occupational scheme is 

shown in Figure 3.22 (B). The third component, contained in brackets, is the ratio contribution 

of that electronic configuration to that level. 

Each row is collapsible. One can see that level 10 in Figure 3.21 is a configurationally 

mixed level of five configurations (whose ratio parts sum to be > 0.99, this value can be toggled 

via the spanner button in Figure 3.21). Observation of the expanded row reveals some 

configurations which do report a ratio in brackets. This is because the electronic configuration 

is degenerate with the electronic configuration above it and cannot be distinguished. This 

results from d-orbital degeneracies. 

The example output shown in Figure 3.21 is for a d7 linear complex that is studied in 

section 4.1.3, with spin-orbit coupling set to 515 cm-1. The complex has a ñnon-Aufbauò ground 

state (see section 4.1.3.2 for more detail), where the ground state configuration is not what is 

expected by filling the d-orbital energies according to the Aufbau principle. For a quartet d7 



110 
 

complex, the Aufbau ground state would be 22111, but the Kestrel output shows the ground 

state KD is 99.7% 21211. 

 

3.2.7 EPR g-factors 

 

Figure 3.23. The process of opening the EPR results dock window. 

 

Kestrel provides calculations of the EPR g-factors for Kramerôs ions. To open the dock window, 

click the ñEPRò button from the ñResultsò drop-down menu at the top of the main window. A 

dock window appears containing a check box, as shown in Figure 3.23, which 

enables/disables the calculation of g-factors for a ground state Kramerôs doublet. 

 By enabling the calculations, a table displays the calculated g-factors. The three 

columns in Figure 3.23 (right) display the principal g-factors g1, g2, and g3. The first row 

contains the g-factors. The following three rows display the projection on to the global 

coordinate frame. The final three rows are the direction cosines from the global coordinate x, 

y, and z axes. Clicking the spanner button in the top right hand of the dock widget will show 

options for displaying the value of giso. 

 To aid in visualising the orientation of the g-factor frame, the user can overlay the g-

factors on the molecular rendering. At the bottom of the dock window is a check box to plot 

the g-factors. By checking this box, the principal values of g1, g2, and g3 are rendered on top 

of the molecule. The colour and lengths of the arrows can be varied. 
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3.2.8 Paramagnetic susceptibilities 

 

Figure 3.24. The process of opening the paramagnetic susceptibility results window. 

 

To enable the calculation of paramagnetic susceptibilities, open the dock window by clicking 

the ñParamagnetismò button from the ñResultsò drop-down menu at the top of the main window, 

as shown in Figure 3.24. A dock window appears which contains a check box to enable/disable 

the calculation of paramagnetic susceptibilities. 

 By enabling the calculations, a table displays the isotropic ɢT values for different 

temperatures. The units of the paramagnetic susceptibilities can be changed by selecting a 

different set of units from the drop-down box in the top left hand corner of the dock window. 

More options are available by clicking the spanner button in the top right of the dock widget, 

such as the choice of displaying the principal values and/or the individual elements of the 3x3 

tensor. Within that same drop-down menu is the ability to configure the paramagnetic 

susceptibility calculations by changing the energetic limit of the 1st order and 2nd order Zeeman 

contribution and the temperatures the susceptibilities are computed for. Note that the user 

may not request more than 100 temperatures. 

 To aid in visualising the orientation of the principal paramagnetic susceptibility frame, 

it is possible to plot the principal values on to the molecule. At the bottom of the dock window 

is a check box. By enabling this check box, the principal values of ɢT are rendered on top of 

the molecule for the temperature displayed in the drop-down box. By changing the 
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temperature in the drop-down box, it is easy to visualise how the magnetic susceptibility 

orientation varies. The colour and lengths of the arrows can also be changed. 

 

3.2.9 Plotting the principal and isotropic ɢT curves 

 

Figure 3.25. The process of opening the principal paramagnetic susceptibilities 

variation with temperature graph in Kestrel. 

 

It is often easier to interpret changes in the magnetism of a complex with a change in electronic 

structure by visualising how the values and their dependence on temperature change. To open 

the plotting window, click on ñResultsò along the menu bar, hover over ñSimulationò and click 

ñSusceptibility Curveò as shown in  Figure 3.25. Clicking this opens a floating window on top 

of the main window. 

The new window, shown in Figure 3.25, features a graph. The graph displays data if the 

paramagnetic susceptibility calculations are enabled (see section 3.2.8). The graphs are 

plotted in units of ɢT (cm3 mol-1 K), which is what is typically encountered in the chemical 

literature. 
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Figure 3.26. The calculated isotropic paramagnetic susceptibility variation with 

temperature (black) overlaid with comparison data (red). 

 

The graphs can accept external data which can be plotted alongside the calculated 

values, as shown in Figure 3.26, allowing for a visual comparison. Data is added by clicking 

on the spanner button in the bottom right corner of the window. 
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3.2.10 Simulations of UV-Vis, CD, and MCD spectra 

 

Figure 3.27. The steps to open the ligand-field spectra via Kestrelôs GUI. 

 

A unique feature of Kestrel is the ability to simulate UV-Vis and CD spectra in real time. MCD 

spectra can be (depending on computational factors) simulated quickly, but at present MCD 

calculations cannot be calculated in real-time. By clicking on the ñResultsò drop down menu, 

hovering over ñSimulationò and selecting ñUV, CD, MCD simulationò, as shown in Figure 3.27, 

the ligand-field spectra window is opened. 

 The ligand-field spectra window is shown in Figure 3.27. The window features check 

boxes for the UV-Vis, CD, and MCD spectra, which will enable or disable the calculation of 

these spectra. While enabled, changes in any ligand-field parameters will recalculate the UV-

Vis or CD spectral trace. MCD spectra must be simulated by selecting the ñSimulate MCDò 
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button in the bottom right hand corner. The button will be enabled if there has been a change 

in the ligand-field parameters since the last simulation. 

There are added options to change how the spectra is simulated. Under the ñSettingsò 

heading, the user can invert the CD/MCD spectra; via the ñMCD Settingsò button, choose the 

magnetic field strength, temperature, or resolution of the angular grid used to simulate the 

MCD; change the FWHM of each band in the spectrum; and choose the interpolation range 

for generating the spectral trace.  

 

3.2.11 Optimisation 

 

Figure 3.28. The molecular rendering of [Fe(O)(TMC)(NCCH3)]2+ in Kestrelôs GUI. 

 

Kestrel can optimise a set of ligand-field parameters to reproduce supplied data. In this 

section, we will be using the d4 iron(IV) oxo complex [Fe(O)(TMC)(NCCH3)]2+ that is studied 

in section 4.2 to illustrate this feature. Information on the ligand-field parameterisation is given 

in the methodology (section 4.2.2). The molecular rendering of [Fe(O)(TMC)(NCCH3)]2+ in 

Kestrel is shown in Figure 3.28. Using [Fe(O)(TMC)(NCCH3)]2+, this section will show how a 
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user can fit the calculated 5Ĭ5 one-electron ligand-field matrix from the results of an ORCA 

AILFT calculation to extract eɚ parameters. 

 

3.2.11.1 Getting started 

 

Figure 3.29. The steps to open the optimisation dialog via Kestrelôs GUI. 

 

To configure an optimisation, select the ñResultsò drop-down menu and click the ñOptimisationò 

option, as shown in Figure 3.29. A window will then appear. In this window, the user can 

configure which ligand-field parameters are to be varied, what data is to be fitted, and the type 
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of algorithmic solver that will perform the optimisation. An optimisation requires at least two 

things to run: a minimum of one parameter to be varied; and at least one data set to fit to. If 

these criteria are not satisfied, Kestrel will warn the user that the calculation is not configured 

correctly when they try to run the optimisation. 

 

3.2.11.2 Varying the parameters 

The 5Ĭ5 one-electron ligand-field matrix is a function of the ligand field, which is defined by 

the eɚ parameters. The matrix elements are not affected by interelectronic repulsion or spin-

orbit coupling. Hence, we only need to vary the eɚ parameters. We have three parameters to 

vary: the ů and ˊ bonding of the oxo, eů(O) and ex́(O) as eý(O) = ex́(O), where the axial 

acetonitrile (CN in Kestrel) is ñlinkedò to the oxo ligand; and the ů bonding strength of the 

equatorial amines, eů(Neq). 
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Figure 3.30. Setting the bounds for the eů of the oxo ligand in [Fe(O)(TMC)(NCCH3)]2+ 

using Kestrelôs GUI. 

 

 To vary a parameter, right click on the parameter label and select ñSet Boundsò. This 

will display a small window, which requests the user to input: a ñStarting Valueò, which is the 

initial value of the parameter; a ñLower Boundò, which sets the minimum possible value that 

the parameter can have; and an ñUpper Boundò, which sets the maximum possible value that 

the parameter can be assigned. The starting value must be Ó lower bound and Ò the upper 

bound. 
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Figure 3.31. The format of setting the optimisation bounds of the oxoôs eů parameter in 

[Fe(O)(TMC)(NCCH3)]2+ using Kestrelôs GUI. 

 

 Selecting ñOKò will set those bounds for the ligand-field parameter, which is displayed 

in the table, as shown in Figure 3.31. The user can specify new bounds by right clicking the 

parameter and selecting ñSet Boundsò. The user can also remove the optimisation bounds by 

right clicking the parameter and selecting ñSet Fixedò. The user is still able to change the value 

of the fixed parameters in this window. 
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3.2.11.3 Choosing to fit a 5Ĭ5 ligand-field matrix 

 

Figure 3.32. Enabling the calculation of a 5×5 ligand-field matrix for use in an 

optimisation calculation via Kestrelôs GUI. 

 

Optimisation of ligand-field parameters require external data to refine against. In this example, 

we are going to perform a fit to the 5Ĭ5 one-electron ligand-field matrix extracted from an 

AILFT analysis of a minimal active space CASSCF(4, 5) calculation. For details of how the 

CASSCF(4, 5) was performed, consult section 4.2.2.1. For the analysis of the results, refer to 

section 4.2.4.1. By navigating to the ñDataò tab and checking the ñ5Ĭ5 Ligand Field Matrixò 

option, the user is shown a table of the 15 unique matrix elements, as presented in Figure 

3.32. 
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Figure 3.33. Selecting an ORCA output file to extract the 5×5 ligand-field matrix in 

Kestrelôs GUI. 

 

 One can manually supply a 5Ĭ5 ligand-field matrix by selecting the ñConfigureò button. 

However, it is common for the 5Ĭ5 ligand-field matrix to originate from the results of an ab 

initio calculation. To read in an ORCA output file, in which an AILFT analysis has taken place, 

select the ñRead ORCAò button and navigate to the file, as shown in Figure 3.33. Selecting 

that file will automatically extract the matrix and the data window should update to show the 

15 unique matrix elements. Note that the current system of reading an ORCA output file was 

defined for ORCA version 4. Undefined behaviour will occur when trying to read in output files 

for other versions. 

 






















































































































































































































































































































































































