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Abstract 

Ligand-field theory (LFT) is a quantum-mechanical model which calculates the physical 

properties associated with the presence of an incomplete d shell. In this work, the development 

of a contemporary ligand-field program for 3dn transition-metal complexes is reported. The 

program, Kestrel is designed to be easy-to-use and performs real time calculations of the d-d 

transition energies, EPR g-factors, paramagnetic susceptibilities, and single-ion molecular 

magnetic (SiMM) behaviour of a complex using its real molecular geometry. Kestrel also 

features the prediction of UV-Vis, circular dichroism (CD), and magnetic circular dichroism 

(MCD) spectra in non-centrosymmetric systems. The ligand-field model uses metal-ligand 

bonding parameters to parameterise the ligand field and Racah parameters are used to 

simulate the effects of interelectronic repulsion. The multiconfigurational effects arising from 

spin-orbit coupling are also treated. Spectroscopic intensities arising from the electronic dipole 

mechanism are simulated using transition dipole moment parameters calculated for each 

ligand using metal-ligand polarisation parameters. Herein, the application of Kestrel to three 

contemporaneous case studies demonstrates the practical use of the software. First, the 

program is used to analyse how the SiMM behaviour of three homoleptic cobalt(II) complexes 

changes with variation in the molecular geometry and metal-ligand bonding. The study outlines 

suggestions for future synthetic work to enhance the SiMM behaviour of these systems. The 

second case study focuses on the reproduction of the variable-temperature MCD spectrum of 

a characterised intermediate-spin (S=1) iron(IV) oxo complex. The analysis shows that 

Kestrel’s assignment of the d-d bands, which differs from that in the literature, can reproduce 

the reported experimental data. Lastly, the program is used to analyse the full reported 

experimental characterisation of the resting state and substrate bound lytic polysaccharide 

monooxygenase (LPMO) enzyme LsAA9. The analysis was able to characterise the electronic 

structure of the copper(II) ion in this enzyme. 
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1 Introduction 

1.1 Why ligand-field theory? 

Quantum chemistry provides chemists the means to predict and understand the physical 

properties of their molecules. The results of these calculations, when correlated with 

experimental data, inform chemical design by linking aspects of electronic structure with the 

molecule’s or substance’s physical properties.1  

Understanding the electronic structures of 3dn transition-metal complexes can aid the 

rational design of biomimetic catalysts, single-ion molecular magnets, and quantum qubits.2–5 

However, the electronic structures of such complexes are complicated by the presence of 

unpaired electrons occupying the 3d orbitals on the metal ion. These electrons exhibit 

complicated behaviour as they quantum-mechanically entangle under the effects of 

interelectronic repulsion and spin-orbit coupling. The culmination of these effects means that 

simple one-electron, single-determinant theories in quantum chemistry are not often sufficient 

to accurately calculate the physical properties of a transition-metal complex, since electron-

correlation is handled following orbital construction and cannot accommodate the mixing of 

low-lying excited states.  As such, a multiconfigurational approach is required, Figure 1.1.6 

 

 

Figure 1.1. An illustrative example of multiconfigurational descriptions of a fictitious d7 

system. 
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 In the literature it is common to see the use of either density-functional theory (DFT) 

or ab initio methods for predicting the physical properties of 3dn transition-metal complexes. 

The issues of using DFT to describe electronic structures are well known. For instance, DFT 

is usually a single-Slater determinant method, meaning it considers only one configurational 

arrangement.  Moreover, the method suffers from the so-called self-interaction error, which 

leads to several artefacts, most notably delocalisation error and the overestimation of 

covalency.7–9 In response to such issues, multiconfigurational ab initio methods have gained 

popularity and wider use in the literature. Specifically, complete active space self-consistent 

field (CASSCF) and N-electron valence perturbation theory (NEVPT2) have been successfully 

applied to a range of 3dn transition-metal complexes.10,11 However, despite quantitatively good 

results, the underlying electronic structure is not easily linked to the spectroscopy/physical 

properties. Put another way, ab initio methods alone do not easily provide chemical insight 

into the system. 

 LFT, as originally defined, is multiconfigurational. Indeed, the importance and 

application of configuration interaction in LFT has been observed as far back as the 1940s 

when Van Vleck analysed the spin-forbidden excited states of chrome alum.12 Since then, LFT 

has been successfully applied to a range of 3dn transition-metal complexes, reproducing and 

explaining their electronic spectroscopy and magnetism.13 It is now a standard tool for 

analysing the results of ab initio calculations.10 Despite being a parameterised semi-empirical 

method, its continued success and relevance is attributed to the grounding of the model in ab 

initio theory. Hence, through parameterising the electronic structure and comparing the 

predicted physical properties to experimental data, the link between spectroscopy can be 

made back to the electronic structure. Provided that the parameters are chemically intuitive 

and meaningful, multiconfigurational space can also be translated into “chemical language”, 

such as sigma-donor and pi-acceptor properties of ligands.  

In addition to the multiconfigurational basis of LFT, the small d-orbital basis set  (upon 

which the theory is based) offers the possibility for real-time calculations of ligand-field 

properties. This would provide direct feedback to the chemist as to how changes in the 

chemical environment of the transition-metal complex affect the spectroscopic and magnetic 

properties of their system. Through this, one can understand how augmenting σ/π bonding 

can tune desired properties of their system and how this mixes electronic configurations 

together.  

It is in this context that the work reported in this thesis is founded. The advantages of 

the ligand-field model offer to fulfil a quantum-chemical niche that can be made accessible 
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and available to the practicing (bio)inorganic chemist interested in 3d transition-metal systems. 

Not only does a simple model hold such potential, but it can also be used to calculate a wide 

range of physical properties, probing both the ground state and excited state electronic 

structures. The ligand-field model presented herein can compute d-d transition energies, EPR 

g-factors, paramagnetic susceptibilities, and transition dipole moments. 

 

1.2 The ligand field 

It is well known that the predecessor of LFT was crystal-field theory. The development of an 

electrostatic crystal-field theory can be traced back to Hans Bethe who, in 1929, published a 

paper describing the splitting of an atom’s spectroscopic term symbols by an electric field of a 

given symmetry.14 Further development was made by most notably J. H. Van Vleck, William 

G. Penney, Robert Schlapp, and others in connection to the magnetic properties of transition-

metal ion crystals.15,16 The electrostatic crystal field was unable to rationalise the trend in the 

magnitude of d-orbital splitting that has now come to be recognised by the spectrochemical 

series.  

It was not until 1935 that the concept of a “ligand” field, rather than an electrostatic 

crystal field, was introduced when Van Vleck sought to reconcile the hybridisation models of 

Linus Pauling and Mulliken’s molecular orbitals to rationalise the strengths of the crystal-field 

splitting.17 Since then, reviews have sought to compare, contrast, and discuss the physical 

implications of a crystal field versus a ligand field.18,19 The literature has for a long time 

considered these two approaches as wholly distinct. It should be stressed that when 

discussing differences of “crystal” and “ligand” field theories, it is generally meant that the 

theoretical picture of the underlying bonding or metal-ligand interactions differ. In practice, as 

has been highlighted recently, LFT is, mathematically speaking, a freely-parameterised form 

of crystal-field theory.20 It would not be correct to say LFT “incorporates” aspects of, or is, 

molecular orbital theory, as no extension of the d-orbital basis set is carried out, nor are 

molecular orbitals constructed.  

 

1.2.1 Ligand-field theory is not molecular orbital theory: the primogenic effect 

in 3dn transition-metal ions. 

When calculating the excited states of 3dn transition-metal complexes, Carl Ballhausen said 

that “neither the valence bond method nor the molecular orbital theory can hope to do as well 
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[as ligand field theory] within an order of magnitude.”21 This was because the 3d electrons 

primarily reside in the 3d orbitals on the metal where the effects of interelectronic repulsion 

are handled by the parameterisation of the free-ion interelectronic repulsion. Sources in the 

literature wrongly describe LFT as a hybridisation of crystal-field theory and molecular orbital 

theory.22,23 Ligand-field calculations do not construct or use molecular orbitals. Instead, the d 

orbitals are subjected to an effective electrostatic and electrodynamic potential created by the 

ligands. The empirical success of the restricted basis set and the ability to achieve it using the 

free-ion interelectronic repulsion and spin-orbit coupling integrals implies that contamination 

of ligand functions into the 3d orbitals is minimal.24 

The pseudo non-bonding behaviour of 3d electrons is due to the primogenic effect of 

the 3d orbitals.25 As the 3d orbitals are the first atomic orbitals of their l quantum number they 

are nodeless and radially contracted, exhibiting unique physical properties. An article by 

Professor Martin Kaupp details the primogenic effect in 3d transition-metal complexes and 

their consequences for metal-ligand bonding.26 The radially contracted nature of the 3d orbitals 

results in relatively long metal-ligand bonds lengths and poor metal 3d and ligand valence 

orbital overlap due to greater Pauli repulsions between the metal core and the ligand. Indeed, 

this effect has been cited as the primary cause as to why 3d transition-metal chromophores 

do not engage in photoinduced electron transfer chemistry, unlike their 4d and 5d 

counterparts.27  

 

1.2.2 The paradigm of ligand-field theory 

The evidence of ‘uncoupled’ 3d electrons from other functions in a transition-metal complex 

requires special treatment in a quantum mechanical context. Having reviewed the unique 

physical properties of this class of complex, attention is turned to the ligand-field treatment of 

transition-metal complexes. Although LFT is an old model, it was not until the 1980s when R. 

G. Woolley, J. H. Harding, and M. Gerloch presented a formal development of LFT from 

quantum chemistry.13,24,28 Their work established the formal connection between aspects of 

quantum chemistry and the parameters used in ligand-field analysis. The behaviour of 

parameters was also derived within this framework. This work separated LFT from the usual 

criticisms of other semi-empirical theories, the parameters of which are ill-defined and their 

underlying physical interpretations are unclear. 

LFT recognises the unique situation of the 3d orbitals and treats them specifically. 

Woolley, Harding, and Gerloch showed that all other functions (both metal and ligand) need 

not be defined explicitly and the effects that these functions have on the d orbitals can be 
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treated as a perturbation. These perturbations define the radial changes of the d orbitals upon 

interaction with their surroundings but leave the free-ion angular properties (l = 2) unchanged. 

Put another way, perturbations from the d orbital surroundings alter the values of the ligand-

field parameters. 

It is this explicit neglect of all other metal and ligand functions which makes LFT an 

appropriate model for 3d, rather than 4d or 5d, transition-metal complexes, as discussed in 

section 1.2.1. The successful application of this model to a range of 3d transition-metal 

complexes corroborates this observation and justifies the use of a free ion angular basis.29 

 

1.2.3 Metal-ligand bonding 

In LFT, it is possible to parameterise the ligand field using metal-ligand bonding parameters 

by so-called “e-values”. These e-values are labelled as eλ, where λ = σ, π, and δ. The 

symmetries of the eσ and eπ parameters are shown in Figure 1.2. In practice, one can 

associate a set of eλ values at the coordinating atom position of a ligand and fit the strength of 

its bonding with the metal by a numerical quantity (typically given in units of cm−1). The signs 

of the parameters also reflect the chemical concept of donor/acceptor properties of a given 

ligand. A positive eλ parameter is associated with a λ-donor interaction, destabilising the 

interacting d orbitals. In contrast, a negative eλ parameter is associated with a λ-acceptor 

interaction, stabilising the interacting d orbitals. One can easily appreciate the chemical 

transparency in this parameterisation scheme.  

 

 

Figure 1.2. The interaction symmetries of the eσ and eπ interactions 
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If one were to assign a unique eσ, eπx, eπy, eδxy, and eδx²–y² for each ligand, the number 

of freely adjustable parameters quickly surpasses the amount of data points to fit to; the 

parameterisation will likely not be unique. Fortunately, there are some chemically sensible 

assumptions that can be made to reduce the number of adjustable parameters. The first and 

most obvious is that similar ligands likely share similar metal-ligand bonding parameters and 

can be approximated to engage in equivalent bonding with the central metal ion. The second 

assumption is the neglect of the eδ parameters by setting them to 0 cm-1, on the justification 

that ligands rarely have functions of δ-symmetry to interact with. Instead, the remaining eσ and 

eπ parameters should be read as being normalised by eδ, such that eλ = eλ’ – eδ’. 

Application of this model, and its assumptions, has led to the successful ligand-field 

analysis of experimental/computational data using metal-ligand bonding parameters. Tables 

of compiled eλ values taken from experimental and computational analysis in the literature are 

given in Table 6.1 (Appendix). In general, an eσ parameter is typically > 0 cm-1 and has a 

magnitude in the 1000s cm-1. The eπ parameters are typically in the range of –2000 to 2000 

cm-1 and near 0 cm-1 for formally non π bonding interactions. There are, of course, exceptions 

to this rule of thumb. The types of exceptions, when they arise, and how to treat them are 

found in chapter 2.3.4, which details the theoretical aspects of parameterising the metal-ligand 

bonding of a range of ligands. Despite this, the values in Table 6.1 typically conform to 

chemically intuitive ideas of metal-ligand bonding in 3d transition-metal complexes. 

 This model of parameterising the ligand field is known in the chemical literature as the 

angular overlap model (AOM) or the cellular ligand-field model. They are, at their core, 

mathematically identical. However, their assumptions of the parameter magnitudes and the 

chemical interpretation of the parameterisation are different. The AOM was formulated by  C. 

E. Schäffer and C. K. Jørgensen who sought to reformulate the original incarnation of the AOM 

(vide infra) to be a ligand-field procedure, involving explicitly the d orbitals only acting as a first 

order perturbation on the d-orbital manifold. However, care has been made in this work to 

distinguish the general metal-ligand bonding situation described above from the AOM model 

as the latter was borne out of the so-called Wolfsberg-Helmholz model.30 The Wolfsberg-

Helmholz model is an explicit semi-empirical molecular orbital model which required 

evaluation of the direct overlap of ligand functions and metal d orbitals. The model relied on 

an assumption that the energy of the antibonding d orbital is directly proportional to the square 

of the overlap integrals. The model featured other assumptions, such as an added ill-defined 

Fλ factor which took an approximate value of 2.00, which ultimately led to its decline in the 

chemical literature. It should be stressed that the metal-ligand bonding parameterisation used 

in this work is not a molecular orbital model, nor is it the Wolfsberg-Helmholz model. 
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 There are extensions to the parameterisation to include effects of misdirected valence 

eσπ, stabilisation effects of d-s and d-p mixing eds, edp, and differential π contributions from 

bidentate ligands with conjugated π networks using eψ and eχ. The primary downside with the 

general metal-ligand bonding framework in LFT is the degree of parameterisation. The number 

of eλ parameters can quickly become large unless certain assumptions are made or the range 

of experimental data to be fitted expands. However, notwithstanding the potential issues of 

over parameterisation, the eλ parameters enable a chemist to simply see how changing the 

bonding of a given ligand at a given geometry can affect the physical properties. This 

seemingly trivial point is not so easily accomplished using other quantum chemical methods. 

It is not always straightforward to change a ligand in a molecular model without first editing 

the structure by hand inside of a molecular editor, which often requires a geometry optimisation 

before a sophisticated calculation of the electronic structure is ever performed. With this 

model, that problem is circumvented; the insight is achieved by simply changing the magnitude 

and/or sign of the parameter. The change in the eλ parameter is also clear and unambiguous. 

It is not always clear from the results of an ab initio calculation to evaluate how the bonding in 

the molecule has changed. Many of the issues of over parameterisation can be circumvented 

with the advent of ab initio LFT. 

 

1.2.4 Ab initio ligand-field theory  

LFT, despite being an old model, continues to enjoy a healthy resurgence in the chemical 

literature. An important work, published in 2011, compared the performance of LFT to state of 

the art ab initio calculations using CASSCF wavefunctions with NEVPT2 improved energies.31 

The authors developed the ab initio ligand-field theory (AILFT) method which allowed an 

unambiguous determination of ligand-field parameters from the results of correlated 

multireference wavefunctions. The procedure allows one to extract interelectronic repulsion B 

and C, and spin-orbit coupling ζ - if relativistic effects are included in the calculations. The 

ligand field is extracted in the form of the symmetric 55 one-electron ligand-field potential 

(VLFT) matrix. One can directly fit the VLFT matrix by generating a corresponding matrix using 

eλ parameters and a molecular geometry. AILFT is restricted to wavefunctions produced from 

a minimal active space of n electrons in five d orbitals. Hence, the AILFT analysis is limited by 

the quality of the minimal active space wavefunctions and energies. Nevertheless, the method 

extracted eλ values which reproduced the chemical trends in eλ values extracted from 

experiment. Hence, LFT is validated theoretically by ab initio theory and the former is now a 

common tool for analysing the results of CASSCF/NEVPT2 calculations. The results of 
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CASSCF/NEVPT2 calculations are not easily interpretable on their own, whereas the ligand-

field parameters are more chemically transparent. 

 The AILFT has been successful in analysing the metal-ligand bonding trends for a 

range of 3d transition-metal complexes.10 Collections of eλ parameters found in the literature 

are reported in the tables of appendix 6.1, some of which are extracted from AILFT. In 

comparison with experimentally extracted eλ, B, and C parameters the Racah parameters 

reported by AILFT are nearly always overestimated, due to not correctly balancing the 

contributions of static and dynamical correlation effects. Interestingly, comparing the 

parameters from ab initio results with ligand-field parameters extracted from well resolved 

experimental data has provided validation of the ab initio calculations and further development 

of multiconfigurational correlated wavefunctions methods, not the other way around. However, 

there are still limitations to this approach and the NEVPT2 level of correction to the dynamical 

correlation is constrained by not allowing the CASSCF states to mix under dynamical 

correlation. This effect, which can be carried out using DCD-CAS(2) and HQD-NEVPT2 

methods, allow better agreement between AILFT and calculated ab initio results.32 Despite 

this, LFT has emerged as a general tool for use in conjunction with state of the art quantum 

chemical calculations where it converts those results into chemical language. 

 

1.3 Available ligand-field programs 

Constructing expressions for ligand-field electronic states for each case or symmetry is 

inconvenient and difficult. Ligand-field calculations are generally performed using a computer 

program. There are several programs for transition-metal complexes that are used in the 

literature. They have different features and uses. In this section, the programs AOMX, 

CAMMAG, LIGFIELD, and the orca_lft module are reviewed and compared. These programs 

represent the most widely used ligand-field programs in the literature. A summary of their 

features is presented in Table 1.1. 

 CAMMAG (which stands for “CAM”bridge “MAG”netism) was developed for analysing 

the magnetic properties of single-crystal samples of dn transition-metal complexes.33,34 The 

program developed as far as CAMMAG5 which featured: calculation of d-d transition energies 

with their irreducible representation and spin-projections; calculation of EPR g-factors for 

Kramers systems and molecular/crystal paramagnetic susceptibility tensors; and d-d 

intensities of electronic absorption and CD spectroscopies. The ligand-field was 

parameterised using the cellular ligand-field model. The program has been extensively used 

to characterise a range of systems from their optical and magnetic properties.29 A recently 
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developed program BonnMag with similar features and syntax to CAMMAG was designed to 

compute the spectroscopic properties of f complexes.35 

 AOMX was developed by Heribert Adamsky and uses the AOM parameterisation.36 

The program uses an alternative approach to CAMMAG and constructs the final Hamiltonian 

in the basis of Slater determinants. This means that the n-electron configurational occupations 

of the final d orbitals can be extracted from the eigenfunctions. The program does not compute 

magnetic properties but does feature direct fitting to transition energies (with symmetry labels) 

and anisotropic interelectronic repulsion and spin-orbit coupling. The program is used 

consistently in the analysis of AILFT results. 

 LIGFIELD was developed by Jesper Bendix in the 1980s and computes the ligand-

field Hamiltonian for all possible pn, dn, and some fn configurations.37 To the author’s 

knowledge, this ligand-field program is the only example that features a graphical user 

interface. It shares similarities in its features with AOMX and has been used to analyse the 

optical spectroscopy and zero-field splitting spin Hamiltonian parameters extracted from 

experiment for a range of systems.38–40 

 The “orca_lft” program is a module of the larger ORCA program introduced with the 

recent version 5.0 release.41,42 The program is a script based command line tool. Its intended 

use is to submit the ligand-field results of an AILFT analysis of a previous calculation into this 

module and start varying ligand-field parameters. Unlike the previous programs, orca_lft does 

not use metal-ligand bonding parameters but instead uses a direct parameterisation of the 15 

unique elements of the symmetric 55 one-electron ligand-field matrix. To extract eλ 

parameters, a different program must be used, such as AOMX. The module also uses B, C, 

and ζ. The module can also simulate ligand-field spectra of essentially any type using the 

available basis sets in ORCA. 

Each program has their advantages and disadvantages, and they each contribute a 

set of useful features, which makes them distinct and useful in their own respect. Except for 

LIGFIELD, each program is command line based, which introduces a barrier to entry for the 

non-specialist user. On the other hand, LIGFIELD does not compute d-d intensities. This 

shows that there is a need for a new contemporaneous program that provides these features 

along with a user-friendly interface to explore ligand-field analysis. 
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Table 1.1. Summary of available features of the major available ligand-field programs. 

Features AOMX CAMMAG LIGFIELD orca_lft (5.0.3) 

eλ parameters Yes Yes Yes No 

Magnetic field Yes No Yes Yes 

Anisotropic 

interelectronic 

repulsion 

Yes No No No 

Anisotropic 

spin-orbit 

coupling 

Yes No No No 

Calculates 

Energies 

Yes Yes Yes Yes 

Calculates 

Magnetism 

No Yes Yes Yes 

Calculates 

Intensities 

No Yes No Yes 

Configuration 

Projection 

Yes No Yes No 

Symmetry 

Projection 

Yes Yes No No 

Optimisation Yes No Yes Planned 

Mapping No Yes No No 

Parameter 

variation 

Yes Yes Yes Yes 

Graphical user 

interface 

No No Yes No 

p configs No No Yes No 

f configs No No Yes No 

Crystal frames No Yes No No 

 

1.4 This work 

Thus far, a brief overview of LFT and its place in the contemporary chemical literature has 

been outlined. Historically, LFT was focussed on reproducing experimental data; however, the 

model is often used nowadays to analyse the results of ab initio calculations. The reason for 
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this shift in focus stems from a lack of user-friendly software that was freely available and 

made multiconfigurational language accessible to synthetic chemists. There is also a 

perception that LFT is not a sophisticated model and therefore second to ab initio models. 

However, the success of LFT, spanning nearly a century, means one should not be so quick 

to disregard the model. 

The increased computational power available to chemists along with the renewed 

interest in LFT has given fertile ground for a new contemporary ligand-field program. The 

software developed in this thesis, called Kestrel, is designed to address the link between 

spectroscopy and electronic structure first. That means the program is ultimately intended to 

be applied to experimental data where available. Kestrel aims to compute d-d transition 

energies, EPR g-factors, paramagnetic susceptibilities, and UV, CD, and MCD intensities. The 

program has been designed to feature an integrated graphical user interface that runs ‘out of 

the box’ with minimal setup. 

This thesis presents the development of Kestrel and its application to three case 

studies. Chapter 2 describes in more detail the theoretical background of the ligand-field model 

and provides a more thorough description of the chemical interpretation of the ligand field. 

Chapter 3 reviews the features of Kestrel and serves as a guide to using the program. Finally, 

Chapter 4 provides three applications of the program. The first of these is an application of the 

program to facilitate rational chemical design of some cobalt(II) single-ion molecular magnets, 

to enhance the axiality of their electronic structure. The second study is a reanalysis of a non-

heme iron(IV) oxo complex, where an attempt to falsify a reassignment made using an 

experimental version of the program was instead able to simulate the experimental data. 

Finally, the program is applied to the fully spectroscopic characterisation of a copper(II) lytic 

polysaccharide monooxygenase (LPMO) enzyme. 
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2 Theory 

LFT concerns itself with the evaluation of an effective Hamiltonian, described by states 

constructed from the free-ion angular d-orbital basis. There are four main sources of energetic 

contribution that must be accounted for: interelectronic repulsion; spin-orbit coupling; Zeeman 

splitting; and the ligand field. The effective Hamiltonian operator (described formally in section 

2.1) is written as 

 eff

IR LF SOC ZeeH H V H H= + + + . (2.1) 

For 1st row dn transition-metal ions, the contribution from the ligand field typically dominates, 

with contributions in the order LF IR SOC ZeeV H H H  . For 2nd and 3rd row transition metals 

the spin-orbit coupling can be large enough to no longer be considered as a relatively small 

perturbation. 

 This chapter begins by reviewing the mathematical formalism and origin of the effective 

Hamiltonian and discusses its application and limitations. Following this, the mathematics of 

angular momentum coupling are reviewed along with the final expression for the evaluation of 

the operators in (2.1) in an angular momentum basis. Next, the methods and definitions that 

are used to parameterise the ligand-field interactions are reviewed and a more in-depth look 

is taken into the different types of metal-ligand interactions. Finally, the different post-

diagonalisation operations for calculating the configuration projection, magnetism, and 

spectroscopic intensities are discussed. 

 

2.1 Effective Hamiltonians 

In electronic structure theory, effective Hamiltonians (Figure 2.1) are constructed to model a 

region of eigenstates of a more complete “eigenspectrum”.43 LFT is concerned with 

eigenstates that are solutions of an effective Hamiltonian acting within a restricted basis of 

metal d orbitals. These states are connected primarily with the unique spectroscopic properties 

of dn transition-metal ion complexes. 

 



40 
 

 

Figure 2.1 The sampling of eigenstates via an effective Hamiltonian, which represent a 

“window” of states in the full Hamiltonian. 

 

 The effective ligand-field Hamiltonian can be constructed by the partitioning of the full 

eigen spectrum of the molecule into two subspaces: a  and b .44 The former is the model 

space, which includes many-electron states arising from pure angular d-orbital states and their 

configurational occupations. The latter is the outer space, which represents the eigenstates 

arising from all other functions in the molecule and is typically much larger than the model 

space. The partition begins with the full many-electron Schrödinger equation, 

 ˆΨ ΨH E=  (2.2) 

where it is assumed that the eigenfunctions can be constructed from a linear combination of 

a complete and orthonormal set of basis functions, such that 

 Ψ i i

i

c φ=  . (2.3) 

It is convenient to rewrite the original Schrödinger equation in its matrix representation as 

 E=Hc c . (2.4) 

The full many-electron Schrödinger equation describes all electronic states. From Löwdin, it 
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is possible to partition the Hamiltonian into the two subspaces defined prior.45 In doing so, the 

eigenvalue equation of (2.4) then turns into a partitioned eigenvalue problem 

 
aa ab a a

ba bb b b
E

     
=    

     

H H c c

H H c c
 (2.5) 

where the outer space coefficients can be solved for explicitly 

 ( )
1

b bb bb ba aE
−

=  −c 1 H H c . (2.6) 

The outer space coefficients can be substituted back into (2.5) to yield 

 1( )a aa a ab bb bb ba aE E −= +  −c H c H 1 H H c  (2.7) 

where the original Schrödinger equation can now be rewritten as 

 ( )eff a aE E=H c c . (2.8) 

The result is an exact reformulation of the original Schrödinger equation where the solutions 

of the model space can be modelled. Impressively, no approximations have been made in this 

derivation. However, within this effective Hamiltonian is an energy dependent term 

1( )bb bbE − −1 H , which encapsulates the influence of the outer space on the model space. 

Providing that this term is small, the effective Hamiltonian is a good one. In other words, 

providing that the solutions of the outer space do not cross into the model space then this term 

remains relatively small. Assuming that the full many-electron Hamiltonian can be divided into 

a 0th and 1st order perturbation operator results in 

 
( ) ( )( )0 1

Ψ Ψ ΨH H H E= + = . (2.9) 

By also assuming that the solutions of (2.8) are good, then the Hamiltonian can be replaced 

with the outer space eigenvalues, bbE . Doing so, it is possible to rewrite effH as 

 ( )
1

eff aa ab bb baE E
−

= − − H H H 1 H  (2.10) 

whose matrix elements can be expanded as 

 ( )
(0) (1) (0) (0) (1) (0)

(0) (0) (1) (0)

(0)

Ψ Ψ Ψ Ψ
Ψ Ψ

i k k jeff

ij i i jij
k b k a

H H
δ E H

E E

= + −
−

H  (2.11) 

Where the full form of the effective Hamiltonian has been derived. From (2.11) the 1st order 

perturbation constitutes two parts, as given by (2.10). There is a perturbation that 

encapsulates the interaction of the functions within the a  space. The second-order term 

describes the influence of the b  space on the a  space. The zeroth order contribution, (0)

ij iδ E

represents the unperturbed energies. 
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On this basis, 3d transition-metals make good candidates for the effective Hamiltonian 

of LFT.43 From equation (2.5) there is a clear division to be made between ligand-field states 

(a  space) and other electronic states (e.g. charge transfer), the former being primarily related 

to the spectroscopic properties of those systems. Also, the primogenic nature of the 3d 

orbitals, as discussed in section 1.2.1, means that the d orbitals are sufficiently decoupled 

from all other functions in Werner-type complexes. Hence, the crossover of the b  space 

functions with the ligand-field space functions should be small, resulting in a small 

1( )bb bbE − −1 H  term. 

 

2.2 Angular momentum & tensor operators 

LFT is concerned with the calculation of matrix elements between a basis set of angular 

momentum quantum numbers. The evaluation is carried out by a series of operators 

represented as tensor operators. This section deals with spherical tensor operators within a 

spherical basis. However, this section does not intend to cover the full scope of tensor operator 

methods (which are detailed elsewhere) but covers the equations and mathematics used to 

compute the integrals appearing in the effective Hamiltonian, equation (2.1).46 

 

2.2.1 Angular momentum coupling 

For first row transition-metal complexes where spin-orbit coupling is a small perturbation when 

compared to the size of the ligand field, Russell-Saunders coupling is used. We define a 

quantum number, j  and a z-projection m  written as a ket jm . A state with two quantum 

numbers uncoupled from one another is written as 

 
1 2 1 2 1 1 2 2j j m m j m j m= . (2.12) 

Upon coupling, the new state is defined with a total angular momentum, 1 2j j j= +  and the 

resulting ket is written as 
1 2j j jm . These coupled functions are eigenvectors of the operators 

2J  and ZJ , representing the total angular momentum squared, and the z-projection, defined 

by34 
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( )
22

1 2

1 2z z zJ J J

= +

= +

J J J

 (2.13) 

where the uncoupled set of angular momentum numbers are eigenfunctions of their respective 

iJ  and 
izJ  operators. The eigenvalues of the operators in (2.13) are 

 

( )2

1 2

1 2

1

z

j j j j jm

J m j j jm

= +

=

J

. (2.14) 

 In the Russell-Saunders coupling scheme, the coupling of total orbital angular 

momentum, L  and total spin angular momentum, S  form a total angular momentum set 

spanning47 

  , 1, ,J L S L S L S= + + − − . (2.15) 

Likewise, the coupling of the z-projections of both the orbital and spin angular momentum (

LM  and SM  respectively) combine to form a total projection J L SM M M= + , as defined in (2.13)

. The result is that the JM  spans the set 

  , 1, ,JM J J J= − − . (2.16) 

Hence, we can write the uncoupled basis as 
L S L SLSM M LM SM=  and the coupled basis 

as 
JLSJM . 

 However, there are often different sets of quantum numbers that can couple to give the 

same resulting ket. For example, both the uncoupled bases 1 1
2 22,1 ,−  and 1 1

2 22,0 ,  

result in the coupled ket 51 1
2 2 22, , , . The coupled set of angular momentum quantum numbers 

are built from a linear combination of the uncoupled set of quantum numbers. Writing generally, 

the relation between a coupled basis and an uncoupled basis is given by 

 
2 2

2 1 2 2

1 2 1 1 2 2 1 1 2 2 1 2

j j

m j m j

j j jm j m j m j m j m j j jm
=− =−

=    (2.17) 

where the unit dyadic has been used 
1 1 2 2 1 1 2 2j m j m j m j m = 1. The scalar product 

1 1 2 2 1 2j m j m j j jm  is the Clebsch-Gordan coefficient (also denoted 1 2

1 2

j j j

m m mC ) which is an 

expansion coefficient of a coupled basis in terms of its uncoupled basis. Note that equation 

(2.17) is simply the transformation from one basis to another. It is equally possible to write the 

uncoupled basis in terms of coupled functions 

 1 2 1 2 1 2 1 2 1 2 1 2
jm

j j m m j j jm j j jm j j m m=  . (2.18) 
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In principle, there is no right or wrong choice in choosing a coupled or an uncoupled basis, 

both are related by a unitary transformation.  

 There are relationships that can be deduced to determine whether the Clebsch-Gordan 

coefficient will be zero or not. From (2.15), if j  lies outside the bounds of 
1 2 1 2j j j j j+   −  

then the 1 2

1 2
0j j j

m m mC = . Also, from (2.13) and (2.16), if the z  projections do not sum to zero, then 

1 2

1 2
0j j j

m m mC = . This means that upon coupling, the z  projections of the uncoupled basis are not 

conserved and instead are replaced by a total z-component. 

 An expression is quoted for the evaluation of the Clebsch-Gordan coefficient that was 

given by Racah48 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1 21 2 1 2 , 1 2 3

1/2

1 1 1 1 2 2 2 2

1 1 2 1 2 2 1 2

1

1 2

Δ( )

2 1 ! ! ! ! ! !

1 ! ! ! !

! !

m m m

z

z

j j m m jm δ j j j

j j m j m j m j m j m j m

j m z j j m z j m z j j m z

z j j j z

+

−

=

  + + − + − + − 

 − − − − + + + − − − +

 + − − 



 (2.19) 

where z  in (2.19) sums over integer values which lead to non-negative factorials. The 
1 2Δ( )j j j  

function is given by 

 
( ) ( ) ( )

( )

1/2

1 2 1 2 1 2

1 2

1 2

! ! !
Δ( )

1 !

j j j j j j j j j
j j j

j j j

 + − − + − + +
=  

+ + +  

. (2.20) 

 The Clebsch-Gordan coefficient possesses strange symmetry relations. Because of 

this, it is convenient to work with Wigner symbols, which are related to the Clebsch-Gordan 

coefficient but feature convenient symmetry properties.  

 

2.2.2 Wigner symbols 

To evaluate the coefficients of angular momentum coupling, Wigner 3j and 6j symbols are 

used. These Wigner symbols are required for the evaluation of the ligand field, spin-orbit 

coupling, and magnetic moment operator matrix elements. The 3j symbol, which couples two 

sets of angular momenta together, is related to the Clebsch-Gordan coefficient, given by49 

 ( ) ( )1 2 3 1/21 2 3

3 1 2 1 2 3 3

1 2 3

1 2 1
j j mj j j

j j j m m j m
m m m

− − − 
= − + − 

 
 (2.21) 

where the Clebsch-Gordan coefficient is to be evaluated using equations (2.19) and (2.20). 
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The Wigner 6j symbol represents the coupling between three sets of angular momenta 

and is written with curly brackets. The expression for calculating Wigner 6j symbols is given 

by50 

 ( ) ( )1 ;
a b c da b c

W a b c d e f
d e f

+ + + 
= − 

 
 (2.22) 

in which the symbol is related to the Racah W-coefficient48 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
1

; Δ Δ Δ Δ

1 1 ! !

! ! !

! !

z

z

W a b c d e f abc acf bdf cde

a b c d z z e f a d z

e f b c z a b e z c d e z

a c f z b d f z
−

=

 − + + + + − + − − +

 + − − + + − − + − −

 + − − + − − 


 (2.23) 

where the Δ  function is defined in equation (2.20). 

 

2.2.3 Rotations of angular momenta and tensor operators 

The rotation of angular momenta states is of the upmost importance. Computing physical 

observables, represented by operators, requires an understanding of how an operator acts 

under a given coordinate scheme. Two observers, with different frames of reference (which 

are related by a unitary transformation) must still observe the same magnitude of the physical 

observable. The orientation of the physical observable will be described differently, however, 

for a different (but still) complete basis set. 

 We define an operator, T̂  represented by an irreducible spherical tensor kT  of order 

k  with 2 1k +  operators, which share similar properties to angular momentum numbers. For 

example, the operator spans projections  , 1, ,q k k k= − −  and is given by34 

 
k

k k

q

q k

T
−

=

= T . (2.24) 

The physical observable must be invariant under rotation, which can be written as a unitary 

transformation: 

 † †ˆ ˆ ˆT U TU UTU= = . (2.25) 

Now, the rotation of an angular momentum eigenstate, jm  under a rotation operator, D̂  can 

be written as a linear combination of the ( )2 1j +  states, 
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 ˆ
j

j

m m

m j

D jm D jm

=−

=   (2.26) 

where the expansion coefficients j

m mD   are matrix elements of the Wigner rotation matrix.46 

Likewise, a tensor operator of rank k  and projection q  also transform under rotation by 

 †ˆ
k

k k k k

q q q q q

q k

DT DT D D T 

=−

= =  . (2.27) 

This means that under a general rotation, a tensor operator transforms as a linear combination 

of the 2 1k +  elements of the irreducible tensor operator of rank k . For our purposes, the 

explicit form of the Wigner rotation matrices, defined for a complex basis, are only required for 

the evaluation of spectroscopic intensities in section 2.4.3.1. However, rotation matrices 

defined for the real basis are also required for evaluating the ligand-field potential matrix in the 

one-electron basis (section 2.3.2).  

Thus far, no mention of the definitions of the rotations have been made. For rotations 

in three dimensions, it is convenient to work in Euler angles ( ), ,α β γ  using a z-y-z convention, 

as shown in Figure 2.2. Note that the Euler angles are directly related to the spherical polar 

coordinates in the ISO convention with an extra spherical angle ψ , such that ( ) ( ), , , ,α β γ θ ψ= 

. 

 

 

Figure 2.2. The stepwise rotation of a coordinate scheme X (green), Y (blue), and Z (red) 

by Euler angles in the z-y-z convention 

 

 The full transformation from an initial coordinate scheme ( ), ,X Y Z to a final coordinate 

scheme ( ), ,X Y Z    is given by the product of three separate rotation operators 
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 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ
Z Y ZR θψ R ψ R θ R  =   (2.28) 

where the primes indicate the transformed axes after the primed operation. The transformation 

proceeds as thus: 

1. A rotation about Z  by an angle ϕ (α) to give the coordinate scheme ( ), ,X Y Z   . 

2. A rotation about Y   by an angle θ (β) to give the coordinate scheme ( ), ,X Y Z   . 

3. A rotation about Z   by an angle ψ (γ) to give the coordinate scheme ( ), ,X Y Z  

. 

Note that a positive rotation about an axis is defined as a clockwise rotation when looking 

down the axis from the origin. Similarly, we define an inverse rotation as, 

 ( ) ( ) ( ) ( )
1ˆ ˆ ˆ ˆ

Z Y ZR θψ R R θ R ψ
−

  = − − −  (2.29) 

where, 

 1ˆ ˆRR− = 1. (2.30) 

The form of the rotation operator is given by 

 ˆ ( ) niωl

nR ω e=  (2.31) 

where n  is the axis ( ), ,x y z , ω  is the angle in radians, 1i = − , and nl  is the orbital angular 

momentum operator for axis n . Equations for the evaluation of these terms in the complex 

and real bases are given by Wigner and Schaffer respectively.50,51  

 

2.2.4 Evaluation of the operators of the effective Hamiltonian 

To evaluate the effective Hamiltonian, an expression for the matrix elements of each 

perturbation acting within a basis of angular momentum quantum numbers is required. Each 

matrix element is then multiplied by a radial coefficient and summed to form the matrix 

representation of the effective Hamiltonian. From equation (2.1), the final effective Hamiltonian 

matrix equation is given by 

 ( )
0,2,4 , , ,

,eff k k kq α

IR kq LF SOC α Zee

k k q α x y z

F B C c ζ B
= =

= + + +  Η H V H H  (2.32) 

where ( ),kF B C  is the Condon-Shortley radial integral calculated from Racah B and C 

parameters, 
kqc  is the global multipole expansion coefficient of order k  and projection q , ζ  

is the spin-orbit coupling constant, and αB  is the magnetic field strength in the cartesian 

direction α . Note that with exception of the multipole expansion coefficients of the ligand-field 

perturbation (see section 2.3), all other coefficients are parameters that are directly inputted. 
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 Operators belonging to a Hamiltonian must themselves be scalar quantities. We have 

seen in section 2.2.3 how an operator can be represented by a tensor of arbitrary rank in any 

coordinate scheme (which is related to another via a rotation) by a linear combination of tensor 

operators in the starting frame. This is used directly for the evaluation of the ligand-field 

potential, 
LFV . However, both the coulombic operator of the interelectronic repulsion and the 

spin-orbit coupling operator are assumed to be spherical and are therefore invariant under a 

rotation of the coordinate scheme. 

 The evaluation of the matrix elements between a coupled angular momentum basis 

set for the ligand field, interelectronic repulsion, spin-orbit coupling, and magnetic moment 

operators are solved and have been adapted from the work of Gerloch et al.33 The final 

expressions are standalone and can be used without prior knowledge of their formulation. 

 

2.2.4.1 The Wigner Eckart theorem 

For the largest case of d5 with a basis size of 252 and up to 24 operators in total including 18 

ligand field, 2 interelectronic repulsion, 1 spin-orbit coupling, and 3 magnetic field, the 

calculation would require the evaluation of 1,524,096 matrix elements, which would then need 

to be stored. The operators, represented as either scalars, vectors, or tensors, must conserve 

angular momentum. This conservation of angular momentum, that is implicit within the Wigner 

3j and 6j symbols, allows for the symmetry of the SO(3) rotation group to be fully exploited 

and reduces the number of matrix elements that require evaluation and storage. 

 The Wigner Eckart theorem states that a matrix element of a tensor operator of 

arbitrary rank k  is proportional to the Clebsch-Gordan coefficient. The theorem is written as52–

54 

 k k

q qj m T j m j mk q j m j T j    =  (2.33) 

where the general matrix element is related to a “reduced” matrix element (denoted by the 

double bar) and the Clebsch-Gordan coefficient. The Clebsch-Gordan coefficient is related to 

the Wigner 3j-symbol, given by equation (2.21). Hence, we write 

 ( )1
j mk k

q q

j k j
j m T j m j T j

m q m

−  
  = −  

− 
. (2.34) 

The evaluation of these reduced matrix elements in the suitable quantisation has been 

tabulated by Nielson & Koster for each of the required reduced operators (Uk, Fk, and V11; vide 

infra) between Russell-Saunders terms of the form 2 1S L+ .55 Since the number of Russell-
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Saunders terms are much smaller than the full basis size (spanning the full J , JM space), 

these reduced matrix elements only require evaluation once. Use of the rules of the Wigner 3j 

symbol can determine, just by examining the quantum numbers involved and the rank of the 

operator, whether the matrix element is zero or not, avoiding needless computation. 

 

2.2.4.2 The ligand-field potential 

As will be detailed in section 2.3, the ligand-field perturbation is represented by a multipole 

expansion. This expansion requires evaluation of the basis function under spherical harmonic 

operators, of the form k

qY . This means that the effective ligand-field potential operator, 
LFV  in 

the many electron basis is constructed using the expression33 

 ˆ
k

k

J LF J kq J q J

k q k

L S J M V L S J M c L S J M Y L S J M
=−

    =    (2.35) 

where 
kqc  is the global radial multipole expansion coefficient of rank and order k  and q  (see 

section 2.3 for detail of their construction) and unlike the other radial parameters is not directly 

inputted. Application of the Wigner-Eckart theorem and expansion of the reduced matrix 

elements gives the final expression33 

 

( ) ( ) ( ) ( )
2 1

1 2 1 2 1 2 1
4

0 0 0

J

k

J q J

J J L S M k l

k

J J

L S J M Y L S J M

k
J J l

π

J k J l k l L J S
LS L S

M q M J L k

+ + + − + +

  =

+
− + + +

    
    

 −     
U . (2.36) 

 

2.2.4.3 Interelectronic repulsion 

The interelectronic repulsion involves the two electron coulombic repulsion operator, which is 

a function of the inverse of the distance between any two electrons written as 1 ijr  in atomic 

units.34 It is possible to expand the angular part of the operator of 1 ijr  into a linear combination 

of Legendre polynomials:34 

 
1

1
(cos )

k

kk
kij

r
P ω

r r



+



=   (2.37) 

where the Legendre polynomial can be expressed as the scalar product of two spherical tensor 

operators, (1) (2) (cos )k k

kP ω =C C , resulting in the coulombic repulsion operator given by 
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 ( )1

1
( ) ( )

k
k k

k
kij

r
i j

r r



+



=  C C . (2.38) 

The angular integral of (1) (2)k kC C  between a bra and ket of angular momentum quantum 

numbers is given by:34 

 ( )

(1) (2)

1 (1) (2)

k k

L S J k k

JJ MM

LSJM L S J M

L S J
δ δ L L S S

L S k

 + +

 

    =

 
 −  

  

C C

C C . (2.39) 

The operator can be expressed by a tensor of order k  (like with the spherical harmonic 

operators of the ligand field in section 2.2.4.2, are truncated at k  = 0, 2, and 4). The radial 

parameter given in (2.32), the kF  parameters, are Slater-Condon parameters. These kF  

parameters are parameterised expressions of the double integral56: 

 ( ) ( )2 2 2

1 2 1 21

0 0

k
k

k

r
F e R r R r dr dr

r

 



+



=    (2.40) 

where < and > denote the lesser and greater of the distances 
1r  and 2r  and 2R  is the radial 

part of the electron orbital. These parameters are related to 
kF  which are normalised versions 

of the kF  parameters, given by the relation: 

 

0

0

21
2 49

41
4 441

F F

F F

F F

  
  

=   
   
   

 (2.41) 

An alternative parameterisation scheme to the Slater integrals are the Racah parameters A, 

B, and C. The Racah parameters are related to the Slater-Condon parameters and a 

transformation can be written as48 

 

0

21
49

41
441

1 0 49

0 1 5

0 0 35

A F

B F

C F

 −   
    

= −     
     
     

 (2.42) 

where simple algebra allows us to find the transformations, 

 

0 7
5

2

4 63
5

49 7

F A C

F B C

F C

= +

= −

= . (2.43) 

By combining both equations (2.40) and (2.39), the final form of the matrix element is given 

by:33 

 
1

J J

k

J J J J LL SS JJ M M
i j kij

LSJM L S J M LSJM L S J M F δ δ δ δ
r

   


      =  kF  (2.44) 
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2.2.4.4 Spin-orbit coupling 

The spin of an electron has associated with it a magnetic dipole, as does the orbital motion of 

the charge. In a one-electron system, the interaction of the two magnetic dipoles is given by 

the operator ζ l s , where ζ  is the radial parameter given in (2.32). The effective mean radial 

parameter is given by the expression56 

 ( )2 2

0

nl nlζ R ξ r dr


=   (2.45) 

where 

 ( ) 2 2

1 1

2

dU
ξ r

r drμ c

 
=  

 
. (2.46) 

By using a coulombic potential, 2U Ze r= −  and the hydrogenic radial wavefunction, equation 

(2.46) becomes: 

 
( ) ( )

2 4

2 2 3 3 1
202 1

nl

e Z
ζ

μ c a n l l l
=

+ +
. (2.47) 

The radial parameter is proportional to 4Z  and inversely proportional to 3n . Hence, the 

parameter is larger for elements down a group and across a period. For the many electron 

case, the spin-orbit coupling operator is written as: 

 ˆ
SOC i i

i

H = l s  (2.48) 

which is a compound scalar operator and so can be expressed using equation (2.39). The 

final angular matrix element is given by33 

 ( ) ( ) ( )1 1 2 1
1J J

J i i J

i

L S J

JJ M M

LSJM L S J M

L S J
δ δ l l l LS L S

S L

+ +

 

   =

 
  − + +      



11

l s

V  (2.49) 

where a factor of 3
2  is subsumed into the reduced matrix element; the factor has to be used 

explicitly when computing spin-orbit coupled matrix elements for d1 or d9 using (2.49). 

 

2.2.4.5 Zeeman interaction 

The Zeeman interaction involves the use of the magnetic moment operator and represents 

the interaction of the basis functions with an external magnetic field. The magnetic moment 
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operator is used to compute magnetic properties (2.4.2), magnetic dipole transition intensities, 

and CD spectra (2.4.3.4). the Zeeman interaction is used to compute MCD intensities 

(2.4.3.5). 

 The magnetic moment operator itself is the sum of the orbital and spin angular 

momentum operators, μ kL g S
e

= + , given by33 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

1
1 2 1 2 1 1 2 1

1
1 2 1 2 1 1 2 1

L S J

L S J

J J
LSJ L LSJ J J L L L

L S L

J J
LSJ S LSJ J J S S S

S L S

+ + +

+ + +

 
 = − + + + +  

 

 
 = − + + + +  

 
 (2.50) 

where 2.0023eg =  is the Landé g-factor and k  is the orbital reduction factor. The spherical 

basis is used throughout so a conversion to cartesian directions proceeds via the relations 

( )( )1 11 2xμ μ μ
− +

= − , ( )( )1 12yμ i μ μ
− +

= + , and 
0z

μ μ=  to yield: 

 

( )

( )

( )

1
1

0

1 11
1

2 1 1

1 1
1

2 1 1

J

J

J

J M

J z J

J J

J M

J x J

J J J J

J M

J y J

J J J J

J J
LSJM μ LSJ M μ

M M

J J J J
LSJM μ LSJ M μ

M M M M

J J J Ji
LSJM μ LSJ M μ

M M M M

−

−

−

 
 = −  

− 

     
 = − −    

    − − −     

     
 = − +    

    − − −     

. (2.51) 

One can simply apply the Zeeman splitting by the multiplication of the magnetic field in the 

cartesian directions: 

 x x y y z z

B

μ B μ B μ B
μ


= + +

μ B
. (2.52) 

where Bμ  is the Bohr magneton in units of cm-1 T-1. 

 

2.3 The ligand-field model 

The expression for the ligand-field contribution in equation (2.36) describes the angular matrix 

element for a series of spherical harmonic operators. The radial contribution is given by 

multipole expansion coefficients. The details and physical significance of this are presented in 

the proceeding chapter. The “ligand field” refers to a potential field generated by the ligands 

which are bound to the central metal ion. The ligand field is physically distinct when compared 

to the more typical forms of bonding from molecular orbital theory, or valence bond theory.  
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In the case of representing a π-bond in ethylene with molecular orbital theory, for 

example, we require explicit descriptions of the two pz orbitals that overlap to form a bonding 

orbital occupied by bonding electrons. Hence, the description of those electrons requires a 

Hamiltonian that describes the overlap of two pz orbitals on different atomic sites. This type of 

description is unnecessary for Werner-type complexes, where only the angular description of 

the free-ion d orbitals is required. The d electrons and their configurations belong wholly, or 

primarily, to the central metal-ion. Their unique properties result from the fact that they do not 

often pair with electrons on other atomic centres. 

 To formulate this theory fully in a predictive way, one must know the radial forms of the 

d orbitals, the ligand orbitals, and the rest of the metal orbitals. The radial forms are not known 

a priori; the angular integrals, as given by equation (2.36), are known and complete. Hence, 

the parameterisation of the radial part of the ligand field serves to circumvent the difficult and 

relatively computationally expensive approach of optimisation, aiming to extract that 

information from experiment itself.  

 

2.3.1 The multipole expansion 

In LFT, the field generated around the central metal ion at the origin is given by a distribution 

of potentials, or charges. This type of distribution can be represented by a multipole expansion 

that is built from a linear combination of spherical harmonics34 

 ( , , ) ( ) ( , )
k

k k

q q

k q k

V r θ φ c r Y θ φ


=−

=    (2.53) 

where V is a scalar effective potential and k

qc  are the local expansion coefficients that 

subsume the radial integrals.  

Now, the ligand-field potential must act within a basis of d orbitals. This can be 

represented by a potential, approximated by the multipole expansion, acting on the one-

electron d-orbital spherical harmonics. Using a d-orbital one electron basis that spans the lm  

space, where  2, 1, 0, 1, 2m = − − , the potential can be written as 

 ( ) ( )
4

0

, , ( ) ,
k

k k

q q

k q k

lm V r θ φ lm lm c r lm lm Y θ φ lm
= =−

  =   . (2.54) 

Observing that the matrix element ( ),k

qlm Y θ φ lm  contains the Wigner 3j symbol 

0 0 0

l k l 
 
 

 which is only non-zero for 0, 2, 4k =  when l  is even, means that the summation 
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over k can be truncated. McMeeking et al. have written the relationship between the 

expansion coefficients k

qc  and the general matrix elements of the potential lm V lm .33 

 

2.3.2 The one-electron ligand-field matrix 

Having established that the global multipole expansion coefficients can be computed from 

matrix elements of the ligand-field potential between the one-electron d orbitals, the question 

of how to construct the matrix and its elements immediately follows. In general, the method of 

parameterisation of the 5 × 5 one-electron ligand-field matrix, VLFT is what separates the global 

methods of crystal-field theory (with parameters of Dq, Ds, Dt, etc) and other models such as 

the AOM. McMeeking et al. have tabulated the inversion of the multipole expansion, which 

expresses the expansion coefficients of (2.54) in terms of the matrix elements of the one-

electron ligand-field matrix.33 It is this general conversion from a potential V in a one-electron 

basis, to the potential acting on a many-electron basis, that allows for the evaluation of the 

ligand-field potential in (2.32) and (2.36). 

 It is useful to compute the real form of VLFT explicitly. Computing the matrix explicitly 

with the ligand-field model means that comparisons can be made with the same matrix 

computed from AILFT to extract eλ values from the results of ab initio calculations.10,31 The 

second reason is that the eigenvalue solutions of the one electron VLFT matrix furnish the 

energies of the five mixed one-electron d orbitals and their eigenvectors in the real d-orbital 

basis. 

The energies are invariant under the rotation of the coordinate scheme. However, the 

eigenvector coefficients change. This means that the interpretation of the d-orbital character 

is sensitive to the choice of cartesian axes. To illustrate this with a simple example, we can 

imagine a dz² orbital in the conventional scheme, aligned along the Z axis in a cartesian 

orientation (XYZ). If we were to rotate about the Y axis by 45°, it is possible to construct the 

new orientated dz²’ (the prime indicates the new rotated scheme X’Y’Z’) in terms of the d 

orbitals in the original XYZ scheme. In Figure 2.3, the linear combination of the dz², dxz and dx²–

y² in XYZ can reproduce the shape and orientation of the new dz²’ orbital. However, visualising 

spherical harmonic mixing is not easy and hence a suitable coordinate scheme should be 

chosen to make chemical sense of the resulting ligand-field splitting. 
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Figure 2.3 The mixing of the angular Y(l,m) (l=2, m=2, 1, 0) spherical harmonics in one 

coordinate frame (XYZ) to reconstruct the spherical harmonics in a rotated coordinate 

frame (X’Y’Z’). 

 

 We are now concerned with the parameterisation of the 15 unique matrix elements of 

the one-electron ligand-field potential matrix in terms of eλ parameter, which have a tangible 

and physical (chemical) meaning attached to their parameter values and can be applied to 

any molecular geometry. 

 

2.3.3 Angular overlap model 

The AOM is one possible method of parameterising the VLFT matrix. The parameterisation 

requires only two parameter sets: the angular geometry  , ,θ ψ , which is known from either 

x-ray crystallography or from a calculated structure; and the individual metal-ligand bonding 

parameters  λe  for each ligand.57 

 The AOM aims to reproduce the energetic perturbations experienced by a d electron 

on the metal via an electrostatic potential over the entire metal, which is constructed from the 

sum of a series of local electronic perturbations. This is simply the consequence of using a 

multipole expansion in (2.53). Technically speaking, it is possible to decompose this global 
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field into an infinite number of spatial regions. It is the task of the user to choose a sensible 

decomposition. Hence, assuming some sort of interaction between the central metal ion and 

a “coordinating” atom exists, a potential must arise from that spatial region that the ligand 

occupies. Explicit equations for the extraction of the angular geometry are presented and an 

overview of the various metal-ligand bonding e-parameters are given. 

 

2.3.3.1 Spherical polar coordinates 

The model requires angular, rather than cartesian, coordinates. There exists simple 

expression relating the spherical polar coordinates θ and ϕ to the cartesian coordinates of a 

given coordinating atom: 

 

1 1

2 2 2

1

cos cos

tan .

z z
θ

rx y z

y

x

− −

−

   
 = =     + + 

 
 =  

 
. (2.55) 

There also exists a simple relationship between the spherical polar coordinates and the Euler 

angles in the z-y-z convention as described in section 2.2.3: α =   and β θ= .  

 

 

Figure 2.4. The angular geometry of a ligand and the definitions of its spherical polar 

coordinates. 
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 This description of the angular geometry is complete for any ligand that engages in 

linear π bonding, or is void of π bonding, but incomplete for ligands which asymmetrically π 

bond (e.g., pyridine). In doing so, we must align one of the local frames (x or y) with another 

plane. This angle is given by the final Euler angle γ. The definition is simply defined as the 

dihedral between the plane formed by the unit z-coordinate axis (Z), the central metal-ion (M), 

and the coordinating atom (L), and the plane formed by the central metal-ion, the coordinating 

atom, and the final coordinate that defines the local x-direction (O). In other words, the final 

Euler angle is given by the dihedral Z-M-L-O. The final complete angular description of the 

geometry of a metal-ligand bond is illustrated in Figure 2.4. 

 

2.3.3.2 Diagonal perturbations 

Considering the diagonal frame, centred on some point, one can define a series of local matrix 

elements34 

 

2 2

2 2 2 2 2 2

σ z z

πx xz xz

πy yz yz

δxy xy xy

δx y x y x y

e d v d

e d v d

e d v d

e d v d

e d v d
− − −

=

=

=

=

=  (2.56) 

where the operator v  is the local potential in the frame of the angular coordinate. These 

perturbative potentials are symmetric about the metal-ligand axis and as a result the pseudo-

symmetry of these interactions can represent the metal-ligand bonding modes of the ligand. 

These diagonal perturbations are then rotated by means of a Schaffer rotation matrix ( , , )θ ψR

, transforming the local perturbation matrix elements to the global perturbation frame51 

 ( ) ( )
1

, , , , , ,
N

T

LFT i i i i i i

i

l m V l m θ φ ψ θ φ ψ
=

 = R vR  (2.57) 

where the sum is over all ligands. The additivity to the global ligand field of all ligands is a key 

assumption of the model. 

 It must be remembered that no explicit overlap has occurred between metal d orbitals 

and ligand functions. There of course will be some overlap but it is generally small. The explicit 

first principles derivation of the magnitude of the eλ is quoted as31 
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2

λ α

λ λ λ

α d α

d v φ
e d v d

E E
= +

−
  (2.58) 

where the parameter features a first order and second order term. The first order term is 

referred to as the electrostatic contribution and the second order term is referred to as the 

electrodynamic contribution. These two physical effects have fundamentally different origins. 

The electrostatic contribution is more akin to a “crystal-field” like perturbation; it is the static 

electric field generated by all the other electrons in the molecule perturbing the d electrons. 

The electrodynamic contribution arises from the correlation energy that occurs when the d 

electrons instantaneously approach electrons in a metal-ligand (anti)bonding orbital, illustrated 

in Figure 2.5. 

 

 

Figure 2.5 The electrodynamic contribution arising from a metal-ligand bonding orbital 

with the d orbitals (left) and the corresponding pseudo-symmetry representation within 

LFT from the minimal basis set of d orbitals (right). 

 

The chemical notion of bonding arises from the electrodynamic contribution. It is the 

interaction between the metal d orbitals and the electrons contained in metal-ligand bonds 

(formed from a combination of ligand and other metal functions). For electrons to 

instantaneously approach in a dynamic electric field they must spatially overlap (occupy the 

same volumes). The denominator term in equation (2.58) determines the sign of the 

interaction. If the bond orbital is of a higher energy than the mean d-orbital energy, this 

contribution is negative, and vice versa if the bond orbital is of a lower energy. Hence, a strong 

and stable σ bond would be expected to be lower in energy than the d orbitals and hence be 

a positive contribution (eλ > 0). A π anti-bonding orbital has electron density in an orbital which 
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is higher in energy and would result in a negative contribution (eλ < 0). This is in line with the 

notional donor and acceptor behaviour of ligands. An illustration of this concept is shown in 

Figure 2.6. 

 

 

Figure 2.6 The formation of metal-ligand bonding and antibonding orbitals between a 

ligand σ function and a combination of the metal 4s/4p functions and its perturbation 

on the d orbitals (A); the competing π-acceptance and π-donation from both 

donor/accepting capabilities of a metal-ligand bonding and anti-bonding π function (B). 

 

It is not trivial untangling the electrostatic and electrodynamic contributions from one 

another. Gerloch and Wooley have argued that the electrostatic part is probably sizeable in 

the eσ parameter but negligible in the eπ parameter.24 However, Singh et al. have argued that 

the electrostatic part (which they associate as belonging to calculated CASSCF energies and 

electrodynamic contributions being attributed to the NEVPT2 contribution) is a much larger 

contribution to the eλ parameter.31  
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2.3.3.3 Misdirected valence 

There is also the notion of a “misdirected” bond where a local perturbation does not sit 

symmetrically about a metal-ligand axis. Examples of this are lone non-bonding electron pairs, 

or geometric constraints that physically misdirect a σ or π function on the ligand. These 

perturbations are represented by the local matrix element 2 2xz xz πσxz z
d v d d v d e= =  and 

2 2yz yz πσyz z
d v d d v d e= = .  

 

 

Figure 2.7 Illustrative representation of a destabilising misdirected bond projected into 

the negative XZ quadrant of the local ligand frame resulting in a positive misdirected 

parameter value. 

 

 Unlike with the diagonal perturbations (vide supra), a simple relationship does not exist 

between the sign of the parameter and its notional donor/acceptor behaviour. Rather it is a 

function of both the donor/acceptor behaviour and the directed quadrant that the misdirected 

interaction is placed. The electrodynamic contribution to the eπσ parameter can be derived by 

equation (2.58) and is written as58 
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2

(dynamic)
xz α α z

πσx

α d α

d v φ φ v d
e

E E
=

−
  (2.59) 

where the numerator is not necessarily always positive since the dz² and dxz in this case may, 

or may not, be in-phase. Imagine a ligand function projected into the positive local x direction 

(Figure 2.7) and its perturbation represented by the eπσx parameter. Assuming (as would often 

be the case) the function is a destabilising interaction, the denominator in (2.59) contribution 

is defined as positive. In these instances, the eπσx parameter would also be positive. However, 

If the destabilising interaction is projected into the negative local x direction instead, the 

parameter will be negative. 

 

2.3.3.4 4s-3d mixing 

Early evidence of 4s mixing with the 3dz² orbital, in effective square planar complexes, was 

presented by spin Hamilton analysis of EPR spectroscopy. In those works, the analysis of the 

Fermi term suggested that there was 4s mixing into the 3dz² orbital.59,60 The implications that 

this mixing would have for ligand-field analysis was later demonstrated by Hitchman and 

Cassidy who were able to unambiguously assign the d-orbital energy sequence of square 

planar CuCl42- as dx²–y² >> dxy > dxz > dyz > dz².61 They showed that the AOM model, which 

assigned an eσ and eπ to each chloride ligand, could not account for the relatively low energy 

of the dz² orbital. Since then, the stabilisation of the dz² orbital in axially weak ligand fields has 

been well documented.62 Within the ligand-field literature, two methods have been developed 

to deal with this phenomenon. 

The first method was to use a so-called “coordination void”, where a potential (eσ) is 

placed at the distant ligand, or in a region absent of any ligation, above and below the 

equatorial plane.62 The stabilisation is accounted for by a negative eσ parameter at the 

coordination void. There have been recent suggestions that a negative eπ value should also 

be attributed to these coordination voids.63 The primary issue with this method is that it is not 

always straightforward to decide where the coordination void should be placed. 

The alternative approach of accounting for this stabilisation is to evaluate the angular 

matrix elements of the 3d-4s interaction and parameterise this. Practically, this would involve 

placing a shared eds parameter on each ligand. The interaction perturbation is written as:64 

 
4, , n n n

s m m ds

n

l m V l m F F e =   (2.60) 

where the elements of the angular overlap, mF  are: 
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The 4s perturbation is a stabilising effect on the overall ligand-field matrix. Thus, the matrix 

elements of the 4sV  operator are subtracted from the matrix elements belonging to the 5×5 

global ligand-field potential 
LFTV  operator, given by equation (2.57), to yield: 

 
total 4, , , , , ,LFT sl m V l m l m V l m l m V l m  = −  (2.62) 

 

2.3.4 A theoretical guide to the parameterisation of metal-ligand bonding 

The preceding sections detail the theoretical groundwork for the metal-ligand bonding 

framework. However, the choice of the types of (or how many) interactions to assign to the 

ligand-field parameterisation is not always obvious. This section collates the main bonding 

interactions for a wide range of metal-ligand bonds and offers a rationale for how one might 

choose to define the bonding in those metal-ligand interactions. Finally, a short example is 

given, which shows how a ligand-field parameterisation scheme might be configured for a real 

molecule. 

 

2.3.4.1 Bonding interactions of ligands 

Common to every ligand-field analysis, except those carried out on isolated free-ions, is the 

assignment of bonding interactions to ligands. Inorganic chemistry features a diverse range of 

ligands with different bonding modes. Although it is impossible to cover every possible ligand, 

the most common ligand classes from inorganic and organometallic chemistry are considered 

here as a useful reference and guide. The aim is to not only allow a user to check a 

parameterisation scheme for a type of ligand but to also see the rationalisation, so that one 

can determine what bonding parameters and likely interaction types (donor or acceptor) can 

arise for similar or different classes of ligands. The general eλ parameterisation scheme for a 

range of ligands is given in Table 2.1. The table is not meant to cover every scenario or to be 

used without context. Some interactions might not be included depending on the chemical or 
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parametric context (reducing the number of free adjustable parameters in the latter case, for 

example). 

 

 

 

Table 2.1. General eλ parameterisation schemes for classes of ligands. (L.P.) = lone pair 

interaction. 

Ligand eσ eπ eπx , eπy eσπ (L.P) eδ 

Saturated 
amines 
(NR3) 

Donor 0 0 0 0 

H2O Donor 0 Donor or 0 Donor or 0 0 

OH– Donor 0 Donor Donor or 0 0 

F–, Cl–, Br–, 
I– 

Donor Donor 0 0 0 

CN, CO, 
SCN- 

Donor Donor or 
acceptor 
(linear) 

Donor or 
acceptor 

(bent 
bonding) 

0 0 

Phosphines Donor Acceptor 0 0 0 

Thiolates65 
(bent) 

Donor 0 Donor Donor 0 

Oxo (M=O) Donor Donor 0 0 0 

Heterocyclic 
ligands 

Donor 0 Donor or 
acceptor 

0 0 

Carbenes Donor 0 Donor or 
acceptor 

0 0 

Conjugated 
bidentate 
ligands 

Donor 0 Donor or 
acceptor 

Donor or 0 Donor or 
acceptor 

η5-Cp Donor Donor 0 0 Acceptor 

η2-Olefin Donor 0 Acceptor 0 0 
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A visual summary of the key interactions for different ligand types are given in Figure 

2.8. The following subsections discuss the different classes of ligands in more detail. In 

general, one can often get a sense for the types of interactions and their respective 

donor/acceptor properties by considering the frontier valence orbitals. 

 

 

Figure 2.8. The key types of bonding interactions for different classes of molecules. 

The subscripts ‘x’ refer to a direction parallel to the intra-ligand bonds shown and ‘y’ 

refers to the direction perpendicular to that. The * next to an eλ assigns that interaction 

as an acceptor interaction. 

 

2.3.4.1.1 Saturated donors 

Saturated donors contain ligands that are often presumed to be σ-donor only ligands. 

Examples include ammonia, primary amines, secondary amines, tertiary amines, and alkyl 

ligands. This class of ligand is the simplest requiring only one variable parameter eσ, illustrated 

by Figure 2.8 (A). 

 There are cases where an eπ parameter might arise from this class of donor. The first 

relates to the possibility of large electrostatic contributions to the metal-ligand bond. The size 

of this perturbation is a matter of current debate.66 A ligand-field analysis of the experimental 

data of a linear dialkyl cobalt(II) complex later in this thesis provides evidence for a small 

electrostatic contribution to the eπ value. The second possibility comes from apparently 
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saturated ligands that do engage in π-bonding (e.g., phosphines as shown in Figure 2.8 (B)). 

The third possibility is in the formation of a partial double metal-ligand bond from an agnostic 

effect that has been described in M–C–H (M = metal) bonds.67 

 It is also possible for these ligands to have an eσπ parameter due to misdirected 

valence of the σ bonding orbital. There are multiple uses of this reported in the literature.58,68–

71 In these instances, the misdirected valence will be a destabilising interaction. 

 

2.3.4.1.2 Cylindrical π bonding 

Cylindrical π interactions are equal π perturbations about a metal-ligand axis (i.e. eπx = eπy), 

illustrated in Figure 2.8 (C). This is common for ligands with a single atomic centre (e.g. the 

halides) or for linear ligands coordinating in a linear fashion (CO, –CN, acetonitrile, etc). Other 

examples include ligands with local C3v symmetry, such as the π-acceptance of phosphines. 

Even in ligands with a lower local symmetry it can be useful to approximate the ligand as 

engaging in cylindrical π bonding to lower the number of free parameters. 

 The relative donor or acceptor capability of some ligands is well known: halides, for 

example, are π donors; phosphines are π acceptors. However, for some ligands (e.g. cyanide, 

acetonitrile, and azide), the eπ parameter measures the net donor/acceptor capability.72 It is 

possible to have a value that is small or near 0 cm-1 and indicates either a lack of π-bonding, 

or more likely, that the donor and acceptor functions cancel each other out. It is impossible 

with the ligand-field model to separate out the separate donor and acceptor interactions. 

 

2.3.4.1.3 sp2 hybridised ligands 

Ligands whose coordinating atoms are essentially sp2 hybridised engage in asymmetric π-

bonding, the example bonding diagram is given in Figure 2.8 (D). These ligands require 

definitions of their local x direction which is aligned with one of the atoms bonded to the 

coordinating atom. Examples of this type of ligand are imines, pyridines, pyrroles, thiolates, 

and hydroxides. Typically, the eπx parameter is set to 0 cm-1 as it is often associated with 

occupied sp2 orbitals engaged in σ-bonding with the ligand framework. Sometimes one of the 

sp2 orbitals is not engaged in σ-bonding and instead houses a lone pair. This is common for 

ligands such as thiolates, or phenolates, where the coordinating atom features one intra-ligand 

bond. That lone pair will have associated with it an in-plane lone pair eπ and, if 

parameterisation will allow, a misdirected eπσ parameter, as illustrated in Figure 2.8 (E). 
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 Typically, these ligands are often found to be π-donors, particularly if they are anionic 

or possess occupied π-orbitals. However, some ligands might have functions of π-symmetry 

which are unoccupied or are depleted via electron-withdrawing groups, such as that found in 

some carbenes. Again, in those systems the eπy parameter measures the net donor or 

acceptor properties of the ligand as discussed in 2.3.3.2. 

 

2.3.4.1.4 Phase-coupled ligators 

The class of phase-coupled ligators are thought to engage in differential  bonding. Although 

there have been attempts to explain the spectroscopic properties of these complexes using 

misdirected valence58,68, this parameterisation was not able to account for the spectroscopic 

properties of Cr(acac)3, where acac = acetylacetone.67 Instead, the ligand-field 

parameterisation of the acac ligands was extended to consider the phase coupling of the 

delocalised π bonding networks. This phase coupling – referred to as the “Orgel effect”73 – 

has been successfully applied within the ligand-field model to the reproduction the physical 

properties of Cu(acac)2.74 

 

 

Figure 2.9. The out-of-phase χ-type and in-phase ψ-type interactions with the dyz and 

dxz orbitals for the Orgel effect of phase-coupled ligation. The red and blue arrow 

represent the molecular Z and Y axes respectively. 
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An illustration of the Orgel effect is presented in Figure 2.9. The π bonding of the 

conjugated π networks produce two sets of π interactions: an out-of-phase interaction (χ-type, 

Figure 2.9 left); and an in-phase interaction (ψ-type, Figure 2.9 right). These two phases 

differentially interact with the dxz and dyz orbitals of local π symmetry and given that the in-

phase and out-of-phase π networks would be of different energies, the individual perturbations 

will be of different magnitudes according to equation (2.58). 

 

 

Figure 2.10. The parameterisation scheme of a phase-coupled ligator ligand from the 

“Orgel effect”. 

 

A question arises: how do we parameterise the Orgel effect in the metal-ligand bonding 

parameterisation scheme? The parameterisation scheme of the Orgel effect for a ligand like 

acac- is presented in Figure 2.10. In total, three bonding parameters are required: an eσ 

parameter to measure the σ bonding strength; an eπy parameter (where the local x direction 

is directed parallel to the σ bonding plane), which parameterises the ψ-type in-phase π 

interaction; and an eδxy parameter, placed at a coordinate which bisects the X–M–X triad 

(where X = the coordinating atom and M = the central metal ion) in the plane of the σ bonding 

framework, representing the χ-type out-of-phase π interaction. Some authors have used 

specific eχ and eψ parameters, introduced as a rhombic perturbation.74 The method described 

above is equivalent and does not require the definition of new parameters. 

If one places a simple potential at the coordinating atom positions and parameterises 

it with eσ and eπy, but does not include the non-local eδxy perturbation, then a (near) degenerate 

dxz/dyz pair results. However, the one-electron energetic splitting of the dxz/dyz orbital pair has 

been determined to be approximately 1500 cm-1 in cobalt(II) Schiff base complexes.75 Other 

work carried out on the same system, which does not recognise the Orgel effect but instead 

parameterises the in-plane electron lone pair with an eσπx value, manages to provide an 
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alternative fit of the experimental data.58 One should note, however, the work that provides an 

alternative fit of the experimental data reports best fit parameters which are unphysical (a 

negative Racah B parameter). Hence, their parameterisation scheme should be interpreted 

cautiously. A more detailed discussion between these two methods can be found by 

Bridgeman and Gerloch.29 

 

2.3.4.1.5 Cyclopentadienyl ligands. 

A common class of organometallic ligand is the cyclopentadienyl ligands. As far as the author 

is aware, these ligands have never been parameterised with bonding parameters directly. In 

terms of parameterisation, it depends on the coordination mode. The most common bonding 

mode is the η5 bonding mode. If the available bonding interactions are rationalised using a 

simple frost cycle, we can see that the cyclopentadienyl has five orbitals that could perturb the 

d orbitals, as shown in Figure 2.8 (F). In this case, it is convenient to place a potential in the 

centre of the ring. The cyclopentadienyl then has one donor interaction of σ-symmetry and 

two degenerate donor interactions of π-symmetry. The ligand also has two degenerate 

acceptor interactions of δ symmetry. 

 An issue arises with the possibility of three separate σ, π, and δ interactions. It has 

been established that eλ are “renormalised” such that eλ = eλ’ – eδ’, where the primes indicate 

the unnormalized parameters. Given it is often a requirement to set eδ to 0 cm-1 and since it 

might be non-zero (< 0 cm-1) it might enhance the size of the donation of the eσ and eπ 

parameters. However, in a mixed ligand system, it may be unsuitable to set eδ of the Cp ligand 

to 0 cm-1 because it might take a value < 0 cm-1 compared to the eδ systems of the other 

ligands in the molecule, which are likely to be of a similar value. More research is required in 

this area before a conclusion can be reached. 

 

2.3.4.1.6 Olefin ligands 

Olefin ligands typically coordinate via the centre of their π bond, as illustrated in Figure 2.8 

(G). The  bond acts as a σ donor relative to the central metal ion; the π* anti-bonding orbital 

acts as a  acceptor interactor with respect to the central metal ion. The ex parameter is 

orientated along the C=C vector and is assigned a value < 0 cm-1. Little is known about the 

magnitudes of these parameters and few analyses have been carried out on transition-metal 

complexes with olefin ligands.76 

 



69 
 

2.3.4.2 Choosing ligands 

The first step of a ligand-field analysis is defining the minimal number of ligand types in a 

molecule. In general, this is as simple as looking at the chemical nature of the coordinating 

groups within the molecule. If there are multiple phosphines, or amines, etc of a similar bond 

length then it is an obvious choice to group these together as a single ligand type. Consider, 

as way of an example, the x-ray structure of a five-coordinate vanadium complex in Figure 

2.11.77 There are three distinct functional groups: the axial tBuNC, the axial tertiary amine, and 

the equatorial amides. We would define these three as separate ligands. In doing so, we are 

assuming that the equatorial amides are similar and engage in similar bonding with the central 

metal ion. 

 

 

Figure 2.11. The x-ray crystal structure of (C6F5)3trenVCNtBu (left, CSD: WAFGOD) and 

the representative molecular drawing with the three functional groups coloured in blue, 

red, and pink (right).77 

 

 Having defined our three unique ligands in the molecule, one then considers the 

bonding modes of the ligands. The axial tBuNC ligand would engage in σ bonding and would 

likely engage in approximately cylindrical π-bonding as it coordinates linearly. The axial amine 

would be presumed to engage in σ bonding only. Finally, the equatorial amides are presumed 

σ donors and likely asymmetric π-donors, π-bonding out of the C–N–C plane. In all, that 

leaves us with a total of five ligand-field parameters: eσ(tBuNC), eπ(tBuNC), eσ(Nax), eσ(Neq), 

eπy(Neq), where Nax and Neq are labels for the axial amine and equatorial amides respectively. 

Where possible, it is desirable to try and reduce the degree of parameterisation further. In the 

crystal structure, the tBuNC and Nax coordinating atoms are approximately trans to one another 
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forming an angle of 177° between the two. As a result, their σ bonding will be correlated (due 

to  holohedral symmetry) and it is possible to set eσ(tBuNC) = eσ(Nax). In total, we are left with 

four freely adjustable ligand-field parameters. 

 

2.4 Post-diagonalisation methods 

The preceding sections have detailed the construction of an effective Hamiltonian, constructed 

from ligand-field parameters, which when solved produce a set of eigenfunctions. The 

solutions produce a set of energy levels (eigenvalues) and their linear combination of angular 

momentum coupling coefficients (eigenvectors). These eigenfunctions can be used to 

compute magnetic and spectroscopic properties. This section deals with the linear algebra 

and equations required to compute these quantities and how one can extract other information 

such as spin, configurational mixing, and irreducible representation projections.  

 

2.4.1 Projection methods 

2.4.1.1 Spin projection 

The eigenvectors obtained from the diagonalisation of the full effective Hamiltonian can be 

characterised by their spin projection. In the absence of spin-orbit coupling, the spin quantum 

number is a good quantum number and can be used to distinguish “spin-allowed” and “spin-

forbidden” transitions. For transition metals, even with spin-orbit coupling, the spin quantum 

number is typically well behaved, especially for 1st row transition metals which have spin-orbit 

coupling constants < 830 cm–1.  However, one can quantify the degree of spin contribution to 

an electronic state via a projection operator, ˆ( )P S  where S  is the spin quantum number. The 

projection operator acting on a ket with a defined spin is: 

 ˆ( ) J S SP S LSJM δ 
 =  (2.63) 

Applying the projection operator to an eigenvector and taking the scalar product returns the 

spin-projection, 

 ˆΨ ( )ΨSQ P S= . (2.64) 

Where Ψ  is the eigenvector. Since the eigenvector is orthonormal, the resulting projection will 

be between 0 and 1 (inclusive). Although the spin-quantum number is well behaved for 1st row 
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transition metals, two electronic states close in energy can mix significantly and the 

assignment as a spin singlet, or triplet, etc, is meaningless. 

 

2.4.1.2 Configuration projection 

Implicit in the calculation of the matrix elements between free-ion quantum numbers is the 

mixing of electronic configurations in the five calculated “mixed” d orbitals. However, projection 

of these mixing quantities is not trivial and cannot be “back calculated” out of the eigenvectors 

easily. Those calculations would proceed via the transformation of the eigenvectors from the 

, , , JL S J M  basis to a linear combination of slater determinants 
1, ...,l lim m  that are built from 

the free-ion d-orbitals, not the final mixed d orbitals from the ligand-field diagonalisation. This 

task is not easy, especially with the construction of the slater determinant couplings using 

recursion, which becomes increasingly complicated for dn systems where n > 2. Instead, a 

different approach was used to construct the configuration projection.  

The developed approach produces eigenvectors from the diagonalisation of the many-

electron effective Hamiltonian constructed using just the ligand-field potential, where 

contributions from interelectronic repulsion and spin-orbit coupling are ignored. These 

eigenfunctions will be labelled as ( )Ψ LF . Because the ligand-field splitting is a one-electron 

calculation, there should be a one-to-one mapping between the relative energies of ( )Ψ LF  

and a linear combination of the relative energies of the five d orbitals.  

For example, in a spin singlet (S=0) d2 system, there is a possible configuration where 

d-orbital 1 is doubly occupied and d-orbital 2 is vacant. Likewise, there is another possible 

electronic configuration where both d orbitals are singly occupied. Therefore, the eigenfunction 

of ( )Ψ LF  associated with the former electronic configuration (the Aufbau ground state) will be 

the lowest energy spin singlet eigenfunction. Likewise, the eigenfunction of ( )Ψ LF  which has 

a corresponding relative energy of ( ) ( )2 1E orbital E orbital− , representing the one-electron 

transition from orbital 1 to orbital 2, is assigned to the latter eigenfunction. A list of the possible 

spatial orbital occupation for each dn configuration is given in appendix 6.2. Worked examples 

of this mapping from the d-orbital splitting to the eigenfunctions of ( )Ψ LF  are given in sections 

4.1.3.2 and 4.2.4.3.1. Note that in the event of degeneracies between one-electron orbitals, 

their separate occupations cannot be distinguished. 
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 It is recognised that the final eigenfunctions [labelled as ( )Ψ full ] obtained by 

diagonalisation under the effects of the ligand field, interelectronic repulsion, and spin-orbit 

coupling are just a linear combination of the ( )Ψ LF  eigenfunctions, such that: 

 ( ) ( )Ψ full Ψ LF
N

i

i

c=   (2.65) 

where i  spans the size of the number of unique spatial electronic configurations (appendix 

6.2) and 
ic  is the coefficient. Therefore, one can solve for the linear combination of coefficients 

using linear algebra: 

 

( ) ( )

( ) ( )
1

LF Ψ full

LF Ψ full
−

=

=

Ψ c

c Ψ  (2.66) 

Where ( )LFΨ  are the columns of the ( )Ψ LF  eigenvectors and c  is the column of linear 

coefficients.   

 

2.4.2 Magnetism 

2.4.2.1 EPR g-factors 

Calculation of EPR g-factors can be carried out by the construction of a second-order 2g  

tensor over the cartesian basis, an element of which is given by78 

 
2

2

S

α β

i j

αβ S

S

M S

i μ j j μ i

g

M
=−

=




 (2.67) 

where , , ,α β x y z=  and i  and j  are the indices of the eigenfunctions. The summation in the 

denominator extends over the effective spin degeneracy of the level. An effective Ms projection 

of S=1/2 is used for calculations over a Kramer’s doublet, where the calculated g-factors are 

“effective” g-factors. Otherwise, the sum over S adopts the value of the spin quantum number 

of the level and the summation over eigenfunctions is extended to the full non-relativistic 

degeneracy. Solving the tensor gives the three principal 2g  values and their orientations. The 

principal g-factors extracted from experimental simulations are simply the square roots of the 

eigenvalues. 
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2.4.2.2 Paramagnetic susceptibilities 

Paramagnetic susceptibilities χ, are a special case of magnetic susceptibility that measure the 

response of an object to the application of a magnetic field. In other words, paramagnetic 

susceptibilities measure whether a material is repelled or attracted to an external magnetic 

field. Paramagnetic materials, which require unpaired electrons, are repelled by an external 

magnetic field (χ > 0). 

 The paramagnetic susceptibilities can be computed through the construction of a 

second rank tensor, which includes a first-order and second-order Zeeman term. The tensor 

is computed and diagonalised for each temperature. An element of the tensor can be 

computed using the Van Vleck equation78 

 
α β α β α β

j k i
αβ i

i B k i

i μ j j μ i i μ k k μ i i μ k k μ i

χ Z
k T E E



 +
 

= + − 
 

 
  (2.68) 

where , , ,α β x y z= ; the i  and j  indices map over eigenfunctions that are thermally populated; 

the k  indices extend to all other higher lying eigenfunctions, though one can truncate the 

summation for computational reasons; 
Bk  is the Boltzmann constant; 

iE  is the thi  eigenvalue 

in the absence of any Zeeman perturbation; and ( ) ( )exp expi i B k B

k

Z E k T E k T= − − . 

 

2.4.2.3 Mapping eigenvectors on to the magnetic moment operators 

Equations (2.67) and (2.68) in this section use matrix elements of the magnetic moment 

operators acting between two eigenfunctions. No mention has been made thus far of how 

these quantities are computed. Recall that the matrix elements defined in equation (2.51) are 

acting between the basis set functions not eigenvectors. For our purposes, one may evaluate 

the required matrix elements using the relationship: 

 ( )* Φ Φ Φ Φα ia jb α a α b e a α b

a b

i μ j c c k L g S= +  (2.69) 

where i  and j  are the usual eigenfunctions of the effective Hamiltonian; a  and b  are indices 

over the basis set; ic  and 
jc  are the eigenvector coefficients; Φ  are the basis functions 

defined by the L , S , J , and JM  quantum numbers; αL and αS  are the orbital and spin angular 

momentum operators defined by equations (2.50); and , ,α x y z= . 
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2.4.3 Spectroscopic intensities 

Transition-metal ions give rise to a range of interesting electronic spectra. The phenomenon 

of optical activity is concerned with the interaction of the external and perpendicular electric 

and magnetic fields E and H  of the radiating light with the electric (m ) and magnetic (μ ) 

dipole moments of the molecule. Since the wavelengths that are used in optical spectroscopy 

are typically much larger than the molecule (or at least the metal ion whose absorptions we 

are modelling) then we can assume a uniform magnetic and electric field from the radiating 

light. From Schellman’s perturbative approach, three contributions arise that contribute to the 

total interaction Hamiltonian between the radiating light and the molecule79 

 ( )
( ) ( )

( )
2 2

2
2 2

0 0 0 0

2

3 3 3

I J I J

I J I J I JV E H E H

→ →

→ → →


= + 

m μ
m μ   (2.70) 

where the three components refer to the electric dipole moment strength, the magnetic dipole 

moment strength, and the rotary strength; V  represents the interaction Hamiltonian between 

the molecule and the radiation; and 0E  term and 0H  terms are the amplitudes of the radiating 

electric field. These interactions are for a transition between two levels I  and J , where the 

former is lower in energy, comprised of the set of states i  and j . The magnetic dipole moment 

is readily evaluated, and its expression is found in section 2.2.4.5. However, the main 

contribution to spectroscopic intensity is the electric dipole moment, the matrix element of 

which are formally forbidden between pure angular d states due to the Laporte selection rule. 

The computation of spectroscopic intensities is concerned with the evaluation of non-zero 

values of the electric dipole moment operator acting between formally same parity ligand-field 

states. 

 Computing electric dipole moments (and spectroscopic intensities) within LFT for 

transition metals has not received as much attention as it has for the f block80. Duer et al. and 

Brown et al. have reviewed the developments in the field and have developed their own 

methodology for parameterising spectroscopic intensities in a similar fashion to e-values in 

the ligand-field model.81,82 They have applied both the static and dynamic (vibronic) 

contributions of their model to several systems with success. Another method developed by 

Whittaker et al., based on the work of Gerstman and Brill, involves extending the basis set to 

include the angular states of the metal p (and f) coupling to the d-orbital manifold.83,84 The 

explicit d-p and d-f matrix elements are computed and solved for the extended Hamiltonian. 

In principle, this latter method is not truly a ligand-field method, given the extension of the 

minimal basis set from just d-states. However, this method has only been applied to the 

computation of absorption and magnetic circular dichroism spectra of d9 cupric systems. 
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 This subsection proceeds with an expression for the explicit computation of the 

magnetic dipole moment transition tensor. Then the origin of the electric dipole moment 

operator, acting within a same parity basis, is reviewed along with the expression for their 

evaluation from the eigenfunctions of the effective Hamiltonian. The Pλ and Fλ parameters that 

are used to compute electric dipole moment operators are then discussed in terms of their 

properties and physical meaning, Finally, expressions for the absorption, CD and MCD 

intensities are given. Only a “static” model of intensities is considered; contributions that arise 

from bending and vibrational modes are ignored. 

 

2.4.3.1 Electric dipole moment operator 

The strength of a transition between electronic states requires the evaluation of the electric 

transition dipole moment operator. The electric dipole moment acting between electronic 

states of the same parity is formally forbidden according to the Laporte selection rule. 

Recalling that the electric dipole moment operator can be represented as a rank-1 tensor, the 

transition dipole moment can be evaluated explicitly for an electric dipole transition between 

two Russell Saunders states using the Wigner-Eckart theorem (2.34). The matrix element 

contains the Clebsch-Gordan coefficient 0 0 0 2010 20 0l k l = = . It is this Wigner 3j symbol 

that enforces the Laporte selection rule. 

The evaluation of the electric dipole moment operators ( , , )
α

m α x y z=  between many 

electron states can be written as81 

 *

, ,

Ψ Ψ Φ Φ
n n k k

I α J kq α α α q q iI jJ i q j

n k q q i j α

m c R D a a Y   

 

=   (2.71) 

where n is the ligand index, n

k q α
c    is the local multipole expansion coefficient (vide infra), k

q q
D   

is the Wigner rotation matrix for the angles , ,α β γ , a  is the complex eigenvectors from the 

diagonalisation of the effective Hamiltonian, and the matrix element Φ Φ
k

i q j
Y  refers to the 

spherical harmonic matrix elements that are used for the construction of the ligand-field 

contribution to the effective Hamiltonian. The Φ  are the free-ion basis functions. The rotation 

matrix n

α α
R  , relates the local x, y, and z frames of the ligand to the global cartesian frame, 

given by34 

 ( )

α β γ α γ α β γ α γ β γ

n

α β γ α γ α β γ α γ β γ

α β α β β

c c c s s s c c c s s c

R αβγ c c s s c s c s c c s s

c s s s c

 − + −
 

= − − − + 
 
 

 (2.72) 

where c  and s  here are cosine and sine functions and the subscript refers to the Euler angle 



76 
 

argument. The rotation matrix is equivalent to the direction cosines of the local ligand x, y, and 

z frames with their vectors belonging to the first, second, and third rows respectively. 

 The n

kq αc    refer to the multipole expansion representation of the local electric dipole 

moment operator induced within the region of the potential. In general, these are centred on 

ligands and represent the electric dipole moment as a charge distribution about the metal-

ligand axis. In the next chapter, the parameters that are used to evaluate the local multipole 

expansion of the electric dipole moment are defined and discussed. 

 

2.4.3.2 The transition dipole moment parameters 

The multipole expansion coefficient representation of the transition dipole “field” is defined by 

Pλ and Fλ parameters (referred to as L

λt  in the literature, L = {P, F, R}).81 These parameters 

represent the polarisation of the d-orbital basis for a given metal-ligand bond. Since the 

Laporte selection rule requires that Δ 1l =  , only 1l =  or 3l =  can contribute to d-d transition 

intensity. 

 The P and F contributions to the transition dipole moment from a metal-ligand bond 

does not imply physical mixing of explicit P and F orbitals into the basis. Rather it is recognised 

that the electric dipole moment of a metal-ligand bond is a complicated function; the polarity 

and charge distribution of the (anti)bonding orbitals are not known a priori. In the same way 

that the symmetry/angular features of a metal-ligand energetic perturbation can be 

represented by an angular 2l =  spherical harmonic basis, so too can the total electric dipole 

expansion be represented by 1l =  and 3l =  angular momentum. 

 It is possible to represent the charge distribution and polarity of a metal-ligand bond 

via a linear combination of functions. The form of a wavefunction representing a σ bond Ψσ, 

for example, can be constructed using a linear combination of metal-centred functions as given 

by81 

 Ψ s p d f

σ s σ p σ d σ f σc Y c Y c Y c Y= + + +  (2.73) 

 

where c  are the expansion coefficients and Y are the spherical harmonics. Higher order 

functions are ignored.  

Following the rationalisation put forth by Brown et al., Figure 2.12 illustrates the effect 

that the polarisation of a metal-ligand bond has on the d-orbital basis.81 On the left hand side, 

the canonical dz² orbital is shown. It is centrosymmetric. In the middle of Figure 2.12, an 
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illustrative metal-ligand ligand function with sp character, is shown above the dz² orbital. The 

antibonding dz² orbital is polarised away from the metal-ligand bond via the induction of p 

polarisation into the dz² orbital. On the right hand side of Figure 2.12, the same metal-ligand 

bond is shown with added f polarisation, polarising the metal-ligand bond more towards the 

ligand. This induces f polarisation into the antibonding dz² orbital, shifting the d electron density 

further away from the metal-ligand bond. 

 

 

Figure 2.12 The reconstruction of a metal-ligand σ bonding function Ψσ using a linear 

combination of metal-centred spherical harmonics of s, p, and f character and the result 

polarisation effect on the dz² orbital. 

 

It is easy to see how variation in the expansion coefficients could effectively recreate 

both the shape and polarity of the metal-ligand bonding wavefunction.81 In general, and with 

all other things being equal, a dipole polarised more towards the ligand than the metal should 

have a smaller P/F ratio. It is also customary that the signs of P or F parameters should match 

those of e parameters.82 

 Unless concerned with absolute intensities, the P and F parameters are given relative 

to one another. It is often useful to set one of these values to some arbitrarily fixed value (e.g. 

100) and vary all others. The parameters also differ to conventional eλ parameters in that two 

diametrically opposed P (or F) parameters cancel rather than sum. This is because, unlike d 

orbitals, p and f orbitals are not centrosymmetric. The consequence of this is that highly 
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symmetric (and homoleptic) systems (a pure octahedral or linear geometry, for example) 

would generate little to no electric dipole moment intensity. In these systems, it has been 

shown that electric dipole intensity is gained through vibrational and bending modes, a 

parametric system which is not considered here. 

 

2.4.3.3 Absorption spectroscopy 

The absorbance f of a system between a ground level I  and an excited level J , which are 

comprised of electronic states  i  and  j  respectively, is given by Piepho and Schatz85 

 ( )2 2

1 1

i I j J

f
γ i m j i m j

E
+ −

 

= +  (2.74) 

along a given direction, where E  is the incident photon energy, γ  is a collection of constants, 

and 
1m


 is the electric transition dipole moment operator in the spherical basis. 

 For a solution spectrum, which is a collection of randomly orientated molecules, the 

principal absorbances can be computed by the construction of a second-rank tensor I J→f  

whose elements are given by81 

 ( )I J

αβ α β

i A j B

f γE i m j j m i→

 

= m . (2.75) 

where α  and β  belong to the cartesian directions x, y, and z. The subsequent diagonalisation 

yields the three principal absorbances (oscillator strengths) which are averaged 

 ( ) 1 2 3

3

I J

avg

f f f
f E→ + +

= . (2.76) 

Although equations (2.74) and (2.75) use the electric transition dipole moment operator, the 

expressions can easily be substituted for the magnetic moment operators in section 2.2.4.5. 

 

2.4.3.4 Circular dichroism 

CD is the differential absorption of left and right circularly polarised light and are only observed 

in chiral molecules. Computing CD spectra requires the computation of the rotary strength, 

I JR → which is given by the scalar product of the electric and magnetic dipole moment vectors 

over the cartesian basis79,86 
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=
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m μ

. (2.77) 

Again, the term is multiplied by the energy of the transition. Being a pseudoscalar, the intensity 

changes sign under inversion of the molecular frame. 

 

2.4.3.5 Magnetic circular dichroism 

The MCD signal is defined as the differential absorption of left and right circularly polarised 

light in the presence of an external magnetic field.87,88 For transition metals, the key 

mechanism for intensity is C-term intensity. C-term intensity dominates at low temperatures 

due to the differential occupation of the ground state levels, which are energetically split by a 

magnetic field (Zeeman splitting). 

For a transition between a thermally occupied level I  and an excited level J , the MCD 

intensity is given by85 

 ( ) ( )2 2

,

Δ
i j LCP RCP

i j

ε
γ N N i m j i m j

E
= − −  (2.78) 

where i  labels the initial occupied state and j  labels the excited state index. The Boltzmann 

populations of states i  and j  are given by iN  and 
jN  respectively. The operators LCPm  and 

RCPm  are the transition dipole moment operators of the left and right circularly polarised light, 

respectively. E  is the transition energy, γ  is a collection of constants, and ε  is the molar 

absorption coefficient where Δε ε ε
− +

= − . 

 The perturbative expansion of equation (2.78) reveals three contributing mechanisms 

in the linear response of a magnetic field89 

 0
1 0

Δ ( )
( )

Cε f E
γB A B f E

E E kT

   
= − + +  

   
. (2.79) 

The A1, B0, and C0 terms describe three different contributions that result from different 

physical phenomena shown in Figure 2.13.90 The A1 term results from the relatively small 

energetic Zeeman splitting of the excited level J , which causes an incomplete cancellation of 

MCD intensity resulting in a derivative shaped band. The B0 term is due to the mixing between 

a third electronic state, K  with either the ground or excited state level, due to the application 

of the external magnetic field. The B0 term compounds the “offset” of a band. Finally, the C0 
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term is a result of the differential populations of the ground state levels, as given by the 

Boltzmann distribution. 

 

 

Figure 2.13 The A1, B0, and C0 origins of MCD intensity as given by the perturbative 

expansion. 

 

Since the transition dipole moment operators of 2.4.3.1 are computed in the coordinate 

x, y, and z frames, it is convenient to express (2.78) in terms of cartesian operators. Using the 

conversions 
1LCP x ym m m im

−
= = −  and 

1RCP x ym m m im
+

= = + , the MCD intensity can be 

expressed as91 

 ( ) ( )
,

Δ
Imi j x y y x

i j

ε
γ N N i m j j m i i m j j m i

E
= − −  (2.80) 

where Im  is the imaginary part, the real parts of the scalar products are lost upon negation. 

Equation (2.80) expresses the MCD intensity within the defined cartesian frame. Hence, to get 

an average spectrum for a series of a randomly orientated molecules the cartesian coordinates 

of the atoms are rotated about the fixed coordinate frame and the effective Hamiltonian is 

solved for each iteration over the angular grid. The averaged spectrum is then given by the 

double integral91 
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3 The Kestrel program 

A core aspect of this work is the development of a contemporary ligand-field program aimed 

at both the specialist and non-specialist alike. A “specialist” refers to someone who is a 

trained/practicing quantum-chemical researcher or spectroscopist; a “non-specialist” would be 

a researcher who does not specialise in quantum-chemical methods of spectroscopic 

analysis. LFT has already proved to be useful to the quantum-chemical community, but its 

potential is still yet to be exploited by the wider chemical community. A computer program that 

offers accessible multiconfigurational LFT calculations to the non-specialist, would allow 

chemists to quickly see how changes in geometry or bonding would alter the physical 

properties of their molecules. They could perform numerous simulations quickly and receive 

real time feedback to changes they make to the chemistry of their molecule. For the specialist, 

the program offers a feature-rich Python module, which can be used as part of custom Python 

scripts. The computer program developed in this work aims to fulfil this niche. 

When designing a computer program that can provide a link between spectroscopy 

and theory whilst appealing to both the specialist and non-specialist user alike, the design 

must adhere to some core principles: 

1. The program must have a graphical user interface (GUI) and the interface must be 

intuitive and easy-to-use. 

2. The program, where possible, must perform calculations ‘on-the-fly’ in response to 

a change in its parameters; in doing so, physical properties can be correlated with 

the electronic structure in real time. 

3. The program must be flexible for advanced users who wish to analyse their 

systems further than the inherent limitations imposed by having a GUI. 

Details of the underlying code, algorithms, and application programming interface (API) must 

be hidden. It cannot be assumed that the user knows how to use command lines, code/script, 

or make API calls. The role of the GUI is to make the program accessible to anyone. The 

program that has been designed in accordance with these principles is called Kestrel. Kestrel 

is formed of two components: 

1. KestrelPy. The object-orientated module which allows the user to build molecules 

and run calculations. The module is written in Python (denoted by the suffix “Py”) 

and accesses Fortran functions and subroutines by fortran-2-python (F2PY).92–94 



82 
 

This module allows users to write their own scripts for running ligand-field 

calculations in a Python environment. 

2. The graphical-user-interface. The GUI is a stand-alone application that does not 

require installation and can run out of the box. It is built using the PyQt5 library.95 

This allows the non-specialist to run a range of common calculations and 

visualise/report their results quickly and easily. 

The two components are uncoupled, residing in separate codebases. KestrelPy is a 

standalone Python library that can be called into any Python script and relies only on a small 

number of popular scientific libraries. The GUI relies on KestrelPy, but KestrelPy is 

independent of the GUI. 

This chapter is devoted to reviewing the construction of Kestrel, along with a practical 

guide to ligand-field analysis. The aim is to not to describe the full explicit detail of the 

program’s construction. Doing so is not possible due to the size and complexity of both 

KestrelPy and the GUI. However, a general overview is provided, and points of interest or 

importance are discussed. Where necessary snippets of code or scripting are included. First, 

the Python module KestrelPy is analysed to understand the underlying computational 

implementation. 

 

3.1 KestrelPy 

KestrelPy is a Python module developed in Python and Fortran.92–94 The package is designed 

to be the computational core of Kestrel by handling the code that performs the quantum 

mechanical calculations and data analysis. The module has a minimal number of 

dependencies. The package requires Python 3.8+ with two common 3rd-party Python 

packages (NumPy and SciPy) and the compiled Fortran dynamic library housing the 

computational and linear algebra routines.92–94,96 The Fortran library can either be compiled 

locally or pre-built and shared from a similar machine architecture. KestrelPy, being a Python 

module (which requires knowledge of Python’s object-orientated programming) is not targeted 

at the non-specialist. However, it is designed to be straight forward to run and allows flexibility; 

all programmatic objects of the molecule and the results of calculations can be accessed, 

altered, or used. KestrelPy is best suited for the advanced user who wishes to write their own 

Python scripts to perform ligand-field calculations. 
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The module bundles aspects of the ligand-field calculations into Python classes. The 

input to every calculation is the Molecule class, which stores all the information of the molecule 

being studied including the ligand field, interelectronic repulsion, and spin-orbit coupling 

parameters etc. The molecule gets passed to a calculations wrapper which can perform many 

calculations on the electronic structure, magnetism, and intensities. The results of those 

calculations are returned in a convenient object, which allow for easy access and extraction 

of those results. 

 

3.1.1 Framework of the package 

KestrelPy consists of multiple submodules. Each of these submodules are responsible for 

housing classes and functions dedicated to a specific task or theme. These submodules are: 

• data. Contains the classes that store external data that the program can fit to. The program 

can fit to 5×5 ligand-field matrices, many-electron transition energies, g2 tensors, and 

paramagnetic susceptibilities. 

• energy_barrier. Contains the functions and routines to compute the rate of Quantum-

Tunnelling of Magnetisation and the effective barrier of the reversal of magnetisation for 

single-ion molecular magnets with Kramer’s ions. 

• fitting. Contains the functions and algorithms for carrying out optimisations and 

parameter-space searches. 

• fortran. Contains the Fortran90 source code, compiled libraries, and Pythonic interface to 

the Fortran code. 

• intensities. Contains the routines to compute spectroscopic intensities of UV-Vis, CD, and 

MCD. 

• molecules. Contains all the classes and routines for constructing and interacting with a 

molecule and its parameters. 

• orca. Contains the routines for reading ORCA output files. The results extracted from the 

ORCA output files are then converted to KestrelPy class objects, such as a 5×5 one-

electron ligand-field object, which can be used in optimisation calculations. 

• printing. This submodule handles the input/output of the program. 

• results. Contains the result objects, which act as a convenient means to interact with the 

output of the program, rather than interfacing with the Fortran objects directly. 
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3.1.2 The Molecule class. 

The molecule is stored in the Molecule class. The molecule class has a host of attributes and 

methods that can be called. Each ligand-field parameter associated with either the metal or 

the ligands and their coordinating atoms are stored in this class. A schematic overview of the 

Molecule class and its child classes Metal, Ligands, Calculation and Geometry is presented 

in Figure 3.1. The Molecule class provides a convenient object to store the parameters of the 

molecule. 

 

 

Figure 3.1. Schematic representation of the molecule class object orientated hierarchy 

and the important class attributes. 

 

3.1.3 Running calculations 

KestrelPy contains the code that carries out the actual calculations of the ligand-field model. 

When the user submits their molecule, either via the GUI or a Python script, KestrelPy handles 

the parameter extractions and submission of the job. The ligand-field calculations are split into 
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three steps: 1) construct the ligand-field basis; 2) diagonalise the effective Hamiltonian under 

contributions from the ligand field, interelectronic repulsion, spin-orbit coupling, and an 

external magnetic field; and 3) carry out further analysis on the eigenfunctions of the effective 

Hamiltonian. The third step involves, if desired, computing magnetic properties, spin and 

configurational projections, and calculating spectroscopic intensities.  

Efficient computation is required to make these calculations perform in real-time. 

Python alone is not quick enough to make use of real-time computation for the evaluation of 

the relevant integrals and diagonalisation of the effective Hamiltonian matrix. A core part of 

the KestrelPy module is the use of a custom Fortran 90 library, converted into a Python module 

using NumPy’s Fortran-2-Python (F2PY) package.93 F2PY provides an interface between 

Python code and Fortran objects. Fortran is sufficiently fast enough to achieve real-time 

computation and is supported by a well-established library of linear algebra routines 

(LAPACK), which are used to optimise the performance of the calculations.97 

 

 

Figure 3.2.  The KestrelPy workflow of calculating the eigenfunctions of the effective 

Hamiltonian 

 

 The algorithmic workflow presented in Figure 3.2 shows the steps taken to construct 

and diagonalise the effective Hamiltonian. When the user passes their molecule (and the 

relevant parameters: molecular geometry; metal-ligand bonding; interelectronic repulsion; 

spin-orbit coupling, and the external magnetic field) to the run function, the software first 

checks if the dn config has already been run before. If the current dn config has not been run 

before, the program constructs the basis set and computes the angular matrix elements under 

the operators enumerated in chapter 2.2.4. With the basis set specified and the matrix 

elements computed, the program then calculates the global multipole expansion coefficients. 
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The program proceeds to construct the final effective Hamiltonian according to equation (2.32) 

and then diagonalises the Hermitian matrix to get the eigenvalues and eigenvectors of the 

system. 

 

3.1.3.1 Construction of the basis set 

The start of any calculation involves constructing the basis set. If a previous calculation has 

been run for a given dn configuration, the basis and matrices are already computed, and this 

step can be skipped. However, if a new dn/d10-n configuration is specified then a new basis 

must be constructed. For the evaluation of the integrals in chapter 2.2.4, the basis must be 

defined by J , JM , L , and S  quantum numbers. The complete set of Russell-Saunders terms 

are stored as character arrays, where elements are of the form “2D”, for example. The full 

Russell-Saunders terms, as given by Nielson & Koster, are listed in Table 3.1.55 

 

Table 3.1. The list of free-ion Russell-Saunders 2S+1L terms used to specify the basis 

set. The subscript value is not the conventional J value, but a separate index used to 

distinguish between sets of terms. 

dn                 

1 2D                

2 1S 1D 1G 3P 3F            

3 2P 2D1 2D2 2F 2G 2H 4P 4F         

4 1S1 1S2 1D1 1D2 1F 1G1 
1G2 1I 3P1 3P2 3D 3F1 3F2 3G 3H 5D 

5 2S 2P 2D1 2D2 2D3 2F1 2F2 2G1 2G2 2H 2I 4P 4D 4F 4G 6S 

 

From each term one can extrapolate the complete set of J , JM , L , and S  values 

using the rules for coupling angular momenta detailed in section 2.2.1. The code reads in the 

Russell-Saunders term as a string, saves a reference to it, and extracts the spin multiplicity 

and orbital angular momentum. The size of the full basis (accounting for each spin multiplicity) 

can be calculated from the knowledge of the given dn configuration. Let n be the number of 

electrons occupying the five d orbitals, the number of permutations of n electrons occupying 

10 sites (spin up and spin down per orbital) is 

 ( )(10, ) 10! ! 10 !C n n n= −  (3.1) 

which is the familiar equation for the number of combinations of n objects in r positions. 
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3.1.3.2 Evaluating matrix elements and solving the effective Hamiltonian 

With the basis specified, it is possible to start evaluating the integrals for the various operators 

appearing in the effective Hamiltonian. The calculation of the integrals requires evaluation of 

the reduced matrix elements for spherical harmonic, interelectronic repulsion, and spin-orbit 

coupling operators. These reduced matrix elements are calculatable for the free-ion Russell-

Saunders terms as tabulated by Nielson & Koster.55 There is the opportunity for computational 

saving here as the reduced matrix elements only depend on the Russell-Saunders term, not 

the J or MJ quantum numbers. Hence, these values need only be computed once for each 

possible pair of Russell-Saunders terms. These values are stored in an array called RME of 

shape (5, NSTATES, NSTATES) where the first index is for specifying the reduced matrix 

element operator (U2, U4, F2, F4, and V11) and NSTATES is the number of Russell-Saunders 

terms appearing in the basis set as given in Table 3.1, e.g. for d2/d8, NSTATES=5. 

The final effective Hamiltonian matrix to be solved can be as large as 252 x 252 (for 

d5, equation (3.1)) involving 63,504 elements alone. These 63,504 elements are each a linear 

combination of 23 sources (ignoring the spherical 0

0Y  operator), which would result in storing 

1,460,592 separate matrix elements before summating. This requires a lot of memory and is 

inefficient, as not all matrix elements will be non-zero. Due to the power of the Wigner Eckart 

theorem, it is possible by the application of simple selection rules between angular momentum 

states to know whether a matrix element is zero or not, as detailed in section 2.2.2. It is 

therefore efficient to store only non-zero values of the final Hamiltonian matrix rather than 

storing explicit zero values. An array, called KQMAT, stores the non-zero matrix elements for 

each operator that appears in the final Hamiltonian along with their corresponding row and 

column indices. These values are then multiplied by the relevant radial coefficients, for 

example the multipole expansion coefficients, before being summed together to construct the 

final Hamiltonian matrix. The final unitary (complex) Hamiltonian matrix is then diagonalised 

using the ZHEEV function from LAPACK.97 
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3.1.4 Calculation of UV-Vis, CD, and MCD 

3.1.4.1 Calculation of electric transition dipole moment integrals 

Fast simulations of ligand-field d-d spectra require the efficient evaluation of electron dipole 

moment integrals between eigenfunctions. As a result, the code which evaluates these 

integrals is written in Fortran. 

 When a method requires the electric transition dipole moment integrals, then a 

get_electric_dipoles method is called, which passes all the required information to the Fortran 

routines. The program computes the local multipole representations of the transition dipole 

moments per ligand, which are then rotated using Wigner rotation matrices (as described in 

section 2.2.3) to construct the global electric transition dipole multipole representation. From 

there, the program cycles through the valid combinations of k and q values of the spherical 

harmonic matrix elements used to construct the ligand-field contribution to the effective 

Hamiltonian (see section 2.2.4.2). 

 

3.1.4.2 Spectrum object 

Before discussing the functions that compute the d-d spectra, a quick overview is provided of 

the Spectrum object which holds the results of these calculations. The Spectrum object is a 

convenient interface to the results of intensity calculations. The object can be saved and 

loaded to a file, which means it is unnecessary to carry out the same calculation every time if 

the user wishes to replot the spectrum. The object also has useful plot_spectrum and 

plot_bands methods which allow for quickly generating a spectral trace for a given set of x-

values and a FWHM value. 

 

3.1.4.3 Calculation of UV-Vis and CD spectra 

The calculation of UV-Vis and CD are carried out using KestrelPy functions absorption and 

circular_dichroism. Spectra at different temperatures can be computed quickly by supplying 

an array of temperatures. The results are returned as a list of Spectrum objects. 
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3.1.4.4 Calculations of MCD spectra 

MCD calculations are performed using the KestrelPy magnetic_circular_dichroism function. 

MCD, as given by the name, relies on the application of a magnetic field and hence this must 

be specified (in units of Tesla).  

 

 

Figure 3.3. The computational workflow for computing the orientationally averaged 

MCD intensities (left) and an example of a molecular rotation with the full angular grid 

with a grid size of 15×15 (right) . 

 

 Orientationally averaged spectra (in instances with an applied magnetic field) must be 

computed numerically. This method is the only way to calculate MCD intensity in KestrelPy. 

This method constructs a spherical angular grid for 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π over a defined 

number of integer steps and rotates the molecule with respect to the global coordinate frame. 

The angular grid and an example of a molecular rotation are illustrated in Figure 3.3. The 

rotations of the individual coordinating atoms are performed by using the rotate_atoms method 

of the molecule class. The spectroscopic intensities are computed for each orientation over 

the grid and numerically averaged before returning a Spectrum object. The calculations make 
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use of a computational saving method involving the double integral present in equation (2.81)

, which can be approximated using the relationship89 

 ( ) ( )
2

,0 0

, sin , sin
π π

θ φ

f θ φ θdθdφ f θ φ θ   . (3.2) 

The calculations are accurate for larger iterations over the angular grid. A grid size of 100 (10 

steps over θ and φ each) is typically the minimum grid size to get a good approximation of the 

MCD spectrum. 

Despite best attempts, it was not possible for MCD simulations to be performed quickly 

enough for real-time applications. This is because the molecule must be rotated over an 

angular grid and the ligand field evaluated for each orientation. However, the MCD simulation 

is still quick enough for general use. 
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3.2 Graphical user interface 

The GUI implementation of KestrelPy is constructed using the PyQt5 library and is a fully 

functional standalone application for Windows 10 and Mac.95 The program is “frozen” using 

PyInstaller, which allows for the application to run without any prior set up on the target 

machine.98 This makes it portable for sharing and hosting. 

 

 

Figure 3.4 An example of the Kestrel window with its molecular visualiser and some of 

the available dock widgets. 

 

 An example of the main window is given in Figure 3.4. In the centre of the window is a 

tab widget with two tabs. The first tab, labelled as “View”, features a molecular visualiser 

constructed from PyQtGraph’s fast GlView widget.99 This molecular visualiser will display the 

molecular geometry and if requested: the x and y frames of each coordinating atom; the 

orientations of the g-factor and principal paramagnetic susceptibility frames; the shapes and 

orientations of the d orbitals; and the ligand-field multipole expansion. The second tab, labelled 

“Search”, is a host for sub windows which contain the results of parameter scans (section 

3.2.4.3) and parameter-space searches (section 3.2.12.5). 

 The main window also hosts dock windows, which can be docked to the left or the right 

of the main window. There are four dock widgets shown in Figure 3.4. The two dock windows 
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on the left-hand side of the window (labelled “Parameters” and “Display Options”) are where 

the user can alter the input parameters of the ligand-field calculations and display extra 

information in the molecular visualiser. On the right-hand side of the main window are 

examples of two dock windows containing some of the results of Kestrel’s ligand-field 

calculations. The first of these is the “Transition Energies” dock window, which displays the 

relative energies of spin-allowed and spin-forbidden d-d bands of the molecule. The second 

dock window contains the calculated g-factors of the ground state KD. 

 

3.2.1 Saving, loading, and starting new files 

Kestrel can save and load dedicated save files. These files have a .kes extension and each 

file hosts a single molecule and a set of ligand-field parameters. The save file also contains 

GUI specific information. It is also possible to load .mol files, which are the save files of the 

Molecule object from KestrelPy as mentioned in section 3.1.2. 

 

3.2.2 Setting up a molecule in Kestrel 

This section covers the process of importing a molecular geometry and defining the ligands 

for the ligand-field model. For consistency with the theoretical chapter on identifying ligands 

in a molecule (section 2.3.4.2) the same molecule (C6F5)3trenVCNtBu will be used here as an 

example.77 
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3.2.2.1 Import an xyz file 

 

Figure 3.5. The procedure for importing the coordinates of an xyz file. 

 

Every analysis must start with the input of a molecular geometry stored in an xyz file. The user 

may import a molecular geometry by selecting the “Import Geometry” from the “Molecule” drop 

down menu, as shown in Figure 3.5. This will open a new window, shown on the right-hand 

side of Figure 3.5.  
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Figure 3.6. The process of importing a molecular geometry stored in an xyz file (CSD: 

WAFGOD) into Kestrel’s GUI.77 

 

The user can proceed to import an xyz file by clicking the “Import” button in the bottom 

left-hand corner, as shown in Figure 3.6. This will prompt the user to select an xyz file. After 

browsing to the xyz file and selecting it, the contents of the file will be displayed in the window. 

The user can confirm that the xyz file is the correct one by pressing “OK”. 
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Figure 3.7. The ligand-field parameterisation setup window. 

 

By confirming the xyz file to be read, a new window appears, as shown in Figure 3.7. 

The window features a rendering of the molecule in the xyz file and labels each atom by its 

element and index. Note that if one cannot see their molecule, it is likely because the molecule 

in the xyz file is not located near the origin of the coordinate scheme. 
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3.2.2.2 Selecting the central metal ion 

 

Figure 3.8. Selecting a central metal ion as part of setting up the molecule using 

Kestrel’s GUI. 

 

The first step is to define the central metal ion of the molecule. To do this, the user clicks the 

“Select” button under the “Metal” section, as shown in Figure 3.8. This will open a new window 

which allows the user to select the central metal ion from the list of atoms in the xyz file. 

Selecting an atom will highlight it, as is shown for the vanadium atom in Figure 3.8. Selecting 

“OK” will assign the central metal ion to the selected atom. 

 Once the central metal ion is selected, the camera will centre on that atom. The next 

step is to define the different ligand functional groups in the molecule. 

 

3.2.2.3 Defining the ligands 

The final step is to define what ligands exist in the molecule and what coordinating atoms are 

to be assigned to those ligands. The considerations and methods for choosing a ligand-field 
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parameterisation scheme are given in chapter 2.3.4 and will not be covered here. However, it 

is pertinent to remind oneself of the ligand-field parameterisation that was derived for the 

example vanadium complex (see section 2.3.4.2). Three ligands were identified: the axial tert-

butyl isocyanide (tBuNC), the axial amine, and the equatorial amides. In the case of the 

equatorial amides, we will have to orientate the out-of-plane π bonding direction. 

 

 

Figure 3.9. The ligand-field parameterisation setup window after successfully selecting 

a central metal ion in Kestrel’s GUI. 

 

 Having successfully assigned a central metal ion (for details of which see the previous 

section, 3.2.2.2) the “Ligands” box will enable, as shown in Figure 3.9. The next step is to add 

the three ligands which were identified in this molecule (vide supra).  



98 
 

 

 

Figure 3.10. The process of adding a ligand by assigning the ligand a label. 

 

To add a ligand, the user selects the “Add Ligand” button. This will prompt the user to 

select a ligand label, as shown in Figure 3.10. Once the user has chosen a sensible label, 

they can confirm their choice by selecting “OK”. 

 

 

Figure 3.11. The process of assigning a coordinating atom to a ligand. 

 

 Once the ligand label is submitted, the user is prompted to select the coordinating 

atoms which belong to that ligand. In this instance, there is only one coordinating atom we 

wish to assign to the “tBuNC” ligand, which is carbon atom number 44. Selecting this atom 

from the list, as shown in Figure 3.11, and selecting “OK” will add that atom to the “tBuNC” 

ligand. If one wishes to remove a selected atom, the user can right-click on the atom and 

select “Remove”. Likewise, one can also remove the ligand altogether by right-clicking on the 

ligand label and selecting “Remove Ligand”. Conversely, there is also an option to assign more 
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atoms to this ligand. This process of adding a ligand label and assigning atoms to that label is 

repeated to include the axial amine and the three amide ligands. 

 

 

Figure 3.12. Orientating the amide ligand x direction via Kestrel’s GUI. 

 

 Often, ligands π bond asymmetrically. In the example, the amide ligands π bond 

perpendicular to the σ bonding framework. To orientate the π bond we can define the local x 

direction for the amide atoms. The process of orientating the local x direction for the nitrogen 

atom number 17 is shown in Figure 3.12. By right clicking the atom and selecting “Assign x-

atom” we can choose an atom to orientate the local x direction with. In this example, the local 

x direction is chosen to align with carbon atom 35. This process is repeated for each amide 

atom. 
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Figure 3.13. The final ligand-field parameterisation setup for the example molecule 

(C6F5)3trenVCNtBu. 

 

 Once the ligand-field parameterisation is setup, as shown in Figure 3.13, the user can 

select “OK” in the bottom right-hand corner to load the molecular geometry and ligand-field 

parameterisation into the program. 
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3.2.3 Molecular visualiser and display options. 

 

Figure 3.14. The process of opening the display options for the molecular rendering in 

Kestrel’s GUI. 

 

Once the geometry has been imported and the choice of coordinating atoms and ligands has 

been made, the user is returned to the main window where the imported molecule is rendered, 

as shown on the right hand side of Figure 3.14. By clicking and dragging around the molecule 

using the left mouse, the user can rotate freely around the central metal ion. The user can also 

zoom in and out by scrolling the mouse wheel. 

 The program also hosts extra display options, as shown in Figure 3.14. These can be 

opened by selecting “Display Options” from the “Molecule” drop down menu, which will open 

a new dock window. The dock window contains the options to show/hide, alter the lengths, 

and change the colours of the molecular coordinate xyz axes and the local ligand x and y 

directions. The user can show/hide and change the font size of the labels of the coordination 

atoms. 
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3.2.4 Parameters 

 

Figure 3.15. The process of opening the parameter dock window in Kestrel’s GUI. 

 

The ligand-field parameters can be viewed and changed by selecting “Parameters” from the 

“Molecule” drop down menu, as shown in Figure 3.15. This will open the parameter dock 

window. Within the dock window is a tree widget, divided into sections, with the ligand-field 

parameters and their values. Hovering over a parameter in this widget will provide information 

about that parameter. 

 The first of these sections, in Figure 3.15, contains the metal parameters, the header 

of which displays the element of the central metal ion, its oxidation state, and dn configuration. 

In Figure 3.15, the header reads “V(III), d2”, despite the program importing the molecular 

geometry with a “V(II), d3” electronic configuration which is not shown. The dn electronic 

configuration can be altered by right clicking on the header and selecting the “Set dconfig” 

option. The section beneath the header contains all the parameters for defining the 

interelectronic repulsion, spin-orbit coupling, and angular momentum quenching. 
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 The second section in Figure 3.15 contains the metal-ligand bonding and intensity 

parameters for each ligand. By right clicking on a ligand label a menu will allow the user to 

populate the ligand with some illustrative starting eλ parameters and enable or disable 

alternative bonding modes (misdirected valence, for example). 

 The final section in Figure 3.15 holds the geometric θ, φ, ψ, and bond length 

parameters for each potential. By changing any of these values, the geometry of the potentials 

are updated in the molecular visualiser. It is possible by right clicking on the header and 

selecting “Restore Geometry” to reset the spherical polar coordinate angles of the atoms to 

their original values. 

 Right clicking on a parameter displays a menu with extra options. One of these options, 

is the ability to link parameters together by a linear relationship. There is also an option to set 

a step value so that when you select a parameter you can adjust it by a given amount using 

the mouse wheel. It is possible to also perform a scan on a parameter between a starting and 

final value over a number of steps. 

 

3.2.4.1 Initialising starting “guess” parameters 

 

Figure 3.16. The process of generating illustrative starting parameters via Kestrel’s GUI. 

 

Kestrel features the ability to assign illustrative parameter values to a ligand. The process is 

presented in Figure 3.16. By right clicking on a ligand name and selecting “Initialise 

parameters”, a window will open with a drop-down widget. From this widget, the user can 

choose a ligand, or ligand type, which best represents their ligand. This will automatically 

populate the eλ parameters with fixed crude parameter values of a typical magnitude and sign. 
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Future work could improve this feature by generating starting parameters based on bond 

length, averaging across values in literature, or utilising machine learning algorithms. 

 

3.2.4.2 Linking parameters together 

 

Figure 3.17. The process of linking two ligand eλ parameters together via Kestrel’s GUI. 

 

The GUI is designed to allow the user to easily link the values of any two parameters together. 

The workflow is presented in Figure 3.17. By right clicking a parameter and selecting the “Link” 

option, the user is presented with a window of all the parameters which can be linked to. These 

are parameters of the same type (vide infra). Any parameter which would cause a circular link. 

if linked to, are not included. The user can select a parameter to link to and choose a “factor” 

and “constant”, which define the linking behaviour. The equation used, which links any two 

parameters together is given by: 

 1 0p mp c= +  (3.3) 

where 
1p  is the parameter being linked; 0p  is the parameter which 

1p  is linked to; m  is the 

gradient; and c  is the constant. 

A ligand-field parameter can only be linked to other parameters from the same type. 

To clarify, the parameters associated with ligands (eλ, Pλ, and Fλ) can only be linked to those 

parameters either belonging to the same ligand or other ligands. Parameters associated with 

the metal (Racah B and C, ζ, and kiso) can only be linked together. Likewise, the same rules 

apply to the parameters controlling the angular geometry about the central metal ion. 
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3.2.4.3 Scanning parameters 

 

Figure 3.18. The process of scanning a parameter via Kestrel’s GUI. 

 

The user can easily perform a parameter “scan”, in which a parameter’s value is varied from 

a starting value to a final value. The process for initiating a parameter scan is presented in 

Figure 3.18. By right clicking a parameter and selecting “Scan”, a dialog window will open 

where the user can submit the starting value and final value of the parameter, and the number 

of steps taken between the two values. 

 

 

Figure 3.19. The output of a ligand eσ parameter scan in Kestrel’s GUI (left) and the 

corresponding plot of the d-orbital energies (right). 
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 Once the parameter scan setup in Figure 3.18 has been submitted, the calculation 

begins. A progress bar will appear showing the user the progress of the scan, which the user 

can abort. When the parameter scan is completed, the results are displayed in the central 

window of the GUI, as shown in Figure 3.19. The window features two tabs labelled “Ligand 

Field” and “Transition Energies”, where each tab contains a plot with the corresponding energy 

variation of either the d orbitals or the d-d transitions energies respectively. 

 

3.2.5 The ligand-field splitting 

 

 

Figure 3.20. The process of opening the ligand-field dock window. 

 

From the “Results” drop down menu at the top of the main window, click “Ligand Field” and a 

new dock widget appears, as shown in Figure 3.20. This dock widget contains the output of 

the one-electron ligand-field calculations. The widget contains two tables: the first is the 5×5 

one-electron ligand-field matrix; the second is the one-electron ligand-field eigenfunctions. 

 The one-electron ligand-field eigenfunctions list the energies and linear combination of 

d orbitals for each final orbital. The first column lists the energies. The remaining columns 

show the linear combination for the given d orbital in the header. The percentage contribution 

of a given d orbital to a given final orbital is given by the square of the value multiplied by 



107 
 

100%. As warned in section 2.3.2,  this linear combination is a function of the orientation of 

the molecular xyz frame, as the functions are constructed from the d orbitals orientated in that 

frame. However, the energies are independent of the choice of frame. Hence the linear 

combination is only informative if the frame is orientated sensibly. 

 At the top of the dock window is a value of the ligand-field trace which is simply the 

sum of the diagonal matrix elements. Finally, at the bottom of the dock widget is the option to 

render the final mixed d orbitals (and multipole expansion) on top of the molecular rendering. 

Checking this box will render the object specified in the drop-down combo box. 

 The final rendered object will appear on top of the rendering of the molecule in the 

molecular visualiser (see 3.2.3). The objects labelled as “Ψ1”, “Ψ2”, etc are the ligand-field 

eigenfunctions in order of ascending energy. That is “Ψ1” is the lowest energy d orbital, and 

so on. The “Multipole Expansion” is the electron charge density of the system. The final shapes 

and orientation of either the ligand-field eigenfunctions or the multipole expansion do not 

depend on the orientation of the molecular frame. 

 

3.2.6 Relative energies of many-electron states 

The energies of the many-electron states that arise from the different configurational 

occupations of the final d orbitals under the perturbations of the ligand field, interelectronic 

repulsion, and spin-orbit coupling can be inspected in the “Transition Energies” dock widget. 

To open the dock widget, click the “Transition Energies” button from the “Results” drop-down 

menu at the top of the main window, as shown in Figure 3.21. 
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Figure 3.21. The process of opening the transition energies dock widget. 

 

 The output window contains a single table of information. The table lists the energies, 

degeneracies, spin projections, and configurational projections for each level, as shown in 

Figure 3.21.  

The degree of mixing of the spin multiplicities under spin-orbit coupling are show. The 

spin projections (given by the column labelled “Quartet” and “Doublet”) are to be read as 

follows: level 1 (at 0 cm-1) is a 100% pure spin quartet; level 15 (at 11906 cm-1) is 98% quartet 

with 2% doublet spin character mixed in. Using this, one can rationalise the presence or 

absence of weak spectral features in an experimental UV-Vis spectrum, an example of which 

is demonstrated in the analysis presented in section 4.1.4.1. 
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Figure 3.22. The definition of the elements of the configuration projection output (A) 

and the corresponding 22111 electronic occupation in terms of the five d orbitals in 

ascending order of energy (B). 

 

The configuration projection shows the electronic occupation of the five d orbitals. The 

definition of the output is given in Figure 3.22 (A). The first part defines the spin multiplicity of 

the electronic occupation. The second part is the electronic occupation string, which is to be 

read in ascending order such that the first occupational number represents the occupation 

number of the lowest energy d orbital; the second occupation number represents the 

occupation of the second lowest energy d orbital, and so on. This occupational scheme is 

shown in Figure 3.22 (B). The third component, contained in brackets, is the ratio contribution 

of that electronic configuration to that level. 

Each row is collapsible. One can see that level 10 in Figure 3.21 is a configurationally 

mixed level of five configurations (whose ratio parts sum to be > 0.99, this value can be toggled 

via the spanner button in Figure 3.21). Observation of the expanded row reveals some 

configurations which do report a ratio in brackets. This is because the electronic configuration 

is degenerate with the electronic configuration above it and cannot be distinguished. This 

results from d-orbital degeneracies. 

The example output shown in Figure 3.21 is for a d7 linear complex that is studied in 

section 4.1.3, with spin-orbit coupling set to 515 cm-1. The complex has a “non-Aufbau” ground 

state (see section 4.1.3.2 for more detail), where the ground state configuration is not what is 

expected by filling the d-orbital energies according to the Aufbau principle. For a quartet d7 
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complex, the Aufbau ground state would be 22111, but the Kestrel output shows the ground 

state KD is 99.7% 21211. 

 

3.2.7 EPR g-factors 

 

Figure 3.23. The process of opening the EPR results dock window. 

 

Kestrel provides calculations of the EPR g-factors for Kramer’s ions. To open the dock window, 

click the “EPR” button from the “Results” drop-down menu at the top of the main window. A 

dock window appears containing a check box, as shown in Figure 3.23, which 

enables/disables the calculation of g-factors for a ground state Kramer’s doublet. 

 By enabling the calculations, a table displays the calculated g-factors. The three 

columns in Figure 3.23 (right) display the principal g-factors g1, g2, and g3. The first row 

contains the g-factors. The following three rows display the projection on to the global 

coordinate frame. The final three rows are the direction cosines from the global coordinate x, 

y, and z axes. Clicking the spanner button in the top right hand of the dock widget will show 

options for displaying the value of giso. 

 To aid in visualising the orientation of the g-factor frame, the user can overlay the g-

factors on the molecular rendering. At the bottom of the dock window is a check box to plot 

the g-factors. By checking this box, the principal values of g1, g2, and g3 are rendered on top 

of the molecule. The colour and lengths of the arrows can be varied. 
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3.2.8 Paramagnetic susceptibilities 

 

Figure 3.24. The process of opening the paramagnetic susceptibility results window. 

 

To enable the calculation of paramagnetic susceptibilities, open the dock window by clicking 

the “Paramagnetism” button from the “Results” drop-down menu at the top of the main window, 

as shown in Figure 3.24. A dock window appears which contains a check box to enable/disable 

the calculation of paramagnetic susceptibilities. 

 By enabling the calculations, a table displays the isotropic χT values for different 

temperatures. The units of the paramagnetic susceptibilities can be changed by selecting a 

different set of units from the drop-down box in the top left hand corner of the dock window. 

More options are available by clicking the spanner button in the top right of the dock widget, 

such as the choice of displaying the principal values and/or the individual elements of the 3x3 

tensor. Within that same drop-down menu is the ability to configure the paramagnetic 

susceptibility calculations by changing the energetic limit of the 1st order and 2nd order Zeeman 

contribution and the temperatures the susceptibilities are computed for. Note that the user 

may not request more than 100 temperatures. 

 To aid in visualising the orientation of the principal paramagnetic susceptibility frame, 

it is possible to plot the principal values on to the molecule. At the bottom of the dock window 

is a check box. By enabling this check box, the principal values of χT are rendered on top of 

the molecule for the temperature displayed in the drop-down box. By changing the 
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temperature in the drop-down box, it is easy to visualise how the magnetic susceptibility 

orientation varies. The colour and lengths of the arrows can also be changed. 

 

3.2.9 Plotting the principal and isotropic χT curves 

 

Figure 3.25. The process of opening the principal paramagnetic susceptibilities 

variation with temperature graph in Kestrel. 

 

It is often easier to interpret changes in the magnetism of a complex with a change in electronic 

structure by visualising how the values and their dependence on temperature change. To open 

the plotting window, click on “Results” along the menu bar, hover over “Simulation” and click 

“Susceptibility Curve” as shown in  Figure 3.25. Clicking this opens a floating window on top 

of the main window. 

The new window, shown in Figure 3.25, features a graph. The graph displays data if the 

paramagnetic susceptibility calculations are enabled (see section 3.2.8). The graphs are 

plotted in units of χT (cm3 mol-1 K), which is what is typically encountered in the chemical 

literature. 
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Figure 3.26. The calculated isotropic paramagnetic susceptibility variation with 

temperature (black) overlaid with comparison data (red). 

 

The graphs can accept external data which can be plotted alongside the calculated 

values, as shown in Figure 3.26, allowing for a visual comparison. Data is added by clicking 

on the spanner button in the bottom right corner of the window. 
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3.2.10 Simulations of UV-Vis, CD, and MCD spectra 

 

Figure 3.27. The steps to open the ligand-field spectra via Kestrel’s GUI. 

 

A unique feature of Kestrel is the ability to simulate UV-Vis and CD spectra in real time. MCD 

spectra can be (depending on computational factors) simulated quickly, but at present MCD 

calculations cannot be calculated in real-time. By clicking on the “Results” drop down menu, 

hovering over “Simulation” and selecting “UV, CD, MCD simulation”, as shown in Figure 3.27, 

the ligand-field spectra window is opened. 

 The ligand-field spectra window is shown in Figure 3.27. The window features check 

boxes for the UV-Vis, CD, and MCD spectra, which will enable or disable the calculation of 

these spectra. While enabled, changes in any ligand-field parameters will recalculate the UV-

Vis or CD spectral trace. MCD spectra must be simulated by selecting the “Simulate MCD” 
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button in the bottom right hand corner. The button will be enabled if there has been a change 

in the ligand-field parameters since the last simulation. 

There are added options to change how the spectra is simulated. Under the “Settings” 

heading, the user can invert the CD/MCD spectra; via the “MCD Settings” button, choose the 

magnetic field strength, temperature, or resolution of the angular grid used to simulate the 

MCD; change the FWHM of each band in the spectrum; and choose the interpolation range 

for generating the spectral trace.  

 

3.2.11 Optimisation 

 

Figure 3.28. The molecular rendering of [Fe(O)(TMC)(NCCH3)]2+ in Kestrel’s GUI. 

 

Kestrel can optimise a set of ligand-field parameters to reproduce supplied data. In this 

section, we will be using the d4 iron(IV) oxo complex [Fe(O)(TMC)(NCCH3)]2+ that is studied 

in section 4.2 to illustrate this feature. Information on the ligand-field parameterisation is given 

in the methodology (section 4.2.2). The molecular rendering of [Fe(O)(TMC)(NCCH3)]2+ in 

Kestrel is shown in Figure 3.28. Using [Fe(O)(TMC)(NCCH3)]2+, this section will show how a 
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user can fit the calculated 5×5 one-electron ligand-field matrix from the results of an ORCA 

AILFT calculation to extract eλ parameters. 

 

3.2.11.1 Getting started 

 

Figure 3.29. The steps to open the optimisation dialog via Kestrel’s GUI. 

 

To configure an optimisation, select the “Results” drop-down menu and click the “Optimisation” 

option, as shown in Figure 3.29. A window will then appear. In this window, the user can 

configure which ligand-field parameters are to be varied, what data is to be fitted, and the type 
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of algorithmic solver that will perform the optimisation. An optimisation requires at least two 

things to run: a minimum of one parameter to be varied; and at least one data set to fit to. If 

these criteria are not satisfied, Kestrel will warn the user that the calculation is not configured 

correctly when they try to run the optimisation. 

 

3.2.11.2 Varying the parameters 

The 5×5 one-electron ligand-field matrix is a function of the ligand field, which is defined by 

the eλ parameters. The matrix elements are not affected by interelectronic repulsion or spin-

orbit coupling. Hence, we only need to vary the eλ parameters. We have three parameters to 

vary: the σ and π bonding of the oxo, eσ(O) and eπx(O) as eπy(O) = eπx(O), where the axial 

acetonitrile (CN in Kestrel) is “linked” to the oxo ligand; and the σ bonding strength of the 

equatorial amines, eσ(Neq). 
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Figure 3.30. Setting the bounds for the eσ of the oxo ligand in [Fe(O)(TMC)(NCCH3)]2+ 

using Kestrel’s GUI. 

 

 To vary a parameter, right click on the parameter label and select “Set Bounds”. This 

will display a small window, which requests the user to input: a “Starting Value”, which is the 

initial value of the parameter; a “Lower Bound”, which sets the minimum possible value that 

the parameter can have; and an “Upper Bound”, which sets the maximum possible value that 

the parameter can be assigned. The starting value must be ≥ lower bound and ≤ the upper 

bound. 
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Figure 3.31. The format of setting the optimisation bounds of the oxo’s eσ parameter in 

[Fe(O)(TMC)(NCCH3)]2+ using Kestrel’s GUI. 

 

 Selecting “OK” will set those bounds for the ligand-field parameter, which is displayed 

in the table, as shown in Figure 3.31. The user can specify new bounds by right clicking the 

parameter and selecting “Set Bounds”. The user can also remove the optimisation bounds by 

right clicking the parameter and selecting “Set Fixed”. The user is still able to change the value 

of the fixed parameters in this window. 
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3.2.11.3 Choosing to fit a 5×5 ligand-field matrix 

 

Figure 3.32. Enabling the calculation of a 5×5 ligand-field matrix for use in an 

optimisation calculation via Kestrel’s GUI. 

 

Optimisation of ligand-field parameters require external data to refine against. In this example, 

we are going to perform a fit to the 5×5 one-electron ligand-field matrix extracted from an 

AILFT analysis of a minimal active space CASSCF(4, 5) calculation. For details of how the 

CASSCF(4, 5) was performed, consult section 4.2.2.1. For the analysis of the results, refer to 

section 4.2.4.1. By navigating to the “Data” tab and checking the “5×5 Ligand Field Matrix” 

option, the user is shown a table of the 15 unique matrix elements, as presented in Figure 

3.32. 
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Figure 3.33. Selecting an ORCA output file to extract the 5×5 ligand-field matrix in 

Kestrel’s GUI. 

 

 One can manually supply a 5×5 ligand-field matrix by selecting the “Configure” button. 

However, it is common for the 5×5 ligand-field matrix to originate from the results of an ab 

initio calculation. To read in an ORCA output file, in which an AILFT analysis has taken place, 

select the “Read ORCA” button and navigate to the file, as shown in Figure 3.33. Selecting 

that file will automatically extract the matrix and the data window should update to show the 

15 unique matrix elements. Note that the current system of reading an ORCA output file was 

defined for ORCA version 4. Undefined behaviour will occur when trying to read in output files 

for other versions. 
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3.2.11.4 Selecting the optimisation method 

 

Figure 3.34. The “Solver” tab of the optimisation window. 

 

The optimisation calculations are carried using one of two currently integrated methods from 

SciPy’s optimize library: differential_evolution, a global optimisation method; and minimize, a 

method for finding local minima, which is sensitive to the choice of starting parameter values.96 

By navigating to the “Solver” tab, as shown in Figure 3.34, the user may choose an 

optimisation method from the drop down box. Selecting a method will display a link to the 

documentation. 

 

3.2.11.5 Running the calculation 

When the optimisation has been configured, the user can run the calculation by selecting the 

“Run” button in the bottom right-hand corner of the window. The program will ask for 

confirmation that the user wishes to run the calculation. By selecting “OK”, Kestrel will then 

ask for a save file name and a folder to store the results of the simulation. After choosing a 

name and folder location, the optimisation will then perform in the background. When the 

calculation finishes, an output file will be generated along with a .mol of the molecule with the 

best fit parameters, the latter of which can be loaded back into the program. 
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3.2.12 Parameter-space search 

Parameter-space searches allow the user to vary a set of ligand-field parameters to create an 

N-dimensional grid of parameter combinations, iterate over every parameter combination, and 

compare the results to a data set. Doing so, allows one to explore the quality of fit space 

visually, discover potential alternative fits, and reveal parameter correlations, if they exist. 

 

 

Figure 3.35. The molecular rendering of LsAA9 in Kestrel’s GUI. 

 

In this section, we will be using the active site of a copper(II) enzyme, LsAA9, which is 

analysed in section 4.3 to illustrate this feature. Information on the ligand-field 

parameterisation is given in the methodology (section 4.3.2) and the molecular rendering of 

LsAA9 in Kestrel is shown in Figure 3.35. In the ligand-field analysis of this system, the eλ 

parameters of the ligands and the orbital angular momentum quenching (kiso) were varied to 

reproduce the experimental transition energies and EPR g-factors. 
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3.2.12.1 Getting started 

 

Figure 3.36. The steps to open the parameter-space dialog via Kestrel’s GUI. 

 

The user can configure a parameter-space calculation by selecting the “Results” drop-down 

menu and selecting “Parameter Space”, as shown in Figure 3.36. In this window, the user can 

specify the ligand-field parameters to vary and what data to compare to. A parameter-space 

search requires at least two things to run: a minimum of two parameters to be varied; and at 

least one data set to fit to. If either of these criteria are not met, Kestrel will warn the user that 

the calculation is not configured correctly when they try to run the parameter-space search. 
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3.2.12.2 Varying parameters 

 

Figure 3.37. Varying the eσ of the histidine ligands in LsAA9 using Kestrel’s GUI. 

 

To vary a ligand-field parameter, right click the parameter label and select the “Vary Parameter” 

option. Doing so opens a dialog window, as shown in Figure 3.37, which prompts the user to 

enter: a “Start Value”, which is the first value in the sequence; a “Final Value”, which is the 

final value in the sequence; and the “Number of steps” which is the number of values in the 

sequence. The example given in Figure 3.37 would generate this series of values: 4000, 4300, 

4600, 4900, 5200, 5500, 5800, 6100, 6400, 6700, 7000. 
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Figure 3.38. The parameter-space range for LsAA9 in Kestrel’s GUI. 

 

When a valid parameter range is entered, the parameter value description updates to 

read “4000.0 to 7000.0, over 11 steps”, as shown in Figure 3.38. A counter at the top of the 

tab labelled “Number of iterations” shows the number of parameter combinations that will be 

looped over. From Figure 3.38, one can see how varying a reasonable number of parameters 

can quickly result in a large calculation. 

 

3.2.12.3 Choosing to fit two data sets simultaneously: the EPR g-factors and 

transition energies 

As part of the ligand-field analysis reported in section 4.3.3.1, the ligand-field parameters are 

varied to find potential fits to the reported experimental EPR g-factors and d-d transition 

energies. Unlike in section 3.2.11.3, where only one data set was fitted to, it is often convenient 

to set the “Fitting Function” to the “Normalised root-mean-square” when fitting two or more 

data sets of different magnitudes, as shown in Figure 3.39. The normalisation divides the 

calculated root-mean-square by the standard deviation of the data. This places the individual 
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qualities of fit to the different data on a comparable scale. We will see the advantage of this 

later. 

 

3.2.12.3.1 EPR g-factors 

 

Figure 3.39. Defining the experimental EPR g-factors for LsAA9 to compare to, via 

Kestrel’s GUI. 

 

The process of defining the EPR g-factors to fit to is shown in Figure 3.39. By enabling the 

“EPR” check box, the EPR data is displayed. By clicking the “Configure” button, the user may 

define the EPR g-factors and their orientation, if desired. For the present example, defining 

the g-factors is enough. Entering in the reported g-factors and selecting “OK” correctly imports 

the values in to the EPR data tab.  
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3.2.12.3.2 d-d transition energies 

 

Figure 3.40. Defining the experimental transition energies for LsAA9 to compare to, via 

Kestrel’s GUI. 

 

The process of defining the d-d transition energies to fit is presented in Figure 3.40. The user 

can configure the d-d transition energies by selecting the “Configure” button in the transition 

energies data tab. Doing so opens a dialog window, where the user can add the transition 

energies and spin multiplicities. If the user wishes, they can also define the degeneracies of 

the level (by adding another integer, e.g. 0.0 2 4 would mean a relative energy of 0 cm-1, with 

a  spin multiplicity of 2 and a degeneracy of 4), or a weighting by using the -w flag as shown 

in Figure 3.40. This means the transition energy at 16600 cm-1 will not be fitted to, but a 

transition energy must be placed between the transitions at 15500 cm-1 and 17400 cm-1. It is 

also possible to assign a configuration projection assignment to the level using the -c flag 

followed by an electronic configuration, such as 22221. 
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3.2.12.4 Running the calculation 

Once the calculation is configured, click the “Run” button to submit the calculation. The 

program will ask for confirmation that the user wishes to run the calculation. By selecting “OK”, 

the program will ask for a save file name and a folder to store the results of the simulation. 

After choosing a file name, a progress bar will appear, showing the user how far the calculation 

has progressed as a percentage of the total number of iterations. This calculation can be 

cancelled at any time by selecting the “Cancel” button. 

 

3.2.12.5 Visualising the results 

When a parameter-space calculation completes, the results are automatically loaded into the 

program. Alternatively, the user can plot the contour map of any parameter-space calculation 

by selecting the “Results” drop-down menu and hovering over “Parameter Space” and 

selecting “Map”. Selecting this option will allow the user to select one or multiple parameter-

space output files. The user may open as many of these windows as they wish and can even 

open multiple instances of the same output file. 

 

 

Figure 3.41. The parameter-space “mapping” window in the “Search” tab of the central 

widget of Kestrel. 
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The results are displayed in a window located in the central widget of the application window, 

as shown in Figure 3.41. The left-hand side of the window features a contour plot (rendered 

using Matplotlib) which plots two separate parameters on its x and y axes.100 There is a colour 

bar to the right-hand side of the contour plot, which shows the colour map of the quality of fit 

values. On the right-hand side of the window is a tab widget with two tabs: the first tab features 

a list of varied parameters; the second tab is a plotting tab, where the user can configure what 

data to plot and how it is plotted. 

 

 

Figure 3.42. The layout and options of the parameter-space “mapping” window. 

 

To explore the relationship between the variation in parameter values and the quality 

of fit to the data, one can plot any two varied parameters in the list. The user can choose what 

parameters to vary along the x and y axes by right clicking a parameter and selecting “set x” 

or “set y”, as shown in Figure 3.42. The remaining parameters are assigned the current value 

displayed in their drop-down widget, which the user can scroll through to see how the best fit 

parameter space moves. 
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Figure 3.43. The plotting options of the parameter-space output. 

 

If multiple data types were compared to (like in the case for LsAA9) the user may select 

which data to include in the quality of fit plot. If multiple data types are selected, as shown in 

Figure 3.43, the sum of their quality of fit metrics are plotted. Here, in this example, both the 

quality of fit to the transition energies and EPR g-factors are enabled. It is here that using the 

“Normalised root-mean-square” fitting function is advantageous. From the plot one can see 

parameter combinations that offer good reproduction of both the d-d transition energies and 

EPR g-factors. If one were to use just the “root-mean-square” metric, a good RMS could be 

around 100 cm-1 and 0.01 for d-d transition energies and EPR g-factors respectively. Plotting 

their sum only really reports on the quality of fit to the d-d transition energies. 
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Figure 3.44. Examples of the “smoothing” and “Outline Value” plotting options in the 

parameter-space output window. 

 

There are also plotting options available. The user can set the number of contour levels 

to plot and has the option to “smooth” the contour plot, to make the plot more aesthetically 

pleasing. A useful feature is the ability to outline a certain quality of fit value, which will encircle 

regions of parameter spaces where the quality of fit is less than or equal to the target value. 

Examples of these features are shown in Figure 3.44. 
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4 Ligand-field analysis 

4.1 The rational design of single-ion molecular magnets 

4.1.1 Introduction 

Single molecules can exhibit slow relaxation of their magnetisation.101 Hence, they can be 

magnetised in an external magnetic field and retain that magnetisation upon the removal of 

the external field. Single-molecule magnets that exhibit a single ion are called single-ion 

molecular magnets (SiMMs). These single-ions are typically either lanthanide or transition-

metal ions. These “nanomagnets” have proposed applications in quantum computing as 

qubits, molecular spintronics, information storage, and magnetic refrigeration.102–109 However, 

to be used in such applications, the blocking temperature TB (the temperature above which 

the retained magnetisation is lost) must be maximised. Recent advances in lanthanide SiMMs 

have achieved blocking temperatures up to 80 K.110 Despite this success, limited access to 

lanthanide metals make the development of 3d transition-metal complexes more attractive. 

 SiMM complexes are a bistable system between states with ±MJ projections. Reversal 

of the magnetisation of the system involves reversing the sign of the MJ projection. Hence, the 

barrier to magnetic relaxation U, is given by the depth of the double-well potential surface 

between the two MJ states (Figure 4.1). A high blocking temperature is associated with slow 

interconversion between the two states, ergo the height/width of the barrier.   

 However, a molecule has multiple means of relaxation, which can bypass the energetic 

barrier altogether. These processes are mechanisms of spin-lattice relaxation, where the 

dipolar spin-spin interactions fluctuate with the vibrations of the molecule.111 Rationalising the 

SiMM behaviour of a molecule requires an understanding of these other relaxation 

mechanisms. 

The molecule can relax from one magnetic orientation directly to another (with the 

same magnitude MJ projection) through the energetic barrier. This tunnelling is known as 

quantum tunnelling of the magnetisation (QTM), depicted by the red dashed arrows in Figure 

4.1. At low temperatures, relaxation is dominated by QTM in the ground state Kramer’s doublet 

(KD) (represented by the +7/2 and -7/2 states in Figure 4.1). QTM can also occur between states 

of higher lying excited KDs but requires higher lying excited states are thermally occupied. 

This is referred to as thermally activated QTM. 
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 Other relaxation mechanisms exist which instead occur via a two-phonon. The first of 

these is the Raman process which involves the inelastic scattering of a single phonon, exciting 

the ground state to a “virtual” quantum state before decaying to the reversed magnetised state, 

changing the kinetic energy of the phonon.112 

 The second two-phonon process is the Orbach process.113–115 In the Orbach process, 

the ground state is excited to a higher-lying intermediate state and decays from the 

intermediate state to the reversed magnetic state. Hence, the system must be able to absorb 

a phonon of sufficient energy (provided for thermally) and release a phonon when decaying. 

This effect is dominant at higher temperatures and its contribution is inseparable from 

thermally activated QTM process. 

 

 

Figure 4.1. The energy barrier (U) to the reversal of magnetisation at zero external 

magnetic field of a fictitious J = 7/2 system. Black bars represent electronic states with 

the corresponding MJ projection. Red dotted arrows represent QTM transitions between 

±MJ states. Green arrows represent relaxation via a two-step phonon relaxation process 

known as the Orbach process. Finally, the orange dotted arrow represents the Raman 

relaxation pathway. 

 

Since these processes bypass the total energetic barrier U, they result in an effective 

energetic barrier Ueff, which is less than U. The parameter Ueff is used experimentally as a 

phenomenological parameter to fit relaxation data of Arrhenius type. Although Ueff is 

associated with the Orbach process, the extracted value does not distinguish between 
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relaxation sources. Since the Raman and Orbach processes can operate within similar 

temperature ranges, this can mean extracted values of Ueff do not always correspond to the 

magnitudes of the zero-field splitting of the molecule.116 To separate these sources of 

relaxation, some authors have fixed the value of Ueff by measuring the zero-field splitting and 

fitting the relaxation from the Raman process directly.117 Hence, the prediction of the value of 

Ueff can be important to analyse the SiMM properties of a molecule. 

 With regards to 3d transition-metal ions, attempts to increase the blocking temperature 

have focused on maximising their axial magnetic anisotropy, as a means to increasing the 

height of the barrier between the MJ states and quenching the QTM within the ground state 

KD.118 For cobalt(II) Kramer’s ions (S=3/2) the value of Ueff is attributed to the splitting of the 

ground and first excited state KD as given by the expression Ueff = |D|(S2–1/2), where S is the 

spin quantum number and D is the axial splitting parameter of spin Hamiltonian theory. In 

addition, developing a complex with SiMM character in the absence of an applied external 

direct current field requires suppression of QTM in the ground state KD.  

Such electronic features of SiMM complexes can be explored by calculations of the 

various electronic states that contribute to its magnetism. There are methods that use the 

results of ab initio calculations to compute the effective barrier Ueff and the time taken for QTM 

(τQTM) to occur.116,119 While theoretical insight into SiMMs can be and have been determined 

from ab initio calculations, the calculation of Ueff and τQTM can equally be calculated from the 

results of ligand-field calculations with the attendant benefits of speed and chemical 

intuitiveness that such calculations offer. It is therefore surprising to find that there are no 

examples of this approach in the literature.  

 

4.1.1.1 Use of ligand-field calculations from Kestrel to calculate Ueff. 

To investigate whether Kestrel could be used to inform the rational chemical design of SiMMs, 

three cobalt(II) complexes that could act as SiMMs are shown in Figure 4.2. Complexes 1 

(Co(C(SiMe2ONaphthyl)3)2), 2 (CoTp2, where Tp = tris(pyrazolyl)borate), and 3 (CoL2, where 

H2L = 1,2-bis(methanesulfonamido)benzene), were selected for a detailed analysis of their 

electronic structures. Complexes 1 and 2 have been previously been probed geometrically 

with ab initio calculations to gain further insight into improving their SiMM character.120,121 

Complexes 1 and 3 feature magnetic hysteresis in the absence of an applied direct current 

(dc) field, whereas 2 does not. These systems were chosen to study as they represent varied 

geometries (2, 6, and 4 coordinate respectively) and are extensively characterised 

spectroscopically. They are also homoleptic systems so include a minimal number of chemical 



136 
 

variables to both fit and vary. Using Kestrel, investigations were carried out into how changes 

in metal-ligand bonding and molecular geometry effect the axiality and SiMM properties of 

these three complexes. 

 

 

Figure 4.2. Structures of complexes 1, 2, and 3 (see text) with the reported energetic 

splitting between ground and first excited state Kramer’s doublets.122–124 
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4.1.2 Methodology 

4.1.2.1 Ligand-field calculations 

 

Figure 4.3. The metal-ligand eλ bonding interactions used to parameterise the ligand 

field in complexes 1, 2, and 3. 

 

Ligand-field calculations were carried out using Kestrel with the full d7 configurational basis 

set (40 quartets and 80 doublet states, which is equivalent to 10 quartet roots and 40 doublet 

roots). The free-ion cobalt(II) ligand-field parameters are B0 = 1120 cm-1, C0 = 4368 cm-1, and 

ζ0 = 515 cm-1.125 The ligand field was parameterised using the metal-ligand bonding 

parameterisation illustrated in Figure 4.3. 

 

4.1.2.1.1 Complex 1 

The molecular geometry was taken from the reported x-ray crystal structure (CSD: FIYMEI).122 

The alkyl ligand eλ parameters were placed at the coordinating carbon atoms. The alkyl ligand 

was parameterised using an eσ and eπ parameter, as illustrated in Figure 4.3. Although an 
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alkyl ligand would formally be non π-bonding, the possibility of electrostatic contributions to 

the eπ parameter were investigated. Electrostatic contributions to eδ were fixed at 0 cm-1. 

 Parameter-space calculations were used to fit the two reported spin-allowed band in 

the experimental UV-Vis spectrum, using Kestrel’s parameter space feature. Racah B was 

varied between 0 cm-1 and 1000 cm-1 in increments of 100 cm-1; eσ was varied between 0 cm-

1 and 5000 cm-1 in increments of 500 cm-1; and eπ was varied between 0 cm-1 and 2500 cm-1 

in increments of 250 cm-1. Spin-orbit coupling was neglected, and Racah C was fixed at 4000 

cm-1.  

An optimisation calculation with the same parameters was carried out for each 

increment of eπ, using the differential evolution function.96 The best fit parameters from the 

optimisation calculations were then used to compute the ZFS using the free-ion spin-orbit 

coupling value as this would represent the maximum possible ZFS for that parameterisation. 

The ZFS was calculated by subtracting the energy of the first excited state KD from the energy 

of the ground state KD. 

 The variation diagrams of the relative energies of the spin-allowed bands in section 

4.1.3.2 were calculated using the Kestrel GUI. The ligand-field parameters used were: eσ = 

1950 cm-1, eπ = 375 cm-1, B = 830 cm-1, and C was set arbitrarily large at 10000 cm-1, which 

placed the spin-forbidden doublet bands very high in energy. Spin-orbit coupling was 

neglected. 

 Ligand-field calculations using the low symmetry ligand-field contributions (including 

off-diagonal elements) were calculated using a custom function which returns a local ligand-

field matrix for each alkyl ligand given by: 

 

2 2

0.57 24.72 0.46 33.64 0.13

24.72 0.12 0.16 31.57

0.46 0.12 0.33 0.05

33.64 0.16 0.33 24.77

0.13 31.57 0

0.245

0.24

7.05 24.7 5

5

0. 7
y

π

δx

x

σ

πx

y

x

e

ev

e

e

e

−

 
 

− 
 =
 

+ 
 −
 

+ − −

− − −

− −

− −

−

 (4.1) 

where the matrix elements are taken from the results of the CASSCF(7, 5)/NEVPT2 AILFT 

calculations and supplemented with the ligand eλ parameters (see section 4.1.2.2 for 

methodology of ab initio calculations and appendix 6.4 for the derivation of the local ligand-

field matrix). Twisting the molecule then occurred by rotating the matrix v  with the 

corresponding rotation matrix R . Ligand-field calculations were carried out by calling Kestrel’s 

run_calculation method, which takes the 5×5 ligand-field matrix as an input to define the ligand 

field. 
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4.1.2.1.2 Complex 2 

The molecular geometry was taken from the reported x-ray crystal structure (CSD: 

HPYBCO02).121  Because the pyrazole ligands asymmetrically π bond, the π bonding direction 

needs to be specified along with the coordinating atom positions. The pyrazole ligands were 

assigned to the coordinating nitrogen atoms and their local x directions were orientated 

towards their adjacent nitrogen atoms. The pyrazole ligands were assigned an eσ and eπy 

parameter, as shown in Figure 4.3. The eπx parameter, representing in-plane π bonding, was 

constrained to 0 cm-1. 

 Two separate parameter-space calculations were carried out: the first sought to 

reproduce the reported experimental d-d bands and their assignments; the second sought to 

reproduce the reported EPR g-factors and isotropic paramagnetic susceptibility variation with 

temperature.126–128 The former varied B from 500 cm-1 to 1000 cm-1, in increments of 50 cm-1; 

C from 2000 cm-1 to 4000 cm-1, in increment of 200 cm-1; eσ from 2000 cm-1 to 6000 cm-1, in 

increments of 400 cm-1; and eπy from -1000 to 1000 cm-1, in increments of 200 cm-1. 

The parameter space that reproduced the magnetic data linked the value of eσ to eπy 

using the relation: 

 -13 2 10000 cmσ πye e= +  (4.2) 

The parameters B and C were held at 830 cm-1 and 3403 cm-1 (C/B = 4.1), whilst ζ was varied 

from 300 cm-1 to 500 cm-1, in increments of 20 cm-1; kiso from 0.5 to 1.0, in increments of 0.05; 

and eπy from -1000 cm-1 to 1000 cm-1, in increments of 200 cm-1. 

The geometric distortions of complex 2 were applied to the x-ray crystal structure 

geometry. Geometry distortions were applied to the relevant θ and φ parameters of the ligand-

field potentials. 

 

4.1.2.1.3 Complex 3 

The molecular geometry was taken from the reported x-ray crystal structure (CSD: 

WAKHOI).124  Because the amide ligands asymmetrically π bond, the π bonding direction 

needs to be specified along with the coordinating atom positions. The amide ligands were 

assigned to the coordinating nitrogen atoms and the local x directions were aligned with the 

adjacent carbon atoms. The ligand-field parameterisation was taken from the work of 

Rechkemmer et al.124 
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 The reported best fit ligand-field parameters of Rechkemmer et al. were supplemented 

with a kiso value. An optimal value of kiso was found by performing an optimisation calculation 

where kiso was allowed to vary between 0.0 and 1.0 (with a starting value of 0.5). The 

optimisation was performed on both the reported EPR g-factors and isotropic paramagnetic 

susceptibility variation with temperature. 

 The geometric distortions of complex 3 were applied to the x-ray crystal structure 

geometry. Geometry distortions were applied to the relevant θ, φ, and ψ parameters of the 

ligand-field potentials. 

 

4.1.2.2 Quantum-chemical calculations 

Calculations carried out on 1 were performed using version 4.2.1 of the ORCA software 

package.42 The x-ray crystal structure (CSD: FIYMEI) was used for the calculation.122 In all 

calculations, the def2-TZVP basis set was applied to all atoms.129 The /C Auxiliary basis set 

was used along with the RIJCOSX approximation to accelerate the calculations.130 

Nonrelativistic energy levels and wave functions for 1 were computed using the CASSCF 

method, averaging over the electron densities of all 40 quartet and 80 doublets roots for seven 

electrons distributed over five 3d molecular orbitals [CAS(7,5)]. To account for dynamic 

correlation, N-electron valence perturbation theory to second order (NEVPT2) was used as 

implemented in the ORCA program. 

 

4.1.2.3 Calculation of τQTM and Ueff 

Computation of the effective energetic barrier Ueff and the relaxation time was carried out using 

the same methodology of Fang et al. who used the work of Bing et al.119,120 The time of 

relaxation for QTM within a KD is related to the relaxation rate, ωQTM by 
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where Bμ  and h  are the Bohr magneton and Planck’s constant, respectively. B  is the 

average magnetic field strength (assumed 20 mT) and 2 2

xy x yg g g= + . The effective energetic 

barrier Ueff and time for relaxation are then given by 
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where i  is the index of the KD (starting from the ground state), kB is the Boltzmann constant, 

and T is the temperature. 
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4.1.3 Complex 1 

Detailed experimental ligand-field analyses of linear complexes are limited and analysis of 

two-coordinate transition-metal complexes often use ab initio calculations.131–135 The ab initio 

calculations, when analysed with a ligand-field model, suggest large eπ interactions (>1000 

cm-1) for formally σ-bonding only ligands such as alkyl ligands, or the in-plane direction of an 

sp2 hybridised ligand such as an amide. The origins of large eπ effects associated with non-

bonding interactions have been attributed to electrostatic contributions and are found in ab 

initio calculations of linear and square planar systems.20,135,136 These large and anomalous eπ 

parameters predicted by theoretical calculations are still yet to be verified by a ligand-field 

analysis of experimental data. Complex 1, whose detailed spectroscopic characterisation has 

been reported, provides a useful test case to study the eπ parameter of a formally non π 

bonding alkyl ligand.122 

Complex 1 features a formal non-Aufbau electronic configuration ground state 

characterised by δ3π3σ1, where δ = (dxy, dx²–y²), π = (dyz, dxz), and σ = (dz²).122 The ligand field 

has been probed previously by the work of Bunting et al. using CASSCF(7, 5)/NEVPT2 

calculations, which predicted an orbital splitting of 0, 2913, and 5639 cm-1 for the one-electron 

levels δ, π, and σ respectively.122 These results imply an eσ = 2819.5 cm-1 and an eπ = 1456.5 

cm-1, the latter of which is large for a ligand presumed to not engage in formal π bonding. This 

system was characterised spectroscopically by Bunting et al. using UV-vis diffuse reflectance 

spectroscopy, far-infrared spectroscopy, and SQUID magnetometry.122 Although the ab initio 

results are in relative agreement with the experimental magnetic properties and zero-field 

splitting, the calculated relative energies of the two observed spin-allowed d-d bands (13537 

cm-1 and 18865 cm-1) are too high when compared to the observed bands (12000 cm-1 and 

15000 cm-1) in the experimental UV-Vis spectrum, shown in Figure 4.4. 
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Figure 4.4. The UV-Vis diffuse reflectance spectrum of complex 1 reported by P. C. 

Bunting, M. Atanasov, E. Damgaard-Møller, M. Perfetti, I. Crassee, M. Orlita, J. 

Overgaard, J. van Slageren, F. Neese and J. R. Long, Science, 2018, 362, eaat7319. 

Reprinted with permission from AAAS. 

 

 The spectroscopic characterisation of 1 offers a deep insight into the electronic 

structures of linear ligand fields, which are promising candidates for 3d transition-metal 

SiMMs. The relatively weak ligand field of 1 allows for weaker crystal-field effects to have a 

greater influence on the electronic structure. An experimentally quantifiable splitting of the δ 

and π orbitals will allow for an empirical measure of the size of the crystal-field contribution to 

the eπ parameter. 

 

4.1.3.1 Electronic structure from experiment, Kestrel analysis 

The modelling of the electronic structure by Bunting et al. using ab initio calculations was not 

able to simultaneously reproduce the experimental d-d transition energies and experimental 

magnetic properties.122 In this section, Kestrel is used to reproduce all of the available 

experimental data reported by Bunting et al. In doing so, the aim is to establish a ligand-field 

splitting and therefore quantify the magnitude of the eπ parameter. 

The first step was to determine the ligand-field parameters (eσ, eπ, and B) in Kestrel 

that can reproduce the experimental d-d transition energies. It was found that the two d-d 

bands energies could not be uniquely modelled with three parameters; the problem is 
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underdetermined. It was possible to set eπ = 0.0 cm-1, reducing the degree of parameterisation 

in line with chemical intuition and reproduce the d-d band energies. However, it was also 

possible to assign the ligand a non-negligible and positive eπ parameter. 

Since fitting the two spin-allowed d-d bands with three parameters is underdetermined, 

and ab initio calculations predict a substantial eπ value, the strategy was to obtain a reasonable 

set of best-fit parameters to the d-d band energies. This was achieved by finding the best fit 

values of eσ and B for a fixed value of eπ. The eπ parameter was sampled across a range from 

0 to 2500 cm-1 in increments of 250 cm-1. Negative values of eπ were omitted as there are no 

formal π-acceptor functions on the alkyl anion and electrostatic contributions would have a 

destabilising effect (eπ > 0 cm-1). The choice to set the upper bound of the eπ parameter to 

2500 cm-1 was made on the basis that ab initio methods predict an eπ value of 1456.5 cm-1 

and an eπ value close to, or greater than, 2500 cm-1 would be considered unphysical.122 

 Having outlined the strategy for producing a series of best fit parameters for different 

values of eπ, the values of eσ and B were varied between values of 0 to 10000 cm-1, and 0 to 

1100 cm-1 respectively, for a fixed value of eπ. For each value of eπ sampled, there was one 

minimum within the scanned parameter space, as shown in Figure 4.5. As a general qualitative 

trend, as the value of eπ increased, the best fit value of eσ decreased. At an approximate value 

of  eπ = 1500 cm-1 (a similar magnitude as to that computed by ab initio theory), the best fit eσ 

parameter was approximately equivalent. Herein lies the reason for the discrepancy between 

the ab initio computed d-d energies and the energies observed experimentally: the predicted 

eσ:eπ ratio is too large for the computed predicted magnitude of eπ. The best fit values for eπ 

> 1500 cm-1 resulted in an alternative electronic structure where the d-orbital ordering is δ < σ 

< π as eπ > eσ. The trend between the best fit values of Racah B with increasing eπ is different. 

When eσ > eπ, then an increase in eπ resulted in an increase in B. However, when eσ < eπ, 

then an increase in eπ resulted in a decrease in B. 
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Figure 4.5. Regions of best fit for complex 1  in the reproduction of the two high energy 

quartet ligand-field transitions at 12000 and 15000 cm-1 with fixed values of eπ. Colour 

bars are the RMS fit (cm-1) values to the two high energy quartet bands. 

 

 Reproduction of the high energy d-d bands alone is not sufficient for a unique 

determination of the electronic structure. The best fit parameters must also reproduce the 

reported zero-field splitting between the ground and the first excited state KD (450 cm-1) and 

the reported experimental isotropic χT variation against temperature. Thus, using the free-ion 

ζ value of 515 cm-1, the magnitude of the ZFS and the isotropic χT against temperature were 

computed for each value of eπ (along with the corresponding best fit values of eσ and B).  
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Figure 4.6 shows the magnitude of the ZFS for each value of eπ and its best fit 

parameters. The graph clearly shows that for eπ values in the range of 0 cm-1 to 750 cm-1 the 

ZFS is greater than or equal to the experimentally observed energy separation. Hence, the 

fits to the d-d transition energies, where eπ > 750 cm-1. 

 

 

Figure 4.6. The variation in the computed zero-field splitting energy between the ground 

state and first excited state Kramer’s doublet and the five lowest lying Kramer’s 

doublets for the corresponding best fit eσ and Racah B parameters, as a function of eπ, 

for complex 1. Zero-field splitting was calculated using a spin-orbit coupling constant 

of 515 cm-1. 

 

Bunting et al. report a room temperature χT value of 4.89 cm3 K mol-1.122 For a low 

magnetic field (0.1 T) the χT tends to a value of around 4.3 cm3 K mol-1 at low temperatures. 

The χT values as a function of temperature for the different values of eπ (with corresponding 

best fit eσ and Racah B) are presented in Figure 4.7. Each graph offers a reasonable 

reproduction of the reported experimental data but the graphs for eπ = 250 cm-1 and eπ = 500 

cm-1 closely resemble experiment.122 Interestingly, the gradient of the graph at higher 

temperature (150 K to 300 K) is sensitive to the magnitude of the eπ parameter. 
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Figure 4.7. The Kestrel calculated (black) χT variation as a function of temperature for 

the corresponding best fit eσ and Racah B parameters, as a function of eπ, for complex 

1. The simulations were performed using a spin-orbit coupling constant of 515 cm-1. 

The 0.1 T reported experimental data (red) was supplied by the authors.122 

 

Having established a parameter-space range that accounts for the experimental d-d 

band energies,  zero-field splitting, and paramagnetic susceptibilities, the best-fit parameter 

ranges are: eσ = 1700 to 2200 cm-1, eπ = 0 to 750 cm-1, B = 800 to 855 cm-1, ζ = 483 to 515 

cm-1, kiso = 0.95 to 1.0 cm-1, all of which are chemically reasonable. The average of these 

ranges gives the final illustrative best fit parameters: eσ = 1950 cm-1, eπ = 375 cm-1, and B = 
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830 cm-1. The introduction of spin-orbit coupling does shift the spin-allowed quartet band 

energies and this is compensated for by dropping Racah B to a value of 775 cm-1. The final 

illustrative best fit parameters are: eσ = 1950 cm-1, eπ = 375 cm-1, B = 775 cm-1, C = 3100 cm-

1, ζ = 475 cm-1, and kiso = 0.99. This results in a room temperature χT = 4.91 cm3 K mol-1 

compared to the experimental value of 4.89 cm3 K mol-1. 

 

 

Figure 4.8. The ligand-field splitting as computed by Bunting et al. and this work, along 

with multipole expansion of the x-ray structure (right) for the average best fit 

parameters in the text.122 

 

These best fit ligand-field parameters show a similar electronic structure to that 

reported by Bunting et al.122 Compared to the one-electron d-orbital splitting found by Bunting 

et al. using ab initio calculations, the final illustrative best fit ligand field from Kestrel predicts 

a smaller energetic gap between the δ orbitals and the σ and π orbitals, shown in Figure 4.8. 

The smaller energetic gap (resulting from a smaller eπ potential) suggests that this electrostatic 

contribution is overestimated in ab initio theory. 

 

4.1.3.2 Origins of the non-Aufbau ground state 

The work of Bunting et al. established that the ground state of 1 features a non-Aufbau 

electronic configuration. Based on the extracted d-orbital splitting pattern of δ < π < σ, the 

ground state, according to the Aufbau principle for seven electrons, would be δ4π2σ1. However, 

the authors showed that the ground state of 1 was the δ3π3σ1 electronic configuration, where 

an electron has been promoted from one of the δ(dxy, dx²–y²) orbitals into one of the π(dxz, dyz) 

orbitals. Using the illustrative best fit parameters extracted from the previous section, Kestrel 
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also assigned the ground state as the δ3π3σ1 electronic configuration, in agreement with 

Bunting et al. The origin of this non-Aufbau ground state was attributed to the relative strength 

of the interelectronic repulsion with respect to the relatively weak ligand field. To confirm this 

in Kestrel’s ligand-field model, the energies of the quartet electronic states were plotted 

against the strength of the interelectronic repulsion, shown in Figure 4.9.  

 

 

Figure 4.9. The change in relative energies of the complete quartet manifold as a 

function of the interelectronic repulsion parameter, Racah B. The grey dotted line 

signifies the interelectronic repulsion strength in which a change in the ground state 

character occurs. 
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 Figure 4.9 ranges from an absence of interelectronic repulsion (B = 0 cm-1) to near 

free-ion values using the illustrative best fit parameters (in the absence of spin-orbit coupling). 

As B is increased from 0 cm-1, the relative energies of the quartet excited states from the 

ground state decrease. At a value of B around 83 cm-1 there is a discontinuity (grey dotted 

line) in the smooth variation of the energies. After which, increasing B dramatically increases 

the energy of the two highest excited states and increases the energy of the first two excited 

states more mildly; the third excited state is invariant to changes in interelectronic repulsion 

strength. Discontinuities like that observed here are also found in Tanabe-Sugano diagrams 

for d4, d5, d6, and d7 electronic configurations, where the discontinuity marks a formal change 

in the spin quantum number of the ground state (changing from high spin to low spin).137 

However, in the present case there is no change in the spin quantum number of the ground 

state. Instead, an inspection of the quantum number projections of the eigenfunctions show 

that this discontinuity marks a formal change in the L (orbital angular momentum) quantum 

number of the ground state. For B < 83 cm-1, the ground state is predominantly L = 1 (4P). For 

B > 83 cm-1, the ground state is characterised by the L = 3 (4F) quantum number. Care must 

be taken here to not associate an electronic occupation with an ML quantum number (ML = 

∑ml) derived from L. The L quantum number is derived from the L2 operator, whose operation 

on a ket is a function of recursive permutative operations.138 

 To understand the changes in electronic structures with the variation in Racah B, the 

relative energies, and electronic configurations, of the ground and excited states at B = 0 and 

830 cm-1 are given in Table 4.1. In the absence of interelectronic repulsion, each eigenfunction 

constitutes of a pure electronic configuration. Indeed, these configurations can be derived 

manually in the absence of interelectronic repulsion (B = 0 cm-1) since one knows the relative 

energies of the one-electron d orbitals (δ < π < σ: 0 cm-1 < 750 cm-1 < 3900 cm-1) and the 

relative energies of the quartet states will correspond to a linear combination of the one-

electron orbital energies. As an example, take the relative energy of the eigenfunction Ψ2 of 

750 cm-1; this is equivalent to the energy E(π) – E(δ) and therefore corresponds to the one-

electron jump from the δ orbitals to the π orbitals from the Aufbau ground state. Hence, with 

an Aufbau ground state of δ4π2σ1 (at relative energy of 0 cm-1), the first excited state is δ3π3σ1 

and so on.  

At the average value of B found in the preceding analysis (B ≈ 830 cm-1), the ground 

state is a pure δ3π3σ1 non-Aufbau configuration. The Aufbau configuration is mixed into 

eigenfunctions Ψ2 and Ψ5. The interelectronic repulsion mixes configurations together, 

redistributing electrons through superposition to minimise the energy of repulsion. The results 

show that the Aufbau configuration δ4π2σ1 mixes with the configuration δ2π4σ1. With increased 

interelectronic repulsion, the Aufbau configuration that has doubly occupied dx²–y² and dxy (δ4) 
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orbitals is less stable than having doubly occupied dxz and dyz orbitals (π4). This is because 

the δ orbitals occupy the same plane, whereas the π orbitals do not. Hence, the δ4π2σ1 

configuration mixes more into the higher energy Ψ5 eigenfunction, whereas δ2π4σ1 mixes more 

into the lower energy Ψ2. 

 

Table 4.1. The relative energies (cm-1) and electronic occupations of the d orbitals using 

the representative best fit ligand-field parameters, eσ = 1950 cm-1, eπ =  375  cm-1, C/B = 

4.0, and ζ = 0.0 cm-1. 

Eigenfunctions Energy 

(B=0 cm-1) 

Configuration Energy  

(B=830 cm-1) 

Configuration 

Ψ1 0.0 100% δ4π2σ1 0.0 100% δ3π3σ1 

Ψ2 750 100% δ3π3σ1 419 75.7% δ2π4σ1 

24.3% δ4π2σ1 

Ψ3 750 100% δ3π3σ1 1290 73.2% δ3π3σ1 

26.8% δ2π3σ2 

Ψ4 1500 100% δ3π2σ2 3150 100% δ3π2σ2 

Ψ5 3900 100% δ2π4σ1 12031 75.7% δ4π2σ1 

24.3% δ2π4σ1 

Ψ6 4650 100% δ2π3σ2 15060 73.2% δ2π3σ2 

26.8% δ3π3σ1 

 

 Having established the eigenfunctions and their configurational character, it is possible 

to rationalise changes in electronic structure due to changes in bonding. Changes in eλ and 

the corresponding variation in the quartet state energies are given in Figure 4.10. The variation 

in eσ shows a discontinuity at the value of 375 cm-1 (equal to eπ), where the ground state 

changes from σ > π > δ to π > σ > δ. Focusing on the σ > π > δ region, we can see that Ψ2 

and Ψ5 are invariant to changes in the energy of dz². This is because the electronic occupation 

of σ does not change upon the transition from the ground state to either excited state; both 

eigenfunctions are mixed δ4π2σ1 and δ2π4σ1 configurations. We also observe a differing 

energetic gradient in the energies of the other excited states, where their sensitivity to eσ is of 

the order Ψ4 > Ψ6 > Ψ3. These excited states do feature an occupational change of the σ level 

from the ground state. Their respective sensitivities correlate with the percentage character of 

a configuration with σ2 character. 
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Figure 4.10. The effect that metal-ligand bonding parameters have on the relative 

energies of the quartet manifold. Variation of eσ (left) and eπ (right). Grey dotted lines 

mark a formal change in the ground state electronic configuration. 

 

Similar correlations with electronic occupations are observed in the case of the 

variation in eπ. The variation in eσ shows a discontinuity at the value of 1950 cm-1 (equal to 

eσ), where the ground state changes from σ > π > δ to π > σ > δ. Focusing on the σ > π > δ 

region, it is Ψ3 and Ψ6 that are invariant to changes in eπ. Again, this is due to equal electronic 

occupation of the π orbitals between ground and excited states. However, Ψ2, Ψ4, and Ψ5 do 

feature a change in the electronic occupation of the π orbitals and likewise their sensitivity to 

the energy of those π orbitals correlates with the percentage character of that configurational 

change in electronic occupation. 

 

4.1.3.3 Low-symmetry components of a linear complex 

The model uses a linear ligand field and none of the available experimental data that was 

analysed in section 4.1.3.1 contains any information on the actual symmetry of the complex. 

Unfortunately, neither the EPR g-factors nor the paramagnetic susceptibility tensor for 1 have 

been reported. However, the relaxation time for QTM within the ground state, extracted from 

experimental relaxation data, has been reported as 16.4 s at 1.8 K.122  

From equation (4.3), the relaxation time for QTM is a function of the ground state g-

factor anisotropy and contains information about the linearity of the electronic structure. The 

ligand field used thus far is essentially of D∞h symmetry, where the π(dxz, dyz) and δ(dxy, dx²–y²) 
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orbitals are degenerate within their π and δ levels, respectively. As a result, the EPR g-factors 

within the ground state are calculated as gz = 11.94 and gx = gy = 0.0. The calculated gx, and 

gy values are negligible to machine precision and hence the resulting computed value of τQTM 

tends towards infinity. Of course, this is unphysical and in contradiction with the reported time 

taken (16.4 s); there must be a transverse magnetic moment contribution to give non-zero 

values of gx and gy. Assuming the value of 〈B〉 to be 20 mT, the order of magnitude of gx and 

gy (using a gz of 11.94) in the ground state KD should approximately be 10–5, a value that 

would otherwise be negligible.  However, and as the analysis will reveal, the calculated value 

of τQTM is highly sensitive to the magnitudes of gx and gy. The question therefore arises: what 

low symmetry effects cause a non-zero value of gx and gy? To generate a transverse magnetic 

moment there must be a splitting in the π and δ orbitals, which requires separate values of eπx 

and eπy and eδxy and eδx2-y2. 

 To investigate the source of the anisotropy, a CASSCF(7, 5)/NEVPT2 calculation was 

carried out on the full x-ray crystal structure of 1. The calculations agree with the results of 

Bunting et al. and the extracted 55 one electron ligand-field matrix unambiguously show off-

diagonal matrix elements which originate from the trigonal components of the S6 symmetry of 

1.122 Indeed, non-zero off-diagonal elements are found for 〈dxy|V|dyz〉, 〈dxy|V|dxz〉, 〈dx²–y²|V|dyz〉 

and 〈dx²–y²|V|dxz〉 with an average magnitude of ≈ 57 cm-1. All other off-diagonal matrix element 

magnitudes are < 1.0 cm-1. The origin of these off-diagonal elements coupling π and δ d 

orbitals is likely a result of the electrostatic contribution of the second-sphere coordination 

shell Si and O atoms (appendix 6.3). The 55 one-electron ligand-field matrix also revealed a 

small breaking of the degenerate dxz and dyz (magnitude of ≈ 1.0 cm-1) and dxy and dx²–y² 

(magnitude of ≈ 2.3 cm-1) orbitals. 

It would appear from the results of the CASSCF/NEVPT2 calculations that to simulate 

the low symmetry components of the complex, the ligand-field model must recognise the true 

local symmetry of the alkyl ligands. To be clear, the eσ and eπ parameters used to define the 

ligand field of the alkyl ligands are diagonal perturbations and do not simulate the local trigonal 

symmetry. To simulate the local trigonal symmetry, off-diagonal perturbative elements must be 

defined and rotated from the local ligand frame to the global coordinate frame as defined in 

chapter 2.3.2. The strategy of modelling the low symmetry trigonal crystal/ligand field of the 

alkyl ligands began by taking the CASSCF computed 5×5 one-electron ligand-field matrix for 

each ligand and reconstructing them using the best fit eπ and eδ values. By doing this, the 

small (presumably) crystal-field effects are extracted from the ab initio calculations carried out 

in this work and supplemented by the best fit eλ parameters to the experimental values. To do 

this, the off-diagonal elements are fixed and the asymmetry in eπx and eπy and in eδxy and eδx²–

y² predicted by CASSCF are conserved. The representative best fit diagonal eσ and eπ (1950 
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and 375 cm-1, respectively) are added to the relevant diagonal elements to give the local 

ligand-field frames for both ligands. The local ligand frames computed in this way are given in 

appendix 6.4. This allows for calculations to be run with Kestrel using the same best fit eλ 

parameters but now including a trigonal crystal-field perturbation, predicted by ab initio 

calculations. Using this parameterisation in Kestrel gives a computed τQTM of ≈ 35 s in good 

agreement with the experimental value. Note that recreation of the order of magnitude of τQTM 

is required here, since the computed value also depends on an average internal magnetic 

field. The magnitude of the internal magnetic field is not known but is assumed a value of 20 

mT in line with the literature.119 It is important to note that the off-diagonal elements alone do 

not generate a transverse magnetic moment in the ground state, but lead to breaking of the π 

and δ level degeneracies are broken by adopting different values of eπx and eπy, and eδxy and 

eδx²–y², and this generates the transverse magnetic moment. 

 

4.1.3.4 Enhancing the single-ion molecular magnetic properties, using Kestrel in a 

predictive sense 

 

 

Figure 4.11. The geometric distortion between the two trigonal arms of the ligands in 

complex 1.  
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An analysis carried out by Fang et al., showed that by twisting the two alkyl ligands from a 

staggered to an eclipsed conformation, as shown in Figure 4.11, the τQTM could be significantly 

increased.120 Fang et al. used ab initio computed g-factors of a truncated molecule to calculate 

Ueff and τQTM. Here, Kestrel is used to calculate the same properties but using a ligand-field 

model. 

 

4.1.3.4.1 The single-ion molecular magnetic properties of complex 1 

Using the low-symmetry local ligand frames for the staggered conformation (vide supra), the 

relative energies and g-factors of the five lowest lying KDs were calculated in Kestrel and the 

results are shown in Table 4.2. The calculated ZFS energies are lowered from those calculated 

in fitting the experimental data because the low symmetry ligand frames reduce the axiality. 

The experimentally reported ZFS of the first excited KD (KD2) can be restored by increasing 

the spin-orbit coupling parameter to 500 cm-1. However, going forward, the best fit ligand-field 

parameters are used. 

One can observe in Table 4.2 that the ground state KD (KD1) exhibits the slowest rate 

for QTM and has the smallest gx and gy components. Indeed, the relative time taken from QTM 

to occur is inversely proportional to the magnitude of the gx and gy components. KD3 has the 

fastest rate for QTM, which is consistent given that the magnetic transition dipole moment is 

non-zero between states where ΔMJ ±1.138  Since the rate of QTM to occur within KD2, KD3, 

and KD5 are magnitudes faster than the rate of QTM to occur in KD1 or KD4, the Orbach 

relaxation mechanism is more likely to occur through the former, depending on thermal 

occupation. 

 

Table 4.2. The Kestrel calculated energies (cm-1) and g-factors of the five lowest lying 

Kramer’s doublets using the low-symmetry parameterisation of 1 with the x-ray 

structure. Calculations performed using ζ = 475 cm-1 and kiso = 0.99. 

KD MJ Energy  gx gy gz τQTM (s) 

KD1 ±9/2 0.0 0.2226 × 10-4 0.2706 × 10-4 11.8647 34.5 

KD2 ±7/2 428.7 1.1000 1.0995 7.3423 1.1 × 10-8 

KD3 ±1/2 735.8 3.1010 3.0857 1.1686 8.5× 10-10 

KD4 ±3/2 896.5 0.0214 0.0023 5.3894 4.2 × 10-5 

KD5 ±5/2 964.5 2.0151 1.9996 2.7079 1.7 × 10-9 
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 The axiality of the system is influenced by σ and π bonding effects. Using the low 

symmetry ligand frames, an increase in eσ and eπ result in further quenching of the QTM within 

the ground state KD. For values of eσ = 2500 cm-1 and eπ = 750 cm-1, a calculated value of 

τQTM = 207 s is predicted. Controlling the magnitude of the electrostatic eπ contribution is 

difficult. However, if cylindrical π bonding ligands could be used, this could enhance the axiality 

of the system. 

 

4.1.3.4.2 The single-ion molecular magnetic properties of complex 1 as a 

function of φ 

Next, the ligand frames were rotated to transform the molecule from the staggered 

conformation to an eclipsed conformation. The g-factors for the ground state KD are given in 

Table 4.3, as a function of the trigonal twist angle. There is a rapid increase in the time taken 

for QTM to occur as the molecule is distorted away from the staggered conformation, 

coinciding with an effective decrease in the magnitudes of gx and gy. This results in a four-fold 

increase in the time taken for QTM to occur in the ground state KD. 

 

Table 4.3. The Kestrel calculated g-factors and time taken for quantum tunnelling of the 

magnetisation in the ground state Kramer’s doublet (KD1) of complex 1 as a function of 

φ. 

φ (°) gx gy gz τQTM (s) 

60 0.2226 × 10-4 0.2706 × 10-4 11.8647 34.5 

50 0.2480 × 10-4 0.2058 × 10-4 11.8698 40.8 

40 0.1887 × 10-4 0.1608 × 10-4 11.8838 69.1 

30 0.1142 × 10-4 0.1019 × 10-4 11.9030 181.5 

20 0.4926 × 10-5 0.4709 × 10-5 11.9224 917.1 

10 0.9770 × 10-6 0.1045 × 10-5 11.9366 20838.0 

0 0.4460 × 10-6 0.4461 × 10-6 11.9418 107214.0 

 

 The energetic barrier to reversal of the magnetisation (Ueff) as a function of temperature 

was computed for three angles of the twist and the results are given in Figure 4.12. Up to a 

temperature of 25 K, for each angle, the Ueff barrier is effectively 0 cm-1.  For φ = 60° there is 

an increase in the Ueff at 25 K to the energy of the first excited KD (KD2) At about 70 K the 

second excited KD (KD3) begins to contribute and raises the barrier, but it is unable to saturate 
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within the temperature range. Comparing this with φ = 30°, the same rise at 25 K is observed 

but KD3 begins to contribute at a lower temperature and saturates at around 200 K. Finally, at 

the eclipsed conformation φ = 0°, the rise at 25 K is associated with the saturation of KD3, 

rather than with KD2. Hence, proceeding from a staggered to an eclipsed geometry also 

quenches the Orbach relaxation via KD2 and favours tunnelling through KD3, which is 

characterised by an MJ = ±1/2, effectively raising the barrier of Ueff for lower temperatures. 

Interestingly, the energy of the KD (characterised by MJ = ±1/2) is a function of the strength of 

π donation of the axial ligand. 

 

 

Figure 4.12. The variation of Ueff with temperature as a function of the trigonal distortion, 

φ. The percentage contribution of the five lowest energy S=3/2 Kramer’s Doublets are 

also plotted. Calculations are performed using the low symmetry parameterisation of 

1, ζ = 475 cm-1, and kiso = 0.99. 
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4.1.3.4.3 Future design considerations for enhancing the single-ion molecular 

magnetic properties of linear complexes 

There are a few design principles to enhance the SiMM properties of linear complexes: 

1. Increase the symmetry. The low-symmetry components of 1 arise from the crystal 

field, a perturbation that is hard to alter chemically. However, by twisting the two 

approximate trigonal ligands so that they eclipse one another removing the off-

diagonal matrix elements. It would also be possible to use a ligand with a different local 

symmetry. 

2. Diminish the crystal field. It is possible to effectively weaken the crystal field through 

changing the symmetry of the ligand field, but it is also possible to diminish its strength 

somewhat  by moving the source of the crystal-field perturbations further away. Since 

the off-diagonal components are a function of the distance of the Si and O atoms, 

moving them further away would reduce their electrostatic contribution. 

3. Alter the chemistry. Use a more donating ligand with either greater π or σ donation 

to increase the axiality of the system. Getting the balance of donating strength against 

reducing power is key to stabilising a linear cobalt(II) complex. 

 

Kestrel has shown how low symmetry components of the ligand field, precisely the coupling 

of dxz and dyz to dxy and dx²–y², can be reduced by removing the trigonal distortion and moving 

towards an eclipsed structure. However, the lowering of the symmetry caused by these off-

diagonal matrix elements can also be mitigated by separating the energies of dz², dxz, and dyz 

from dxy and dx²–y². Hence, stronger π-donation or σ-donation can further quench the QTM in 

the ground state KD. This is a considerable chemical challenge though, as the synthesis of 1 

required the reduction power of the carbanion to be diminished by including electron 

withdrawing alkoxides.  
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4.1.4 Complex 2 

Complex 2 does not exhibit SiMM behaviour. It has an approximate anti-prismatic structure 

with a trigonal elongation (θ = 51.9°) and the coordinating pyrazolyl ligands are arranged in a 

staggered conformation. Trigonal D3 structures have been of interest due to their large ZFS. 

However, the anti-prismatic conformation (staggered, φ = 60°) typically only exhibits SiMM 

behaviour in the presence of an applied static dc field.121 In prismatic conformations (eclipsed, 

φ = 0°) the reported Ueff, obtained by fitting the kinetic magnetic relaxation time, is substantially 

smaller than the experimentally determined or predicted ZFS of the ground state energy 

levels.139  

Complex 2 was chosen for analysis because it is homoleptic and extensively 

characterised spectroscopically. Exploring the effect that geometry and metal-ligand bonding 

of 2 on its potential SiMM behaviour will hopefully aid in the future design of six-coordinate 

trigonal cobalt(II) complexes to maximise their SiMM behaviour. The analysis establishes an 

electronic structure derived from the available experimental data and then looks at what effect 

geometric distortions have on the axiality of the complex. Then the metal-ligand bonding of 

the asymmetric π-bonding pyrazole ligand is probed to maximise axiality within the ideal 

geometry. 

 

4.1.4.1 Electronic structure from experiment, Kestrel analysis 

4.1.4.1.1 Fitting the reported experimental data 

Before any ligand-field analysis of the SiMM behaviour can be carried out, reproduction of the 

available experimental data must first be accounted for. Complex 2 is characterised 

experimentally by a d-d spectrum with three spin-allowed bands centred at 11100 cm-1 (4T1g 

→ 4T2g), 19400 cm-1 (4T1g → 4A2g), and 21800 cm-1 (4T1g → 4T1g).126,127 The spectrum also 

features two formally spin-forbidden bands at 9100 cm-1 (4T1g → 2Eg), and 15600 cm-1 (4T1g → 

2T2g, 2T2g). The EPR g-factors are known experimentally with values of g⊥ = 1.02 and g|| = 

8.48.128 Likewise, the energetic splitting of the ground state and first excited state KDs is 

determined to be 197 cm-1.123 The isotropic χMT variation with temperature has also been 

characterised experimentally by SQUID magnetic measurements.121 

The strategy used to fit the available experimental data was to first gain an estimation 

of the approximate ligand-field splitting and interelectronic repulsion parameters (B and C) by 

reproducing the d-d band energies. Keeping the ligand-field splitting and B and C fixed, the 
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individual metal-ligand bonding eλ parameters, spin-orbit coupling, and orbital angular moment 

quenching (kiso) were refined against the available magnetic data. Since 2 is homoleptic, each 

pyrazole ligand share a common eσ and out-of-plane eπy parameter (see the methodology, 

section 4.1.2).  

The ligand-field analysis of 2 began by considering, as a first approximation, an 

octahedral crystal field to reproduce the experimental d-d band energies and spin state 

assignments. In an octahedral crystal field, the experimental d-d spectrum would be 

characterised by an 10Dq = Δo = 11000 cm-1 and B = 830 cm-1 (C/B = 4.1). On its own, the d-

d spectrum does not provide enough detail to fit both eσ and eπy to the Δo value as they are 

linearly related by the relationship Δo = 3eσ – 2eπx – 2eπy, where eπx = 0 cm-1. However, this 

does allow the interelectronic repulsion parameters to be fixed and does provide a useful 

constraint on the values of eσ and eπy. 

Having established approximate values of the ligand-field splitting, B, and C, further 

refinement of the parameter values was carried out by reproducing the magnetic properties of 

2. For the calculation of magnetic properties, it is important to use a realistic structure and as 

such the x-ray crystal structure was used.121 The magnetic properties were sensitive to the 

values of eπy, ζ, and kiso but insensitive to changes in eσ. Keeping B and C fixed, eσ was linearly 

linked to the value of eπy by the relationship eσ = 1/3 (Δo + 2eπy). The axial EPR g-factors (g|| > 

g⊥) were reproduced using a positive eπy parameter value, assigning the pyrazole ligands as 

a π donor. The ratio of g|| : g⊥ was controlled by the magnitude of the eπy parameter value. 

Variation of kiso, ζ, and eπy found a fit to the EPR g-factors using the parameter values kiso = 

0.91, ζ = 440 cm-1, and eπy = 410 cm-1. The experimental d-d spectrum was still well 

reproduced with an eσ = 3900 cm-1. This resulted in final EPR g-factors of g|| = 8.54 and g⊥ = 

1.021, 1.028, in excellent agreement with the reported experimental values. The same 

parameter set predicted values of χT of 2.36 cm3 K mol-1 and 3.02 cm3 K mol-1 at 1.8 K and 

300 K, which agree with the reported experimental values of 2.16 cm3 K mol-1 and 3.08 cm3 K 

mol-1, respectively.121 The lower value observed at 1.8 K is likely a result of saturation effects 

not modelled with in Kestrel. The simulated variation of the isotropic χT with temperature is 

given in Figure 4.13. Finally the reported ZFS of 197 cm-1 is reproduced with a Kestrel 

calculated ZFS of 195.7 cm-1. 
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Figure 4.13. The Kestrel calculated isotropic χT variation with temperature for the best 

fit parameters of complex 2. 

 

4.1.4.1.2 Analysis of the ligand-field splitting 

The resulting ligand field from fitting the experimental data is shown in Figure 4.14. The 

calculated ligand-field splitting has an orbital ordering of dz² < dx²–y², dxy << dxz, dyz. The dz² 

orbital is aligned towards the apical BH group of the Tp ligand. The higher energy dxz and dyz 

orbitals are aligned so that their lobes are directed towards the σ bonding interactions of the 

coordinating ligands; the lower lying dx²–y² and dxy orbitals are aligned so that their lobes are 

interacting with the π interactions of the pyrazolyl ligands. This rotational feature is due to 

mixing that occurs between the free-ion dxz and dyz orbitals and the dxy and dx²–y² 
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Figure 4.14. The Kestrel calculated ligand-field splitting diagram and Kestrel rendered 

orbitals for complex 2. 

 

4.1.4.1.3 Analysis of the d-d transition energies 

The configurational assignment of the spin-allowed and spin-forbidden bands in Kestrel allow 

for the relative oscillator strengths to be rationalised. The computed non-relativistic energies 

(in the absence of spin-orbit coupling) and their configurational composition are presented in 

Table 4.4.  

The ground state 4T1g is split into three separate four-fold degenerate levels of 0.0, 8.0, 

and 1751.3 cm-1. The principal configurational character is characterised by single electronic 

occupations of either dz², dx²–y², or dxy, and single occupation of both the dxz and dyz orbitals. 

The higher lying component at 1751.3 cm-1 is a result of the double occupation of the dx²–y² and 

dxy orbitals. The double occupation of orbitals lying in the same plane will be energetically 

unstable with respect to the other two components at 0.0 or 8.0 cm-1 where the dz² and either 

the dx²–y² or dxy is doubly occupied. Hence the small energy gap between the dx²–y² and dxy 

orbitals is reflected in the small energy difference (8.0 cm-1) between the ground state and first 

excited state KDs, where the dx²–y² or dxy orbital is singly occupied. 
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The excited quartet bands at 11000 cm-1 and 21800 cm-1 (reported with extinction 

coefficients of  ε = 3.4 M-1 cm-1 and 13.4 M-1 cm-1, respectively112) are comprised of 

configurations where an electron has been excited from either the dz², dx²–y², or dxy into either 

the dxz or dyz orbitals. The 4T1g → 4A2g band at 19400 cm-1 corresponds to a double electron 

jump from the doubly occupied orbitals where the final configuration has the dz², dx²–y², and dxy 

as all singly occupied, and the dxz and dyz orbitals as both doubly occupied. This configuration 

has only a single spatial arrangement and the double electron jump explains the relative 

weakness of the band (ε = 1.3 M-1 cm-1). However, the band has substantial admixture from 

the (dz²)1(dx²–y²)2(dxy)1(dxz)1(dyz)2 (15.3%) and (dz²)1(dx²–y²)1(dxy)2(dxz)2(dyz)1 (18.3%) 

configurations, which corresponds to one-electron jumps from the quartet levels at 0.0 and 8.0 

cm-1 respectively. This configurational mixing contributes to the relative oscillator strength of 

the band.  

Both the spin-forbidden bands 4T1g → 2Eg and 4T1g → 2T2g, 2T2g are also reproduced. 

The former is made up of approximately 50:50 (dz²)2(dx²–y²)2(dxy)2(dxz)1(dyz)0 and (dz²)2(dx²–

y²)2(dxy)2(dxz)0(dyz)1. The latter band has a more complicated electronic configurational 

occupation, which is comprised of configurations where a single unpaired electron occupies 

the dz², dx²–y², or dxy set of orbitals. The higher lying dxz and dyz set are either both singly 

occupied, or one is doubly occupied whilst the other is vacant. Hence, the 4T1g → 2T2g, 2T2 

band is preferentially destabilised by greater interelectronic repulsion. The bands are also very 

weak in the experimental spectrum (ε = 0.4 and 0.1 cm-1 M-1, respectively) and this is due a 

small admixture of quartet spin-allowed character (1%) when spin-orbit coupling is included.  
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Table 4.4. Reported experimental and Kestrel calculated non-relativistic transition 

energies (cm-1).126,127 The largest configurational contributions are included which 

together account for 99% of the configurational character of the electronic band. The 

configurational nomenclature 22111 = (dz²)2(dx²–y²)2(dxy)1(dxz)1(dyz)1. 

Assignment Energy 

(experimental)126 

Energy (Kestrel) Configuration 

4T1g 0.0 0.0 94.8 % 22111 
2.8 % 21121 
1.4 % 11221 

  8.0 95.0 % 21211 
3.0 % 21112 
1.1 % 12121 

  1751.3 91.1 % 12211 

4.7 % 12112 

4.2 % 11221 
4T1g → 2Eg 9100 7061.1 95.1 % 22210 

  7094.9 95.1 % 22201 
4T1g → 4T2g 11000 9913.7 55.4 % 21121 

24.0 % 12112 

20.5 % 11221 

  9998.0 48.7 % 21112 

32.4 % 12121 

18.8 % 11212 

  10517.7 58.0 % 11212 

41.7 % 12121 
4T1g → 2T2g, 2T2g 15600 15533.3 (see text)  

  15564.0  
  16094.5  
  16515.8  
  16522.0  
  16615.7  

4T1g → 4A2g 19400 (4) 20333.7 63.4 % 11122 

18.3 % 11221 

15.3 % 12112 

2.9 %   12211 
4T1g → 4T1g 21800 (4) 21662.6 41.0 % 21121 

35.8 % 12112 

17.3 % 11221 

4.9 %   22111 

  (4) 21684.8 48.0 % 21112 

24.8 % 12121 

22.2 % 11212 

  (4) 22214.4 38.1 % 11221 

36.0 % 11122 

19.2 % 12112 

5.6 %   12211 
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4.1.4.2 Enhancing the single-ion molecular magnetic properties 

 

Figure 4.15. The geometric distortions φ, θ, and dθ of complex 2.  

 

Theoretical work by Zhang et al. showed, using ab initio calculations, that if the structure were 

distorted from a staggered conformation to an eclipsed conformation, then the axial nature of 

the molecule is enhanced.121 Inspired by this analysis, Kestrel was used to analyse the effects 

that geometry and metal-ligand bonding both play in the single-ion molecular magnetic 

properties of complex 2. Three geometric distortions (Figure 4.15) were investigated. The 

angle φ describes the “twist” angle made between the two tris(pyrazolyl)borate ligands, where 
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φ = 60° describes a staggered conformation (D3d) and φ = 0° describes the eclipsed 

conformation (D3h). The second angle θ describes the trigonal distortion, where θ < 54.74° for 

trigonal elongation, or θ > 54.74° for trigonal compression. The third angle, dθ describes the 

distortion angle for the tris(pyazolyl)borate ligands about the octahedral angle (θ = 54.74°). 

 

4.1.4.2.1 The single-ion molecular magnetic properties of complex 2 

The relative energies and g-factors of the four lowest lying KDs were calculated in Kestrel and 

the results are shown in Table 4.5. Unlike in complex 1, the ground state KD (KD1) exhibits the 

fastest rate for QTM and has the largest gx and gy components of the KDs. This fast rate will 

be responsible for a large source of demagnetistion and hence explains why complex 2 does 

not exhibit SiMM behaviour in the absence of an external dc field. The time taken for QTM to 

occur within KD1, KD2, and KD3 are two orders of magnitude faster than the time taken for 

QTM to occur in KD4. Therefore, the Orbach relaxation mechanism is likely to occur via either 

KD1, KD2, or KD3. 

 

Table 4.5. The Kestrel calculated energies (cm-1), g-factors, and time taken for quantum 

tunnelling of the magnetisation to occur for the four lowest lying Kramer’s doublets of 

complex 2. 

KD MJ Energy  gx gy gz τQTM (s) 

KD1 ±7/2 0.0 1.0279 1.0214 8.5422 1.5 × 10-8 

KD2 ±5/2 195.7 0.5235 0.7238 4.4610 2.0 × 10-8 

KD3 ±3/2 415.9 0.0347 0.1906 0.6747 6.7 × 10-8 

KD4 ±1/2 674.4 0.0556 0.0829 3.2956 1.2 × 10-6 

 

4.1.4.2.2 The single-ion molecular magnetic properties of complex 2 as a 

function of φ 

The g-factors and time taken for τQTM were calculated for KD1 in Kestrel at different angles of 

φ and the results are shown in Table 4.6. Like with complex 1, there is a rapid increase in the 

time taken for QTM to occur as the molecule is distorted towards the eclipsed conformation. 

This results in a seven-fold increase in the time taken for QTM to occur in KD1 of the eclipsed 

conformation. This explains the observation that eclipsed structures are able to exhibit SiMM 

behaviour in the absence of an applied external dc field.140–142 The source of axiality can be 

rationalised by comparing the symmetries of D3h (eclipsed) to D3d (staggered), where the off-
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diagonal ligand-field matrix elements connecting the dxz or dyz to either dxy or dx²–y² vanishes in 

the former. 

 

Table 4.6. The Kestrel calculated g-factors and time taken for quantum tunnelling of the 

magnetisation to occur in the ground state Kramer’s doublet (KD1) of complex 2 as a 

function of the angle φ. 

φ (°) gx
 gy gz τQTM (s) 

60 1.0279 1.0214 8.5422 1.5 × 10-8 

50 0.8930 0.8876 8.6456 2.0 × 10-8 

40 0.6062 0.6030 8.8655 4.4 × 10-8 

30 0.3376 0.3363 9.1038 1.4 × 10-7 

20 0.1479 0.1476 9.3433 7.7 × 10-7 

10 0.0369 0.0369 9.5501 1.3 × 10-5 

0 0.1427 × 10-3 0.1490 × 10-3 9.6360 0.81 

 

The effective energy barrier (Ueff) was calculated for the select angles of φ: at 60°, 30°, 

and 0°, and the results are presented in Figure 4.16. Starting with the x-ray crystal structure 

(φ = 60°), the process of demagnetisation occurs primarily through KD1, due to the fast rate of 

QTM calculated in Table 4.5. Even up to a temperature of 300 K, KD1 contributes 

approximately 90 % to the value of Ueff and KD2 is a minor contribution, resulting in a Ueff of ≈ 

50 cm-1. This is consistent with the Ueff values extracted using Arrhenius’ law by Zhang et al. 

(60.3 cm-1 and 51.5 cm-1) under an applied dc field.121 The authors attributed this lower Ueff to 

Raman processes. The results presented in this work suggest that even if Raman processes 

were not involved, the Orbach relaxation energy barrier would still be smaller than the zero-

field splitting energy. 
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Figure 4.16. The variation the calculated effective barrier of magnetisation against 

temperature at select angles of φ for complex 2. 

 

However, as the angle of φ decreases, the contribution from KD2 and KD3 increase 

and the Ueff energy barrier rises. In the eclipsed structure (φ = 0°), a sharp increase in Ueff is 

predicted at approximately 25 K, where the barrier plateaus. At around 100 K, the Orbach 

relaxation via KD3 begins to contribute and slowly raises the energy barrier as the temperature 

increases. 
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4.1.4.2.3 The single-ion molecular magnetic properties of the eclipsed structure 

of complex 2 as a function of θ 

Having established that the eclipsed structure (φ = 0°) exhibits potential SiMM behaviour, the 

value of Ueff was calculated at three angles of θ using the eclipsed structure: 35°, 45°, and 

55°. The angle of θ in the crystal structure is approximately 51.9°. The results are presented 

in Figure 4.17.  
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Figure 4.17. The variation the calculated effective barrier of magnetisation against 

temperature at select angles of θ for the eclipsed structure of complex 2 (φ = 0°). 

 

The calculated properties are less sensitive to changes in θ than they were for changes 

in φ. In general, the low temperature behaviour does not change substantially as a function of 

of θ. However, at temperatures of 100 K and above, the contribution from KD3 to the height of 

the barrier increases as the angle of θ decreases from 55° to 35°. 
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4.1.4.2.4 The single-ion molecular magnetic properties of the eclipsed structure 

of complex 2 as a function of dθ 

Many eclipsed prismatic structures are heteroleptic, which exhibit deviations away from a 

symmetrical trigonal compression/elongation. Hence, different angles of θ are common for the 

different ligand sets. The angle dθ was varied in the eclipsed structure of complex 2 to 

investigate the effect that this distortion has on the time taken for QTM to occur within KD1. 

The results are presented in Figure 4.18. Small deviations can have a pronounced effect on 

the time taken for QTM to occur. For example, a dθ of 1.5° results in the time taken for QTM 

in the ground state KD to occur at an order of magnitude faster. This is an important factor in 

the design of eclipsed structures. 

 

 

Figure 4.18. The logarithm of the time taken for quantum tunnelling of magnetisation in 

complex 2 for the eclipsed structure (φ = 0°). 
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4.1.4.2.5 The effect of metal-ligand bonding on the axiality of the ground state 

Kramer’s doublet 

Another aspect of the electronic structure is the metal-ligand bonding, which is not always 

easy to probe using ab initio methods. During the Kestrel fitting to the experimental data, it 

was found that the calculated EPR g-factors of the ground state KD were very sensitive to the 

π bonding of the pyrazolyl ligands. 

 

 

Figure 4.19. The effect that the eπy parameter has on the EPR g-factors and the energy 

of the first three Kramer’s doublets calculated using the x-ray crystal structure (anti-

prismatic). The dotted line is given for eπy = –160 cm-1 and corresponds to II. The right 

of the figure shows the configurational interactions under the effect of spin-orbit 

coupling (ζ = 440 cm-1) for each region. 

 

The variation of the g-factors and the energies of the low lying KDs in the x-ray 

structure (φ = 60°) from changes in the eπy parameter are shown in Figure 4.19. Three unique 

electronic structures arise in the variation of eπy and are labelled as regions I, II, and III. At the 

spectroscopically determined eπy = 410 cm-1, the EPR g-factors are described by region III. 
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Due to spin-orbit coupling, the configurations (dz²)2(dx²–y²)2(dxy)1(dxz)1(dyz)1 and (dz²)2(dx²–

y²)1(dxy)2(dxz)1(dyz)1 mix, comprising 47.1 % and 45.8 % configurational character respectively 

of KD1. As the π-donation strength increases, the axiality of the ground state KDs also 

increases. This is because the energy separation of the dx²–y² and dxy orbitals is reduced. 

Hence, the QTM in the ground state can be modified by changing the π-donor capability of 

the pyrazolyl ligands.  

As the π-donation weakens (or π-acceptance increases) in the x-ray structure, the 

axiality of the ground state is further diminished. At eπy = −160 cm-1 (denoted by the dotted line 

II in Figure 4.19) an energetic crossing of KD2 and KD3 is observed. This crossing is a result 

of change in the d-orbital splitting, which is now dx²–y², dxy < dz² << dxz, dyz. The ground state is 

represented by a three-way spin-orbit coupled configuration of (dx²–y²)2(dxy)2(dz²)1(dxz)1(dyz)1, 

(dx²–y²)2(dxy)1(dz²)2(dxz)1(dyz)1, and (dx²–y²)1(dxy)2(dz²)2(dxz)1(dyz)1. This three-way coupled 

configuration exhibits the largest ZFS and is characterised by rhombic g-values. Hence, a 

large ZFS does not necessarily always correspond to an axial wavefunction for an S=3/2 

system as rhombicity also contributes to the magnitude of the ZFS. Strong π-acceptance 

(given by region I) resulted in an essentially pure ground state configuration of (dx²–

y²)2(dxy)2(dz²)1(dxz)1(dyz)1 where both dx²–y² and dxy orbitals are doubly occupied. It is evident that 

the π bonding controls the electronic configuration of the ground state and the resulting 

axiality. Ideally, increasing the π donation strength results in a greater axiality of the system 

by energetically separating the dx²–y² and dxy orbitals from the dz² orbital. This results in a ground 

state spin-orbit coupled configuration where one of the unpaired electrons is in spatial 

superposition between the dx²–y² and dxy orbitals. 

The sensitivity of the time taken for QTM to occur in the ground as a function of the 

pyrazolyl π bonding is also dependent on the geometry. In the x-ray crystal structure, the 

values of log10(τQTM) = −7.8 and −7.0 for eπy = 410 cm-1 and eπy = 1000 cm-1 respectively. Even 

with a large change in π bonding strength, QTM still dominates the ground state KD. Contrast 

this with the results from the ideal eclipsed structure where log10(τQTM) = –0.1 and 2.5 for eπy 

= 410 cm-1 and eπy = 1000 cm-1 respectively. Hence, suppression of QTM in the ground state 

KD is achieved with a combination of an eclipsed geometric structure coupled with an effective 

increase in π-donation. 
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4.1.4.2.6 Future design considerations for trigonal D3 complexes 

This analysis provides simple qualitative design principles, which can be utilised to enhance 

the SiMM character of S=3/2 trigonal D3 complexes. The findings from Kestrel are summarised 

as follows: 

1. Enforce a prismatic structure. This is the most important and dramatic 

enhancement in both the calculated Ueff and τQTM in the ground state. An eclipsed 

structure removes off-diagonal low symmetry components of the ligand field. 

2. Maximise π donation and avoid π acceptance. Choose ligands that are strong 

asymmetric π donors and do not have access to low lying π accepting orbitals. The 

π bonding is key to producing the correct electronic configuration mixing in the 

ground state. 

3. Enforce the dxy and dx²–y² orbitals towards degeneracy. This is coupled with 

ensuring that the π interaction is perpendicular to the approximate C2 axis (the Co–

B vector) and tweaking the geometry to push the system towards axiality. 

4. Enhance the trigonal elongation. By enhancing the trigonal elongation, the 

axiality of the ligand field is also enhanced. The effect of which is not as dramatic 

however and is suggested to not be the primary focus in these systems. However, 

what is a major contribution is a symmetrical trigonal elongation (see below). 

5. Use a symmetrical coordination environment. Kestrel suggests that small 

deviations in the trigonal elongation/compression between the ligands above and 

below the equatorial plane have a dramatic effect on the time taken for QTM to 

occur in the ground state. This is typically a result of using different ligand sets, 

which coordinate above and below the plane. Ideally, use of the same ligands, or 

very similar ligands, is required to ensure a more equal trigonal 

elongation/compression. 

 

  



175 
 

4.1.5 Complex 3 

Complex 3 is an example of an axially distorted tetrahedral cobalt(II) complex. It features the 

largest energy barrier (Ueff = 230 cm-1) of any high-spin tetrahedral cobalt(II) complex in the 

literature.143 These types of complexes make excellent candidates for SiMMs due to their 

range of geometries and coordinating ligands. Hence, using 3 as a basis, the correlation of 

axiality with geometry and metal-ligand bonding was explored using Kestrel. 

 

4.1.5.1 Electronic structure from experiment, Kestrel analysis 

Complex 3, unlike complexes 1 and 2, has already been analysed using a ligand-field model 

with eλ parameters. That ligand-field analysis, carried out by Rechkemmer et al., reproduced 

the experimental d-d band energies and the experimental magnitude of the ZFS (2D = 230 

cm-1) of complex 3.124 The complex has an MCD spectrum (2 T, 1.5 K) with two d-d spin-

allowed bands centred at 7000 cm-1 (4A2 → 4T1(F)) and 18000 cm-1 (4A2 → 4T1(P)), and a further 

spin-forbidden band centred at approximately 16500 cm-1. The ground state g-factors are 

reported as g⊥ = 0.0 and g|| = 9.1 ± 0.1. The isotropic χT variation with temperature has also 

been characterised experimentally by static dc magnetic measurements. 

Rechkemmer et al. reported best fits to the d-d transition energies and ZFS using 

parameter values of eσ = 6410 cm-1, eπy = 1841 cm-1, B = 653 cm-1, C = 2942 cm-1, and ζ = 

446 cm-1.124 For calculating the SiMM properties of complex 3 the parameter set requires a 

realistic value of kiso. 

 

4.1.5.1.1 Fitting of the reported magnetic data 

The g-factors for the ground state KD and the reported χT at room temperature (3.14 cm3 K 

mol-1) were fitted using the x-ray crystal structure and reported best fit parameters (vide supra) 

in Kestrel. The value of kiso was allowed to vary from 0.0 to 1.0 and an optimised value was 

found using a value of kiso = 0.82. This gave calculated g-factors of g|| = 9.14 and g⊥ = 0.6 × 

10-2 and a χT of 3.124 cm3 K mol-1 (300 K) in agreement with the reported values. The 

calculated variation of χT with temperature is presented in Figure 4.20 which faithfully 

reproduces the reported experimental χT variation.124 Kestrel predicts that the χT value 

remains relatively constant until 130 K when the χT value steadily decreases down to a value 

of 2.621 cm3 K mol-1 at 2 K. 
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Figure 4.20. The Kestrel calculated isotropic χT variation with temperature for the best 

fit parameters of complex 3. The reported experimental data (red) supplied by the 

authors.124 

 

4.1.5.1.2 Analysis of the ligand-field splitting 

The ligand-field parameters reported by Rechkemmer et al. were analysed using Kestrel. 

Using the x-ray crystal structure, Kestrel calculated a d-orbital splitting of dxy < dx²–y² < dz² < dyz 

< dxz, as shown in Figure 4.21.124 The dxz and dyz orbitals lobes, in the chosen molecular frame, 

point towards the coordinating nitrogen atoms and their energy is a measure of the σ bonding 

strength of the ligands.   
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Figure 4.21. The Kestrel calculated ligand-field splitting and orbital projections 

rendered using Kestrel of complex 3. 

 

4.1.5.1.3 Analysis of the d-d transition energies 

Using the ligand-field parameters reported by Rechkemmer et al., excellent reproduction of 

the d-d transition energies was obtained.124 The final configurational compositions and 

relevant excitation energies in the absence of spin-orbit coupling are given in Table 4.7. 

Upon inspection, the electronic assignments of the excited states differ from those 

reported by Rechkemmer et al.124 Specifically, the order of the 4B1 → 4A2 and 4B1 → 4E 

assignments around 7000 cm-1 and 18000 cm-1 are reversed. The assignments presented by 

the authors do not come from their ligand-field analysis, but instead they use the assignments 

of the electronic states calculated from their ab initio calculations (Supplementary Table 3 of 
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Rechkemmer et al.). Indeed, if the reported ligand-field parameters derived from AILFT by 

Rechkemmer et al. is used (eσ = 5226 cm-1, eπy = 1473 cm-1, B = 1031 cm-1, and C = 4151 cm-

1) then Kestrel predicts the same excited state ordering that is presented in their work. Future 

work to probe the correct excited state ordering by fitting the reported experimental MCD 

spectrum with Kestrel could provide further insight into the spectroscopy of complex 3. 

However, this is beyond the scope of the present analysis. All that is required to probe the 

SiMM properties of complex 3 is a good representation of the electronic structure of the ground 

and low-lying excited states. Given the good reproduction of the magnetic data in section 

4.1.5.1.1, the current parameterisation is suitable. 

 

Table 4.7. The energies (cm-1) of the many-electron eigenstates using the best fit ligand-

field parameters of Rechkemmer et al. to the experimental MCD spectrum in the 

absence of spin-orbit coupling.124 

Assignment Energy 

(experiment)124 

Energy 

(Kestrel) 

Configuration 

4B1 0 0.0 99.9 % 21211 
4B1 → 4B2 Unknown 261.3 80.6 % 12211 

19.4 % 22111 
4B1 → 4A2 6211 6294.9 70.1 % 22111 

17.2 % 12211 

9.0 % 11122 

2.5 % 12121 

1.2 % 21112 
4B1 → 4E 7236 7229.4 99.1 % 21121 

  7850.3 79.5 % 12121 

14.4 % 21112 

2.6 % 11212 

2.3 % 22111 

6.0 % 11122 
4B1 → 4E 8217 8621.4 76.6 % 12112 

23.2% 11221 

  8901.9 65.6 % 11212 

32.7 % 21112 

1.2 % 12121 
4B1 → 4E 16156 16301.7 42.8 % 22111 

33.3 % 21202 

12.3 % 12211 

8.9 % 21220 

1.3 % 01222 
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Assignment Energy 

(experiment)124 

Energy 

(Kestrel) 

Configuration 

 16811 16659.6 66.6 % 12202 

23.6 % 22120 

6.9 % 22102 

1.7 % 10222 
4B1 → 4E 17952 17900.3 76.0 % 11221 

23.2 % 12112 

  18277.3 51.4 % 21112 

31.6 % 11212 

16.7 % 12121 
4B1 → 4A2 18911 19592.0 90.1 % 11122 

8.0 % 22111 

1.7 % 12211 

 

In the absence of spin-orbit coupling, the ground state 4B1 multiplet is 99.9% (dxy)2(dx²–

y²)1(dz²)2(dyz)1(dxz)1. The ground state is therefore a non-Aufbau state. Under the action of spin-

orbit coupling (ζ = 446 cm-1), the ground state KD configurational occupation is comprised of 

64.1% (dxy)2(dx²–y²)1(dz²)2(dyz)1(dxz)1 and 28.8% (dxy)1(dx²–y²)2(dz²)2(dyz)1(dxz)1. Spin-orbit coupling 

mixes configurations where either the dxy or dx²–y² is singly occupied together. 

Kestrel assigns the Aufbau configuration, (dxy)2(dx²–y²)2(dz²)1(dyz)1(dxz)1 as being mixed 

into the 1st and 2nd excited states (at 261 cm-1 and 6294.9 cm-1, respectively). In the presence 

of spin-orbit coupling, Kestrel also shows a small admixture of quartet character (2%) into the 

two resolved spin-forbidden bands in the experimental MCD spectrum. 
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4.1.5.2 Enhancing the single-ion molecular magnetic properties 

 

Figure 4.22. The geometric distortions θ, φ, and ψ of complex 3. 

 

Complex 3 features three geometric distortions: the axial distortion θ, the cubic twist φ, and 

the dihedral angle ψ. The angular geometric parameters are illustrated in Figure 4.22. The 

angle θ is defined as the angle between the coordinating atom and the coordinate z-axis. This 

angle is related to the “bite-angle”, which is defined as 2θ. A value of θ = 54.75° is the angle 

found in an ideal tetrahedral system. The cubic twist φ, like that in 1 and 2, is the dihedral 

angle that the ligands above the equatorial plane make with the ligands below the equatorial 

plane. The final angle ψ defines the local π-bonding direction of the ligand. ψ is defined as the 

projection of the ligand’s local x-direction (which is presumed non π-bonding) on to the 

coordinate z-axis. Hence, the π-bonding occurs perpendicular to this direction. Note, as 

described in the methodology, the adjacent carbon atom to the coordinating nitrogen in the 

phenyl ring is used to determine the local x-direction of the ligand.  

The average values of θ, φ, and ψ in the x-ray structure are 40.3°, 85.3°, and 2.6°. 

When compared to the ideal tetrahedral angles (54.8°, 90.0°, and 0.0°), complex 3 is an axially 

elongated tetrahedron belonging to the approximate D2d point group. The largest deviation 

from the ideal tetrahedron is observed in the deformation of the θ angle. In this section, the 

effect that geometric distortions and changes in metal-ligand bonding have on the SiMM 

behaviour of complex 3 is investigated using Kestrel. 
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4.1.5.2.1 The single-ion molecular magnetic properties of complex 3 

Under spin-orbit coupling, the 4B1 and 4B2 states at 0.0 and 261.3 cm-1 (see Table 4.7) split 

into four KDs. The energies, MJ projection, and g-factors of these four KDs are presented in 

Table 4.8. The calculated time taken for QTM to occur within the KDs is also tabulated. The 

ground state (KD1) exhibits the slowest rate of QTM, whereas KD3 exhibits the fastest rate of 

QTM. 

 

Table 4.8. The Kestrel calculated energies (cm-1), g-factors, and τQTM of the four lowest 

lying Kramer’s doublets of complex 3 using the best fit parameters reported by 

Rechkemmer et al. and a kiso = 0.82.124 

KD MJ Energy gx gy gz τQTM (s) 

KD1 ±7/2 0.0 0.6275 × 10-2 0.6378 × 10-2 9.1396 4.1 × 10-4 

KD2 ±5/2 234.3 2.8242 2.8145 4.4474 1.3 × 10-9 

KD3 ±3/2 626.1 2.7469 2.8919 0.4496 9.0 × 10-10 

KD4 ±1/2 911.0 0.0598 0.0504 2.8563 1.7 × 10-6 

 

The mechanism of relaxation was investigated by plotting the variation of the 

calculated Ueff against temperature. The variation is presented in Figure 4.23. In region I, T < 

20 K, the primary relaxation route is QTM within the ground state KD1 as no other KDs are 

thermally occupied. For region II, thermal occupation of the first excited KD2 raises the Ueff 

barrier to the ZFS value of 234.3 cm-1, where the height of the barrier plateaus. Within III, a 

small increase of the Ueff barrier is observed for increasing temperature. This coincides with 

thermal occupation of the second excited KD3. However, the anisotropy is sufficiently larger in 

KD2 than in KD3 such that the Orbach process dominates through the former. Contributions 

from KD4 are negligible given the relatively slow rate of QTM in KD4 compared to KD2 and 

KD3. 
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Figure 4.23. Theoretical predictions of Ueff and its contributions from the four lowest-

lying KDs as a function of temperature for complex 3 calculated using Kestrel. 

 

 Having established that Kestrel predicts the effective energetic barrier to occur via the 

first excited state KD (KD2), increasing the axiality and energetic height of KD2 should improve 

the SiMM characteristics of 3.  

 

4.1.5.2.2 The single-ion molecular magnetic properties of complex 3 as a 

function of θ 

The axial distortion (θ) is the largest source of geometric distortion in the x-ray crystal structure 

of complex 3 that this was the first parameter to be investigated. The angle θ was varied over 

the range of 30° to 60°. Kestrel predicted that the slowest time taken for QTM to occur was at 

an angle of 38°. At this angle, the magnitude of the ZFS splitting and the predicted value of gz 

reach their maximum (≈ 260 cm-1 and 1.5 ×10-2, respectively). Hence, the system has reached 

its most axial electronic structure at the optimum angle of θ = 38°, which is in agreement with 

the findings of ab initio calculations performed by Legendre et al.144 The average bite angle of 

complex 3 is 40.32°, which is close to the optimum angle. Yet, this small deviation results in a 

dramatic change in the SiMM behaviour of complex 3. 
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Figure 4.24. The variation in the calculated effective barrier of magnetisation (Ueff) of 

the angle defining the axial elongation in complex 3. 

 

To illustrate the sensitivity of the predicted SiMM behaviour with small changes in θ, 

the calculated Ueff is plotted against temperature for complex 3, as shown in Figure 4.24, for 

the angles of 36°, 38°, and 40°. The seemingly small deviation of approximately 2° from the 

optimum angle has a notable effect on the axiality of the low-lying excited states KD2 and KD3, 

and the magnitude of ZFS. Comparing the calculated Ueff dependence on temperature in 

Figure 4.24 for each angle of θ, the Orbach process is still dominated by the contribution from 

KD2, however a larger contribution from KD3 is observed for T > 100 K, effectively raising Ueff 
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further. However, the energy barrier is still primarily determined by the height of KD2. By 

optimising the angle of θ, the relative height of KD2 can be increased, resulting in a larger Ueff.  

Like with complex 1 and 2, the source of the axiality is reflected by the energy gap 

between the dxy and dx²–y² orbitals, where axiality increases as the two orbitals approach 

degeneracy. This insight has already been demonstrated by Legendre et al.144 Recall that the 

two lowest energy many-electron quartet states, in the absence of spin-orbit coupling, are 

comprised primarily of the configurations (dxy)2(dx²–y²)1(dz²)2(dyz)1(dxz)1 and (dxy)1(dx²–

y²)2(dz²)2(dyz)1(dxz)1 respectively. As a result, spin-orbit coupling mixes the occupations (dxy)2(dx²–

y²)1(dz²)2(dyz)1(dxz)1 and (dxy)1(dx²–y²)2(dz²)2(dyz)1(dxz)1 together into the ground state. This 

maximises the axiality by super-positioning the unpaired electron about the z-axis 

symmetrically between the dxy and dx²–y² orbitals. 

 

4.1.5.2.3 The single-ion molecular magnetic properties of complex 3 as a 

function of φ 

Next, the angle φ was varied between 0° and 90° using the ideal angle of θ = 38° At φ = 0° 

the molecular geometry is represented by a distorted square planar aligned in the zx plane; at 

φ = 90° the ligands above and below the equatorial plane are perpendicular to one another.  
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Figure 4.25. The energies of the one-electron orbitals as a function of the torsional 

distortion φ for complex 3, calculated using Kestrel. The axial distortion was set to the 

optimal angle of θ = 38° 

 

The results of the angle variation are shown in Figure 4.25. Unlike in complexes 1 and 

2 where the axiality of the system benefits from aligning the ligands above and below the 

equatorial plane, complex 3 instead loses axiality. This is due to an off-diagonal ❬ dz² | VLFT | 

dx²–y²❭ matrix element, which stabilises the dx²–y² orbital and destabilises the dz² orbital. This 

matrix element enhances the energy separation gap between the dxy and dx²–y² orbitals, which 

can be seen in Figure 4.25 as the angle of φ deviates from 90°.  

At θ = 38° and φ = 0°, representing the largest energy separation of dxy and dx²–y², τQTM 

= 7.1 × 10−10 s. However, the calculated time taken for QTM to occur within KD1 for complex 

3 when θ = 38° and φ = 90° is τQTM = 0.40 s. The optimisation of these two geometric distortions 

resulted in a τQTM that is three orders of magnitude larger compared to the τQTM calculated for 

the x-ray crystal structure. Indeed, the axiality of the ground state KD is more sensitive to the 

angle of θ than φ, but if the two distortions can be precisely controlled then QTM in the ground 

state could be suppressed. 
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4.1.5.2.4 The single-ion molecular magnetic properties of complex 3 as a 

function of ψ and eπσx 

Having explored the effect that the angles θ and φ have on the axiality of the system, the local 

dihedral angle ψ of the coordinating atoms was investigated. The angle ψ dictates the direction 

that the coordinating nitrogen atoms engage in π-bonding. The local π-bonding directions in 

3 are approximately aligned perpendicular to the plane formed by the coordinating nitrogen 

atom, the cobalt ion, and the coordinate z axis (Figure 4.26 (A)). As well as dictating the 

alignment of π-bonding, another possibly important effect thus far not discussed is the concept 

of ‘misdirected valency’. The average local angles of Cα–N–Co and S–N–Co are 115.1° and 

122.4° respectively and this has consequences for the orientation of the σ bond manifesting 

as projecting away from the direct Co–N bond, as shown in Figure 4.26 (B). 

The angle of ψ was varied between the angles of −90° and 90° using the optimised 

angles of θ = 38° and φ = 90°. The variation in the d-orbital energies with the dihedral angle 

ψ is shown in Figure 4.26 (C). The figure shows that the degeneracy of the dxy and dx²–y² orbitals 

is achieved for values of ψ = 0°. Infact, Kestrel predicts that under this geometry and 

parameterisation, the τQTM = 8354.5 s. Moving to ψ = 1° drops the predicted value of τQTM = 

0.1 s. Whether this level of control over the π bonding angle is realistic or not, these results 

show how sensitive the SiMM properties to small deviations in the geometric parameters. 

The variation in the misdirected valence parameter eπσx for the optimal ψ = 0°, as 

shown in Figure 4.26 (D), increases the energetic gap between dxy and dx²–y² regardless of 

being either a positive or negative quantity. A positive value of eπσx destabilises the dx²–y², dxz, 

and dyz orbitals whilst stabilising the dz², leaving the dxy orbital unperturbed. Indeed, the SiMM 

properties of this complex are very sensitive to small contributions of misdirected valence. 

Using the optimised angles of θ, φ, and ψ, small values of eπσx = 250 cm-1 and eπσx = 500 cm-

1 resulted in τQTM = 1.5 s and τQTM = 0.2 s. 
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Figure 4.26. The local x-frames superimposed on the coordinating atom for 3 against 

the coordinate axes (A). A schematic depiction of the misdirected valence arising from 

the geometric distortion about the coordinating atom (B). The variation in the d-orbital 

energies with ψ, where eπσx = 0 cm-1 (C). The variation in the d-orbital energies with 

values of eπσx for ψ = 0° (D). All other ligand-field parameters are their best fit values, 

and the ideal molecular geometry was used with an angle θ = 38° and φ = 90° (see 

methodology and text). 

 

The effects of misdirected valence on SiMM properties cannot be ignored. Strategies 

to quench these contributions involve either controlling the local coordination geometry of the 

coordinating atom, or by changing the direction of some of the misdirected valence with 

respect to ligands opposite one another. If, for example, the angle of for ψ the two coordinating 

atoms within the same plane are orientated in opposite directions (one with ψ = 0°, the other 

with ψ = 180°), then the contribution from misdirected valence can vanish. 
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4.1.5.2.5 The relationship between metal-ligand bonding and bite angle θ 

Having established optimum angles of θ = 38°, φ = 90°, and ψ = 0° for 3, the dependence of 

the optimum angle of θ (which was the most sensitive geometric feature) was investigated 

with respect to changes in the magnitudes of the σ and π bonding. The angle θ was varied for 

different values of eπy. The value of eσ was fixed at 6410 cm-1. The energies of the five d 

orbitals were then plotted as a function of the bite angle for different magnitudes of π-bonding 

ranging from 1500 cm-1 to 2250 cm-1, as shown in Figure 4.27.  

The relative energies and orbital ordering of the dxy, dx²–y², and dz² are sensitive to the 

angle θ. As the angle θ approaches the tetrahedral limit of θ = 54.75°, the orbitals arrange 

themselves into the higher and lower lying t2 and e set. The t2 and e set degeneracies are 

lifted due to the out-of-plane π-bonding. From Figure 4.27, the degeneracy of the dxy and dx²–

y² orbitals (where maximum axiality is achieved) occurs at larger angles of θ for larger values 

of eπy. This correlation results from the larger eπy value pushing up the energy of the dxy. 
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Figure 4.27. The variation in the one-electron d-orbital energies of the 3 as a function of 

the angle θ. The value of eσ was held constant at 6410 cm-1. The ideal angles φ = 90° 

and ψ = 0° were used. 

 

 Having established a correlation between the magnitude of eπy and the optimum angle 

of θ, further analysis was carried out to establish what correlation, if any, existed between the 

ratio of eπy/eσ and θ. The ratio eπy/eσ, and θ were simultaneously varied and the resulting ZFS 

is presented in Figure 4.28. The optimum angle of θ is linearly correlated with the ratio eπy/eσ. 

Hence, the optimum bite angle is a function of the relative π-donor strength. Indeed, for ligands 

with larger atomic radii (such as sulfur) and hence a larger bite angle, the ZFS is compensated 

for by increasing the π-donation and lowering the σ-donation. As an example, take the two x-

ray structural forms of [Co(SPh)4]2–,  [Co(SPh)4](PPh4)2 and [Co(SPh)4](NEt4)2 with θ = 48.9° 

and 59.5°, and an experimentally determined ZFS of 110 cm-1 and 22 cm-1, respectively.145,146 

The former compound has been analysed using CASSCF/NEVPT2 and a ligand-field fitting of 

the extracted AILFT one-electron ligand-field matrix found an eπy/eσ ≈ 0.33. Using the angle θ 

= 48.9°, the ZFS of 110 cm-1 is achieved with an eπy/eσ ≈ 0.35 in good agreement with the ab 



190 
 

initio derived ratio. Carrying this over to [Co(SPh)4](NEt)4 gives a calculated ZFS of 11 cm-1 

from an eπy/eσ = 0.35, in reasonable agreement with the reported ZFS of 22 cm-1. Of course, 

ZFS is susceptible to other effects, such as misdirected valence, which was found to be 

important in [Co(SPh)4]2–. Nonetheless, the optimum bite angle is a function of the eπy/eσ ratio 

and approximate knowledge of this ratio will allow for designing molecules with a suitable bite 

angle to maximise axiality. Analysing Figure 4.28 allows for an empirical linear relationship 

between the optimum θ angle and the eπy/eσ  bonding ratio to be approximated by the 

expression 

 ( )optimum 80 0.1875πy σθ e e= + . (4.7) 

It is important to note that although 3 exhibits a large ZFS magnitude of 230 cm-1, it is possible 

to reach a ZFS of up to 280 cm-1. 

 

  

Figure 4.28. The variation in the magnitude of zero-field splitting for changes in the 

angle θ and eπy/eσ for 3. Calculations were carried out using the ideal model system. 
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4.1.5.2.6 Future design considerations for tetrahedral complexes 

Analysis of 3 offered an expanded insight into the relationship between metal-ligand bonding 

and geometry in distorted tetrahedral complexes. The design principles that Kestrel 

recommends are: 

1. Larger π/σ ratios result in a larger optimal bite angle. The nature of the bonding 

between the metal and the ligand will dictate the optimal bite angle. Using the reported 

eπy:eσ ratio of Co–S of 0.35 and equation (4.7), the optimum angle is found to be 43°, 

much larger than the 38° found for complex 3. In general, ligands with heavier 

coordinating atoms are likely to be characterised by larger eπy:eσ ratios. 

2. Minimise misalignment of the out of plane π bonding directions. Ignoring the 

effects of misdirected valence, the SiMM properties were acutely sensitive to small 

deviations away from the ideal angle of ψ = 0°. It will be a challenge to synthesise 

systems with such accurate control over the local coordination geometry of the ligand. 

3. Minimise in-plane misdirected valence. The misdirected valence in-plane 

differentially interacts with the dz² and dx²–y² orbitals, preferentially stabilising one and 

destabilising the other. The dxy is unperturbed and hence the energy gap between the 

dxy and dx²–y² widens. Removing contributions from misdirected valence is a structural 

challenge and requires ensuring that the ligand can coordinate in an idealised way. On 

the other hand, misdirected valence directed in opposite directions can negate their 

effects. 

4. Prevent alignment of the ligands above and below the equatorial plane. Unlike in 

complexes 1 and 2, aligning the two ligands above and below the equatorial plane 

destroys the degeneracy of the dxy and dx²–y² orbitals. 
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4.1.6 Conclusion 

Kestrel has been used to analyse the SiMM properties of three structurally distinct homoleptic 

cobalt(II) complexes with large ZFS. In each complex, the ligand-field model was able to 

reproduce the available experimental data and provide insight into the origins of the axiality 

that effects the SiMM behaviour. For each system, various geometric and chemical bonding 

considerations were suggested to enhance the SiMM properties for that class of complex. 

 Complex 1 is a linear complex that exhibits maximal orbital angular momentum from 

its unique non-Aufbau ground state. The analysis of the available experimental data was not 

only able to model the origins of the non-Aufbau ground state, but also allowed an estimation 

of the strength of the electrostatic contribution to the eπ parameter, which would typically be 

presumed to be negligible according to chemical intuition. The work established a definite 

range of the eπ value from 0 cm-1 up to 750 cm-1. Although the upper bound is still large for a 

formally non π bonding ligand, the value was still about half that predicted by ab initio 

calculations performed by Bunting et al., implying that the electrostatic effects calculated by 

CASSCF are perhaps overestimated.122 

 The SiMM properties of 1 were also analysed using the ligand-field model. To the 

author’s knowledge, this was the first time that the experimentally determined time taken for 

QTM (τQTM) to occur (reported by Bunting et al.) had been modelled using a ligand-field model. 

The approximation of using just an eσ and eπ parameter to model the local ligand fields of the 

alkyl ligands resulted in a linear global ligand field, which gave a perfectly axial system. To be 

able to model the lower symmetry of the complex, small but significant electrostatic 

contributions arising from the ligand backbone had to be used and were transferred from a 

supplementary ab initio calculation. By doing this, a reasonable prediction of τQTM was 

achieved and the model was able to predict how the axiality depended on the torsional angles 

of the two ligands with respect to one another in agreement with the ab initio results of Zhang 

et al.120 

 Complex 2 is a six coordinate antiprismatic complex that is not conventionally a SiMM 

but has a large experimentally determined ZFS (197 cm-1). Analysis of the available reported 

experimental data  assigned the pyrazolyl ligands as weak to moderate π donors in this work. 

Separating the constituent eσ and eπy bonding parameters was made possible by simultaneous 

reproduction of the optical and magnetic data. The final electronic structure was predicted by 

the ligand-field model to have very fast rates of QTM in the ground state and, consequently, a 

value of Ueff far smaller than the known ZFS magnitude, which explains the lack of SiMM 

behaviour observed in 2. Taking inspiration again from ab initio calculations performed by 
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Zhang et al., the ligand-field model was able to predict that twisting the structure of 2 from an 

antiprismatic to a prismatic structure would dramatically improve the axiality of the system.121 

The level of agreement between the ligand-field model and the ab initio results of Zhang et al. 

were very good. Extending this analysis to look at the effect that the axial distortion and metal-

ligand bonding had on the axiality was able to provide clear and straightforward design 

principles in these types of systems. 

 Finally, complex 3, an axially distorted four coordinate complex, was analysed. 

Complex 3 is an example of a SiMM with a large axial ZFS. The effect that the axial geometric 

distortion had on the SiMM behaviour was investigated. The ligand-field model predicted that 

the optimum angle for increasing the ZFS, increasing the Ueff, and quenching the QTM within 

the ground state was with an axial distortion of θ = 38°, which agreed with the ab initio results 

performed elsewhere.144 Subsequent analysis extended this to investigate the relationship 

between the optimal angle of θ and the metal-ligand bonding. It was found that stronger π 

donors (or specifically, a greater eπy/eσ ratio) require a larger optimum angle of θ and hence it 

was reasoned that ligands with larger radii for the coordinating atoms (e.g. sulfur) would 

require a larger optimum angle. 

 The torsional angles φ and ψ were also investigated for 3. Unlike with complexes 1 

and 2, aligning the ligands above and below the equatorial plane did not enhance the axiality 

of the system, but instead diminished it. The angle of the π bonding (associated with ψ) was 

also found to be important when considering misdirected valence, which can occur under 

constrained geometric arrangements. Optimising all three geometric distortions would give 

very large axiality and an effective suppression of QTM within the ground state KD. 

 This work reproduces the same trends predicted by ab initio calculations reported from 

other authors but within the ligand-field framework and then extends those analyses to 

consider other geometric distortions and metal-ligand bonding modes. The ease with which 

changes to metal-ligand bonding or the molecular geometry are made is an advantage of the 

ligand-field model over ab initio methods. This is either because, in ab initio models, large 

changes must be made to the structural backbone of the ligands or the chemical nature of the 

ligand must be altered. This is readily available and easily achieved with the ligand-field model, 

which only considers the electronic potential about the central metal ion. This work lays the 

foundations for future analyses where the SiMM properties are probed, fitted to, and potentially 

used to inform chemical design to synthesise better SiMMs.  
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4.2 Ligand fields of nonheme S=1 iron(IV)-oxo complexes 

4.2.1 Introduction 

Iron(IV)-oxo systems are key reactive intermediates in non-heme iron enzymes. These 

intermediates oxidise otherwise functionally inert C–H bonds and have been found, or 

suggested, as part of the catalytic cycle for several non-heme iron enzymes such as TauD, 

prolyl-4-hydroxylase, halogenase CytC3, SyrB2, TyrH, and PheH.147–149 In Nature, these 

FeIV=O intermediates are found to possess a high-spin (S=2) ground state electronic structure. 

In addition to the known examples from biology, there are numerous small-molecule 

biomimetic analogues, the vast majority of which are intermediate S=1 iron(IV) oxo systems.150 

These systems typically feature tetragonally distorted structures. The known high-spin S=2 

synthetic analogues are typically five-coordinate trigonal bipyramidal complexes. Illustrative 

example structures are displayed in Figure 4.29. 

 

 

Figure 4.29. Illustrative cubic S=1 and trigonal S=2 Fe=O complexes.151–156  

 

These model complexes have been studied both spectroscopically and theoretically. 

C–H oxidation by them has been suggested to proceed via two primary pathways involving 

either the σ*(dz²) or π*(dxz, dyz) orbitals, as shown in Figure 4.30 (A).157,158 The reactive 

pathways are shown to occur on the quintet surface and extensive analysis has shown that 

the σ*(dz²) channel is likely the most reactive orbital.159 In this context, intermediate-spin 

iron(IV)-oxo systems typically access the high-spin quintet surface to generate the catalytically 
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active species.158 This is possible because the triplet and quintet spin states entangle under 

then effects of spin-orbit coupling. Hence, the triplet-quintet energetic separation and mixing 

under the action of spin-orbit coupling is important for rationalising reactivity.160 Other factors 

also have an effect on the reactivity, including the strength of the O–H bond in the 

corresponding Fe–OH intermediate as well as the sterics of the ligand backbone.161–163 

 

 

Figure 4.30. (A) The charge transfer processes involved during hydrogen atom 

abstraction of the CH bond of the [FeO]2+ core. (B) the crystal structure (CSDC: 

WUSJOJ) of [Fe(O)(TMC)(NCCH3)]2+.151 

 

 In 2003, Rohde et al. were the first to structurally characterise a model intermediate 

spin iron(IV) oxo complex, [Fe(O)(TMC)(NCCH3)]2+ where TMC = 1,4,8,11-tetramethyl-

1,4,8,11-tetraazacyclotetradecane, as shown in Figure 4.30 (B).151 The crystal structure of 

[Fe(O)(TMC)(NCCH3)]2+ exhibits an approximate tetragonal C4v geometry around the central 

iron(IV) ion, unlike the trigonal bipyramidal structures found in nature.  

This work focussed on the reproduction of the physical properties of 

[Fe(O)(TMC)(NCCH3)]2+, which had been characterised experimentally by UV-Vis and VT-

MCD spectra. The complex was previously subjected to a ligand-field analysis in a publication 

co-written by the author where a spectroscopic reassignment of the d-d bands was made.151 

The reassignment was controversial because the original assignment made by Decker et al. 
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has served as the primary interpretation of non-heme iron(IV)-oxo ligand-field 

spectroscopy.164,165 Further detail of the reported spectroscopy and our reassignment are 

given in sections 4.2.1.2 and 4.2.1.4. 

The analysis of [Fe(O)(TMC)(NCCH3)]2+ reported herein approaches the electronic 

structure from a different angle. In terms of ligand-field parameterisation, this system 

represents the simplest spectroscopically characterised S=1 iron(IV)-oxo complex, thus 

offering a system with a low number of variable parameters. There are a total of three 

functional groups: the oxo ligand, the acetonitrile ligand, and the equatorial amines. The 

equatorial amines are presumed σ donor only ligands, which avoids any analysis of any 

potential equatorial π bonding. 

 

4.2.1.1 Electronic spectroscopy of S=1 Fe(IV) complexes of C4v symmetry 

Intermediate spin (S=1) iron(IV)-oxo systems have two unpaired electrons in their ground 

state. Under approximate C4v symmetry, the d orbitals split into four levels with an orbital 

ordering of dxy < dxz/dyz < dx²–y² < dz². The dominant electronic configuration for the S=1 ground 

state is (dxy)2(dxz, dyz)2(dx²–y²)0(dz²)0, which has 3A2 symmetry. There are five spin-allowed one-

electron transitions: three of 3E symmetry; and two that give rise to a complicated multiplet 

structure, as shown in Figure 4.31. The electronic level with 3E symmetry has an unequal 

occupation of the dxz and dyz orbitals; either one is doubly occupied whilst the other is singly 

occupied, or one is singly occupied whilst the other is vacant. These electronic energy levels 

result from one-electron transitions from the dxy orbital into either the dxz or dyz, or from either 

of the dxz or dyz orbitals into the dx²–y² or dz² orbitals. Hence, there is a total of three d-d 

transitions of 3E symmetry, labelled as 3E (dxy → dxz, dyz), 3E (dxz, dyz → dx²–y²), and 3E (dxz, dyz 

→ dz²).  
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Figure 4.31. The spin-allowed one-electron d-d excitations in an S=1 tetragonal iron(IV) 

oxo complex. The d orbitals are generated and rendered using Kestrel and serve as 

illustrative depictions of their shapes and orientation. 

 

There are two further spin-allowed one-electron d-d transitions, arising from electronic 

transitions from the dxy orbital into either the dx²–y² or dz² orbitals. Each of these transitions has 

five separate excited states, as explained by Ye et al.166 These transitions have two excited 

3B1 (dxy → dx²–y²) and 3A1 (dxy → dz²) states, each arising when the two unpaired electrons 

occupying the dxz and dyz orbitals are parallel. When the two unpaired electrons occupying the 

dxz and dyz orbitals are anti-parallel, the dxy → dx²–y² transitions have 3A1, 3A2, and 3B1 

symmetries, and the dxy → dz² transition has excited states of 3A2, 3B1, and 3B2 symmetries. 

From herein, these sets of transitions are labelled as 3Γ (dxy → dx²–y²) and 3Γ (dxy → dz²). 
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Figure 4.32. The zero-field splitting of the 3A2 ground state under C4v symmetry from 

spin-orbit coupling (top); and the relative MCD intensity of ligand-field bands from the 

application of directional magnetic fields as a function of temperature (bottom). 

 

 When perturbed by spin-orbit coupling, the 3A2 ground state splits into two sub-levels. 

For D > 0 cm-1, the MS = ±1 levels are destabilised relative to the MS = 0 level by a relative 

energy of |D|, as shown in Figure 4.32.167 Under the application of an external magnetic field 

parallel to the principal C4 axis, the MS = ±1 levels split further.  

MCD ligand-field transitions of x,y polarisation show variable temperature dependence 

when the magnetic field is applied along the C4 axis.165 These transitions gain intensity at 

temperatures when the stabilised MS = −1 state is populated preferentially to the MS = +1 state. 

As the temperature increases, the higher lying MS = +1 state is populated and the intensity of 

the MCD signal decreases. 

The z polarised transitions gain intensity when the magnetic field is applied in the 

perpendicular direction to the principal C4 axis.165 This direction of the external magnetic field 

mixes the MS = 0 level into the MS = ±1 levels. These transitions are intense in the MCD at low 

temperatures when the MS = −1 is preferentially populated. As the temperature increases, z 

polarised transition lose intensity as the higher lying MS = −1 and 0 states are populated.168 
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4.2.1.2 Spectroscopy of [Fe(O)(TMC)(NCCH3)]2+ 

[Fe(O)(TMC)(NCCH3)]2+ was the first example of a spectroscopically characterised S=1 

iron(IV)-oxo model complex. The system was characterised by Mössbauer studies, and the 

electronic structure was characterised by a S=1 ground state with a value of D = +29 cm-1.151 

Subsequent work by Decker et al. studied the optical and VT-MCD spectra of this complex 

(Figure 4.33).165 Their analysis assigned the presence of five d-d bands in the optical window 

of 5000 to 28000 cm-1. The relative energies, polarisations, and assignments of these bands 

are summarised in Table 4.9. 

 

Table 4.9. The experimental d-d transition energies of [Fe(O)(TMC)(NCCH3)]2+ with their 

irreducible representations, transition assignments, and polarisation behaviour 

reported by Decker et al.165 

Transition Energy  (cm-1) 2S+1Γ, irrep Assignment Polarisation 

I 10400 3Γ dxy → dx²–y² z 

II 10600 3E dxy → dxz, dyz x,y 

III 12900 3E dxz, dyz → dx²–y² x,y 

IV 17600 3E dxz, dyz → dz² x,y 

V 24900 3Γ dxy → dz² z 

 

 The experimental VT-MCD spectra of Decker et al. assigned the polarisation of the 

individual bands from their variation in intensity with temperature. Bands II, III, and IV reach 

maximum intensity at 20 K before dropping in intensity for increasing temperatures. Hence, 

they were assigned to x, y polarised d-d transitions. Bands I and V are at maximum intensity 

at the lowest temperature probed in the experiment (2 K) and the intensity decreases for higher 

temperature, assigning them as z-polarised d-d transitions. It should be noted here that the 

temperature dependence of bands I and II are not exactly known as the bands overlap. Their 

relative temperature dependence was achieved by assuming that the intensity variation with 

temperature of band I behaves the same as band V. Band II was assigned as the dxy → dxz, 

dyz transition due to the presence of a vibrational progression associated with the weakening 

of the Fe=O bond via the promotion of an electron from the non-bonding dxy to the anti-bonding 

dxz/dyz orbitals with π symmetry. Band III is the most intense band in the reported electronic 

absorption spectrum with an ε ≈ 400 M−1 cm−1.165 



200 
 

 

 

Figure 4.33. The experimental electronic absorption (A) and VT-MCD (B) spectra of 

[Fe(O)(TMC)(NCCH3)]2+. Selection rules of electronic transition polarisation (C) and 

ΔSCF/BP86 computed transition energies and assignments (D). Reprinted with 

permission from  A. Decker, J.-U. Rohde, L. Que, and E. I. Solomon, J. Am. Chem. Soc., 

2004, 126, 5378–5379. Copyright 2004, American chemical Society. 

 

4.2.1.3 Computational modelling of ligand-field transitions in iron(IV) oxo systems 

Due to their complicated multiplet structure and the potential for high covalency in the Fe=O 

bond, calculations of excited state energies in iron(IV)-oxo systems can be difficult. These 

difficulties arise from the large number of configuration state functions needed to represent 

the excited states and the importance of balancing the active space with the ligand orbitals. 

The following review of previous calculations of S=1 iron (IV)-oxo systems reveals some of 

these issues. 
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4.2.1.3.1 Electronic structure analysis of [Fe(O)(TMC)(NCCH3)]2+ 

The d-d transition energies of [Fe(O)(TMC)(NCCH3)]2+ were computed by Decker et al. with 

both ΔSCF/BP86 and TD-DFT (statistical average of orbital potentials) methods.169 The former 

showed good agreement with the relative energies of the 3E excited states with a difference < 

400 cm-1 but overpredicted the energies of bands I and V by approximately 2100 and 1000 

cm-1 respectively. TD-DFT calculations gave a larger deviation in the prediction of the transition 

energies, except for band I which shifted to within 1100 cm-1 of experimental values. While 

TD-DFT is clearly inferior in this regard, care should be taken when using TD-DFT for iron(IV)-

oxo systems, as it does not take into account all constituent roots of the dxy → dx²–y² and dxy → 

dz² transitions (see section 4.2.1.1).170  

The excited state energies of a simpler model system [Fe(O)(NH3)4(H2O)]2+ computed 

by SORCI(4, 5) were compared to the experimental energies of  [Fe(O)(TMC)(NCCH3)]2+.171 

The transition energies were in fair agreement with experiment, but the 3E (dxy → dxz, dyz) and 

3E (dxz, dyz → dx²–y²) transition energies were underestimated and overestimated respectively, 

by approximately 2400 cm-1. The calculations predicted that four of the 3Γ (dxy→ dx²–y²) 

components are lower in energy than the 3E (dxz, dyz → dx²–y²) band but still above the 3E (dxy 

→ dxz, dyz) band. The relative ordering of excited states, which is not what is expected by a 

simple molecular orbital analysis, was compared with a computational analysis of a 

manganese(III) system. Here, the authors concluded that the coulombic and exchange 

integrals of interelectronic repulsion (as calculated in their models) were anisotropic; some 

integrals were found to differ by > 1 eV.172 Note here that in LFT these integrals are constrained 

to be equal and this explanation, if true, would compromise a core assumption of the ligand-

field model that Kestrel employs. 

The [Fe(O)(TMC)(NCCH3)]2+ complex was also subjected to a ligand-field density-

functional theory (LFDFT) analysis by Atanasov et al. as part of an overview and critical 

evaluation of this method.173 The LFDFT results were compared with the experimental 

transition energies (Table 19-13 of Atanasov et al.), where only four of the five experimental 

bands and their polarisation are quoted as 10500 (xy), 13000 (xy), 17000 (z), and 25000 (z) 

cm-1. The reported overlapping bands of xy and z polarisation at 10400 cm-1 and 10600 cm-1 

are not separately acknowledged. The authors state in Table 19-13 that the band at 17000 cm-

1 (band IV) is assigned as the 3Γ(dxy → dx²–y²), which LFDFT predicts at an energy of 19347 

cm-1, as the 3E (dxz, dyz → dz²) is calculated with an energy of 22184 cm-1.173 The main text 

does not discuss this reassignment from the assignment made by Decker et al. Otherwise, 

the calculations predict the energies of the other 3E bands in reasonable agreement with 

experiment, at 11968 cm-1 and 15680 cm-1. 
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4.2.1.3.2 Electronic structure of other iron(IV) oxo complexes 

Ab initio methods have been used to compute the d-d and charge transfer excitation energies 

for mono and bi nuclear S=1 iron(IV)-oxo systems.174 One such study focussed on the MCD 

spectrum of [Fe(O)(L)(NCMe)]2+, where L = tris(3,5-dimethyl-4-methoxylpyridyl-2-

methyl)amine). The analysis was able to predict VT-MCD spectra from the results of 

CASSCF(12, 9)/NEVPT2 in good agreement with the experimental VT-MCD data. The 

analysis afforded good reproduction of the experimental transition energies and placed the 3A2 

component of the 3Γ (dxy → dx²–y²) transition at 13170 cm-1 on top of the 3E (dxz, dyz → dx²–y²) 

and 3E (dxy → dxz, dyz) excited states calculated at 11950 cm-1 and 13360 cm-1, respectively. 

The electronic structure was found to be like [Fe(O)(TMC)(NCCH3)]2+ and hence this further 

supported the assignment of the d-d spectrum of [Fe(O)(TMC)(NCCH3)]2+ made by Decker et 

al.  

Another ab initio analysis of the VT-MCD spectrum of a S=1 iron(IV)-oxo system was 

carried out for a tetracarbene system with a strong equatorial ligand field.166 The equatorial 

ligand field was sufficiently strong that the excited state ordering of the 3E (dxz, dyz → dx²–y²) 

and 3E (dxz, dyz → dz²) excitations was reversed in comparison to [Fe(O)(TMC)(NCCH3)]2+, 

being at 16960 cm-1 and 24290 cm-1 respectively. The calculations reproduced the MCD 

assigned energies of the 3E states to within 3000 cm-1 but overpredicted the 3A2 components 

of the 3Γ (dxy → dx²–y²) and 3Γ (dxy → dz²) excitations by 6000 cm-1. The reason for the poor 

agreement in the latter electronic levels was attributed to an underestimation of the mixing 

between the LMCT (O px, py → dxz, dyz) and the 3Γ states due to the contracted nature of the 

active space (CASSCF(12, 9)/NEVPT2). Unfortunately, larger active space calculations were 

not possible due to computational limitation. The computed MCD spectrum did not accurately 

model the experimental MCD spectra that exhibit all positive intensity at low temperatures for 

the 3E (dxz, dyz → dz²) band. In fact, the calculated 3A2 components of the 3Γ (dxy → dx²–y²) and 

3Γ (dxy → dz²) excitations seemed to show negligible intensity in the simulated spectrum. The 

authors also carried out a fit of the AOM model to their 55 one-electron ligand-field matrix 

extracted from the AILFT of the CASSCF(4, 5) calculations where the oxo ligand was assigned 

as a strong σ donor and π donor. Complementary to this, the authors also fitted the energies 

of the first excited quintet band 5A1 and the three 3E bands of the CASSCF(12, 9)/NEVPT2 

calculations using ligand-field expressions derived from the strong field configurations, 

parameterised by orbital energies and Racah B and C parameters. These expressions and 

results were reported in the supporting information. Despite this, no attempt was made by the 

authors to fit the 3A2 bands (dxy → dx²–y²). 
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 A combination of DFT and ab initio calculations (CASSCF(16, 11)) have been used to 

probe the electronic structure of a quintet trigonal [Fe(O)(TMG3tren)]2+ where TMG3tren = 

1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine.175 The calculations were able to 

reproduce the spin-Hamiltonian parameters derived from HFEPR spectroscopy (High-

Frequency EPR). LFT calculations were also carried out on the limited spectroscopic data and 

managed to reproduce the available excited state spectroscopy and the ground state ZFS. 

The g-factors were calculated from the energies of the ligand-field wavefunctions in the 

presence of an external magnetic field and compared to the experimentally determined values. 

The calculated g|| [2.0015(5)] was in reasonable agreement with the experimental value 

extracted by HFEPR, g|| = 2.03(2). However, the same LFT calculations predicted a value of 

g⟂ far too low (1.6) compared to the experimentally derived value g⟂ = 2.006(2). It should be 

noted that the ligand-field fitting of [Fe(O)(TMG3tren)]2+ was performed to the d-d transitions 

and the problem was underdetermined. The authors did not vary the ligand-field parameters 

to fit the EPR g-factors. It is not clear if there is a set of ligand-field parameters that can 

reproduce the experimental g-factors. 

 

4.2.1.4 Ligand-field analysis of [Fe(O)(TMC)(NCCH3)]2+ 

The preceding section outlined the computational methods used to analyse 

[Fe(O)(TMC)(NCCH3)]2+ and other iron(IV) oxo systems. Ligand-field calculations of iron(IV) 

oxo complexes in the literature are scarce. There are examples of AOM analyses of the 55 

one-electron ligand-field matrix extracted from AILFT to provide eλ parameters. However, the 

fitting of experimental d-d transitions using an eλ parameterisation in an intermediate spin 

(S=1) non-heme iron(IV) oxo complex, to the author’s knowledge, has only be carried out 

using Kestrel by Comba et al.176 That analysis correlated the energetic splitting of the 3A2 

ground state with the first excited 5A1 (dxy → dx²–y²) transition and the reported reactivity of a 

series of S=1 iron(IV)-oxo complexes with different equatorial ligand-field strengths. The 

calculations showed that weaker σ bonding in the equatorial plane increased the mixing of the 

5A1 state into the 3A2 ground state. The analysis accurately reproduced the energies of the 

three observed 3E bands in the UV-vis spectra of the analysed complexes.  

As part of that work, a ligand-field analysis was carried out on the 

[Fe(O)(TMC)(NCCH3)]2+ complex to provide an estimate of the eλ parameters for the Fe=O 

bond to be used for the other systems of interest. Attempts to fit the experimental d-d bands 

as assigned by Decker et al. were unsuccessful. In particular, the ligand-field analysis was 

unable to account for the ostensibly low energy of the experimental 3Γ (dxy → dx²–y²) transition 
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at 10400 cm-1 and, as such, tentatively reassigned that band as arising from a triplet-to-quintet 

spin-forbidden dxy → dz² transition, which gains intensity through spin-orbit coupling to the 3E 

(dxy → dxz, dyz) and 3E (dxz, dyz → dx²–y²) bands. A detailed discussion about the assignment and 

the electronic structure was beyond the scope of the paper at the time, which aimed to semi-

quantitatively show the relationship between the strength of the equatorial ligand field and the 

triplet-quintet energetic gap. However, Kestrel was able to recreate the energies of all other d-

d bands in [Fe(O)(TMC)(NCCH3)]2+, along with the ZFS, and qualitatively reproduce the 

computed triplet-quintet energy gap predicted by DLPNO-CCSD(T) for the other complexes.177 

 

4.2.1.5 This work 

At the time of our tentative reassignment of the spin-allowed dxy → dx²–y² band to the spin-

forbidden triplet-to-quintet dxy → dz² transition, Kestrel did not have many of its current features. 

It did not have, for example, a configuration projection output, nor could it predict d-d transition 

intensities. The configuration projections were originally carried out by varying Racah B and 

tracking the energies of the triplet bands. However, given that Kestrel has since developed 

further and can now predict the UV-Vis and VT-MCD spectral intensities, it is prudent to return 

to the electronic structure of [Fe(O)(TMC)(NCCH3)]2+.  

A further reason for reanalysing [Fe(O)(TMC)(NCCH3)]2+ with Kestrel is that spin-

intermediate iron(IV)-oxo systems represent an important class of transition-metal complexes 

that are characterised as covalent complexes.161 These types of complexes potentially breach 

the assumptions of the effective Hamiltonian used by Kestrel, whether it be from charge-

transfer mixing, or the spherical treatment of interelectronic repulsion. It is important, therefore, 

to know whether the ligand-field model can reproduce experiment, what parameters these 

reproductions involve, and thus establish if the LFT approach is viable for such ostensibly 

“covalent” complexes. 

The approach taken was to perform expanded active space ab initio calculations on 

[Fe(O)(TMC)(NCCH3)]2+ and to then calculate the expected UV-Vis absorption and VT-MCD 

spectra. The computational work followed the methodologies and processes as outlined 

before.166,174 After this, a detailed ligand-field analysis was carried out on the experimental UV-

Vis absorption and VT-MCD spectra. The electronic structures from the two methods were 

compared and their relative merits discussed in terms of reproduction of the experimental 

data. 
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4.2.2 Methodology 

4.2.2.1 Quantum-chemical calculations 

Calculations were performed using ORCA 4.2.1.42 The basis set used throughout was the ma-

def2-TZVP(-f).129,178 Geometry optimisations were carried out on the x-ray crystal structure 

(CSD: WUSJOJ)151 using the BP86 functional along with the van der Waals correction 

(D3BJ).179–181 To include the solvation effects of acetonitrile, the CPCM method was used.182  

The density fitting and “chain of spheres” (RIJCOSX) approximations along with the auxiliary 

basis sets def2-TZV/J were used to improve the speed of calculations.183,184 Ab initio 

calculations utilised CASSCF and NEVPT2. The minimal active space consisted of four 

electrons in five orbitals and the expanded active space utilised twelve electrons in nine 

orbitals. AILFT was carried out using the CASSCF(4, 5) results.31 MCD calculations were 

carried out following the relevant protocol.166,174 The UV-Vis and MCD spectra were plotted 

using the orca_mapspc command line tool. 

 

4.2.2.2 Ligand-field calculations 

Ligand-field calculations were performed using a complete d4 basis, consisting of 210 basis 

functions. The DFT optimised geometry given in Table 6.5 (appendix 6.5) was used 

throughout, except for chapter 4.2.4.3 where an idealised model was used. The idealised 

geometry used the angular coordinates of a regular octahedron, where θ = 0°, 180°, 90°, 90°, 

90°, and 90°, and φ = 0°, 0°, 0°, 90°, 180°, and 270° for the oxo, acetonitrile, and the four 

amine ligands respectively. 

The iron(IV) central metal-ion was parameterised with the interelectronic repulsion 

parameters B and C, and the spin-orbit coupling operator ζ, with a lower bound of 0 cm-1 and 

upper bounds given by their free-ion values: B0 = 1144 cm−1, C0 = 4459 cm−1, and ζ0 = 520 

cm−1.125  
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Figure 4.34. The metal-ligand bonding parameterisation for [Fe(O)(TMC)(X)]2+, where X 

= acetonitrile. 

 

The eλ parameters for the axial oxo and acetonitrile ligands were assigned an overall eσ(ax) 

and eπ(ax) parameter. The equatorial nitrogen ligators of the TMC ligand were each assigned 

a common eσ(eq) parameter. The metal-ligand bonding pseudo-symmetries are illustrated in 

Figure 4.34. 

For simulating UV-Vis and MCD spectra, intensity parameters Pσ, Fσ, Pπ, and Fπ were 

assigned to the oxo ligand, where they represent the difference of the Pλ and Fλ parameters 

relative to the NCCH3 ligand (O − NCCH3). The equatorial nitrogen atoms were initially 

simulated using just Pσ(eq) and Fσ(eq) parameters. However, the geometry is such that the 

intensity parameters of the equatorial nitrogen atoms approximately cancel out in comparison 

to the analogous axial values. Therefore, the Pσ(eq) and Fσ(eq) parameters were fixed to 0 

and neglected in the analysis. Predicted UV-Vis and MCD spectra were simulated and plotted 

with a common FWHM. 

 

4.2.2.3 Fitting results of ab initio calculations with the ligand-field model 

The 5×5 one-electron ligand-field matrices extracted from the results of CASSCF(4, 5) and 

NEVPT2 calculations, performed in section 4.2.3.2, were used to extract eλ parameters. The 

optimisation was carried out using the differential_evolution method.96 The eσ(ax) was 

constrained to a lower bound of 5000 cm-1 and an upper bound of 20000 cm-1; the eπ(ax) was 

constrained to a lower bound of 0 cm-1 and an upper bound of 10000 cm-1; and the eσ(eq) was 

constrained to a lower bound of 0 cm-1 and an upper bound of 10000 cm-1. 
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 The ligand-field model was used to fit the relevant spin-allowed and spin-forbidden d-

d transition energies calculated from a CASSCF(12, 9)/NEVPT2 calculation. The optimisation 

was also carried out using the differential_evolution method.96 The Racah B was constrained 

to a lower bound of 0 cm-1 and an upper bound of 1200 cm-1; Racah C was constrained to a 

lower bound of 0 cm-1 and an upper bound of 4500 cm-1; eσ(ax) was constrained to a lower 

bound of 10000 cm-1 and an upper bound of 20000 cm-1; the eπ(ax) was constrained to a lower 

bound of 0 cm-1 and an upper bound of 10000 cm-1; and the eσ(eq) was constrained to a lower 

bound of 0 cm-1 and an upper bound of 10000 cm-1. 

 

4.2.2.4 Fitting experimental band energies with the ligand-field model 

Variation of the ligand-field parameters (B, C, and eλ) to determine the parameter value ranges 

to reproduce the experimental d-d band energies, as presented in chapter 4.2.4.4, were 

performed using KestrelPy’s parameter-space calculations. The Racah B parameter was 

varied from 0 cm-1 to 1000 cm-1, in increments of 100 cm-1; Racah C was varied from 2000 cm-

1 to 4000 cm-1, in increments of 200 cm-1; eσ(ax) was varied from 9000 cm-1 to 13000 cm-1, in 

increments of 400 cm-1; eπ(ax) was varied from 4000 cm-1 to 7000 cm-1, in increments of 300 

cm-1; and eσ(eq) was varied from 5000 cm-1 to 8000 cm-1, in increments of 600 cm-1. The spin-

orbit coupling constant ζ was set to 0 cm-1. 

 The transition energies and their assignments as defined in Table 4.17 were used. The 

first quintet excited state was weighted (at 0.5) as less important than the known spin-allowed 

band energies. 

 

4.2.2.5 Fitting the experimental UV-Vis and VT-MCD spectra with the ligand-field 

model 

Simulations of the UV-Vis and VT-MCD spectra were calculated as arising from transitions 

originating within the 3A2 ground state to the complete excited state manifold. The MCD 

spectra were simulated at 2 K, 10 K, 20 K, 40 K, 80 K with a magnetic field strength of 7 T. 

MCD simulations were performed over an angular grid of 30 steps spanning 0 ≤ θ ≤ π and 0 

≤ φ ≤ 2π. 

Since the calculation of MCD spectra in Kestrel is not sufficiently fast to vary a large 

number of parameters it was instead chosen to vary the transition dipole moment parameters 

(excluding equatorial amine parameters, see section 4.2.2.2) and fit the relative intensities of 
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the experimental UV-Vis and VT-MCD spectra manually. The decision to manually refine the 

transition dipole moment parameters was made not only because of computational limitations 

but because at least one chemically sensible fit of the experimental spectrum is required to 

provide evidence of the d-d band assignment of Comba et al.176 

Saturation of the MCD intensity was performed by calculating the MCD intensities for 

a temperature range of 2 K to 300 K, in increments of 0.5 K. The intensity value for each 

temperature was taken by using the Spectrum object’s plot_spectrum method with a FWHM 

= 2500 cm-1. 

 

4.2.3 Quantum-chemical calculations 

4.2.3.1 Geometry optimisation 

Geometry optimisations of [Fe(O)(TMC)(NCCH3)]2+ were carried out on the x-ray crystal 

structure coordinates (CSD: WUSJOJ) and the final calculated structure is shown in Figure 

4.35.151 A comparison of the calculated and x-ray structure bond lengths of the first 

coordination sphere is presented in Table 4.10. The computed structure is in good agreement 

with the experimental x-ray structure with a RMSD of 0.1511 Å. The main discrepancy found 

between the calculated and x-ray structures was in the iron-acetonitrile bond length, where 

the optimised structure has a shorter bond length by 0.057 Å. The remaining iron-nitrogen 

bond lengths are, on average, 0.018 Å longer than their crystal structure bond lengths. The 

calculated iron-oxo bond length is close to the experimentally observed bond length. The final 

optimised coordinates are given in Table 6.5 (appendix 6.5). 

 

Table 4.10. Comparison of the reported experimental (CSD: WUSJOJ) and calculated 

bond lengths (Å) of [Fe(O)(TMC)(NCCH3)]2+.151 

Structure Fe–O Fe–N3 Fe–N4 Fe–N5 Fe–N6 Fe–N53 

WUSJOJ 1.646(6) 2.069(3) 2.109(3) 2.117(3) 2.067(3) 2.058(3) 

Calculated 1.65182 2.09567 2.12229 2.12369 2.09289 2.00066 
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Figure 4.35. The optimised geometric structure of [Fe(O)(TMC)(NCCH3)]2+ in acetonitrile 

overlaid with the chosen molecular axes used for ligand field and ab initio calculations. 

 

4.2.3.2 Minimal active space CASSCF(4, 5) 

An ab initio calculation was carried out on the minimal active space with four electrons in five 

orbitals. The calculations were carried out over the full number of configurational roots for the 

quintet and triplet manifolds (5 and 45 respectively). The calculated relative energies of the 

relevant d-d transitions are given in Table 4.11.  

The CASSCF(4, 5) calculations incorrectly predict a high spin (quintet) ground state. 

The inclusion of dynamical correlation with NEVPT2 did restore the triplet ground state but 

erroneously predicted the d-d transition energies in comparison with experiment. As will be 

shown in section 4.2.3.3, a balanced expanded active space involving ligand orbitals is 

required to provide quantitatively good reproduction of the experimental ligand-field band 

energies under NEVPT2 corrections. 
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Table 4.11. The CASSCF(4, 5) and NEVPT2 calculated non-relativistic d-d transition 

energies (cm-1) normalised by the energy of the 3A2 state for [Fe(O)(TMC)(NCCH3)]2+ 

Assignment CASSCF(4, 5) NEVPT2 Experiment165 

3A2 0.0 0.0  

3E (dxy → dxz, dyz) 10978.2, 11288.3 17303.1, 17747.1 10400 

3E (dxz, dyz → dx²–y²) 24165.8, 24875.1 12864.0, 14009.1 12900 

3E (dxz, dyz → dz²) 19106.3, 19157.6 3971.2, 4997.0 17500 

3Γ (dxy → dx²–y²) 10859.4, 12320.1 

12576.1, 14714.0 

18099.1 

22807.1, 24004.1 

24294.1, 25648.7 

29831.3 

10600 

3Γ (dxy → dz²) 26534.9, 28307.1 

30207.0, 32343.6 

36694.4 

37175.3, 38918.2 

39369.6. 40524.4 

41590.3 

24900 

5A1 (dxy → dx²–y²) –7761.1 7645.7 – 

5B1 (dxy → dz²) 7855.0 19854.9 – 

5E (dxy
1dyz/xz

1dx²–

y²
1dz²

1) 

11696.9 21116.7, 25319.4 – 

5B2 (dxz
1dyz

1dx²–y²
1dz²

1) 28486.8 54104.4 – 

 

 The minimal active space allows for an AILFT analysis to be carried out at the end of 

the calculation in ORCA using the actorbs_dorbs keyword. The AILFT fit (where ORCA fits the 

CASSCF/NEVPT2 transition energies using its own ligand-field Hamiltonian) to the 

CASSCF(4,5) energies was poor with a RMS of 3185.5 cm-1 and 5745.2 cm-1 for the quintet 

and triplet manifolds respectively. Hence, the final AILFT fitting from ORCA must be taken with 

caution. As part of the AILFT analysis, the 55 one-electron ligand-field matrix is reported, the 

diagonalisation of which gives the relative energies of the five mixed d orbitals. These 

eigenfunctions are presented in Table 4.12. The results give the five relative energies of the d 

orbitals along with the linear combination of the d orbitals in the molecular frame as shown in 

Figure 4.35 of section 4.2.3.1. Both the CASSCF(4, 5) and CASSCF(4, 5)/NEVPT2 

calculations predicted a d-orbital splitting of dxy < dxz, dyz < dx²–y² < dz². As expected, the dxz and 

dyz orbitals are approximately degenerate. The inclusion of dynamical correlation via NEVPT2 

increases the energy gap between the non-bonding dxy and all other d orbitals, implying 

stronger metal-ligand interactions as a result of dynamic correlation between the ligand field 

and the d-orbital electrons. 
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Table 4.12. The energies (cm-1) and eigenvectors of the 55 one-electron ligand-field 

matrices from the AILFT analysis of the CASSCF(4, 5) and NEVPT2 calculations. 

Source Energy  dxy dyz dz² dxz dx²–y² 

CASSCF 0.0 0.993 -0.007 0.025 0.011 0.118 

 11653.9 -0.014 -0.748 0.004 0.664 0.003 

 11972.0 -0.013 -0.657 0.017 -0.741 0.134 

 16486.3 -0.117 0.093 -0.005 0.098 0.984 

 31344.0 -0.025 0.015 1.000 0.010 -0.001 

NEVPT2 0.0 -0.993 0.001 -0.024 -0.006 -0.118 

 19226.1 0.004 0.724 0.005 -0.690 0.007 

 19570.9 -0.002 -0.689 0.016 -0.723 0.042 

 22141.7 -0.118 0.024 -0.001 0.035 0.992 

 34991.3 -0.024 0.008 1.000 0.015 -0.002 

 

As part of the AILFT module, the fitted Racah B and C parameters are reported. For 

the CASSCF(4, 5) calculation, values of B = 1003.1 cm-1 and C = 3731.5 cm-1 were extracted, 

representing a 13.3% and 16.3% reduction from the free-ion values respectively. The values 

extracted for the CASSCF(4, 5)/NEVPT2 energies were B = 836.7 cm-1 and C = 1855.6 cm-1, 

representing a 26.9% and 58.4% reduction from the free-ion values respectively. The inclusion 

of dynamical correlation severely reduces C with respect to B. The origin of this reduction will 

be discussed later, but it is evident that the large difference in the reduction of B and C 

parameters from their free ion values potentially reveals an underlying issue with the AILFT 

analysis using the CASSCF/NEVPT2 energies. Moreover, caution must be applied to these 

parameters as the quality of fit of these AILFT analyses from ORCA to the CASSCF(4, 

5)/NEVPT2 transition energies are poor (vide supra). 

 

4.2.3.3 Expanded active space CASSCF(12, 9)/NEVPT2 

Due to the covalency of the Fe=O bond, it is thought that iron(IV)-oxo systems require an 

expanded active space to achieve quantitative reproduction of ligand-field transition 

energies.166,174 Thus, for the studies reported herein, the active space was expanded to include 

the bonding orbital counterparts of the antibonding dxz, dyz, dx²–y², and dz² orbitals. This choice 

resulted in an active space involving twelve electrons housed in nine orbitals. Bonding orbitals 

were chosen from generated quasi-restricted orbitals and the final expanded active CASSCF 

space orbitals are shown in Figure 4.36. 
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Figure 4.36. The CASSCF(12, 9) optimised active space orbitals plotted with a contour 

value of 0.05. 

 

 The CASSCF(12, 9) calculations, like with the minimal active space, predicted a quintet 

ground state. The relative triplet CASSCF(12, 9) energies were in poor agreement with the 

experimentally observed transition energies (Table 4.13). The 3E (dxz, dyz → dx²–y²) band was 

predicted to lie at 5671.5 cm-1 and 5960.6 cm-1, under-estimating the calculated transition 
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energy by approximately 8000 cm-1. However, the 3E (dxy → dxz, dyz) transition was predicted 

at approximately 12199.4 cm-1 and 12413.3 cm-1, in reasonable agreement with experiment. 

 The inclusion of dynamical correlation via NEVPT2 restored the triplet ground state 

and quantitatively reproduced the observed transition energies. The predicted energies (Table 

4.13)  of the 3E (dxy → dxz, dyz) and 3E (dxz, dyz → dx²–y²) were very close to one another, resulting 

in the two bands overlapping and showing good agreement with the experimentally reported 

energies. The five components of the 3Γ (dxy → dx²–y²) transition spanned a range of 12000 cm-

1 to 17300 cm-1. Indeed, as assigned by Decker et al., there are two components of the 3Γ (dxy 

→ dx²–y²) transition that lie close to the low energy 3E (dxy → dxz, dyz) and 3E (dxz, dyz → dx²–y²) 

transitions.165 Hence, the calculated energies and one-electron transition assignments of the 

CASSCF(12, 9)/NEVPT2 calculations agree with the assignments of Decker et al. Lastly, the 

computed energy of the first excited quintet state, although not known experimentally, is 

smaller than predicted by ΔSCF and CASPT2 calculations (6541 cm-1 and an average of 3200 

cm-1, respectively).165,177 Analysis of the ZFS (vide infra) suggests that the calculated energy 

of this first excited quintet state is too low. 

 

Table 4.13. The calculated non-relativistic energies (cm-1) normalised by the energy of 

the 3A2 state, of the CASSCF(12, 9) and dynamical correlation corrections (NEVPT2) 

calculations with 12 triplet roots and 1 quintet root. 

Assignment CASSCF(12, 9) NEVPT2 Experiment165 

3A2 0 0 0 

3E (dxy → dxz, dyz) 12199.4, 12413.3 11823.1, 11844.4 10400 

3E (dxz, dyz → dx²–y²) 5671.5, 5960.6 11403.8, 11973.3 12900 

3E (dxz, dyz → dz²) 17341.7, 17549.3 18010.8, 18279.8 17500 

3Γ (dxy → dx²–y²) 6165.0, 6200.6, 

7954.9, 9002.6, 

13331.9 

12105.3, 12272.7,  

13197.9, 15211.5,  

17309.9 

10600 

5A1 (dxy → dx²–y²) -6693.2 1332.1 – 

 

 The ZFS was also qualitatively reproduced with these calculations. The spin 

Hamiltonian parameter D extracted from an effective Hamiltonian projected on to the QDPT 

results gave a value of D = +34.8 cm-1, which is in fair agreement with the experimental value 

of D = +29 cm-1 determined from VT-MCD and Mössbauer studies. As expected, the inclusion 

of the first quintet excited state is very important for reproducing the ZFS. The larger calculated 
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value of D suggests that the energy of the first excited quintet state is too low with respect to 

the triplet ground state. 

 

4.2.3.3.1 Excited-state spectroscopy 

Having established the calculated electronic structure of [Fe(O)(TMC)(NCCH3)]2+,  absorption 

and MCD spectra were calculated using the wavefunctions of the extended space 

CASSCF(12, 9)/NEVPT2 calculations. The model was required to simulate both the relative 

intensities observed in the absorption spectrum and to reproduce the signs, magnitudes, and 

temperature dependence of the VT-MCD. The absorption spectrum and MCD spectra were 

simulated using ORCA’s orca_mapspc program and the results are shown in Figure 4.37. 

The calculated electronic absorption spectrum (Figure 4.37, top) showed two broad d-

d bands at 12000 cm-1 and 18000 cm-1. The former band is calculated about nine times more 

intense than the latter, simulated with a FWHM = 2000 cm-1. This qualitatively agrees with the 

experimental spectrum, but notably the calculated band at 18000 cm-1 is too intense with 

respect to the calculated band at 12000 cm-1. The calculations predict the 3E (dxz, dyz → dx²–y²) 

bands to be the most intense, followed by two components of the 3Γ (dxy → dx²–y²) bands 

(predicted at 12105.3 and 12272.7 cm-1). The 3E (dxy → dxz, dyz) and 3E (dxz, dyz → dz²) bands 

are predicted to be equally intense. The remaining bands of the 3Γ (dxy → dx²–y²) transitions 

have a relatively much weaker intensity. The bands of the 3Γ (dxy → dx²–y²) should have 

negligible intensity due to the approximate centrosymmetric structure of the equatorial amines; 

here the mixing of the more intense 3E (dxy → dxz, dyz) band, due to energetic proximity, is 

responsible for the larger calculated intensity of the two components at 12000 cm-1. 
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Figure 4.37. The CASSCF(12, 9)/NEVPT2 calculated (red) and reported experimental 

(black) normalised electronic absorption spectra of [Fe(O)(TMC)(NCCH3)]2+ (top) and 

the calculated CASSCF(12, 9)/NEVPT2 MCD spectra at 7T (bottom). Spectra are 

simulated using a FWHM = 2000 cm-1.165 The experimental UV-Vis is adapted with 

permission from A. Decker, J.-U. Rohde, L. Que, and E. I. Solomon, J. Am. Chem. Soc., 

2004, 126, 5378–5379. Copyright 2004 American Chemical Society. 

 

 The calculations predict a pseudo-A-pair feature at 12000 cm-1 in the MCD spectrum 

(Figure 4.37, bottom) that arise from the 3E (dxy → dxz, dyz) and 3E (dxz, dyz → dx²–y²) transitions. 

Likewise, another pseudo-A-pair features at 18000 cm-1, corresponding to 3E (dxz, dyz → dz²). 

At 2 K, the relative signs of these pseudo-A-pairs are reversed to what they are at 20 K and 

above. The overlap of the 3Γ (dxy → dx²–y²) bands on the MCD bands at 12000 cm-1 does not 

produce an all-positive feature below 20 K, as observed experimentally. The bands at 2K are 

also relatively far too weak compared to the bands at 20 K. However, the experimental 

spectrum does show vibrational fine structure at 12000 cm-1, which could alter the relative 

intensities of those bands. Another point of discrepancy is the maximum intensity of the two 

bands at approximately 11000 cm-1 and 13000 cm-1. The former is correctly calculated at 
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maximum intensity at 40 K, but the latter is observed experimentally to reach a maximum 

intensity at 20 K, which is not reproduced in the calculations. Most notably, what is absent 

from the calculated 2 K and 10 K MCD spectra is the presence of a positive and intense band 

at 11000 cm-1 and 13000 cm-1. 

 

4.2.3.4 Covalency of the [Fe–O]2+ subunit 

The covalency of the Fe–O moiety is given by the results of the ab initio calculations. 

Examining the CASSCF(4, 5) and CASSCF(12, 9) optimised orbitals of the active space 

reveals substantial covalency between the FeIV and O2– atoms. The percentage contributions 

to the optimised orbitals from the Fe(IV) d orbitals and oxo orbitals are given in Table 4.14.  

 

Table 4.14. The percentage contributions of the Fe(IV) d orbitals and the oxo p orbitals 

to the active space anti-bonding d orbitals for CASSCF(4, 5) and CASSCF(12, 9). 

Projection Fe(IV) d 

CAS(4, 5) 

O 

CAS(4, 5) 

Fe(IV) d 

CAS(12, 9) 

O 

CAS(12, 9) 

dxy 97.9% 0.0% 98.3% 0.0% 

dyz 68.6% 27.8% 68.9% 28.4% 

dxz 68.4% 28.1% 68.8% 28.5% 

dx²–y² 79.6 0.2% (px, py) 85.7% 0.0% 

dz² 71.3% 14.9% 65.7% 25.1% 

 

In both active spaces, the dxy is effectively non-bonding role, comprising of 

approximately 98% dxy character. Little change in the overall percentage character is observed 

by the enlargement of the active space. Likewise, the percentage composition of the Fe–O π 

bonds remains relatively unchanged between the active spaces. The dxz and dyz orbitals have 

nearly 30% O px, py character. Both the dx²–y² and dz² orbitals exhibit a compositional change; 

the dx²–y² is relatively purer in CASSCF(12, 9) than in the CASSCF(4, 5) active space, whereas 

the opposite trend is found for the dz² orbital, illustrating how the expansion of the active space 

strengthens the Fe–O σ bond. 
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4.2.4 Ligand-field calculations 

4.2.4.1 Analysis of the AILFT results 

The ab initio calculations on the minimal active space produced a 55 one-electron ligand-

field matrix for both the CASSCF(4, 5) and the NEVPT2 corrected calculations. This matrix is 

represented by the VLFT matrix in Kestrel, which is constructed from the eλ parameters of the 

system and their angular geometry.  

By fitting the 55 VLFT matrix calculated by ORCA’s AILFT module with Kestrel’s eλ 

parameters, the general metal-ligand bonding situation can be evaluated unambiguously. A fit 

was carried out on the 55 one-electron ligand-field matrix from ORCA’s AILFT analysis of the 

CASSCF(4, 5) results using Kestrel. The resulting fit gave parameters of  eσ(ax) = 12996.3 

cm-1, eπ(ax) = 5979.2 cm-1, eσ(eq) = 5585.9 cm-1 with an RMS difference of 222 cm-1. The best 

fit parameters to the 55 one-electron ligand-field matrix for the CASSCF(4, 5)/NEVPT2 

calculations gave eσ(ax) = 13883.5 cm-1, eπ(ax) = 9775.4 cm-1, eσ(eq) = 7518.8 cm-1 with an 

RMS = 372 cm-1. Hence, the inclusion of dynamical correlation in the restricted active space 

resulted in a large increase in the eπ(ax) and eσ(eq) parameters.  

These results lend confidence in the chosen eλ parameter model. Both of the 

CASSCF(4, 5) and NEVPT2 one-electron ligand-field matrices were reproduced within the 

metal-ligand bonding parameterisation of the model. However, the AILFT fit performed by 

ORCA was not able to fit its ligand-field Hamiltonian on the CASSCF(4, 5) and NEVPT2 

corrected transition energies very well (with a total RMS of 3184.5 cm-1 and 5784.6 cm-1, 

respectively), suggesting that the ab initio computed energies contain contributions from other 

sources beyond the limitations of LFT. It is normal for the RMS of the NEVPT2 calculations to 

be larger than for the CASSCF results. However, CASSCF results usually map very well on to 

the ligand-field Hamiltonian of AILFT.31,185  

Although the results of the four electrons in five orbitals active space did not compare 

well with experiment, the AILFT reflects the same chemical trend as observed in the work of 

comba et al., and those found in other AILFT analyses of iron(IV) oxo systems.166,176 The 

extracted parameters themselves are in good agreement with the ligand-field parameters 

extracted in our original publication. However, the eσ(ax) parameter was calculated to be some 

3000 cm-1 lower and eσ(eq) was found to be greater than eπ(ax) in contrast to the AILFT 

analysis.176 
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4.2.4.2 Analysis of the CASSCF(12, 9)/NEVPT2 transition energies 

Analysis of the AILFT results highlighted the key chemical trends in the metal-ligand bonding 

parameters. A direct comparison of the d-d transition energies calculated by Kestrel was made 

to the CASSCF(12, 9)/NEVPT2 transition energies to analyse the origin of the relatively low 

energy 3Γ (dxy → dx²–y²) transitions and whether the excited state energies and ordering could 

be reproduced by a parameter set in Kestrel. 

 The relative energies of the 3Γ (dxy → dx²–y²) are primarily sensitive to the eσ(eq) 

parameter, whilst some of the components of the 3Γ (dxy → dx²–y²) multiplet were also sensitive 

to Racah B. The energies of the five components could be lowered by dropping the value of 

eσ(eq), but this also drops the energy of the 3E (dxz, dyz → dx²–y²) band. The drop in the band 

energy can be somewhat compensated for by increasing the value of Racah B. However, an 

increase in Racah B also increases the spitting between the five components of the 3Γ (dxy → 

dx²–y²) band. A reduction in eσ(eq) and an increase in Racah B also favour the high-spin (S=2) 

(dxy)1(dyz)1(dxz)1(dx²–y²)1(dz²)0 configuration as the ground state, so this must be pushed up in 

energy relative to the intermediate spin 3A2 ground state by dropping the value of Racah C. 

 

 

Figure 4.38. Comparison of the CASSCF(12, 9)/NEVPT2 and Kestrel computed 

transition energies up to 19000 cm-1. Red dotted lines are comparisons between 3E 

bands and green dotted lines are comparisons between the components of the 3Γ (dxy 

→ dx²–y²) bands. 
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 An example of an attempted fit is shown in Figure 4.38. This reproduction of the 

CASSCF(12, 9)/NEVPT2 transition energies was made using the parameters eσ(ax) = 11015.0 

cm-1, eπ(ax) = 6135.7 cm-1, eσ(eq) = 5018.5 cm-1, B = 861.2 cm-1, and C = 1878.1 cm-1. 

Comparing the energies of CASSCF(12, 9)/NEVPT2 and Kestrel (Table 4.15 and Figure 4.38), 

it is clear that the ligand-field model cannot convincingly reproduce the ab initio energies and 

excited state orderings. A large discrepancy is observed in the energies of the 3E (dxz¸dyz → 

dx²–y²) band, which Kestrel underestimated by 2000 cm-1. The components of the 3Γ (dxy→ dx²–

y²) were also predicted to lie too high in energy, but one component could be placed close in 

energy to the 3E (dxz¸dyz → dx²–y²) band. The inability of Kestrel to reproduce quantitatively, in a 

satisfactory manner, the relative energies of the CASSCF(12, 9)/NEVPT2 likely represents the 

restricted basis set use in LFT compared to the ab initio calculations.  However, the restricted 

basis set does not necessarily imply that LFT is a poorer approach (see below for discussion), 

and it should be noted in this regard that the UV-Vis and VT-MCD spectra calculated from 

CASSCF(12, 9)/NEVPT2 calculations do not accurately reproduce the experimental spectra. 

 

Table 4.15. Comparison of the key d-d transition energies (cm-1) computed from the 

best fit parameters in Kestrel (see text) and CASSCF(12, 9)/NEVPT2 calculations. 

Assignment Kestrel CASSCF(12, 9)/NEVPT2 

3A2 0 0 

3E (dxy → dxz, dyz) 12160.2, 12166.2 11823.1, 11844.4 

3E (dxz, dyz → dx²–y²) 9405.2, 9832.1 11403.8, 11973.3 

3E (dxz, dyz → dz²) 18216.6, 18522.4 18010.8, 18279.8 

3Γ (dxy → dx²–y²) 13711.6, 16325.9,  

16866.5, 18574.3,  

19934.5 

12105.3, 12272.7,  

13197.9, 15211.5,  

17309.9 

5A1 (dxy → dx²–y²) 1263.4 1332.1 

 

 Despite the limited quantitative reproduction of ab initio predicted transition energies, 

it is important to examine the best fit ligand-field parameters (vide supra). The values of the eλ 

parameters are not dissimilar from the values extracted by fitting directly to the 55 one-

electron ligand-field matrix from CASSCF(4, 5). The eλ parameters are themselves chemically 

sensible. The striking feature, however, is the abnormally low C/B ratio (2.18). A low C/B ratio 

was also observed in the AILFT fit of the CASSCF(4, 5)/NEVPT2 results in section 4.2.3.2. 

While reductions in B can be expected to be smaller than reductions in C, this does not 

typically result in a C/B ratio that is as small as 2.175.186 A review of 25 3d transition-metal 
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complexes found C/B ratios in the range of 3.60 to 8.36.186 Accurate Racah B and C 

parameters for Fe(II) and Fe(III) chloride complexes have been extracted from experimental 

2p3d resonant inelastic x-ray scattering experiments and found C/B values of 6.58, 5.26, 3.69, 

and 3.69  for [FeIIICl4]1-, [FeIIICl6]3-, [FeIICl4]2-, and [FeIICl6]4- respectively.187 On this basis, a C/B 

ratio of 2.175 appears to be unphysically low. 

 

4.2.4.3 Idealised model 

Due to the complicated multiplet structure of iron(IV)-oxo systems, it is beneficial to first 

perform a ligand-field analysis using an idealised C4v structure. The one-electron d-orbital 

splitting is a simple function of the eλ parameters and can be evaluated in an idealised structure 

by the relations 
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where the dxy takes a formal non-bonding role. Destabilisation of the π-symmetry dxz and dyz 

occurs through π donation from the axial oxo and NCCH3 ligands. The energy of dz² primarily 

measures the strength of the iron axial ligand σ bonds, but also depends slightly on the energy 

of the equatorial amine σ bonding strength. The energy of the dx²–y² is perturbed by the 

equatorial nitrogen atoms solely. To ensure that an orbital ordering of dxy < dxz, dyz < dx²–y² < dz² 

is established, then the metal-ligand bonding parameters must satisfy the following relations: 

eσ(eq) > 2/3eπ(ax) and eσ(ax) > eπ(eq). 

 

4.2.4.3.1 Energies of many-electron states 

To correlate parameter values with many-electronic configuration energies, it is useful to 

explore the connection between metal-ligand bonding, d-orbital energies, and interelectronic 

repulsion parameters. Using arbitrary values for eσ(ax) = 10000 cm-1, eπ(ax) = 6000 cm-1, and 

eσ(eq) = 5000 cm-1, the relative energies and configurational occupations are calculated with 

and without interelectronic repulsion and listed in Table 4.16. In the absence of interelectronic 

repulsion, the configurational energy differences are simply the difference in the energies of 

the one-electron d orbitals. These configurations mix when perturbed by interelectronic 

repulsion. The configurations of 3E symmetry mix to a high degree; this is a consequence of 

the relatively close energies of the dxz, dyz, dx²–y², and dz² orbitals with the arbitrary eλ parameter 
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set and reiterates the potential shortcomings in assigning a single electronic configuration to 

a many-electron excited state in 3d transition-metal complexes. 

 The four lowest energy components assigned as the 3Γ (dxy → dx²–y²) transition have 

>93% configurational character associated with the dxy → dx²–y² transition; the highest energy 

component has a mixed configuration of 66.6% 11110/12010/10210 with 28.8% 

11101/12001/10201. 

 The quintet states, however, do not mix under static correlation because the 

interelectronic repulsion is treated spherically. The relative energy between the quintet states 

and the triplet ground state is a factor of both B and C but the relative energies between quintet 

states is constant, regardless of the values of B and C. An increase in Racah B destabilises 

the 3A2 ground state and the quintet manifold lowers in energy. This is simply rationalised as 

a penalty of spin-pairing when going from a quintet to a triplet electronic configuration. 

 

Table 4.16. The Kestrel calculated relative energies of important triplet and quintet 

excited states and their configuration projection. For the metal-ligand bonding 

parameters, see the text. 

Assignment Energy  

(B = 0 cm-1, C 

= 0 cm-1) 

Configuration Energy  

(B = 500 cm-1, 

C = 2000 cm-1) 

Configuration 

3A2 0.0 100% 21100 0.0 98.6% 21100 

0.6% 11110 

3E (dxy → dπ) 12000.0 100% 

12100/11200 

11508.3 72.9% 

11200/12100 

21.0% 

20101/21001 

2.3% 

20110/21010 

3E (dπ → dx²–y²) 3000.0 100% 

20110/21010 

8242.2 73.4% 

20110/21010 

12.2% 

20101/21001 

10.5% 

11200/12100 
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Assignment Energy  

(B = 0 cm-1, C 

= 0 cm-1) 

Configuration Energy  

(B = 500 cm-1, 

C = 2000 cm-1) 

Configuration 

3E (dπ → dz²) 13000.0 100% 

20101/21001 

14699.4 63.6% 

20101/21001 

18.4% 

20110/21010 

11.3% 

11200/12100 

3Γ (dxy → dx²–y²) 15000.0 100% 

11110/12010 

/10210 

13475.4, 

15398.8, 

15674.6, 

16368.4, 

19411.5 

 

5A1 (dxy → dx²–y²) 15000.0 100% 11110 2573.4 100% 11110 

5B1 (dxy → dz²) 25000.0 100% 11101 12573.4 100% 11101 

5E  

(dxy
1dyz/xz

1dx²–y²
1 

dz²
1) 

28000.0 100% 

10111/11011 

15573.4 100% 

10111/11011 

5B2  

(dxz
1dyz

1dx²–y²
1dz²

1) 

40000.0 100% 01111 27573.4 100% 01111 

 

4.2.4.3.2 UV-Vis spectroscopy 

The correlation of electronic structure with electronic spectroscopy involves understanding the 

configurational nature of the ground and excited states, and the effects of ligand-induced 

polarisation into the basis set. Since the equatorial nitrogen ligands are centrosymmetric in 

this idealised model and presumed to engage in equivalent electronic correlation, their 

polarisation into the d orbitals effectively cancels and their contribution can be neglected. 

The polarisation model requires parameterising the difference of Pσ, Fσ, Pπ, and Fπ 

values between the oxo and acetonitrile ligand (labelled O-Nax). First, it is important to analyse 

the UV-vis and VT-MCD spectra as a function of the transition dipole moment operators. One 

can begin to rationalise how transition dipole moment operators affect the individual bands of 

the UV-Vis spectrum. Both Pσ and Fσ induce polarisation into the axial dz² orbital and so 

electronic transitions to the dz² orbital are affected. On the other hand, Pπ and Fπ affect 

transitions from (or to) the dxz and dyz orbitals, which means the 3E bands are affected. The 3Γ 
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(dxy → dx²–y²) bands should have negligible intensity as the transition dipole moment 

contributions from the equatorial nitrogen atoms is zero in idealised symmetry. In the absence 

of spin-orbit coupling, all quintet and singlet bands in the UV-Vis spectrum will thus also have 

zero intensity. 

 In Figure 4.39, the relative intensity distributions of the 3E bands in the simulated 

absorption spectrum are shown as a function of the axial P and F parameters. The relative 

intensity distribution of the Pσ and Fσ contributions are identical. The relative intensities of the 

3E bands are largest for the band at 14699 cm-1 and lowest for the band at 8242 cm-1. This 

coincides with the percentage contribution of the dxz, dyz → dz² to a given 3E band. For Pπ and 

Fπ, the relative intensity distributions are different between the two. Fπ results in a greater 

relative intensity of the dxz, dyz → dz² contribution. This is because the f orbitals of π symmetry 

have a z2 component to them (fxz² and fyz²), which induces intensity into the transition involving 

dz². In both cases of Fπ and Pπ, the x and y components are the same (px, py, fxz² and fyz²) so 

that the 3E (dxz, dyz → dx²–y²) relative intensity changes little between them. 
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Figure 4.39. The relative absorption bands of the idealised C4v model for 

[Fe(O)(TMC)(NCCH3)]2+ using only P and F parameters on the oxo ligands. Simulations 

performed using a FWHM = 2500 cm-1. Calculations performed in the absence of spin-

orbit coupling but with B = 500 cm-1 and C = 2000 cm-1. 
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4.2.4.4 Ligand-field analysis of the experiment 

The preceding sections examined the results of the ab initio calculations and ligand-field 

analyses of those calculations. The ligand-field calculations could not reproduce the calculated 

values convincingly. This is perhaps to be expected, given the expanded basis set and the 

covalent bonding of the Fe–O bond induced within the ab initio calculations. This alone does 

not indicate a failure of LFT, however, since CASSCF(12, 9)/NEVPT2 also did not fully 

reproduce all aspects of the experimental UV-Vis and MCD spectra.  

The goal of LFT is to reproduce experiment and this is possible providing the effective 

Hamiltonian remains intact. The following section describes the direct ligand-field 

parameterisation of the reported experimental data. The calculations aim to simulate the 

magnitude of the ZFS, the d-d band energies in experiment, the relative intensities of the UV-

Vis, and the relative intensities and temperature dependence of the bands in the VT-MCD 

spectrum.  

 

Table 4.17. Possible electronic assignments of the reported experimental band 

energies (cm-1) of [Fe(O)(TMC)(NCCH3)]2+ to fit in Kestrel. For the electronic 

assignments, 3E has labels (1) = dxy → dxz, dyz, (2) = dxz, dyz → dx²–y², and (3) = dxz, dyz → 

dz². 

Energy Comba I Comba II General I General II 

0 3A2 3A2 3A2 3A2
 

≈3000 5A1 5A1 5A1 5A1
 

10400 3E (1) 3E (2) 3E (1) 3E (2) 

10600 5B1 5B1 – – 

12900 3E (2) 3E (1) 3E (2) 3E (1) 

17600 3E (3) 3E (3) 3E (3) 3E (3) 

 

The ligand-field parameterisation has five parameters that dictate the relative energies 

of the singlet, triplet, and quintet manifolds: eσ(ax), eπ(ax), eσ(eq), B, and Racah C. Spin-orbit 

coupling is a weaker perturbation when compared to the ligand field or interelectronic repulsion 

and is neglected in these searches but becomes important when reproducing the VT-MCD 

spectra. By varying these parameters to fit to possible experimental assignments, one can 

correlate electronic structure with parameterisation. The two assignments analysed are: the 

assignment of Comba et al., in which the band at 10600 cm-1 is assigned as a spin-forbidden 
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triplet to quintet dxy → dz² band; and a further analysis (General) which ignores the assignment 

of the band at 10600 cm-1 and fits all other bands. Each of these assignments features two 

variations, where the order of the 3E (dxy → dxz, dyz) and the 3E (dxz, dyz → dx²–y²) assignments 

are reversed. The first quintet excited state energy is not known experimentally but is set at 

3000 cm-1 in line with the predicted DLPNO-CCSD(T) calculations.177 This band is weighted 

at 0.5 in the comparison calculations. The electronic assignments, the average best fit values, 

and the parameter bounds are presented in Table 4.17. 

 The best fit parameter values for these assignments are presented in Table 4.18. Both 

assignment sets provide good reproduction of the transition energies (to within a RMS of 500 

cm-1). The ordering of the 3E (dxy → dxz, dyz) and the 3E (dxz, dyz → dx²–y²) assignments has a 

pronounced effect on the eπ(ax) and eσ(ax) parameters. When the 3E (dxy → dxz, dyz) band is 

placed at 10400 cm-1, eπ(ax) and eσ(ax) share similar values to those reported by Comba et 

al. of 5584 cm-1 and 9288 cm-1 respectively.176 This is consistent with the assumed assignment 

ordering discussed in that paper. However, when the 3E (dxz, dyz → dx²–y²) is placed lower in 

energy than the 3E (dxy → dxz, dyz) band then a substantial increase in eπ(ax) and eσ(ax) was 

observed. Interestingly, eσ(eq) did not change by much but instead the 3E (dxz, dyz → dx²–y²) 

band was lowered implicitly by increasing eπ(ax) and thereby reducing the energy difference 

between the dxz/dyz, and dx²–y² orbitals. 

 

Table 4.18. The best fit parameters (±) for fitting the different d-d band assignments (see 

text) for [Fe(O)(TMC)(NCCH3)]2+. 

Parameters Comba I Comba II General I General II 

eσ(ax) 10500 (500) 11200 (600) 10500 (500) 11200 (600) 

eπ(ax) 5500 (300) 6550 (450) 5500 (300) 6550 (450) 

eσ(eq) 6800 (600) 7100 (900) 6500 (300) 6500 (300) 

B 350 (150) 350 (250) 405 (35) 500 (100) 

C 3100 (500) 3400 (600) 2900 (100) 2800 (200) 

Σ(avg) 70100 77000 68900 74600 

 

The parameter-space calculations provide a foundation to find fits to the reported 

experimental UV-Vis and VT-MCD spectra. The chosen best fit parameters (obtained by fitting 

the UV-Vis and VT-MCD manually) are presented in Table 4.19.  

In general, the eλ parameters reflect the chemical trends extracted from the AILFT 

analysis in section 4.2.4.1. The average bonding of the axial oxo and acetonitrile is 
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characterised by strong σ and π donations. The ligand-field trace (Σ = 2eσ
ax + 4eπ

ax + 4eσ
eq) is 

consistently found at a value around 69000 cm-1, which is in good agreement with the trace 

found for AILFT analysis of the CASSCF(4, 5)/NEVPT2 active space (Σ = 72253 cm-1). The 

values of B and C were also sensitively determined and have a dramatic effect on the quality 

of reproduction of the experimental VT-MCD.  

 

Table 4.19. The best fit ligand-field parameter sets for the reproduction of experimental 

data. The labels P1 to P5 are alternative fits which offer good reproduction of the 

available experimental data. 

Parameter Best P1 P2 P3 P4 P5 

eσ(ax) 10600 10500 11000 10750 10500 10000 

eπ(ax) 6300 6300 6100 6100 6100 6100 

eσ(eq) 5900 6100 5900 5800 5900 5900 

Σ 70000 70600 70000 69100 69000 68000 

B 700 700 570 600 600 700 

C 2500 2600 2360 2300 2500 2200 

ζ 310 320 360 360 360 320 

kiso 0.6 0.6 0.6 0.6 0.6 0.6 

Pσ(O−Nax)
 -90 -80 -40 -10 0 -80 

Pπ(O−Nax) 80 70 100 100 100 100 

Fσ(O−Nax) 100 100 60 45 45 120 

Fπ(O−Nax) 0 -15 -20 -20 -20 0 

 

The best fit parameters found that eσ(eq) ≤ eπ(ax), which corresponds to a 3E excited 

state ordering where the formal dxz, dyz → dx²–y² transition is lower in energy than the dxy → dxz, 

dyz transition. This reassignment from that given by Decker et al. was also found by Ye et al. 

in their ab initio calculations.174 In general, the best fit values of eσ(eq) in Table 4.19 are 

typically lower than those found for the corresponding electronic assignment (Comba II) in 

Table 4.17, which is in the range of 6100 to 8000 cm-1, but this was compensated for by an 

effective increase in the Racah B parameter. As will be discussed later, this parameterisation 

mixes electronic configurations (4.2.4.6) and is important for the reproduction of the reported 

experimental UV-Vis and VT-MCD. 

 These fits assign a consistent polarisation scheme even if the ratios and magnitudes 

vary. The fits show that Pπ(O−Nax) > Fπ(O−Nax) and that they are of opposite sign; the same 
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applies for the σ polarisation, where the magnitudes of Fσ(O−Nax) > Pσ(O−Nax). This means 

the larger Pπ and Fσ polarisations are attributed to the same source, whether it be above or 

below the equatorial plane. As will be discussed in section 4.2.5.2, the larger Pπ and Fσ 

polarisation are assigned to the oxo, hence the labelling of (O−Nax). 

 

4.2.4.5 Comparison with experimental data 

The ligand-field analyses presented in section 4.2.4.4 aimed to reproduce three pieces of 

experimental data: the zero-field splitting, the relative intensities of the UV-Vis, and the 

temperature dependence behaviour of the VT-MCD. The best fit parameters gave an effective 

zero-field splitting characterised by spin Hamiltonian parameters of D = +28.7 cm-1 and E/D = 

7.97 x 10-4, in excellent agreement with values extracted from Mössbauer studies (D = +29 

cm-1).176 The spin-Hamiltonian parameters were calculated by comparison of the zero-field 

split energies with the solutions of the 3x3 |S, MS> matrices parameterised by D and E. 

Calculated UV-Vis and VT-MCD spectra for the best fit and the other fits (Table 4.19) are 

presented in Figure 4.40. The simulations of the best fit parameter set reproduce the relative 

intensities of the UV-Vis and the temperature dependence of the VT-MCD spectra. 
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Figure 4.40. The simulated (red) and experimental (black) UV-Vis and 7 T VT-MCD for 

the parameter sets in Table 4.19. Simulations were performed using a FWHM = 2500 cm-

1 for each transition. MCD simulations were performed with a 30 × 30 angular grid for θ 

and φ. The experimental UV-Vis is adapted with permission from A. Decker, J.-U. 

Rohde, L. Que, and E. I. Solomon, J. Am. Chem. Soc., 2004, 126, 5378–5379. Copyright 

2004 American Chemical Society. 
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The Kestrel simulated UV-Vis spectrum for the best fit ligand-field parameters 

reproduces the intensity distribution observed in the experimental spectrum. The band at 

12000 cm-1 is the most intense provided that the magnitude of Pπ > Fπ.  The shoulder 

intensity at 10500 cm-1 is not reproduced here but this shoulder is likely exaggerated due to 

the vibronic fine structure, which is not modelled in Kestrel’s simulations. An interesting and 

subtle aspect of the intensity distribution is the relative intensity between the two bands at 

12000 cm-1 and 17600 cm-1. This intensity arises from formally spin-forbidden quintet bands 

that mix with nearby spin-allowed triplet bands in that region. 

As expected, reproduction of the VT-MCD was found to be a complicated function of 

the transition dipole moment, ligand field, and interelectronic repulsion parameters. Although 

the alternative fits presented in Table 4.19 in section 4.2.4.4 do reproduce the general features 

of the experimental spectra, the best fit parameter set best reproduces details of the low 

temperature spectra using the most chemically intelligible parameter set. Importantly, the 

calculated VT-MCD spectrum at 10 K and below has positive intensity in the low energy region 

(8000 cm-1 to 15000 cm-1) as observed experimentally. The positive intensity drops at 10500 

cm-1 going from 2 K to 10 K but grows at 13000 cm-1, which matches the experimental 

observation. At 20 K and above, a pseudo-A-pair feature is resolved in this region. Interestingly 

there appears to be three peaks in this region at 20 K and above at 13000 cm-1, 11000 cm-1, 

and 9500 cm-1, as is also clearly observed in the experimental 20 K spectrum and to a lesser 

extent in the 40K and 80K spectra. The positive bands at 13000 cm-1 and 9500 cm-1 reach 

their maximum intensity at 20 K before sharply reducing in intensity above 20 K. The negative 

band at 11000 cm-1 reaches its maximum negative intensity at 40 K, in agreement with 

experiment.  

The reproduction of the temperature dependence of the band at 17600 cm-1 does not 

agree perfectly with experiment. Experimentally, this band has maximum intensity at 2 K and 

has pseudo z-polarised behaviour. However, this band is calculated to reach maximum 

intensity at approximately 20 K, which is unsurprising for the formally z-polarised 3E (dxz, dyz 

→ dz²) transition. Despite this discrepancy, the general features of the temperature 

dependence of the MCD spectra are well reproduced. 
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Figure 4.41. The saturation plots generated using Kestrel for the MCD intensity of the 

bands of [Fe(O)(TMC)(NCCH3)]2+ at 10400 cm-1, 12900 cm-1, and 17600 cm-1 at 7 T using 

the best fit parameters (see text). 

 

The intensities of the MCD bands at the reported experimental energies were 

calculated (using Kestrel) over a range of temperatures and the resulting saturation plots are 

presented in Figure 4.41. Both the saturation behaviours at 12900 cm-1 and 17600 cm-1 exhibit 

similar saturation behaviours and reach maximum intensity at 17 K. The band at 12900 cm-1 

becomes negative at temperatures > 85 K, whereas the band at 17600 cm-1 does not become 

negative. The band at 10400 cm-1 reaches maximum positive intensity at 2 K and reaches 

maximal negative intensity at 50 K. This trend agrees with the temperature dependence 

described by Decker et al.165  
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4.2.4.6 Electronic structure 

To understand the origins of these electronic/spectroscopic features, an examination is made 

of the electronic structure. The final ligand-field orbitals have relative energies of 0.0, 12380.1, 

12497.3, 17503.2, and 26965.4 cm-1 belonging to the primarily dxy, dyz, dxz, dx²–y² and dz² orbital 

projections respectively, with respect to the principal C4v axis. The shapes and orientations of 

the ligand-field orbitals are given in Figure 4.42. The dxz and dyz orbitals are orientated to 

project in between the Fe–N bonds rather than along them. There are no significant deviations 

from the expected orbital orientations of an approximate C4v complex.  

 

 

Figure 4.42. The Kestrel rendered ligand-field orbitals for the best fit parameter set (see 

text) of [Fe(O)(TMC)(NCCH3)]2+. 
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The final non-relativistic excited-state energies and their configurational projections are 

given in Table 4.20. The relative energy of the first excited quintet state, the 5A1 (dxy → dx²–y²), 

is higher in energy than predicted by CASSCF(12, 9)/NEVPT2 but lower than the average 

energy gap predicted by DLPNO-CCSD(T) of 3600 cm-1
.
177 

The 3E (dxy → dxz, dyz) experimentally assigned band at 10400 cm-1 is modelled as a 

configurationally mixed dxy → dxz, dyz, dxz, dyz → dx²–y², and dxz, dyz → dz² transition, where the 

first two listed configurations are the dominating contributors. The other 3E band, assigned as 

the dxz, dyz → dx²–y² transition at 12900 cm-1 in the experimental spectrum by Decker et al., is a 

configurational admixture of the 3E transitions with a larger contribution from the dxz, dyz → dz² 

band. In between the bands at 12900 cm-1 and 10400 cm-1 is the spin-forbidden 5B1 (dxy → dz²) 

band, which is integral to the reproduction of the positive feature at 11000 cm-1 in the low 

temperature MCD spectrum. The 3Γ (dxy → dx²–y²) multiplet spans an energetic range of 15000 

cm-1 to 20000 cm-1 and is not sufficiently low enough in energy to be involved in the 

temperature dependent behaviour of the low energy region of the MCD spectrum. The final 3E 

band at 17600 cm-1 is a configurationally mixed dxz,dyz → dx²–y² / dz² excited state. The 

configurationally mixed nature of these excited states means that assignments to simple one-

electron d-d transitions is inaccurate. 
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Table 4.20. The non-relativistic energies (cm-1), assignments, and configurational 

projection of the key electronic states for the best fit parameter set. Configurational 

projections of the 3Γ bands are omitted for clarity. 

2S+1Γ Energy (cm-1) 2S+1 % dxy dyz dxz dx²–y² dz² 

3A2 0.0 3 97.2 2 1 1 0 0 

5A1 (dxy → dx²–y²) 1588.9 5 100 1 1 1 1 0 

3E (dxy → dxz, dyz) 10143 3 43.0 2 1 0 1 0 

  3 41.3 1 2 1 0 0 

  3 10.1 2 0 1 0 1 

 10538.6 3 40.3 2 0 1 1 0 

  3 39.6 1 1 2 0 0 

  3 14.1 2 1 0 0 1 

5B1 (dxy → dz²) 10851.6 5 100 1 1 1 0 1 

3E (dxz, dyz → dx²–y²) 12322.7 3 45.7 1 1  2 0 0 

  3 42.4 2 1 0 0 1 

  3 8.8 2 0 1 1 0 

 12348.2 3 44.5 1 2 1 0 0 

  3 39.3 2 0 1 0 1 

  3 13.1 2 1 0 1 0 

3Γ (dxy → dx²–y²) 15500 to 20000 

cm-1 

       

3E (dxz, dyz → dz²) 17480.1 3 41.9 2 0 1 0 1 

  3 31.1 2 1 0 1 0 

  3 8.7 1 2 1 0 0 

  3 7.1 1 1 1 1 0 

  3 5.5 1 1 0 1 1 

 17837.4 3 37.5 2 0 1 1 0 

  3 37.3 2 1 0 0 1 

  3 9.6 1 1 2 0 0 

  3 4.8 1 0 1 1 1 

  3 4.0 1 2 0 1 0 

3Γ (dxy → dz²) 21000 to 32000 

cm-1 
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4.2.5 Discussion 

4.2.5.1 The best fit ligand-field, interelectronic repulsion, and spin-orbit coupling 

parameters 

The preceding analysis managed to establish a set of best fit parameters for characterising 

the [Fe(O)(TMC)(NCCH3)]2+ complex. The ligand-field parameters of the metal-ligand bonding 

(eλ), interelectronic repulsion (B, C), and spin-orbit coupling (ζ) were sensitively determined, 

whereas the isotropic reduction factor kiso was not. Except for kiso, which was not investigated 

in the previous Kestrel analysis published by Comba et al., a similar best-fit parameter set 

emerged in this analysis.176 One criterion for assessing the quality of a ligand-field analysis is 

whether the resulting parameters are chemically and physically sensible. 

The best fit eλ parameter values directly report on individual metal-ligand bonding 

interactions and hence these are the easiest to evaluate in terms of their chemical intelligibility. 

The best fit parameters were assigned presuming the equatorial nitrogen donors to be σ 

donors only. The oxo-acetonitrile pair were assigned as a strong σ and π donor. This concurs 

with the chemical expectation of metal-ligand bonding for an oxo (as opposed to an oxyl) due 

to its relatively short bond length. The best fit eλ parameter signs and magnitudes agree well 

with the eλ parameters derived from a direct fit to the AILFT derived CASSCF 5×5 one-electron 

ligand-field matrix described in section 4.2.4.1. The best fit parameter values predicted a 

smaller eσ(ax) parameter than the value extracted from the AILFT analysis because the latter 

overestimates either the contributing σ donor strength of the acetonitrile or the oxo. Further 

confidence with the best fit eλ parameter values is given by comparison of the ligand-field trace 

(Σ = 70000 cm-1) with the ligand-field traces observed for V(IV)-oxo systems (Σ = 77070 cm-1, 

80280 cm-1, and 80460 cm-1, see appendix 6.6), which have traces with a similar order of 

magnitude.188 The decrease in the ligand-field trace observed with Fe(IV) compared to V(IV)-

oxo systems is likely due to two factors. The first factor is the increased electron density from 

the increased occupation of the Fe(IV) 3d orbitals compared to the V(IV), which destabilises 

the metal-ligand bonds due to Pauli repulsions.26 The second reason is attributed to the 

chemical difference of the equatorial acac- ligands in the V(IV)-oxo systems. The acac- ligands 

possess a formal negative charge, which can be delocalised onto the vanadium via the ligand 

π network. This would lead to more electron density donated to the V(IV) ion and result in an 

increase in the ligand-field trace. 

 Having established that the metal-ligand bonding parameters are chemically sensible, 

attention turns to the interelectronic repulsion parameters. The best fit interelectronic repulsion 



236 
 

B and C parameters satisfy the criterion formulated by Hans-Herbert Schmidtke for 

determining physically sensible B and C parameter values.186 One such criterion for 

determining if the values of B and C are sensible, is the expectation that B < C and that the 

reduction in C is greater than the reduction in B from their respective free-ion values. The 

relative reductions of the best fit values of B and C (ΔB = 444 cm-1 and ΔC = 1959 cm-1) fulfil 

this criterion. The relative nephelauxetic quotients of B and C are reasonable too, where B/B0 

= 0.61 and C/C0 = 0.56. The reduction of the spin-orbit coupling parameter from the free-ion 

value adopted a similar magnitude, ζ/ζ0 = 0.60. Anisotropic 2-electron terms are sequestered 

into the definition of the eλ parameters, and the current parameterisation does not require 

anisotropic interelectronic repulsion parameters, as has been suggested for Mn(IV) 

complexes.172 Indeed, there are no large deviations or objectionable parameter values to 

suggest any breakdown of the effective Hamiltonian. It appears therefore that the spherical 

approximation of interelectronic repulsion (and spin-orbit coupling) parameters are good 

approximations. 

 

4.2.5.2 The best fit transition dipole moment parameters 

The best fit ligand-field parameters illustrate a consistent polarisation effect from the 

oxo/acetonitrile. It is not possible to assign unambiguously the polarisation differences to either 

the oxo or acetonitrile, but chemical intuition would suggest that the oxo (a σ and π donor) is 

characterised by Pπ(O) > Pπ(NCCH3) and Fσ(O) > Fσ(NCCH3). The measure of the difference 

in the Pλ and Fλ values means that it is only possible to compare the polarisation of the Fe–

O bond relative to the same polarisation effect in the Fe–NCCH3 bond. This polarisation 

difference is still meaningful, however. A large Pπ, associated with a greater Pπ contribution 

from the oxo compared to the acetonitrile, suggests that the π bond of the oxo is polarised 

more towards the metal. This is corroborated by the small negative values of Fπ, suggesting 

that the π bond of the Fe–NCCH3 is polarised more towards the nitrogen. However, in contrast, 

the larger Fσ (O) contribution suggests that the electron density in the  Fe=O bond is “thinner” 

and concentrated about the Fe–O axis than in the Fe–N bond, consistent with the formation 

of a strong Fe=O σ bond. It could also be argued that the electrons in the Fe=O σ bond are 

polarised more towards the oxo; since the polarisation of the Fe=O π bond is directed towards 

the metal, this would be the primary delocalisation method of the negative charge on the oxo. 

Hence, the σ bond electrons, because of the electroneutrality principle, are not delocalised 

onto the metal to the same extent.  
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The effects that the signs and ratios of the P and F parameters have on the basis d 

orbitals are shown in Figure 4.43. Note the effect of the polarisation is exaggerated in Figure 

4.43 for clarity. The polarisation of the dxz/dyz orbital results in the reduction of electron density 

towards the oxo and the density is pushed inwards, away from the Fe=O π bonds; the 

underside expands and is pushed outwards towards the equatorial plane. The polarisation of 

the dz² from the oxo and acetonitrile σ bond results in an elongation of the electron density 

along the underside and the shortening and rounding of the electron density along the top 

side, again redirecting electron density away from the stronger Fe=O σ bond. 

 

 

Figure 4.43. The effect of polarisation of P and F functions (left) into the dxz/dyz (top) and 

dz² (bottom). The degree of polarisation is exaggerated for clarity. The converged 

CASSCF(12, 9) anti-bonding active space orbitals (right) for the dxz/dyz and dz². 

 

 The ligand-field model did not require explicit recognition of Pσ or Fσ parameters of the 

equatorial amines. There is ground for assigning different parameter values across for the Fe–

Neq bonds of different lengths (2.10 Å vs 2.12 Å in the DFT optimised structure) but this wasn’t 

done on the justification of reducing the number of variable parameters and that suitable fits 
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were obtained without them. To account for the polarisation contributions of the equatorial 

amines, a dynamic polarisation model would have to be employed.82 

 

4.2.5.3 The spin-forbidden triplet to quintet dxy → dz² assignment 

This work centred on finding a ligand-field parameter set which could reproduce the 

experimental UV-Vis and VT-MCD spectra by assigning the low energy z polarised band (at 

10600 cm-1) in the VT-MCD spectrum to the spin-forbidden 5B1 (dxy → dz²) band. The spin-

forbidden 5B1 (dxy → dz²) band was found to be a viable alternative assignment of the 3Γ (dxy 

→ dx²–y²) band by Decker et al. The best fits to the VT-MCD spectra were obtained with values 

that placed the 5B1 band within the low energy window at 11000 cm-1. 

 

4.2.5.4 Limits of ligand-field theory in Fe(IV)-oxo complexes? 

The foregoing analysis was made not only to probe further the electronic structure of these 

complexes but to attempt to find the limits of the ligand-field model. On the results of this 

analysis alone, the limits of the ligand-field model have not been conclusively reached. The 

general features of the UV-Vis and VT-MCD spectra have been reproduced despite the 

inability to assign the low energy z polarised band as the 3Γ (dxy → dx²–y²) band. The models 

show that the reported experimental spectrum can be reproduced without explicit intensity 

from the 3Γ (dxy → dx²–y²) transitions. Hence, the nature of the positive intensity at 10600 cm-1 

in the experimental VT-MCD cannot be conclusively assigned as the 3Γ (dxy → dx²–y²) transition. 

On this basis, therefore, the assignments and spectra generated by Kestrel must be 

considered as a viable alternative to the assignments made by Decker et al.  

 Despite this, both the AILFT fitting and the Kestrel fitting of the ligand-field model to 

the extended active space CASSCF/NEVPT2 computed transition energies and their 

assignments was not satisfactorily achieved. The origin of this discrepancy in both the minimal 

and extended active spaces reflects a breakdown of the effective Hamiltonian from large 

covalency of the Fe=O functions with the iron(IV) d orbitals. In this regard, the same 

observation was made by Ye et al. in their study of a tetracarbene iron(IV)-oxo system and 

they concluded that “Finally, one should point out that more method development is necessary 

before Fe(IV) high-valent, covalent systems can be treated quantitatively in a satisfactory 

manner with AILFT”.166 
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Of course, the predicted spectra from Kestrel do not perfectly reproduce the 

experimental UV-Vis and VT-MCD spectra either. Despite this, the Kestrel generated spectra 

presented in this work are close theoretical predictions of the reported experimental spectra 

and all are achieved with a small basis set. Even if it were the case that the assumptions of 

the ligand-field model have been breached, the remaining predictions of the spectroscopically 

important features are good. Hence, the ligand-field model appears to be a valid tool for 

rationalising the electronic structures of intermediate iron(IV) oxo complexes. However, more 

work must be done to examine the electronic structures of other experimentally characterised 

iron(IV) oxo complexes before one can make a more general conclusion about the efficacy of 

the ligand-field model for iron(IV) oxo complexes. If the ligand-field parameterisation is correct, 

then the covalency between the iron(IV) d orbitals and the oxo π orbitals are overestimated in 

the ab initio calculations.7 This can be inferred from the values of the interelectronic repulsion 

parameters (B, C)  assigned in the Kestrel calculations, which are larger than expected for a 

system which is alleged to feature substantial Fe=O covalency. 

 

4.2.6 Conclusion 

This study was focused on analysing the reassignment of the spin-allowed 3Γ (dxy → dx²–y²) 

band to a spin-forbidden 5B1 (dxy → dz²) band in the VT-MCD spectra of 

[Fe(O)(TMC)(NCCH3]2+. The ligand-field model as implemented in Kestrel has been able to 

reproduce the available experimental data in a satisfactory way where the spin-forbidden 5B1 

(dxy → dz²) band plays an important role in simulating the reported experimental spectra. The 

analysis shows that d-d transitions in iron(IV) oxo systems cannot be thought of as single one-

electron transitions, but rather as configurationally mixed excitations. As a result, the 

temperature dependence of the experimental VT-MCD is a complicated function of both the 

underlying electronic structure (from static and dynamic coupling) and the polarisation from 

the axial oxo and acetonitrile bonding, which cannot (and should not) be understood with 

simple one-electron descriptions of the constituent orbitals. This work has also characterised 

a parameter set which shares similar eλ values to examples found in the literature and to eλ 

values extracted from ab initio calculations. 

 The work presented here has shown that LFT can provide a good reproduction of the 

experimental electronic spectroscopies for [Fe(O)(TMC)(NCCH3)]2+. Extension of this analysis 

to other characterised intermediate spin iron(IV) oxo complexes is the next stage to see 

whether a trend in the parameters can be observed and rationalised within the ligand-field 

model. There are a few other spectroscopically characterised (with VT-MCD) S=1 iron-oxo 
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complexes that would make good candidates for replication.166,169,174 These systems include 

added complications, such as requiring extra parameterisation due to the presence of other π 

interactions, for example. However, it appears that biologically relevant high-valent iron-oxo 

systems are parameterizable within the ligand-field model, sufficiently so that insight into these 

systems can be achieved and correlated with reactivity. Although it was not possible to 

conclude that the fit is unique, manually fitting the electronic spectroscopy was sensitive to 

parameter values and an exhaustive search was carried out. For now, there is no systematic 

way to evaluate a quality of fit algorithmically to the experimental MCD spectra without first 

speeding up the MCD calculations in Kestrel. 
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4.3 Electronic structure investigations of lytic polysaccharide 

monooxygenases 

4.3.1 Introduction 

Lytic polysaccharide monooxygenases (LPMOs) are a class of copper containing enzymes 

that can degrade polysaccharides, like cellulose and chitin.189 These enzymes either perform 

a monooxygenation or a peroxygenation reaction, which is capable of oxidising strong C–H 

bonds with a bond dissociation energy (BDE) of around 100 kcal mol-1.190–192 The precise 

mechanistic detail of their catalytic activity is currently unknown. Since their discovery in 2010, 

there has been extensive interest in LPMOs for enhancing the efficiency of biomass 

conversion to biofuel.190,193–198 Beyond an interest in their economic and sustainability 

potential, there has been great interest in understanding the catalytic mechanism and the 

reactive intermediates responsible for their reactivity.199–201 Research into LPMOs also 

extends beyond this. For example, LPMOs have been recently identified as a virulence factor 

in Pythophthora infestans oomycete.202 

 

 

Figure 4.44. The crystallographic structure of the LPMO enzyme, LsAA9 (PDB: 5ACH) 

rendered using CCP4MG. 
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Both bacteria and fungi are found to secrete these enzymes and nature has evolved 

different LPMO families with specific activity. At present, six different families, prefixed with 

‘auxiliary activities’ (AA), are classified in the CAZy database.203 These families include AA9 

(Figure 4.44), AA10, AA11, AA13, AA14, AA15, AA16, and AA17.204 

 

4.3.1.1 The histidine brace 

The histidine brace is a structural motif common to several proteins, such as LPMOs and 

particulate methane monooxygenases, which oxidise strong C–H bonds that are otherwise 

functionally inert.205–207 The structure of the histidine brace [Figure 4.45 (A)] consists of a N-

terminal histidine coordinated at the Nδ of its side chain (His1), trans to the Nε of another 

histidine (His2), coordinated to a copper ion.208,209 In the reduced copper(I) state (not shown), 

this active site is referred to as a so-called “t-shaped” coordination sphere. The oxidised 

copper(II) state features the same T-shaped coordination sphere but is completed by a fourth 

ligand, referred to as the exogeneous ligand, to form an approximate square plane. In the 

resting state, the exogeneous ligand is a water molecule. A second water molecule [not drawn 

in Figure 4.45 (A)] occupies an axial position trans to a tyrosine. This coordination sphere is 

typical across the LPMO families, except for AA10 LPMOs which instead exhibit a distorted 

square pyramidal structure. 

Curiously in LPMOs, barring those expressed by bacteria, the non-coordinating 

nitrogen of His1 is methylated [Figure 4.45 (A), blue highlight].193 The role that this methylation 

has is unknown. It has been suggested that the methylation might be involved in helping to 

‘anchor’ substrate on to the active site (see section 4.3.1.2).210 More recent work has also 

provided evidence that the methylation is involved in a protective mechanism from oxidative 

damage to the enzyme.211 
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Figure 4.45. A representative drawing of the first coordination sphere of the copper(II) 

active site in LsAA9 (A); and the definition of the dihedral “twist” ψ, between the two 

planes of the histidine rings (B). 

 

The two histidine rings coordinate with a characteristic twist, which is defined by the 

smaller dihedral angle made between the two planes of the histidine rings [Figure 4.45 (B)]. 

The “twist” has a typical angle in the range of 60° to 65°.209,212 It is not fully understood what 

role the histidine brace plays in the catalytic activity of these enzymes. The consequences of 

the histidine brace “twist” on either the reactivity or the electronic structure remains elusive. 

 

4.3.1.2 The catalytic action of LPMOs 

4.3.1.2.1 LPMO activity 

LPMOs oxidise recalcitrant polysaccharides. Different families of LPMOs are active on 

different polysaccharides. For example, the AA9 family is active on a range of polysaccharides 

including cellulose and xylan. Oxidation of these substrates occur at either the C1 or C4 

hydrogen of the glycosidic bond (Figure 4.46).213 The oxidation results in the cleavage of the 

glycosidic bond to give two products. The carbon atom (C1 or C4) whose hydrogen atom was 

abstracted, is converted to the cleaved product C=O. The oxidation proceeds via an external 

electron donor and molecular oxygen (R-H + O2 + 2e− + 2H+ → R-OH + H2O) or hydrogen 

peroxide, where one oxygen atom is incorporated into the oxidised product.204 
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Figure 4.46. C1 or C4 oxidation products of cellulose by the action of an LPMO enzyme. 

 

4.3.1.2.2 Substrate binding 

A significant step in understanding the catalytic action of an LPMO enzyme on substrate was 

published by Frandsen et al. in 2016, where the authors reported the first crystal structure of 

LsAA9 bound to oligosaccharide substrate (Figure 4.47, PDB: 5ACF).210 The oxidised 

copper(II) crystal structure showed that the substrate occupies the axial position opposite the 

tyrosine in the active site and displaces the axial water. This was significant because the 

blocking of the axial site countered early computational work that suggested that the reactive 

oxygen species formed in the axial position.199 The substrate is ‘anchored’ into position by a 

hydrogen bonding network and an electrostatic interaction between an oxygen in the substrate 

and the π network of His1. A chloride ion occupied the exogeneous ligand position, positioning 

the chloride within range of the C1/C4 hydrogens in the glycosidic bond. 
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Figure 4.47. The oxidised active site of LsAA9 with cellotriose (PDB: 5ACF) with the 

chloride anion occupying the exogeneous site. Green, blue, and red cylinders represent 

carbon, nitrogen, and oxygen atoms, respectively. The copper(II) and chloride ions are 

represented by the orange and yellow spheres, respectively. 

 

4.3.1.2.3 The suggested reactive intermediate 

The details of the catalytic cycle are unknown due to a lack of experimental/spectroscopic data 

of the reactive intermediates involved. Isotopic labelling shows that an oxygen atom from 

either molecular O2 or H2O2 is incorporated into the final oxidised product.190,191 Hence, 

theoretical/computational work has been focused on elucidating the reactive oxygen species 

responsible for the oxidation of the strong C–H bond. 
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Figure 4.48. A representative Lewis structure for a metal-oxyl and metal-oxo bond (top) 

and the destabilisation of a formal metal-oxygen π bond resulting in the oxo all 

(bottom). 

 

A copper(II)-oxyl (Cu-O•) has been suggested as one possible reactive species that 

performs the hydrogen atom abstraction from the substrate. A metal-oxyl has a distinct 

electronic structure compared to a metal-oxo. The metal-oxyl is drawn as a single bond, 

whereas the oxo is typically thought of as either a double or triple bond (depending on the 

occupation of the anti-bonding d orbital) as shown in Figure 4.48 (top). The suggestion of a 

copper(II)-oxyl, rather than a copper(II)-oxo (like the iron(IV)-oxo in section 4.2), is because 

the formation of a formal metal-oxo bond in an octahedral geometry is prohibited under the 

so-called “oxo wall”.4 The oxo wall, illustrated in Figure 4.48 (bottom), shows that the extra 

electrons that occupy the antibonding dxz and dyz orbitals for dn configurations with more than 

four electrons disfavour the formation of strong metal-oxygen π bonds.  Since the formation 

of a copper(II)-oxo is forbidden due to the oxo wall, the potential stabilisation of a copper(II)-

oxyl could provide a sufficiently reactive oxygen intermediate to oxidise strong C–H bonds. 
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4.3.1.2.4 The proposed catalytic cycle 

 

Figure 4.49. The proposed catalytic pathways for peroxygenation (left cycle) and 

oxidation (right cycle) of substrate (labelled as R). 

 

The O2 pathway is thought to begin by the reduction of the copper(II) to a copper(I), not shown 

in Figure 4.49. The first step then involves the binding of molecular oxygen to the copper(I) 

centre to form a copper(II)-superoxide species. This likely also involves the concurrent binding 

of substrate. The copper(II)-superoxide species was thought to be the potential reactive 

oxygen intermediate, but theoretical calculations suggest that it is not sufficiently reactive 

enough.214–216 The addition of a proton and an electron, possibly from an external reducing 

agent, form a copper(II)-hydroperoxyl species that is converted to the putative copper(II)-oxyl 

reactive intermediate. It has been suggested that the copper(II)-oxyl could be formed by an 

intermediate step where the copper(II)-OOH converts to a copper(I)-H2O2 species before the 

generation of the copper(II)-oxyl.217 The putative copper(II)-oxyl is thought to then perform a 

hydrogen atom abstraction, leaving a radical on the C1 or C4 atom. The copper(II)-hydroxide 

hydroxylates the substrate to give the final oxidised product and reduces the copper(II) ion 

back to copper(I). 

 The H2O2 pathway involves the homolytic cleavage of the H2O2 molecule and the 

eventual formation of a copper(II) hydroxide species and an OH• radical. From there, two 

potential routes have been suggested. The first is that the OH• radical abstracts a hydrogen 
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from the copper(II) hydroxide to form the putative copper(II)-oxyl, which then performs a 

hydrogen atom abstraction from the substrate. Alternatively, the OH• radical abstracts a 

hydrogen from the substrate directly, via a ‘caged hydroxyl radical’ mechanism.218 The final 

stage of the cycle involves the hydrolysis of the substrate, as was seen in the oxygenation 

mechanism. 

 

4.3.1.3 Spectroscopic characterisation and electronic structure 

LPMOs have been extensively studied using EPR spectroscopy. They show that the ground 

state is a dx²–y² SOMO either characterised by a type-2 copper enzyme (axial g-factors g3 > g1 

= g2) or a rhombic spectrum (g3 > g2 > g1). The enzyme HjAA9 (which has an EPR spectrum 

like other type-2 enzymes) has been probed with a combination of UV-Vis, CD, and MCD in 

the literature.219 Only three d-d bands are observed: the  dxz → dx²–y², dxy → dx²–y², and dyz → 

dx²–y² transitions at average energies of 12991 cm-1, 13940 cm-1, and 15705 cm-1. The fourth 

band, attributed to the dz² → dx²–y² transition, is unresolved and presumed to have negligible 

intensity. 

 The resting state of the enzyme LsAA9 has been studied extensively by A. Paradisi 

using EPR, UV-Vis, CD, and MCD.220 LsAA9 shares spectroscopic similarities to HjAA9; both 

have axial EPR g-factors. In their electronic spectroscopy they both only have three resolved 

d-d bands, but the LsAA9 bands are blue-shifted by approximately 1500 cm-1. A. Paradisi 

studied LsAA9 in its resting state (LsAA9), in the presence of cellohexaose substrate 

(LsAA9_C6_H2O, C6 = cellohexaose), with substrate and chloride (LsAA9_C6_Cl), and with 

substrate and bromide (LsAA9_C6_Br). As part of that work, A. Paradisi calculated the 

structures of these four models, which were optimised using the BP86 functional, and the 

calculated structures are used in this work. The truncated structures are presented in Figure 

4.50.220 

The variation of the exogeneous ligand (H2O, Cl−, and Br−) showed notable changes 

in the EPR g-factors, d-d transition energies, and intensity distributions in their CD and 

MCD.220 A. Paradisi also carried out TD-DFT and ab initio calculations (CASSCF/NEVPT2) 

with a minimal active space of nine electrons in five orbitals for each system, finding similar d-

orbital splitting across the series. The d-orbital splitting as calculated by CASSCF(9, 

5)/NEVPT2 calculations was dyz < dxz < dxy < dz² < dx²–y². TD-DFT calculations gave an 

alternative orbital ordering of dxy < dyz < dxz < dz² < dx²–y². Neither ordering agrees with those 

derived from the experimental data of HjAA9 or LsAA9.219,220 
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Figure 4.50. The truncated structure of the first coordination sphere of LsAA9 (A), 

LsAA9_C6_H2O (B), LsAA9_C6_Cl (C), and LsAA9_C6_Br (D) models with hydrogens 

and the substrate (for B, C, and D) omitted for clarity. The xyz structures are the DFT 

optimised structures computed by A. Paradisi.220 

 

4.3.1.4 The aim of this work 

The experimental data reported by A. Paradisi has provided a complete spectroscopic 

characterisation of the copper(II) active site in the resting state and substrate bound structure 

of LsAA9.220 This complete spectroscopic characterisation, coupled with the low symmetry of 

the active site, provides an ideal basis for ligand-field analysis. With this complete 

spectroscopic data, it is possible that a unique parameter set that characterises LPMO active 

sites can be found and insight into the unique electronic structure of these complexes can be 

achieved. 

This work aims to reproduce the experimentally observed d-d transition energies, EPR 

g-factors, UV-Vis, CD, and MCD spectra intensity distributions for LsAA9 in the resting state 

and the substrate bound structures, within the ligand-field model. 
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4.3.2 Methodology 

4.3.2.1 Ligand-field calculations 

A ligand-field analysis was carried out on the DFT optimised geometries computed and 

reported by A. Paradisi.220 The coordinate scheme, as shown in Figure 4.51, was aligned such 

that the z axis was oriented along the Cu–Tyr (Tyr = tyrosine) vector and the zx plane was 

aligned parallel with the Tyr–Cu–His1 plane. The zy plane is automatically aligned 

perpendicular to the zx plane where the y axis points approximately along the Cu–NH2 

direction.  

 

 

Figure 4.51. The global x (red), y (green), z (blue) coordinate schemes for LsAA9 (A), 

LsAA9_C6_H2O (B), LsAA9_C6_Cl (C), and LsAA9_C6_Br (D). 
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The bonding parameters were chosen such that the histidine brace was assigned 

common eσ (His) and eπy (His) parameters. The amino terminus and exogeneous ligand (X) 

were correlated in their σ interactions, so the average σ interaction eσ (NH2/X) was used. The 

exogeneous ligand was assigned a unique eπ for chloride and bromide, and an eπx (H2O) was 

assigned in LsAA9_C6_H2O where the local x-direction bisects the H–O–H angle (see section 

4.3.3.1). The axial tyrosine was assigned an eσ (Tyr) interaction. For d9 Cu2+, there are no 

interelectronic repulsion parameters. Spin-orbit coupling was parameterised by ζ and was 

fixed at the free-ion value, ζ0 = 830 cm−1. The kiso parameter was used to model the orbital 

angular momentum reduction in the magnetic moment operator. 

 

 

Figure 4.52. The pseudo-symmetries of the local metal-ligand bonding parameters 

represented by spherical harmonics for the sigma-bonding framework (A); the 

asymmetric pi-bonding network (B); and the cylindrical pi-bonding network (C); where 

X = H2O, Cl, Br. Note the phase information of the spherical harmonics is meaningless 

in the potential based method. 

 

For the simulation of UV-Vis, CD, and MCD data, transition dipole moment parameters 

(Pλ and Fλ) are assigned to the ligands. In this work, only relative intensities were reproduced 

and hence the largest Pλ or Fλ parameter was set to the value of 100 (a.u.). The histidines 

were set to share a set of transition dipole moment parameters: Pσ (His), Fσ (His), Pπy (His), 

and Fπy (His). In the LsAA9_C6_Cl and LsAA9_C6_Br models the amino terminus and halide 

are approximately directly trans to one another. To reduce the degree of parameterisation, a 

single Pσ (NH2 − Cl/Br) and Fσ (NH2 − Cl/Br) were assigned to the amino terminus position 

(and measures the relative contribution from the amino terminus compared to the halide) and 

were allowed to vary between –100 and 100. A positive value is interpreted as a larger 
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contribution from the amino terminus. The halide ligands were each assigned a Pπ (Cl/Br) and 

Fπ (Cl/Br) and were bound to be positive, assuming chloride/bromide are π donors. For the 

sake of reducing the degree of parameterisation, transition dipole moment parameters from 

the tyrosine are neglected on the assumption of its non/semi coordinating role (see section 

4.3.3.1). 

 

4.3.2.2 Fitting d-d transition energies and EPR g-factors 

The analysis began by reproducing the positions of the d-d transition energies and the EPR 

g-factors. The transition energies were provided by the gaussian deconvolution of the 

experimental UV-vis, CD, and MCD (Table 4.21) data. Each system featured only three 

resolved d-d transitions, suggesting the fourth was of negligible intensity. In the water-bound 

structures (LsAA9 and LsAA9_C6_H2O), bands I, II and IV are assigned to transitions from 

the dz², dxz, and dyz orbitals respectively. In LsAA9_C6_Cl and LsAA9_C6_Br bands II, III, and 

IV are assigned as transition from dxz, dxy, and dyz, respectively. The assignment of band II for 

LsAA9_C6_Cl is different to that of A. Paradisi (see section 4.3.3.2).220 

 

Table 4.21. The average d-d transition energies (cm−1) and band assignments taken 

from the Gaussian deconvolution performed by A. Paradisi of the experimental UV, CD, 

and MCD spectra of the LsAA9 structures.220 Note that the band numbering in 

LsAA9_C6_Cl is different from the ordering derived from the transition assignments by 

A. Paradisi (see text). 

System Band I Band II Band III Band IV 

LsAA9 12810 15443 – 17393 

LsAA9_C6_H2O 13190 15410 – 17517 

LsAA9_C6_Cl – 14510 16263 17547 

LsAA9_C6_Br – 14803 15993 17190 

 

Ligand-field fitting was performed in two stages. First, the d-d transition energies and 

EPR g-factors were fitted to generate eλ and kiso parameters. Fitting was performed by varying 

eσ(His) from 4000 cm-1 to 7000 cm-1; eπ(His) from –2000 cm-1 to 2000 cm-1; eσ(NH2/X) from 

4000 cm-1 to 7000 cm-1; eσ(Tyr) from −3000 cm-1 to 0 cm-1; and kiso from 0.0 to 1.0. The fitting 

procedure of the d-d transition energies only fitted the energies of the three resolved bands 

and the energy of the fourth unresolved band was ignored. Parameter-space searches were 
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then used to search other regions of fit. The second stage used the optimised eλ and kiso 

parameters to generate the eigenvectors and energies for the intensity analysis. 

 

4.3.2.3 Fitting the experimental UV-Vis, CD, and MCD with the ligand-field model 

Simulation of the UV-Vis, CD, VT-MCD, and VH-MCD were calculated as arising from 

transitions originating within the S=1/2 dx²–y² SOMO ground state to the complete excited state 

manifold. The VT-MCD spectra were simulated at 5 K, 10 K, and 15 K with a magnetic field 

strength of 7 T. The VH-MCD calculations were simulated at 3 T, 5 T, and 7 T at a temperature 

of 5 K. MCD simulations were performed by averaging over an angular grid of 30 steps 

spanning 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. 

Comparisons were made between the simulated spectra generated by Kestrel and the 

experimental spectra, where both sets of spectra were normalised by the largest absolute 

intensity. A common FWHM was applied to each band in the simulated spectra. 
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4.3.3 Results 

The ligand fields were effectively parameterised for each system by reproducing the observed 

intensity distributions of the UV-Vis, CD and MCD spectra, along with the experimental EPR 

g-factors. The calculations began by establishing firm eλ parameters for each of the ligands by 

reproducing the experimentally observed d-d transition energies and EPR g-factors. The 

transition dipole moment parameters were then refined against the spectroscopic data 

separately, holding the other ligand-field parameters fixed. The best fit parameter sets are 

presented in Table 4.22. 

 

Table 4.22. The best fit ligand-field parameters: bonding parameters (cm−1), isotropic 

reduction factors, and intensity polarisation parameters (normalised to 100) that 

provide the best reproduction of the intensity distributions and EPR g-factors. X refers 

to the nature of the exogeneous ligand (X = H2O, Cl, Br). The eπ Pπ, and Fπ values 

represent πx interactions for LsAA9_C6_H2O. 

Parameters LsAA9 LsAA9_C6_H2O LsAA9_C6_Cl LsAA9_C6_Br 

eσ (His) 6000 6150 6300 6400 

eπy (His) 1300 1500 1750 1300 

eσ (NH2/X) 5500 5800 5425 4900 

eπ (X) 0 700 300 300 

eσ (Tyr) −1800 −2000 −2000 −2000 

kiso 0.70 0.67 0.60 0.56 

∑ 23800 25600 25500 23800 

Pσ, Fσ (His) 100, 45 65, 25 27, 19 20, 27 

Pπy, Fπy (His) 35, 10 20, 55 15, 37 17, 35 

Pσ, Fσ (NH2) 90, 0 0, 100 0, 96 0, 80 

Pσ, Fσ (X) 20, 10 40, 0 78, 0 99, 0 

Pπ, Fπ (X) 0, 0 85, 5 100, 0 100, 0 

FWHM / cm-1 2500 2500 1800 2100 

 

4.3.3.1 Transition energies & EPR 

Before proceeding with a fit to the experimentally derived transition energies and EPR g-

factors, the underlying metal-ligand interactions were probed for their effect on the d-orbital 

energies. Naturally, the equatorial eσ (His), eσ (NH2) and eσ (X) were found to destabilise the 
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dx²–y² and dz² orbitals. The eσ (Tyr) primarily effected the dz² energy. eπx and eπy for the 

exogeneous ligand interacted with the dxy and dyz orbitals, respectively.  

The eπy (His) parameter caused two further perturbations: due to the twist of the 

histidine brace, dxz is perturbed by His1 and dxy is perturbed by His2. The former interaction is 

greater than the latter. By assigning the equatorial ligands as  donors, the exogeneous ligand 

as a weak π donor (eπ (X) < 500 cm-1), and ignoring the axial tyrosine  bonding, the resulting 

d-orbital ordering depends on the π bonding behaviour of the histidines. If the histidines are 

assigned as π donors (eπy (His) > 0 cm−1) then the resulting d-orbital ordering is dyz < dxy < dxz 

< dz² < dx²–y². If, however, the histidines are assigned as π acceptors (eπy (His) < 0 cm−1) then 

the resulting d-orbital ordering is dxz < dxy < dyz < dz² < dx²–y². The eπ (X) parameter interacts 

with the dxy and dyz orbitals. If eπ (X) is set 0 cm−1, then dyz remains non-bonding. 

 Fitting the reported d-d transition energies and their assignments for LsAA9 (Table 

4.21) began by constraining all equatorial ligands (the histidines, the amino terminus, and the 

exogeneous water) to share a common eσ (equatorial) parameter. The fit began by placing the 

dyz → dx²–y² transition as the highest energy band in the spectrum (ca 17300 cm−1). In idealised 

D4h this energy splitting would be given by 3eσ (equatorial), resulting in an approximate value 

of 5750 cm−1. Hence, it was then possible to fit the band at around 12800 cm-1, assigned to 

the dz² → dx²–y² transition, by setting eσ (Tyr) = −1500 cm−1. One final band is observed in the 

spectrum at 15500 cm−1, assigned to the dxz → dx²–y² transition. This could be reproduced by 

setting eπy (His) = 1300 cm−1, which also placed the final unaccounted for transition, dxy → dx²–

y² around 16600 cm−1. Despite this, the EPR g-factors could not be satisfactorily reproduced 

with any variation of kiso. 

 To fit the experimental EPR g-factors (Table 4.23), a further degree of freedom was 

required.  Accordingly, different values of eσ (His) and eσ (NH2/ H2O) were used. This was 

found to have no effect on the quality of fit of the transition energies [Figure 4.53 (A)], where 

the sum was found to be approximately constant: eσ (His) + eσ (NH2/H2O) = 11600 cm–1. 

However, when the two parameters were varied to reproduce the EPR g-factors, two separate 

solutions were found [Figure 4.53 (B)] for a kiso = 0.70. One solution gave parameter values of 

eσ (His) = 5100 cm−1 and eσ (NH2/H2O) = 6100 cm−1 (g1 = 2.053, g2 = 2.076, g3 = 2.283). The 

other solution gave eσ (His) = 5900 cm-1 and eσ (NH2/ H2O) = 5500cm−1 (g1 = 2.053, g2 = 2.076, 

g3 = 2.279).  

These two solutions differ in the orientation of the g-factors [Figure 4.53 (C)]. In the 

case where eσ (His) > eσ (NH2/H2O), the smallest g-value was found to align along the histidine 

directions (gx). Where eσ (His) < eσ (NH2/H2O), the smallest g-value was instead orientated 
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approximately along the H2O–Cu–NH2 vector (gy). The orientation of the g-factors is not known 

experimentally in LsAA9 but has been determined experimentally in LsAA9_C6_Cl, where g1 

is aligned approximately along the Cu–His direction.221 Quantum-chemical calculations carried 

out by A. Paradisi orientated g1 along the Cu–His direction.220 On this basis, eσ (His) > eσ (NH2/ 

H2O) was favoured and the alternative fit was disregarded. 

 

 

Figure 4.53. The contour maps of best RMS fit (cm−1) values to the transition energies 

(A) and EPR g-factors (B) of the LsAA9 resting state. The two g-factor orientations given 

by the two regions of fit to the EPR g-factors (C). 

 

 Extending this parameter model to the LsAA9_C6_H2O system did not satisfactorily 

reproduce the experimental EPR g-factors. An example of a “best fit” would be eσ (His) = 6050 

cm−1, eσ (NH2/H2O) = 5800 cm−1, eπy (His) = 1300 cm−1, eσ (Tyr) = −2000 cm-1, kiso = 0.69, and 

ζ = 830 cm−1. This gave g-factors of g1 = 2.060, g2 = 2.066, and g3 = 2.268, where g1 is too 
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large compared to the experimental values (Table 4.23). Variations in ζ did not improve the 

situation.  

To reproduce the EPR g-factors in LsAA9_C6_H2O, the energy of the dxy → dx²–y² 

transition (band III, which is not resolved in the experimental spectra) had to be lowered. This 

could be achieved by increasing the donation strength to the dxy orbital. Hence, an 

improvement on the quality of fit was found by the inclusion of an eπx parameter for the 

exogeneous H2O ligand (where the x direction bisects the H–O–H bonds). By adding this 

interaction, a value of eπx (H2O) = 700 cm−1 was assigned to the exogenous water with eσ (His) 

= 6150 cm−1, eσ (NH2/H2O) = 5800 cm−1, eπy (His) = 1500 cm−1, eσ (OTyr) = –2000, kiso = 0.67, 

and ζ = 830 cm−1. This sizeable eπx (H2O) interaction suggests either a change in the 

coordination mode of the water, or the presence of a different ligand in the exogeneous 

position (see Discussion, section 4.3.4.2).  

 LsAA9_C6_Cl has three resolved bands: II, III and IV. The highest energy band IV is 

at 17547 cm−1, which allowed the assignment of an average eσ parameter in the equatorial 

plane of 5850 cm−1. Without a reported energy for band I, the axial tyrosine was presumed to 

have a similar eσ parameter to that found in LsAA9_C6_H2O. The energies of bands II, III and 

IV were then reproduced via the simultaneous variation of eπy (His) and eπ (Cl), resulting in 

approximate values of 1750 cm−1 and 300 cm−1 respectively. The value of eπ (Cl) was 

constrained by the energy of band IV. Then, the EPR g-factors were reproduced by varying eσ 

(His), eσ (NH2/Cl), and kiso. The orientation of g2 is known to align along the Cl–Cu–NH2 vector 

and, therefore, one can assign eσ (His) > eσ (NH2/Cl).221 The eσ (NH2/Cl) parameter was 

constrained by the relationship eσ (Cl) = 2 × 5850 − eσ (His). This resulted in parameter values 

of kiso = 0.60, eσ (His) = 6300 cm−1 and eσ (Cl) = 5425 cm−1. This parameterisation gave 

calculated g-factors of g1 = 2.042, g2 = 2.067, and g3 = 2.237 in excellent agreement with the 

experimental values. 

 LsAA9_C6_Br also has three resolved bands in its spectra: bands II, III, and IV. Like 

with the analysis of LsAA9_C6_Cl, an average eσ parameter in the equatorial plane of 5730 

cm−1 was sufficient for the reproduction of the energy of band IV. Assigning the spin-orbit 

coupling parameter to its free-ion value, the energies of bands II, III, and IV were all 

simultaneously reproduced using values of eπy (His) = 1200 cm−1 and eπ (Br) = 450 cm−1. Next, 

the EPR g-factors were reproduced and the orientation of g2 is presumed, like in all systems, 

to align along the Br–Cu–NH2 vector. The EPR g-factors were reproduced by varying eσ (His) 

and kiso whilst constraining eσ (Br) by the relationship eσ (Br) = 2 × 5730 − eσ (His). This 

variation resulted in parameter values of kiso = 0.56, eσ (His) = 6400 cm−1 and eσ (Cl) = 5060 
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cm−1 with a final trace of the ligand-field matrix of 24220 cm-1. The computed g-factors were 

g1 = 2.034, g2 = 2.067, and g3 = 2.222 in excellent agreement with experiment. 

 The final calculated EPR g-factors using the best fit parameters (Table 4.22) are given 

in Table 4.23. The values and their rhombicities are reproduced. The largest deviation between 

experimental and calculated g-factors is the value of g2 in LsAA9_C6_H2O, which differs from 

the experimental value by 0.004. 

 

Table 4.23. The experimental and Kestrel calculated principal EPR g-factors using the 

best fit parameters. The experimental EPR g-factors are taken from the simulations of 

A. Paradisi.220 

System Experimental220 g1, g2, g3 Kestrel g1, g2, g3 

LsAA9 2.051, 2.075, 2.278 2.052, 2.075, 2.277 

LsAA9_C6_H2O 2.053, 2.062, 2.270 2.056, 2.066, 2.269 

LsAA9_C6_Cl 2.042, 2.065, 2.234 2.041, 2.068, 2.237 

LsAA9_C6_Br 2.035, 2.071, 2.221 2.032, 2.072, 2.223 

 

4.3.3.2 Ligand field of the histidine brace 

Having established eλ parameters by fitting the d-d transition energies and EPR g-factors, 

diagonalisation of the 55 one-electron ligand-field matrix yields the five ligand-field orbitals 

and their composition. The calculated one-electron ligand-field splitting is similar across the 

series (Table 4.24 and Figure 4.54). Because a chemically informed coordinate scheme was 

chosen (see Methodology, section 4.3.2.1), which was applied consistently to each model and 

happened to approximately align with the calculated g2 tensor frame, the d-orbital 

compositions in Table 4.24 are meaningful. In each system, the final d-orbital ordering 

(ignoring smaller admixtures) is dyz < dxy < dxz
 < dz² < dx²–y. The relative energy of the primarily 

dz² and dx²–y² orbitals remains stable across the systems. This is a result of the similar eσ(Tyr) 

and eσ(His) + eσ(NH2/X) assigned in each system. The relative energies of the dxy and dxz 

orbitals show greater variation across the systems owing to changes in the histidine and 

exogeneous ligand π bonding.  
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Table 4.24. The Kestrel calculated relative energies (cm−1) and eigenvectors of the 

eigenfunctions of the 5  5 one-electron ligand-field matrix for LsAA9 and its substrate 

bound models. 

System Energy dxy dyz dz² dxz dx²–y² 

LsAA9 0 0.086 -0.98 0.163 -0.015 0.067 

 865.9 -0.96 -0.073 0.01 -0.257 0.085 

 1486.7 0.251 -0.002 -0.248 -0.935 0.037 

 3745.8 -0.063 -0.17 -0.954 0.235 -0.034 

 16941.3 -0.065 -0.066 0.036 -0.066 -0.993 

LsAA9_C6_H2O 0.0 0.15 0.981 -0.091 0.023 -0.075 

 1304.0 0.946 -0.131 0.247 0.142 -0.086 

 2393.0 0.215 -0.035 -0.295 -0.929 0.04 

 3559.0 -0.17 0.121 0.919 -0.335 0.027 

 17126.3 0.089 0.061 0.002 0.06 0.992 

LsAA9_C6_Cl 0.0 -0.090 0.900 0.402 0.068 0.128 

 1201.8 0.927 -0.014 0.203 0.312 -0.053 

 2557.6 -0.364 -0.242 0.361 0.815 -0.122 

 4046.0 -0.024 -0.339 0.816 -0.464 0.054 

 17284.0 0.018 -0.129 -0.042 0.135 0.981 

LsAA9_C6_Br 0.0 -0.081 0.912 0.378 0.075 0.119 

 929.7 0.956 0.009 0.146 0.251 -0.046 

 1994.7 -0.282 -0.219 0.329 0.868 -0.105 

 3606.3 -0.017 -0.332 0.849 -0.401 0.086 

 16652.2 0.026 -0.104 -0.078 0.131 0.982 

 



260 
 

 

Figure 4.54. The absolute one-electron orbital energies from the diagonalisation of the 

5×5 one-electron ligand-field matrix for each of the four LsAA9 systems. 

 

 The mixing of dz² mixing into the dx²–y² orbital increases in line with the degree of 

differential σ bonding in the histidine and amino-terminus/exogeneous directions. This mixing 

is partly responsible for the rhombicity observed in the values of g1 and g2 of the EPR. 

However, the eigenvector composition is not as useful for visualising the final orbital forms or 

their orientations. Accordingly, the spherical harmonics are plotted on the central metal 

copper(II) ion and are shown in Figure 4.55. Careful observation of the dxy and dxz orbitals in 

LsAA9 reveals them to be rotated about the His2–Cu–His1 axis in a clockwise manner, relative 

to the other d orbitals. The same rotation of dxz and dxy is observed in LsAA9_C6_Cl/Br but 

the dyz, dz² and dx²–y² have also rotated about the same axis. 
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Figure 4.55. The final d-orbital orientations in LsAA9 resting state (top) and in 

LsAA9_C6_Cl (bottom) generated using Kestrel. The orbitals are ordered left to right 

from lowest to highest energy, representing the predominantly dyz < dxy < dxz < dz² < dx²–

y². 

 

This rotational change can also be seen in the charge densities of the multipole 

expansion generated by the ligand field (Figure 4.56). The charge density is focused about 

the equatorial plane in LsAA9 and LsAA9_C6_H2O. In the halide-bound systems, the charge 

density is rotated about the His2–Cu–His1 vector to coincide with the X–Cu–NH2 (X = Cl−, Br−) 

vector. The charge density is also greater in the histidine directions than in the amino terminus 

and exogeneous ligand directions, reflecting the greater σ donor strength. The lack of any 

substantive coordination of the tyrosine is evident here by the lack of repulsive charge density 

in the axial directions. 
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Figure 4.56. The multipole expansions of LsAA9 (A), LsAA9_C6_H2O (B), LsAA9_C6_Cl 

(C), and LsAA9_C6_Br (D), rendered using Kestrel. 

 

4.3.3.2.1 The effect of the histidine brace dihedral angle on the d-orbital 

manifold 

The effect of the histidine brace dihedral angle (for a definition of the dihedral angle, see 

section 4.3.1.1) on the d-orbital orientations was investigated. Figure 4.57 shows the 

orientation and shape of the second and third lowest energy d orbitals for LsAA9 as a function 

of the histidine brace dihedral angle. In the optimised structure (dihedral ≈65°), the second 

and third lowest energy d orbitals are the dxy and dxz orbitals, respectively. Both orbitals are 

‘rotated’ about the coordinate x-axis in a clockwise manner. However, at small angles of ψ of 

the histidine twist (where His2 is aligned to His1), the formerly predominantly dxz orbital is 

aligned with the out-of-plane π bonds of the two parallel histidines. The nominally dxy orbital is 

now essentially non-bonding and is near degenerate with the dyz orbital. The dyz orbital has a 

small admixture of dxy rotating it anticlockwise about the H2O–Cu–NH2. As the dihedral tends 

to values > 30°, the dxz has rotated clockwise about the x axis again and the second lowest d 

orbital is nominally dxy again, settling into its canonical orientation when the dihedral angle 

reaches 40°. Once the angle approaches the angle observed in LPMOs (around 65°), the 

predominantly dxy and dxz orbitals maximally mix and rotate about the His2–Cu–His1 vector. 
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When the dihedral angle increases towards 90° a counterclockwise rotation occurs about the 

His2–Cu–His1 vector. 

 

 

Figure 4.57. The variation in the second (bottom) and third (top) lowest energy d orbitals 

as a function of the dihedral angle of the histidine brace twist. Green, blue, and red 

arrows are the x, y, and z axes of the coordinate scheme, respectively. 

 

4.3.3.3 The d-d transitions and configurational mixing 

The final d-d transitions are not simple one-electron single slater determinants. The fractional 

occupation of the one-electron ligand-field orbitals analysed in the preceding section entangle 

under the action of spin-orbit coupling. In the absence of spin-orbit coupling, the d-d transition 

energies are simply the difference in the energies of the one-electron ligand-field orbital 

energies and the dx²–y² SOMO. However, under the action of spin-orbit coupling, the d-d 

transition energies are no longer simple functions of the one-electron energies. The final mixed 

occupations for the spin-orbit coupled energies are presented in Table 4.25. 

There is substantial configurational mixing in each system between the dxy and dxz 

orbitals for the two bands II and III. The dx²–y² SOMO ground state remains relatively pure, as 

expected from the large energetic separation from the dx²–y² and all other orbitals. This is 

supported, even in the substrate bound structures, by the analysis of the hyperfine coupling 

constants in their EPR spectra.210 
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Table 4.25. The Kestrel calculated relative energies (cm-1) of the five many-electron 

energy levels and the mixing of the d9 configurations (a label 12222 would represent a 

configuration of (dyz)1(dxy)2(dxz)2(dz²)2(dx²–y²)2), where the labelled d orbital denotes the 

singly occupied d-orbital character of that configuration. 

System Energy  12222 

“dyz” 

21222 

“dxy” 

22122 

“dxz” 

22212 

“dz²” 

22221 

“dx²-y²” 

LsAA9 0.0 0.000 0.000 0.001 0.002 0.996 

 12971.2 0.021 0.005 0.052 0.921 0.000 

 15194.6 0.124 0.239 0.615 0.021 0.000 

 16418.9 0.014 0.684 0.282 0.017 0.003 

 17395.3 0.839 0.070 0.049 0.041 0.001 

LsAA9_C6_H2O 0.0 0.001 0.002 0.001 0.000 0.996 

 13235.8 0.013 0.011 0.143 0.833 0.000 

 14717.7 0.085 0.152 0.666 0.096 0.000 

 16087.3 0.022 0.782 0.160 0.033 0.003 

 17526.6 0.880 0.052 0.030 0.037 0.001 

LsAA9_C6_Cl 0.0 0.000 0.002 0.001 0.000 0.996 

 12964.1 0.015 0.005 0.105 0.875 0.000 

 14725.1 0.070 0.107 0.745 0.077 0.000 

 16281.8 0.033 0.824 0.126 0.015 0.003 

 17675.9 0.882 0.061 0.023 0.033 0.001 

LsAA9_C6_Br 0.0 0.000 0.003 0.001 0.000 0.996 

 12778.1 0.020 0.004 0.090 0.885 0.000 

 14564.6 0.100 0.146 0.698 0.056 0.000 

 15961.0 0.029 0.773 0.178 0.017 0.003 

 17097.2 0.850 0.074 0.033 0.042 0.001 

 

4.3.3.4 UV-Vis, CD, and MCD spectra 

4.3.3.4.1 Spectra simulation 

The eigenvectors and transition energies established by the fits to the transition energies and 

EPR g-factors have been used to compute relative intensities of bands in the UV-Vis, CD, and 

MCD spectra of the LsAA9 models. The experimental spectra are reported by A. Paradisi.220 
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The reported experimental UV-Vis and CD were recorded at room temperature and the 

reported experimental MCD were recorded at temperatures of 5 K ,10 K, and 15 K, and at field 

strengths of 7 T, 5 T, and 3 T. The best fit transition dipole moment parameters reported in 

Table 4.22 offer the best simultaneous reproduction of the UV-Vis, CD, VT-MCD, and VH-

MCD. 

 Despite the approximately centrosymmetric arrangement of the ligands about the 

copper(II) ion, the effective lower symmetry of the histidine brace twist and the differing 

chemical nature of the ligands placed trans to one another allowed for the static transition 

dipole moment parameters to be used. Using the chemically sensible choice of transition 

dipole moment model parameters, the key spectroscopic features of the experimental UV-Vis, 

CD, and MCD were reproduced in the ligand-field model, except for LsAA9_C6_H2O. Each 

LsAA9 model was assigned a FWHM that was applied to each of the d-d bands across all the 

calculated spectra.  
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Figure 4.58. The experimental (black) and Kestrel simulated (red) MCD spectra at 7T 

and 5K (top); Kestrel calculated variable-temperature MCD at 7T (middle); and variation-

field MCD at 5K (bottom), for the LsAA9 models. The spectra were simulated using the 

parameters in Table 4.22. The spectra were simulated using an angular resolution of 30 

steps per θ and φ angles. The experimental MCD spectra were recorded and reported 

by A. Paradisi.220 

 

Comparisons of the reported experimental and Kestrel simulated MCD spectra for the 

LsAA9 models are presented in Figure 4.58. The MCD, VT-MCD, and VH-MCD spectra of 
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LsAA9, LsAA9_C6_Cl, and LsAA9_C6_Br are reproduced well within the ligand-field model. 

On the other hand, it was not possible to reproduce the intensity distribution of 

LsAA9_C6_H2O. The cause of this discrepancy is not known, for the CD and UV-Vis spectra 

are reproduced (vide infra). It is possible that there is an issue with the experimental base-line 

and this prevents a satisfactory fit to the experimental MCD to be found. This line of enquiry 

requires further study. 

The calculated MCD spectra feature a positive band (II) at around 15500 cm-1 and an 

intense negative band (IV) at 17500 cm-1. Kestrel assigns these opposite signed bands as a 

pseudo-A-pair formed by the spin-orbit coupling between the dxz and dyz orbitals, which were 

assigned to these transitions in section 4.3.3.2.  The band (III) at 16000 cm-1 is relatively weak 

compared to the intense band at 17500 cm-1 and this explains its absence in the gaussian 

deconvolution performed by A. Paradisi.220 
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Figure 4.59. The experimental (black) and Kestrel simulated (red) CD spectra at 300 K 

for the LsAA9 models. The experimental CD spectra were recorded by A. Paradisi at 

room temperature.220 

 

The CD spectra were simultaneously fitted along with the MCD spectra and were 

satisfactorily reproduced for each of the LsAA9 models. The CD simulations were very 

sensitive to the parameter values and hence the experimental CD spectra provided a 

constraint on the transition dipole moment parameters. The substrate bound models showed 

large contributions from band III (and IV for LsAA9_C6_Cl and LsAA9_C6_Br). This is a result 

of the π transition dipole moment contributions from the exogeneous ligand. Hence, the large 

contribution from band III in LsAA9_C6_H2O is from the Pπx(H2O) and Fπx(H2O), which mostly 
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interacts with dxy; the larger contributions from band III and IV in LsAA9_C6_Cl and 

LsAA9_C6_Br arise from the Pπ(Cl/Br) value. 

 

 

Figure 4.60. The experimental (black) and simulated (red) UV-Vis spectrum at 300 K for 

LsAA9 models, scaled to experiment using a FWHM of 3000 cm-1. The experimental UV-

Vis spectra were recorded by A. Paradisi at room temperature.220 

 

The calculated UV-Vis spectra (Figure 4.60) reproduce the general experimental 

spectroscopic features of a broad and relatively intense band at 17500 cm-1, with a weaker 

band around 13000 cm-1. In the LsAA9 and LsAA9_c6_H2O models, the low energy band (I) 

at 13000 cm-1 is relatively more intense than predicted in the other models. Unlike with the CD 
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and MCD spectra, it was not possible to precisely reproduce the experimental spectral trace 

of the UV-Vis and attempts to do so required values of FWHM > 3000 cm-1. Despite this, the 

Kestrel simulations did reproduce the general features of the intensity distributions and 

constrained the possible values of the transition dipole moment parameters further. 

 

4.3.3.4.2 The transition dipole moment parameters 

The preceding section has demonstrated that the best fit ligand-field parameters in Table 4.22 

reproduces the reported experimental d-d spectroscopy. In this section, a rationalisation of the 

best fit transition dipole moment parameters are provided. 

 It is interesting to compare the transition dipole moment contributions from the 

histidines in the resting state LsAA9 model compared to the substrate bound models. In the 

substrate bound models, the Fσ(His) / Pσ(His) and Fπy(His) / Pπy(His) ratios increase relative 

to the resting state, reflecting the shorter Cu–His bond length and the formation of a stronger 

bond.  

 The NH2/H2O pair in the LsAA9 model has a larger transition dipole moment 

contribution from the amino terminus compared to the water. The distorted molecular geometry 

and the lack of any π bonding from the exogeneous ligands means that determination of 

separate Pσ and Fσ parameters for the amino terminus and water were possible in LsAA9. 

Unlike in LsAA9, separate Pσ and Fσ parameters could not be simultaneously determined for 

the amino terminus and exogeneous ligand in the substrate bound models. Instead, the 

difference in Pσ and Fσ between the amino terminus and exogeneous ligand was 

parameterised. In each of the substrate bound structures, the larger Fσ contribution is assigned 

to the amino-terminus, whereas the larger Pσ contribution is attributed to the exogeneous 

ligand. This suggests that the bonding electron density formed between he copper(II) and the 

amino terminus is polarised more towards the amino terminus, which is consistent with the 

relatively shorter and presumably stronger copper-amino terminus bond.81 

The analysis found that the Pσ(X) contribution increases in the order H2O < Cl < Br. 

This trend can be easily rationalised by considering the valence orbitals of the exogeneous 

ligands: the 2p, 3p, and 4p orbitals for the water, chloride, and bromide respectively. The 

increase in the principal quantum number of the valence p orbital results in a metal-ligand 

bond where the p orbital can extend closer towards the metal, resulting in a stronger p orbital 

polarisation into the d-orbital basis and hence a larger Pσ contribution. 
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The transition dipole moment parameters extracted from the intensity analysis 

precluded the use of Pλ or Fλ parameters for the axial tyrosine. Variation in Pσ and Fσ of the 

axial tyrosine had little effect on the calculated spectra. The contribution to the d-d 

spectroscopic intensities from the axial tyrosine is expected to be negligible given its semi-

coordination role. A semi-coordination role is typically assigned to the axial ligands in 

tetragonally elongated Cu(II) complexes, where the bond between the copper and the axial 

ligands are typically weak.62 Hence, we would not expect a transition dipole moment 

contribution from the axial directions since the primary stabilisation mechanism (for eσ < 0 cm-

1) is from d-s coupling with a 4s orbital, which would not contribute to the transition dipole 

moment intensity (∆𝑙 = ±1).  

 

4.3.4 Discussion 

4.3.4.1 The ligand field of LsAA9. 

This work presents the first ligand-field analysis of all the experimental properties of an LPMO 

enzyme. The final best fit parameter sets, presented in Table 4.22, faithfully reproduce all the 

available experimental data, except for the MCD spectra of LsAA9_C6_H2O. In this section, 

the chemical interpretation of the ligand-field parameters is discussed.  

 The histidines themselves are assigned as reasonably strong σ and π donors. The 

final eσ (His) and eπy (His) are similar to values extracted for pyridine (py) and pyrazole (pz) in 

[Cu((pz)2(py)CH)2][NO3]2, where eσ(py) = 6590 cm-1, eπy(py) = 1300 cm-1, eσ(pz) = 5540 cm-1, 

and eπy(pz) = 740 cm-1.222 The amino terminus and exogeneous water pair (NH2/X) were found 

to be, on average due to holohedral symmetry, weaker σ donors than the histidines. This 

assignment was made based on the EPR g-factor orientation, where the orientation of the g1 

and g2 values were dictated by the relative σ bonding strengths of the histidines versus the 

NH2/X pair. The decrease in eσ (NH2/X) across the group H2O > Cl > Br primarily reflects the 

weakening of the σ bonding strength of the exogeneous ligand, in line with the 

spectrochemical series. Concurrent with this effective weakening of the average σ donor 

strength of NH2/X is the effective increase in σ donation of the histidine, attributed to the cis 

influence as illustrated in Figure 4.61. This occurs without a substantial change in the ligand-

field trace, suggesting that the cis influence acts in accordance with the electroneutrality 

principle. 
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Figure 4.61. Schematic representation of the cis influence operating through the eσ 

parameter in the LsAA9 active site equatorial coordination sphere. 

 

 The ligand-field analysis was also able to establish the π bonding interaction of the 

exogeneous ligand. In LsAA9, the exogeneous water was assigned as a σ donor only but an 

extra π interaction was required for the exogeneous water in LsAA9_C6_H2O. A focused 

discussion on the origin of this extra π interaction is given in section 4.3.4.2. The chloride and 

bromide exogeneous ligands were both assigned a small eπ donation value (350 cm-1). This 

value is smaller than the sensitively determined eπ = 925 cm-1 reported for chloride in square 

planar [CuCl4]2–.223 This reduction in the eπ parameter can be rationalised through the longer 

Cu–X (X = Cl, Br) bond lengths calculated in the model complexes compared to the crystal 

structure [CuX4] bond lengths (2.41 Å vs 2.27 Å for LsAA9_C6_Cl and [CuCl4]2- respectively, 

and 2.56 Å vs 2.43 Å, for LsAA9_C6_Br and [CuBr4]2-, respectively).224,225 The longer Cu–X 

bond length is likely a result of the aforementioned cis influence (vide supra) from the strong 

σ and π donor histidines. Another possible cause of the smaller eπ parameter for the halides 

is the potential formation of a halogen hydrogen bond. In each model, the halide approaches 

the C4 hydrogen (Cl–H 2.50 Å, Br–H 2.55 Å), making an effective Cu–X–H (X = Cl or Br) angle 

of 98.2° and 95.9° for chloride and bromide, respectively. It has been shown that a Cu–X–H 

angle < 100° is required for an effective halogen hydrogen bond.226 If there is any appreciable 

halogen hydrogen bonding, this will diminish the eπ parameter of the halide, as the halide pπ 

orbital is partly engaged in hydrogen bonding. However, the existence of a halogen hydrogen 

bond is speculative and further work would be required to establish its existence. 

The axial tyrosine was assigned a negative eσ parameter which represents an overall 

stabilisation of the dz² orbital. This stabilisation effect, typically attributed to the exchange 

integral K of the dz² electron with the higher-lying 4s orbital, is typical in Jahn-Teller elongated 

copper(II) complexes.29 For copper(II) systems with negligible axial interactions, the total dz² 
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stabilisation is found to be about 6000 cm-1.62 Taking the difference of this stabilisation value 

(as an estimation of the total stabilisation from d-s mixing) with the stabilisation assigned in 

these systems (1800 cm-1 for LsAA9 and 2000 cm-1 for all others), the axial copper(II)-tyrosine 

bond destabilises the dz² by 4000 cm-1. This value is smaller than the eσ parameter found for 

the equatorial ligands, which is expected given the longer copper(II)-tyrosine bond length. 

Interestingly, the value of eσ (Tyr) remains constant throughout, even though the calculated 

copper(II)-tyrosine bond length decreases from 2.55 Å in the resting state model to 2.42 Å, 

2.50 Å, and 2.49 Å, in the substrate bound water, chloride, and bromide models respectively.  

Lending further support to the assigned ligand-field eλ parameters, the final ligand-field 

traces lie in the range of 23800 cm-1 to 25900 cm-1, which is sensible given that a typical ligand-

field trace for a copper(II) complex can typically range from 20000 cm-1 up to 30000 cm-1.29,227 

This same reasoning favours the assignment of the histidines as π donors rather than π 

acceptors. Care must be taken to not take the values of the ligand-field trace literally, but 

instead to use them as a useful check/guide on the magnitudes of the eλ parameters. 

The orbital angular momentum was found to be quenched in the order of 

LsAA9_C6_Br > LsAA9_C6_Cl > LsAA9_C6_H2O > LsAA9, where LsAA9_C6_Br had the 

smallest value of kiso. The value of kiso was sensitively determined both because ζ was fixed 

at the free-ion value and that the final values of kiso offered excellent reproduction of both the 

EPR g-factors and CD spectra. There was some correlation between ζ and kiso, so fixing the 

former allowed for unique values of kiso to be obtained. The magnitudes of the assigned kiso 

(in the range of 0.56 to 0.70) are on the same scale as those obtained for CuCl4 (0.68) and for 

CuN4 systems (0.7).223,228 The orbital angular momentum quenching is rationalised by 

considering two separate effects: 1) the increased electron density on the copper(II) 

accompanying the addition of substrate, and 2) the increased spin-orbit coupling constant of 

bromide versus chloride. The former effect can be observed by the increased ligand-field trace 

in both LsAA9_C6_H2O and LsAA9_C6_Cl compared to the resting state and represents how 

a stronger ligand-field quenches the orbital angular momentum contribution. The latter effect, 

which has been shown to reduce the effective value of the spin-orbit coupling constant of the 

metal (and because ζ is fixed in this case, kiso will be reduced). This effect will be larger with 

bromide than chloride due to bromide having a much larger spin orbit coupling constant (2460 

cm-1 vs 590 cm-1 for bromine and chlorine respectively).229 
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4.3.4.2 The nature of the exogenous ligand in LsAA9_C6_H2O 

The ligand-field parameterisation of the resting state and substrate bound models with a halide 

anion as the exogeneous ligand were straightforward and did not require the use of any 

unexpected or extra eλ parameters. However, when fitting the EPR g-factors of 

LsAA9_C6_H2O, it was not possible to satisfactorily reproduce the magnitudes of the g-factors 

without invoking a non-zero eπx value. Without invoking an eπx interaction, the degree of 

separation of g3 from g1 and g2 was too small compared to the g-factors determined 

experimentally. To aid in rationalising the magnitudes of the EPR g-factors, LFT provides 

approximate expression for the EPR g-factors in an effective D4h symmetry6 
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Where eg  is the electron g-factor, ζ  is the spin-orbit coupling constant, α  is the fractional 

orbital character and E  is the energy of the many electron transition energy from the subscript 

orbital to the dx²–y² SOMO.  

The π interaction that was assigned to the water interacted with the dxy orbital. From 

equation (4.9), the energy of the transition originating from the dxy (band III) affects the gz 

value. By destabilising the dxy orbital, the many electron transition energy 
xyE  decreases. In 

turn, this increases the value of gz and by simultaneously reducing kiso, the experimental EPR 

g-factors were reasonably reproduced. 

 Not only was an eπx value assigned to the exogeneous water ligand, but a Pπx and Fπx 

were required to satisfactorily reproduce the UV-Vis and CD. However, the inability to 

accurately reproduce the MCD spectra of LsAA9_C6_H2O results in conclusions about the 

nature of the Pπx and Fπx parameters as unreliable. The assignment of an eπx (and Pπx and 

Fπx) value is not expected, given that the π lone pair of the water molecule is assumed to 

interact weakly and an eπx value is not required in the analysis of LsAA9. If the exogeneous 

ligand is indeed a water molecule (vide infra), does a rationalisation for the requirement of an 

eπx parameter exist?  

An examination of the DFT optimised geometries of LsAA9, compared to 

LsAA9_C6_H2O, reveals a change in the coordination angle that the water makes with respect 
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to the copper, as illustrated in Figure 4.62. In the LsAA9 resting state, the plane containing the 

oxygen and hydrogen atoms of the water makes an angle of 122°, whereas the water molecule 

coordinates at a smaller angle of 111° in LsAA9_C6_H2O. This change would direct the σ bond 

partially away from the Cu–O vector and the bond would be described as a misdirected bond. 

This would be represented by both an eπx and an eσπx parameter, the latter of which was 

neglected in the analysis. 

 

 

Figure 4.62. The definition of the angle of coordination of a water molecule to the copper 

ion (top) and an illustration of the resulting orbital orientations from the coordination 

angles in LsAA9 and LsAA9_C6_H2O (bottom). 

 

 An unpublished analysis of the EPR spectrum of LsAA9 in the presence of substrate 

as a function of pH finds no change in the spectrum as the pH changes; this is not the case in 

the absence of substrate.230 A possible explanation of these results is the suggestion that the 

exogeneous water is not a water molecule but rather a hydroxide ligand. This analysis 

provides some evidence of this by the assignment of a relatively large eπ interaction from the 

exogeneous ligand which would be explained by the presence of a hydroxide. 
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4.3.4.3 The d-orbital ordering 

The best fit parameters assign a d-orbital ordering of dyz < dxy < dxz < dz² < dx²–y². If the histidines 

were instead modelled as π acceptors (rather than assigned as π donors) then the resulting 

orbital ordering would be dxz < dxy < dyz < dz² < dx²–y². The orbital ordering in both cases is a 

consequence of the orientation of the histidine π bonding network. The orbital ordering as 

predicted by LFT agrees with the analysis of Hansson et al. who derived the same d-orbital 

ordering by a qualitative analysis of the CD and MCD spectra of the similar HjAA9 enzyme.219 

 In contrast with these results is the d-orbital ordering predicted by CASSCF(9, 

5)/NEVPT2 calculations, carried out by A. Paradisi.220 Those calculations predicted an 

ordering of dyz < dxz < dxy < dz² < dx²–y². This alternative orbital ordering, which places the dxy 

orbital higher in energy than the dxz and dyz orbitals, is similar to the d-orbital ordering that ab 

initio calculations predict for square planar copper(II) complexes, such as [Cu(NH3)4]2+, which 

(ignoring the dz² and dx²–y² energies) predicts a d-orbital splitting of dyz ≈ dxz < dxy.6 This is only 

possible if an eπ parameter is used, as shown in Figure 4.63, which should be negligible given 

that ammonia is a σ donor only ligand. This D4h splitting is attributed to the crystal-field 

(electrostatic) potential. 

 

 

 

Figure 4.63. The d-orbital splitting from a D4h square planar system using eσ only (left) 

and a combination of eσ and eπ (right). 
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Of course, the model used in this analysis does not explicitly consider any kind of 

electrostatic contribution to the eλ parameters. To place the dxy orbital above the dxz orbital 

using the electrodynamic ligand-field model in this work, a combination of these effects must 

occur: 1) There is a large π donor effect that interacts with the dxy orbital, presumably from the 

exogeneous ligand; and 2) the His2 must be a much stronger π donor than His1. Neither 

circumstance appears likely, it is more likely that the electrostatic contribution (the crystal field) 

is overestimated and preferentially destabilises the dxy orbital relative to the dxz and dyz orbitals. 

 Despite the fact that recent suggestions that aliphatic amines are good π donors (via 

an electrostatic contribution) on the basis of ab initio analyses, it appears that ab initio 

calculations overpredict the electrostatic contribution, as found in the Kestrel analysis of the 

linear dialkyl cobalt(II) system, described in section 4.1.3.66 The model that Kestrel employs 

here, assumes that the contribution to the aspherical ligand-field potential (the multipole 

expansion potential responsible for d-orbital splitting) is primarily from electrodynamic 

coupling.  

 

4.3.4.4 Electrodynamic “torque” 

The analysis established that the dihedral angle of the histidine brace twist was responsible 

for orientating the dxz and dxy orbitals via an “electrodynamic torque”. This torque results from 

the electronic strain of physically rotating the dxz and dxy orbitals about the His2–Cu–His1 axis. 

   This torque can have consequences for metal-ligand bonding and geometry. 

Examining the DFT optimised geometries of the equatorial coordination plane reveals different 

coordination geometries adopted by the water bound and halide bound structures. The 

calculated water bound structures (with and without substrate) feature an equatorial plane 

where the amino terminus, exogeneous water, and the two histidines form an approximate 90° 

angle to the axial tyrosine (Figure 4.64). Contrast this with the halide bound structure where 

the Cl–Cu–NH2 axis is rotated about the His2–Cu–His1 axis, placing the chloride below the 

plane (and closer to the substrate) and the amino terminus above the plane. A similar geometry 

is exhibited in the calculated structure of LsAA9_C6_Br. The glutamine in the outer 

coordination sphere acts as a hydrogen bond donor to the equatorial water, pulling it up above 

the equatorial plane. The lack of such interaction allows the halide to move towards the 

substrate.  
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Figure 4.64. The difference in the equatorial coordination sphere in LsAA9 resting state 

and LsAA9_C6_Cl where the Cl-Cu-NH2 vector has rotated about the cartesian x-axis. 

Truncated forms of the DFT optimised geometries are taken from the work of A. 

Paradisi.220 Hydrogens attached to carbon atoms have been omitted for clarity. 

 

An analysis of the ligand fields under different dihedral angles of histidine brace twist 

(section 4.3.3.2) shows that in the water bound structures, the dxz and dxy orbitals are rotated 

about the His2–Cu–His1 axis in the same direction as observed for the X–Cu–NH2 triad in the 

halide bound structures. However, in the water bound structures, the dyz, dz² and dx²–y² orbitals 

remain primarily in their canonical orientations. The strain is generated because the dyz, dz² 

and dx²–y² orbitals are constrained by the molecular geometry and prevented from twisting. 

Careful examination of the multipole expansions and the final d-orbital orientations of 

LsAA9 and LsAA9_C6_Cl (Figure 4.65) reveals a strain in the charge density of the resting 

state compared to the halide bound structure. The histidine brace produces a torque by the 

histidine π bonding network, which is counteracted by the σ bonding network of the amino 

terminus and water, the latter of which is held in place by the glutamate hydrogen bond. The 

charge density in LsAA9_C6_Cl has rotated about the x axis in line with the π-induced rotation 

of the histidines, in turn rotating the dyz, dz², and dx²–y² orbitals about the same axis. 
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Figure 4.65. Kestrel rendering of the ligand field. The strain results in an electrodynamic 

torque generated by the twist in the dihedral angle between the two histidine π bonding 

networks, which drives a rotation about the His2–Cu–His1 axis of the copper d 

electrons. 

  

The typical dihedral angle in the range of 60° to 65° for the histidine brace twist 

generates the greatest strain in the direction shown in Figure 4.65. A larger dihedral angle, in 

the range of 70° to 90°, generates a strain in the opposite direction, which would tilt the 

exogeneous ligand away from the substrate. A smaller dihedral angle mixes the dxy and dyz 

orbitals, rotating them about the X–Cu–NH2 direction instead. The removal of the hydrogen 

bonding induced strain by the substitution of water with a halide releases the tension and 

allows the X–Cu–NH2 group to relax and rotate out of plane. This rotation has consequences 

for reactivity: the redox active SOMO (dx²–y²) and the exogeneous ligand are orientated more 

towards the substrate. 

Although the present discussion has speculated about some of the potential 

consequences of an electrodynamic torque, there is spectroscopic evidence that a rotation of 

the equatorial plane along the His1–Cu–His2 axis is part of a protective mechanism for LPMOs 

against oxidative damage.  Work by Paradisi et al. reported that LsAA9 forms a purple-

coloured copper(II)-tyrosyl radical bond when the protein is exposed to H2O2 in the absence 

of substrate.231 The formation of this species coincides with the rotation of the dx²–y² SOMO out 

of the equatorial plane to be directed along the histidine and tyrosine directions. The tyrosine 

is thought to act as a “charge-transfer” pathway for the excess charge. Although this process 

is not likely solely driven by the electrodynamic torque of the histidine, it is possible that the 

rotation is facilitated by the electrodynamic torque generated by the histidine brace twist. 
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4.3.4.5 Catalytic activity 

The histidine brace ‘twist’ results in the mixing of the dxz and dxy orbitals under the effect of 

spin-orbit coupling (see section 4.3.3.2). This is noteworthy as the dxy orbital can interact with 

the π system of the exogeneous ligand, and this allows therefore for the π networks of the 

histidines and exogeneous ligands to interact with one another. Given that the histidines are 

assigned as strong π donors, their π donation would presumably diminish the π donating 

strength of the exogeneous ligand. Indeed, this is observed in the diminished eπ strengths of 

the halide anions. To compensate for the diminished π bonding strength, the σ bonding 

strength of the exogeneous ligand increases.20 Increased σ bonding (which will form a stronger 

bond than any potential π bonding) might explain the increased preferential binding for 

chloride in the presence of substrate.210 

 The histidine twist and its relatively strong π donor strength have potential 

consequences for the reactivity/formation of a copper(II)-oxyl intermediate as part of its 

catalytic cycle. Theoretical investigations by Huber et al. predict that a stronger ligand donor 

set preferentially stabilises a Cu(III)–OH/Cu(II)–O•.232 The authors also predict that a stronger 

ligand donor set results in longer Cu–O bonds and increased spin localisation on the copper. 

Research into small biomimetic complexes of the LPMO active site has shown that Cu(III)–

OH species are capable of oxidising C–H bonds with large BDE of > 100 kcal mol-1.233,234 

 

 

Figure 4.66. The putative copper-oxygen reactive intermediate p orbital alignment with 

the dyz and dxy orbitals on the copper. 
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 As had been discussed at length, the histidine brace twist destabilises the dxy relative 

to the dyz and orientates these two lowest lying orbitals towards the exogeneous ligand. The 

orientation and relative energies of the dyz and dxy orbitals could play a role in the orientation 

of the oxygen px and py orbitals of the putative copper(II)-O•/copper(III)–OH species, as shown 

in Figure 4.66. The oxygen of the putative oxyl contains one p orbital of with a single unpaired 

electron and another p orbital with a pair of electrons. The p orbital with the single unpaired 

electron, when bonded to the copper(II) ion, will be higher in energy than the p orbital with the 

lone pair. In this regard the relative energies of the dxy and dyz orbitals might play a role in 

orienting these p orbitals with respect to the notional equatorial coordination plane of the 

copper.  

Given that the electron pair will experience greater electronic repulsion with charge 

density on the copper(II), it can be hypothesised that the lone pair would align with the dyz 

orbital. This is based on two factors: first, the electron density in the plane occupied by the dyz 

orbital will be smaller (given its non-bonding role) than in the plane occupied by the dxy orbital, 

which is enhanced by the π donation of His2; and secondly, the electronic correlation will be 

maximised between electrons of similar energy. Since the lone pair p orbital will be at a lower 

energy than the unpaired electron p orbital, the former will correlate more strongly with the 

electrons in the lower energy dyz orbital. On this basis then, the lone pair on the putative oxyl 

will be directed along the axial direction and, importantly, orientated towards the C–H bond of 

the substrate. Such an arrangement can facilitate the oxidation of the substrate C–H bond via 

a concerted proton-coupled electron transfer as has been suggested by Bertini et al.235 Future 

computational work that investigates the action of a putative copper(II)-oxyl on substrate as a 

function of the histidine twist angle would provide further insight into the potential role of the 

histidine brace twist on the catalytic activity of LPMOs. 

 

4.3.5 Conclusion 

The LPMO enzyme LsAA9 has been analysed for the first time using a ligand-field model. The 

model was applied successfully to the reproduction of the experimental spectroscopic and 

magnetic data. The ligand-field parameterisation provided a better reproduction of the total 

experimental data than the results of DFT and ab initio calculations carried out by A Paradisi.220 

The simultaneous reproduction of d-d band energies, EPR g-factors (and their approximate 

orientations), UV-Vis, CD, and MCD intensity distributions enabled an unambiguous ligand-

field parameter set to emerge. The resulting best fit ligand-field parameters serve as a reliable 

set of starting parameters for the future analysis of other LPMO enzymes. Future work 
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focusing on the reproduction of experimental data within the ligand-field model will enable the 

rationalisation in the difference/similarity of reactivity through the electronic structure. 

 As part of this analysis, it was found that all parameters emerged naturally from the 

chemical metal-ligand bonding picture for the system, except for LsAA9_C6_H2O which 

required an eπx(H2O), Pπx(H2O), and Fπx(H2O) parameter assigned to the exogeneous ligand. 

This apparent π interaction was particularly important for the recreation of the experimental 

EPR g-factors and intensity distributions. This work provides some quantitative evidence for 

the possibility that the exogeneous ligand is a hydroxide rather than a water molecule. Further 

work is required to elucidate the true nature of the exogeneous ligand. 

 An important question in LPMO research pertains to the role, if any, that the histidine 

brace twist plays in the electronic structure of the copper(II) ion.209 This work identified a 

consequence of the histidine brace twist angle on the underlying d-orbital manifold. The twist 

causes an “electrodynamic torque” that is applied to the d-orbital manifold. It has been argued 

in this work that this torque, generated by the mixing of dxz and dxy, applies some electronic 

strain to the d-orbital manifold. In turn, this favours the rotation of the dx²–y² and the exogeneous 

ligand is lifted towards the substrate, making the C1/C4 hydrogen more accessible to the 

reactive intermediate. This same torque might play some role in the rotation of the dx²–y² 

observed in the formation of a copper(II)-tyrosyl.231 This would imply the twist is an essential 

feature of a self-oxidative prevention mechanism and would explain the near constant twist 

value. Further work would be required to explore the effect that this twist might have on LPMO 

reactivity pathways. 

 For now, it would be interesting to compare the ligand-field parameters extracted for 

LsAA9 in this work and the resting state of HjAA9. The experimental characterisation of HjAA9 

is reported by Hansson et al. and includes UV-Vis, CD, MCD, and EPR g-factors.219 The ligand 

field appears to be weaker in HjAA9, compared to LsAA9, where the highest energy d-d band 

in HjAA9 is about 16000 cm-1, compared to 17500 cm-1 in LsAA9. Importantly, the CD spectrum 

of HjAA9 features a negative band assigned as the transition from dxy → dx²–y². This band is 

positive in the CD spectrum of LsAA9 and its substrate bound systems. Are these differences 

due to a difference in the molecular geometry around the copper(II) ion, or of the metal-ligand 

bonding? The x-ray crystal structure of HjAA9 (PDB: 5O2W) shows a similar geometry to that 

observed in LsAA9 (CSD: 5ACH), however this work has revealed how sensitive the CD and 

MCD spectra are to small changes in geometry. 

  



284 
 

5 Conclusion and future work 

Although LFT is an old model, the origins of which date back near to the founding of quantum 

mechanics, the model continues to remerge into the chemical literature. Currently, LFT has 

found renewed interest in the chemical literature and is a common tool used to analyse the 

electronic structure of 3d transition-metal complexes, primarily to fit the results of ab initio 

calculations. This work aimed to create a new contemporary ligand-field program and to 

determine if a ligand-field model could be used to provide chemical insight into contemporary 

topics of (bio)-inorganic chemistry. To this end, a standalone computer program and Python 

package, called Kestrel, was constructed to provide a feature-rich ligand-field model that can 

compute a range of optical, spectroscopic, and magnetic properties, all whilst being easy-to-

use. Kestrel is not just another ligand-field program; the user focused design and the real time 

computation of transition energies, spectroscopic intensities, magnetic, and SIMM behaviour 

sets Kestrel apart from the other available ligand-field programs. Kestrel was successfully 

applied to three case studies, which serve as worked examples and sources of inspiration for 

future applications. 

 Kestrel provides promise for ligand-field analyses beyond that of just analysing the 

results of experimental or in silico data. Ligand-field analyses have not historically been used 

in a predictive sense; the analyses of the SiMM behaviour in chapter 4.1 demonstrate Kestrel’s 

ability to be used to optimise a physical property for a change in geometry or metal-ligand 

bonding. This is an area where Kestrel can be used to great effect. The predictions from 

Kestrel had closely mirrored the predictions reported by ab initio calculations. The ligand-field 

calculations are not only much faster but allow one to change the metal-ligand bonding more 

easily. This can be very useful for optimising the desired properties of a transition-metal 

complex, such as controlling the energetic separation of spin states – an effect which is 

important in the reactivity of iron(IV)-oxo complexes – or tuning the magnetic properties to 

design optimal SiMMs or molecular qubits. Even in the absence of transferable or well-defined 

eλ parameters, the general qualitative trends of a change in metal-ligand bonding or geometry 

can still be analysed and that trend is useful. 

 The application of Kestrel in this work also demonstrates the importance of explicitly 

treating the effects of multiconfigurational mixing in 3d transition-metal complexes.10,31,236 In 

each study, the mixing of electronic configurations has explained many of the optical and 

magnetic properties of the studied complexes. The results suggest that we should think of the 

electronic structure not as a single well defined electronic configurations, but rather as the 
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spatial superposition of the possible electronic configurations within the five d orbitals. The 

strength of that mixing is a result of the interelectronic repulsion and spin-orbit coupling 

magnitudes. Even small configurational mixing can have a dramatic effect on optical or 

magnetic properties of a transition-metal complex. The use of single-slater determinant DFT 

calculations for electronic structure calculations of 3d transition-metal complexes miss this 

important contribution. This is likely why there has been a shift towards using 

multiconfigurational methods, such as CASSCF/NEVPT2, for electronic structure calculations. 

This important effect, coupled with the connection between first principles physics and the 

origin of the ligand-field parameters, is the reason LFT consistently remains relevant. The 

origins of multiconfigurational mixing due to changes in geometry or bonding become obvious 

in the parametric ligand-field model, where the change in configurational mixing and the 

resulting physical property is calculated instantly in response to a change in electronic 

structure. Kestrel can offer this insight in a chemically intuitive and user-friendly way. 

Sophisticated CASSCF/NEVPT2 calculations offer objectivity but do not lend themselves to 

making such direct connections between chemical language and electronic structure like LFT 

does. 

 Despite this, there is a view that regards sophisticated ab initio calculations as the 

standard by which semi-empirical methods are evaluated against. This is in no small part due 

to Ernest R. Davidson, who prioritised obtaining “the right answer for the right reasons” as the 

primary goal of quantum chemistry.237 Although this goal was pursued in the adoption of ab 

initio calculations over calibrated methods (DFT, for example), this viewpoint is important in 

the context of this work because, at times, the electronic structure predicted by LFT differs 

from the predictions of ab initio theory. This is the primary contention in the electronic structure 

analysis of the iron(IV)-oxo complex in chapter 4.2. The excited state ordering predicted by 

ligand-field calculations and expanded active space CASSCF/NEVPT2 are different. However, 

LFT was able to reproduce the available experimental data, whereas the CASSCF/NEVPT2 

calculations performed in this work could not. Which is correct? One could argue that trying 

different basis sets and active space sizes could improve the quality of the ab initio calculation 

and a better reproduction of the experimental VT-MCD could be achieved. Even so, this would 

not falsify the ligand-field parameterisation, which would continue to reproduce the 

experimental data. All of this, therefore, leads to a question: how can the ligand-field approach 

be falsified? One way would be the failure of LFT to reproduce the VT-MCD of a wider range 

of iron(IV) oxo systems. However, if both LFT and ab initio can account for experiment, this 

still does not falsify the ligand-field electronic structure. Dismissing the ligand-field 

parameterisation because it does not align with the expectations of ab initio calculations is not 

an objective assessment of the model. 
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 Despite the apparent success of LFT, the suggestion that it can provide “a right answer 

for the right reasons”, where ab initio might not, does require further scrutiny. The ligand-field 

model is limited first and foremost by a lack of knowledge about the magnitudes of ligand-field 

parameters a priori. Chemical bias must be introduced to reduce the number of variable 

parameters or to bias one potential fit from another. For example, the metal-ligand bonding 

parameters (eλ) are assumed to arise from electrodynamic coupling of the d electrons with the 

bonding/anti-bonding electrons between the ligand and metal. This assumption is at the core 

of LFT; it underpins ubiquitous concepts like the qualitative ordering of the spectrochemical 

series and the Dewar-Chatt Duncanson model.238  

Apparently anomalous eπ parameters have been encountered in ligand-field analysis 

for canonically non π interacting ligands, such as amines. These non-zero eπ parameters have 

been attributed to electrostatic effects, which obfuscate the chemical meaning of the eλ 

parameters, diminishing their predictability and insight. The experimental evidence for large 

non-zero eπ parameters is limited but ab initio calculations predict large non-zero values. Two 

systems provided good experimental evidence that the electrostatic contributions to non-

bonding eπ parameters were small. The clearer and more convincing case was the 

parameterisation of the ligand field of the alkyl anions of the linear Co(C(SiMe2ONaphthyl)3)2 

system in section 4.1.3. The parameterisation managed to reproduce all the available 

experimental data. The resulting d-orbital splitting arising from a non-zero (positive) eπ 

interaction was found to be in the range of 0 cm-1 to 750 cm-1, at least half of that predicted by 

ab initio calculations reported by Bunting et al.122 Added to this, the d-orbital splitting extracted 

from reproduction of all the available experimental data by Kestrel, when compared to ab initio 

calculations reported by A. Paradisi on the LsAA9 enzyme, suggests that ab initio calculations 

overpredict the contribution from the electrostatic crystal field as well.220 The Kestrel ligand-

field analyses reported in section 4 support the assertion that metal-ligand perturbations arise 

from primarily electrodynamic effects and that electrostatic contributions are possibly over 

predicted by CASSCF calculations. 

After several years of continual development, Kestrel is a fully fledged ligand-field 

program. Future development of the program could involve incorporating ligand-field 

molecular mechanics, which can predict both a transition-metal complexes’ geometry and 

electronic structure simultaneously.239 This not only would provide another set of experimental 

data to reproduce (which is nearly always available) but would also provide greater insight into 

the structure-function correlation. Another obvious expansion of the software is to include the 

fn and pn configurations.55 The modular design of KestrelPy should make extensions to the 

Python library easy (and independent of any Fortran code, if desired). 
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LFT continues to be a useful model for the chemical community. The ligand-field model, 

as implemented in Kestrel, has been shown to provide physically and chemically sensible 

results, is easy to understand, and moreover has predictive capability. Importantly, Kestrel 

makes the essential connection between the rigorous quantum mechanical treatment of d 

electron energetics and the ‘chemistry’ of a ligand field, all essentially in real time. It is perhaps 

here where Kestrel and LFT find their greatest utility. 
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6 Appendices 
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6.1 Tables of metal-ligand bonding parameters reported for ligand-field 

analyses of experimental and computational data 

 



Table 6.1. Metal-ligand bonding parameters for transition-metal complexes with a coordination number of 2. 

MX2 Oxidation eσ eπ Void Σ Program Data Source 

Fe(CH3)2 II 1799 1757 

 

10626 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe(NH2)2 II 2478 5354, 1454 

 

26372 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe(OH)2 II 3560 4478, 2921 

 

25032 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[N(SiMe3)(Dipp)]2 II 3351 5137, 1828 

 

27250 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[C(SiMe3)3]2 II 2513 2364 

 

14482 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[N(H)Ar′]2 II 4418 3973, 932 

 

24728 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[N(H)Ar*]2 II 4512 3860, 1018 

 

24464 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[O(Ar′)]2 II 5255 3397, 2439 

 

24098 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[N(H)Ar#]2 II 5291 3414, 884 

 

24238 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

Fe[N(t-Bu)2]2 II 3977 4530, 2321 

 

26074 ORCA AILFT https://doi.org/10.1039/C2SC21394J 

[Fe(C(SiMe3)3)2]− II -1139 843.75 

 

1097 ORCA AILFT https://doi.org/10.1038/nchem.1630 

CoCSi3R6 II 2819.5 1456.5 

 

11465 ORCA AILFT https://doi.org/10.1038/nchem.1630 

CoCSi3R6 II 2100 375 

 

5700 Kestrel experiment This work 

CuCl2 II 3750 4500 

 

25500 None experiment https://doi.org/10.1039/DT9930001061 

CuCl2 - void II 3600 4050 -300 21000 None experiment https://doi.org/10.1039/DT9930001061 
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Table 6.2. Metal-ligand bonding parameters for transition-metal complexes with a coordination number of 4. 

MXY Oxidation eσ(X) eπ(X) eσ(Y) eπ(Y) Σ Program Data Type Source 

CoCl(PPh3)3 I 5430 1380 3340 -310 16350 Ligfield/DNS experiment https://doi.org/10.1021/ic202185x 

CoCl(PPh3)3 I 5310 1350 3470 -322 16488 Ligfield/DNS experiment https://doi.org/10.1021/ic202185x 

CoCl(PPh3)3 I 5190 1320 3435 -319 16221 Ligfield/DNS experiment https://doi.org/10.1021/ic202185x 

NiBr3(PPh3) II 3000 700 5000 -1500 15200 CAMMAG experiment https://doi.org/10.1021/ic50218a019 

NiI3(PPh3) II 2000 600 6000 -1500 12600 CAMMAG experiment https://doi.org/10.1021/ic50218a020 

NiCl2(PPh3)2 II 5227 2421 5509 -1235 26216 CAMMAG/AOMX experiment https://doi.org/10.1021/ic020198j 

MX2 Oxidation eσ eπ Void Σ Program Data Source 

CuCl2 II 5000 9500 

 

48000 None experiment https://doi.org/10.1039/DT9930001061 

CuCl2 - void II 4250 7250 -1500 25500 None experiment https://doi.org/10.1039/DT9930001061 

CuCl2 II 3535 2786 

 

18214 ORCA AILFT https://doi.org/10.1002/ejic.202100936 

Cu(NH3)2 - void II 4553 0 -5587 3519 ORCA AILFT https://doi.org/10.1002/ejic.202100936 

CuH2 II 2583 0 -3109 2057 ORCA AILFT https://doi.org/10.1002/ejic.202100936 

ScH2 II -4861.5 0 -1009 -10732 ORCA AILFT https://doi.org/10.1002/ejic.202100936 
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MXY Oxidation eσ(X) eπ(X) eσ(Y) eπ(Y) Σ Program Data Type Source 

NiCl2(PPh3)2 II 5689 1138 4192 -1674 17618 CAMMAG/AOMX experiment https://doi.org/10.1021/ic020198j 

NiCl2(PPh3)2 II 4500 2000 4500 -2500 16000 CAMMAG experiment https://doi.org/10.1039/DT9790001836 

NiBr2(PPh3)2 II 3184 517 4292 -501 15016 CAMMAG/AOMX experiment https://doi.org/10.1021/ic020198j 

NiBr2(PPh3)2 II 4000 1500 4000 -1500 16000 CAMMAG experiment https://doi.org/10.1039/DT9790001836 

NiI2(PPh3)2 II 2000 600 5509 -1235 12478 CAMMAG/AOMX experiment https://doi.org/10.1021/ic020198j 

 

Table 6.3. Metal-ligand bonding parameters for transition-metal complexes with a coordination number of 6. 

MXYZ Oxidation eσ(X) eπ(X) eσ(Y) eπ(Y) eσ(Z) eπ(Z) Σ Program Data Type Source 

CrF6 III 6868 1755 

    

62268 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrF6 III 8272 2375 

    

78132 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrF6 III 7400 1700 

    

64800 ? experiment https://doi.org/10.1007/3-540-08887-3_3 

CrCl6 III 4730 715 

    

36960 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrCl6 III 6430 1270 

    

53820 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrCl6 III 5900 900 

    

46200 ? experiment https://doi.org/10.1007/3-540-08887-3_3 

CrBr6 III 4223 596 

    

32490 ORCA AILFT https://doi.org/10.1007/430_2011_57 
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MXYZ Oxidation eσ(X) eπ(X) eσ(Y) eπ(Y) eσ(Z) eπ(Z) Σ Program Data Type Source 

CrBr6 III 6114 1142 

    

50388 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrBr6 III 4900 600 

    

36600 ? experiment https://doi.org/10.1007/3-540-08887-3_3 

CrI6 III 3855 469 

    

28758 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrI6 III 5976 1023 

    

48132 ORCA AILFT https://doi.org/10.1007/430_2011_57 

CrI6 III 4300 600 

    

33000 ? experiment https://doi.org/10.1007/3-540-08887-3_3 

Cr(en)2F2 III 7233 0 8033 2000 

  

34532 None experiment https://doi.org/10.1039/dt9750000650 

Cr(en)2Cl2 III 7500 0 5857 1040 

  

28794 None experiment https://doi.org/10.1039/dt9750000650 

Cr(en)2Br2 III 7500 0 5120 750 

  

26740 None experiment https://doi.org/10.1039/dt9750000650 

Cr(en)2I2 III 6987 0 4292 594 

  

23746 None experiment https://doi.org/ 10.1039/dt9750000650 

Cr(en)2(H2O)2 III 7833 0 7497 1410 

  

33480 None experiment https://doi.org/10.1039/dt9750000650 

Cr(en)2(OH)2 III 6640 0 7473 1405 

  

31036 None experiment https://doi.org/10.1039/dt9750000650 

Cr(en)2(dmso)2 III 7534 0 6769 1653 

  

31912 None experiment https://doi.org/10.1039/dt9750000650 

Cr(pd)2F2 III 7343 0 9093 2450 

  

37772 None experiment https://doi.org/10.1039/dt9750000650 

Fe(L1)(O)(MeCN) IV 6893 0 9288 5584 9288 5584 57316 Kestrel experiment https://doi.org/10.1039/D1FD00073J 

Fe(L1)(O)(Cl) IV 6201 0 9288 5584 9288 5584 54548 Kestrel experiment https://doi.org/10.1039/D1FD00073J 
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MXYZ Oxidation eσ(X) eπ(X) eσ(Y) eπ(Y) eσ(Z) eπ(Z) Σ Program Data Type Source 

Fe(L1)(O)(Br) IV 5782 0 9288 5584 9288 5584 52872 Kestrel experiment https://doi.org/10.1039/D1FD00073J 

Fe(L2)(O)(MeCN) IV 6770 0 9288 5584 9288 5584 56824 Kestrel experiment https://doi.org/10.1039/D1FD00073J 

 



 

6.2 Tabulation of all unique orbital occupations for each dn electronic 

configuration 

Tabulated here are the unique orbital occupations for each electron belonging to a dn 

configuration. The final d orbitals are labelled 1 to 5. Orbital 1 is the lowest energy ligand-field 

orbital and orbital 5 is the highest energy ligand-field orbital. There are n columns, for n 

electrons. In each row, the nth column will display the orbital (1 to 5) that the nth electron 

occupies. No spin projection (MS) character is contained in these lists because they cannot be 

extracted in a J, MJ, L, S basis set without first transforming to the uncoupled L, S, ML, MS 

basis. Also note that a permutation of the orbital labels between the n electrons is ignored. 

E.g., 1 3 1 is the same as 1 1 3 etc. 

 Note that the spatial orbital occupations for configurations belonging to higher spin-

multiplicities also belong to lower spin-multiplicities. Hence, these occupations are not 

repeated in the lists of the lower spin-multiplicities. Finally, the d1 to d5 configurations are 

explicitly listed. The occupation patterns are the exact same for d6 to d9, but the occupations 

are for holes, rather than electrons. 

 

Table 6.4.The unique orbital occupations of the n electrons for dn configurations (n = 1 

through to 5) 

dn Spin Multiplicity Electron 
1 

Electron 
2 

Electron 
3 

Electron 
4 

Electron 
5 

1 Doublet (5 roots) 1 
    

  
2 

    

  
3 

    

  
4 

    

  
5 

    

2 Triplets (10 roots) 1 2 
   

  
1 3 

   

  
1 4 

   

  
1 5 

   

  
2 3 

   

  
2 4 

   

  
2 5 

   

  
3 4 

   

  
3 5 

   

  
4 5 
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dn Spin Multiplicity Electron 
1 

Electron 
2 

Electron 
3 

Electron 
4 

Electron 
5  

Singlets (5 + 10 = 15 roots) 1 1 
   

  
2 2 

   

  
3 3 

   

  
4 4 

   

  
5 5 

   

3 Quartets (10 roots) 1 2 3 
  

  
1 2 4 

  

  
1 2 5 

  

  
1 3 4 

  

  
1 3 5 

  

  
1 4 5 

  

  
2 3 4 

  

  
2 3 5 

  

  
2 4 5 

  

  
3 4 5 

  

 
Doublets (20 + 10 = 30 roots) 1 1 2 

  

  
1 1 3 

  

  
1 1 4 

  

  
1 1 5 

  

  
2 2 1 

  

  
2 2 3 

  

  
2 2 4 

  

  
2 2 5 

  

  
3 3 1 

  

  
3 3 2 

  

  
3 3 4 

  

  
3 3 5 

  

  
4 4 1 

  

  
4 4 2 

  

  
4 4 3 

  

  
4 4 5 

  

  
5 5 1 

  

  
5 5 2 

  

  
5 5 3 

  

  
5 5 4 

  

4 Quintets (5 roots) 1 2 3 4 
 

  
1 2 3 5 

 

  
1 2 4 5 

 

  
1 3 4 5 

 

  
2 3 4 5 

 

 
Triplets (30 + 5 = 35 roots) 1 1 2 3 

 

  
1 1 2 4 

 

  
1 1 2 5 

 

  
1 1 3 4 
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dn Spin Multiplicity Electron 
1 

Electron 
2 

Electron 
3 

Electron 
4 

Electron 
5   

1 1 3 5 
 

  
1 1 4 5 

 

  
2 2 1 3 

 

  
2 2 1 4 

 

  
2 2 1 5 

 

  
2 2 3 4 

 

  
2 2 3 5 

 

  
2 2 4 5 

 

  
3 3 1 2 

 

  
3 3 1 4 

 

  
3 3 1 5 

 

  
3 3 2 4 

 

  
3 3 2 5 

 

  
3 3 4 5 

 

  
4 4 1 2 

 

  
4 4 1 3 

 

  
4 4 1 5 

 

  
4 4 2 3 

 

  
4 4 2 5 

 

  
4 4 3 5 

 

  
5 5 1 2 

 

  
5 5 1 3 

 

  
5 5 1 4 

 

  
5 5 2 3 

 

  
5 5 2 4 

 

  
5 5 3 4 

 

 
Singlets 1 1 2 2 

 

 
(10 + 30 + 5 = 45 roots) 1 1 3 3 

 

  
1 1 4 4 

 

  
1 1 5 5 

 

  
2 2 3 3 

 

  
2 2 4 4 

 

  
2 2 5 5 

 

  
3 3 4 4 

 

  
3 3 5 5 

 

  
4 4 5 5 

 

5 Sextets (1 root) 1 2 3 4 5  
Quartets (20 + 1 = 21 roots) 1 1 2 3 4   

1 1 2 3 5   
1 1 2 4 5   
1 1 3 4 5   
2 2 1 3 4   
2 2 1 3 5   
2 2 1 4 5 
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dn Spin Multiplicity Electron 
1 

Electron 
2 

Electron 
3 

Electron 
4 

Electron 
5   

2 2 3 4 5   
3 3 1 2 4   
3 3 1 2 5   
3 3 1 4 5   
3 3 2 4 5   
4 4 1 2 3   
4 4 1 2 5   
4 4 1 3 5   
4 4 2 3 5   
5 5 1 2 3   
5 5 1 2 4   
5 5 1 3 4   
5 5 2 3 4  

Doublets 1 1 2 2 3  
(30 + 20 + 1 = 51 roots) 1 1 2 2 4   

1 1 2 2 5   
1 1 3 3 2   
1 1 3 3 4   
1 1 3 3 5   
1 1 4 4 2   
1 1 4 4 3   
1 1 4 4 5   
1 1 5 5 2   
1 1 5 5 3   
1 1 5 5 4   
2 2 3 3 1   
2 2 3 3 4   
2 2 3 3 5   
2 2 4 4 1   
2 2 4 4 3   
2 2 4 4 5   
2 2 5 5 1   
2 2 5 5 3   
2 2 5 5 4   
3 3 4 4 1   
3 3 4 4 2   
3 3 4 4 5   
3 3 5 5 1   
3 3 5 5 2   
3 3 5 5 4   
4 4 5 5 1   
4 4 5 5 2   
4 4 5 5 3 
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6.3 Electrostatic origin of the low-symmetry components of 

Co(C(SiMe2ONaph)3)2 

 

Figure 6.1. The truncated xyz structure of the coordinating alkyl ligand and closest 

second-sphere coordination shell. Asterisks indicate atoms where a point charge is 

placed. O = red, Si = turquoise, C = grey, and Co = blue. 

 

To investigate potential crystal-field contributions to the low symmetry components of the 

ligand field, a crystal field is generated for the second coordination sphere, shown in Figure 

6.1. A point charge with magnitude Q was placed at each of the silicon and oxygen atoms 

indicated with an asterisk (with Co–X lengths of 3.139 Å and 3.104 Å respectively). For the 

sake of reducing the number of parameters to a minimum, the same point charge magnitude 

is assigned to all six silicon, six oxygen, and two carbon atoms. A value of Q = 0.65 produces 

a VLFT matrix in reasonable agreement with the ab initio predicted values: 



300 
 

4.55 49.43 0.92 67.28 0.26

49.43 2902.00 0.23 0.32 63.13

0.92 0.23 5723.90 0.66 0.10

67.28 0.32 0.66 2902.98 49.54

0.26 63.13 0.10 49.54 2.27

2.24 56.34 0.01 64.11 0.00

56.34

( / 2)

( )

v CASSCF NEVPT

v Kestrel

− −

− − −

− −

− −

 
 
 
 =
 
 
 
 

−

=

−

−

3252.47 0.01 0.01 64.09

0.01 0.01 4936.26 0.01 0.03

64.11 0.01 0.01 3252.55 56.33

0.00 64.09 0.03 56.33 2.24

 
 
 
 
 
 
 
 

−

− −

− −

−
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6.4 The 5×5 one-electron ligand-field matrix from a converged 

CASSCF(7, 5)/NEVPT2 calculation on Co(C(SiMe2ONaph)3)2. 

The 5×5 one-electron ligand-field matrix is computed as: 

 

4.55 49.43 0.92 67.28 0.26

49.43 2902.00 0.23 0.32 63.13

0.92 0.23 5723.90 0.66 0.10

67.28 0.32 0.66 2902.98 49.54

0.26 63.13 0.10 49.54 2.27

V

 
 
 
 =
 
 
 

− −

− − −

− −

− −

− 

 

For two ligands linear to one another, with geometric angles θ = 0°, 180°, φ = 0°, 0°, and ψ = 

0°, 0°, the local one-electron ligand-field matrices for ligands 1 and 2 are: 

 

( )

( )

2.28 24.72 0.46 33.64 0.13

24.72 1451.00 0.12 0.16 31.57

0.46 0.12 2861.95 0.33 0.05

33.64 0.16 0.33 1451.49 24.77

0.13 31.57 0.05 24.77 1.14

2.28 24.72 0.46 33.64 0.13

24.72 1451.00 0.12 0.16 31.5

1

2

v

v

 
 
 


− −

− − −

− −

− −

−

− −

−

=
 



−

−

 
 



=

7

0.46 0.12 2861.95 0.33 0.05

33.64 0.16 0.33 1451.49 24.77

0.13 31.57 0.05 24.77 1.14

 
 
 
 
 
 
 
 

− −

− −

−

. 

 

Note that the difference between the potential matrices is given by the signs of the matrix 

elements connecting the orbitals dxy and dyz to dz², dxz, and dx²–y². This is a consequence of the 

different trigonal geometries of the two ligands in the same frame. Keeping the off-diagonal 

matrix elements fixed but correcting the magnitudes of the diagonal ( )yz z² xzd , d , di i id v d d =  

elements give the final parameterisation: 
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²– ² ²– ²

² ²

²– ² ²– ²

Δ

Δ

Δ 4

Δ 4

Δ 4

Δ 4

π xy xy x y x y

δ xz xz yz yz

z z σ

yz yz π π

xz xz π π

x y x y δ

xy xy δ

d v d d v d

d v d d v d

d v d e

d v d e

d v d e

d v d

d v d

= −

= −

=

= −

= +

= −

= +  
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6.5 The S=1 BP86, ma-def2-tzvp(-f) geometry optimised coordinates of 

[Fe(O)(TMC)(NCCH3)]2+ in acetonitrile. 

Table 6.5. The xyz cartesian coordinates of the DFT optimised structure of 

[Fe(O)(TMC)(NCCH3)]2+ 

Element X Y Z  

Fe 0.0000 0.0000 0.0000  

O 0.0000 0.0000 1.6518  

N 2.0927 0.0000 0.1114  

N 0.1911 2.1130 -0.0528  

N -2.1220 0.0728 -0.0436  

N -0.2583 -2.0736 0.1163  

C 2.3731 1.2881 0.8220  

H 3.4584 1.4757 0.8281  

H 2.0292 1.1659 1.8548  

C 1.6546 2.4188 0.1397  

H 2.0845 2.6026 -0.8510  

H 1.7584 3.3475 0.7187  

C -0.5902 2.6451 1.1147  

H -0.4303 3.7360 1.1383  

H -0.1503 2.2089 2.0183  

C -2.0911 2.3704 1.0639  

H -2.5199 2.8612 1.9508  

H -2.5468 2.8841 0.2066  

C -2.5512 0.9158 1.1234  

H -2.1726 0.4321 2.0301  

H -3.6535 0.8965 1.1475  

C -2.6053 -1.3421 0.1407  

H -3.5437 -1.3361 0.7129  

H -2.8342 -1.7410 -0.8538  

C -1.5738 -2.1981 0.8224  

H -1.8930 -3.2522 0.8217  
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Element X Y Z  

H -1.4145 -1.8792 1.8576  

C 0.7608 -2.7556 0.9738  

H 0.5391 -3.8341 0.9402  

H 0.5994 -2.4027 1.9999  

C 2.2023 -2.4933 0.5774  

H 2.3847 -2.7124 -0.4843  

H 2.8271 -3.2018 1.1392  

C 2.6551 -1.0966 0.9609  

H 2.3473 -0.8902 1.9933  

H 3.7529 -1.0152 0.9064  

C 2.7928 -0.0184 -1.2024  

H 3.8751 0.0829 -1.0308  

H 2.4532 0.8050 -1.8353  

H 2.5973 -0.9628 -1.7189  

C -0.2070 2.8544 -1.2841  

H 0.0085 3.9233 -1.1353  

H -1.2688 2.7419 -1.5000  

H 0.3715 2.4889 -2.1363  

C -2.8109 0.5702 -1.2681  

H -3.8972 0.4662 -1.1264  

H -2.5021 -0.0213 -2.1331  

H -2.5895 1.6209 -1.4493  

C -0.3172 -2.7751 -1.1963  

H -0.5260 -3.8414 -1.0230  

H 0.6408 -2.6733 -1.7133  

H -1.1053 -2.3531 -1.8239  

N 0.0232 -0.0333 -2.0003  

C 0.0497 -0.0829 -3.1574  

C 0.0832 -0.1469 -4.5953  

H -0.9365 -0.0420 -4.9909  

H 0.5002 -1.1151 -4.9061  

H 0.7135 0.6650 -4.9841  
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6.6 Calculation of the ligand-field traces for V(IV)-oxo systems 

The ligand-field parameters (eλ) of three V(IV)-oxo systems are reported by Stappen et al.188 

The complexes 1 (VO(acac)2), 2 (VO(acac)2nPrCN), and 3 (VO(acac)2Py) are presented in 

Figure 6.2. The ligand-field traces were calculated using the following relationships: 

1

1

( ) ( ) 2 ( ) 4 ( ) 4Δ ( )

26730 2 11690 4 6000 4 740 77070 cm

( ) 2 ( , ) 4 ( , ) 4 ( ) 4Δ ( )
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1
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1

) ( )

2 15720 2 8830 4 6200 4 1410 460 80460 cm

πse N

−

+

=  +  +  +  + =

 

 

 

Figure 6.2. The V(IV)-oxo systems (1-3) analysed using a ligand-field model by Stappen 

et al.188 
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7 List of abbreviations 

AILFT Ab Initio Ligand-Field Theory 

AOM Angular Overlap Model 

BDE Bond Dissociation Energy 

CASSCF Complete Active Space Self-Consistent Field 

CD Circular Dichroism 

dc Direct Current 

DFT Density-Functional Theory 

EPR Electron Paramagnetic Resonance 

FWHM Full-Width Half Maximum 

GUI Graphical User Interface 

KD Kramer's Doublet 

LFT Ligand Field Theory 

LMCT Ligand to Metal Charge Transfer 

LPMO Lytic Polysaccharide Monooxygenase 

MCD Magnetic Circular Dichroism 

NEVPT2 N-Electron Valence Perturbation Theory 

QTM Quantum Tunnelling of the Magnetisation 

RMS Root Mean Square 

SCF Self-Consistent Field 

SiMM Single-ion Molecular Magnet 

SOMO Singly Occupied Molecular Orbital 

TD-DFT Time-Dependent Density-Functional Theory 

VH-MCD Variable Field Magnetic Circular Dichroism 

VT-MCD Variable Temperature Magnetic Circular Dichroism 

UV-Vis Ultraviolet-visible 

ZFS Zero-Field Splitting 
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