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Notation 

Represent tensors as italic capital letters, such as X or Y 

Represent matrices as capital letters, such as A or B 

Represent vectors as lowercase letters, such as x or y 

Represent scalars as italic lowercase letters, such as a or b 

‖∙‖
ଶ the Frobenius norm 

‖∙‖ଶ
ଶ the ℓ2 norm 

‖∙‖ଵ the ℓ1 norm 

‖∙‖ଶ,ଵ the ℓ2,1 norm 

⟦∙⟧ the tensor decomposition 

⟦∙⟧ୗ the symmetric tensor decomposition 

[…] set of elements 

[… ] the transpose of set of elements 

[a, b] the interval value between a and b (include a and b) 

yො the predicted value of y 

Sିଵ the reciprocal of S 

⨀ the dot product of elements between matrices 

∘ the outer product operation between two vectors 

∈ correlation between element and set 

ℝ the set of real numbers 

𝜎( ) the standard deviation 

Corr( ) the correlation coefficient 
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Abstract 

Machine learning (ML) techniques for predicting Alzheimer's disease (AD) progression 

can significantly assist clinicians and researchers in constructing effective AD 

prevention and treatment strategies. The main constraints on the performance of current 

ML approaches are prediction accuracy and stability problems in medical small dataset 

scenarios, monotonic data formats (loss of multi-dimensional knowledge of the data 

and loss of correlation knowledge between biomarkers) and biomarker interpretability 

limitations. This thesis investigates how multi-dimensional information and knowledge 

from biomarker data integrated with multi-task learning approaches to predict AD 

progression. Firstly, a novel similarity-based quantification approach is proposed with 

two components: multi-dimensional knowledge vector construction and amalgamated 

magnitude-direction quantification of brain structural variation, which considers both 

the magnitude and directional correlations of structural variation between brain 

biomarkers and encodes the quantified data as a third-order tensor to address the 

problem of monotonic data form. Secondly, multi-task learning regression algorithms 

with the ability to integrate multi-dimensional tensor data and mine MRI data for spatio-

temporal structural variation information and knowledge were designed and 

constructed to improve the accuracy, stability and interpretability of AD progression 

prediction in medical small dataset scenarios. The algorithm consists of three 

components: supervised symmetric tensor decomposition for extracting biomarker 

latent factors, tensor multi-task learning regression and algorithmic regularisation terms. 

The proposed algorithm aims to extract a set of first-order latent factors from the raw 

data, each represented by its first biomarker, second biomarker and patient sample 

dimensions, to elucidate potential factors affecting the variability of the data in an 

interpretable manner and can be utilised as predictor variables for training the 

prediction model that regards the prediction of each patient as a task, with each task 

sharing a set of biomarker latent factors obtained from tensor decomposition. 

Knowledge sharing between tasks improves the generalisation ability of the model and 

addresses the problem of sparse medical data. The experimental results demonstrate 

that the proposed approach achieves superior accuracy and stability in predicting 

various cognitive scores of AD progression compared to single-task learning, 

benchmarks and state-of-the-art multi-task regression methods. The proposed approach 

identifies brain structural variations in patients and the important brain biomarker 

correlations revealed by the experiments can be utilised as potential indicators for AD 

early identification.  
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Chapter 1 
 

 

1. Introduction 
 

 

Predicting disease progression and identifying biomarkers that track disease 

progression is an important aspect of the application of computer science. Accurately 

predicting disease progression can assist clinicians and patients to make the best 

decisions. To achieve this goal, various prediction methods based on machine learning 

algorithms are being delivered, such as regression algorithms, kernel methods and deep 

learning. However, they all suffer from various drawbacks that make the accuracy, 

stability and interpretability of the algorithms not reaching the desired level for 

predicting disease progression, such as algorithm performance issues in medical small 

dataset scenarios, loss of multi-dimensional information in medical data, and 

interpretability of algorithm results in the medical domain. Therefore, it is important to 

explore new disease progression prediction algorithms to replace traditional prediction 

methods. Quantifying the data and constructing it into a multi-dimensional tensor 

combined with machine learning algorithms can exploit the multi-dimensional 

information to predict the target. The aim of this thesis is to explore how multi-

dimensional tensor-based data combined with multi-task learning methods can be 

utilised to predict disease progression in the best way to achieve accurate, stable and 

interpretable disease progression predictions. This chapter briefly describes the 

research background, motivation, research issues, research objectives and contributions 

of this research. 
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1.1 Background 

 

Alzheimer’s disease is a serious primary neurodegenerative disease that causes neurons 

and their connections degenerate gradually, resulting in a comprehensive spectrum of 

dementia including memory loss, cognitive decline and executive dysfunction [1]. The 

etiology of AD is unclear, but may be related to a variety of factors including 

neurotransmitters, environment, genetics, inflammation and oxidative stress. Current 

clinical studies of AD are characterised by the pathology of neurofibrillary tangles and 

amyloid plaques in the cerebral cortex and hippocampus, leading to brain atrophy and 

neuronal death [2][3]. According to World Health Organization (WHO), it is estimated 

that there were more than 55 million dementia patients worldwide in 2023, with nearly 

10 million new cases each year. AD is the most common cause of dementia, accounting 

for approximately 60-70% of dementia cases. There is presently no cure to treat or 

reverse the disease progression which causes massive psychological and emotional 

stress for patients and their families. The current diagnosis of AD primarily relies on 

clinical manifestations, neuropsychological cognitive tests, brain imaging and 

cerebrospinal fluid examination [4][5]. Neuropsychological cognitive tests can evaluate 

the cognitive function of patients, such as Alzheimer’s Disease Assessment Scale 

Cognitive Subscale (ADAS- Cog) and Mini Mental State Examination (MMSE). Brain 

imaging can demonstrate characteristic changes such as cerebral atrophy, reduced 

cerebral metabolism, reduced cerebral blood flow and amyloid plaque deposition, such 

as magnetic resonance imaging (MRI), positron emission tomography (PET) and single 

photon emission computed tomography (SPECT). Numerous researches have been 

conducted to identify precise and sensitive biomarkers of early AD progression that can 

aid in early AD diagnosis to create, validate and evaluate current and novel treatment. 

And the discovery of the correlation between AD biomarkers can help doctors 

understand, prevent and detect AD clinically. 

 

Numerous studies in last decade have been carried out for predicting the AD 
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progression and the identification of sensitive and specific AD biomarkers, existing AD 

progression models mainly utilise machine learning regression algorithms [6][7][8][9] 

[10][11][12], survival models based on statistical probabilities [13][14][15], and deep 

learning methods based on neural networks [16][17]. Clinical applications of AD 

progression models include 1) Early diagnosis [16][18]: The established prediction 

models and algorithms can assist clinicians in identifying the risk of AD before the 

onset of symptoms or at an early stage, enabling earlier intervention and treatment. 2) 

Disease progression prediction [13][19]: By utilising dynamic data and long-term 

follow-up to establish progression curves and prognostic indicators for AD, it can assist 

clinicians in evaluating the changes and future development of patients' conditions, as 

well as formulating personalised treatment plans and care protocols for patients. 3) 

Biomarker researches [20][21]: By analysing variations in biomarkers, researchers can 

identify specific indicators associated with AD. Variations in biomarkers can be utilised 

to predict the development and progression of the disease. 4) Research on disease 

mechanisms [22][23]: By utilising multi-disciplinary and multi-level data to establish 

the pathophysiological networks and causal relations of AD, it can assist researchers in 

exploring the mechanisms of disease development and influencing factors, providing 

researchers with new research ideas and targets. 5) Functional connectivity and network 

analysis [24][25]: The research results of brain networks contribute to the 

understanding of the connections and synergies between different brain regions. By 

analysing these functional connections, abnormal patterns associated with AD can be 

discovered. This approach can alternatively be utilised to construct predictive models 

to identify variations in a patient's brain network, providing a more comprehensive 

understanding of the disease progression. 6) Personalised healthcare [26][27]: 

Clinicians can utilise predictive models to better understand individual differences in 

patients and develop personalised treatment plans for each patient to improve treatment 

effectiveness. 7) Medicine research and development [28][29]: Predictive models can 

assist in the design of accurate drug trials and accelerate the discovery of new medicines. 

8) Screening of high-risk groups [30][31]: By utilising demographics, genes, lifestyle 
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and other factors to establish a risk assessment tool for AD, it can assist in identifying 

those who are predisposed to the onset of the disease, and provide them with timely 

preventive measures and intervention programmes. 9) Assessment of treatment effects 

[32][33]: Models and algorithms can be utilised to assess the effects of different 

treatments on patients, including medication, cognitive training and lifestyle 

interventions. By analysing these data, researchers and clinicians can better understand 

the effectiveness of different treatment strategies and optimise patients' treatment plans. 

10) Clinical decision support systems [34][35]: Embedding models into clinical 

decision support systems can provide real-time, individualised advice to clinicians. This 

can contribute to the optimisation of clinical workflows and enhance clinicians' 

management of AD patients. In historical algorithm researches and experiments, all 

algorithms aiming at disease progression prediction require to regard the following 

performance benchmarks:  

 

Accuracy: The accuracy of prediction is a measure of how correct disease progression 

prediction algorithms, models and systems are. Statistical approaches (root mean square 

error, mean absolute error, mean square error, etc.) are typically utilised as performance 

metrics, which estimate the degree of error between the predicted and true values. 

Accuracy is a fundamental requirement for most disease progression prediction 

algorithms, models and systems. The higher the accuracy, the better the algorithm, 

model and system.  

 

Stability: The stability of disease progression prediction algorithms, models and 

systems is to demonstrate the consistency of the predicted results with the actual results 

for different individuals. Accuracy only measures the statistical methodological error 

level. However, prediction stability considers and measures the consistency of 

prediction algorithms, models and systems as it reveals the variation in their 

performance over multiple trials.  
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Interpretability: The interpretability of approaches and results is as important in 

medical research as approach performance to enable clinicians and patients to 

understand the decision-making process of algorithms, models and systems and trust 

their predictions. In addition, high interpretability of disease progression prediction 

algorithms, models and systems can recognize important biomarkers in the data to assist 

clinicians in identifying patients with suspected disease for early prevention.  

 

Scalability: The scalability of disease progression prediction algorithms, models and 

systems refers to their ability to perform consistently for different prediction targets. 

Furthermore, the algorithms can be applied to various types of disease progression.  

 

Cost: The cost of disease progression prediction algorithms, models and systems can 

depend on a number of factors. Important factors include the generation and collection 

of biomarker data, the training and deployment of algorithms, models and systems. 

 

Predicting the early detection and diagnosis of Alzheimer's disease is extremely 

imperative for patients and families. It not only helps patients to access early 

intervention and treatment, but also helps to reduce the adverse effects of the disease. 

At the same time, research into predicting Alzheimer's disease also helps to better 

understand the mechanisms by which the disease occurs, and ultimately to find a cure. 

As a result, research into AD prediction algorithms will continue to be of interest and 

will continue to be extensively researched and developed. Researchers will continue to 

strive to improve the accuracy, stability, interpretability and reliability of predictive 

algorithms to better support patients and families. Ultimately, through early detection 

and diagnosis of Alzheimer's disease, we can improve the quality of life of patients and 

help reduce the adverse effects of the disease. 
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1.2 Motivation 

 

The current state-of-the-art AD prediction algorithms are classified into the following 

main categories. Imaging-based prediction: This type of algorithm predicts the risk of 

Alzheimer's disease based on brain imaging, such as MRI or PET. Biomarker-based 

prediction: These algorithms utilise biological markers, such as blood biology 

indicators and genetic features to predict the risk of Alzheimer's disease. Behavioural 

and psychological prediction: These algorithms predict the risk of Alzheimer's disease 

based on the behavioural and psychological characteristics of the individual, such as 

cognitive tests and mental status assessments. Multi-modal algorithms: This class of 

algorithms combines several of these approaches to improve the accuracy of prediction 

algorithms. Specifically, the biomarker prediction algorithms include logistic 

regression-based biomarker prediction models and support vector machine-based 

biomarker prediction models. Brain image analysis prediction algorithms include 

convolutional neural network-based and generative adversarial network-based brain 

image analysis prediction models. Behavioural and psychological assessment 

prediction algorithms include decision tree-based and random forest-based prediction 

models for behavioural and psychological assessment. Deep learning prediction 

algorithms include models based on convolutional neural networks, generative 

adversarial networks and graph neural networks. The choice and utilisation of these 

algorithms depends on the specific requirements of the prediction task, as well as the 

requirements for accuracy and efficiency of the prediction. For example, a deep 

learning algorithm can be chosen to be used if the requirement for accuracy is high, or 

a biomarker prediction algorithm can be used if the requirement for prediction 

efficiency is high. In addition, the performance of prediction algorithms is usually 

affected by the quality of the data and the amount of data. Therefore, before utilising a 

prediction algorithm, a detailed evaluation of the data should be carried out and ensure 

that the data quality is high and the data amount is large.  
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The algorithms described above all focus on converting patient data into second-order 

matrices for linear or non-linear prediction. In most AD progression prediction studies, 

different biomarkers for each patient are composed into a second-order matrix. While 

these typical technical algorithms can make acceptable predictions and identify 

biomarkers, there are two limitations that can affect the clarification of biomarker 

correlations and the accuracy of predictions. The first limitation is the monotonic data 

form, which in most of these methods is utilised and displayed in the form of a second-

order matrix. In the AD progression prediction model described above, the algorithm 

uses a second-order input matrix formed by clinical data or biomarker data from 

different AD patients combined with a second-order target matrix formed by the 

patient's AD cognitive test scores (e.g., ADAS-Cog and MMSE) at different time 

periods to obtain a second-order weight matrix of biomarkers at different time periods. 

However, the second-order matrix of AD biomarker data can only be predicted and 

analysed in one dimension, making it difficult to predict and analyse the disease 

progression in multiple dimensions (e.g., spatial and temporal). The second limitation 

is the correlation between AD biomarkers. Numerous studies have demonstrated that 

applying relationships between biomarkers to machine learning algorithms can improve 

prediction accuracy and understanding of biomarkers and disease progressions, but 

second-order matrices can only contain data on the biomarkers themselves and cannot 

include correlations between biomarkers. Therefore, the utilisation of higher-order 

tensor combined with machine learning algorithms for AD prediction, biomarker 

correlation and importance detection remain a challenging problem. 

 

Multi-dimensional spatio-temporal data, including brain images, biomarkers and 

behavioural assessment data, have a wide range of applications in Alzheimer's disease 

prediction algorithms. By utilising information from multi-dimensional spatio-

temporal data, algorithms can better assess the risk of Alzheimer's disease and predict 

the progression of the disease. For example, by analysing brain imaging data, 

algorithms can identify damage and degenerative changes in the brain and assess them; 
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by analysing behavioural assessment data, algorithms can assess a patient's cognitive 

function, such as memory and language skills. At the same time, multi-dimensional 

spatio-temporal data can also help the algorithm to identify early warning signs of 

disease, thus providing assistance for early intervention and prevention. The utilisation 

of multi-dimensional spatio-temporal data for Alzheimer's disease prediction can 

provide more valuable information and thus improve the accuracy of predictions. 

However, there are certain challenges. The first challenge is that for spatio-temporal 

data, temporally and spatially relevant features need to be extracted from the data. This 

can be a technically challenging task as complex temporal and spatial correlations need 

to be considered. A second challenge is the interpretability of algorithms in multi-

dimensional spatio-temporal data. In multi-dimensional spatio-temporal data, the 

decisions of the algorithm are difficult to interpret, which can have an impact on the 

trust in the decision. Therefore, when utilising multi-dimensional spatio-temporal data 

for prediction, there is a need to consider how to enhance the interpretability of 

algorithm results in the context of medical knowledge and clinical scenarios. The third 

challenge is that complex spatio-temporal correlations, where there are complex 

correlations between spatio-temporal features, require prediction algorithms with 

superior model complexity and robustness. 

 

In addition, a common problem with AD prediction algorithms is the size and diversity 

of dataset. The small dataset problem is a common problem with AD prediction 

algorithms. As AD is a chronic disease, the time taken to collect relevant data is long 

and the prevalence of AD is relatively low, therefore current datasets are typically small 

for the training and testing of algorithms. Numerous researchers have relied on small 

datasets to assess the performance of algorithms, but this has led to instability in the 

results. Utilising small datasets can also lead to overfitting of the model as it does not 

capture the true distribution of the data well. This can lead to the algorithm making 

inaccurate predictions for specific types of samples, thus reducing overall accuracy. In 

addition, the utilisation of small datasets can also lead to algorithms that do not have 



29 

 

generalisation capabilities and therefore can perform poorly on new data.  

 

Multi-task learning can provide great advantages in small data set scenarios. Multi-task 

learning is a machine learning technique for learning models of multiple related tasks, 

which aims to exploit the commonality of multiple tasks to improve the performance 

of the model. In small dataset scenarios, the advantage of multi-task learning is that it 

utilises the full information of the dataset, thus compensating to a certain extent for the 

lack of a dataset. Due to the limited amount of data in small datasets, it is difficult to fit 

data from a single task, but with multi-task learning, the model can be trained together 

utilising data from multiple related tasks, thus overcoming the difficulties of single-task 

learning on small datasets. Multi-task learning in small data set scenarios can make full 

utilise of information from related tasks, thus improving the generalisation ability of 

the model. For example, if there are two tasks that are both AD predictions, then by 

learning both tasks at the same time, the model can take full advantage of the features 

common to both tasks to improve the accuracy of the model. Thus, multi-task learning 

can overcome the problem of low generalisation ability of the model in small data set 

scenarios. In multi-task learning, certain common knowledge can be shared by multiple 

tasks, which can reduce the number of parameters and prevent overfitting. At the same 

time, this sharing mechanism allows the model to obtain better generalisation on small 

datasets, thus achieving greater improvements in the accuracy of the prediction results.  

 

Interpretability is an important challenge in AD prediction algorithms. The 

interpretability of an AD prediction algorithm refers to the readability and transparency 

of the algorithm's results and decision-making process. Interpretability is a key issue 

for AD prediction algorithms as the results of the algorithm can be wrong or biased and 

the lack of readability and transparency can lead to a lower level of trust in the algorithm 

by doctors and patients. The results of a model cannot just be considered a black box 

model, the results must be understandable and interpretable by humans. Machine 

learning techniques can generate accurate predictions, but if the decisions of the model 
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cannot be interpreted, they cannot be accepted by doctors or patients. Furthermore, if 

the algorithm's decision-making process is not readable, then the algorithm cannot be 

easily checked for any bias or errors, which could lead to unjust results. Due to the 

complex and multi-dimensional nature of AD, various machine learning models can 

struggle to fully understand the model's decision-making process when making 

predictions. This leads numerous doctors and specialists to doubt the results of machine 

learning models and consequently places limitations on their application. Furthermore, 

if the results of the models are not interpretable, then they cannot be used for revision 

or improvement, thus the issue of interpretability in AD prediction algorithms is an 

important one that needs to be addressed. The problems with the interpretability of AD 

prediction algorithms are mainly manifested in: 1) Model complexity: most of the 

current AD prediction algorithms utilise deep learning and machine learning techniques, 

and the model complexity is high and difficult to interpret. 2) Lack of transparency: due 

to the complexity of the model, it is difficult to know how the algorithm arrives at the 

prediction result, and there is a lack of transparency. 3) Lack of clarity in judgement 

criteria: it is difficult to judge whether the prediction results are reliable as there are no 

clear criteria to evaluate the accuracy of the prediction algorithms. 4) Data deviation: if 

there is deviation in the training data, the prediction results can also be affected and the 

root cause of the deviation is difficult to trace. Overall, the issue of interpretability of 

Alzheimer's disease prediction algorithms is an important challenge that needs further 

research. Therefore, there is a need for continued efforts to improve the interpretability 

and reliability of AD prediction algorithms in order to better assist clinicians and 

patients in the prevention and treatment of the disease.  

 

Consequently, the motivation for this research work is to investigate the utilisation of 

multi-dimensional information knowledge from biomarker data combined with multi-

task learning approaches for AD progression prediction. This project focuses on the 

three main issues mentioned above including prediction accuracy and stability in small 

dataset scenarios, monotonic data format (loss of multi-dimensional knowledge of the 
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data and loss of association knowledge between biomarkers) and biomarker 

interpretability limitations. The aim is to investigate the quantification and construction 

of AD biomarker data into a high-dimensional tensor combined with multi-task 

learning approaches to construct algorithms with high accuracy, stability and 

interpretability.  

 

1.3 Aim and Objectives of Research 

 

The following section describes the main aim and objectives of the proposed project: 

 

a) Aim  

 

The aim of this project is to investigate the quantification and construction of AD 

biomarker data as a higher-order tensor, combining multi-task learning and machine 

learning regression approaches to construct algorithms with multi-dimensional spatio-

temporal characteristics of AD biomarker data to predict disease progression in AD 

patients at multiple future time points. To achieve this aim, the research conducts 

extensive experiments and tests to construct predictive models based on the above 

algorithms, which can simultaneously comprise feature correlations of different 

dimensions to improve prediction accuracy, stability and biomarker interpretability. 

 

b) Objectives  

 

The aim of this project is to investigate the utilisation of a multi-task learning approach, 

machine learning regression algorithms combined with multi-dimensional tensor-based 

data features to predict the disease progression in AD patients and to assist in 

understanding the importance and correlation of biomarker features. In order to 

investigate it, the research provides a number of objectives, which are defined as 

follows. 
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 To review research and applications on multi-dimensional tensor, multi-task 

learning and machine learning regression algorithms. 

 To study AD biomarker data and investigate approaches to quantify and construct 

multi-dimensional tensors. 

 To analyse and evaluate the optimal type of multi-dimensional tensor for AD 

biomarker data. 

 To combine multi-dimensional tensor AD data, multi-task learning and regression 

algorithms to construct prediction algorithms and models. 

 To implement algorithms and models, evaluate their performance. 

 To utilise data analysis and visualisation methods to enhance the interpretability of 

algorithms and biomarker features.  

 To analyse and compare the importance of AD biomarkers from different 

dimensions and discover biomarkers and biomarker correlations that can be utilised 

as potential indicators for early AD identification. 

1.4 Contribution to Knowledge 

 

To summarize, the main knowledge contributions are: 

1. This research proposed a novel approach to analyse and quantify MRI biomarkers, 

which utilises similarity calculations to reflect the spatio-temporal variability 

between brain biomarkers, which simultaneously considers the magnitude and 

directional correlation of structural variation between brain biomarkers, the results 

of ablation studies have demonstrated that the multi-dimensional tensor multi-task 

learning regression model with the proposed quantification approach outperforms 

the mainstream correlation calculations for AD progression predictions, it contains 

comprehensive knowledge of brain structural variation and can effectively 

differentiate between CN (cognitively normal elderly), MCI (mild cognitive 

impairment) and AD patients, and constructs MRI biomarker data as a third-order 

tensor to address the problem of monotonic data forms.  
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2. The research proposed novel multi-dimensional tensor-based multi-task learning 

regression algorithms for the Alzheimer's disease progression prediction. The 

algorithms utilise tensor decomposition techniques to learn task correlations from 

raw data, which allows all samples to share latent knowledge of biomarkers based 

on brain structural variation. The algorithm is designed to seamlessly integrate 

spatio-temporal information and knowledge based on structural brain variants and 

their biomarker latent factors, experimental results have demonstrated that the 

proposed approach outperforms comparative methods in AD progression 

prediction based on various cognitive scores, significantly improves the accuracy 

and stability of AD progression prediction in medical small dataset scenarios. 

 

3. This research identified important structural variation correlations between brain 

biomarkers and presents detailed analyses in terms of brain biomarker function, 

distributional differences in early MRI biomarker quantification values along with 

relative structural variation information of brain biomarkers between cognitively 

impaired and non-cognitively impaired individuals at various specific AD 

progression time points. These biomarker correlations can be exploited to predict 

AD progression and can be utilised as potential indicators for early identification 

of AD.  

 

4. This research visualised and analysed the biomarker latent factors learned from raw 

data with tensor decomposition techniques to identify brain regions affected in the 

AD progression. The visualisation results have demonstrated that for different AD 

progression time points, the latent factors have different spatial distributions, which 

indicates that they capture different aspects of the spatial variability in the data. 
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1.5 Organization of the thesis 

 

This thesis is divided into eight major chapters. The first chapter is the introduction, 

motivation and knowledge contribution to this research work. Chapter 2 begins with an 

introduction to researches on various AD prediction algorithms, a literature review of 

multi-task learning algorithms, and algorithm applications based on multi-task learning. 

Then it presents the multi-dimensional data, multi-dimensional tensor, tensor 

decomposition techniques and correlation quantification approaches that are relevant to 

this research. Chapter 3 elaborate on the methodology to accomplish the aim of this 

research. Chapter 4 proposes, designs and constructs an approach for the construction 

and quantification of a biomarker multi-dimensional tensor with the ability to mine and 

incorporate multi-dimensional spatio-temporal information and biomarker correlation 

knowledge. Chapter 5 designs and develops the multi-dimensional tensor multi-task 

learning regression algorithm and model to depict the utilisation of multi-task learning 

algorithms integrated with multi-dimensional tensor data for AD progression prediction. 

It exploits multi-task learning concepts incorporated with quantitative multi-

dimensional tensor of spatio-temporal structural variation information of MRI brain 

biomarkers to enhance the accuracy, stability and interpretability of AD progression 

prediction in medical small data set scenarios. And then presents the experimental 

configurations and processes required for the multi-dimensional tensor multi-task 

learning regression algorithm and model, coupled with the testing and analysis of the 

algorithm and model results. Chapter 6 presents a multifaceted interpretability analysis 

for the experimental results and proposed algorithm. Chapter 7 designs and constructs 

various multi-dimensional tensor multi-task learning regression based time-continuous 

algorithms to predict disease progression at different time points in neurological disease 

prediction scenarios in order to simultaneously overcome the problems of monotonic 

data forms, small datasets and the scarcity of time-continuous data. The final chapter 

concludes the research work in this thesis and discusses possible future research, 

development work and enhancements.  
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Chapter 2 
 

 

2. Literature review 
 

 

There are four main aspects to this chapter: first, an overview of the research areas that 

have influenced the research. This includes AD clinical overview, research on various 

AD prediction algorithms, a review of multi-task learning algorithms and applications 

of algorithms based on multi-task learning. It discusses the limitations of existing and 

state-of-the-art prediction algorithms in medical small dataset scenarios and why multi-

task learning approaches can potentially be utilised to enhance the performance of 

algorithms and models in this scenario. The second part of the chapter reviews current 

tensor decomposition techniques and their latent factors and applications in algorithms. 

It also analyses the range of applications of multi-dimensional tensor-based prediction 

algorithms. It discusses the limitations of traditional matrix data in the application of 

prediction algorithms and why high-dimensional tensor can be utilised to enhance the 

performance of AD prediction algorithms. The third part of this chapter reviews current 

research and applications in the field of brain science on the differences in brain 

structural variation among CN, MCI and AD along with the correlation between AD 

MRI biomarkers. The final part of this chapter reviews the major approaches utilised 

for biomarker correlation calculations and their associated techniques, including Cosine 

similarity, Euclidean distance and Mahalanobis distance.  

 

2.1 Alzheimer's disease clinical overview 

 

Alzheimer's disease is a critical primary neurodegenerative disorder that leads to a 

comprehensive spectrum of dementia, including memory impairment, visuospatial 
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perception impairment, language impairment, anosognosia, prosopagnosia and 

executive dysfunction, along with non-cognitive psychiatric symptoms including 

anxiety, depression, delusions, hallucinations and aggressive behaviour [1][36][37]. 

The etiology and pathogenesis of AD have not been fully clarified, but current research 

indicates that it may be related to the following aspects: 1) Genetic factors [2][3]: AD 

is associated with mutations or variations in certain genes, such as amyloid precursor 

protein, apolipoprotein E and presenilin. Abnormalities in these genes affect the 

production and removal of amyloid from the brain, leading to amyloid deposition and 

aggregation and the formation of neurotoxic amyloid plaques. Amyloid deposition can 

cause inflammatory response, oxidative stress and apoptosis in neurons, further 

impairing brain function. 2) Environmental factors [38][39][40]: The occurrence of AD 

can be affected by a variety of environmental factors, such as level of education, 

traumatic brain injury, aluminium poisoning, air pollution etc. These factors can 

directly or indirectly interfere with the metabolism, neuroprotective mechanisms and 

signal transmission in the brain, thus increasing the risk of AD. 3) Neurotransmitter 

system dysfunction [41][42]: AD patients have declining levels of various 

neurotransmitters in the brain, such as glutamate, acetylcholine, dopamine, etc. These 

neurotransmitters are closely associated with cognitive functions including learning and 

memory, and their reduction can lead to communication disorders between neurons and 

loss of synaptic function. In addition, excessive phosphorylation of Tau protein exists 

in the brain of AD patients, leading to the detachment of Tau protein from microtubules 

and the formation of neurogenic fibre tangles, which affects the transport function and 

structure of neurons. 4) Oxidative stress and free radical damage [43][44]: Oxidative 

stress and overproduction of free radicals are frequently observed in the brains of AD 

patients. Oxidative stress leads to increased production of free radicals inside and 

outside the cell, and these highly reactive molecules can damage cell membranes, 

nucleic acids and proteins, ultimately accelerating neuronal degeneration. 

 

Diagnosis of Alzheimer's disease is a complex process that requires a variety of 

methods including physical examinations, comprehensive medical histories, cognitive 
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tests, brain imaging and blood tests [4][45][46]. Cognitive tests (e.g., MMSE, ADAS-

Cog, etc.) can evaluate the patient's memory, language, attention, executive and 

visuospatial abilities. These tests can assist the clinician in determining if the patient 

has MCI or AD, along with the severity of condition [47][48]. Brain imaging tests (e.g., 

MRI, PET, SPECT, etc.) can observe the brain for structural and functional 

abnormalities such as ischemia, atrophy and decreased metabolism. These tests can 

assist the clinician to exclude other brain disorders that can cause cognitive impairment, 

such as Parkinson's disease, cerebrovascular disease, frontotemporal lobe dementia, etc 

[49][50]. Blood tests (e.g., routine blood, immunological, biochemical, hormonal, etc.) 

can exclude other systemic diseases that can affect cognition, such as anaemia, vitamin 

deficiencies, abnormal thyroid function, etc [51][52]. By conducting a variety of tests, 

clinicians can comprehensively evaluate whether a patient has AD, along with the 

staging and prognosis of the condition. Diagnosis of AD is a continual process that 

requires periodic review and subsequent monitoring to detect variations in the condition 

and the effectiveness of treatment. However, there is no cure to treat or reverse the 

disease progression, which causes immense psychological and emotional stress to 

patients and their families. Current treatment focuses on slowing the progression of the 

disease, relieving symptoms, and improving the quality of life for patients [4][53][54]. 

 

2.2 State-of-the-art in Alzheimer's disease prediction algorithm 

 

Numerous researches have been performed in order to detect precise and 

sensitive biomarkers of early AD progression that can assist in early AD diagnosis to 

develop, assess, examine current and novel treatments. Previous researches have 

focused on utilising biomarkers combined with ML algorithms to predict patients' 

cognitive test scores as target data for diagnosing the degree of cognitive impairment 

in patients. The purpose of the AD prediction algorithm is to predict the cognitive scores 

(e.g., ADAS-Cog and MMSE) at different future time points based on the currently 

available information.  
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2.2.1 Regression algorithm 

 

AD prediction is achieved with machine learning regression algorithms. The regression 

algorithm starts from a set of data, determines the quantitative relationships between 

certain variables, builds a mathematical model and estimates the unknown parameters. 

The aim of regression is to predict numerical target values; it aims to accept continuous 

data, find the equation that best fits the data and be able to predict a particular value. 

Algorithmic approaches include linear regression-based approaches, support vector 

regression-based approaches, regression tree-based approaches and neural network-

based approaches. The advantages and disadvantages of these approaches are 

summarised in Table 2.1 and sections 2.2.1.1 to 2.2.1.4 present a review of each 

approach and discuss in detail the applications and research directions, advantages and 

disadvantages of these approaches. These methods work by building models and 

training them with training data to identify predictive markers and make predictions 

about future conditions. Specifically, Alzheimer's disease prediction algorithms utilise 

different data sources and methods to predict an individual's risk of developing 

Alzheimer's disease, including imaging-based algorithms that utilise brain imaging 

techniques, such as MRI or PET scans, to identify biological markers in the brain that 

can be associated with Alzheimer's disease. Biology-based algorithms utilise biological 

data associated with Alzheimer's disease, such as genetic data, to predict the risk of the 

disease. Behaviour-based algorithms utilise behavioural data related to cognitive 

function, such as memory assessment, to predict disease risk. Fusion algorithms, on the 

other hand, combine multiple data sources and methods to improve the accuracy of 

predictions. 

 

To sum up, the key advantages of AD regression algorithms are 1) Fast diagnosis: 

predictive algorithms can analyse large amounts of data in a short time, faster than 
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manual analysis. 2) Unbiased: predictive algorithms are not influenced by human bias 

and can evaluate data more objectively. 3) More accurate diagnosis: predictive 

algorithms can make predictions based on a variety of factors, more accurately than 

relying on human judgement alone. 4) Provides more Information: the prediction 

algorithm can provide more information based on different factors to help doctors make 

more informed decisions. However, there are a number of disadvantages. 1) Data 

limitations: prediction algorithms require a large amount of data as training samples, 

and prediction results are not satisfactory when there is insufficient data. 2) High 

algorithm complexity: there are complex calculations within the prediction algorithm, 

and it can take a long time to produce results for certain complex data. 3) High 

requirement for expertise: prediction algorithms require a certain level of understanding 

of relevant expertise, it can be difficult to understand the principles and results of the 

algorithm without the relevant knowledge. 

 

Table 2.1: Advantages and disadvantages of various Alzheimer's disease prediction 

models and algorithms. 

Approaches Advantages Disadvantages 

Linear regression-

based approaches 

1) Interpretability 

2) Computational efficiency 

3) Robustness 

4) Model simplicity 

5) Do not require big data 

1) Linear assumptions 

2) High-dimensional data 

3) Unbalanced data 

4) Possible overfitting problems 

Support vector 

regression-based 

approaches 

1) Non-linear modelling capability 

2) Robustness 

3) Sparsity 

4) Multi-scale learning 

1) Computational complexity 

2) Lack of interpretability 

3) Kernel function selection 

Regression tree-

based approaches 

1) Interpretability 

2) Processes non-linear relationships 

3) Effective model visualisation 

1) Instability 

2) Requires large amounts of data 

3) Processing of high-dimensional data 

4) Variable correlation 

5) Processing of continuous outputs 

Neural network-

based approaches 

1) Processing of high-dimensional data 

2) Multi-modal data integration 

3) Model complexity and flexibility 

4) End-to-end learning 

1) Lack of interpretability 

2) Large amount of data required 

3) Hardware dependency 

4) Long training times 
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2.2.1.1 Linear regression-based approaches 
 

Linear regression is a statistical approach utilised to predict numerical data based on a 

linear relationship between one or more independent variables and a dependent variable 

[55][56]. In the case of AD, it implies that the model will attempt to discover linear 

equations describing how to predict disease progression or clinical scores based on one 

or more predictive variables (e.g., MRIs, magnitude of brain structures, cerebrospinal 

fluid biomarkers, genetic traits, psychological assessments, etc.). These data can 

provide models with information and knowledge about structural, functional and 

chemical changes in the brain that are critical for early diagnosis and prediction of 

disease progression. By linear regression modelling, researchers can identify a number 

of key factors associated with the progression of AD. These models can help in the 

formulation of individualised treatment strategies and provide valuable information for 

medicine development.  

 

Current researches on linear regression-based AD prediction models and algorithms 

focus on: 1) Ensemble learning [57][58]: combining predictions from multiple models 

to improve accuracy and stability. 2) Novel regularisation methods [12][59][60]: 

application of regularisation methods can assist in dealing with multi-collinearity and 

overfitting problems. 3) Linear fusion of multi-modal data [61][62][63]: considering 

that AD researches can involve data from different sources (e.g., MRI, PET scans, 

genetic data, etc.), linear regression models can be utilised to fuse the data from these 

sources. 4) Segmented linear regression [64][65]: the AD progression can exhibit 

different rates at different stages. Segmented linear regression can be utilised to capture 

this non-linear relationship while maintaining a linear model within each segment. 5) 

Linear mixed effects models [66][67]: these models consider random effects between 

individuals, which is particularly valuable when considering genetic family data or 

other factors that can cause correlations.  

 

In summary, the advantages of linear regression-based AD prediction models and 
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algorithms contain: 1) Interpretability: the parameters of linear regression models can 

be interpreted intuitively as the relationship between each feature and the response 

variable, which allows biological or medical implications to be derived. 2) 

Computational efficiency: linear regression is a relatively simple model that requires 

fewer computational resources and is faster to train. 3) Robustness: linear regression is 

relatively less susceptible to slight data variations, thus resulting in a more stable model. 

4) Model simplicity: Compared to neural networks or complex ensemble methods, 

linear regression provides a concise model framework, making it easy to implement 

and validate. 5) Do not require big data: as opposed to models such as deep learning, 

linear regression models do not require a large amount of data to obtain reasonable 

results. Disadvantages contain: 1) Linear assumptions: linear regression assumes a 

linear relationship between the dependent and independent variables, but the reality of 

AD progression can be more complex than the model, and there can be non-linear 

relationships or interaction effects. 2) High-dimensional data: e.g., MRI images and 

genetic data can provide a large number of features, leading to dimensional catastrophe. 

3) Unbalanced data: data from early AD can be sparse, leading to models that are biased 

towards those conditions that are more frequently encountered. 4) Possible overfitting 

problems: especially if the number of features is much larger than the number of 

samples, linear regression can overfit. While this can be mitigated by regularisation, 

there is a limited degree of overfitting that can be alleviated.  

 

2.2.1.2 Support vector regression-based approaches 

 

Support vector regression (SVR) is based on the concept of support vector machines. 

The objective of SVR is to find a hyperplane that allows most of the data points to fall 

within a margin of this hyperplane. The core is to maximise the distance from the 

hyperplane to the nearest data point while ensuring that most of the data fits within this 

margin. In nonlinear problems, SVR can implicitly map the input data to a higher-

dimensional space by utilising a kernel function that allows it to become linearly 

separable in the new feature space. Mainstream kernel functions include linear kernels, 
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polynomial kernels, radial basis kernels and sigmoid kernels.  

 

Current researches on SVR-based AD prediction models and algorithms focuses on: 1) 

Ensemble learning SVR [68][69]: researchers have explored approaches that combine 

SVR with various machine learning models to form ensemble systems, which integrate 

multiple models to merge their predictions to provide more accurate and robust 

predictions. 2) Domain adaptation and transfer learning [70][71]: there can be 

distributional differences for neuroimaging data from different sources or devices. 

Domain adaptation techniques aim to enable models to be trained on one domain (or 

dataset) and to make effective predictions on another domain. 3) Multi-modal data 

fusion SVR [72][73]: considering the complexity of Alzheimer's disease, researchers 

have been exploring approaches to fuse data from multiple sources (e.g., MRI, fMRI, 

cerebrospinal fluid markers, etc.). By fusing these data, models can provide a 

comprehensive understanding of the disease from multiple perspectives. 4) Variants of 

kernel techniques [74][75]: although radial basis function kernels are the prevalent ones, 

researches have explored a variety of novel kernel functions such as polynomial, 

sigmoid and Laplace kernels, with combinations and variants of these kernel functions. 

5) Graph-based SVR [76][77]: incorporating graph data of brain structure and function 

into SVR. 6) Multi-kernel learning SVR [78][79]: due to the complexity of AD and the 

multi-modal nature of the data, the model can simultaneously utilise multiple kernel 

functions, each corresponding to a different data type or feature, and integrate different 

sources of information through weight allocation. 

 

In summary, the advantages of SVR-based AD prediction models and algorithms 

contain: 1) Non-linear modelling capability: SVR has a high degree of non-linear 

modelling capability through various kernel functions (e.g., radial basis kernel, 

polynomial kernel, etc.), which allows it to process complex biomedical datasets that 

may not conform to simple linear assumptions. 2) Robustness: SVR is robust on 

datasets in the presence of noise, since its optimisation strategy is based on structural 



43 

 

risk minimisation, aiming to obtain a high generalisation degree to unseen data. 3) 

Sparsity: the solutions of SVR are typically sparse, implying that only a portion of the 

training samples (i.e., the support vectors) are utilised to determine the decision 

boundaries or regression curves. It helps to reduce the computational complexity and 

storage requirements of the model. 4) Multi-scale learning: SVR can incorporate 

different kernel functions (such as radial basis functions, polynomial kernels, etc.) to 

process multi-scale data. Disadvantages contain: 1) Computational complexity: SVR 

training can be time-consuming for large datasets, as it requires solving a quadratic 

optimisation problem involving the entire dataset. 2) Lack of interpretability: although 

support vectors provide a certain degree of interpretability, SVR can be considered as 

a black-box model when complex nonlinear kernel functions are utilised, which makes 

it difficult to interpret its internal working mechanism. 3) Kernel function selection: 

choosing the appropriate kernel function can be a challenge, as it greatly affects the 

performance of the model. No single kernel function is suitable for all applications.  

 

2.2.1.3 Regression tree-based approaches 

 

The regression tree is a type of decision tree that is utilised to solve regression problems. 

In contrast to the classification tree (which outputs discrete labels), the objective of a 

regression tree is to predict a continuous output value. A regression tree is a process of 

recursively partitioning a dataset into subsets, where each subset corresponds to a leaf 

node of the decision tree. The model starts at the root node and splits the data into 

different sub-nodes based on specific decision criteria. These decisions are based on 

features and thresholds that minimise the mean square error of the output. When certain 

stopping conditions are met (e.g., a predetermined node depth is reached), the node is 

no longer split and becomes a leaf node. At each leaf node, the predicted output value 

is the average of the target values of all data points within that subset. By considering 

nonlinearities, interaction effects and combining ensemble methods, its prediction 

performance can be further improved to provide solid data support for early diagnosis 
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and treatment of AD.  

 

Current researches on regression tree-based AD prediction models and algorithms are 

focused on: 1) Application and research on random forests [80][81][82]: random forests 

are combinatorial models based on multiple decision trees, which enhance the 

generalisation ability of the model by random sampling of features and data. For AD, 

researchers have utilised random forest models to integrate multi-modal data (such as 

MRI images and cerebrospinal fluid biochemical indicators) to improve prediction 

accuracy. 2) Feature fusion and tree splitting [83][84]: researches have considered 

feature fusion in regression tree splitting for AD. It means that the model may consider 

the combination of multiple features or their interaction effects to determine the split, 

instead of splitting based on a single threshold of one feature. 3) Deep forests [85][86]: 

a combination of deep learning and decision trees that performs feature transformation 

and representation learning through multi-layer forests to enhance model performance.   

 

In summary, the advantages of regression tree-based AD prediction models and 

algorithms contain: 1) Interpretability: regression trees provide explicit decision paths, 

which assist clinicians and researchers in understanding which factors have the most 

influence on prediction and provide clear advice to patients. 2) Processes non-linear 

relationships: there is no requirement to have prior knowledge of the relationships 

between data, as regression trees can automatically capture non-linearities and higher-

order interactions. 3) Effective model visualisation: compared to some complex 

machine learning algorithms, regression trees provide decision paths that can be 

visualised, assisting clinicians and patients in understanding the model decision basis. 

Disadvantages contain: 1) Instability: small data changes can result in the generation of 

completely different trees. 2) Requires large amounts of data: AD involves multiple 

complex biological processes and constructing an accurate regression tree model can 

require a large number of samples. 3) Processing of high-dimensional data: if the 

number of features is enormous (e.g., gene expression data), the regression tree can 
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encounter the curse of dimensionality, leading to a decrease in model performance. 4) 

Variable correlation: if multiple variables are highly correlated, the regression tree can 

only select one of them and ignore other correlated variables, which can result in 

misleading interpretations. 5) Processing of continuous outputs: regression trees can be 

imprecise in splitting continuous output values, especially when the data range is wide.  

 

2.2.1.4 Neural network-based approaches 

 

Neural networks are based on artificial neurons that mimic biological neurons. Each 

neuron receives multiple inputs, which are aggregated by weight parameters and output 

to the next layer through an activation function and deep learning is the multi-layer 

neural network. It is trained with data to optimise the weights and perform tasks such 

as regression, classification, recognition etc. Neural networks and deep learning 

techniques have made significant progress in medical image analysis and biomarker 

prediction. The mainstream applications are processing medical image data (such as 

MRIs and PETs) by learning image features that enable the identification of abnormal 

patterns and image markers associated with AD, such as brain atrophy, brain plaque 

accumulation, etc. Processing time series data, such as cognitive decline data and brain 

function data over time (e.g., fMRI). Processing long sequence data, such as gene 

sequences or long-term medical records.  

 

Current researches on neural network and deep learning-based AD prediction models 

and algorithms are focussed on: 1) Multi-modal fusion [87][88][89][90]: multi-modal 

data (e.g., MRI, PET, CSF biomarkers, and neuropsychological assessment data) are 

being integrated to present a more comprehensive view of the patient. Deep learning 

models (especially deep fusion strategies) can automatically capture correlations 

between various data types. 2) 3D convolutional neural networks (CNN) [91][92][93]: 

these are designed to process 3D brain image data. Compared to 2D CNNs, 3D CNNs 

can better capture the 3D spatial characteristics of brain structures and can be utilised 

to identify brain variations associated with AD. 3) Graph neural networks (GNNs) 
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[94][95][96]: the topology and functional connectivity data of brain networks can be 

analysed by GNNs, which can capture complex patterns at nodes (brain regions) and 

edges (connections), providing novel information and knowledge for AD diagnosis. 4) 

Interpretable deep learning [97][98][99]: in order to make deep learning models more 

reliable for medical applications, researchers are increasingly focusing on the 

interpretability of the models. For example, it is feasible to visualise the decision-

making process of a model with techniques such as Grad-CAM (Gradient-weighted 

Class Activation Mapping) or SHAP (SHapley Additive exPlanations), which can 

reveal key brain regions that influence diagnosis. 5) Attention-driven models 

[100][101][102]: with the attention mechanism based on transformer, models can 

concentrate on essential parts of the brain image or sequence data, thus enhancing the 

prediction accuracy. This approach performs especially well with multi-modal data 

fusion, as it automatically weighs the importance of various data sources. 6) Continual 

learning for longitudinal data [103][104]: these models can be updated as new data 

becomes available, especially for tracking longitudinal data of patients. 7) 

Reinforcement learning for treatment strategies [105][106][107]: although primarily 

applied to the decision-making process, reinforcement learning can be utilised to 

identify the optimal diagnostic pathway or treatment strategy, especially with limited 

data resources. 8) Model distillation [108][109]: since computational resources on 

medical devices can be limited, model distillation can transfer knowledge from large 

deep learning models to smaller models, thus reducing computational requirements 

while maintaining accuracy. 9) Few-shot and zero-shot learning [110][111][112]: since 

high-quality medical labelled data can be scarce, models can be trained on minimal data 

and still achieve good generalisation with few-shot or zero-shot learning approaches. 

 

In summary, the advantages of neural network and deep learning based AD prediction 

models and algorithms contain: 1) Processing of high-dimensional data: e.g. 3D MRI 

scans, deep learning models can process high-dimensional data and capture complex 

spatial patterns. 2) Multi-modal data integration: deep learning models are can integrate 
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information and knowledge from different data sources (e.g., MRI, PET, genetic data, 

etc.). 3) Model complexity and flexibility: the depth and structure of neural network 

models can be adapted as required, enabling the capture of more complex patterns and 

correlations. 4) End-to-end learning: models can learn directly from raw data to output 

results without intermediate steps or human intervention. Disadvantages contain: 1) 

Lack of interpretability: while certain techniques exist to explain the decisions of deep 

learning models, they are considered black boxes models and cannot be as easily 

interpreted as other methods. 2) Large amount of data required: deep learning models 

generally require large amounts of labelled data to avoid overfitting. 3) Hardware 

dependency: although deep learning hardware has made great strides, the training and 

deployment of large models still requires advanced graphics processing units (GPUs) 

or other specialised hardware, which can raise costs and complexity. 4) Long training 

times: especially for extremely large and deep models, training can require long periods 

of time despite the availability of high-performance hardware.  

 

2.2.2 Regularisation 

 

Regularisation techniques are a common method utilised in machine learning to help 

limit the complexity of a model to avoid overfitting problems. When fitting data with a 

complex model, it is easy to overfit (good performance in the training set and poor 

performance in the test set), which can lead to a reduction in the generalisation ability 

of the model. Regularisation techniques can also be widely utilised in AD prediction 

algorithms. Specifically, regularisation methods usually introduce a penalty term to 

limit the range of values of certain parameters in the model, thus making the model 

more robust. In addition, regularisation techniques can be utilised for feature selection, 

i.e., selecting the most influential features for AD prediction. In AD prediction 

algorithms, there can be a large number of irrelevant features that can affect the 

accuracy of the model. By incorporating regularisation, features can be filtered by 

limiting their importance, thus reducing the impact of irrelevant features on the model. 
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Commonly utilised regularisation methods contain ℓ1 regularisation (lasso) and ℓ2 

regularisation (ridge). ℓ1 regularisation realizes regularisation by adding the sum of 

the absolute values of all features to the original objective function. The ℓ 2 

regularisation realizes regularisation by adding the sum of squares of all features to the 

original objective function. Both limit the parameter size by adding a sum term, but 

they have different effects, ℓ1 regularisation is more appropriate for feature selection, 

while ℓ2 regularisation is more appropriate for forestalling model overfitting. These 

two approaches and their combinations and variants are frequently applied to AD 

prediction algorithms. For instance, [6][11][62][113] applied ℓ2,1-norm to capture 

task-specific features for different time points and a small number of features for all 

tasks. In [9][114], presented approaches use inter-vector correlation among regression 

coefficient vectors and intra-block correlation in each regression coefficient vector. [12] 

[60] proposed regularisation of three relations (‘response-response’ relation, ‘feature-

feature’ relation and ‘sample-sample’ relation) to improve the performance of model. 

 

Overall, regularisation is an important technique in Alzheimer's disease prediction 

algorithms, which can effectively improve the generalisation performance of models, 

reduce the number of features, accelerate the speed of prediction, and improve the 

interpretability of models. Therefore, regularisation is regarded as an important 

component in Alzheimer's disease prediction algorithms.  

 

2.2.3 Multi-task learning 

 

Multi-task learning is a machine learning method that aims to improve prediction 

performance by learning multiple related tasks simultaneously. Multi-task learning has 

been widely utilised in the prediction of disease progression in a variety of diseases. In 

AD prediction research, multi-task learning algorithms have been used to predict 

multiple tasks such as brain images, behavioural scores and diagnoses. The algorithms 

are utilised to obtain more accurate predictions by utilising multi-modal data, such as 
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images, speech and behavioural scores.  

 

Multi-task learning was first proposed in 1997. It extracts the relationship between 

multiple similar tasks by establishing a statistical model, which proves that multi-task 

learning can improve the performance of the model [115]. Since then, it has attracted 

widespread attention in various algorithms, with applications ranging from 

bioinformatics to finance [116][117]. This new research direction has brought 

encouraging performance improvements in various fields, including but not limited to 

development of probability and statistical models [118][119], multi-task learning 

utilising kernel methods [120], feature selection [12][121][122], explaining task 

relationship [123][124][125] and feature hashing [126]. 

 

In the ML regression algorithm, the usual focus is on optimizing specific metrics. In 

order to accomplish it, a model or a combination of models is usually trained to 

implement the target task. Then, fine-tune models until the model results cannot 

continue to be optimised. Although this method can usually be utilised to achieve 

acceptable performance, because the focus is on a single task, this approach cannot take 

into consideration other information that can help optimise the metrics. Multi-task 

learning can make the model better summarize the original task by sharing the 

representation between related tasks. 

 

For AD, the prediction problem can be considered as a multi-task regression problem 

[11], where the number of subjects is small and the number of input features (e.g., AD 

biomarkers) is large, the traditional assumption is to utilise a linked analysis of the tasks 

from different time points is assumed to improve performance. Compared with single-

task learning, multi-task learning utilises regression models to predict the patients’ 

future state at different multiple time points. The essential premise of models is that 

there is an intrinsic correlation between various subject information records and 

capturing the intrinsic correlation can enhance prediction model generalisation. 
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Multi-task learning attempts to jointly learn various related tasks to ensure that the 

knowledge contained in one task can be applied by other tasks, ultimately improving 

the generalisation performance of all tasks [127][128]. MTL technology is extensively 

implemented in the biomedical engineering field, for our research case AD, MTL 

provides a wide range of applications in numerous domains. In terms of feature 

selection approach, [61][72][129][130] developed multi-modal multi-task learning 

methods that choose the equivalent subset of numerous variable-related features from 

each modality and concurrently predicts multiple variables from multi-modal data. 

[131][132] presented deep learning network-based multi-task learning AD prediction 

algorithms that introduce multi-task feature selection techniques, evaluate the internal 

connection between several related tasks and choose feature sets relevant to all tasks. 

In terms of feature learning approach, existing approaches have focused on modelling 

task interactions with novel regularisation techniques [133][134][135][136][137][138]. 

And kernel approaches were combined with the methodology to support non-linear 

relationships [6][61][139]. In terms of low-rank approach, [140][141][142] presented 

robust multi-task learning methods that employ low-rank structures to preserve task 

connections while recognizing anomalous tasks utilising group sparse structures. In 

contrast to the above approach, we assumed that knowledge sharing between prediction 

tasks for different patients is expected to improve achievable performance, and 

therefore we set up prediction task for a single patient as one task, which is a small-

scale manner of task setting. 

 

2.3 Multi-dimensional tensor-based data 

 

All of the aforementioned classic AD prediction approaches utilise a second-order 

matrix to represent input features with patient and biomarker feature dimensions. In 

contrast to the second-order matrix, which has two components for each index, the 

third-order tensor has three components for each index. The third-order tensor is like a 
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cube matrix composed of multi-dimensional arrays. There will be more knowledge 

and information in various dimensions as there are more components. Applying multi-

dimensional tensor to ML regression algorithms can integrate multi-dimensional 

knowledge and information to improve prediction accuracy and feature understanding. 

This section will review the techniques and applications of tensors, tensor 

decomposition techniques and latent factors. 

 

2.3.1 Multi-dimensional Tensor and its application 

 

Tensor is a general tool of multiple linear algebra, and matrix is a specific linear algebra 

tool, tensors have a larger data coverage than matrices. The matrix is a two-dimensional 

array, in which each element is determined by two indexes and a tensor is an array with 

more than two dimensions. In fact, a scalar is a zero-dimensional tensor, a vector is a 

one-dimensional tensor, and a matrix is a two-dimensional tensor. Figure 2.1 shows the 

difference in shape of tensors of different orders. 

 

Tensor technology is widely utilised in the fields of spatio-temporal data analysis, 

neural image analysis [143], signal processing [144] and machine learning 

[145][146][147]. The application of tensor technology in the field of spatio-temporal 

data analysis mainly includes spatio-temporal data mining, analysis and modelling. It 

can help to process, analyse and mine complex spatio-temporal data to draw valuable 

findings [148][149][150][151][152][153][154]. Specifically, 1) The multi-dimensional 

structure of tensor allows for the simultaneous processing of multi-dimensional spatio-

temporal data, thereby obtaining more comprehensive information. 2) Tensor 

 

Figure 2.1: Vector, matrix and tensor. 
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technology supports a variety of data analysis approaches, allowing for the selection of 

suitable analysis methods and efficient data analysis according to actual application 

requirements, thereby reducing computation temporal and spatial complexity. 3) 

Tensor technology can enhance the interpretability of data analysis and generate 

interpretable analysis results, thus facilitating the understanding and application of data 

analysis results.  

 

Neural image analysis is an important task of neuroscience, and neural images can be 

regarded as tensor data. For example, electroencephalogram (EEG) is a second-order 

tensor; MRI is a third-order tensor; functional magnetic resonance image (fMRI) is a 

fourth-order tensor. In order to study the relationship between neural images and 

clinical results, and to comprehend the inner working mechanism of the brain, [155] 

used the matrix Logistic model to classify the electroencephalogram, [156][157] used 

Tucker tensor regression model and CP tensor regression model to explore the 

relationship between MRI and fMRI and clinical results for attention deficit 

hyperactivity disorder (ADHD). Tensor techniques have important applications and 

advantages in the field of signal processing. Firstly, tensors can represent multi-

dimensional signals, which facilitates better capture of complex structures and 

relationships in signals [158][159][160]. For example, in image processing, tensors can 

be used to represent features such as colour and brightness of an image, while in speech 

recognition, tensors can be used to represent the frequency and time domain features of 

an audio signal. Secondly, tensor techniques can be applied in signal processing in a 

variety of mathematical approaches, which can help to extract important features and 

relationships in the signal [161][162][163][164]. For example, tensor decomposition 

can be used to extract features in images, while tensor-dense networks can be used to 

recognize speech signals.  

 

In the machine learning prediction model, incorporating tensor data into the framework 

of regression analysis not only expands the methods and techniques of tensor data 
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analysis, but also further enriches theoretical results of regression analysis. Traditional 

linear regression models can be extended to tensor regression models to process high 

dimensional data. These models can capture features in multiple dimensions and 

provide greater accuracy in prediction [165][166][167][168]. Neural networks can be 

expanded into tensor regression networks that process tensor data. These network 

structures can learn complex associations of multi-dimensional features and can 

provide powerful predictive capabilities [169][170][171]. The tensor kernel approach 

combines the concepts of tensor analysis and kernel methods for dealing with non-

linear relationships. It can capture complex relationships and improve the performance 

of regression analysis by mapping tensor data to a high-dimensional feature space 

[172][173][174]. In applications such as image processing, text mining and 

recommender systems, where target variables or features can have a non-negativity 

constraint, non-negative tensor regression considers this constraint and develops 

corresponding models and algorithms that are essential for the interpretation and 

analysis of the data [175][176][177][178]. Interpretation is a critical requirement for 

decision making and prediction results in regression analysis. Tensor regression 

approaches can provide understanding and interpretation of regression models and 

output results in a variety of dimensions. It assists researchers in understanding the 

rationale and key features underlying the model and enhances trust and acceptance of 

the results of regression analysis [179][180][181].  

 

Overall, the utilisation of multi-dimensional tensors in machine learning has numerous 

advantages and is widely utilised in various fields.  1) Model construction: multi-

dimensional tensors can be utilised as input and output to machine learning models, 

thus facilitating the construction of complex models. Multi-dimensional tensor can 

perform complex mathematical calculations in different machine learning algorithms, 

such as matrix multiplication, tensor multiplication, etc. These calculations help to learn 

complex relationships of data in a multi-dimensional space. 2) Data correlations: multi-

dimensional tensor can represent complex data correlations, such as the correlation 
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between multiple features, which is extremely useful in solving practical problems. 3) 

Data representation: multi-dimensional tensor can represent complex data, such as 

images, speech and video, as a structured data type for convenient storage and 

processing. 4) Feature extraction: multi-dimensional tensor can be utilised to extract 

features from data, for example using convolutional neural networks to extract features 

from images in image recognition. 5) Computational efficiency: mathematical 

operations of multi-dimensional tensor can be implemented using matrix operations, 

improving computational efficiency.  

 

2.3.2 Tensor decomposition and Latent factor 

 

Tensor decomposition is essentially a high-order generalisation of matrix 

decomposition. Matrix decomposition has three obvious uses, namely, implicit 

relationship mining, missing data filling (or "sparse data filling") and dimensionality 

reduction processing. Tensor decomposition can also satisfy these uses. In the 

prediction algorithm, the hidden relationship mining is extremely important. It can 

discover the hidden information in the data to optimise the performance of the algorithm. 

Tensor decomposition can assist algorithms to learn data better by decomposing factors 

in a tensor to capture the relationships between different dimensions. Tensor 

decomposition techniques include different approaches such as non-negative tensor 

decomposition (NMF), latent semantic decomposition (LSA), etc., which are applicable 

to different data types and task scenarios [182][183][184][185][186]. The major 

techniques for tensor decomposition are Tucker and CP tensor decomposition, which 

are discussed in detail in this section.  

 

The latent factor obtained by tensor decomposition can facilitate a better understanding 

of complex, and these latent factors can represent certain intrinsic patterns and 

associations of the data in multiple dimensions. They reflect the hidden structure and 

internal relationships of the original data. Latent factors can be utilised for a variety of 
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tasks, such as data visualisation, dimensionality reduction, clustering, regression, 

classification, etc. [187][188][189][190]. They can extract meaningful information 

from high-dimensional data and improve the performance of prediction algorithms. In 

addition, latent factors can be utilised to explore potential characteristics of the original 

data in order to better understand it. They can be used in numerous areas of data analysis, 

such as bioinformatics, information retrieval, recommender systems, image processing, 

etc. [191][192][193][194].  

 

Tucker decomposition and CANDECOMP/PARAFAC (CP) decomposition are the 

major techniques for tensor decomposition, tucker decomposition is a high-level 

principal component analysis (PCA), which expresses a tensor as a core tensor and 

multiplies each mode by a matrix (Figure 2.2). i.e., 𝑋 ≈  ⟦𝐺 × A × B × C⟧  =

 ∑ ∑ ∑ (𝑔𝑎 ∘ 𝑏 ∘ 𝑐)
య
ୀଵ

మ
ୀଵ

భ
ୀଵ , where ∘  denote the outer product operation 

between two vectors. The size of tensor G is 𝑟ଵ  ×  𝑟ଶ  ×  𝑟ଷ, also called core tensor, the 

size of matrix A is 𝑚 × 𝑟ଵ, the size of matrix B is 𝑛 ×  𝑟ଶ, the size of matrix C is 

𝑙 ×  𝑟ଷ. Although it provides a more comprehensive representation, it is difficult to 

interpret latent factors since the amount of latent factors can be different for each mode 

[195]. Tucker tensor decomposition captures the structure of complex tensors in 

 

Figure 2.2: Tucker tensor decomposition. 

 

Figure 2.3: CP tensor decomposition. 
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multiple dimensions and therefore works effectively with complex data types. 

 

The tensor form of CP decomposition is to represent a tensor as the sum of a limited 

number of rank-one tensors (Figure 2.3). i.e., 𝑋 ≈  ⟦A × B × C⟧  =  ∑ a ∘  b  ∘
ୀଵ

 c, where ∘ denote the outer product operation between two vectors, and A, B and C 

correspond to the vectors associated with the r-th latent factor. Given a tensor X of the 

size 𝑛ଵ  ×  𝑛ଶ  ×  𝑛ଷ , the size of matrix A, B and C is 𝑛ଵ × 𝑟, 𝑛ଶ × 𝑟 and 𝑛ଷ × 𝑟 

respectively. CP tensor decomposition has a lower parameter complexity and is faster 

than tucker tensor decomposition in the case of large data. In addition, it is robust to the 

number of features in the tensor, making it suitable for the analysis of noisy data. It is 

highly sparse, which makes it effective when dealing with sparse data. In addition, it 

can capture the principal components of the data, which is especially useful for tasks 

such as feature selection and data visualisation.  

 

To sum up, both Tucker and CP tensor decomposition are extremely flexible and can 

be adapted to the characteristics of the data and the purpose of the analysis in order to 

obtain the best results. Common advantages are as follows: 1) Scalability: both Tucker 

and CP tensor decomposition can be easily extended to higher dimensional tensors, 

which allows them to handle complex data structures. 2) Interpretability: both Tucker 

and CP tensor decomposition are relatively easy to interpret, making it easy to 

understand the characteristics and distribution of the data. 3) Parallelism: both Tucker 

and CP tensor decomposition can be computed in parallel utilising distributed systems, 

which greatly improves computational efficiency. 4) Algorithm stability: both Tucker 

and CP tensor decomposition are relatively stable algorithms, which do not suffer from 

convergence 5) Support for non-linear analysis: both Tucker and CP tensor 

decomposition can support non-linear analysis, which allows them to be applied to a 

variety of complex data types. 6) Data visualisation: the results of Tucker and CP tensor 

decomposition can be easily visualised, which helps users to understand the distribution 

and characteristics of the data. 7) Algorithm practicality: both Tucker and CP tensor 
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decomposition are widely utilised algorithms with good practical results in various 

fields, such as bioinformatics, computer vision, natural language processing, etc. 8) 

Solving complex problems: Tucker and CP tensor decomposition can solve complex 

problems in multi-dimensional data analysis and can effectively extract important 

features of the data. 9) Algorithm universality: Tucker and CP tensor decomposition 

are universally applicable algorithms that can be utilised on a diverse variety of data 

types and data sources. 

 

2.4 Research and application of AD brain structural variation 

 

Researches in the field of brain science have proven that the brain structural variants of 

AD are closely related to the progression of the disease. In AD patients, there are two 

characteristic variants in the brain: a reduction in neurons and a lack of connectivity; 

and a build-up of neuropathic proteins such as beta-amyloid. These mutations lead to a 

progressive loss of brain function. Investigating brain structural variation in 

Alzheimer's disease provides opportunities for prevention and early intervention as well. 

For example, through screening and monitoring of patients at high risk, brain structural 

variations can be detected in advance and preventive measures can be taken to reduce 

the progression of the disease. By researching brain structural variation in AD, we can 

better understand the function of the human brain and the mechanisms of disease 

progression, which can contribute to the research and treatment of other 

neurodegenerative diseases. 

 

In machine learning algorithms, data from the research on brain structural variation in 

AD can be utilised as essential input for training models, thus improving the accuracy 

and efficiency of the models and allowing the development of novel diagnostic models 

based on brain structural variation to diagnose AD quickly and accurately. By 

investigating brain structural variation in AD, we can obtain a large amount of data on 

brain structural variation that can contribute to ML algorithms to accurately identify 
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and predict the progression of AD.  

 

2.4.1 The differences in brain variation structural between CN, MCI and 

AD 

 

CN, MCI and AD are states with major brain structural variations, each of which has 

specific brain structural variations that can be identified during the diagnostic process 

utilising several techniques such as MRI and cognitive assessment tests. MRI can reveal 

the internal structure and function of the brain and is particularly beneficial in the 

diagnosis of MCI and AD. Cognitive assessment tests can assess memory, attention and 

other cognitive functions to facilitate the diagnosis of CN, MCI and AD. The difference 

between CN, MCI and AD brain structural variations is the degree to which each stage 

affects the brain differently. In CN, the brain structure remains healthy and functions 

normally. In MCI, cognitive function has begun to diminish, but the individual can still 

live independently. In AD, the brain structure has been severely affected, resulting in 

severe cognitive impairment and inability to live independently. In the CN state, the 

connectivity network in the brain remains normal and there is sufficient neuronal 

activity to maintain normal cognitive function. On the other hand, in MCI and AD, the 

connectivity network gradually breaks down and neuronal activity is reduced, leading 

to brain dysfunction. 

 

Numerous previous researches in the brain science field have concentrated on the 

distinctions between the brain structures of AD, MCI (mild cognitive impairment) and 

CN (cognitively normal older individuals). [196][197][198][199] designed various 

frameworks for simulating the effects of AD and ageing on the evolution of the brain's 

morphology, focusing on certain morphological alterations in the brain that could be 

used to pinpoint clinical disorders. [200][201][202][203] examined the connection 

between PET, CSF, MRI and fMRI biomarkers and clinical diagnosis and cognitive 

performance in individuals with CN, MCI and AD. In result, cross-sectional integrated 
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cognitive and functional skills were better connected with cross-sectional MRI, which 

offered stronger cross-sectional grouping and discriminating. [204][205][206][207] 

assessed cortical thickness in CN, AD and MCI patients. As the disease progressed 

from MCI to AD, patterns of cortical thinning were detected as a consequence of the 

malignant transformation, and it was found that the entire cortex thinned and expanded 

noticeably into the lateral temporal cortex. 

 

To sum up, applications of brain structural variation information in Alzheimer's disease 

prediction algorithms has the following advantages: 1) Early diagnosis: the utilisation 

of brain structural variation information can facilitate early diagnosis of AD and 

provide earlier intervention for patients. 2) Multi-dimensional features: brain structural 

variation information has multi-dimensional features, allowing for a more 

comprehensive assessment of the patient's condition and increasing flexibility of the 

prediction algorithm. 3) Reliability: brain structural variation information is based on 

imaging techniques, providing reliable evidence and enhancing the reliability of the 

prediction results. variation information is obtained based on imaging techniques, 

which can provide reliable evidence and enhance the reliability of prediction results. 4) 

Simplicity: obtaining information on brain structural variation requires the utilisation 

of imaging techniques such as MRI or computed tomography, which are medically 

mature and therefore easy to obtain information on brain structural variation. 5) 

Comprehensive: information on structural brain variation is comprehensive and can 

consider variations in various areas of the brain as well as the impact of multiple factors 

within the brain on Alzheimer's disease. 

 

2.4.2 Correlations between AD biomarkers. 

 

Correlations between AD biomarkers represent the relative variations in these 

biomarkers in individuals with AD. Their correlations are important for the diagnosis 

and monitoring of AD as they can assist doctors in assessing the progression of the 
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disease more accurately. In addition, the correlation of biomarkers can be utilised as a 

powerful tool in the research of AD, helping scientists to understand the mechanisms 

and trends in the progression of the disease. By analysing the correlation of biomarkers, 

clinicians can evaluate patients' disease more accurately and develop more effective 

treatment plans and timely adjustments to treatment protocols. In addition, the 

correlation of biomarkers can serve as important indicators to assess the efficacy of 

medicines and help evaluate whether the medicines are having a positive impact on 

patients. 

 

Researches on brain structural variation has concentrated on the correlations between 

AD MRI biomarkers. [208][209][210][211] enhanced the model performances for 

distinguish of AD and its precursor phases by correlating regional mean cortical 

thickness to incorporate pertinent information with ROI-based data. 

[212][213][214][215] used graph theory and correlation matrix to analyse and organise 

brain networks for various regions. The researches mentioned above assessed and 

examined the correlation between the Alzheimer's disease progression and brain 

biomarkers, it revealed that there are differences in the brain structure for CN, MCI and 

AD. However, aforementioned researches only concentrate on a single biomarker or 

the same category of biomarkers, lacking the connection and correlation of spatio-

temporal variation between distinct categories of biomarkers, which is crucial for 

Alzheimer's disease feature representation. 

 

To sum up, correlation between multiple biomarkers can improve predictive accuracy 

since they collectively reflect the biological mechanisms of the disease. In addition, 

correlation between biomarkers can improve predictive stability, as individual 

biomarkers can have a certain level of uncertainty, but multiple biomarkers combined 

can be more robust. In addition, correlation between biomarkers provides greater 

sensitivity and specificity in AD prediction algorithms. It implies that by assessing 

biomarker correlations, patients with AD can be identified more effectively and 
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misdiagnosis of healthy populations can be reduced. Finally, correlations between 

biomarkers can provide information on the biology of AD and contribute to the 

identification and treatment of new targets for AD.  

 

2.5 Quantification of biomarker correlations 

 

The quantification of biomarker correlations can be quantified and calculated utilising 

a variety of methods, specifically, 1) Correlation coefficient analysis: by calculating the 

correlation coefficient between two variables to assess their correlation (e.g., 

Spearman's rank correlation coefficient, Pearson's correlation coefficient, etc.) 

[216][217]. 2) Discriminant analysis: by identifying the differences between two or 

more biomarkers using linear discriminant analysis or non-linear discriminant analysis 

[218][219]. 3) Multivariate statistical analysis: to assess the relationship between 

multiple biomarkers by using principal component analysis, cluster analysis, factor 

analysis, etc. [220][221]. 4) Bioinformatics methods: to assess the correlation between 

biomarkers by using bioinformatics techniques such as proteomics, genomics, cluster 

analysis, genetic algorithms, etc. [222][223]. 5) Network analysis: to assess the 

correlation between biomarkers by studying the interrelationship between biomarkers 

and building a network of correlations between biomarkers [224][225]. 6) Molecular 

biology: to assess the correlation between biomarkers by using molecular biology 

methods such as polymerase chain reaction (PCR), deoxyribonucleic acid (DNA) 

sequencing [226][227]. 7) Fractal analysis: to assess the correlation between 

biomarkers by examining the complexity of biomarkers [228][229]. 8) Statistical 

regression analysis: to assess the predictive value of biomarkers by identifying the 

correlations between biomarkers and disease occurrence [230][231].  

 

However, all the above quantification and calculation approaches require large and 

continuous amounts of patient biomarker data, and data from AD patients are unstable 

in terms of detection time, the data are discrete and sparse, and this is not a problem 
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only for AD, but for most neurological disorders, as it is difficult to require patients to 

go to the hospital (or research facility) for frequent tests. Therefore, none of the above 

quantification and computational approaches can be applied in neurological disorders, 

therefore we need to investigate a novel quantification approach to quantify the 

correlation between AD biomarkers. We propose similarity calculation-based 

quantification approach, which quantify biomarkers as vectors with multi-dimensional 

information, and then utilise similarity calculations to quantify biomarker correlations. 

Relevant to this thesis, there are three similarity calculation approaches that have been 

extensively utilised in the literature and that are utilised in this thesis. They are 

described in detail in Appendix A Mainstream similarity calculation approaches. 

 

2.6 Summary 

 

This chapter reviews the research fields that have impacted the research. Section 2.1 

presented a clinical overview for AD and section 2.2 discusses the major and state-of-

the-art researches on various AD prediction algorithms, a review of multi-task learning 

algorithms and applications of multi-task learning algorithms. It discusses limitations 

of existing and state-of-the-art prediction algorithms in medical small data set scenarios 

and the reasons that multi-task learning approaches can be utilised to enhance the 

performance of algorithms and models in such scenarios. The reviews in Sections 2.3 

and 2.4 show that multi-dimensional data, multi-dimensional tensor and tensor 

decomposition techniques have been a hot topic for research and applications in various 

fields, especially in machine learning and bioinformatics. However, to date no research 

has been able to effectively provide highly accurate, stable and interpretable algorithms 

for predicting disease progression based on multi-dimensional tensor. The main 

difficulty is that data from patients with neurological disorders such as AD are unstable 

in terms of detection time, the data can be discrete and sparse, as it is difficult to get 

patients to go to hospital (or research facilities) for frequent tests. Since this problem 

combined with the reviews in Section 2.5 indicate that mainstream correlation 
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quantification approaches are unable to quantify the spatio-temporal and biomarker 

correlation information in AD biomarker data as a multi-dimensional tensor, we 

propose to utilise similarity calculation-based approaches to quantify the multi-

dimensional information of biomarkers, and discuss the mainstream similarity 

calculation approaches in Section 2.5. The next chapter will elaborate on the 

methodology to accomplish the aim of this research.  
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Chapter 3 
 

 

3. Methodology 
 

 

In order to investigate how to accomplish the aim of this research which is the 

quantification and construction of AD biomarker data as a higher order tensor, 

combining multi-task learning and machine learning regression approaches to construct 

algorithms with multi-dimensional spatio-temporal characteristics of AD biomarker 

data to predict AD progression at multiple future time points. It is first necessary to 

design and construct the quantification approach for the AD biomarker higher-order 

tensor, and then to design and construct multi-task learning algorithms and models to 

integrate and mine the spatio-temporal variation information and knowledge of MRI 

data. In this chapter, the idea, design and composition of the proposed method are first 

presented, followed by the analysis and definition of the design philosophy of each 

composition. Then the dataset utilised and the design of the experimental approach are 

presented. Finally, the concept and process of investigating the interpretability of 

algorithm and experimental results is presented.  

 

3.1 Research Design 

 

For the aim presented in Section 1.3, the research has been divided into two parts. The 

first part investigates the quantification and construction of AD biomarker data as a 

higher order tensor. For this part, we proposed a novel similarity-based quantification 

approach that considers both the magnitude and direction correlations of structural 

variation between brain biomarkers and encodes the quantified data as a third order 

tensor to address the problem of monotonic data form and the associated loss of hidden 
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information. The design goals, fundamentals and concepts are detailed in Section 3.2.  

 

The second part investigates the combination of quantified multi-dimensional tensors 

with multi-task learning and machine learning regression approaches to construct 

algorithms with multi-dimensional spatio-temporal characteristics of AD biomarker 

data to predict disease progression in AD patients at multiple future time points. For 

this part, we proposed a novel tensor multi-task learning algorithm, where each patient 

prediction is regarded as one task, each task shares a set of latent factors obtained by 

tensor decomposition techniques. Knowledge sharing between tasks improves model 

generalisation and addresses scarcity problem of medical data, and its design goals, 

fundamentals and concepts are detailed in Section 3.3. 

 

To demonstrate the effectiveness and performance of the proposed AD progression 

prediction approach, a series of experiments were designed in this research for 

comparison and validation. The datasets utilised and the design and procedures of the 

experiments are detailed in Section 3.4. In medical research, the interpretability of 

approach and results is as important as the performance of the approach. The concepts 

and process of interpretability research for proposed algorithm and experimental results 

are elaborated in Section 3.5.  

 

3.2 Multi-dimensional tensor construction of biomarkers 

 

3.2.1 Design goals 
 

Considering the benchmarks for quantification and construction of multi-dimensional 

tensor listed in Chapter 1, this section discusses the goal of constructing a multi-

dimensional tensor utilising spatio-temporal information and correlation information 

from MRI biomarkers.  
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Ability to mine and contain multi-dimensional spatio-temporal information and 

knowledge: The main goal of this quantification approach is to provide a viable 

solution for extracting multi-dimensional spatio-temporal information and knowledge 

of AD biomarkers. 

 

Ability to mine and integrate biomarker correlation information: In order to 

address the problem of monotonic data formats and the resulting loss of hidden 

information, the proposed quantification approach must integrate biomarker correlation 

information in order to mine comprehensive AD biomarker knowledge. 

 

Analysability and interpretability: The analysability and interpretability of the 

quantification approach means that the approach not only provides a practical and 

optimised utilisation solution to quantify and construct AD biomarkers as multi-

dimensional tensor, but also to mine the information and knowledge of AD biomarkers 

in multiple dimensions, and to indicate and extract brain biomarker correlation and 

biomarker regions important for disease progression. 

 

Feasibility and generalisability: The feasibility and generalisability of the 

quantification approach implies that this approach cannot be limited to specific types 

of disease or modalities. Different requirements for different diseases or modalities can 

be fully applicable. 

 

3.2.2 Fundamentals 
 

3.2.2.1 Dimensional selection of the multi-dimensional tensor 
 

In disease progression prediction models, a multi-dimensional tensor can capture 

comprehensive biomarker information and knowledge, and selecting the right 

dimensions is important to properly analyse the data. The following are the main 

dimension selections in disease progression prediction models in addition to the 

biomarker dimension and the patient sample dimension: 1) Time dimension: time is 
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one of the commonest dimensions, as it allows researchers to track disease progression 

[232][233]. The time dimension can be further broken down into smaller time intervals 

(e.g., days, hours or minutes), which can provide more detailed information. 2) Spatial 

dimension: the spatial dimension allows us to compare disease progression between 

different locations or regions [234][235]. 3) Demographic dimension: we can consider 

the impact of factors such as the age, gender and ethnicity of the patient on the spread 

of the disease [236]. 4) Disease characteristics dimension: the disease itself has a 

number of characteristics, such as infectiousness, duration and severity [237]. These 

characteristics can be utilised as another dimension of the multi-dimensional tensor in 

order to analyse the impact of different characteristics on the progression of the disease. 

5) Medical resources dimension: we can consider information on the number of 

hospitals in different regions, the number of health care workers and the distribution of 

medical equipment, which can influence the treatment and control of the disease [237]. 

6) Environmental dimension: factors such as air pollution and climate change can make 

certain diseases more likely to spread [238][239]. Therefore, considering the 

environmental dimension can help us better understand the spread and control of 

disease. 7) Behavioural and social dimensions: factors such as the manner in which 

people interact, travel behaviour and personal hygiene practices can influence the 

spread of diseases [240][241]. Therefore, considering behavioural and social 

dimensions can help researchers to better understand the dynamics of disease 

transmission. 8) Health service utilisation dimension: different populations can utilise 

different types of health services, which can affect the diagnosis and treatment of 

diseases [237][242]. Therefore, considering the health service utilisation dimension can 

assist researchers to better understand spread and control of disease. 9) Health risk 

factor dimension: factors such as smoking, diet and physical activity can influence 

people's risk of developing a disease [243][244]. Therefore, considering the health risk 

factor dimension can help researchers to better understand occurrence, progression and 

control of disease.  
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However, none of above dimensional selections work optimally in predictive models 

of neurological disease progression such as AD. Since most neurological diseases have 

no cure and cannot be reversed, the key to predictive models of neurological disease 

progression is to utilise early data to detect and predict disease progression earlier in 

order to intervene and delay disease earlier. All the above dimensional selections 

require a large amount of data to construct a complete multi-dimensional tensor, but 

data from each AD patient is unstable at the time of detection, data can be discrete and 

sparse, and this is not just a problem for AD, but for most neurological diseases as it is 

difficult to get patients to go to the hospital (or research facility) frequently for tests. 

Therefore, we incorporate biomarker correlation knowledge into the multi-dimensional 

tensor construction, with the dimensions of tensor as the first biomarker dimension, 

second biomarker dimension and patient sample dimension. 

 

3.2.2.2 Biomarker correlation quantification approaches 
 

In disease progression prediction models, biomarker correlations can be analysed by a 

variety of quantitative approaches. The following are the main approaches to 

quantifying biomarker correlations in disease progression: 1) Correlation coefficient 

analysis: it is a measure of the degree of correlation between two variables, for example, 

the Pearson correlation coefficient and the Spearman correlation coefficient [245][246]. 

These methods can be utilised to analyse the relationship between biomarkers and 

disease progression, as well as the interrelationship between biomarkers. 2) Survival 

analysis: it is an analysis of temporal data that can be utilised to assess the relationship 

between biomarkers and disease progression. Survival analysis can use Kaplan-Meier 

curves to show the incidence of events and Cox regression models to assess the effect 

of variables on survival time [247][248]. 3) Factor analysis: it can be utilised to identify 

patterns between biomarkers and combine them into fewer variables or factors 

[249][250]. This approach can be utilised to determine which biomarkers provide the 

best explanation for variation in disease progression and use them as input to predictive 

models. 4) Network analysis: it is an analytical method used to explore complex 
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systems and can be utilised to study the interactions between biomarkers [251][252]. 

This approach can reveal the topology of biomarker networks and which biomarkers in 

the network are important for disease progression.  

 

However, none of the above quantification approaches work optimally in predictive 

models of neurological disease progression such as AD. All the above quantification 

approaches require a large amount of data to complete the quantification calculations, 

but the timing of data testing for each AD patient is erratic, the data can be discrete and 

sparse, and this is not just a problem for AD, but most neurological diseases have the 

same problem because it is difficult to get patients to go to the hospital (or research 

institutions) for tests. Therefore, we introduced multi-dimensional knowledge vector 

construction and similarity calculation into the quantification of biomarker correlations. 

 

3.2.3 Design and construction approach 

 

The mainstream and commonly utilised similarity calculation methods share a common 

blind spot, which is that the quantification and calculation process cannot be sensitive 

to both direction and value. Figure 3.1 shows a graphical representation of calculating 

the similarity between two vectors to express the similarity of spatio-temporal variation 

of two MRI biomarkers, from which it can be seen that the distances of biomarkers A 

 

Figure 3.1: Calculate the similarity between two vectors to express the similarity of 

spatio-temporal variations of two MRI biomarkers. 
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and B and A and C are the same. However, the direction of variation for biomarkers A 

and C is different while the direction of variation for A and B is the same, distance-

based similarity calculation methods (e.g., Euclidean distance, Mahalanobis distance, 

etc.) can only sensitive to the value of the vector and their results indicate that the 

similarity of biomarker A and B is the same as the similarity of A and C. In contrast, 

for direction-sensitive similarity calculation methods (e.g., cosine similarity), they 

cannot be sensitive to the value of the vector.  

 

In the research of brain structural variation, both the magnitude and direction of the 

biomarker variation are equally important for disease progression prediction and 

interpretability, therefore we need to design and construct a similarity-based 

quantification approach that can incorporate both the magnitude and direction 

information of the vectors. 

 

3.3 Multi-dimensional tensor multi-task learning regression 

 

3.3.1 Design goals 
 

Considering the performance benchmarks for multi-task learning presented in Chapter 

1, this section discusses the goals of algorithms and models that incorporate multi-task 

learning with multi-dimensional tensor of MRI biomarker spatio-temporal variation 

information. 

 

Provide practical capabilities for predicting AD progression in medical small 

dataset scenarios: the main goal of the algorithms and models is to provide a feasible 

solution for AD progression prediction and modelling based on multi-task learning and 

multi-dimensional tensor. 

 

Ability to improve the accuracy and stability of AD progression prediction: 
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Accuracy and stability are two key concerns in assessing the performance of AD 

progression prediction. Viable solutions proposed by algorithms and models based on 

multi-dimensional tensor and multi-task learning must provide higher accuracy and 

stability than traditional multi-task learning based AD prediction algorithms. 

 

Analysability and interpretability: The analysability and interpretability of the 

algorithms, models and results means that the algorithms and models can not only 

provide practical optimised utilisation solutions to improve the accuracy and stability 

of Alzheimer's disease progression prediction, but can also indicate important multi-

dimensional correlations between brain biomarkers. The integration of tensor 

decomposition and latent factor analysis allows the extraction of important brain 

biomarker regions. 

 

Feasibility and generalisability: The feasibility and generalisability of algorithms and 

models means that they cannot be restricted to specific types of disease or modalities. 

Different requirements for different diseases or modalities can be fully applicable. 

 

3.3.2 Fundamentals 
 

3.3.2.1 Single task learning regression 

 

Let X = [xଵ, xଶ … , x]  ∈  ℝ×ௗbe the input data matrix, W = [wଵ, wଶ … , w௧]  ∈

 ℝௗ×௧ be the weight parameter matrix, and Y = [yଵ, yଶ … , y]  ∈  ℝ×௧ be the target 

matrix with n patient samples, t time points and d biomarker features. The problem of 

predicting various clinical cognitive scores (e.g., ADAS-Cog and MMSE) at future 

multiple points can be expressed by solving different regression models: 

min


‖XW − Y‖
ଶ + 𝜃ଵ‖W‖

ଶ                      (3.1) 

where the first term measures the empirical error on the training data, 𝜃ଵ > 0 is a 

regularisation parameter, and the penalty term ‖W‖
ଶ  controls the quantity for 

contraction of parameters and force the variance close to zero to reduce the mean square 
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error. The above regression method is the ridge regression, another solution is to utilise 

the lasso regression to minimize the constraints as follows:  

min


‖XW − Y‖
ଶ + 𝜃ଵ‖W‖ଵ                     (3.2) 

For this formula, increasing 𝜃ଵ  brings most of the W parameters associated with 

features considered unimportant to close to zero and shrinking non-zero coefficients at 

the same time. The difference between above two regression methods is that the square 

of the ℓ2 norm in ridge regression is utilised as a penalty term, and ℓ1 norm in lasso 

regression is utilised as a penalty term, which enhances the weight coefficients sparsity. 

Both the ℓ1 and ℓ2 penalties are utilised to control overfitting of machine learning 

models. The ℓ1 penalty is applied to model parameters by adding up absolute values 

of each parameter, i.e., the ℓ 1 penalty is the sum of absolute values for model 

parameters. The ℓ2 penalty makes the model parameters as small as possible, but does 

not completely set them to zero. The choice of the ℓ1 and ℓ2 penalties depend on the 

nature of the particular problem and the characteristics of the dataset. When there are a 

large number of features, the ℓ1 penalty term typically produces better results because 

it allows for feature selection of the model parameters, while when feature correlation 

is high, the ℓ2 penalty term typically produces better results because it distributes the 

impact of the parameters as evenly as possible across each feature. The ℓ1 penalty term 

is more sensitive to outliers, as the presence of outliers can cause certain parameters to 

deviate from zero, thus affecting the performance of the model. In contrast, the ℓ2 

penalty term is less sensitive to outliers as it takes all parameters into consideration and 

distributes the weights equally.  

 

Single-task learning models are the basic machine learning models, but they have the 

following disadvantages: 1) Inability to handle multiple tasks simultaneously: single-

task learning can only solve one task, but not multiple tasks at the same time. If multiple 

tasks need to be solved, the model needs to be trained separately for each task. 2) Lack 

of generalisation: single-task learning models are usually trained for a specific dataset 

and task; therefore, they can lack generalisation, i.e., performance degradation across 
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different datasets and tasks. This can require the adoption of more generalised models 

and algorithms to improve generalisation capabilities. 3) Inability to learn correlations 

between tasks: single-task learning models are typically trained for a single task and 

are unable to learn correlations between different tasks. 4) Difficulty in handling 

complex relationships: certain tasks can involve complex relationships between 

multiple inputs. Single-task learning models can have difficulties capturing these 

complex relationships, leading to performance degradation. 5) Limited amount of data: 

single-task learning requires a large amount of labelled data to train the model. If the 

data amount is limited, the model can over-fit or fail to capture key features in the data. 

6) Not suitable for non-static environments: in dynamic environments, data distribution 

and features can vary. Single-task learning models cannot adapt themselves to new data 

distributions and features, resulting in reduced performance. 7) Sensitive to noise: 

single-task learning models can be overly sensitive to noise in the input data, leading to 

performance degradation. Noise can arise from incompleteness, inaccuracy or 

inconsistency of the data, etc. 8) Limited by model capability: single-task learning 

models can be limited by their capability and expressiveness, and thus unable to handle 

several complex tasks and data.  

 

3.3.2.2 Definition of tasks and task relationships for multi-task learning 

 

The key to designing and constructing multi-task learning algorithms and models is 

how to define tasks and task relationships. Mainstream and commonly utilised 

definition approaches include: 1) Defining the tasks by the labels of tasks [253][254]. 

2) Defining the tasks by their input features [125][255][256]. 3) Defining the tasks by 

their optimisation goals [257][258]. 4) Defining the tasks by the domain knowledge of 

tasks [259][260]. 5) Defining the tasks by their hierarchical structure [261][262]. 6) 

Defining the tasks by their temporal and spatial relationships [263][264]. 7) Defining 

the tasks by the constraint relationships between tasks [265][266]. 8) Defining the tasks 

by similarities between tasks [267][268]. 9) Defining the tasks by model structure and 

parameter sharing between tasks [269][270]. 10) Defining the tasks by the probability 
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distribution relationship between tasks [271][272]. 

 

For disease progression prediction researches, different prediction tasks can be learned 

as multiple tasks. Relationships between tasks can be defined in various ways: 1) 

Simultaneous learning tasks: all tasks are trained simultaneously and share model 

parameters [273][274]. 2) Predicting progression at different time points: predicting 

progression at 6 months, 12 months, 24 months, etc. There is a temporal relationship 

between these tasks, i.e., the earlier task provides valuable information for the 

subsequent tasks [11][142][275]. 3) Predicting disease progression in different subtypes 

of patients: disease progression in each subtype is a task [276]. For example, task one 

can be to predict the dementia progression of younger patients and task two can be to 

predict the dementia progression of older patients. The relationship between these tasks 

is hierarchical, as certain tasks can be more generic than others. 4) Dependency learning: 

the outcome of certain tasks can have an impact on others [277][278], e.g., age can have 

an impact on the disease progression prediction task. 5) Sequential learning: learning 

different tasks in a certain order [279][280], e.g., learning the age prediction task first 

and then the disease progression prediction task. 6) Hierarchical learning: different 

tasks are divided into different levels and the tasks in each level can share particular 

parameters [281][282], e.g., age prediction and gender prediction tasks are placed in 

the bottom level and disease progression prediction tasks are placed in the top level. 7) 

Combinatorial learning: combining multiple tasks to form a higher-level task 

[283][284], e.g., combining age prediction, gender prediction and education level 

prediction into a baseline model and then adding a disease progression prediction task. 

8) Corporate learning: there can be common features between different tasks that can 

be learned together to improve performance and efficiency of the model [274][281], 

e.g., training the disease progression prediction and age prediction tasks together and 

learning the feature representation of brain imaging data and patient age together. 9) 

Alternate learning: alternating different tasks to improve generalisation ability and 

stability of the model [269][285], e.g., alternating the disease progression prediction 
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task and the age prediction task, training only one of them at a time. 10) Aggregate 

learning: aggregating the prediction results of multiple tasks to obtain the final 

prediction result [269][281], e.g., using a weighted average method to aggregate the 

prediction results of disease progression prediction, age prediction, gender prediction 

and education level prediction tasks to obtain the final disease progression prediction 

result.  

 

To sum up, the design of task definition and task relationships in multi-task learning 

approaches for disease progression prediction applications requires determination 

based on the specific application scenario and data characteristics. Through effective 

task definition and task relationships design, multi-task learning can exploit the 

correlation and knowledge sharing between different tasks to improve the predictive 

capabilities, efficiency and generalisation of the model, resulting in higher accurate 

predictions for disease progression, management and treatment.  

 

3.3.2.3 Multi-task learning regression for disease progression prediction 

 

In the field of disease progression prediction, the major and important multi-task 

learning approaches define task associations through a diverse variety of correlations 

between various time points of disease progression. The most commonly used approach 

is to assume that during disease progression, the difference in cognitive scores (e.g., 

MMSE and ADAS-Cog) is small for two consecutive time points, also known as 

temporal group lasso regularisation (TGL) [11].  

min


‖XW − Y‖
ଶ + 𝜃ଵ‖W‖

ଶ + 𝜃ଶ‖WH‖
ଶ + 𝛿‖W‖ଶ,ଵ         (3.3) 

Where ‖W‖ଶ,ଵ = ∑ ට∑ W
ଶ௧

ୀଵ
ௗ
ୀଵ , the 𝛿 is a regularisation parameter. When t = 1, 

i.e., there is only one task for the model, the above penalty is simplified to lasso. When 

t > 1, the penalty utilises ℓ2-norm to group the weights of all tasks for a feature, and 

utilises ℓ1-norm to further group all features. Therefore, the ℓ2,1-norm attends to 

choose features ground on the importance of feature for all different t tasks. Another 
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formulation is to solve the problem of convex optimization with the convex fused sparse 

group Lasso (cFSGL) [11].  

min


‖XW − Y‖
ଶ + 𝜆ଵ‖W‖ଵ + 𝜆ଶ‖RW‖ଵ + 𝜆ଷ‖W‖ଶ,ଵ       (3.4) 

where the first term measures empirical error with training data, ‖RW‖ଵ is the fused 

lasso penalty and ‖W‖ଵ is the lasso penalty. R = H is a (𝑡 − 1) × 𝑡 sparse matrix 

which utilised to describe the relationship between different tasks. The association of 

lasso and group lasso penalty is called the sparse group lasso penalty, which utilises 

mutual feature selection for all different tasks at the same time, and select a specific 

feature set for each task and fusion lasso penalty is used to make it smooth in time.  

 

In addition, researchers have proposed a wide variety of multi-task learning regression 

approaches based on temporal correlation for disease progression prediction. 

[275][286][287] developed deep multi-task learning methods with the assumption that 

there is an intrinsic correlation between cognition, clinical diagnosis and ventricular 

volumes at each time point of prediction task. [288][289] proposed multi-task exclusive 

relational learning models, which utilise exclusive lasso regularisation and relational 

induced regularisation approaches that can select the most discriminative features for 

different tasks and model intrinsic correlations between different time points. 

[233][290][291] presented high-order multi-task learning models to explore the 

temporal correlation existing in data features and regression tasks through structured 

sparsity-inducing norms. [283][292] presented graph regularisation multi-task learning 

regression frameworks to capture relationship between different tasks and penalise 

large changes in the model at successive future time points. 
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3.3.3 Design and construction approach 
 

3.3.3.1 Definition of tasks and task relationships for multi-dimensional tensor 
multi-task learning 
 

Multi-task learning aims to learn a large number of related tasks together to ensure that 

the knowledge contained in one task can be utilised by other tasks, in order to 

accomplish knowledge sharing and enhance the generalisation performance of all tasks 

[128][274][253][293]. It can be learnt that the key to multi-task learning is the form, 

scope and depth of knowledge sharing. In contrast to the algorithmic task setting in the 

approach in Section 3.3.2.2, we assume that knowledge sharing across patient 

prediction tasks improves achievable performance, and therefore we set a single patient 

prediction task as a one task, which is a small-scale task setting approach. All 

supervised machine learning algorithms share certain knowledge (e.g., model weight 

parameters) between sample prediction tasks, but the scope and depth of shared 

knowledge is limited, this research intends to increase the scope and depth of 

knowledge sharing in this specific form of task setting. For task relationships, unlike 

traditional multi-task learning where task relationships are defined mainly through 

various assumptions between tasks, the approach in this research is to learn task 

relationships from the data itself by tensor decomposition of the raw data. We utilise 

the approach proposed in Chapter 4 to simultaneously assess and quantify the 

magnitude and direction information of brain structural variation utilising a similarity-

 

Figure 3.2: CP decomposition on a similarity tensor representation based on the 

similarity of the structure variation trend between brain biomarkers. 



78 

 

calculation-based amalgamated magnitude-direction quantification, which depicts the 

similarity of morphological trends between different biomarkers as a third-order tensor 

with dimensions corresponding to the first biomarker, the second biomarker and the 

patient sample. Then, the proposed approach utilises tensor decomposition to extract 

the set of first-order latent factors from the raw data (Figure 3.2). Each latent factor 

represented by its first biomarker, second biomarker and patient sample dimensions, 

interprets potential elements affecting the variability of the data in an interpretable 

manner and can be utilised as predictors for training the prediction model, and these 

latent factors are shared by the predictions for each patient sample. To sum up, the 

prediction of each patient sample in the tensor is a task, and all tasks share a set of 

biomarker latent factors (i.e., task relationships) from the tensor decomposition.  

 

3.3.3.2 Algorithm design 

 

The first key inspiration for the algorithm design in this research is not to utilise second-

order matrices as model input features, but to propose building third-order tensors to 

construct AD progression prediction models that better present information and 

knowledge from multiple aspects of AD data along spatial and temporal dimensions. 

With the enhanced representation of AD biomarkers, the utilisation of multi-

dimensional tensor in regression algorithms can enhance prediction accuracy, model 

stability, interpretability and feature comprehension. Alternatively, for AD prediction 

models, MTL can share information and knowledge across tasks, outperforming 

traditional single-task learning methods in terms of prediction accuracy, stability, 

interpretability and generalisability. It demonstrates superior performance when dealing 

with situations of small sample numbers. Therefore, the second key inspiration for the 

algorithm design of this research is to design and construct a tensor-based MTL 

approach to predict AD progression by integrating spatial and temporal information and 

knowledge of brain structural variation.  

 

Specifically, the algorithm and model are designed to calculate the rate of change and 
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velocity of each biomarker with two consecutive MRI detections, forming a vector 

representing the trend of morphological variation of the biomarker; then the correlation 

of the spatio-temporal variation trend between two biomarkers is calculated and the 

data is encoded into a three-dimensional tensor, the proposed algorithm inputs the three-

dimensional tensor and integrates tensor decomposition techniques in the algorithm to 

decompose the input tensor and extract a set of rank-one latent factors, which are shared 

by all sample predictions as a multi-task relationship and are utilised as predictors for 

training the prediction model. 

 

3.4 Data and Experiments 

 

3.4.1 Dataset 
 

Data utilised in this research was obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI started as a public-private 

partnership in 2003, directed by Principal Investigator Michael W. Weiner, MD. The 

fundamental purpose of ADNI has been to explore whether serial MRI, PET, other 

biological markers, clinical and neuropsychological assessments can be combined to 

measure, track and monitor the progression of MCI and early AD. The FreeSurfer image 

analysis software (http://surfer.nmr.mgh.harvard.edu/) was utilised by a team from the 

University of California, San Francisco (UCSF) to conduct volumetric segmentations 

and cortical reconstruction on imaging data from the ADNI database, which contains 

all ADNI subprojects (ADNI 1, 2, GO and 3). The FreeSurfer is an open-source 

software for processing and analysing MRI data of the human brain. It can process 

structural, functional and diffusion neuroimaging data, from which it extracts 

information on brain anatomy, cortical thickness, cortical partitioning, cortical folding, 

white matter fibre bundles, etc., and generates 3D models and quantitative results. It 

can also perform cortical surface reconstruction, partitioning and alignment. FreeSurfer 

is widely utilised in the fields of neuroscience, neurology and psychiatry to investigate 
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variations in the structure and function of the brain and correlations with cognition, 

disease, behaviour, emotion and other factors. 

 

ADNI constituted the following Mini Mental State Examination (MMSE) to interpret 

the AD boundary: 

 30 is represented as cognitively no dementia, 

 29 to 26 is represented as questionable dementia, 

 25 to 21 is represented as mild dementia, 

 20 to 11 is represented as moderate dementia, 

 10 to 0 is represented as severe dementia. 

The total ADAS-Cog score ranges from 0 to 70 with higher scores suggesting greater 

impairment. RAVLT TOTAL is the sum of the total number of words that the test 

subject can remember after learning a set of words in RAVLT (Rey Auditory Verbal 

Learning Test), the RAVLT TOTAL typically ranges from 0 to 75. FLU (Fluency test) 

scores are typically calculated based on the number of words that participants present. 

For tests on animals, normal people can normally present 15 to 20 different animal 

names in one minute, while people with certain cognitive impairments or neurological 

disorders can demonstrate poorer results. 

 

The MMSE is a simple, quick neuropsychological test utilised to assess a patient's 

cognitive function. The MMSE involves a series of simple questions and tasks, 

including quizzes, naming objects, recalling words, counting, indicating time and place. 

The test typically takes between 5 and 10 minutes and is scored out of a total of 30 

points, with the score for each item varying according to correctness and speed of 

completion. The advantages of the MMSE comprise its speed, simplicity, ease of use 

and analysis, enabling widespread usage in clinical, research and care settings. It has a 

high degree of reliability and validity, particularly in assessing cognitive function in 

older people. The MMSE can be utilised to examine cognitive function in patients with 
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AD, Parkinson's disease, stroke, craniocerebral injury, psychiatric disorders, etc. In 

clinical applications, clinicians can utilise MMSE to diagnose and monitor the 

condition of patients with cognitive impairment and to develop individualised treatment 

plans.  

 

The ADAS-Cog is a commonly used scale for assessing cognitive function in people 

with dementia. It contains 11 items divided into the following 5 cognitive domains: 

memory, orientation, comprehension, language skills and attention. These include 

number string recall, object recognition, object names, orientation terms, object 

orientation, naming objects, understanding instructions, reading and answering 

questions, constructing simple sentences, connecting numbers and letters. The ADAS-

Cog has numerous advantages in assessing cognitive function in patients with AD, such 

as a wide range of measures including several cognitive domains; high reliability and 

validity to effectively differentiate the level of cognitive ability between patients with 

AD and healthy older adults, good sensitivity and specificity. Its test procedure is 

simple, rapid and easy to administer, applicable for usage by clinicians and researchers.  

 

The RAVLT is a commonly used psychometric instrument to assess an individual's 

memory ability. The RAVLT consists of two phases: learning and recall. During the 

learning phase, participants hear a list of 15 words and repeat the words as many times 

as possible. During the recall phase, participants are expected to recall as many words 

as possible that they heard in the learning phase. There are several indicators of RAVLT, 

the most commonly utilised of these is the RAVLT TOTAL score, which represents the 

total score obtained by the participant during the learning and recall phases. The 

RAVLT TOTAL is typically utilised to evaluate memory capacity in pathological 

conditions such as dementia, brain injury and other neurological disorders. A high 

RAVLT TOTAL can indicates better memory capacity, while a low RAVLT TOTAL 

can indicate memory problems or cognitive impairment. 
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The FLU is a test that evaluates language ability and cognitive function by being 

required to name a specific category of words, such as animal, fruit or colour in a certain 

amount of time. In the category of animals (FLU ANIM), the participant is requested 

to name as many animals as possible within a certain amount of time. Researches have 

demonstrated that for the FLU ANIM, normal adults can list 10 to 15 words in one 

minute. In contrast, older adults, patients with cognitive impairment and other 

neurological disorders typically perform at lower levels than normal adults. The FLU 

can be utilised to assess the impact of different neurological disorders on language and 

cognitive abilities, such as Parkinson's disease and AD. By applying the test, 

researchers and clinicians can better understand the manner in which these disorders 

affect patients' language and cognitive abilities, and develop better treatments. 

 

3.4.2 Experimental design 

 

In order to validate the performance of the proposed approach, the proposed model is 

first trained and tested by randomly splitting the data into training and testing sets in a 

ratio of 9:1. Since the values of the regularisation parameters, hyperparameters and the 

number of latent factors must be selected during the training phase, this research utilises 

5-fold cross-validation on the training data to select them. This research compares the 

proposed approach with single-task learning, benchmarks and state-of-the-art MTL 

methods that have been selected as competing methods in clinical deterioration 

prediction researches. The research compares the prediction ability of multiple 

approaches for each single future time point utilising the root mean square error (rMSE) 

as the major assessment metric. For the overall regression performance evaluation, we 

utilise normalised mean square error (nMSE), which is typically utilised in MTL 

research [294], and weighted correlation coefficient (wR), which is typically utilised in 

medical literatures to resolve AD progression problems [295]. Figure 3.3 shows an 

overview of the construction, training and testing procedures for the proposed multi-

dimensional tensor multi-task learning model.  
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3.4.3 Evaluation metrics 

 

The multi-dimensional tensor multi-task learning regression model was developed with 

the quantified correlation tensor of morphological variation trends between MRI brain 

biomarkers. The evaluation metrics rMSE, nMSE and wR are defined as follows: 

rMSE(y, 𝑦ො) = ට
‖୷ି୷ෝ‖మ

మ


                            (3.5) 

nMSE (Y, Y) =

∑  
సభ ∥∥ଢ଼ି,ଢ଼∥∥మ

మ

ఙ(ଢ଼)
൘

∑  
సభ 

                      (3.6) 

wR(Y, Y) =
∑  

సభ େ୭୰୰ ൫ଢ଼,ଢ଼൯

∑  
సభ 

                        (3.7) 

where y is the ground truth of target at a single time point and yො is the corresponding 

prediction from a prediction model for the rMSE. For nMSE and wR, Y is the ground 

truth of target at time point i and Y is the corresponding prediction from a prediction 

model, Corr is the correlation coefficient between two vectors. The mean and standard 

deviation of 20 experimental iterations with different randomised data splits are reported. 

 

 

 

Figure 3.3: Overview of the construction, training and testing procedures for the 

proposed multi-dimensional tensor multi-task learning model. 
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3.4.4 Experimental parameter and computational infrastructure settings 

 

The following are the range of values for each parameter attempted during the research 

development and experiments. This research utilises 5-fold cross-validation on the 

training data to select them.  

 

 Hyperparameters: 

𝜆 [0.001 0.01 0.1 1 10 100 1000 10000] 

𝛽 [0.001 0.01 0.1 1 10 100 1000 10000] 

𝜃 [0.001 0.01 0.1 1 10 100 1000 10000] 

𝛼 [0, 1] 

 The number of latent factors:  

r [1 2 3 4 5 6 7 8 9 10] 

 

We maintained the number of latent factors in a small range to save computation time 

for the model training phase. It is challenging to determine the precise rank of a tensor 

since it is an NP-hard problem in most instances [296][297]. As a result, the rank is 

typically obtained in practice by fitting numerous CP decompositions with different 

ranks until a reasonably "good" rank is derived. 

 

The following are the computational infrastructures were utilised to conduct 

experiments in this research.  

 

 Used software: MATLAB R2023a 

 GPU: NVIDIA GeForce RTX 2070 with Max-Q Design 



85 

 

 CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 

 Amount of memory: 16GB 

 Operating system: Windows 10 

 

Since one of the problems targeted in this research is the small dataset problem under 

medical scenarios, computational complexity and training time were not considered as 

evaluation criteria in this research.  

 

3.4.5 Selection of comparison methods 

 

This research compares the proposed approach with the following single-task learning, 

benchmarks and state-of-the-art multi-task learning approaches, which were selected as 

competing methods in the research of predicting clinical deterioration. Including Ridge 

regression (Ridge) [55], Lasso regression (Lasso) [56], Temporal Group Lasso (TGL) 

[11], Non-convex Fused Sparse Group Lasso (nFSGL1) [127], Convex Fused Sparse 

Group Lasso (cFSGL) [11], Fused Laplacian Sparse Group Lasso (FL-SGL) [133], Non-

Convex Calibrated Multi-Task Learning (NC-CMTL) [123], Joint feature and task 

aware multi-task feature learning (FTS-MTFL) [134], Group Asymmetric Multi-Task 

Learning (GAMTL) [122] and Dual feature correlation guided multi-task feature 

learning (dMTLc) [114]. 

 

For medical research, comparison methods all require a high level of interpretability. 

Specifically, Ridge and Lasso are classical single-task learning methods. TGL, nFSGL1 

and cFSGL are benchmark algorithms that investigated and applied multi-task learning 

concepts to AD progression prediction. NC-CMTL and GAMTL are state-of-the-art 

general multi-task learning methods published in the top artificial intelligence 

conferences. FL-SGL, FTS-MTFL and dMTLc are state-of-the-art multi-task learning 
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methods applied to AD progression prediction published in the artificial intelligence and 

medical cross-discipline research top conferences and journal. 

 

3.5 Interpretability of algorithm results 

 

In medical research, the interpretability of approaches and results is as important as the 

model performance. The performance and reliability of a model is critical to the lives 

and health of patients, as the decisions based on the model can involve patients' survival 

and healthcare [298][299]. Clinicians and patients require an understanding of why a 

particular diagnosis or treatment option is being recommended in order to be capable of 

trusting and accepting it. If models are merely black boxes that cannot provide 

explanations or justifications for their decisions, clinicians and patients can find it 

difficult to trust their accuracy and validity and thus become sceptical to the decisions 

[300][301].  

 

This research investigates and analyses three aspects of the interpretability of the 

proposed approach and predicted results. The first aspect is the brain biomarker latent 

factor, which is utilised in the algorithm as the multi-task relationship, and their 

visualisation and analysis can provide understanding of their different spatial 

distribution at different time points. It can contribute to identifying the brain regions that 

are implicated in the AD progression. The second aspect is the structural variation 

correlation between brain biomarkers. Extracting structural variation correlations that 

have a significant impact on prediction at different time points can be utilised in medical 

applications to assist clinicians to further investigate the pathogenesis and progression 

mechanisms of AD. The third aspect is the potential indicators for AD early detection. 

Since there is no cure for AD, the key to treatment is early detection and prevention of 

the disease. Therefore, recognizing important structural variation correlations between 

brain biomarkers in early MRI data can assist clinicians in identifying individuals with 
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suspected AD for early prevention. It further investigates the structural variation 

correlations between brain biomarkers extracted in the second aspect, and then evaluates 

and analyses the differences in the distribution of spatio-temporal structural variation 

correlation quantification values and differences in the distribution of relative structural 

variation status between biomarkers in cognitively impaired and non-cognitively 

impaired individuals at different time points, to discover potential indicators that can 

facilitate the identification of cognitively impaired individuals at an early stage from the 

magnitude and direction information of relative structural variation between biomarkers.  

 

3.6 Summary 

 

This chapter explores in detail how the aim of this research was achieved and the detailed 

procedures of how the research was conducted. The AD progression prediction approach 

proposed in this research is divided into two main parts, the first part is to design and 

construct the quantification approach for the higher-order tensor of AD biomarkers, and 

the second part is the design and construct the tensor multi-task learning algorithm and 

model, combining the two parts to achieve the research aim of integrating and mining 

spatio-temporal information and knowledge of MRI data to predict AD progression at 

multiple future time points. This chapter elaborates on the idea, design and components 

of the proposed approach, along with the analysis and specification of the design 

philosophy for each component. The dataset utilised and the design of the experimental 

method are then presented. Finally, the concept and process of investigating the 

interpretability of algorithms and experimental results is presented. The following 

sections present, demonstrate and discuss in detail the approach components, the 

experimental results, the interpretability of the algorithm and the experimental results. 
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Chapter 4 
 

 

4. Multi-dimensional tensor 
construction of biomarkers 

 

 

In order to quantify the spatio-temporal information and knowledge of AD brain 

biomarkers into a multi-dimensional tensor, it is of utmost importance to evaluate the 

type of tensor dimensions that are optimally suited to the AD prediction model and the 

approach to quantify and construct it into a multi-dimensional tensor. In this chapter, 

the proposed quantification approach based on biomarker correlations for constructing 

multi-dimensional tensor is described in detail in this chapter. 

 

4.1 multi-dimensional knowledge vector construction 

 

To quantify correlations between biomarkers with early AD data and approaches based 

on similarity calculations, we first constructed each MRI biomarker as a vector 

containing spatio-temporal information, which in the case of AD brain data represents 

the process of brain structural variation.  

 

Correlation of structural variation between brain biomarkers was calculated utilising two 

consecutive MRI examinations. To calculate the rate of change and velocity of brain 

biomarkers, we utilised baseline BL (the date the patient was first tested in hospital) and 

M06 (the six-month time point after the first visit) MRI, where x is the value of the rate 

of interest brain biomarker and t is the date of the MRI examination. The rate of change 

is 
௫ಾబలି௫ಳಽ

௫ಳಽ
, the velocity is 

௫ಾబ ି௫ಳಽ

௧ಾబలି௧ಳಽ
 per month. The rate of change and velocity of each 



89 

 

brain biomarker was then utilised to create a vector to describe its trend of structural 

variation.  

 

The content of the vector is extensible, if more parameters regarding brain structural 

variation are considered in the future they can be integrated directly into the vector, or 

if there is a desire to investigate parameters in other areas or fields, they can be 

integrated directly into the vector and will not affect subsequent biomarker 

quantification, multi-dimensional tensor construction and multi-dimensional tensor 

multi-task learning algorithms. 

 

4.2 Amalgamated magnitude-direction quantification for brain 

structure variation 

 

We propose a two-stage quantitative approach that simultaneously assesses the 

magnitude and direction of structural variation among brain biomarkers (Figure 4.1). 

The Mahalanobis distance was first utilised to calculate the similarity of the absolute 

values of the two vectors to reflect the similarity in the magnitude of the structural 

variation of the two MRI biomarkers. Mahalanobis distance is utilised because it is scale 

independent when dividing by the covariance matrix. The Mahalanobis distance 

between the absolute values of vectors x  and x  is stated as: Ma൫|x|, หxห൯ =

ට൫|x| − หxห൯


Sିଵ(|x| − หxห), where S is covariance matrix. The quantified value of 

Mahalanobis distance is between 1 and 0, where 1 is completely similar and 0 is 

completely dissimilar. Then we add the direction information to the values. We noticed 

that for the two brain biomarkers, there were only five cases of their structural variation 

direction relationship: 1) both grow, 2) both decline, 3) one grows and the other declines, 

4) one varies and the other does not varies, 5) both remain unvaried. We set cases 1) and 

2) to be synchronous variation, case 3) to be asynchronous variation, and cases 4) and 5) 
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to be completely irrelevant. A mapping function (4.1) is then utilised to map the values 

previously calculated utilising the Mahalanobis distance to values between 1 and -1 to 

add directional information. Where 1 means completely relevant in the case of 

synchronous variation, 0 means completely irrelevant and -1 means completely relevant 

in the case of asynchronous variation.  

 

 

൝
𝑥 = 𝑥, if two biomarkers varied synchronously 

𝑥 = −𝑥, if two biomarkers varied asynchronously
𝑥 = 0, if two biomarkers are not relevant

           (4.1) 

 

Figure 4.1: The two-stage quantitative approach that simultaneously assesses the 

magnitude and direction of structural variation among brain biomarkers. 
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4.3 Comparison with mainstream and commonly used similarity 

calculation approaches 

 

Figure 4.2: Examples of (a) Euclidean distance, (b) Mahalanobis distance, (c) Cosine 

similarity and (d) Amalgamated magnitude-direction quantification matrix 

distribution for AD, CN and MCI brain structure variation quantification. (The scale 

for (a) Euclidean distance and (b) Mahalanobis distance from top to bottom is 1.0, 

0.8, 0.6, 0.4, 0.2, 0.0. The scale for (c) Cosine similarity and (d) Amalgamated 

magnitude-direction quantification from top to bottom is 1.00, 0.75, 0.50, 0.25, 0.00, 

-0.25, -0.50, -0.75, -1.00). 
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Figure 4.2 depicts the structural variation correlations of brain biomarkers for AD, CN 

and MCI quantified by Euclidean distance, Mahalanobis distance, Cosine similarity and 

our proposed Amalgamated magnitude-direction quantification. We observed that our 

proposed quantification approach showed the largest difference in matrix distribution 

across disease stages compared to Euclidean and Mahalanobis distances, with the data 

for Euclidean distances being too sparse and the data for Mahalanobis distances being 

more uniform. The distribution of cosine similarity data across disease stages is similar 

to our proposed quantification approach, but the data has more maxima and minima 

because it only contains information on the direction of structural variation in brain 

biomarkers, whereas our approach contains both magnitude and direction information, 

resulting in a similar matrix distribution to cosine similarity, with a smooth data 

distribution and diverse data characteristics. It allows the AD progression prediction 

process to include more comprehensive information on brain structural variations, 

while enhancing the interpretability of brain biomarker correlations in AD progression 

at the results analysis process. 

 

4.4 Summary 

 

This chapter designs and constructs an approach for the construction and quantification 

of a multi-dimensional tensor for biomarkers. The goal of the construction and 

quantification approach is to have the ability to mine and contain multi-dimensional 

spatio-temporal information and biomarker correlation knowledge. It is a novel 

quantification approach based on similarity calculations to simultaneously assess and 

quantify the magnitude and direction of brain structural variation. It describes the 

similarity of morphological trends between different biomarkers as a third-order tensor 

with dimensions corresponding to the first biomarker, the second biomarker and the 

patient sample to address the problem of the monotonic data form. It contains 

comprehensive information on brain structural variation and can effectively 
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differentiate between CN, MCI and AD patients. The quantification approach is 

detailed in two sub-components: the multi-dimensional knowledge vector construction 

and the amalgamated magnitude-direction quantification for brain structural variation. 

The detailed approach of each component has been described and discussed in sections 

4.1 and 4.2. Chapter 5 would present the proposed multi-dimensional tensor multi-task 

learning regression algorithm for disease progression prediction. 
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Chapter 5 
 

 

5. Multi-dimensional tensor multi-task 
learning regression 

 

 

To investigate how to predict AD progression with multi-dimensional tensor data 

combined with multi-task learning regression, the main task is to design multi-task 

learning algorithms and models to incorporate and mine the spatio-temporal variation 

information and knowledge of MRI data in AD progression prediction in conjunction 

with the quantitative multi-dimensional tensor from the previous chapter in order to 

enhance the prediction accuracy, stability and interpretability in medical small dataset 

scenarios. This chapter first describes the components and workflow of the multi-

dimensional tensor multi-task learning regression algorithm. The algorithm consists of 

three parts: supervised symmetric tensor decomposition to extract biomarker latent 

factors, tensor multi-task learning regression, and algorithmic regularisation terms. 

Secondly, the chapter defines, experiments, and analyses the overall algorithm and 

model along with their various components.  

 

5.1 Supervised symmetric tensor decomposition 

 

Our proposed formula requires an understanding of the latent factors of the correlation 

tensor of morphological variation trends between MRI brain biomarkers. These latent 

factors are represented by factor matrices A and B, which can be derived utilising tensor 

decomposition approaches. There are two mainstream standard approaches for tensor 

decomposition, specifically the Tucker and CANDECOMP/PARAFAC (CP) 
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decomposition. Tucker decomposition decomposes the tensor into the result of the core 

tensor and factor matrix for each mode. Although it presents a more comprehensive 

statement, it is difficult to interpret the latent factors since the number of latent factors 

can be different for each mode. In contrast, CP decomposition decomposes the tensor 

into a set of rank-one tensors. i.e., 𝑋 ≈  ⟦A , B , C⟧  =  ∑ a ∘  b  ∘  c

ୀଵ , where ∘ 

denote the outer product operation between two vectors, while a , b and c correspond 

to the vectors related with the i-th latent factor. Given a tensor X of the size 

𝑛ଵ  ×  𝑛ଶ  ×  𝑛ଷ , the size of matrix A, B and C is 𝑛ଵ  × 𝑟, 𝑛ଶ  × 𝑟 and 𝑛ଷ  × 𝑟 

respectively.  

 

Since the proposed amalgamated magnitude-direction quantification approach 

quantifies and constructs the MRI data as a three-dimensional symmetric tensor, we 

incorporate a symmetry trick into the tensor decomposition approach to make it a 

symmetric tensor decomposition. In order to extract and mine tensor latent factors 

specific to a particular model prediction task, we incorporate the symmetric tensor 

decomposition in the form of a regularisation term into the algorithm design. Acquiring 

biomarker latent factors by optimising the symmetric CP tensor decomposition 

objective function: 

‖𝑋 −  ⟦A௧,  B௧ ,  C௧⟧ୗ‖
ଶ                     (5.1) 

where 𝑋 = ⟦A௧ ,  B௧ ,  C௧⟧ୗ = ∑
ଵ

ଶ
(a

௧ ∘  b
௧ ∘  c

௧ + b
௧ ∘  a

௧ ∘  c
௧)

ୀଵ  where ∘ denote the 

outer product operation between two vectors for t-th prediction time point.  

 

In addition to the characteristics of tensor data we are quantifying, symmetric tensor 

decomposition has the following advantages over tensor decomposition: 1) Symmetry 

of the result: symmetric tensor decomposition preserves the symmetric nature of the 

original tensor. 2) Greater computational efficiency: compared to general tensor 

decomposition approaches, symmetric tensor decomposition can be performed with 

fewer parameters to represent the symmetric tensor. This means that symmetric tensor 

decomposition reduces computational complexity, speeds up computation and is 
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particularly beneficial when working with large datasets. 3) Greater representational 

capability: the special structure of the symmetric tensor allows for greater 

representational capability. The symmetric tensor decomposition can provide a more 

compact and accurate representation than the general tensor decomposition. 4) Better 

coping with noise: the symmetric nature can limit the degrees of freedom of the factors, 

thus reducing the effect of noise and resulting in more reliable decomposition results. 

5) Greater generalisation capability: since symmetric tensor decomposition considers 

symmetry in the generation of factors, it can be better adapted to unknown symmetric 

data. This makes symmetric tensor decomposition more advantageous when processing 

datasets with diversity. 6) Ability to conduct low-rank approximations: symmetric 

tensor decomposition can conduct low-rank approximations, thus reducing storage and 

computational costs while retaining important information. It is important when dealing 

with large scale data. 7) Ability to process non-linear data: since symmetric tensor 

decomposition can represent data as a product of low-dimensional factors, it can be 

utilised when dealing with non-linear data, thus improving the fit of the data. 8) Ability 

to enhance model robustness: since the symmetric tensor decomposition can be 

constrained for optimisation, the risk of overfitting the model can be reduced, thus 

improving the robustness and generalisation of the model.  

 

5.2 Regularisation terms for tensor multi-task learning regression 

 

5.2.1 Generalised temporal correlation term 

 

In AD progression prediction, the goal is to predict cognitive scores at multiple future 

time points (e.g., ADAS-Cog and MMSE). In the real-world diagnosis of AD, experts 

must not only rely on the patients' current symptoms, but also consider their previous 

symptoms. Therefore, we assume that the i-th progression of a single AD patient is 

related to all previous progressions. Inspired by the concept of convex combination, we 

propose a new word, true progression, denoted as Δ𝑦. Which describe as follows:   
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⎩
⎪
⎨

⎪
⎧

Δ𝑦ଵ = 𝛿𝑦ଵ

Δ𝑦ଶ = 𝛼ଵΔ𝑦ଵ + (1 − 𝛼ଵ)𝛿𝑦ଶ

Δ𝑦ଷ = 𝛼ଶΔ𝑦ଶ + (1 − 𝛼ଶ)𝛿𝑦ଷ

…
Δ𝑦௧ିଵ = 𝛼௧ିଶΔ𝑦௧ିଶ + (1 − 𝛼௧ିଶ)𝛿𝑦௧ିଵ

                  (5.2) 

where the parameter α represents the relational degree of i-th progression and all 

previous progressions, its value ranges [0, 1]. In addition, the impact of each stage for 

disease progression on the following stage cannot be consistent, and therefore the 

relational degree parameters differ for each disease progression stage. The definition of 

i-th progression 𝛿𝑦 for one patient is:  

𝛿𝑦 = 𝑦 − 𝑦ାଵ, 𝑖 = 1,2, ⋯ , 𝑡 − 1.                      (5.3) 

where 𝑦 represents prediction for the cognitive score at i-th time point. Due to the 

utilise of linear regression model, 𝑦 − 𝑦ାଵ =  𝑥்𝑤 − 𝑥்𝑤ାଵ = 𝑥்(𝑤 − 𝑤ାଵ) , 

where 𝑥 represents input features, 𝑤  is i-th column of model parameter matrix W 

corresponding to the time point i. Therefore, (5.3) is equivalent to: 𝛿𝑤 = 𝑤 − 𝑤ାଵ.  

 

According to (5.2), we have the following statement:  

⎩
⎪
⎨

⎪
⎧

Δ𝑤ଵ = 𝛿𝑤ଵ

Δ𝑤ଶ = 𝛼ଵΔ𝑤ଵ + (1 − 𝛼ଵ)𝛿𝑤ଶ

Δ𝑤ଷ = 𝛼ଶΔ𝑤ଶ + (1 − 𝛼ଶ)𝛿𝑤ଷ

⋯
Δ𝑤௧ିଵ = 𝛼௧ିଶΔ𝑤௧ିଶ + (1 − 𝛼௧ିଶ)𝛿𝑤௧ିଵ

                    (5.4) 

where Δ𝑤 denoted the progression with preceding progression information. 𝑤 is the 

i-th column of W. where the parameter α represents relational degree of i-th progression 

and all preceding progressions.  

 

The definition of i-th progression 𝛿𝑤 for one patient is: 

𝛿𝑤 = 𝑤 − 𝑤ାଵ, 𝑖 = 1,2, ⋯ , 𝑡 − 1.                     (5.5) 

 

As a result, we can describe the more realistic temporal smoothness assumption with 

matrix multiplication: 

WP(α) = WHDଵ(𝛼ଵ)Dଶ(𝛼ଶ) ⋯ D௧ିଶ(𝛼௧ିଶ)                (5.6) 
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where H ∈  ℝ௧×(௧ିଵ) has the following definition: H = 1 if 𝑖 = 𝑗, H = −1 if 𝑖 =

𝑗 + 1 and H = 0  otherwise. P(α)  denotes the correlation between progress, it 

comprises the hyperparameters α, which depends on the result of cross-validation. 

D(𝛼) ∈  ℝ(௧ିଵ)×(௧ିଵ) is an identity matrix and the value of D,
(𝛼) is substituted 

by 𝛼 if 𝑚 = 𝑖, 𝑛 = 𝑖 + 1, the value of D,
(𝛼) is substituted by 1 − 𝛼 if 𝑚 =

𝑛 = 𝑖 + 1. 

 

We define this generalised temporal smoothness term as:  

∥∥WP(α)∥∥
ଶ                                (5.7) 

where ∥∙∥
ଶ  refers to the Frobenius norm.  

 

5.2.2 Lasso for biomarker latent factors and model parameters 

 

Due to the large number of biomarker latent factors and model parameters, we 

incorporated lasso regularisation into the algorithm to perform feature selection at 

arithmetic time and remove biomarker latent factors and features that were not critical 

for the prediction task. We define the lasso term for biomarker latent factors and model 

parameters as follows:  

‖W௧,  A௧,  B௧ ,  C௧‖ଵ                      (5.8) 

where ‖W௧ ,  A௧,  B௧,  C௧‖ଵ  applying an ℓ 1-norm for W௧ , A௧ , B௧  and C௧  matrices 

individually for t-th time point.  

 

In addition to feature selection, the application of lasso regularisation to biomarker 

latent factors and model parameters simultaneously in the algorithm has the following 

advantages: 1) Solving the covariance problem: when there are multiple highly 

correlated features, applying lasso regularisation allows the weights between them to 

be evenly distributed to each of the relevant features. This reduces the variance of the 

model and improves the stability of model. 2) Enhance model generalisation: lasso 
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regularisation can effectively control the complexity of model, thus reducing overfitting 

and improving the generalisation ability of the model. 3) Enhance the robustness of 

model: lasso regularisation can assist in enhancing the robustness of model in the event 

of abnormal data and noise, thus preventing overfitting. 4) Improve the speed and 

efficiency of the model: lasso regularisation can reduce the complexity of model, thus 

reducing the amount of computation and improving the speed and efficiency of the 

model. 5) Enhance model stability: in machine learning, it is often necessary to optimise 

the stability of a model to avoid it being overly sensitive to small changes in the data. 

Lasso regularisation can help improve the stability of a model by regularising multiple 

parameters, reducing the sensitivity of the model to noise and outliers, and enhancing 

the reliability and robustness of the model. 

 

5.3 Tensor multi-task learning regression 

 

This section describes our main algorithm designs, including 5.3.1 Major algorithm 

design and construction, which presents the best performing algorithms from our design 

and construction process. 5.3.2 Diverse algorithm design and construction, which 

presents the remaining algorithms designed and constructed during our research. The 

algorithm design of 5.3.1 was superior to that of 5.3.2 in this research on disease 

progression prediction algorithms, but the other algorithm designs of 5.3.2 can be valid 

for other future researches. 

 

5.3.1 Major algorithm design and construction 

 

To predict various cognitive scores (e.g., ADAS-Cog and MMSE) at future time points. 

Consider a multi-dimensional tensor multi-task regression problem for t time points, n 

training samples with 𝑑ଵ and 𝑑ଶ biomarker features. Let X ∈  ℝௗభ×ௗమ× be the input 

third-order tensor constructed from two consecutive MRI records and it is the 

combination of calculated correlation matrix of all n samples X  ∈  ℝௗభ×ௗమ , Y =
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[yଵ, ⋯ , y௧  ] ∈  ℝ×௧ be the targets (clinical scores) and y௧ = [𝑦ଵ, ⋯ , 𝑦 ] ∈  ℝ is the 

corresponding target at different time points.  

 

For t-th prediction time point, the objective function of the proposed approach can be 

stated as follows:  

𝐿௧(𝑋, y௧) = min
, , , େ

1

2
‖yො௧ − y௧‖ଶ

ଶ +
𝜆

2
‖𝑋 −  ⟦A௧,  B௧,  C௧⟧ୗ‖

ଶ 

                                 + 𝛽‖W௧ ,  A௧,  B௧ ,  C௧‖ଵ 

𝑦ො =  ∑ ∑ U
ௗమ
ୀଵ

ௗభ
ୀଵ , 

where U = (A௧B௧
)⨀K⨀W௧⨀X , U ∈  ℝௗభ×ௗమ .           (5.9) 

where the first term calculates the empirical error with training data, yො௧ =

[𝑦ොଵ, ⋯ , 𝑦ො] ∈  ℝ are the predicted values, A௧ ∈  ℝௗభ× is the latent factor matrix for 

first biomarker dimension, B௧  ∈  ℝௗమ×  is the latent factor matrix for second 

biomarker dimension and C௧ ∈  ℝ× is the latent factor matrix for patient sample 

dimension with r latent factors, W௧ ∈  ℝௗభ×ௗమ is the model parameter matrix for t-th 

prediction time point, 𝜆  and 𝛽  are the regularisation parameters. Acquiring 

biomarker latent factors by optimising the symmetric CP tensor decomposition 

objective function ‖𝑋 −  ⟦A௧ ,  B௧,  C௧⟧ୗ‖
ଶ , where 𝑋 = ⟦A௧ ,  B௧,  C௧⟧ୗ =

∑
ଵ

ଶ
(a

௧ ∘  b
௧ ∘  c

௧ + b
௧ ∘  a

௧ ∘  c
௧)

ୀଵ  where ∘ denote the outer product operation 

between two vectors for t-th prediction time point. The A௧ and B௧ biomarker latent 

factor matrices are utilised in the algorithm as multi-task relationships to share 

knowledge and enhance model generalisation, the C௧  patient sample latent factor 

matrix is only utilised as a component in the symmetric CP tensor decomposition 

objective function and it has no effect in the multi-task relationships. 

‖W௧,  A௧,  B௧ ,  C௧‖ଵ  applying the ℓ 1-norm for W௧ , A௧ , B௧  and C௧  matrices 

individually. We utilise the operator ⨀  as follows: Z = M ⨀ N  denotes 𝑧 =

𝑚𝑛, for all i, j. The matrix K ∈  ℝௗభ×ௗమis the duplicate data correction matrix which 

utilised to solve the duplicate data problem since the correlation tensor for brain 

structural variation constructed by the proposed quantification approach is a symmetric 
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tensor, meaning that correlations between biomarkers are calculated in pairs and 

therefore half of the data are duplicates. It has the following description: 

K = 

0 1 ⋯ 1

⋮ ⋱
⋮
1

0 ⋯ 0

 ∈  ℝௗభ×ௗమ               (5.10) 

 

For all prediction time points, the objective function can be stated as follows:  

𝐿(𝑋, Y) = min


∑ 𝐿௧(𝑋, y௧)௧
ଵ + 𝜃∥∥WP(α)∥∥



ଶ
              (5.11) 

where ∥∥WP(α)∥∥


ଶ
 is the generalised temporal correlation term, the model parameter 

matrix W  ∈  ℝ(ௗభ×ௗమ)×௧ is temporal dimension unfolding for the model parameter 

tensor W ∈  ℝௗభ×ௗమ×௧ , 𝜃  is the regularisation parameter. Generalised temporal 

correlation term detailed in Section 5.2.1.  

 

It is worth mentioning that the nature of the algorithm (multi-dimensional tensor multi-

task regression) proposed in this research is a linear model in order to maintain a high 

level of interpretability, but the quantification approach (AMDQ) proposed in this 

research can capture the non-linear information and knowledge in MRI biomarkers. 

Non-linear algorithms are based on mapping the input data to an interval value (e.g., [0, 

1] or [-1, 1]), while the proposed AMDQ approach can also map the input MRI 

biomarker feature values to the brain biomarker structural variation correlation values 

with interval between -1 and 1. Therefore, the overall approach proposed in this 

research can be considered as a semi-linear model.  
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5.3.2 Diverse algorithm design and construction 

 

Supervised tucker tensor decomposition term 

 

Acquiring biomarker latent factors by optimising the tucker tensor decomposition 

objective function: 

‖𝑋 −  ⟦𝒢;  A, B, C⟧‖
ଶ                    (5.12) 

Where 𝑋 ≈ ⟦𝒢;  A, B, C⟧ = ∑  

ୀଵ ∑  


ୀଵ ∑  

ୀଵ 𝑔a ∘ b ∘ c .  where ∘ denote the 

outer product operation between two vectors for t-th prediction time point. Tucker 

decomposition technique decomposes the tensor into the result of the core tensor (𝒢) 

and factor matrix (A, B, C) for each mode. Although it presents a more comprehensive 

statement, it is difficult to interpret the latent factors since the number of latent factors 

can be different for each mode. The algorithm design of this research requires 

maintaining a high level of interpretability, therefore tucker decomposition technique 

is not applicable to this research. 

 

The adjusted iterative convex combination of progression (aiccp) term 

 

Based on generalised temporal correlation term in 5.2.1, the adjusted iterative convex 

combination of progression term states as follow:  

 

WPୟ୧ୡୡ୮(𝛼) = WHDଵ(𝛼)Dଶ(𝛼) ⋯ D௧ିଶ(α)E(𝛼)

Pୟ୧ୡୡ୮(𝛼) = HDଵ(𝛼)Dଶ(𝛼) ⋯ D௧ିଶ(𝛼)E(𝛼)
             (5.13) 

 

where Pୟ୧ୡୡ୮(𝛼) is the relation matrix for disease progression. E(𝛼) ∈  ℝ(௧ିଵ)×(௧ିଵ) 

is an identity matrix and the value of E,(𝛼) is replaced by (1 − 𝛼)ିଵ if 𝑚 = 𝑛 =

2,3, … , (𝑡 − 1).  

 

We define the aiccp term as:  
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∥∥WPୟ୧ୡୡ୮(𝛼)∥∥


ଶ
                             (5.14) 

We now present the intuitive understanding of the aiccp term. The i-th true progression 

Δ𝑦 = [𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦] × 𝒍𝒊 − 𝑦ାଵ , here 𝒍𝒊 ∈ ℝ  is the coefficient of convex 

combination of the sates from 𝑦ଵ  to 𝑦 . For a vector 𝒍𝒊 , 𝑖 = 1,2, ⋯ , 𝑡 − 1 , 𝒍
 

represents the j-th element of 𝒍𝒊, we have 

𝑙
 ⩾ 0, 𝑘 = 1,2, ⋯ , 𝑖                           (5.15) 

 

∑  
ୀଵ 𝑙

 = 1                                 (5.16) 

 

[𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦] × 𝒍𝒊 is a convex hull of 𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦.            (5.17)       

        

Now, we prove (5.15), (5.16) and (5.17). It is easy to notice that 

𝒍𝒊ା𝟏
 = ൣ𝛼𝒍𝒊

, 1 − 𝛼൧

                          (5.18) 

where 𝛼 ∈ [0,1]  and 𝒍ଵ = [1]  is a real number. Therefore, the vector 𝒍𝒊  is non-

negative with 𝑖 = 1,2, ⋯ , (𝑡 − 1), that means all the element value of 𝒍𝒊, 𝑙
 ⩾ 0, 𝑘 =

1,2, ⋯ , 𝑖 , so (5.15) is satisfied. We prove (5.16) by mathematical induction. It is 

obvious that (5.16) is satisfied when 𝑖 = 1 and 𝒍ଵ = [1]. Therefore, we can assume 𝒍𝒊, 

𝑖 = 2,3, ⋯ , 𝑡 − 2, satisfies (5.16). According to (5.18), ∑  ାଵ
ୀଵ 𝑙ାଵ

 = 1, so (5.16) is 

satisfied for 𝑖 = 𝑘 + 1 . Based on (5.15) and (5.16), [𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦] ×

𝒍𝒊 is a convex hull of {𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦}, so (5.17) is satisfied.  

 

5.4 Model optimisation strategy 

 

Latent factors A ∈  ℝௗభ××௧, B ∈  ℝௗమ××௧, C ∈  ℝ××௧ and model parameter W∈

 ℝௗభ×ௗమ×௧ can be learned by optimising the objective function iteratively for each group 

of variables to be solved. We apply proximal gradient descent approach to deal with 

each subproblem since not all components of the objective function are differentiable. 

The parts in our objective function relating Frobenius norms are differentiable, but the 
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parts involving the sparsity ℓ1-norms are not differentiable. The proximal approach is 

frequently applied to build proximal problem for non-smooth objective functions 

[138][302][303]. Consider a non-differentiable objective function f(x), which can be 

factorized into a smooth differentiable function d(x) and a non-smooth function n(x), 

i.e., f(x) = d(x) + n(x). The proximal gradient descent approach can be utilised to 

iteratively update model parameters as follows:  

x(௦) = 𝐩𝐫𝐨𝐱௭ೞ,୬ ቀx(௦ିଵ) − 𝑧௦∇d൫x(௦ିଵ)൯ቁ             (5.19) 

where x(௦)  is the parameter to be estimated at step s. 𝐩𝐫𝐨𝐱௭ೞ,୬  is the proximal 

operator for non-differentiable function n, ∇d൫x(௦ିଵ)൯ is the gradient for the smooth 

function d with regard to x(௦ିଵ), 𝑧௦ is the step size for gradient descent update. The 

proximal operator for ℓ 1-norm function is the soft-thresholding operator [304] as 

follows: 

𝐩𝐫𝐨𝐱క,୬ (v) = (v − 𝜉)ା − (−v − 𝜉)ା              (5.20) 

where 𝜉 is the threshold parameter. Parameters are iteratively updated by calculating 

the gradient on smooth part of the objective function then applying the soft-thresholding 

operator (proximal mapping function for ℓ1-norm) to establish its next value. The step 

size can be acquired utilising a line search algorithm. The approach can accelerate 

optimization convergence and simplify the design of distributed optimization algorithms.  

 

5.5 Experiments, results analysis and discussion procedures 

 

The following sections represent the experimental configurations and procedures 

required for the multi-dimensional tensor multi-task learning regression algorithm and 

model, as well as tests and analysis of the results for the algorithm and model. The 

dataset utilised in this research and its sources are detailed in Section 3.4.1. The 

evaluation metrics utilised in the experiments of the research are described in Section 
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3.4.3. The range of values for each parameter attempted and the computational 

infrastructures were utilised to conduct experiments during the research development 

are detailed in Section 3.4.4. The selection of comparison methods is described in 

Section 3.4.5. Section 5.6 provides details of the pre-processing procedures performed 

on the dataset, and the specifics of the pre-processed dataset. Section 5.7 compares the 

proposed algorithms and models with benchmarks and state-of-the-art approaches to 

validate performance and effectiveness of the proposed algorithm and model. Section 

5.8 elaborates on the application of the proposed algorithm and model on clinical 

scenarios. 

 

5.6 Pre-processing procedures for MRI data 

 

The protocol for the research can be found at http://adni.loni.ucla.edu/research/mri-post-

processing/. The ADNI official website (http://adni.loni.ucla.edu) has more information 

on ADNI MRI procedures and imaging equipment. We obtained the MRI data from the 

ADNI website and proceeded to conduct the following pre-processing procedures:  

 Removal of image records with failed quality control;  

 Individuals who lacked BL and M06 MRIs were eliminated;  

 Removal of features with more than half of the samples having missing values;  

 Fill in the remaining missing data by taking the average of the features.  

There are 313 MRI features (Appendix B) after the pre-processing stages. which are 

divided into five categories: the volumes of cortical parcellations, the total surface area 

of the cortex, the volumes of specific white matter parcellations, the average cortical 

thickness and the standard deviation in cortical thickness. Table 5.1 and 5.2 illustrates 

the demographic features of the ADNI MRI data utilised in this research.  
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Table 5.1: Demographic characteristic of the studied subjects (MMSE and ADAS-

Cog) valued are specified as mean±standard deviation. 

Time point Attribute MMSE ADAS-Cog 

M12 

 

 

M24 

 

 

M36 

 

 

M48 

 

 

M60 

 

 

M72 

 

 

M84 

 

 

M96 

 

 

M108 

 

 

M120 

 

 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

1334 (359, 726, 249) 

580/754 

74.9±7.2 

1127 (335, 620, 172) 

493/634 

75.8±7.1 

745 (206, 528, 11) 

324/421 

76.4±7.0 

585 (218, 360, 7) 

259/326 

76.9±6.8 

333 (115, 216, 2) 

144/189 

78.2±6.7 

299 (142, 155, 2) 

128/171 

79.8±6.6 

229 (107, 121, 1) 

102/127 

80.5±6.3 

178 (87, 89, 2) 

73/105 

81.1±6.6 

121 (59, 62, 0) 

55/66 

81.7±6.3 

81 (49, 32, 0) 

38/43 

83.3±6.1 

1321 (354, 722, 245) 

575/746 

74.9±7.1 

1105 (332, 613, 160) 

481/624 

75.8±7.1 

730 (203, 518, 9) 

318/412 

76.4±7.1 

579 (215, 357, 7) 

261/318 

77.0±6.8 

330 (115, 213, 2) 

143/187 

78.3±6.7 

299 (142, 156, 1) 

130/169 

79.7±6.6 

225 (107, 117, 1) 

100/125 

80.4±6.3 

175 (87, 86, 2) 

72/103 

81.1±6.6 

118 (61, 57, 0) 

52/66 

81.7±6.1 

80 (49, 31, 0) 

37/43 

83.5±5.8 
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Table 5.2: Continuation of Table 5.1. Demographic characteristic of the studied 

subjects (RAVLT TOTAL and FLU ANIM) valued are specified as mean±standard 

deviation. 

Time point Attribute RAVLT TOTAL FLU ANIM 

M12 

 

 

M24 

 

 

M36 

 

 

M48 

 

 

M60 

 

 

M72 

 

 

M84 

 

 

M96 

 

 

M108 

 

 

M120 

 

 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, MCI, AD) 

Gender(f/m) 

Age 

960 (265, 530, 165) 

458/502 

74.4±7.0 

816 (249, 450, 117) 

389/427 

75.3±7.0 

548 (155, 387, 6) 

252/296 

76.0±6.9 

435 (163, 266, 6) 

209/226 

76.7±6.7 

248 (90, 156, 2) 

109/139 

78.0±6.6 

230 (113, 116, 1) 

98/132 

79.8±6.4 

184 (89, 94, 1) 

83/101 

80.6±6.0 

137 (69, 66, 2) 

56/81 

81.3±6.6 

95 (51, 44, 0) 

41/54 

81.9±5.9 

59 (35, 24, 0) 

28/31 

83.2±6.3 

1329 (359, 726, 244) 

579/750 

74.9±7.1 

1118 (334, 617, 167) 

490/628 

75.8±7.1 

740 (206, 524, 10) 

321/419 

76.4±7.1 

578 (217, 354, 7) 

260/318 

77.0±6.8 

328 (115, 211, 2) 

141/187 

78.2±6.7 

296 (142, 153, 1) 

128/168 

79.7±6.6 

228 (108, 119, 1) 

104/124 

80.4±6.3 

178 (87, 89, 2) 

74/104 

81.1±6.6 

125 (63, 61, 1) 

55/70 

81.6±6.3 

103 (60, 43, 0) 

48/55 

82.3±6.2 
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5.7 Experimental results 

 

5.7.1 Comparison with the benchmarks and state-of-the-arts 

 

We utilised the proposed amalgamated magnitude-direction quantification combined 

with the tensor multi-task learning regression algorithm (AMDQ-TMTL) to compare 

with the following single-task learning, benchmarks and state-of-the-art multi-task 

learning approaches, which were selected as competing methods in the research of 

predicting clinical deterioration. Including Ridge regression (Ridge) [55], Lasso 

regression (Lasso) [56], Temporal Group Lasso (TGL) [11], Non-convex Fused Sparse 

Group Lasso (nFSGL1) [127], Convex Fused Sparse Group Lasso (cFSGL) [11], Fused 

Laplacian Sparse Group Lasso (FL-SGL) [133], Non-Convex Calibrated Multi-Task 

Learning (NC-CMTL) [123], Joint feature and task aware multi-task feature learning 

(FTS-MTFL) [134], Group Asymmetric Multi-Task Learning (GAMTL) [122] and Dual 

feature correlation guided multi-task feature learning (dMTLc) [114]. The experimental 

results for MMSE prediction are shown in Table 5.3, for ADAS-Cog prediction are 

shown in Table 5.4, for RAVLT TOTAL are shown in Table 5.5 and for FLU ANIM 

are shown in Table 5.6. 

 

The proposed approach has a lower rMSE than other comparison methods for most (95%) 

of the individual time points. In terms of overall regression performance, our proposed 

approach exceeds comparison methods in terms of nMSE and wR for MMSE, ADAS-

Cog, RAVLT TOTAL and FLU ANIM, demonstrating that our method outperforms 

competitors. Our observations are as follows: 1) The proposed AMDQ-TMTL approach 

outperforms single-task learning, benchmarks and state-of-the-art MTL models, which 

validates the application of similarity calculation containing both magnitude and 

direction information for brain structural variation and the exploitation of the tensor 

latent factor hypothesis in our MTL formulation. 2) The proposed AMDQ-TMTL 

approach significantly improves prediction stability. The results obtained through 20 

iterations of the experiment had a lower standard deviation than the comparison 
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approaches. This may be due to the proposed quantification method incorporates 

information on global brain variability and the addition of brain biomarker latent factors 

to the prediction algorithm to improve stability. 

Table 5.3: Comparison of the results from our proposed approaches with the single-

task learning, benchmarks and state-of-the-art MTL methods for MMSE at time 

points M12 to M120. The best results are bolded. 

Target: MMSE nMSE wR M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

2.6314±1.2957 

0.8472±0.1195 

0.4967±0.1441 

0.4248±0.1842 

0.4018±0.2664 

0.4930±0.1557 

0.4409±0.2107 

0.4598±0.1321 

0.5099±0.2507 

0.5018±0.1035 

0.2917±0.0852 

0.2110±0.0632 

0.4966±0.0757 

0.7537±0.0732 

0.8129±0.0296 

0.8410±0.0329 

0.7673±0.1676 

0.8020±0.0637 

0.7807±0.0727 

0.7030±0.1436 

0.7082±0.1271 

0.8617±0.0124 

4.0605±1.2386 

1.9052±1.1061 

1.7395±0.1282 

1.3466±0.1764 

1.5864±0.6592 

1.7686±0.1391 

1.4302±0.4354 

1.6373±0.3992 

1.8805±0.1909 

1.8372±0.1873 

1.3194±0.1091 

5.0048±1.2526 

2.4768±1.5718 

1.7217±0.1640 

1.3788±0.2848 

1.6055±0.7507 

2.2371±0.4471 

1.5425±0.3381 

1.7305±0.4099 

1.9699±0.2790 

1.9649±0.6950 

1.4468±0.1247 

4.0442±1.4497 

2.5940±0.7297 

1.8433±0.1870 

1.9872±0.1796 

1.6029±0.4876 

2.0123±0.2851 

1.7830±0.5100 

1.5596±0.6720 

2.1551±0.1280 

1.8731±0.5722 

1.5221±0.1048 

5.5393±1.4989 

2.2096±0.6772 

1.7016±0.4988 

1.6300±0.3682 

1.8139±0.9093 

1.7532±0.5990 

2.0724±0.5488 

1.6122±0.5982 

1.8221±0.6720 

1.7281±0.5057 

1.5720±0.1066 

 

Target: MMSE M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

6.3593±1.4969 

2.2814±0.9163 

1.8078±0.7116 

1.6967±0.6013 

1.8209±0.8150 

1.6258±0.2276 

1.9627±0.8186 

2.3715±0.7826 

1.9757±0.5196 

1.5245±0.8603 

1.4833±0.1649 

7.9274±0.9130 

3.5367±1.8656 

1.9643±0.9502 

2.1037±0.6930 

2.2522±0.7898 

1.9267±0.6614 

1.9513±0.8896 

1.8304±0.2191 

2.1530±0.6055 

1.7714±0.4606 

1.5661±0.1684 

7.5438±1.0703 

4.4608±0.8752 

2.1360±0.8765 

2.5159±0.3190 

2.3981±0.3207 

2.0164±0.6971 

2.1118±0.3061 

1.8528±0.7210 

2.2004±0.7192 

1.8294±0.3123 

1.6105±0.2253 

7.1825±1.1658 

5.2756±2.1243 

2.6708±0.7499 

2.8206±0.5456 

2.6192±1.3076 

2.5265±0.2901 

1.9114±0.4402 

2.4228±0.8804 

1.9492±0.7142 

2.1448±0.8492 

1.6302±0.2874 

7.3953±0.9400 

5.1665±1.0716 

3.0527±0.6373 

2.8242±0.5211 

2.2614±0.5827 

3.0563±0.4682 

2.1879±0.7359 

1.8972±0.2475 

2.3220±1.1041 

2.5025±0.2857 

1.6375±0.2206 

8.6403±1.3850 

5.3829±1.9340 

3.1320±1.1055 

2.9035±0.6056 

3.5795±0.3449 

3.7890±0.3501 

3.7274±0.8463 

3.7141±1.0977 

3.4550±0.6403 

3.4188±0.6761 

2.1358±0.3521 
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Table 5.4: Comparison of the results from our proposed approaches with the single-

task learning, benchmarks and state-of-the-art MTL methods for ADAS-Cog at time 

points M12 to M120. The best results are bolded. 

Target:  

ADAS-Cog 
nMSE wR M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

2.6042±0.5035 

0.8908±0.4853 

0.4794±0.2107 

0.3746±0.1589 

0.3490±0.1942 

0.4269±0.1011 

0.4087±0.1030 

0.4074±0.1665 

0.3381±0.1075 

0.3309±0.0861 

0.2436±0.0571 

0.2668±0.1008 

0.4091±0.0237 

0.7267±0.0646 

0.8207±0.2134 

0.8536±0.0724 

0.7917±0.1235 

0.8057±0.0370 

0.8066±0.0211 

0.8660±0.0310 

0.8730±0.0472 

0.8843±0.0418 

7.8783±1.2673 

5.7337±1.3240 

2.6734±0.8648 

2.7870±0.5103 

2.1080±0.2942 

2.6934±0.6158 

2.2452±0.6398 

2.7443±0.8547 

2.9950±0.5020 

2.3471±0.3243 

1.5298±0.2621 

8.6661±1.4368 

6.7600±1.7528 

2.3945±1.0648 

2.8953±0.7292 

3.0577±0.2916 

2.4190±0.3710 

2.7504±0.3242 

2.4485±0.4728 

3.0906±0.4274 

2.4841±0.4506 

1.4607±0.2294 

7.4033±1.5643 

6.5083±1.4925 

3.6386±1.1138 

2.5707±0.6152 

2.8119±0.2969 

3.0659±1.1312 

3.1455±0.2992 

3.0464±0.3155 

2.2789±0.4378 

2.9834±0.6368 

1.5192±0.1306 

8.7409±1.8191 

7.4186±1.2113 

3.4775±0.5774 

3.2667±0.3667 

3.1791±0.3089 

3.4480±0.4345 

3.1756±0.3682 

2.2464±0.4095 

2.3314±0.3827 

2.4808±0.6388 

1.4679±0.2186 

 

Target: 

ADAS-Cog 
M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

8.6757±1.6906

6.7316±1.9468

3.3258±0.9778

2.4117±1.0509

2.8553±0.7009

3.3393±0.2468

3.6033±0.9507

3.1216±0.3429

3.6593±0.7849

3.4192±0.2921

1.6805±0.2404

9.0341±1.9737 

7.0183±1.8743 

3.1367±0.9183 

3.0193±0.4929 

3.1638±0.7193 

3.3664±0.5003 

3.0725±0.4072 

3.5349±0.2918 

2.3207±0.5119 

2.5766±0.3138 

1.4750±0.1545 

9.9267±1.0749

7.6153±1.1450

4.9036±0.9516

3.8003±1.1919

3.1942±0.9396

3.5970±0.2306

4.3786±0.3920

4.1791±0.4363

3.8476±0.7138

3.1199±0.3819

1.5658±0.1810

9.1536±2.8575 

7.6934±1.4234 

4.6745±0.7821 

3.8142±0.7059 

3.5658±0.5458 

4.0665±0.9310 

3.5976±0.6149 

3.2672±0.4010 

2.6636±0.1940 

3.1522±0.5621 

1.6959±0.1087 

9.1306±2.7906

8.4926±1.3660

6.5995±0.9961

5.1221±0.4251

5.0652±0.5768

5.6875±0.6848

3.2001±0.6762

3.5568±0.4028

3.8485±0.2107

4.4009±0.7587

1.6982±0.1979

10.0144±2.7013 

8.7862±1.8170 

8.6548±0.4650 

6.0504±0.4185 

5.6949±0.8991 

6.2026±0.6328 

7.6423±1.3861 

7.8608±1.2826 

5.8844±1.1164 

5.9746±1.5326 

2.1631±0.3595 
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Table 5.5: Comparison of the results from our proposed approaches with the single-

task learning, benchmarks and state-of-the-art MTL methods for RAVLT TOTAL at 

time points M12 to M120. The best results are bolded. 

Target: 

RAVLT TOTAL 
nMSE wR M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

2.4552±0.4233 

0.8544±0.5287 

0.4951±0.1742 

0.3726±0.1417 

0.3474±0.1648 

0.3372±0.1158 

0.3631±0.1015 

0.3554±0.1973 

0.3599±0.2934 

0.3650±0.1569 

0.2546±0.0862 

0.2970±0.0879 

0.4086±0.0524 

0.7698±0.1060 

0.8062±0.0614 

0.8355±0.0484 

0.8485±0.0702 

0.8240±0.0685 

0.8280±0.0139 

0.8150±0.0939 

0.8106±0.0742 

0.8722±0.0478 

7.9376±1.9086 

5.3266±1.1728 

2.2520±0.6345 

2.4384±0.6609 

2.3591±0.8820 

2.2719±0.8909 

2.7621±0.2550 

2.5827±0.6453 

2.7978±0.4072 

2.8858±0.1441 

1.4314±0.1056 

8.2124±1.4203 

5.7378±0.8868 

2.7132±0.7384 

2.3252±0.6353 

2.4297±0.5859 

2.4105±1.1230 

2.3219±0.3455 

2.6332±0.7640 

2.7376±0.7520 

2.3956±0.4084 

1.6062±0.1550 

8.8234±1.0348 

6.3218±0.5375 

3.2253±0.8426 

2.7824±0.6245 

2.6760±0.3778 

3.2312±0.1693 

2.7690±0.1420 

2.6991±0.7002 

3.2829±0.2948 

3.4184±0.4235 

1.6425±0.2317 

9.1893±0.5844 

6.4050±0.5636 

3.3035±0.6113 

2.8225±0.4127 

3.0636±0.3502 

2.6380±0.3065 

3.1030±1.0612 

3.1862±0.6679 

2.7709±0.7505 

2.7441±0.7612 

1.5017±0.2467 

 

Target: 

RAVLT TOTAL 
M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

8.8236±0.8598

7.1748±1.3071

2.8406±0.6077

2.7932±0.6532

2.5154±0.4834

2.7104±0.3276

3.1478±0.2801

2.9759±0.5230

2.6841±0.9265

3.1043±0.6300

1.6537±0.1928

9.2771±1.2987 

7.6141±0.9423 

3.4649±0.8560 

3.2405±0.6746 

2.9631±0.9677 

3.4238±0.4533 

2.9095±0.5860 

3.4540±0.8699 

3.5007±0.3095 

2.8967±0.5255 

1.6270±0.2594 

9.4471±0.9660

8.1238±0.7045

4.6258±0.6558

4.0655±0.5738

3.7082±0.5020

3.6328±0.3646

3.8791±0.8183

3.4254±0.3827

3.1905±0.1981

3.5972±0.6105

1.8475±0.2760

9.6810±1.1429 

7.9922±1.0334 

6.7818±0.3483 

4.1362±1.2326 

3.8204±0.7361 

3.5606±1.0927 

4.1731±0.6744 

3.4863±0.7479 

3.9752±0.7219 

3.2667±0.4401 

1.8646±0.2633 

9.0462±1.4533

8.0109±1.3453

6.9691±1.0105

5.3567±0.8017

5.2445±1.1207

5.0397±0.7480

5.1556±0.4280

5.0220±0.4201

5.2273±0.2456

5.7278±0.4308

1.6571±0.2034

10.5317±1.7693 

8.2628±1.6440 

7.5915±1.3104 

6.1909±0.7436 

6.1520±0.5217 

5.7075±0.4890 

6.4508±0.9031 

6.0470±1.0560 

6.5358±0.6512 

6.9348±0.4579 

2.2641±0.4324 
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Table 5.6: Comparison of the results from our proposed approaches with the single-

task learning, benchmarks and state-of-the-art MTL methods for FLU ANIM at time 

points M12 to M120. The best results are bolded. 

Target:  

FLU ANIM 

nMSE wR M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

2.2734±1.6694 

0.8544±0.5287 

0.4316±0.1673 

0.4717±0.1426 

0.4236±0.1204 

0.4812±0.0892 

0.5290±0.1447 

0.4966±0.1727 

0.5079±0.0496 

0.4529±0.1132 

0.3017±0.0325 

0.2320±0.0913 

0.4868±0.0524 

0.8272±0.0102 

0.8160±0.0614 

0.8304±0.0461 

0.8016±0.0224 

0.7531±0.0691 

0.7840±0.0423 

0.7607±0.0236 

0.8261±0.0519 

0.8572±0.0267 

5.4472±1.8837 

2.5727±0.8031 

1.3364±0.7055 

1.3493±0.7175 

1.4223±0.4127 

1.4973±0.2302 

1.7739±0.8168 

1.3370±0.5862 

1.8799±0.6390 

1.6090±0.3121 

1.3153±0.2125 

6.1197±1.3662 

1.8910±0.6070 

1.7315±0.6941 

1.9113±0.3184 

1.6939±0.2266 

1.7054±0.2693 

2.1327±0.6380 

2.0966±0.7896 

2.1003±0.8619 

1.7672±0.2789 

1.4408±0.2174 

4.2137±1.7492 

2.4185±1.2328 

1.5969±0.6927 

2.2461±0.6539 

1.8820±0.7462 

2.0819±0.2348 

2.3885±0.2849 

2.2042±0.2374 

2.3044±0.8389 

1.7853±0.5852 

1.4380±0.2559 

6.4510±1.1308 

1.9587±0.9794 

1.7610±0.6014 

2.2189±0.7169 

2.0451±0.4260 

2.3585±0.2543 

2.1918±0.3549 

1.9100±0.3930 

1.6065±0.7484 

2.0958±0.7601 

1.6463±0.1761 

 

Target:  

FLU ANIM 

M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

Lasso 

TGL 

nCFGL1 

cFSGL 

FL-SGL 

NC-CMTL 

FTS-MTFL 

GAMTL 

dMTLc 

AMDQ-TMTL 

5.3020±1.2161 

1.9725±0.9758 

2.2004±0.8175 

1.8437±0.5516 

2.0344±0.3400 

2.3354±0.6026 

2.1895±0.5107 

1.9178±0.4717 

1.7183±0.7254 

1.7940±0.3447 

1.4964±0.2937 

5.9618±1.6148 

2.3282±0.5055 

2.1354±0.6304 

1.8129±1.1824 

2.3855±0.7762 

2.2094±0.3552 

1.9796±0.9002 

2.0398±1.0532 

2.3639±0.4500 

2.4372±0.6470 

1.4092±0.1424 

4.3180±2.1455 

3.3004±1.6036 

1.9228±0.4608 

1.9417±1.2021 

1.6734±0.9634 

2.0910±0.2739 

2.3260±0.6398 

2.0742±0.7679 

2.4301±0.4398 

2.1386±0.8401 

1.5367±0.1827 

5.2603±2.2362 

3.0561±1.3526 

2.7740±1.2036 

2.9784±1.2004 

2.0328±0.4551 

1.7509±0.3284 

2.7319±0.2494 

1.8550±0.4091 

2.3459±0.4785 

2.2573±0.4613 

1.4207±0.1808 

4.6195±1.0933 

4.2697±1.0291 

3.6916±0.8542 

3.5532±0.4738 

3.3721±0.7598 

2.9450±0.5829 

2.6456±0.4240 

2.6720±0.2375 

2.4059±0.1056 

2.4334±0.4058 

1.6149±0.2787 

6.1033±1.1361 

5.5735±1.1790 

4.2636±1.1491 

4.0436±0.5043 

3.4367±0.9471 

3.7098±0.4743 

3.7135±0.2451 

3.6095±0.8001 

3.5854±0.9655 

3.3250±0.5132 

2.1355±0.2624 
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5.7.2 Ablation studies 

 

The proposed AMDQ-TMTL approach contains various parameters and regularisation 

terms. The experimental results in Table 5.3, 5.4, 5.5 and 5.6 are sufficient to 

demonstrate the effectiveness of supervised symmetric tensor decomposition and 

biomarker latent factors. In addition, the main parts include 1) The duplicate data 

correction matrix K, 2) The ℓ1-norm and 3) The generalised temporal correlation term. 

In this section, we present the effectiveness of these parameters and regularisation terms 

in the proposed AMDQ-TMTL approach.  

 

Figure 5.1, 5.2, 5.3 and 5.4 show the results of ablation experiments for different time 

points with different MRI inputs. The settings of the experiments are the same as the 

previous AMDQ-TMTL experiments. All reported rMSE values are based on the 

average of 20 iterations of different randomly split of data. 

 

From the experimental results, it can be observed that the indicated parameters and 

regularisation terms have improved effects on the approach. Among them, the duplicate 

data correction matrix K has the greatest impact on the prediction effect, which proves 

that the repeated data generated by the symmetry problem of the proposed similarity 

tensor quantization method does have an enormous influence on the prediction effect. 

The second most influential is the ℓ 1-norm, the number of features is huge (each 

sample has 48828 features) since the features are paired into a similarity matrix, and 

ℓ1-norm can make unimportant feature weights zero to assist select important features, 

enhance generalisability, robustness and stability for model prediction. The third 

influential is the generalised temporal correlation term, which demonstrated that 

combining the patient's current and earlier symptoms could improve the model's 

performance and conform to prior knowledge of real-world applications. 
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Figure 5.1: Ablation studies for proposed AMDQ-TMTL approach for MMSE 

prediction in various time points with BL and M06 MRI data. 

 

Figure 5.2: Ablation studies for proposed AMDQ-TMTL approach for ADAS-Cog 

prediction in various time points with BL and M06 MRI data. 
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Figure 5.3: Ablation studies for proposed AMDQ-TMTL approach for RAVLT 

TOTAL prediction in various time points with BL and M06 MRI data. 
 

 

Figure 5.4: Ablation studies for proposed AMDQ-TMTL approach for FLU ANIM 

prediction in various time points with BL and M06 MRI data. 
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To compare the performance of different correlation calculation approaches (Cosine 

similarity, Euclidean distance and Mahalanobis distance) with our proposed AMDQ 

approach to the proposed multi-dimensional tensor multi-task learning regression 

model for disease progression prediction. Figures 5.5, 5.6, 5.7 and 5.8 demonstrate the 

average results of 20 independent experiments for the cognitive scores MMSE, ADAS-

Cog, RAVLT TOTAL and FLU ANIM respectively, which utilise BL and M06 MRI 

data to predict cognitive scores at future time points. 

 

The results demonstrate that the multi-dimensional tensor multi-task learning 

regression model with AMDQ approach has a lower rMSE than the mainstream 

correlation calculations for all individual time points. This may be due to the fact that 

the proposed AMDQ approach contains information on both the magnitude and 

direction of structural variations in brain biomarkers, which allows for the inclusion of 

more comprehensive information on brain structural variation in the disease 

progression prediction process. 

 

 

Figure 5.5: Comparison of different similarity calculation approaches on the MMSE 

prediction performance for multi-dimensional tensor multi-task learning. 
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Figure 5.6: Comparison of different similarity calculation approaches on the ADAS-

Cog prediction performance for multi-dimensional tensor multi-task learning. 

 

Figure 5.7: Comparison of different similarity calculation approaches on the RAVLT 

TOTAL prediction performance for multi-dimensional tensor multi-task learning. 
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5.8 Clinical application 

 

In clinical scenarios, the proposed AD progression prediction algorithms and models 

can be utilised to assist clinicians in making precise diagnostic and treatment decisions. 

The following are the applications of the proposed AD progression prediction 

algorithms and models in clinical scenarios: 1) Early diagnosis: the AD progression 

prediction model can make early diagnosis of patients based on their clinical 

characteristics, such as symptoms and imaging manifestations. Early diagnosis helps 

patients to receive timely treatment, mitigate disease progression and improve quality 

of life. 2) Disease prediction: AD progression prediction algorithms and models can 

predict future disease progression based on patients' clinical data, such as predicting the 

survival and degree of dementia of AD patients. This can assist clinicians in adjusting 

treatment plans and slowing disease progression in a timely manner. 3) Monitoring the 

efficacy of treatment: AD progression prediction model can track the progress of 

patients' disease and assist clinicians in assessing the efficacy of treatment. This can 

 

Figure 5.8: Comparison of different similarity calculation approaches on the FUN 

ANIM prediction performance for multi-dimensional tensor multi-task learning. 
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help clinicians adjust the treatment plan in time to improve the treatment effect. 4) 

Individualized treatment: AD progression prediction algorithms and models can 

provide individualized treatment plans based on patients' clinical data. For example, the 

model can predict the patient's response to a certain medicine, thus assisting clinicians 

in selecting the optimal treatment plan. 5) Health management: the analysis of health 

data can predict the risk of AD for a patient. This can assist patient to take preventive 

actions to reduce the risk of AD. 6) Pathology analysis: AD progression prediction 

model can analysis patients' pathology data, including brain images, blood and 

cerebrospinal fluid biomarkers, etc. It assists clinicians in gaining a comprehensive 

understanding of a patient's condition, making accurate diagnostic and treatment 

decisions. 7) Translational medicine research: it can be utilised to investigate the effects 

and impact of different therapeutic intervention programs, providing reliable evidence 

for clinical practice. 8) Data mining: medical databases can utilise the proposed 

algorithms and models to mine and analyse large amounts of clinical data to discover 

potential disease risk factors, treatment effects, etc., providing accurate and effective 

support for medical researches and clinical practices.  

 

The proposed algorithm and model for AD progression prediction in clinical scenarios 

has the following advantages: 1) Improved early diagnosis: it can help clinicians to 

diagnose AD early, including MCI and early AD lesions. It is important for the 

treatment and management of patients. Traditionally, the diagnosis of AD is typically 

diagnosed when clinical symptoms appear and progress to later stages, which often has 

caused irreversible brain damage and is relatively poorly treated. Therefore, being able 

to accurately diagnose and predict AD at an early stage of disease progression assists 

clinicians in taking early interventions to improve treatment outcomes and quality of 

life. 2) Improve the accuracy and efficiency of clinical decision-making: it can assist 

clinicians to diagnose and treat patients in more precise manner, improve the accuracy 

and efficiency of clinical decision-making, and provide better medical services to 

patients. 3) Promote the development of precision medicine: it can build personalized 
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treatment plans by analysing a large number of medical records and genomics data, 

improve treatment effects, and promote the development of precision medicine. 4) 

Improve the efficiency of clinical research: it can be utilised in clinical research to 

facilitate researchers to identify potential medicine targets and treatment strategies, as 

well as to enhance the efficiency and precision of research. 5) Reduce medical costs: it 

can improve the efficiency of medical resources utilisation, reduce non-essential tests 

and treatments, thus reducing medical costs and providing affordable medical services 

for patients. 6) Saving medical resources: it can assist clinicians to detect diseases at an 

early stage and intervene in time, thus reducing the cost of later treatment and 

management to save medical resources. 7) Improving the life experience of patients: it 

can provide patients with intelligent and convenient medical services, which helps 

patients obtain a better life experience and quality. 8) Promote the development of 

medical intelligence and digitalization: it is an important part of the development of 

medical intelligence and digitalization, which can enhance the efficiency of medical 

resources utilisation, reduce medical costs and improve medical quality. 9) Improve 

self-management and self-monitoring ability of patients: it can provide patients with 

greater self-management and self-monitoring tools to assist patients to have better 

control of their conditions and health status, thus better managing and controlling 

diseases. 10) Provide better care and support for families: it can help families better 

understand patients' conditions and health status and provide scientific, systematic care 

and support, thus reducing the burden and pressure on families. 11) Provide a data 

foundation for scientific research: it can contribute to scientific research by providing 

an important data foundation, assisting researchers to understand more deeply the 

mechanisms of disease occurrence and treatment principles, thus promoting the 

development of scientific research.  
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5.9 Summary 

 

In this chapter, the multi-dimensional tensor multi-task learning regression algorithm 

and model are developed to describe the utilisation of multi-task learning algorithms 

combined with tensor-based data for AD progression prediction. The design goal of the 

algorithm and model is to enhance the accuracy, stability and interpretability of AD 

progression prediction in medical small dataset scenarios utilising multi-task learning 

ideas combined with quantitative multi-dimensional tensor of spatio-temporal 

structural variation information of MRI brain biomarkers from the Chapter 4. The 

algorithm and model are detailed in three modules: task and task relationship definition 

for tensor multi-task learning, algorithmic regularisation term and tensor multi-task 

learning regression algorithms. The components of the algorithm and model are 

analysed and defined. Then, the section presents the experimental configurations and 

processes required for the multi-dimensional tensor multi-task learning regression 

algorithm and model, as well as the testing and analysis of the algorithm and model 

results. Specifically, our quantitative approach (amalgamated magnitude-direction 

quantification) considers the magnitude and directional correlations of structural 

variation between brain biomarkers and quantifies them as third-order tensors to 

address the monotonic data form problem, and tensor multi-task learning regression 

utilises tensor latent factors as multi-task relationships to share knowledge and enhance 

model generalisation to address small dataset problem. Experimental results 

demonstrate that the proposed approach can be utilised to recognize brain structural 

variation differences in AD, CN and MCI individuals, with the ability to predict and 

diagnose AD progression, and requires only MRI data from patients to achieve superior 

prediction performance.  
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Chapter 6 
 

 

6. Interpretability of algorithm results 
 

 

This chapter presents the interpretability analysis from various aspects for the 

experimental results of the proposed multi-dimensional tensor multi-task learning 

regression algorithm. Interpretability refers to the readability and transparency of the 

algorithm, results and decision-making process. In this research, the readability and 

transparency of the algorithm and the decision-making process are ensured in the 

methodological design, on the basis of which this chapter interprets in detail the various 

parts of the algorithmic experimental results from both computer science and medical 

research perspectives. Section 6.1 investigates the latent factors of brain biomarkers 

derived from multi-dimensional tensor multi-task regression (AMDQ-TMTL) to 

recognize brain regions affected by AD progression. Section 6.2 explores and analyses 

the important relative structural variation correlations between brain biomarkers 

derived from experiments, which can be utilised to predict AD progression and can be 

exploited as potential indicators for early AD identification. Section 6.3 presents 

detailed analysis of potential indicators for AD early identification in terms of 

information on early relative structural variation between brain biomarkers 

corresponding to various specific disease progression time points.  

 

 

 

 

 

 



123 

 

6.1 Analysis of biomarker latent factors 

 

We investigated the brain biomarker latent factors derived from multi-dimensional 

tensor multi-task regression (AMDQ-TMTL). The latent factor of each biomarker is a 

vector, and its elements represent the membership for each brain biomarker position to 

the given latent factor. Figure 6.1-6.3 shows the spatial distribution of top 20 rank of 

brain biomarker latent factors when the model predicts MMSE for time point M12, 

M24, M36, M48, M60, M72, M84, M96, M108 and M120. And Figure 6.4-6.6 shows 

the spatial distribution of top 20 rank of brain biomarker latent factors when the model 

predicts ADAS-Cog. And Figure 6.7-6.9 shows the spatial distribution of top 20 rank 

of brain biomarker latent factors when the model predicts RAVLT TOTAL. And Figure 

6.10-6.12 shows the spatial distribution of top 20 rank of brain biomarker latent factors 

when the model predicts FLU ANIM. It can be seen from the figure that for different 

time points, the latent factors have different spatial distributions, which indicates that 

they capture different aspects of the spatial variability in the data. Visualisation was 

performed by the toolkit of BrainNet Viewer [305]. BrainNet Viewer can automatically 

arrange the value of the input latent factors to an appropriate range (radius: 2-7 mm), 

therefore we can more intuitively observe the difference in the size of the latent factors. 

The color represents the brain biomarker categories of latent factors. 
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6.1.1 For MMSE prediction targets 

 

 

Figure 6.1: Spatial distribution of the biomarker latent factors for AD time points 

M12, M24, M36 and M48 with MMSE prediction targets. The abbreviations for the 

brain regions are in Appendix C. 
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Figure 6.2: Spatial distribution of the biomarker latent factors for AD time points 

M60, M72, M84 and M96 with MMSE prediction targets. The abbreviations for the 

brain regions are in Appendix C. 
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For MMSE prediction targets, we observed that the three latent factors were dominated 

by cortical partition volume and mean cortical thickness at all time points, while total 

cortical surface area and specific white matter partition volume were also captured 

partially at later stages of disease (M96, M108 and M120).  

 

 

 

 

 

 

 

Figure 6.3: Spatial distribution of the biomarker latent factors for AD time points 

M108 and M120 with MMSE prediction targets. The abbreviations for the brain 

regions are in Appendix C. 
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6.1.2 For ADAS-Cog prediction targets 

 

 

Figure 6.4: Spatial distribution of the biomarker latent factors for AD time points 

M12, M24, M36 and M48 with ADAS-Cog prediction targets. The abbreviations for 

the brain regions are in Appendix C. 
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Figure 6.5: Spatial distribution of the biomarker latent factors for AD time points 

M60, M72, M84 and M96 with ADAS-Cog prediction targets. The abbreviations for 

the brain regions are in Appendix C. 
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For ADAS-Cog prediction targets, the distribution of brain biomarker latent factors is 

similar to that of the MMSE prediction target, which can be attributed to the fact that 

the ADAS-Cog test covers all aspects of the MMSE test and includes additional tests 

of executive function, visuospatial ability and abstract thinking. Specifically, we 

observed that the three latent factors were dominated by cortical partition volume and 

mean cortical thickness at all time points, while standard deviations of cortical thickness, 

total cortical surface area and specific white matter partition volume were also captured 

partially at later stages of the disease (M96, M108 and M120).  

 

 

 

Figure 6.6: Spatial distribution of the biomarker latent factors for AD time points 

M108 and M120 with ADAS-Cog prediction targets. The abbreviations for the brain 

regions are in Appendix C. 
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6.1.3 For RAVLT TOTAL prediction targets 

 

 

Figure 6.7: Spatial distribution of the biomarker latent factors for AD time points 

M12, M24, M36 and M48 with RAVLT TOTAL prediction targets. The 

abbreviations for the brain regions are in Appendix C. 
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Figure 6.8: Spatial distribution of the biomarker latent factors for AD time points 

M60, M72, M84 and M96 with RAVLT TOTAL prediction targets. The 

abbreviations for the brain regions are in Appendix C. 
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For RAVLT TOTAL prediction targets, We observed that the three latent factors were 

dominated by cortical partition volume and mean cortical thickness at all time points, 

with mean cortical thickness being captured substantially in the early stages of disease 

(M12, M24 and M36), and cortical partition volume being captured substantially in the 

middle stages of disease (M48, M60, M72 and M84), and from middle to late stages of 

disease (M84, M96, M108 and M120), the total cortical surface area and the specific 

white matter compartment volumes are captured partially in addition to cortical 

compartment volumes and mean cortical thickness.  

 

 

 

Figure 6.9: Spatial distribution of the biomarker latent factors for AD time points 

M108 and M120 with RAVLT TOTAL prediction targets. The abbreviations for the 

brain regions are in Appendix C. 



133 

 

6.1.4 For FLU ANIM prediction targets 

 

 

Figure 6.10: Spatial distribution of the biomarker latent factors for AD time points 

M12, M24, M36 and M48 with FLU ANIM prediction targets. The abbreviations for 

the brain regions are in Appendix C. 
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Figure 6.11: Spatial distribution of the biomarker latent factors for AD time points 

M60, M72, M84 and M96 with FLU ANIM prediction targets. The abbreviations for 

the brain regions are in Appendix C. 
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For FLU ANIM prediction targets, we observed that all three latent factors were 

dominated by cortical partition volume and mean cortical thickness at all time points, 

but differed from the three previous cognitive score tests in that cortical partition 

volume was captured at a higher proportion than average cortical thickness during early 

and mid-stage disease (M12, M24, M36, M48, M60, M72 and M84). In the later stages 

of the disease (M96, M108 and M120) the standard deviation of cortical thickness, the 

total cortical surface area and the volume of specific white matter subdivisions are 

captured partially, similarly to the three previous cognitive scores. 

 

 

Figure 6.12: Spatial distribution of the biomarker latent factors for AD time points 

M108 and M120 with FLU ANIM prediction targets. The abbreviations for the brain 

regions are in Appendix C. 
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6.2 Interpretability of structural variation correlations between brain 

biomarkers 

 

The interpretability of approach and results is as crucial in medical research as model 

performance. Because there is currently no cure for AD, the key to present treatment is 

early detection and prevention of the disease. Therefore, identifying significant brain 

biomarker structural variation correlations in early MRI data can assist clinicians 

recognize individuals with suspected AD for early prevention. To facilitate readability, 

all the top 10 brain biomarker structural variation correlations of the proposed AMDQ-

TMTL approach for all time points and prediction targets are included in Appendix D. 

For instance, the top 10 brain biomarker structural variation correlations of the proposed 

AMDQ-TMTL approach are shown in descending order of the weighted parameter 

values by MMSE prediction at time point M12 in Table 6.1. Higher values indicate a 

greater impact on the final prediction. The important brain biomarker correlations 

identified can be utilised as potential indicators for early identification of AD.  

 

6.2.1 For MMSE prediction targets 

Table 6.1: The top-10 rank brain biomarker correlations in time point M12 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5301 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5244 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.5145 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.4916 

Vol(C). of R.Precentral - CTA. of R.Supramarginal 0.4889 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.4679 

CTA. of R.SuperiorTemporal - CTA. of L.SuperiorFrontal 0.4582 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.4479 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.4289 

Vol(C). of R.Supramarginal - Vol(C). of L.Precuneus 0.4261 
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We discovered that brain structural variation correlations between several brain 

biomarkers were significant at all time points or most time points (nine out of ten time 

points). Specifically, they are Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal, 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal, CTA. of L.Postcentral - Vol(C). 

of L.SuperiorParietal and CTA. of L.InferiorParietal - CTA. of L.Precentral.  

 

For Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal, the right inferior parietal 

lobule is involved in the perception of emotion and interpretation of sensory 

information in facial stimuli [306]. The right inferior parietal lobule is associated with 

language, mathematical operations and bodily imagery. The structural variation 

correlation between cortical volume and mean cortical thickness in the right inferior 

parietal lobule of the brain can be a factor in the low verbal vocabulary, naming 

difficulties and impaired numeracy symptoms of AD patients.  

 

For CTA. of R.Precuneus - Vol(C). of R.Supramarginal, the anterior part of the right 

precuneus is associated with self-awareness (self-personality perception, introspection) 

and the posterior part with episodic memory, while the other part of the right precuneus 

is associated with visuospatial processing [307]. The right supramarginal gyrus 

contains part of Wernicke's area and is closely related to language function. It is a part 

of the somatosensory cortex, which interprets tactile signals and is also associated with 

the perception of space and limb position. It is involved in the perception of other 

people's gestures and postures and thus is a part of the mirror neuron system [308]. This 

correlation can be a factor in the appearance of temporal orientation deficits, ability to 

orientate to places and people, difficulty orienting to geographical locations, poor 

visuospatial ability of complex structures in AD patients. 

 

For CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal, the left postcentral gyrus is 

the site of primary somatosensory cortex, which is the nerve centre of somatosensory 

system, and this area perceives a variety of bodily sensations from the body, including 
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touch, pressure, temperature and pain [309]. The left superior parietal gyrus is 

associated with the brain's spatial orientation function, which remembers the location 

of objects in space. It plays an important role in manipulation and resetting of 

information in working memory. In addition, the left superior parietal gyrus receives a 

large amount of visual information and sensory information from hand, which can form 

a sense of object shape, roughness, size, material, etc [310]. The left postcentral gyrus 

processes sensory information mainly on the right side of body, while the left superior 

parietal gyrus is typically associated with mathematical and computational abilities, 

they perform important functions in spatial sensation and cognition. This correlation 

can be a factor in behavioural disturbances, progressive decline in daily living skills 

and limb stiffness in AD patients.  

 

For CTA. of L.InferiorParietal - CTA. of L.Precentral, the left precentral gyrus is 

located on the lateral surface of each frontal lobe, it runs parallel to the central sulcus 

and extends to the precentral sulcus [311]. The primary motor cortex is located in the 

left precentral gyrus and is responsible for controlling voluntary motor movements. 

Both left Inferior parietal and left precentral are parts of the human cerebral cortex that 

work in tandem to control the movement and sensation of the body's muscles. They 

perform major functions in muscle movements, language processing, attention and 

spatial perception. This correlation can be a factor in the occurrence of spatial memory, 

working memory, word and semantic memory, difficulties in comprehending and 

utilising language, task performance skills and cognitive control problems in AD 

patients. 

 

In addition to brain structural variation correlations between several brain biomarkers 

that were significant at all or most time points (nine out of ten), we identified two brain 

structural variation correlations that are significant in the early stages of AD 

progression and that can be utilised to identify whether a patient is in the AD early 

stages. Specifically, they are Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal and 
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Vol(C). of R.Precentral - CTA. of R.Supramarginal.  

 

For Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal, we have mentioned above 

that the right postcentral gyrus and the left superior parietal gyrus are both located in 

the parieto-occipital region of the brain and they have important functions in sensory, 

motor and cognitive functions. Although the right postcentral gyrus and left superior 

parietal gyrus have distinct sensory and cognitive functions, they are often required to 

collaborate with each other in processing complex perceptual information and cognitive 

tasks. Researches have demonstrated that there is a large number of neural connections 

between the two regions and that they have similar activation patterns in cognitive tasks, 

thus it can be hypothesized that they are interdependent in sensory and cognitive aspects 

[312][313]. This correlation can be a factor in the early stages of AD patients in terms 

of cognitive impairment, behavioural problems and motor control disorders.  

 

For Vol(C). of R. Precentral - CTA. of R.Supramarginal, the right precentral gyrus and 

the right supramarginal gyrus interact in 1) The control and perception of bodily 

movements. 2) Language and reading: the right supramarginal gyrus have an important 

function in language processing, including reading and writing. The right precentral 

gyrus can be involved in reading and language production. 3) Attention and cognitive 

control: the right supramarginal gyrus have an essential contribution to cognitive 

control and attention, while the right precentral gyrus requires attentional regulation in 

the control of body movements. Therefore, there can be an association between these 

two areas in terms of cognitive control and attention. 4) Motor imagery: the right 

precentral gyrus is activated when people imagine performing a certain movement. The 

right supramarginal gyrus can be involved in the execution and control of motor 

imagery. 5) Social emotion: the right supramarginal gyrus can have an essential 

function in the perception and expression of social emotion. The right precentral gyrus 

is implicated in the expression of social emotions, such as facial expressions and 

gestures. 6) Cognitive flexibility: it refers to the ability of people to adapt and adjust 
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their thinking and behaviour in response to different situations. This correlation can be 

a factor in social cognitive impairment and behavioural changes, attention and 

executive function impairment, diminished working memory and learning ability, 

language and communication impairment, spatial cognition and orientation perception 

impairment, visual motion perception and visual-spatial processing impairment in AD 

patients.  

 

6.2.2 For ADAS-Cog prediction targets 

 

We discovered that one brain structural variation correlation between brain biomarkers 

were significant at most time points (nine out of ten time points). Specifically, it is 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal. The left inferior parietal 

lobule and left superior parietal gyrus on the left side of brain are two areas of the 

parietal lobe of brain that are associated with each other in the following aspects 

[306][310][314]: 1) Spatial cognition and visuospatial processing: the left inferior 

parietal lobule is responsible for processing information on the shape, size, orientation 

and position of objects, while the left superior parietal gyrus is responsible for 

processing visuospatial information and the position of the body in space. The two areas 

work in tandem to enable accurate perception and processing of objects and space in 

the surrounding environment. 2) Hand-eye coordination: these two regions operate in 

concert when performing fine hand manipulation, such as writing, playing the piano or 

playing ball, etc. The left inferior parietal lobule collects visual information from the 

eyes and works in concert with the motor control region in the left superior parietal 

gyrus to regulate the movements of the arm and hand in order to achieve accurate hand-

eye coordination. 3) Memory and attentional control: the left inferior parietal lobule is 

associated with working memory and attentional control, particularly in the areas of 

spatial cognition and object recognition. The left superior parietal gyrus is related to 

attention and inhibition control, assisting to filter and ignore irrelevant information in 

order to better focus on and process information of interests. 4) Mathematical ability: 

the left inferior parietal lobule is one of the key domains of mathematical ability, while 
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the left superior parietal gyrus is involved in aspects relating to spatial cognition and 

mathematical computation. These two areas cooperate to support complex 

mathematical operations such as computation, geometric reasoning and algebraic 

operations. 5) Language processing: the left inferior parietal lobule is involved in 

language processing, particularly in the understanding of the syntax and semantics of 

language. The left superior parietal gyrus is involved in phonological and intonation 

processing. These two areas contribute to better understanding and expression of 

language by working in tandem. 6) Attention and awareness: the left inferior parietal 

lobule is responsible for maintaining the stability and regulation of attention, while the 

left superior parietal gyrus is concerned with body sensation and body orientation. 

These two areas work in synergy to support the regulation of consciousness and 

attention. This correlation can be a factor in the memory loss, difficulty concentrating, 

reduced decision-making ability, language impairment, diminished ability to perform 

activities of daily living, and increased difficulty in self-care and social activities 

experienced by AD patients.  

 

In addition to the brain structural variation correlation that was significant at most time 

points (nine out of ten), we identified two brain structural variation correlations that are 

significant in the early stages of AD progression and that can be utilised to identify 

whether a patient is in the AD early stages. Specifically, they are Vol(C). of 

R.Postcentral - CTA. of L.SuperiorParietal and Vol(C). of R.InferiorParietal - CTA. of 

R.InferiorParietal.  

 

For Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal, this correlation was 

similarly seen in MMSE, demonstrating its significant representation in the early stages 

of AD progression.  

 

For Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal, this correlation appears 

similarly in the MMSE, but unlike the MMSE which indicates importance at all time 
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points, it only indicates significance in the early stages of AD for ADAS-Cog 

predictions. The possible reason for this is that due to the different detection methods 

and focus of MMSE and ADAS-Cog, the correlation highlights the importance of 

different aspects. The MMSE is a simple test that is widely utilised to assess brain 

function and cognitive ability. The test consists of a series of simple questions on 

memory, attention, orientation, language and visuospatial ability. The ADAS-Cog is a 

more detailed and comprehensive assessment tool for cognitive function, covering all 

aspects covered in the MMSE test and with the addition of more test items such as 

executive function, visuospatial ability and abstract thinking. Therefore, the MMSE is 

mainly intended to assess the degree of cognitive ability, especially in early diagnosis 

of diseases such as MCI and AD. On the other hand, the ADAS-Cog is a more 

comprehensive assessment tool for evaluating various aspects of cognitive function and 

is utilised to monitor disease progression and assess the treatment effectiveness. 

Therefore, this correlation has a prescient predictive ability for additive test components 

of the ADAS-Cog such as executive function, visuospatial ability and abstract thinking, 

and a global predictive ability for aspects of memory, attention, orientation, language 

and visuospatial ability.  

 

6.2.3 For RAVLT TOTAL prediction targets 

 

We discovered that one brain structural variation correlation between brain biomarkers 

were significant at most time points (nine out of ten time points). Specifically, it is CTA. 

of R.ParsTriangularis - CTA. of L.Postcentral. The right pars triangularis involves 

semantic processing of language [315]. The right pars triangularis and the left 

postcentral gyrus are both areas of the human cerebral cortex. Connections between the 

right pars triangularis and the left postcentral gyrus are primarily concerned with 

language processing and the transmission of tactile information from the face and oral 

cavity [316][317][318]. Language processing involves the activity of oral and facial 

muscles, and sensory information from these muscles comes from tactile receptors on 

the face and mouth, and information from these receptors is passed to the left 
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postcentral gyrus for processing. The information is then converted into language 

signals and processed via neural pathways connected to the right pars triangularis. In 

the production and processing of language, the right pars triangularis is responsible for 

the phonological production and grammatical processing of language, while the left 

postcentral gyrus is responsible for the processing of sensory information from the body, 

which includes tactile sensations and temperature, etc. Therefore, during speech 

production, the activity of the facial muscles produces tactile signals that are passed to 

the left postcentral gyrus for processing and then through the neural pathways to the 

right pars triangularis. Right pars triangularis translates this information into speech 

signals and performs grammatical analysis and processing. This correlation can be a 

factor in causing AD patients to have problems in understanding phonology, grammar 

and vocabulary.  

 

In addition to the brain structural variation correlation that was significant at most time 

points (nine out of ten), we identified two brain structural variation correlations that are 

significant in the early stages of AD progression and that can be utilised to identify 

whether a patient is in the AD early stages. Specifically, they are Vol(C). of 

R.Postcentral - Vol(C). of L.SuperiorParietal and Vol(C). of L.Precentral - Vol(C). of 

L.Precuneus.  

 

For Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal, the right postcentral and 

left superior parietal areas of the brain are two important neural regions in the human 

brain that are critical in the processing and transmission of sensory information 

[312][319]. These two areas work synergistically in a number of cognitive tasks, for 

instance, simultaneous activation in the execution and perception of hand movements, 

visual-spatial attention, and language comprehension. This correlation can be a factor 

in the clinical manifestations of reduced sensory and spatial cognition, inattention and 

behavioural abnormalities in AD patients. For instance, patients experience a 

significant decline in spatial memory and spatial navigation in the early stages of AD, 
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along with a loss of control over bodily sensations. The right postcentral is the area of 

the brain responsible for the processing and integration of sensory information, while 

the left superior parietal is involved in the cognition of bodily sensations and spatial 

orientation. Damage to these regions in AD patients can result in loss of control of body 

sensation, manifested by symptoms such as numbness in the limbs, loss of sensation 

and balance.  

 

For Vol(C). of L.Precentral - Vol(C). of L.Precuneus, The left precentral gyrus and the 

left precuneus are two distinct brain regions, and in researches of cognitive 

neuroscience field, the left precentral gyrus and left precuneus of brain are considered 

to potentially collaborate with each other when performing complex cognitive tasks 

[320][321]. For instance, the activity of both the precentral gyrus and precuneus 

increases when performing action observation tasks. This can reflect the synergistic 

interaction of these two regions when observing the actions of others. And when people 

perform a spatial memory task, both structural and functional connectivity between the 

precentral gyrus and precuneus are enhanced, suggesting that there can be mutual 

collaboration between these two brain regions in spatial memory. This correlation can 

be a factor in the motor dysfunction, progressive decline in daily living skills, severe 

impairment of near and distant memory, and reduced visuospatial ability of simple 

structures in AD patients.  

 

6.2.4 For FLU ANIM prediction targets 

 

We discovered that brain structural variation correlations between several brain 

biomarkers were significant at all time points or most time points (nine out of ten time 

points). Specifically, they are Vol(C). of R.SuperiorFrontal - Vol(C). of 

L.SuperiorFrontal, Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal and 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal.  

 

For Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal, the superior frontal 
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gyrus is implicated in higher-order cognitive functions of the brain, particularly 

working memory [322][323]. The superior frontal gyrus on one side of the cerebral 

hemisphere is responsible for planning certain complex movements on the other side of 

body. The right superior frontal gyrus and the left superior frontal gyrus are both 

prefrontal areas of the cerebral cortex that perform important functions in cognitive and 

emotional functions. The left superior frontal gyrus is involved in language processing 

and executive control functions, while the right superior frontal gyrus is more 

associated with attention and working memory. This correlation can be a factor in the 

cognitive and behavioural deficits, attention defects, mood disorders and impaired 

memory function in AD patients.  

 

For Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal, The left superior frontal 

gyrus is associated with speech and language-related cognitive functions, such as 

language production, comprehension and processing [324]. At the same time, this area 

is implicated in a number of other cognitive processes, such as spatial cognition and 

attention. This correlation can be a factor in the impaired higher cognitive functions, 

reduced decision-making, executive control and planning ability, reduced language and 

memory skills, and working memory impairment in AD patients. 

 

For Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal, the right middle frontal 

gyrus is associated with literacy and numeracy, and is involved in cognitive processes 

such as decision-making, planning and executive control. Activation of both regions 

frequently occurs simultaneously during the performance of cognitive control tasks 

[312][325]. Both regions have a major impact on self-awareness and spatial perception 

in humans. Specifically, the right precuneus is regarded as the centre of the brain's self-

awareness, assisting in building perceptions of the self by participating in the processing 

of emotion regulation and emotional experience, as well as integrating external and 

internal sensory information. The right middle frontal gyrus has a significant role in 

spatial cognition and attentional control, assisting in understanding information such as 
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spatial orientation and distance, as well as in attentional shifts and task performance. 

These two regions are closely linked in visual image processing and language 

processing as well. Specifically, the right precuneus is involved in the brain's higher-

level processing of visual images and the integration of visuospatial information, while 

the right middle frontal gyrus functions in expression and comprehension of language, 

assisting in language processing and the construction of meaning. This correlation can 

be a factor to the cognitive control and executive function deficits, inability to calculate, 

reduced judgement, inability to analyse, think and judge events, difficulty in dealing 

with complex problems, impaired spatial orientation, reduced visuospatial ability of 

complex structures and severe impairment in processing problems and identifying 

similarities and differences in things experienced by AD patients.  

 

In addition to brain structural variation correlations between several brain biomarkers 

that were significant at all or most time points (nine out of ten), we identified a number 

of brain structural variation correlations that are significant in the early stages of AD 

progression and that can be utilised to identify whether a patient is in the AD early 

stages. Specifically, they are Vol(C). of L.Precentral - CTA. of L.Supramarginal, 

Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal, Vol(C). of R.SuperiorFrontal - 

Vol(C). of L.Precentral and Vol(C). of R.Precentral - CTA. of R.CaudalMiddleFrontal.  

 

For Vol(C). of L.Precentral - CTA. of L.Supramarginal, the left precentral gyrus and 

left supramarginal gyrus are two vital regions of the human brain, the neural 

connections between these two regions are essential for speech and motor control, 

helping to translate the information heard into spoken language during comprehension, 

and enabling muscle movements in the mouth and throat through motor control 

[326][327][328]. This correlation can be a factor in the impaired motor function, 

reduced body-motor sensory, impairments in language and reading, and impaired social 

interaction in AD patients.  
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For Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal, both left precuneus and left 

superior parietal gyrus are involved in the processing of bodily sensory and motor 

control, and they are associated with higher cognitive functions such as attention and 

working memory [329][330][331]. In addition, both regions are implicated in the 

processing of spatial attention and motor planning in response to task stimuli. For 

instance, in terms of the processing of spatial perception and cognition, the left 

precuneus processes the perception, memory and orientation of spatial relations, while 

the left superior parietal gyrus processes motion and position sensation, vision and 

spatial cognition. In terms of attention and working memory, the left precuneus is 

associated with visuospatial attention, while the left superior parietal gyrus deals with 

motor and spatial attention. Both areas are associated with the processing of working 

memory, especially when information is required to be maintained and manipulated. In 

terms of cognitive control, the left precuneus is involved in the process of decision 

making and execution of plans, while the left superior parietal gyrus is involved in the 

process of planning and adjusting behaviour. This correlation can be a factor in the 

symptoms of orientation and navigation difficulties, diminished spatial memory and 

spatial planning abilities, attention deficits, impaired working memory, reduced 

cognitive flexibility and creativity in AD patients.  

 

For Vol(C). of R.SuperiorFrontal - Vol(C). of L.Precentral, although the right superior 

frontal gyrus and the left precentral gyrus are situated in different regions of the brain, 

their functions overlap to certain extents. For instance, the coordination and execution 

of muscle movements is required when performing certain higher cognitive tasks, 

which involve the interaction of the two regions, these higher cognitive functions 

include attention, working memory, decision making and planning [332][333]. This 

correlation can be a factor in the occurrence of cognitive and motor decline, hand 

movement disorders, attention and working memory loss, behavioural disturbances and 

language impairment in AD patients.  
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For Vol(C). of R.Precentral - CTA. of R.CaudalMiddleFrontal, both the right precentral 

gyrus and the right middle frontal gyrus perform significant motor and cognitive 

functions, working in tandem to control the body's movements [332][334]. For instance, 

the right middle frontal gyrus can "pre-program" the right precentral gyrus to assist in 

the execution of a predetermined movement sequence before the activity is undertaken. 

This correlation can be a factor in symptoms of impaired motor function (including gait 

instability and limb stiffness), abnormal behaviour, diminished decision-making, 

emotional instability, language impairment and impaired comprehension in AD patients. 

 

6.3 Potential indicators for AD early detection 

 

This section provides a detailed explanation of the significant biomarker correlations 

identified in Section 6.2 in terms of differences in the distribution of AMDQ 

quantitative values of early stage (BL-M06) spatio-temporal structural variation 

correlations (e.g. Figure 6.13) and differences in the distribution of relative structural 

variation states between biomarkers (e.g. Figure 6.14) for cognitively impaired and 

non-cognitively impaired individuals at various time points. To facilitate readability, 

all the significant biomarker correlations information for all time points are included in 

Appendix E. 

 

For Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal (Figure E.1-E.4), it was 

observed that non-cognitively impaired individuals would have a higher probability of 

experiencing structural variation in the opposite direction and a lower probability of 

experiencing structural variation in both growth between the two biomarkers at the 

early stage (BL-M06) than cognitively impaired individuals. 

 

For CTA. of R.Precuneus - Vol(C). of R.Supramarginal (Figure E.5-E.8), it was 

observed that non-cognitively impaired individuals would have a greater probability of 

having structural variation in the opposite direction and a lower probability of having 
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structural variation in both grow between the two biomarkers at the early stage (BL-

M06) than cognitively impaired individuals. 

 

Figure 6.13: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure 6.14: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for Vol(C). of R.InferiorParietal - 

CTA. of R.InferiorParietal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M12 to M60. 
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For CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal (Figure E.9-E.12), it was 

observed that non-cognitively impaired individuals had a slightly greater probability of 

opposite direction structural variation between the two biomarkers than cognitively 

impaired individuals at the early stage (BL-M06), and that the AMDQ quantification 

of the opposite direction biomarker structural variation correlation was more 

concentrated between -0.25 and -0.75 for non-cognitively impaired individuals, 

whereas the corresponding AMDQ quantification was more evenly distributed in 

cognitively impaired individuals.  

 

For CTA. of L.InferiorParietal - CTA. of L.Precentral (Figure E.13-E.16), it was 

observed that non-cognitively impaired individuals had a higher probability of opposite 

direction structural variation and a lower probability of both growth structural variation 

between the two biomarkers than cognitively impaired individuals at an early stage 

(BL-M06) and that the correlations of opposite direction biomarker structural variation 

in AMDQ were more concentrated between -0.5 and -1 in non-cognitively impaired 

individuals, whereas the corresponding AMDQ quantitative distribution was more 

concentrated between -0.4 and -0.75 for cognitively impaired individuals.  

 

For Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal (Figure E.17-E.20), it 

was observed that non-cognitively impaired individuals experienced a greater 

probability of opposite directional structural variation between the two biomarkers than 

cognitively impaired individuals at early stages (BL-M06). At later time points (M72 

to M120) samples, cognitively impaired individuals had a greater probability of both 

decline structural variation and a lower probability of both growth structural variation 

between the two biomarkers than non-cognitively impaired individuals at early stages 

(BL-M06). 

 

For CTA. of R.ParsTriangularis - CTA. of L.Postcentral (Figure E.21-E.24), it was 

observed that cognitively impaired individuals experienced a higher probability of both 

growth structural variation and a slightly lower probability of opposite direction 
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structural variation between the two biomarkers than non-cognitively impaired 

individuals at the early stage (BL-M06). 

 

For Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal (Figure E.25-E.28), it 

was observed that cognitively impaired individuals exhibited a greater probability of 

both growth structural variation and a lower probability of opposite direction structural 

variation between the two biomarkers than non-cognitively impaired individuals at the 

early stage (BL-M06). 

 

For Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal (Figure E.29-E.32), it 

was observed that cognitively impaired individuals experienced a slightly greater 

probability of both decline structural variation and a slightly lower probability of both 

growth structural variation between the two biomarkers than non-cognitively impaired 

individuals at the early stage (BL-M06).  

 

For Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal (Figure E.33-E.36), it 

was observed that non-cognitively impaired individuals experienced a greater 

probability of opposite direction structural variation, a lower probability of both decline 

structural variation and a lower probability of both growth structural variation between 

the two biomarkers than cognitively impaired individuals at the early stage (BL-M06). 

 

6.4 Summary 

 

This chapter presents interpretable analyses of the experimental results of the proposed 

multi-dimensional tensor multi-task learning regression algorithm from various aspects. 

Specifically, the latent factors of brain biomarkers derived from multi-dimensional 

tensor multi-task regression (AMDQ-TMTL) were first investigated to identify brain 

regions affected by AD progression. The analysis demonstrated that the latent factors 

were dominated by the volumes of cortical parcellations and average cortical thickness 
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at all time points for different cognitive score prediction tasks, but the latent factors 

were different in detail, maybe due to the different test orientations and methodologies 

of the different cognitive score tests. Significant relative structural variation 

correlations between brain biomarkers identified from the experiments were then 

explored and analysed, which could be utilised to predict AD progression and as 

potential indicators of early AD identification. The usage possibility of potential 

indicators for early AD identification is then analysed in detail based on the distribution 

of early stage quantitative AMDQ values and relative structural variation information 

of brain biomarkers for cognitively impaired and non-cognitively impaired individuals 

at various specific time points. 
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Chapter 7 
 

 

7. 4D tensor multi-task learning 
algorithm design for time-
continuous data 

 

 

The multi-dimensional tensor multi-task learning regression proposed in the previous 

sections can address both the monotonic data form and small dataset problems faced by 

disease progression prediction. In addition to the two critical problems mentioned 

above, disease progression prediction faces the problem of scarcity of time-continuous 

data, meaning that the number of available datasets further decreases as the disease 

progresses. In order to solve all three problems mentioned above at once, we increase 

the data dimensionality of the proposed multi-dimensional tensor multi-task learning 

regression from three to four dimensions and propose two diverse algorithms. In this 

chapter, we firstly present the concept of disease dynamics prediction utilised to address 

the above three problems, and then design and construct two time-continuous 

algorithms based on multi-dimensional tensor multi-task learning regression, namely 

4D tensor multi-task ensemble learning and 4D tensor multi-task continual learning 

respectively, and this chapter details the design concepts, construction processes, 

experimental results and analysis of each algorithm.  

 

7.1 Concept of disease dynamics prediction 

 

Machine learning techniques for predicting AD progression can substantially assist 

researchers and clinicians establish strong AD preventive and treatment strategies. 
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However, current research on AD prediction algorithms encounters challenges with 

monotonic data form, small dataset and scarcity of time-continuous data. In order to 

solve all three problems at once, we add the concept of disease dynamics prediction to 

the algorithms.  

 

The most important characteristic of disease dynamic prediction is its dynamic property, 

i.e., it can constantly update the prediction results based on the patient's historical data, 

current status and latest observation, and realize real-time monitoring and prediction. 

Since disease progression is a dynamic process, disease progression can be influenced 

by a variety of factors, including environmental factors, genetic factors, and lifestyle. 

And these factors can vary over time, thus affecting the disease progression. Therefore, 

it is not sufficient to make predictions based on the current state of the disease alone; it 

is necessary to dynamically assess and predict the future progression of an individual's 

disease in conjunction with its historical record and current state. This characteristic 

allows dynamic prediction of disease progression to have significant implications in 

clinical applications, providing more accurate and personalized treatment 

recommendations and helping clinicians to better formulate individualized treatment 

plans.  

 

Traditional disease diagnosis and treatment protocols often consider only the patient's 

current symptoms and condition, lacking long-term monitoring and prediction. In 

contrast, dynamic prediction of disease progression can combine a variety of 

information such as a patient's historical medical records and biomarkers to predict and 

monitor the future progression of a patient's condition. The dynamic approach to disease 

prediction not only allows earlier detection of disease variations, but also provides 

clinicians with more timely and accurate treatment recommendations. By analyzing 

patients' historical data, more accurate and comprehensive prediction models can be 

built and provide significant support for the design and result analysis of clinical trials. 
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In addition to the above benefits, disease dynamic prediction has the following 

advantages: 1) Improve patients' quality of life: disease dynamic prediction can help 

patients better comprehend the disease progression and possible complications, thus 

taking corresponding preventive actions and enhancing patients' quality of life. 2) 

Promote the development of precision medicine: dynamic disease prediction can 

provide personalized treatment plans based on individual patient characteristics and 

historical records, combined with the dynamic variation of the disease, thus promoting 

the development of precision medicine and improving the survival rate of patients and 

the success rate of medical treatment. 3) Provide reference for medicine development: 

disease dynamics prediction can provide relevant data and trends of disease progression 

to facilitate medicine development and improve treatment effectiveness. 4) Reduce 

medical costs: disease dynamics prediction can reduce medical costs for medical 

institutions and individuals through early detection and prevention of diseases, thus 

enhancing the efficiency and sustainability of medical resources utilisation.  

 

For the problem of the scarcity of time-continuous data. In real-world applications, 

people with suspected Alzheimer's disease will continue to be tested in hospitals, which 

is a waste of future incremental data if only a baseline model is utilised or if the patient's 

ongoing testing records cannot be adequately incorporated. 

 

7.2 4D Tensor Multi-task Ensemble Learning 

 

In order to solve all three problems (monotonic data form, small dataset and scarcity of 

time-continuous data) at once, we add the concept of disease dynamics prediction to the 

algorithms. And to address the problem of the scarcity of time-continuous data, we 

proposed the gradient boosting ensemble learning approach to integrate continuous test 

recordings of subjects to continuously improve prediction accuracy. Specifically, the 

proposed algorithm and model are based on the previously proposed multi-dimensional 
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tensor multi-task learning regression to predict disease progression and utilise the 

gradient boosting ensemble learning approach to combine participants' current 

predictions with all previous predictions to further improve prediction accuracy and 

update prediction results when new MRI data are available to participants (Figure 7.1). 

 

7.2.1 Gradient boosting 

 

By combining a collection of weak learners to create stronger learners, ensemble 

learning has been proved to be efficient in a diversity of prediction tasks. Boosting is the 

dominating strategy in ensemble learning approaches, which generates a group of weak 

learners by training predictors sequentially rather than individually, with the goal of 

utilising the prior learner's errors to construct a more effective model for the next learner.  

 

Gradient Boosting (GB) is a boosting method extension that utilise gradient descent 

optimization methods to recognize global or local minima of cost function. It uses a 

 

Figure 7.1: The graphical representation of the proposed approach to deal with 

disease dynamics prediction (continuous updating of disease prediction results) for 

new patient. 
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sequence of weak learners to train the machine to fit the model on the input feature space, 

each of which enhances the prediction accuracy of learner before it. GB develops 

powerful learners by merging numerous weak learners in multiple iterations [335][336], 

The proposed approach improves prediction accuracy by gradually fitting a more precise 

model to the residuals of prior phase in the final stage of GB building framework. This 

procedure will remain on until a sufficiently precise model is produced. 

 

7.2.2 Algorithm design and construction 

 

Two successive MRI examinations were utilised to calculate the correlation of structural 

variation between different brain biomarkers. Preliminary versions of the quantitative 

technique (Amalgamated magnitude-direction quantification for brain structure 

variation) have been presented in Section 4.2, and this algorithm extends and implements 

it across number of subsequent time periods (BL to M06, M06 to M12, M12 to M24).  

 

The algorithm design is the same as the algorithm in Section 5.3.1, but applies its 

algorithm to each two consecutive time points, and then integrate and optimize all the 

results utilising the gradient boosting ensemble learning approach.  

 

7.3 4D Tensor Multi-task Continual Learning 

 

In order to solve all three problems (monotonic data form, small dataset and scarcity of 

time-continuous data) at once, we propose a novel machine learning approach that 

implements the 4D tensor multi-task continual learning algorithm to predict AD 

progression by quantifying multi-dimensional information on brain structural variation 

and knowledge sharing between patients. To meet real-world application scenarios, the 

method can integrate knowledge from all available data as patient data increases to 
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continuously update and optimise prediction results. Figure 7.2 illustrates the 4D tensor 

data structure constructed and exploited in this research.  

 

7.3.1 Algorithm design and construction 
 

In the real world, patients suspected of AD will continue to go to hospital for testing. 

Subsequent incremental data is wasted if only a baseline model is utilised or if 

consecutive test records of patients cannot be reasonably integrated. To solve the 

problem, we apply concept of continual learning to our approach, which can update the 

prediction results by allowing the model to receive new MRI data while receiving all 

the latent factors from all previous prediction models. Figure 7.3 depicts the 

architecture, learning process and real-world applications of the proposed approach. 

 

The correlation of structural variance between different brain biomarkers was 

calculated utilising two consecutive MRI scans. Quantitative approach has been 

presented in preliminary versions (Amalgamated magnitude-direction quantification 

 

Figure 7.2: The 4D tensor data structure constructed and utilised in the research. 
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for brain structure variation) in Section 4.2, and this work expands and executes it 

throughout a number of following time periods (BL to M06, M06 to M12, M12 to M24). 

 

To predict various cognitive scores (e.g., ADAS-Cog and MMSE) for AD at future time 

points. Consider the multi-dimensional tensor multi-task continual regression problem 

for t time points, n training samples with 𝑑ଵ and 𝑑ଶ features. Let X ∈  ℝௗభ×ௗమ× be 

the input three-dimensional tensor from two successive MRI records and it is the 

combination of correlation matrix for all n samples X ∈  ℝௗభ×ௗమ, Y = [yଵ, ⋯ , y௧ ] ∈

 ℝ×௧ be the targets (clinical scores) and y௧ = [𝑦ଵ, ⋯ , 𝑦 ] ∈  ℝ is the corresponding 

target at various time points.  

 

Figure 7.3: Architecture, learning procedure and real-world application for the 
proposed 4D tensor multi-task continual learning (4DTMTCL) approach. 
Specifically, from a single prediction perspective, we model the AD progression 
using a tensor multi-task learning algorithm based on the calculation of correlations 
of structural variation in brain biomarkers. Correlations are integrated into the 
algorithm to address the monotonic data form problem, while prediction for each 
patient sample is set as one task, with all tasks sharing a set of biomarker latent 
factors obtained through tensor decomposition to address the generalisation problem 
caused by small data sets. From a continuous prediction perspective, the new 
prediction model acquires all the latent factors from previous models and updates 
the predictions whenever the patient's MRI data is updated. 
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For t-th prediction time point, the objective function of proposed approach can be stated 

as follows:  

𝐿௧(𝑋, y௧) = min
, , , େ

1

2
‖yො௧ − y௧‖ଶ

ଶ +
𝜆

2
‖𝑋 −  ⟦A௧ ,  B௧,  C௧⟧ୗ‖

ଶ                

+  𝛽‖W௧,  A௧ ,  B௧,  C௧‖ଵ 

 

𝑦ො =    U

ௗమ

ୀଵ

ௗభ

ୀଵ 
 

where U = [𝜂⨀V + (1 − 𝜂)⨀(A௧B௧
)]⨀K⨀W௧⨀X , U ∈  ℝௗభ×ௗమ  

(7.1) 

where the first term calculates the empirical error with training data, yො௧ =

[𝑦ොଵ, ⋯ , 𝑦ො] ∈  ℝ  are predicted values, A௧  ∈  ℝௗభ×  is the latent factor matrix for 

first biomarker dimension and B௧  ∈  ℝௗమ×  is the latent factor matrix for second 

biomarker dimension with r latent factors, W௧  ∈  ℝௗభ×ௗమ  is the model parameter 

matrix for t-th prediction time point, 𝜆 and 𝛽 are the regularisation parameters. V ∈

 ℝௗభ×ௗమ  is knowledge base matrix which stores principal biomarker latent factors from 

all preceding model predictions. V is updated after each model prediction with 

following equation: V୬ୣ୵ = 𝜂⨀V୭୪ୢ + (1 − 𝜂)⨀(A௧B௧
) . The hyperparameter 𝜂  is 

utilised to control the proportion of preceding and present knowledge base that is 

employed. Acquiring latent factors by optimising the symmetric CP tensor 

decomposition objective function‖𝑋 −  ⟦A௧ ,  B௧,  C௧⟧ୗ‖
ଶ, where 𝑋 = ⟦A௧ ,  B௧,  C௧⟧ୗ =

∑
ଵ

ଶ
(a

௧ ∘  b
௧ ∘  c

௧ + b
௧ ∘  a

௧ ∘  c
௧)

ୀଵ   and ∘ denote outer product operation between 

two vectors, while a
௧, b

௧ and c
௧ correspond to vectors related with i-th latent factor 

for t-th prediction time point. ‖W௧ ,  A௧,  B௧,  C௧‖ଵ applying the ℓ1-norm on W௧, A௧, 

B௧ and C௧ matrices individually. We utilise the operator ⨀ as follows: Z = M ⨀ N 

denotes 𝑧 = 𝑚𝑛, for all i, j. And Z = 𝑚 ⨀ N denotes 𝑧 = 𝑚𝑛, for all i, j. The 

matrix K ∈  ℝௗభ×ௗమis the duplicate data correction matrix which was implemented to 

fix the duplicate data problem because the correlation tensor for brain structural 

variation created by the proposed quantification approach is a symmetric tensor, which 
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means that correlations between biomarkers are calculated in pairs, resulting in half of 

the data being duplicates. 

 

The rest of the algorithm design and construction is the same as the algorithm in Section 

5.3.1.  

 

7.4 Experimental results 

 

The experiments utilise the same experimental settings and sources (ADNI dataset) as 

in Section 3.4.1, with an additional pre-processing step added after the pre-processing 

procedure in Section 5.6, which is updated as follows:  

 Removal of image records with failed quality control;  

 Removal of features if more than half of the sample's values are missing;  

 Excluding subjects who lacked BL and M06 MRI;  

 The average of features was applied to fill in the missing data;  

 Exclude subjects who had no further MRI detections for the research of AD dynamic 

prediction.  

Tables 7.1 and 7.2, Figure 7.4 and 7.5 illustrate the experimental results of MMSE 

predictions. Tables 7.3 and 7.4, Figure 7.6 and 7.7 illustrate the experimental results of 

ADAS-Cog predictions. Tables 7.5 and 7.6, Figure 7.8 and 7.9 illustrate the 

experimental results of RAVLT TOTAL predictions. Tables 7.7 and 7.8, Figure 7.10 and 

7.11 illustrate the experimental results of FLU ANIM predictions. 

 

In terms of overall regression performance, our proposed approaches exceed single-task 

learning, benchmarks and state-of-the-art MTL approaches in terms of nMSE and wR 

for MMSE, ADAS-Cog, RAVLT TOTAL and FLU ANIM cognitive scores. 
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Furthermore, the proposed approaches achieve lower rMSE than comparison 

approaches for all individual time points. Our primary observations are as follows:  

 

1) The proposed 4D Tensor Multi-task Ensemble Learning (4DTMTEL) and 4D Tensor 

Multi-task Continual Learning (4DTMTCL) approaches outperform single-task learning 

models, benchmarks and state-of-the-art MTL models, which validates the application 

of similarity calculations that incorporate both magnitude and direction information of 

brain structural variation and the utilisation of the tensor latent factor hypothesis in our 

MTL formulation.  

 

2) Prediction stability is greatly increased by the suggested 4DTMTEL and 4DTMTCL 

approaches. The standard deviation of results for 20 iterations of the experiments were 

lower than that of the comparative approaches. This can be as a result of the fact that the 

proposed quantification approach combines knowledge on global brain variability and 

integrates latent factors from brain biomarkers to the prediction algorithm to increase 

stability.  

 

3) The chronologically continuous MRI recordings of the participants can be efficiently 

aggregated by the proposed 4DTMTEL approach to enhance prediction accuracy, and 

as time-continuous MRI records were increased, the prediction accuracy at subsequent 

time points increased. In contrast, the addition of time-continuous MRI recordings had 

no significant effect on the benchmarks and state-of-the-art competing approaches. 

 

4) In the scenario of AD dynamic prediction, the proposed 4DTMTCL approach can 

achieve outstanding results. Knowledge from the previous models and the present 

model are combined in the present prediction model. Prediction accuracy can be 

increased by time-continuous MRI recordings of the participants, and when additional 

time-continuous MRI recordings are provided, prediction accuracy increases over time. 
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Contrarily, the inclusion of time-continuous MRI recordings has no beneficial effect on 

the benchmarks and state-of-the-art competing approaches.  

 

5) We have observed that although continuous-time MRI data improves the prediction 

performance, it does not lead to a significant performance gain. This may be due to AD 

patients do not experience major brain structural variations in a short term, i.e., the brain 

structural variations presented by MRI data of AD patients in the early stage (BL to M06) 

are not significantly different from that presented by the MRI data in the later short 

stages (M06 to M12, M12 to M24). 



165 

 

 

Table 7.1: Comparison of the results from our proposed approach with benchmarks 

and state-of-the-art methods for MMSE at time points M12 to M48. The best results 

are bolded. 

Target: MMSE Input MRI data M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

4.0605±1.2386 

- 

- 

1.9052±1.1061 

- 

- 

1.7395±0.1282 

- 

- 

1.3466±0.1764 

- 

- 

1.5864±0.6592 

- 

- 

1.7686±0.1391 

- 

- 

1.4302±0.4354 

- 

- 

1.6373±0.3992 

- 

- 

1.8805±0.1909 

- 

- 

1.8372±0.1873 

- 

- 

1.3194±0.1091 

- 

- 

1.3194±0.1091 

- 

- 

5.0048±1.2526 

7.3996±1.5241 

- 

2.4768±1.5718 

2.9061±0.2043 

- 

1.7217±0.1640 

2.2411±0.1879 

- 

1.3788±0.2848 

1.7405±0.1550 

- 

1.6055±0.7507 

2.3473±0.2539 

- 

2.2371±0.4471 

2.3175±0.4090 

- 

1.5425±0.3381 

1.6922±0.1010 

- 

1.7305±0.4099 

1.5405±0.3122 

- 

1.9699±0.2790 

2.4891±0.6281 

- 

1.9649±0.6950 

1.7089±0.6240 

- 

1.4468±0.1247 

1.4352±0.1343 

- 

1.4468±0.1247 

1.4085±0.1382 

- 

4.0442±1.4497 

7.9911±1.6971 

9.5140±0.5463 

2.5940±0.7297 

3.0122±0.6175 

3.1207±0.8536 

1.8433±0.1870 

2.1053±0.6062 

2.2048±0.5030 

1.9872±0.1796 

2.2477±0.4332 

2.7400±0.3393 

1.6029±0.4876 

1.2499±0.5370 

1.5847±0.3165 

2.0123±0.2851 

1.8827±0.1246 

1.8288±0.1448 

1.7830±0.5100 

1.6497±0.1516 

1.7187±0.2140 

1.5596±0.6720 

1.9834±0.8174 

2.1884±0.5894 

2.1551±0.1280 

1.8632±0.7538 

1.7557±0.3493 

1.8731±0.5722 

2.2800±0.3541 

2.3536±0.8492 

1.5221±0.1048 

1.5952±0.2240 

1.5103±0.2104 

1.5221±0.1048 

1.5141±0.2379 

1.4661±0.2166 

5.5393±1.4989 

7.9596±1.8440 

9.7311±1.2082 

2.2096±0.6772 

3.2217±0.5007 

2.3820±0.4220 

1.7016±0.4988 

1.9857±0.8790 

2.2445±0.1649 

1.6300±0.3682 

2.3808±0.1430 

3.6115±0.2793 

1.8139±0.9093 

2.5298±1.1984 

1.8561±0.3992 

1.7532±0.5990 

2.0954±0.8623 

1.8031±0.1364 

2.0724±0.5488 

2.4353±0.6481 

1.9310±0.7061 

1.6122±0.5982 

1.8015±0.6018 

2.0873±0.1993 

1.8221±0.6720 

1.8624±0.7350 

1.8827±0.4350 

1.7281±0.5057 

2.0459±0.1398 

1.6002±0.6151 

1.5720±0.1066 

1.5457±0.1214 

1.5275±0.1396 

1.5720±0.1066 

1.5277±0.1147 

1.5131±0.1281 
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Table 7.2: Continuation of Table 7.1, comparison of the results from our proposed 

approach with benchmarks and state-of-the-art methods for MMSE at time points 

M60 to M120. The best results are bolded. 

Target: MMSE M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

6.3593±1.4969

8.2289±0.6598

9.6005±1.2726

2.2814±0.9163

3.2202±0.7442

3.0229±0.7160

1.8078±0.7116

1.6548±0.7567

2.5419±0.1712

1.6967±0.6013

2.4251±0.4989

2.4003±0.2102

1.8209±0.8150

2.1973±0.1435

2.1737±0.1826

1.6258±0.2276

1.6153±0.1950

2.0860±0.5319

1.9627±0.8186

2.4318±0.5330

2.2790±0.7284

2.3715±0.7826

2.3476±0.1237

2.4585±0.2939

1.9757±0.5196

1.7496±0.8844

1.9926±0.4640

1.5245±0.8603

1.8893±0.6059

2.0094±0.3696

1.4833±0.1649

1.4137±0.1929

1.4409±0.1776

1.4833±0.1649

1.4166±0.1647

1.4583±0.1580

7.9274±0.9130 

8.7497±1.5140 

9.1240±0.7957 

3.5367±1.8656 

3.0084±1.0496 

4.1972±0.6126 

1.9643±0.9502 

2.3353±0.5955 

1.7823±0.9306 

2.1037±0.6930 

2.3726±0.4320 

2.5715±0.1857 

2.2522±0.7898 

1.9645±0.3910 

1.8531±0.7090 

1.9267±0.6614 

1.9959±0.5304 

1.8906±0.3893 

1.9513±0.8896 

1.9267±0.1926 

1.6552±0.5087 

1.8304±0.2191 

1.5421±0.4664 

2.1518±0.1055 

2.1530±0.6055 

2.0029±0.4856 

2.5822±0.3401 

1.7714±0.4606 

1.9354±0.5053 

1.9294±0.2160 

1.5661±0.1684 

1.5745±0.1501 

1.4566±0.1983 

1.5661±0.1684 

1.4973±0.1948 

1.4047±0.1423 

7.5438±1.0703

7.9796±1.0312

8.9965±1.7003

4.4608±0.8752

4.7956±1.0323

4.8492±1.1596

2.1360±0.8765

2.2137±1.4488

1.8185±0.3213

2.5159±0.3190

2.3622±1.0407

2.9225±0.2710

2.3981±0.3207

2.6420±0.3640

2.6006±0.7572

2.0164±0.6971

2.0198±0.3995

2.2538±0.2050

2.1118±0.3061

2.1159±0.6690

2.5465±0.7302

1.8528±0.7210

2.3142±0.5606

2.6991±0.9247

2.2004±0.7192

1.6487±0.2324

2.0073±0.2722

1.8294±0.3123

1.7133±0.3051

2.5837±0.2923

1.6105±0.2253

1.7903±0.2986

1.6768±0.3934

1.6105±0.2253

1.6258±0.2817

1.5457±0.3498

7.1825±1.1658 

7.6519±1.5062 

9.4487±0.8986 

5.2756±2.1243 

4.2441±0.8997 

5.6150±1.8645 

2.6708±0.7499 

1.9908±0.9140 

2.7418±0.1237 

2.8206±0.5456 

2.2978±1.1791 

3.0332±0.2173 

2.6192±1.3076 

2.1932±1.0139 

3.2842±0.6721 

2.5265±0.2901 

2.7929±0.9338 

3.5946±1.0574 

1.9114±0.4402 

2.4782±0.2540 

2.2351±0.3470 

2.4228±0.8804 

2.3964±0.1815 

2.0088±0.1687 

1.9492±0.7142 

2.2326±0.3414 

2.1107±0.2498 

2.1448±0.8492 

2.6840±0.1889 

2.1787±0.2055 

1.6302±0.2874 

1.6384±0.2836 

1.6121±0.1870 

1.6302±0.2874 

1.6169±0.2485 

1.6158±0.1769 

7.3953±0.9400

7.1341±0.5937

7.9082±0.7490

5.1665±1.0716

5.8198±1.9195

5.0347±1.1981

3.0527±0.6373

2.7911±0.2629

3.2831±0.7004

2.8242±0.5211

3.2648±0.7847

2.8457±0.5165

2.2614±0.5827

2.5769±0.7082

2.7810±0.5580

3.0563±0.4682

3.9560±0.4159

4.1514±0.9780

2.1879±0.7359

2.5883±0.7630

2.2149±0.3965

1.8972±0.2475

2.4296±0.3599

2.9686±0.1747

2.3220±1.1041

2.7316±0.6654

2.7462±0.2259

2.5025±0.2857

2.9853±0.7579

2.7875±0.8355

1.6375±0.2206

1.6783±0.3767

1.5578±0.2118

1.6375±0.2206

1.7467±0.3980

1.5630±0.2641

8.6403±1.3850 

9.6025±0.5670 

10.3640±0.8991 

5.3829±1.9340 

6.8139±0.8465 

6.2462±0.5733 

3.1320±1.1055 

3.5358±1.0471 

3.0445±0.2944 

2.9035±0.6056 

4.3086±1.3547 

2.6099±0.6046 

3.5795±0.3449 

3.3759±0.4894 

3.5367±0.3265 

3.7890±0.3501 

4.0319±0.4056 

3.2839±0.2996 

3.7274±0.8463 

3.8521±1.0784 

4.2324±0.1721 

3.7141±1.0977 

3.3442±0.3510 

3.8057±0.8186 

3.4550±0.6403 

3.3714±0.6662 

3.4308±0.8263 

3.4188±0.6761 

3.1045±0.9678 

3.5373±0.2367 

2.1358±0.3521 

2.0227±0.2636 

1.9943±0.2503 

2.1358±0.3521 

2.0793±0.4031 

1.9048±0.2986 
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Figure 7.4: nMSE comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for MMSE prediction. 

 

Figure 7.5: wR comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for MMSE prediction. 
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Table 7.3: Comparison of the results from our proposed approach with benchmarks 

and state-of-the-art methods for ADAS-Cog at time points M12 to M48. The best 

results are bolded. 

Target:  

ADAS-Cog 
Input MRI data M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

7.8783±1.2673 

- 

- 

5.7337±1.3240 

- 

- 

2.6734±0.8648 

- 

- 

2.7870±0.5103 

- 

- 

2.1080±0.2942 

- 

- 

2.6934±0.6158 

- 

- 

2.2452±0.6398 

- 

- 

2.7443±0.8547 

- 

- 

2.9950±0.5020 

- 

- 

2.3471±0.3243 

- 

- 

1.5298±0.2621 

- 

- 

1.5298±0.2621 

- 

- 

8.6661±1.4368 

8.8243±1.7906 

- 

6.7600±1.7528 

7.4115±1.7434 

- 

2.3945±1.0648 

2.2042±0.4317 

- 

2.8953±0.7292 

2.9747±0.9894 

- 

3.0577±0.2916 

3.1176±0.8786 

- 

2.4190±0.3710 

2.3972±0.4220 

- 

2.7504±0.3242 

3.0751±0.7944 

- 

2.4485±0.4728 

2.5766±0.5356 

- 

3.0906±0.4274 

2.5737±0.1773 

- 

2.4841±0.4506 

2.9829±0.1359 

- 

1.4607±0.2294 

1.4540±0.2314 

- 

1.4607±0.2294 

1.5040±0.2401 

- 

7.4033±1.5643 

8.8064±1.1930 

9.8293±1.3956 

6.5083±1.4925 

6.9891±0.8733 

6.6223±0.9704 

3.6386±1.1138 

3.3266±0.6929 

3.4046±0.1384 

2.5707±0.6152 

2.4972±0.2057 

2.3693±0.2131 

2.8119±0.2969 

2.9217±0.2783 

2.6926±0.8575 

3.0659±1.1312 

3.2004±0.3470 

3.6064±0.3216 

3.1455±0.2992 

3.6671±0.5416 

2.8344±0.2553 

3.0464±0.3155 

2.9794±0.6024 

3.3496±0.7875 

2.2789±0.4378 

2.9424±0.2239 

2.7214±0.2758 

2.9834±0.6368 

3.2502±0.7970 

3.3811±0.6955 

1.5192±0.1306 

1.4427±0.2473 

1.5508±0.1954 

1.5192±0.1306 

1.5249±0.2421 

1.4615±0.1691 

8.7409±1.8191 

9.9611±1.4785 

10.2182±2.0502 

7.4186±1.2113 

7.4439±1.8853 

8.2291±1.4105 

3.4775±0.5774 

3.2301±0.9390 

3.3095±0.5528 

3.2667±0.3667 

3.0209±0.3035 

3.3951±0.2052 

3.1791±0.3089 

3.3979±0.5687 

2.8180±0.5518 

3.4480±0.4345 

3.6422±0.6449 

3.3209±0.9170 

3.1756±0.3682 

2.9686±0.7840 

3.4965±0.9807 

2.2464±0.4095 

2.5600±0.9375 

2.4568±0.5509 

2.3314±0.3827 

2.2051±0.4937 

2.1606±0.3091 

2.4808±0.6388 

2.8080±0.7329 

3.2836±0.5295 

1.4679±0.2186 

1.4782±0.2067 

1.3830±0.2061 

1.4679±0.2186 

1.4574±0.1396 

1.3449±0.1305 
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Table 7.4: Continuation of Table 7.3, comparison of the results from our proposed 

approach with benchmarks and state-of-the-art methods for ADAS-Cog at time 

points M60 to M120. The best results are bolded. 

Target: 

ADAS-Cog 
M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

8.6757±1.6906

9.7869±1.5471

9.8216±1.9641

6.7316±1.9468

7.4301±1.4566

7.2961±1.5863

3.3258±0.9778

3.0159±0.5363

3.5144±0.5259

2.4117±1.0509

2.8907±0.2034

2.8912±0.5105

2.8553±0.7009

2.7303±0.3574

2.9001±0.2520

3.3393±0.2468

3.7001±0.2235

3.5321±0.3502

3.6033±0.9507

3.3945±0.6881

3.7005±0.5167

3.1216±0.3429

3.1899±0.4851

3.4971±0.4328

3.6593±0.7849

4.0169±0.7510

3.4841±0.8162

3.4192±0.2921

3.0881±0.6078

3.8958±0.4380

1.6805±0.2404

1.6587±0.3974

1.6182±0.3573

1.6805±0.2404

1.5991±0.2052

1.4035±0.1876

9.0341±1.9737 

9.1319±1.7265 

9.2911±1.6340 

7.0183±1.8743 

7.0473±1.7117 

7.5864±1.6891 

3.1367±0.9183 

3.0309±0.1220 

3.5285±0.6067 

3.0193±0.4929 

3.0822±0.3067 

3.1992±0.1577 

3.1638±0.7193 

3.1941±0.3956 

3.1635±0.2414 

3.3664±0.5003 

3.3402±0.2480 

3.6667±0.1622 

3.0725±0.4072 

3.1020±0.2123 

3.2329±0.5174 

3.5349±0.2918 

3.3461±0.1768 

3.4414±0.4792 

2.3207±0.5119 

3.1659±0.4720 

3.1396±0.5686 

2.5766±0.3138 

2.4452±0.2432 

2.5043±0.4995 

1.4750±0.1545 

1.5076±0.1225 

1.4807±0.1816 

1.4750±0.1545 

1.4961±0.3782 

1.4717±0.2796 

9.9267±1.0749 

9.6065±1.5761 

10.7204±1.7989

7.6153±1.1450 

7.0180±0.9244 

7.6392±1.0676 

4.9036±0.9516 

4.7138±0.4656 

4.6988±0.4720 

3.8003±1.1919 

3.7512±0.6412 

3.5886±0.2840 

3.1942±0.9396 

3.5208±0.3989 

3.5194±0.4982 

3.5970±0.2306 

3.9060±0.7186 

4.1440±0.2350 

4.3786±0.3920 

5.2297±0.7078 

5.3419±0.4138 

4.1791±0.4363 

4.2652±0.6417 

5.2403±0.2027 

3.8476±0.7138 

4.0634±0.2164 

4.3963±0.3237 

3.1199±0.3819 

3.2371±0.8014 

3.4825±0.2745 

1.5658±0.1810 

1.4859±0.2067 

1.5098±0.2249 

1.5658±0.1810 

1.5486±0.1613 

1.5315±0.1464 

9.1536±2.8575 

9.4961±1.8502 

10.2439±1.3134

7.6934±1.4234 

8.4846±1.2954 

8.6128±1.6273 

4.6745±0.7821 

5.1646±0.4734 

4.8467±0.6282 

3.8142±0.7059 

3.4966±0.5142 

3.4199±0.3548 

3.5658±0.5458 

3.9385±0.9832 

4.0421±0.3027 

4.0665±0.9310 

4.1261±0.9629 

4.4765±0.4200 

3.5976±0.6149 

5.3846±0.2142 

5.2602±0.5021 

3.2672±0.4010 

4.2030±0.9975 

4.2788±0.4251 

2.6636±0.1940 

3.4429±0.4732 

3.4970±0.2537 

3.1522±0.5621 

3.6831±0.9082 

3.6807±0.3103 

1.6959±0.1087 

1.7446±0.1991 

1.7115±0.3015 

1.6959±0.1087 

1.6220±0.1044 

1.6376±0.1985 

9.1306±2.7906 

9.3202±1.7947 

9.9873±1.5460 

8.4926±1.3660 

8.6891±0.9937 

8.6326±1.5070 

6.5995±0.9961 

6.5410±0.6574 

6.8362±0.3460 

5.1221±0.4251 

5.1815±0.3721 

5.2403±0.2265 

5.0652±0.5768 

5.4814±0.3208 

5.5745±0.4515 

5.6875±0.6848 

5.9868±0.3685 

6.6259±0.4258 

3.2001±0.6762 

5.3040±0.8341 

4.7866±0.7095 

3.5568±0.4028 

4.7321±0.3665 

4.8755±0.2291 

3.8485±0.2107 

3.7646±0.8413 

3.7177±0.6651 

4.4009±0.7587 

5.3355±0.5443 

5.3240±0.8509 

1.6982±0.1979 

1.7327±0.2129 

1.7138±0.1669 

1.6982±0.1979 

1.6749±0.1746 

1.6089±0.1538 

10.0144±2.7013

10.4074±2.0445

11.1823±1.6486

8.7862±1.8170 

8.8344±1.7533 

9.9269±1.4078 

8.6548±0.4650 

9.5285±0.2986 

9.0363±0.2487 

6.0504±0.4185 

6.9153±0.6533 

6.9320±0.8559 

5.6949±0.8991 

6.3122±0.6872 

6.2812±0.8709 

6.2026±0.6328 

6.9738±0.3244 

7.0545±0.4010 

7.6423±1.3861 

7.2417±1.3707 

7.6715±1.0704 

7.8608±1.2826 

8.4307±1.3024 

8.1201±1.1792 

5.8844±1.1164 

6.4669±1.7327 

6.0876±1.1467 

5.9746±1.5326 

6.3685±0.6062 

6.6902±0.3988 

2.1631±0.3595 

2.0394±0.3792 

2.0587±0.4068 

2.1631±0.3595 

2.0374±0.3798 

1.9621±0.3717 
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Figure 7.6: nMSE comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for ADAS-Cog prediction. 

 

Figure 7.7: wR comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for ADAS-Cog prediction. 
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Table 7.5: Comparison of the results from our proposed approach with benchmarks 

and state-of-the-art methods for RAVLT TOTAL at time points M12 to M48. The 

best results are bolded. 

Target:  

RAVLT TOTAL 
Input MRI data M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

7.9376±1.9086 

- 

- 

5.3266±1.1728 

- 

- 

2.2520±0.6345 

- 

- 

2.4384±0.6609 

- 

- 

2.3591±0.8820 

- 

- 

2.2719±0.8909 

- 

- 

2.7621±0.2550 

- 

- 

2.5827±0.6453 

- 

- 

2.7978±0.4072 

- 

- 

2.8858±0.1441 

- 

- 

1.4314±0.1056 

- 

- 

1.4314±0.1056 

- 

- 

8.2124±1.4203 

8.8007±0.9214 

- 

5.7378±0.8868 

5.2906±0.7313 

- 

2.7132±0.7384 

2.3232±0.8310 

- 

2.3252±0.6353 

2.6925±0.2743 

- 

2.4297±0.5859 

2.2641±0.4062 

- 

2.4105±1.1230 

2.1728±0.6094 

- 

2.3219±0.3455 

2.6269±0.8970 

- 

2.6332±0.7640 

2.9855±0.8002 

- 

2.7376±0.7520 

2.9147±0.7963 

- 

2.3956±0.4084 

2.4132±0.2166 

- 

1.6062±0.1550 

1.5981±0.1639 

- 

1.6062±0.1550 

1.5829±0.1405 

- 

8.8234±1.0348 

9.6013±0.9954 

9.4451±0.5333 

6.3218±0.5375 

6.0855±0.3243 

6.6543±0.8148 

3.2253±0.8426 

3.3428±0.3111 

2.9319±0.2928 

2.7824±0.6245 

3.1080±0.6475 

2.5564±0.2099 

2.6760±0.3778 

2.9111±0.3892 

2.3136±0.2712 

3.2312±0.1693 

3.3078±0.2724 

3.5879±0.5526 

2.7690±0.1420 

3.1795±0.2982 

3.1408±0.7582 

2.6991±0.7002 

2.8321±0.8145 

2.8494±0.7425 

3.2829±0.2948 

3.3549±0.6479 

3.1316±0.6682 

3.4184±0.4235 

3.2582±0.6420 

3.2904±0.5136 

1.6425±0.2317 

1.5659±0.3415 

1.5741±0.1947 

1.6425±0.2317 

1.5603±0.2057 

1.5814±0.1748 

9.1893±0.5844 

9.3914±0.6852 

9.4749±0.8549 

6.4050±0.5636 

6.6021±0.3645 

6.5371±0.2537 

3.3035±0.6113 

3.3346±0.1367 

2.9832±0.4650 

2.8225±0.4127 

2.8572±0.4472 

2.7609±0.1828 

3.0636±0.3502 

3.5745±0.8169 

3.6462±0.8933 

2.6380±0.3065 

3.7892±0.7611 

3.3378±0.5622 

3.1030±1.0612 

3.6578±0.3720 

3.8772±0.3989 

3.1862±0.6679 

3.6179±0.1949 

3.2735±0.1476 

2.7709±0.7505 

2.6803±0.4160 

3.2177±0.3317 

2.7441±0.7612 

3.2824±0.3683 

3.1140±0.4140 

1.5017±0.2467 

1.5120±0.2408 

1.4169±0.2357 

1.5017±0.2467 

1.4287±0.2721 

1.4583±0.2265 
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Table 7.6: Continuation of Table 7.5, comparison of the results from our proposed 

approach with benchmarks and state-of-the-art methods for RAVLT TOTAL at time 

points M60 to M120. The best results are bolded. 

Target: 

RAVLT TOTAL

M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

8.8236±0.8598 

9.6864±1.2575 

9.0315±0.9378 

7.1748±1.3071 

7.1012±1.1572 

7.5048±0.4498 

2.8406±0.6077 

2.8831±0.8359 

2.9808±0.4199 

2.7932±0.6532 

2.6147±0.5162 

3.0624±0.6127 

2.5154±0.4834 

3.1100±0.4778 

2.7076±0.8490 

2.7104±0.3276 

2.9273±0.5356 

3.4157±0.7649 

3.1478±0.2801 

3.9082±0.1255 

3.6727±0.6546 

2.9759±0.5230 

3.0897±0.6313 

2.9469±0.6075 

2.6841±0.9265 

3.1773±0.7391 

3.0584±0.9408 

3.1043±0.6300 

3.3486±0.2651 

3.9273±0.3915 

1.6537±0.1928 

1.6318±0.1559 

1.6190±0.1897 

1.6537±0.1928 

1.6265±0.1398 

1.6073±0.1547 

9.2771±1.2987

9.2802±1.0148

9.2327±0.9339

7.6141±0.9423

7.3180±0.9218

7.4309±1.2445

3.4649±0.8560

3.3458±0.2526

3.3466±0.3480

3.2405±0.6746

2.8099±0.5101

3.2116±0.8442

2.9631±0.9677

2.7875±0.3285

3.2241±0.9394

3.4238±0.4533

3.3863±0.1660

3.3844±0.1217

2.9095±0.5860

3.1074±0.5122

3.5574±0.4481

3.4540±0.8699

4.0272±0.2445

4.3877±0.1758

3.5007±0.3095

4.3476±0.4101

4.2743±0.6460

2.8967±0.5255

2.9606±0.4286

3.7343±0.5265

1.6270±0.2594

1.6596±0.3249

1.6327±0.2825

1.6270±0.2594

1.6147±0.2981

1.6058±0.2513

9.4471±0.9660 

9.5226±0.5733 

10.3465±1.0210

8.1238±0.7045 

8.6879±0.7074 

9.1976±0.5128 

4.6258±0.6558 

4.7725±0.2623 

4.7163±0.1068 

4.0655±0.5738 

3.9522±0.2536 

3.8652±0.5102 

3.7082±0.5020 

4.2585±0.3313 

3.7763±0.3714 

3.6328±0.3646 

4.2130±0.5641 

4.4202±0.3905 

3.8791±0.8183 

4.2884±0.4550 

4.1230±0.9414 

3.4254±0.3827 

4.3600±0.2904 

4.1270±0.2002 

3.1905±0.1981 

3.7327±0.5021 

4.7784±0.4751 

3.5972±0.6105 

4.0858±0.8040 

3.6884±0.3570 

1.8475±0.2760 

1.7659±0.2717 

1.7905±0.3173 

1.8475±0.2760 

1.7251±0.2862 

1.6975±0.2576 

9.6810±1.1429 

10.1523±0.7347 

10.2515±0.8749 

7.9922±1.0334 

8.1670±0.8737 

7.9789±0.5191 

6.7818±0.3483 

7.0538±0.3695 

7.1540±0.2570 

4.1362±1.2326 

4.6950±1.1791 

4.6956±1.3787 

3.8204±0.7361 

4.1207±0.8173 

4.5403±0.3288 

3.5606±1.0927 

3.7728±0.1909 

4.4519±0.5589 

4.1731±0.6744 

4.0514±0.5160 

4.9867±0.3840 

3.4863±0.7479 

4.0967±0.5048 

4.2450±0.2296 

3.9752±0.7219 

4.2664±0.9268 

4.0618±1.0423 

3.2667±0.4401 

3.7802±0.5004 

4.2501±0.2017 

1.8646±0.2633 

1.9131±0.3287 

2.1802±0.3047 

1.8646±0.2633 

1.7912±0.2043 

2.0503±0.3165 

9.0462±1.4533

9.4438±0.6998

9.6306±0.5632

8.0109±1.3453

8.7347±0.8120

8.7071±0.9851

6.9691±1.0105

7.1591±0.6287

6.9129±0.5762

5.3567±0.8017

5.1171±0.9857

5.7927±0.6606

5.2445±1.1207

5.7601±0.7476

5.5547±0.3839

5.0397±0.7480

5.6941±0.3799

5.0796±0.8646

5.1556±0.4280

5.6976±0.2125

5.8663±0.3233

5.0220±0.4201

5.1602±0.4048

5.5538±0.2259

5.2273±0.2456

5.3719±0.4385

5.9255±0.8284

5.7278±0.4308

5.9785±0.4390

6.0975±0.6798

1.6571±0.2034

1.6915±0.3036

1.6259±0.3837

1.6571±0.2034

1.8083±0.2994

1.7482±0.3852

10.5317±1.7693

10.5704±0.6914

10.7428±1.1482

8.2628±1.6440 

8.2623±0.3789 

9.3811±0.7010 

7.5915±1.3104 

7.8032±1.2013 

8.9559±1.3608 

6.1909±0.7436 

6.9941±0.5808 

6.8852±0.7595 

6.1520±0.5217 

6.3592±0.5610 

7.1099±0.4410 

5.7075±0.4890 

5.3804±0.3166 

5.8488±0.4255 

6.4508±0.9031 

6.5843±0.7498 

6.7519±0.5930 

6.0470±1.0560 

7.2104±0.4693 

8.0735±0.5181 

6.5358±0.6512 

7.2649±0.2507 

7.0283±0.7280 

6.9348±0.4579 

7.2396±0.7095 

7.3750±0.6304 

2.2641±0.4324 

2.2064±0.3271 

2.1294±0.3258 

2.2641±0.4324 

2.1947±0.3446 

2.0983±0.3104 
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Figure 7.8: nMSE comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for RAVLT TOTAL prediction. 

 

Figure 7.9: wR comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for RAVLT TOTAL prediction. 
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Table 7.7: Comparison of the results from our proposed approach with benchmarks 

and state-of-the-art methods for FLU ANIM at time points M12 to M48. The best 

results are bolded. 

Target:  

FLU ANIM 
Input MRI data M12 rMSE M24 rMSE M36 rMSE M48 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

BL, M06 

BL, M06, M12 

BL, M06, M12, M24 

5.4472±1.8837 

- 

- 

2.5727±0.8031 

- 

- 

1.3364±0.7055 

- 

- 

1.3493±0.7175 

- 

- 

1.4223±0.4127 

- 

- 

1.4973±0.2302 

- 

- 

1.7739±0.8168 

- 

- 

1.3370±0.5862 

- 

- 

1.8799±0.6390 

- 

- 

1.6090±0.3121 

- 

- 

1.3153±0.2125 

- 

- 

1.3153±0.2125 

- 

- 

6.1197±1.3662 

6.5482±1.6059 

- 

1.8910±0.6070 

2.4256±0.7036 

- 

1.7315±0.6941 

2.1237±0.8498 

- 

1.9113±0.3184 

1.8783±0.3709 

- 

1.6939±0.2266 

2.0603±0.7598 

- 

1.7054±0.2693 

1.9325±0.4688 

- 

2.1327±0.6380 

2.5618±0.2379 

- 

2.0966±0.7896 

2.0998±0.7607 

- 

2.1003±0.8619 

2.5823±0.4788 

- 

1.7672±0.2789 

1.6253±0.1993 

- 

1.4408±0.2174 

1.3850±0.1853 

- 

1.4408±0.2174 

1.3813±0.2107 

- 

4.2137±1.7492 

5.5125±0.8588 

5.0159±1.3208 

2.4185±1.2328 

2.7457±0.4112 

2.4505±0.6243 

1.5969±0.6927 

2.0413±0.4277 

1.9762±0.4580 

2.2461±0.6539 

2.6614±0.4721 

3.1997±0.4066 

1.8820±0.7462 

1.9656±0.3674 

2.0217±0.3945 

2.0819±0.2348 

2.9024±0.4167 

2.8441±0.6891 

2.3885±0.2849 

2.2544±0.6713 

2.7935±0.4557 

2.2042±0.2374 

2.5010±0.5357 

2.1815±0.7246 

2.3044±0.8389 

2.3230±0.3129 

3.0064±0.4694 

1.7853±0.5852 

2.1077±0.7180 

2.4650±0.8052 

1.4380±0.2559 

1.4021±0.2336 

1.3172±0.1431 

1.4380±0.2559 

1.4702±0.1218 

1.3116±0.1285 

6.4510±1.1308 

6.8574±1.5865 

7.0810±0.9852 

1.9587±0.9794 

2.0623±0.4206 

2.3042±0.4790 

1.7610±0.6014 

2.4378±0.2720 

1.8997±0.7941 

2.2189±0.7169 

3.0950±0.5016 

3.0097±0.8738 

2.0451±0.4260 

2.8748±0.7519 

2.3547±0.3998 

2.3585±0.2543 

3.3747±0.3591 

2.9753±0.4089 

2.1918±0.3549 

2.9353±0.6227 

3.3069±0.7748 

1.9100±0.3930 

2.3996±0.6334 

2.3187±0.6297 

1.6065±0.7484 

1.9877±0.6910 

2.6007±0.7523 

2.0958±0.7601 

2.9203±0.2372 

2.6450±0.3055 

1.6463±0.1761 

1.5948±0.2039 

1.5765±0.2194 

1.6463±0.1761 

1.5105±0.1845 

1.5524±0.2091 
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Table 7.8: Continuation of Table 7.7, comparison of the results from our proposed 

approach with benchmarks and state-of-the-art methods for FLU ANIM at time 

points M60 to M120. The best results are bolded. 

Target: 

FLU ANIM 
M60 rMSE M72 rMSE M84 rMSE M96 rMSE M108 rMSE M120 rMSE 

Ridge 

 

 

Lasso 

 

 

TGL 

 

 

nCFGL1 

 

 

cFSGL 

 

 

FL-SGL 

 

 

NC-CMTL 

 

 

FTS-MTFL 

 

 

GAMTL 

 

 

dMTLc 

 

 

4DTMTEL 

 

 

4DTMTCL 

 

 

5.3020±1.2161 

5.5693±1.1430 

6.0497±0.9887 

1.9725±0.9758 

2.2068±0.4147 

2.2791±0.5415 

2.2004±0.8175 

2.0988±1.0196 

3.0203±0.2544 

1.8437±0.5516 

2.2644±0.3923 

2.2346±0.9190 

2.0344±0.3400 

2.3490±0.6695 

2.1410±0.7104 

2.3354±0.6026 

3.0345±0.5608 

2.7653±0.7930 

2.1895±0.5107 

3.1523±0.6546 

3.4705±0.9121 

1.9178±0.4717 

2.7331±0.5047 

2.5687±0.5317 

1.7183±0.7254 

2.3226±0.4731 

2.2895±0.4654 

1.7940±0.3447 

2.3115±0.2783 

2.2363±0.2171 

1.4964±0.2937 

1.4738±0.3297 

1.5009±0.3171 

1.4964±0.2937 

1.4652±0.2771 

1.5264±0.2860 

5.9618±1.6148 

6.5907±1.8627 

6.3894±1.2921 

2.3282±0.5055 

2.8199±0.9205 

3.2807±0.4456 

2.1354±0.6304 

2.0820±0.9765 

2.3850±0.2158 

1.8129±1.1824 

2.2156±0.9846 

2.3067±0.7629 

2.3855±0.7762 

2.3274±0.7137 

2.1426±0.5319 

2.2094±0.3552 

2.9181±0.4050 

2.6110±0.7322 

1.9796±0.9002 

2.4896±0.8178 

3.0252±0.5887 

2.0398±1.0532 

3.0912±0.6570 

2.6284±0.2075 

2.3639±0.4500 

2.3373±0.2426 

2.9514±0.3508 

2.4372±0.6470 

3.1723±0.4607 

2.6860±0.3264 

1.4092±0.1424 

1.4176±0.1759 

1.3997±0.1055 

1.4092±0.1424 

1.4418±0.1356 

1.4328±0.1039 

4.3180±2.1455 

6.4110±0.8108 

6.0122±0.5507 

3.3004±1.6036 

3.1723±0.3476 

3.1627±0.3656 

1.9228±0.4608 

2.2707±0.9832 

2.4631±0.5045 

1.9417±1.2021 

2.0867±0.8407 

2.0179±0.2303 

1.6734±0.9634 

2.0816±0.8770 

1.9803±0.5456 

2.0910±0.2739 

3.4040±0.6726 

3.8499±0.3755 

2.3260±0.6398 

2.3108±0.6115 

3.0929±0.4736 

2.0742±0.7679 

2.9464±0.6349 

3.2762±0.6910 

2.4301±0.4398 

2.6215±0.3299 

2.8965±0.2807 

2.1386±0.8401 

3.3346±0.4201 

3.0190±0.7856 

1.5367±0.1827 

1.7165±0.1641 

1.6038±0.1701 

1.5367±0.1827 

1.5189±0.1612 

1.6153±0.1523 

5.2603±2.2362 

6.6372±1.4649 

6.2665±1.4851 

3.0561±1.3526 

3.3834±0.5178 

3.7182±0.4234 

2.7740±1.2036 

3.0330±0.9804 

2.8546±0.7618 

2.9784±1.2004 

3.5654±0.9716 

3.1751±0.4388 

2.0328±0.4551 

2.5642±0.5770 

2.7469±0.4903 

1.7509±0.3284 

3.3757±0.2515 

3.7591±0.4290 

2.7319±0.2494 

2.9214±0.2780 

3.2041±0.3453 

1.8550±0.4091 

2.4752±0.2606 

2.7514±0.4172 

2.3459±0.4785 

3.1765±0.3801 

3.3024±0.3110 

2.2573±0.4613 

3.3424±0.7040 

2.7889±0.6381 

1.4207±0.1808 

1.4282±0.1859 

1.4269±0.2358 

1.4207±0.1808 

1.4731±0.1815 

1.4031±0.1683 

4.6195±1.0933 

5.0106±0.4828 

4.7195±0.3615 

4.2697±1.0291 

4.5455±0.8233 

4.4349±0.7695 

3.6916±0.8542 

4.5487±0.6067 

5.0691±0.7155 

3.5532±0.4738 

4.0206±0.8272 

3.9389±0.2645 

3.3721±0.7598 

2.8175±0.2571 

3.1952±0.5170 

2.9450±0.5829 

4.2381±0.6610 

4.2118±0.7539 

2.6456±0.4240 

3.8373±0.6570 

4.0527±0.8115 

2.6720±0.2375 

3.7807±0.3022 

3.4830±0.4707 

2.4059±0.1056 

3.8801±0.2533 

3.7154±0.2031 

2.4334±0.4058 

2.9423±0.3250 

3.6434±0.2945 

1.6149±0.2787 

2.1556±0.2650 

1.5216±0.1664 

1.6149±0.2787 

1.6242±0.1497 

1.5542±0.1548 

6.1033±1.1361 

7.6252±0.9186 

6.9532±1.5189 

5.5735±1.1790 

6.5209±0.6184 

6.5149±0.4812 

4.2636±1.1491 

4.3870±0.5329 

5.3716±0.7334 

4.0436±0.5043 

4.3236±0.3788 

4.8759±0.8599 

3.4367±0.9471 

3.4808±0.3352 

4.3147±0.8972 

3.7098±0.4743 

4.5604±0.7587 

4.9550±0.6282 

3.7135±0.2451 

4.8834±0.5967 

5.8707±0.4044 

3.6095±0.8001 

4.3441±0.9561 

4.7875±0.9369 

3.5854±0.9655 

4.6775±0.7379 

4.6918±0.5034 

3.3250±0.5132 

3.3418±0.4535 

3.4655±0.4804 

2.1355±0.2624 

2.1457±0.3161 

2.2379±0.2473 

2.1355±0.2624 

2.1146±0.1842 

2.1282±0.1487 
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Figure 7.10: nMSE comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for FLU ANIM prediction. 

 

Figure 7.11: wR comparison of the results from our proposed approach with 

benchmarks and state-of-the-art methods for FLU ANIM prediction. 
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7.5 Summary 

 

This chapter discussed, designed and constructed different multi-dimensional tensor 

multi-task learning regression based time-continuous algorithms to predict disease 

progression at different time points in neurological disease prediction scenarios in order 

to simultaneously overcome the problems of monotonic data forms, small datasets and 

time-continuous data scarcity. The problem of time-continuous data scarcity for AD 

dynamic prediction means that the number of available datasets decreases further as the 

disease progresses, and proposed approaches utilise a number of different methods to 

integrate time-continuous MRI recordings of patients in order to continuously improve 

the prediction accuracy of AD progression. Experimental results show that proposed 

approaches have the ability to diagnose and predict the AD progression, it can identify 

structural brain variants in individuals with AD, MCI and CN, and it only requires MRI 

data to achieve superior prediction performance, and by increasing the number of MRI 

data the performance of the models improves. 
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Chapter 8 
 

 

8. Conclusions and Future Works 
 

 

By now, it has reached the end of our investigation into multi-dimensional tensor multi-

task learning in modelling disease progression. In this chapter, it would give a brief 

discussion about the strengths and weaknesses of the approach developed in this thesis 

and present a number of ideas for the future direction of the multi-dimensional tensor 

multi-task learning approach.  

 

8.1 Conclusions 

 

As reviewed in Chapter 2, the utilisation of machine learning algorithms to predict 

disease progression and identify biomarker information that can track disease 

progression is a hot topic in the field of computer science. However, existing prediction 

algorithms and frameworks cannot meet the ideal requirements for disease progression 

prediction applications due to various limitations. Which contain prediction accuracy 

and stability problems in medical small dataset scenarios, monotonic data formats (loss 

of multi-dimensional knowledge of the data and loss of correlation knowledge between 

biomarkers) and biomarker interpretability limitations. For instance, existing multi-task 

regression algorithms have problems with accuracy and stability in disease prediction 

applications, while deep learning-based algorithms have problems with low 

interpretability and high data requirements. The motivation for this research work is to 

investigate the possibility of quantifying and constructing AD biomarker data as a high-

dimensional tensor, incorporating multi-task learning approaches to construct 

algorithms with high accuracy, stability and interpretability as a disease progression 
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prediction solution. 

 

In order to achieve this goal, it is first necessary to investigate the types of tensor 

dimensions that are most applicable to AD progression prediction models and contain 

spatio-temporal information and knowledge of brain biomarkers, and approaches to 

quantify and construct multi-dimensional tensors. A quantification approach called 

Amalgamated magnitude-direction quantification in Chapter 4 offers a coherent 

solution with the ability to mine and incorporate multi-dimensional spatio-temporal 

information and biomarker correlation knowledge. It consists of two components, 

multi-dimensional knowledge vector construction and amalgamated magnitude-

direction quantification of brain structural variation, it is a novel quantitative approach 

based on similarity calculations that simultaneously assesses and quantify the 

magnitude and direction information of brain structural variation. The quantification 

approach enables similarity of morphological trends between different biomarkers to 

be described as a third-order tensor with dimensions corresponding to the first 

biomarker, second biomarker and patient sample to address the problem of monotonic 

data forms. It contains comprehensive information about brain structural variation and 

can effectively differentiate between CN, MCI and AD patients.  

 

Meanwhile, we designed and constructed multi-task learning regression algorithms and 

models incorporating multi-dimensional tensor data and mining MRI data for spatio-

temporal structural variation information and knowledge to improve the accuracy, 

stability and interpretability of AD progression prediction in medical small dataset 

scenarios. In Chapter 5, we presented the components and workflow of the multi-

dimensional tensor multi-task learning regression algorithm in detail. The algorithm 

consists of three components: supervised symmetric tensor decomposition for 

extracting biomarker latent factors, tensor multi-task learning regression and 

algorithmic regularisation terms. The proposed algorithm is designed to extract a set of 

first-order latent factors from the raw data, each represented by its first biomarker, 
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second biomarker and patient sample dimensions, to explicate the potential elements 

affecting the data variability in an interpretable manner and can be utilised as predictors 

for training prediction models, and these latent factors are shared by the predictions of 

each patient sample. The verification of multi-dimensional tensor multi-task learning 

regression in Chapter 5 illustrates that comparisons with single-task learning, 

benchmarks and state-of-the-art multi-task learning methods demonstrate that our 

approach outperforms competitors in terms of accuracy and stability of disease 

progression prediction. The main contributions are:  

1. A novel similarity-based quantification approach (Amalgamated magnitude-

direction quantification) is proposed to simultaneously capture the magnitude and 

directional correlation of structural variations among brain biomarkers, it contains 

comprehensive information on brain structural variations and can effectively 

differentiate CN, MCI and AD patients, and encodes MRI biomarker data into a 

third-order tensor, addressing the problem of monotonic data forms.  

2. The proposed multi-dimensional tensor multi-task learning regression algorithm 

seamlessly integrates and shares spatio-temporal information and knowledge based 

on brain structural variation correlation and its biomarker latent factors. It utilises 

symmetric tensor decomposition techniques to learn task correlations from raw data 

and allows all samples to share latent knowledge of biomarkers based on brain 

structural variation, and significantly enhances the accuracy and stability of AD 

progression prediction in medical small dataset scenarios.  

3. In Chapter 6 we identified and analysed important relative structural variation 

correlations between brain biomarkers that can be utilised to predict AD progression 

and can be applied as potential indicators for AD early identification.  

4. For real-world applications, the 4D tensor multi-task learning approach for AD 

progression dynamic prediction presented in Chapter 7 integrates time-continuous 

MRI recordings of patients to continuously improve prediction accuracy of AD 

progression. It can additionally address the scarcity of time-continuous data for 

disease progression prediction while addressing the problem of monotonic data 
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forms and small medical datasets. Experimental results demonstrate that the 

prediction accuracy continues to improve as the number of MRI examinations 

increases.  

 

8.2 Future directions 

 

The main contributions of this research work are the significant attention given to the 

design and construction of multi-dimensional tensor multi-task learning for disease 

progression prediction with improved accuracy, stability and interpretability. There are 

still a lot of work that needs to be done in the next stage.  

 

Firstly, the proposed quantification approach (Amalgamated magnitude-direction 

quantification) can utilise different concepts of multi-dimensional knowledge vector 

construction (in addition to brain structural variation quantification) from multiple 

perspectives to attempt to enhance the accuracy, stability and interpretability of disease 

progression prediction algorithms and results. 

 

Secondly, the research work focuses on investigating the spatio-temporal information 

and knowledge of brain structural variation to predict disease progression, therefore 

only MRI biomarkers are utilised, with its ability to clearly demonstrate the structural 

conditions of the brain, but the proposed algorithms and models can be seamlessly 

implemented to other modalities of biomarkers (e.g., PET, CSF, genetic data) and it is 

also easy to apply multi-modal concepts on the proposed algorithms and models.  

 

Thirdly, this research work focuses on the design and construction of tensor multi-task 

learning algorithms in three and four dimensions. Future work could further increase 

the dimensionality of the tensor to accommodate more dimensional information, thus 

improving the accuracy, stability and interpretability of the algorithms and results. 
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Fourthly, future plans are to engage and discuss this research with clinicians and to 

translate the research into a clinical management and care tool that can be utilised for 

AD patients. We will need to introduce clinicians to the principles, strengths, limitations 

and application scenarios of the model. The proposed model requires the ability to 

provide intuitive and clear outputs, explain the logic and rationale of its predictions, 

along with highlighting high-risk areas and key features in the patient's brain to gain 

the acceptance and trust of both clinicians and patients, avoiding the risk of causing 

unnecessary misinformation and anxiety. The proposed model will require testing and 

validation in various datasets and populations to ensure that it has a high level of 

specificity and sensitivity to distinguish between different stages and types of AD. A 

clinical utilisation system incorporating the model will be required to assist clinicians 

and patients in understanding the usage and considerations of the model along with 

enhancing the operability and convenience of the model. A model evaluation and 

feedback mechanism will be established to collect and analyse the data and results of 

the model usage by clinicians and patients, to evaluate the satisfaction and effectiveness 

of the model, to identify deficiencies and problems of the model, and to provide timely 

update and improvement of the model. 

 

Finally, we will attempt to translate the approaches presented in this research to other 

domains, the current research has already been translated to the smart and sustainable 

agriculture domain for precision fertilisation prediction [337][338][339]. 
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Appendix A: Mainstream similarity 
calculation approaches 
 

A.1 Cosine similarity 

 

Cosine similarity is a major similarity measurement technique that expresses the degree 

of similarity by calculating the cosine of the angle between two vectors, with values 

ranging from -1 to 1. In practice, cosine similarity is widely utilised in areas such as 

text classification, information retrieval and recommendation systems. It has the 

advantage of being simple and easy to utilise, and the result is an intuitive representation 

of the similarity of the two vectors. Cosine similarity utilises the cosine value of the 

angle between two vectors in a vector space as a measurement for the difference 

between two individuals. When the two vectors are more similar, the angle is closer to 

0 degrees, and the cosine value is closer to 1. Cosine similarity between two vectors 

A(𝑎ଵ, 𝑎ଶ) and B(𝑏ଵ, 𝑏ଶ) is defined as cos 𝜃 =
భభାమమ

ටభ
మାమ

మ×ටభ
మାమ

మ
. 

 

Compared with Euclidean distance, cosine similarity focuses more on the difference in 

direction of two vectors (Figure A.1). If the position of A keeps unvaried and B away 

from the origin of the coordinate axis in the original direction, then the cosine similarity 

cos θ keeps unvaried, because the angle remains unchanged, and the distance between 

A and B changed, which is the difference between Cosine similarity and Euclidean 

distance.  

 

To sum up, cosine similarity has the following advantages: 1) Simplicity: cosine 

similarity is a simple and easy to understand approach to similarity calculation, which 

only requires the calculation of the product of the dot product of two vectors and their 

modulus lengths. 2) Computational stability: the results of the cosine similarity 
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calculation is highly stable and are not affected by small errors. 3) Vector space model 

applicability: cosine similarity can be directly applied to vector space models, thus 

enabling similarity analysis of data such as text and images. However, cosine similarity 

has the following disadvantages: 1) Cosine similarity only considers the direction of a 

vector, ignoring its size, therefore in certain cases where the size of two similar vectors 

differs significantly, the cosine similarity result is smaller. 2) For sparse data, the result 

of cosine similarity cannot guarantee the accuracy because numerous eigenvalues in 

sparse data are zero, thus the calculated cosine similarity often cannot accurately reflect 

the similarity of two vectors. 3) For high-dimensional dense data, it can produce highly 

similar results. This is because in dense data, numerous dimensions have high values 

and their inner products are large, thus it is easy to produce high similarity. 

 

A.2 Euclidean distance 

 

Euclidean distance is the easiest to understand distance calculation method. It is derived 

from distance formula between two points in Euclidean space, which measures the 

absolute distance between points in a multi-dimensional space. It is often utilised in 

data analysis and mining, such as clustering or calculating similarity. Euclidean 

distance between two points a (𝑥ଵ, 𝑦ଵ) and b (𝑥ଶ, 𝑦ଶ) for a two-dimensional plane: 

ඥ(𝑥ଵ − 𝑥ଶ)ଶ  + (𝑦ଵ − 𝑦ଶ)ଶ.  

 

Figure A.1: The difference between Cosine similarity and Euclidean distance. 
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Euclidean distance is utilised in a wide range of applications, for example in machine 

learning, k-nearest neighbour algorithms, cluster analysis etc. In data mining, it is 

frequently utilised as an evaluation metric for clustering algorithms. In addition, it is 

widely used in image processing, speech recognition, bioinformatics and other fields. 

 

To sum up, the Euclidean distance has the following advantages: 1) Simplicity and ease 

of utilise: the Euclidean distance is sufficiently simple to be calculated directly using 

standard mathematical formulas. 2) Clear geometric meaning: the geometric meaning 

of Euclidean distance is the true distance between two points; thus, it has wide 

applicability in numerous spatial geometry problems. 3) Strong mathematical support: 

the Euclidean distance has a solid mathematical backing and can therefore be used in a 

wide range of mathematical methods. 4) Good stability: the Euclidean distance has a 

high degree of stability and cannot be significantly affected by small changes in the 

data. 5) Utilisation for multi-dimensional data: Euclidean distances can be used for 

multi-dimensional data and distances can be calculated directly on multi-dimensional 

data. 

 

However, the Euclidean distance has the following disadvantages: 1) Does not consider 

the direction of the vectors: the Euclidean distance only considers the length of the 

vectors, not their direction. Therefore, in certain cases, it does not accurately reflect the 

similarity between data. 2) Cannot handle non-linear relationships: Euclidean distance 

is based on linear relationships, which can lead to inaccurate results if there are non-

linear relationships between the data. 3) Numerical discontinuity: Euclidean distance is 

a numerically discontinuous distance, which means that even small variations in 

distance can lead to large variations in the output value. 4) High-dimensional 

catastrophe: Euclidean distances become complex as dimensionality increases, thus 

when dimensionality is high, Euclidean distances can suffer from a "high-dimensional 

catastrophe", meaning that the distances between points can no longer be valid in a 
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high-dimensional space. 5) Does not deal with densities: Euclidean distances do not 

consider the density of data points, which implies that if two points are close but the 

density of surrounding data points is low, Euclidean distance will still recognise them 

as similar, but it may not be realistic. 6) Sensitive to outliers: Euclidean distances are 

sensitive to outliers, and if there are outliers in the data, the results of the Euclidean 

distance can be significantly affected. 

 

A.3 Mahalanobis distance 

 

Mahalanobis distance is a distance measurement with weights that is utilised to 

determine the relative distance of a sample from the mean of multi-dimensional data. It 

is more complex to calculate than Euclidean distance, but it can consider the correlation 

between multi-dimensional data. Mahalanobis distance is widely utilised in various 

fields, such as image recognition, data classification, data clustering, etc. In the field of 

image recognition, the Mahalanobis distance can be utilised to calculate the similarity 

of images and to identify objects by comparing the similarity of images. In the field of 

data classification, the Mahalanobis distance can be used to determine whether a sample 

is anomalous or not. In the field of data clustering, the Mahalanobis distance can be 

used to assess the degree of similarity between samples and to group data. It can be 

used to perform statistical analysis, such as dimensionality reduction of data, removal 

of redundant data, and to assess the degree of outliers of a sample. In the field of data 

mining, the Mahalanobis distance can be used to identify correlations in a data set.  In 

the field of biology, the Mahalanobis distance can be used to identify differences 

between different biological samples and can be used to assess the similarity of 

biological samples and it can alternatively be used to assess the similarity of biological 

data, such as genomic data and protein structure data. Mahalanobis distance between 

the vectors X and X is defined as: D൫X, X൯ = ට൫X − X൯


Sିଵ(X − X), where S 

is the covariance matrix. Divided by the covariance matrix, which removes the variance 
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between each component, eliminating the dimensionality. 

 

The Mahalanobis distance is a valid approach to calculate the similarity between two 

sample sets. The difference from Euclidean distance is that it considers the relationship 

between different features and it is scale-invariant, that is, independent of the 

measurement scale (Figure A.2). The advantage of the Mahalanobis distance is that it 

is not affected by the scale, which means Mahalanobis distance between two points is 

irrelevant with the unit of measurement of the original data. The disadvantage is that 

the effect of the small change can be exaggerated. 

 

To sum up, the Mahalanobis distance has the following advantages: 1) Intuition: the 

Mahalanobis distance compares the distance between two points in a multi-dimensional 

space and is easy to understand and intuitive. 2) Stability: Mahalanobis distance is a 

stable metric and can therefore be used to assess similarity in multi-dimensional data 

analysis. 3) Not affected by the scale: the Mahalanobis distance between two vectors is 

irrelevant with the unit of measurement of the original data. 4) Compatibility: the 

Mahalanobis distance can be applied to data of any number of dimensions, making it 

extremely suitable for multi-dimensional data analysis. 5) Ability to handle outliers: 

Mahalanobis distance can handle outliers in the data, which is an essential advantage, 

as numerous data analysis approaches cannot handle outliers effectively. 6) Scalability: 

this means that it can be applied to data sets of different sizes and distances can be 

calculated for multi-dimensional features. 7) Correlation of multi-dimensional features 

between samples can be considered and the results are not affected by significant 

deviations in one dimensional feature. 8) Effective data analysis can be performed on 

 

Figure A.2: The difference between Mahalanobis distance and Euclidean distance. 
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high-dimensional data and is not susceptible to dimensional catastrophes. However, 

there are a number of disadvantages: 1) Does not consider the direction of the vectors: 

the Mahalanobis distance only considers the length of the vectors, not their direction. 

Therefore, in certain cases, it does not accurately reflect the similarity between data. 2) 

The computation of the distance requires the utilisation of a covariance matrix, thus the 

complexity of the computation can be extremely high when the dimensionality of the 

data is high, which affects efficiency of the algorithm. 3) Mahalanobis distance cannot 

handle a mixture of dense and sparse data effectively. 4) Mahalanobis distance cannot 

handle missing data effectively. If there are missing values in the data, the calculation 

of the Marcian distance can be inaccurate. 5) Mahalanobis distances cannot handle the 

different importance of different dimensions of data effectively. 6) The Mahalanobis 

distance is a method for calculating the distance between two samples, but cannot 

handle distances between multiple samples. 
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Appendix B: MRI biomarker features 
utilised in this research 
 

Vol(C). refers to the volumes of cortical parcellations 

Surf. Area refers to the total surface area of the cortex 

Vol(WM). refers to the volumes of specific white matter parcellations 

CTA. refers to the average cortical thickness 

CTStd. refers to the standard deviation in cortical thickness 

L for left, R for right 

Labels MRI biomarker features 

1 Vol(WM). of R.Pallidum 

2 Vol(C). of R.Paracentral 

3 Surf. Area of R.Paracentral 

4 CTA. of R.Paracentral 

5 CTStd. of R.Paracentral 

6 Vol(C). of R.Parahippocampal 

7 Surf. Area of R.Parahippocampal 

8 CTA. of R.Parahippocampal 

9 CTStd. of R.Parahippocampal 

10 Vol(C). of R.ParsOpercularis 

11 Surf. Area of R.ParsOpercularis 

12 CTA. of R.ParsOpercularis 

13 CTStd. of R.ParsOpercularis 

14 Vol(C). of R.ParsOrbitalis 

15 Surf. Area of R.ParsOrbitalis 

16 CTA. of R.ParsOrbitalis 

17 CTStd. of R.ParsOrbitalis 

18 Vol(C). of R.ParsTriangularis 

19 Surf. Area of R.ParsTriangularis 

20 CTA. of R.ParsTriangularis 

21 CTStd. of R.ParsTriangularis 

22 Vol(C). of R.Pericalcarine 

23 Surf. Area of R.Pericalcarine 

24 CTA. of R.Pericalcarine 

25 CTStd. of R.Pericalcarine 

26 Vol(C). of R.Postcentral 

27 Surf. Area of R.Postcentral 

28 CTA. of R.Postcentral 

29 CTStd. of R.Postcentral 

30 Vol(C). of R.PosteriorCingulate 

31 Surf. Area of R.PosteriorCingulate 
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32 CTA. of R.PosteriorCingulate 

33 CTStd. of R.PosteriorCingulate 

34 Vol(C). of Icv 

35 Vol(C). of R.Precentral 

36 Surf. Area of R.Precentral 

37 CTA. of R.Precentral 

38 CTStd. of R.Precentral 

39 Vol(C). of R.Precuneus 

40 Surf. Area of R.Precuneus 

41 CTA. of R.Precuneus 

42 CTStd. of R.Precuneus 

43 Vol(WM). of R.Putamen 

44 Vol(C). of R.RostralAnteriorCingulate 

45 Surf. Area of R.RostralAnteriorCingulate 

46 CTA. of R.RostralAnteriorCingulate 

47 CTStd. of R.RostralAnteriorCingulate 

48 Vol(C). of R.RostralMiddleFrontal 

49 Surf. Area of R.RostralMiddleFrontal 

50 CTA. of R.RostralMiddleFrontal 

51 CTStd. of R.RostralMiddleFrontal 

52 Vol(C). of R.SuperiorFrontal 

53 Surf. Area of R.SuperiorFrontal 

54 CTA. of R.SuperiorFrontal 

55 CTStd. of R.SuperiorFrontal 

56 Vol(C). of R.SuperiorParietal 

57 Surf. Area of R.SuperiorParietal 

58 CTA. of R.SuperiorParietal 

59 CTStd. of R.SuperiorParietal 

60 Vol(C). of R.SuperiorTemporal 

61 Surf. Area of R.SuperiorTemporal 

62 CTA. of R.SuperiorTemporal 

63 CTStd. of R.SuperiorTemporal 

64 Vol(C). of R.Supramarginal 

65 Surf. Area of R.Supramarginal 

66 CTA. of R.Supramarginal 

67 CTStd. of R.Supramarginal 

68 Vol(C). of R.TemporalPole 

69 Surf. Area of R.TemporalPole 

70 CTA. of R.TemporalPole 

71 CTStd. of R.TemporalPole 

72 Vol(WM). of L.AccumbensArea 

73 Vol(WM). of R.Thalamus 

74 Vol(C). of R.TransverseTemporal 
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75 Surf. Area of R.TransverseTemporal 

76 CTA. of R.TransverseTemporal 

77 CTStd. of R.TransverseTemporal 

78 Vol(WM). of R.VentralDC 

79 Vol(WM). of R.Vessel 

80 Vol(WM). of ThirdVentricle 

81 Vol(WM). of WMHypoIntensities 

82 Vol(C). of L.Insula 

83 Surf. Area of L.Insula 

84 CTA. of L.Insula 

85 CTStd. of L.Insula 

86 Vol(WM). of L.Amygdala 

87 Vol(C). of R.Insula 

88 Surf. Area of R.Insula 

89 CTA. of R.Insula 

90 CTStd. of R.Insula 

91 Vol(C). of L.Bankssts 

92 Surf. Area of L.Bankssts 

93 CTA. of L.Bankssts 

94 CTStd. of L.Bankssts 

95 Vol(C). of L.CaudalAnteriorCingulate 

96 Surf. Area of L.CaudalAnteriorCingulate 

97 CTA. of L.CaudalAnteriorCingulate 

98 CTStd. of L.CaudalAnteriorCingulate 

99 Vol(C). of L.CaudalMiddleFrontal 

100 Surf. Area of L.CaudalMiddleFrontal 

101 CTA. of L.CaudalMiddleFrontal 

102 CTStd. of L.CaudalMiddleFrontal 

103 Vol(WM). of L.Caudate 

104 Vol(WM). of L.CerebellumCortex 

105 Vol(WM). of L.CerebellumWM 

106 Vol(WM). of Brainstem 

107 Vol(WM). of L.ChoroidPlexus 

108 Vol(C). of L.Cuneus 

109 Surf. Area of L.Cuneus 

110 CTA. of L.Cuneus 

111 CTStd. of L.Cuneus 

112 Vol(C). of L.Entorhinal 

113 Surf. Area of L.Entorhinal 

114 CTA. of L.Entorhinal 

115 CTStd. of L.Entorhinal 

116 Vol(C). of L.FrontalPole 

117 Surf. Area of L.FrontalPole 
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118 CTA. of L.FrontalPole 

119 CTStd. of L.FrontalPole 

120 Vol(C). of L.Fusiform 

121 Surf. Area of L.Fusiform 

122 CTA. of L.Fusiform 

123 CTStd. of L.Fusiform 

124 Vol(WM). of L.Hippocampus 

125 Vol(WM). of CorpusCallosumAnterior 

126 Vol(WM). of L.InferiorLateralVentricle 

127 Vol(C). of L.InferiorParietal 

128 Surf. Area of L.InferiorParietal 

129 CTA. of L.InferiorParietal 

130 CTStd. of L.InferiorParietal 

131 Vol(C). of L.InferiorTemporal 

132 Surf. Area of L.InferiorTemporal 

133 CTA. of L.InferiorTemporal 

134 CTStd. of L.InferiorTemporal 

135 Vol(C). of L.IsthmusCingulate 

136 Surf. Area of L.IsthmusCingulate 

137 CTA. of L.IsthmusCingulate 

138 CTStd. of L.IsthmusCingulate 

139 Vol(C). of L.LateralOccipital 

140 Surf. Area of L.LateralOccipital 

141 CTA. of L.LateralOccipital 

142 CTStd. of L.LateralOccipital 

143 Vol(C). of L.LateralOrbitofrontal 

144 Surf. Area of L.LateralOrbitofrontal 

145 CTA. of L.LateralOrbitofrontal 

146 CTStd. of L.LateralOrbitofrontal 

147 Vol(WM). of L.LateralVentricle 

148 Vol(C). of L.Lingual 

149 Surf. Area of L.Lingual 

150 CTA. of L.Lingual 

151 CTStd. of L.Lingual 

152 Vol(C). of L.MedialOrbitofrontal 

153 Surf. Area of L.MedialOrbitofrontal 

154 CTA. of L.MedialOrbitofrontal 

155 CTStd. of L.MedialOrbitofrontal 

156 Vol(WM). of CorpusCallosumCentral 

157 Vol(C). of L.MiddleTemporal 

158 Surf. Area of L.MiddleTemporal 

159 CTA. of L.MiddleTemporal 

160 CTStd. of L.MiddleTemporal 



227 

 

161 Vol(WM). of L.Pallidum 

162 Vol(C). of L.Paracentral 

163 Surf. Area of L.Paracentral 

164 CTA. of L.Paracentral 

165 CTStd. of L.Paracentral 

166 Vol(C). of L.Parahippocampal 

167 Surf. Area of L.Parahippocampal 

168 CTA. of L.Parahippocampal 

169 CTStd. of L.Parahippocampal 

170 Vol(C). of L.ParsOpercularis 

171 Surf. Area of L.ParsOpercularis 

172 CTA. of L.ParsOpercularis 

173 CTStd. of L.ParsOpercularis 

174 Vol(C). of L.ParsOrbitalis 

175 Surf. Area of L.ParsOrbitalis 

176 CTA. of L.ParsOrbitalis 

177 CTStd. of L.ParsOrbitalis 

178 Vol(C). of L.ParsTriangularis 

179 Surf. Area of L.ParsTriangularis 

180 CTA. of L.ParsTriangularis 

181 CTStd. of L.ParsTriangularis 

182 Vol(C). of L.Pericalcarine 

183 Surf. Area of L.Pericalcarine 

184 CTA. of L.Pericalcarine 

185 CTStd. of L.Pericalcarine 

186 Vol(C). of L.Postcentral 

187 Surf. Area of L.Postcentral 

188 CTA. of L.Postcentral 

189 CTStd. of L.Postcentral 

190 Vol(WM). of CorpusCallosumMidAnterior 

191 Vol(C). of L.PosteriorCingulate 

192 Surf. Area of L.PosteriorCingulate 

193 CTA. of L.PosteriorCingulate 

194 CTStd. of L.PosteriorCingulate 

195 Vol(C). of L.Precentral 

196 Surf. Area of L.Precentral 

197 CTA. of L.Precentral 

198 CTStd. of L.Precentral 

199 Vol(C). of L.Precuneus 

200 Surf. Area of L.Precuneus 

201 CTA. of L.Precuneus 

202 CTStd. of L.Precuneus 

203 Vol(WM). of L.Putamen 
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204 Vol(C). of L.RostralAnteriorCingulate 

205 Surf. Area of L.RostralAnteriorCingulate 

206 CTA. of L.RostralAnteriorCingulate 

207 CTStd. of L.RostralAnteriorCingulate 

208 Vol(C). of L.RostralMiddleFrontal 

209 Surf. Area of L.RostralMiddleFrontal 

210 CTA. of L.RostralMiddleFrontal 

211 CTStd. of L.RostralMiddleFrontal 

212 Vol(C). of L.SuperiorFrontal 

213 Surf. Area of L.SuperiorFrontal 

214 CTA. of L.SuperiorFrontal 

215 CTStd. of L.SuperiorFrontal 

216 Vol(C). of L.SuperiorParietal 

217 Surf. Area of L.SuperiorParietal 

218 CTA. of L.SuperiorParietal 

219 CTStd. of L.SuperiorParietal 

220 Vol(C). of L.SuperiorTemporal 

221 Surf. Area of L.SuperiorTemporal 

222 CTA. of L.SuperiorTemporal 

223 CTStd. of L.SuperiorTemporal 

224 Vol(C). of L.Supramarginal 

225 Surf. Area of L.Supramarginal 

226 CTA. of L.Supramarginal 

227 CTStd. of L.Supramarginal 

228 Vol(WM). of CorpusCallosumMidPosterior 

229 Vol(C). of L.TemporalPole 

230 Surf. Area of L.TemporalPole 

231 CTA. of L.TemporalPole 

232 CTStd. of L.TemporalPole 

233 Vol(WM). of L.Thalamus 

234 Vol(C). of L.TransverseTemporal 

235 Surf. Area of L.TransverseTemporal 

236 CTA. of L.TransverseTemporal 

237 CTStd. of L.TransverseTemporal 

238 Vol(WM). of L.VentralDC 

239 Vol(WM). of L.Vessel 

240 Vol(WM). of NonWMHypoIntensities 

241 Vol(WM). of OpticChiasm 

242 Vol(WM). of CorpusCallosumPosterior 

243 Vol(WM). of R.AccumbensArea 

244 Vol(WM). of R.Amygdala 

245 Vol(C). of R.Bankssts 

246 Surf. Area of R.Bankssts 
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247 CTA. of R.Bankssts 

248 CTStd. of R.Bankssts 

249 Vol(C). of R.CaudalAnteriorCingulate 

250 Surf. Area of R.CaudalAnteriorCingulate 

251 CTA. of R.CaudalAnteriorCingulate 

252 CTStd. of R.CaudalAnteriorCingulate 

253 Vol(C). of R.CaudalMiddleFrontal 

254 Surf. Area of R.CaudalMiddleFrontal 

255 CTA. of R.CaudalMiddleFrontal 

256 CTStd. of R.CaudalMiddleFrontal 

257 Vol(WM). of R.Caudate 

258 Vol(WM). of R.CerebellumCortex 

259 Vol(WM). of R.CerebellumWM 

260 Vol(WM). of Csf 

261 Vol(WM). of R.ChoroidPlexus 

262 Vol(C). of R.Cuneus 

263 Surf. Area of R.Cuneus 

264 CTA. of R.Cuneus 

265 CTStd. of R.Cuneus 

266 Vol(C). of R.Entorhinal 

267 Surf. Area of R.Entorhinal 

268 CTA. of R.Entorhinal 

269 CTStd. of R.Entorhinal 

270 Vol(C). of R.FrontalPole 

271 Surf. Area of R.FrontalPole 

272 CTA. of R.FrontalPole 

273 CTStd. of R.FrontalPole 

274 Vol(C). of R.Fusiform 

275 Surf. Area of R.Fusiform 

276 CTA. of R.Fusiform 

277 CTStd. of R.Fusiform 

278 Vol(WM). of R.Hippocampus 

279 Vol(WM). of R.InferiorLateralVentricle 

280 Vol(C). of R.InferiorParietal 

281 Surf. Area of R.InferiorParietal 

282 CTA. of R.InferiorParietal 

283 CTStd. of R.InferiorParietal 

284 Vol(C). of R.InferiorTemporal 

285 Surf. Area of R.InferiorTemporal 

286 CTA. of R.InferiorTemporal 

287 CTStd. of R.InferiorTemporal 

288 Vol(C). of R.IsthmusCingulate 

289 Surf. Area of R.IsthmusCingulate 
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290 CTA. of R.IsthmusCingulate 

291 CTStd. of R.IsthmusCingulate 

292 Vol(C). of R.LateralOccipital 

293 Surf. Area of R.LateralOccipital 

294 CTA. of R.LateralOccipital 

295 CTStd. of R.LateralOccipital 

296 Vol(C). of R.LateralOrbitofrontal 

297 Surf. Area of R.LateralOrbitofrontal 

298 CTA. of R.LateralOrbitofrontal 

299 CTStd. of R.LateralOrbitofrontal 

300 Vol(WM). of R.LateralVentricle 

301 Vol(C). of R.Lingual 

302 Surf. Area of R.Lingual 

303 CTA. of R.Lingual 

304 CTStd. of R.Lingual 

305 Vol(C). of R.MedialOrbitofrontal 

306 Surf. Area of R.MedialOrbitofrontal 

307 CTA. of R.MedialOrbitofrontal 

308 CTStd. of R.MedialOrbitofrontal 

309 Vol(C). of R.MiddleTemporal 

310 Surf. Area of R.MiddleTemporal 

311 CTA. of R.MiddleTemporal 

312 CTStd. of R.MiddleTemporal 

313 Vol(WM). of FourthVentricle 
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Appendix C: Abbreviations for 
regions in BrainNet viewer 
visualisation 
 

Abbreviations for regions in BrainNet viewer visualisation (L for left, R for right). 

Labels Regions abbr. 

1 Precentral gyrus PreCG 

2 Superior parietal gyrus SPG 

3 Superior frontal gyrus SFGdor 

4 Postcentral gyrus PoCG 

5 Inferior parietal lobule IPL 

6 Supramarginal gyrus SMG 

7 Caudal middle frontal gyrus CMF 

8 Precuneus PCUN 

9 Pars opercularis POPE 

10 Rostral middle frontal gyrus RMF 

11 Superior temporal gyrus STG 

12 Middle temporal gyrus MTG 

13 Lateral occipital sulcus LOCC 

14 Cerebellum cortex CERC 

15 Inferior temporal gyrus ITG 

16 Paracentral lobule PCL 

17 Fusiform gyrus FFG 

18 Posterior cingulate gyrus PCG 

19 Bankssts BAN 

20 Pericalcarine cortex CAL 

21 Hippocampus HIP 

22 Pars triangularis PTRI 

23 Corpus callosum mid anterior CCMA 

24 Lingual gyrus LING 

25 Medial orbitofrontal cortex MORB 

26 Cerebellum white matter CERW 

27 Caudal anterior cingulate cortex CAC 

28 Isthmus of cingulate gyrus ISC 

29 Putamen PUT 

30 Parahippocampal gyrus PHG 

31 Pars orbitalis PORB 

32 Amygdala AMYG 

33 Insula INS 

34 Lateral orbitofrontal cortex LORB 
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35 Caudate nucleus CAU 

36 Transverse temporal gyrus TTEM 

37 Cuneus CUN 

38 Frontal pole FPO 

39 Thalamus THA 

40 Rostral anterior cingulate cortex RAC 

41 Temporal pole TPOsup 

42 Corpus callosum mid posterior CCMP 

43 Entorhinal cortex ENT 

44 Corpus callosum central CCCe 
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Appendix D: The top 10 brain 
biomarker structural variation 
correlations of the proposed AMDQ-
TMTL approach 
 

The top 10 brain biomarker structural variation correlations of the proposed AMDQ-

TMTL approach are shown in descending order of the weighted parameter values by 

MMSE prediction at various time points in Tables D.1-D.10 and visualised in Figure 

D.1, by ADAS-Cog prediction at various time points in Tables D.11-D.20 and visualised 

in Figure D.2, by RAVLT TOTAL prediction at various time points in Tables D.21-

D.30 and visualised in Figure D.3, by FLU ANIM prediction at various time points in 

Tables D.31-D.40 and visualised in Figure D.4. 

 

D.1 For MMSE prediction targets 

 

 

 

Table D.1: The top-10 rank brain biomarker correlations in time point M12 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5301 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5244 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.5145 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.4916 

Vol(C). of R.Precentral - CTA. of R.Supramarginal 0.4889 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.4679 

CTA. of R.SuperiorTemporal - CTA. of L.SuperiorFrontal 0.4582 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.4479 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.4289 

Vol(C). of R.Supramarginal - Vol(C). of L.Precuneus 0.4261 
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Table D.2: The top-10 rank brain biomarker correlations in time point M24 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.6296 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6097 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.5821 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.5656 

Vol(C). of R.Precentral - CTA. of R.Supramarginal 0.5526 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.5384 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.5352 

CTA. of R.SuperiorTemporal - CTA. of L.SuperiorFrontal 0.5201 

CTA. of L.Precuneus - CTA. of R.InferiorParietal 0.4933 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.4815 

 Table D.3: The top-10 rank brain biomarker correlations in time point M36 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.6898 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.6364 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.6172 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5977 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.5869 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.5759 

Vol(C). of R.Precentral - CTA. of R.Supramarginal 0.5558 

CTA. of L.Precuneus - CTA. of R.InferiorParietal 0.5304 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5239 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.5232 

 
Table D.4: The top-10 rank brain biomarker correlations in time point M48 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.6978 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.6616 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.6566 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.6259 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6177 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.6067 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5979 

Vol(C). of R.Precentral - CTA. of R.Supramarginal 0.5742 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5534 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.5532 
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Table D.5: The top-10 rank brain biomarker correlations in time point M60 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.9068 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.7687 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.7439 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.7194 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.6874 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6762 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.6706 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.6698 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.6673 

CTA. of L.Precuneus - CTA. of R.InferiorParietal 0.6534 

 Table D.6: The top-10 rank brain biomarker correlations in time point M72 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.7843 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.6337 

CTA. of L.Precuneus - CTA. of R.InferiorParietal 0.6102 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.6096 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.6015 

CTA. of R.ParsTriangularis - CTA. of L.CaudalMiddleFrontal 0.5928 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.5664 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.5607 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5581 

CTA. of R.SuperiorParietal - CTA. of R.InferiorParietal 0.5518 

 
Table D.7: The top-10 rank brain biomarker correlations in time point M84 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.7096 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.6812 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.6645 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6549 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.6445 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.6176 

Vol(C). of L.PosteriorCingulate - Vol(C). of L.Precuneus 0.5986 

Vol(C). of R.SuperiorParietal - Vol(C). of L.SuperiorParietal 0.5978 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5938 

Vol(C). of L.Postcentral - Vol(C). of L.SuperiorParietal 0.5909 
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Table D.8: The top-10 rank brain biomarker correlations in time point M96 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5756 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5453 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.5378 

CTA. of R.Postcentral - Vol(C). of R.Fusiform 0.5258 

CTA. of R.ParsTriangularis - CTA. of L.CaudalMiddleFrontal 0.5219 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.5138 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.5118 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.5015 

Vol(C). of R.SuperiorParietal - Vol(C). of L.SuperiorParietal 0.4972 

CTA. of R.ParsOpercularis - Vol(C). of R.RostralMiddleFrontal 0.4956 

 Table D.9: The top-10 rank brain biomarker correlations in time point M108 for the 

AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6538 

Vol(C). of L.PosteriorCingulate - Vol(C). of L.Precuneus 0.6268 

CTA. of L.InferiorParietal - CTA. of L.Precentral 0.6190 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.6093 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5947 

CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 0.5853 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5839 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5609 

Vol(C). of L.SuperiorFrontal - Vol(C). of L.SuperiorParietal 0.5520 

CTA. of R.ParsTriangularis - CTA. of L.CaudalMiddleFrontal 0.5478 

 
Table D.10: The top-10 rank brain biomarker correlations in time point M120 for 

the AMDQ-TMTL approach on MMSE prediction. 

Brain biomarker correlation Weight 

CTA. of R.Precuneus - Vol(C). of R.Supramarginal 0.8201 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.8014 

Vol(C). of L.PosteriorCingulate - Vol(C). of L.Precuneus 0.7853 

CTA. of R.Postcentral - Vol(C). of R.Fusiform 0.7421 

CTA. of R.ParsTriangularis - CTA. of L.CaudalMiddleFrontal 0.7420 

CTA. of R.ParsOpercularis - CTA. of R.TransverseTemporal 0.7366 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.7052 

Vol(C). of R.ParsOpercularis - Vol(C). of L.SuperiorTemporal 0.6423 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.6374 

CTA. of L.RostralMiddleFrontal - CTA. of R.IsthmusCingulate 0.6189 
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Figure D.1: Visualisation for the top-10 ranked brain biomarker correlations at 

various time points for the proposed AMDQ-TMTL approach for MMSE prediction. 

BrainNet Viewer's toolkit [305] was utilised for visualisation. The colors of the 

nodes indicate the various biomarker categories, while the thickness of edges 

represents the implications of biomarker correlations, with thicker edges signifying 

more important correlations between biomarkers. The abbreviations for the brain 

regions are in Appendix C. 
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D.2 For ADAS-Cog prediction targets 

Table D.11: The top-10 rank brain biomarker correlations in time point M12 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.7289 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6490 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5172 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.4847 

CTA. of R.ParsOpercularis - Vol(C). of L.SuperiorFrontal 0.4768 

Vol(C). of R.Supramarginal - Vol(C). of L.Precuneus 0.4615 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.4555 

Vol(C). of L.Precuneus - Vol(C). of L.Supramarginal 0.4450 

CTA. of L.Precentral - CTA. of L.SuperiorFrontal 0.4384 

CTA. of L.Postcentral - Vol(C). of L.SuperiorFrontal 0.4347 

 Table D.12: The top-10 rank brain biomarker correlations in time point M24 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.7953 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6769 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5577 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5453 

CTA. of R.ParsOpercularis - Vol(C). of L.SuperiorFrontal 0.5072 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.5037 

CTA. of R.Precuneus - CTA. of R.Bankssts 0.4934 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.4870 

Vol(C). of R.Supramarginal - Vol(C). of L.Precuneus 0.4857 

Vol(C). of R.Postcentral - CTA. of R.Precentral 0.4814 

 Table D.13: The top-10 rank brain biomarker correlations in time point M36 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.8192 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6541 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5823 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5703 

Vol(C). of R.Paracentral - CTA. of R.Postcentral 0.5289 

CTA. of R.ParsOpercularis - Vol(C). of L.SuperiorFrontal 0.5227 

CTA. of L.SuperiorFrontal - CTA. of R.InferiorParietal 0.5172 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.5145 

CTA. of R.Precuneus - CTA. of R.Bankssts 0.5133 

Vol(C). of R.Postcentral - CTA. of R.Precentral 0.4993 
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Table D.14: The top-10 rank brain biomarker correlations in time point M48 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.9132 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.7031 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.6334 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.5822 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.5760 

Vol(C). of R.Postcentral - CTA. of R.Precentral 0.5720 

Vol(C). of R.Paracentral - CTA. of R.Postcentral 0.5608 

Vol(C). of R.SuperiorParietal - CTA. of R.SuperiorParietal 0.5513 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.5444 

CTA. of R.ParsOpercularis - Vol(C). of L.SuperiorFrontal 0.5397 

 
Table D.15: The top-10 rank brain biomarker correlations in time point M60 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.9073 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.7903 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.7598 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.7464 

Vol(C). of R.Paracentral - CTA. of R.Postcentral 0.6387 

CTA. of L.SuperiorFrontal - CTA. of R.InferiorParietal 0.6362 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.6359 

Vol(C). of R.Supramarginal - Vol(C). of R.InferiorParietal 0.6346 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.6231 

Vol(C). of L.Postcentral - Vol(C). of L.SuperiorParietal 0.6229 

 
Table D.16: The top-10 rank brain biomarker correlations in time point M72 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.7080 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.6656 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.6249 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5758 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.5757 

Vol(C). of R.SuperiorParietal - CTA. of R.SuperiorParietal 0.5489 

CTA. of L.CaudalMiddleFrontal - Vol(C). of R.InferiorParietal 0.5327 

Vol(C). of L.LateralOrbitofrontal - CTA. of L.LateralOrbitofrontal 0.5288 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.5275 

CTA. of L.SuperiorFrontal - CTA. of R.InferiorParietal 0.5217 
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Table D.17: The top-10 rank brain biomarker correlations in time point M84 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.7057 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.6537 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6530 

Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 0.6083 

CTA. of R.ParsOpercularis - Vol(C). of L.SuperiorFrontal 0.5662 

Vol(C). of R.SuperiorParietal - CTA. of R.SuperiorParietal 0.5567 

Vol(C). of R.SuperiorParietal - Vol(C). of L.MiddleTemporal 0.5442 

Vol(C). of R.Paracentral - CTA. of R.Postcentral 0.5441 

CTA. of L.CaudalMiddleFrontal - Vol(C). of L.Fusiform 0.5433 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.5400 

 
Table D.18: The top-10 rank brain biomarker correlations in time point M96 for the 
AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - CTA. of L.SuperiorParietal 0.6454 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5994 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.5306 

CTA. of R.RostralMiddleFrontal - CTA. of L.ParsOpercularis 0.5286 

CTA. of R.ParsOpercularis - Vol(C). of L.SuperiorFrontal 0.5269 

Vol(C). of L.LateralOrbitofrontal - CTA. of L.LateralOrbitofrontal 0.5226 

Vol(C). of L.LateralOccipital - Vol(C). of R.LateralOccipital 0.5124 

Vol(C). of R.Postcentral - Vol(C). of R.RostralMiddleFrontal 0.4964 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.4907 

CTA. of R.Supramarginal - CTA. of R.Cuneus 0.4906 

 
Table D.19: The top-10 rank brain biomarker correlations in time point M108 for 
the AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.LateralOrbitofrontal - CTA. of L.LateralOrbitofrontal 0.6108 

CTA. of R.TransverseTemporal - CTA. of L.Precentral 0.5695 

Vol(C). of L.PosteriorCingulate - Vol(C). of L.Precuneus 0.5521 

CTA. of L.LateralOrbitofrontal - Vol(C). of L.SuperiorParietal 0.5486 

CTA. of R.Supramarginal - CTA. of R.Cuneus 0.5341 

Vol(C). of R.SuperiorParietal - CTA. of R.SuperiorParietal 0.5236 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.5193 

Vol(C). of L.Postcentral - Vol(C). of L.SuperiorParietal 0.5117 

Vol(C). of R.SuperiorParietal - Vol(C). of L.MiddleTemporal 0.4988 

Vol(C). of L.Postcentral - CTA. of L.Postcentral 0.4979 
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Table D.20: The top-10 rank brain biomarker correlations in time point M120 for 
the AMDQ-TMTL approach on ADAS-Cog prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.LateralOrbitofrontal - CTA. of L.LateralOrbitofrontal 0.6601 

Vol(C). of R.ParsOpercularis - Vol(C). of L.SuperiorTemporal 0.6141 

Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 0.5697 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5539 

CTA. of L.CaudalMiddleFrontal - Vol(C). of L.Fusiform 0.5325 

CTA. of R.ParsOpercularis - CTA. of R.Supramarginal 0.5255 

Vol(C). of R.SuperiorParietal - Vol(C). of L.MiddleTemporal 0.5205 

CTA. of R.TransverseTemporal - CTA. of L.Precentral 0.5135 

Vol(C). of L.Precuneus - Vol(C). of L.Supramarginal 0.5117 

Vol(C). of R.Supramarginal - Vol(C). of R.InferiorParietal 0.5114 
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Figure D.2: Visualisation for the top-10 ranked brain biomarker correlations at 

various time points for the proposed AMDQ-TMTL approach for ADAS-Cog 

prediction. BrainNet Viewer's toolkit [305] was utilised for visualisation. The colors 

of the nodes indicate the various biomarker categories, while the thickness of edges 

represents the implications of biomarker correlations, with thicker edges signifying 

more important correlations between biomarkers. The abbreviations for the brain 

regions are in Appendix C. 
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D.3 For RAVLT TOTAL prediction targets 
Table D.21:The top-10 rank brain biomarker correlations in time point M12 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5040 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5015 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.4905 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.4678 

CTA. of R.Paracentral - Vol(C). of R.Supramarginal 0.4482 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.4293 

CTA. of L.LateralOccipital - CTA. of L.Precuneus 0.4209 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4181 

CTA. of R.Precuneus - CTA. of L.InferiorParietal 0.4077 

Vol(C). of R.SuperiorFrontal - Vol(C). of R.Supramarginal 0.3938 

 Table D.22: The top-10 rank brain biomarker correlations in time point M24 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5266 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5187 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.4959 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.4920 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4651 

CTA. of L.LateralOccipital - CTA. of L.Precuneus 0.4419 

CTA. of R.Paracentral - Vol(C). of R.Supramarginal 0.4411 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.4307 

CTA. of R.Precuneus - CTA. of L.InferiorParietal 0.4297 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.4264 

 Table D.23: The top-10 rank brain biomarker correlations in time point M36 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5371 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.5364 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5323 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.5053 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4939 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.4737 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.4684 

CTA. of R.Paracentral - Vol(C). of R.Supramarginal 0.4593 

CTA. of R.Postcentral - CTA. of L.SuperiorFrontal 0.4353 

CTA. of L.SuperiorFrontal - CTA. of L.Supramarginal 0.4280 
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Table D.24: The top-10 rank brain biomarker correlations in time point M48 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.6089 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5930 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.5521 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.5510 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.5311 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.5220 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.5009 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.4653 

CTA. of R.Postcentral - CTA. of L.SuperiorFrontal 0.4489 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.4439 

 
Table D.25: The top-10 rank brain biomarker correlations in time point M60 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.5343 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5120 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.5014 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.4699 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.4693 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4598 

CTA. of R.SuperiorParietal - CTA. of L.RostralMiddleFrontal 0.4531 

CTA. of R.Paracentral - Vol(C). of R.Supramarginal 0.4493 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.4353 

CTA. of L.SuperiorFrontal - CTA. of L.Supramarginal 0.4320 

 
Table D.26: The top-10 rank brain biomarker correlations in time point M72 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.5490 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.5462 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5091 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.4983 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4888 

CTA. of L.SuperiorFrontal - CTA. of L.Supramarginal 0.4852 

CTA. of L.CaudalMiddleFrontal - CTA. of L.InferiorParietal 0.4795 

CTA. of R.ParsOpercularis - CTA. of R.SuperiorFrontal 0.4766 

CTA. of R.SuperiorParietal - CTA. of L.RostralMiddleFrontal 0.4723 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.4703 
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Table D.27: The top-10 rank brain biomarker correlations in time point M84 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5090 

Vol(C). of L.Precentral - Vol(C). of L.Precuneus 0.4820 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.4790 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.4671 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4646 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.4475 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.4468 

CTA. of R.RostralMiddleFrontal - Vol(C). of L.SuperiorFrontal 0.4317 

CTA. of L.SuperiorFrontal - CTA. of L.Supramarginal 0.4230 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.4185 

 
Table D.28: The top-10 rank brain biomarker correlations in time point M96 for the 
AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.5427 

Vol(C). of R.Precuneus - Vol(C). of L.SuperiorTemporal 0.5002 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.4884 

CTA. of R.ParsTriangularis - Vol(C). of R.Precuneus 0.4737 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.4605 

CTA. of L.SuperiorFrontal - CTA. of L.Supramarginal 0.4577 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.4547 

Vol(C). of R.Postcentral - CTA. of L.SuperiorFrontal 0.4503 

CTA. of R.RostralMiddleFrontal - Vol(C). of L.SuperiorFrontal 0.4493 

CTA. of R.ParsOpercularis - CTA. of R.SuperiorFrontal 0.4452 

 
Table D.29: The top-10 rank brain biomarker correlations in time point M108 for 
the AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.4888 

CTA. of R.TransverseTemporal - CTA. of L.Precentral 0.4479 

Vol(C). of L.Postcentral - Vol(C). of R.CaudalMiddleFrontal 0.4418 

CTA. of R.Postcentral - Vol(C). of L.Precentral 0.4291 

Vol(C). of R.Precuneus - Vol(C). of L.SuperiorTemporal 0.4266 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.4043 

CTA. of L.ParsOpercularis - Vol(C). of L.SuperiorParietal 0.3974 

CTA. of L.Paracentral - CTA. of R.LateralOrbitofrontal 0.3939 

Vol(C). of R.SuperiorFrontal - Vol(C). of R.Supramarginal 0.3849 

CTA. of L.Cuneus - CTA. of L.MiddleTemporal 0.3838 
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Table D.30: The top-10 rank brain biomarker correlations in time point M120 for 
the AMDQ-TMTL approach on RAVLT TOTAL prediction. 

Brain biomarker correlation Weight 

CTA. of R.ParsTriangularis - CTA. of L.Postcentral 0.5027 

Vol(C). of R.RostralMiddleFrontal - Vol(C). of L.InferiorParietal 0.4293 

CTA. of L.Postcentral - CTA. of L.SuperiorParietal 0.4256 

Vol(C). of R.Paracentral - CTA. of L.Cuneus 0.4180 

CTA. of R.ParsTriangularis - CTA. of L.InferiorParietal 0.4044 

Vol(C). of R.ParsOpercularis - CTA. of R.TransverseTemporal 0.3983 

Vol(C). of R.SuperiorFrontal - CTA. of R.CaudalMiddleFrontal 0.3924 

CTA. of L.SuperiorFrontal - CTA. of L.Supramarginal 0.3745 

CTA. of R.SuperiorParietal - Vol(C). of L.Precuneus 0.3509 

CTA. of R.SuperiorFrontal - CTA. of L.Paracentral 0.3506 
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Figure D.3: Visualisation for the top-10 ranked brain biomarker correlations at 

various time points for the proposed AMDQ-TMTL approach for RAVLT TOTAL 

prediction. BrainNet Viewer's toolkit [305] was utilised for visualisation. The colors 

of the nodes indicate the various biomarker categories, while the thickness of edges 

represents the implications of biomarker correlations, with thicker edges signifying 

more important correlations between biomarkers. The abbreviations for the brain 

regions are in Appendix C. 
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D.4 For FLU ANIM prediction targets 

Table D.31: The top-10 rank brain biomarker correlations in time point M12 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.7702 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.5841 

Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal 0.5585 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5528 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.5498 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.5155 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.Precentral 0.5103 

Vol(C). of R.Precentral - CTA. of R.CaudalMiddleFrontal 0.4937 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.4882 

Vol(C). of R.RostralMiddleFrontal - CTA. of L.SuperiorParietal 0.4790 

 Table D.32: The top-10 rank brain biomarker correlations in time point M24 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8434 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.6257 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.6192 

Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal 0.5727 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5697 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.5486 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.5274 

Vol(C). of R.Precentral - CTA. of R.CaudalMiddleFrontal 0.5178 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.Precentral 0.5130 

Vol(C). of L.Precentral - CTA. of R.CaudalMiddleFrontal 0.4889 

 Table D.33: The top-10 rank brain biomarker correlations in time point M36 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8043 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.6619 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.6173 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.6101 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.5565 

Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal 0.5346 

Vol(C). of R.Precentral - CTA. of R.CaudalMiddleFrontal 0.5140 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.5006 

CTA. of R.Paracentral - CTA. of R.InferiorParietal 0.4872 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.Precentral 0.4802 
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Table D.34: The top-10 rank brain biomarker correlations in time point M48 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8478 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.6719 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.6642 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.6328 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.5968 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.5732 

Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal 0.5709 

Vol(C). of L.InferiorParietal - Vol(C). of L.Precuneus 0.5158 

Vol(C). of R.Postcentral - Vol(C). of L.SuperiorParietal 0.5132 

Vol(C). of L.Supramarginal - Vol(C). of R.LateralOccipital 0.4995 

 
Table D.35: The top-10 rank brain biomarker correlations in time point M60 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8928 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.7570 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.6999 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.6586 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.6411 

Vol(C). of R.Precuneus - CTA. of L.RostralMiddleFrontal 0.6095 

Vol(C). of L.Precuneus - CTA. of L.SuperiorParietal 0.5741 

Vol(C). of L.InferiorParietal - Vol(C). of L.Precuneus 0.5740 

Vol(C). of L.Postcentral - CTA. of L.Postcentral 0.5577 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.5512 

 
Table D.36: The top-10 rank brain biomarker correlations in time point M72 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.7293 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.6453 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.6270 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.6077 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5662 

Vol(C). of R.Precuneus - CTA. of L.RostralMiddleFrontal 0.5509 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.5302 

CTA. of R.Paracentral - CTA. of R.InferiorParietal 0.4919 

CTA. of R.ParsTriangularis - CTA. of L.InferiorParietal 0.4898 

CTA. of L.CaudalMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.4749 
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Table D.37: The top-10 rank brain biomarker correlations in time point M84 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8459 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.7549 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.6278 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.5966 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.5369 

Vol(C). of R.Precuneus - CTA. of L.RostralMiddleFrontal 0.5172 

Vol(C). of L.Postcentral - CTA. of L.Postcentral 0.5161 

CTA. of L.Postcentral - CTA. of R.MiddleTemporal 0.5017 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.4996 

CTA. of R.Paracentral - CTA. of R.InferiorParietal 0.4894 

 
Table D.38: The top-10 rank brain biomarker correlations in time point M96 for the 
AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.6547 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.5685 

Vol(C). of L.Precentral - CTA. of L.Supramarginal 0.4725 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.4515 

CTA. of R.ParsTriangularis - CTA. of L.InferiorParietal 0.4479 

CTA. of R.Precentral - CTA. of R.SuperiorTemporal 0.4409 

Vol(C). of L.Postcentral - CTA. of L.Postcentral 0.4377 

CTA. of L.Postcentral - CTA. of R.MiddleTemporal 0.4113 

CTA. of R.Postcentral - Vol(C). of L.Supramarginal 0.4102 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.4084 

 
Table D.39: The top-10 rank brain biomarker correlations in time point M108 for 
the AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8272 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.6381 

Vol(C). of R.Postcentral - CTA. of L.Postcentral 0.6088 

Vol(C). of R.Postcentral - CTA. of L.Pericalcarine 0.5796 

Vol(C). of L.Postcentral - CTA. of L.Postcentral 0.5566 

Vol(C). of R.Precuneus - CTA. of L.RostralMiddleFrontal 0.5398 

Vol(C). of L.InferiorParietal - Vol(C). of L.Precuneus 0.5392 

CTA. of R.ParsTriangularis - CTA. of L.InferiorParietal 0.5239 

Vol(C). of R.SuperiorFrontal - CTA. of L.InferiorParietal 0.4998 

CTA. of L.LateralOrbitofrontal - Vol(C). of L.SuperiorParietal 0.4955 
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Table D.40: The top-10 rank brain biomarker correlations in time point M120 for 
the AMDQ-TMTL approach on FLU ANIM prediction. 

Brain biomarker correlation Weight 

Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 0.8582 

Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 0.7873 

Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 0.7067 

Vol(C). of R.Precuneus - CTA. of L.RostralMiddleFrontal 0.6769 

CTA. of R.RostralMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.6116 

Vol(C). of R.Postcentral - CTA. of L.Pericalcarine 0.5824 

CTA. of L.CaudalMiddleFrontal - CTA. of L.RostralMiddleFrontal 0.5710 

Vol(C). of L.Postcentral - CTA. of L.Postcentral 0.5656 

Vol(C). of R.Precuneus - Vol(C). of R.Supramarginal 0.5431 

CTA. of L.Postcentral - CTA. of R.MiddleTemporal 0.5412 
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Figure D.4: Visualisation for the top-10 ranked brain biomarker correlations at 

various time points for the proposed AMDQ-TMTL approach for FLU ANIM 

prediction. BrainNet Viewer's toolkit [305] was utilised for visualisation. The colors 

of the nodes indicate the various biomarker categories, while the thickness of edges 

represents the implications of biomarker correlations, with thicker edges signifying 

more important correlations between biomarkers. The abbreviations for the brain 

regions are in Appendix C. 
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Appendix E: Information on 
potential indicators for AD early 
detection 

 

Figure E.1: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for Vol(C). of R.InferiorParietal - CTA. of R.InferiorParietal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.2: Continuation of Figure E.1, differences in the distribution of early stage 

(BL-M06) AMDQ quantitative values for Vol(C). of R.InferiorParietal - CTA. of 

R.InferiorParietal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M72 to M120. 
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Figure E.3: Differences in the distribution of early stage (BL-M06) relative structure 

variation status between biomarkers for Vol(C). of R.InferiorParietal - CTA. of 

R.InferiorParietal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M12 to M60. 
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Figure E.4: Continuation of Figure E.3, Differences in the distribution of early stage 

(BL-M06) relative structure variation status between biomarkers for Vol(C). of 

R.InferiorParietal - CTA. of R.InferiorParietal correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.5: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for CTA. of R.Precuneus - Vol(C). of R.Supramarginal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.6: Continuation of Figure E.5, differences in the distribution of early stage 

(BL-M06) AMDQ quantitative values for CTA. of R.Precuneus - Vol(C). of 

R.Supramarginal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M72 to M120. 
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Figure E.7: Differences in the distribution of early stage (BL-M06) relative structure 

variation status between biomarkers for CTA. of R.Precuneus - Vol(C). of 

R.Supramarginal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M12 to M60. 
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Figure E.8: Continuation of Figure E.7, Differences in the distribution of early stage 

(BL-M06) relative structure variation status between biomarkers for CTA. of 

R.Precuneus - Vol(C). of R.Supramarginal correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.9: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for CTA. of L.Postcentral - Vol(C). of L.SuperiorParietal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.10: Continuation of Figure E.9, differences in the distribution of early stage 

(BL-M06) AMDQ quantitative values for CTA. of L.Postcentral - Vol(C). of 

L.SuperiorParietal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M72 to M120. 
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Figure E.11: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for CTA. of L.Postcentral - Vol(C). of 

L.SuperiorParietal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M12 to M60. 
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Figure E.12: Continuation of Figure E.11, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for CTA. of 

L.Postcentral - Vol(C). of L.SuperiorParietal correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.13: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for CTA. of L.InferiorParietal - CTA. of L.Precentral correlations 

between cognitively impaired and non-cognitively impaired individuals at time 

points M12 to M60. 
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Figure E.14: Continuation of Figure E.13, differences in the distribution of early 

stage (BL-M06) AMDQ quantitative values for CTA. of L.InferiorParietal - CTA. of 

L.Precentral correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M72 to M120. 
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Figure E.15: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for CTA. of L.InferiorParietal - CTA. 

of L.Precentral correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M12 to M60. 
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Figure E.16: Continuation of Figure E.15, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for CTA. of 

L.InferiorParietal - CTA. of L.Precentral correlations between cognitively impaired 

and non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.17: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for Vol(C). of L.InferiorParietal - Vol(C). of L.SuperiorParietal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.18: Continuation of Figure E.17, differences in the distribution of early 

stage (BL-M06) AMDQ quantitative values for Vol(C). of L.InferiorParietal - 

Vol(C). of L.SuperiorParietal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M72 to M120. 
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Figure E.19: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for Vol(C). of L.InferiorParietal - 

Vol(C). of L.SuperiorParietal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M12 to M60. 
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Figure E.20: Continuation of Figure E.19, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for Vol(C). 

of L.InferiorParietal - Vol(C). of L.SuperiorParietal correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.21: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for CTA. of R.ParsTriangularis - CTA. of L.Postcentral 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.22: Continuation of Figure E.21, differences in the distribution of early 

stage (BL-M06) AMDQ quantitative values for CTA. of R.ParsTriangularis - CTA. 

of L.Postcentral correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M72 to M120. 
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Figure E.23: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for CTA. of R.ParsTriangularis - CTA. 

of L.Postcentral correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M12 to M60. 
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Figure E.24: Continuation of Figure E.23, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for CTA. of 

R.ParsTriangularis - CTA. of L.Postcentral correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 



277 

 

 

 

 

Figure E.25: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for Vol(C). of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.26: Continuation of Figure E.25, differences in the distribution of early 

stage (BL-M06) AMDQ quantitative values for Vol(C). of R.SuperiorFrontal - 

Vol(C). of L.SuperiorFrontal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M72 to M120. 
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Figure E.27: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for Vol(C). of R.SuperiorFrontal - 

Vol(C). of L.SuperiorFrontal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M12 to M60. 
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Figure E.28: Continuation of Figure E.27, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for Vol(C). 

of R.SuperiorFrontal - Vol(C). of L.SuperiorFrontal correlations between 

cognitively impaired and non-cognitively impaired individuals at time points M72 

to M120. 
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Figure E.29: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for Vol(C). of L.SuperiorFrontal - CTA. of L.SuperiorFrontal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.30: Continuation of Figure E.29, differences in the distribution of early 

stage (BL-M06) AMDQ quantitative values for Vol(C). of L.SuperiorFrontal - CTA. 

of L.SuperiorFrontal correlations between cognitively impaired and non-cognitively 

impaired individuals at time points M72 to M120. 
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Figure E.31: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for Vol(C). of L.SuperiorFrontal - 

CTA. of L.SuperiorFrontal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M12 to M60. 
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Figure E.32: Continuation of Figure E.31, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for Vol(C). 

of L.SuperiorFrontal - CTA. of L.SuperiorFrontal correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.33: Differences in the distribution of early stage (BL-M06) AMDQ 

quantitative values for Vol(C). of R.Precuneus - CTA. of R.RostralMiddleFrontal 

correlations between cognitively impaired and non-cognitively impaired individuals 

at time points M12 to M60. 
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Figure E.34: Continuation of Figure E.33, differences in the distribution of early 

stage (BL-M06) AMDQ quantitative values for Vol(C). of Vol(C). of R.Precuneus - 

CTA. of R.RostralMiddleFrontal correlations between cognitively impaired and 

non-cognitively impaired individuals at time points M72 to M120. 
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Figure E.35: Differences in the distribution of early stage (BL-M06) relative 

structure variation status between biomarkers for Vol(C). of R.Precuneus - CTA. of 

R.RostralMiddleFrontal correlations between cognitively impaired and non-

cognitively impaired individuals at time points M12 to M60. 
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Figure E.36: Continuation of Figure E.35, Differences in the distribution of early 

stage (BL-M06) relative structure variation status between biomarkers for Vol(C). 

of R.Precuneus - CTA. of R.RostralMiddleFrontal correlations between cognitively 

impaired and non-cognitively impaired individuals at time points M72 to M120. 


