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Abstract

This thesis reports the syntheses and DNA binding properties of a number of novel DNA
binding complexes.

A library of ruthenium(ll) and rhenium(l) complexes incorporating extended terpyridine
type ligands has been synthesised (1).

The library consists of a series of structurally related complexes in which we have varied
the number of hydrogen bonding sites, charge, chirality and steric demand on the
complexes. Experimental data offers clear evidence that these complexes interact with
DNA, possibly in an intercalative mode, and that varying the characteristics above has
significant effects on the nature of the interaction with DNA.

Furthermore a series of achiral mono (2) and bimetallic complexes of ruthenium(ll) (3)
and rhenium(l) (4) incorporating the well-characterised intercalating domain dppz have
been assembled. The novel achiral ruthenium system shows good affinity for CT-DNA
and there is a 13-fold increase in binding affinity for the di-cationic complex over the
mono-cationic complex. The binding of the di-rhenium and bis-ruthenium complexes
show increased affinity for CT-DNA however bis-intercalation is not seen and the major

contribution to the interaction comes from electrostatic and groove binding interactions.
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Chapter 1 Introduction

Introduction

1.1 DNA-the molecule of life

Deoxyribose nucleic acid (DNA) ts described as a chemical repository for
the genetic information of an organism‘. This apparently “simple” bio-
polymer, consisting of four distinct building blocks, is capable of storing,
retrieving and processing immense amounts of genetic information
quickly and efficiently upon cellular demand. The information stored
within the DNA in the form of the genetic code, governs every

characteristic of every living species on earth.

DNA is designed in such a way that it can be easily copied, allowing vital
information to be passed on from generation to generation. Although the
information is never lost it iIs sometimes altered, either as a result of
breeding where the individual genetic characteristic from the father and
the mother is mixed, or as a result of a physical alteration such as miss-
copying or damage sustained from an external source. These alterations

are called mutations and often trigger a cascade of events that eventually
lead to the host developing a disadvantageous condition such as some

form of disease or a characteristic that will enable it to become fitter and
stronger than before.

Over the last half-century, scientists have begun to unlock many of the
mechanisms of the processes surrounding the function of DNA, such as
replication, damage repair, transcription and its function in the cell cycle.
It is now the ultimate goal of genetic scientists to gain control of the
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functions of DNA by designing novel molecular scale tools and probes
that can be easily introduced to the cell and perform specific pre-
determined tasks. One such goal is to be able to selectively switch a
gene on or off in a process called ‘gene modulation’ and this thesis

describes a small step towards this goal through the use of metal-based
DNA binding agents.

If a mutation occurs in a gene, which has a marked negative affect on its
host, the ability to switch this gene off and stop it being replicated
throughout the host, or even repair the gene on the chromosome would

be a priceless commodity in the fight against disease.

The primary feature of any natural or synthetic molecule that interacts
with DNA is its ability to form a tight pre-defined complex with the DNA
molecule. That means that the targeting molecule must be able to read
the genetic code for itself, so that it can be sure to bind to the correct site
or gene on a DNA molecule that contains many hundreds of thousands of
potential binding sites. In order to achieve this, one must have an
understanding of the structural and physical characteristics of DNA that
can be exploited in the design of site-specific DNA binding molecules.

1.2 The structure of DNA?

DNA is a biopolymer made from four code-dependant alternating sub
units of nucleotides, consisting of a nucleoside bonded through a 5’

phosphate ester linkage to phosphoric acid. A nucleoside is a 2’ deoxy

ribose sugar with a heterocyclic amine base bonded to the C1 carbon of
the ribose sugar (Figure 1.1).
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_Base HO_ O _Base

HO HO

Figure 1.1:- A nucleoside (A) and a nucleotide (B)

The polymer is formed by the & phosphoric acid forming another
phosphate ester linkage to 3’ hydroxyl of an adjacent nucleotide.

Base Base
O O o
;‘r, ,c,) p’f ,? | I? O
HO OHP"""O OHP--..O / 0"--.P____0 41, OH

3!

5|

Figure 1.2:- Schematic of DNA showing the 53’ polarity of the
structure

1.2.1 The DNA bases and Watson-Crick base pairing’

The code that DNA stores so effectively is made up of four “letters” which
represent the four DNA bases. The purine bases are adenine (A) and
guanine (G) and pyrimidine bases are thymine (T) and cytosine (C)
(Figure 1.3).
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0 NH,
2 </f O
'i‘)% 'i‘)%"
Adenine (A) Guanine (G) Thymine (T) Cytosine (C)

Figure 1.3:- The DNA bases

In the early 1950s when Watson and Crick were working investigating the
structure of DNA, they made the observation that wherever an A
appeared in the sequence it was always paired with T. Likewise
wherever G appeared it was always paired with C. This led them to
propose that DNA consisted of two complementary strands which were
held together through hydrogen bonds between complementary base
pairs TA and GC (Figure 1.4).

Figure 1. 4:- The complementary hydrogen bonding in DNA base pairs
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1.2.2 The DNA helix’

With the help of an X-ray diffraction pattern and the knowledge of DNA
base-pairing Watson and Crick were able to propose a complete

structural mode! of DNA.

The important features of their model are:

1. Two helical polynucleotide chains are coiled around a common

core.

2. The purine and pyrimidine bases are stacked along the central axis
of the helix whereas the phosphate and deoxyribose units are on
the outside of the helix. The planes of the bases are perpendicular
to the central axis

3. The diameter of the helix is 20 A. Adjacent bases are separated

by 3.4 A along the helical axis and are offset by a rotation of 36°.
Hence the helical structure repeats after ten residues on each

chain.

4. The two chains run in opposite directions and are held together by
hydrogen bonds between the base pairs. Each base pair consists
of one pyrimidine and one purine.

5. The sequence of bases along a polynucleotide chain is not
restricted in any way. The precise sequence of bases carries the

genetic code.

Due to steric restrictions, each base pair consists of a purine and a
pyrimidine base. The regular nature of the helical phosphate backbone
means that the glycosidic bonds that attach the deoxyribose sugars to the
bases are always 10.85 A apart. A purine-pyrimidine base pair fits
perfectly into this space. There is insufficient space for two purines but
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too much for two pyrimidines meaning they would be placed too far apart

for any hydrogen bonding interaction to occuir.

1.2.3 The major and minor grooves®

A consequence of the helical structure of DNA is that there are two helical
grooves that run the entire length of the DNA molecule. These are called
the major and the minor groove (Figure 1.5). The major groove is wider
(12 A) than the minor groove (6 A). The bases themselves can be
accessed from both the major and the minor groove, allowing molecules

such as proteins and other small molecules to read the code and bind to

the DNA molecule sequence specifically.

Major
groove 4

groove

groove

Figure 1.5:- Picture of DNA showing the major and minor grooves

1.3 The function of DNA'?

The information stored in the genetic code needs to be replicated upon
demand, conserved through generations and decoded in order to carry
out everyday cellular functions. The overall process of copying, and

decoding has been termed the “central dogma” of molecular genetics.
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1.3.1 The central dogma of molecular genetics

According to the central dogma of molecular genetics, the function of
DNA is to store genetic information and pass it onto RNA, and the
function of RNA i1s to read, decode and use the information to make

proteins.

Replication
QN A Transcription R N A Translation P r Ot e | n

Replication is the process by which a identical copy of DNA is made.
Replication occurs every time a cell divides so that the information can be

preserved and passed onto the new cell.

Transcription is the process by which genetic messages contained in
DNA are read or transcribed. The product of transcription, messenger
RNA (mRNA) leaves the cell nucleus and carries the protein blueprint to
the sites of protein synthesis within the cell called the ribosome.

Translation is the process by which genetic messages carried in the
mRNA is decoded and used to build proteins.

1.3.2 DNA replication

DNA replication begins with a partial unwinding of the DNA double helix,
at an area known as the replication fork. One of the DNA strands is first
of all nicked and broken by DNA topoisomerase, which results in the loss
of tension that keeps the DNA in its coiled and super-coiled state within
the chromosome. Then the unwinding of the original DNA double helix is
accomplished by DNA helicase. The unwound section of the DNA
appears as a bubble when viewed under an electron microscope and is

7
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thus known as the replication bubble. The starting point for the DNA
synthesis is a small RNA primer, which is placed in position by RNA
primase. DNA polymerase Is an aggregate of several different protein
subunits, called a holoenzyme. The holoenzyme then recruits free
deoxynuclotide triphosphates (dNTP’'s) to hydrogen bond to their
complementary bases on the template strand. DNA polymerase is
described as being template dependent. It will read the sequence of
bases on the template strand, then synthesise the complementary
information strand, but it can only read the template strand in the 3—» 5’
directions. The dNTP’s are then joined together by the reaction of the free
3' hydroxyl of the primer with the triphosphate on the &' end of the
adjacent dNTP. The result is that the new complementary DNA strand

can only grow in the 5 -3’ direction. Because the parent DNA strands
are complementary and run anti-parallel only one new strand can begin
with its 3’ end adjacent to the replication fork and grow continuously as
the replication fork moves along the DNA. This is called the leading
strand. The other strand (the lagging strand) must grow in the opposite
direction. This is achieved by the formation of a number of short sections
of DNA called Okazaki fragments. These fragments are ligated together
by DNA ligase to form a continuous strand of DNA. In the final step of the
process DNA polymerase |ll removes the RNA primer and replaces it with
DNA bases to form the full DNA strand, which will be exactly
complementary to the original template strand (Figure 1.6).
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replication fork

R
LT

3I

leading strand primer

new strand

original strand \

Figure 1.6:-

Okazaki fragment

lagging strand \

5I'

Schematic of replication

mmmm onginal strand
mmmm newly synthesized strand

1. Semuconservative Model 2. Conservatnve Model

Figure 1.7:-

Conservative, and semi-conservative modes of replication

Since each new strand Is complementary to its template strand, two
identical new copies of the DNA double helix are produced during
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replication. In each new helix, one strand is the old template and one is
newly synthesised. The replication process is therefore described as
semi-conservative (Figure 1.7). Crick described this process as being like
a hand in a glove. The hand and glove separate, a new hand forms
inside the old glove and a new glove forms around the old hand?.

1.3.3 Structure and function of RNA?

Ribose nucleic acid (RNA) is structurally very similar to DNA, with a few
significant differences. The sugar in RNA is ribose rather than 2'-
deoxyribose and the base thymine is replaced by urasil in RNA. RNA
molecules are also shorter and exist only as single strands, although
double stranded portions can be formed when the RNA folds and
hydrogen bonds to itself. The sole function of DNA is to store genetic
information, but there are a number of types of RNA all with differing

functions in the cell.

1. Ribosomal RNA (rRNA) exists outside of the cell nucleus in the
cytoplasm of the cell in structures called ribosomes. Ribosomes are
small granular structures where protein synthesis takes place. Each
ribosome is a complex consisting of about 60% rRNA and 40%

protein.

2. Messenger RNA (mRNA) records the information stored in the DNA
within the cell nucleus and carries it to the ribosome where it is

decoded and used to direct the biosynthesis of proteins.

3. Transfer RNA (tRNA) is used to deliver the correct amino acids one
by one to protein chains growing at ribosomes.

4, Small nuclear RNA (snRNA) is used to process the mRNA as it is
transferred from the cell nucleus to the ribosome.

10
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1.3.4 RNA synthesis: Transcription?

Messenger RNA is synthesised in the cell by transcription of DNA, a
process similar to DNA replication. Again a small segment of the DNA
unwinds which exposes the bases of the two DNA strands. A DNA
dependent RNA polymerase then lines up the ribonucleotides with their
complementary bases on the DNA strand and then ligates them together
to form mRNA.

Unlike DNA replication where both strands of the DNA are copied, only
one of the strands is transcribed into MRNA. The DNA strand that i1s
transcribed is called the template strand or the antisence strand, and its
complement is called the information strand (also called the coding or
sense strand). Since the template strand and the information strand are
complementary, and as the template strand and the mRNA molecule are
also complementary, it follows that the mMRNA produced during
transcription is a copy of the DNA information strand.

The synthesis of RNA by RNA-polymerase takes place in three distinct
stages; 1) initiation, 2) elongation, and 3) termination. Transcription starts
at specific sites called promoters. These promoters are regions of DNA
rich in AT bases. RNA-polymerase is a holoenzyme consisting of four
subunits. The sigma subunit recognises the promoter sequence and
initiates MRNA synthesis. RNA synthesis proceeds in the 5'—3’ direction
analogous to DNA synthesis for the same reasons. The termination of
transcription is as strictly governed as its initiation. The DNA template
strand contains stop signals that stop the synthesis of the mRNA at the
end of the gene, so that only information specific to any one given gene is
transcribed to the mRNA. The termination signals for mRNA synthesis
are normally denoted as a GC rich region of DNA, followed by an AT rich

sequence. There is also a two-fold symmetry of the CG rich region, which
allows the formation of a hairpin.

11
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1.3.2 Groove binding interactions

When a molecule associates either in the major or minor groove of DNA it
is said to be a groove-binding agent®. Because the DNA bases can be
accessed through both of the grooves, there is enormous scope for
sequence specific interactions. Figure 1.9 shows the recognition sites of
A-T and G-C base pairs that are accessible in the major and minor

grooves’.

Major groove side

G-C Minor groove side A-T

Figure 1.9:- Recognition sites accessible from the grooves of DNA

The major groove contains the largest number of recognition sites. For A-
T base pairs these include the adenine N-7 and thymine C-4 carbonyl as
hydrogen bond acceptors, the adenine C-6 amine as a hydrogen bond
donor and the thymine methyl group as stabilisation for van der Waals'
interactions. For the G-C base pair, guanine N-7 and the guanine C-6
carbonyl can function as hydrogen bond acceptors and the cytosine C-4
amine can act as a hydrogen bond donor. The minor groove has far
fewer recognition sites than the major groove. Despite this most minor
groove-binding agents bind in the minor groove’. The G-C base pair
contains guanine N-3 and the cytosine C-2 carbonyl as hydrogen bond

13
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acceptors and the guanine C-2 amine as a hydrogen bond donor. The A-
T base pair only has the adenine N-3 and the thymine C-2 carbonyl are
available to act as hydrogen bond acceptor sites. The sequence
selectivity of the binding has been shown to depend on a combination of
hydrogen bonding, van der Waals’ interactions and hydrophobic contacts

with the bases and the walls of the groove®®.

Most minor groove binding ligands show an enhanced preference for A-T
rich regions of DNA. This has been contributed to the steric protrusion of
the C-2 amine of guanine above the floor of the minor groove, along with
the narrower groove in A-T rich regions, which helps to maximise
hydrophobic, and van der Waals’ contacts between the molecule and the

groove walls®.

1.3.3 Netropsin and Distamycin as minor groove binders®

The two naturally occurring minor groove binding anti-tumour antibiotics,
Netropsin and Distamycin have been extensively studied. They provide a
good example of the non-covalent interactions, which are important in
directing sequence specific binding.
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Netropsin and Distamycin are both crescent shaped ligands containing
two and three N-methylpyrrole carboxamides respectively. Foot printing
and NMR experiments along with analysis of crystal structures has shown

that Netropsin targets 5'-AATT-3’ whilst Distamycin binds as a head to tail
dimer and targets 5’-AAATT-3' (Figure 1.10).
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A)

Figure 1.10:- Key hydrogen bonding interactions for A) Netropsin and B)
Distamyecin binding to AT rich DNA

The crystal structure of Netropsin binding to the Dickerson dodecamer, 5'-
d(CGCGAATTCGCG), shows van der Waals' interactions with the
deoxyribose backbone lining the groove. The selectivity comes from
three hydrogen bonds between the hydrogens on Netropsin and adenine
N-3 or thymine C-2 carbonyl on adjacent base pairs of opposite strands.
The two positive charges interact with the N-3 of the adenines flanking
the binding site as well as forming a salt bridge secondary interaction with
the phosphate backbone. Distamycin shows similar interaction to

Netropsin.

The high binding affinities (K=10 M) and selectivity of Netropsin and
Distamycin have been attributed to the local short-range ligand DNA
interactions rather than from any entropy driven process resulting from
the displacement of ordered water from the minor groove and desolvation

of the ligand itself.

16



Chapter 1 Introduction

1.3.6 Intercalation

Intercalation describes the process in which planar aromatic compounds
insert between two adjacent base pairs in the DNA double helix. This
stabilizes, lengthens, stiffens and unwinds duplex DNA. Interactions
involved in intercalation are =n-n stacking interactions, dipole-dipole
electronic interactions and hydrophobic interactions. The energetic cost
of distorting the helix and disrupting the existing base pair stacks has a
profound effect on the binding affinity and selectivity of the intercalating
ligand. An informative account by Barton and Long addresses many of
the confusing experimental criteria required to establish intercalation”.

Simple intercalators such as ethidium bromide show little or no selectivity
in their binding although they have a slight preference for G-C rich

sequences of DNA®.

Most intercalators bind best to mixed sequences of alternating purine
pyrimidine bases.  The neighbour exclusion principle states that
intercalators can, at most, only bind at alternate base pair sites on DNA.
However in practice the binding site size is larger than two base pairs due
to the local disruption in the DNA duplex upon intercalation®.

—I Br
NH,

Ethidium bomide
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Intercalators have proved to be particularly useful in the inhibition of
polymerase activity because the duplex is stabilized and therefore harder
to unwind. In addition the enzyme is unable to bind to the disrupted
regions of DNA, which in turn results in the inhibition of replication,
transcription, endonuclease activity or any other enzyme involved in DNA
modification. There are a number of commercial anti-tumour drugs such
as amasacrine that act by inhibiting topoisomerase |l, which, as described
earlier, is involved in winding and unwinding (super coiling) of DNA during

transcription and replication.

MeOUNHSOZMe
HN
L

~

N

Amsacrine (m-AMSA)

Amsacrine has been shown to bind selectively to alternating purine-

pyrimidine sequencesa.

1.5 Metal complexes as DNA binding ligands

Up until the late 1970s most of the synthetic and natural DNA binding
molecules had been organic in nature. As researchers delineate on a
molecular level how genetic information is expressed, a more complete
understanding of how to target DNA sites with specificity is being
developed. This in turn is leading to possible new chemotherapeutic
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agents and probes such as transition metal complexes. The complexes
of d° transition metals have been found to be very suitable as DNA
binding agents due to their inertness and stability under physiological
conditions. Coupling this with their well-defined and tunable molecular
architecture and their high solubility in aqueous media, there is huge
potential for developing these molecules as site-specific DNA binding

agents.

The primary mode of binding for these transition metal complexes is
intercalation and they have become known as metallointercalators. All
the complexes studied contain an extended aromatic ligand, which
protrudes away from the metal centre and is ideally set up for
intercalation. It has also been shown that the nature of the ancillary
ligands has a marked effect on the binding affinity and selectivity of these
DNA binding molecules. By systematically changing the nature of these
ancillary ligands it is possible to tune the DNA binding properties and the
photo-reactive properties of the molecules. Moreover by taking
advantage of the rich photophysical handles that these complexes poses
it is easy to monitor and quantify their binding to DNA. Once the exact
mode, strength and site-specificity of the binding has been determined it
is possible (due to the rich photochemical and redox properties of these
molecules) to perform chemistry on the DNA bases themselves.

1.5.1 Early complexes incorporating phenanthroline and
bipyridine ligands

Lippard and co workers were the first to establish that a square planar
metal complex containing an aromatic heterocyclic ligand could bind to
DNA through intercalation'®. Barton and co workers soon extended the
complexes to three dimensions, when they started using octahedral metal
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centres. The early studies focused on the tris(phenanthroline) complexes

of zinc, cobalt and ruthenium (Figure 1.11)"'12.

A-[Ru(phen)s]** A-[Ru(phen)2)**

Figure 1.11:- The A&A-enantiomers of trisphen Ruthenium(li)

Through NMR'® and photophysical studies'“'*. They suggested that the
cationic tris-(phenanthroline) complexes bound to DNA through all three
of the noncovalent modes discussed earlier. One important observation
to come from these early studies was that there was a small but
significant preference for the right-handed A-isomer when bound to right-
handed B-form DNA. However the binding modes and exact orientation

of these tris-(phenanthroline) ruthenium(ll) complexes have been open to
much debate.

In the early papers to emerge from Barton's laboratory the mode of
interaction of [(phen)3Ru]2+ with B-form DNA was deemed to be
electrostatic and hydrophobic contacts with the DNA in the major groove,
with partial intercalation of one of the phenanthroline ligands into the DNA
base stack. Equilibrium dialysis experiments showed that the intrinsic
binding constant was small ca. 10™ mol’! dm® and highly dependent upon
salt concentration, which indicates a large electrostatic component to the
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binding free energy'®. Luminescence quenching experiments revealed a
bi-exponential decay indicating two emitting species were present, one of

which is quenched more readily than the other'®

. Barton proposed that
the species which was more readily quenched was bound in a groove
binding interaction, and was therefore more accessible to the quenching
agent, where as the other species was intercalated deep within the major
groove of DNA and was much less accessible to the quenching agent.

The chiral discrimination of the binding event was rationalised by

assuming propeller twist of A—[(phen)aRu]Z* was symmetry matched to the
right handed helix found in B-form DNA allowing it to bind preferentially

over A-[(phen)gRu]2+. Barton also reported sequence selectivity based
upon steady-state polarisation of excited states, which show that the

preference for the A-[(phen)sRu]** increases upon increasing GC content
of the DNA although no change in binding affinity is observed. This has
been rationalised by the fact that the major groove becomes narrower
with increasing GC content and therefore closer in width to the diameter

of [(phen)sRu]** thus amplifying the important steric contacts between the
complex and the sides of the groove needed for chiral discrimination.

Chiral discrimination of this type is clearly dependent upon matching the
symmetry of the metal complex with that of the DNA double helix.
However the debate is still raging as to whether the tris-phenanthroline

ruthenium(ll) complexes are able to intercalate into the base stack of
DNA at all.

In 1992 Norden and co-workers published the results of an NMR study
they had undertaken, seemingly contradicting all of the structural
elucidations proposed by Barton. They show NOE data which shows that
both A- and A-[(phen)sRu]** bind to the AT region of the self
complementary oligonucleotide [d(CGCGATCGCG),] in the minor groove.
The cross peaks observed between protons on the metal complex and
the oligonucleotide show they are at distances of less that 5 A apart. The
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H2 of adenine located at the bottom of the minor groove is shown to
interact with protons on one of the phenanthroline rings and sugar
protons H1' and H4' both facing the minor groove interact with the
phenanthroline protons. Both enantiomers exhibit similar cross peaks,

however more were observed with the A-enantiomer but higher
concentrations of drug were needed to see them. The oligonucleotide
cross peaks are not affected in any way upon binding of the drug
indicating no change in conformation on interaction with the drug,
indicating no intercalation is taking place. The binding kinetics are rapid
and the complex is in fast exchange resulting in sharp signals, which

again is an indication of no intercalation taking place. In summary both A
and A-[(phen)3Ru]2+ binds to the AT region of [d(CGCGATCGCG);}

through electrostatic and groove binding interaction within the minor
groove. The issue of intercalation was disproved once-and-for-all when
Chaires et al. published viscosity data showing only a very small increase

in viscosity upon binding of tris-phenanthroline ruthenium(ll) to DNA
indicating a non-intercalative mode of interaction'”.

Finally, a detailed spectroscopic and modelling account by Rodger et al.
showed that the equilibrium binding constant was dependent upon the
degree of saturation of the DNA by the drug complex'®. They also report

two modes of interaction. A-[(phen)gRu]z* was shown by CD and LD
studies to orientate in the major groove through partial insertion of one of
the phen moieties into the major groove (Figure 1.12). The phen moiety
orientates itself within the major groove in plane with the base pairs

although phen does not protrude far enough away from the metal centre
to facilitate full intercalation. The A-[(phen):Ru]** species binds
exclusively in the minor groove by slotting a phen moiety vertically into the
groove nearly perpendicular to the plane of the base pairs (Figure 1.12).
This mode results in considerable widening of the minor groove to
maximise interactions between the backbone and the other two phen
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igands on the complex. Again strong preferences were seen for AT

regions of DNA over GC regions.

Figure 1.12:- Energy minimised binding modes of A-[(phen);,Ru}z*' left
and A-[(phen)sRul" right.

Although tris-phenanthroline ruthenium(ll) complexes were shown to bind

to DNA and show a degree of symmetry recognition, the binding affinities
for DNA were unimpressive, and were highly dependent upon sequence,
salt and temperature. In order for these metallointercalators to become
useful in chemotherapeutics all of these problems needed to be

addressed.

1.5.2 dpphen complexes of ruthenium(ll)

Increasing the surface area of the intercalating ligand in these complexes
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should serve to maximise the stacking interaction, and thereby increasing
the binding affinity. In 1984 Barton and co-workers reported the
ruthenium(ill) complexes of dpphen (dpphen = 4,7-diphenyl-1,10-
phenanthroline)’”. This ligand was essentially an extended version of
phen, which could offer more surface area on the ligands to interact with
DNA (Figure 1.13).

A-[Ru(dpphen)4J** A-[Ru(dpphen),}?*

Figure 1.13:- dpphen complexes of ruthenium(l|)

Barton suggested that the extended surface area of the ligands served to
enhance the chiral recognition already observed in [(phen)i;Ru}*".
Luminescence quenching experiments seemed to show that A-
[(dpphen)3]2+ bound to B-form DNA exclusively through an electrostatic
interaction whereas A-[(dpphen)sRul** interacts with B-form DNA by

intercalation of one of the dpphen ligands and subsequent threading of a
pendant pheny! from the major groove to the minor groove.

Again the growing number of researchers investigating metal complex
DNA interactions disputed these initial claims and in 1997 a
communication was published by Norden showing the absence of any
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chiral discrimination whatsoever between A- and A-[(dpphen)sRul** and

B-form DNA?. UV studies (Figure 1.14) on each of the enantiomers

showed that the observed hypochromisity is identical in each case
indicating similar interactions of both enantiomers.
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Figure 1.14:- UV spectrum of A-[(dpphen)s;Ruf* (—), A-[(dpphen)sRuf**
(....) and 50% ethanol (—-) in the presence of CT-DNA.

Furthermore, the induced CD spectrum of the A-enantiomer is equal in

magnitude but opposite in sign to that of the A-enantiomer (Figure 1.15)

again indicating both enantiomers interact with B-form DNA in a similar
manner.
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Figure 1.15:- CD spectra of [(dpphen)s;Rul’* in acetate buffer (—), 50%
ethanol (—) and CT-DNA (.....)

LD studies indicated a number of random orientations of both
enantiomers of [(dpphen)aRu]3+ with respect to the DNA axis, indicating a
non-rigid non-intercalative mode of interaction. One possible reason for
this discrepancy in binding behaviour may be the poor solubility and
general hydrophobic nature of [(dpphen)gRu]z". In the initial studies
Barton and co-workers used the dichloride and perchlorate salts of the
complex which needed 10% DMSO in the buffer to ensure solubility. The
presence of DMSO could possibly alter the conformational properties of
B-form DNA and falsely induce chiral discrimination. Norden and co-
workers worked on the di-acetate salt of the complex, which showed

greater solubility allowed them to carry out the binding studies in a pure
aqueous medium.

By now it was clear that in order to design sequence-specific DNA binding
drugs a system needed to be developed that formed a well-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>