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Abstract

Fluid-structure interaction (FSI) problems present a difficult challenge

when modelling. They are time-dependent and highly non-linear,

both in terms of the fluid and solid models. This project aims to

explore numerical techniques to solve FSI problems within an arbi-

trary Lagrangian Eulerian (ALE) framework using the finite element

method. By using a conformal meshing approach allows for the de-

formation of a single mesh throughout the domain, evolving with the

fluid-structure interface.

The importance of using an appropriate pressure space approximation

to accurately capture the discontinuous pressure at the fluid-structure

interface will be demonstrated and described. The stable Taylor-Hood

P2/P1 element pair, widely used for purely fluid cases, will be com-

pared with the lower order but discontinuous pressure pairing P2/P0.

These are compared to the P2/(P1 + P0) pair, which enriches the

Taylor-Hood discretisation with a piecewise discontinuous constant

pressure, on each element. These finite element approximations are

tested on two separate two- and three-dimensional test cases, where

the extension of the three-dimensional approximation requires addi-

tional consideration to be stable.

For large three-dimensional cases, finding solutions of the resulting lin-

ear equation systems by direct solvers is severely limited by memory

requirements, and thus efficient iterative methods are necessary. Ef-

ficient algorithms that employ block-preconditioned Krylov-subspace

iterative methods are well known for the fluid flow problem. We con-

sider the extension of these techniques to the discrete FSI problem,



where the monolithic linear system contains contributions from both

the solid and fluid models.

A block preconditioner, which uses algebraic multigrid approximation

to diagonal velocity components, combined with an approximation to

the action of the inverse of the Schur complement gives problem size-

independent iteration counts when applied with GMRES.
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Chapter 1

Introduction

When a fluid force acts on a deformable solid surface, it will cause stresses and

strains, these will lead the solid to deform to reach a state to minimise these.

Fluid structure interactions can be used to drive rigid body motion, often with

the deforming fluid exerting a force on a fixed or free rigid structure. In a more

complex setting, with both a deforming fluid and a deformable solid, two-way

interaction is observed. In both cases, it involves the multiphysical coupling

of the behaviour of the fluid and solid. Fluid-structure interaction also often

involves a temporal dependency, resulting in steady-state, oscillatory, or random

fluctuations.

Fluid-structure interaction (FSI) problems are typically difficult to solve com-

putationally due to their inherent non-linearity and time dependency [19]. Work

done to solve analytical cases often assumes a simplified closed-form solution

of the governing partial differential equations [19, 210]. Although experimental

methods offer another avenue to analyse FSI problems, they can be costly to

set up, require specialist instrumentation, and it is generally difficult to record

specific data without interfering with the behaviour of the fluid or structure [99].

Therefore, there has been a research focus on computational methods which are

robust and accurate, and this leads to the need for efficient approaches for large

three-dimensional problems.

This chapter will introduce some typical applications of fluid-structure inter-

actions (FSI) and their importance in engineering design. It will also introduce

some of the numerical methods that are used over the duration of this project,

1



1.1 Fluid-structure interaction applications

eventually leading to motivation to solve these problems more efficiently. To

conclude this chapter, an overview of the structure and content of this thesis is

presented.

1.1 Fluid-structure interaction applications

The two-way interaction between fluid and solid in engineering design is an im-

portant consideration which is often neglected. Its occurrence in the natural

environment is ubiquitous. The need to be able to develop and apply numerical

models is important, where an efficient and accurate approach can be integrated

into fluid (or solid) simulations.

Fluid-structure interaction is observed in a range of problems; a number of

overarching categories are outlined below, with further detailed discussion to

follow:

• Aerodynamics; wind turbines design [18], aeroelasticity [70, 157, 212], parachute

dynamics [115, 178], civil engineering (bridge and building response) [41,

173].

• Biomechanics; blood vessels [15, 16], heart valves [155], vegetation mod-

elling [50, 111], ciliary beating [71, 91].

• Tribology; elastohydrodynamic problems [176], synovial joints [59].

• Geotechnics; soil mechanics [41], sedimentary flow [83, 189, 198].

• Hydrodynamics; floating structures [37], wave energy harvesting [1], fluid

sloshing within containers [163].

Aerodynamics engineering often gives some of the more quintessential ex-

amples of fluid-structure interactions. Aeroelasticity is the key phenomenon of

aerodynamics which concerns itself with fluid-structure interaction, the elastic

response of a solid under aerodynamic loading. Here FSI is an integral consider-

ation in the study of structural integrity and in the extension of the service life

of an aircraft, where structural oscillation amplitudes occur mainly as a result of

flow separation [45]. Aircraft typically operate in a near-transonic regime, where

2



1.1 Fluid-structure interaction applications

the local shock effect can also contribute to structural dynamics [70]. Flutter

is another aerodynamic phenomenon to consider when modelling aircraft, where

these uncontrollable vibrations can be particularly destructive [212].

Fluid-structure interactions are of particular interest to the wind turbine de-

sign community: large diameter light-weight blades are susceptible to large de-

flections, which is an important consideration for fatigue-life analysis, and de-

termining the sensitivity of power generation from wind loading. Furthermore,

the interaction is complex, involving a periodically rotating structure (the rotor)

within an atmospheric boundary layer flow. Therefore, a popular approach is to

consider a rotating subdomain that embeds the flexing wind turbine blades and

a Eulerian subdomain for the rest of the exterior flow [18, 104]. Although this

does present a difficulty in imposed continuity between the two domains given

the interface discretisations are incompatible. For offshore wind turbines, further

complexity is introduced with wave motion, where the coupling between the solid

with airflow and waves can be treated as a FSI problem [37].

Fluid-structure interaction applications to aerodynamics can present some ad-

ditional considerations, for example, turbulence modelling [178] or compressibility

effect (such as shocks) [106]. Parachute modelling is a prevalent application of

FSI in the discipline of aerodynamic engineering [106, 115, 178]. Capturing the

dynamics of a parachute is a challenging case, since one must consider a highly

deformable material, undergoing a large deformation (in the deployment phase),

often embedded within a turbulent flow.

Biomechanic systems also provide a wealth of FSI examples in which de-

formable soft biological matter is in close interaction with a range of fluids (which

can include blood, synovia, or air). Fluid-structure interactions of deformable

arteries play an important role in haemodynamic metrics of interest, such as

wall shear stress and wall tensions, in the application of cerebral aneurysms [17].

Bazilevs et al. [15] uses an isogeometric analysis to model the interaction of blood

(albeit assumed to be a Newtonian fluid) with a nonlinear elastic artery. A study

by Bazilevs et al. [16] demonstrates the importance of including the flexibility of

the artery wall when modelling cerebral aneurysms. Furthermore, in the mod-

elling of bioprosthetic heart valves, the use of deformable solids has a significant
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effect on accuracy, damping out oscillations in flow rate [105]. Modern numeri-

cal FSI techniques are also beginning to see their application in clinical vascular

cases [124]. In another example, Fauci and Dillon [71] examines the use of FSI

modelling to capture flagellar beating of spermatozoa in the reproductory process.

Modelling the interaction of vegetation with wind has a range of important

applications and interests, as described by de Langre [50]. The motivation here

lies mainly in the optimisation of biomass cultivation for food, material, and en-

ergy production. A dense layer of vegetation, in the form of a canopy, can affect

the atmospheric boundary layer and is parameterised using a poroelastic model

[63]. In terms of modelling this FSI application, Ikeda et al. [111] uses the im-

mersed boundary approach coupled with a two-dimensional large-eddy simulation

turbulence model.

Elastohydrodynamic lubrication (EHL) is typified by two elastic contacts un-

der very high pressure, separated by a lubricating fluid, for example ball bearings

or gears. Fluid structure interaction is used to model EHL for lubrication mod-

elling by Singh et al. [176]. Often a finite element approach is applied to solve

these contact problems [35, 153]. Synovial joints act mechanically similar to lu-

bricated contacts, where transient EHL has been demonstrated to model ankle

joints [59, 137]. The rheologically challenging properties of synovial fluid, which

can behave as a non-Newtonian fluid, interact with a biphasic mixture such as

articular cartilage [103] (even considered to have a fibrous structure) or with bone

tissue (often assumed to be rigid) [145].

From a civil engineering perspective, the fluid-soil-structure interaction has

proven to be an important avenue of research, particularly in terms of the struc-

tural response to seismic activity [41]. For example, Liaw and Chopra [127] ex-

amine the harmonic response of a tower in fluid, specifically water, they consider

a one-dimensional beam undergoing deformation using beam theory, to analyse

the fundamental modes of vibration. These simple beam models are often used to

examine the response of structures to tectonic activity. In contrast to this general

beam approach, rigid fibres can be explicitly modelled in an ambient fluid in the

modelling of sedimentary flows [189, 198].

Fluid structure interaction is also an important consideration in the design of

damping control systems to reduce the wind-induced response of tall buildings
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[207]. In a similar sense, the aeroelastic response of the bridge panel can have a

catastrophic impact on structural integrity if omitted [173, 184], however, this is

an extreme case.

Structures floating on a free surface are also modelled as fluid-structure in-

teractions. Frequently, in these models, the solid is treated as a completely rigid

body, and an elastic response of a deformable solid is not considered [9, 122, 132].

The great interest in these types of floating problems is motivated by a need for

renewable energy, both directly in terms of wave energy harvesting [1] and also

for floating wind turbines [37].

The interaction between a partially filled flexible tank with a sloshing fluid has

a range of engineering interest [163]. These can include fuel tanks during trans-

portation, fluids onboard aerospace vehicles, and elevated water towers (subject

to earthquakes). The key challenge for these types of problem is the method for

treatment of the fluid free-surface, for example, using a volume of fluid (VOF)

approach [196] or a marker-and-cell method [161]. Many of these problem-specific

investigations only consider rigid solid bodies and no coupling between the solid

and the fluid [163]. In the case of modelling sloshing fluid onboard a satellite,

the spacecraft is treated as a rigid structure; however, the fluid still interacts

with the motion of its orbit [196]. To capture the deformable baffles in a simple

three-dimensional sloshing tank, an iterative fluid-solid coupling approach with

ALE, coupled with a VOF method, was used to capture the free surface [68].

Clearly, the applications of the FSI are broad and their motivation originates

from a range of different requirements. In some cases, the effects of FSI are an

important consideration in the design of safe mechanical components throughout

their useful life, particularly when evaluating the implications of fatigue [108].

Clearly, there is a need to accurately capture the FSI and resolve it efficiently

to inform engineering design. As the fidelity of engineering models improves,

the need to include fluid-structure interactions becomes increasingly important.

Where analytical solutions are unobtainable and experimental approaches are

infeasible, there is a need for accurate and efficient numerical solutions to these

problems.
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1.2 Background of FSI

When solving FSI problem numerically, they can be broadly categorised according

to two main coupling approaches. Monolithic or fully coupled approaches consider

a single discrete system of equations for both the fluid and the solid domains. In

contrast, a segregated, or partitioned, approach will iteratively solve the fluid and

solid equations, which will involve a separate method to couple each domain.

One of the first numerical techniques dedicated to solving fluid-structure in-

teraction is credited to Peskin [155] in 1972, an immersed boundary method for

heart modelling. Published around ten years later are two seminal papers [109]

and [57] that outline the arbitrary Lagrangian-Eulerian (ALE) finite element

method specifically for modelling transient fluid-structure interaction.

In 1998, Farhat et al. [70] couple a computational structural and fluid algo-

rithm in a segregated approach to model aeroelasticity, however they note one of

the key limitations of this method is the lack of conservation of momentum and

energy. It is not until the early 2000s that the emergence of a fully coupled FSI

system arrives [14, 95, 107, 140], with developments in computing power being

the critical factor in solving these much larger problems. Toward the latter half of

the decade, based on the early work of Peskin [155] three-dimensional immersed

boundaries are applied to perform unsteady FSI computations, albeit limited to

rigid solid bodies [52, 79]. Subsequently, it is the immersed boundary method

that is used to capture a deformable solid in a time-dependent flow, in three

dimensions, specifically to capture the mechanics of prosthetic heart valves [90].

The solid is modelled as a linear elastic material, however an eminent limitation

of this immersed boundary method at the time is that two-dimensional shells are

assembled from one-dimensional fibres. For leaflet-like structures, such as heart

valves, this method is appropriate.

Modern papers focus on three-dimensional fluid-structure interactions that

undergo large, complex deformations. To model these more complex systems,

there is a requirement for more advanced numerical techniques. For example,

the paper of Kamensky et al. [116] considers a Lagrangian formulation with an

immersed volume as a thin shell structure to model a prosthetic heart valve,
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with both the solid and fluid domains undergoing deformation. They find signifi-

cant errors in the approximation of pressure discontinuities across the solid shell.

Continuing with the theme of hemodynamics modelling, Wu and Cai [206] use

a parallel scalable domain decomposition approach to solve an FSI problem in

three dimensions.

Recently, research focus has been on block preconditioners for three-dimensional

FSI problems. For example, building a preconditioner based on each physical

component of the fully coupled system (where the fluid, solid, and geometry are

monolithically coupled into a single system) [56]. Further multilevel methods as

preconditioners are popular for unstructured meshes for FSI problems, which are

also scalable both in terms of problem size and number of cores to solve with

[121].

Although there have been a range of improvements to the FSI methodologies

in recent years within academic research, the effect of fluid-structure interaction is

often omitted from engineering models, yet, as discussed previously, its presence

is prevalent. Even with recent advances in high performance computing and the

broad availability of highly parallel software and hardware, there is still a need

to develop efficient numerical solvers.

1.3 Motivation for efficient numerical approach

to FSI

Discontinuities in pressure are often observed at the interface between media, as

is found at the fluid-solid interface. When a continuous pressure space is used in

the finite element scheme, a higher local grid resolution is required at the near-

interface region. This increases the complexity of the meshing procedure and

increases the solution cost due to the increased number of degrees of freedom.

The interface pressure is captured more accurately using a discontinuous pressure

space. For incompressible fluids, typically a trade-off exists between high mesh

resolution or higher polynomial order of the finite element approximation. To

better approximate the near-interface pressure jump, without the need for high

mesh resolution, special treatment can be applied. This can include using a
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discontinuous pressure finite element approximation. However, it is the Taylor-

Hood element that provides the best convergence properties for a smooth and

incompressible fluid.

To solve a discretised system of equations, an efficient algorithm is required

to solve linear systems at each time step. For small systems, it is often more

efficient to use a direct method. Direct solvers are generally considered robust

since they find a precise solution to the system in the absence of rounding errors.

However, for larger problems, for example in three dimensions where the number

of degrees of freedom can become very large, they can become prohibitively ex-

pensive in terms of time and memory requirement [21]. Alternatively, iterative

methods, particularly those belonging to the family of Krylov subspace methods,

can be a preferable approach. With the aim of improving the reliability and per-

formance of these iterative methods, preconditioners lend themselves particularly

well to these iterative solvers. For purely fluid problems, affordable, near-optimal

block preconditioners have been the focus of much research [24, 66, 67, 78]. For

multiphysics problems, such as FSI, the design of a block preconditioner often

depends on the configuration of the monolithic formulation [56, 146].

Building on existing work byWang et al. [201], developing an energy-conserving

ALE scheme for FSI, this project aims to improve the efficiency and accuracy of

the ALE FSI scheme specifically in three dimensions. The focus of the project

is around the performance and accuracy of the solution in relation to the finite

element space choice, specifically the pressure FE space. Further, the solution

performance can be improved through the use of preconditioning, specifically for

this FSI, finite element, ALE framework. Without the use of adaptive mesh

refinement or discrete re-meshing the magnitude of displacement of the solid is

limited by retaining sufficient quality of the computational grid.

1.3.1 Aims

This thesis will orientate around two key areas of research:

1. Investigate the using of continuous and discontinuous pressure spaces, and

the implication of resolving the pressure field has on the accuracy and per-
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formance of the solid deflection solution. Specifically performing numerical

investigations in two and three dimensions.

2. Develop a computationally efficient block preconditioning approach to be

applied to the appropriate finite element pairing with an ALE framework

for FSI.

1.4 Thesis structure

Chapter 2 will discuss existing numerical methods in the context of fluid-structure

interaction. It will review further the literature on existing numerical methods

for FSI, including iterative solvers and preconditioners. Chapter 3 will outline the

ALE approach used in the project, with the finite element framework, and dis-

cuss the difference between two- and three-dimensional implementation. Chapter

4 will test three different finite element spaces in two dimensions, analysing the

difference between using continuous and discontinuous pressure spaces for FSI

problems. Similarly, Chapter 5 will extend this to three dimensions. Chapter 6

will discuss designing a block preconditioning approach for this ALE-FE formula-

tion, comparing with a sparse direct solver and an out-of-the-box preconditioned

iterative method. Finally, Chapter 7 will summarise the conclusions and future

work.
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Chapter 2

Numerical methods for FSI

This section reviews existing numerical method approaches for fluid-structure

interaction problems. First, the chapter will outline a taxonomy of FSI algo-

rithms, discussing some of the broad categories of numerical FSI methods, which

include coupling, discretisation and meshing. Then this chapter will explore liter-

ature around existing numerical methods related to solving discrete FSI problems,

specifically sparse direct solvers, iterative solvers, and preconditioning techniques.

2.1 Coupling approach

Fluid-structure interaction solution methods can be classified into two key groups

according to the approach used to couple the fluid and the structural components;

monolithic methods and partitioned methods.

For this thesis, the following definitions for these categories are used. Mono-

lithic methods tightly couple the fluid and structural dynamics into a single math-

ematical description for the entire system. This forms a single, fully-coupled,

system of equations, which will then be solved using a single algorithm. The

interface conditions are implicitly included in the formulation.

In contrast, partitioned methods consider distinct formulations for both the

fluid and solid, which are then solved using separate solution algorithms. Cou-

pling between the solid and fluid solvers must be explicitly considered using an

additional outer algorithm, generally including the interface conditions.
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2.1.1 Monolithic methods

Monolithic methods offer a particularly robust approach to coupling the FSI

system. For large deformation and with strong interactions between the fluid

and solid, monolithic approaches can exhibit a more stable solution and better

convergence properties [14, 107, 139]. However, for time-dependent problems, a

large, nonlinear system of equations is required to be solved at each time step,

usually using a fixed-point algorithm such as Newton’s method [96] or Picard’s

method [66].

Consequently, compared to partitioned schemes, monolithic approaches tend

to be more computationally expensive per time step. However, to compensate for

this additional cost, a larger time step is often achievable, given that a monolithic

scheme is more stable and accurate in comparison. When numerically comparing

the two schemes, they are found to have a similar computational efficiency (mea-

sured by the ratio of the inverse of the error to the number of FSI iterations)[140].

It is worth noting that when comparing these two approaches, from an efficiency

perspective the preferable approach will depend on the problem size. Although

when a direct comparison is made between the two approaches, for the most part

monolithic approaches tend to solve in less time relative to a partitioned method

given a number of different FSI cases [55].

One of the key drawbacks of a monolithic formulation is their lack of flexibility.

It requires specific coupling which is determined by the formulation of choice,

which could be designed with a FSI application in mind. This could constrain

the choice of numerical solver, leading to sub-optimal efficiency.

As noted above, formulating with this monolithic approach will lead to the

generation of a single, large, sparse system of equations. In some cases, this

monolithic system can be ill-conditioned and, due to zeros on the diagonal, be

indefinite [107]. To overcome these problems, careful consideration must be given

to designing a well-preconditioned iterative solver. This is an area where compu-

tational improvements to efficiency can be made.
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2.1.2 Partitioned methods

The key advantage of using a partitioned approach for FSI problems is that

software is able to retain its modularity, where existing solvers are typically well

optimised, applied to each constitutive fluid and solid part [55, 135]. It should

be noted that partitioned approaches are often applied in commercial packages,

where each existing solver is treated as a black box [54, 194].

In addition to having an alternating solution step for each fluid and solid do-

main, an additional coupling algorithm is required. This will not only have an

additional computational burden but may introduce some form of interpolation

error where communication of information between domains is required. Typi-

cally, partitioned methods are energy increasing and therefore can be unstable

[140]. The staggering of the segregated fluid and solid solvers introduces artifi-

cial energy at the interface [157]. These partitioned approaches tend to be used

for weak interactions between solids and fluids, and risk diverging under strong

interactions [107].

In general, partitioned approaches are the less preferable method, separating

the solid and fluid formulation usually results in a loss in efficiency and robustness.

These numerical difficulties are the result of the widely reported added mass effect

[39, 73, 126]. The interaction between the fluid and the structure manifests itself

as an additional mass of the fluid in the structural formulation.

2.2 Discretisation approach

Broadly speaking discrete numerical methods for continuum mechanics can be

categorised into four main groups, although these are not specific to fluid-structure

interactions problem, they are all applicable. The groups are:

• finite difference methods [89],

• finite volume methods [118, 177],

• finite element methods [96, 167], and

• meshless methods (molecular dynamics, smoothed particle hydrodynamics

[129], lattice Boltzmann methods [199]).
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A summary of each family of discretisation approach will be outlined.

2.2.1 Finite difference method

The finite difference method (FDM) considers the discretisation of the partial

differential equation between neighbouring points. The FDM approach lends

itself particularly well to an immersed boundary (IB) method for FSI, as it does

not require a body-fitted grid, where a finite difference description is applied to

the Eulerian fluid [89]. Although simple to implement due to the regularity of

the computational grids, the FDM is limited in use for more complex geometries

or methods which require the mesh to move as the solid deforms.

2.2.2 Finite volume method

The finite volume method (FVM) aims to balances fluxes between neighbouring

cells using surface (or volume) integrals, as a result it is naturally conservative.

Unlike the FDM, it can be applied to an arbitrary mesh and therefore is well suited

to more complex geometries. The FVM has been coupled with the immersed

boundary method in a monolithic approach [118] and used with finite elements for

the fluid domain in a segregated approach [177]. Alternatively, some approaches

consider a finite volume discretisation of both the solid and the fluid, however,

they are still coupled in a partitioned way [134].

2.2.3 Finite element method

The finite element method (FEM) is applicable to a fully unstructured grid,

however the complexities lies in the requirement to derive the weak formulations

of the governing equations. This is then discretised using localised, element-based

approximations. The FEM is very popular for fluid-structure interaction, where

fluid and solid can be coupled together in a single formulation, for example, using

the arbitrary Lagrangian Eulerian approach [167]. Alternatives using separate

existing solvers for the constituents coupled through an additional algorithm are

also possible [96].
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In finite element analysis, the continuous operators from the partial differential

equations are described in a weak formulation and transformed into a discrete

problem by defining a set of basis functions. The Galerkin approximation uses

a finite-dimensional subspace (of a Hilbert or Banach space) as the basis for the

weak solution. The specific choice of the basis function that coincides with the

test functions is known as a Galerkin method (more specifically, the Bubnov-

Galerkin method) [20]. A more general approach considers that the trial and test

functions do not coincide; this is named the Petrov-Galerkin method [66].

These basis functions can either be element-wise continuous or discontinuous,

and are usually specific orders of polynomial. Discontinuous basis functions allow

for accurate capture of discontinuous features if they are present in the physical

problem. A different finite element space can be used for each solution variable

(often velocity and pressure for incompressible fluid problems), leading to mixed-

order finite element formulations [66].

2.2.4 Meshless methods

Meshless methods is a broad term to describe any approach which discretises

the spatial domain without the use of a computational mesh (or grid). These

approaches tend to predominately use particle-based mechanics. For example,

smoothed particle hydrodynamics (SPH) is coupled with other meshless or grid-

based methods to capture structural dynamics [129]. Another popular meshless

method is the lattice Boltzmann method (LBM) which solves the Boltzmann

equations, recovering the macroscopic physical parameters from the microscopic

distribution functions by simple arithmetic calculations [42], instead of directly

solving the Navier-Stokes equations. LBM is often used with an immersed bound-

ary method as a robust approach to handle FSI, by applying a simple bounce back

scheme [199].

2.3 Meshing approach

Numerical fluid-structure interactions can also be categorised using the meshing

technique; either using a non-conforming or conforming mesh method.
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Conforming mesh approaches explicitly track the interface between fluid and

solid, treating the interface condition as a physical boundary condition [102]. As

the solid deforms, the computational mesh must be moved (or re-meshed) as the

solution moves forward in time. This family of approaches allows for the use of

a single mesh for both constituents, as the interface is captured by the geometry

of the fitted mesh.

Non-conforming mesh methods treat the boundary location and the fluid-

solid interface as an additional constraint on the model equations. This allows

the governing equations to be solved on separate computational grids for the

fluid and solid. It is worth noting that a non-conforming, monolithic approach is

possible where the fluid and solid equations are formulated in separate domains

but solved in a single system.

2.3.1 Non-conforming mesh methods

When applying non-conforming mesh methods, approaches typically consider a

case with two meshes. In the simplest case, the fluid and solid domains are dis-

cretised separately. This requires adaptive mesh refinement (AMR) to accurately

maintain the fluid-solid interface.

As mentioned previously, it is possible to have a non-conforming approach (e.g.

two meshes, one for the fluid and one for the solid) and be solved monolithically.

An approach that does so is the fictitious domain method (FDM) with distributed

Lagrange multiplier (DLM) [82], with the application of modelling sedimentation

[83]. The key features of this method is that the fluid equations are enforced

inside and outside the solid, and the flow inside the solid is constrained by the

additional solid motion using the DLM.

Fully Eulerian approaches have been used for FSI, using a monolithic formu-

lation and interface capturing approach with a single mesh [94, 205]. In this case,

the fluid is kept in an Eulerian frame and the Lagrangian solid must be converted

to the Eulerian frame. As the solid must be implicitly defined, capturing the

discontinuity at the interface becomes a challenge.

Another popular numerical FSI approach is the immersed boundary (IB)

method. A fixed Eulerian mesh is used to discretise the whole domain, with
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the moving boundary of the solid tracked using a Lagrangian grid. The effect

of an elastic solid acting on the fluid is transferred by a local forcing term, cal-

culated as the product of a distribution function and the solid stress. Due to

the simplicity in generation of simple grids, comprising of one-dimensional fibres

representing the boundary of the solid, in two-dimensional problem, and a fixed

background fluid mesh which offers a highly robust approach. This can be ex-

tended to three-dimensional problems by considering a two-dimensional surface

as the solid boundary. A key drawback of the immersed boundary method, shared

with two mesh methods, is the error associated with the interpolation of the ve-

locity and the spread of the force between the boundary and the surrounding fluid

[142]. In three dimensions there are additional complications due to the surface

meshing at the interface.

2.3.2 Conforming mesh methods

One of the key requirements for fitted mesh methods is that the interface between

the fluid and solid is explicitly captured. The grid points are located such that

they conform to the fluid-solid interface and will move accordingly as the solid

deforms, unlike non-conforming methods, which implicitly recover the interface.

A monolithic Eulerian method for the formulations of FSI uses a mesh fitting

approach, usually solving for a single field (velocity) [94]. In the case of large

solid deflection, the quality of the mesh is maintained by using efficient remeshing

tools [94]. This can introduce an additional computational expense and produce

interpolation errors between the old and new meshes, at each time step.

A well-known approach to treating discrete interface conditions is Nitche’s

methods, which using a Lagrange multiplier as a mortaring approach motivated

for capturing discontinuities at interfaces. Originally designed for Dirichlet bound-

ary conditions, it has been further extended to handle fluid-structure interfaces

[92]. First applied to fitted meshes [92], it has been further extended to be used

in unfitted problems for FSI [36].
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Arbitrary Lagrangian Eulerian method

A Lagrangian description is preferable for fluids that are constrained to small

motions, whereas the Eulerian description is the popular method for cases where a

mesh becomes highly distorted [109]. The Arbitrary Lagrangian Eulerian method

compromises between both approaches, where the fluid-solid interface is explicitly

tracked as the solid deforms, but the surrounding fluid mesh is permitted to

deform in order to retain mesh quality. A separate mechanism from the FSI

system must be implemented to control the movement of the mesh.

An ALE approach to FSI can also be formulated in a partitioned way, sep-

arating solid and fluid solutions [55, 72]. Here, the fluid velocity and the solid

displacement are solved in separate systems, with the interface condition imposed

in a Dirichlet-Neumann formulation. An efficient solver can be applied to a large

fluid system in cases where the solid occupies a relatively small region of the

domain.

In contrast, the ALE approach for FSI can be applied in a monolithic formula-

tion [95, 164, 165, 201], coupling the momentum and continuity equations of the

solid and fluid in a single system. Often this must also consider a contribution

from an ALE advection term. [164] solve a three-dimensional ALE problem using

a geometric multigrid method, where the memory required to solve grows only

linearly with the size of the problem.

One of the key characteristics of the ALE method is that the mesh does not

move completely in either a Lagrangian or a Eulerian frame. For FSI ALE a

body-fitted approach is considered, so at the interface the mesh movement is well

defined, and the mesh tracks the interface in a Lagrangian way. Elsewhere the

control of the mesh can be controlled through a range of techniques. Although

this does not need to be physical, it must maintain sufficient mesh quality to

provide an accurate solution. In terms of partial differential equations to control

the mesh movement, one of the simplest approaches is to use a harmonic [165] or

biharmonic equations. Another popular approach is to solve for a linear elastic

[201] or non-linear elastic pseudo-solid, separate from the solid present in the FSI

system.
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More geometric approaches include the use of a torsional spring analogy to

control the dynamics of an unstructured three-dimensional mesh [53]. Similarly

another approach uses Radial Basis Functions to interpolate the displacement of

the structural nodes to the fluid nodes [49], requiring only a solution of a small

system (depending on the radius of influence if using compact support).

The ALE method when applied to the FSI problem for this project is outlined

in further detail in Chapter 3.

2.4 Efficient numerical methods

When referring to efficiency, this thesis will predominantly consider two parame-

ters. Firstly, efficiency can be described in terms of time to solve, specifically, the

focus is the time taken to calculate the unknowns of a system of equations (where

the overhead of building and extracting the system is assumed to be fixed and of a

lower cost). Second, efficiency in terms of memory and how much computational

memory is required to solve the system. In some cases, it is a trade-off between

optimising the time to solve and the memory used, then it depends on what suits

the user.

It should be noted that throughout this thesis, in general, a bold typeface

is used to represent a space of vector-valued functions, where norms and inner

products are component-wise, in keeping with the notation of Elman et al. [66].

2.4.1 Sparse direct solvers

Mesh-based discretisation schemes will typically produce very sparse system,

where only degrees of freedom interacting with other neighbouring degrees of

freedom in the immediate vicinity will be non-zero. Typically, for sparse systems,

a direct solve involves a number of steps. Firstly, the system will be ordered

in such a way as to reduce fill-in, after which an algorithm will perform a fac-

torisation, either to just a lower triangular matrix for a symmetric system or a

lower and upper triangular matrix for asymmetric matrices. Finally, a back-and-

forward substitution sweep will be performed using factorisation to calculate the

solution.
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Sparse direct solvers are classified into two main approaches, frontal and mul-

tifrontal methods. Duff [60] further suggests two other categories, “general tech-

niques” and “supernodal algorithms”.

Frontal methods were developed with finite elements in mind, specifically

exploiting the fact the discrete system is constructed from the sum of element-

wise coefficient sub-matrices. In essence, the Gaussian elimination, for step k of

the factorisation,
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(k)
kk

−1
a
(k)
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is performed before all elements have been assembled, given that the terms in the

triple product have already been fully summed. Thus, each variable is eliminated

as soon as its row and column are fully summed. If elements are ordered from

one end of the domain to the other, the active variables form a front that moves

through the domain, hence the name frontal method [62].

Multifrontal methods perform partial eliminations on the dense substructures,

which consist of groups of elements. The groups of elements in the substructure

are linked to other substructures, to form large substructures. These are moni-

tored through element assembly trees. Multifrontal methods have been developed

with the interest of symmetric, indefinite sparse systems [61]. This extension to

frontal methods allows for several fronts to occur, which lends itself well to paral-

lel computing. Both the popular solution software packages UMFPACK [48] and

MUMPS [2] use multifrontal approaches.

The applicability and efficiency of these direct methods depend greatly on

the structure of the matrix. To improve the numerical stability and often reduce

the memory requirements of a sparse direct solver, pre-processing steps can be

taken [156]. One of these approaches consists of reordering the matrix in such a

way that the resulting resulting factors from the elimination process will remain

sparse [66]. Other approaches such as block-symbolic factorisation can be used

to allocate the data structure of the system before factorisation, analytically

computing the block structure of the factors from the reordering step.

19



2.4 Efficient numerical methods

2.4.2 Iterative solvers

As the demand for higher-fidelity simulations increases and for three-dimensional

simulations, the number of degrees of freedom is ever growing. Iterative solvers

typically require less memory and fewer operations than direct methods, however,

they compromise on reliability and accuracy, since they practically only converge

to a given tolerance [21], and not to machine precision as with direct approaches.

For large, sparse, discretised linear systems, effective iterative solver strategies

focus on two families, Krylov subspace methods and multigrid methods [66].

Multigrid methods will be discussed later in relation to preconditioners, with the

focus remaining on Krylov subspace methods. The Krylov subspaces are found

using the weak Cayley-Hamilton theorem, which states that the inverse of matrix

A can be expressed in terms of a linear combination of powers of this matrix.

Given the system Ax = b the Krylov subspace is defined as the linear subspace

of degree k spanned by the product of b and the matrix A to the powers of k,

Kk(A, b) = span (b, Ab,A2b, ..., Ak−1b).

Technical detail on how this relates to iterative solvers is provided in Section

6.1.2.

Some of the most popular Krylov subspace methods include conjugate gradi-

ent (CG) [100], biconjugate gradient (BiCG) [75], biconjugate gradient stabilised

(BiCGSTAB) [197], minimal residual (MINRES) [152], and generalised minimum

residual method (GMRES) [172]. MINRES offers an advantage over the CG

method, that is, it does not assume a positive definite matrix, only symmetry.

The generalised approach, GMRES, developed by Saad and Schultz [172], does

not require a symmetric matrix and is considered the standard iterative approach

for non-symmetric systems. For GMRES the current search direction must be

orthogonalised against all previous directions, thus the cost grows with each iter-

ation count. This can be mitigated by the introduction of a restarted subspace.

For monolithic methods, in particular, the implication of the fluid-structure

model on the structure of the problem does not have any discernible influence on

the choice of iterative method. The choice of method is purely derived from the

properties of the matrix. The required properties for a given iterative method

are outlined in the table below.
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Symmetric Positive definite Notes

CG ✓ ✓ The differential operator is re-

quired to be self-adjoint.

BiCG × × Does not require the differential

operator to be self-adjoint.

BiCGSTAB × × Stabilises rounding errors in

BiCG.

MINRES ✓ × Minimises the residual in each

subspace.

GMRES × × Requires as many orthogonal

bases to be stored as possible.

QMR × × Converges more smoothly than

BiCG, and can avoid breakdowns

in almost all cases [77].

Table 2.1: Summary of required properties of iterative methods.

Although the CG variants are appropriate for both symmetric and asymmetric

systems, there is a constraint on the definiteness. Quasi-minimal residual (QMR)

method solves a reduced tridiagonal system in the least squares sense, in a similar

approach to GMRES. However, unlike GMRES where the basis of the Krylov

subspaces is constructed orthogonally, QMR constructs the basis bi-orthogonally

[13].

2.4.3 Preconditioners

The general idea of the preconditioner is to improve the spectral properties of a

preconditioned system. Specifically, a preconditioner aims to cluster the eigenval-

ues of the linear system, which accelerates the convergence of iterative methods.

In theory the aim is to convert the linearised system from its original state,

Ax = b, into a system for which the iterative method will converge faster by

multiplying it by a preconditioning matrix, M ,

M−1Ax =M−1b. (2.1)
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Preconditioners work particularly well when applied in conjunction with Krylov

subspace iterative methods [171], at each iterative step an effective preconditioner

will improve the clustering of eigenvalues and thus increase the rate of conver-

gence. The condition number is defined as the ratio of the largest to smallest

moduli of eigenvalues κ(A) = |λmax(A)|/|λmin(A)|. For a positive definite sym-

metric system, an effective solver is CG, where the error is bound by the condition

number [13, Ch. 2.3.1]. However, this is not the case for all systems, since it does

not account for the density of eigenvalues without omitting outliers.

Equation (2.1) outlines the application of a left preconditioned system, a

system can also be preconditioned through right preconditioning,

AM−1y = b,

Mx = y.

Initially, solve for y, and then solve for the solution vector x. There is little

difference in the effectiveness of left and right preconditioning [66], however there

can be practical benefit when applied to a specific Krylov subspace method.

In order to design an effective preconditioner, the associated cost of the con-

struction and application of the preconditioner M should be less than the total

cost due to a reduction in the number of iterations [147]. This is the trade-off

when designing an effective preconditioner. Overall the objective of precondition-

ing should be to achieve the following criteria in the schematic form,[
M set
up cost

]
+

[
Single Ã

iteration cost

] [
Number of

Ã iterations

]
<

[
Single A

iteration cost

] [
Number of
A iterations

]
(2.2)

where the preconditioned coefficient matrix is Ã =M−1A [84].

For an optimal preconditioner, there are three desirable requirements in re-

lation to the schematic (2.2). Given the size of the problem is N (number of

degrees of freedom) these are,

1. the setup cost of M is order O(N),

2. application cost of the preconditioner is order O(N),

3. and number of iterations to solve is fixed (even as N increases).
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This will provide a preconditioned algorithm with a solution cost that scales as

O(N). A scalable preconditioning strategy would approach this cost.

Preconditioners can be broadly characterised in three main categories accord-

ing to how they are derived [21, 22];

• preconditioners methods based on approximate factorisation of the coeffi-

cient matrix [21, 170],

• divide-and-conqueror or multilevel preconditioners [80, 125, 164],

• block and approximate Schur complement preconditioners [66, 80, 147].

Some of the most simple preconditioning techniques are orientated around

the linear decomposition of the original matrix. A Jacobi preconditioner only

considers the diagonal, M = diag (A), it is very inexpensive to build and invert.

Using this method only requires N divisions and multiplications to apply, the

cost is O(N) operations.

The Gauss-Seidel preconditioner is another simple approach which uses the

lower triangular part of the matrix, such that M = D−L. For a symmetric case,

it takes the form M = (D + L)D−1(D + U). Here L, D and U are the strict

lower triangular, diagonal, and strict upper triangular decomposition of matrix

A, respectively. And finally, a variant of the Gauss-Seidel, the successive over-

relaxation (SOR) has M = ω−1D − L. Similarly, a symmetric SOR also exists,

with

M =
ω

2− ω
(ω−1D − L)D−1(ω−1D − U).

This method can be over-relaxed or under-relaxed according to whether ω >

1 or ω < 1 [85], when ω = 1 SOR becomes Gauss-Seidel. When using this

preconditioner, it requires a solution to a triangular system, and therefore the

cost grows linearly with the number of non-zeros in the matrix. Decomposing the

matrix into the component has a trivial cost. While inverting D scales like O(N)

operations.

Incomplete factorisation methods were some of the early approaches used

for forming preconditioning. The factors of a sparse system will often become

more dense, this is known as fill-in. An incomplete factorisation drops the extra
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matrix entries through a desired criterion. For example, consider the complete

factorisation into a unit lower triangular and upper triangular matrix, A = LU .

Calculating L and U , for example, by Gaussian elimination, is expensive costing

O(N3) operations for dense matrices, however, applying these methods incurs a

cost of just O(N) operations. For sparse matrices, this factorisation will incur a

lower cost. Compared to the incomplete factorisation, A = LU − R, since the

sparsity pattern of the matrix A is S, Rij = 0 ∀ (ij) ∈ S. Simple in concept, a

number of extensions have been developed, including the use of level-of-fills and

drop tolerance incomplete factorisations. It is worth noting that they do include

a number of drawbacks; such as difficulties around parallelisation and a lack of

scalability [21].

Multigrid

The main philosophy behind multigrid relies on solving the problem on a hierarchy

of coarser grids which should provide an accelerated convergence rate. Multigrid

uses two key strategies to build efficient solution methods [33]. Firstly, generating

an improved initial guess on subsequently coarser grid solvers is called nested

iteration. The second uses the idea of using the residual to relax the error called

the correction scheme. The outline of this scheme is as follows,

1. Approximate solution to Av = f on initial grid Ωh to obtain vh.

2. Compute the residual r = f − Avh.

3. Relax on the residual equation Ae = r on a coarser grid Ω2h to approximate

error e2h.

4. Finally, correct the solution on Ωh with the error obtained on Ω2h, vh ←
vh + e2h.

Beginning at the finest grid level, a smoothing operation is applied to reduce high-

frequency errors, before restricting the residual to a coarser grid. The matrix on

a finer grid is calculated as two matrix products, A2h = RAhP . Here R is a

restriction matrix and P is a prolongation matrix. This is repeated recursively

until the coarsest feasible grid is reached. A direct solver can be used on the
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coarse grid problem to calculate the error, which is interpolated back through

the finer grids. The grids on the right of Figure 2.1 are representative of the

coarsening levels used in geometric multigrid. Although physical grid levels are

not applied in algebraic multigrid, the philosophy behind solving subsequently

smaller problems is the same.

Multigrid has the ability to widely adjust the solution “topography” according

to the desired performance; varying the number of layers (depth of cycles), num-

ber of cycles, type of cycles (V-cycle, W-cycle, or F-cycle), as well as a range of

tuning strength parameters. Figure 2.1 shows a schematic of a typical three-layer

single V-cycle multigrid.

Ahvh = fh,

rh = fh − Ahvh

A2he2h = r2h,

r′2h = r2h −A2he2h

A4he4h = r′4h

e2h ← e2h + e′2h,

A2he2h = r2h

vh ← vh + eh,

Ahvh = fhΩh

Ω2h

Ω4h

Restriction

r2h = R2h
h rh

Restriction

r4h = R4h
2hr

′2h
Prolongation

e′2h = P 2h
4h e

4h

Prolongation

eh = P h
2he

2h

Figure 2.1: A schematic of a single V-cycle of multigrid.

Although originally designed as solvers in their own right, they have also been

proven to be effective preconditioners for iterative methods, particularly a robust

approach for larger problems. Conventional geometric multigrid (GMG) uses a

predetermined hierarchy of grids, however, in the case where grid information

is not available or is infeasible to access, an alternative is available known as

algebraic multigrid (AMG). AMG aims to fix the smoother to some relaxation

scheme, such as Gauss-Seidel relaxation, and balance efficiency with coarse grid

correction by choosing the number of coarsening levels and interpolation appro-

priately [183].
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AMG was developed with a specific class of problems in mind, symmetric

positive-definite (SPD) problems, specifically discretised scalar elliptic PDEs of

second order. This is not to assume that AMG cannot be applied to a broader

range of problems, for example it has successfully been applied to various non-

symmetric and indefinite problems [182]. In the case of matrix systems that

have large positive off-diagonal entries (a weakly diagonally dominant matrix),

an algebraically smooth error can be assumed to oscillate, potentially leading to

slow convergence [181].

Although multigrid methods can be used directly as a solution method, they

are found to be more efficient than incomplete LU preconditioned Krylov subspace

methods for a two-dimensional ALE FSI problem [162]. However, in this thesis

the focus will be on using multigrid methods (and AMG in particular) as a

preconditioner in combination with Krylov subspace method iterations.

Block preconditioners

In finite element methods for multiphysics problems, including FSI (especially

monolithic approaches), it is common practice to exploit the block structure of

the discretise a system when applying effective preconditioning. Early research

into block preconditioning made use of the saddle point structure of the discrete

Stokes [169] and then the Navier-Stokes flow problems [66].

When applying black-box algebraic preconditioners (such as incomplete fac-

torisations or algebraic multigrid methods) to saddle point systems, they often

perform poorly. This is due to the indefiniteness and lack of diagonal dominance

of these preconditioners, meaning that they are often unstable or of poor quality

[24]. For monolithically assembled FSI problems, an efficient preconditioner can

be derived from approximations of the different physical components of the prob-

lem, for example, considering the solid, fluid and mesh movement components

[80]. An advantage of this modular physics-based block approach is the reuse of

existing preconditioning methods [112], which can be optimised for each block of

the system.
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Consider a general purely fluid system. The discretisation of the incompress-

ible Navier-Stokes equations takes a generic block structure of a form

Ax =

[
A BT

B −C

](
u
p

)
=

(
f
0

)
.

For these systems typically the C block is zero and so the block structure will

take the form,

A =

[
A BT

B 0

]
,

for an uniformly stable mixed approximation (which are popular for finite element

approaches) of the Navier-Stokes equations [66]. When preconditioning a system

as such, a block diagonal structure is often used [24],

M =

[
MA 0
0 MS

]
,

where for the optimal preconditioner the Schur complement operator MS =

−BA−1BT . When using this exact Schur complement and MA = A a Krylov

subspace method will converge in at most three iterations [147]. However, this ex-

act Schur complement requires the inverse of the A block of the original discrete

system. When this is computationally infeasible, an appropriate approximation

to the Schur complement, MS, must be used to substitute. For Stokes flow, this

block diagonal structure is found to be a very effective preconditioner, there-

fore the underlying structure is also applied to Navier-Stokes. Similarly for an

asymmetric system, the block upper-triangular preconditioner can be utilised,

M =

[
MA BT

0 −MS

]
,

noting the divergence operator in the upper right block and the negative MS.

When considering a Stokes problem, a good approximation for the Schur

complement, MS, is the pressure mass matrix, Q, or a similar operator (such as

the diagonal or lumped pressure mass matrix). The sparse pressure mass matrix,

Q, has been shown to be spectrally equivalent to the dense Schur complement,

BA−1BT for Stokes problem [202]. Although this approximation is applicable

to discrete Navier-Stokes systems [64], it does not take into account the effect
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of convection and will lose optimal performance for flows with higher Reynolds

number.

One form of approximation of the Schur operator considers a pressure convection-

diffusion (PCD) preconditioner,

MS = QF−1
p Ap,

where Q is the a pressure mass matrix, Ap is a sparse pressure Laplacian matrix

defined as

ap,ij =

∫
Ω

∇ψj · ∇ψi,

where ψ is the basis function for the pressure discretisation. Fp is a convection-

diffusion operator,

fp,ij = ν

∫
Ω

∇ψj · ∇ψi +

∫
Ω

(wh · ∇ψj)ψi.

Here wh is the discrete convection velocity of the nonlinear operator, and ν is

the viscosity of the fluid. The assembly of matrix F−1
p presents a particular

difficulty. One approach is to consider a single cycle of algebraic multigrid as an

approximation to F−1
p . A drawback of the PCD preconditioner is the requirement

to assemble an additional matrix, at an additional computational expense [128].

Another approach for the approximation of the Schur complement is using a

least squares commutator (LSC) preconditioner [65], where the approximation is

MS = (BT−1BT )(BT−1AT−1BT )−1(BT−1BT ).

Here T = diag (Q) is the diagonal of the velocity mass matrix. This approach

is advantageous since it does not require the construction of additional operators

such as Fp and Ap. Implementing this approximation requires the inverse

M−1
S = (BT−1BT )−1(BT−1AT−1BT )(BT−1BT )−1,

which does not require an approximation to the inverse of A. When perform-

ing simple tests of two-dimensional problems with GMRES, the LSC gener-

ally outperforms (in terms of iterations to convergence) the PCD preconditioner

[66], although at higher Reynolds numbers both approaches become more evenly

matched.
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To deal with inverting the convection-diffusion operator entry A−1 of the

preconditioner, a cost-effective approach to approximate this could involve a fixed

number of steps of an iterative method generating an appropriate inaccurate, but

cheap, representation. For example, using a fixed number of multigrid cycles is a

practical choice. It is observed that only a small increase in the iteration count

is produced when replacing a direct solve with an algebraic multigrid (AMG)

approach, yet it is significantly less expensive [66, Ch. 9].

Another approximation for MA considers splitting A = D −E, where D is

an easily invertible matrix [51]. This approach is particularly effective when A

is diagonally dominant. In the case where A is a symmetric saddle point system,

with A being positive definite and C = 0, Fischer et al. [74] proposes a block

preconditioner of the form,

M± =

[
η−1A 0
0 ±MS

]
.

Here η is a positive nonzero scaling parameter, and MS is a symmetric positive

definite approximation to the (negative) Schur complement, with the plus-minus

giving the choice between a positive definite or indefinite matrix. This form

of preconditioner is only relevant when A is easy to invert and therefore not

applicable to discrete forms of the Navier-Stokes equation.

Both Elman [67] and Gauthier et al. [78] propose a preconditioner of a similar

structure, with the latter deriving an inexact factorisation using a pressure matrix

method (splitting velocity and pressure computations), whereas the former is

designed with efficiency for Stokes and Oseen problems in mind.

Benzi and Golub [22] consider a different approach to preconditioning a gener-

alised saddle point system, their approach is based upon alternating symmetric/skew-

symmetric splitting scheme of the block system, in reference to the Oseen equa-

tions. The approach does not require the velocity block to be either nonsingular

or symmetric, and therefore is applicable to a range of problems. They proposed

that this stationary iteration is a competitive preconditioning approach for an

asymmetric Krylov subspace solver, such as GMRES, rather than being used

directly as an iterative method [10].
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2.4.4 Iterative methods for FSI

As discussed previously one of the key problems when using monolithic ap-

proaches for fluid-structure interaction problems is to efficiently solve a large

linearised system of algebraic equations at each time step [73, 146], the size of

which can be compounded when considering three-dimensions [56].

Mori and Peskin [144] test a number of Krylov subspace iterative methods for a

semi-implicit and fully implicit immersed boundary method. GMRES is found to

be the most efficient solver for both schemes, where a conjugate gradient squared

(CGS) method is found to fail to converge for the semi-implicit approach.

The work of Badia et al. [7, 8] focusses on designing a preconditioning ap-

proach for an ALE FSI scheme. They use an inexact factorisation by splitting

the FSI problem into explicit and implicit steps, using a partitioned approach.

The preconditioner is based upon inexact factorisation of the coefficient matrix,

by using approximations of the Schur complements. By decoupling the velocity

from the fluid-structure system, the pressure is still coupled to structural un-

knowns, ensuring that the scheme does not suffer from the added mass effect [8].

A comparison is conducted between an ILU, with threshold, and a split operator

preconditioner using both GMRES and BiCGSTAB solvers for a monolithic for-

mulation. Incomplete LU factorisation with threshold (ILUT) uses a numerical

drop-tolerance instead of the sparsity pattern (standard ILU). The ILUT precon-

ditioner is found to be more efficient in terms of the number of iterations and the

solve time [7].

In a similar sense Heil [95], applied a block-triangular preconditioner to the

monolithic Jacobian matrix, separating the coupling terms of fluid and structure.

Thus, the preconditioners are applied through a number of substeps, solving four

linear systems and up to three matrix vector products.

For applications of block preconditioning for FSI, an example uses a physics-

based block preconditioning approach using AMG to approximate the inverse of

diagonal blocks, where the blocks of the system are determined by physical fields;

solid, fluid or ALE unknowns [136], as opposed to a more conventional block

structure by velocity and pressure variables. This allows the approximate block

inverses to be tailored to specific properties of the individual fields. However, this
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preconditioning approach is deficient in coupling between fields, where the error

on the FSI interface is only reduced during outer iterations [80].

Gee et al. [80] consider two approaches. The first method considered a block

preconditioned Newton-Krylov scheme, using different types of AMG tailored to

the discretisation of each block. However, they note that the coupling between

fields only occurs in the block Gauss-Seidel and Krylov method, with these ap-

proaches reducing only the interface errors. The second approach considers an

AMG approximation for the entire coupled system, with prolongation and re-

striction operators tailored to each field. As a result, coupling between fields at

the interface occurs not only on the fine grid block Gauss-Seidel but also at the

coarse level of the approximation.

In a partitioned approach to solve an ALE FSI problems, Langer and Yang

[125] use AMG extensively as an approximation to the inverse of discrete op-

erators in preconditioned. In the approximation for the Schur complement for

the fluid sub-problem, ρf/∆tD
−1
p + µM−1

p + ρfM
−1
p CpD

−1
p . Here Dp and Cp are

stiffness matrices associated with the discretisation of the Laplacian and scalar

convection operation in the pressure space, respectively. The discrete pressure

mass matrix is replaced with diag (Mp) and AMG is used to approximate the ac-

tion of the inverse of Dp. In both the fluid and solid subsystem, AMG cycles are

used to obtain the inverse of the velocity block (coefficient matrix block acting

on the velocities). They do make the explicit observation that AMG fails to solve

hyperelastic problems, as a result of the off-diagonal contribution from coupling

of the velocity components.

Muddle et al. [146] consider a block preconditioning approach which applies

a “pseudo-solid” body representing the fluid domain and a fluid-loaded solid

body. The fluid-loaded solid is modelled using Kirchhoff-Love thin-shell theory

and assumed to be linearly elastic. For saddle-point systems, they make use of a

specific kind of augmented preconditioner based on the least squares commutator

(LSC) preconditioner as originally proposed by Elman et al. [65], which is applied

in the case where the velocity block of the solution system is singular [86]. When

preconditioning, they apply AMG to approximate the inverse of the principal

diagonal and approximate Schur complement, with near-optimal computational

cost. In their LSC preconditioner, for the approximation to the Schur complement
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they consider a pressure-Poisson like matrix which involves just the diagonal of

the velocity mass matrix [146].

Motivated by FSI haemodynamics, Deparis et al. [56] use a block precondi-

tioning technique with a SIMPLE preconditioner, after applying a static conden-

sation of the fluid variables at the interface resulting in a reduced fluid matrix.

A Gauss-Seidel factorisation of the FSI matrix based on a preconditioner applied

to each physical component of the system (fluid, structure, and geometry). They

only consider a Taylor-Hood finite element space in the discretisation, and they

do not address the discontinuities at the interface in a specific manner.

Kong and Cai [121] examine the use of a multilevel, smoothed Schwarz pre-

conditioner for a three-dimensional, unstructured mesh, monolithic FSI problem,

applying incomplete LU factorisation as a subdomain solver. They use an equal-

order, linear, stabilised finite element space for discretisation of the Navier-Stokes

equation. The hierarchies for the multilevel Schwarz preconditioner are deter-

mined by a geometric multilevel method, which uses an isogeometric coarsened

mesh to preserve geometry of the boundaries and the interface, instead of us-

ing an algebraic multigrid approach, which is typically applied to unstructured

meshes. Overall, they find that their algorithm is scalable to 10,000 cores.

When preconditioning a nonlinear elastic solid, a fixed number of multigrid

cycles is an attractive choice to approximate the velocity block [38, 204]. However,

for higher-order elements, it can be expensive to assemble the required matrices.

To avoid this, a p-multigrid preconditioning technique is applied [34], reducing

the higher order element to linear brick elements Q1, where AMG is then applied,

in order to reduce memory requirements [138].

As with any monolithic, velocity-pressure coupled system, there are two main

challenges to preconditioning: An efficient preconditioning to the velocity block;

and, a good approximation to the Schur complement. Clearly, the adaptability

of using AMG as a preconditioner for the velocity block is evident. However,

when applying an “out-of-the-box” approach, it can become inefficient due to

the coupling block of the off-diagonal velocity components, particularly when

applied to hyperelastic solids. For FSI, the spectrally equivalent pressure-mass

matrix is no longer guaranteed to be an appropriate approximation to the Schur

complement.
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2.5 FreeFEM software

All numerical experiments in this thesis were performed using the open source

multiphysics PDE solver package, FreeFEM [93]. FreeFEM is high-level, typed,

polymorphic, scripting language where the user outlines the variational form of

the problem, and the software generates a discrete linear system using finite

elements. It also has the ability to call a number of external packages for the

mesh generation and solvers for the linear system of equations. Specifically, the

packages that have been used in this project are outlined in Figure 2.2. It also

offers flexibility when implementing a bespoke algorithm pipeline, using a C++

idiomatic framework to call routines when required.

FreeFEM has access to the sparse direct linear system solver, UMFPACK [48],

which uses an unsymmetric multifrontal method. FreeFEM is also interfaced with

PETSc [12], a set of libraries that provides access to a range of sequential and

parallel, spare direct or iterative solvers. Packaged within PETSc are several

additional libraries; these include the high performance AMG solver and pre-

conditioning package, HYPRE (high performance preconditioners) [69]. One of

the more powerful of these is an algebraic multigrid method, BoomerAMG [166].

In addition, Euclid [110] offers extensive ILU functionality, with the ability to

perform an incomplete LU factorisation, with a range of thresholding options.

In two-dimensional FreeFEM, meshing is performed using an in-built triangu-

lar unstructured algorithm. For three-dimensional geometries, the TetGen [174]

package is called within FreeFEM to construct unstructured tetrahedral meshes.

One of the key benefits of using FreeFEM is the ability to change the finite

element approximation and solver from a number of built-in options within a few

lines of code.

Unlike using a custom finite element code using C/C++ where the user has

exact control over the allocation and handling of memory, FreeFEM presents a

challenge when performing memory management. This can manifest itself as a

large memory overhead compared to custom application codes.
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FreeFEM

TetGen

PETSc

UMFPACK

MUMPS

HYPRE BoomerAMG

Euclid

Figure 2.2: Hierarchy outlining the libraries within the FreeFEM package utilised

in this project.

2.6 Concluding remarks

In general, the finite difference method is not appropriate for geometries that

are not regular, a requirement which is of particular importance for deforming

FSI. Although originally finite volume was designed with the intent of solving

fluid problems and finite elements for structural mechanics, FEM’s natural treat-

ment of Neumann boundary conditions and its use on unstructured grids makes

it particularly attractive to both [44]. A mesh-fitted approach lends itself well

to the ALE approach, when explicitly tracking the interface between solid and

fluid. Furthermore, using a single mesh simplifies the computational load (no

overlapping meshes) and improves robustness, with no requirement to transfer

information between meshes. However, this ALE conformal meshing approach is

limited to relatively small deformations of the solid. Using a monolithic formu-

lation proves a more stable approach for FSI, yet here lies the preconditioning

challenge. With partitioned approaches, existing preconditioning methods, par-

ticularly for the fluid component, are well-researched.

Algebraic multigrid is a common tool when approximating the inverse of spe-

cific blocks within a block preconditioner. Although multigrid methods make

effective solvers for linearised elliptic problems, in general they demonstrate poor

scalability as a solver for multiphysics, but are much more effective when used to

generate a preconditioner for Krylov subspace iterative solvers [97]. One of the

key benefits of using AMG is the range of options which can control a varying
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2.6 Concluding remarks

discrete degrees of approximations. For example, by choosing the cycle types,

number of multigrid levels and the maximum level of coarsening, the appropriate

compromise between cost and accuracy of approximation can be found.

A key property of a good preconditioner for this FSI problem is an accu-

rate spectral approximation of the Schur complement. Much existing work has

considered this for the different discrete fluid systems. However, with the Schur

complements dependency on the inverse of the velocity block we will need exam-

ine how the contribution from the solid in a monolithic formulation affects the

performance.

This thesis will aim to use a monolithic ALE formulation to model some

numerical test cases, based on the work by Wang et al. [201]. We construct the

discrete system using FreeFEM to develop and test sparse direct solvers in two

dimensions, and continue to use block preconditioned sparse iterative solvers in

three dimensions. Overall, the monolithic formulation should provide a stable and

accurate solution, with a block preconditioner providing a more efficient solution

method.
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Chapter 3

An Arbitrary Lagrangian

Eulerian method for FSI

This section outlines the kinematics of the Arbitrary Lagrangian Eulerian (ALE)

description for the specific method used within this thesis. A fully Lagrangian

approach moves the computational mesh to follow the velocity of the fluid [101].

This offers a computational advantage, since each finite element cell of a La-

grangian mesh will always contain the same material particles. This is suitable

for low Reynolds problems and (near) irrotational flow. Beyond this regime,

without remeshing, the quality of the deforming mesh will deteriorate rapidly

over time. In contrast, the Eulerian approach for finite elements is particularly

popular for purely fluid problems. Here, the computational mesh is fixed in time,

with the continuum moving and deforming with respect to the mesh. Eulerian

formulation can present a numerical challenge for convection-dominated problems

due to the non-symmetric nature of convection operators [58].

The ALE approach provides a compromise between Lagrangian and Eulerian

methods. The interface between the solid and fluid is explicitly tracked as it de-

forms, the surrounding mesh is able to deform in a manner that aims to maintain

mesh quality (as opposed to following the materials points, as in a Lagrangian

frame). The freedom to move the surrounding mesh allows greater distortion of

the continuum (fluid and solid) that would be permitted in a purely Lagrangian

scheme. The ALE scheme therefore does require an extra mechanism for control-

ling the deformation of the mesh, which is separate from the control equations
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3.1 ALE kinematics

for continua.

Even with a robust scheme for maintaining mesh quality, the ALE method

is limited to small deflections before the mesh becomes too deformed and loses

accuracy. At which point, a total remesh is required, which involves interpolation

of the solution onto the new mesh. Another drawback, which is relevant to the

Lagrangian mesh approaches, is that the coefficient matrix must be recalculated

at each time step the mesh is deformed. The geometric connectivity between

degrees of freedom will change during the mesh deformation, thus the shape

functions must be recalculated. A fixed mesh within a Eulerian sense does not

have this problem.

The ALE framework described in this section is based on work by Wang et al.

[201], where the extension to a three-dimensional neo-Hookean solid is taken from

Chiang et al. [43].

3.1 ALE kinematics

We first define the time-dependent fluid and solid domains, Ωf
t ∈ Rd and Ωs

t ∈
Rd, respectively. Using the superscript notation of f and s for the fluid and

solid variables throughout, and the superscript d = 2, 3 is the dimensionality of

the problem. The interface between the fluid and solid regions is denoted by

Γt = Ωf
t ∩ Ωs

t , as shown in Figure 3.1. On the contrary, the total domain is

defined as Ωt = Ωf
t ∪ Ωs

t , which has an outer boundary of ∂Ωt.
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3.1 ALE kinematics

Ωf
t0

Ωs
t0 Ωs

t

Ωf
t

Γt0
Γt

∂Ωt0 ∂Ωt

X1

At

x

Lt

nf

n n

nf

X2

Lt

At

Figure 3.1: ALE mapping from domain Ωt0 to Ωt, with the Lagrangian mapping

Lt and ALE mapping At.

As discussed previously, an Eulerian frame is useful for describing a fluid in

a fixed frame, in this formulation the Lagrangian frame lends itself to describing

the solid as it moves with this frame. Typically, in ALE formulations, the solid

equation is solved in the reference configuration on a fixed mesh, where the ALE

transformation is only applied to the fluid. Therefore, the ALE frame can be

useful within the FSI context, when both the solid and fluid regions interact

through the interface. We consider a frame that can move arbitrarily from the

material domain Ωt0 , the undeformed reference state, to the spatial domain Ωt,

which is the current configuration. A family of mappings are defined as,

At : Ωt0 → Ωt. (3.1)

It is assumed that this family of maps, At ∈ C0(Ωt0)
d are continuous, one to one

mapping. It also possesses a continuous inverse mapping, A−1
t ∈ C0(Ωt)

d. Thus,

a point X ∈ Ωt0 has a unique image at x ∈ Ωt,

x = A(X, t) = At(X). (3.2)

Similarly for the inverse mapping,

X = A−1(x, t) = A−1
t (x). (3.3)
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3.2 ALE formulation for FSI

It is assumed that the mapping, A(X, t) is differentiable in time giving a velocity

for the ALE frame,

w(X, t) =
∂A

∂t
(X, t). (3.4)

It is this ALE mapping which is used to map the deformation of the domain as

the solid deforms, therefore this velocity will often be referred to as the mesh ve-

locity (indicating that the discretised system is solved on a moving finite element

mesh). The material coordinate maps to the Eulerian coordinate x ∈ Ωt, via a

Lagrangian mapping,

Lt : X 7→ x (3.5)

x = L(X, t) = Lt(X), (3.6)

which is the trajectory of the material particle. The velocity of the Lagrangian

mapping at X is given as,

u(X, t) =
∂L

∂t
, (3.7)

which is the material velocity. The Lagrangian and ALE mappings are not gener-

ally the same. Both mappings are constructed so that at the fluid-solid interface

they coincide, At(Γt) = Lt(Γt).

3.2 ALE formulation for FSI

We begin with the momentum equation which takes the same form for both, in

the current configuration, Ωt,

ρ
du

dt
= ∇ · σ + ρg, (3.8)

where ρ, u, σ and g are the density, material velocity, Cauchy stress tensor and

gravity respectively. Here, d(·)/dt is the total derivative (or material derivative)

along the trajectory of the particle at x.

The mass continuity equation for the incompressible material in the deformed

state is

∇ · u = 0 in Ωt. (3.9)

39



3.2 ALE formulation for FSI

Now we consider the constitutive relationship for both an incompressible fluid

and incompressible solid, expanding the Cauchy stress tensor,

σ = τ − pI (3.10)

where τ is the deviatoric component of the stress tensor. An incompressible solid

assumption is considered, which will be addressed later.

For a incompressible Newtonian viscous fluid, σ|Ωf
t
= τ f + pfI, in the fluid

domain,

τ f = µfDu = µf (∇u+∇Tu) in Ωf
t . (3.11)

The expanded notation D(·) = ∇(·) +∇T (·) and µf is the dynamic viscosity of

the fluid.

Similarly, for a hyperelastic solid, σ|Ωs
t
= τ s + psI, in the solid domain,

τ s = J−1
Lt

PF T in Ωs
t , (3.12)

where the first Piola-Kirchhoff stress tensor is P = ∂Ψ(F )/∂F . The strain energy

of a hyperelastic solid, Ψ(F ), is a function of the deformation tensor of the solid,

which is defined as,

F =
∂x

∂X
=
∂L(X, t)

∂X
, (3.13)

which can also be written as F = ∇T
Xx. The Jacobian is defined as the determi-

nant of the deformation tensor, JLt = det (F ).

Finally we define the continuity of the velocity and normal stress across the

interface for the FSI system,

uf = us on Γt, (3.14a)

σfnf = −σsns on Γt. (3.14b)

Dirichlet and Neumann boundary conditions are imposed on the fluid, generally

uf = u on ΓD, (3.15a)

σfn = h on ΓN . (3.15b)
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3.3 Hyperelastic solid model

3.2.1 Transformation to the ALE frame

The material derivative computed along the trajectory of a material particle is

expanded using the Lagrangian mapping

du(x, t)

dt
=
du(Lt(X), t)

dt
=
∂u

∂t

∣∣∣∣
x=Lt(X,t)

+ (u · ∇)u. (3.16)

Where the above partial derivative is replaced with the total derivative of the

ALE mapping
du(At(X, t)

dt
=
∂u

∂t

∣∣∣∣
x=At(X,t)

+ (w · ∇)u. (3.17)

Substituting into equation (3.8) formulates the ALE momentum equation,

ρ
du(At(X, t))

dt
+ ρ((u−w) · ∇)u = ∇ · σ + ρg. (3.18)

We note that the mass continuity equation (3.9) is the same in the ALE frame.

We will return to this in Section 3.4 when considering the choice of the mesh

velocity.

3.3 Hyperelastic solid model

For larger deforming solids, the linear stress-strain relationship of linear elastic

models will not accurately represent the physics, whereas a hyperelastic solid

model is able to more accurately capture the complex physics with large de-

flections, under the constraint that the ALE is able to maintain sufficient mesh

quality.

Hyperelastic solids are constitutive models of elastic solids where the stress-

strain relationship is derived from a strain energy function; they aim to capture

the nonlinear stress-strain curve for a soft rubber-like material. Early invariant-

based models include neo-Hookean [190] and Mooney-Rivlin [143] solids. These

are simple one-variable models and are considered a baseline for rubber elastic

models, however, the stress response plateau at large strains limiting them to

small, to moderate, deformations. Further models formulated with invariance

include the Gent [81] or Yeoh [208] models. Principle stress models could include

Valanis-Landel [195] and Ogden [150], and another family of models is based on
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3.3 Hyperelastic solid model

the statistical mechanics or micromechanics of the material, such as the Arruda-

Boyce model [4, 47].

3.3.1 Neo-Hookean formulation

A neo-Hookean model offers a fairly simple nonlinear solid model, with only a

single material constant for an incompressible solid. The strain energy density

function, also known as the Helmholtz free energy per unit reference volume

function, for a general compressible neo-Hookean model [29, Ch. 6.4.3] [98, 201],

is

Ψ(F ) = c1(I1 − d)− 2c1 ln JLt + k ln2 JLt . (3.19)

The two material constants are c1 = µs/2 and k = λs/2, λs and µs are the first

and second (often referred to as the shear modulus) Lamé parameters. Again, d

is the dimension of the problem.

The principle invariants in terms of the left Cauchy-Green deformation tensor,

B, are

I1 := tr(B) = tr(FF T ) (3.20)

I2 :=
1

2

(
tr(B)2 − tr(B2)

)
=

1

2

(
tr(FF T )2 − tr(FF T 2

)
)
. (3.21)

Compared to a compressible Mooney-Rivlin solid (a more general form of a neo-

Hookean solid [151, Ch. 4.3])

Ψ(F ) = c10(I1 − d) + c01(I2 − d) + k ln2 JLt , (3.22)

where (c10+ c01) = µs/2. Both these models are special cases of the general poly-

nomial rubber elastic solids, which just consists of a summation of the product

of the two invariants, I1 and I2, to any given power [30, Ch. 3.5].

Differentiating equation (3.19) with respect to the deformation tensor, requires

two identities. Firstly, making use of a special case of Jacobi’s formula [133], the

partial derivative is

∂JLt

∂F
= JLt adj

T (F ) = JLtF
−T . (3.23)
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3.4 Mesh movement

And secondly, the differential of the trace of the gradient tensor and its transpose

product, ∂(tr(FF T ))/∂F = 2F . Applying these to the strain energy function

for the neo-Hookean solid in (3.19)

∂Ψ(F )

∂F
= µs(F − F−T ) + λs ln (JLt)F

−T . (3.24)

Multiplying the above through by F T

∂Ψ(F )

∂F
F T = µs(FF T − I) + λs ln (JLt)I. (3.25)

And then substituting this into equation (3.12),

τ s = µsJ−1
Lt

(FF T − I) + λsJ−1
Lt

ln (JLt)I. (3.26)

For an incompressible solid, JLt = 1 therefore in the last term ln(JLt) = 0, thus,

τ s = µsJ−1
Lt

(FF T − I). (3.27)

The last term µsJ−1
Lt

I is often replaced by a pressure term −p′I that is absorbed

into the solid pressure. The divergence-free velocity imposed by ∇ · us = 0 is

used to constrain this solid pressure [5]. For completeness, for an incompressible

neo-Hookean solid stress is given as,

σs = τ s − psI = µsJ−1
Lt

(FF T − I)− psI. (3.28)

This can be taken even further to include two terms into the pressure, (p′+ps)I =

µsJ−1
Lt

I + psI [201]. Since the solid is not stress-free, this will generate a pressure

jump at the fluid-solid interface.

3.4 Mesh movement

Within the ALE framework, the computational mesh must move in a manner that

maintains element quality so that the solution to the FSI system is accurate. It is

important to consider a computationally efficient approach, since the accuracy in

the solution to the mesh movement calculation is not essential in itself, however,

will inherently affect the solid deformation. Further, with large deformations of
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3.4 Mesh movement

the solid, one would aim to minimise the use of remeshing, which tends to be

particularly computationally expensive.

In terms of solving a partial differential equation to control the movement of

the mesh, a number of different approaches are available. Refer to Section 2.3.2

for further discussion of different mesh movement approaches. A linear elastic

model offers a sufficiently robust and responsive model (to the fluid-sold interface

displacement) that is simple to solve (owing to its elliptic properties).

As the computational mesh tracks the interface between the solid and fluid, the

movement of the mesh must conform to the movement of this interface. The sur-

rounding mesh will neither move in a purely Lagrangian or Eulerian description,

and hence the term arbitrary Lagrangian Eulerian. A fairly intuitive approach is

to consider the mesh as an elastic material which is able to deform under force

from the fluid-solid interface and return to its original shape.

In a similar approach to Johnson and Tezduyar [113] a mesh moving scheme

involving the motion of the nodes is controlled by the equations of linear elasticity.

A separate system is considered in the form of a static linear elastic material of

the form,

∇ · (µmDw + λm(∇ ·w)I) = 0. (3.29)

Where λm and µm are artificial first and second Lamé parameters respectively,

determining the response of the mesh [31, Ch. 11.1], which are typically different

from the material properties of the solid. Usually, linear elastic equations are

solved for displacement; however, in this case, the unknown is w ∈ V h(Ωt), the

ALE velocity introduced previously. Since it is a linear constitutive relationship

w ≈ ∆d/∆t, the relationship with velocity should only scale with the reciprocal

of the time step. We note that solving a linear elastic system for velocity, to

control the movement of the mesh, is first applied by Wang et al. [201].

The boundary conditions are given by

w · n = 0, n ·Dw · t = 0, on ∂Ωt (3.30)

where n and t are the normal and tangential directions, respectively, of the

boundary ∂Ω, permitting the mesh nodes to move tangentially to the boundary
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3.5 Weak ALE formulation

surface. The enforcement of n ·Dw ·t = 0 ensures a unique solution to the elliptic

problem in (3.29) [120, 201]. The interface condition

w = u, on Γt, (3.31)

permits the mesh nodes to move with the true fluid velocity.

3.5 Weak ALE formulation

The next section is based upon the derivation of the ALE formulation from

Wang et al. [201]. From the mapping described in Equation (3.2), any func-

tion f ∈ H1
0 (Ωt) in the current configuration, one-to-one correspondence to

the function f̂ ∈ H1
0 (Ωt0) in the reference configuration, by f̂ = f ◦ At. Let

L2(Ω) = {f :
∫
Ω
|f |2< ∞} be a square-integrable function, and H1(Ω) = {f :∫

Ω
|f |2< ∞,

∫
Ω
||∇f ||2< ∞} also require the square-integrable gradient of the

function, both in the domain Ω. Denoting the test space H1
0 (Ω) as a subspace of

H1(Ω), whose functions are zero on the Dirichlet boundary Ω.

To derive the weak formulation of the ALE system equation, (3.18) is mul-

tiplied by a test function v(x) = v ◦ At(X) = V (X) and integrated in the

respective domains, given the test space v ∈ H1
0 (Ωt)

d. By integrating the stress

term by parts,

ρf
∫
Ωf

t

du(At(X, t))

dt
· v dx+ ρf

∫
Ωf

t

((u−w) · ∇)u · v dx+

∫
Ωf

t

σf : Dv dx

=

∫
∂Ωf

t

σfnf · v dx+ ρf
∫
Ωf

t

g · v dx in Ωf
t . (3.32)

In the above equation we consider the standard double dot notation for general

tensors, A : B =
∑d

i,j=1AijBij. In the solid domain,

ρs
∫
Ωs

t

du(At(X, t))

dt
· v dx+ ρs

∫
Ωs

t

((u−w) · ∇)u · v dx+

∫
Ωs

t

σs : Dv dx

=

∫
∂Ωs

t

σs(−nf ) · v dx+ ρs
∫
Ωs

t

g · v dx in Ωs
t . (3.33)
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3.5 Weak ALE formulation

The following integral is transformed from the current configuration to the

reference configuration by,∫
Ωs

t

τ s : ∇v dx =

∫
Ωs

t

J−1
Lt

∂Ψ

∂F
F T : ∇v dx =

∫
Ωs

t0

∂Ψ

∂F
: ∇Xv dx, (3.34)

as derived in Hecht and Pironneau [94]. Using the interface conditions and the

previous integral transformation applied to the solid stress in equation (3.12),

equations (3.32) and (3.33) are summed,

ρ

∫
Ωt

du(At(X, t))

dt
· v dx+ ρ

∫
Ωt

((u−w) · ∇)u · v dx+
µf

2

∫
Ωf

t

Du : Dv dx

+

∫
Ωt

p∇ · v dx+

∫
Ωs

t0

∂Ψ

∂F
: ∇Xv dx = ρ

∫
Ωt

g · v dx in Ωt. (3.35)

The integrals at the interface Γt are cancelled by the condition (3.14b), since the

system considers the entire net force of the total domain.

The weak form of the mass continuity equation, (3.9), is obtained by multi-

plying by the test function q ∈ L2(Ωt)

−
∫
Ωt

q∇ · u dx = 0 in Ωt. (3.36)

The mesh movement equation (3.29) is treated as a separate system and a

different test function z ∈ H1
0 (Ωt) defined to derive the weak form. Integrating

both terms by parts,

µm

2

∫
Ωt

Dw : Dz dx+ λm
∫
Ωt

(∇ ·w)(∇ · z) dx = 0. (3.37)

The complete weak form of the FSI-ALE problem is outlined in Problem 1,

and reads as follows.

Problem 1: Given Ωt0 , Γt0 , u(X, t0) and the ALEmappingAt, find u(x, t) ∈ H1
0 (Ωt)

d

and p(x, t) ∈ L2(Ωt), given the test functions ∀v(x) ∈ H1
0 (Ωt)

d and q ∈ L2(Ωt),

for the following equations

ρ

∫
Ωt

du(At(X, t))

dt
· v dx+ ρ

∫
Ωt

((u−w) · ∇)u · v dx+
µf

2

∫
Ωf

t

Du : Dv dx

+

∫
Ωt

p∇ · v dx+

∫
Ωs

t0

∂Ψ

∂F
: ∇Xv dx = ρ

∫
Ωt

g · v dx (3.38)
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3.6 Finite element discretisation

and

−
∫
Ωt

q∇ · u dx = 0. (3.39)

Here, the ALE and Lagrangian mappings correspond at the boundary and

interface, At(∂Ωt0) = Lt(∂Ωt0) and At(Γt0) = Lt(Γt0).

The discretisation of this problem, in time and space, is provided in the fol-

lowing sections.

3.6 Finite element discretisation

The weak formulations are discretised in time and space to form a system of

equations to be solved at each time step, using a uniform time step of ∆t.

3.6.1 Discretisation in time

To discretise in time an implicit Euler scheme is applied, which is first-order

accurate.

From the definition of the deformation gradient tensor, F , in (3.13), over a

timestep ∆t,

Fn+1 − Fn

∆t
=

Fn+1 ◦ Ltn+1(X)− Fn ◦ Ltn(X)

∆t
≈ ∇Xun+1, (3.40)

we rearranging these the deformation tensor is updated by

Fn+1 = Fn +∆t∇Xun+1. (3.41)

And from the ALE velocity, w, in (3.4),

xn+1 − xn

∆t
=

Atn+1(X)−Atn(X)

∆t
≈ wn+1. (3.42)

the coordinates of the mesh are updated by

Ωtn+1 = Atn+1(Ωt0) = {x : x = xn +∆twn+1,xn ∈ Atn(Ωt0)}. (3.43)
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3.6 Finite element discretisation

Given un = u(Atn(X), tn), finding un+1 = u(Atn+1(X), tn+1) ∈ H1
0 (Ωtn+1)

d

and p(Atn+1(X), tn+1) ∈ L2(Ωtn+1), the time discretised momentum equation be-

comes,

ρ

∆t

∫
Ωtn+1

un+1 · v dx− ρ

∆t

∫
Ωtn+1

un · v dx+ ρ

∫
Ωtn+1

(un+1 · ∇)un+1 · v dx

− ρ
∫
Ωtn

(wn · ∇)un+1 · v dx+
µf

2

∫
Ωf

tn+1

Dun+1 : Dv dx

+

∫
Ωtn+1

pn+1∇ · v dx+

∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇Xv dx = ρ

∫
Ωtn+1

g · v dx. (3.44)

and mass continuity equation,

−
∫
Ωtn+1

q∇ · un+1 dx = 0. (3.45)

It should be noted that the ALE velocity wn from the previous time step will be

found from the linear elastic equation (3.37) in Ωtn .

3.6.2 Discretisation in space

Firstly we define a stable finite element space (for example Taylor-Hood elements)

to find the velocity and pressure solution in Ωt0 , where the test functions belong

to

v ∈ V h(Ωt0) ⊂ H1
0 (Ωt0)

d, (3.46)

q ∈ Qh(Ωt0) ⊂ L2(Ωt0). (3.47)

As such in Ωt,

V h(Ωt) = {ϕh : ϕh = Φ ◦A−1
t ,Φ ∈ V h(Ωt0} (3.48)

Qh(Ωt) = {ϕh : ψh = Ψ ◦A−1
t ,Ψ ∈ Qh(Ωt0}, (3.49)

where the capital Greek letter notates the basis function in the ALE frame.

The discrete approximate solution to the velocity can be expressed in terms

of the finite element basis functions for velocity, ϕ,

uh(x) =
Nu∑
i=1

u(xi)ϕi(x) +

Nu+Nu
D∑

i=Nu+1

u(xi)ϕi(x). (3.50)
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3.6 Finite element discretisation

The number of unknown velocities to be found is denoted by Nu, and the number

of discrete Dirichlet velocities on the boundary ΓD is given by Nu
D.

The discrete approximate solution to the pressure is then expressed in terms

of separate basis functions, ψ,

ph(x) =
Np∑
i=1

p(xi)ψi(x). (3.51)

In this case, Dirichlet boundaries are not prescribed for the pressure solution,

the total number of unknowns for pressure is Np. For pressure spaces which

involve a piecewise constant discontinuous basis, the unknowns are not located

at the vertices of the element and will not be located on the boundary of the

domain.

The space discretisation of equation (3.44) and (3.45) equations to find (uh
n+1, p

h
n+1) ∈

V h(Ωtn+1)×Qh(Ωtn+1) given that v ∈ V h(Ωtn+1) and q ∈ Qh(Ωtn+1), leads to

ρ

∆t

∫
Ωtn+1

uh
n+1 · v dx− ρ

∆t

∫
Ωtn+1

uh
n · v dx+ ρ

∫
Ωtn+1

(uh
n+1 · ∇)uh

n+1 · v dx

− ρ
∫
Ωtn+1

(wh
n+1 · ∇)uh

n+1 · v dx+
µf

2

∫
Ωf

tn+1

Duh
n+1 : Dv dx

+

∫
Ωtn+1

phn+1∇ · v dx+

∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇Xv dx = ρ

∫
Ωtn+1

g · v dx, (3.52)

and,

−
∫
Ωtn+1

q∇ · uh
n+1 dx = 0. (3.53)

The pressure p throughout the system is not uniquely determined, and can

“float” by an undetermined constant and still be able to satisfy the governing

equations. To avoid this an additional pressure constraint is applied [23, 25],∫
Ωtn+1

ph dx = 0. (3.54)

Since the pressure in both the solid and the fluid is treated as the same unknown

variable in the system, this takes the form of a global mean pressure constraint

over the entire domain. Although this approach will increase the problem size,

it will only add a single degree of freedom, which will be an additional row and
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3.6 Finite element discretisation

column populated by np non-zero entries. Given that the condition number of a

system is the ratio of its (modulus of) maximum to minimum eigenvalue, it is pos-

sible that this extra equation could give an outlying eigenvalue. If the clustering

of eigenvalues for the rest of the system remains the same, the convergence char-

acteristics will be similar, where a single extra iteration of the Krylov iterative

method would be required.

The linear elastic equation (3.37) is solved in Ωtn+1 using piecewise quadratic

continuous solution space, wn+1 ∈ W h(Ωtn+1)
d given test space z ∈ W h(Ωtn+1)

d,

µs

2

∫
Ωtn+1

Dwn+1 : Dz dx+ λ

∫
Ωtn+1

(∇ ·wn+1)(∇ · z) dx = 0. (3.55)

Where the finite element space to find the mesh velocity is defined as,

z ∈ W h(Ωt0) ⊂ H1
0 (Ωt0)

d. (3.56)

Finally discretising the boundary conditions (3.30) and (3.31), the interface con-

dition becomes,

wn+1 = uh
n+1 on Γtn+1 , (3.57)

and boundary conditions,

wn+1 · n = 0, n ·Dwn+1 · t = 0, on ∂Ωtn+1 . (3.58)

Knowing the discrete ALE velocity wn+1, we are able to construct a mapping

for t ∈ (tn, tn+1],

Atn,tn+1 : Ωtn → Ωtn+1 , Atn,tn+1(xn) = xn + (tn+1 − tn)wn+1, (3.59)

and up to the current timestep the mapping is

At = A−1
t0,t1
◦A−1

t1,t2
. . . ◦A−1

tn,tn+1
(3.60)

Two dimensional solid implementation

Since the neo-Hookean model is expressed in the gradient tensor, F , solid stress

must be expressed as the displacement and velocity within the solid. When

using implicit Euler time discretisation, the displacement is simply expressed
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3.6 Finite element discretisation

in velocities as dn+1 = dn + ∆tun+1. The displacement vector between the

undeformed and deformed states of the structure is defined as d = x−X.

Beginning with the solid stress from equation (3.28), replacing FF T = B in

the left Cauchy-Green tensor, gives

σs = µsJ−1
Lt

(B − I)− psI. (3.61)

The Cayley-Hamilton theorem states that every tensor satisfies its own charac-

teristic equation, for example det(λI − A) = 0. For two-dimensions [94], this

implies that

B2 − tr (B)B + det (B)I = 0, (3.62)

which is related to the Jacobian determinant by det (B) = det (FF T ) = det (F ) det (F T ) =

J2
Lt
. The Cayley-Hamilton theorem results in a more complex formulation in three

dimensions, which will be discussed later. To find an expression for the Cauchy-

Green tensor, Equation (3.62) is multipled by B−1 and rearranged to

B = tr (B) I − J2
Lt
B−1. (3.63)

The gradient tensor is expressed in terms of displacement

F = ∇Xx = ∇X(X + d) = I + F∇d, (3.64)

which can be rearranged as F−1 = (I −∇d), thus

B−1 = F−1F−T = (I −∇d)(I −∇d)T = I −Dd+∇d∇Td. (3.65)

Along with the characteristic solution (3.63), these are substituted into the solid

stress (3.61),

σs = c1J
−1
Lt

(B − I)− psI

= −c1JLtB
−1 + c1J

−1
Lt

(tr (B)− 1)I − psI

= −c1JLt(I −∇d)(I −∇d)T + c1J
−1
Lt

(tr (B)− 1)I − psI

= c1JLt(Dd−∇d∇Td) + c1J
−1
Lt

(tr (B)− 1)I − psI.

(3.66)

Further simplifying this and replacing p′ = c1J
−1
Lt

(tr (B)− 1)− c1JLt ,

σs = c1JLt(Dd−∇d∇Td) + p′I − psI, (3.67)
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3.6 Finite element discretisation

as in agreement with [43, 94].

Applying this to the solid term,

∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇Xv, in equation (3.52),

noting that the hyperelastic solid integral occurs in the initial, undeformed state

and updating the displacements as

dn+1 = d̃n +∆tun+1, (3.68)

d̃n = dn ◦A−1
tn . (3.69)

Referring back to the frame transformation in (3.34), finally the solid term in

two-dimensions is computed as∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇Xv dx =

∫
Ωs

tn+1

τ s : ∇v dx (3.70)

= c1

∫
Ωs

tn+1

(Ddn+1 −∇Tdn+1∇dn+1) : ∇v dx (3.71)

=
c1∆t

2

∫
Ωs

tn+1

Dun+1 : Dv dx+
c1
2

∫
Ωs

tn+1

Dd̃n : Dv dx

−∆tc1

∫
Ωs

tn+1

(∇Tun+1∇d̃n +∇T d̃n∇un+1) : ∇v dx

− c1
∫
Ωs

tn+1

∇T d̃n∇d̃n : ∇v dx.

(3.72)

It is worth noting that high order terms O(∆t2) are neglected (from the approxi-

mation of dn+1) and for an incompressible solid to preserve volume JLt is replaced

by 1.

Three dimensional solid implementation

For an incompressible three-dimensional neo-Hookean solid,

∂Ψ

∂F
F T = (2c1 − 4c2tr (B))B + 4c2B

2. (3.73)

Again by the Cayley-Hamilton theorem the characteristic equation for a in-

vertible symmetric matrix, expands from (3.62) to,

B3 − tr (B)B2 + γB − det (B)I = 0, (3.74)
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3.6 Finite element discretisation

where γ = 1
2

(
tr (B)2 − tr (B2)

)
and again by incompressibility det (B) = 1.

As a function of displacement, d, the three-dimension neo-Hookean stress

tensor,

σs = 2c1(Dd−∇d∇Td)2 + 2c3(x, t)(Dd−∇d∇Td) + p′′I − psI, (3.75)

where p′′ = (2c1tr (B)− 4c2γ)I is unimportant since it will be absorbed into the

pressure [43].

The key difference with the two-dimensional implementation is that c3(x, t)

varies with space and time, as a function of the left Cauchy-Green tensor, B, as

follows [43],

c3 :=
c1
2

(
tr (B)2 − tr

(
B2

)
− 4

)
− 4c2. (3.76)

To calculate tr (B)2 and tr (B2) the inverse of a matrix of 3 by 3 is required at

each point in the solid domain, using the displacement tensor in (3.65).

The three-dimensional of the solid term, which is an extension of (3.72),∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇Xv dx = ∆t

∫
Ωs

tn+1

(
2c1(Dun+1 −∇un+1∇T d̃n −∇d̃n∇Tun+1)

(Dd̃n −∇d̃n −∇d̃n∇T d̃n)

+cn3 (Dun+1 −∇un+1∇T d̃n −∇d̃n∇Tun+1)

)
: Dv dx

+

∫
Ωs

tn+1

(
c1(Dd̃n −∇d̃n∇T d̃n)

2 + cn3 (Dd̃n −∇d̃n −∇d̃n∇T d̃nd̃
)
: Dv dx.

(3.77)

The second integral considers just the updated displacements from the previous

time step and will therefore be known at time step n+ 1.

3.6.3 Characteristic-Galerkin method

To approximate the non-linear convection term, the Characteristic-Galerkin ap-

proximates the total derivative using a first-order implicit scheme [43], which is

easily implementable in FreeFEM. This approach of combining the method of

characteristics in the finite element element framework is first analysed by Piron-

neau [158]. In the Characteristic-Galerkin method, the discrete convection and
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3.6 Finite element discretisation

time derivative terms are combined as a directional derivative along the trajec-

tories of the particles as the total derivative, which is then discretised [158, 159].

Given t ∈ (0, T ) and x ∈ Ω, let X(τ) be a solution of the differential equation

at time τ < t,

Ẋ = u(X(τ), τ) with X(t) = x. (3.78)

The method of characteristics uses a total derivative, for any given differentiable

function for α : Ωt × (0, T ) 7→ Rn,

Dα(x, t)

Dt
=
∂α

∂t
+ u · ∇α. (3.79)

If u is the velocity of a fluid, X is the trajectory of the particle that passes

at position x at time t. A first-order approximation for the total derivative of

function α using implicit scheme [158],(
∂α

∂t
+ u · ∇α

)
n+1

≈ 1

k

[
α (X(x, (n+ 1)k; (n+ 1)k), (n+ 1)k)

− α (X(x, (n+ 1)k;nk, nk))
]
, (3.80)

where the time interval k = ∆t, and substituting X(x, (n+1)k; (n+1)k) = x we

arrive at (
∂α

∂t
+ u · ∇α

)
n+1

≈ 1

∆t
(αn+1(x)− αn (Xn(x))) , (3.81)

where Xn is an approximation of the interval X(x, (n+ 1)∆t;n∆t). The position

of a particle at time tn which will be at position x at time tn+1, using a first-order

approximation, [160],

X(x, (n+ 1)∆t;n∆t) ≈ Xn(x) = x− un(x)∆t. (3.82)

Thus a scheme is derived for (3.79) where the differentiable function is velocity,

the convection terms becomes,

∂u

∂t
+ u · ∇u ≈ 1

∆t
(un+1 − un ◦ Xn), (3.83)

noting that un+1 and un ◦Xn are both defined on Ωn+1. For example discretising

the Navier-Stokes equations in time and including this convection becomes,

1

∆t
(un+1 − un ◦ Xn)− ν∆un+1 +

1

ρ
∇pn+1 = αn+1, (3.84)
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∇ · un+1 = 0, (3.85)

where the following approximation is made un ◦ Xn(x) ≈ un(x − un(x)∆t). To

solve this iteratively it is rearranged to,

1

∆t
un+1 − ν∆un+1 +

1

ρ
∇pn+1 = αn+1 +

1

∆t
(un(x− un∆t)). (3.86)

The key drawback of this method is that it is numerically dissipative [158].

A second-order scheme is also proposed by Pironneau et al. [160]. This approach

will generate a linear system of equations at each time step to be solved.

The complete discretised form of the FSI-ALE problem is described by Prob-

lem 2, and reads as follows.

Problem 2: GivenAtn and uh
n = u(Atn(X), tn),∀X ∈ Ωt0 , find uh

n+1 ∈ V h(Ωtn+1)
d,

phn+1 ∈ Qh(Ωtn+1) andwh
n+1 ∈ W h(Ωtn+1)

d, such that ∀v ∈ V h(Ωtn+1)
d, q ∈ Qh(Ωtn+1),

z ∈ W h(Ωtn+1)
d, by the following relations

ρ

∆t

∫
Ωtn+1

(uh
n+1 − uh

n ◦ Xn) · v dx− ρ
∫
Ωtn+1

(wh
n+1 · ∇)uh

n+1 · v dx

+
µf

2

∫
Ωf

tn+1

Duh
n+1 : Dv dx+

∫
Ωs

t0

∂Ψ

∂F
(Fn+1) : ∇Xv dx+

∫
Ωtn+1

phn+1∇ · v dx

= ρ

∫
Ωtn+1

g · v dx,

−
∫
Ωtn+1

q∇ · uh
n+1 dx = 0,

µs

2

∫
Ωtn+1

Dwh
n+1 : Dz dx+ λ

∫
Ωtn+1

(∇ ·wh
n+1)(∇ · z) dx = 0,

where the mesh Ωn+1 is updated by (3.43). The solid term is formulated by

(3.72) or (3.77), for two- or three-dimensional problems, respectively, where dis-

placements are updated by (3.68) and (3.69). The above FSI system is completed

by the Dirichlet and Neumann boundary conditions, (3.15), and the interface con-

dition, (3.14), for the momentum and continuity equations (which are problem-

specific and will be defined in later sections), and the interface and boundary

conditions, (3.57) and (3.58), for the mesh equation.
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3.7 Solution algorithm

From a numerical perspective, the algorithm and solution approach to the

above problem is outlined in the next two sections.

3.7 Solution algorithm

Below is an overview of the solution algorithm at each time step using an implicit

time discretisation scheme.

Algorithm 1: FSI/ALE algorithm solving for each time step.

Result: Find fluid/solid velocity uh
n+1 and pressure phn+1, and the mesh

velocity wh
n+1 at each time step.

Set: t = 0 and initial flow field uh
t0
in Ωt0 .

1. tn+1 = tn +∆t

2. Solve the FSI equations (3.52) and (3.53) for uh
n+1 and phn+1, given the

boundary conditions for uh
n+1,D.

3. Solve the linear elastic mesh equation (3.55) for wh
n+1, using uh

n+1 for the
interface condition.

4. Update mesh, Ωn+1 = Ωn +∆twh
n+1.

The solution approach for the FSI system, as outlined in Algorithm 1, in Step

2 and the mesh equation in Step 3 can be a direct or iterative solver, as this thesis

will explore and discuss in future chapters.

3.8 Discrete saddle-point system

Using mixed finite elements, the discrete ALE formulation will form a system of

equations with the following block structure,[
A BT

B 0

](
un+1

pn+1

)
=

(
F
0

)
, (3.87)

with each block a discrete form an operator acting upon unknowns un+1 and

pn+1.

By combining equations (3.52) and (3.72), with the convection term from the

characteristic Galerkin method in (3.83), we will arrive at the first set of equations
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3.8 Discrete saddle-point system

of the saddle-point system, in two dimensions,

ρ

∆t

∫
Ωtn+1

(uh
n+1 − uh

n ◦ Xn) · v dx− ρ
∫
Ωtn+1

(wh
n+1 · ∇)uh

n+1 · v dx

+
µf

2

∫
Ωf

tn+1

Duh
n+1 : Dvdx−∆tc1

∫
Ωs

tn+1

(∇Tuh
n+1∇d̃n+∇T d̃n∇uh

n+1) : ∇vdx+
∫
Ωtn+1

phn+1∇·vdx

= ρ

∫
Ωtn+1

g · v dx− c1
2

∫
Ωs

tn+1

Dd̃n : Dv dx+ c1

∫
Ωs

tn+1

∇T d̃n∇d̃n : ∇v dx

(3.88)

The second set of equations is just the continuity equation, (3.53), again stated

for completeness

−
∫
Ωtn+1

q∇ · un+1 dx = 0. (3.89)

By applying the finite element approximations in (3.50) and (3.51) we arrive at

(3.88), given in a fully discrete block form(
1

∆t
M+K+∆tKs −∆tDs

)
un+1 −BTpn+1 =

1

∆t
C−N− Es (3.90)

and the mass continuity equation (3.53) is

−Bun+1 = 0. (3.91)

The contributions to this system are as follows

Mij = ρ(ϕi · ϕj), (3.92)

Kij =
µf

2
(Dϕi : Dϕj), (3.93)

Ks
ij =

c1
2
(Dϕi : Dϕj), (3.94)

Ds
ij = c1(∇ϕi∇d̃j +∇d̃i∇ϕj) : ∇ϕj, (3.95)

Bij = ψi∇ · ϕj, (3.96)

Cj = ρuoldj ϕj, (3.97)

Nj = ρ(wj · ∇)ϕj, (3.98)

Es
j =

c1
2
(Dd̃j : Dϕj) + c1(∇d̃i∇d̃j : ∇ϕj). (3.99)
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As before ϕ denotes the basis function for velocity, and ψ for pressure. Matrix M

is known as the mass matrix, K corresponds to the discretised Laplace operator.

The uoldj = un(x − un∆t) velocity in term (3.97) arises from the approximation

made in the Characteristic-Galerkin method.

The above case is the discrete form the of the two-dimensional solid, for com-

parison the three-dimensional solid is given,

Ds
ij = 2c1(Dϕj −∇ϕj∇d̃i −∇d̃j∇ϕi)(Dd̃j −∇d̃j −∇d̃i∇d̃j)

+ c3(Duj −∇uj∇d̃i − d̃j∇ui) : Dϕj,
(3.100)

Es
j = c1(Dd̃j −∇d̃j∇d̃i)2 + c3(Dd̃j −∇d̃j −∇d̃j∇d̃i) : Dϕj. (3.101)

Thus comparing these contributions, (3.93)-(3.99), as well as (3.100) and (3.101),

with the block system in (3.87), the A block are the terms involving the velocity

variables, collects the time derivative, advection and diffusion operators, and solid

contributions,

A =
1

∆t
M+K+∆tKs −∆tDs, (3.102)

Comparing this to a purely fluid problem [66], the LHS of the system now includes

addition contributions from the stiffness term Ks and Ds term, both arising

from the discrete hyperelastic solid. The rectangular block denoting the discrete

gradient operator remains the same for both a fluid and a FSI problem. All other

terms are moved to the RHS of equation (3.90) contributing to the vector F in

the system,

F =
1

∆t
Mun +Nun −Nwn − Esd̃n. (3.103)

3.9 Concluding remarks

This chapter outlines the ALE formulation for the FSI, applying an incompress-

ible Newtonian fluid and an incompressible neo-Hookean hyperelastic solid. The

weak formulation of the ALE description is defined, which is then discretised in

both space and time. To linearise the convection term, a Characteristic-Galerkin

approach is used to approximate the total derivative in the FSI equations. A

mixed-order finite element discretisation in space is applied, using a different test
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space for velocity and pressure, which will eventually lead to a discrete saddle

point structure of the system.

As with this interface fitted approach, the mesh movement is treated using a

linear elastic equation. This is discretised to formulate a separate system from

the FSI equations, which will be solved sequentially. It is coupled to the FSI

equation by using the velocity at the fluid-structure interface. Although adaptive

mesh refinement and discrete remeshing will permit larger solid deformation, by

maintaining mesh quality, this will not be explored in this thesis.

Although this discretisation approach for the incompressible neo-Hookean

solid is simple in its approach, as a result of the Cayley-Hamilton theorem hav-

ing a different characteristic equation between three and two dimensions, the

three-dimensional form does require additional terms, as demonstrated in Sec-

tion 3.6.2.
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Chapter 4

2D finite element spaces

As discussed previously, the most common finite element space for incompress-

ible flow problems is the Taylor-Hood pairing, such as P2/P1 (which considers

a continuous piecewise quadratic approximation for velocity and a continuous

piecewise linear approximation for pressure) is the lowest order stable choice. A

continuous pressure space is generally suitable within a continuum such as in

a fluid alone. When a discontinuity is considered across a fluid-solid interface,

there may be a genuine discontinuity in pressure, and it can be a challenge to

resolve accurately with continuous elements. To avoid the computational cost

of resolving the near-interface region in very fine detail when using a continuous

pressure space, a more suitable discontinuous pressure finite element space can

be considered.

This chapter discusses the importance of using appropriate finite element

spaces when solving FSI problems within the framework of an ALE method,

in particular accurately capturing the pressure solution at the fluid-solid inter-

face to accurately determine the deflection of the solid. To demonstrate this, we

introduce and test three common mixed velocity-pressure finite element spaces

using two different geometries, presenting both a steady-state and periodic solid

response. Throughout this chapter, the discussion will consider two-dimensional

triangular elements.
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4.1 Mixed order spaces

To describe finite element spaces, the conventional notation for triangles and

tetrahedrons is Pm/Pn, which means that the velocity space is approximated

with a continuous piecewise polynomial of degree m for each component of the

velocity. The pressure is approximated by a continuous piecewise polynomial of

degree n, with the exception when n = 0 is used where a piecewise discontinuous

constant pressure approximation is used.

The first point of discussion is around using either an equal- or mixed-order

approximation of the finite element space. This refers to the order of the basis

function when approximating both the velocity and pressure; equal order refers to

using the same order approximation for both fields, whereas mixed order typically

uses a higher-order piecewise polynomial approximation for velocity relative to

pressure. Taking this in relation to the governing equation, we note that velocity

involves a higher-order operator, ∇2u, than pressure, ∇p.
Thus we arrive at the following velocity-pressure space pairing (for triangles),

Pm/Pm−1, which is stable when m ≥ 2. These ubiquitous elements known as

Taylor-Hood were proven to be stable for discretisation of incompressible flow by

Taylor and Hood [185].

When discussing the stability of the different element spaces, we refer to the

Ladyzhenskaya-Babuka-Brezzi (LBB) stability condition (also referred to as div-

stability or inf-sup condition), first coined by Oden and Kikuchi [149] from a

collection of separate works [6, 32, 123].

An equal order approximation is possible but generally can only give ‘stability’

if the mass continuity equation is modified by weakening it, for example ∇ · u =

εf(p), where the small value of ε acts as a stabilisation [87, Ch. 3.13.3]. Equal-

order approximation may give unphysical results unless some form of special

treatment is applied, such as a bubble function or a Bercovier-Pironneau element

(linear velocity functions on a half space, sometimes referred to as P1isoP2).

Mixed finite elements, which do offer good robustness, discretise to form a

saddle-point system. The discrete saddle point system is indefinite, having both

negative and positive eigenvalues [3]. This rules out the use of certain direct
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methods (for example, Cholesky factorisation) and some iterative methods (for

example, conjugate gradient).

To demonstrate the inf-sup condition, the standard incompressible Stokes

problem is considered. This may be expressed in the well-defined bilinear form

a(u,v) + b(v, p) = ⟨f ,v⟩ ∀ v ∈ V, (4.1a)

b(u, q) = ⟨g, q⟩ ∀ q ∈ Q, (4.1b)

where the Hilbert spaces are defined as V = H1
0 (Ω)

d and Q = L2
0(Ω). This

continuous representation seeks the unknowns (u, p) ∈ V × Q, with the given

(f , g) ∈ V ′×Q′ (where V ′ and Q′ are the dual spaces). The mixed finite element

discretisation discussed above can be written in the archetypal block structure of

the saddle-point system, [
A BT

B 0

](
u
p

)
=

(
f
g

)
. (4.2)

Introducing the linear operators mapping from the original to the dual spaces,

A : V 7→ V ′, ⟨Au,v⟩ = a(u,v), (4.3a)

B : V 7→ Q′, ⟨Bv, q⟩ = b(v, q), (4.3b)

BT : Q 7→ V ′ ⟨v, BT q⟩ = b(v, q). (4.3c)

Letting a : V × V 7→ R and b : V ×Q 7→ R be the bilinear forms. It is assumed

that the bilinear forms are continuous,

a(u,v) ≤ C ∥u∥ ∥v∥ , ∀ u,v ∈ V, (4.4a)

b(v, q) ≤ C ∥v∥ ∥q∥ , ∀ v ∈ V, q ∈ Q, (4.4b)

and are bounded, such that there exists a positive real number C. It may be

proved that the following inf-sup condition for B,

inf
q∈Q

sup
v∈V

b(v, q)

∥v∥ ∥q∥
= β > 0, (4.5)

implies that there exists a unique solution pair. The complete derivation is given

by Brenner and Scott [31], where the conditions above are satisfied for Pm/Pm−1

under m ≥ 2.
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4.2 Finite element spaces

Three elements types have been identified for investigation within the ALE frame-

work to demonstrate the effect of capturing an accurate pressure solution. In each

case, the velocity space is kept at the lowest order to remain LBB stable, with-

out using more “complex” element types in order to ensure the computational

efficiency is prioritised.

For the following approximation, Th is the triangulation (for triangles in two

dimensions and tetrahedrons in three dimensions), with each element denoted

as k. The velocity space is represented by the piecewise-continuous quadratic

function in all the cases considered in this chapter. The piecewise quadratic

continuous finite element space is defined,

V 2
h = {v : v ∈ H1(Ω), ∀k ∈ Th : vk ∈ P2(k)}, (4.6)

where P2 is a set of polynomials of degree ≤ 2.

4.2.1 P2/P1

As discussed before, the simplest LBB-stable element is the Taylor-Hood element

when m = 2. It is worth noting that any lower (e.g. m = 1) does not meet

the LBB stability condition. This ensures a unique and stable solution that can

convergence at an optimal rate.

pk1 pk2 pk3

pk4 pk5

pk6

Figure 4.1: Taylor-Hood, P2/P1 degrees of freedom on a 2D triangle; velocity,

velocity and continuous pressure.
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The piecewise linear continuous finite element space for pressure is,

Q1
h = {q : q ∈ H1(Ω), ∀k ∈ Th : qk ∈ P1(k)}, (4.7)

where P1 is the set of polynomial of degree one.

Taylor-Hood elements only impose the requirement that the mass continuity,

∇ · u = 0, is enforced globally in a weak sense. The continuous pressure space

results in one of the drawbacks of this type of element, a lack of element-wise

mass conservation. A single-pressure mode is present with the Taylor-Hood ele-

ment, thus the pressure is defined up to a constant. Typically, a single pressure

degree of freedom can be restricted at a boundary, stopping the pressure “float-

ing”. An alternative is to impose a mean pressure constraint on the whole of

the pressure fields. To ensure consistency between all pressure spaces, a mean

pressure constraint approach is used, as described in (3.54).

4.2.2 P2/P0

The removal of an order from the pressure space will no longer capture the linear

variation on each element, and the P0 pressure is now piecewise discontinuous.

This provides the benefit of being able to naturally capture discontinuities with

the pressure solution, which is particularly useful for problems involving discon-

tinuous mediums, such as a fluid-solid interface.

pk1 pk2 pk3

pk4 pk5

pk6

pk7

Figure 4.2: P2/P0 degrees of freedom on 2D triangle; velocity, discontinuous

pressure.

The discontinuous finite element space is defined as,

Q0
h = {q : q ∈ L2(Ω), ∀k ∈ Th : qk = αk}, (4.8)
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4.2 Finite element spaces

where αk ∈ R is a real constant.

One key disadvantage of this finite element pairing is that it is only first-order

accurate [87]. Again, P2/P0 has a single hydrostatic mode and therefore can

be constrained by the mean pressure. It is worth noting that this is the lowest

order, LBB stable, discontinuous velocity-pressure pairing, noting that P1/P0 is

not LBB stable [87].

The discontinuous pressure across each element, ensures a local element-wise

mass balance [87].

4.2.3 P2/(P1+P0)

Due to the continuous nature of the linear pressure approximation in the standard

P2/P1 Taylor-Hood formulation, one disadvantage is not being able to maintain

element-wise mass conservation [87]. Numerical tests by Tidd et al. [188] find

that a lack of local mass conservation can lead to unphysical results, with en-

richment giving conservation for each element instead of over the entire domain.

To circumvent this, the linear approximation of the pressure space is augmented

by an element-wise discontinuous constant, essentially “enriching” the pressure

approximation. Element-wise mass conservation arises from this additional test

function, qh = 1, equal to one within the element of interest and being zero in all

other elements. Thus for mass conservation approximation,
∫
Ω
qh∇ ·uh = 0, and

the divergence theorem, ∫
Ωe

∇ · uh =

∫
∂Ωe

uh · n = 0, (4.9)

holds true over every element.

Using stability analysis Thatcher and Silvester [187] originally show that this

element, supplementing the continuous linear pressure space, is stable for a wide

range of triangular grids. Boffi et al. [28] generalise this to cover Taylor-Hood

elements for triangular and tetrahedral elements, under the condition that every

element has at least one vertex in the interior of the domain. Boffi et al. [27] test

this augmented Taylor-Hood element type with an immersed boundary method in

two dimensions, demonstrating better mass conservation and convergence rates.
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pk1 pk2 pk3

pk4 pk5

pk6

pk7

Figure 4.3: P2/(P1 +P0) degrees of freedom on 2D triangle; velocity, velocity

and continuous pressure and discontinuous pressure.

For the linear, piecewise discontinuous function the space is defined as,

Q
(1+0)
h = {q : q ∈ L2(Ω),∀k ∈ Th : qk = q1,k+q0,k, q1,k ∈ P1(k), q0,k = αk}, (4.10)

as before notating the polynomial of degree one over the element, with the addi-

tional element-wise discontinuous constant.

This choice of element pair is LBB stable, however one of the key disadvan-

tages of these triangular elements is the presence of two hydrostatic modes (one

for each component of the pressure space) [87]. Since the total pressure is the

sum of the linear and constant approximation (P1 and P0), the mean pressure is

constrained in the same sense, as done in equation (3.54),∫
Ω

pP1 + pP0 dx = 0. (4.11)

Thus, for this pressure space, the mean pressure constraint is enforced as the total

mean pressure. This is instead of a mean pressure constraint for each component,

since the global constant can be represented exactly by the means of each pressure

component [28].

4.3 Numerical experiments

The following numerical tests are designed to investigate the relative performance

of using discontinuous pressure finite element spaces (compared to P2/P1) for

fluid-structure interaction problems. Specifically, we consider whether there is an
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accuracy or efficiency benefit in resolving the pressure at the interface using a

discontinuous approximation rather than a continuous one. As we will see, there

is typically a jump in pressure across the interface, and so the P1 elements will

smooth this out across the neighbouring elements.

4.3.1 2D Test 1: Filament in a cavity flow

This case considers an enclosed domain with a deformable solid filament fixed

to the bottom. The fluid occupies the region Ωf ∪ Ωs = [0, 2] × [0, 1], and the

solid filament occupies the region Ωs = [0.97, 1.03] × [0, 0.8] when undeformed.

The fluid is driven by a shearing lid applied horizontally to the upper boundary.

This geometric setup was first proposed by Baaijens [5], and then examined again

using a fictitious domain approach [114, 209].

The material properties for the fluid-solid system and the linear elastic-solid

model governing the response of the mesh are given in Table 4.1. Note that

the density ratio between the solid and fluid ρf = ρf/ρs = 1, which eliminates

any buoyancy effects. The linear elastic mesh model has a Poisson’s ratio of

νm = 0.25, providing a sufficiently stiff response to the deforming solid filament,

which for two dimensions is sufficient to maintain mesh cell quality.

Fluid-solid parameters Mesh parameters

Solid density ρs 100 First Lamé parameter λm 10

Fluid density ρf 100 Second Lamé parameter µm 10

Solid constant c1 2× 106

Fluid viscosity µf 10

Table 4.1: Material properties of the fluid-solid system (left) and the elastic solid

governing the mesh deformation (right).

The material properties outlined in Table 4.1 are applied to the discrete FSI

system in (3.88) and to the linear elastic mesh equation in (3.55). The densities

occupy the regions ρ = ρf ∈ Ωf and ρ = ρs ∈ Ωs.
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ux = x(L− x)u

x
y

l

w

L

H

Figure 4.4: Two dimensional geometry of filament in a shearing lid flow, de-

formable solid highlighted in the region of grey.

The simulation is begun from an undeformed state, as shown in Figure 4.4,

and from an initial state of zero velocity in the domain. The flow is initiated by

applying a horizontal velocity to the upper boundary, given by equation (4.12).

Although somewhat unphysical, the quadratic profile ensures that the velocities

at the upper corners of the domain are zero, ensuring conformity with the im-

permeability condition (zero normal velocity) applied to the vertical boundaries.

The x-component of the lid velocity is prescribed as,

ux(x, t) =

{
x(L− x)u

(
(1−cos(2πt))

2

)
t < 0.5

x(L− x)u t ≥ 0.5,
(4.12)

where using a cosine profile permits a continuous increase in velocity avoiding

an initial impulse from its stationary starting state. The velocity scale is set

to u = 1. The steady increase in applied velocity also helps to maintain the

global incompressibility condition ∇ · u = 0, which can be violated in the case

of an impulsive boundary condition. No-slip and impermeable (u = 0) boundary

conditions are applied to both sides of the domain, as well as the bottom boundary

on either side of the filament. Time stepping is conducted with a simple backward

Euler scheme, with a constant time step of ∆t = 0.001s.
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Figure 4.5: Example mesh for the filament in shearing lid case, mesh m = 10,

solid region coloured in red.

The dimensions of the problem are identical to the original setup, with the

geometric properties shown in Table 4.2. An example mesh is shown in Figure

4.5, the resolution is characterised by a parameter, m, controlling the number

of cell divisions along each boundary, on the vertical boundaries my = 2m and

mx = 4m along the top horizontal boundary. The mesh is constrained to exactly

capture the fluid-solid interface. The mesh is modified to include points near the

corners of the fluid domain to ensure that any single element does not have all

vertices on a boundary. The two-dimensional triangular mesh is generated using

FreeFEM’s in-built mesh generator.

Parameter Value

Channel length L 2.0

Channel height H 1.0

Filament width w 0.06

Filament height l 0.8

Table 4.2: Geometric parameters for Figure 4.4.

The simulations are run from an undeformed state until the horizontal tip de-

flection of the filament has reached a constant steady-state deflection, as shown

in Figure 4.6. Finite element pairings P2/P0, P2/P1 and P2/(P1 + P0) are com-

pared using several successively finer meshes. To examine convergence with mesh

resolution, the horizontal deflection of the tip of the filament, located at (1.0, 0.8)

in the reference configuration, is measured in time.
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(a) P2/P0 (b) P2/P1

(c) P2/(P1 + P0)

Figure 4.6: Horizontal tip deflection in the two-dimensional shear driven cavity

for a given mesh resolution.

The discontinuous pressure space of P2/P0 is capable of convergent to a mesh-

independent solution with a coarser mesh compared to P2/P1. Furthermore,

each of these sequences of approximation appears to converge to different mesh-

independent steady-state deflections. Specifically, both P2/P0 and P2/(P1 + P0),

with discontinuous pressure spaces, convergence to a deflection of ydis = −0.175,
while P2/P1 convergences to ydis = −0.182. A difference of 3.85% between the

two deflections.
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Figure 4.7: Comparison of mesh independent horizontal tip deflections; P2/P0,

mesh level 3, P2/P1, mesh level 5, and P2/(P1 + P0), mesh level 3.

In Figure 4.7 the deflection of the filament tip is compared across the three

pressure spaces using mesh converged solutions, as demonstrated in Figures 4.6.

For this specific case, there is a very close agreement between P2/P0 and P2/(P1+

P0) solutions, suggesting that the discontinuous pressure approximation is the

dominant feature in accurately capturing the deflection of the solid.

The difference between sequential levels of mesh refinement and solid tip de-

flection is shown in Table 4.3. The number of degrees of freedom is given for the

velocity and pressure spaces used. This is further evidence that for the P2/P1

pressure space even at the finest mesh resolution, m = 50, the difference in tip

deflection compared to the previous resolution is still large, and the solution is far

from mesh-converged. Overall, the continuous pressure space requires a higher

mesh resolution relative to the discontinuous pressure spaces to reach a similar

degree of mesh convergence because it cannot represent a genuine discontinuity at

the interface. By extrapolating the convergence rate of the P2/P1 pressure space,

to reach a similar order of percentage of deflection difference (∼ 0.7%) to the

other pressure spaces, will require > 400000 degrees of freedom, approximately

four times the number of degrees of freedom relative to the other pairs of finite

elements.

71



4.3 Numerical experiments

Figure 4.8: Mean solution time using the UMFPACK direct solver [48], bars show

the fluctuations about the mean of the time to solve at each given time step.

Although the accuracy of discontinuous pressure approximations is better than

the continuous approximation, the solution times using a sparse direct solver for

P2/P0 are shown to be faster compared to the other pressure spaces, as shown

in Figure 4.8. Discontinuous pressure spaces, P2/P1 and P2/(P1 + P0), perform

almost identically when measuring the time to solve, when comparing the case

which has fewer degrees of freedom.

Figure 4.9: Velocity vector plot, P2/P0, m = 30, t = 3.99. The solid region

shaded in grey.
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Figure 4.9 shows a velocity vector plot, at the final steady-state deflection of

the solid. Although the velocity is imposed in a positive x direction at the lid,

the recirculation of the fluid in the sub-cavities bound by the deforming solid and

the fluid domain causes the filament to deflect in the opposing direction.

Figure 4.9 is rendered using open source scientific visualisation software Par-

aView. It can either visualise continuous linearly varying or constant discontinu-

ous functions, however, not together. Since ParaView does not have the function-

ality to plot the combination of linear and element-wise discontinuous functions,

it is therefore a poor tool for visualising the enriched pressure spaces. One ap-

proach could be to visualise the total pressure by interpolating either onto the P1

or P0 spaces on a much finer mesh. Alternatively, we choose to use MATLAB is

used to plot all pressure spaces, as shown in Figures 4.10.

The three pressure plots in Figures 4.10, capture the pressure distribution

in the final time step using their respective “mesh independent” solution. The

largest extremes in pressure are observed at the interface of the solid near the

bottom boundary of the fluid domain. With the continuous pressure space, P2/P1,

it is noticeable that the extreme peak of the pressure is offset from the fluid-solid

interface, which runs parallel to the interface along the solid filament. We can

clearly see the pressure distribution captured by the P0 and P1 + P0 pressure

spaces.
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(a) P1 (b) P0

Figure 4.11: Pressure field plots decomposed into both the piecewise linear con-

tinuous and piecewise constant discontinuous contributions. For the same region,

time step and mesh resolution as shown in Figure 4.10c.

To better understand the performance of P2/(P1 + P0), the pressure contri-

butions are decomposed into P1 and P0 and compared in Figure 4.11. Most of

the pressure appears to come from the piecewise constant, discontinuous contri-

bution. There is a small contribution from the P1 space in the bottom region of

the filament, near the boundary of the domain.

74



4.3 Numerical experiments

Mesh

Level
m

Degrees of Freedom
% difference

Velocity Pressure Total

1 10 11458 2812 14270 -

2 20 45358 11236 56594 -2.8905

3 30 101170 25138 126308 -0.77006

(a) P2/P0

Mesh

Level
m

Degrees of Freedom
% difference

Velocity Pressure Total

1 10 11458 1459 12917 -

2 20 45358 5722 51080 -14.4474

3 30 101170 12724 113894 -4.2597

4 40 181206 22754 203960 -1.8845

5 50 282866 35487 318353 -1.1992

(b) P2/P1

Mesh

Level
m

Degrees of Freedom
% difference

Velocity Pressure Total

1 10 11458 4271 15729 -

2 20 45358 16958 62316 -3.8222

3 30 101170 37862 139032 -0.69158

(c) P2/(P1 + P0)

Table 4.3: Degrees of freedom, with percentage difference in horizontal tip deflec-

tion between subsequent mesh refinements.
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(a) P2/P0, m = 30, t = 3.99 (b) P2/P1, m = 50, t = 3.99

(c) P2/(P1 +P0), m = 30, t = 3.99

Figure 4.10: Pressure contour, around the solid filament. The region show is

bound by x = [0.7, 1.3] and y = [0, 0.8].
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4.3.2 2D Test 2: Filament behind a cylinder

This case was designed as an FSI benchmark, first proposed by Turek and Hron

[192], and then further compared with several methods in Turek et al. [193]. The

setup considers a pipe flow with a deformable filament attached behind a rigid

solid cylinder.

x
y l

h

L

H

(a) Fluid channel with solid.

(0.2, 0.2)
(0.6, 0.2)

(b) Solid geometry in the initial configuration.

Figure 4.12: Two dimensional geometry of filament behind a cylinder in a pipe

flow, from the FSI benchmark proposed by Turek and Hron [192]. The deformable

solid filament is highlighted in grey, and the rigid cylinder is shown filled in white.

The setup of the geometry with the filament attached to the downstream side

of the fixed cylinder is shown in Figure 4.12, with the corresponding geometric

dimensions in Table 4.4. The fluid domain occupies a region such that Ωf ∪Ωs =

[0, 2.5]× [0, 0.41], and the solid domain Ωs = [0.25, 0.60]× [0.195, 0.215]. For this

problem, the time step is implemented again using backward Euler with ∆t =

0.005, t > 0. The location of the centre of the fixed cylinder and the horizontal

centerline of the filament (in the initial undeformed state) is at ys = 0.200, so it is

placed just below the horizontal centerline of the fluid channel, which is at yf =

0.205. This geometric asymmetry initiates the unsteady flow and the oscillation

of the filament, without the need for any other external stimuli. A reference point

is located at the tip of the solid filament to measure its displacement, shown in

Figure 4.12b.
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The material properties used in these simulations are shown in Table 4.5. The

fluid-solid material properties are chosen to match the benchmark cases from the

literature [192]. For this setup, the linear elastic mesh equation is selected to

have a much stiffer mesh response relative to the previous case, with a Poisson’s

ratio of νm = 0.4545, to maintain mesh quality in the case where the density of

elements around the tip of the filament is high.

A parabolic inlet velocity profile is applied at the inlet

ux(0, y) = 1.5u
y(H − y)
(H/2)2

(4.13)

where the mean inlet velocity is uH. For the following experiments, the velocity

scale is selected as u = 2, in accordance with the literature [192, 193]. No-slip

boundary conditions are applied to the top and bottom boundaries and on the

surface of the rigid cylinder. At the outlet boundary, a “do nothing” condition is

applied which in the weak formulation naturally satisfies the stress-free condition

(σ · n = 0).

An example of the unstructured triangular mesh is shown in Figure 4.13, for

the coarsest case. The resolution of the mesh is scaled around the number of

cells located along the vertical boundaries of the fluid domain, m. Here, the

number of cells along the horizontal fluid domain is (L/H)m. The resolution of

the mesh is finer in the region surrounding the solid, where the velocity gradients

are expected to be larger. The number of cells vertically across the filament is

mh = (3/20)m, and along the length of the filament (l/h)mh. The number of

elements along the circumference of the cylinder is scaled by (π/θ− 1)mh, where

θ is the half angle of the thickness of the filament, θ = sin−1(h/2r).

78



4.3 Numerical experiments

(a) Total domain.

(b) Zoomed region around the solid.

Figure 4.13: Example mesh for Turek case, mesh m = 20, solid region outlined

in red.

For this setup, where large deflections of the solid are observed, the deterio-

ration of the mesh quality is a concern, particularly near the points of maximum

solid deflection. Remeshing of the domain could be used to ensure mesh quality

is maintained throughout. For periodic responses of the solid, with high frequen-

cies, there will be a requirement to re-mesh often (potentially more than twice

per single period) at a high computational expense. To observe the direct influ-

ence of pressure on the solid response, as opposed to measuring other influencing

factors, remeshing is not applied in these experiments and the mesh parameters

used (refer to Table 4.5) were selected based on numerical experimentation.
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Parameter Value

Channel length L 2.5

Channel height H 0.41

Cylinder centre position (0.2, 0.2)

Cylinder radius r 0.05

Filament length l 0.35

Filament thickness h 0.02

Reference point (at t = 0) (0.6, 0.2)

Table 4.4: Geometric parameters for Figure 4.12.

Fluid-solid parameters Mesh parameters

Solid density ρs 1× 103 First Lamé parameter λm 10

Fluid density ρf 1× 103 Second Lamé parameter µm 1

Solid constant c1 2× 106

Fluid viscosity µf 1

Table 4.5: Material properties of the fluid-solid system (left) and the elastic solid

governing the mesh deformation (right), for the geometry outlined in Figure 4.12.

The vertical tip deflection is plotted over time for a number of mesh resolu-

tions, for the P2/P1, P2/P0 and P2/(P1 + P0) spaces, shown in Figures 4.14. For

the higher mesh resolution (m = 40 for P2/P1, m = 50 for P2/P0 and m = 45

for P2/(P1+P0)) the simulations were terminated prematurely and the complete

t = 6s was not possible. In these cases, the quality of the mesh deteriorated in

the fluid region near the tip of the solid filament, where the density of the mesh

is high and the displacement of the mesh is large. Without the use of remeshing,

this is one of the key drawbacks of the single-mesh approach of the ALE method.
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(a) P2/P0

(b) P2/P1

(c) P2/(P1 + P0)

Figure 4.14: Vertical tip displacement of the solid, ∆t = 0.005. yMean is the

mean amplitude of the first period of oscillation, and yFreq is the mean vertical

frequency (averaged in time) of oscillation, after steady state has been reached

(t > 3.5).

The mesh problem sizes shown in Figure 4.14 are tabulated in Table 4.6.
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Mesh

Level
m

Degrees of Freedom

Velocity Pressure Total

1 20 32080 7856 39936

2 25 48056 11814 59870

3 30 68676 16926 85602

4 35 97508 24090 121598

5 40 129394 32019 161413

6 45 154522 38265 192787

7 50 195390 48439 243829

(a) P2/P0

Mesh

Level
m

Degrees of Freedom

Velocity Pressure Total

1 20 32376 4129 36505

2 25 48056 6107 54163

3 30 69220 8774 77994

4 35 97508 12332 109840

5 40 137298 17327 154625

6 45 154522 19498 174020

7 50 207742 26172 233914

(b) P2/P1

Mesh

Level
m

Degrees of Freedom

Velocity Pressure Total

1 20 32376 12059 44435

2 25 48056 17921 65977

3 30 69220 25836 95056

4 35 97508 36422 133930

5 40 137298 51322 188620

6 45 154522 57763 212285

7 50 207742 77699 285441

(c) P2/(P1 + P0)

Table 4.6: Degrees of freedom of Turek geometry for different mesh resolutions.
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The frequencies of the filament response generally agree with the results from

Turek and Hron [192]. Compared to the range of results presented in Turek et al.

[193], our results are at the lower end of the predicted frequency range, as shown

in Figure 4.16a. Conducting a direct comparison of the frequency of the vertical

displacement of the filament for the finest mesh resolutions for all three pressure

spaces, as shown in Table 4.7, we observed that it is P2/P0, which is in the

best agreement with the literature. For amplitudes P2/P0 and P2/(P1 +P0) miss

predicting by around the same amount, 10.3% and 9.7% respectively, relative to

the literature.

FE space Total DoFs ay fy

P2/P0 243,829 1.30× 10−3 5.00

P2/P1 233,914 1.37× 10−3 4.78

P2/(P1 + P0) 285,441 1.59× 10−3 4.92

Turek et al. [193] 304,128 1.47× 10−3 5.46

Table 4.7: Comparison of amplitudes and frequencies of the vertical tip deflection

for all three pressure spaces of the finest mesh resolution, m = 50, with “Method

3” as outlined in Turek et al. [193].

From Table 4.7, “Method 3” uses an ALE approach with Taylor-Hood finite

elements, and a temporal resolution of ∆t = 2.5 × 10−4. Turek et al. [193]

solve using a discrete Newton method that solves each subsystem using a Krylov

multigrid approach. Using the UMFPACK direct solver for the three pressure

spaces, a memory limitation is reached at ∼ 2.8e5 degree of freedom, less than

in the cases reported in the literature. It is noticeable that the resolution of the

result generated using the direct solver has a lower resolution compared to the

literature, using fewer degrees of freedom, even when comparing the same FE

space (P2/P1).

This discrepancy in the results is likely to be primarily due to the different

solid models used. In the original paper by Turek and Hron [192] a Saint Venant-

Kirchhoff model for a compressible hyperelastic solid is applied, compared to the

incompressible neo-Hookean model in the results shown here. The simplicity of

the Saint Venant-Kirchhoff extension of Hooke’s law into a nonlinear domain has
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been criticised as giving a poor representation for nonlinear structural analysis

[117].

Figure 4.15: Comparison of the vertical displacements for the ALE (outlined in

this thesis) and a fictitious domain method (FDM) (as outlined in Wang et al.

[200]), both using P2/P1 FE space and m = 20.

Figure 4.15 shows a direct comparison between the ALE method, as detailed

in this thesis, with a two-mesh fictitious domain method (FDM), using the same

geometric setup and material properties. The FDM used to generate these results

is described in Wang et al. [200], however, in this case without any mesh adap-

tivity. From the initial undeformed state, the FDM amplitude grows at a much

higher rate, reaching a maximum deflection at t = 2.2s compared to t = 2.8s

with the ALE method. When a steady-state oscillatory response is reached, both

methods reach a close agreement in amplitude and frequency. Unlike with the

ALE approach, the main source of error with FDM is the interpolation of the

solid contributions onto the background fluid field.

The pressure space P2/P1 cannot provide a mean amplitude and frequency for

the mesh resolution m = 35, as indicated by the ‘NaN’ in the legend of Figure

4.14b and the lack of data points in Figure 4.16a. In this case, the mesh quality

deteriorates early with the simulation terminating prematurely, specifically for

this resolution and pressure space, otherwise discrete remeshing would be required

to continue.
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(a) Mean frequency of the vertical of the

tip deflection.

(b) Maximum vertical tip displacement.

Figure 4.16: Comparison of steady state deflection parameters using the different

pressure spaces with results from the literature given in two papers by Turek and

Hron [192] (in red) and Turek et al. [193] (in grey).

Since the ALE formulation, as outlined in Chapter 4, which generated these

results is not energy-conserving, the amplitude of the filament tip will decay be-

tween each cycle. However, the mean amplitude and frequency do reach a steady

state and are therefore comparable to the benchmarking data in the literature.

To make a comparison with previous studies, the effect of amplitude decay

must be omitted, the maximum amplitude is used to make a more fair comparison

to the literature, shown in Figure 4.16b. In general, all pressure spaces agree well

with the literature, near the upper and lower bounds of both the papers reported

by Turek and Hron [192] and Turek et al. [193] coincide with the results reported

in the literature.
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4.3 Numerical experiments

Figure 4.17: Maximum internal element angle for each resolution run; where

the marker symbol signifies that simulation terminated prematurely and the

simulation run was completed.

In Figure 4.17 it is shown that all meshes for m = 35 exhibit a total deterio-

ration of mesh quality, where an element interior angle approaches 180°. Apart

from P2/P0 the simulations fail when the angle approaches this limit. Other

cases also become problematic when an interior angle approaches 180°; P2/P1 for

m = 45 and both P2/P0 and P2/(P1 + P0) for m = 50. Similarly, when the mesh

resolution increases, this can lead to increased shearing of smaller elements in

critical regions, such as in the fluid mesh around the tip of the solid. Overall,

it appears that the pressure spaces which include the discontinuity tend to have

improved mesh quality when measured by the maximum internal element angle.

For mesh conforming approaches, such as ALE, the quality of the mesh will

affect the convergence rate, stability, and accuracy of the solution. This can be

particularly important for transient, oscillatory solid deflections. An ideal mesh

would consist of regular elements constructed from equilateral elements (triangles

or tetrahedrons). Highly distorted meshes produce flat or “sliver” elements. To

monitor the quality of the mesh, the maximum interior angle of each element

is calculated. For a periodic deformation, the mesh quality varies over each

cycle, with the poorest quality observed at the maximum absolute deflection.
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Furthermore, the cumulative effect of repetitive cyclic deformation of the mesh

leads to deterioration of the overall quality of the mesh over time.

Several approaches can be employed to rectify the deterioration of mesh qual-

ity, which are briefly discussed below.

1. Adaptive time stepping can be used to maintain the quality of the mesh to

prevent mesh tangling, where the maximal discretisation length of a given

element, h, is reduced.

2. Local mesh repair, for example, could consist of performing an edge swap-

ping operation of two adjacent sliver elements, therefore, reducing the max-

imum angle of the given elements [76].

3. Problem-specific mesh constraints: specific points in the mesh can be con-

strained given a priori information about the expected deformation of the

solid. This would allow the mesh to deform with the solid geometry in a

more consistent way. This is done in a similar sense to Ruschak [168] when

free surface flows are modelled.

4. Global or local remeshing: This can be computationally expensive and leads

to a loss of accuracy. Therefore, it should be avoided where necessary [130].

The application of these approaches contravenes the general methodology of ALE

and is outside the scope of this project. The purpose of this thesis is to understand

the impact of the choice of pressure space on the accuracy and efficiency of the

solution. Since we have been able to apply the solver successfully across many

time steps, the decision was made not to implement discrete remeshing in these

two-dimensional tests.
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Figure 4.18: Mean solve time (per time step) over entire runs versus total number

of degrees of freedom, the slope of each series is given for each FE pairing in the

legend. All linear systems are solved using the UMFPACK sparse direct solver

[48].

As a measure of efficiency, Figure 4.18 illustrates the time to solve the lin-

earised system of equations at each time step, averaged over the entire simulation

for each mesh resolution (represented by the total number of degrees of freedom).

The gradient of these trends is a measure of how the solution time scales with

the size of the problem, given this FSI case. Similar performance is observed for

both P2/P1 and P2/(P1+P0) spaces, yet P2/P0 marginally outperforms the other

spaces.

Figure 4.19: Example velocity magnitude contour plot, P2/P1, m = 30, t = 3.50.

Figure 4.19 shows a snapshot of the visualisation of the velocity magnitude
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of the resultant flow. The fluid accelerates around the fixed solid cylinder be-

fore interacting with the deformable filament behind and generating the vortex

shedding bound by the horizontal boundaries of the channel.

(a) P2/P1, m = 30, t = 4.17.

(b) P2/P0, m = 30, t = 4.10.

(c) P2/(P1 + P0), m = 30, t = 4.12.

Figure 4.20: Pressure contour plots around the solid filament, outlined in grey.

The region show is bound by x = [0.22, 0.62] and y = [0.15, 0.25].

Alternatively, pressure contour plots can be generated in MATLAB, as is done
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4.3 Numerical experiments

in Figures 4.20, which focus on the filament region in different snapshots in time.

Specifically, they show the deflection at the first maximum amplitude after t > 4,

which occurs at slightly different times due to phase delay between pairs of FE

spaces.

Across the three FE spaces, the pressure within the solid is large relative to

the fluidic pressure. The pressure range in the solid for the P2/P1 pressure space

can clearly be seen to smear across the elements near the boundary of the fluid

structure. Both the P2/P0 and P2/(P1 + P0) pressure plots are similar, in terms

of the distribution and magnitude of the pressure, but without this smearing. It

is possible that the linear continuous component of (P1 + P0) only has a notable

contribution in regions of the solid where the cells are too large to resolve high

pressure gradients using only discontinuous pressures alone, which is observed

mainly in the region of the filament that is attached to the rigid cylinder.

As in the previous case, the pressure contributions are decomposed into their

components in Figure 4.21. The P1 pressure only has a small negative contri-

bution at the base of the solid, where it is attached behind the solid cylinder.

Similarly, in the mid-length region of the solid, there is a small contribution from

P1, again in a region where the pressure gradients are the greatest. Most of the

pressure contribution arises from the discontinuous, P0, component.
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(a) P1 pressure.

(b) P0 pressure.

Figure 4.21: Pressure field plots decomposed into both the piecewise linear con-

tinuous and piecewise constant discontinuous contributions. For the same region,

time step and mesh resolution as shown in Figure 4.20c.

4.4 Concluding remarks

The use of discontinuous pressure demonstrates greater accuracy in capturing

the pressure across the interface, using fewer degrees of freedom. This near-

interface pressure has a large impact on the deflection of the solid, thus, there is

a requirement for it to be efficiently resolved.

Of the discontinuous pressure approximations, P2/P0 overall demonstrates

better performance than P2/(P1+P0). This may be in part because the enriched

discontinuous pressure space includes additional degrees of freedom associated

with the linear pressure contribution. Although this would suggest that the

pressure is resolved to a higher order, for the problem presented in this study,

it has not proven to be essential to resolve an accurate linear pressure field. In

the scenario where the pressure has a high spatial gradient and is continuous, one

could envisage that the high-order pressure space would be of greater importance.
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Chapter 5

3D finite element spaces

The previous chapter examines the use of a discontinuous pressure finite element

space to capture fluid-structure interaction in two dimensions. Given the observed

benefits, the chapter aims to extend the approach to three dimensions.

One of the main differences between the two- and three-dimensional cases is

the increase in the size of the problem for a like-for-like mesh resolution. Another

key difference is that the use of the P2 velocity space with the discontinuous

pressure P0 space is observed to be unstable for general three-dimensional meshes.

Applying some of the previous finite element (FE) spaces, such as P2/P0 and

P2/(P1 + P0), directly in three-dimensional problems leads to unphysical results.

This is because, unlike with the two-dimensional cases with these pairs of FE

spaces, in three dimensions there are not enough velocity degrees of freedom

relative to the number of pressure degrees of freedom in each element.

When extending the analysis of the three FE spaces examined in the previous

chapter to three-dimensional space, it is widely proven in the existing literature

that the simplest second-order Taylor-Hood element (P2/P1) is Ladyzhenskaya-

Babuka-Brezzi (LBB) stable [87].

To extend the discontinuous pressure space, P0, to three dimensions and re-

main LBB stable, a higher order velocity approximation must be considered.

Zhang [211] show that P3/P0 is stable on tetrahedral grids, by using the macro-

element theory of Stenberg [179]. For P2/P0 in three dimensions, one would

need a mid-face node to control the normal flux between neighbouring elements
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[26]. Professor David Silvester, a Chair in Numerical Analysis at the Univer-

sity of Manchester and a well-published author in the field of finite elements for

incompressible fluid dynamics, was contacted for advise on the use of the dis-

continuous pressure spaces in three dimensions. Professor Silvester states that

“the issue that compromises the discontinuous pressure mixed approximation on

tetrahedral meshes [is] the absence of a midface velocity node” [175]. This can

be stabilised either through a mid-face bubble function or a higher-order velocity

space, the latter of which naturally has a mid-face node.

The enriched Taylor-Hood element, P2/(P1 + P0), is found to be LBB stable

in two dimensions for a Stokes problem, under the condition that each element

has at least one internal node [186]. In three dimensions, Boffi et al. [28] are

able to theoretically prove (Theorem 3.1) that an enriched Taylor-Hood element,

Pm+1/(Pm + P0) is LBB stable, given m ≥ 2. From the macro-element theory,

the stability is provided by the shared velocity degree of freedom across the face

of neighbouring elements, when using P3 velocity finite element space. There-

fore, it is assumed that P3/(P1 + P0) would therefore also be LBB stable in

three dimensions, as the pressure space has fewer degrees of freedom compared

to P3/(P2 + P0). This proof by Boffi et al. [28] was performed only for a Stokes

flow; this provides a strong indication that this finite element pair will be found

to be experimentally stable for the ALE FSI formulation.

Another constraint on the stability of the enriched Taylor-Hood element in

three dimensions, as shown by Boffi et al. [28], is that any element has at least

one internal vertex. When generating the mesh, it must be avoided that an

element has all vertices located on the boundary of the domain, for example, at

the right-angled corner of a regular domain.

In the book by Gresho et al. [87], they specifically state that P2/(P1 + P0) is

indeed LBB stable for three-dimensional tetrahedrons. Although the proof from

Boffi et al. [28] does not inherently disprove that P2/(P1 + P0) is stable, Gresho

et al. [87] do not explicitly provide evidence to support their claim.

It is further worth mentioning that another difference in three dimensions, the

formulation of the hyperelastic solid is also different from two dimensions because

of the Cayley-Hamilton theorem, generating additional terms in the solid. We

refer back to Section 3.6.2 for the full implementation.
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5.1 Finite element spaces

Three stable finite element pairs, P2/P1, P3/P0 and P3/(P1 + P0), are intro-

duced and tested in two three-dimensional problems. The first case considers a

three-dimensional version of the lid shearing case examined in Section 4.3.1, while

the second numerical experiment considers a deformable wall in an open-channel

flow. The numerical experiments aim to test the performance of the three finite

element spaces, with regards to the efficiency required to accurately capture the

solid deformation. This chapter will only make use of sparse direct solvers for

linear algebra, which restricts the size of the meshes used. The following chapter

will address this constraint through the introduction of preconditioned iterative

solvers.

5.1 Finite element spaces

This section introduces the chosen finite element spaces in three dimensions,

showing the setup of the degrees of freedom on the tetrahedral simplex.

5.1.1 P2/P1

For three dimensions the degree of freedom layout of this element pair is naturally

extended from the triangle in section 4.2.1, to a tetrahedron in Figure 5.1. With

a total of 14 degrees of freedom on this element.

The properties of the P2/P1 element in three dimensions are retained from two

dimensions. The Taylor-Hood element remains a stable choice for the discreti-

sation of three-dimensional finite elements, fulfilling the LBB stability condition

[87]. Stenberg [180] performs stability analysis on three-dimensional tetrahedral

elements for incompressible flows.

5.1.2 P3 space

To provide stability with discontinuous pressure elements, the order of the velocity

space can be increased relative to the order of the pressure space, using a cubic

velocity approximation.
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Figure 5.1: P2/P1 degrees of freedom on a 3D tetrahedron; velocity and

velocity and continuous pressure.

As before, the finite element space for the piecewise P3 continuous velocity

space is defined as follows,

V 3
h = {v : v ∈ H1(Ω), ∀k ∈ Th : vk ∈ P3(k)}, (5.1)

where P3 is the a set of polynomials of degree ≤ 3. As shown in Figure 5.2 and

Figure 5.3 the extra degrees of freedom of velocity are located on the edges and

at the centre of each face of the simplex tetrahedron.

P3/P0

The structure of this element is given in Figure 5.2, noting the four velocity

degrees of freedom on each edge of the simplex, and a single velocity degree of

freedom at the centre of each face. It is these degrees of freedom located in the

centre of the faces that provide stability for the discontinuous pressure, and thus

the reason why P2/P0 is not stable in three dimensions. This gives a total of 21

degrees of freedom for this element type.

This higher order velocity FE space benefits from being able to capture the

finer velocity detail, where for slender solid geometries undergoing shearing de-

formation, high mesh resolutions may not be possible, combined with the dis-

continuous pressure space’s capability to conserve mass at the element level [28].
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Figure 5.2: P3/P0 degrees of freedom on a 3D tetrahedron; velocity on the edges,

velocity on the faces, and discontinuous pressure (located at the barycenter).

This is the lowest-order element pair which both has a velocity degree of freedom

located on the centre of a face and discontinuous pressure space, without the use

of bubble functions or other stabilisation approaches.

P3/(P1+P0)

Similarly for just the P0 pressure space, to examine the enriched pressure space

in three dimensions a richer velocity space must be considered compared to its

two-dimensional equivalence. The structure of this type of element is shown in

Figure 5.3, with a continuous pressure degree of freedom at each vertex, for a

total of 25 degrees of freedom on the simplex.

The combination of the high order velocity and richer pressure space increases

the number of degrees of freedom per element. This leads to more degrees of

freedom on a like-for-like mesh than for the other FE pairs discussed in this

chapter. However, it is hoped that discontinuous pressures will allow a lower

mesh resolution than P2/P1 elements for equivalent accuracy.

As with the two-dimensional P2/(P1 + P0) pair, this finite element has two

hydrostatic modes, which both must be constrained using a mean pressure con-

straint.
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Figure 5.3: P3/(P1 + P0) degrees of freedom on a 3D tetrahedron; velocity on

edges, velocity on faces, velocity and continuous pressure and discontinuous

pressure (located at the barycenter).

5.2 Numerical experiments

Two three-dimensional numerical examples are considered to demonstrate the

performance of the three finite-element spaces; P2/P1, P3/P0 and P3/(P1 + P0),

in terms of capturing an accurate deflection solution for the solid.

5.2.1 3D Test 1: Filament in a shearing cavity

This test case is a three-dimensional extension of 2D Test 1: Filament in a cavity

flow, in Section 4.3.1. The two-dimensional filament is extruded circumferentially

to become a three-dimensional cylinder, and a bi-quadratic lid velocity is used to

drive the flow (see Figure 5.4, which shows the profile that is chosen to ensure

conformity with the zero velocity boundary on the side walls). The walls at the

sides and on the bottom of the domain are prescribed with impermeable, no-slip

boundaries. The solid filament (shaded grey) is attached to the bottom face,

located centrally in the channel, at (L/2, H/2, 0). The tip of the solid cylinder

(the centre of its top face) is the point of reference for measuring deflection,

located at (L/2, H/2, l).
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x
z y

ux = x(L− x)y(H − y)u

l

r

L

H

H

Figure 5.4: A three-dimensional extension to model presented in Figure 4.4, de-

formable solid highlighted in the region of grey and the lid driven by a bi-quadratic

velocity.

The geometric dimensions of the test case presented in Figure 5.4 are given

in Table 5.1.

Parameter Value

Channel length L 2.0

Channel height H 1.0

Cylinder radius r 0.15

Cylinder height l 0.8

Table 5.1: Geometric parameters for Figure 5.4.

The lid velocity is defined by a biquadratic x-component shear, ux(x, y) =

x(L − x)y(H − y)u, where the velocity is scaled by u = L2H2 to ensure unity

in the centre of the face. To avoid an initial discontinuity at startup, a gradual

increase in the shear velocity is prescribed through a time varying profile,

ux(x, y, t) =

{
ux(x,y)

2
(1− cos(2πt)), t < 0.5

ux(x, y), t ≥ 0.5.
(5.2)

The model is run, using the parameters in Table 5.2, to a steady state deflection

at tf = 1.
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Fluid-solid parameters Mesh parameters

Solid density ρs 10 First Lamé parameter λm 1000

Fluid density ρf 10 Second Lamé parameter µm 100

Solid constant c1 1× 105

Fluid viscosity µf 10

Table 5.2: Material properties of the fluid-solid system (left) and the elastic solid

governing the mesh deformation (right), for the test case outlined in Figure 5.4.

The computational mesh for the three-dimensional cases are unstructured

tetrahedral meshes, generated using TetGen [174] which is called within FreeFEM

[93]. The resolution of the mesh is scaled around the number of cell increments,

m, along the lengthH in Figure 5.4. To ensure the quality of the meshes produced

in TetGen, the radius-edge ratio is prescribed with an upper limit of 1.2. The

fluid-solid interface is explicitly captured within the domain. An example of the

computational mesh generated is shown in Figure 5.5, and the mesh statistics for

a number of the meshes used in each test are given in Table 5.3. Examining the

same mesh resolution, m = 10, the number of pressure degrees of freedom for the

lower-order space, P3/P0, are ∼ 4.6 times greater relative to the linear pressure

space of P2/P1.

Figure 5.5: Example of the computational mesh, slice through the entire domain

at y = 0.5 and the outline of the solid region (in yellow).
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Mesh
m

Degrees of Freedom
% difference

Level Velocity Pressure Total

1 8 37662 1824 39486 -

2 10 63591 2984 66575 -2.7329

3 12 108276 5022 113298 -6.9667

4 14 164667 7502 172169 -4.2887

5 16 233280 10488 243768 -2.6960

6 18 333738 14791 348529 -1.5370

(a) P2/P1

Mesh
m

Degrees of Freedom
% difference

Level Velocity Pressure Total

1 8 120000 7809 127809 -

2 10 204963 13681 218644 -4.1147

3 12 350214 23527 373741 -2.0738

(b) P3/P0

Mesh
m

Degrees of Freedom
% difference

Level Velocity Pressure Total

1 8 120000 9633 129633 -

2 10 204963 16665 221628 -5.1401

3 12 350214 28549 378763 -2.7785

(c) P3/(P1 + P0)

Table 5.3: Degrees of freedom, with percentage difference in horizontal tip deflec-

tion between subsequent mesh refinements.

Figure 5.6 shows the horizontal deflection of the solid filament in the lid-

driven flow, for each mesh resolution. As the mesh resolution increases, successive

improvement in steady-state deflection reaches an asymptotic mesh-converged

solution. This is further demonstrated in Figure 5.7. In fact, from Figure 5.7,

the P3/(P1 +P0) performs similarly to P2/P1, in terms of deflection with degrees

of freedom. Although P3/P0 converges at a similar rate, it tends to a different

steady-state deflection, compared to P2/P1 and P3/(P1 + P0). The lower order
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P0 pressure space alone may not be sufficiently accurate, compared to the linear

contributions of P2/P1 and P3/(P1 + P0) FE spaces.

Although the upper boundary imposes a velocity in the positive x-direction,

the solid deflects in the negative x-direction, as shown in Figure 5.6. The fluid

accelerates in the boundary layer near the lid, its general motion recirculates

within the enclosed domain; as demonstrated in Figure 5.10. Consequently, most

of the fluid impinging on the solid filament is moving in the negative x-direction,

and the solid deflects in the corresponding direction.

When using the higher-order cubic velocity space, the number of degrees of

freedom grows significantly faster than with quadratic velocities in two dimensions

for each mesh resolution. Combined with the three pressure spaces examined,

there is a computational limit to using a sparse direct solve, for any given fixed

hardware1. In our tests, the memory capacity of the hardware limits the problem

size to approximately 100,000 degrees of freedom when solving three-dimensional

problems with sparse direct methods. Hence, for this chapter, we only consider

problems up to this size (see Chapter 6 for a discussion of preconditioned sparse

iterative solves).

1In this chapter numerical experimental were performed locally on a desktop PC, in serial,

equipped with an Intel Xeon Processor E3-1240 v5, with four double threaded core (total eight

threads), and a base clock speed of 3.50 GHz. A total of 15.4 GB RAM memory was available.
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5.2 Numerical experiments

Figure 5.7: Steady state deflection with number of total degree of freedom for

each pressure space. The number next to each node is the value of m.

Figure 5.8 shows increase of memory usage when solving the FSI linear system

with the number of degrees of freedom, and Figure 5.9 is the mean solve time.

Memory is measured as the resident set size before and after the solve routine

is called, obtained within the FreeFEM script. From both of these figures, we

observe that the P2/P1 space is less efficient for a given number of degrees of

freedom, it requires more memory and solving time relative to the P3/P0 and

P3/(P1 + P0) spaces.
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Figure 5.8: Mean memory used during the solve of each linear system for each

pressure space.

Figure 5.9: Mean solve time for each linear system for each pressure space.

As was observed in the two-dimensional case, the mesh form = 18 (for P2/P1)

could be so dense that the quality of the elements degrades so that the system

becomes poorly conditioned, causing a sudden increase of solve time (shown in

Figure 5.9) but a reduction in memory usage (shown in 5.8). Ignoring the anoma-

lous data points atm = 18 for the P2/P1 FE space in Figure 5.8, the rate of growth

of memory usage initially looks linear, growing at a rate of 0.0286N , where N is
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the number of degrees of freedom of the system, which is related to the size of the

problem. On closer inspection, the trend appears to follow a polynomial growth

rate more closely, close to a quadratic rate, precisely at a rate of N1.38. As a

measure of the closeness of the fit, the coefficient of determination calculated for

the linear fit is 0.989, compared to 0.998 for the superior polynomial fit.

The mean solve time does not grow linearly, however, super-linearly, and again

by ignoring the m = 18 case (for P2/P1) the trends are calculated. The P2/P1 FE

space grows at a rate of N1.80. For P3/P0, which is an improvement in the solve

time rate, at N1.71. However, for P3/(P1+P0) solve time grows rate deteriorates,

measured at N1.84. Although both FE spaces with discontinuous pressures only

use three data points, it is difficult to determine how accurate these trends are

without more data.

Neither the P3/P0 and P3/(P1+P0) FE pairing could provide enough data to

examine this trend, when using direct solvers.

Typically, inverting a dense matrix using Gauss elimination, as in LU de-

composition, would cost O(N3) operations. Here, the discrete system is sparse,

and its inverse (which will be denser) is not explicitly stored. To solve using LU

decomposition for a sparse matrix, one would expect much better performance,

provided that the fill-in is controlled. PETSc calls the multifrontal sparse solver

package MUMPS when performing an LU direct solve, this aims to order the

rows in the elimination process so as to minimise fill-in.

Similarly, examining the growth in memory usage with problem size, a fit of

N1.24 is determined for the P2/P1 finite element space.
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(a) P2/P1

(b) P3/P0

(c) P3/(P1 + P0)

Figure 5.6: Horizontal tip deflection in the three dimensional shear driven cavity

for a given mesh resolution. Figures on the left show the complete time series,

and figures on the right show the final t ≥ 0.8.
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Figure 5.10 shows the velocity streamlines as the fluid recirculated in the

cavity, deflecting around the deforming solid. Unlike the two-dimensional case,

where the fluid generated two circulation regions either side of the solid filament,

in three dimensions the fluid is able to bypass the solid leading to the much

smaller deflection.

Figure 5.10: Velocity streamline around the deformation filament, using m = 18,

P2/P1, at time t = 1.0.

As in the two-dimensional cases, ParaView cannot plot the discontinuous

linear pressure functions. Therefore to visualise P3/(P1 + P0) the solution is in-

terpolated on a two-dimensional plane, through the point p0 = (1, 0.5, 0.5) with a

normal pn = (0, 1, 0), using MATLAB. A search is performed that identifies where

the edges of the tetrahedron element intersect the display plane, constructing a

two-dimensional mesh of a mixture of triangles and quadrilaterals. Linear inter-

polation of the P1 pressure solution is used to project the solution onto the plane,

whereas the P0 solution which is constant on the three-dimensional elements is

also the same for their two-dimensional projections.
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5.2 Numerical experiments

(a) P2/P1, m = 18, t = 1.0. (b) P3/P0, m = 12, t = 1.0.

(c) P3/(P1 + P0), m = 12, t = 1.0.

Figure 5.11: Pressure contour plots around the solid filament of a cut view at

y = 0.5, showing the regions x = [0.7, 1.3] and z = [0, 0.9]. The solid region is

outlined in grey.

Across all pressure spaces, in Figures 5.11, the background fluid pressure re-

mains at a magnitude of the order of one. It is observed that the pressure jump at
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the fluid-structure interface is clearly captured in Figures 5.11b and 5.11c, which

is particularly large close to where the solid attaches to the boundary. Whereas in

Figure 5.11a the pressure is slightly smeared at the offset to the interface, within

the solid filament. In the case of the enriched pressure space, Figure 5.11c, the

linear varying pressure is clearly observable in the larger elements at the base

of the filament. A maximum pressure is measured in the filament adjacent to

the fluid-structure interface, however, located where the solid is attached to the

boundary.

5.2.2 3D Test 2: Leaflet in channel flow

The second 3D test case considers a deformable wall obstruction in a cross-channel

flow. The solid is again fixed to the bottom face, however the wall does not extend

the total width of the channel (w < H), see Figure 5.12. The bottom face has

a no-slip boundary condition applied (u = 0), with the front (uy = 0), back

(uy = 0) and top faces (uz = 0) with slip boundary conditions. At the inlet and

outlet faces a normal velocity profiles prescribed,

ux(z) =
3

2

z

H

(
2− z

H

)
u, (5.3)

and time-varied as,

ux(z, t) =

{
ux(z)

2
(1− cos(2πt)), t < 0.5

ux(z), t ≥ 0.5,
(5.4)

where the velocity is scaled to unity u = 1.

The geometric dimensions of the test case presented in Figure 5.12 are given

in Table 5.4. The dimensions of the fluid region remain the same as the prob-

lem presented in section 5.2.1, with a different solid geometry and fluid forcing

approach. The regularity of the solid in relation to the fluid domain makes the

meshing more uniform, and less susceptible to sudden changes in element sizes

or skewness.
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x
z y

L

H

H

h

w

l

A
B

C
D

Figure 5.12: This setup considers a similar fluid domain to that in Figure 5.4,

periodic boundaries are applied at the end and the symmetric boundary condition

on the top. Further, the cylindrical filament is replaced with an orthogonal

cuboid. Red points indicate the location of deflection monitors.

Parameter Value

Channel length L 2.0

Channel height H 1.0

Wall length l 0.2

Wall width w 0.8

Wall height h 0.8

Table 5.4: Geometric parameters for Figure 5.12.

An example of a computational mesh for this three-dimensional test case,

mesh level 1 in Table 5.5, is shown in Figure 5.13. The three-dimensional meshes

for this case are generated with TetGen [174], within PETSc, and visualised using

ParaView.

109



5.2 Numerical experiments

Figure 5.13: Example of the computational mesh, slice through the entire domain

at y = 0.5 and the outline of the solid region (in yellow).

Four points are distributed within the solid to record the different modes of

the deflection, with the following coordinates.

Point A (L/2, H/2, h)

Point B (L/2, (H + w)/2, h)

Point C (L/2, (H − w)/2, h)
Point D (L/2, H/2, h/2)

The deflection of point A is shown in Figure 5.14 for each pressure space

and mesh resolution. As the velocity increases, the deflection of the solid also

increase upon reaching a steady-state deflection when the velocity reaches a maxi-

mum. Note that for all mesh cases, the maximum deflection occurs slightly before

reaching steady-state, due to the inertia carrying the solid deflection beyond the

steady-state point. The number of degrees of freedom and the changes in steady-

state solid deflection for each mesh resolution are given in Table 5.5.
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(a) P2/P1

(b) P3/P0

(c) P3/(P1 + P0)

Figure 5.14: Horizontal tip deflection in the three dimensional channel flow for a

given mesh resolution. Figures on the left show the full time series, and figures

on the right show a zoom in the final stages, for t ≥ 0.6.
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Mesh
m

Degrees of Freedom
% difference

Level Velocity Pressure Total

1 10 47622 2222 49844 -

2 12 78966 3590 82556 -9.7016

3 14 117645 5286 122931 -3.3335

4 16 165201 7342 172543 -7.0252

5 18 228351 10065 238416 -3.7240

6 20 308286 13477 321763 -0.2697

(a) P2/P1

Mesh
m

Degrees of Freedom
% difference

Level Velocity Pressure Total

1 10 153858 10329 164187 -

2 12 257406 17605 275011 -1.4218

3 14 384873 26503 411376 -0.5298

(b) P3/P0

Mesh
m

Degrees of Freedom
% difference

Level Velocity Pressure Total

1 10 153858 12551 166409 -

2 12 257406 21195 278601 -1.7474

3 14 384873 31789 416662 -0.6197

(c) P3/(P1 + P0)

Table 5.5: Degrees of freedom, with percentage difference in horizontal tip deflec-

tion between subsequent mesh refinements.

Figure 5.15 show the steady-state deflection of point A, with the number of

degrees of freedom. With each successive refinement of the mesh, the deflection

solution converges to a mesh-independent result. The difference in solution be-

tween the two mesh resolutions of the two discontinuous pressure spaces, P3/P0

and P3/(P1 + P0), is already small. It is difficult to determine whether these are

truly mesh independent without more observations.
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Figure 5.15: Steady-state deflection with number of total degrees of freedom for

each pressure space.

Figure 5.16 show the relation of the mean memory requirement to solve the

linear system with the total degrees of freedom using a direct solver, and Figure

5.17 show the relation of the mean time to solve. As in the previous case, the

finite element spaces, which include the discontinuous pressure, are faster to run

and use less memory, particularly for larger meshes. P2/P1 has a linear memory

dependency on the number of degrees of freedom, up to the m = 18 case where

performance begins to deteriorate. The time to solve grows close to quadratically,

precisely the solution time grows at O(N1.86).
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Figure 5.16: Mean memory used during the solve of each linear system for each

pressure space.

Figure 5.17: Mean solve time for each linear system for each pressure space.

The flow visualisation of the three-dimensional case with the solid wall is dis-

played in Figure 5.18, showing a horizontal and vertical aligned sheet of stream-

lines. The flow is ducted around the side and top of the solid wall, where the

velocity is accelerated given the change in the streamwise cross-sectional area.

The slip conditions applied to the boundaries of the fluid channel do not in-

fluence the vertical flow profile, while a small boundary layer forms around the
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solid.

Figure 5.18: Velocity streamline around the solid wall in the channel flow, using

mesh m = 20, P2/P1, at time t = 0.99.

Pressure contour slices taken at y = 0.5 are shown in Figures 5.19. They show

such coarse resolution that, in some cases, only two pressure degrees of freedom

are resolved across the width of the solid. Qualitatively, the pressure distribution

of P3/P0 and P3/(P1 + P0) are very similar, suggesting that the most significant

improvement is the discontinuous pressure component, P0. In the region around

the base of the solid, where pressure gradients are large and cells are sizeable,

the linear pressure component plays a more significant role. In addition, for more

complex fluid flows, the linear pressure component could have a consequential

role in resolving the pressure.
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(a) P2/P1, m = 20, t = 1.

(b) P3/P0, m = 14, t = 1.

Figure 5.19: Pressure contour plots around the solid filament using a slice at

y = 0.5, displaying the regions around the solid x = [0.7, 1.3], z = [0, 0.7].
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(c) P3/(P1 + P0), m = 14, t = 1.

Figure 5.19: Pressure contour plots around the solid filament using a slice at

y = 0.5, displaying the regions around the solid x = [0.7, 1.3], z = [0, 0.7].

5.3 Concluding remarks

For small three-dimensional problems, sparse direct solvers are applicable, which

scale sufficiently well to solve moderately sized linear systems. Increasing the res-

olution for three-dimensional problems, particularly where FSI requires conformal

fitting meshes, the number of degrees of freedom grows rapidly (for a completely

regular grid and domain, the mesh size could grow as O(m3), assuming constant

grid spacing in all dimensions of the domain). In this case direct solvers are

not scalable, since the solution time scales super-linearly, with number of degrees

of freedom. Even more significantly, however, the constraining feature for these

direct solvers is the required memory, where the fill-in from factorisation of the

sparse matrix can generate enormous memory requirements, which soon exceed

those available on a standard desktop workstation. The fill-in from the use of

sparse direct solvers is made even more significant by the use of cubic velocity

spaces, as required by the fact that lower-order velocity spaces FE pairs, P2/P0
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and P2/(P1+P0), are not LBB stable in three dimensions. The alternative to the

sparse direct solvers are iterative methods.

A drawback of using discontinuous pressure spaces, P0, relative to the con-

tinuous pressure spaces, P1, is that there are typically more degrees of freedom,

although they resolve a lower-order pressure solution for the same mesh resolu-

tion. Since for the P0 pressures the degrees of freedom are associated with each

cell, the number of cells outnumbers the nodes, where the nodes are shared be-

tween multiple cells, a feature that is particularly notable for three-dimensional

tetrahedral meshes.

Conversely, these drawbacks are outweighed by the main benefit of using

discontinuous pressures: A more accurate pressure solution at the interface of

solid and fluid. This additional accuracy of the pressure solution permits a more

accurate deflection of the solid, leading to solid deflection convergence at much

lower mesh resolutions.

Although iterative methods offer an opportunity to solve larger problems due

to the reduced memory required, they are sensitive to the structure of the linear

system. This typically manifests itself in issues with convergence; either slow

convergence or divergence. In addition, iterative methods will converge a solution

only to the given tolerance, introducing a loss of accuracy. This motivates the

demand for efficient iterative methods, where an appropriate preconditioner for

the FSI application will need to be considered.
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Chapter 6

Preconditioned iterative methods

for FSI

Small two-dimensional FSI problems can generally be solved with sparse direct

methods. For larger problems, with high mesh resolutions, particularly when

refining around the interface, direct solvers are inefficient and have large mem-

ory requirements. In three dimensions, practical problems produce large linear

systems and calculating solutions in reasonable times requires a more efficient

solution approach.

Iterative methods offer an increased efficiency (in terms of solve time) rela-

tive to direct solvers, but their utility is governed by the number of iterations

required to convergence and cost per iteration. This requires preconditioning, a

strategy designed to improve the convergence rates of an iterative method. The

preconditioner must be sufficiently cheap to build and apply within the iterative

solve routine.

In this chapter, typical preconditioning strategies will be reviewed and then

an approach is presented in the context of the ALE FSI formulation. The applied

preconditioner is a block diagonal algebraic multigrid, applied to each component

of the velocity, and an approximation of the Schur complement for the pressure

block.
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6.1 Iterative solvers

6.1 Iterative solvers

High performance iterative methods typically belong to two main classes of meth-

ods, multilevel methods and Krylov subspace methods [66]. Although a sparse

direct solver can apply advanced strategies such as sparse elimination methods,

which can involve a frontal or multi-frontal approach, and reordering strategies

(refer back to Section 2.4.1 for further discussion), they are severely limited by

the memory constraints of a given computer specification when solving. These

methods are typically constrained to problems of the order of tens of thousands of

degrees of freedom, and are competitive for two-dimensional problems; however,

in three dimensions we required an iterative approach.

6.1.1 Multilevel methods

For multilevel methods, multigrid is the most synonymous, using a hierarchy of

grids defined a priori, generating a smaller problem to be solved on, before inter-

polating (or prolongating) this solution back to the finer grid. For regular grids,

this geometric multigrid approach is straightforward. However, for unstructured

grids, which are more popular for complex deforming geometries, the hierarchy

definition becomes complex.

To avoid the need for mesh properties (such as the nodal locations and the

connectivity matrix) to perform the coarsening, an approach could be applied

directly to (discrete sparse) algebraic system of equation generating a hierarchy

of subsets of variables, without the need for prior geometric information. Thus,

algebraic multigrid (AMG) provides a robust and efficient method to solve large

classes of discrete systems, from structured and unstructured meshes, in two and

three dimensions [182].

As a solver, multilevel methods (when tuned appropriately) can act optimally

for discrete elliptic-type problems (Poisson problems), where the convergence rate

of an iterative solver is independent of the size of the mesh [66, 182].

In addition to this, AMG has been applied successfully to a number of differ-

ent non-symmetric problems (such as convection diffusion problems) and certain

indefinite systems [182]. For example, as a solution approach, AMG has been

applied to the Navier-Stokes equations in multiple different cases [88, 131, 203].
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6.1 Iterative solvers

6.1.2 Krylov subspace methods

These classes of methods are based on the fact that, for a given sparse coefficient

matrix, its product with a vector can be calculated cheaply. The Krylov subspace

is defined as the following,

Kk(A, b) := span (b, Ab,A2b, ..., Ak−1b), (6.1)

where Kk(A, x) is the linear space becoming a k-dimensional subspace of Rn, with

these vectors being linearly independent when A is non-singular.

A Krylov subspace method is based on the sparsity of the coefficient ma-

trix A, and the product with a vector can be cheaply computed. If m is the

maximum number of nonzeros in each row, and n is the number of unknowns

(A ∈ Rn×n), then Ax can be computed with only nm floating-point operations.

Thus, successive vectors, A(Ax), are calculated at the same cost (nm). Although

this broad class of methods aims to iteratively convergence on a solution, different

approaches possess specific properties and applications. The most popular Krylov

iterative methods are conjugate gradient (CG), minimal residual (MINRES), and

generalised minimal (GMRES) methods.

Consider a generic large, linearised system of equations,

Ax = b, (6.2)

the k-th iteration lies in the translated Krylov subspace,

x0 = span{r0, Ar0, A2r0, ..., Ak−1r0}, (6.3)

where the initial residual is defined as r0 = b−Ax0. Thus the k-th residual vector

satisfies

rk ∈ r0 + span{Ar0, A2r0, ..., Akr0}, (6.4)

where the Euclidean norm, ||rk||, is minimised over all vectors from this space.

The constraints of CG are twofold; the matrix must be both symmetric and

positive definite. The CG iterate is a linear combination of vectors generated

by the Lanczos algorithm, which computes the basis for the Krylov subspace

K(A, r0). Although CG is limited to symmetric matrices, a generalised form, the
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biconjugate gradient (BiCG), was developed to overcome this. The asymmetric

matrix is altered to become a symmetric system ATAx = AT b. However, the

condition number of ATA is the square of the condition number of A, therefore,

this is often a much less effective method.

Similarly to CG, in that the matrix must be symmetric, the MINRES algo-

rithm is a robust method to find a solution to an indefinite, as well as a symmet-

ric matrix. Similarly to CG, MINRES applies the Lanczos method to orthogonal

bases of the Krylov subspaces. For symmetric positive definite A, the new or-

thogonal vector v(k+1) can be calculated using a short recurrence, from previous

vectors vk and v(k−1).

For symmetric systems, CG and MINRES the Lanczos algorithm is used to

find the orthogonal basis of the Krylov subspaces, whereas GMRES instead uses

the Arnoldi method for asymmetric matrices. The GMRES method requires the

construction (and storage) of orthogonal vectors that form the basis of the Krylov

space, Kk(A, v
1),

{v1, v2, ..., vk}, (6.5)

on iteration k. To obtain a subsequent orthogonal basis, v(k+1), it is necessary

to use all the vectors calculated previously in the computation. This can cause

a practical issue in terms of memory storage. In fact, the work and storage

requirements of GMRES grow like O(kn) [66]. For optimal performance, the

basis length should be maximised, yet this can be prohibitively expensive. To

mitigate this, the inner loop of algorithm often involves a restart of the basis

construction, using the final basis as the initial vector for a new loop. This is

known as restarted GMRES.

In Figure 6.1, the two main branches at the top of the diagram refer to the

two main methods for constructing the orthogonal basis of Kk(A, b). The two

rows refer to the different types of conditions are established for the residual,

the lower row are methods which minimise a residual norm, and the upper row

using a solution of the projected matrix. FOM refers to the full orthogonalisation

method and QMR is the quasi-minimal residual method.
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Lanczos method

u1, ..., uk

w1, ..., wk

Arnoldi method

v1, ..., vk

Min
Min

Min

xk ∈ Kk(A, b)

BiCG: Lk = Kk(A
T , AT b) FOM: Lk = Kk(A, b)

CG: A = AT

MINRES: min ∥rk∥
A = AT

QMR: min ∥rk∥ GMRES: min ∥rk∥

Figure 6.1: Map of Krylov subspace iterative methods. Inspired by Figure 1.

from Celledoni et al. [40].

6.2 Preconditioned Krylov methods

Through the clustering of eigenvalues, the aim of preconditioners is to reduce

the number of iterations to a convergence tolerance and thus reducing the overall

solve time to obtain an acceptable approximation of the solution. The overall

objective is to generate an approximation of the coefficient matrix A in (6.2),

which requires the least amount of work to generate and apply. Realistically, it

is the design of the preconditioner, M , or more precisely, the action of M−1 on

the system that is required.

The application of left and right preconditioners is described in Subsection

2.4.3. When applying preconditioners to a symmetric solver, either CG or MIN-

RES, it is important to maintain the symmetry of the system. Given a positive-

symmetric definite preconditioner, which can be described as M = HHT . Where

the symmetric solver will take the form

H−1AH−Ty = H−1b, (6.6)

y = HTx. (6.7)
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The matrix H−1AH−T remains symmetric and positive-definite. When precon-

ditioning the Krylov subspace iterative method, the preconditioner is integrated

into the algorithm. Specifically for a preconditioned GMRES method, the resid-

uals are also required to be preconditioned within the Arnoldi algorithm. Also,

again in the approximation of the solution step of the algorithm.

6.2.1 Incomplete factorisation preconditioning

For large, three-dimensional problems, a sparse direct factorisation solver, for ex-

ample, LU factorisation, will become prohibitively expensive with increased mesh

resolution as a result of the increased amount of fill-in. Zero entries of the original

matrix’s sparsity pattern will become nonzero as a result of the factorisation pro-

cess. To mitigate this affect, incomplete factorisation approaches are considered

as an approximation. The sparsity pattern of the factors is relaxed, either by re-

taining the sparsity of the original system or by a drop tolerance. Clearly factors

which are too sparse, which will make much more affordable preconditioners, will

lose resemblance to the original system and will not improve convergence rates.

These are a popular basis for out-of-the-box preconditioners since they are

simple to implement and general to apply.

6.2.2 Multilevel preconditioning

Instead of using multigrid methods as a solution method, they can be applied in

an approximate sense to generate a useful preconditioner.

In the same way as using multilevel methods as effective solvers, they can be

effective preconditioners for other iterative methods (Krylov subspace methods).

Since multigrid methods can offer precise control of the trade-off between the rate

of convergence and numerical work, it makes a good tool for preconditioning. In

the interest of efficiency, a multigrid preconditioner will typically involve a coarse

approximation, such as a single V-cycle being sufficiently effective [119]. Another

benefit of using multigrid methods as preconditioners is that it makes their per-

formance and robustness less sensitive to the selection of certain components,

such as coarse grid solvers [154].
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6.2.3 Block preconditioning

For many systems of equations, the discretisation can naturally form a block

structure. A physics-based block preconditioning approach is an appealing choice

for flow problems. The linearised system of incompressible fluid equations, as

discussed in Chapter 2, written in the form,[
A BT

B 0

](
u
p

)
=

(
f
0

)
. (6.8)

The block coefficient matrix can be factorised into a lower triangular, diagonal,

and upper triangular matrix,

A = LDU =

[
I 0

BA−1 I

] [
A 0
0 S

] [
I A−1BT

0 I

]
, (6.9)

where the Schur complement takes the form S = −BA−1BT . Different precon-

ditioners can be proposed on the basis of this structure and the properties of the

iterative method that is being preconditioned. The preconditioning problem that

must be solved at each iteration is decomposed into smaller block systems, but

it is essential that these sub-block systems can be solved efficiently themselves.

If one considers the system of equations in (6.8) formed from an incompressible

fluid problem, it has the properties of being symmetric and indefinite. To be

able to apply an appropriate solver, such as MINRES, a preconditioner M , must

maintain these properties so that the matrix M−1A remains symmetric.

Therefore an appropriate block preconditioner could just consider the diagonal

factor D of the block system in (6.9),

M sym =

[
A 0
0 S

]
, (6.10)

to maintain the symmetry of the original matrix. In the case of applying this as

a preconditioner, only the action of the inverse (or approximate inverse) of the

diagonal blocks is required.

A more complex preconditioner, which would typically further accelerate rates

of convergence, using the product of both diagonal and upper triangular factors,

DU,

M asym =

[
A BT

0 −S

]
. (6.11)
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Although this asymmetric form of a block preconditioner will provide improved

convergence properties [66], it is only applicable with the iterative method for

asymmetric systems, such as GMRES. In a purely fluid case, when the Schur

complement is found exactly in (6.11), it has been proven that an iterative solver

would converge within two iterations and in the case of the exact symmetric form

(6.10) within three iterations [147].

In practice it is not practical to find the exact inverse of each sub-block,

and one must make further approximation to design an efficient preconditioning

approach, either an approximation to the blocks or to the solution of the sub-

block system. This can include diagonal scaling, incomplete factorisations, and

multigrid techniques. The choice of method reflects the required accuracy of the

approximation balanced with computational constraints. These computational

constraints include the memory and time required to calculate and apply these

preconditioners.

Consider the symmetric preconditioner (6.10), an efficient approximation to

solve the sub-block system is required,

Sz2 = r2

Az1 = r1.
(6.12)

The matrix A is the discretisation of a second-order differential operator, and

hence multigrid techniques are optimal. Hence the solution of this system can

be replaced with an approximate solve using a multigrid cycle to approximate it

efficiently.

The matrix S is expensive to form exactly. For a Stokes problem, it is known

that the Schur complement is spectrally equivalent to the finite element sparse

pressure mass matrix,Mp [66], therefore, as an approximation to this block can be

replaced by the solution of Mpz2 = r2. With this mass matrix, this system now

becomes simple to solve since it possesses good properties, which are symmetric

positive definiteness. A Cholesky factorisation would provide an exact inverse of

the pressure mass matrix. The pressure mass matrix can be approximated using a

fixed number of iterations of an iterative solver, such as conjugate gradient (CG),

of a crude preconditioner such as just the diagonal of the pressure mass matrix.

The eigenvalues are bounded as the the mesh is refined provided the matrix is
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diagonally scaled. The degree of approximation can be controlled through the

number of CG iterations.

Considering the non-symmetric preconditioner of (6.11), applying the pre-

conditioner retains the same approximations as previously discussed, with the

addition of an extra matrix-vector multiplications,

Sz2 = r2

Az1 = r1 −BTz2.
(6.13)

Approximation to S and A are performed as before with the symmetric precon-

ditioner.

Fundamentally, there are two requirements for the block preconditioner, an

efficient approximation to the inverse of the velocity block and the inverse of the

Schur complement. Although the inexact Schur complement may again involve

the inverse of the velocity block, this is often a looser approximation than for

the A entry in the matrix. Further, the approximation to the Schur complement

should retain spectral properties of the exact Schur complement.

6.3 Preconditioned Krylov methods for FSI

The FSI approach adopted in this work, as described in Section 3.8, leads to a

discrete system with a structure similar to the Stokes problem, when using the

Characteristic-Galerkin method to approximate the total derivative [66]. How-

ever, in this case the velocity block contains contributions from the solid model

in addition to a contributions from the fluid. As a result, it cannot be assumed

that a multigrid approach will work or that the corresponding Schur complement

matrix is spectrally equivalent to the mass matrix, as has been implemented with

pure-fluid problems. However, we can take inspiration from the work on the

Stokes problems and use that to guide the initial development of a suitable block

preconditioner. We will test this preconditioner using a single velocity-pressure

pair, P2/P1, and we will consider the enriched pressure FE space later in this

chapter.
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6.3.1 Taylor-Hood element

Considering the full system with Taylor-Hood elements (P2/P1), including the

velocity unknowns, pressure unknowns and the Lagrange multiplier related to

the mean pressure constraint (refer back to (3.54)),A BT 0
B 0 vT

p

0 vp 0

u
p
λ

 =

f
0
0

 , (6.14)

which can be decomposed into upper, lower and diagonal components through

Gaussian elimination,

A = LDU =

 I 0 0
BA−1 I 0

0 vpS
−1
p I

A 0 0
0 Sp 0
0 0 Sλ

I A−1BT 0
0 I S−1

p vT
p

0 0 I

 (6.15)

where Sp = −BA−1BT is the conventional Schur complement associated with

the pressure block. An additional Lambda-Schur complement takes the form

Sλ = −vpS
−1
p vT

p , associated with the mean pressure constraint. If the eigenvalue

associated with this extra row and column lies outside the main cluster of eigen-

values associated with the rest of the system, it will only require a single extra

iteration of the Krylov solver. The vector row vp (and the column vector vT
p ) is

the discrete mean pressure constraint, as discussed in Section 3.6.2.

For the sake of simplicity, we consider the block diagonal form as an candidate

structure of the preconditioner,

M =

A 0 0
0 Sp 0
0 0 Sλ

 . (6.16)

The same decomposition outlined in this Section can be applied to other

unenriched pressure finite element spaces, such as P3/P0.

6.3.2 Approximation to the velocity block

The first required component of the block preconditioner is cheap a yet effective

approximation to the inverse of the velocity block. The discrete velocity block

includes contributions from the mass and stiffness terms, from equation (3.90)

128



6.3 Preconditioned Krylov methods for FSI

in Section 3.8, throughout the domain, with additional contribution from the

discrete solid in regions of the domain occupied by the solid.

Multigrid methods proved to be fast iterative solvers for general elliptic prob-

lems. In the case of determining a preconditioner, the requirement of finding

an accurate solution is no longer relevant. AMG can provide a suitable solu-

tion approach that can provide acceptable accelerated convergence for problems

that may have “Poisson-like” characteristics [64]. A fixed number of multigrid

cycles can be an effective preconditioner even for problems where it is not pos-

sible to generate a convergent multigrid solution [66]. If a cost-effective strategy

involves a limited number of AMG cycles that are able to tighten the clustering

of eigenvalues, this will improve the convergence rate of a Krylov iterative solver.

In relation to a linear elastic problem, Mihajlović and Mijalković [141] ef-

fectively applies a component-wise AMG preconditioner in conjunction with a

Krylov iterative method in both two and three dimensions, demonstrating a con-

stant iteration count with the size of the problem. They deduce from Korn’s

inequality that the block diagonal preconditioned discrete elasticity operator has

a solution time that scales linearly with the discretisation size [141]. This concept

of using AMG to approximate the diagonal blocks of displacement components

of a linear elastic solid model is applied as an optimal preconditioner for an ALE

FSI system [146].

When comparing the formulation of a linear elastic model (3.55) (for the

movement of the mesh), with the hyperelastic model (3.72), in this case an in-

compressible neo-Hookean model, we notice some similarity. In the weak form,

the deviatoric part of the stress tensor is identical, Du : Dv, the double-dot

product with the test function. The double-dot product of two matrices can be

calculated as the trace of the inner product. Therefore, this term contributes

directly to the diagonal. If these terms are a dominant feature, AMG could be

an effective preconditioner for a hyperelastic model, when applied to the block

diagonal component in a similar approach to the linear elastic model.

Clearly, there is evidence that a block velocity component AMG precondition-

ing approach is effective when iteratively solving a linear elastic model. Naturally,

taking inspiration from the existing literature, this approach could prove to be

effective for hyperelastic solids. Further, how would this approach compare when
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applying both the Stokes-like formulation from the Characteristic-Galerkin dis-

cretisation and hyperelastic solid, in conjunction with the FSI formulation? Based

on this heuristic from literature, the pursuit of using this block-diagonal AMG

approach with a hyperelastic solid is a creditable candidate to be investigated

experimentally. It is worth noting that if both the fluid and solid contributions

result in separate clusters of eigenvalues, this could lead to poor convergence

properties.

The velocity block can be further decomposed into sub-blocks based upon

the components of the velocity. With this structure, the action of each diagonal

block can be considered independently. This can be computed by applying a

fixed number of AMG cycles to each elliptic diagonal block, thus providing a

controllable and inexpensive approximation to the action of the inverse velocity

block. This is illustrated abstractly as,

M−1
A =

AMG(Axx) 0 0
0 AMG(Ayy) 0
0 0 AMG(Azz)

 , (6.17)

whereM−1
A is an approximation of the inverse of the diagonal velocity blocks used

for the preconditioner and AMG(Aii) is a single V-cycle of algebraic multigrid

cycles.

To test the performance of this proposed block preconditioner acting on the

velocity block in isolation, the velocity block is solved albeit with a right-hand

side set to one,

Au = {1}TNu
, (6.18)

where the right hand side, {1}TNu
, is a column vector of ones, the same dimension

of the velocity block A. The velocity block is composed of either a pure fluid

problem or an FSI problem for comparison.
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(a) Fluid only.

(b) Fluid structure interaction.

Figure 6.2: Relative residual of the velocity block solved with restarted GMRES,

where m relative number of increments for each mesh resolution.

The geometric and material setup is identical to that in Section 5.2.1. These

tests only consider the finite element space P2/P1 in three dimensions, where the

size of the problem for each mesh resolution is given in Table 6.1.

Figure 6.2a compares the convergence rate when solving just the velocity

block for a pure fluid problem (in the absence of a solid) using restarted GMRES,

both for the non-preconditioned, and a block preconditioned, solve. The GMRES
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restart value is 30 iterations, the default choice within PETSc. All subsequent

results using GMRES in this Section will use the same restart value, unless stated

otherwise. In Figure 6.2b is the same experiment also with an additional contri-

bution from the solid.

m
Total degrees of

freedom

Fluid FSI

None Block AMG None Block AMG

10 65441 81 8 1000 35

15 194821 145 8 1000 38

20 439770 219 8 1000 42

Table 6.1: Solution to the velocity block only, number of GMRES iterations taken

to converge to a relative tolerance ||r||/||r0||= 1 × 10−5, and maximum number

of iterations itmax = 1000.

Table 6.1 shows the number of iterations to convergence for three size of

problems. In both cases, just fluid and FSI, the application of the preconditioner

significantly reduces the number of iterations to convergence. In fact, the precon-

ditioned fluid system performs extremely well, with a fixed number of 8 iterations

to convergence, independent of the size of the problem.

Without preconditioning, the FSI system performed significantly worse rela-

tive to the fluid-only problem. In Figure 6.2b, GMRES has an extremely slow

convergence rate, leading to stall and ultimately not converging within the 1000

iteration limit. With the block-diagonal precondition we observed a significant

acceleration in convergence rate, however unlike the fluid-only case it is problem-

size dependent.

Even with a large magnitude in the stiffness contribution from the solid acting

only in a small portion of the domain, the AMG performs well for the velocity

FSI formulation. This demonstrates the robustness of the AMG approach when

used to approximate the inverse of the velocity block.
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m Fluid FSI
Ratio (fluid

to FSI)

10 1.906 2.753 0.692

15 4.185 12.736 0.329

20 11.620 36.538 0.308

Table 6.2: Time to solve (in seconds), solved using diagonal block preconditioned

GMRES.

m
Fluid FSI

None Block AMG None Block AMG

10 0.0085 0.2382 0.0085 0.0787

15 0.0275 0.5231 0.0272 0.3352

20 0.0645 1.4525 0.0640 0.8700

Table 6.3: Time to solve per iteration (in seconds), solving using GMRES.

Table 6.2 is the total solution times to form and apply the preconditioner

and then solve the velocity block system. The preconditioned fluid system does

outperform the FSI system in terms of solution time. As the size of the problem

increases, the performance of this preconditioner when applied to the FSI system

deteriorates relative to that of the fluid system. When we examine the solution

time per iteration, as shown in Table 6.3, the preconditioned FSI is faster than

the fluid system. This is attributable to the setup cost of the preconditioner being

distributed over a greater number of iterations. It is worth noting that for cases

without preconditioning, the time per iteration is almost identical, as expected.

6.3.3 Schur complement

The Schur complement arises from the Gaussian elimination of a 3 by 3 linearised

system of equations. As discussed previously, it is often used in the precondition-

ing of block systems.
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Exact Schur complement

Calculating the exact Schur complement as a preconditioner will provide optimal

convergence when applied to the Krylov subspace iterative methods. The ideal

block preconditioner would take the form,

M−1 =

A−1 0 0
0 S−1

p 0
0 0 S−1

λ

 (6.19)

where the exact Schur complement is Sp = −BA−1BT , which is identical to the

Schur complement which arises from the factorisation of a 2 by 2 system [147].

Additionally, due to the mean pressure constraint, another Schur complement

type block appears in the form of, Sλ = −vpS
−1
p vT

p .

Clearly this is impractical; not only does this requires the inverse of A for

the velocity block, furthermore another inverse of A is required to calculate the

exact Schur complement. Even if the sparse matrix A is sufficiently small, such

that the exact inversion is feasible, the inverse would be dense; thus, the exact

Schur complement would also become a dense matrix. The inverse of the exact

Schur complement, applied as a preconditioner, would now have a significant

computational expense. Therefore, it is usually impractical and inefficient to

compute an exact Schur complement.

Inexact Schur complement

As a result of the high computational cost of calculating the exact Schur comple-

ment, even for smaller problems, it is necessary to formulate a cheaper approxi-

mation.

For a close approximation to the Schur complement, using the Moore-Penrose

pseudo-inverse of the rectangular matrices applied to the off-diagonal velocity-

pressure coupling blocks, B† = BT (BBT )−1,

Ŝ−1 = (BBT )−1BABT (BBT )−1, (6.20)

has been proposed by Benzi et al. [24]. Although this approach was found to

perform poorly in some cases, it was found to be improved by scaling this Schur

approximation by two suitable diagonal matrices, such as taking the diagonal of
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the velocity mass matrix Elman et al. [65]. Approximating a Schur complement is

a challenge in itself, however, it is the action of the inverse of this approximation

that is required for preconditioning. This approach approximates the inverse

Schur complement directly; however, it relies on BBT being sufficiently sparse

that the inverse is cheap to determine.

For purely fluid cases, the pressure mass matrix is a good preconditioner to

approximate the exact Schur complement for a discrete Stokes problem [66]. For

Navier-Stokes, it is possible to demonstrate spectral equivalence with the full

dense matrix BA−1BT [191]. It is a competitive approximation for low Reynolds

flows, however it does not account for the convection contribution to the Schur

complement [66]. Since the pressure mass matrix is sparse, the pressure Schur

complement approximation is also kept sparse, and due to its well-conditioned

structure, it is efficient to solve approximately.

In the FSI formulation there are now also contributions from the solid term,

thus this pressure mass matrix is no longer a good approximation to the Schur

complement, which has been tested experimentally. There is still a need to find

a cost-effective approximation to the inverse of the velocity block, A, within

the Schur complement. To ensure that the Schur complement is sparse, the

approximation of the inverse of A must also be sparse. Thus, a practical choice

would be to consider just the diagonal of A [148],

S̃ = −BT diag (A)−1B. (6.21)

Here, the inverse of diag (A) is simply the reciprocal of the diagonal entries of

the velocity matrix and is cheap to calculate, only requiring Nu operations.

In this case, the approximation of the Schur complement should retain sparsity

if B is sparse. Another benefit of using just diag (A), regardless of whether A is

symmetric, is that this produces a symmetric Schur complement approximation.

Therefore, to approximate the inverse of this approximate Schur complement five

iterations of conjugate gradient are taken

S̃−1 ≈ CG5(S̃), (6.22)

similar to the approach commonly adopted for the mass matrix [66]. This fixes

the cost to form this approximate inverse Schur complement.
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The Lambda-Schur complement, Sλ, as outlined in (6.15), reduces to a single

scalar value. In the context of the design of the preconditioner for this system, the

cost of generating and then inverting Sp to assemble Sλ would be high. Therefore,

it would be significantly cheaper to simply substitute the Lambda-Schur comple-

ment with a predetermined fixed scalar, for the experiments in this chapter it is

set to a value of one.

6.3.4 Enriched pressure space

Extending the analysis from Section 6.3.1 on Taylor-Hood elements, we now con-

sider an enriched pressure space, P1 + P0, which can be decomposed into a con-

tinuous and discontinuous component. The linear system takes the form,
A BT

P1
BT

P0
0

BP1 0 0 vT
P1

BP0 0 0 vT
P0

0 vP1 vP0 0




u
pP1

pP0

λ

 =


f
0
0
0

 , (6.23)

which includes a mean pressure constraint, constraining both pressures through∫
pP1 + pP0 = 0.

The system is now in terms of four unknowns increasing the complexity of the

factorisation,

A = LDU =


I 0 0 0
l10 I 0 0
l20 l21 I 0
l30 l31 l32 I



A 0 0 0
0 SP1 0 0
0 0 SP0 0
0 0 0 Sλ



I u01 u02 u03
0 I u12 u13
0 0 I u23
0 0 0 I

 (6.24)

with the following strict upper triangular terms,

u01 = A−1BT
P1

u02 = A−1BT
P0

u03 = 0

u12 = S−1
P1
BP1A

−1BT
P0

u13 = S−1
P1

vT
P

u23 = S−1
P0

(vT
P0

+BP0A
−1BT

P1
S−1
P1

vT
P1
)
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and lower strict triangular terms,

l10 = BP1A
−1

l20 = BP0A
−1

l21 = −BP0A
−1BT

P1
S−1
P1

l30 = 0

l31 = vP1S
−1
P1

l32 = (vP0 − vP1S
−1
P1
BP1A

−1BT
P0
)S−1

P0
.

where a number of different Schur complements arise,

SP1 = −BP1A
−1BT

P1

SP0 = −BP0A
−1BT

P0
+BP0A

−1BT
P1
S−1
P1
BP1A

−1BT
P0

Sλ = vP1S
−1
P1

vT
P1
− (vP0 − vP1S

−1
P1
BP1A

−1BT
P0
)S−1

P0
(vT

P0
+BP0A

−1BT
P1
S−1
P1

vT
P1
)

Given that every term above requires at least a single inversion of A, the cost of

performing this factorisation exactly would be impractical.

In a similar sense to (6.15) both gradient operator blocks from each pressure

space are lumped together, as B∗ = [BP1BP0 ]. Thus the decomposition becomes,

A = LDU =

 I 0 0
−B∗A−1 I 0

0 −vpS
−1
p I

A 0 0
0 S∗

p 0
0 0 Sλ

I −A−1B∗T 0
0 I −S−1

p vT
p

0 0 I

 ,
(6.25)

where the pressure Schur complement becomes S∗
p = −B∗A−1B∗T . Since B∗ is

constructed from the concatenation of two submatrices that will have an irregular

sparsity pattern, this may lead to a poorly conditioned system and slow conver-

gence. It is the diagonal matrix, D, of (6.25) that will be used as the structure

of the preconditioner from the enriched pressure elements, P3/(P1 + P0).

To conclude this section, a brief summary of the structure of the block precon-

ditioner for each finite element pair is discussed. For the Taylor-Hood element,

P2/P1, takes the form of (6.16). With an approximation of the velocity block

using the AMG of the diagonal blocks, in (6.17), and an approximation of the

Schur complement using (6.22) and (6.21). This is also the same preconditioner
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that will be used for P3/P0. Although the enriched pressure space, P3/(P1 +P0),

could present a more challenging preconditioning structure, as shown in (6.24),

it is simplified by using the diagonal factor, D, of (6.25). The same structure of

the preconditioner as in (6.16).

6.4 Numerical results

In this section, the block preconditioning strategy outlined in previous sections

is tested with the three-dimensional FSI test case involving the channel wall,

as previously described in Section 5.2.2. The block preconditioning approach

consists of approximation of the block diagonal velocity components using (6.17)

and approximation of the Schur complement with (6.21) and (6.22).

Due to the nature of the ALE algorithm, the mesh movement solution (of the

linear elastic equation) is sensitive to the solution of the velocity of the FSI system,

which can lead to mesh quality and mesh tangling issues for large deflections

of soft solids. This is further compounded by the high mesh density for finer

resolutions, hence for the tests in this chapter we choose a stiff solid based upon

a solid material constant of c1 = 1 × 108. Even still both the FSI and the mesh

movement systems are solved, and there is still a large contribution from the solid

term in the FSI system to test the preconditioning approach.

The outer solver of the FSI system uses a GMRES, with the block precondi-

tioner. The block preconditioner consists of a fixed number of algebraic multigrid

cycles applied to the block diagonals of the velocity components in (6.17) and a

fixed number of iterations of the conjugate gradient, in (6.22), applied to approx-

imate the inverse of the Schur complement (6.21). This approach should provide

a cost-effective calculation of a preconditioner while retaining some of the prop-

erties of the original system. For the mesh movement, again the linear elastic

model is solved using a GMRES with a single cycle of AMG of the entire discrete

elastic formulation acting as the preconditioner. The condition for convergence

is a relative tolerance of the preconditioned residual of rtol = 1 × 10−8. If the

iteration count reaches a maximum of itmax = 1000, the solver is terminated.

The simulation is run at a stop time, TT . This is summarised in Figure 6.3,
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which shows a schematic of the solution approach to apply preconditioners and

solve system equations for this ALE FSI approach.

The preconditioner for the FSI system will be applied at each iteration of the

GMRES.
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Initialise flow field, u, p and

mesh movement w = 0.

Assemble FSI system,

(6.14) or (6.23).

Calculate velocity precondi-

tioner, MA,ii = AMG(Aii)

Calculate approx.

Schur complement,

S̃ = −BT diag (A)−1B.

Solve FSI system,

GMRES(Afsi),

preconditioned with

MA and CG5(S̃).

Assemble mesh system,

with interface veloc-

ity condition, (3.55).

Solve mesh system,

GMRES(Amesh),

preconditioned

with AMG(Amesh).

Displace the mesh.

GMRES loop,
∥rn∥
∥r0∥ < rtol.

GMRES loop,
∥rn∥
∥r0∥ < rtol.

Time loop,

t < TT .

Figure 6.3: Cycle of the assembly of the system and preconditioner, with solve

order. Blue boxes indicate the FSI system and red boxes indicate the linear elastic

system of the mesh movement.
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6.4.1 Direct solve

For small problems, even in three dimensions, a sparse direct solver can be used.

In this case, the direct LU solver within PETSc is used. To reduce the bandwidth

of the matrix, a reverse Cuthill-McKee sorting algorithm is applied [46]. This aims

to reduce fill-in during the factorisation, to provide numerical stability.

Figure 6.4: LU direct solve, mean solve time averaged over all time steps.

Figure 6.4 is the solution time, mean averaged over all time steps, increasing

with the total number of degrees of freedom of the FSI problem. The growth rate

of the solve time scales with N3.13, where N is the total number of degrees of

freedom. For any given piece of hardware, the number of floating-point operations

per second (FLOPS) should remain fairly constant; therefore, the time to solve

is a good indicator of the number of numerical operations performed. Clearly, a

setup with a higher resolution, or high order of FE space, will require even more

time and at some point an infeasible amount of memory to solve using direct

methods.

When considering discontinuous pressure spaces, P3/P0 and P3/(P1 + P0), it

is clear that the higher order velocity space generates matrices with more degrees

of freedom, relative to the P2/P1 for a similar mesh resolution. These large,

denser matrices, with therefore require more operations to factorise, resulting in

a significantly slower solve time.
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6.4.2 Incomplete LU preconditioner

To compare the proposed method outlined in this chapter, an incomplete LU fac-

torisation of the entire discrete system is performed, to act as a preconditioner for

the Krylov iterative solver. This acts as a standard out-of-the-box preconditioner

typically used for iterative methods,

M−1 = ILU

([
A BT

B I

])
(6.26)

In this case the system is no longer rearranged by velocity components. The

preconditioned system is modified, in (6.26), in order to reduce pivoting, and

the zero block is replaced by the identity matrix to avoid zero divisions on the

diagonal of this block. To perform the ILU, the Euclid library with HYPRE is

called within PETSc [110].

For incomplete LU factorisation, a more accurate preconditioner can be gener-

ated by permitting additional fill-in of the factors. The level of fill-in, k, dictates

that the factor follows the sparsity pattern of Ak+1. The tests are performed

using a fill-in level of k = 1, which generates a denser sparsity pattern of A2

relative to A.

In PETSc, for sparse matrices, pivoting is never performed to achieve nu-

merical stability, so the nonzero structure is maintained. However in general a

system can be reordered to remove zeros on the diagonal, avoiding zero pivots

[11]. Instead PETSc aims to reorder the systems to find a low-fill ordering upon

factorisation, reducing the bandwidth of the sparse matrix.

It is found that using just an out-of-the-box ILU preconditioner, albeit with

a minor modification to the pressure block (replacing with identity block), is not

a robust approach. A relative residual norm is used for the convergence metric

for the iterative solver, and the initial residual is found to increase with each

successive time step and then diverge with each iteration within each time step.

To mitigate this affect, the preconditioner is scaled so that the initial l2 norm of

the preconditioned residual is unity at each time step. It is found from numerical

experiments of FSI that the residual norm is divergent over each time step, in

that the initial residual norm grows in magnitude dramatically between time

steps, which then processes to “runaway” after a number of time steps. Across
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all problem sizes, the simulations terminate prematurely within 12 time steps due

to a divergent solution.

From observations, applying a blanket preconditioner to the entire system is

not an effective way to precondition these block systems and should be avoided.

6.4.3 Block preconditioner

A block preconditioning approach, which combines the component-wise algebraic

multigrid applied to the velocity block, as outlined in Section 6.3.2, and the

approximations to the Schur complements, as outlined in Section 6.3.3, is applied

to the channel wall FSI case.

The results in Table 6.4 show the statistics of the GMRES (with restart)

iterations for each FE space and each mesh resolution. Compared to the test

cases using the direct solver, we note that the size of the problems is significantly

larger. The mean iteration count shows very little variation with problem size.

The two FE spaces that include the discontinuous pressures, P0, have a marginally

larger mean iteration count relative to the P2/P1 space.
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m
Degrees of Freedom Iteration count

Velocity Pressure Total Min Max Mean

12 132066 5822 137889 6 9 6.95

14 181899 7992 189892 6 9 6.8

16 262584 11429 274014 6 9 6.79

18 331158 14651 345810 6 9 6.91

(a) P2/P1

m
Degrees of Freedom Iteration count

Velocity Pressure Total Min Max Mean

10 277146 19097 296244 8 11 8.94

12 435033 30410 465444 8 10 8.58

14 599823 42017 641841 7 10 7.68

16 826143 57934 884078 8 10 8.51

(b) P3/P0

m
Degrees of Freedom Iteration count

Velocity Pressure Total Min Max Mean

10 277146 22963 300110 8 11 8.82

12 392508 32628 425137 8 10 8.48

14 565293 47081 612375 8 10 8.51

16 826143 69066 895210 8 10 8.54

(c) P3/(P1 + P0)

Table 6.4: Degree of freedom and GMRES iteration count to convergence for each

mesh resolution.

In Figure 6.5 the number of GMRES (with restart) iterations to convergence

does vary in time; however it remains bounded independently of the size of the

mesh (see Table 6.4 for details of the mesh). For this test problem, the largest

iterations counts occur at the early time steps when the solid motion is at its

greatest. As the solid reaches a maximum deflection and a steady state, at the

midpoint of the simulation (time step 50), the number of iterations also reaches a

minimal steady state value. It is observed that the number of GMRES iterations

does not vary between the different mesh resolutions, and thus is independent of
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the problem size.

(a) P2/P1

(b) P3/P0

(c) P3/(P1 + P0)

Figure 6.5: Number of GMRES iterations at each time step. The mesh resolution

is indicated by the value of m.

Figure 6.6 shows the mean solve time plotted against the total number of

degrees of freedom. It is already observable that this preconditioning approach

is not optimal in the sense that the solve time does not grow linearly. The

component-wise AMG applied to the velocity block has been shown to be a very

good preconditioner by reducing the number of iterations and solve time (when

considering the FSI formulation) in isolation.

145



6.4 Numerical results

Figure 6.6: Mean solve time per GMRES iterations with total degrees of freedom.

However, considering a fixed iteration count is observed with the size of the

problem, in Table 6.4, yet the time to solve grows in a superlinear fashion in

Figure 6.6, clearly there is an operation growing nonlinearly. This could be the

cost of applying the AMG to the velocity block. Since the AMG will recursively

coarsen to the smallest possible problem, within the single V-cycle of the number

of hierarchies (depth of cycle) will grow with problem size. Alternatively, calling

both packages PETSc and HYPRE within FreeFEM may involve a transfer in

the data structures of each package with an associated overhead cost (in time and

memory) that generates a bottleneck in the solution algorithm.

To make a more direct comparison between the LU direct solver and GMRES

with block preconditioner, the mean solve time at each time is plotted against

the total degrees of freedom for P2/P1, in Figure 6.7.

Clearly, the block-preconditioned GMRES method outperforms the LU direct

solver, solving larger problems in less time. Note that the LU direct solver is

limited by the available memory. Similarly, GMRES with the block precondi-

tioner demonstrates better scalability, with problem size, compared to the direct

solver, N1.87 and N3.13 growth rates, respectively. The preconditioned iterative

solver, however, does not exhibit an optimal solve rate. When plotted against an

exponential best fit (aN b+c), dashed line in Figure 6.7, the block-preconditioned

GMRES deviates from this fit. Again, the direct solver is limited in application
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Figure 6.7: Mean solve time at each time step with total degrees of freedom for

P2/P1 finite element space.

to larger problems due to the memory restrictions of the hardware.
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6.5 Concluding remarks

The preconditioner proposed in this chapter, for application to a finite element

ALE formulation for modelling FSI, consists of a block-diagonal AMG approxi-

mation to the velocity components, as outlined in Section 6.3.2, and the approx-

imation action of an inexact Schur complement, as outlined in Section 6.3.3.

This block-diagonal AMG preconditioner applied to solving the velocity block

in isolation, in Section 6.3.2, performs well in reducing the number of iterations

to convergence when preconditioning a fluid and FSI problem. In terms of solve

time, the block-diagonal preconditioner performs better compared to without a

preconditioner, applied to a GMRES iterative solver, as shown in Table 6.2. This

is particularly noticeable when applied to the FSI.

When applying the block diagonal AMG preconditioner, with an efficient ap-

proximation to the Schur complement, to act as an entire block preconditioner

with GMRES, the number of iterations to convergence is found to be independent

of the size of the problem (shown in Figure 6.5).

To benchmark this block-diagonal AMG preconditioning approach, the use

of ILU as a preconditioner is not sufficiently robust. The block-diagonal AMG

preconditioned GMRES performs better than the LU direct solver, both in terms

of performance and scalability (with problem size), shown in Figure 6.7. How-

ever, it exhibits suboptimal scalability with problem size, N1.87, for the P2/P1

finite element space. It is suspected that the finite element pairing with cubic

velocity would scale even worse, given that they would generate even large prob-

lems. Without the use of parallelised solver (alongside high-memory hardware),

a solution would not feasible be found.

The use of the unstructured mesh of the tetrahedral element in three dimen-

sions within the ALE framework could also contribute to difficulties in maintain-

ing mesh quality control. Although it does provide benefits in meshing more com-

plex geometries, particularly curved surfaces, when performing the mesh move-

ment, the tetrahedral elements are particularly susceptible to compression or

elongation of element. For this reason, it has only been possible to conduct ro-

bust tests for problems with relatively small deformations in this chapter. Future
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6.5 Concluding remarks

work, outside the scope of this thesis, should look at more robust mesh deforma-

tion strategies, which would allow a wider variety of test problems to be considered

in order to further assess the robustness of the proposed preconditioner.
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Chapter 7

Conclusions

This section will conclude the results of the numerical experiments to investigate

the performance of applying different pressure finite element spaces in two- and

three-dimensional ALE-FSI-FE method (outlined in Chapter 3), referring back

to Chapters 4 and 5 respectively. After which, conclusions will be drawn on the

use of the block preconditioning approach outlined in Chapter 6.

7.1 Finite element spaces

In two dimensions, when solving with a direct solver, it is the P2/P0 finite element

space that solves faster given a specific number of degrees of freedom. Although

the two pressure spaces with the inclusion of the discontinuous pressure space,

P2/P0 and P2/(P1+P0) tend to yield results that are in close agreement (relative to

those obtained using P2/P1 elements). For the test cases considered, the inclusion

of the enriched pressure space, P2/(P1+P0), does not provide performance savings

over P2/P0 when comparing the same problem sizes. In fact, when examining

the pressure contribution from both the P1 and P0 spaces in the P2/(P1 + P0)

space, as shown in Figure 4.11 and Figure 4.21, the dominant component is the

discontinuous pressure component.

In practice, the challenges of maintaining a high quality moving mesh mean

that the single-mesh ALE approach for FSI is limited to small deflections without

the use of discrete remeshing or adaptive mesh refinement. This is particularly

problematic for cases that involved oscillatory responses from the filament; for
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7.1 Finite element spaces

example refer to 2D Test 2, in Section 4.3.2, a filament attached behind a fixed

cylinder, where the quality of the mesh deteriorates so that the system becomes

so poorly conditioned that the simulation terminates prematurely.

We find that for the stability of finite element spaces in three dimensions, our

observations agree with the analysis of Boffi et al. [28]. Particularly for the use

of discontinuous pressure finite element space, there is indeed a need to include a

midface degree of freedom, to ensure mass continuity between elements. Although

the preferred method of Silvester [175] is to use a bubble function to introduce

an additional degree of freedom in the middle of the face, we do so using a cubic

velocity space since we are uncertain of the precise implementation of the bubble

functions in FreeFEM.

For Test 1 in three dimensions, it is P2/P1 and P3/(P1 + P0) which provide

good agreement in terms of the displacements of the solid, as shown in 5.7. With

finite element spaces with discontinuous pressures, P3/P0 and P3/(P1 + P0), out-

performing P2/P1 marginally both in terms of memory and solve time. On the

contrary, in Test 2 in three dimensions, it is the finite element spaces with discon-

tinuous pressure spaces, P3/P0 and P3/(P1+P0) for which the solid displacements

agree.

In both two- and three-dimensional cases, the solution size of the problem is

limited by the memory when using direct solvers.

Throughout this project, we have targeted resolution of the pressure-continuity

at the solid-fluid interface through the choice of finite element space. It is demon-

strated that, for FSI problems, finite elements with a discontinuous pressure com-

ponent are a preferable choice over the typical continuous pressure finite element,

such as the Taylor-Hood element is popular with fluid problems. Alternative ap-

proaches could be used to capture the discontinuity of pressure, which for FSI

will occur at the interface between the fluid and solid, without the need to use a

high mesh resolution. For example, one such method could consider two separate

pressures that occupy the constitutive regions, such that pf ∈ Ωf and ps ∈ Ωs.
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7.2 Preconditioning for FSI ALE

7.2 Preconditioning for FSI ALE

The block preconditioning approach considered for this FE-ALE-FSI formulation

considers a single V-cycle of AMG applied to the block diagonal, velocity com-

ponents. To approximate the Schur complement, the diagonal of the velocity

block is taken, and a maximum of five iterations of a conjugate gradient iterative

method are applied.

The concept of using approximations to component-wise velocity block diag-

onals using AMG has been demonstrated to be an effective preconditioner for

linear elastic problems. The AMG block-diagonal preconditioned GMRES ap-

plied the FSI velocity in isolation exhibits significantly better performance than

when solving with GMRES without a preconditioner, as shown in Section 6.3.2.

When using this block preconditioning approach in conjunction with GMRES,

the number of iterations to convergence between fixed with problem size and pres-

sure space. We observe that this preconditioning combination performs better

and scales better than a direct LU solution, as shown in Figure 6.7. Importantly,

we also find that other preconditioners, such as ILU, or an unpreconditioned it-

erative solver, are not sufficiently robust to find a solution to this formulation.

When examining the solve time of the block-preconditioner, suboptimal scalabil-

ity with problem is observed. We attribute this to the growth in the number of

hierarchies in the AMG V-cycle, or the communication between packages with

FreeFEM, since the number of GMRES iterations is bound.

A key question would be, is this preconditioning approach applicable to other

FSI methods? In Chapter 6, the proposed preconditioner exploits the structure

of the system. Any discretisation method which forms this saddle point system

structure should be appropriate, under the constraint that the velocity block re-

tain properties such that AMG provides an efficient approximation to the inverse

of the diagonal blocks.

7.3 Future work

This section outlines future avenues of research in the context of the work pre-

sented in this thesis and the ALE FSI formulation.
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7.3 Future work

The solid model tested in the simulations considers only the incompressible

neo-Hookean hyperelastic solid, as outlined in Section 3.3.1. The choice of solid

models is broad, as briefly discussed in Section 3.3. Further investigation could

measure the performance of this preconditioning approach (outline in Section 6.3)

with the application of different hyperelastic solid models. Since this precondi-

tioner is designed around the block structure of saddle-point systems, as long as

the solid retains the elliptic properties, the component-wise block AMG should

provide an efficient approximation.

As shown in Sections 5.2.1 and 5.2.2 the deflections of the solid filament

are severely limited in magnitude. To ensure that this ALE method is a more

general and robust approach to solving FSI problems with larger deflections, mesh

adaptivity in order to maintain mesh quality would need to be further considered.

The ALE approach in this project does perform mesh adaptivity, by solving

the linear elastic equation for the mesh movement is a form of r -refinement.

One method would be to consider a discrete remeshing of the domain when the

mesh quality reduces to a certain threshold. However, this will introduce an

interpolation error between the meshes. Alternatively, adaptive mesh refinement

in the form of h-refinement could provide a continuous approach to maintain

mesh quality. This coupled with an efficient iterative solver would permit the

application of this approach to a broader range of problems in three dimensions.

All simulations throughout this thesis were performed in serial, on a single

processor core. Naturally, a future investigation would examine the scalability of

this preconditioning approach on multiple processors. Parallelisation in FreeFEM

is implemented using a domain decomposition approach. There would still be

some technical challenges on how the preconditioner would be calculated across

the different sub-domains.
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