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Abstract

This article-based thesis consists of a collection of four journal papers
(one accepted, one submitted pending reviews, two in the process of
submission), and one conference paper (accepted and presented at In-
terNoise 2022). Each article relates to a chapter written and formatted
in manuscript form. The purpose of this work is to investigate the valid-
ity of using Machine Learning to deal with recovering parameters non-
intrusively. These parameters range from estimating the amplitudes,
wavelengths and phases for direct surface reconstruction for static sur-
face recovery, and the average surface velocity, and water depth for dy-
namic river free-surfaces. This is done both acoustically on a rough
surface, and optically on dynamic rough surfaces. Treating the inverse
problem with a machine learning approach allows for further analysis of
the problem. For example, getting spatial uncertainty for a given recon-
struction, or analysing the behaviour of the trained model as opposed
to more traditional approaches. Within this thesis, the Kirchhoff Ap-
proximation is used as the underlying acoustic scattering model due to
the types of surfaces investigated, the accuracy of the model, and the
fast computation time. This model is then used to generate the data
required for training. Further to this, the frequency-wavenumber spec-
trum of dynamic free-surface fluctuations of shallow turbulent flow is
exploited.

Firstly, a random forest is trained on data generated from the Kirchhoff
approximation in order to recover parameters of a harmonic surface at a
given acoustic frequency. It is shown that this generalises well to unseen
surfaces, and out-competes methods that utilise the small amplitude as-
sumption. Different metrics are presented to show the applicability of
the random forest framework over different source incident angles, and
source frequencies.



An acoustic source with a broadband nature was exploited to get some
estimation of prediction error. For each frequency, data was generated
and models were trained. This allowed for the spread of predicted pa-
rameters to be estimated.

In order to recover a wider range of rough surfaces, as well as to get
statistical information, a stochastic method named Metropolis-Hastings
was introduced to the problem. This competed well with the random
forest predictions for the single harmonic, while giving spatial uncer-
tainty. This was extended to a more complicated roughness profile con-
sisting of a summation of many harmonics at different wavelengths. It
was found that the profile was recovered well in a region of approxi-
mately 33% of the full profile. In this region, the credible interval de-
creased substantially. This fact can be used to infer the region of interest,
without needing to know the underlying truth of the surface.

Finally, the recovery of the velocity and the depth of shallow-turbulent
flows through the application of Metropolis-Hastings and the frequency-
wavenumber spectrum to series of images of the flow surface, obtained
in laboratory and in-field experiments, was attempted. First, the surface
frequency-wavenumber spectrum recovered from a Digital Image Corre-
lator was analysed. This, and data from a CCTV camera over the River
Sheaf, was used in the Metropolis-Hastings algorithm. It was found that
the velocity was well recovered, and the resulting distributions of the
velocity were useful in the extraction of reliable credible intervals. How-
ever, the method struggled to recover the depth.

The work presented in this thesis provide an approach to increase the
accuracy of recovery from static surface acoustic recovery, while also in-
cluding a highly informative representation of uncertainty in the spatial
domain. Further, this thesis paves the way in new inversion methods
using cameras to get information such as the mean surface velocity and
can be used to automatically extract the gravity-capillary waves from the
captured video leaving a representation that is ready to be exploited.
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Chapter 1

Introduction

Rivers provide a freshwater resource that sustains ecosystems, supports biodiver-
sity, and serve as vital sources for agricultural, industrial, and domestic water re-
quirements. The United Kingdom, along with many other countries, faces unprece-
dented challenges arising from changing climate patterns, population growth, and
increased urbanisation. These factors have placed immense pressure on the nation’s
river systems. Along with providing an essential resource, rivers represent a hazard
due to their potential to flood: floods are one of the leading causes of naturally
occurring damage to property in the United Kingdom. Floods can occur in win-
ter due to the presence of atmospheric rivers [3] or due to extreme rainfall events
[4]. During the winter of 2015/2016, the estimated cost due to property damage
and effects on business by Storm Desmond was “likely to be >£1.3 billion" [5]. In
November 2019, estimated insurance payouts as a consequence of flooding “would
reach £110 million" [6]. The prediction and prevention of floods is an area of active
research [7] [8] [9] since, clearly, it is of great importance to mitigate damage as
much as possible from these events. The first step in understanding river behaviour
is developing an observation network, after which the key properties of the systems
can be monitored and models developed to predict future behaviour. These mod-
els must be generic enough to cope with the changing behaviour of rivers due to
climate change.

A key metric that is used in order to understand the flow of water in rivers and
seas is the discharge, which is a measure of how much water flows over a given
volume. For rivers, this can be calculated as [10]:

Q=) BDYV.. (1.1)



Thinking of this in the context of the trapezoidal method of numerical integra-
tion B; can be seen as the width of a rectangle such that the sum of all B, is the
width of the river, and D; is the average depth in this band. V; is then defined as the
depth average velocity.

When using non-contact sensing measurements V; cannot be found directly. In
this case it is inferred from the surface velocity, V,;, using the relation:

V. =

1

aV,. (1.2)

Discharge has been used to monitor a vast range of conditions, one such example
is [11] which investigated the river discharge into the Arctic Ocean. It has also been
applied to other oceans around the world, yielding reference texts such as [12].
Discharge rates are affected by climate change [13] so it can be used as a metric for
understanding and mitigating the effects of climate change.

Getting a measure of discharge is fairly straightforward, first, the width needs
to be measured, then the depth and finally, the depth averaged velocity. Tradition-
ally, the sensors that are used in order to calculate this are installed underwater.
There are issues with this approach, because underwater maintenance is needed,
and there is a cost to that. Because they are underwater, there is a limit to where
they can be located, due to river depth and/or width. This causes a spatial sparsity,
and can be dangerous for personnel [14]. In order to measure outside the underwa-
ter stations, Acoustic Doppler Current Profiler boats [15] can be moved along the
surface of rivers, but there are limitations again in depth ranges and these cannot
be deployed in dangerous conditions.

It is clear that a noncontact approach is favourable. Avoiding the need to be
in the water allows for cheap, rapid deployment along the majority of the system.
Such a density of sensors is essential in order to drive high data based analysis. A
very popular method for measuring surface velocity is Particle Image Velocimetry
(PIV), of which an excellent reference text is [16]. PIV relies on particles - known
as tracers - either artificially introduced or naturally occurring, to move with the
surface velocity. These features are then tracked via video and various methods are
used to estimate velocity. There are issues with this approach, mainly the complica-
tions arising from the need for tracers: artificial tracers allow for good coverage but
entail environmental concerns. Naturally occurring tracers are uncontrolled and so

cannot guarantee consistent data coverage.



An attractive alternative to PIV is to analyse the structure of the flow directly,
this can be done acoustically or optically through the investigation of the frequency-
wavenumber spectrum. This type of analysis has been used extensively in analysing
ocean waves, with reference texts such as [17]. However, due to the effects of
turbulence and the presence of gravity-capillary waves, this has not been applied
often up to now for rivers and other shallow watercourses. Recent work [18] has
shown that in certain conditions the turbulent structures can be approximated to
move proportionally to the mean flow velocity. In these conditions, a frequency-
wavenumber spectrum can be used to analyse the flow of the river.

The work in this thesis comprises two main problems, both looking at river
dynamics analysis as a rough surface reconstruction problem. First, a simplification
is made of the dynamic rough surface where motion is not taken into account. The
essence of this problem is finding the elevation of a rough surface comprised of a
superposition of multiple harmonics. In this case, the surface is probed using a non-
contact airborne acoustic approach, and the elevation estimated from the scattered
field. Secondly, dynamic rough surfaces are investigated, in which case it is the
velocity and depth which need to be recovered. This problem is probed using an
airborne optical approach: the parameters of interest are recovered from analysing
CCTV footage, and the reconstruction from a Digital Image Correlator. Both of these
represent "inverse problems" since they are trying to find the input parameters given
observed data.

Inverse problems are typically difficult to solve. For example, in acoustic scatter-
ing, usually one has to invert a Fredholm integral equation of the second kind [19],
or further simplifications have to be made in order to generate a linearised system to
solve numerically. Machine Learning is an attractive alternative due to its ability to
handle complicated inversion, as has been demonstrated with image reconstruction
from MRI images [20] [21]. A clear benefit of Machine Learning is that no further
approximations need to be made to the numerical models: the approximations are
left to the Machine Learning algorithm. In fact, issues that typically are a prob-
lem in standard optimization approaches can be leveraged to ascertain uncertainty,
through the application of Bayesian approaches such as Markov-Chain Monte Carlo
and Gaussian Processes. This measure of uncertainty yields substantially more in-
formation to the implementer, allowing for interpretable measures of confidence in
the prediction, even when there is no labelled data to test against.



1.1 Aims and Objectives

The main aim for this thesis is to investigate and build a platform for the application
of deterministic and stochastic data-driven / machine learning based approaches for
rough surface reconstruction with the aim of inferring characteristics of the dynamic
free-surface from shallow turbulent flows. This large task has been subdivided into
the following objectives:

* To investigate the validity of data-driven machine learning based approaches
for the inverse problem of acoustic scattering from a rough surface, and com-
pare against more standard approaches.

* To provide a measure of uncertainty in the reconstruction, allowing for rea-
sonable interpretation for when the model is accurate or not.

* To extend this inversion methodology to reconstruction of a dynamic rough
surface i.e. the free-surface of rivers.

 Validate against experimental data.

1.2 Thesis Layout

The thesis is presented in a publication-based format, where each chapter relates
to a published work or a publication in the process of submission. Supplementary
data can be found in the chapter under the heading ‘Supplementary data’ or in an
appendix when necessary.

Chapter 2 provides a literature review on the topic of inverse problems, with
some emphasis to inverse acoustic scattering and the application of machine learn-
ing for this problem. Further to this, Markov-Chain Monte Carlo (MCMC) schemes
will be investigated as well as free-surface wave theory.

Chapter 3 presents the relevant theory that underpins the majority of the work
presented in the thesis. Starting with the Navier-Stokes equations and the Helmholtz
equation, the Kirchhoff-Helmholtz integral formula is derived with particular inter-
est in the application of the Green’s second identity. The Kirchhoff (or tangent
plane) approximation is derived, this model is the main acoustic scattering model
used throughout the thesis, therefore there is some empirical analysis on the sen-
sitivity to surface roughness changes the model has. Following this, relevant free-
surface water wave phenomena are presented, the gravity-wave dispersion curve is
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derived from separation of variables with Laplace’s equation and Bernoulli’s equa-
tion. The dispersion curves underpinning shallow-turbulent motion i.e. as can be
found in rivers is presented and a sensitivity analysis to the parameters is shown.
Following this, random forests, and the Metropolis-Hastings are presented.

Chapters 4-6 present papers on the inversion of surface roughness with respect
to the application of using random forests on single frequency source excitation.
This is tested with experimental data in Chapter 4. Chapter 5 investigates how
a broadband signal can be leveraged to get some information about model error.
Chapter 6 uses an adaptive Metropolis-Hastings scheme to recover more compli-
cated experimental surfaces while giving very clear spatial information about the
model’s credible region.

The thesis then proceeds onto investigating if parameters from moving rough
surfaces, generated from shallow-turbulent flow, can be recovered. Chapter 7 presents
the analysis of the frequency-wavenumber spectrum recovered using a Digital Im-
age Correlation (DIC) based approach. This gets a space-time estimate of the free-
surface elevation directly from the tracers, and investigates the viability of fitting
the advection dispersion curves and the gravity capillary dispersion curves. Chapter
8 aims to link the methodology provided in Chapter 6 to this new problem. Given
the DIC measurement, and the measurements of a real river from CCTV footage, can
MCMC be used to get an estimate on the posterior of the velocity and the depth?

Chapter 9 presents the conclusions of the thesis, as well as highlighting future
work in this area.



Chapter 2

Literature Review

This chapter aims to present the literature relevant to rough surface reconstruction
methods using machine learning. It begins generally, then focus onto the specific
research question as the literature review develops. It will evaluate previous meth-
ods, and discuss the issues and approximations used. By the conclusion, the gap in
the literature and the novelty of this work will have been presented. It is important
to note that this is not the only literature review present in the text: chapter specific
literature reviews are provided in each chapter. That is, in Chapter 4.2 the research
surrounding inverse acoustic scattering for a rough surface is discussed with a focus
on recovering the phaseless acoustic pressure. Chapter 6.4 presents an introduction
of Bayesian methods for the acoustic scattering problem, in order to reframe the
problem of this work as a Bayesian one. Finally, in Chapter 8.2 the issues with re-
spect to shallow turbulent flow are presented, as well as the shortcomings of PIV
measurements and the transition to frequency-wavenumber spectra.

This literature review begins with the study of acoustics and some general uses,
before moving on to discuss in more detail the specific use case that underpins
this work. It initially focuses on scattering theory, introducing this in a general
sense then introducing the Tangent Plane Approximation (also known as the Kirch-
hoff Approximation) which is pivotal to this work. It moves on to look at inverse
problems in general, followed by inverse problems in acoustic scattering. The gen-
eral concept of Machine Learning is introduced briefly, before looking at the use
of Machine Learning for inverse problems, focusing on acoustic inverse problems.
Stochastic Methods and Markov-chain Monte Carlo is introduced and examples in
acoustics are presented. Finally, the theory of free-surface water waves are intro-
duced with a focus on dispersion relations, which underpin the latter sections of
this work.



2.1 Acoustics

Sound has always been a crucial means of communicating information, not least
since it was the first major communication method used by humans. Acoustics,
that is the study of sound, is an important topic in many fields, reference texts
include [22] [23], [24]. Morse [24] is an essential text in the understanding of the
derivation of wave motion, culminating in acoustic motion, radiation, and almost
everything of interest to acoustics.

Beyond short distance interpersonal communication, acoustics is used for longer
distance transmission, probing of structures and room design, among other things.
These each have their own challenges, [25] is a reference book on using acoustics
for long distance communication underwater, where radio waves are ineffective and
the salinity, density and temperatures encountered must be accounted for. [26] in-
troduces acoustics for building design, [27] discusses techniques using perforations
in pipe for acoustic attenuation in pipes.

2.2 Scattering

Characterising the behaviour of scattered sound has been of historical importance,
especially during the second world war. In 1945, Foldy published a paper investi-
gating the behaviour of multiple scattered waves from water droplets in air [28].
It’s trivial to change the media to think of the same problem as bubbles underwater;
Acoustic scattering from submarines is still an active part of research. With develop-
ments to submarine acoustic modelling in [29] [30], the analysis of the estimation
of the hull scattered field based on the propeller as a noise source can be observed
in [31].

It is inevitable that acoustic waves will make contact with objects and surfaces
during the course of their path. When this happens, an acoustic wave is created
with amplitude proportional to the incident acoustic wave and transmitted through
the surface, and another wave is created that reflects from the surface. Fresnel
highlighted that if the surface that the sound made contact with is perfectly flat,
then the angle of reflection is the same as the angle of incidence [32]. This leads
on to Snell’s law [33], from which information about the reflected and transmitted
waves can be found. However, the case where a surface is perfectly flat occurs very
rarely in the real world. Instead, the acoustic wave will scatter in many directions,
due to surface irregularities or the geometry of the scattering object. Investigating



how sound scatters in these situations is very useful to many applications. One of
the main methods to tackle this issue is through the Kirchhoff-Helmholtz integral
formulation.

The Kirchhoff-Helmholtz integral formulation was derived in [34] and trans-
lated in [35], it is shown in [24] [36] [37]. This approach utilises a Green’s func-
tion, which is a fundamental solution to the (homogeneous) Helmholtz equation.
Through subtraction and integration over a volume Green’s second identity (See
Chapter 3.2 for a derivation) can be applied to reduce the volume integral to sur-
face integrals, where the surface integrals are taken over scattering object. This
leaves an integral equation of the pressure based on the pressure and a known
Green’s function. Which is used in many Boundary Element Method approaches,
sometimes called the direct method e.g. in [38].

Considering the case when there are multiple scattering objects, other methods
can be used, especially where the scattered field from one particle affects the inci-
dent field on another. A key method is the T-matrix (or transition matrix) method, a
significant contributor to this field is Martin, with excellent reference texts such as
[39]. The key paper on the T-matrix method is [40] where the application of Graf’s
addition theorem and spherical wave functions, as well as the fact that the prob-
lem is linear, is exploited. This allows for the coefficients of the scattered field to
be represented by some matrix T which contains information about the scattering
properties, and the coefficients of the spherical wave representation of the incident
field are combined to yield the T-matrix. If the scattering objects are simple, for
example spheres, then elements of the T-matrix have an analytical form as in [41].
For more complicated shapes, the elements have to be found numerically, again
from a boundary integral equation. The work in this thesis assumes that multiple
scattering is not present, therefore T-matrices are not used.

This work considers the case when the scattering object is an infinitely long scat-
tering surface. In this case, further approximations can be made. If the roughness is
very small, one method that can be used is the Small Perturbation Method. In this
case, the scattered field will be dominated by the flat surface. A detailed derivation
is shown in [42] where the authors also show that the pressure becomes a series
expansion. It is noted in [42] that it is not guaranteed that the series converges and
so only a small amount of terms of the series are taken for the small perturbation
method. Because of the further restrictions that the small perturbation method en-
forces on the scattering surface, the small perturbation method was not used in this
work.



Instead, the Tangent Plane Approximation (or the Kirchhoff Approximation, they
are used interchangeably) was used.

This method is explained in Chapter 7 of Bass F.G and Fuks .M [36]. The Kirch-
hoff Approximation applies to a much larger set of surfaces than the small pertur-
bation method, only requiring the radius of curvature of the scattering surface to be
relatively smooth given the acoustic wavelength. The fundamental approximation
that this method uses is that at a given point on the surface, the scattered field can
be locally approximated as reflection from an infinite plane, this follows the law of
reflection discussed earlier and is easy to calculate, thus causing large simplifica-
tion of the problem (see the derivation in Chapter 3.3). This simplification allows
for even the simplest of numerical integration schemes, Trapezium Rule, to be ap-
plied. In this work, the Simpson’s rule is applied due to the increased accuracy.
Nevertheless, the reduction in numerical complexity is significant.

An issue with the Kirchhoff Approximation is the loss of multiple-scattering ef-
fects, and the issue of shadow zones. These occur at low grazing angles, although
they can be corrected slightly by introducing a shadowing function [43]. In this
work the grazing angles are set high enough such that this does not occur.

2.3 Machine Learning

Machine Learning has become increasingly popular for many reasons, even though
models such as Recurrent Neural Networks [44] were developed in the 1990s. One
of the important reasons for this sudden explosion in interest is due to the substan-
tial increase in computational power. This has allowed many different methods to
be applied to very large data sets, providing significant improvements in the fields
of object detection and speech recognition [45].

Machine Learning can roughly be categorised into three categories: supervised,
unsupervised and reinforcement learning. In supervised learning, the data that the
model is attempting to fit on has an associated output set of either labels or real
numbers: these are called Classification (labels) and Regression (Real numbers). In
contrast, unsupervised learning does not have an associated set of known outputs.
Reinforcement learning can be seen as an iterative approach to optimise how agents
make decisions, by maximising some reward function. Reinforcement learning is
not considered in this thesis.

In this thesis, where parametrisations of rough surfaces and the properties of dy-
namic rough surfaces (velocity, depth) are considered, the data available is usually



best suited to applying supervised regression. An example of a machine learning su-
pervised regression method is the decision tree, this is a component of the random
forests used in Chapters 4 and 5.

A decision tree favours a greedy top-down approach to extracting information
about the data [46]. A decision tree will constantly partition the dataset until the
outputs at the bottom of the tree are perfectly fitted to the given training data.
This can cause a problem in model performance as overfitting can occur, which is
a failure to predict on new data due to models being trained too much on the data
used for training. Random forests were specifically created to address this problem
by applying ensemble methods. Random forests offer significant performance in-
creases in comparison to standard decision trees, while also being efficient at tree
generation with the use of parallelisation. Breiman also states in [47] that due to
the strong law of large numbers [48], Random Forests do not overfit to data, which
removes the main shortcoming of decision trees.

Machine Learning models can be parametric or non-parametric. Parametric
models have a fixed number of parameters, whereas non-parametric models have a
dynamic amount of parameters. Random Forests and K-Nearest Neighbours are ex-
amples of non-parametric models. There have been investigations into parametric
against non-parametric model evaluations in different fields, an example of this is
where Park H. [49] presented that non-parametric models were significantly more
accurate in predicting the performance of various index options.

Due to the rising popularity of machine learning and deep learning, many pop-
ular programming frameworks have been produced for both researchers and devel-
opers, such as Scikit-learn [50] and TensorFlow [51]. The work in this thesis uses
Scikit-learn for Random Forests, and K-Nearest Neighbours and uses author-created
code for the Metropolis-Hastings, Adaptive Metropolis, and Linear regression algo-
rithms.

2.4 Acoustics and Machine Learning

Before discussing the specific intersection of acoustic scattering and machine learn-
ing that underpins the work in this thesis, the author would like to present some
influential literature under the more general heading of “Machine Learning and
Acoustics" to show, much like Bianco in [52], that machine learning is becoming
more prevalent in the field of acoustics.
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Acoustics is a challenging environment to use machine learning in due to the
sizes of the datasets required. For time dependent signals each individual sample
is large, and cannot easily reduced due to the requirement for the data sampling
rate to be twice the greatest frequency of interest (by Nyquist’s theorem). For all
these challenges it is still being attempted; one of the key review papers on machine
learning in the context of acoustics is [52]. In this it becomes clear that a further
issue when it comes to applying machine learning to acoustics is the requirement
for lots of high quality, representative training data. Bianco presents some use cases
where machine learning has proven successful, such as source localisation.

Bianco does not place much emphasis on stochastic methods, such as bayesian
neural networks, MCMC, or Gaussian processes which is a shame because stochastic
machine learning allows for a measure of confidence in prediction, giving more
information than a standard ‘black box’ approach. The problem of representative
data is prevalent in all machine learning based methods, and the need for accurate
modelling to make up for the lack of available representative data is clear.

In [53] Elforjani aimed to compare three different machine learning techniques:
support vector machines, artificial neural networks, and the Bayesian method of
Gaussian process regression, for the problem of analysing the acoustic emission to
predicting the remaining useful life of bearings from their acoustic emissions. The
main use case presented in this work is to analyse the acoustic emission in real
time, to estimate issues beforehand. The authors conclude that the artificial neural
network performs the best as the errors are lower, discounting support vector ma-
chines and Gaussian processes. The issue with this conclusion is the primary metric
of investigating the percentage error does not account for nuances in stochastic
approaches such as Gaussian processes. The calculated error for the Gaussian pro-
cesses was only selected on the mean prediction, with no account for the credible
interval in time that the Gaussian process benefits from.

Using machine learning for acoustic emissions was also investigated in [54]
where Das used unsupervised machine learning (where the data has no label or as-
sociated value) in order to replicate the idea of field measurements. Labelled data
was created and then clustered with a Gaussian mixture model, then the separation
of the clusters was found from support vector machines. Although this approach
used labelled data, it was tested on unlabelled data, this allowed a separation to be
found between tensile and shear cracking modes. Due to this separation, a support
vector machine was used to classify the two modes. The main shortcoming of this
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research was the lack of a measure of uncertainty for values of stress that are very
close to the hyperplane separation lines.

A similar approach of comparing different machine learning models is discussed
in [55] where Palaniappan investigated support vector machines and k nearest
neighbours to classify pulmonary acoustic signals from a database of various lung
sounds. Features were extracted from the dataset and the accuracy of the classi-
fiers was very high. The authors show the validation of hyperparameters for both
methods, which shows how the prediction dynamics change over parameters. An
example of this is the increase of k, the number of neighbours, for k-nearest neigh-
bours where, as k increases, the error decreases. This makes sense for k-nearest
neighbours, as the predictions are based on the expectation of the k neighbours.
Although the results are promising, there is minimal analysis on the cases that were
predicted wrong, aside from a confusion matrix which merely describes the propor-
tion of data that was misclassified. This does not give much information in what
specifically caused this error, and therefore there isn’t key insight for gaining confi-
dence in prediction on truly unseen data.

Machine learning has been applied for speech processing, an example of this is
the review paper by [56] where Jung explored the recent literature of the applica-
tion of machine learning for speech processing. From a machine learning perspec-
tive, the authors did not delve too deeply in the issue of prediction uncertainty, data
pruning, or comparison.

A specific paper on the combination of machine learning and speech recognition
is found in [57]. Gonzalez tackles the problem of reconstructing the acoustical
waveform of predicted speech from motion. Sensors were placed in various places
on the lips and tongue. A database was used called the Carnegie Mellon University
Arctic set of phonetically-rich sentences where six people spoke for roughly twenty
minutes each to create a database of recorded speech with the sensors. Various
models were tested such as recurrent neural networks, Gaussian mixture models,
and deep neural networks with various loss functions tested. The authors present
a metric of error bounds for their results. The authors are aiming to prioritise real-
time speech restoration.

The work from Skowronski [58] utilised a Gaussian mixture model, and a hid-
den markov model to detect and classify various bats based on their vocalisations.
The study also reported the errors with error bounds, which can be extracted from
these methods, this is ideal as in real-world situations, one doesn’t have labelled
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data to compare against, and reporting error to the user is essential for widespread
adoption of methods.

This approach is something that this thesis uses extensively in Chapters 5,6, and
8. A commonly raised complaint with machine learning methods is that they act
as a ‘black box’ providing no real information about exactly what has been learned
from the data. There are exceptions to this: random forests can get a measure of
what features were important for the prediction through the aptly-named feature
importances map. Those parameters can then be mined for information from the
user. Gaussian processes are another key example of methods that provide an uncer-
tainty metric. In the case of Gaussian processes, it is from the posterior covariance

matrix.

2.5 Numerical Solution of Inverse Problems, Kirch-
hoff Integral

Along with the development of acoustic scattering theory, the inverse problem
gained more interest. An inverse problem attempts to find the input parameters
of a system (or the system if the input parameters are known) given some observed
data. A key reference text on the inverse problem, sometimes called the ‘indirect
method’, of acoustic and electromagnetic scattering is [59]. Colton names the for-
ward problem the direct method and the inverse problem the indirect method. The
methods in Colton can be split into as sampling methods and factorisation methods.
One of the more popular sampling methods is the linear sampling method.

An example where the linear sampling method was used is in [60]. In this paper
it was used to identify one open arc and the more complicated problem of two open
arcs amounting to a problem of reconstructing multiply connected domains. In
the course of solving these problems, they note that there is a limitation on the
linear sampling method in that the complete far field data for all possible incident
and observation directions is needed for accurate reconstruction. This was found
earlier in [61] which formulated the inverse scattering problem for all observation
directions.

In [62], an extension to three dimensions was investigated in the context of
electromagnetic inverse scattering, they explored recovering a sphere, as well as
more complicated domains such as a model of an aircraft. This work was focused
on exploring the limitations due to the frequency, showing that typically the resolu-
tion increases with the frequency. The linear sampling method has been combined
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with machine learning with the application of the linear sampling method and a
neural network, found in [63]. First, the linear sampling method was used to give
initial information about the shape of the obstacle, the shape was then parame-
terised and with the far-field data as input and the parameters as output the mean
squared error was used as a metric to investigate errors. The cases of noisy far-field
information, different wavenumbers, and limited apertures were presented. There
was no discussion of model confidence, nor real-world experimental data, so the
use case is unclear.

The work in [64] used COMSOL to generate acoustic scattered data from ran-
dom geometries of a sound hard scatterer (steel object in water). This data was
used to train various models, one of the more interesting was a Neural Network to
be able to generate new scattered data in order to avoid using COMSOL or solving
the Helmholtz equation. This was tested against COMSOL and showed good agree-
ment, which is expected, as COMSOL was used to train the data in the first place.
The approach to the inverse problem in [64] was to feed multi-frequency acoustic
far-field phaseless data and yielded good results, for a range of observation angles.

The above related to the study of inverse problems from scattering objects, what
is more relevant for this work is the scattering from a rough surface. Scattering
from rough surfaces in acoustics is similar to that of optics (as seen in Kirchhoff’s
original paper discussed earlier). In [65], the method of perturbation was used
with the covariant form of Maxwell’s equations and then used an iterative inverse
solver. This shows some promising results, although it is not clear how well it
would behave in the presence of noise: the authors use an iterative scheme that
updates the profile of the surface for the optimiser, but the behaviour of the change
of surface is not tracked in the results which could be throwing information away.
The iterative Markov-Chain Monte Carlo approach in this work in Chapter 6 uses
the history of the surfaces to get a spatial metric of uncertainty, under noise. This
allows for more analysis.

In [66], Krynkin proposed an airborne approach to recovering information about
a shallow turbulent water system, it was shown that using the inversion method us-
ing stationary phase allowed Krynkin et al. to successfully recover the mean rough-
ness height of the surface tested within a 5% error. Krynkin further develops this
idea in [67] where instead of attempting to invert the statistical parameters, they
attempt to return the immediate surface height of the surface using a matrix / fac-
torisation based approach with singular value decomposition in the inversion. It
was shown that the inversion could successfully recover 2D surface roughness with
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a maximum reduced mean square error of 20% when using the Kirchhoff Approxi-
mation. Krynkin, however, noted a need for improvement in larger scales of spatial
wavelength. Noting that there needs to be improvement in the centimetre and sub-
centimetre range, Krynkin highlighted in [68] that there is a relationship between
the surface roughness of an open channel flow and hydraulic characteristics such as
Reynolds number and mean flow depth. This is useful as in [69], Nichols presents
a bidirectional relationship between the pattern of the surface pattern and the bulk
flow.

Instead of using the Kirchhoff Approximation, [70] extends the scattering to be
for unbounded rough surfaces. This is achieved by changing the forward model to
be scattered near-field Cauchy data measured along a line above the surface. Also,
different boundary conditions were investigated. Finally, they leave an iterative
numerical model that utilises a mesh of the rough surface used in the calculation
of the forward problem. They then apply an imaging function to this data. It
is presented in [70] that the whole rough surface with 20% noise was accurately
recovered for a large enough wavenumber using this method.

These have been a few examples of inversion methods, focused on those of
relevance to this thesis, there are many others such as the distorted-wave Born
approximation which is successful in various imaging applications [71].

Most of the results above, especially when considering inverse scattering, re-
quire the full complex field to be given. It is important to note that one can not
always recover phase information. Klibanov points out in [72] that losing the phase
information is common in the study of optics, stating that it is often impossible
to recover, as opposed to the intensity. This is a major problem for methods that
require full far-field information. Klibinov explores the Helmholtz equation in three-
dimensions with the phaseless inverse scattering problem in [73], looking into in-
cident plane wave scattering specifically for nanostructures, where the phase is not
affected by the geometry of the scatterer. A limitation of this paper is that there is
no numerical implementation of the proposed approach, as it is purely analytical.

The choice to use phaseless data in this thesis was driven by the limitation of
the random forest approach, and to avoid issues with phase calibration, as well as
to investigate how phaseless data can be used in the reconstruction. In Dolcetti et
al.[74] phase uncertainty was found to have a stronger impact than amplitude un-
certainty on the accuracy of the surface reconstruction, and imperfect wrapping of
the phase was found to cause a multi-modal distribution of the reconstruction error,

15



especially at large roughness amplitudes (relative to the acoustic wavelength). This
motivates further analysis in models that infer on amplitude only.

In [75], Xu uses a convolutional neural network in order to find unknown scat-
terers from phaseless data using electromagnetical waves. The convolutional neural
network was trained to find cylinders , this work had an amusing approach in cre-
ating unseen data through an interesting use of the MNIST handwriting database
[76]. When this work was tested on experimental data, they noticed an issue with
higher nonlinearity when using a 8 GHz source vs a 6 GHz source, causing a larger
spike in error for the recovery from experimental data. The authors looked at dif-
ferent methods of data processing before going into the model, and find that results
were better when the model did not have to learn the underlying wave physics that
would occur if the phaseless data alone was input to the model.

Another recent approach involves recovering a rough surface at grazing angles
using single-frequency, phaseless acoustic pressure through the use of an itera-
tive marching method approach derived from the parabolic wave approximation
(forward-scattered wave propagation assumption) [77]. Although the inversion re-
sults were found to be relatively accurate, it is assumed that the forward-scattered
approach is not applicable in the context of this thesis due to significant differ-
ences. For example, in the underlying theoretical assumptions, experimental setup
and in the specific acoustic remote sensing application where the sound field is best
described by a solution of the full Helmholtz equation [74]. This means that the
parabolic wave equation is not sufficient to fully describe the dynamics.

2.6 Data Driven Inverse Problems, Machine Learning

A key benefit of machine learning approaches is their capability for instantaneous
prediction, as opposed to classical iterative based methods. This was a benefit
highlighted in the work by Qian [78] where a metamaterial was being produced in
order to make a material invisible to microwaves. This was tested on the fly with
various incident waves, and because the neural network was trained beforehand,
allowing for predictions to be made much faster than typical iterative approaches.
The authors highlight a potential issue in the time taken to make high quality data
in order to train the model.

There is evidence in the literature that machine learning has successfully been
used for inverse wave problems. For example, in [79] Antona applied Neural Net-

works to classify different species of fish to a similar level of accuracy in comparison
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to the data based approach using significantly fewer samples. Another example is
in [80] where Goldade investigated the application of various Machine Learning
methods to generate sea-floor maps in real-time using sidescan sonar. It was discov-
ered that Neural Networks can be used to classify every pixel with great accuracy.
Another example is where Mendieta [81] investigated the use of classification and
clustering models to recover a 3D recovery of the lumbar spine from an MRI. It was
shown that although clustering methods worked fairly well, there were some limi-
tations, such as the model resolving the 3D image 10 times larger than the actual
image.

In [82] Adler proposes an approach to solving ill-posed inverse problems when
the forward operator is not linear by introducing a gradient iterative scheme, where
the gradient is learned by the use of a convolutional neural network. This method
is then tested on tomographic inversion problems, such as identifying heads as well
as random ellipses using simulated data. This paper highlights a difference between
classical regularisation and machine learning: Machine learning forms a functional
mapping from the output space to the input space whereas in classical regularisation
everything is focused on minimising an objective function. The algorithm provided
in this paper had a significant improvement over methods such as Total Variation
Regularisation with improvements in accuracy as well as run-time. The method
proposed in this paper is said to be able to work for any non-linear forward operator,
as well as highlighting the key importance of having quality training data.

Other novel approaches have been introduced in order to not only attempt to
solve the inverse problem, but solve it while maintaining a fast runtime. The paper
by Wang [83] is an example of this. This paper provides a multi-resolution deep
neural network which is then tested on different inverse problems. For example,
recovering phases of a propagating wave from direct intensity measurements. The
model that Wang provides shows highly accurate results for few epochs of model
generation.

The application of using machine learning as the basis of a data-driven approach
to solving these inverse problems span across many fields, notably in geophysics
and medical imaging. In [84] Kim considered recovering reflectivity from seismic
traces by using artificial neural networks and compared this against least-squares.
The paper used noisy seismic traces as input data and reflectivity as the output
data for the artificial neural network. The paper poses that the use of artificial
neural networks generates a nonlinear mapping which is equivalent to the pseudo-
inverse of the forward operator. Which is reasonable as artificial neural networks
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are universal approximators [85]. The paper by Kim highlights that the neural
networks contain better resolution to that of the least-squares method in recovering
this reflectivity term, while also correctly resolving thin beds. Kim posed that quality
training data is the key for success.

Success has been found in applying this approach to identifying structural dam-
age [86] as well as predicting brain activity from functional MRI image data [87].

Fan et al. [88] successfully applied deep learning methodologies utilising the
Helmholtz equation in the recovery of the shape and placement of multiple scatter-
ers in two different settings, including a seismic imaging setting where the source
and receivers were above the scatterers and receivers were in a linear array. The
scatterers were placed randomly and formed from a number of shapes such as tri-
angles, squares or ellipses. It was shown that for many receivers and sources, the
locations and orientations of the scatterers were successfully recovered with various
amounts of noise in the dataset, while the recovered boundaries of the scatterers
became blurred as the noise level increased.

Other works that recovered the parameters of surfaces instead of the full sur-
face include: recovering parameters of a sum of sine waves forming a rough surface
[89], recovering coefficients of a parametric curve of an obstacle [90], and using a
convolutional neural network to recover the root-mean-squared height and corre-
lation length from a Gaussian rough surface through synthetic aperture radar [91].
The flexibility of data-driven approaches as compared to classical model inversion,
in the presence of noise, stands as a central motivation of the thesis.

Applying machine learning methods to wave scattering problems can allow for
more flexibility, opening up the choice for interaction between one or more mod-
els. For example, it has been shown that a combination of random forest and neural
networks results in a robust method enabling reconstruction of geometrical features
against noise [92]. This was achieved by first classifying training shapes with a ran-
dom forest and then inverting the far-field scattered signal using neural networks
to obtain geometrical features of different scattering objects.

2.7 Stochastic Methods and Markov-Chain Monte Carlo

A key issue when considering models that give a response, especially in the Machine
Learning domain, is that the error metrics are usually given for some testing set, a
set that is withheld from training in order to evaluate some metric of model gener-
alisability. Such methods include the coefficient of determination defined in [93],
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or the mean absolute error. This then gives some measure on how the model would
behave on that set of data. However, this gives no further information on error for
every new unlabelled sample when the model is being used for new predictions.
This can be an issue as there is not a way to diagnose a given new sample; the
predicted value of the sample must be taken as the true value with no appreciation
of the underlying uncertainty in the sample.

Outside of machine learning, and the work in this thesis, this problem is being
considered, forming a new branch of numerical analysis called probabilistic numer-
ics (with reference text such as [94]). These have application in probabilistic ODE
solutions (an example being [95]) and PDE solutions (an example being [95]).

Getting a measure of confidence (or credibility) for a given prediction is clearly
more favourable than a prediction alone. One of the more popular methods for
doing this in the machine learning domain is a Gaussian Process. A reference text
on Gaussian Processes can be found in [96].

Fundamentally, a Gaussian Process is defined as a stochastic process such that
any finite subcollection of random variables has a multivariate Gaussian distribu-
tion. A Gaussian Process is typically characterised by a mean function and a co-
variance function defined by a kernel. This leaves an analytic representation of the
predictive equations (the predictive mean and the variance) and is found by matrix
multiplication and inversion of given data with known inputs. There are limitations
to the basic approach such as the requirement for inputs to be noise-free, there are
approaches to handle this such as in [97] but they struggles with large amount of
data. These limitations are why Gaussian processes were avoided in this work.

The approach used in this thesis is the iterative Markov Chain Monte Carlo
(MCMC) method. An essential reference text can be found in [98], where Andieu
introduced MCMC methods, providing key theoretical understanding and algo-
rithms for many methods, including Metropolis-Hastings and Sequential Monte
Carlo. More detail on the theory of Metropolis-Hastings can be found in the theory
chapter of this thesis.

MCMC is a family of Bayesian methods. Bayesian methods have recently gained
popularity in the field of acoustics, with applications such as recovering parameters
from the seafloor using acoustic back-scattering [99], estimation of rough surface
elevation using a Bayesian compressive sensing [100], and for acoustic holography
[101] [102]. Liet al. [103] applied a Metropolis-Hastings MCMC scheme in order
to reconstruct the locations and intensities of acoustic sources from both near-field
and far-field information. Fouda in [100] used Bayesian compressive sensing with
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the small perturbation approximation to acoustic scattering. However the error bars
presented appear to be roughly constant in range, even in regions of bad agreement
to the true surface. The receivers were spaced over distance (12m) considerably
longer than the wave height of the surface, which makes the surface appear flatter
and less illustrative for surfaces that behave like dynamic waves on the free-surface
of water.

Application of a Bayesian approach for acoustic scattering with phaseless data
was proposed by Yang et al. [104, 105]. In Yang et al. [104], the location and
shape of a sound-soft scatterer were reconstructed, and the approach was tested
on shapes such as kites, disks, and line cracks, all with positive results. The only
note that should be made is that the number of parameters being recovered from
the MCMC algorithm was less than 6, which limits the scope of this method. In
Yang et al. [105], the method was extended to use a Gibbs sampling method in
order to recover more parameters, with phaseless data and with point source exci-
tation. Palafox et al. [106] also used a Bayesian formulation in order to perform
shape reconstruction of a scattering object, through a reduction of the problem by a
Fourier-based representation using a t-walk [107]. The effective dimension method
was presented where, given a parametric representation of the solution of the in-
verse problem, the normalising constant can be approximated.

Bayesian methods have also been applied in inverse problems in other fields,
such as for seismic waveform inversion [108], and automatic motion analysis in
tagged magnetic resonance imaging scans [109][110].

Application of the adaptive Metropolis-Hastings scheme in relation to acous-
tical inverse problems can be seen in Niskanen et al. [111], where the John-
son—Champoux-Allard-Lafarge model was used in conjunction with a Metropolis-
Hastings method in order to recover the model parameters of a homogeneous rigid
frame porous media. The joint probability densities verified that the least-squares
solution was close to the maximum a posteriori estimation from the MCMC method.

The choice of method used in this thesis was the Adaptive Metropolis method ex-
plained in [112] [113]. This extends the classical Metropolis-Hastings algorithm to
allow for an adaptive step size. This method was chosen over the methods such as
Hamiltonian Monte Carlo [114] due to the dimensionality of the problem not affect-
ing the convergence, it may be important as the number of terms in the roughness
recovery increase to switch to Hamiltonian Monte Carlo. The work in this thesis
did not increase the terms to justify the switch to Hamiltonian Monte Carlo. Open
source implementations of MCMC can be found in Python with PYMC3 [115] or the
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language Stan [116]. Both of these libraries are powerful, but due to the desire of
the author to have the flexibility to generate custom priors based on the Kirchhoff
approximation, the algorithms were coded from scratch in Python and can be found
at:

* https://github.com/michaeldavidjohnson/Kirchhoff-Approximation,
* https://github.com/michaeldavidjohnson/MetropolisHastings,

* https://github.com/michaeldavidjohnson/surfaceGen.

2.8 Free Surface Wave Theory and Dispersion Rela-
tions for Water Waves

The understanding of wave phenomena has been of great importance classically.
Understanding the elevation of the free-surface of a body of water, and the under-
lying velocity field under the surface has applications in offshore wave loading, and
tsunami prediction. In the linear case when the wave height of the free surface
is much smaller than the depth, linear wave theory (Or Airy wave theory [117])
can be used. This theory allows for the application of separation of variables (See
the derivation in Chapter 3.4) to be applied, and due to the nature of the solutions
many terms can be found analytically such as the pressure, energy flux, particle
displacement, and radiation stress [118]. The solutions only apply when a relation-
ship between angular frequency (w) and wavenumber (k) is enforced such that the
dispersion relation is defined. Waves are typically classified as deep, intermediate,
and shallow based on the relationship between the depth of the water d, and the
wavelength of the waves A according to the following classifications [118]: deep if
% > 0.5, shallow if % < % and intermediate else. A benefit of linear wave theory
is that a linear composition of two solutions is itself a solution, allowing for easy
modelling of complicated wave structures comprised of more than one frequency.

This dispersion relationship allows for the construction of solutions to the lin-
ear wave equation based on measurements of the frequency or the wavenumber, as
long as a relationship between the frequency or wavenumber and surface elevation
amplitude is known. This is seen often in the ocean domain, applied to finding
power spectra over a frequency range. Examples of this are the JONSWAP spec-
trum [119], the Pierson—-Moskowitz spectrum [120], and the Bretschneider spec-
trum [121]. Combined with a choice of spectrum, random ocean waves can easily
be generated from the dispersion relation.
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In this simple case, having knowledge of the underlying dispersion relation, and
some way of relating the frequency or wavenumber to wave amplitude, allows a free
surface to be recovered. This can be taken advantage of in the more complicated
domain of shallow flow. In the case of shallow water flow, the power spectral
density S(f) can be related to frequency with the following equation [122]:

1
—0.0650 4+ 0.00518+/F

log(S(f)) = 2.1

which was found from optimising a line through empirical data from experi-
mental data in a flume. They also found a spatial correlation, but this has been
found to underestimate surface spectrum slopes when compared to measurements
in real rivers [123]. The power spectra dependence as the wavenumber k increases
has been found to be proportional to k™* and has been used in [124] [125] [126].
Therefore, with this relation, waves can be numerically created.

Analysing the behaviour of the free-surface of open channel shallow turbulent
flows ( typical of shallow rivers) is very complex. A review paper by Muraro [127]
summarises many of the phenomena that causes the domain to be complex. For
example, the behaviour of the flow is sensitive to the shape of the bed, as well as
the roughness of the bed. Turbulence-generated structures can be seen on the free
surface. For example, bursts can appear by a disruption in the viscous sublayer from
the bed roughness profile [128] among other effects such as scars and boils. The
nonlinearity caused by introducing turbulence over rough beds cannot generally be
solved analytically. Numerical schemes such as Reynolds Averaged Navier Stokes
[129], and Large Eddy Simulation [130] have been employed. This can be seen
with comparison papers in the domain of shallow turbulent flow such as [131].
The understanding of free-surface behaviour from experiments typically avoids nu-
merical simulation and instead attempts to target a specific variable of interest.

There are issues when extending this understanding to field measurements of
rivers, especially where they are shallow and turbulent. If intrusive measurement
systems are in place, the local depth and the velocity could reduce the reliability of
observations. A key non-intrusive evaluation method is Particle Image Velocimetry
(PIV). PIV methods rely on “tracers" that are present through the video recording
of the region. These tracers may be naturally occurring or may be introduced into
the flow, the restriction on this is that the chosen tracers need to follow appropri-
ately the movement of the flow. Many review papers have been released since its
inception in 1984 [132] such as [133] [134] and most relevantly [135]. PIV has
proven to be a powerful method for obtaining velocity field measurements over a
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large region. This has been applied to measuring the velocities at the free surface of
rivers. For example, [136] collates several different examples where this has been
used for rivers.

A defining feature of PIV is the reliance on tracers in the flow that are either
naturally present in the flow, or are artificially introduced into the flow, the motion
of which is used to find the velocity field in space and time. This poses a significant
issue when it comes to scaling up the process to more sites. Either, an investigator
must rely only on natural tracers which could be inconsistent, or find a way to allow
for a constant stream of environmentally friendly tracers to be introduced on a large
scale.

Another approach is to investigate the motion of the flow directly. A method
for this is optical flow, with examples in [137], [138], [139], [140]. Alternatively,
Fourier analysis and the investigation of the frequency-wavenumber spectra can be
used [18] [2]. This work will focus on the latter.

Using spectral analysis for ocean waves has been studied extensively, and has
been explained clearly in [17], it has been extended to the study of shallow turbu-
lent flows using wave probes in [18] and [127]. An airborne approach to estimate
the velocity with the frequency-wavenumber spectra was shown in [141] although
only the gravity-capillary dispersion curve was fit.

The key point of these papers was to investigate how the free-surface’s disper-
sion relation changed with rough beds, which are a significant factor in the be-
haviour of shallow flows where boundary conditions have more of an effect [2]. The
culmination of this was a non-invasive approach in [2] where an approximation of
the dispersion relation due to advection was linked with the dispersion relation due
to gravity capillary waves, allowing for three relations to be fit. Good agreement
was found experimentally with these relations, then an optimizer was fit to be able
to estimate the discharge and the depth.

There are some issues with this approach. The river Calder is much worse in the
prediction of the method, due to the increase of noise in the frequency-wavenumber
plots. The analysis of the spread of predictions was obtained by looking at the worst
predicted samples from the optimiser. This is not an optimal method for obtaining
the underlying noise in the data. This could be improved by using a stochastic
model for the prediction, where the results can form a distribution that can be
analysed with statistical methods. This can then probe the underlying noise in the
signal, as well as how credible the results are. The behaviour of the optimizer-based
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approach may not have been due to noise, and could merely have been stuck on a
local minima.

Another issue that arises when considering an optimiser on Fourier transformed
data is that only a single value for velocity and depth can be recovered. These
values represent the spatial and temporal average of the system. However, as it is
not true that the velocity and the depth are constant in space and time, the work
in this thesis aims to extend the prediction by using a Bayesian framework through
the application of MCMC, which has shown promise in gathering information from
dispersion relations in the seismic domain [142]. The MCMC generates a posterior
distribution of the depth and the velocity, which should capture the noise in the
data from measurement noise and also the spread of velocities in the timeline of
measurement.
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Chapter 3

Theory

This chapter aims to introduce the relevant theory required for the work in the
later chapters. When possible, derivations and definitions have been provided. This
chapter begins with the Navier-Stokes equations from which the relation between
pressure and velocity is obtained. Then the Helmholtz equation is introduced from
the wave equation. Basics surrounding the application of Green’s fundamental so-
lutions for the non-homogeneous Helmholtz equation are presented. Then, the
Kirchhoff-Helmholtz integral formulation is derived, followed by the derivation of
the tangent plane approximation. A quick analysis on how the acoustic pressure
changes due to various surface profiles are presented. Next, dispersion curves at
the free-surface of an infinitely long wave tank is derived from separation of vari-
ables to get the water waves dispersion relation. Other dispersion relations are
introduced, as well as the theory behind the construction of surfaces which contain
this dispersion relation. Key models in Machine Learning and Markov-Chain Monte
Carlo are also introduced.

3.1 Wave Equation, Helmholtz Equation, Green’s func-
tions and Delta functions

Starting with the Navier-Stokes equations for an inviscid fluid [143]

ap

—+ V- =0 3.1

3 (pv) =0, (3.1)

ov

pa +Vp+pvVv=0. (3.2)
o o0 0

V=|—,—,— 3.3
(3x’8y’82) (3.3)
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Where p is the density, p is the pressure, t is time, v is the vector representation of
velocity. Assuming that the fluctuations in the fluid p’(t), p’(t) are small compared
to the background p,, p, then the linearised Euler equations can be found [143]

ap’
3t +p0v-V:O (3.4)
ov
—+Vp' =0 3.5
Pogy TVP (3.5)

Taking the derivative in time of Equation (3.4) and taking the derivative with
respect to space of Equation (3.5) and subtracting the two yields [143]

d2%p’

at?

Assuming that there exists a functional relationship p = p(p) and taking a Taylor

—V?p'=0 (3.6)

expansion around p, [143]

i

P(P)=PlPo) + (P —po)ge| _ +.. 3.7)
P 1P=po
/ a /
p =p—po~(p—po)a—p =% (3.8)
P 1P=pPo
/ 1 /
p =—=p 3.9)
C

2=9r (3.10)

2 p lp=po

The constant ¢ is known as the speed of sound, and is related to the rate of
change of pressure due to density. The above equation can be recognised as the
wave equation. Considering only the pressure fluctuation and setting that value to
p instead of p’ one arrives at the homogeneous (source-free) wave equation is

13%p
———Ap=0, A=V~ 3.11
c2 0t? P ( )

The inhomogeneous wave equation is

13?%p

———Ap=g(x,t), 3.12

22 Ap=3g(x1) (3.12)
where g(x, t) describes the inhomogeneity.
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The relationship between pressure and velocity can be found from Equation
(3.5) and is used in Appendix A:

1
vV=——| Vpdt (3.13)
Po

Often it is useful to deal with the velocity potential rather than the velocity, the
velocity potential is defined as [24]

V=V, (3.14)

This means that the pressure can be more succinctly described in terms of the
velocity potential
2y

=—pg—. 3.15
p Po P ( )

The velocity potential is also a solution to the wave equation

1 0%
c2 Jt?
It is common to consider waves in the frequency, rather than time, domain.

— AP =0. (3.16)

Recalling that the Fourier transform is defined as

P (x, ) = J Y(x, t)el®dw. (3.17)

Where w is the angular frequency w = 27 f. As a note, this can also be described
as moving from the real domain to the reciprocal domain or moving from the real
space to the frequency space. This is described in [144] although not directly.

Using the Fourier transform to move Equation (3.11) from the time domain to

the frequency domain

® 1% .
S — A lowt = .].
f_oo(cz 32 YP)e“'dw =0 (3.18)
= " laz—wei“”dw— " AYe®'dw =0 (3.19)
oo €2 Ot2 oo N '
6()2
= __2¢ —AY =0 (3.20)
c
) w
=>AY+k‘Y=0, k=— (3.21)

c
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This alternative form of the wave equation in the frequency domain is known as the
Helmholtz equation.
Consider the inhomogeneous Helmholtz equation in 3D Cartesian co-ordinates

(A+K)Y(x,y,2)=—f(x,y,2), k= %, (3.22)

where f(x,y,z) is the source term, k is the acoustic wave number, and v is the
value of the acoustic field at any point in space.

Homogeneous partial differential equations are relatively easy to solve subject to
boundary conditions, but inhomogeneous partial differential are significantly more
complex. However, a key tool for doing so is the theory of Green’s functions. A
Green’s function solution is a solution to

(A+k*)G(x—a,y—b,z—c)=—56(x—a)d(y —b)5(z—c). (3.23)
= (A+KkH)GR,R)=—-56(R—-R). (3.24)

R=(x,y,2) (3.25)

R =(a,b,c) (3.26)

The right-hand side of Equation (3.23) is a combination of delta functions. Delta
functions are defined as

f 6(x—a)dx =1. (3.27)
The delta function is not a typical function, and can be thought of as
0
5(x—a)={ x#a (3.28)
00 x=a

There is another highly useful property in the introduction of delta functions called
the sifting property (Appendix C in [145]):

f(a) :J f(x)6(x —a)dx (3.29)

Green’s function solutions come up frequently in the study of inhomogenous
partial differential equations. The main type of Green’s function considered in this
work are known as the free field Green’s function. These typically represent sources
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of sound in the absence of any reflecting boundaries. The free field is sometimes
referred to as the fundamental solution. in 2 and 3 dimensions these can be defined
as [24]

. /
e1k|R—R |

— 3D
Gyree(R,R) = { T

: (3.30)
ir7(1) )
—;H, (klIR—R’|) 2D

Where H(()l) is the order 0 Hankel function of the first kind [146]. In general, a
Green’s function solution can be expressed as [24]

G(R,R) = G,..(R,R)) + G(R), (3.31)

Where G(R) is a general solution to the homogeneous Helmholtz equation. As
Gtre(R,R’) has been defined in Equation (3.30) to be an outgoing wave in an un-
bounded medium, G(R) can be set to be non-zero in situations where boundary
conditions need to be applied [24].

Green’s functions as well as delta functions adhere to reciprocity:

G(R,R)=G(R,R) 6(x—a)=6(a—x) (3.32)

This allows for the source location and the point of observation to be swapped,
yielding the same result.

3.2 Kirchhoff - Helmholtz integral formulation

This section contains a derivation for the Kirchhoff-Helmholtz integral equation in
3 dimensions, assuming a point source. After the derivation, the 2D case and a
directed case will be presented with citation.

In preparation for this derivation, the following results are provided:

Theorem 1 (Green’s second identity) If ¢ and v are both twice continuously dif-
ferentiable on U C R®. Then

J YAV — vAYdV = § (yVv—vVy)-ndS (3.33)
U ou

Where n is a unit normal vector and

A =V? (3.34)

29



Theorem 2 (Sommerfeld radiation condition [147] [19]1) If a solution u to the
inhomogeneous Helmholtz equation is due to a source that has no sources at infinity,
then the radiation has to satisfy the Sommerfeld radiation conditions.

In 3D

r—oo, u= ﬁ(l), ou_ iku = 2(1) (3.35)
r ar r
In 2D ; 9 ,
u
r—oo, u (ﬁ), = u 2(\/7) (3.36)

Consider a source contained inside a bounded region I', and consider evaluating
the acoustic field at another point inside the bounded region. Suppose there a
source lies at R,, and the point of observation is R. Recalling the definition of the
Helmholtz equation and an associated free field, Green’s function solution.

(A+KWR) =—f(R), k= % (3.37)

(A+Kk*)G(R,R)=—-56(R—R) (3.38)

It can be shown, ) is also a solution to the homogeneous Helmholtz equation
everywhere except at R* = R,. Also, G(R,R’) is a solution to the homogenenous
Helmholtz equation everywhere except at R’ = R. Multiplying Equation (3.37) by
G(R,R’) and Equation (3.38) by ¢(R) and subtracting (3.38) from (3.37)

G(R,R)(A+ k)P (R) —P(R)(A +k*)G(R,R) = —f (R)G(R,R) + 5(R—R)Y(R))
(3.39)
G(R,R)AY(R)—yY(RDAGR,R) =—f(R)GR,R)+5R—RWY([R)  (3.40)

Define a volume V such that there are spheres B, and B;, centred at R and R,
respectively, not contained inside the volume V. That is to say the volume contains
points p such that

V={peV]|lp—Rl=e, [p—Rgl=6} (3.41)

Because the volume has the points R and R, removed, in the volume the right-
hand side of Equation (3.40) is 0, because G and v are solutions to the homoge-
neous Helmholtz equation. Therefore, every point p in the volume V is free from
discontinuities, they are both second order differentiable and Green’s second iden-
tity can be applied. Consider a volume integral of Equation (3.40) with respect to
the volume defined in Equation (3.41)
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Figure 3.1: Pictorial representation of the formation of the volume integral V where
two balls centred at the discontinuities in the volume have been omitted from the
volume, leaving surfaces T, T, and Tj.
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J G(R,p)AY(p)—yY(p)AG(R, p)dV, =0. (3.42)

Where the subscript p indicates that the variable of integration is with respect to
p. The volume integral can be reduced to surface integrals of the boundary of the
volume using Green’s second identity, and the surfaces formed from the removal of
the two balls

J G(R,p)AY(p)—yY(p)AG(R,p)dV, =J (GR,p)VY(p)—(p)VG(R, p))ndS,.
1%

[+L,+T5
(3.43)
Consider the surface integral I, noting that as the ball is centred at R of distance

e then |R—p| =€ and i—g = —‘fi—f. Hence
dG
J (G 0 +4(p) 0 Dds (3.44)
1 elkx ae(ik 1
= L(( )V - nt+p(p) (=~ 5 )ids, (3.45)
1 elkx ae(ik 1
= L(( — )Vi(p))-nds, + fr P(p)(e (=~ s, (3.46)
As the surface is over a sphere of radius €, then
dS, = e*sin(0)d0d ¢ (3.47)
and
2n b
f - f J | (3.48)
I, 0 0
Therefore,

2 s o o
= iﬂf J ((eeike)vw(l)))-nsin(9)d9d¢+J J ‘/)(P)(eike(eik—l))sin(9)d9d¢,
o Jo o Jo

(3.49)
Ase —0,p —R,

N—@f J sin(0)dO0d¢. (3.50)
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=—(R) (3.51)

Consider the surface integral I, noting that as the ball is centred at R, of dis-
tance 6 then |Ry—p| = &. Assuming that close to Ry, ¢ is close to the free field case

and assuming the free-field is a point source i.e. Y (6) = %, % = —%. Hence
J G(R, )w—(w(é)VG(R p))-ndsS, (3.52)
Ts
- _J —G(R, p) —-— 5) e*ds, — —J (¥(6)VG(R, p))-ndS, (3.53)

By the same logic as above, as 6 — 0,

— G(R,R,) (3.54)
Substituting Equations (3.51) and (3.54) into (3.43). Then

0=—yY[R)+G(R,Ry) + J (G(R,p)VY(p) =4y (p)VG(R,p))-ndS, (3.55)

Y(R)=G(R,Ry) + f (G(R,p)VY(p)—y(p)VG(R,p)) -ndS, (3.56)

Recalling the inhomogeneity in Equation (3.22), noting that if the source is a
point source located at R, then f(R) = 6(R—R,). Then by it can be observed that

G(R,Ry) = J

V/

6(p —Ro)G(R,p)dV, = J f(p)G(R,p)dV,. (3.57)
”

Which leaves

1/)(R)=f f(p)G(R,p)dV,HJ(G(R,p)Vllz(p)—w(p)VG(R,p))-ndS,, (3.58)

This is the Kirchhoff-Helmholtz integral equation. Similar definitions can be found
in [36] and [24].

This equation can be immediately simplified to the two dimensional case using
the following insights:

46 LH () = H(”(k ) (3.59)
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lim %Hél)(kx) =0, (3.60)

i 1
lim %Hgl)(kx) =5 (3.61)

The 27 will get cancelled from the surface integral over circles, instead of balls.

3.3 Tangent Plane Approximation

Recalling the Kirchhoff-Helmholtz integral formulation

YP(R) =po(R) + J (G(R, p)VY(p)—¥(p)VG(R,p))-ndS, (3.62)

Where ¢, = fv, f(p)G(R, p)dVI; is the incident field, the field due to the source
absent from reflections.

This section will derive the Tangent Plane method, also known as the Kirchhoff
Approximation [36]. The main idea of the tangent plane method is that the scat-
tered field can be represented by an infinite number of monopoles radiating from
the surface where the reflection at a given point is approximated by reflection from
an infinite tangent plane. This yields a relationship between the incident field and
the full field (as is described in Appendix A, derived from plane wave scattering and
transmission from two media). That is, [36]

$() = (1 + Y No(r) (3.63)
P . 3
E =(1-7) I (3.64)

Where ¥ is the reflection coefficient. The condition that the scattering surface must
be “smooth enough" can be defined mathematically as [36]:

- <<1, (3.65)
(ka)s

which can be relaxed [148]

- < 1. (3.66)
(ka)s3

Where k is the acoustic wavenumber and a is the local radius of curvature.
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Assuming the Green’s function is the free-field 3D Green’s function in Equation
(3.30) and substituting this, Equations(3.63) (3.64) into Equation (3.62)

1 eiklR—rl eiklR—rl
P(R)=1o(R)+ — Js+5/+cR,[ R—1] Vp(r) —(r)V R_1] ].ndr (3.67)

...................

TR

i

Do

Figure 3.2: Pictorial representation of the setup used in the acoustic scattering, in
order to set up the Kirchhoff Approximation. In order to transform the external
domain problem into an internal domain, a hemisphere is formed that surrounds
the surface and this hemisphere is then tended to infinity. From the Sommerfeld
radiation condition, this does not contribute to the overall scattered signal.

Note that this is just the surface integral. However, the surface is formed by the
surface S, part of the plane S’, and hemisphere Cy as shown in Figure 3.2 to make
a closed surface containing all field sources.

As there are no sources present on the surfaces then [36],

1 elk|R—1'| elkIR—rI

= an [mvwo(l‘)—wo(l‘)vm_r'

0 ].ndr (3.68)

S+S/+Cps

Subtracting Equation (3.68) from Equation (3.67)
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1 elkIR—l‘| Kl Kol elklR—l‘l
w(R):¢O(R)+4_nJ:§+S’+CR/|:|R Han (p(r) —o(r)) — (P (r) — wo(r))—lR |}dr

(3.69)

Considering the hemisphere Cg, and the surface S’. Firstly, Cy is removed by

taking R" — oo, and enforcing the Sommerfeld Radiation condition. That is to say,

for extremely far from the scattering rough surface, the field behaves as the free-

field solution and thus decays. For the integral over S’, at any point on S’ then
Y(r) = ,(r). Enforcing Equations (3.63) (3.64) into Equation (3.69)

ik|R—1]|
Y(R) = 1/)o(R)+if 2 g (T 4+ V)apo(r) — (1))

41 |IR—r|dn
(3.70)
0 elkIR—rI
— (= Vo) = o) 51—l
1 elkIR—rI Kl Kl elklR—rl
=P R) =1o(R)+ — LH/WR/ 41 R—1l on 5, (o) + (1) —— ARt ldr  (3.71)
Applying the product rule of derivatives
1 ] 1k|R—r|
Y(R) =o(R) + —f V(r)—[ R— |¢o(r)]dr- (3.72)
Assuming the incident field is a point source
1 lk(R1+R2)
P(R) =po(R) + —f V(r )—[ ldr, (3.73)
41 dn- RiR,

where R; and R, are Euclidean distances from a point on the surface to the source
and observation point. That is to say, if the surface roughness is defined by a func-
tion {(x), and the source location and receiver location are (xi, y;,%1), (X5, ¥5,25)
respectively, then

Ry =+/(x; —x)2+ (3, — ¥)2 + (3 — {(x, ¥))2, (3.74)
Ry =1/(x3— )2+ (3, — ¥)2 + (2, — {(x, ¥))2. (3.75)

Considering the normal derivative, and assuming that kR,, kR, >> 1[36]

o ik(R1+Ry) oik(R1+Ry) 1

]=—i(n-q) + 0
R.R, V7RR, (R.R,)?

d
™ ) (3.76)
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eik(R1+R2)
RIRZ
Where q = —kV(R; +R,) and V; are the derivatives with respect to the dimen-

sions of the surface. That is to say

a 2 8
Ox28v oz 3D
v, = {Eai g (3.78)
dx? dy />
Therefore,
1 eik(R1+R2)
P(R) =Po(R)+ TJ V(r) (n-q)dr, (3.79)
mi J RiR,
where
ne i,—V,.{(x,y) (3.80)
'\/1 _(vrg(x’y))z
. ! (3.81)

V1—(V.C(x, )

Where V, removes the last element from V,, and i, is the unit vector in the z
direction.

Utilising a change of variable

dr = ‘rll—r =dry/1—(V,Z(x,y))>2. (3.82)

Z

To project onto a flat plane centred at the mean value of the surface. Using
Appendix B, the equation can be rearranged to

— L @ ik(R1+Ry) _
wm%‘angmf (0.~ av,CCx, y)dr (3.83)

In 2D, due to the change of the free-field Green’s function, the equation is [67]

1 V(r)
2kmi )¢ 4/RiR,

If the source has a directivity pattern approximated by radiation from a baffled

Y(R), =

eik(R1+R2)(qy —q, V. (x))dr (3.84)

piston as in [24] centred around the angle of the source ¢, in space then

A(r)V(r) .

1 .
YR), = — f kR1+R2)(q, —qV,{(x, y))dr, 3D (3.85)
i )s  RiR,

37



Y(R), = — JA(r)v(r)ei”Rl+R2)(qy—qxvrc:(x))dr, 2D (3.86)
So

2kmi VR{R,

Ar) = 2J,(kasin(¢(r) — (—¢o + 7/2)))
~ kasin(¢p(r) —(—¢o +7/2))

Where a is the aperture, J; is the Bessel function of the first kind with n =1, ¢,

(3.87)

is the angle of inclination of the source main axis to the Ox-axis, and ¢(r) is the
angle between the vector produced from the location of the source and the point r
with the Oy-axis.

Throughout this work, a linear microphone array was simulated above the sur-
face, using code based on the above equation and conditions, written by the author
and provided in https://github.com/michaeldavidjohnson/Kirchhoff-Approximation,
and the absolute scattered acoustic pressure was used as input to various models,
both deterministic and stochastic. The primary hypothesis is that there is enough
information about the structure of the surface contained in the scattered absolute
pressure in the far-field that a model can be fitted to the data such that parameters
of the surface can be recovered. Therefore, the far-field scattered field is visualised.
In order to visualise the impact on the acoustic far-field due to the effect of surface
roughness, different surfaces at different acoustic frequencies are presented.

Figures 3.4, 3.5, and 3.6 showcase the absolute scattered acoustic pressure in
the far-field of the acoustic source, for scattering from a flat surface, at 4,000Hz,
14,000Hz, and 25,000Hz, respectively. From a flat surface, the angle of reflection
is the same as the angle of incidence (Snell’s law). As the frequency increases,
the beam-width of the baffled-piston directivity pattern narrows, this can clearly be
seem in the figures presented.

Figures 3.7, 3.8, and 3.9 showcase the absolute scattered acoustic pressure in
the far-field of acoustic source, at the same frequencies. For a sinusoidal surface,
the scattering surface is defined by:

Z(x)=0.0015 sin(%x) (3.88)

Patterns can be observed for all frequencies. However, as the frequency increases
the complexity of the patterns increases. This is a crucial insight when considering
inputs to a machine learning model, as complexity typically (although not always)
provides more useful information for prediction. The spatial scale of these observed
patterns are due directly to the surface scattered. This is the main motivation to
using acoustic scattering as an input in a machine learning based approach.
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To show the effect of surface roughness on the acoustic far-field, the ensemble
average and the ensemble standard deviation was investigated for different levels
of surface roughness. The surface roughness was created by choosing a discrete col-
lection of points in the x-direction X = (x,, Xy, ...., Xy ). For each x, the corresponding
y-value was determined by drawing a random value from a normal distribution with
a given standard deviation o and adding this random value to a constant transla-
tion of 0.0015. The value of o chosen determines the roughness profile. To recover
the full surface profile, cubic spline interpolation was used. The surface was gener-
ated from [-1m, 1m], 50 equally spaced values in this range were selected to be the
finite collection of points. Cubic Spline interpolation was used to recover a spatial
sampling rate of 0.002m. Figure 3.3 presents a single instance of a random surface
generated with standard deviations of 0.001,0.004,0.009 respectively.

20 instances of the random surfaces were created, for each standard deviation,
and the ensemble average and ensemble standard deviation was obtained for each
point in the far-field. Figures 3.10, 3.12, and 3.14 present the ensemble average.
Figures 3.11, 3.13, and 3.15 presents the ensemble standard deviation.

In Figure 3.10, the surface roughness is negligible, and the ensemble means look
like reflection from a flat surface, with minimal changes in the ensemble standard
deviation in Figure 3.11. As the surface roughness increases to 0.004, the overall
ensemble average in Figure 3.12 still has a main specular reflection, but outside
this main region, there are values of varying absolute scattered field. This can
be observed in the standard deviation shown in Figure 3.13, which highlights the
overall variation in the ensemble. It is observed that there are changes in the field
which are sensitive to the shape of surface roughness. This is highlighted further
as the roughness scales increase in Figures 3.14 and 3.15 with the exception of the
region close to y = 0 where some surfaces are large enough in amplitude to be
observed directly in the figures.

These figures have highlighted the proof-of-concept that this work uses to in-
fer true surface heights. There is information in the scattered far-field, and there
is spatial dependence that can be used in a machine learning approach. This is
expected. The scattered field is formed (at least, in situations where the tangent
plane approximation holds), by infinite monopoles distributed along the surface,
radiating with a directivity pattern. Classically, this has been leveraged to attempt
to approximate the inverse problem directly (for example, attempting to use single
value decomposition [67], to invert a transfer matrix from a point on the surface to

a receiver).
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Figure 3.3: Single-instance realisations for rough surfaces at different standard de-
viations named std in the figure legend.

The code used throughout the later chapters was developed by the author and
can be found at https://github.com/michaeldavidjohnson/Kirchhoff-Approximation

3.4 Free Surface Generation of Shallow Flow

This section aims to present information on the most relevant wave theory: disper-
sion relations. Once dispersion relations have been presented, a method of creating
synthetic surfaces is introduced. Due to physical constraints in the system, differ-
ent spatial wavelengths act at different frequencies. A derivation of the simplest
water waves dispersion relation (which relates the frequency to the wavenumber)
is included. This methodology has had a slight modification to the form used in
later chapters. The fundamental approximations are that the fluid is irrotational
(therefore, the fluid is not viscous), and that the free-surface amplitude is small. In
these cases, the equations simplify. For example, consider an infinitely long tank
with a fixed depth z = —h. Assuming plane wave propagation in the x direction, the
following equations hold:

V24 =0 (3.89)
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Figure 3.4: The absolute scattered field yielded from the Kirchhoff Approximation

when scattering against a flat surface. Frequency 4000Hz
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Figure 3.5: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a flat surface. Frequency 14000Hz
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Figure 3.6: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a flat surface. Frequency 25000Hz
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Figure 3.7: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a sinusoidal surface. Frequency 4000Hz
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Figure 3.8: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a sinusoidal surface. Frequency 14000Hz
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Figure 3.9: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a sinusoidal surface. Frequency 25000Hz
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Figure 3.10: The expected absolute scattered field from an ensemble of twenty
randomly generated rough surface, yielded from the Kirchhoff Approximation. Fre-
quency, 14000Hz, roughness standard deviation 0.001
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Figure 3.11: The standard deviation of the absolute scattered field from an en-
semble of twenty randomly generated rough surface, yielded from the Kirchhoff
Approximation. Frequency, 14000Hz, roughness standard deviation 0.001
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Figure 3.12: The expected absolute scattered field from an ensemble of twenty
randomly generated rough surface, yielded from the Kirchhoff Approximation. Fre-
quency, 14000Hz, roughness standard deviation 0.004
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Figure 3.13: The standard deviation of the absolute scattered field from an en-
semble of twenty randomly generated rough surface, yielded from the Kirchhoff
Approximation. Frequency, 14000Hz, roughness standard deviation 0.004
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Figure 3.14: The expected absolute scattered field from an ensemble of twenty
randomly generated rough surface, yielded from the Kirchhoff Approximation. Fre-
quency, 14000Hz, roughness standard deviation 0.009
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Figure 3.15: The standard deviation of the absolute scattered field from an en-
semble of twenty randomly generated rough surface, yielded from the Kirchhoff
Approximation. Frequency, 14000Hz, roughness standard deviation 0.009
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Figure 3.16: Graph representing the problem setup, a tank of water infinitely long
in the x direction, bounded by a depth z = —h, and a mean surface at z = 0. The
arrow inside the flow is indicating the propagation direction.

%)
I:a_cril)]boundary =0 (390)
[aazt(f * g%]zzo =0. (3.91)

Where ¢ is defined as the velocity potential defined earlier, which exists due to
irrotational flow [149] and g is the acceleration due to gravity.
To solve this set of equations, seek separable solutions of the form

¢ =X(x)Z(2). (3.92)

Then, substituting into Equation (3.89)

X"Z+Z"X=0. (3.93)
Divide by XZ to find
X// Z//
L = 3.94
X Z (3.94)

There must exist a separation constant, s, such that
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(3.95)

— —(X"—s5,X)=0 Z"—s,Z2=0 (3.96)

There are three cases of s, to consider. The case that allows for non-trivial
solutions is the case where s, > 0, define this constant to be s, = k?, k € R. In this
case, and for the results in this section k is taken to become the spatial wavenumber.
Substituting these gives:

7" —k*Z =0, (3.97)
= 7 =Ael* 4+ Be ™. (3.98)
Enforcing Equation (3.90) yields

o

99| _o, (3.99)
82; z=—h

= Z'/(—h) =0, (3.100)
= Ael" = Be ™", (3.101)

Where A, B are unknown constants. With some manipulation, one finds
Z = Dcosh(k(z + h)), (3.102)

Where D is an unknown constant. The assumption of plane wave in the x-
direction propagation gives

X = Ecos(kx + ) (3.103)

This can be trivially checked that this is a valid assumption. So we have derived,

assuming temporal harmonic motion in the x direction given by d’Alembert f (x—ct)
[150]:

¢(x,y,t)=F cos(k(x —ct)+)cosh(k(z + h)) (3.104)

Where F = DE. Now, consider the boundary condition at the free-surface z =0
from Equation (3.91)
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[0, 00
orz " £33
This boundary condition should yield the specific relationship between frequency

]z:o =0 (3.105)

and wavenumber and therefore the dispersion relation. Substituting in the values

gives

F cos (k(ct)[—c?k? cosh (k(z + h)) + gk sinh (k(z + h)))],—o = O (3.106)
—> —c%k?cosh (kh) + gk sinh (kh) = 0 (3.107)
— 2= %tanh(kh) (3.108)

. 2 . . .
Using ¢ = % one obtains a relationship between the angular frequency and the
wavenumber.

w? = gk tanh (kh) (3.109)

This is known as a dispersion relation between w and k and determines that
the frequency of generated waves is gathered from the spatial wavelength of the
waves. The free surface ¢ (and the constant F) can be obtained from calculating
[151][149]

10¢
= [_Eﬁ]wo (3.110)

The simple dispersion relation due to gravity waves as shown in Lamb [151]
and Stoker [149] has been derived. Having knowledge of the dispersion relation
i.e. the relationship between frequency and wavenumber is of great importance
when it comes to the analysis used later. This is because of the link between the
harmonics present in Equations (3.104) and (3.110) and analysis methods, such as
the application of the Fourier transform. This avoids the need for a full reconstruc-
tion based on numerically calculating the above equation. This is favorable as when
boundary conditions such as the bed roughness becomes complex, the time taken
to simulate is large. The only thing that is needed to synthetically generate surfaces
that obey the dispersion relation, is the dispersion relation alone. The following
dispersion relations are provided as cited results, without derivation and are used
throughout the thesis.
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If the mean speed of the flow is faster than pattern deformations, the fluctuations
in time at a fixed point is primarily due to advection. The advectice dispersion
relation is [2]:

Q,(k,U,) ~ kU, (3.111)

Where k = (k,, k,) is the spatial wavenumber in the x and y dimension, and U,

is the surface velocity vector. The dispersion relation with surface tension due to
gravity-capillary waves can be approximated as

Qo (k, Uy) & Qu(k, Uy) + \J (g + ikz) k tanh (kd) (3.112)
Jo)

Where g ~ 9.81m/s is acceleration due to gravity, y is the surface tension of
water and air, p is the density of water, and d is the depth. This is the form of
the gravity waves presented in Equation (3.109), but with terms representing the
surface tension. Note that this equation contains the addition of the advection
dispersion curve. This is due to the Doppler effect that occurs when there is a
dispersion curve present with constant moving flow [152].

These two dispersion relations are mainly affected by the average surface veloc-
ity U, and the depth of the flow d. However, the dispersion curve is substantially
more sensitive to the velocity in comparison to the depth, as can be shown by taking
the derivative:

9Qew
-, =k 3.113
U, (3.113)
00y  (&+ 5k*)k*(1—tanh (kd)*)
8d 2 [(g+ [kktanh(kd)

Sensitivity analysis of the parameters are presented in Figures 8.1 and 8.2. Re-

(3.114)

alisations of moving surfaces that exhibit the dispersion relations discussed were
created.

Surfaces can now be created from the dispersion curves showcased earlier, and
are created with the velocity and the depth as input, and after the reconstruction
in space from the wavenumber domain. The surface elevation function that de-
termines the surface state in space and time based on the advective, and gravity-
capillary dispersion relations can be defined as

T = gk—l(cglA(k)e—iﬂA(k,Uo)t) + gk—l(cng(k)e—ngW(k,Uo)t) + gk—l((ggA(k)e—ingw(k,Uo)t)
(3.115)
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T
std(T)

Where A(k) = %3 represents the surface spectrum slope decay for increasing k,

{(x,t)=06 (3.116)

F. ! is the inverse Fourier transform in the spatial dimension, std is the standard
deviation, %6, 6,, 6, are complex random numbers generated from Gaussian distri-
butions in both the real and imaginary components, and 6 is the amplitude scal-
ing factor that determines the root mean square (rms) height of the overall rough
surface. Surfaces that are created according to Equation (3.116) have a frequency-
wavenumber spectrum that contains the three dispersion curves, this can be seen
in Figure 3.17.

Figure 3.17: Absolute value 10log,, frequency-wavenumber from a surface gen-
erated using Equation (3.116) for: depth = 0.4, velocity = 0.5, f = 2, temporal
sample rate = 200, spatial sample rate = 1000

3.5 Machine Learning

This work aims to solve the inverse problem with data-driven approaches. Firstly,
classical machine learning algorithms were tested. Random Forests, K-Nearest
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Neighbors and Linear Regression were evaluated for this problem. Neural Net-
work based architectures were avoided in this work due to the vast amount of
hyperparameter tuning, as well as architecture tuning. It was concluded that the
hyperparameters would need to be tuned for different surface problems, that is
to say, the optimal hyperparameters for a three parameter harmonic surface (e.g.
amplitude, wavelength and phase) could be different to the hyperparameters for a
forty-parameter surface (e.g. a sum of sine waves where amplitude and phase can
vary). Therefore, models that have fewer parameters were favoured.

This section contains some relevant theory and derivations for Random Forests,
K-Nearest Neighbors, and Linear Regression. The application of which are seen in
chapters 4, and 5.

3.5.1 Random forests

Random forests are a classification and regression model where the model predic-
tions are formed from an average of multiple decision trees. A decision tree is
a supervised machine learning model in which the resulting model is a tree-like
structure, where queries on the data define the branches and predictions define the
leaves. As the values of parameters in this study are real numbers, regression ran-
dom forests are used. The composition of decision trees are discussed significantly
by Breiman et al. [153].

3.5.1.1 Decision tree

Suppose a dataset D = (€,Z), where @ = (w;;) € R and Z = ({;;) € R,
are the matrices of input and output values, respectively with M the number of
receivers and N the number of outputs to recover, and N, denotes the number of
samples in a dataset, with [ = 1..N,. Next, define a splitting criterion (j,S) where j
is a column in © and S is some value defined on an interval [min(£2), max(Q)].

A binary partition of D forms two datasets D;(j,S) and D,(j,S) via the following
form,

Dy(j, ) = {(2,2)|w; <S,l=1.Np, j=1.M}, (3.117)
D,(j,8) =D\ D,(j,S). (3.118)

Where \ is the set minus operator. To find the best splitting criteria in the case of
Z having one output (i.e. i = 1), one must minimise the following equation [154],
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modified with weights:

min| — — +
(.S) {ND ;(Cl $n,) N,

D=2, (3.119)

D,

where {, is an average of all outputs for a dataset. This process is then repeated

recursively on D; and D, until the nodes are “pure”, i.e. for an ideal case
1 2

> (€=8p)" =0 (3.120)
1 EDjeat

for some partition D, or another stopping criterion is reached. The final partitions
are names leaves and are the contributing factor for prediction. The decision tree’s
prediction at a leaf node will be the mean of all the outputs in that leaf node.
In reality, for regression implementations a value of zero will never be obtained
so other stopping criteria to make a leaf must be considered, such as the sum of
squared errors becoming lower than a threshold or defining a minimal amount of
elements (no less than 2) required to be in a sub-dataset.

This splitting is then done recursively by using Equations (3.117) and (3.118),
until the tree is fully formed. Common algorithms to generate the decision trees
include the Iterative Dichotomiser (ID) algorithm [155], and the Classification and
Regression Trees algorithm (CART) [153]. The thesis uses the algorithm provided
in scikit-learn [50].

Due to the nature of the decision tree algorithm, decision trees tend to overfit
any given training data. Random forests attempt to solve this issue (seen in [47,
156]) where the overfitting issue is tackled through incorporating randomness. The
fundamental approach a random forest takes is to produce many decisions trees,
each individually trained on a random subset on the given dataset. Each tree is then
used to make predictions, and the average behaviour of all trees in the forest are
taken into account for the final prediction. A simple case of this is simply taking the
mean value of all the decision tree’s predictions. Comparisons of the performance
over decision trees have been studied previously, i.e. [156] where in classification,
random forests yielded an improved performance in 17 out of 20 datasets tested for
the same amount of attributes over decision trees.

The random forests in this thesis were created using the Python library scikit-
learn. [50]
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3.5.2 K-Nearest Neighbors

This section contains a short mathematical explaination of the model. For more
information, see [157]. Suppose that the problem is mapping a collection of D
dimensional inputs which are associated to some output value. To compare a test
input x,,, to the collection a distance metric d : TxI' — R, where T is any set, needs
to be defined. If the collection of inputs are real valued, which is the case for the
inverse scattering problem, the metric space can be seen as (R”,d). An example
metric could be the Euclidean distance. That is to say,

d(x,y)= \/(3’1 — X1+ (Vo= x4+ (yg —x4)% (3.121)

In reality, because this can be seen as a metric space, the only restrictions on the
choice of d are as follows Vx,y,z €T
The distance from a point to itself is 0

d(x,x)=0. (3.122)
The distance is symmetric
d(x,y)=d(y,x). (3.123)
The distance is positive if x #y
d(x,y)>0. (3.124)
The triangle inequality holds
d(x,z) <d(x,y)+d(y, 2). (3.125)

If these are true, then d is said to be a metric of T'.

Once a metric is defined, the prediction of output y,,,, from the new test sample
X(es¢ 1S the following. Firstly, calculate all the distances d where d; = d(x;, X es¢)-
Then find the shortest k distances (the value of k is user-provided). Once the results
are found, the prediction is either a uniform average of the results, or a weighted
average found from the inverse of the resultant distances.
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3.5.3 Linear Regression

The aim is to fit the best straight line to a collection of data with inputs

X =[x0,%1,...,%,]" (3.126)

Y=[Yo,Y1,---» Yl (3.127)

In matrix form, linear regression can be seen as

Y1 1 x; €
1 x €
ol P (ﬁ°)+ ? (3.128)
: : B :
yfl 1 xn el’l

Where f3,, 3, are constant coefficients which dictate the translation and gradient
of the line, and €, ..., €, are the associated error values for a given combination of
Bo,> B1- The problem is to choose the optimal value for 3. This is found as [158]:

p=x"x)x"Y (3.129)

With estimation of error given as

e=Y-XX"X)'X"Y (3.130)

3.6 Markov Chains Monte Carlo, Metropolis Hastings,
Stochastic Approach

We take a brief tangent to present the ideas of Markov Chain Monte Carlo. Explicitly
this is defined by the following definition

Definition 1 [159] A Markov chain Monte Carlo (MCMC) method for the simulation
of a distribution f is any method producing an ergodic Markov Chain (X") whose
stationary distribution is f

It is now pertinent to define precisely what a Markov-Chain is. This is defined in
the sense of measure theory in order to rigorously define a transition kernel. Once
this is defined, a lot of the formality will be loosened in order to present a more
example-based approach.
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Definition 2 [160] A non-empty collection & of subsets of E is called an algebra on E
provided that it is closed under finite unions and compliments, it is called a o-algebra

on E if it is closed under complements and countable unions.
A€ E=>E—A€& (3.131)

ALA,,..€8=| JA,c6 (3.132)

Definition 3 [160] Let (E, &) be a measurable space. A measure on (E, &) is a map-
ping u: & — [0,+00] such that

* u@ =0,
o u(lJ,A) = 2., u(A,) for every disjointed sequence (A,) € &.

Therefore, a measure space is defined as a triplet (E,&,u) where (E,&) is a
measurable space and u is a measure on this space.

Definition 4 [160] Let (E, &) and (F, #) be measurable spaces. A mappingt:E — F
is said to be measurable relative to & and & if 1 'B € & for every B in &.

Definition 5 [160] A numerical function on E is a mapping from E to [—o0, 00]. If
this function is measurable relative to & and the Borel o-algebra on [—oo, co] then it
is said to be &-measurable.

Definition 6 [160] A measurable space is a pair (E,&) where E is a set, and & is a
o-algebra on E.

Definition 7 [160] Let (E, &) and (F, #) be measurable spaces. Let K be a mapping
from E x & into [0,+00]. Then, K is called a transition kernel from (E, &) to (F, &) if

* the mapping x — K(x,B) is &-measurable for every set B€ F
* the mapping B — K(x,B) is a measure on (F, &) for every x € E.

Essentially, a transmission kernel allows for a probability measure to be formed
from any element x which is in the set E on the measurable space (F, ). Thinking
about K(x,B), this is allowing for a probability to be assigned when considering
the move from state x to some state in the set B. We will assume throughout that
E = F,& = Z. This is because in this work, Markov chains are used to assign the
probability of exploring the current state space.
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Definition 8 [159] Given a transition kernel K, a sequence X,,X;,...,X,,... of ran-
dom variables is a Markov chain (X,) if, for any t, the conditional distribution of X,

given x,_1,X,_,,...,X, is the same as the distribution of X, given x,_;

P(X,.1 €Alxy, Xx1,...,x,) =P(X,11 €Alx,) (3.133)

Therefore, the main idea from the definition of a Markov chain is that the proba-
bility from moving to the next state, is only dependent on the current state. The
history does not matter. Further, a Markov chain is time homogeneous if

P(X,,, = jIX, =)= P(X; = j|Xy =1) (3.134)

holds, that is to say, that the transition kernel does not change in time.
Consider the following two examples. Firstly, a two-state problem. As the num-
ber of states is discrete, the transition kernel reduces to a transition matrix T with

elements

P, =PX,=yl|X,—1 =x) (3.135)

For example, consider a set E = 1,2 and & = Z(E) = {0,{1},{2},{1,2}} the
power set of E. A kernel that exhibits the Markovian nature described above is
formed from the probability it assigns to the singletons {s},s € E. Defining a kernel
that allows for the probability of moving from state 1 to itself as P;; = 0.5 and to
state 2 as P;, = 0.5, and the probability of moving from state 2 to itself as P,, = 0.5
and to state 1 as P,; = 0.5 the following transition matrix can be formed

Pll P].Z)
(P21 PZZ ( )
0.5 0.5
T= (0.5 0.5). (3.137)

Note that the probabilities P;; were only defined as the probability of going to
the next state j, from the current state i.

A state space diagram for this transition matrix can be drawn, as in Figure 3.18.

Next, consider the following random walk

Xo=0 (3.138)
x;=x,_,+N(0,0), i=1,2,--- (3.139)
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0.5

Figure 3.18: State space diagram for the transition matrix given in Equation 3.137.

Where 4(0,0) is a draw from a normal distribution of mean value 0 and stan-
dard deviation o. The collection of these form a Markov Chain with probabilities

P(5, 41130, X1, ..y X)) = P(x,411%,) = A (x,, 0). (3.140)

This is illustrated in Figure 3.19
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Figure 3.19: Gaussian random walk with initial value x, = 0 with standard devia-
tion 1. The y axis represents the value.

Definition 9 [161] An irreducible positive recurrent Markov chain is an ergodic Markov
chain.

Where recurrent means that the probability that going from a state i and never
returning to this state is zero.
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Definition 10 [162] A Markov chain with transition kernel K satisfies the detailed
balance condition if there exists a function p satisfying

K(y,x)f(y)=K(x,y)f (x) V(x,y) (3.141)

More-or-less, this definition states that the probability to move from x to y is the
same as the probability for moving from y to x, therefore the Markov Chain is said
to be reversible. If the Markov Chain is irreducible, then f is a unique stationary
distribution [163]. The required definitions are now in place.

3.6.1 Metropolis-Hastings

Suppose one is aiming to sample from a probability distribution p(x) and suppose
this cannot be evaluated. Assume that a probability distribution f (x) can be calcu-
lated, and has the relation

f(x)

p(x)= — (3.142)

Where Z is some constant. Recalling Definition 1, a MCMC method is any
method to simulate a distribution f that produces an ergodic Markov chain, with
stationary distribution p. Beginning with the detailed balance definition

K(y,x)p(y) =K(x,y)p(x) (3.143)

The transition kernel is separated into two components, a proposal distribution
q(x, y) and an acceptance distribution a(x, y) which define the probability of mov-
ing from a state x to a state y, and the probability of this new state change being
accepted. Substituting these values into Equation (3.143)

q(y, x)a(y, x)p(y) = q(x, y)alx, y)p(x) (3.144)

alx,y)  p(y)q(y,x)
a(y,x)  p(x)q(x,y) (3.143)

alx,y)  f(y)q(y,x)
= 3.146
() FO0a(,y) (3:146)

To find the relation for a(x, y), the cases of

q(y, x)a(y, x)f (y) > q(x, y)alx, y)f (x) (3.147)
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and
q(y,x)aly, x)f (y) < q(x,y)alx, y)f (x) (3.148)

need to be evaluated. Using this, and setting the corresponding a(-,-) in the greater
than side to be 1 (as a is a probability distribution), the following relation can be
found [162]:

f(y)q(y,X)) (3.149)

" f(x)q(x, ¥)
If g(x,y) = q(y,x) the proposal distribution is said to be symmetric, and the

a(x,y)=Min (1

methodology is called Metropolis Scheme. A table representing the Algorithm is
provided in Table 1.

Algorithm 1 Metropolis-Hastings Algorithm
Initialise x,
fori=0,...,N—1do
Sample u ~ U(0,1)
Sample y ~q(y | x;)

X =X;
if u < a then
X1 =Y > Accept sample.
else
Xip1 =X > Reject sample.
end if
end for

This approach produces a Markov Chain [159]. Therefore, from any given input
x, this Markov Chain will eventually reach the stationary distribution p, which is
exactly the distribution that is aiming to be inferred.

3.6.2 Stochastic Approach

Consider a set of data collected from acoustic scattering from an infinite rough
surface. This can be thought of as data generated from the simulation under a set
of parameters 0 such that

b= [ws(Rile)]i:L..,n t+e€ (3.150)

Where p represents the experimental array of scattered acoustic pressure.
[Y(R;10)];=1. ., is an extension of Equation (3.85) where each R; refers to a
location R in Equation (3.85), centred at the location of a receiver, the 6 term has
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been included here indicating that some set of parameters 6 will be able to be
varied, in order to change the underlying surface ¢ in Equation 3.85.

The question then becomes, how to find 6. From Bayes’ rule, the posterior of 0
can be found as proportional to

2 (0|p) o< 2 (p|0)2(6). (3.151)

Where 2 (p|0) is the likelihood of the data being generated by a set of param-
eters 0 and is called the likelihood function, and #?(60) contains prior knowledge
of the distribution of parameters 0 called the prior distribution. It can immediately
be seen that this proportional form can be immediately applied under the Metropo-
lis Hastings framework. The algorithm used in this work is called the Adaptive
Metropolis (AM) scheme, and is found in [113]. The main change in this refer-
ence is the manipulation of the proposal distribution. The main definition of the
proposal distribution is a Gaussian distribution centred at a current state with an
adaptive covariance matrix. To compute the covariance matrix at some step t, An
index t, > 0 is selected, and the covariance matrix is formed by [164]:

c, = {CO’ f=to . (3.152)
$qcoV(Xg, o0y Xy 1) +5q€l4, t>t,

Here, C, is the covariance matrix at the time ¢, X, is the state of the model at a
time t, I, is a d-dimensional identity matrix, s, = (2.4)?>/d, € > 0 a small number.
It can be seen that this covariance matrix is not Markovian, as the entire history
need be considered. However, Haario et. al proved that the ergodic properties are
sufficiently satisfied to be a valid proposal distribution [164].

,,,,,

dimensional Gaussian distribution

X ~ A X) (3.153)

with w = [u;,u,]" and X is a covariance matrix where terms can be calculated
as in [165]. Suppose that the data was generated from u, = 0.5,u, = 0.5. For
this example, assume that the covariance matrix is known (this does not have to
be true in general). Then Metropolis-Hastings can be used to infer the posterior
of the parameters 6 = [u,, u,] with respect to the data. Figure 3.20 presents the
results from using the Metropolis-Hastings scheme to find the value of u. The plot
showcases a contour plot of the density of the distribution that generated the data.
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Then there is a line moving through x = u,,y = u, starting at [—1,—1]. Very
quickly, this line, made up from "traces" of values sampled from the Metropolis-
Hastings scheme, moves towards the centre of the contour distribution and then,
as it enters the stationary distribution, stays there. The line going to the stationary
distribution is called the "burn in" period and is discarded in analysis.

The code used throughout the later chapters was developed by the author and
can be found at https://github.com/michaeldavidjohnson/MetropolisHastings
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Figure 3.20: Overlay of the traces against the true density that made up some
experimental data.
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Chapter 4

Surface shape reconstruction from
phaseless scattered acoustic data
using a random forest algorithm
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Summary

This paper investigated the validity in using Machine Learning (specifically Random
Forests) in order to solve the inverse problem of scattering from an infinite rough
surface. Without using Machine Learning, this is a nonlinear problem unless some
assumptions are made, such as the Bojarski Identity [59] which is a linearisation
assuming that all wavenumbers are known. Because of the further approximations
on the wavenumber all the wavenumbers cannot be recovered, and thus the prob-
lem is ill posed. Iterative methods can be applied, or a further approximation can
be made to be able to perform a matrix inversion [66] [74]. In order to avoid these
extra assumptions, a Random Forest model was fit to synthetic realisations of dif-
ferent single harmonic sine waves. This was also tested and trained on different
proportions of noise in the data to be able to test for robustness.

The performance of the Random Forest approach was tested in three different
ways. Firstly, the coefficient of determination was used to test the model perfor-
mance in the recovery of each parameter under each noise condition for all data.
To show further generalisability of this approach different incident angles from 20
degrees to 90 degrees were tested from 50Hz to 45,000Hz. These results were anal-
ysed to find how the performance varied with angle, given a fixed receiver layout.

Further to this, synthetic data was used as a dataset, and the error of the ran-
dom forest prediction was tested against the Short Array method presented in [74].
What was found here is that both models perform well until the ratio of the surface
amplitude to the acoustic wavelength rose above 0.1. In this case, the random forest
still performs well, but the Short Array method’s performance severely decreases.
This is due to the breakdown of the linearisation, the amplitude is no longer sig-
nificantly smaller than the wavelength, so the approximation breaks down. This
highlights the applicability for Random Forests to be able to perform in a nonlinear
inverse environment.

Further metrics were presented such as a heatmap of the true parameters against
the predicted parameters, this was an illuminating figure as it quantified directly
how much data was in the outlier region. Overwhelmingly, the data followed the
predicted = true line, and this over many surface iterations highlighted the accuracy
of the model.

To finish, an experimental sample was produced from laboratory experiments,
and the random forest predicted this well over a large number of noise conditions.
This was also with the underlying Kirchhoff Approximation code that generated
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the synthetic data, was in 2D with an approximate directivity pattern. This further
highlighted the validity of this approach.

4.1 Abstract

Recent studies have demonstrated that acoustic waves can be used to reconstruct
the roughness profile of a rigid scattering surface. In particular, the use of multiple
microphones placed above a rough surface as well as an analytical model based on
the linearised Kirchhoff integral equations provide a sufficient base for the inversion
algorithm to estimate surface geometrical properties. Prone to fail in the presence
of high noise and measurement uncertainties, the analytical approach may not al-
ways be suitable in analysing measured scattered acoustic pressure. With the aim to
improve the robustness of the surface reconstruction algorithms, here it is proposed
to use a data-driven approach through the application of a random forest regression
algorithm in order to reconstruct specific parameters of one-dimensional sinusoidal
surfaces from airborne acoustic phase-removed pressure data. The data for the
training set is synthetically generated through the application of the Kirchhoff inte-
gral in predicting scattered sound, and it is further verified with data produced from
laboratory measurements. The surface parameters from the measurement sample
were found to be recovered accurately for various receiver combinations and with
a wide range of noise levels ranging from 0.1% to 30% of the average scattered
acoustical pressure amplitude.

4.2 Introduction

Inverse acoustic scattering is concerned with the recovery of information about an
object or a surface based on scattered acoustic data collected using sound sources
and receivers. It has applications in fields such as non-intrusive damage testing as
well as surface recovery.

A numerical method based on the boundary integral equations and Kirchhoff ap-
proximation to reconstruct the shape of a scattering surface was recently outlined[67,
68]. This approach was found to be highly sensitive to uncertainties, partly because
of the strong dependence on the phase of the scattered signal [74]. The errors in
the inversion results were associated with the underdetermined and ill-posed na-
ture of the problem [74]. The range of applicability in reconstructing a surface is
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also limited by the validity of a partial linearisation of the scattering problem, which
is required in order to make the numerical inversion feasible.

Another recent approach includes recovering a rough surface at grazing angles
using single-frequency, phaseless acoustic pressure through the use of an itera-
tive marching method approach derived from the parabolic wave approximation
(forward-scattered wave propagation assumption) [77]. Although the inversion re-
sults are found to be relatively accurate, it is assumed that the forward-scattered
approach is not applicable in the context of this paper research due to significant
differences in the assumptions and experimental setup and, in particular, acoustic
remote sensing applications where the sound field is best described by a solution of
the full Helmholtz equation [74].

Recent work [74] solved the reconstruction problem using matrix inversion,
where the forward model of scattered acoustic pressure was linearised resulting
in the linear system of equations resolving the unknown profile of a rough surface.
The use of an iterative approach such as machine learning is an appealing alter-
native to linearisation and as such is one of the central motivations of the present
work.

As opposed to deterministic model-based inversion approaches, machine learn-
ing methods in wave scattering problems allow more flexibility. Machine learning
and its applications in various fields of acoustics was discussed in detail by Bianco
et al. [52]. It has been shown that a combination of random forest and neural net-
works results in a robust method enabling reconstruction of geometrical features
against noise [92]. This was achieved by first classifying training shapes with a ran-
dom forest and then inverting the far-field scattered signal using neural networks
to obtain geometrical features of different scattering objects.

Fan et al. [88] successfully applied deep learning methodologies utilising the
Helmholtz equation in the recovery of the shape and placement of multiple scatter-
ers in two different settings, including a seismic imaging setting where the source
and receivers were above the scatterers and receivers were in a linear array. The
scatterers were placed randomly and formed from a number of shapes such as tri-
angles, squares or ellipses. It was shown that for a large number of receivers and
sources, the locations and orientations of the scatterers were successfully recovered
with various amounts of noise in the dataset, while the recovered boundaries of the
scatterers became blurred as the noise level increased.

Successful use of machine learning methodologies in acoustics was also demon-
strated when identifying parameters such as the porosity and tortuosity of a porous
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material with an acoustic signal perturbed by noise [166]. It was shown that “ac-
ceptable accuracy with wide variety of noise levels” [166] can be achieved in recov-
ering material properties.

Other works that recovered the parameters of surfaces instead of the full sur-
face include: recovering parameters of a sum of sine waves forming a rough surface
[89], recovering coefficients of a parametric curve of an obstacle [90], and using a
convolutional neural network to recover the root-mean-squared height and corre-
lation length from a Gaussian rough surface through synthetic aperture radar [91].
The flexibility of data-driven approaches as compared to classical model inversion,
in the presence of noise, stands as a central motivation of the present work.

The Kirchhoff Approximation is still an active part of reconstruction efforts as in
[167], other methods have risen in inverse scattering especially in the near-field,
such as recovering the far-field pattern given the near-field measurements [168]
and obtaining the scattering coefficient from near-field measurements [169].

The choice to use phaseless data as input was driven mainly by the character-
istics of the random forest approach, which cannot handle coupled complex data.
In Dolcetti et al.[74] phase uncertainty was found to have a stronger impact than
amplitude uncertainty on the accuracy of the surface reconstruction, and imperfect
wrapping of the phase was found to cause a multi-modal distribution of the recon-
struction error, especially at large roughness amplitudes (relative to the acoustic
wavelength).

This work studies the feasibility of a machine learning approach to characterise
a parametric rough rigid surface. Phaseless acoustical data were chosen due to the
relatively simple amplitude only calibration technique compared to phase calibra-
tion, as well as to avoid the easily corruptible nature of phase measurements which
are sensitive to uncertainties, such as uncertainties in position. Scattered phaseless
acoustical pressure defined by a single frequency source excitation will be syntheti-
cally generated through an application of the Kirchhoff approximation. Specifically,
the estimation of the wavelength, amplitude, and offset of a sinusoidal acoustically-
rigid scattering surface is considered by means of a random forest algorithm trained
on synthetic noisy data and tested on synthetic and experimental data.

The paper is organised in the following way: Section 4.3 presents the random
forest model used for the estimation of the surface parameters. Section 4.4 con-
tains relevant information regarding the methodology including the selection of the
forward model as the Kirchhoff approximation, the incorporation of noise, the way
in which data was split into training and testing sets, the experimental setup, and
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the convergence of random forest as the number of trees increase. Section 4.5
contains the relevant results and evaluation of the performance of the testing set
and experimental data set including a comparison between the method proposed in
this paper and the Short Array method [67] and model performance in recovering
unseen parameters. Section 4.6 contains the conclusions of the paper.

4.3 Random forest algorithm

The purpose of machine learning algorithms in this work is to allow the estimation
of a parameter set that uniquely defines the shape of a sinusoidal surface using the
modulus of the scattered acoustic pressure measured at a finite number of locations.
Defining ,(R) as the acoustic pressure field at a point R produced by a source with
co-ordinates (x;, y;), scattered by a sinusoidal rigid surface with profile

()= cos[zg—“(x n cg)], 4.1)
2

where the parameters {;, i = 1,2, 3 indicate the amplitude, wavelength, and offset
of the sinusoidal surface, respectively. The signal was recorded at a set of M mi-
crophones with co-ordinates of the j-th microphone given by R0 = (xg), yéj)), j=
1,...,M, the aim is to estimate at least one of the parameters {;, given |¢,(R)|. The
general setup of sound scattering by a rough surface in Oxy plane is presented in
Figure 4.1 where the source and receivers are located in the acoustic far-field above
the surface.

The choice to reconstruct the parameter set instead of the surface shape at each
location (as was done in, e.g., [67]) was made in order to limit the complexity of
the problem and to develop a method applicable for surfaces of higher complexity,
while still allowing a relatively compact parametric representation based on Fourier
series, as are typical for example of water waves in some applications [170, 124].

Among the large number of existing machine learning approaches, here it was
decided to employ a random forests approach for the recovery of the parameters
of the surface. This is due to the simplicity of the model, the structure of a ran-
dom forest is very strictly defined, giving less options to the user in its creation.
This is different to a neural network approach, where the architecture needs to be
carefully considered. It was also decided that not being able to extrapolate to pa-
rameters outside the range given by the training data would be a benefit for the
problem investigated in this paper, to ensure the Kirchhoff condition is maintained.
Random forests also benefit from not needing any input features to be scaled or
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Figure 4.1: The geometry of the problem where the rough surface is defined by a
function {(x) from equation (4.1). Surface is not to scale.

standardised while also being able to measure feature importance through the use
of Gini importance, although this can be biased when “input variables vary in their
scale of measurement of their number of categories”. [171] Although, this is not
investigated in this paper.

Random forests are a classification and regression model where the model pre-
dictions are formed from an average of multiple decision trees. A decision tree is
a supervised machine learning model in which the resulting model is a tree-like
structure, where queries on the data define the branches and predictions define the
leaves. As the values of parameters in this study are real numbers, regression ran-
dom forests are used. The composition of decision trees are discussed significantly
by Breiman et al. [153]. However, a brief derivation based from Hastie et al. [154]
is included in this paper.

4.3.1 Decision tree

Due to random forests being formed from many decision trees, it is important to
have an understanding on how decision trees partition data to make predictions.
Suppose a dataset D = (€,Z), where @ = (w;) € R"*™ and Z = ({;;) € RV,
are the matrices of input and output values, respectively with M the number of
receivers and N the number of outputs to recover, and N, denotes the number of
samples in a dataset, with [ = 1..N,. Next, it is necessary to define a splitting
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criterion (j,S) where j is a column in 2 and S is some value defined on an in-
terval [min(Q), max(Q)]. It is noted that throughout the paper indices j, i and [
are reserved for the columns in the input dataset (referred to as features and as-
sociated with the receiver location in the receiver array), for the columns in the
output dataset (referred to as surface parameters) and for the rows in input/output
datasets (referred to as samples) respectively.

Then, a binary partition of D forms two datasets D,(j,S) and D,(j,S) via the
following form,

D,(j,8) ={(Q,2)|w; <S,1=1..Np, j =1.M}, (4.2)
D,(j,S) =D\ D;(j,S). 4.3)

Where \ is the set minus operator. To find the best splitting criteria in the case of
Z having one output (i.e. i = 1), one must minimise the following equation [154],
modified with weights:

Np,
Np

D=0 (4.4)

(:8) -

Np, _
: 2
min| — — +
N, 2.6

1
where (,, is an average of all outputs for a dataset. This process is then repeated
recursively on D; and D, until the nodes are “pure”, i.e. Z ¢, =< D)’ =0 for

@©1j€Dreat
some partition D,.,;, or another stopping criterion is reached. The final partitions

are called leaves and are where the predictions are measured from. The decision
tree’s prediction at a leaf node will be the mean of all the outputs in that leaf node.
In reality, for regression implementations a value of zero will never be obtained
so other stopping criteria to make a leaf must be considered, such as the sum of
squared errors becoming lower than a threshold or defining a minimal amount of
elements (no less than 2) required to be in a sub-dataset.

Essentially, decision trees recursively split a dataset into grouped subsets via
equations (4.2) and (4.3) until the tree is fully formed. Common algorithms to
generate the decision trees include the Iterative Dichotomiser (ID) algorithm [155],
and the Classification and Regression Trees algorithm (CART) [153]. This paper
uses a modified version of the CART algorithm contained in the Python package
scikit-learn [50].

Due to the nature of the decision tree algorithm, decision trees tend to overfit
the given training data. This can be improved with methods such as cost complexity
pruning [154]. Another method to improve performance is through the application
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of random forests [47, 156] where the overfitting issue is tackled through incorpo-
rating randomness. In this approach, a “forest" is made from many decision trees
where each decision tree is individually trained on a random subset of the dataset,
and the overall random forest prediction is an average of all the decision trees in
the forest. Comparisons of the performance over decision trees have been studied
previously, i.e. [156] where in classification, random forests yielded an improved
performance in 17 out of 20 datasets tested for the same amount of attributes over
decision trees. Random forests have also been used in regression problems, such
as in [172] where random forests were compared against support vector machines
and a partial least squares (PLS) method to identify heavy metal content in soil
from hyperspectral modelling. Zhou et al. found that both support vector machines
and random forests were “significantly better than that of PLS”[172], and random
forests had an improved performance over support vector machines.

Classification often performs well in recovering from a discrete set of labels.
For example, the amplitudes could be binned to [0.0-0.0005, 0.0005-0.001, 0.001-
0.0015....] and the same can be adopted for the wavelength and offset. However,
in order to increase the resolution of the predictions, the number of bins have to
increase. Therefore, by tending the number of labels to infinity, regression appears
to be the reasonable approach for the present work.

The random forests in this work were created using the Python library scikit-
learn. [50]

4.4 Estimation of the surface parameters

As is very common with machine learning, large datasets must be produced to be
applied in the training of the models in order to obtain useful results. For this
paper, a dataset of the scattered wavefield is generated for the rigid surface given
by Eq. (4.1) using the Kirchhoff approximation following [66]. This data was then
used for the training of the random forest by using the scattered phase-removed
acoustic pressure | (R)| as inputs to the random forest (2), and surface parameters
as the output (Z), effectively simulating an inverse problem. Finally, the trained
learner was applied to two sets of test data (one synthetic and one experimental),
to evaluate its performance.
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4.4.1 Generation of synthetic data

The Kirchhoff approximation was chosen due to its explicit form, obtained through
the approximation of a scattered signal via an assumption based on reflections from
a tangent plane. This makes it suitable for the calculation of large amounts of data,
which is required for training and testing the random forests, while being fast to
compute (approximately 0.01 seconds for 34 receiver Kirchhoff simulations on an
AMD Ryzen 9 3900X CPU with 32 GB RAM). The suitability of this approximation
for the conditions analysed in this paper was presented in Krynkin et al. [67, 68].

Let the rough surface be defined by a function {(x) as shown in Equation (4.1)
which satisfies the following condition [36]:

1
(kh)1/3’

sin(¢) > (4.5)

where h is the radius of curvature of the surface, k is the acoustic wavenumber and
¢ is the incident angle of the acoustic wave. With the condition of Equation (4.5)
satisfied, it is possible to use the Kirchhoff approximation to model reflections of
an acoustic wave from a rough surface using a tangent plane approach. In 2D, for
a source with a given directivity pattern, the scattered acoustic pressure v, can be
expressed in the following equation [68]:

1 * A(x,o)e
2kmi | +/R{R,

where, as shown in Figure 4.1, the values R; and R, are the Euclidean distance

P (R) =

KR (g, — g,ey)dx, (4.6)

from the source at (x;,y;) and receiver at (x,, y,) to a given point (x, {(x)) on the
surface, respectively:

Ry = /0, — X2 + (3, — L(0))2, (4.7)
Ry = /(33— x)2 + (3, — L (x))2. (4.8)

In Equation (4.6), R = (x,, y,), y = d{(x)/dx; q, and q, are the x and y components
of @ = —kVs(R; + R,) with the gradient V4 = (0 /dx,3/dy). The directivity term
A(r) is defined in this work as the far-field radiation from a baffled piston, which is

given by [24],
Ay  2i(kasin(@ () = (=, + 7/2)))
kasin(¢(r) — (—¢o + 1/2))

where a is the aperture, J; is the Bessel function of the first kind with n =1, ¢, is

4.9)

the angle of inclination of the source main axis to the Ox-axis, and ¢ (r) is the angle
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between the vector produced from the location of the source and the point r with
the Oy-axis.

Following the application of the Kirchhoff approximation to simulate the scat-
tered field, the phase is removed from Equation 4.6 through the application of
modulus:

p(R) = [y (R)]. (4.10)

Taking into account the receiver locations in an array of M receivers, phase-
removed acoustic pressure used in the random forest algorithm is given by the
following matrix,

p={p(RV)]j=1.M,l=1.N}, (4.11)

where the rows of the matrix are formed from p; (an ensemble containing the ab-
solute array pressure for a given {;), and RY”) form the columns (receiver locations
defined with respect to the origin of the Oxy plane). For brevity, the dependence
on RY will be omitted, resulting in P =D (RU)), and if operations are row-wise
only the j superscript will be omitted resulting in p;.

4.4.2 Noise

The Kirchhoff approximation model is deterministic, therefore one set of model
parameters maps to a given sound pressure field. However, in practical applications,
noise is present in measured data. It is proposed to modify the solution of the

Kirchhoff approximation via additive noise, calculated as:
p=pt+e, (4.12)

where ¢; € €,¢;; ~ A(0,0) is drawn from a normal distribution independently
for each receiver. For additive noise, the standard deviation, o, was selected to
be percentages chosen for investigation (0.1%, 1%, 5%, 7%, 8%, 9%, 10%, 12%,
15%, 17%, 20%, 25%, 30%. This relates to an approximate signal-to-noise ratio
of 29.7dB, 19.7dB, 12.7dB, 11.2dB, 10.6dB, 10.1dB, 9.7dB, 8.9dB, 7.9dB, 7.3dB,
6.7dB, 5.7dB, 4.9dB respectively) multiplied by p; - the average of the receiver’s
pressure magnitude taken across all receivers for the given surface in absence of the
noise. The acoustic pressure for each receiver is then normalised by the maximum
value for the Kirchhoff approximation scattered from the flat surface so that it can
be used in the random forest algorithm.
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[ Number of recovered parameters [ Amplitude bounds [ Wavelength bounds [ Offset bounds | Number of samples |

1 parameter -0.01m,0.01m N/A N/A 30
2 parameters -0.01m,0.01m 0.035m,0.15m N/A 30
3 parameters -0.01m,0.01m 0.035m,0.15m -0.02m,0.02m 30

Table 4.1: Bounds for each parameter in the data generation stage as well as the
number of samples generated within those bounds.

4.4.3 Synthetic training and testing datasets

A large number of datasets that correspond to different realisations of the parame-
ters {;, i = 1..3 were prepared using equations (4.6) and (4.12). For these calcula-
tions, the source and receiver locations were chosen in accordance with the existing
experimental data [74] that was later used for validation in this paper. The source
location was at (x;,y;) = (—0.20,0.22) m. The angle ¢, of the source main axis
to the Ox axis was 60 degrees. The receivers were located at a height of approxi-
mately y, = 0.28 m in the y-axis and 34 receivers were distributed evenly with x,
taking values from -0.13 m to 0.53 m in the x-axis, leading to an average distance
between the receivers of 0.02 m. The data was generated numerically through the
use of the Kirchhoff approximation, the integration was done numerically through
the application of Simpson’s rule [173] over the integration range of x € [—3,3] m,
which was vectorised to improve the speed of data generation.

Multiple datasets were formed for one-parameter, two-parameter, and three-
parameter surfaces defined in equation (4.1) in order to investigate the perfor-
mance of the algorithms as the number of unknowns increased. The values for each
parameter were generated with uniform spacing from a lower bound to an upper
bound, the choices for parameter values and resolution is shown in Table 4.1.

As well as the surface generation, multiple datasets were generated with differ-
ent proportions of noise to the absolute acoustic pressure, with o varied between
0.001p, and 0.3p,; as described above. Noise was added by cloning a pair of pres-
sures and surface parameters 20 times and independently adding noise to every re-
ceiver, yielding datasets with the following sizes for one-, two- and three-parameter
datasets: 630, 18900, 567000.

The models were trained using the training set and then evaluated on the testing
set to provide an indication of the model’s performance on unseen data. The same
approach described above was applied in order to generate both the training set and
the synthetic testing set. The two subsets were split randomly, with a proportion of
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70% training set and 30% testing set, such that the intersection of the training and
testing set would yield the empty set.

4.4.4 Experimental testing dataset

Experimental data used in this paper for validation purposes was collected with 34
1/4” microphones (G.R.A.S. 40PH) and with a loudspeaker (Visaton G 25 FFL),
arranged with the same geometry described in section 4.4.3. A sinusoidal surface
(with amplitude ¢; = 0.0015 m and wavelength {, = 0.05 m) illustrated in Figure
4.2 was machined from an aluminium block with a length of 0.55 m in the x-
direction, and a width of 0.35 m.

Figure 4.2: 3D rendering of the surface used in the acquisition of the experimental
sample. (colour online)

A signal was produced at 14 kHz and recorded simultaneously at all micro-
phones, with a sampling rate of 102.4 kHz. The amplitude at each microphone was
calculated by a Fourier transform applied to 0.02 s long segments of the signal, and
then averaged over 2000 segments using a Hann window. The data was calibrated
in situ by comparing measurements of the sound field reflected by a flat surface
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with the corresponding prediction calculated numerically, following the procedure
outlined in Dolcetti et al.[74].

Even after calibration, the pressure field scattered by the sinusoidal surface dif-
fered from the one predicted with the Kirchhoff approximation model, due to the
uncertainties in the measurements, especially at the microphones further away from
the source. This difference could be seen as an equivalent random noise with o

given by:

. N2
I [y RO = p R /M .
o= , .
p(R)
where p is the Kirchhoff approximation given in equation (4.6), with {(x) = 0.0015sin(27x/0.05
and [|v,.| is the experimental data. o was found to be 0.195 that quantifies the de-

viations observed in Figure 4.3.
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Figure 4.3: Overlay of the Kirchhoff approximation solution in comparison to the
experimental example which is calibrated for 14 kHz.

4.4.5 Performance evaluation

In this section, the choices of metrics used to estimate the accuracy of the inversion
algorithm are briefly defined. For evaluation against the synthetic testing set, the
coefficient of determination (22) is used in the following form [174];

N

— . 2
R2(i) = 1_2[221'{(;1))21] , (4.14)
l:l 1 1
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where p; = [¢,(RY)], j = 1..M are the inputs for a given surface with Z, parameters,
N is the number of samples, {; is the mean of the i-th output, and ¢;; are outputs at
the [-th row for the i-th value from Z, set of parameters and f is the estimator, which
is the random forest explained in Section 4.3. Therefore, f(p,); is the prediction of
the i-th value from the Random Forest given p,. For the two- and three-parameter
estimation, the %22 score is calculated for each parameter and then averaged.

To evaluate the accuracy of the model predictions when predicting the surface
given exclusively from the experimental data, the absolute error (AE) was also used,
given by;

E;=|f(p);—¢il,i=1.3. (4.15)

As there is only a single surface measurement available from the experimental data,
N =1 and there is no averaging in equation (4.15) compared to that in equation
(4.14).

When plotting the results, the value of E; is also normalised by the corresponding
surface parameter, except for the offset, which is normalised by the wavelength.

It is noted that in the two- and three-parameter recovery, the AE of each output
parameter was considered. This allows for an investigation into the change in pa-
rameter prediction as the number of parameters increases, while not allowing the
overall AE to be dominated by the highest scale - the wavelength.

4.4.6 Convergence

A key hyperparameter of consideration is the number of decision trees used in the
construction of the random forest. There are instances where an increase in the
number of trees in a random forest only increases computational cost without much
improvement in performance. [175] It was shown that both the errors in classifica-
tion and regression forests are monotonically decreasing functions with respect to
the number of trees. [176] These results also highlight that the most performance
improvement was seen from random forests built from 10 trees to 250 trees.
Convergence testing has been performed for random forests generated with 1%
and 15% added noise for three-parameter recovery. Three-parameter recovery was
chosen due to the size of the dataset as well as the complexity of recovering three
parameters. The change of the coefficient of determination as the number of trees
increases is presented in Figure 4.4. In the case of 1% noise shown in Figure 4.4,
the increase in the coefficient of determination slows significantly after 5 trees in
the random forest algorithm. For the case of 15% added noise, the coefficient of
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Figure 4.4: Convergence of %% when number of trees increase for 1% and 15%
added noise

determination increases rapidly for random forests created from 1 tree to 50 trees
as shown in Figure 4.4, which signifies a better performance of the algorithm in
predicting the testing set. The coefficient of determination demonstrated in Figure
4.4 decreases in gradient rather significantly for the random forests as the number
of trees pass 200, with a relative percentage increase in coefficient of determination
of 0.18%. When the number of trees reach 750, the increase in the number of trees
has a smaller effect on the coefficient of determination, while also significantly
affecting computational time. In this study, with the hardware described in Section
4.4.1, the computational time for the random forests with 750 trees increased to
53.67 times that of the random forest with 1 tree. Increasing the number of trees to
1200 results in a further increase of computational time to 81.7 times. Therefore,
the approach used in this paper was to generate random forests consisting of 700
trees, which is substantially inside the convergence factor to ensure convergence for
all datasets while not having a significantly negative effect in terms of computation
time.

4.5 Results

This section is formed from four subsections. Firstly, the coefficient of determina-
tion is considered when evaluating model performance using the testing subset of
the synthetic data. Following this, a comparison between the random forests ap-
proach against the short array method [67] is showcased. Then, a study on the
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performance of random forests when evaluating parameters unseen by the model
in training is showcased. Finally, the AE between model predictions and the sur-
face used in the experimental sample is considered. For the AE when considering
the two and three-parameter surfaces, the AE is presented such that the AE per
parameter is separated.

4.5.1 Testing on synthetic data

Testing was done initially based on synthetic data, for a large number of surface
realisations, and for various amounts of noise and numbers of receivers, where
the first N receivers were considered. For one-parameter estimations, the surface
wavelength and offset are assumed to be known, while the amplitude parameter ¢,
is estimated. In this case, the coefficient of determination was found to be close to 1
for noise levels below 17%, except for 9% noise for random forests generated with
10 receivers where %2 ~ 0.888, then dropping to slightly below 0.9 at 30% noise,
as shown in Figure 4.5. It is noted that for 10 receivers at 17% noise %% ~ 0.861.
The decrease of coefficient of determination for the data generated by 10 receivers
at 9% and 17% noise is interesting due to the drop in value of %2. This behaviour
was deemed to be an outlier from the specific shuffle of training and testing sets.
Randomly reshuffling the training and testing sets 1000 times for the 9% and 17%
noise cases gave average coefficients of determination of 0.986 and 0.959, with
standard deviations of 0.014 and 0.026, respectively.
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Figure 4.5: Coefficient of determination for the estimation of the surface amplitude,
{,, at varying noise levels and considering different number of receivers.
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When the surface amplitude {; and surface wavelength {, are estimated, the
coefficient of determination lowers throughout all the noise percentages, as well as
showing a smoother decay of %2 value with the noise level. For random forests
generated with 15, 20 and 34 receivers, the minimal value of the coefficient of
determination is above 0.7 at the dataset with 30% noise as shown in Figure 4.6.
For the random forest based on 10 receivers, the %2 is much worse than with higher
numbers of receivers, dropping to approximately 0.5 at 30% noise.

0.4+ s
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0 1 1 1 1 1 1 1 1 1 1 1

0.11 5 78910 12 15 17 20 25 30
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Figure 4.6: Coefficient of determination for the estimation of the surface amplitude,
¢, and the surface wavelength, {, at varying noise levels and considering different
number of receivers.

When all three surface parameters (amplitude {,, wavelength {,, and offset {5)
are estimated, the coefficient of determination decreases faster compared to the
one and two parameter problems. This is highlighted at random forests generated
with 10 receivers, where the lowest value %2 is approximately 0.3 at 30% noise
compared to approximately 0.5 and 0.9 in one- and two-parameters, respectively.

A key feature to note is that the coefficient of determination changes only slightly
for random forests generated with different receiver combinations when the amount
of receivers is greater than 10 as shown in figures 4.5, 4.6 and 4.7. This highlights
that favourable model performance using machine learning to aid the inversion
process can be obtained with fewer receivers. Having favourable performance with
fewer receivers makes it possible to set up cost-efficient and practical applications.
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4.5.2 Investigation of change of angle and frequency

In order to judge performance in different setup conditions, and to verify the choice
of angle and frequency used in the experiment, varying source angles ¢, and source
excitation frequencies were tested. The source angles were varied from 20 degrees
to 90 degrees, with 70 equally-spaced samples. The source excitation frequencies
varied from 1000Hz to 45000Hz with 45 equally-spaced samples. In order to re-
duce computation time, two-parameter datasets were created. The offset of the si-
nusoidal surface was fixed to 0. Datasets were created in the same way as described
in Section 4.4.3 where noise was not added to the datasets. Figure 4.8 showcases
the results of the coefficient of determination for the resulting testing sets. In the
results, the method does not perform well below 5000Hz for all angles tested. This
is concluded to be due to the scale of the acoustic wavelength being much larger
than the amplitude and wavelength of the surface, causing the scattered absolute
acoustic pressure to have no substantially-different features. Between 5000Hz and
15000Hz, the coefficient of determination is at near maximum for all angles tested.
As the frequency increases past 15000Hz, an ideal angle region is found between
30 and 60 degrees.

4.5.3 Comparison with Short Array method
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Figure 4.9: Comparison between the approach offered in the paper against the SAO
approach: averaged root mean square difference between target and reconstructed
surfaces normalised by the surface amplitude {;, plotted against the surface ampli-
tude normalised by the acoustic wavelength, {,/A.
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A comparison between the method proposed in this paper and the so-called
short array method [67] in the unbiased version proposed by Dolcetti et al. [74],
hereafter called SAO method, is discussed in this section. The comparison was
made between the three-parameter random forest generated with 5% noise and
the SAO model. Both models had the same initial conditions on setup and were
evaluated with 141750 samples taken from the testing set. In order to match the
parameter-based recovery from the random forest to the surface based recovery
from the SAO model, a set of surfaces was reconstructed from the parameters pro-
vided by the random forest by populating the values into equation (4.1) in the range
x € [—0.11,0.17], which is the specular range of the source and the receiver array.
The two methods were applied to the same set of synthetic pressure data, and com-
pared in terms of the spatial root-mean-square difference between the target and
reconstructed surfaces averaged over all surfaces with the same amplitude and nor-
malised by the surface true amplitude parameter. The results can be seen in Figure
4.9. The deviation in methods appear to increase rapidly when {;/A > 0.1 where
the SAO method begins to increase in error significantly. This is mainly because
of the loss of validity for the linearisation of the Kirchhoff integral, which is the
basis of the SAO method, whereas the random forest approach uses the Kirchhoff
approximation directly without linearisation. A direct comparison to the previous
methods can be made by analysing Figure 13c in Dolcetti et al. [74]. Calculating the
root-mean-squared error factored by the acoustic wavelength for the surface recov-
ered from Table 4.2 within the specular points of the receivers and the microphones
(following Dolcetti et al. [74]) yields a value of 0.0165, 0.027 and 0.169 for one-,
two- and three parameters respectively. This outperforms the SAO method in recov-
ering the experimental sample and is comparable to reconstruction using multiple
frequencies, while also being close to the reconstruction based on synthetic data
without noise. The exception is the two-parameter recovery, which performs ap-
proximately the same as the SAO method. Although this is one sample, the results,
highlighted from both synthetic recovery as shown in figure 4.9 and experimen-
tal recovery earlier in this paragraph, showcase improved performance with the

method proposed in this paper, especially as the amplitude increases.

4.5.4 Evaluating surfaces not seen by the model in training

In order to highlight the generality of using a random forest based approach, predic-
tions on surfaces that would have never been seen in the training and testing sets in
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the previous section were evaluated. Two-parameter recovery was chosen to high-
light the generalisation. Surface parameters were chosen by doubling the number
of samples shown in Table 4.1 and removing samples that correspond to the train-
ing and testing set used to train the random forest. This leads to 841 surfaces to be
predicted. In order to investigate generalisation further, noise was added to modify
the receiver pressure at the unseen model parameters, where the percentage chosen
to modify the pressure was different compared to that seen by the random forest
during training. The random forest was trained on acoustic pressure linked to the
two-parameter dataset with 5% added noise, and evaluated on a dataset generated
with 7% noise. In these data, the coefficient of determination given by equation
(4.14) when training on the surface amplitude and surface wavelength is 0.6 and
0.84, respectively. Figures 4.10 (a) and (b), and 4.11 highlight the results of the

recovered two surface parameters.
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Figure 4.10: The predicted values versus true unseen parameters: (a) surface am-
plitude ¢, and (b) surface wavelength ¢,.
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Figure 4.11: Histogram of the RMSE, measuring the difference between the true
surfaces produced with the unseen parameters and the reconstructed surfaces pro-
duced using the random forest predictions of the unseen parameters, normalised by
the true parameter’s amplitude.

There is a clear trend in Figures 4.10 (a) and (b) along the identity line, where
true and predicted values are equal for both the amplitude and the wavelength.
This can be seen from the density shown in the figures. The amplitude component
has a spread of predictions that widen in proportion to the surface elevation height.
The reconstruction of the wavelength begins to deteriorate for values starting below
{, = 0.08 m. It appears that the performance decreases when recovering surfaces
with high amplitude and low wavelength, which corresponds to a higher Kirchhoff
parameter.

Figure 4.11, representing the distribution of RMSE (described in subsection
4.5.3) defined along the specular region by the difference between the true surfaces
and the surfaces reconstructed with the random forest predictions, demonstrates
that the majority (approximately 74%) of the reconstructed surfaces predicted with
the random forest algorithm fall within +£0.41,, which is the standard deviation of
the RMSE deviation.

4.5.5 Testing on experimental data

The coefficient of determination was used as a metric to measure model perfor-
mance with a synthetic testing subset of the synthetic data when discussing the
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results in Section 4.5.1. In this section, predictions were obtained and compared
against the experimental sample given in Section 4.4.3. Using the experimental
phase-removed acoustic pressure as an input to the random forests, the prediction
was then compared with the true surface parameters from the experiment using
AE given in equation (4.15). The value of AE was then normalised by the actual
surface parameters and expressed as a percentage point, converting it to a relative
error.

Figure 4.12 highlights the relative error from one parameter’s prediction of the
surface amplitude ¢, based on experimental data. For the random forest generated
with the full set of 34 receivers, the maximal AE divided by the actual surface
amplitude rises from below 26% to 50% as the noise increases from 0.1% to 9%. As
the noise level increases above 9%, the relative error decreases under 50% reaching
its minimum 5% at 12% noise. This behaviour is closely matched to the random
forest generated by 20 receivers. For the random forest generated with 15 receivers,
there is a large spike of relative error for noise values under 7% noise, then the error
for these random forests match the error curve of the random forests generated with
20 and 34 receivers. For random forests generated with 10 receivers, the relative
error tends to stay with the other error curves except for noise levels of 10% where
there is a spike in relative error of approximately 300%
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Figure 4.12: The change of relative error values for the random forests generated
with different numbers of receivers and noise for one parameter surface recovery of
the experimental sample.

Figure 4.13 (a) and (b) contain the relative errors of the amplitudes and wave-
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lengths, respectively, for the two-parameter recovery. The random forests generated
with 10 and 15 receivers have relatively high errors in comparison to 20 and 34 re-
ceivers. The wavelength and amplitude relative error for random forests generated
with 20 and 34 receivers are close to the actual wavelength and amplitude values
of the surface, staying mostly under 20% of the AE factored by the actual amplitude
and under 25% of the AE factored by the actual wavelength. There are exceptions
at 9 and 10% noise for random forest generated with 34 receivers and 12% for ran-
dom forests generated with 20 receivers. For over 20% noise, the random forests
generated with 34 receivers also exceed 25% relative error. There is a clear separa-
tion for the random forests generated with 10 and 15 receivers in comparison to 20
and 34 receivers in amplitude and wavelength, with the smaller number of receivers
producing errors that are a factor of 10 larger for the wavelength component.

Figure 4.14 contains the relative error of all three parameters. For the full set
of receivers, the relative error of the recovered surface amplitude decreases from
200% to settle at approximately 50% for random forests generated with 7 or more
percent noise - except for 15 and 17 percent noise, where the relative error is found
within 3-5% range. Interestingly, the random forest generated with 20 receivers has
a lower error curve than the random forest generated with the full set of receivers.
This could be due to an increased fit to the Kirchhoff approximation solution with
the experimental results, as shown in Figure 4.3. For the wavelength parameter,
every choice of the amount of receivers except for 34 receivers yielded a relative
error greater than 10%. The offset AE, divided by the actual wavelength, stayed
below 10% for every receiver combination and noise level. The random forest
generated with 34 receivers kept the lowest AE value compared to the random
forests generated with fewer receivers throughout.

The major problem with the three-parameter model is the prediction of the am-
plitude, where the relative error is high even for the full set of receivers. For the
random forest generated with 34 receivers, the relative error was less than 10% at
only 15% and 17% noise levels and then over 50% at all other noise levels. Al-
though this error is in the sub-millimeter scale, the consistent underestimation can
make the prediction invalid. It is noted that this underestimation could be due to
the difference in scale between the parameters, with the wavelength of the surface
being significantly larger than the amplitude. It is important to note that 15% and
17% noise is close to the estimated deviation between the measurements and the
predictions by the Kirchhoff approximation model calculated in Section 4.4.4 esti-
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Figure 4.13: The change of relative error values for the random forests generated
with different numbers of receivers and noise for two parameter surface recovery of
the experimental sample, separated by parameter: (a) amplitude, (b) wavelength.
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Number of recovered || Amplitude | Wavelength| Offset R*

parameters

Actual parameter 0.0015m 0.05m Om N/A

1 parameter 0.00207m | N/A N/A 0.986

2 parameters 0.00158m | 0.0531m N/A 0.912

3 parameters 0.00142m | 0.0516m - 0.724
0.00194m

Table 4.2: Results from parameter recovery for surface prediction using 15% noise
random forest.

mated with the equation (4.13), which could explain the improved performance of
the inversion at these noise levels.

Figure 4.15 and Table 4.2 highlights the model’s prediction of the surface given
the experimental acoustical pressure in comparison to the actual surface shape at
datasets with 15% noise and with 34 receivers. 15% noise was selected due to the
improved performance in the two and three parameter models and similarity to the
expected error from the Kirchhoff approximation model to the experimental data
sample. The x-limits of the plots ranging from -0.15 m to 0.15 m are defined by the
width of the main lobe in the source directivity pattern given by equation (4.9). The
dominating component of difference to the experimental sample is the wavelength
due to the scale differences in amplitude and wavelength as shown in Table 4.2.

4.6 Conclusion

While training and testing the random forest regression algorithm, it was observed
that for one-parameter datasets, the coefficient of determination is highly favourable,
staying significantly above 0.8 over the range of added noise. For the random forests
generated with the two-parameter datasets, all receiver subsets except for 10 re-
ceivers slowly decay from 1 to just under 0.8. When random forests are trained
with the three-parameter datasets, the coefficient of determination is observed to
be above 0.7 for added noise levels between 0.1% and 15%, except for the random
forest generated with 10 receivers. With 10 receivers, the coefficient of determina-
tion decreases significantly for noise levels above 10%.

The relative error has been used as a metric to evaluate model performance
when predicting the surface parameters from experimental data. It has been noted
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Figure 4.14: The change of relative error values for the random forests generated
with different numbers of receivers and noise for three parameter surface recovery

of the experimental sample, separated by parameter: (a) amplitude , (b) wave-
length and (c) offset.
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Figure 4.15: Surface prediction for 15% noise random forest generated with 34
receivers (colour online).

that the relative error varies significantly between 0 and 100% depending on the
added noise and amount of receivers used in the recovery of parameters. In the
three-parameter recovery, the lowest relative error values for 34 receivers have been
consistently observed when noise levels are at 15% and 17%. It has been noted
that these noise levels are comparable with the estimated discrepancy between the
analytical solution used to generate synthetic data and the experimental results.

The results in this paper have shown that the method works well for a simple
sinusoidal surface and as such stands as an initial proof of concept that can be gen-
eralised to complex surfaces; for example, through Fourier series decomposition.
Another extension to the results of this paper would be to incorporate a measure of
confidence in the model’s predictions, such as Bayesian Inference, which could also
benefit from flexibility and could provide complimentary insights.
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Chapter 5

Data-driven reconstruction of rough
surfaces from acoustic scattering
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Summary

Prior to formulating the results that were used in the previous section, an appro-
priate model needed to be found, known as model selection. The method of model
selection was to first find a region of frequency from the experimental sample cal-
ibration data, that behaved as expected to the Kirchhoff approximation, and then
use that frequency in the data generation. Then random forests, k-nearest neigh-
bors, linear regression, support vector machines, and artificial neural networks were
tested. It was found that the Random Forests performed the best and was consistent
in their prediction, so this was the model used in Section 4.

However, there were a few limitations with the approach. Firstly, only a single
(or a few) frequencies can be selected, this potentially can be an issue due to the
human choice of frequency and due to changes in the environment, the frequency
chosen could be dominated by noise. There was an over-reliance on having a high
quality calibration dataset in order to extract the frequencies that are sufficient
for Random Forest reconstruction. A further limitation of this single frequency
approach was that the prediction given was only a single sample, there was not a
measure of uncertainty from a point sample. A clear way to avoid this is to generate
a cluster of predictions over many frequencies.

The paper presented in this chapter tackles these issues. The acoustic source
for the experiment was white noise, which gives information from 10,000Hz to
51,150Hz in 50Hz bins. Model selection was thus run again on each of the 50Hz
bins in this range to avoid the issues arising from only looking at a single frequency.
The models were selected in this paper to be linear regression, random forests, and
k-nearest neighbours.

The mean-squared error of the Kirchhoff approximation against the experimen-
tal data collected in the experiments were shown, the coefficients of determination
for the models were also shown, where linear regression performs substantially
worse than K-Nearest Neighbors and Random Forests. This is entirely expected, as
the problem is non-linear.

The key figures are the scatter plots and the histograms of the predictions of
each model. Taking a holistic approach using the whole frequency range, the K-
Nearest Neighbours approach is clearly more favourable. This is due to the distinct
single prediction (minus some outliers) that can be observed in the range from
10,000Hz to 30,000Hz. This causes a very large peak to be found in the histograms.
Outside this region, the predictions become random, which can be attributed to the
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limitations of the to the Kirchhoff Approximation model as well as the decreasing
acoustic wavelength.

Following this, the main method used in further Chapters, the Adaptive Metropo-
lis scheme, was introduced. This allowed for the ability to get a full posterior distri-
bution over the parameters. In this case, the adaptive metropolis scheme is a single
frequency based approach that was tested with the three parameter experimental
data used in Chapter 4.

5.1 Abstract

This work investigates the use of data-driven approaches for reconstructing rough
surfaces from scattered sound. The proposed methods stands as alternatives to ma-
trix inversion, which requires a linearisation of the dependence on the surface pa-
rameters. Here, a large dataset was formed from scattered acoustic field, estimated
through the Kirchhoff Approximation. Limiting this work to the reconstruction of a
static surface, K-Nearest Neighbors, Random Forests and a stochastic approach are
compared to recover a parameterisation of surfaces using the scattered acoustical
pressure as input. The models are then validated against a laboratory experiment
alongside methods highlighted in Dolcetti et. al., JSV, 2021. The models are tested
at a frequency that best fits the lab uncertainties, then tested on a broad frequency
range. This scheme provides relatively accurate results in comparison to the ap-
proaches tested. Estimation errors as well as robustness in the presence of noise are
discussed.

5.2 Introduction

Machine Learning has been a highly active section of research in recent years, prov-
ing more than capable in many fields, including acoustics. Bianco et al. [52] high-
lighted some key areas in acoustics where Machine Learning has been used. Namely,
source localisation, bioacoustics and reverberation. However, as the number of Ma-
chine Learning solutions increase, questions are rising about the reproducibility of
results [177, 178, 179].

Typically, when evaluating the performance of a model or method in inverse
scattering, there are some base cases which are tested. For example, Fan et al. [88]
successfully applied deep learning methodologies utilising the Helmholtz equation
in the recovery of the shape and placement of multiple scatterers in two different
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settings, including a seismic imaging setting where the source and receivers were
above the scatterers and receivers were in a linear array. The scatterers were placed
randomly and formed from a number of shapes such as triangles, squares or ellipses.
These results were then verified against positions and shapes that were known. As
well as in Johnson et al. [1] where the surface was created in laboratory, and those
measurements were used to predict the shape of the surface relatively accurately for
different noise levels [1] (Figure 5.1). However, although these results are accurate,
it is only known to be accurate because of the setup used for validation.

The aim of this work is to investigate a further method of knowing if the model’s
prediction is correct. This is done by leveraging the potential benefits that a broad-
band frequency source can bring, more typical regression models (Linear regres-
sion, K-nearest neighbours, and random forests) are trained on every frequency
in a broadband frequency range to estimate consistency in prediction, in order to
give some confidence in prediction. Following this, the Metropolis Markov Chain
Monte Carlo (MCMC) algorithm is shown on a single frequency case, yielding more
information than merely a single point prediction.

The layout of this paper is as follows: Section 2 holds information about the
experiment as well as the properties of the surface tested, section 3 presents the
Kirchhoff Approximation, which is used to generate data for the models, as well as
a discussion on the data processing. Section 4 showcases results and discussions for
the models at a broadband frequency range. Section 5 introduces the Metropolis
algorithm, as well as results and discussions. Section 6 contains the conclusions.

5.3 Experiment Setup

For these calculations, the source and receiver locations were chosen in accordance
with the existing experimental data [74] which was used for validation in this paper.
The source location was at (x;,y;) = (—0.20,0.22) m. The angle ¢, of the source
main axis to the Ox axis was 60 degrees. The receivers were located at a height of
approximately y, = 0.28 m in the y-axis and 34 receivers were distributed evenly
with x, taking values from -0.13 m to 0.53 m in the x-axis, leading to an average
distance between the receivers of 0.02 m.

The real-world data used was collected with 34 1/4” microphones (G.R.A.S.
40PH) and a loudspeaker (Visaton G 25 FFL), arranged with the same geometry
discussed. A sinusoidal surface (with amplitude {; = 0.0015 m and wavelength

¢, =0.05 m) was machined from an aluminium block.
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Figure 5.1: Surface reconstruction using a random forest approach, trained with
15% noise included, as highlighted in [1].

A signal was produced from the source and recorded simultaneously at all mi-
crophones, with a sampling rate of 102.4 kHz. The amplitude at each microphone
was calculated by a Fourier transform applied to 0.02 s segments, and averaged
over 2000 segments using Hann windowing. This yields information beginning at
10,000Hz and ending at 51,150Hz. The data was calibrated by comparing mea-
surements of the acoustic field reflected by a flat surface with the corresponding
Kirchhoff approximation, following the procedure outlined in Dolcetti et al.[74].
The residual difference between the measured pressure field after calibration and
the one predicted by the Kirchhoff approximation is shown in Figure 5.3.
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5.4 Data Generation through the Kirchhoff Approxi-
mation

Defining ¢,(R) as the acoustic pressure field at a point R produced by a source with
co-ordinates (x;, y;), scattered by a sinusoidal rigid surface with profile

(=2, cos[z—“(x n cg)], 5.1)
2

_¢1\C\Q Bzc

———————— e——e——98——9——6——6———
N / A

Figure 5.2: The geometry of the problem where the rough surface is defined by a
function {(x) from equation (5.1). Surface is not to scale.

The Kirchhoff approximation is assumed to be valid if the following condition is
satisfied [36]: .
sin(¢) > W, (5.2)
where h is the local radius of curvature of the surface, k is the acoustic wavenumber
and ¢ is the angle of incidence of the acoustic wave. The validity of this approx-
imation for the conditions investigated in this work was demonstrated in Krynkin
et al. [67, 68]. The Kirchhoff approximation is suitable for the calculation of large
amounts of data, which is required for machine learning problems, while being
fast to compute. With this approximation, the scattered 2D acoustic pressure 1), is

calculated as[68]:

1 % Ax,0)

2kmi J_ +/RiR,
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where, as shown in Figure 6.1, the values R; and R, are the Euclidean distance
from the source at (x;, y;) and receiver at (x,, y,) to a given point (x, {(x)) on the
surface, respectively:

Ry = /0, — )2 + (3, — {(0))2, (5.4)
Ry = /(¢ — X2 + (5 — ()2 (5.5)

R = (x3,Y5), y =d{(x)/dx; q, and q, are the x and y components of q =—kV(R; +
R,) with the gradient Vg = (8/dx,d/3y). The directivity term A(r), the far-field
radiation from a baffled piston is given by [24]:

Ar) = 2J, (kasin(¢ (r) — (—¢, + 1/2)))
~ kasin(¢(r)—(—¢p +7/2))

where a is the aperture, J; is the Bessel function of the first kind, ¢, is the angle of

(5.6)

inclination of the source main axis to the Ox-axis, and ¢ (r) is the angle between the
vector produced from the location of the source and the point r with the Oy-axis.

The phase is then removed from the application of the Kirchhoff approximation
to simulate the scattered field by applying the modulus:

p(R) = [¢,(R)|. (5.7)

Taking into account the receiver locations in an array of M receivers, phase-
removed acoustic pressure used in the random forest algorithm is given by the
following matrix,

p={p(RV)]j=1.M,l=1.N}, (5.8)

where the rows of the matrix are formed from p; (an ensemble containing the ab-
solute array pressure for a given {;), and RY) form the columns (receiver locations
defined with respect to the origin of the Oxy plane).

Further to this, noise can be added to the signal through row-wise operations on
5.8:

151 =P +ela (509)

where €; € €,,¢;; ~ A(0,0) is drawn from a normal distribution independently for
each receiver.
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5.5 Recovering model confidence using a broadband
frequency

A way of attempting to recover a measure of confidence in machine learning pre-
dictions that are not inherently stochastic is to use a broadband acoustic signal.
Therefore, for each frequency one can generate a dataset using that frequency in the
Kirchhoff approximation, then train a model on each frequency. Table 5.1 presents
the frequencies used, as well as the sampling used for data generation. For brevity,
the datasets did not have any noise present in the training, and ¢, was fixed to
be 0. For each of the 824 frequencies tested, the mean-squared error of the Kirch-
hoff approximation against the data observed in the laboratory are shown in Figure
5.3. A comparison was made between random forests, k-nearest neighbours, and
linear regression, implemented through scikit-learn [50]. The metric to measure
model performance was chosen to be the coefficient of determination (%£2) and is
presented in figure 5.4. In order to evaluate the potential confidence factor of this
method, a scatter plot as well as histograms of the recovered parameters for linear
regression, random forests, and k-nearest neighbours are presented in Figures 5.5
and 5.6. The random forests were trained using 300 trees in the forest, and the
k-nearest neighbours were trained with scikit-learn’s default hyperparameters.

From figure 5.4, it is clear that linear regression is not suited to multiple pa-
rameter recovery as expected. For random forest and k-nearest neighbours, the
coefficient of determination decreases as the frequency increases. This could be
due to the removal of phase information, with stronger impact at higher frequen-
cies. The k-nearest neighbours slightly outperforms the random forests, where the
largest deviation is approximately at 35,000Hz.

Figure 5.5 presents the predictions for the model as scatter points compared
to the true parameter values from the experiment. For linear regression (Figure
5.5a), the estimated amplitude parameter and wavelength parameter are much
larger than the actual values, the predictions are consistently bad for all frequen-
cies. For the random forest parameter (Figure 5.5b), the amplitude seems to mostly
be underestimated, and the wavelength parameter seems to deviate from the ac-
tual value following the mean-squared error of the predictions presented earlier in
Figure 5.3. K-nearest neighbours (Figure 5.5c) appears to be the only model pre-
sented in this work that consistently predicts the correct parameters, with only a
few outliers up until near 30,000Hz.
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| | Minimum | Maximum | Num. of samples | Increment |

Frequency || 10,000Hz | 51,150Hz 824 50Hz
Amplitude -0.01m 0.01lm 90 0.0002m
Wavelength || 0.035m 0.15m 90 0.0012m

Table 5.1: Bounds for each parameter in the data generation stage as well as the
number of samples generated within those bounds, for each frequency tested.

This is reflected in Figure 5.6, where only the k-nearest neighbour’s histogram
has an extremely large mode at the true parameter value. For the data used in this
paper, the k-nearest neighbours could be used with a broadband acoustic signal to
get some measure of confidence in prediction.

5.6 Recovering model confidence through single fre-
quency excitation using a metropolis scheme

Instead of training models on each frequency in order to get a measure of con-
fidence, one can also leverage existing stochastic methods on a single-frequency
case. Namely, the Metropolis algorithm.
As € is drawn from a probability distribution, equation 6.9 can be interpreted
as:
P(O1B)) ~ P(5|6)P(6) (5.10)

The left-hand side is referred to as the posterior distribution and allows for distri-
butions to be taken over parameters, P(p;|60) is called the likelihood function, and
P(0) is called the prior distribution and allows for prior belief on the distribution of
parameters. Now that the posterior distribution is found, the main concern is how
to sample from this posterior distribution. The Metropolis algorithm will be used
for this, the Metropolis-Hastings algorithm is described in Algorithm 2.

Note that to get the Metropolis algorithm from Algorithm 2 requires a symmetric
proposal distribution Q(6, | 6”) = Q(8’ | 6,). The choice of the proposal distribu-
tion was an selected from the Adaptive Metropolis (AM) algorithm [164] with a
targeted acceptance rate of 0.2. The prior distribution was assumed to be indepen-
dent for each parameter. The amplitude component of the prior was defined to be
uniform with a lower bound at 0 and an upper bound at y, — 3\ the near-end of
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Figure 5.3: Mean-squared error of the Kirchhoff approximation against the data
collected in real-world experiments.

the far-field for the acoustic source height. The wavelength was also uniform, with
a lower bound of 0.08 and an upper bound of 0.4. The offset was also uniform,
with a lower bound of zero and an upper bound of the wavelength. If the proposal
distribution proposed a sample outside the Kirchhoff criteria, the prior was set to 0.
As € is drawn from a Normal distribution, the likelihood function was defined to be

a multivariate normal:

exp [ —0.5(1p,(R) — B = (4h,(R) — )]
v (2m)* (x|

Where ¥ - the covariance matrix, is a 34x34 identity matrix with € on the diagonal.
For the model, € was taken to be 10% of the mean value from the real-data sample

(5.11)

P(lsz|9):
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Figure 5.4: Coefficient of determination scores for random forests, k-nearest neigh-
bours and linear regression (higher is better).

at 14,000Hz. As the Metropolis algorithm has been applied to one frequency, the
offset parameter is also inferred. Figures 5.7 and 5.8 plot the resulting traces and
corner plot of the obtained distribution over the three parameters for 14,000Hz
source excitation, with 62,000 iterations to the algorithm.

Figure 5.7 highlights the accepted samples from the Metropolis algorithm, af-
ter a burn-in period of 5,000 samples, which is represented in grey with a vertical
line indicating the cut-off point. The burn-in period is used to avoid any skew in
distributions, as the accepted samples tend to the target distribution. The traces
appear to be consistent, and do not jump between two discontinuous heights. Fig-
ure 5.8 present the resulting histograms of the density of each parameter on the

109




Algorithm 2 Metropolis-Hastings Algorithm [180]
Initialise 6,
forn=0,...,N—1do
Sample u ~ U(0,1)
Sample 6’ ~Q(6' | 6,)

. . P(0'|p)Q(6,]6’
ifu<a(b,,0)= mm(l, %) then

0,., =06 > Accept sample.
else
0,1 =0, > Reject sample.
end if
end for

diagonal, and the joint density between two parameters. The resulting densities
are very clear single modal, almost Gaussian, distributions. The wavelength has a
mode exactly at the true wavelength parameter, and the amplitude’s mode is over-
estimated by a millimetre. Interestingly, although the phase is O, the offset’s mode
is at the wavelength parameter, which relates to a phase of 2w. So although the
offset is unexpected, as the surface is periodic the distribution is expected. The
resulting distributions seem to provide more easily interpretable information than
the broadband frequency investigation highlighted earlier.

5.7 Conclusions

To conclude, utilising a broadband acoustic source could be used in order to find
some metric of confidence in the model’s predictions. In this case, the peak mode
given from the K-NN constant prediction at the true parameter values could be
leveraged in order to have a more informed prediction for real-time predictions.
However, this leveraging does not produce “clean" Gaussian-like behaviour, such as
what was observed using the Metropolis scheme. If true stochastic information is
needed, then the Metropolis scheme is highly recommended over the broadband
signal. However, due to the time taken for the Metropolis scheme to run (approx-
imately 1 hour), this would not be able to yield real-time predictions. It is also
important to note that there have been some limitations in creating the datasets for
this paper, the most important of which are: not including noise inside the data,
which limits generalisation, and a limited number of samples, which allows for a
more dense domain knowledge for the model. It is also important to note that
this method, which fits a dataset on every frequency, will be affected by the curse
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of dimensionality [181] where the data required for higher dimensional surface
recovery will require much more data to be able to give any reasonable predictions.
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Figure 5.5: Scatter plots for the parameter recovery at all frequencies for (a) linear
regression, (b) random forests, and (c) k-nearest neighbors. The blue horizontal
line indicates the true parameter values from the experiment.
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Chapter 6

Bayesian reconstruction of surface
shape from phaseless scattered
acoustic data
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Summary

A key problem with the results in Chapter 4 is the lack of ability to gain a measure
of confidence, or error, for a single sample. This was answered with a holistic
approach to the broadband nature of the source excitation in Section 5, where
data can be created for each frequency bin, then a model can be trained on each
frequency and thus N predictions can be made (where N is the number of distinct
frequencies in the frequency range). In the paper presented in this section, the
problem is rephrased such that it can be considered from a Bayesian viewpoint.
This allows the posterior distribution of the parameters to be extracted; in this
instance the adaptive metropolis scheme was used. The application of this was the
main outcome from this section.

This section also investigates higher order problems, where the rough surface
can be approximated by 20 rather than 1 cosine. Alongside the three-parameter
dataset and experimental data, another experimental dataset was collected. This
dataset was a rough surface which could be approximated as a sum of twenty co-
sine waves. The problem is reduced to finding the amplitudes and phases of each
term in the sum by assuming that the wavelengths are known. This is a safe assump-
tion because the surface was broken down by a Fourier series, so the wavelength
component is known.

The Kirchhoff Approximation was extended into the Bayesian framework, and
the appropriate prior distribution, and likelihood function was defined. The prior
distribution was modified such that the Kirchhoff condition of the acoustic wavenum-
ber being much larger than the radius of curvature was included. This is powerful
because assumptions in the model approximation, and the physics, can be encoded
in the prior. For three-parameter estimation, this can be found analytically, and this
is included in this section. For 40 parameters, this is found numerically.

The three-parameter experimental data was used in the Adaptive Metropolis
scheme and was compared to the Random Forest approach from chapter 4. There
are further visualisations of how the phaseless acoustic pressure changes with re-
spect to the trace. The forty-parameter recovery was also showcased for the whole
printed surface of 60 cm. There is a clear thinning of the credible interval and better
agreement to the truth in the region of high insonification. The spatial dependence
on the credible interval gives good information on the region of validity as well as
the regions not to be trusted.
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6.1 Abstract

The recovery of the properties or geometry of a rough surface from scattered sound
is of interest in a wide range of applications, including medicine, water engineering
or structural health monitoring. Existing approaches to reconstruct the roughness
profile of a scattering surface based on sound or electromagnetic wave scattering
have no intrinsic way of predicting the uncertainty of the reconstruction. In an
attempt to recover this uncertainty, a Bayesian framework, and more explicitly an
Adaptive Metropolis scheme, is used in the present work to infer the properties
of a rough surface, parameterised as a superposition of sinusoidal components.
The Kirchhoff Approximation is used in the present work as the underlying model
of wave scattering, and is constrained by the assumption of surface smoothness.
This implies a validity region in the parameter space which is incorporated in the
Bayesian formulation, making the resulting method more physics informed than
data-based approaches. For a three-parameter sinusoidal surface and a rough sur-
face with a random roughness profile, the experiments were conducted to collect
scattered acoustic pressure data. The models were then tested on the experimental
data. The recovery highlights regions where the method is confident, and could be
used as a method to identify uncertainty.

6.2 Introduction

Non-intrusive acoustic inversion to recover the elevation or other properties of
rough surfaces is of great interest and an active research field [182, 183, 184, 185],
especially in the setting of river monitoring, where intruding the flow could change
the properties significantly. A numerical method based on the boundary integral
equations and Kirchhoff Approximation to reconstruct the shape of a scattering sur-
face was outlined in [67, 68]. This approach was found to be highly sensitive to
uncertainties, partly because of the strong dependence on the phase of the scattered
signal [74]. The errors in the inversion results were associated with the underde-
termined and ill-posed nature of the problem [74]. The range of applicability in
reconstructing a surface is also limited by the validity of a partial linearisation of
the scattering problem, which is required in order to make the numerical inversion
feasible. The method was expanded to a multiple frequency approach [74], and a
machine learning approach utilising random forests [186]. However, although the
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performance of these methods have been promising, the statistical measure of the
uncertainty is an open question.

The Kirchhoff Approximation is still an active part of reconstruction efforts, as in
[167]. Other methods have risen in inverse scattering, especially in the near-field,
such as recovering the scattering coefficients [168] [169].

Bianco et al. [52] presented machine learning in the context of acoustics, with
key examples such as source localisation. Similarly, Andrieu et al. [98] intro-
duced Markov-Chain Monte-Carlo (MCMC) methods, providing key theoretical un-
derstanding and algorithms for many methods, including Metropolis-Hastings and
Sequential Monte-Carlo.

Bayesian methods have recently gained popularity in the field of acoustics, with
applications such as recovering parameters from the seafloor using acoustic back-
scattering [99], estimation of rough surface elevation using a Bayesian compressive
sensing [100], and for acoustic holography [101] [102]. Li et al. [103] applied
a Metropolis-Hastings (MH) MCMC scheme in order to reconstruct the locations
and intensities of acoustic sources from near-field and far-field data. The numerical
results using Metropolis-Hastings for one of the examples analysed by Li et al. are
“close to the exact ones" [103], and improvement is shown in other examples.

Application of a Bayesian approach for acoustic scattering with phaseless data
was proposed by Yang et al. [104, 105]. In Yang et al. [104], the location and shape
of a sound-soft scatterer were reconstructed. The approach was tested on shapes
such as kites, disks, and line cracks with favourable results, noting that the number
of parameters being recovered from the MCMC algorithm was no larger than 6. In
Yang et al. [105], the method was extended to use a Gibbs sampling method in
order to recover more parameters, with phaseless data and a point source excita-
tion. Palafox et al. [106] also used a Bayesian formulation in order to reconstruct
the shape of a kite, through a reduction of the problem by a Fourier-based rep-
resentation using a t-walk [107]. The effective dimension method was presented
where, given a parametric representation of the solution of the inverse problem,
the normalising constant can be approximated. Bayesian methods have also been
applied in inverse problems in other fields, such as for seismic waveform inversion
[108], and automatic motion analysis in tagged magnetic resonance imaging scans
[109][110]

Application of the adaptive Metropolis-Hastings scheme in relation to acous-
tical inverse problems can be seen in Niskanen et al. [111], where the John-
son—Champoux-Allard-Lafarge model was used in conjunction with a Metropolis-
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Hastings in order to recover the model parameters of a homogeneous rigid frame
porous media. The joint probability densities verified that the least-squares solu-
tion was close to the Maximum a posteriori estimation from the MCMC method.
Konarski et al. [187] used a similar method, to recover properties from aluminium
foams.

This work re-frames the Kirchhoff Approximation into a Bayesian viewpoint, al-
lowing for well-developed sampling schemes such as the Adaptive Metropolis [164]
algorithm to be used to infer the uncertainties of the recovery. Further, the rough
surface is parameterised into a sum of sinusoidal functions, thus potentially reduc-
ing the number of parameters to recover, as well as allowing the use of the validity
criterion of the Kirchhoff Approximation as a constraint. A three-parameter sinu-
soidal surface presented in [1] is used for verification, as well as a random Gaussian
elevation profile used in [74]. The latter is parameterised from a specific Fourier
decomposition, where the unknowns of the problem are the amplitude and phase
values of a number of sinusoidal components over a fixed wavelength range.

The paper is organised in the following way: Section 6.3 presents the parame-
terisation method of rough surfaces and the theory for the Kirchhoff Approximation.
Section 6.4 proposes a formulation within the Bayesian framework, the Metropolis-
Hastings algorithm, and the approximation for the prior with three-parameter sur-
faces. Section 6.5 presents the information on the acoustic experiment setup for
the three-parameter and the recovery of a 40-parameter rough surface. Section 6.6
presents the results for the recovery of the three-parameter surface, and random
40-parameter rough surface with a flat surface as an initial condition. This is fol-
lowed by discussions on efficiency of the inversion algorithm. Section 6.7 concludes
the report.

6.3 Forward model of acoustic scattering

The goal of the work is to recover the shape of a rough surface from scattered
acoustic pressure. In order to reduce the number of parameters needed to infer
and approximate the shape of the surface of interest, this work investigates surfaces
whose shape can be described as a superposition of harmonic components. Defining
N harmonics of the surface through parameters 6 = {6;/j = 1,...,3N} a surface
profile can be expressed as:

& 2mx

{(x,0)= Z 03,41 COS (— + 93i+3) (6.1)
i=0

63i+2
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Figure 6.1: The geometry of the problem where the rough surface is defined by a
function {(x) from Equation (6.1). Surface is not to scale.

The acoustic signal was recorded at a set of M microphones with coordinates given
by RD = {(x{, y)j=1,...,M}.

The Kirchhoff Approximation (KA) was chosen due to its ability to represent
the scattered acoustic field in an explicit form, obtained with the assumption based
on reflections from a tangent plane. This closed form enables fast calculations, as
opposed to the full boundary integral equation solution, for instance. The suitabil-
ity of this approximation for the conditions analysed in this paper was presented
in Krynkin et al. [67, 68]. The problem is stated in two-dimensional Oxy semi-
infinite domain, assuming a uniform solution in the out-of-plane direction and time
harmonic dependence exp(—iwt).

The domain is bounded by the rough surface {(x, 6) defined with Equation (6.1).
The surface {(x, 6) satisfies the Kirchhoff Approximation condition given by [36]

1
(kh)1/3 ?

where h is the radius of curvature of the surface, k is the acoustic wavenumber, and

sin(¢) >

(6.2)

¢ is the angle of incidence of the acoustic wave. Assuming separation of variables,
with the condition (6.2) satisfied and for a source with a given directivity pattern
at a given point on the surface A(x, y), the scattered acoustic pressure 1, can be
expressed in the following Equation [68]:

1 AT p (KR, + Ry)) (g, — quy)dx, (6.3)

2kmi | +/RiR,
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where, as shown in Figure 6.1, the values R, and R, are the Euclidean distances
from the source at (x;,y;) and receiver at (x,,y,) to a given point (x,(x,0)) on
the surface, respectively:

Ry = /(x;—x)+(y —(x,0))7, (6.4)
Ry, = /(x;—x)%+(y,—(x,0))>. (6.5)

In Equation (6.3), R = (xy,Y,), ¥ = d{(x,0)/dx; q, and q, are the x and y com-
ponents of q = —kV(R; + R,) with the gradient defined by the nabla operator in
2D, Vg =(0/dx,8/dy). The directivity term A(x, y) is defined in this work as the
far-field radiation from a baffled piston, which is given by [24],

Alx,y) = 2J,(kacos(¢(x,y) + ¢o))
YT T kacos(@(x,y) + bo)

where a is the aperture, J;(-) is the Bessel function of the first kind, ¢, is the angle of

(6.6)

inclination of the source main axis to the Ox-axis, and ¢(x, y) is the angle between
the vector defined by the location of the source and the point (x, y) with the Oy-
axis.

Following the application of the Kirchhoff Approximation to simulate the scat-
tered field, the phase is removed from Equation (6.3) through the application of the
modulus:

P(R,0) =y (R,0)|. (6.7)

Taking into account the receiver locations in an array of M receivers, phase-removed
acoustic pressure is given by the following matrix,

p(0)={p(RV,0)|j=1,...,M}, (6.8)

where the matrix is formed from p (an ensemble containing the absolute array pres-
sure for a given surface profile {), where RV form the columns (receiver locations
defined with respect to the origin of the Oxy plane).

The Kirchhoff Approximation model is deterministic, therefore one set of surface
parameters maps to a given sound pressure field. However, in practical applications,
noise is present in measured data. It is proposed to modify the solution of the
Kirchhoff Approximation via additive noise, calculated as:

p(0) =p(0) +e, (6.9)

where € = ¢;|j=1,...,M, with ¢€; ~4(0,0) is drawn from a normal distribu-

tion independently for each receiver with mean 0 and standard deviation o.
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6.4 Inverse problem

6.4.1 Bayesian Framework

The observation model in Equation (6.9) is here considered in the Bayesian frame-
work. As e is drawn from a probability distribution, Equation (6.9) motivates:

2 (0|p) o< 2 (p|0)2 (). (6.10)

The left-hand side is referred to as the posterior distribution and allows for distribu-
tions to be taken over parameters 6, &2 (p|60) is called the likelihood function which
is the probability of the observed acoustic pressure given the model parameters,
and #(0) is called the prior distribution and encompasses prior belief on the dis-
tribution of parameters. In the present paper, the prior distribution is defined from
the Kirchhoff Approximation condition, as detailed further below.

With the Gaussian noise in the observation model (6.9), the likelihood 2 (p|0)
can be written as:

2 (310) = fun(P,0,%) (6.11)

with
exp{—[p—p(6)]"='[p—p(6)]/2}

VACZNY

where f,,y is a multivariate Gaussian probability density function and ¥ is a co-

fun(P,0,%) = (6.12)

variance matrix representing the error ¢ added to each receiver. In the present
work, the observed acoustic pressure is assumed uncorrelated across receivers and
therefore the covariance matrix is assumed to be diagonal.

6.4.2 Posterior sampling algorithm

The algorithm used for this work is the Metropolis-Hastings (MH) algorithm, where
the proposal distribution is obtained adaptively to target a specific acceptance rate
[112], [164] which helps navigate the proposal widths when the number of dimen-
sions is high. The proposal distribution determines the probability of moving the
samples in the trace, and the construction is given in Haario [164]. A key piece of
literature in understanding various MCMC methods, including the method used in
this work, is given in [188]. As an initial state the surface is considered flat, both
in the three-parameter and 40-parameter problems. For every iteration, a uniform
random number is generated in order to randomly accept or reject the sample. The
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next sample is drawn from the proposal distribution. The posterior is then cal-
culated for the current sample, as well as the proposed sample, and the ratio is
calculated. If the posterior of the proposed sample is greater than the posterior of
the previous sample, then the value is greater than 1, guaranteeing that the pro-
posed sample is accepted. If the ratio is greater than zero and less than 1, then the
uniformly generated number is used to add the Monte-Carlo element. Typically, the
collection of accepted and rejected samples is referred to as the trace, and the trace
tends to settle to the required behaviour. Removing that transitional period at the
start of the trace is referred to as removing the “burn-in” period. The reader can
find a more detailed description of the Metropolis-Hastings algorithm in [189].

6.4.3 An approximation for three-parameter recovery

For three-parameter recovery, the Kirchhoff condition (6.2) only depends on the
surface amplitude 6,, the surface wavelength 6,, and the acoustic wavelength from
the source excitation A. For the range of parameters that this paper is dealing with,
the bounds of surface wavelength for satisfying the Kirchhoff condition for a given
source excitation frequency at a given acoustic wavenumber, surface amplitude, and
angle of incidence can be approximated with the following expression [Appendix
Al:

(2m)?
0, > \ ksin®(¢)

The surface amplitudes 6, is further restricted by constraining the maximum

160;] = B. (6.13)

amplitude to be y, —3A as an empirical bound for the acoustic far field. Assuming
a maximum allowed wavelength value 6, ., say, this gives a clear closed region of
satisfied parameters in amplitude-wavelength space, allowing for a change in the
prior (assuming uniform prior):

2(0)=f(0,,0,)U(0,2m), (6.14)

where (0,, 6,) is the conditional uniform distribution of 6, and 6, over the domain
of satisfied parameters given by Equation (6.15).

_)/5—3}, ez,max
B
0

otherwise.
(6.15)
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U is the uniform distribution for the phase between 0 and 27. Therefore, for
the three-parameter case, the prior can be evaluated analytically. For higher dimen-
sional cases, the Kirchhoff condition needs to be evaluated numerically, for every
step in the MCMC scheme. In the case of the 40 parameter recovery for this re-
search, the prior on the amplitude and phase parameters are drawn from a uniform
distribution, with exception when the Kirchhoff criterium fails. In the case when
the Kirchhoff condition fails, the prior is set to zero.

It should also be noted that to measure the accuracy of the recovered surface
parameters, two types of mean surfaces are used in this paper. For the first type, the
mean surface (referred to as (x, 6)) is found by substituting mean 6 of surface pa-
rameter samples 6 obtained from traces of Metropolis-Hastings scheme into Equa-
tion (6.1). The second type of the mean surface (referred to as {(x, 0)) is found
by taking the mean of all surfaces recovered from traces of Metropolis-Hastings
scheme with Equation (6.1).

6.5 Data collection

In order to validate the surface reconstruction methodology, scattered acoustic pres-
sure was recorded by a set of 34 1/4” microphones (G.R.A.S. 40PH) above two
acoustically rigid surfaces with known profiles seen in [74]. One surface profile
was milled on the upper face of an aluminium block with horizontal dimensions
0.55x0.35 m?. The profile was sinusoidal along the longer dimension, with a wave-
length of 50 mm and a peak-to-peak amplitude of 3 mm, and was constant along the
shorter dimension. The second profile was milled onto a block of medium-density
fiberboard (MDF) with dimensions of 0.6x0.4 m?. This profile was generated via
Fourier synthesis[190] as a sum of cosines as in Equation (6.16):

N/2

Cap(x) = > /20(K)AH(0,1) cos (K,x — 2% (0,2m)), (6.16)
i=0

where A4(0,1) indicates a sample from a normal distribution, and %(0,27) a sam-
ple from a uniform distribution in the interval [0, 27]. ¥(K;) represents the surface
power spectrum as a function of the wavenumber K; = i27/L. The amplitude spec-
trum varied like a power function of the wavenumber, ¥(K;) o< K; %, which is rep-
resentative of natural surfaces such as the water surface or the bed surface of rivers
or of the oceans[124, 191, 192, 193]. Here, the surface had a = 5, in agreement
with experimental observations of the water surface of open-channel flows[18].
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To ensure the integrability of the spectrum, a saturation range at low wavenum-
bers K; < 2m/0.05 rad m~! was introduced following Stewart et al. (2019),[193]
i.e., ¥(K; < 2m/0.05) = ¥(27/0.05). The spectrum had a small-scale cutoff at
K; > 2m/0.01 rad m™'. The standard deviation of the random surface was equal
to 1 mm and satisfied the Kirchhoff condition.

A signal was produced at 14 kHz with a loudspeaker (Visaton G 25 FFL), ar-
ranged with the same geometry described in Johnson et al. [1], and recorded
simultaneously at all microphones, with a sampling frequency of 102.4 kHz. The
signal amplitude at each microphone was calculated by a Fourier transform applied
to 0.02 s long segments of the signal using a Hann window, and then averaged over
2000 segments. The data was calibrated in situ by comparing measurements of the
sound field reflected by a flat surface with the corresponding prediction calculated
numerically, following the procedure outlined in Dolcetti et al.[74].

6.6 Results

6.6.1 Three-parameter recovery

For the three-parameter surface, the Adaptive Metropolis scheme was used, run-
ning for 100,000 samples. The burn-in period was set at 10,000 samples, and the
covariance matrix was updated every 20 samples. o = 0.15 was measured as noise
standard deviation. Due to the covariance matrix and the adaptive scheme, the
width of the proposal distribution was adapted to allow a 20% acceptance rate.

Figure 6.2 presents a corner plot generated with the method outlined in Foreman-
Mackey[194]. The leading diagonal presents a histogram representing the density
for each parameter, with the vertical lines representing the 68% credible interval.
The scatter plots represent the 2D marginal probability distributions. The wave-
length parameter is highly accurate, with approximately 0.1% error from the true
wavelength at the mean of the distribution. The amplitude is overestimated by 0.5
mm, and the spread is high.

Figure 6.3 presents the comparison between the surface obtained from the con-
ditional mean of each parameter in the trace, the mean of all the surfaces generated
from the distribution of parameters, and the 68% credible interval. For the case of
the surfaces generated from the mean of each parameter in the trace (dashed line
in Figure 6.3), the mean amplitude is overestimated, and the wavelength - in the
region of the most insonified area - matches favourably. Outside this region, the
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Figure 6.2: Corner plot of the distribution of the traces for the amplitude, wave-
length, and phase. The subtitles contain the mean and the 68% credible interval
bounds.

accuracy due to the wavelength begins to decrease. This behaviour is replicated in
the credible interval, where the shaded region widens further away from the region
of high energy.

For the case of the mean from the collection of surfaces generated by the param-
eters in the distribution, the amplitude decreases as the x coordinate increases, this
is due to the variation in wavelength as x increases.

Figure 6.4 presents the acoustic pressure from 1000 random samples from the
trace. Investigating the pressure, the peaks in the absolute pressure are well mapped,
as the random samples from the trace converge to the peaks. The regions where
the absolute pressure does not change much, such as in regions between receivers
10 and 15, contain more uncertainty, which can be seen from the widening of the
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Figure 6.3: Surface elevation of the three-parameter surface. True geometry (solid

line); surface {(x,0) generated from the conditional mean of MCMC parameter

samples (dashed line); mean of all surfaces {(x, 6) obtained from MCMC parameter

samples (dash-dotted line); 68% credible interval (shaded region).
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Figure 6.4: 1000 random samples of the trace (shaded region), plotted against the

real data (dashed line) for the three-parameter surface recovery
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traces. The traces appear to be certain on the results at the tail end of the receivers,
but do not match the experimental pressure at receivers 25-28. Investigating the
trace values without considering the experimental true pressure, it can be seen the
proposed receiver configuration causes significant uncertainty. This could indicate
that a change in the receiver configuration is needed.

In order to benchmark the performance of this method for the 3 parameter re-
covery, the results from Johnson et al. [1] are used for comparison. With a random
forest recovery trained on the three parameters with 15% additive Gaussian white
noise, the results for the amplitude, wavelength and offset are 0.00142,0.0516,—0.00194[1].
The offset for the proposed method at the mean is approximately —0.00093, the off-
set and wavelength have improved with the method proposed in this paper. The
mean amplitude has performed worse than the amplitude presented in Johnson et
al. Nevertheless, the uncertainty bounds contain the result from the random for-
est. The further knowledge to be gained from the uncertainty bounds over the
parameters is useful in showing which parameter causes the most uncertainty, the
amplitude 6,.

6.6.2 40-parameter recovery

To further test the adaptive Metropolis scheme, the scattering of the acoustic signal
was studied over the surface referred to as second surface profile in Section 6.5.
For the computation and the prediction of the parameters, the rough surface of the
second profile was approximated as a further truncation from Equation (6.1) rank
ordered by the largest wavelength to the smallest wavelength to reduce the num-
ber of parameters to recover, while still capturing the original rough surface. This
means, for the MCMC, the wavelengths were given (see Appendix B). In order to
select a viable truncation, the relative root-mean-square error (RRMSE) of the trun-
cated surface against the true surface normalised by the standard deviation of the
true surface, as well as the RRMSE of Kirchhoff Approximation obtained with the
truncated surface against KA solution based on the true surface normalised by the
standard deviation of the KA for the true surface were used to evaluate the differ-
ences in comparison to the second surface profile. The results are shown in Figure
6.5. It is observed that the KA error exceeds 10% and increases rapidly at trun-
cations below 20 terms. Therefore, a truncation of 20 terms was selected, which
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