
University of Sheffield

Rough Surface Reconstruction with
Machine Learning Methods

Michael-David Johnson

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

The University of Sheffield

Faculty of Engineering

Department of mechanical engineering

Submission Date

Autumn 2023



Dedicated to my Nan,

thank you for making me the person I am today.



Acknowledgements

Firstly, I would like to acknowledge my supervisors, Dr. Anton Krynkin

and Dr. Artur Gower. Anton, I highly appreciated working with you

throughout my years as a PhD student, the countless hours standing

over a whiteboard will be missed greatly. Artur, thank you for being a

good friend, and for keeping me sane. I would also like to acknowledge

all the people that I have collaborated with. Special mention to Jacques

Cuenca, Timo Lahivaara, Fabio Muraro, Simon Tait, and Giulio Dolcetti.

Thank you all for the great discussions and patience that all of you have

had with me, you truly have made my experience throughout my PhD

an enjoyable one.

I would like to thank my friends and family who have supported me

throughout my PhD, especially due to the extra strain that COVID caused

on all of our health. I would especially like to thank Joanna and the

entire Watts household. Your care, sympathy, and willingness to listen

has been fundamental in giving me the support to be able to complete

this research.



Abstract

This article-based thesis consists of a collection of four journal papers

(one accepted, one submitted pending reviews, two in the process of

submission), and one conference paper (accepted and presented at In-

terNoise 2022). Each article relates to a chapter written and formatted

in manuscript form. The purpose of this work is to investigate the valid-

ity of using Machine Learning to deal with recovering parameters non-

intrusively. These parameters range from estimating the amplitudes,

wavelengths and phases for direct surface reconstruction for static sur-

face recovery, and the average surface velocity, and water depth for dy-

namic river free-surfaces. This is done both acoustically on a rough

surface, and optically on dynamic rough surfaces. Treating the inverse

problem with a machine learning approach allows for further analysis of

the problem. For example, getting spatial uncertainty for a given recon-

struction, or analysing the behaviour of the trained model as opposed

to more traditional approaches. Within this thesis, the Kirchhoff Ap-

proximation is used as the underlying acoustic scattering model due to

the types of surfaces investigated, the accuracy of the model, and the

fast computation time. This model is then used to generate the data

required for training. Further to this, the frequency-wavenumber spec-

trum of dynamic free-surface fluctuations of shallow turbulent flow is

exploited.

Firstly, a random forest is trained on data generated from the Kirchhoff

approximation in order to recover parameters of a harmonic surface at a

given acoustic frequency. It is shown that this generalises well to unseen

surfaces, and out-competes methods that utilise the small amplitude as-

sumption. Different metrics are presented to show the applicability of

the random forest framework over different source incident angles, and

source frequencies.



An acoustic source with a broadband nature was exploited to get some

estimation of prediction error. For each frequency, data was generated

and models were trained. This allowed for the spread of predicted pa-

rameters to be estimated.

In order to recover a wider range of rough surfaces, as well as to get

statistical information, a stochastic method named Metropolis-Hastings

was introduced to the problem. This competed well with the random

forest predictions for the single harmonic, while giving spatial uncer-

tainty. This was extended to a more complicated roughness profile con-

sisting of a summation of many harmonics at different wavelengths. It

was found that the profile was recovered well in a region of approxi-

mately 33% of the full profile. In this region, the credible interval de-

creased substantially. This fact can be used to infer the region of interest,

without needing to know the underlying truth of the surface.

Finally, the recovery of the velocity and the depth of shallow-turbulent

flows through the application of Metropolis-Hastings and the frequency-

wavenumber spectrum to series of images of the flow surface, obtained

in laboratory and in-field experiments, was attempted. First, the surface

frequency-wavenumber spectrum recovered from a Digital Image Corre-

lator was analysed. This, and data from a CCTV camera over the River

Sheaf, was used in the Metropolis-Hastings algorithm. It was found that

the velocity was well recovered, and the resulting distributions of the

velocity were useful in the extraction of reliable credible intervals. How-

ever, the method struggled to recover the depth.

The work presented in this thesis provide an approach to increase the

accuracy of recovery from static surface acoustic recovery, while also in-

cluding a highly informative representation of uncertainty in the spatial

domain. Further, this thesis paves the way in new inversion methods

using cameras to get information such as the mean surface velocity and

can be used to automatically extract the gravity-capillary waves from the

captured video leaving a representation that is ready to be exploited.
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Chapter 1

Introduction

Rivers provide a freshwater resource that sustains ecosystems, supports biodiver-

sity, and serve as vital sources for agricultural, industrial, and domestic water re-

quirements. The United Kingdom, along with many other countries, faces unprece-

dented challenges arising from changing climate patterns, population growth, and

increased urbanisation. These factors have placed immense pressure on the nation’s

river systems. Along with providing an essential resource, rivers represent a hazard

due to their potential to flood: floods are one of the leading causes of naturally

occurring damage to property in the United Kingdom. Floods can occur in win-

ter due to the presence of atmospheric rivers [3] or due to extreme rainfall events

[4]. During the winter of 2015/2016, the estimated cost due to property damage

and effects on business by Storm Desmond was “likely to be >£1.3 billion" [5]. In

November 2019, estimated insurance payouts as a consequence of flooding “would

reach £110 million" [6]. The prediction and prevention of floods is an area of active

research [7] [8] [9] since, clearly, it is of great importance to mitigate damage as

much as possible from these events. The first step in understanding river behaviour

is developing an observation network, after which the key properties of the systems

can be monitored and models developed to predict future behaviour. These mod-

els must be generic enough to cope with the changing behaviour of rivers due to

climate change.

A key metric that is used in order to understand the flow of water in rivers and

seas is the discharge, which is a measure of how much water flows over a given

volume. For rivers, this can be calculated as [10]:

Q =
∑

i

Bi DiVi. (1.1)
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Thinking of this in the context of the trapezoidal method of numerical integra-

tion Bi can be seen as the width of a rectangle such that the sum of all Bi is the

width of the river, and Di is the average depth in this band. Vi is then defined as the

depth average velocity.

When using non-contact sensing measurements Vi cannot be found directly. In

this case it is inferred from the surface velocity, Vsi, using the relation:

Vi = αVsi. (1.2)

Discharge has been used to monitor a vast range of conditions, one such example

is [11] which investigated the river discharge into the Arctic Ocean. It has also been

applied to other oceans around the world, yielding reference texts such as [12].

Discharge rates are affected by climate change [13] so it can be used as a metric for

understanding and mitigating the effects of climate change.

Getting a measure of discharge is fairly straightforward, first, the width needs

to be measured, then the depth and finally, the depth averaged velocity. Tradition-

ally, the sensors that are used in order to calculate this are installed underwater.

There are issues with this approach, because underwater maintenance is needed,

and there is a cost to that. Because they are underwater, there is a limit to where

they can be located, due to river depth and/or width. This causes a spatial sparsity,

and can be dangerous for personnel [14]. In order to measure outside the underwa-

ter stations, Acoustic Doppler Current Profiler boats [15] can be moved along the

surface of rivers, but there are limitations again in depth ranges and these cannot

be deployed in dangerous conditions.

It is clear that a noncontact approach is favourable. Avoiding the need to be

in the water allows for cheap, rapid deployment along the majority of the system.

Such a density of sensors is essential in order to drive high data based analysis. A

very popular method for measuring surface velocity is Particle Image Velocimetry

(PIV), of which an excellent reference text is [16]. PIV relies on particles - known

as tracers - either artificially introduced or naturally occurring, to move with the

surface velocity. These features are then tracked via video and various methods are

used to estimate velocity. There are issues with this approach, mainly the complica-

tions arising from the need for tracers: artificial tracers allow for good coverage but

entail environmental concerns. Naturally occurring tracers are uncontrolled and so

cannot guarantee consistent data coverage.
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An attractive alternative to PIV is to analyse the structure of the flow directly,

this can be done acoustically or optically through the investigation of the frequency-

wavenumber spectrum. This type of analysis has been used extensively in analysing

ocean waves, with reference texts such as [17]. However, due to the effects of

turbulence and the presence of gravity-capillary waves, this has not been applied

often up to now for rivers and other shallow watercourses. Recent work [18] has

shown that in certain conditions the turbulent structures can be approximated to

move proportionally to the mean flow velocity. In these conditions, a frequency-

wavenumber spectrum can be used to analyse the flow of the river.

The work in this thesis comprises two main problems, both looking at river

dynamics analysis as a rough surface reconstruction problem. First, a simplification

is made of the dynamic rough surface where motion is not taken into account. The

essence of this problem is finding the elevation of a rough surface comprised of a

superposition of multiple harmonics. In this case, the surface is probed using a non-

contact airborne acoustic approach, and the elevation estimated from the scattered

field. Secondly, dynamic rough surfaces are investigated, in which case it is the

velocity and depth which need to be recovered. This problem is probed using an

airborne optical approach: the parameters of interest are recovered from analysing

CCTV footage, and the reconstruction from a Digital Image Correlator. Both of these

represent "inverse problems" since they are trying to find the input parameters given

observed data.

Inverse problems are typically difficult to solve. For example, in acoustic scatter-

ing, usually one has to invert a Fredholm integral equation of the second kind [19],

or further simplifications have to be made in order to generate a linearised system to

solve numerically. Machine Learning is an attractive alternative due to its ability to

handle complicated inversion, as has been demonstrated with image reconstruction

from MRI images [20] [21]. A clear benefit of Machine Learning is that no further

approximations need to be made to the numerical models: the approximations are

left to the Machine Learning algorithm. In fact, issues that typically are a prob-

lem in standard optimization approaches can be leveraged to ascertain uncertainty,

through the application of Bayesian approaches such as Markov-Chain Monte Carlo

and Gaussian Processes. This measure of uncertainty yields substantially more in-

formation to the implementer, allowing for interpretable measures of confidence in

the prediction, even when there is no labelled data to test against.
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1.1 Aims and Objectives

The main aim for this thesis is to investigate and build a platform for the application

of deterministic and stochastic data-driven / machine learning based approaches for

rough surface reconstruction with the aim of inferring characteristics of the dynamic

free-surface from shallow turbulent flows. This large task has been subdivided into

the following objectives:

• To investigate the validity of data-driven machine learning based approaches

for the inverse problem of acoustic scattering from a rough surface, and com-

pare against more standard approaches.

• To provide a measure of uncertainty in the reconstruction, allowing for rea-

sonable interpretation for when the model is accurate or not.

• To extend this inversion methodology to reconstruction of a dynamic rough

surface i.e. the free-surface of rivers.

• Validate against experimental data.

1.2 Thesis Layout

The thesis is presented in a publication-based format, where each chapter relates

to a published work or a publication in the process of submission. Supplementary

data can be found in the chapter under the heading ‘Supplementary data’ or in an

appendix when necessary.

Chapter 2 provides a literature review on the topic of inverse problems, with

some emphasis to inverse acoustic scattering and the application of machine learn-

ing for this problem. Further to this, Markov-Chain Monte Carlo (MCMC) schemes

will be investigated as well as free-surface wave theory.

Chapter 3 presents the relevant theory that underpins the majority of the work

presented in the thesis. Starting with the Navier-Stokes equations and the Helmholtz

equation, the Kirchhoff-Helmholtz integral formula is derived with particular inter-

est in the application of the Green’s second identity. The Kirchhoff (or tangent

plane) approximation is derived, this model is the main acoustic scattering model

used throughout the thesis, therefore there is some empirical analysis on the sen-

sitivity to surface roughness changes the model has. Following this, relevant free-

surface water wave phenomena are presented, the gravity-wave dispersion curve is
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derived from separation of variables with Laplace’s equation and Bernoulli’s equa-

tion. The dispersion curves underpinning shallow-turbulent motion i.e. as can be

found in rivers is presented and a sensitivity analysis to the parameters is shown.

Following this, random forests, and the Metropolis-Hastings are presented.

Chapters 4-6 present papers on the inversion of surface roughness with respect

to the application of using random forests on single frequency source excitation.

This is tested with experimental data in Chapter 4. Chapter 5 investigates how

a broadband signal can be leveraged to get some information about model error.

Chapter 6 uses an adaptive Metropolis-Hastings scheme to recover more compli-

cated experimental surfaces while giving very clear spatial information about the

model’s credible region.

The thesis then proceeds onto investigating if parameters from moving rough

surfaces, generated from shallow-turbulent flow, can be recovered. Chapter 7 presents

the analysis of the frequency-wavenumber spectrum recovered using a Digital Im-

age Correlation (DIC) based approach. This gets a space-time estimate of the free-

surface elevation directly from the tracers, and investigates the viability of fitting

the advection dispersion curves and the gravity capillary dispersion curves. Chapter

8 aims to link the methodology provided in Chapter 6 to this new problem. Given

the DIC measurement, and the measurements of a real river from CCTV footage, can

MCMC be used to get an estimate on the posterior of the velocity and the depth?

Chapter 9 presents the conclusions of the thesis, as well as highlighting future

work in this area.
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Chapter 2

Literature Review

This chapter aims to present the literature relevant to rough surface reconstruction

methods using machine learning. It begins generally, then focus onto the specific

research question as the literature review develops. It will evaluate previous meth-

ods, and discuss the issues and approximations used. By the conclusion, the gap in

the literature and the novelty of this work will have been presented. It is important

to note that this is not the only literature review present in the text: chapter specific

literature reviews are provided in each chapter. That is, in Chapter 4.2 the research

surrounding inverse acoustic scattering for a rough surface is discussed with a focus

on recovering the phaseless acoustic pressure. Chapter 6.4 presents an introduction

of Bayesian methods for the acoustic scattering problem, in order to reframe the

problem of this work as a Bayesian one. Finally, in Chapter 8.2 the issues with re-

spect to shallow turbulent flow are presented, as well as the shortcomings of PIV

measurements and the transition to frequency-wavenumber spectra.

This literature review begins with the study of acoustics and some general uses,

before moving on to discuss in more detail the specific use case that underpins

this work. It initially focuses on scattering theory, introducing this in a general

sense then introducing the Tangent Plane Approximation (also known as the Kirch-

hoff Approximation) which is pivotal to this work. It moves on to look at inverse

problems in general, followed by inverse problems in acoustic scattering. The gen-

eral concept of Machine Learning is introduced briefly, before looking at the use

of Machine Learning for inverse problems, focusing on acoustic inverse problems.

Stochastic Methods and Markov-chain Monte Carlo is introduced and examples in

acoustics are presented. Finally, the theory of free-surface water waves are intro-

duced with a focus on dispersion relations, which underpin the latter sections of

this work.
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2.1 Acoustics

Sound has always been a crucial means of communicating information, not least

since it was the first major communication method used by humans. Acoustics,

that is the study of sound, is an important topic in many fields, reference texts

include [22] [23], [24]. Morse [24] is an essential text in the understanding of the

derivation of wave motion, culminating in acoustic motion, radiation, and almost

everything of interest to acoustics.

Beyond short distance interpersonal communication, acoustics is used for longer

distance transmission, probing of structures and room design, among other things.

These each have their own challenges, [25] is a reference book on using acoustics

for long distance communication underwater, where radio waves are ineffective and

the salinity, density and temperatures encountered must be accounted for. [26] in-

troduces acoustics for building design, [27] discusses techniques using perforations

in pipe for acoustic attenuation in pipes.

2.2 Scattering

Characterising the behaviour of scattered sound has been of historical importance,

especially during the second world war. In 1945, Foldy published a paper investi-

gating the behaviour of multiple scattered waves from water droplets in air [28].

It’s trivial to change the media to think of the same problem as bubbles underwater;

Acoustic scattering from submarines is still an active part of research. With develop-

ments to submarine acoustic modelling in [29] [30], the analysis of the estimation

of the hull scattered field based on the propeller as a noise source can be observed

in [31].

It is inevitable that acoustic waves will make contact with objects and surfaces

during the course of their path. When this happens, an acoustic wave is created

with amplitude proportional to the incident acoustic wave and transmitted through

the surface, and another wave is created that reflects from the surface. Fresnel

highlighted that if the surface that the sound made contact with is perfectly flat,

then the angle of reflection is the same as the angle of incidence [32]. This leads

on to Snell’s law [33], from which information about the reflected and transmitted

waves can be found. However, the case where a surface is perfectly flat occurs very

rarely in the real world. Instead, the acoustic wave will scatter in many directions,

due to surface irregularities or the geometry of the scattering object. Investigating
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how sound scatters in these situations is very useful to many applications. One of

the main methods to tackle this issue is through the Kirchhoff-Helmholtz integral

formulation.

The Kirchhoff-Helmholtz integral formulation was derived in [34] and trans-

lated in [35], it is shown in [24] [36] [37]. This approach utilises a Green’s func-

tion, which is a fundamental solution to the (homogeneous) Helmholtz equation.

Through subtraction and integration over a volume Green’s second identity (See

Chapter 3.2 for a derivation) can be applied to reduce the volume integral to sur-

face integrals, where the surface integrals are taken over scattering object. This

leaves an integral equation of the pressure based on the pressure and a known

Green’s function. Which is used in many Boundary Element Method approaches,

sometimes called the direct method e.g. in [38].

Considering the case when there are multiple scattering objects, other methods

can be used, especially where the scattered field from one particle affects the inci-

dent field on another. A key method is the T-matrix (or transition matrix) method, a

significant contributor to this field is Martin, with excellent reference texts such as

[39]. The key paper on the T-matrix method is [40] where the application of Graf’s

addition theorem and spherical wave functions, as well as the fact that the prob-

lem is linear, is exploited. This allows for the coefficients of the scattered field to

be represented by some matrix T which contains information about the scattering

properties, and the coefficients of the spherical wave representation of the incident

field are combined to yield the T-matrix. If the scattering objects are simple, for

example spheres, then elements of the T-matrix have an analytical form as in [41].

For more complicated shapes, the elements have to be found numerically, again

from a boundary integral equation. The work in this thesis assumes that multiple

scattering is not present, therefore T-matrices are not used.

This work considers the case when the scattering object is an infinitely long scat-

tering surface. In this case, further approximations can be made. If the roughness is

very small, one method that can be used is the Small Perturbation Method. In this

case, the scattered field will be dominated by the flat surface. A detailed derivation

is shown in [42] where the authors also show that the pressure becomes a series

expansion. It is noted in [42] that it is not guaranteed that the series converges and

so only a small amount of terms of the series are taken for the small perturbation

method. Because of the further restrictions that the small perturbation method en-

forces on the scattering surface, the small perturbation method was not used in this

work.
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Instead, the Tangent Plane Approximation (or the Kirchhoff Approximation, they

are used interchangeably) was used.

This method is explained in Chapter 7 of Bass F.G and Fuks I.M [36]. The Kirch-

hoff Approximation applies to a much larger set of surfaces than the small pertur-

bation method, only requiring the radius of curvature of the scattering surface to be

relatively smooth given the acoustic wavelength. The fundamental approximation

that this method uses is that at a given point on the surface, the scattered field can

be locally approximated as reflection from an infinite plane, this follows the law of

reflection discussed earlier and is easy to calculate, thus causing large simplifica-

tion of the problem (see the derivation in Chapter 3.3). This simplification allows

for even the simplest of numerical integration schemes, Trapezium Rule, to be ap-

plied. In this work, the Simpson’s rule is applied due to the increased accuracy.

Nevertheless, the reduction in numerical complexity is significant.

An issue with the Kirchhoff Approximation is the loss of multiple-scattering ef-

fects, and the issue of shadow zones. These occur at low grazing angles, although

they can be corrected slightly by introducing a shadowing function [43]. In this

work the grazing angles are set high enough such that this does not occur.

2.3 Machine Learning

Machine Learning has become increasingly popular for many reasons, even though

models such as Recurrent Neural Networks [44] were developed in the 1990s. One

of the important reasons for this sudden explosion in interest is due to the substan-

tial increase in computational power. This has allowed many different methods to

be applied to very large data sets, providing significant improvements in the fields

of object detection and speech recognition [45].

Machine Learning can roughly be categorised into three categories: supervised,

unsupervised and reinforcement learning. In supervised learning, the data that the

model is attempting to fit on has an associated output set of either labels or real

numbers: these are called Classification (labels) and Regression (Real numbers). In

contrast, unsupervised learning does not have an associated set of known outputs.

Reinforcement learning can be seen as an iterative approach to optimise how agents

make decisions, by maximising some reward function. Reinforcement learning is

not considered in this thesis.

In this thesis, where parametrisations of rough surfaces and the properties of dy-

namic rough surfaces (velocity, depth) are considered, the data available is usually
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best suited to applying supervised regression. An example of a machine learning su-

pervised regression method is the decision tree, this is a component of the random

forests used in Chapters 4 and 5.

A decision tree favours a greedy top-down approach to extracting information

about the data [46]. A decision tree will constantly partition the dataset until the

outputs at the bottom of the tree are perfectly fitted to the given training data.

This can cause a problem in model performance as overfitting can occur, which is

a failure to predict on new data due to models being trained too much on the data

used for training. Random forests were specifically created to address this problem

by applying ensemble methods. Random forests offer significant performance in-

creases in comparison to standard decision trees, while also being efficient at tree

generation with the use of parallelisation. Breiman also states in [47] that due to

the strong law of large numbers [48], Random Forests do not overfit to data, which

removes the main shortcoming of decision trees.

Machine Learning models can be parametric or non-parametric. Parametric

models have a fixed number of parameters, whereas non-parametric models have a

dynamic amount of parameters. Random Forests and K-Nearest Neighbours are ex-

amples of non-parametric models. There have been investigations into parametric

against non-parametric model evaluations in different fields, an example of this is

where Park H. [49] presented that non-parametric models were significantly more

accurate in predicting the performance of various index options.

Due to the rising popularity of machine learning and deep learning, many pop-

ular programming frameworks have been produced for both researchers and devel-

opers, such as Scikit-learn [50] and TensorFlow [51]. The work in this thesis uses

Scikit-learn for Random Forests, and K-Nearest Neighbours and uses author-created

code for the Metropolis-Hastings, Adaptive Metropolis, and Linear regression algo-

rithms.

2.4 Acoustics and Machine Learning

Before discussing the specific intersection of acoustic scattering and machine learn-

ing that underpins the work in this thesis, the author would like to present some

influential literature under the more general heading of “Machine Learning and

Acoustics" to show, much like Bianco in [52], that machine learning is becoming

more prevalent in the field of acoustics.
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Acoustics is a challenging environment to use machine learning in due to the

sizes of the datasets required. For time dependent signals each individual sample

is large, and cannot easily reduced due to the requirement for the data sampling

rate to be twice the greatest frequency of interest (by Nyquist’s theorem). For all

these challenges it is still being attempted; one of the key review papers on machine

learning in the context of acoustics is [52]. In this it becomes clear that a further

issue when it comes to applying machine learning to acoustics is the requirement

for lots of high quality, representative training data. Bianco presents some use cases

where machine learning has proven successful, such as source localisation.

Bianco does not place much emphasis on stochastic methods, such as bayesian

neural networks, MCMC, or Gaussian processes which is a shame because stochastic

machine learning allows for a measure of confidence in prediction, giving more

information than a standard ‘black box’ approach. The problem of representative

data is prevalent in all machine learning based methods, and the need for accurate

modelling to make up for the lack of available representative data is clear.

In [53] Elforjani aimed to compare three different machine learning techniques:

support vector machines, artificial neural networks, and the Bayesian method of

Gaussian process regression, for the problem of analysing the acoustic emission to

predicting the remaining useful life of bearings from their acoustic emissions. The

main use case presented in this work is to analyse the acoustic emission in real

time, to estimate issues beforehand. The authors conclude that the artificial neural

network performs the best as the errors are lower, discounting support vector ma-

chines and Gaussian processes. The issue with this conclusion is the primary metric

of investigating the percentage error does not account for nuances in stochastic

approaches such as Gaussian processes. The calculated error for the Gaussian pro-

cesses was only selected on the mean prediction, with no account for the credible

interval in time that the Gaussian process benefits from.

Using machine learning for acoustic emissions was also investigated in [54]

where Das used unsupervised machine learning (where the data has no label or as-

sociated value) in order to replicate the idea of field measurements. Labelled data

was created and then clustered with a Gaussian mixture model, then the separation

of the clusters was found from support vector machines. Although this approach

used labelled data, it was tested on unlabelled data, this allowed a separation to be

found between tensile and shear cracking modes. Due to this separation, a support

vector machine was used to classify the two modes. The main shortcoming of this
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research was the lack of a measure of uncertainty for values of stress that are very

close to the hyperplane separation lines.

A similar approach of comparing different machine learning models is discussed

in [55] where Palaniappan investigated support vector machines and k nearest

neighbours to classify pulmonary acoustic signals from a database of various lung

sounds. Features were extracted from the dataset and the accuracy of the classi-

fiers was very high. The authors show the validation of hyperparameters for both

methods, which shows how the prediction dynamics change over parameters. An

example of this is the increase of k, the number of neighbours, for k-nearest neigh-

bours where, as k increases, the error decreases. This makes sense for k-nearest

neighbours, as the predictions are based on the expectation of the k neighbours.

Although the results are promising, there is minimal analysis on the cases that were

predicted wrong, aside from a confusion matrix which merely describes the propor-

tion of data that was misclassified. This does not give much information in what

specifically caused this error, and therefore there isn’t key insight for gaining confi-

dence in prediction on truly unseen data.

Machine learning has been applied for speech processing, an example of this is

the review paper by [56] where Jung explored the recent literature of the applica-

tion of machine learning for speech processing. From a machine learning perspec-

tive, the authors did not delve too deeply in the issue of prediction uncertainty, data

pruning, or comparison.

A specific paper on the combination of machine learning and speech recognition

is found in [57]. Gonzalez tackles the problem of reconstructing the acoustical

waveform of predicted speech from motion. Sensors were placed in various places

on the lips and tongue. A database was used called the Carnegie Mellon University

Arctic set of phonetically-rich sentences where six people spoke for roughly twenty

minutes each to create a database of recorded speech with the sensors. Various

models were tested such as recurrent neural networks, Gaussian mixture models,

and deep neural networks with various loss functions tested. The authors present

a metric of error bounds for their results. The authors are aiming to prioritise real-

time speech restoration.

The work from Skowronski [58] utilised a Gaussian mixture model, and a hid-

den markov model to detect and classify various bats based on their vocalisations.

The study also reported the errors with error bounds, which can be extracted from

these methods, this is ideal as in real-world situations, one doesn’t have labelled
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data to compare against, and reporting error to the user is essential for widespread

adoption of methods.

This approach is something that this thesis uses extensively in Chapters 5,6, and

8. A commonly raised complaint with machine learning methods is that they act

as a ‘black box’ providing no real information about exactly what has been learned

from the data. There are exceptions to this: random forests can get a measure of

what features were important for the prediction through the aptly-named feature

importances map. Those parameters can then be mined for information from the

user. Gaussian processes are another key example of methods that provide an uncer-

tainty metric. In the case of Gaussian processes, it is from the posterior covariance

matrix.

2.5 Numerical Solution of Inverse Problems, Kirch-
hoff Integral

Along with the development of acoustic scattering theory, the inverse problem

gained more interest. An inverse problem attempts to find the input parameters

of a system (or the system if the input parameters are known) given some observed

data. A key reference text on the inverse problem, sometimes called the ‘indirect

method’, of acoustic and electromagnetic scattering is [59]. Colton names the for-

ward problem the direct method and the inverse problem the indirect method. The

methods in Colton can be split into as sampling methods and factorisation methods.

One of the more popular sampling methods is the linear sampling method.

An example where the linear sampling method was used is in [60]. In this paper

it was used to identify one open arc and the more complicated problem of two open

arcs amounting to a problem of reconstructing multiply connected domains. In

the course of solving these problems, they note that there is a limitation on the

linear sampling method in that the complete far field data for all possible incident

and observation directions is needed for accurate reconstruction. This was found

earlier in [61] which formulated the inverse scattering problem for all observation

directions.

In [62], an extension to three dimensions was investigated in the context of

electromagnetic inverse scattering, they explored recovering a sphere, as well as

more complicated domains such as a model of an aircraft. This work was focused

on exploring the limitations due to the frequency, showing that typically the resolu-

tion increases with the frequency. The linear sampling method has been combined
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with machine learning with the application of the linear sampling method and a

neural network, found in [63]. First, the linear sampling method was used to give

initial information about the shape of the obstacle, the shape was then parame-

terised and with the far-field data as input and the parameters as output the mean

squared error was used as a metric to investigate errors. The cases of noisy far-field

information, different wavenumbers, and limited apertures were presented. There

was no discussion of model confidence, nor real-world experimental data, so the

use case is unclear.

The work in [64] used COMSOL to generate acoustic scattered data from ran-

dom geometries of a sound hard scatterer (steel object in water). This data was

used to train various models, one of the more interesting was a Neural Network to

be able to generate new scattered data in order to avoid using COMSOL or solving

the Helmholtz equation. This was tested against COMSOL and showed good agree-

ment, which is expected, as COMSOL was used to train the data in the first place.

The approach to the inverse problem in [64] was to feed multi-frequency acoustic

far-field phaseless data and yielded good results, for a range of observation angles.

The above related to the study of inverse problems from scattering objects, what

is more relevant for this work is the scattering from a rough surface. Scattering

from rough surfaces in acoustics is similar to that of optics (as seen in Kirchhoff’s

original paper discussed earlier). In [65], the method of perturbation was used

with the covariant form of Maxwell’s equations and then used an iterative inverse

solver. This shows some promising results, although it is not clear how well it

would behave in the presence of noise: the authors use an iterative scheme that

updates the profile of the surface for the optimiser, but the behaviour of the change

of surface is not tracked in the results which could be throwing information away.

The iterative Markov-Chain Monte Carlo approach in this work in Chapter 6 uses

the history of the surfaces to get a spatial metric of uncertainty, under noise. This

allows for more analysis.

In [66], Krynkin proposed an airborne approach to recovering information about

a shallow turbulent water system, it was shown that using the inversion method us-

ing stationary phase allowed Krynkin et al. to successfully recover the mean rough-

ness height of the surface tested within a ±5% error. Krynkin further develops this

idea in [67] where instead of attempting to invert the statistical parameters, they

attempt to return the immediate surface height of the surface using a matrix / fac-

torisation based approach with singular value decomposition in the inversion. It

was shown that the inversion could successfully recover 2D surface roughness with
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a maximum reduced mean square error of 20% when using the Kirchhoff Approxi-

mation. Krynkin, however, noted a need for improvement in larger scales of spatial

wavelength. Noting that there needs to be improvement in the centimetre and sub-

centimetre range, Krynkin highlighted in [68] that there is a relationship between

the surface roughness of an open channel flow and hydraulic characteristics such as

Reynolds number and mean flow depth. This is useful as in [69], Nichols presents

a bidirectional relationship between the pattern of the surface pattern and the bulk

flow.

Instead of using the Kirchhoff Approximation, [70] extends the scattering to be

for unbounded rough surfaces. This is achieved by changing the forward model to

be scattered near-field Cauchy data measured along a line above the surface. Also,

different boundary conditions were investigated. Finally, they leave an iterative

numerical model that utilises a mesh of the rough surface used in the calculation

of the forward problem. They then apply an imaging function to this data. It

is presented in [70] that the whole rough surface with 20% noise was accurately

recovered for a large enough wavenumber using this method.

These have been a few examples of inversion methods, focused on those of

relevance to this thesis, there are many others such as the distorted-wave Born

approximation which is successful in various imaging applications [71].

Most of the results above, especially when considering inverse scattering, re-

quire the full complex field to be given. It is important to note that one can not

always recover phase information. Klibanov points out in [72] that losing the phase

information is common in the study of optics, stating that it is often impossible

to recover, as opposed to the intensity. This is a major problem for methods that

require full far-field information. Klibinov explores the Helmholtz equation in three-

dimensions with the phaseless inverse scattering problem in [73], looking into in-

cident plane wave scattering specifically for nanostructures, where the phase is not

affected by the geometry of the scatterer. A limitation of this paper is that there is

no numerical implementation of the proposed approach, as it is purely analytical.

The choice to use phaseless data in this thesis was driven by the limitation of

the random forest approach, and to avoid issues with phase calibration, as well as

to investigate how phaseless data can be used in the reconstruction. In Dolcetti et

al.[74] phase uncertainty was found to have a stronger impact than amplitude un-

certainty on the accuracy of the surface reconstruction, and imperfect wrapping of

the phase was found to cause a multi-modal distribution of the reconstruction error,
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especially at large roughness amplitudes (relative to the acoustic wavelength). This

motivates further analysis in models that infer on amplitude only.

In [75], Xu uses a convolutional neural network in order to find unknown scat-

terers from phaseless data using electromagnetical waves. The convolutional neural

network was trained to find cylinders , this work had an amusing approach in cre-

ating unseen data through an interesting use of the MNIST handwriting database

[76]. When this work was tested on experimental data, they noticed an issue with

higher nonlinearity when using a 8 GHz source vs a 6 GHz source, causing a larger

spike in error for the recovery from experimental data. The authors looked at dif-

ferent methods of data processing before going into the model, and find that results

were better when the model did not have to learn the underlying wave physics that

would occur if the phaseless data alone was input to the model.

Another recent approach involves recovering a rough surface at grazing angles

using single-frequency, phaseless acoustic pressure through the use of an itera-

tive marching method approach derived from the parabolic wave approximation

(forward-scattered wave propagation assumption) [77]. Although the inversion re-

sults were found to be relatively accurate, it is assumed that the forward-scattered

approach is not applicable in the context of this thesis due to significant differ-

ences. For example, in the underlying theoretical assumptions, experimental setup

and in the specific acoustic remote sensing application where the sound field is best

described by a solution of the full Helmholtz equation [74]. This means that the

parabolic wave equation is not sufficient to fully describe the dynamics.

2.6 Data Driven Inverse Problems, Machine Learning

A key benefit of machine learning approaches is their capability for instantaneous

prediction, as opposed to classical iterative based methods. This was a benefit

highlighted in the work by Qian [78] where a metamaterial was being produced in

order to make a material invisible to microwaves. This was tested on the fly with

various incident waves, and because the neural network was trained beforehand,

allowing for predictions to be made much faster than typical iterative approaches.

The authors highlight a potential issue in the time taken to make high quality data

in order to train the model.

There is evidence in the literature that machine learning has successfully been

used for inverse wave problems. For example, in [79] Antona applied Neural Net-

works to classify different species of fish to a similar level of accuracy in comparison
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to the data based approach using significantly fewer samples. Another example is

in [80] where Goldade investigated the application of various Machine Learning

methods to generate sea-floor maps in real-time using sidescan sonar. It was discov-

ered that Neural Networks can be used to classify every pixel with great accuracy.

Another example is where Mendieta [81] investigated the use of classification and

clustering models to recover a 3D recovery of the lumbar spine from an MRI. It was

shown that although clustering methods worked fairly well, there were some limi-

tations, such as the model resolving the 3D image 10 times larger than the actual

image.

In [82] Adler proposes an approach to solving ill-posed inverse problems when

the forward operator is not linear by introducing a gradient iterative scheme, where

the gradient is learned by the use of a convolutional neural network. This method

is then tested on tomographic inversion problems, such as identifying heads as well

as random ellipses using simulated data. This paper highlights a difference between

classical regularisation and machine learning: Machine learning forms a functional

mapping from the output space to the input space whereas in classical regularisation

everything is focused on minimising an objective function. The algorithm provided

in this paper had a significant improvement over methods such as Total Variation

Regularisation with improvements in accuracy as well as run-time. The method

proposed in this paper is said to be able to work for any non-linear forward operator,

as well as highlighting the key importance of having quality training data.

Other novel approaches have been introduced in order to not only attempt to

solve the inverse problem, but solve it while maintaining a fast runtime. The paper

by Wang [83] is an example of this. This paper provides a multi-resolution deep

neural network which is then tested on different inverse problems. For example,

recovering phases of a propagating wave from direct intensity measurements. The

model that Wang provides shows highly accurate results for few epochs of model

generation.

The application of using machine learning as the basis of a data-driven approach

to solving these inverse problems span across many fields, notably in geophysics

and medical imaging. In [84] Kim considered recovering reflectivity from seismic

traces by using artificial neural networks and compared this against least-squares.

The paper used noisy seismic traces as input data and reflectivity as the output

data for the artificial neural network. The paper poses that the use of artificial

neural networks generates a nonlinear mapping which is equivalent to the pseudo-

inverse of the forward operator. Which is reasonable as artificial neural networks
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are universal approximators [85]. The paper by Kim highlights that the neural

networks contain better resolution to that of the least-squares method in recovering

this reflectivity term, while also correctly resolving thin beds. Kim posed that quality

training data is the key for success.

Success has been found in applying this approach to identifying structural dam-

age [86] as well as predicting brain activity from functional MRI image data [87].

Fan et al. [88] successfully applied deep learning methodologies utilising the

Helmholtz equation in the recovery of the shape and placement of multiple scatter-

ers in two different settings, including a seismic imaging setting where the source

and receivers were above the scatterers and receivers were in a linear array. The

scatterers were placed randomly and formed from a number of shapes such as tri-

angles, squares or ellipses. It was shown that for many receivers and sources, the

locations and orientations of the scatterers were successfully recovered with various

amounts of noise in the dataset, while the recovered boundaries of the scatterers

became blurred as the noise level increased.

Other works that recovered the parameters of surfaces instead of the full sur-

face include: recovering parameters of a sum of sine waves forming a rough surface

[89], recovering coefficients of a parametric curve of an obstacle [90], and using a

convolutional neural network to recover the root-mean-squared height and corre-

lation length from a Gaussian rough surface through synthetic aperture radar [91].

The flexibility of data-driven approaches as compared to classical model inversion,

in the presence of noise, stands as a central motivation of the thesis.

Applying machine learning methods to wave scattering problems can allow for

more flexibility, opening up the choice for interaction between one or more mod-

els. For example, it has been shown that a combination of random forest and neural

networks results in a robust method enabling reconstruction of geometrical features

against noise [92]. This was achieved by first classifying training shapes with a ran-

dom forest and then inverting the far-field scattered signal using neural networks

to obtain geometrical features of different scattering objects.

2.7 Stochastic Methods and Markov-Chain Monte Carlo

A key issue when considering models that give a response, especially in the Machine

Learning domain, is that the error metrics are usually given for some testing set, a

set that is withheld from training in order to evaluate some metric of model gener-

alisability. Such methods include the coefficient of determination defined in [93],
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or the mean absolute error. This then gives some measure on how the model would

behave on that set of data. However, this gives no further information on error for

every new unlabelled sample when the model is being used for new predictions.

This can be an issue as there is not a way to diagnose a given new sample; the

predicted value of the sample must be taken as the true value with no appreciation

of the underlying uncertainty in the sample.

Outside of machine learning, and the work in this thesis, this problem is being

considered, forming a new branch of numerical analysis called probabilistic numer-

ics (with reference text such as [94]). These have application in probabilistic ODE

solutions (an example being [95]) and PDE solutions (an example being [95]).

Getting a measure of confidence (or credibility) for a given prediction is clearly

more favourable than a prediction alone. One of the more popular methods for

doing this in the machine learning domain is a Gaussian Process. A reference text

on Gaussian Processes can be found in [96].

Fundamentally, a Gaussian Process is defined as a stochastic process such that

any finite subcollection of random variables has a multivariate Gaussian distribu-

tion. A Gaussian Process is typically characterised by a mean function and a co-

variance function defined by a kernel. This leaves an analytic representation of the

predictive equations (the predictive mean and the variance) and is found by matrix

multiplication and inversion of given data with known inputs. There are limitations

to the basic approach such as the requirement for inputs to be noise-free, there are

approaches to handle this such as in [97] but they struggles with large amount of

data. These limitations are why Gaussian processes were avoided in this work.

The approach used in this thesis is the iterative Markov Chain Monte Carlo

(MCMC) method. An essential reference text can be found in [98], where Andieu

introduced MCMC methods, providing key theoretical understanding and algo-

rithms for many methods, including Metropolis-Hastings and Sequential Monte

Carlo. More detail on the theory of Metropolis-Hastings can be found in the theory

chapter of this thesis.

MCMC is a family of Bayesian methods. Bayesian methods have recently gained

popularity in the field of acoustics, with applications such as recovering parameters

from the seafloor using acoustic back-scattering [99], estimation of rough surface

elevation using a Bayesian compressive sensing [100], and for acoustic holography

[101] [102]. Li et al. [103] applied a Metropolis-Hastings MCMC scheme in order

to reconstruct the locations and intensities of acoustic sources from both near-field

and far-field information. Fouda in [100] used Bayesian compressive sensing with
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the small perturbation approximation to acoustic scattering. However the error bars

presented appear to be roughly constant in range, even in regions of bad agreement

to the true surface. The receivers were spaced over distance (12m) considerably

longer than the wave height of the surface, which makes the surface appear flatter

and less illustrative for surfaces that behave like dynamic waves on the free-surface

of water.

Application of a Bayesian approach for acoustic scattering with phaseless data

was proposed by Yang et al. [104, 105]. In Yang et al. [104], the location and

shape of a sound-soft scatterer were reconstructed, and the approach was tested

on shapes such as kites, disks, and line cracks, all with positive results. The only

note that should be made is that the number of parameters being recovered from

the MCMC algorithm was less than 6, which limits the scope of this method. In

Yang et al. [105], the method was extended to use a Gibbs sampling method in

order to recover more parameters, with phaseless data and with point source exci-

tation. Palafox et al. [106] also used a Bayesian formulation in order to perform

shape reconstruction of a scattering object, through a reduction of the problem by a

Fourier-based representation using a t-walk [107]. The effective dimension method

was presented where, given a parametric representation of the solution of the in-

verse problem, the normalising constant can be approximated.

Bayesian methods have also been applied in inverse problems in other fields,

such as for seismic waveform inversion [108], and automatic motion analysis in

tagged magnetic resonance imaging scans [109][110].

Application of the adaptive Metropolis-Hastings scheme in relation to acous-

tical inverse problems can be seen in Niskanen et al. [111], where the John-

son–Champoux–Allard–Lafarge model was used in conjunction with a Metropolis-

Hastings method in order to recover the model parameters of a homogeneous rigid

frame porous media. The joint probability densities verified that the least-squares

solution was close to the maximum a posteriori estimation from the MCMC method.

The choice of method used in this thesis was the Adaptive Metropolis method ex-

plained in [112] [113]. This extends the classical Metropolis-Hastings algorithm to

allow for an adaptive step size. This method was chosen over the methods such as

Hamiltonian Monte Carlo [114] due to the dimensionality of the problem not affect-

ing the convergence, it may be important as the number of terms in the roughness

recovery increase to switch to Hamiltonian Monte Carlo. The work in this thesis

did not increase the terms to justify the switch to Hamiltonian Monte Carlo. Open

source implementations of MCMC can be found in Python with PYMC3 [115] or the
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language Stan [116]. Both of these libraries are powerful, but due to the desire of

the author to have the flexibility to generate custom priors based on the Kirchhoff

approximation, the algorithms were coded from scratch in Python and can be found

at:

• https://github.com/michaeldavidjohnson/Kirchhoff-Approximation,

• https://github.com/michaeldavidjohnson/MetropolisHastings,

• https://github.com/michaeldavidjohnson/surfaceGen.

2.8 Free Surface Wave Theory and Dispersion Rela-
tions for Water Waves

The understanding of wave phenomena has been of great importance classically.

Understanding the elevation of the free-surface of a body of water, and the under-

lying velocity field under the surface has applications in offshore wave loading, and

tsunami prediction. In the linear case when the wave height of the free surface

is much smaller than the depth, linear wave theory (Or Airy wave theory [117])

can be used. This theory allows for the application of separation of variables (See

the derivation in Chapter 3.4) to be applied, and due to the nature of the solutions

many terms can be found analytically such as the pressure, energy flux, particle

displacement, and radiation stress [118]. The solutions only apply when a relation-

ship between angular frequency (ω) and wavenumber (k) is enforced such that the

dispersion relation is defined. Waves are typically classified as deep, intermediate,

and shallow based on the relationship between the depth of the water d, and the

wavelength of the waves λ according to the following classifications [118]: deep if
d
λ > 0.5, shallow if d

λ <
1
20 and intermediate else. A benefit of linear wave theory

is that a linear composition of two solutions is itself a solution, allowing for easy

modelling of complicated wave structures comprised of more than one frequency.

This dispersion relationship allows for the construction of solutions to the lin-

ear wave equation based on measurements of the frequency or the wavenumber, as

long as a relationship between the frequency or wavenumber and surface elevation

amplitude is known. This is seen often in the ocean domain, applied to finding

power spectra over a frequency range. Examples of this are the JONSWAP spec-

trum [119], the Pierson–Moskowitz spectrum [120], and the Bretschneider spec-

trum [121]. Combined with a choice of spectrum, random ocean waves can easily

be generated from the dispersion relation.
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In this simple case, having knowledge of the underlying dispersion relation, and

some way of relating the frequency or wavenumber to wave amplitude, allows a free

surface to be recovered. This can be taken advantage of in the more complicated

domain of shallow flow. In the case of shallow water flow, the power spectral

density S( f ) can be related to frequency with the following equation [122]:

log (S( f )) =
1

−0.0650+ 0.00518
p

f
, (2.1)

which was found from optimising a line through empirical data from experi-

mental data in a flume. They also found a spatial correlation, but this has been

found to underestimate surface spectrum slopes when compared to measurements

in real rivers [123]. The power spectra dependence as the wavenumber k increases

has been found to be proportional to k−α and has been used in [124] [125] [126].

Therefore, with this relation, waves can be numerically created.

Analysing the behaviour of the free-surface of open channel shallow turbulent

flows ( typical of shallow rivers) is very complex. A review paper by Muraro [127]

summarises many of the phenomena that causes the domain to be complex. For

example, the behaviour of the flow is sensitive to the shape of the bed, as well as

the roughness of the bed. Turbulence-generated structures can be seen on the free

surface. For example, bursts can appear by a disruption in the viscous sublayer from

the bed roughness profile [128] among other effects such as scars and boils. The

nonlinearity caused by introducing turbulence over rough beds cannot generally be

solved analytically. Numerical schemes such as Reynolds Averaged Navier Stokes

[129], and Large Eddy Simulation [130] have been employed. This can be seen

with comparison papers in the domain of shallow turbulent flow such as [131].

The understanding of free-surface behaviour from experiments typically avoids nu-

merical simulation and instead attempts to target a specific variable of interest.

There are issues when extending this understanding to field measurements of

rivers, especially where they are shallow and turbulent. If intrusive measurement

systems are in place, the local depth and the velocity could reduce the reliability of

observations. A key non-intrusive evaluation method is Particle Image Velocimetry

(PIV). PIV methods rely on “tracers" that are present through the video recording

of the region. These tracers may be naturally occurring or may be introduced into

the flow, the restriction on this is that the chosen tracers need to follow appropri-

ately the movement of the flow. Many review papers have been released since its

inception in 1984 [132] such as [133] [134] and most relevantly [135]. PIV has

proven to be a powerful method for obtaining velocity field measurements over a
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large region. This has been applied to measuring the velocities at the free surface of

rivers. For example, [136] collates several different examples where this has been

used for rivers.

A defining feature of PIV is the reliance on tracers in the flow that are either

naturally present in the flow, or are artificially introduced into the flow, the motion

of which is used to find the velocity field in space and time. This poses a significant

issue when it comes to scaling up the process to more sites. Either, an investigator

must rely only on natural tracers which could be inconsistent, or find a way to allow

for a constant stream of environmentally friendly tracers to be introduced on a large

scale.

Another approach is to investigate the motion of the flow directly. A method

for this is optical flow, with examples in [137], [138], [139], [140]. Alternatively,

Fourier analysis and the investigation of the frequency-wavenumber spectra can be

used [18] [2]. This work will focus on the latter.

Using spectral analysis for ocean waves has been studied extensively, and has

been explained clearly in [17], it has been extended to the study of shallow turbu-

lent flows using wave probes in [18] and [127]. An airborne approach to estimate

the velocity with the frequency-wavenumber spectra was shown in [141] although

only the gravity-capillary dispersion curve was fit.

The key point of these papers was to investigate how the free-surface’s disper-

sion relation changed with rough beds, which are a significant factor in the be-

haviour of shallow flows where boundary conditions have more of an effect [2]. The

culmination of this was a non-invasive approach in [2] where an approximation of

the dispersion relation due to advection was linked with the dispersion relation due

to gravity capillary waves, allowing for three relations to be fit. Good agreement

was found experimentally with these relations, then an optimizer was fit to be able

to estimate the discharge and the depth.

There are some issues with this approach. The river Calder is much worse in the

prediction of the method, due to the increase of noise in the frequency-wavenumber

plots. The analysis of the spread of predictions was obtained by looking at the worst

predicted samples from the optimiser. This is not an optimal method for obtaining

the underlying noise in the data. This could be improved by using a stochastic

model for the prediction, where the results can form a distribution that can be

analysed with statistical methods. This can then probe the underlying noise in the

signal, as well as how credible the results are. The behaviour of the optimizer-based
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approach may not have been due to noise, and could merely have been stuck on a

local minima.

Another issue that arises when considering an optimiser on Fourier transformed

data is that only a single value for velocity and depth can be recovered. These

values represent the spatial and temporal average of the system. However, as it is

not true that the velocity and the depth are constant in space and time, the work

in this thesis aims to extend the prediction by using a Bayesian framework through

the application of MCMC, which has shown promise in gathering information from

dispersion relations in the seismic domain [142]. The MCMC generates a posterior

distribution of the depth and the velocity, which should capture the noise in the

data from measurement noise and also the spread of velocities in the timeline of

measurement.
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Chapter 3

Theory

This chapter aims to introduce the relevant theory required for the work in the

later chapters. When possible, derivations and definitions have been provided. This

chapter begins with the Navier-Stokes equations from which the relation between

pressure and velocity is obtained. Then the Helmholtz equation is introduced from

the wave equation. Basics surrounding the application of Green’s fundamental so-

lutions for the non-homogeneous Helmholtz equation are presented. Then, the

Kirchhoff-Helmholtz integral formulation is derived, followed by the derivation of

the tangent plane approximation. A quick analysis on how the acoustic pressure

changes due to various surface profiles are presented. Next, dispersion curves at

the free-surface of an infinitely long wave tank is derived from separation of vari-

ables to get the water waves dispersion relation. Other dispersion relations are

introduced, as well as the theory behind the construction of surfaces which contain

this dispersion relation. Key models in Machine Learning and Markov-Chain Monte

Carlo are also introduced.

3.1 Wave Equation, Helmholtz Equation, Green’s func-
tions and Delta functions

Starting with the Navier-Stokes equations for an inviscid fluid [143]

∂ ρ

∂ t
+∇ · (ρv) = 0, (3.1)

ρ
∂ v
∂ t
+∇p+ρv∇v= 0. (3.2)

∇=
�

∂

∂ x
,
∂

∂ y
,
∂

∂ z

�

(3.3)
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Where ρ is the density, p is the pressure, t is time, v is the vector representation of

velocity. Assuming that the fluctuations in the fluid ρ′(t), p′(t) are small compared

to the background ρ0, p0 then the linearised Euler equations can be found [143]

∂ ρ′

∂ t
+ρ0∇ · v= 0 (3.4)

ρ0
∂ v
∂ t
+∇p′ = 0 (3.5)

Taking the derivative in time of Equation (3.4) and taking the derivative with

respect to space of Equation (3.5) and subtracting the two yields [143]

∂ 2ρ′

∂ t2
−∇2p′ = 0 (3.6)

Assuming that there exists a functional relationship p = p(ρ) and taking a Taylor

expansion around ρ0 [143]

p(ρ) = p(ρ0) + (ρ −ρ0)
∂ p
∂ ρ

�

�

�

ρ=ρ0

+ ... (3.7)

p′ = p− p0 ≈ (ρ −ρ0)
∂ p
∂ ρ

�

�

�

ρ=ρ0

= c2ρ′ (3.8)

ρ′ =
1
c2

p′ (3.9)

c2 =
∂ p
∂ ρ

�

�

�

ρ=ρ0

(3.10)

The constant c is known as the speed of sound, and is related to the rate of

change of pressure due to density. The above equation can be recognised as the

wave equation. Considering only the pressure fluctuation and setting that value to

p instead of p′ one arrives at the homogeneous (source-free) wave equation is

1
c2

∂ 2p
∂ t2
−∆p = 0, ∆=∇2. (3.11)

The inhomogeneous wave equation is

1
c2

∂ 2p
∂ t2
−∆p = g(x , t), (3.12)

where g(x , t) describes the inhomogeneity.
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The relationship between pressure and velocity can be found from Equation

(3.5) and is used in Appendix A:

v′ = −
1
ρ0

∫

∇p′d t (3.13)

Often it is useful to deal with the velocity potential rather than the velocity, the

velocity potential is defined as [24]

v=∇ψ. (3.14)

This means that the pressure can be more succinctly described in terms of the

velocity potential

p = −ρ0
∂ψ

∂ t
. (3.15)

The velocity potential is also a solution to the wave equation

1
c2

∂ 2ψ

∂ t2
−∆ψ= 0. (3.16)

It is common to consider waves in the frequency, rather than time, domain.

Recalling that the Fourier transform is defined as

φ(x,ω) =

∫ ∞

−∞
ψ(x, t)eiωt dω. (3.17)

Whereω is the angular frequencyω= 2π f . As a note, this can also be described

as moving from the real domain to the reciprocal domain or moving from the real

space to the frequency space. This is described in [144] although not directly.

Using the Fourier transform to move Equation (3.11) from the time domain to

the frequency domain

∫ ∞

−∞
(

1
c2

∂ 2ψ

∂ t2
−∆ψ)eiωt dω= 0 (3.18)

⇒
∫ ∞

−∞

1
c2

∂ 2ψ

∂ t2
eiωt dω−
∫ ∞

−∞
∆ψeiωt dω= 0 (3.19)

⇒−
ω2

c2
ψ−∆ψ= 0 (3.20)

⇒∆ψ+ k2ψ= 0, k =
ω

c
(3.21)

27



This alternative form of the wave equation in the frequency domain is known as the

Helmholtz equation.

Consider the inhomogeneous Helmholtz equation in 3D Cartesian co-ordinates

(∆+ k2)ψ(x , y, z) = − f (x , y, z), k =
ω

c
, (3.22)

where f (x , y, z) is the source term, k is the acoustic wave number, and ψ is the

value of the acoustic field at any point in space.

Homogeneous partial differential equations are relatively easy to solve subject to

boundary conditions, but inhomogeneous partial differential are significantly more

complex. However, a key tool for doing so is the theory of Green’s functions. A

Green’s function solution is a solution to

(∆+ k2)G(x − a, y − b, z − c) = −δ(x − a)δ(y − b)δ(z − c). (3.23)

⇒ (∆+ k2)G(R,R′) = −δ(R−R′). (3.24)

R= (x , y, z) (3.25)

R′ = (a, b, c) (3.26)

The right-hand side of Equation (3.23) is a combination of delta functions. Delta

functions are defined as
∫ ∞

−∞
δ(x − a)d x = 1. (3.27)

The delta function is not a typical function, and can be thought of as

δ(x − a) =

¨

0 x ̸= a
∞ x = a

. (3.28)

There is another highly useful property in the introduction of delta functions called

the sifting property (Appendix C in [145]):

f (a) =

∫ ∞

−∞
f (x)δ(x − a)d x (3.29)

Green’s function solutions come up frequently in the study of inhomogenous

partial differential equations. The main type of Green’s function considered in this

work are known as the free field Green’s function. These typically represent sources
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of sound in the absence of any reflecting boundaries. The free field is sometimes

referred to as the fundamental solution. in 2 and 3 dimensions these can be defined

as [24]

G f ree(R,R′) =

¨

− eik|R−R′|

4π|R−R′| 3D
− i

4 H (1)0 (k|R−R′|) 2D
, (3.30)

Where H (1)0 is the order 0 Hankel function of the first kind [146]. In general, a

Green’s function solution can be expressed as [24]

G(R,R′) = G f ree(R,R′) + G(R), (3.31)

Where G(R) is a general solution to the homogeneous Helmholtz equation. As

G f ree(R,R′) has been defined in Equation (3.30) to be an outgoing wave in an un-

bounded medium, G(R) can be set to be non-zero in situations where boundary

conditions need to be applied [24].

Green’s functions as well as delta functions adhere to reciprocity:

G(R,R′) = G(R′,R) δ(x − a) = δ(a− x) (3.32)

This allows for the source location and the point of observation to be swapped,

yielding the same result.

3.2 Kirchhoff - Helmholtz integral formulation

This section contains a derivation for the Kirchhoff-Helmholtz integral equation in

3 dimensions, assuming a point source. After the derivation, the 2D case and a

directed case will be presented with citation.

In preparation for this derivation, the following results are provided:

Theorem 1 (Green’s second identity) If ψ and ν are both twice continuously dif-
ferentiable on U ⊂ R3. Then

∫

U

ψ∆ν− ν∆ψdV =

∮

∂ U

(ψ∇ν− ν∇ψ) · ndS (3.33)

Where n is a unit normal vector and

∆=∇2 (3.34)
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Theorem 2 (Sommerfeld radiation condition [147] [19]) If a solution u to the
inhomogeneous Helmholtz equation is due to a source that has no sources at infinity,
then the radiation has to satisfy the Sommerfeld radiation conditions.

In 3D
r →∞, u= O (

1
r
),

∂ u
∂ r
− iku= ≀(

1
r
) (3.35)

In 2D
r →∞, u= O (

1
p

r
),

∂ u
∂ r
− iku= ≀(

1
p

r
) (3.36)

Consider a source contained inside a bounded region Γ , and consider evaluating

the acoustic field at another point inside the bounded region. Suppose there a

source lies at R0, and the point of observation is R. Recalling the definition of the

Helmholtz equation and an associated free field, Green’s function solution.

(∆+ k2)ψ(R′) = − f (R′), k =
ω

c
, (3.37)

(∆+ k2)G(R,R′) = −δ(R−R′) (3.38)

It can be shown, ψ is also a solution to the homogeneous Helmholtz equation

everywhere except at R′ = R0. Also, G(R,R′) is a solution to the homogenenous

Helmholtz equation everywhere except at R′ = R. Multiplying Equation (3.37) by

G(R,R′) and Equation (3.38) by ψ(R) and subtracting (3.38) from (3.37)

G(R,R′)(∆+ k2)ψ(R′)−ψ(R′)(∆+ k2)G(R,R′) = − f (R′)G(R,R′) +δ(R−R′)ψ(R′)
(3.39)

G(R,R′)∆ψ(R′)−ψ(R′)∆G(R,R′) = − f (R′)G(R,R′) +δ(R−R′)ψ(R′) (3.40)

Define a volume V such that there are spheres Bε and Bδ, centred at R and R0

respectively, not contained inside the volume V . That is to say the volume contains

points ρ such that

V = {ρ ∈ V ||ρ −R| ≥ ε, |ρ −R0| ≥ δ} (3.41)

Because the volume has the points R and R0 removed, in the volume the right-

hand side of Equation (3.40) is 0, because G and ψ are solutions to the homoge-

neous Helmholtz equation. Therefore, every point ρ in the volume V is free from

discontinuities, they are both second order differentiable and Green’s second iden-

tity can be applied. Consider a volume integral of Equation (3.40) with respect to

the volume defined in Equation (3.41)
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Γϵ
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ρ

V

Figure 3.1: Pictorial representation of the formation of the volume integral V where
two balls centred at the discontinuities in the volume have been omitted from the
volume, leaving surfaces Γ , Γε, and Γδ.
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∫

V

G(R,ρ)∆ψ(ρ)−ψ(ρ)∆G(R,ρ)dVρ = 0. (3.42)

Where the subscript ρ indicates that the variable of integration is with respect to

ρ. The volume integral can be reduced to surface integrals of the boundary of the

volume using Green’s second identity, and the surfaces formed from the removal of

the two balls

∫

V

G(R,ρ)∆ψ(ρ)−ψ(ρ)∆G(R,ρ)dVρ =

∫

Γ+Γε+Γδ

(G(R,ρ)∇ψ(ρ)−ψ(ρ)∇G(R,ρ))·ndSρ .

(3.43)

Consider the surface integral Γε, noting that as the ball is centred at R of distance

ε then |R−ρ|= ε and dG
dn = −

dG
dε . Hence

∫

Γε

(G(ε)∇ψ(ρ)) · n+ψ(ρ)
dG(ε)

dε
dSρ (3.44)

=
1

4π

∫

Γε

(
�eikx

x

�

∇ψ(ρ)) · n+ψ(ρ)(eikε
� ik
ε
−

1
ε2

�

)dSρ (3.45)

=
1

4π

∫

Γε

(
�eikx

x

�

∇ψ(ρ)) · ndSρ +

∫

Γε

ψ(ρ)(eikε
� ik
ε
−

1
ε2

�

)dSρ (3.46)

As the surface is over a sphere of radius ε, then

dSρ = ε
2 sin (θ )dθdφ (3.47)

and
∫

Γε

=

∫ 2π

0

∫ π

0

. (3.48)

Therefore,

=
1

4π

∫ 2π

0

∫ π

0

(
�

εeikε
�

∇ψ(ρ))·n sin (θ )dθdφ+

∫ 2π

0

∫ π

0

ψ(ρ)(eikε
�

εik−1
�

) sin (θ )dθdφ.

(3.49)

As ε→ 0, ρ→ R,

≈ −
ψ(R)
4π

∫ 2π

0

∫ π

0

sin (θ )dθdφ. (3.50)
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= −ψ(R) (3.51)

Consider the surface integral Γδ, noting that as the ball is centred at R0 of dis-

tance δ then |R0−ρ|= δ. Assuming that close to R0, ψ is close to the free field case

and assuming the free-field is a point source i.e. ψ(δ) = eikδ

4πδ , dψ
dn = −

dψ
dδ . Hence

∫

Γδ

G(R,ρ)
dψ(δ)

dδ
− (ψ(δ)∇G(R,ρ)) · ndSρ (3.52)

=
1

4π

∫

Γδ

−G(R,ρ)
� ik
δ
−

1
δ2

�

eikδdSρ −
1

4π

∫

Γδ

(ψ(δ)∇G(R,ρ)) · ndSρ (3.53)

By the same logic as above, as δ→ 0,

→ G(R,R0) (3.54)

Substituting Equations (3.51) and (3.54) into (3.43). Then

0= −ψ(R) + G(R,R0) +

∫

Γ

(G(R,ρ)∇ψ(ρ)−ψ(ρ)∇G(R,ρ)) · ndSρ (3.55)

ψ(R) = G(R,R0) +

∫

Γ

(G(R,ρ)∇ψ(ρ)−ψ(ρ)∇G(R,ρ)) · ndSρ (3.56)

Recalling the inhomogeneity in Equation (3.22), noting that if the source is a

point source located at R0 then f (R) = δ(R−R0). Then by it can be observed that

G(R,R0) =

∫

V ′
δ(ρ −R0)G(R,ρ)dV ′ρ =

∫

V ′
f (ρ)G(R,ρ)dV ′ρ . (3.57)

Which leaves

ψ(R) =

∫

V ′
f (ρ)G(R,ρ)dV ′ρ +

∫

Γ

(G(R,ρ)∇ψ(ρ)−ψ(ρ)∇G(R,ρ)) · ndSρ (3.58)

This is the Kirchhoff-Helmholtz integral equation. Similar definitions can be found

in [36] and [24].

This equation can be immediately simplified to the two dimensional case using

the following insights:
d

d x
(

i
4

H (1)0 (kx)) =
ik
4

H (1)1 (kx), (3.59)
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lim
x→0

x i
4

H (1)0 (kx) = 0, (3.60)

lim
x→0

x i
4

H (1)1 (kx) =
1

2π
. (3.61)

The 2π will get cancelled from the surface integral over circles, instead of balls.

3.3 Tangent Plane Approximation

Recalling the Kirchhoff-Helmholtz integral formulation

ψ(R) =ψ0(R) +

∫

Γ

(G(R,ρ)∇ψ(ρ)−ψ(ρ)∇G(R,ρ)) · ndSρ (3.62)

Where ψ0 =
∫

V ′
f (ρ)G(R,ρ)dV ′ρ is the incident field, the field due to the source

absent from reflections.

This section will derive the Tangent Plane method, also known as the Kirchhoff

Approximation [36]. The main idea of the tangent plane method is that the scat-

tered field can be represented by an infinite number of monopoles radiating from

the surface where the reflection at a given point is approximated by reflection from

an infinite tangent plane. This yields a relationship between the incident field and

the full field (as is described in Appendix A, derived from plane wave scattering and

transmission from two media). That is, [36]

ψ(r) = (1+V )ψ0(r) (3.63)

∂ψ(r)
∂ n

= (1−V )
∂ψ0(r)
∂ n

(3.64)

Where V is the reflection coefficient. The condition that the scattering surface must

be “smooth enough" can be defined mathematically as [36]:

1

(ka)
1
3

<< 1, (3.65)

which can be relaxed [148]
1

(ka)
1
3

< 1. (3.66)

Where k is the acoustic wavenumber and a is the local radius of curvature.
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Assuming the Green’s function is the free-field 3D Green’s function in Equation

(3.30) and substituting this, Equations(3.63) (3.64) into Equation (3.62)

ψ(R) =ψ0(R) +
1

4π

∫

S+S′+CR′

[
eik|R−r|

|R− r|
∇ψ(r)−ψ(r)∇

eik|R−r|

|R− r|
].ndr (3.67)

Figure 3.2: Pictorial representation of the setup used in the acoustic scattering, in
order to set up the Kirchhoff Approximation. In order to transform the external
domain problem into an internal domain, a hemisphere is formed that surrounds
the surface and this hemisphere is then tended to infinity. From the Sommerfeld
radiation condition, this does not contribute to the overall scattered signal.

Note that this is just the surface integral. However, the surface is formed by the

surface S, part of the plane S’, and hemisphere CR′ as shown in Figure 3.2 to make

a closed surface containing all field sources.

As there are no sources present on the surfaces then [36],

0=
1

4π

∫

S+S′+CR′

[
eik|R−r|

|R− r|
∇ψ0(r)−ψ0(r)∇

eik|R−r|

|R− r|
].ndr (3.68)

Subtracting Equation (3.68) from Equation (3.67)
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ψ(R) =ψ0(R)+
1

4π

∫

S+S′+CR′

�

eik|R−r|

|R− r|
∂

∂ n
(ψ(r)−ψ0(r))− (ψ(r)−ψ0(r))

∂

∂ n
eik|R−r|

|R− r|

�

dr

(3.69)

Considering the hemisphere CR′ and the surface S′. Firstly, CR′ is removed by

taking R′→∞, and enforcing the Sommerfeld Radiation condition. That is to say,

for extremely far from the scattering rough surface, the field behaves as the free-

field solution and thus decays. For the integral over S′, at any point on S′ then

ψ(r) =ψ0(r). Enforcing Equations (3.63) (3.64) into Equation (3.69)

ψ(R) =ψ0(R)+
1

4π

∫

S+S′+CR′

[
eik|R−r|

|R− r|
∂

∂ n
((1+ V )ψ0(r)−ψ0(r))

− ((1− V )ψ0(r)−ψ0(r))
∂

∂ n
eik|R−r|

|R− r|
]dr

(3.70)

=ψ(R) =ψ0(R) +
1

4π

∫

S+S′+CR′

V [
eik|R−r|

|R− r|
∂

∂ n
(ψ0(r)) +ψ0(r)

∂

∂ n
eik|R−r|

|R− r|
]dr (3.71)

Applying the product rule of derivatives

ψ(R) =ψ0(R) +
1

4π

∫

S

V (r)
∂

∂ n
[
eik|R−r|

|R− r|
ψ0(r)]dr. (3.72)

Assuming the incident field is a point source

ψ(R) =ψ0(R) +
1

4π

∫

S

V (r)
∂

∂ n
[
eik(R1+R2)

R1R2
]dr, (3.73)

where R1 and R2 are Euclidean distances from a point on the surface to the source

and observation point. That is to say, if the surface roughness is defined by a func-

tion ζ(x), and the source location and receiver location are (x1, y1, z1), (x2, y2, z2)
respectively, then

R1 =
Æ

(x1 − x)2 + (y1 − y)2 + (z1 − ζ(x , y))2, (3.74)

R2 =
Æ

(x2 − x)2 + (y2 − y)2 + (z2 − ζ(x , y))2. (3.75)

Considering the normal derivative, and assuming that kR1, kR2 >> 1[36]

∂

∂ n
[
eik(R1+R2)

R1R2
] = −i(n · q)

eik(R1+R2)

R1R2
+O (

1
(R1R2)2

) (3.76)
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≈ −i(n · q)
eik(R1+R2)

R1R2
(3.77)

Where q= −k∇S(R1 + R2) and ∇S are the derivatives with respect to the dimen-

sions of the surface. That is to say

∇S =

¨

( ∂∂ x , ∂∂ y , ∂∂ z ), 3D
( ∂∂ x , ∂∂ y ), 2D

(3.78)

Therefore,

ψ(R) =ψ0(R) +
1

4πi

∫

S

V (r)
eik(R1+R2)

R1R2
(n · q)dr, (3.79)

where

n=
iz −∇rζ(x , y)
p

1− (∇rζ(x , y))2
(3.80)

nz =
1

p

1− (∇rζ(x , y))2
(3.81)

Where ∇r removes the last element from ∇s, and iz is the unit vector in the z

direction.

Utilising a change of variable

dr=
dr
nz
= dr
Æ

1− (∇rζ(x , y))2. (3.82)

To project onto a flat plane centred at the mean value of the surface. Using

Appendix B, the equation can be rearranged to

ψ(R)s =
1

4πi

∫

S0

V (r)
R1R2

eik(R1+R2)(qz − q∇rζ(x , y))dr (3.83)

In 2D, due to the change of the free-field Green’s function, the equation is [67]

ψ(R)s =
1

2kπi

∫

S0

V (r)
p

R1R2

eik(R1+R2)(qy − qx∇rζ(x))dr (3.84)

If the source has a directivity pattern approximated by radiation from a baffled

piston as in [24] centred around the angle of the source φ0 in space then

ψ(R)s =
1

4πi

∫

S0

A(r)V (r)
R1R2

eik(R1+R2)(qz − q∇rζ(x , y))dr, 3D (3.85)
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ψ(R)s =
1

2kπi

∫

S0

A(r)V (r)
p

R1R2

eik(R1+R2)(qy − qx∇rζ(x))dr, 2D (3.86)

A(r) =
2J1(ka sin(φ(r)− (−φ0 +π/2)))

ka sin(φ(r)− (−φ0 +π/2))
. (3.87)

Where a is the aperture, J1 is the Bessel function of the first kind with n= 1, φ0

is the angle of inclination of the source main axis to the Ox-axis, and φ(r) is the

angle between the vector produced from the location of the source and the point r

with the O y-axis.

Throughout this work, a linear microphone array was simulated above the sur-

face, using code based on the above equation and conditions, written by the author

and provided in https://github.com/michaeldavidjohnson/Kirchhoff-Approximation,

and the absolute scattered acoustic pressure was used as input to various models,

both deterministic and stochastic. The primary hypothesis is that there is enough

information about the structure of the surface contained in the scattered absolute

pressure in the far-field that a model can be fitted to the data such that parameters

of the surface can be recovered. Therefore, the far-field scattered field is visualised.

In order to visualise the impact on the acoustic far-field due to the effect of surface

roughness, different surfaces at different acoustic frequencies are presented.

Figures 3.4, 3.5, and 3.6 showcase the absolute scattered acoustic pressure in

the far-field of the acoustic source, for scattering from a flat surface, at 4,000Hz,

14,000Hz, and 25,000Hz, respectively. From a flat surface, the angle of reflection

is the same as the angle of incidence (Snell’s law). As the frequency increases,

the beam-width of the baffled-piston directivity pattern narrows, this can clearly be

seem in the figures presented.

Figures 3.7, 3.8, and 3.9 showcase the absolute scattered acoustic pressure in

the far-field of acoustic source, at the same frequencies. For a sinusoidal surface,

the scattering surface is defined by:

ζ(x) = 0.0015 sin
� 2π
0.05

x
�

(3.88)

Patterns can be observed for all frequencies. However, as the frequency increases

the complexity of the patterns increases. This is a crucial insight when considering

inputs to a machine learning model, as complexity typically (although not always)

provides more useful information for prediction. The spatial scale of these observed

patterns are due directly to the surface scattered. This is the main motivation to

using acoustic scattering as an input in a machine learning based approach.
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To show the effect of surface roughness on the acoustic far-field, the ensemble

average and the ensemble standard deviation was investigated for different levels

of surface roughness. The surface roughness was created by choosing a discrete col-

lection of points in the x-direction X = (x0, x1, ...., xN ). For each x, the corresponding

y-value was determined by drawing a random value from a normal distribution with

a given standard deviation σ and adding this random value to a constant transla-

tion of 0.0015. The value of σ chosen determines the roughness profile. To recover

the full surface profile, cubic spline interpolation was used. The surface was gener-

ated from [-1m, 1m], 50 equally spaced values in this range were selected to be the

finite collection of points. Cubic Spline interpolation was used to recover a spatial

sampling rate of 0.002m. Figure 3.3 presents a single instance of a random surface

generated with standard deviations of 0.001,0.004, 0.009 respectively.

20 instances of the random surfaces were created, for each standard deviation,

and the ensemble average and ensemble standard deviation was obtained for each

point in the far-field. Figures 3.10, 3.12, and 3.14 present the ensemble average.

Figures 3.11, 3.13, and 3.15 presents the ensemble standard deviation.

In Figure 3.10, the surface roughness is negligible, and the ensemble means look

like reflection from a flat surface, with minimal changes in the ensemble standard

deviation in Figure 3.11. As the surface roughness increases to 0.004, the overall

ensemble average in Figure 3.12 still has a main specular reflection, but outside

this main region, there are values of varying absolute scattered field. This can

be observed in the standard deviation shown in Figure 3.13, which highlights the

overall variation in the ensemble. It is observed that there are changes in the field

which are sensitive to the shape of surface roughness. This is highlighted further

as the roughness scales increase in Figures 3.14 and 3.15 with the exception of the

region close to y = 0 where some surfaces are large enough in amplitude to be

observed directly in the figures.

These figures have highlighted the proof-of-concept that this work uses to in-

fer true surface heights. There is information in the scattered far-field, and there

is spatial dependence that can be used in a machine learning approach. This is

expected. The scattered field is formed (at least, in situations where the tangent

plane approximation holds), by infinite monopoles distributed along the surface,

radiating with a directivity pattern. Classically, this has been leveraged to attempt

to approximate the inverse problem directly (for example, attempting to use single

value decomposition [67], to invert a transfer matrix from a point on the surface to

a receiver).
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Figure 3.3: Single-instance realisations for rough surfaces at different standard de-
viations named std in the figure legend.

The code used throughout the later chapters was developed by the author and

can be found at https://github.com/michaeldavidjohnson/Kirchhoff-Approximation

3.4 Free Surface Generation of Shallow Flow

This section aims to present information on the most relevant wave theory: disper-

sion relations. Once dispersion relations have been presented, a method of creating

synthetic surfaces is introduced. Due to physical constraints in the system, differ-

ent spatial wavelengths act at different frequencies. A derivation of the simplest

water waves dispersion relation (which relates the frequency to the wavenumber)

is included. This methodology has had a slight modification to the form used in

later chapters. The fundamental approximations are that the fluid is irrotational

(therefore, the fluid is not viscous), and that the free-surface amplitude is small. In

these cases, the equations simplify. For example, consider an infinitely long tank

with a fixed depth z = −h. Assuming plane wave propagation in the x direction, the

following equations hold:

∇2φ = 0 (3.89)
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Figure 3.4: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a flat surface. Frequency 4000Hz
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Figure 3.5: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a flat surface. Frequency 14000Hz

42



−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
Position [m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Po
sit

io
n 

[m
]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3.6: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a flat surface. Frequency 25000Hz
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Figure 3.7: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a sinusoidal surface. Frequency 4000Hz
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Figure 3.8: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a sinusoidal surface. Frequency 14000Hz
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Figure 3.9: The absolute scattered field yielded from the Kirchhoff Approximation
when scattering against a sinusoidal surface. Frequency 25000Hz
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Figure 3.10: The expected absolute scattered field from an ensemble of twenty
randomly generated rough surface, yielded from the Kirchhoff Approximation. Fre-
quency, 14000Hz, roughness standard deviation 0.001
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Figure 3.11: The standard deviation of the absolute scattered field from an en-
semble of twenty randomly generated rough surface, yielded from the Kirchhoff
Approximation. Frequency, 14000Hz, roughness standard deviation 0.001
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Figure 3.12: The expected absolute scattered field from an ensemble of twenty
randomly generated rough surface, yielded from the Kirchhoff Approximation. Fre-
quency, 14000Hz, roughness standard deviation 0.004
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Figure 3.13: The standard deviation of the absolute scattered field from an en-
semble of twenty randomly generated rough surface, yielded from the Kirchhoff
Approximation. Frequency, 14000Hz, roughness standard deviation 0.004
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Figure 3.14: The expected absolute scattered field from an ensemble of twenty
randomly generated rough surface, yielded from the Kirchhoff Approximation. Fre-
quency, 14000Hz, roughness standard deviation 0.009
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Figure 3.15: The standard deviation of the absolute scattered field from an en-
semble of twenty randomly generated rough surface, yielded from the Kirchhoff
Approximation. Frequency, 14000Hz, roughness standard deviation 0.009
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Figure 3.16: Graph representing the problem setup, a tank of water infinitely long
in the x direction, bounded by a depth z = −h, and a mean surface at z = 0. The
arrow inside the flow is indicating the propagation direction.

�∂ φ

∂ n

�

boundar y
= 0 (3.90)

�∂ 2φ

∂ t2
+ g
∂ φ

∂ z

�

z=0
= 0. (3.91)

Where φ is defined as the velocity potential defined earlier, which exists due to

irrotational flow [149] and g is the acceleration due to gravity.

To solve this set of equations, seek separable solutions of the form

φ = X (x)Z(z). (3.92)

Then, substituting into Equation (3.89)

X ′′Z + Z ′′X = 0. (3.93)

Divide by XZ to find

−
X ′′

X
=

Z ′′

Z
(3.94)

There must exist a separation constant, sz such that
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X ′′

X
= sz (3.95)

=⇒ −(X ′′ − szX ) = 0 Z ′′ − sz Z = 0 (3.96)

There are three cases of sz to consider. The case that allows for non-trivial

solutions is the case where sz > 0, define this constant to be sz = k2, k ∈ R. In this

case, and for the results in this section k is taken to become the spatial wavenumber.

Substituting these gives:

Z ′′ − k2Z = 0, (3.97)

=⇒ Z = Aekz + Be−kz. (3.98)

Enforcing Equation (3.90) yields

∂ φ

∂ z

�

�

�

z=−h
= 0, (3.99)

=⇒ Z ′(−h) = 0, (3.100)

=⇒ Aekh = Be−kh. (3.101)

Where A, B are unknown constants. With some manipulation, one finds

Z = D cosh (k(z + h)), (3.102)

Where D is an unknown constant. The assumption of plane wave in the x-

direction propagation gives

X = E cos (kx +ψ) (3.103)

This can be trivially checked that this is a valid assumption. So we have derived,

assuming temporal harmonic motion in the x direction given by d’Alembert f (x−c t)
[150]:

φ(x , y, t) = F cos (k(x − c t) +ψ) cosh (k(z + h)) (3.104)

Where F = DE. Now, consider the boundary condition at the free-surface z = 0

from Equation (3.91)
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�∂ 2φ

∂ t2
+ g
∂ φ

∂ z

�

z=0
= 0 (3.105)

This boundary condition should yield the specific relationship between frequency

and wavenumber and therefore the dispersion relation. Substituting in the values

gives

F cos (k(c t)[−c2k2 cosh (k(z + h)) + gk sinh (k(z + h)))]z=0 = 0 (3.106)

=⇒ −c2k2 cosh (kh) + gk sinh (kh) = 0 (3.107)

=⇒ c2 =
g
k

tanh (kh) (3.108)

Using c2 = ω2

k2 one obtains a relationship between the angular frequency and the

wavenumber.

ω2 = gk tanh (kh) (3.109)

This is known as a dispersion relation between ω and k and determines that

the frequency of generated waves is gathered from the spatial wavelength of the

waves. The free surface ζ (and the constant F) can be obtained from calculating

[151][149]

ζ=
�

−
1
g
∂ φ

∂ t

�

z=0
(3.110)

The simple dispersion relation due to gravity waves as shown in Lamb [151]

and Stoker [149] has been derived. Having knowledge of the dispersion relation

i.e. the relationship between frequency and wavenumber is of great importance

when it comes to the analysis used later. This is because of the link between the

harmonics present in Equations (3.104) and (3.110) and analysis methods, such as

the application of the Fourier transform. This avoids the need for a full reconstruc-

tion based on numerically calculating the above equation. This is favorable as when

boundary conditions such as the bed roughness becomes complex, the time taken

to simulate is large. The only thing that is needed to synthetically generate surfaces

that obey the dispersion relation, is the dispersion relation alone. The following

dispersion relations are provided as cited results, without derivation and are used

throughout the thesis.
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If the mean speed of the flow is faster than pattern deformations, the fluctuations

in time at a fixed point is primarily due to advection. The advectice dispersion

relation is [2]:

ΩA(k,U0)≈ kU0. (3.111)

Where k = (kx , ky) is the spatial wavenumber in the x and y dimension, and U0

is the surface velocity vector. The dispersion relation with surface tension due to

gravity-capillary waves can be approximated as

ΩGW (k,U0)≈ ΩA(k,U0)±
√

√

�

g +
γ

ρ
k2

�

k tanh (kd) (3.112)

Where g ≈ 9.81m/s is acceleration due to gravity, γ is the surface tension of

water and air, ρ is the density of water, and d is the depth. This is the form of

the gravity waves presented in Equation (3.109), but with terms representing the

surface tension. Note that this equation contains the addition of the advection

dispersion curve. This is due to the Doppler effect that occurs when there is a

dispersion curve present with constant moving flow [152].

These two dispersion relations are mainly affected by the average surface veloc-

ity U0 and the depth of the flow d. However, the dispersion curve is substantially

more sensitive to the velocity in comparison to the depth, as can be shown by taking

the derivative:

∂ΩGW

∂ U0
= k (3.113)

∂ΩGW

∂ d
=
(g + γ

ρk2)k2(1− tanh (kd)2)

2
q

(g + γ

ρ k2)k tanh (kd)
. (3.114)

Sensitivity analysis of the parameters are presented in Figures 8.1 and 8.2. Re-

alisations of moving surfaces that exhibit the dispersion relations discussed were

created.

Surfaces can now be created from the dispersion curves showcased earlier, and

are created with the velocity and the depth as input, and after the reconstruction

in space from the wavenumber domain. The surface elevation function that de-

termines the surface state in space and time based on the advective, and gravity-

capillary dispersion relations can be defined as

Υ =F−1
k (C1A(k)e−iΩA(k,U0)t) +F−1

k (C2A(k)e−iΩ+GW (k,U0)t) +F−1
k (C3A(k)e−iΩ−GW (k,U0)t)

(3.115)
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ζ(x , t) = δ
Υ

std(Υ )
(3.116)

Where A(k) = k
−β
2 represents the surface spectrum slope decay for increasing k,

F−1
k is the inverse Fourier transform in the spatial dimension, std is the standard

deviation, C1,C2,C3 are complex random numbers generated from Gaussian distri-

butions in both the real and imaginary components, and δ is the amplitude scal-

ing factor that determines the root mean square (rms) height of the overall rough

surface. Surfaces that are created according to Equation (3.116) have a frequency-

wavenumber spectrum that contains the three dispersion curves, this can be seen

in Figure 3.17.

Figure 3.17: Absolute value 10 log10 frequency-wavenumber from a surface gen-
erated using Equation (3.116) for: depth = 0.4, velocity = 0.5, β = 2, temporal
sample rate = 200, spatial sample rate = 1000

3.5 Machine Learning

This work aims to solve the inverse problem with data-driven approaches. Firstly,

classical machine learning algorithms were tested. Random Forests, K-Nearest

57



Neighbors and Linear Regression were evaluated for this problem. Neural Net-

work based architectures were avoided in this work due to the vast amount of

hyperparameter tuning, as well as architecture tuning. It was concluded that the

hyperparameters would need to be tuned for different surface problems, that is

to say, the optimal hyperparameters for a three parameter harmonic surface (e.g.

amplitude, wavelength and phase) could be different to the hyperparameters for a

forty-parameter surface (e.g. a sum of sine waves where amplitude and phase can

vary). Therefore, models that have fewer parameters were favoured.

This section contains some relevant theory and derivations for Random Forests,

K-Nearest Neighbors, and Linear Regression. The application of which are seen in

chapters 4, and 5.

3.5.1 Random forests

Random forests are a classification and regression model where the model predic-

tions are formed from an average of multiple decision trees. A decision tree is

a supervised machine learning model in which the resulting model is a tree-like

structure, where queries on the data define the branches and predictions define the

leaves. As the values of parameters in this study are real numbers, regression ran-

dom forests are used. The composition of decision trees are discussed significantly

by Breiman et al. [153].

3.5.1.1 Decision tree

Suppose a dataset D = (Ω,Z), where Ω = (ωl j) ∈ RND×M and Z = (ζl j) ∈ RND×N ,

are the matrices of input and output values, respectively with M the number of

receivers and N the number of outputs to recover, and ND denotes the number of

samples in a dataset, with l = 1..ND. Next, define a splitting criterion ( j, S) where j

is a column in Ω and S is some value defined on an interval [min(Ω), max(Ω)].
A binary partition of D forms two datasets D1( j, S) and D2( j, S) via the following

form,

D1( j, S) =
�

(Ω,Z)|ωl j ≤ S, l = 1..ND, j = 1..M
	

, (3.117)

D2( j, S) = D \ D1( j, S). (3.118)

Where \ is the set minus operator. To find the best splitting criteria in the case of

Z having one output (i.e. i = 1), one must minimise the following equation [154],
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modified with weights:

min
( j,S)

�

ND1

ND

∑

D1

(ζl − ζ̄D1
)2 +

ND2

ND

∑

D2

(ζl − ζ̄D2
)2
�

, (3.119)

where ζ̄D is an average of all outputs for a dataset. This process is then repeated

recursively on D1 and D2 until the nodes are “pure”, i.e. for an ideal case
∑

ωl j∈Dleaf

(ζl − ζ̄Dleaf
)2 = 0 (3.120)

for some partition Dleaf, or another stopping criterion is reached. The final partitions

are names leaves and are the contributing factor for prediction. The decision tree’s

prediction at a leaf node will be the mean of all the outputs in that leaf node.

In reality, for regression implementations a value of zero will never be obtained

so other stopping criteria to make a leaf must be considered, such as the sum of

squared errors becoming lower than a threshold or defining a minimal amount of

elements (no less than 2) required to be in a sub-dataset.

This splitting is then done recursively by using Equations (3.117) and (3.118),

until the tree is fully formed. Common algorithms to generate the decision trees

include the Iterative Dichotomiser (ID) algorithm [155], and the Classification and

Regression Trees algorithm (CART) [153]. The thesis uses the algorithm provided

in scikit-learn [50].

Due to the nature of the decision tree algorithm, decision trees tend to overfit

any given training data. Random forests attempt to solve this issue (seen in [47,

156]) where the overfitting issue is tackled through incorporating randomness. The

fundamental approach a random forest takes is to produce many decisions trees,

each individually trained on a random subset on the given dataset. Each tree is then

used to make predictions, and the average behaviour of all trees in the forest are

taken into account for the final prediction. A simple case of this is simply taking the

mean value of all the decision tree’s predictions. Comparisons of the performance

over decision trees have been studied previously, i.e. [156] where in classification,

random forests yielded an improved performance in 17 out of 20 datasets tested for

the same amount of attributes over decision trees.

The random forests in this thesis were created using the Python library scikit-

learn. [50]
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3.5.2 K-Nearest Neighbors

This section contains a short mathematical explaination of the model. For more

information, see [157]. Suppose that the problem is mapping a collection of D

dimensional inputs which are associated to some output value. To compare a test

input x test to the collection a distance metric d : Γ xΓ → R, where Γ is any set, needs

to be defined. If the collection of inputs are real valued, which is the case for the

inverse scattering problem, the metric space can be seen as (RD, d). An example

metric could be the Euclidean distance. That is to say,

d(x , y) =
Æ

(y1 − x1)2 + (y2 − x2)2 + · · ·+ (yd − xd)2. (3.121)

In reality, because this can be seen as a metric space, the only restrictions on the

choice of d are as follows ∀x , y , z ∈ Γ :
The distance from a point to itself is 0

d(x , x ) = 0. (3.122)

The distance is symmetric

d(x , y) = d(y , x ). (3.123)

The distance is positive if x ̸= y

d(x , y)> 0. (3.124)

The triangle inequality holds

d(x , z)≤ d(x , y) + d(y , z). (3.125)

If these are true, then d is said to be a metric of Γ .

Once a metric is defined, the prediction of output ytest from the new test sample

x t es t is the following. Firstly, calculate all the distances d where di = d(x i , x t es t ).
Then find the shortest k distances (the value of k is user-provided). Once the results

are found, the prediction is either a uniform average of the results, or a weighted

average found from the inverse of the resultant distances.
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3.5.3 Linear Regression

The aim is to fit the best straight line to a collection of data with inputs

X = [x0, x1, . . . , xn]
T (3.126)

Y = [y0, y1, . . . , yn]
T . (3.127)

In matrix form, linear regression can be seen as









y1

y2
...
yn









=









1 x1

1 x2
...

1 xn









�

β0

β1

�

+









ε1

ε2
...
εn









(3.128)

Where β0,β1 are constant coefficients which dictate the translation and gradient

of the line, and ε1, ...,εn are the associated error values for a given combination of

β0,β1. The problem is to choose the optimal value for β . This is found as [158]:

β̂ = (X T X)−1X T Y (3.129)

With estimation of error given as

ε̂= Y − X(X T X)−1X T Y (3.130)

3.6 Markov Chains Monte Carlo, Metropolis Hastings,
Stochastic Approach

We take a brief tangent to present the ideas of Markov Chain Monte Carlo. Explicitly

this is defined by the following definition

Definition 1 [159] A Markov chain Monte Carlo (MCMC) method for the simulation
of a distribution f is any method producing an ergodic Markov Chain (X t) whose
stationary distribution is f

It is now pertinent to define precisely what a Markov-Chain is. This is defined in

the sense of measure theory in order to rigorously define a transition kernel. Once

this is defined, a lot of the formality will be loosened in order to present a more

example-based approach.
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Definition 2 [160] A non-empty collection E of subsets of E is called an algebra on E
provided that it is closed under finite unions and compliments, it is called a σ-algebra
on E if it is closed under complements and countable unions.

A∈ E ⇒ E − A∈ E (3.131)

A1, A2, ... ∈ E ⇒
⋃

n

An ∈ E (3.132)

Definition 3 [160] Let (E,E ) be a measurable space. A measure on (E,E ) is a map-
ping µ : E → [0,+∞] such that

• µ(;) = 0,

• µ(
⋃

n An) =
∑

nµ(An) for every disjointed sequence (An) ∈ E .

Therefore, a measure space is defined as a triplet (E,E ,µ) where (E,E ) is a

measurable space and µ is a measure on this space.

Definition 4 [160] Let (E,E ) and (F,F ) be measurable spaces. A mapping ι : E→ F

is said to be measurable relative to E and F if ι−1B ∈ E for every B in F .

Definition 5 [160] A numerical function on E is a mapping from E to [−∞,∞]. If
this function is measurable relative to E and the Borel σ-algebra on [−∞,∞] then it
is said to be E -measurable.

Definition 6 [160] A measurable space is a pair (E,E ) where E is a set, and E is a
σ-algebra on E.

Definition 7 [160] Let (E,E ) and (F,F ) be measurable spaces. Let K be a mapping
from E×F into [0,+∞]. Then, K is called a transition kernel from (E,E ) to (F,F ) if

• the mapping x → K(x , B) is E -measurable for every set B ∈ F

• the mapping B→ K(x , B) is a measure on (F,F ) for every x ∈ E.

Essentially, a transmission kernel allows for a probability measure to be formed

from any element x which is in the set E on the measurable space (F,F ). Thinking

about K(x , B), this is allowing for a probability to be assigned when considering

the move from state x to some state in the set B. We will assume throughout that

E = F,E = F . This is because in this work, Markov chains are used to assign the

probability of exploring the current state space.
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Definition 8 [159] Given a transition kernel K, a sequence X0, X1, ..., Xn, . . . of ran-
dom variables is a Markov chain (Xn) if, for any t, the conditional distribution of X t

given x t−1, x t−2, . . . , x0 is the same as the distribution of X t given x t−1

P(X t+1 ∈ A|x0, x1, . . . , x t) = P(X t+1 ∈ A|x t) (3.133)

Therefore, the main idea from the definition of a Markov chain is that the proba-

bility from moving to the next state, is only dependent on the current state. The

history does not matter. Further, a Markov chain is time homogeneous if

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) (3.134)

holds, that is to say, that the transition kernel does not change in time.

Consider the following two examples. Firstly, a two-state problem. As the num-

ber of states is discrete, the transition kernel reduces to a transition matrix T with

elements

Px y = P(Xn = y|Xn−1 = x) (3.135)

For example, consider a set E = 1, 2 and E = P (E) = {;, {1}, {2}, {1,2}} the

power set of E. A kernel that exhibits the Markovian nature described above is

formed from the probability it assigns to the singletons {s}, s ∈ E. Defining a kernel

that allows for the probability of moving from state 1 to itself as P11 = 0.5 and to

state 2 as P12 = 0.5, and the probability of moving from state 2 to itself as P22 = 0.5

and to state 1 as P21 = 0.5 the following transition matrix can be formed

T =
�

P11 P12

P21 P22

�

(3.136)

T =
�

0.5 0.5
0.5 0.5

�

. (3.137)

Note that the probabilities Pi j were only defined as the probability of going to

the next state j, from the current state i.

A state space diagram for this transition matrix can be drawn, as in Figure 3.18.

Next, consider the following random walk

x0 = 0 (3.138)

x i = x i−1 +N (0,σ), i = 1,2, · · · (3.139)
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Figure 3.18: State space diagram for the transition matrix given in Equation 3.137.

Where N (0,σ) is a draw from a normal distribution of mean value 0 and stan-

dard deviation σ. The collection of these form a Markov Chain with probabilities

P(xn+1|x0, x1, . . . , xn) = P(xn+1|xn) =N (xn,σ). (3.140)

This is illustrated in Figure 3.19

Figure 3.19: Gaussian random walk with initial value x0 = 0 with standard devia-
tion 1. The y axis represents the value.

Definition 9 [161] An irreducible positive recurrent Markov chain is an ergodic Markov
chain.

Where recurrent means that the probability that going from a state i and never

returning to this state is zero.
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Definition 10 [162] A Markov chain with transition kernel K satisfies the detailed
balance condition if there exists a function p satisfying

K(y, x) f (y) = K(x , y) f (x) ∀(x , y) (3.141)

More-or-less, this definition states that the probability to move from x to y is the

same as the probability for moving from y to x , therefore the Markov Chain is said

to be reversible. If the Markov Chain is irreducible, then f is a unique stationary

distribution [163]. The required definitions are now in place.

3.6.1 Metropolis-Hastings

Suppose one is aiming to sample from a probability distribution p(x) and suppose

this cannot be evaluated. Assume that a probability distribution f (x) can be calcu-

lated, and has the relation

p(x) =
f (x)

Z
. (3.142)

Where Z is some constant. Recalling Definition 1, a MCMC method is any

method to simulate a distribution f that produces an ergodic Markov chain, with

stationary distribution p. Beginning with the detailed balance definition

K(y, x)p(y) = K(x , y)p(x) (3.143)

The transition kernel is separated into two components, a proposal distribution

q(x , y) and an acceptance distribution α(x , y) which define the probability of mov-

ing from a state x to a state y, and the probability of this new state change being

accepted. Substituting these values into Equation (3.143)

q(y, x)α(y, x)p(y) = q(x , y)α(x , y)p(x) (3.144)

⇒
α(x , y)
α(y, x)

=
p(y)q(y, x)
p(x)q(x , y)

(3.145)

⇒
α(x , y)
α(y, x)

=
f (y)q(y, x)
f (x)q(x , y)

(3.146)

To find the relation for α(x , y), the cases of

q(y, x)α(y, x) f (y)> q(x , y)α(x , y) f (x) (3.147)

65



and

q(y, x)α(y, x) f (y)< q(x , y)α(x , y) f (x) (3.148)

need to be evaluated. Using this, and setting the corresponding α(·, ·) in the greater

than side to be 1 (as α is a probability distribution), the following relation can be

found [162]:

α(x , y) = Min
�

1,
f (y)q(y, x)
f (x)q(x , y)

�

(3.149)

If q(x , y) = q(y, x) the proposal distribution is said to be symmetric, and the

methodology is called Metropolis Scheme. A table representing the Algorithm is

provided in Table 1.

Algorithm 1 Metropolis-Hastings Algorithm
Initialise x0

for i = 0, . . . , N − 1 do
Sample u∼ U(0,1)
Sample y ∼ q(y | x i)
x = x i

if u≤ α then
x i+1 = y ▷ Accept sample.

else
x i+1 = x ▷ Reject sample.

end if
end for

This approach produces a Markov Chain [159]. Therefore, from any given input

x0 this Markov Chain will eventually reach the stationary distribution p, which is

exactly the distribution that is aiming to be inferred.

3.6.2 Stochastic Approach

Consider a set of data collected from acoustic scattering from an infinite rough

surface. This can be thought of as data generated from the simulation under a set

of parameters θ such that

p = [ψs(Ri|θ )]i=1,..,n + ε (3.150)

Where p represents the experimental array of scattered acoustic pressure.

[ψs(Ri|θ )]i=1,..,n is an extension of Equation (3.85) where each Ri refers to a

location R in Equation (3.85), centred at the location of a receiver, the θ term has
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been included here indicating that some set of parameters θ will be able to be

varied, in order to change the underlying surface ζ in Equation 3.85.

The question then becomes, how to find θ . From Bayes’ rule, the posterior of θ

can be found as proportional to

P (θ |p)∝P (p|θ )P (θ ). (3.151)

Where P (p|θ ) is the likelihood of the data being generated by a set of param-

eters θ and is called the likelihood function, and P (θ ) contains prior knowledge

of the distribution of parameters θ called the prior distribution. It can immediately

be seen that this proportional form can be immediately applied under the Metropo-

lis Hastings framework. The algorithm used in this work is called the Adaptive

Metropolis (AM) scheme, and is found in [113]. The main change in this refer-

ence is the manipulation of the proposal distribution. The main definition of the

proposal distribution is a Gaussian distribution centred at a current state with an

adaptive covariance matrix. To compute the covariance matrix at some step t, An

index t0 > 0 is selected, and the covariance matrix is formed by [164]:

Ct =

¨

C0, t ≤ t0

sd cov(X0, ..., X t−1) + sdεId , t > t0
. (3.152)

Here, Ct is the covariance matrix at the time t, X t is the state of the model at a

time t, Id is a d-dimensional identity matrix, sd = (2.4)2/d, ε > 0 a small number.

It can be seen that this covariance matrix is not Markovian, as the entire history

need be considered. However, Haario et. al proved that the ergodic properties are

sufficiently satisfied to be a valid proposal distribution [164].

As an example, consider some data D = [X]i=0,...,nwas generated from a two-

dimensional Gaussian distribution

X ∼N2(µ,Σ) (3.153)

with µ = [µ1,µ2]T and Σ is a covariance matrix where terms can be calculated

as in [165]. Suppose that the data was generated from µ1 = 0.5,µ2 = 0.5. For

this example, assume that the covariance matrix is known (this does not have to

be true in general). Then Metropolis-Hastings can be used to infer the posterior

of the parameters θ = [µ1,µ2] with respect to the data. Figure 3.20 presents the

results from using the Metropolis-Hastings scheme to find the value of µ. The plot

showcases a contour plot of the density of the distribution that generated the data.
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Then there is a line moving through x = µ1, y = µ2 starting at [−1,−1]. Very

quickly, this line, made up from "traces" of values sampled from the Metropolis-

Hastings scheme, moves towards the centre of the contour distribution and then,

as it enters the stationary distribution, stays there. The line going to the stationary

distribution is called the "burn in" period and is discarded in analysis.

The code used throughout the later chapters was developed by the author and

can be found at https://github.com/michaeldavidjohnson/MetropolisHastings

Figure 3.20: Overlay of the traces against the true density that made up some
experimental data.
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Chapter 4

Surface shape reconstruction from
phaseless scattered acoustic data
using a random forest algorithm
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Summary

This paper investigated the validity in using Machine Learning (specifically Random

Forests) in order to solve the inverse problem of scattering from an infinite rough

surface. Without using Machine Learning, this is a nonlinear problem unless some

assumptions are made, such as the Bojarski Identity [59] which is a linearisation

assuming that all wavenumbers are known. Because of the further approximations

on the wavenumber all the wavenumbers cannot be recovered, and thus the prob-

lem is ill posed. Iterative methods can be applied, or a further approximation can

be made to be able to perform a matrix inversion [66] [74]. In order to avoid these

extra assumptions, a Random Forest model was fit to synthetic realisations of dif-

ferent single harmonic sine waves. This was also tested and trained on different

proportions of noise in the data to be able to test for robustness.

The performance of the Random Forest approach was tested in three different

ways. Firstly, the coefficient of determination was used to test the model perfor-

mance in the recovery of each parameter under each noise condition for all data.

To show further generalisability of this approach different incident angles from 20

degrees to 90 degrees were tested from 50Hz to 45,000Hz. These results were anal-

ysed to find how the performance varied with angle, given a fixed receiver layout.

Further to this, synthetic data was used as a dataset, and the error of the ran-

dom forest prediction was tested against the Short Array method presented in [74].

What was found here is that both models perform well until the ratio of the surface

amplitude to the acoustic wavelength rose above 0.1. In this case, the random forest

still performs well, but the Short Array method’s performance severely decreases.

This is due to the breakdown of the linearisation, the amplitude is no longer sig-

nificantly smaller than the wavelength, so the approximation breaks down. This

highlights the applicability for Random Forests to be able to perform in a nonlinear

inverse environment.

Further metrics were presented such as a heatmap of the true parameters against

the predicted parameters, this was an illuminating figure as it quantified directly

how much data was in the outlier region. Overwhelmingly, the data followed the

predicted = true line, and this over many surface iterations highlighted the accuracy

of the model.

To finish, an experimental sample was produced from laboratory experiments,

and the random forest predicted this well over a large number of noise conditions.

This was also with the underlying Kirchhoff Approximation code that generated
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the synthetic data, was in 2D with an approximate directivity pattern. This further

highlighted the validity of this approach.

4.1 Abstract

Recent studies have demonstrated that acoustic waves can be used to reconstruct

the roughness profile of a rigid scattering surface. In particular, the use of multiple

microphones placed above a rough surface as well as an analytical model based on

the linearised Kirchhoff integral equations provide a sufficient base for the inversion

algorithm to estimate surface geometrical properties. Prone to fail in the presence

of high noise and measurement uncertainties, the analytical approach may not al-

ways be suitable in analysing measured scattered acoustic pressure. With the aim to

improve the robustness of the surface reconstruction algorithms, here it is proposed

to use a data-driven approach through the application of a random forest regression

algorithm in order to reconstruct specific parameters of one-dimensional sinusoidal

surfaces from airborne acoustic phase-removed pressure data. The data for the

training set is synthetically generated through the application of the Kirchhoff inte-

gral in predicting scattered sound, and it is further verified with data produced from

laboratory measurements. The surface parameters from the measurement sample

were found to be recovered accurately for various receiver combinations and with

a wide range of noise levels ranging from 0.1% to 30% of the average scattered

acoustical pressure amplitude.

4.2 Introduction

Inverse acoustic scattering is concerned with the recovery of information about an

object or a surface based on scattered acoustic data collected using sound sources

and receivers. It has applications in fields such as non-intrusive damage testing as

well as surface recovery.

A numerical method based on the boundary integral equations and Kirchhoff ap-

proximation to reconstruct the shape of a scattering surface was recently outlined[67,

68]. This approach was found to be highly sensitive to uncertainties, partly because

of the strong dependence on the phase of the scattered signal [74]. The errors in

the inversion results were associated with the underdetermined and ill-posed na-

ture of the problem [74]. The range of applicability in reconstructing a surface is
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also limited by the validity of a partial linearisation of the scattering problem, which

is required in order to make the numerical inversion feasible.

Another recent approach includes recovering a rough surface at grazing angles

using single-frequency, phaseless acoustic pressure through the use of an itera-

tive marching method approach derived from the parabolic wave approximation

(forward-scattered wave propagation assumption) [77]. Although the inversion re-

sults are found to be relatively accurate, it is assumed that the forward-scattered

approach is not applicable in the context of this paper research due to significant

differences in the assumptions and experimental setup and, in particular, acoustic

remote sensing applications where the sound field is best described by a solution of

the full Helmholtz equation [74].

Recent work [74] solved the reconstruction problem using matrix inversion,

where the forward model of scattered acoustic pressure was linearised resulting

in the linear system of equations resolving the unknown profile of a rough surface.

The use of an iterative approach such as machine learning is an appealing alter-

native to linearisation and as such is one of the central motivations of the present

work.

As opposed to deterministic model-based inversion approaches, machine learn-

ing methods in wave scattering problems allow more flexibility. Machine learning

and its applications in various fields of acoustics was discussed in detail by Bianco

et al. [52]. It has been shown that a combination of random forest and neural net-

works results in a robust method enabling reconstruction of geometrical features

against noise [92]. This was achieved by first classifying training shapes with a ran-

dom forest and then inverting the far-field scattered signal using neural networks

to obtain geometrical features of different scattering objects.

Fan et al. [88] successfully applied deep learning methodologies utilising the

Helmholtz equation in the recovery of the shape and placement of multiple scatter-

ers in two different settings, including a seismic imaging setting where the source

and receivers were above the scatterers and receivers were in a linear array. The

scatterers were placed randomly and formed from a number of shapes such as tri-

angles, squares or ellipses. It was shown that for a large number of receivers and

sources, the locations and orientations of the scatterers were successfully recovered

with various amounts of noise in the dataset, while the recovered boundaries of the

scatterers became blurred as the noise level increased.

Successful use of machine learning methodologies in acoustics was also demon-

strated when identifying parameters such as the porosity and tortuosity of a porous
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material with an acoustic signal perturbed by noise [166]. It was shown that “ac-

ceptable accuracy with wide variety of noise levels” [166] can be achieved in recov-

ering material properties.

Other works that recovered the parameters of surfaces instead of the full sur-

face include: recovering parameters of a sum of sine waves forming a rough surface

[89], recovering coefficients of a parametric curve of an obstacle [90], and using a

convolutional neural network to recover the root-mean-squared height and corre-

lation length from a Gaussian rough surface through synthetic aperture radar [91].

The flexibility of data-driven approaches as compared to classical model inversion,

in the presence of noise, stands as a central motivation of the present work.

The Kirchhoff Approximation is still an active part of reconstruction efforts as in

[167], other methods have risen in inverse scattering especially in the near-field,

such as recovering the far-field pattern given the near-field measurements [168]

and obtaining the scattering coefficient from near-field measurements [169].

The choice to use phaseless data as input was driven mainly by the character-

istics of the random forest approach, which cannot handle coupled complex data.

In Dolcetti et al.[74] phase uncertainty was found to have a stronger impact than

amplitude uncertainty on the accuracy of the surface reconstruction, and imperfect

wrapping of the phase was found to cause a multi-modal distribution of the recon-

struction error, especially at large roughness amplitudes (relative to the acoustic

wavelength).

This work studies the feasibility of a machine learning approach to characterise

a parametric rough rigid surface. Phaseless acoustical data were chosen due to the

relatively simple amplitude only calibration technique compared to phase calibra-

tion, as well as to avoid the easily corruptible nature of phase measurements which

are sensitive to uncertainties, such as uncertainties in position. Scattered phaseless

acoustical pressure defined by a single frequency source excitation will be syntheti-

cally generated through an application of the Kirchhoff approximation. Specifically,

the estimation of the wavelength, amplitude, and offset of a sinusoidal acoustically-

rigid scattering surface is considered by means of a random forest algorithm trained

on synthetic noisy data and tested on synthetic and experimental data.

The paper is organised in the following way: Section 4.3 presents the random

forest model used for the estimation of the surface parameters. Section 4.4 con-

tains relevant information regarding the methodology including the selection of the

forward model as the Kirchhoff approximation, the incorporation of noise, the way

in which data was split into training and testing sets, the experimental setup, and
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the convergence of random forest as the number of trees increase. Section 4.5

contains the relevant results and evaluation of the performance of the testing set

and experimental data set including a comparison between the method proposed in

this paper and the Short Array method [67] and model performance in recovering

unseen parameters. Section 4.6 contains the conclusions of the paper.

4.3 Random forest algorithm

The purpose of machine learning algorithms in this work is to allow the estimation

of a parameter set that uniquely defines the shape of a sinusoidal surface using the

modulus of the scattered acoustic pressure measured at a finite number of locations.

Defining ψs(R) as the acoustic pressure field at a point R produced by a source with

co-ordinates (x1, y1), scattered by a sinusoidal rigid surface with profile

ζ(x) = ζ1 cos
�

2π
ζ2
(x + ζ3)
�

, (4.1)

where the parameters ζi, i = 1, 2,3 indicate the amplitude, wavelength, and offset

of the sinusoidal surface, respectively. The signal was recorded at a set of M mi-

crophones with co-ordinates of the j-th microphone given by R( j) = (x ( j)2 , y ( j)2 ), j =
1, . . . , M , the aim is to estimate at least one of the parameters ζi, given |ψs(R)|. The

general setup of sound scattering by a rough surface in Ox y plane is presented in

Figure 4.1 where the source and receivers are located in the acoustic far-field above

the surface.

The choice to reconstruct the parameter set instead of the surface shape at each

location (as was done in, e.g., [67]) was made in order to limit the complexity of

the problem and to develop a method applicable for surfaces of higher complexity,

while still allowing a relatively compact parametric representation based on Fourier

series, as are typical for example of water waves in some applications [170, 124].

Among the large number of existing machine learning approaches, here it was

decided to employ a random forests approach for the recovery of the parameters

of the surface. This is due to the simplicity of the model, the structure of a ran-

dom forest is very strictly defined, giving less options to the user in its creation.

This is different to a neural network approach, where the architecture needs to be

carefully considered. It was also decided that not being able to extrapolate to pa-

rameters outside the range given by the training data would be a benefit for the

problem investigated in this paper, to ensure the Kirchhoff condition is maintained.

Random forests also benefit from not needing any input features to be scaled or

74



Figure 4.1: The geometry of the problem where the rough surface is defined by a
function ζ(x) from equation (4.1). Surface is not to scale.

standardised while also being able to measure feature importance through the use

of Gini importance, although this can be biased when “input variables vary in their

scale of measurement of their number of categories”. [171] Although, this is not

investigated in this paper.

Random forests are a classification and regression model where the model pre-

dictions are formed from an average of multiple decision trees. A decision tree is

a supervised machine learning model in which the resulting model is a tree-like

structure, where queries on the data define the branches and predictions define the

leaves. As the values of parameters in this study are real numbers, regression ran-

dom forests are used. The composition of decision trees are discussed significantly

by Breiman et al. [153]. However, a brief derivation based from Hastie et al. [154]

is included in this paper.

4.3.1 Decision tree

Due to random forests being formed from many decision trees, it is important to

have an understanding on how decision trees partition data to make predictions.

Suppose a dataset D = (Ω,Z), where Ω = (ωl j) ∈ RND×M and Z = (ζl j) ∈ RND×N ,

are the matrices of input and output values, respectively with M the number of

receivers and N the number of outputs to recover, and ND denotes the number of

samples in a dataset, with l = 1..ND. Next, it is necessary to define a splitting
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criterion ( j, S) where j is a column in Ω and S is some value defined on an in-

terval [min(Ω),max(Ω)]. It is noted that throughout the paper indices j, i and l

are reserved for the columns in the input dataset (referred to as features and as-

sociated with the receiver location in the receiver array), for the columns in the

output dataset (referred to as surface parameters) and for the rows in input/output

datasets (referred to as samples) respectively.

Then, a binary partition of D forms two datasets D1( j, S) and D2( j, S) via the

following form,

D1( j, S) =
�

(Ω,Z)|ωl j ≤ S, l = 1..ND, j = 1..M
	

, (4.2)

D2( j, S) = D \ D1( j, S). (4.3)

Where \ is the set minus operator. To find the best splitting criteria in the case of

Z having one output (i.e. i = 1), one must minimise the following equation [154],

modified with weights:

min
( j,S)

�

ND1

ND

∑

D1

(ζl − ζ̄D1
)2 +

ND2

ND

∑

D2

(ζl − ζ̄D2
)2
�

, (4.4)

where ζ̄D is an average of all outputs for a dataset. This process is then repeated

recursively on D1 and D2 until the nodes are “pure”, i.e.
∑

ωl j∈Dleaf

(ζl − ζ̄Dleaf
)2 = 0 for

some partition Dleaf, or another stopping criterion is reached. The final partitions

are called leaves and are where the predictions are measured from. The decision

tree’s prediction at a leaf node will be the mean of all the outputs in that leaf node.

In reality, for regression implementations a value of zero will never be obtained

so other stopping criteria to make a leaf must be considered, such as the sum of

squared errors becoming lower than a threshold or defining a minimal amount of

elements (no less than 2) required to be in a sub-dataset.

Essentially, decision trees recursively split a dataset into grouped subsets via

equations (4.2) and (4.3) until the tree is fully formed. Common algorithms to

generate the decision trees include the Iterative Dichotomiser (ID) algorithm [155],

and the Classification and Regression Trees algorithm (CART) [153]. This paper

uses a modified version of the CART algorithm contained in the Python package

scikit-learn [50].

Due to the nature of the decision tree algorithm, decision trees tend to overfit

the given training data. This can be improved with methods such as cost complexity

pruning [154]. Another method to improve performance is through the application
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of random forests [47, 156] where the overfitting issue is tackled through incorpo-

rating randomness. In this approach, a “forest" is made from many decision trees

where each decision tree is individually trained on a random subset of the dataset,

and the overall random forest prediction is an average of all the decision trees in

the forest. Comparisons of the performance over decision trees have been studied

previously, i.e. [156] where in classification, random forests yielded an improved

performance in 17 out of 20 datasets tested for the same amount of attributes over

decision trees. Random forests have also been used in regression problems, such

as in [172] where random forests were compared against support vector machines

and a partial least squares (PLS) method to identify heavy metal content in soil

from hyperspectral modelling. Zhou et al. found that both support vector machines

and random forests were “significantly better than that of PLS”[172], and random

forests had an improved performance over support vector machines.

Classification often performs well in recovering from a discrete set of labels.

For example, the amplitudes could be binned to [0.0-0.0005, 0.0005-0.001, 0.001-

0.0015....] and the same can be adopted for the wavelength and offset. However,

in order to increase the resolution of the predictions, the number of bins have to

increase. Therefore, by tending the number of labels to infinity, regression appears

to be the reasonable approach for the present work.

The random forests in this work were created using the Python library scikit-

learn. [50]

4.4 Estimation of the surface parameters

As is very common with machine learning, large datasets must be produced to be

applied in the training of the models in order to obtain useful results. For this

paper, a dataset of the scattered wavefield is generated for the rigid surface given

by Eq. (4.1) using the Kirchhoff approximation following [66]. This data was then

used for the training of the random forest by using the scattered phase-removed

acoustic pressure |ψs(R)| as inputs to the random forest (Ω), and surface parameters

as the output (Z), effectively simulating an inverse problem. Finally, the trained

learner was applied to two sets of test data (one synthetic and one experimental),

to evaluate its performance.
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4.4.1 Generation of synthetic data

The Kirchhoff approximation was chosen due to its explicit form, obtained through

the approximation of a scattered signal via an assumption based on reflections from

a tangent plane. This makes it suitable for the calculation of large amounts of data,

which is required for training and testing the random forests, while being fast to

compute (approximately 0.01 seconds for 34 receiver Kirchhoff simulations on an

AMD Ryzen 9 3900X CPU with 32 GB RAM). The suitability of this approximation

for the conditions analysed in this paper was presented in Krynkin et al. [67, 68].

Let the rough surface be defined by a function ζ(x) as shown in Equation (4.1)

which satisfies the following condition [36]:

sin(φ)>
1

(kh)1/3
, (4.5)

where h is the radius of curvature of the surface, k is the acoustic wavenumber and

φ is the incident angle of the acoustic wave. With the condition of Equation (4.5)

satisfied, it is possible to use the Kirchhoff approximation to model reflections of

an acoustic wave from a rough surface using a tangent plane approach. In 2D, for

a source with a given directivity pattern, the scattered acoustic pressure ψs can be

expressed in the following equation [68]:

ψs(R) =
1

2kπi

∫ ∞

−∞

A(x , 0)
p

R1R2

eik(R1+R2)(qy − qxγ)dx , (4.6)

where, as shown in Figure 4.1, the values R1 and R2 are the Euclidean distance

from the source at (x1, y1) and receiver at (x2, y2) to a given point (x ,ζ(x)) on the

surface, respectively:

R1 =
Æ

(x1 − x)2 + (y1 − ζ(x))2, (4.7)

R2 =
Æ

(x2 − x)2 + (y2 − ζ(x))2. (4.8)

In Equation (4.6), R= (x2, y2), γ= dζ(x)/dx; qx and qy are the x and y components

of q = −k∇S(R1 + R2) with the gradient ∇S = (∂ /∂ x ,∂ /∂ y). The directivity term

A(r) is defined in this work as the far-field radiation from a baffled piston, which is

given by [24],

A(r) =
2J1(ka sin(φ(r)− (−φ0 +π/2)))

ka sin(φ(r)− (−φ0 +π/2))
, (4.9)

where a is the aperture, J1 is the Bessel function of the first kind with n = 1, φ0 is

the angle of inclination of the source main axis to the Ox-axis, and φ(r) is the angle
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between the vector produced from the location of the source and the point r with

the O y-axis.

Following the application of the Kirchhoff approximation to simulate the scat-

tered field, the phase is removed from Equation 4.6 through the application of

modulus:

p(R) = |ψs(R)|. (4.10)

Taking into account the receiver locations in an array of M receivers, phase-

removed acoustic pressure used in the random forest algorithm is given by the

following matrix,

p= {pl

�

R( j)
�

| j = 1..M , l = 1..N}, (4.11)

where the rows of the matrix are formed from pl (an ensemble containing the ab-

solute array pressure for a given ζl), and R( j) form the columns (receiver locations

defined with respect to the origin of the Ox y plane). For brevity, the dependence

on R( j) will be omitted, resulting in pl j = pl

�

R( j)
�

, and if operations are row-wise

only the j superscript will be omitted resulting in pl .

4.4.2 Noise

The Kirchhoff approximation model is deterministic, therefore one set of model

parameters maps to a given sound pressure field. However, in practical applications,

noise is present in measured data. It is proposed to modify the solution of the

Kirchhoff approximation via additive noise, calculated as:

p̃l = pl + εl , (4.12)

where εl j ∈ εl ,εl j ∼ N (0,σ) is drawn from a normal distribution independently

for each receiver. For additive noise, the standard deviation, σ, was selected to

be percentages chosen for investigation (0.1%, 1%, 5%, 7%, 8%, 9%, 10%, 12%,

15%, 17%, 20%, 25%, 30%. This relates to an approximate signal-to-noise ratio

of 29.7dB, 19.7dB, 12.7dB, 11.2dB, 10.6dB, 10.1dB, 9.7dB, 8.9dB, 7.9dB, 7.3dB,

6.7dB, 5.7dB, 4.9dB respectively) multiplied by p̄l - the average of the receiver’s

pressure magnitude taken across all receivers for the given surface in absence of the

noise. The acoustic pressure for each receiver is then normalised by the maximum

value for the Kirchhoff approximation scattered from the flat surface so that it can

be used in the random forest algorithm.
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Number of recovered parameters Amplitude bounds Wavelength bounds Offset bounds Number of samples
1 parameter -0.01m,0.01m N/A N/A 30
2 parameters -0.01m,0.01m 0.035m,0.15m N/A 30
3 parameters -0.01m,0.01m 0.035m,0.15m -0.02m,0.02m 30

Table 4.1: Bounds for each parameter in the data generation stage as well as the
number of samples generated within those bounds.

4.4.3 Synthetic training and testing datasets

A large number of datasets that correspond to different realisations of the parame-

ters ζi, i = 1..3 were prepared using equations (4.6) and (4.12). For these calcula-

tions, the source and receiver locations were chosen in accordance with the existing

experimental data [74] that was later used for validation in this paper. The source

location was at (x1, y1) = (−0.20,0.22) m. The angle φ0 of the source main axis

to the Ox axis was 60 degrees. The receivers were located at a height of approxi-

mately y2 = 0.28 m in the y-axis and 34 receivers were distributed evenly with x2

taking values from -0.13 m to 0.53 m in the x-axis, leading to an average distance

between the receivers of 0.02 m. The data was generated numerically through the

use of the Kirchhoff approximation, the integration was done numerically through

the application of Simpson’s rule [173] over the integration range of x ∈ [−3, 3] m,

which was vectorised to improve the speed of data generation.

Multiple datasets were formed for one-parameter, two-parameter, and three-

parameter surfaces defined in equation (4.1) in order to investigate the perfor-

mance of the algorithms as the number of unknowns increased. The values for each

parameter were generated with uniform spacing from a lower bound to an upper

bound, the choices for parameter values and resolution is shown in Table 4.1.

As well as the surface generation, multiple datasets were generated with differ-

ent proportions of noise to the absolute acoustic pressure, with σ varied between

0.001p̄l and 0.3p̄l as described above. Noise was added by cloning a pair of pres-

sures and surface parameters 20 times and independently adding noise to every re-

ceiver, yielding datasets with the following sizes for one-, two- and three-parameter

datasets: 630, 18900, 567000.

The models were trained using the training set and then evaluated on the testing

set to provide an indication of the model’s performance on unseen data. The same

approach described above was applied in order to generate both the training set and

the synthetic testing set. The two subsets were split randomly, with a proportion of
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70% training set and 30% testing set, such that the intersection of the training and

testing set would yield the empty set.

4.4.4 Experimental testing dataset

Experimental data used in this paper for validation purposes was collected with 34

1/4′′ microphones (G.R.A.S. 40PH) and with a loudspeaker (Visaton G 25 FFL),

arranged with the same geometry described in section 4.4.3. A sinusoidal surface

(with amplitude ζ1 = 0.0015 m and wavelength ζ2 = 0.05 m) illustrated in Figure

4.2 was machined from an aluminium block with a length of 0.55 m in the x-

direction, and a width of 0.35 m.

Figure 4.2: 3D rendering of the surface used in the acquisition of the experimental
sample. (colour online)

A signal was produced at 14 kHz and recorded simultaneously at all micro-

phones, with a sampling rate of 102.4 kHz. The amplitude at each microphone was

calculated by a Fourier transform applied to 0.02 s long segments of the signal, and

then averaged over 2000 segments using a Hann window. The data was calibrated

in situ by comparing measurements of the sound field reflected by a flat surface
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with the corresponding prediction calculated numerically, following the procedure

outlined in Dolcetti et al.[74].

Even after calibration, the pressure field scattered by the sinusoidal surface dif-

fered from the one predicted with the Kirchhoff approximation model, due to the

uncertainties in the measurements, especially at the microphones further away from

the source. This difference could be seen as an equivalent random noise with σ

given by:

σ =

r

∑M
j=1

�

ψre f (R( j))− p(R( j))
�2
/M

p̄(R)
, (4.13)

where p is the Kirchhoff approximation given in equation (4.6), with ζ(x) = 0.0015sin(2πx/0.05)
and |ψre f | is the experimental data. σ was found to be 0.195 that quantifies the de-

viations observed in Figure 4.3.

Figure 4.3: Overlay of the Kirchhoff approximation solution in comparison to the
experimental example which is calibrated for 14 kHz.

4.4.5 Performance evaluation

In this section, the choices of metrics used to estimate the accuracy of the inversion

algorithm are briefly defined. For evaluation against the synthetic testing set, the

coefficient of determination (R2) is used in the following form [174];

R2(i) = 1−

N
∑

l=1

[ζl i − f (pl)i]
2

(ζl i − ζ̄i)
2

, (4.14)
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where pl = |ψs(R( j))|, j = 1..M are the inputs for a given surface with Zl parameters,

N is the number of samples, ζ̄i is the mean of the i-th output, and ζl i are outputs at

the l-th row for the i-th value from Zl set of parameters and f is the estimator, which

is the random forest explained in Section 4.3. Therefore, f (pl)i is the prediction of

the i-th value from the Random Forest given pl . For the two- and three-parameter

estimation, the R2 score is calculated for each parameter and then averaged.

To evaluate the accuracy of the model predictions when predicting the surface

given exclusively from the experimental data, the absolute error (AE) was also used,

given by;

Ei = | f (p)i − ζi|, i = 1..3. (4.15)

As there is only a single surface measurement available from the experimental data,

N = 1 and there is no averaging in equation (4.15) compared to that in equation

(4.14).

When plotting the results, the value of Ei is also normalised by the corresponding

surface parameter, except for the offset, which is normalised by the wavelength.

It is noted that in the two- and three-parameter recovery, the AE of each output

parameter was considered. This allows for an investigation into the change in pa-

rameter prediction as the number of parameters increases, while not allowing the

overall AE to be dominated by the highest scale - the wavelength.

4.4.6 Convergence

A key hyperparameter of consideration is the number of decision trees used in the

construction of the random forest. There are instances where an increase in the

number of trees in a random forest only increases computational cost without much

improvement in performance. [175] It was shown that both the errors in classifica-

tion and regression forests are monotonically decreasing functions with respect to

the number of trees. [176] These results also highlight that the most performance

improvement was seen from random forests built from 10 trees to 250 trees.

Convergence testing has been performed for random forests generated with 1%

and 15% added noise for three-parameter recovery. Three-parameter recovery was

chosen due to the size of the dataset as well as the complexity of recovering three

parameters. The change of the coefficient of determination as the number of trees

increases is presented in Figure 4.4. In the case of 1% noise shown in Figure 4.4,

the increase in the coefficient of determination slows significantly after 5 trees in

the random forest algorithm. For the case of 15% added noise, the coefficient of
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Figure 4.4: Convergence of R2 when number of trees increase for 1% and 15%
added noise

determination increases rapidly for random forests created from 1 tree to 50 trees

as shown in Figure 4.4, which signifies a better performance of the algorithm in

predicting the testing set. The coefficient of determination demonstrated in Figure

4.4 decreases in gradient rather significantly for the random forests as the number

of trees pass 200, with a relative percentage increase in coefficient of determination

of 0.18%. When the number of trees reach 750, the increase in the number of trees

has a smaller effect on the coefficient of determination, while also significantly

affecting computational time. In this study, with the hardware described in Section

4.4.1, the computational time for the random forests with 750 trees increased to

53.67 times that of the random forest with 1 tree. Increasing the number of trees to

1200 results in a further increase of computational time to 81.7 times. Therefore,

the approach used in this paper was to generate random forests consisting of 700

trees, which is substantially inside the convergence factor to ensure convergence for

all datasets while not having a significantly negative effect in terms of computation

time.

4.5 Results

This section is formed from four subsections. Firstly, the coefficient of determina-

tion is considered when evaluating model performance using the testing subset of

the synthetic data. Following this, a comparison between the random forests ap-

proach against the short array method [67] is showcased. Then, a study on the
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performance of random forests when evaluating parameters unseen by the model

in training is showcased. Finally, the AE between model predictions and the sur-

face used in the experimental sample is considered. For the AE when considering

the two and three-parameter surfaces, the AE is presented such that the AE per

parameter is separated.

4.5.1 Testing on synthetic data

Testing was done initially based on synthetic data, for a large number of surface

realisations, and for various amounts of noise and numbers of receivers, where

the first N receivers were considered. For one-parameter estimations, the surface

wavelength and offset are assumed to be known, while the amplitude parameter ζ1

is estimated. In this case, the coefficient of determination was found to be close to 1

for noise levels below 17%, except for 9% noise for random forests generated with

10 receivers where R2 ≈ 0.888, then dropping to slightly below 0.9 at 30% noise,

as shown in Figure 4.5. It is noted that for 10 receivers at 17% noise R2 ≈ 0.861.

The decrease of coefficient of determination for the data generated by 10 receivers

at 9% and 17% noise is interesting due to the drop in value of R2. This behaviour

was deemed to be an outlier from the specific shuffle of training and testing sets.

Randomly reshuffling the training and testing sets 1000 times for the 9% and 17%

noise cases gave average coefficients of determination of 0.986 and 0.959, with

standard deviations of 0.014 and 0.026, respectively.

Figure 4.5: Coefficient of determination for the estimation of the surface amplitude,
ζ1, at varying noise levels and considering different number of receivers.
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When the surface amplitude ζ1 and surface wavelength ζ2 are estimated, the

coefficient of determination lowers throughout all the noise percentages, as well as

showing a smoother decay of R2 value with the noise level. For random forests

generated with 15, 20 and 34 receivers, the minimal value of the coefficient of

determination is above 0.7 at the dataset with 30% noise as shown in Figure 4.6.

For the random forest based on 10 receivers, theR2 is much worse than with higher

numbers of receivers, dropping to approximately 0.5 at 30% noise.

Figure 4.6: Coefficient of determination for the estimation of the surface amplitude,
ζ1 and the surface wavelength, ζ2 at varying noise levels and considering different
number of receivers.

When all three surface parameters (amplitude ζ1, wavelength ζ2, and offset ζ3)

are estimated, the coefficient of determination decreases faster compared to the

one and two parameter problems. This is highlighted at random forests generated

with 10 receivers, where the lowest value R2 is approximately 0.3 at 30% noise

compared to approximately 0.5 and 0.9 in one- and two-parameters, respectively.

A key feature to note is that the coefficient of determination changes only slightly

for random forests generated with different receiver combinations when the amount

of receivers is greater than 10 as shown in figures 4.5, 4.6 and 4.7. This highlights

that favourable model performance using machine learning to aid the inversion

process can be obtained with fewer receivers. Having favourable performance with

fewer receivers makes it possible to set up cost-efficient and practical applications.
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Figure 4.7: Coefficient of determination for the estimation of the surface amplitude,
ζ1, the surface wavelength, ζ2 and the offset ζ3 at varying noise levels and consid-
ering different number of receivers.
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Figure 4.8: Contour plot of the coefficient of determination of a testing set for the
two-parameter recovery for varying angle of incidence φ0 (see equation (4.9)) and
frequency.
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4.5.2 Investigation of change of angle and frequency

In order to judge performance in different setup conditions, and to verify the choice

of angle and frequency used in the experiment, varying source angles φ0 and source

excitation frequencies were tested. The source angles were varied from 20 degrees

to 90 degrees, with 70 equally-spaced samples. The source excitation frequencies

varied from 1000Hz to 45000Hz with 45 equally-spaced samples. In order to re-

duce computation time, two-parameter datasets were created. The offset of the si-

nusoidal surface was fixed to 0. Datasets were created in the same way as described

in Section 4.4.3 where noise was not added to the datasets. Figure 4.8 showcases

the results of the coefficient of determination for the resulting testing sets. In the

results, the method does not perform well below 5000Hz for all angles tested. This

is concluded to be due to the scale of the acoustic wavelength being much larger

than the amplitude and wavelength of the surface, causing the scattered absolute

acoustic pressure to have no substantially-different features. Between 5000Hz and

15000Hz, the coefficient of determination is at near maximum for all angles tested.

As the frequency increases past 15000Hz, an ideal angle region is found between

30 and 60 degrees.

4.5.3 Comparison with Short Array method

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.5

1

1.5

2

2.5

Random forest

Dolcetti, G., et al., JSV, 2021

Figure 4.9: Comparison between the approach offered in the paper against the SA0
approach: averaged root mean square difference between target and reconstructed
surfaces normalised by the surface amplitude ζ1, plotted against the surface ampli-
tude normalised by the acoustic wavelength, ζ1/λ.
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A comparison between the method proposed in this paper and the so-called

short array method [67] in the unbiased version proposed by Dolcetti et al. [74],

hereafter called SA0 method, is discussed in this section. The comparison was

made between the three-parameter random forest generated with 5% noise and

the SA0 model. Both models had the same initial conditions on setup and were

evaluated with 141750 samples taken from the testing set. In order to match the

parameter-based recovery from the random forest to the surface based recovery

from the SA0 model, a set of surfaces was reconstructed from the parameters pro-

vided by the random forest by populating the values into equation (4.1) in the range

x ∈ [−0.11,0.17], which is the specular range of the source and the receiver array.

The two methods were applied to the same set of synthetic pressure data, and com-

pared in terms of the spatial root-mean-square difference between the target and

reconstructed surfaces averaged over all surfaces with the same amplitude and nor-

malised by the surface true amplitude parameter. The results can be seen in Figure

4.9. The deviation in methods appear to increase rapidly when ζ1/λ > 0.1 where

the SA0 method begins to increase in error significantly. This is mainly because

of the loss of validity for the linearisation of the Kirchhoff integral, which is the

basis of the SA0 method, whereas the random forest approach uses the Kirchhoff

approximation directly without linearisation. A direct comparison to the previous

methods can be made by analysing Figure 13c in Dolcetti et al. [74]. Calculating the

root-mean-squared error factored by the acoustic wavelength for the surface recov-

ered from Table 4.2 within the specular points of the receivers and the microphones

(following Dolcetti et al. [74]) yields a value of 0.0165, 0.027 and 0.169 for one-,

two- and three parameters respectively. This outperforms the SA0 method in recov-

ering the experimental sample and is comparable to reconstruction using multiple

frequencies, while also being close to the reconstruction based on synthetic data

without noise. The exception is the two-parameter recovery, which performs ap-

proximately the same as the SA0 method. Although this is one sample, the results,

highlighted from both synthetic recovery as shown in figure 4.9 and experimen-

tal recovery earlier in this paragraph, showcase improved performance with the

method proposed in this paper, especially as the amplitude increases.

4.5.4 Evaluating surfaces not seen by the model in training

In order to highlight the generality of using a random forest based approach, predic-

tions on surfaces that would have never been seen in the training and testing sets in
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the previous section were evaluated. Two-parameter recovery was chosen to high-

light the generalisation. Surface parameters were chosen by doubling the number

of samples shown in Table 4.1 and removing samples that correspond to the train-

ing and testing set used to train the random forest. This leads to 841 surfaces to be

predicted. In order to investigate generalisation further, noise was added to modify

the receiver pressure at the unseen model parameters, where the percentage chosen

to modify the pressure was different compared to that seen by the random forest

during training. The random forest was trained on acoustic pressure linked to the

two-parameter dataset with 5% added noise, and evaluated on a dataset generated

with 7% noise. In these data, the coefficient of determination given by equation

(4.14) when training on the surface amplitude and surface wavelength is 0.6 and

0.84, respectively. Figures 4.10 (a) and (b), and 4.11 highlight the results of the

recovered two surface parameters.
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Figure 4.10: The predicted values versus true unseen parameters: (a) surface am-
plitude ζ1 and (b) surface wavelength ζ2.
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Figure 4.11: Histogram of the RMSE, measuring the difference between the true
surfaces produced with the unseen parameters and the reconstructed surfaces pro-
duced using the random forest predictions of the unseen parameters, normalised by
the true parameter’s amplitude.

There is a clear trend in Figures 4.10 (a) and (b) along the identity line, where

true and predicted values are equal for both the amplitude and the wavelength.

This can be seen from the density shown in the figures. The amplitude component

has a spread of predictions that widen in proportion to the surface elevation height.

The reconstruction of the wavelength begins to deteriorate for values starting below

ζ2 = 0.08 m. It appears that the performance decreases when recovering surfaces

with high amplitude and low wavelength, which corresponds to a higher Kirchhoff

parameter.

Figure 4.11, representing the distribution of RMSE (described in subsection

4.5.3) defined along the specular region by the difference between the true surfaces

and the surfaces reconstructed with the random forest predictions, demonstrates

that the majority (approximately 74%) of the reconstructed surfaces predicted with

the random forest algorithm fall within ±0.41ζ1, which is the standard deviation of

the RMSE deviation.

4.5.5 Testing on experimental data

The coefficient of determination was used as a metric to measure model perfor-

mance with a synthetic testing subset of the synthetic data when discussing the

91



results in Section 4.5.1. In this section, predictions were obtained and compared

against the experimental sample given in Section 4.4.3. Using the experimental

phase-removed acoustic pressure as an input to the random forests, the prediction

was then compared with the true surface parameters from the experiment using

AE given in equation (4.15). The value of AE was then normalised by the actual

surface parameters and expressed as a percentage point, converting it to a relative

error.

Figure 4.12 highlights the relative error from one parameter’s prediction of the

surface amplitude ζ1 based on experimental data. For the random forest generated

with the full set of 34 receivers, the maximal AE divided by the actual surface

amplitude rises from below 26% to 50% as the noise increases from 0.1% to 9%. As

the noise level increases above 9%, the relative error decreases under 50% reaching

its minimum 5% at 12% noise. This behaviour is closely matched to the random

forest generated by 20 receivers. For the random forest generated with 15 receivers,

there is a large spike of relative error for noise values under 7% noise, then the error

for these random forests match the error curve of the random forests generated with

20 and 34 receivers. For random forests generated with 10 receivers, the relative

error tends to stay with the other error curves except for noise levels of 10% where

there is a spike in relative error of approximately 300%

Figure 4.12: The change of relative error values for the random forests generated
with different numbers of receivers and noise for one parameter surface recovery of
the experimental sample.

Figure 4.13 (a) and (b) contain the relative errors of the amplitudes and wave-
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lengths, respectively, for the two-parameter recovery. The random forests generated

with 10 and 15 receivers have relatively high errors in comparison to 20 and 34 re-

ceivers. The wavelength and amplitude relative error for random forests generated

with 20 and 34 receivers are close to the actual wavelength and amplitude values

of the surface, staying mostly under 20% of the AE factored by the actual amplitude

and under 25% of the AE factored by the actual wavelength. There are exceptions

at 9 and 10% noise for random forest generated with 34 receivers and 12% for ran-

dom forests generated with 20 receivers. For over 20% noise, the random forests

generated with 34 receivers also exceed 25% relative error. There is a clear separa-

tion for the random forests generated with 10 and 15 receivers in comparison to 20

and 34 receivers in amplitude and wavelength, with the smaller number of receivers

producing errors that are a factor of 10 larger for the wavelength component.

Figure 4.14 contains the relative error of all three parameters. For the full set

of receivers, the relative error of the recovered surface amplitude decreases from

200% to settle at approximately 50% for random forests generated with 7 or more

percent noise - except for 15 and 17 percent noise, where the relative error is found

within 3-5% range. Interestingly, the random forest generated with 20 receivers has

a lower error curve than the random forest generated with the full set of receivers.

This could be due to an increased fit to the Kirchhoff approximation solution with

the experimental results, as shown in Figure 4.3. For the wavelength parameter,

every choice of the amount of receivers except for 34 receivers yielded a relative

error greater than 10%. The offset AE, divided by the actual wavelength, stayed

below 10% for every receiver combination and noise level. The random forest

generated with 34 receivers kept the lowest AE value compared to the random

forests generated with fewer receivers throughout.

The major problem with the three-parameter model is the prediction of the am-

plitude, where the relative error is high even for the full set of receivers. For the

random forest generated with 34 receivers, the relative error was less than 10% at

only 15% and 17% noise levels and then over 50% at all other noise levels. Al-

though this error is in the sub-millimeter scale, the consistent underestimation can

make the prediction invalid. It is noted that this underestimation could be due to

the difference in scale between the parameters, with the wavelength of the surface

being significantly larger than the amplitude. It is important to note that 15% and

17% noise is close to the estimated deviation between the measurements and the

predictions by the Kirchhoff approximation model calculated in Section 4.4.4 esti-
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(a)

(b)

Figure 4.13: The change of relative error values for the random forests generated
with different numbers of receivers and noise for two parameter surface recovery of
the experimental sample, separated by parameter: (a) amplitude, (b) wavelength.
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Number of recovered
parameters

Amplitude Wavelength Offset R2

Actual parameter 0.0015m 0.05m 0m N/A
1 parameter 0.00207m N/A N/A 0.986
2 parameters 0.00158m 0.0531m N/A 0.912
3 parameters 0.00142m 0.0516m -

0.00194m
0.724

Table 4.2: Results from parameter recovery for surface prediction using 15% noise
random forest.

mated with the equation (4.13), which could explain the improved performance of

the inversion at these noise levels.

Figure 4.15 and Table 4.2 highlights the model’s prediction of the surface given

the experimental acoustical pressure in comparison to the actual surface shape at

datasets with 15% noise and with 34 receivers. 15% noise was selected due to the

improved performance in the two and three parameter models and similarity to the

expected error from the Kirchhoff approximation model to the experimental data

sample. The x-limits of the plots ranging from -0.15 m to 0.15 m are defined by the

width of the main lobe in the source directivity pattern given by equation (4.9). The

dominating component of difference to the experimental sample is the wavelength

due to the scale differences in amplitude and wavelength as shown in Table 4.2.

4.6 Conclusion

While training and testing the random forest regression algorithm, it was observed

that for one-parameter datasets, the coefficient of determination is highly favourable,

staying significantly above 0.8 over the range of added noise. For the random forests

generated with the two-parameter datasets, all receiver subsets except for 10 re-

ceivers slowly decay from 1 to just under 0.8. When random forests are trained

with the three-parameter datasets, the coefficient of determination is observed to

be above 0.7 for added noise levels between 0.1% and 15%, except for the random

forest generated with 10 receivers. With 10 receivers, the coefficient of determina-

tion decreases significantly for noise levels above 10%.

The relative error has been used as a metric to evaluate model performance

when predicting the surface parameters from experimental data. It has been noted
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(a)

(b)

(c)

Figure 4.14: The change of relative error values for the random forests generated
with different numbers of receivers and noise for three parameter surface recovery
of the experimental sample, separated by parameter: (a) amplitude , (b) wave-
length and (c) offset.
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Figure 4.15: Surface prediction for 15% noise random forest generated with 34
receivers (colour online).

that the relative error varies significantly between 0 and 100% depending on the

added noise and amount of receivers used in the recovery of parameters. In the

three-parameter recovery, the lowest relative error values for 34 receivers have been

consistently observed when noise levels are at 15% and 17%. It has been noted

that these noise levels are comparable with the estimated discrepancy between the

analytical solution used to generate synthetic data and the experimental results.

The results in this paper have shown that the method works well for a simple

sinusoidal surface and as such stands as an initial proof of concept that can be gen-

eralised to complex surfaces; for example, through Fourier series decomposition.

Another extension to the results of this paper would be to incorporate a measure of

confidence in the model’s predictions, such as Bayesian Inference, which could also

benefit from flexibility and could provide complimentary insights.
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Chapter 5

Data-driven reconstruction of rough
surfaces from acoustic scattering
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Summary

Prior to formulating the results that were used in the previous section, an appro-

priate model needed to be found, known as model selection. The method of model

selection was to first find a region of frequency from the experimental sample cal-

ibration data, that behaved as expected to the Kirchhoff approximation, and then

use that frequency in the data generation. Then random forests, k-nearest neigh-

bors, linear regression, support vector machines, and artificial neural networks were

tested. It was found that the Random Forests performed the best and was consistent

in their prediction, so this was the model used in Section 4.

However, there were a few limitations with the approach. Firstly, only a single

(or a few) frequencies can be selected, this potentially can be an issue due to the

human choice of frequency and due to changes in the environment, the frequency

chosen could be dominated by noise. There was an over-reliance on having a high

quality calibration dataset in order to extract the frequencies that are sufficient

for Random Forest reconstruction. A further limitation of this single frequency

approach was that the prediction given was only a single sample, there was not a

measure of uncertainty from a point sample. A clear way to avoid this is to generate

a cluster of predictions over many frequencies.

The paper presented in this chapter tackles these issues. The acoustic source

for the experiment was white noise, which gives information from 10,000Hz to

51,150Hz in 50Hz bins. Model selection was thus run again on each of the 50Hz

bins in this range to avoid the issues arising from only looking at a single frequency.

The models were selected in this paper to be linear regression, random forests, and

k-nearest neighbours.

The mean-squared error of the Kirchhoff approximation against the experimen-

tal data collected in the experiments were shown, the coefficients of determination

for the models were also shown, where linear regression performs substantially

worse than K-Nearest Neighbors and Random Forests. This is entirely expected, as

the problem is non-linear.

The key figures are the scatter plots and the histograms of the predictions of

each model. Taking a holistic approach using the whole frequency range, the K-

Nearest Neighbours approach is clearly more favourable. This is due to the distinct

single prediction (minus some outliers) that can be observed in the range from

10,000Hz to 30,000Hz. This causes a very large peak to be found in the histograms.

Outside this region, the predictions become random, which can be attributed to the
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limitations of the to the Kirchhoff Approximation model as well as the decreasing

acoustic wavelength.

Following this, the main method used in further Chapters, the Adaptive Metropo-

lis scheme, was introduced. This allowed for the ability to get a full posterior distri-

bution over the parameters. In this case, the adaptive metropolis scheme is a single

frequency based approach that was tested with the three parameter experimental

data used in Chapter 4.

5.1 Abstract

This work investigates the use of data-driven approaches for reconstructing rough

surfaces from scattered sound. The proposed methods stands as alternatives to ma-

trix inversion, which requires a linearisation of the dependence on the surface pa-

rameters. Here, a large dataset was formed from scattered acoustic field, estimated

through the Kirchhoff Approximation. Limiting this work to the reconstruction of a

static surface, K-Nearest Neighbors, Random Forests and a stochastic approach are

compared to recover a parameterisation of surfaces using the scattered acoustical

pressure as input. The models are then validated against a laboratory experiment

alongside methods highlighted in Dolcetti et. al., JSV, 2021. The models are tested

at a frequency that best fits the lab uncertainties, then tested on a broad frequency

range. This scheme provides relatively accurate results in comparison to the ap-

proaches tested. Estimation errors as well as robustness in the presence of noise are

discussed.

5.2 Introduction

Machine Learning has been a highly active section of research in recent years, prov-

ing more than capable in many fields, including acoustics. Bianco et al. [52] high-

lighted some key areas in acoustics where Machine Learning has been used. Namely,

source localisation, bioacoustics and reverberation. However, as the number of Ma-

chine Learning solutions increase, questions are rising about the reproducibility of

results [177, 178, 179].

Typically, when evaluating the performance of a model or method in inverse

scattering, there are some base cases which are tested. For example, Fan et al. [88]

successfully applied deep learning methodologies utilising the Helmholtz equation

in the recovery of the shape and placement of multiple scatterers in two different
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settings, including a seismic imaging setting where the source and receivers were

above the scatterers and receivers were in a linear array. The scatterers were placed

randomly and formed from a number of shapes such as triangles, squares or ellipses.

These results were then verified against positions and shapes that were known. As

well as in Johnson et al. [1] where the surface was created in laboratory, and those

measurements were used to predict the shape of the surface relatively accurately for

different noise levels [1] (Figure 5.1). However, although these results are accurate,

it is only known to be accurate because of the setup used for validation.

The aim of this work is to investigate a further method of knowing if the model’s

prediction is correct. This is done by leveraging the potential benefits that a broad-

band frequency source can bring, more typical regression models (Linear regres-

sion, K-nearest neighbours, and random forests) are trained on every frequency

in a broadband frequency range to estimate consistency in prediction, in order to

give some confidence in prediction. Following this, the Metropolis Markov Chain

Monte Carlo (MCMC) algorithm is shown on a single frequency case, yielding more

information than merely a single point prediction.

The layout of this paper is as follows: Section 2 holds information about the

experiment as well as the properties of the surface tested, section 3 presents the

Kirchhoff Approximation, which is used to generate data for the models, as well as

a discussion on the data processing. Section 4 showcases results and discussions for

the models at a broadband frequency range. Section 5 introduces the Metropolis

algorithm, as well as results and discussions. Section 6 contains the conclusions.

5.3 Experiment Setup

For these calculations, the source and receiver locations were chosen in accordance

with the existing experimental data [74] which was used for validation in this paper.

The source location was at (x1, y1) = (−0.20,0.22) m. The angle φ0 of the source

main axis to the Ox axis was 60 degrees. The receivers were located at a height of

approximately y2 = 0.28 m in the y-axis and 34 receivers were distributed evenly

with x2 taking values from -0.13 m to 0.53 m in the x-axis, leading to an average

distance between the receivers of 0.02 m.

The real-world data used was collected with 34 1/4′′ microphones (G.R.A.S.

40PH) and a loudspeaker (Visaton G 25 FFL), arranged with the same geometry

discussed. A sinusoidal surface (with amplitude ζ1 = 0.0015 m and wavelength

ζ2 = 0.05 m) was machined from an aluminium block.
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Figure 5.1: Surface reconstruction using a random forest approach, trained with
15% noise included, as highlighted in [1].

A signal was produced from the source and recorded simultaneously at all mi-

crophones, with a sampling rate of 102.4 kHz. The amplitude at each microphone

was calculated by a Fourier transform applied to 0.02 s segments, and averaged

over 2000 segments using Hann windowing. This yields information beginning at

10,000Hz and ending at 51,150Hz. The data was calibrated by comparing mea-

surements of the acoustic field reflected by a flat surface with the corresponding

Kirchhoff approximation, following the procedure outlined in Dolcetti et al.[74].

The residual difference between the measured pressure field after calibration and

the one predicted by the Kirchhoff approximation is shown in Figure 5.3.
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5.4 Data Generation through the Kirchhoff Approxi-
mation

Defining ψs(R) as the acoustic pressure field at a point R produced by a source with

co-ordinates (x1, y1), scattered by a sinusoidal rigid surface with profile

ζ(x) = ζ1 cos
�

2π
ζ2
(x + ζ3)
�

, (5.1)

Figure 5.2: The geometry of the problem where the rough surface is defined by a
function ζ(x) from equation (5.1). Surface is not to scale.

The Kirchhoff approximation is assumed to be valid if the following condition is

satisfied [36]:

sin(φ)>
1

(kh)1/3
, (5.2)

where h is the local radius of curvature of the surface, k is the acoustic wavenumber

and φ is the angle of incidence of the acoustic wave. The validity of this approx-

imation for the conditions investigated in this work was demonstrated in Krynkin

et al. [67, 68]. The Kirchhoff approximation is suitable for the calculation of large

amounts of data, which is required for machine learning problems, while being

fast to compute. With this approximation, the scattered 2D acoustic pressure ψs is

calculated as[68]:

ψs(R) =
1

2kπi

∫ ∞

−∞

A(x , 0)
p

R1R2

eik(R1+R2)(qy − qxγ)dx , (5.3)
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where, as shown in Figure 6.1, the values R1 and R2 are the Euclidean distance

from the source at (x1, y1) and receiver at (x2, y2) to a given point (x ,ζ(x)) on the

surface, respectively:

R1 =
Æ

(x1 − x)2 + (y1 − ζ(x))2, (5.4)

R2 =
Æ

(x2 − x)2 + (y2 − ζ(x))2. (5.5)

R= (x2, y2), γ= dζ(x)/dx; qx and qy are the x and y components of q= −k∇S(R1+
R2) with the gradient ∇S = (∂ /∂ x ,∂ /∂ y). The directivity term A(r), the far-field

radiation from a baffled piston is given by [24]:

A(r) =
2J1(ka sin(φ(r)− (−φ0 +π/2)))

ka sin(φ(r)− (−φ0 +π/2))
, (5.6)

where a is the aperture, J1 is the Bessel function of the first kind, φ0 is the angle of

inclination of the source main axis to the Ox-axis, and φ(r) is the angle between the

vector produced from the location of the source and the point r with the O y-axis.

The phase is then removed from the application of the Kirchhoff approximation

to simulate the scattered field by applying the modulus:

p(R) = |ψs(R)|. (5.7)

Taking into account the receiver locations in an array of M receivers, phase-

removed acoustic pressure used in the random forest algorithm is given by the

following matrix,

p= {pl

�

R( j)
�

| j = 1..M , l = 1..N}, (5.8)

where the rows of the matrix are formed from pl (an ensemble containing the ab-

solute array pressure for a given ζl), and R( j) form the columns (receiver locations

defined with respect to the origin of the Ox y plane).

Further to this, noise can be added to the signal through row-wise operations on

5.8:

p̃l = pl + εl , (5.9)

where εl j ∈ εl ,εl j ∼N (0,σ) is drawn from a normal distribution independently for

each receiver.
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5.5 Recovering model confidence using a broadband
frequency

A way of attempting to recover a measure of confidence in machine learning pre-

dictions that are not inherently stochastic is to use a broadband acoustic signal.

Therefore, for each frequency one can generate a dataset using that frequency in the

Kirchhoff approximation, then train a model on each frequency. Table 5.1 presents

the frequencies used, as well as the sampling used for data generation. For brevity,

the datasets did not have any noise present in the training, and ζ3 was fixed to

be 0. For each of the 824 frequencies tested, the mean-squared error of the Kirch-

hoff approximation against the data observed in the laboratory are shown in Figure

5.3. A comparison was made between random forests, k-nearest neighbours, and

linear regression, implemented through scikit-learn [50]. The metric to measure

model performance was chosen to be the coefficient of determination (R2) and is

presented in figure 5.4. In order to evaluate the potential confidence factor of this

method, a scatter plot as well as histograms of the recovered parameters for linear

regression, random forests, and k-nearest neighbours are presented in Figures 5.5

and 5.6. The random forests were trained using 300 trees in the forest, and the

k-nearest neighbours were trained with scikit-learn’s default hyperparameters.

From figure 5.4, it is clear that linear regression is not suited to multiple pa-

rameter recovery as expected. For random forest and k-nearest neighbours, the

coefficient of determination decreases as the frequency increases. This could be

due to the removal of phase information, with stronger impact at higher frequen-

cies. The k-nearest neighbours slightly outperforms the random forests, where the

largest deviation is approximately at 35,000Hz.

Figure 5.5 presents the predictions for the model as scatter points compared

to the true parameter values from the experiment. For linear regression (Figure

5.5a), the estimated amplitude parameter and wavelength parameter are much

larger than the actual values, the predictions are consistently bad for all frequen-

cies. For the random forest parameter (Figure 5.5b), the amplitude seems to mostly

be underestimated, and the wavelength parameter seems to deviate from the ac-

tual value following the mean-squared error of the predictions presented earlier in

Figure 5.3. K-nearest neighbours (Figure 5.5c) appears to be the only model pre-

sented in this work that consistently predicts the correct parameters, with only a

few outliers up until near 30,000Hz.

106



Minimum Maximum Num. of samples Increment
Frequency 10,000Hz 51,150Hz 824 50Hz
Amplitude -0.01m 0.01m 90 0.0002m

Wavelength 0.035m 0.15m 90 0.0012m

Table 5.1: Bounds for each parameter in the data generation stage as well as the
number of samples generated within those bounds, for each frequency tested.

This is reflected in Figure 5.6, where only the k-nearest neighbour’s histogram

has an extremely large mode at the true parameter value. For the data used in this

paper, the k-nearest neighbours could be used with a broadband acoustic signal to

get some measure of confidence in prediction.

5.6 Recovering model confidence through single fre-
quency excitation using a metropolis scheme

Instead of training models on each frequency in order to get a measure of con-

fidence, one can also leverage existing stochastic methods on a single-frequency

case. Namely, the Metropolis algorithm.

As ε is drawn from a probability distribution, equation 6.9 can be interpreted

as:

P(θ |p̃l)∼ P(p̃l |θ )P(θ ) (5.10)

The left-hand side is referred to as the posterior distribution and allows for distri-

butions to be taken over parameters, P(p̃l |θ ) is called the likelihood function, and

P(θ ) is called the prior distribution and allows for prior belief on the distribution of

parameters. Now that the posterior distribution is found, the main concern is how

to sample from this posterior distribution. The Metropolis algorithm will be used

for this, the Metropolis-Hastings algorithm is described in Algorithm 2.

Note that to get the Metropolis algorithm from Algorithm 2 requires a symmetric

proposal distribution Q(θn | θ ′) = Q(θ ′ | θn). The choice of the proposal distribu-

tion was an selected from the Adaptive Metropolis (AM) algorithm [164] with a

targeted acceptance rate of 0.2. The prior distribution was assumed to be indepen-

dent for each parameter. The amplitude component of the prior was defined to be

uniform with a lower bound at 0 and an upper bound at ys − 3λ the near-end of
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Figure 5.3: Mean-squared error of the Kirchhoff approximation against the data
collected in real-world experiments.

the far-field for the acoustic source height. The wavelength was also uniform, with

a lower bound of 0.08 and an upper bound of 0.4. The offset was also uniform,

with a lower bound of zero and an upper bound of the wavelength. If the proposal

distribution proposed a sample outside the Kirchhoff criteria, the prior was set to 0.

As ε is drawn from a Normal distribution, the likelihood function was defined to be

a multivariate normal:

P(p̃l |θ ) =
exp
�

−0.5(ψs(R)− p̃l)TΣ−1(ψs(R)− p̃l)
�

p

(2π)34|Σ|
(5.11)

Where Σ - the covariance matrix, is a 34x34 identity matrix with ε on the diagonal.

For the model, ε was taken to be 10% of the mean value from the real-data sample
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Figure 5.4: Coefficient of determination scores for random forests, k-nearest neigh-
bours and linear regression (higher is better).

at 14,000Hz. As the Metropolis algorithm has been applied to one frequency, the

offset parameter is also inferred. Figures 5.7 and 5.8 plot the resulting traces and

corner plot of the obtained distribution over the three parameters for 14,000Hz

source excitation, with 62,000 iterations to the algorithm.

Figure 5.7 highlights the accepted samples from the Metropolis algorithm, af-

ter a burn-in period of 5,000 samples, which is represented in grey with a vertical

line indicating the cut-off point. The burn-in period is used to avoid any skew in

distributions, as the accepted samples tend to the target distribution. The traces

appear to be consistent, and do not jump between two discontinuous heights. Fig-

ure 5.8 present the resulting histograms of the density of each parameter on the
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Algorithm 2 Metropolis-Hastings Algorithm [180]
Initialise θ0

for n= 0, . . . , N − 1 do
Sample u∼ U(0,1)
Sample θ ′ ∼Q(θ ′ | θn)
if u≤ α(θn,θ ′) =min

�

1, P(θ ′|p̃l )Q(θn|θ ′)
P(θn|p̃l )Q(θ ′|θn)

�

then
θn+1 = θ ′ ▷ Accept sample.

else
θn+1 = θn ▷ Reject sample.

end if
end for

diagonal, and the joint density between two parameters. The resulting densities

are very clear single modal, almost Gaussian, distributions. The wavelength has a

mode exactly at the true wavelength parameter, and the amplitude’s mode is over-

estimated by a millimetre. Interestingly, although the phase is 0, the offset’s mode

is at the wavelength parameter, which relates to a phase of 2π. So although the

offset is unexpected, as the surface is periodic the distribution is expected. The

resulting distributions seem to provide more easily interpretable information than

the broadband frequency investigation highlighted earlier.

5.7 Conclusions

To conclude, utilising a broadband acoustic source could be used in order to find

some metric of confidence in the model’s predictions. In this case, the peak mode

given from the K-NN constant prediction at the true parameter values could be

leveraged in order to have a more informed prediction for real-time predictions.

However, this leveraging does not produce “clean" Gaussian-like behaviour, such as

what was observed using the Metropolis scheme. If true stochastic information is

needed, then the Metropolis scheme is highly recommended over the broadband

signal. However, due to the time taken for the Metropolis scheme to run (approx-

imately 1 hour), this would not be able to yield real-time predictions. It is also

important to note that there have been some limitations in creating the datasets for

this paper, the most important of which are: not including noise inside the data,

which limits generalisation, and a limited number of samples, which allows for a

more dense domain knowledge for the model. It is also important to note that

this method, which fits a dataset on every frequency, will be affected by the curse
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of dimensionality [181] where the data required for higher dimensional surface

recovery will require much more data to be able to give any reasonable predictions.
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(a)

(b)

(c)

Figure 5.5: Scatter plots for the parameter recovery at all frequencies for (a) linear
regression, (b) random forests, and (c) k-nearest neighbors. The blue horizontal
line indicates the true parameter values from the experiment.
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(a)

(b)

(c)

Figure 5.6: Histograms for the parameter recovery at all frequencies for (a) linear
regression, (b) random forests, and (c) k-nearest neighbors.
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Figure 5.7: Traces of the resultant Metropolis-Hastings scheme for the amplitude,
wavelength, and offset. Including the cutoff for the burn-in period.
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Figure 5.8: Corner plot of the Metropolis-Hastings scheme for the amplitude, wave-
length, and offset.
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Summary

A key problem with the results in Chapter 4 is the lack of ability to gain a measure

of confidence, or error, for a single sample. This was answered with a holistic

approach to the broadband nature of the source excitation in Section 5, where

data can be created for each frequency bin, then a model can be trained on each

frequency and thus N predictions can be made (where N is the number of distinct

frequencies in the frequency range). In the paper presented in this section, the

problem is rephrased such that it can be considered from a Bayesian viewpoint.

This allows the posterior distribution of the parameters to be extracted; in this

instance the adaptive metropolis scheme was used. The application of this was the

main outcome from this section.

This section also investigates higher order problems, where the rough surface

can be approximated by 20 rather than 1 cosine. Alongside the three-parameter

dataset and experimental data, another experimental dataset was collected. This

dataset was a rough surface which could be approximated as a sum of twenty co-

sine waves. The problem is reduced to finding the amplitudes and phases of each

term in the sum by assuming that the wavelengths are known. This is a safe assump-

tion because the surface was broken down by a Fourier series, so the wavelength

component is known.

The Kirchhoff Approximation was extended into the Bayesian framework, and

the appropriate prior distribution, and likelihood function was defined. The prior

distribution was modified such that the Kirchhoff condition of the acoustic wavenum-

ber being much larger than the radius of curvature was included. This is powerful

because assumptions in the model approximation, and the physics, can be encoded

in the prior. For three-parameter estimation, this can be found analytically, and this

is included in this section. For 40 parameters, this is found numerically.

The three-parameter experimental data was used in the Adaptive Metropolis

scheme and was compared to the Random Forest approach from chapter 4. There

are further visualisations of how the phaseless acoustic pressure changes with re-

spect to the trace. The forty-parameter recovery was also showcased for the whole

printed surface of 60 cm. There is a clear thinning of the credible interval and better

agreement to the truth in the region of high insonification. The spatial dependence

on the credible interval gives good information on the region of validity as well as

the regions not to be trusted.
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6.1 Abstract

The recovery of the properties or geometry of a rough surface from scattered sound

is of interest in a wide range of applications, including medicine, water engineering

or structural health monitoring. Existing approaches to reconstruct the roughness

profile of a scattering surface based on sound or electromagnetic wave scattering

have no intrinsic way of predicting the uncertainty of the reconstruction. In an

attempt to recover this uncertainty, a Bayesian framework, and more explicitly an

Adaptive Metropolis scheme, is used in the present work to infer the properties

of a rough surface, parameterised as a superposition of sinusoidal components.

The Kirchhoff Approximation is used in the present work as the underlying model

of wave scattering, and is constrained by the assumption of surface smoothness.

This implies a validity region in the parameter space which is incorporated in the

Bayesian formulation, making the resulting method more physics informed than

data-based approaches. For a three-parameter sinusoidal surface and a rough sur-

face with a random roughness profile, the experiments were conducted to collect

scattered acoustic pressure data. The models were then tested on the experimental

data. The recovery highlights regions where the method is confident, and could be

used as a method to identify uncertainty.

6.2 Introduction

Non-intrusive acoustic inversion to recover the elevation or other properties of

rough surfaces is of great interest and an active research field [182, 183, 184, 185],

especially in the setting of river monitoring, where intruding the flow could change

the properties significantly. A numerical method based on the boundary integral

equations and Kirchhoff Approximation to reconstruct the shape of a scattering sur-

face was outlined in [67, 68]. This approach was found to be highly sensitive to

uncertainties, partly because of the strong dependence on the phase of the scattered

signal [74]. The errors in the inversion results were associated with the underde-

termined and ill-posed nature of the problem [74]. The range of applicability in

reconstructing a surface is also limited by the validity of a partial linearisation of

the scattering problem, which is required in order to make the numerical inversion

feasible. The method was expanded to a multiple frequency approach [74], and a

machine learning approach utilising random forests [186]. However, although the
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performance of these methods have been promising, the statistical measure of the

uncertainty is an open question.

The Kirchhoff Approximation is still an active part of reconstruction efforts, as in

[167]. Other methods have risen in inverse scattering, especially in the near-field,

such as recovering the scattering coefficients [168] [169].

Bianco et al. [52] presented machine learning in the context of acoustics, with

key examples such as source localisation. Similarly, Andrieu et al. [98] intro-

duced Markov-Chain Monte-Carlo (MCMC) methods, providing key theoretical un-

derstanding and algorithms for many methods, including Metropolis-Hastings and

Sequential Monte-Carlo.

Bayesian methods have recently gained popularity in the field of acoustics, with

applications such as recovering parameters from the seafloor using acoustic back-

scattering [99], estimation of rough surface elevation using a Bayesian compressive

sensing [100], and for acoustic holography [101] [102]. Li et al. [103] applied

a Metropolis-Hastings (MH) MCMC scheme in order to reconstruct the locations

and intensities of acoustic sources from near-field and far-field data. The numerical

results using Metropolis-Hastings for one of the examples analysed by Li et al. are

“close to the exact ones" [103], and improvement is shown in other examples.

Application of a Bayesian approach for acoustic scattering with phaseless data

was proposed by Yang et al. [104, 105]. In Yang et al. [104], the location and shape

of a sound-soft scatterer were reconstructed. The approach was tested on shapes

such as kites, disks, and line cracks with favourable results, noting that the number

of parameters being recovered from the MCMC algorithm was no larger than 6. In

Yang et al. [105], the method was extended to use a Gibbs sampling method in

order to recover more parameters, with phaseless data and a point source excita-

tion. Palafox et al. [106] also used a Bayesian formulation in order to reconstruct

the shape of a kite, through a reduction of the problem by a Fourier-based rep-

resentation using a t-walk [107]. The effective dimension method was presented

where, given a parametric representation of the solution of the inverse problem,

the normalising constant can be approximated. Bayesian methods have also been

applied in inverse problems in other fields, such as for seismic waveform inversion

[108], and automatic motion analysis in tagged magnetic resonance imaging scans

[109][110]

Application of the adaptive Metropolis-Hastings scheme in relation to acous-

tical inverse problems can be seen in Niskanen et al. [111], where the John-

son–Champoux–Allard–Lafarge model was used in conjunction with a Metropolis-
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Hastings in order to recover the model parameters of a homogeneous rigid frame

porous media. The joint probability densities verified that the least-squares solu-

tion was close to the Maximum a posteriori estimation from the MCMC method.

Konarski et al. [187] used a similar method, to recover properties from aluminium

foams.

This work re-frames the Kirchhoff Approximation into a Bayesian viewpoint, al-

lowing for well-developed sampling schemes such as the Adaptive Metropolis [164]

algorithm to be used to infer the uncertainties of the recovery. Further, the rough

surface is parameterised into a sum of sinusoidal functions, thus potentially reduc-

ing the number of parameters to recover, as well as allowing the use of the validity

criterion of the Kirchhoff Approximation as a constraint. A three-parameter sinu-

soidal surface presented in [1] is used for verification, as well as a random Gaussian

elevation profile used in [74]. The latter is parameterised from a specific Fourier

decomposition, where the unknowns of the problem are the amplitude and phase

values of a number of sinusoidal components over a fixed wavelength range.

The paper is organised in the following way: Section 6.3 presents the parame-

terisation method of rough surfaces and the theory for the Kirchhoff Approximation.

Section 6.4 proposes a formulation within the Bayesian framework, the Metropolis-

Hastings algorithm, and the approximation for the prior with three-parameter sur-

faces. Section 6.5 presents the information on the acoustic experiment setup for

the three-parameter and the recovery of a 40-parameter rough surface. Section 6.6

presents the results for the recovery of the three-parameter surface, and random

40-parameter rough surface with a flat surface as an initial condition. This is fol-

lowed by discussions on efficiency of the inversion algorithm. Section 6.7 concludes

the report.

6.3 Forward model of acoustic scattering

The goal of the work is to recover the shape of a rough surface from scattered

acoustic pressure. In order to reduce the number of parameters needed to infer

and approximate the shape of the surface of interest, this work investigates surfaces

whose shape can be described as a superposition of harmonic components. Defining

N harmonics of the surface through parameters θ = {θ j| j = 1, . . . , 3N} a surface

profile can be expressed as:

ζ(x ,θ ) =
(N−1)
∑

i=0

θ3i+1 cos
�

2πx
θ3i+2

+ θ3i+3

�

(6.1)
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Figure 6.1: The geometry of the problem where the rough surface is defined by a
function ζ(x) from Equation (6.1). Surface is not to scale.

The acoustic signal was recorded at a set of M microphones with coordinates given

by R( j) = {(x ( j)2 , y ( j)2 )| j = 1, . . . , M}.

The Kirchhoff Approximation (KA) was chosen due to its ability to represent

the scattered acoustic field in an explicit form, obtained with the assumption based

on reflections from a tangent plane. This closed form enables fast calculations, as

opposed to the full boundary integral equation solution, for instance. The suitabil-

ity of this approximation for the conditions analysed in this paper was presented

in Krynkin et al. [67, 68]. The problem is stated in two-dimensional Ox y semi-

infinite domain, assuming a uniform solution in the out-of-plane direction and time

harmonic dependence exp(−iωt).
The domain is bounded by the rough surface ζ(x ,θ ) defined with Equation (6.1).

The surface ζ(x ,θ ) satisfies the Kirchhoff Approximation condition given by [36]

sin(φ)>
1

(kh)1/3
, (6.2)

where h is the radius of curvature of the surface, k is the acoustic wavenumber, and

φ is the angle of incidence of the acoustic wave. Assuming separation of variables,

with the condition (6.2) satisfied and for a source with a given directivity pattern

at a given point on the surface A(x , y), the scattered acoustic pressure ψs can be

expressed in the following Equation [68]:

ψs(R,θ ) =
1

2kπi

∫ ∞

−∞

A(x , y)
p

R1R2

exp (ik(R1 + R2)) (qy − qxγ)dx , (6.3)
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where, as shown in Figure 6.1, the values R1 and R2 are the Euclidean distances

from the source at (x1, y1) and receiver at (x2, y2) to a given point (x ,ζ(x ,θ )) on

the surface, respectively:

R1 =
Æ

(x1 − x)2 + (y1 − ζ(x ,θ ))2, (6.4)

R2 =
Æ

(x2 − x)2 + (y2 − ζ(x ,θ ))2. (6.5)

In Equation (6.3), R = (x2, y2), γ = dζ(x ,θ )/dx; qx and qy are the x and y com-

ponents of q = −k∇S(R1 + R2) with the gradient defined by the nabla operator in

2D, ∇S = (∂ /∂ x ,∂ /∂ y). The directivity term A(x , y) is defined in this work as the

far-field radiation from a baffled piston, which is given by [24],

A(x , y) =
2J1(ka cos(φ(x , y) +φ0))

ka cos(φ(x , y) +φ0)
, (6.6)

where a is the aperture, J1(·) is the Bessel function of the first kind, φ0 is the angle of

inclination of the source main axis to the Ox-axis, and φ(x , y) is the angle between

the vector defined by the location of the source and the point (x , y) with the O y-

axis.

Following the application of the Kirchhoff Approximation to simulate the scat-

tered field, the phase is removed from Equation (6.3) through the application of the

modulus:

p(R,θ ) = |ψs(R,θ )|. (6.7)

Taking into account the receiver locations in an array of M receivers, phase-removed

acoustic pressure is given by the following matrix,

p(θ ) = {p
�

R( j),θ
�

| j = 1, . . . , M}, (6.8)

where the matrix is formed from p (an ensemble containing the absolute array pres-

sure for a given surface profile ζ), where R( j) form the columns (receiver locations

defined with respect to the origin of the Ox y plane).

The Kirchhoff Approximation model is deterministic, therefore one set of surface

parameters maps to a given sound pressure field. However, in practical applications,

noise is present in measured data. It is proposed to modify the solution of the

Kirchhoff Approximation via additive noise, calculated as:

p̃(θ ) = p(θ ) + ε, (6.9)

where ε = ε j| j = 1, . . . , M , with ε j ∼ N (0,σ) is drawn from a normal distribu-

tion independently for each receiver with mean 0 and standard deviation σ.
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6.4 Inverse problem

6.4.1 Bayesian Framework

The observation model in Equation (6.9) is here considered in the Bayesian frame-

work. As ε is drawn from a probability distribution, Equation (6.9) motivates:

P (θ |p̃)∝P (p̃|θ )P (θ ). (6.10)

The left-hand side is referred to as the posterior distribution and allows for distribu-

tions to be taken over parameters θ , P (p̃|θ ) is called the likelihood function which

is the probability of the observed acoustic pressure given the model parameters,

and P (θ ) is called the prior distribution and encompasses prior belief on the dis-

tribution of parameters. In the present paper, the prior distribution is defined from

the Kirchhoff Approximation condition, as detailed further below.

With the Gaussian noise in the observation model (6.9), the likelihood P (p̃|θ )
can be written as:

P (p̃|θ ) = fMN (p̃,θ ,Σ) (6.11)

with

fMN (p̃,θ ,Σ) =
exp
�

−[p̃− p(θ )]TΣ−1[p̃− p(θ )]/2
	

p

(2π)k|Σ|
, (6.12)

where fMN is a multivariate Gaussian probability density function and Σ is a co-

variance matrix representing the error ε added to each receiver. In the present

work, the observed acoustic pressure is assumed uncorrelated across receivers and

therefore the covariance matrix is assumed to be diagonal.

6.4.2 Posterior sampling algorithm

The algorithm used for this work is the Metropolis-Hastings (MH) algorithm, where

the proposal distribution is obtained adaptively to target a specific acceptance rate

[112], [164] which helps navigate the proposal widths when the number of dimen-

sions is high. The proposal distribution determines the probability of moving the

samples in the trace, and the construction is given in Haario [164]. A key piece of

literature in understanding various MCMC methods, including the method used in

this work, is given in [188]. As an initial state the surface is considered flat, both

in the three-parameter and 40-parameter problems. For every iteration, a uniform

random number is generated in order to randomly accept or reject the sample. The
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next sample is drawn from the proposal distribution. The posterior is then cal-

culated for the current sample, as well as the proposed sample, and the ratio is

calculated. If the posterior of the proposed sample is greater than the posterior of

the previous sample, then the value is greater than 1, guaranteeing that the pro-

posed sample is accepted. If the ratio is greater than zero and less than 1, then the

uniformly generated number is used to add the Monte-Carlo element. Typically, the

collection of accepted and rejected samples is referred to as the trace, and the trace

tends to settle to the required behaviour. Removing that transitional period at the

start of the trace is referred to as removing the “burn-in” period. The reader can

find a more detailed description of the Metropolis-Hastings algorithm in [189].

6.4.3 An approximation for three-parameter recovery

For three-parameter recovery, the Kirchhoff condition (6.2) only depends on the

surface amplitude θ1, the surface wavelength θ2, and the acoustic wavelength from

the source excitation λ. For the range of parameters that this paper is dealing with,

the bounds of surface wavelength for satisfying the Kirchhoff condition for a given

source excitation frequency at a given acoustic wavenumber, surface amplitude, and

angle of incidence can be approximated with the following expression [Appendix

A]:

θ2 >

√

√

√ (2π)2

k sin3(φ)
|θ1|= β . (6.13)

The surface amplitudes θ1 is further restricted by constraining the maximum

amplitude to be ys − 3λ as an empirical bound for the acoustic far field. Assuming

a maximum allowed wavelength value θ2,max say, this gives a clear closed region of

satisfied parameters in amplitude-wavelength space, allowing for a change in the

prior (assuming uniform prior):

P (θ ) = f (θ1,θ2)U(0, 2π), (6.14)

where (θ1,θ2) is the conditional uniform distribution of θ1 and θ2 over the domain

of satisfied parameters given by Equation (6.15).

f (θ1,θ2) =























∫ ys−3λ

−(ys−3λ)

∫ θ2,max

β

1dθ2 dθ1





−1

if |θ1| ≤ ys − 3λ, β ≤ θ2 ≤ θ2,max

0 otherwise.
(6.15)
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U is the uniform distribution for the phase between 0 and 2π. Therefore, for

the three-parameter case, the prior can be evaluated analytically. For higher dimen-

sional cases, the Kirchhoff condition needs to be evaluated numerically, for every

step in the MCMC scheme. In the case of the 40 parameter recovery for this re-

search, the prior on the amplitude and phase parameters are drawn from a uniform

distribution, with exception when the Kirchhoff criterium fails. In the case when

the Kirchhoff condition fails, the prior is set to zero.

It should also be noted that to measure the accuracy of the recovered surface

parameters, two types of mean surfaces are used in this paper. For the first type, the

mean surface (referred to as ζ(x ,θ )) is found by substituting mean θ̄ of surface pa-

rameter samples θ obtained from traces of Metropolis-Hastings scheme into Equa-

tion (6.1). The second type of the mean surface (referred to as ζ(x ,θ )) is found

by taking the mean of all surfaces recovered from traces of Metropolis-Hastings

scheme with Equation (6.1).

6.5 Data collection

In order to validate the surface reconstruction methodology, scattered acoustic pres-

sure was recorded by a set of 34 1/4′′ microphones (G.R.A.S. 40PH) above two

acoustically rigid surfaces with known profiles seen in [74]. One surface profile

was milled on the upper face of an aluminium block with horizontal dimensions

0.55×0.35 m2. The profile was sinusoidal along the longer dimension, with a wave-

length of 50 mm and a peak-to-peak amplitude of 3 mm, and was constant along the

shorter dimension. The second profile was milled onto a block of medium-density

fiberboard (MDF) with dimensions of 0.6×0.4 m2. This profile was generated via

Fourier synthesis[190] as a sum of cosines as in Equation (6.16):

ζexp(x) =
N/2
∑

i=0

Æ

2Ψ(Ki)N (0,1) cos (Ki x −U (0, 2π)) , (6.16)

where N (0, 1) indicates a sample from a normal distribution, and U (0,2π) a sam-

ple from a uniform distribution in the interval [0,2π]. Ψ(Ki) represents the surface

power spectrum as a function of the wavenumber Ki = i2π/L. The amplitude spec-

trum varied like a power function of the wavenumber, Ψ(Ki)∝ K−αi , which is rep-

resentative of natural surfaces such as the water surface or the bed surface of rivers

or of the oceans[124, 191, 192, 193]. Here, the surface had α = 5, in agreement

with experimental observations of the water surface of open-channel flows[18].
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To ensure the integrability of the spectrum, a saturation range at low wavenum-

bers Ki < 2π/0.05 rad m−1 was introduced following Stewart et al. (2019),[193]

i.e., Ψ(Ki < 2π/0.05) = Ψ(2π/0.05). The spectrum had a small-scale cutoff at

Ki > 2π/0.01 rad m−1. The standard deviation of the random surface was equal

to 1 mm and satisfied the Kirchhoff condition.

A signal was produced at 14 kHz with a loudspeaker (Visaton G 25 FFL), ar-

ranged with the same geometry described in Johnson et al. [1], and recorded

simultaneously at all microphones, with a sampling frequency of 102.4 kHz. The

signal amplitude at each microphone was calculated by a Fourier transform applied

to 0.02 s long segments of the signal using a Hann window, and then averaged over

2000 segments. The data was calibrated in situ by comparing measurements of the

sound field reflected by a flat surface with the corresponding prediction calculated

numerically, following the procedure outlined in Dolcetti et al.[74].

6.6 Results

6.6.1 Three-parameter recovery

For the three-parameter surface, the Adaptive Metropolis scheme was used, run-

ning for 100,000 samples. The burn-in period was set at 10,000 samples, and the

covariance matrix was updated every 20 samples. σ = 0.15 was measured as noise

standard deviation. Due to the covariance matrix and the adaptive scheme, the

width of the proposal distribution was adapted to allow a 20% acceptance rate.

Figure 6.2 presents a corner plot generated with the method outlined in Foreman-

Mackey[194]. The leading diagonal presents a histogram representing the density

for each parameter, with the vertical lines representing the 68% credible interval.

The scatter plots represent the 2D marginal probability distributions. The wave-

length parameter is highly accurate, with approximately 0.1% error from the true

wavelength at the mean of the distribution. The amplitude is overestimated by 0.5

mm, and the spread is high.

Figure 6.3 presents the comparison between the surface obtained from the con-

ditional mean of each parameter in the trace, the mean of all the surfaces generated

from the distribution of parameters, and the 68% credible interval. For the case of

the surfaces generated from the mean of each parameter in the trace (dashed line

in Figure 6.3), the mean amplitude is overestimated, and the wavelength - in the

region of the most insonified area - matches favourably. Outside this region, the
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Figure 6.2: Corner plot of the distribution of the traces for the amplitude, wave-
length, and phase. The subtitles contain the mean and the 68% credible interval
bounds.

accuracy due to the wavelength begins to decrease. This behaviour is replicated in

the credible interval, where the shaded region widens further away from the region

of high energy.

For the case of the mean from the collection of surfaces generated by the param-

eters in the distribution, the amplitude decreases as the x coordinate increases, this

is due to the variation in wavelength as x increases.

Figure 6.4 presents the acoustic pressure from 1000 random samples from the

trace. Investigating the pressure, the peaks in the absolute pressure are well mapped,

as the random samples from the trace converge to the peaks. The regions where

the absolute pressure does not change much, such as in regions between receivers

10 and 15, contain more uncertainty, which can be seen from the widening of the
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Figure 6.3: Surface elevation of the three-parameter surface. True geometry (solid
line); surface ζ(x ,θ ) generated from the conditional mean of MCMC parameter
samples (dashed line); mean of all surfaces ζ(x ,θ ) obtained from MCMC parameter
samples (dash-dotted line); 68% credible interval (shaded region).

Figure 6.4: 1000 random samples of the trace (shaded region), plotted against the
real data (dashed line) for the three-parameter surface recovery
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traces. The traces appear to be certain on the results at the tail end of the receivers,

but do not match the experimental pressure at receivers 25-28. Investigating the

trace values without considering the experimental true pressure, it can be seen the

proposed receiver configuration causes significant uncertainty. This could indicate

that a change in the receiver configuration is needed.

In order to benchmark the performance of this method for the 3 parameter re-

covery, the results from Johnson et al. [1] are used for comparison. With a random

forest recovery trained on the three parameters with 15% additive Gaussian white

noise, the results for the amplitude, wavelength and offset are 0.00142, 0.0516,−0.00194[1].

The offset for the proposed method at the mean is approximately −0.00093, the off-

set and wavelength have improved with the method proposed in this paper. The

mean amplitude has performed worse than the amplitude presented in Johnson et
al. Nevertheless, the uncertainty bounds contain the result from the random for-

est. The further knowledge to be gained from the uncertainty bounds over the

parameters is useful in showing which parameter causes the most uncertainty, the

amplitude θ1.

6.6.2 40-parameter recovery

To further test the adaptive Metropolis scheme, the scattering of the acoustic signal

was studied over the surface referred to as second surface profile in Section 6.5.

For the computation and the prediction of the parameters, the rough surface of the

second profile was approximated as a further truncation from Equation (6.1) rank

ordered by the largest wavelength to the smallest wavelength to reduce the num-

ber of parameters to recover, while still capturing the original rough surface. This

means, for the MCMC, the wavelengths were given (see Appendix B). In order to

select a viable truncation, the relative root-mean-square error (RRMSE) of the trun-

cated surface against the true surface normalised by the standard deviation of the

true surface, as well as the RRMSE of Kirchhoff Approximation obtained with the

truncated surface against KA solution based on the true surface normalised by the

standard deviation of the KA for the true surface were used to evaluate the differ-

ences in comparison to the second surface profile. The results are shown in Figure

6.5. It is observed that the KA error exceeds 10% and increases rapidly at trun-

cations below 20 terms. Therefore, a truncation of 20 terms was selected, which

corresponded to recovering 40 parameters. The resulting approximations of the sur-

face and the Kirchhoff Approximation are shown in Figure 6.6. The corresponding

parameters are contained in Table 6.1 that can be found in Appendix 6.8.2.
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(a)

(b)

Figure 6.5: Relative root mean square error (RRMSE) of the surface and the acoustic
pressure, respectively. (a) RRMSE of the true surface against a truncated version of
the surface, and (b) the resulting RRMSE in the Kirchhoff Approximation.
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(a)

(b)

Figure 6.6: Comparison of the second rough surface profile against the truncated
sum of 20 sinusoidal waves for (a) the surface elevation and (b) the corresponding
Kirchhoff Approximation
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For the 40-parameter case, the adaptive metropolis sampling scheme was used

to generate 500,000 samples. The burn-in period was set at 50,000 samples, and

the covariance matrix was updated every 50 samples. The acceptance rate was

reduced to 10%. The phase parameter in the MCMC was not allowed to increase

past 2π, and this was achieved by restricting the value back to the region [0, 2π].
This causes instantaneous jumps in the trace for the phase parameters. This is

accounted for in the angular mean metric as shown in Appendix 6.8.3 which is

used throughout this work. This restriction does not break ergodicity, or the Markov

Chain definition.

Figure 6.7: Surface elevation of the 40 parameter surface. True geometry (solid
line); surface ζ(x ,θ ) generated from the conditional mean of MCMC parameter
samples (dashed line); mean of all surfaces ζ(x ,θ ) obtained from MCMC parameter
samples (dash-dotted line); 68% credible interval (shaded region).

Due to the substantially increased number of parameters, a corner plot similar

to that in Figure 6.2 is not shown here. The MH scheme was initialised with a flat

surface. Figure 6.7 presents the results for the flat surface initial condition with

a 68% credible interval obtained via the highest posterior density interval. It can

be observed that the mean function closely matches the exact solution from the

experiments in the region x ∈ [0.05,0.25] then begins to deviate from the mean

surface outside that region. The uncertainty from the model is shown in the grey
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filled region and represents the solution traces from 68% credible interval. It can

be observed that the width of the 68% credible interval decreases in the specular

region of the directional source with directivity pattern defined by Equation (6.6).

This observation is consistent with the results obtained for 3 parameter surface

(see Figure 6.3) and conclusions made for the surface reconstruction interval in

Dolcetti et al. [74]. The credible interval also highlights that in the areas outside the

specular region, the model becomes uncertain. This is expected as the information

in the scattered signal is dominated from the high insonification region.

Figure 6.8: The absolute error for the surface ζ(x ,θ ) of the mean of each parameter
in the posterior (solid line), and the mean of the resulting surfaces ζ(x ,θ ) (dashed
line), against the true surface factored by the standard deviation of the true surface.

Figure 6.8 highlights the absolute error for both the mean surface predictions

(defined as ζ in the label for the vertical axis of the graph) compared against the

true surface ζ(x ,θ ). In the region of high insonification, the mean of the surfaces

ζ(x ,θ ) outperforms the surface generated by the mean of the parameters ζ(x ,θ ).
In the region of good recovery [0.1,0.3], the error for both mean surfaces varies

between 0 and approximately 1.5 standard deviations off the true surface.

Figures 6.9 and 6.10 presents histograms of surface harmonics amplitudes from

the traces of MCMC parameter samples, and elevation of the corresponding surfaces
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(a)

(b)

(c)

(d)

Figure 6.9: Histograms of the traces (excluding the burn-in period) of the amplitude
parameters defined by Equation (6.1) for (a) the first amplitude term, (b) the 7th
amplitude term, (c) the 9th amplitude term, and (d) the 14th amplitude term.
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(a)

(b)

(c)

(d)

Figure 6.10: Histograms of the surface elevation from the collection of surfaces
generated from the MCMC traces (excluding the burn-in period) for (a) x = 0.0 m,
(b) x = 0.12 m, (c) x = 0.30 m, and (d) x = 0.6 m.
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taken at a discrete set of points (the two end points, as well as x = 0.12 and x =
0.3), respectively. Due to the large amount of parameters and surface resolution,

a subset was taken for visualisation. The histograms from the surface elevations

result in a Gaussian shape compared to those for the amplitude parameters. This

can be attributed to the 2π rollover of the phase implemented in the MH scheme

for 40 parameter surface. It is also noted that the distribution of the amplitude

parameters becomes uniform as the wavelength increases, which highlights almost

equivalent contribution of the large surface scales within the given range of the

parameters to the scattered acoustic wave.

6.7 Conclusion

The purpose of the paper was to reconstruct a rough surface from acoustic scatter-

ing and to obtain a measure of the uncertainty, highlightd in Figures 6.10, 6.7. The

methodology can be used on its own, or as a means to extend deterministic meth-

ods, such as previous work by the authors using random forests [1]. In this paper,

the Metropolis-Hastings algorithm was used in order to treat the set of parameters

that form a parameterisation of the surface elevation function as a posterior dis-

tribution, this posterior distribution can then be queried to get a credible interval,

as a measure of uncertainty. The model was tested on two surfaces, a single har-

monic surface parameterised with 3 parameters, and a rough surface composed of

the multiple harmonics dependent on 40 parameters (amplitudes and phases) and

where the wavelengths were fixed. Laboratory measurements were taken to acquire

the scattered field. The prior was decided to be uniform, and the Kirchhoff crite-

rion was inserted into the prior to inform the model of the physics. The results for

the mean surface acquired from the mean of each parameter were highlighted as a

model prediction. The mean surface generated for both the three and the forty pa-

rameter surfaces were acceptable, particularly in the region of high insonification.

The credible intervals highlighted the region where the model is more certain. This

interval is also consistent with the underlying physics, as the scattered field will be

most affected by the surface roughness in the region of high insonification The er-

rors in the predictions were metricised through the application of the absolute error

factored by the true surface standard deviation, and this was tested with the two

potential mean functions that can be recovered from using a parameterisation of

the surface. It was observed that the mean function produced by taking the mean

at each x value for the complete set of surfaces generated with the distribution of
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parameters outperformed the method of taking the mean for each parameter, then

generating one surface, over the entire region. The results showcase the promising

aspect of including the credible interval, especially for higher dimensional surfaces

- in which methods such as random forests would require significantly more data.

Further extensions to this work include varying the wavelength - in this work, the

wavelengths were fixed due to the assumption that surfaces were following the

Fourier decomposition. However, these fixed wavelengths could have been a dis-

tribution themselves, although more research would be needed for this. Also, the

application of a more accurate optimiser or a comparison of different optimisers

would be an extension of an initial surface condition, allowing for a shrinking or

extending of the credible region. Finally, as the dimensions increase due to the

surface, methods such as Hamiltonian Monte-Carlo may provide more favourable

results.

6.8 Appendix

6.8.1 Derivation of the three-parameter recovery inequality

Starting from Equation (6.2), as k and h are non-negative, the following is true:

1

h
1
3

< k
1
3 sinφ. (6.17)

Recalling the definition of the radius of curvature[195], then:

1

h
1
3

=







�

�

�

∂ 2ζ
∂ x2

�

�

�

�

1+
�

∂ ζ
∂ x

�2�
3
2







1
3

, (6.18)

To verify if the inequality (6.17) is satisfied, finding the maximum of the Equation

(6.18) is required. Therefore, the denominator in the right hand side of Equation

(6.18) needs to be minimised. Using the definition of the surface elevation function

for 3 parameters given by Equation (6.1) for N = 1, the minimum of the denomina-

tor of Equation (6.18) is achieved at

∂ ζ

∂ x
= −

2πθ1

θ2
sin
�

2πx
θ2

�

= 0. (6.19)

Where θ3 = 0 as the phase does not raise or lower the upper and lower bounds, just

shifts the value. The condition for the minimum is obtained as

x =
θ2n
2

, n ∈ Z. (6.20)
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Then this implies:
∂ 2ζ

∂ x2
= −(−1)n

(2π)2θ1

θ 2
2

, n ∈ Z. (6.21)

It is noted that condition (6.19) also guarantees maximum value of the numerator

in Equation (6.18).

Using Equations (6.19)-(6.21) the criterion of the Kirchhoff Approximation (6.17)

can be rewritten as
��

�

�

�

−(−1)n
(2π)2θ1

θ 2
2

�

�

�

�

�
1
3

< (k)
1
3 sin(φ). (6.22)

Using Equation (6.22), the lower bound of parameter θ2 can be expressed in terms

of another parameter θ1 as

θ2 >

√

√

√(2π)2|θ1|
k sin3(φ)

(6.23)

6.8.2 Table of parameters
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Table 6.1: Parameters that define the truncated surface representing the overall
surface.
Amplitude
[m]

Wavelength
[m]

Phase Amplitude
[m]

Wavelength
[m]

Phase

-1.86e-04 0.6 3.42 3.37e-04 0.055 1.70
6.11e-04 0.3 6.21 -1.44e-04 0.05 0.29
4.22e-04 0.2 2.82 -5.33e-04 0.046 2.62
9.95e-05 0.15 5.82 -2.11e-04 0.043 5.19
1.83e-04 0.12 0.90 3.52e-04 0.04 5.54
4.62e-04 0.1 5.64 1.17e-04 0.038 0.87
-3.93e-05 0.089 5.35 -4.99e-05 0.035 5.33
5.50e-04 0.075 2.081 1.56e-04 0.033 1.79
-3.03e-04 0.067 4.86 1.36e-04 0.032 1.66
2.22e-04 0.06 4.98 4.88e-05 0.03 1.059

6.8.3 Phase averaging

In the calculation of the surface generated from the mean of the parameters, there is

a potential issue with the phase. Averaging the amplitude is fine, and the arithmetic

mean will yield a sensible result. But due to the poles at ±π, other averaging

methods have to be considered. The angular mean is used for the parameters which

relate to the phase information of the surface, and is calculated by:

θ̄ = tan−1
�

∑

i sin(θi)
∑

i cos(θi)

�

. (6.24)

This calculation takes into account the poles at ±π and should yield an expected

average value.
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Chapter 7

Recovering the free surface
frequency-wavenumber spectra of
shallow turbulent open channel flows
using Digital Image Correlation (DIC)
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Summary

The work presented in Chapters 4, 5, and 6 are concerned with the (acoustic)

reconstruction of static rough surfaces. The work in this and the following Chapters
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investigates if parameters can be recovered from a moving surface. In this chapter,

videos were taken of the free-surface of the water, and analysed. This Chapter is

concerned with the reconstruction of the frequency-wavenumber spectrum using

a Digital Image Correlation (DIC). The DIC approach used tracers in the water of

a flume to then estimate the free surface elevation. The extent of data loss was

prohibitive to successful analysis of the data through other approaches. A visual

inspection of the videos showed that the main cause of the issue was the traces

being sucked down into the flow, such that they are below the free surface and not

detected by the camera. This could be seen from the fact that the missing data

points follow the flow structure. Because the missing data points follow the flow,

in a way that is characteristic to the underlying dispersion relation, the frequency-

wavenumber spectrum is recovered with reasonable accuracy without needing to

handle the missing data. This means that the frequency-wavenumber spectrum is

much more forgiving for an inconsistent seeding regime.

The frequency-wavenumber spectra was used as the analysis method. This is

a relatively new approach for shallow turbulent flow, and the results reveal a set

of dispersion curves that represent the average flow. Ten different flow conditions

as well as one extra flow condition with a different slope was presented, alongside

the proportion of missing data as well as the ratio of stream-wise length by the

depth. Throughout all conditions, there is good agreement to the Advection disper-

sion curve approximated by [18] as well as the gravity capillary dispersion curve

introduced by [151] [2] [126] especially at the lower flow conditions.

As the flow conditions increase, information in the negative wavenumber do-

main (for the Ky = 0 slices) is lost in favour of the dominating behaviour of the

rotation due to the increase in streamwise velocity. This paper finds that the DIC is

an appropriate tool for investigating the frequency-wavenumber spectrum.

7.1 Introduction

Recent studies have indicated that free-surface deformations of turbulent flows in

channels might be caused by a variety of physical phenomena found in laterally

and depth-sheared flows. A consensus on the main mechanisms behind the gen-

eration of the free-surface wave patterns has yet to be reached [127]. [196] and

[197] suggested that the interaction between the water surface and the underly-

ing turbulence driven structures are expected to produce a wide variety of water

surface patterns (e.g. vortex dimples, scars, and boils). Surface waves might also
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be generated by resonance phenomena which selectively amplify specific periodic

waves such as gravity-capillary waves as supported by [126], or can originate due

to an interaction with the channel bed [18]. Turbulence-forced surface patterns

and gravity-capillary waves are believed to be representative of different processes,

but measuring and understanding the behaviour of both are necessary for the in-

terpretation of the mutual interaction between the flow and the free surface. The

combination of these different wave types can produce a complex, moving three-

dimensional (3D) surface wave pattern that can be difficult to visually interpret and

measure.

A separation between the two types of surface deformations can be obtained

spectrally by means of a Fourier transform in space and in time of collected eleva-

tion data, e.g., the frequency-wavenumber spectrum [125, 18]. Often it is difficult

to separate out these two processes given the typical quality and resolution of wa-

ter surface measurements. Turbulence-forced surface deformations travel approx-

imately at the surface flow velocity and gravity-capillary waves propagate relative

to the flow at their own speed, which depends on their wavelength, and they travel

in all directions. This difference in velocity results in a different dispersion relation-

ship, that can be identified in the frequency-wavenumber spectra.

However, the estimation of frequency-wavenumber spectra requires a simulta-

neous characterisation of the water surface dynamics in space and in time, which

can be hard to achieve with the required accuracy and resolution for many practical

situations. This requirement justifies the need for water surface measurement tech-

niques which are able to accurately characterise the 3D form and dynamics of such

water interfaces sufficiently to enable accurate frequency-wavenumber spectra to

be obtained.

[125] and [18] determined the frequency-wavenumber spectra of the water sur-

face elevation along the streamwise and lateral direction separately, using a scan-

ning laser beam and an array of conductance wave gauges, respectively. 1D spectra

are difficult to interpret, since the contributions of all waves with the same projec-

tion of the wavenumber vector along the measurement direction collapse onto a

single point regardless of their actual wavenumber modulus. This is a strong lim-

itation for the characterisation of the surface patterns of turbulent shallow flows,

because of the marked three-dimensionality of the surface patterns and because

of the lack of symmetry caused by the advection by the flow in the streamwise

direction[18]. [198] managed to estimate the frequency wavenumber spectra in

three dimensions using a wavelet spectral method [199] applied to a group of wave
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gauges arranged in the streamwise and lateral directions. However, the resulting

spectra had a limited resolution. [200] employed a synthetic Schlieren method to

reconstruct the evolution of the surface shape in time and calculated its frequency-

wavenumber spectrum. However, their flow conditions were not representative of

typical shallow turbulent flows due to a relatively small flow velocity to gravity

wave velocity, and their surface measurement method is not easily applicable to

practical channel flows over a rough bed.

[201] combined a decomposition of the simulated surface deformation patterns

based on the frequency-wavenumber spectrum with a proper orthogonal decompo-

sition of the simulated turbulent flow field, to highlight the complex interactions

between turbulence and the free surface for a flow behind a backward-facing step

simulated via large eddy simulation, thereby demonstrating the potential for rig-

orous surface decomposition to provide an improved fundamental understanding

of turbulent flow behaviour. It is therefore of great importance to identify a suit-

able experimental technique that is able to provide similar high-resolution 3D data

resolved in space and in time, while minimizing the disturbance to the flow and

without impairing the characterization of the velocity field below the water surface.

In general, non-contact water surface measurement techniques can be based

on optical, acoustic or radio approaches. Acoustic techniques have already been

used to locally reconstruct a dynamic air-water interface or to derive areal wave

patterns properties such as mean roughness height, frequency-wavenumber spectra

and surface velocity [202, 198]. For similar purposes, [203] and [10] used radio

waves, while [204] and [205] made use of optical methods.

Each method has comparative advantages and disadvantages. For example,

acoustic and radio techniques require a careful calibration when reconstructing a

surface, whilst the calibration of optical methods are more robust and less prone to

uncertainty. On the other hand, for acoustic and radio methods the free surface rep-

resents a very good reflecting surface due to the higher impedance of water than air

[183]. The same advantage, however, does not apply for optical techniques as the

identification of the transparent water free surface can be affected by the presence

in the images of underlying bed topography. To prevent this interference, optical

methods require specific illumination and/or cameras positioning or opaque water.

The use of optical technologies to measure the shape of the surfaces is well es-

tablished. Descriptions and characteristics of these methods can be found in the

reviews by [206] and [207]. Among the numerous optical techniques, Digital Im-

age Correlation (DIC) [208] is one of the most popular. This is because DIC can
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accurately measure and robustly reconstruct a surface and can operate with flex-

ibility [209, 207]. The complete theory behind image correlation is presented in

[210].

A technique to measure the dynamics of the water surface of a turbulent open-

channel flow employing a DIC system in combination with small buoyant surface

tracers is presented here. The aim of the study was to assess whether DIC could

be used to recover sufficiently high quality information on a dynamic air-water

interface to ensure that the different types of surface wave could be separated and

identified. This would allow the in-depth study of the underlying physical processes

in free-surface turbulent flows over man-made and natural channels. The study

used DIC data from a series of controlled laboratory flume experiments combined

with analytical models to test whether a DIC based measurement system could be

usefully deployed in the field.

7.2 Experiment setup

Two series of steady, uniform flow depth experiments employing different beds ar-

rangements were performed in a tilting, recirculating glass-walled flume. The flume

has a working length of 15 m and a width of 0.503 m. The inlet tank is designed

to minimise any transitory effects produced by the re-circulation pump by using

a porous filter, while the outlet has an adjustable tailgate to ensure uniform flow

conditions in the working length of the flume.

The flume bed was covered from the inlet to a location 4.80 m downstream

with well sorted river gravel with a nominal size of 25 mm to encourage the de-

velopment of a stable turbulent boundary layer. The remaining length of the flume

bed contained a layered bed arrangement of plastic spheres and sand to simulate

a stable bed with a geometrically well described surface (spheres), but which had

an inherent porosity variation (sand) as found in natural gravel river beds (Fig.

7.1). In this study, the 24.7 mm diameter spheres were organised in two differ-

ent surface packing arrangements, termed A and B (Fig. 7.2). Pattern A was a

hexagonally-packed arrangement having peak to peak planes oriented along the

spanwise direction, whilst B arrangement was again a hexagonally-packed arrange-

ment but having peak to peak planes aligned along the streamwise flow direction

(i.e. packing B was statistically similar to packing A but was rotated by 90°). These

arrangements provided stable surface configurations with the same bed elevation

distribution but a different surface orientation in relation to the main direction of
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the flow. Narrow grain size distribution sand (99% of its mass distributed between

600 and 850 µm) was used to fill the gaps between spheres in order to produce

a vertical porosity profile from the top to the base of the spheres that resembles

natural river gravel deposits. These beds were placed in the flume which was then

tilted to have a slope of 1/500. Before each series of tests, the discharge was pro-

gressively increased up to 25 l/s and held steady for 12 hours. At this flow rate,

the boundary shear stress was enough to remove all the excess of sand, revealing

the bed texture created by the packed spheres. This process of water-working also

allowed the consolidation of the sand and the creation of a complex but stable bed

structure for the subsequent tests. At the end of this procedure, the bed resulted in

hemispheres emerging from a permeable sand layer, resembling a fluvial gravel bed

developed under armouring conditions.

(a) (b)

Figure 7.1: a) Composite bed made of spheres embedded in sand. b) Sketch for the
composite bed.

(a) (b)

Figure 7.2: a) Arrangement A: hexagonally-pack with planes aligned with the
streamwise direction. b) Arrangement B: hexagonally-pack with planes aligned
with the spanwise direction.

Two series of experiments were conducted with steady, uniform flow conditions

over two beds with different sphere arrangements. The hydraulic characteristics of
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Test Q (l/s) ŪB (m/s) ŪS (m/s) d (mm) Re F r AR
FC1A 1.4 0.14 0.18 19.8 2800 0.32 25.4
FC2A 3.3 0.2 0.26 33.1 6500 0.35 15.2
FC3A 10.5 0.33 0.43 64.1 20700 0.41 7.8
FC4A 15.7 0.38 0.47 81.6 30900 0.43 6.2
FC5A 21.1 0.43 0.53 97.5 41500 0.44 5.2
FC1B 1.93 0.19 0.23 20.7 4100 0.41 24.3
FC2B 3.53 0.23 0.31 30.7 7700 0.42 16.4
FC3B 10.84 0.35 0.45 61.5 24200 0.45 8.2
FC4B 15.85 0.41 0.51 76.7 34700 0.47 6.6
FC5B 21.56 0.47 0.58 91.9 47400 0.49 5.5

Table 7.1: Characteristics of the flow conditions tested. Q is discharge; ŪB is Time-
and Depth-averaged Velocity; ŪS is Average Surface Velocity; d is Water Depth;
Re is Reynolds Number, with Re = ŪBd/ν where ν is the kinematic viscosity of
water (m2s−1); Fr is Froude Number, with Fr = ŪB/(gd)0.5 where g is gravitational
acceleration,; AR is Aspect Ratio

each flow condition are reported in Table 7.1. The controlling parameters of each

experiment were determined based on the measured depth and time-averaged ve-

locity, ŪB, and on the time-averaged surface velocity, ŪS. Considering the threshold

value of the minimum phase velocity for gravity-capillary waves in still water, c =

0.23 m/s, it was decided to have a flow condition with both ŪB and ŪS below 0.23

m/s, one flow condition where ŪB was below and ŪS was above the threshold value

and three flow conditions with both velocities above the minimum phase velocity

for each bed configuration. The experimental hydraulic conditions were designed to

evaluate the free-surface behaviour and the different wave generation mechanisms

and the change they may experience for progressively higher free-surface velocities.

It was expected that for these flow conditions that a mixture of turbulent forced sur-

face deformations and advecting gravity-capillary waves would be observed [127].

The flow conditions had aspect ratios (ratio between width of the flume and flow

depth) between 5.2 and 25.4, and relative submergence values (ratio between flow

depth and diameter of the spheres) between 1.5 and 10.5. These values were de-

scribed by [211] and [212] as typical within natural gravel bed rivers.

The water surface behaviour was investigated using a Digital Image Correla-

tion (DIC) system positioned at the location 9.4 m (4.6 m downstream from the

beginning of the test bed, corresponding to 232 to 59 times the experimental wa-

ter depths). This system was formed by two Imager MX 4M cameras (2048x2048

pixel, 5.5 µm size pixel) mounting Tamron M112FM16 lenses (16 mm focal length,
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F/2.0). The cameras were placed side by side along the flume centreline 0.40 m

above the bed and a distance 0.70 m from each other (7.3). During the different

tests the cameras’ position was fixed, but because of the different flow conditions

the free surface to cameras distance ranged between 462 and 516 mm, causing the

Field of View (FOV) to range in size from a rectangle of side 325mm to 363 mm,

and the cameras spatial resolution to vary between 0.16 and 0.18 mm/pixel. The

angle between the cameras changed as well, varying from 40.8◦ to 47.3◦ respect

with the horizontal plane. The lens aperture was set at f/16 to produce a depth

of field as wide as possible and so have as much as possible of the FOV in focus.

Illumination was provided by two blue LEDs arrays shining from above for a total

illuminated area of 350x250 mm2 (streamwise and spanwise). The LED arrays were

positioned 0.6 m above the bed without obstructing the cameras’ view. The cameras

were secured onto a stiff mounting bar that was isolated from the flume to ensure

that any vibrations within the flume did not impact on the DIC measurements. The

mounting bar was set to be parallel to the flume bed.

Figure 7.3: Cameras and illumination setup. The cameras were positioned directly
above the water surface on the sides of the illumination. (colour online)

To allow the reconstruction of the instantaneous free-surface profile using the

DIC system, cenospheres (POS-IBW 300 produced by Possehl Erzkontor GmbH)

were used as small floating tracers to identify the water surface in the DIC sys-

tem images. Cenospheres are ceramic hollow spheres which float due to their low

density (ρcs = 700 kg/m3). They also present different off-white shades of colour

that create a light speckle patterns on the free surface, allowing the surface re-

construction algorithm within the DIC system to quantify the surface deformation.

Compared to other buoyant surface tracer candidates, like hollow glass spheres or

silver-coated hollow glass spheres, cenospheres do not produce any electrostatic
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interactions, therefore surfactants are not needed to prevent coalescing and lump-

ing. Cenospheres are hydrophilic and do not stick to the interface. Tracers failing

to do so would impact on the surface tension [213]. The cenospheres were first

sieved to isolate the fraction with particle diameters below 300 µm. This value

was chosen as for larger diameters the Stokes number, St, becomes greater than

0.1. The Stokes number, defined as the ratio between the particle and fluid char-

acteristic time scales, is used to verify the capability of a particle to follow the flow

without disturbing it [214]. [215] suggested tracers having St < 0.1 are able to

correctly describe the flow with an accuracy error below 1%. The sieved material

was characterised by a range of diameters between 90 and 280 µm, resulting in

Stokes numbers between 0.08 and 0.1.

All the experiments were carried out following the same procedure. Before start-

ing a test a calibration plate was placed at the expected streamwise and vertical po-

sition of the air-water interface and the cameras were adjusted to aim at the same

location. A calibration image data set for the DIC cameras was obtained by taking

40 in-focus images of the calibration plate at different heights and inclinations. The

discharge was slowly increased to the desired value and the flume outlet gate was

adjusted to ensure the establishment of uniform flow conditions. Sixty minutes af-

ter the discharge and gate position were set, images were collected at a frequency of

100 Hz in 300 second long acquisitions. DIC data sets consisted of time series con-

taining 30000 images. To produce the free-surface coating necessary for the DIC

algorithm to work, cenospheres were introduced concurrently in different ways.

Surface skimmers were positioned inside the flume storage tank to allow the recir-

culation of the spheres already present in the flume system. Peristaltic pumps were

also used to introduce a highly-concentrated mixture of water and cenospheres just

below the free surface at the inlet tank position. Finally, dry cenospheres were

manually sprinkled from above in correspondence of the transition between gravel

and composite bed (i.e. 4.80 m from the inlet). Uniformly coating the free surface

was more challenging for progressively higher flow rates and depths because as a

consequence of stronger secondary flows and of larger and more frequent coherent

structures causing the renewal of the free surface. Nonetheless, a sufficiently high

level of surface coating was achieved (especially at low flow rates), allowing the

DIC algorithm to accurately reconstruct sufficient of the free-surface shape for later

analysis (Fig. 7.4). Once the images were acquired, uniform flow conditions were

verified again by taking water depth measurements along the flume with a spacing

of 30 cm and confirming the water slope was the same as the bed slope. As a last
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step, small buoyant tracers were released at position 4.80 m and the time required

for them to travel between two distinct sections was measured for 20 times. This

allowed an estimate for the average free-surface velocity to be obtained.

(a) (b) (c)

Figure 7.4: Processing sequence for a frame extracted from flow condition FC5J.
a) Raw camera image b) Orthorectified free surface. c) Reconstructed free-surface
height field.

To obtain the instantaneous shape of the free surface the raw images were firstly

processed using the Strain toolbox provided with DaVis by LaVision [216, 217]. The

images were subdivided in 21 pixel-wide facets and the step size (displacement of

the interrogation window) was set to 13 pixels, resulting in a spatial resolution

varying between 1.5 and 2.2 mm according to the water depth. Facet and step

sizes were chosen as these values were reckoned to be optimal between spatial

accuracy and uniqueness of the speckle pattern created by the floating tracers. The

reconstructed instantaneous surface height, however, presented deviations from the

mean water level. This occurred as the calibration plate was not perfectly aligned

with the water surface at the time of the calibration. To compensate this anomaly,

the time series for the reconstructed height at each location were time-averaged

over the entire duration. The resulting time-averaged height field, representing the

trend inherited from the plate misalignment during the calibration procedure, was

later subtracted from the corresponding instantaneous height field to obtain the

surface fluctuations around the mean water level set now to 0 mm. Five 60 second

long time-averages of surface elevation were also obtained, allowing independent

comparisons of each 60 second long segment to demonstrate the stationarity of

the water height statistics. No differences were noticed between the independent

segments.
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7.3 Analysis of Water Surface Level Measurements

The water surface shape of turbulent open-channel flows is the product of a number

of processes that act at a range of scales so that a description using simple non-

dimensional parameters is not possible [127]. The identification of the different

patterns (turbulence-forced and freely propagating gravity-capillary waves) on the

surface of turbulent open-channel flows is achieved by means of the frequency-

wavenumber spectrum. This method decomposes the elevation at any location into

frequency ω = 2π f , and wavenumber k via a Fourier transform of the surface

elevation ζ(x , y, t) in space (x , y) and in time t. The quantity ω/k, where k = |k|,
is the wave speed.

Turbulence-forced surface fluctuations are expected to move along the direction

of the flow at a speed comparable to that of the turbulent disturbance that origi-

nates them [126] If the mean surface velocity ŪS of the flow is faster than pattern

deformations, the fluctuations in time at a fixed point is primarily due to advec-

tion yielding the following approximate dispersion relation for turbulence-forced

fluctuations [2]:

ΩA(k, ŪS)≈ kŪS. (7.1)

The dispersion curve for gravity capillary waves is:

ΩGW (k, ŪS)≈ ΩA(k, ŪS)±
√

√

(g +
γ

ρ
k2)k tanh (kd) (7.2)

where γ is the surface tension of water and air, ρ is the density of water, and d is

the water depth.

A further dispersion curve due to gravity capillary waves can also be used [151,

126, 2]:

Ωi(k, d) = k

√

√

gd
1+ B

B
tanh (kd)

kd
(7.3)

ΩGW (k, d) = (1− β)ΩA+
q

(βΩA)2 +Ω2
i (7.4)

where:

B =
ρg
k2γ

(7.5)

is the Bond number and:

β =
m
2

tanh (kd). (7.6)
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In this work, m is set to 0.34 as in [2]. In Equation 7.4, only the positive square root

is taken due to the lack of information in that region for the lower wave regimes.

7.3.1 Feature extraction method

This analysis yields a dispersion relation for turbulence induced (forced waves)

and dispersion relations to describe different gravity waves. These relations can

therefore describe the complex combination of different wave types on the free

surface of any turbulent flow.

The frequency-wavenumber spectrum was obtained in three dimensions in or-

der to identify the wave types from the spatial elevation data that were recovered

for each flow condition using the DIC system. The underlying assumption is that

the free-surface elevation can be analysed via Fourier Analysis, and this analysis

adheres to the dispersion relations. If these assumptions hold, it is possible using

the frequency-wavenumber spectrum to recover the different dispersion relations

[218, 219, 220]. Essentially, because this representation yields a function of k and

Ω. In the continuous case, defining the DIC surface elevation recovery as a function

in space and time ζ(x , y, t) say, the frequency-wavenumber spectrum can be found

by the Discrete Fourier transform:

ζ̂(ki, k j,ωk) =
Nx−1
∑

m=0

Ny−1
∑

n=0

Nt−1
∑

p=0

ζ(xm, yn, tp)exp

�

−i

�

2π
Nx

kin+
2π
Ny

k jm+
2π
Nt
ω j p

��

(7.7)

Where Nx , Ny , Nt are the number of samples in the x, y, and time dimension

respectively. The power spectrum of the frequency-wavenumber spectrum was cal-

culated for every ten seconds (1000 frames) of DIC surface elevation data, and then

the results averaged at every location by the number of ten second segments (found

by rounding down the number of samples in time to the thousandth). This average

power spectrum was analysed.

The Nyquist limits Lω, Lkx
, Lky

, the resolution Sω, Skx
, Sky

for ω, kx , ky , and the

spectra size is presented in Table 7.2. No window was used in the DFT analysis.

As the DIC scheme yields an estimation of the surface elevation, the frequency-

wavenumber spectrum should be applicable, as was observed in [18] for wave

probes. As the DIC recovers surface elevation from the observation of tracers that

are on the surface, the overall recovered elevation is dictated by the density and

behaviour of the tracers. As the flow advects the tracers, the spatial density is not

uniform and there are regions in the flow where the number of tracers is close to
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Test Lω (rad/s) Lkx
(rad/m) Lky

(rad/m) Sω (rad/s) Skx
(rad/m) Sky

(rad/m) Shape
FC1A 314.16 1948.4 1948.4 0.02 19.0 18.5 (205 211 29999)
FC2A 314.16 1903.4 1903.4 0.021 19.7 18.0 (193 211 29999)
FC3A 314.16 1931.1 1931.1 0.022 21.7 17.5 (178 221 28089)
FC4A 314.16 1948.4 1948.4 0.021 22.7 17.9 (172 218 29999)
FC5A 314.16 2084.3 2084.3 0.025 21.1 17.4 (198 240 25483)
FC1B 314.16 1760.1 1760.1 0.021 17.5 16.1 (201 218 29999)
FC2B 314.16 1558.8 1558.8 0.023 19.1 14.8 (163 211 26770)
FC3B 314.16 1708.3 1708.3 0.021 19.9 15.3 (172 224 29999)
FC4B 314.16 1742.6 1742.6 0.021 20.7 15.0 (168 232 29999)
FC5B 314.16 1739.8 1739.8 0.021 21.7 15.7 (160 222 29999)

Table 7.2: Spatial information of the flow conditions tested. Nω is the Nyquist limit
from angular frequency; Nkx

is the Nyquist limit for kx ; Nky
is the Nyquist limit for

ky; Sω is the resolution in angular frequency; Skx
is the resolution in kx ; Sky

is the
resolution in ky; Shape is the resulting frequency-wavenumber shape.

zero. At these locations, the DIC scheme does not successfully recover elevation

information. Figure7.5 demonstrates the proportion of pixels that are successfully

recovered at each frame of the resulting video. This data was smoothed through

the use of a Gaussian kernel density estimation (KDE) method. These values are

normalised based on the maximum value of the distribution for all measurements.

It can be observed that the spread of the KDE histograms increase as the flow rates

increase from FC1 to FC5. The proportion of pixels with spatial information for

the Bed B measurements has an intermediate value of around 0.5 for flow condi-

tion FC1, whereas the proportion of pixels with spatial information for the Bed A

measurements decrease from FC1 to FC5. It is important to note that there is a left

shift to the data, which is from the zero padding outside of the region of recovery

as shown in Figure 7.4. However, the spread is dictated by "holes" that advect with

the flow, these holes are not interpolated before the application of the DFT and are

set to 0. However, if this non-complete DIC data can reconstruct robust frequency-

wavenumber plots, in the streamwise and lateral directions, with sufficient fidelity

to separate the different wave types then this 3D surface elevation data can be used

to investigate the nature of the free surface of turbulent flows.

7.4 Results

Once the DIC system has completed the measurements the elevations are processed,

the 3D averaged power spectrum was found for each time series. This gives a full

spatial spectra for values of the wavenumbers in the streamwise (x) and lateral

(y) direction. For the presentation of the results, two slices which correspond to
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(a)

Figure 7.5: Normalised kernel density estimation of proportion of pixels in the
images that contain surface elevation information. For all measurements. The nor-
malisation was done by the division of the maximum value.

kx = 0, and ky = 0, which represent waves in the streamwise and the lateral di-

rection respectively were selected. Theoretical dispersion relations can be obtained

for the streamwise direction and the lateral direction from Equations (7.1) (7.2)

based on the depth and velocity reported in Table 7.1 (in the lateral direction the

velocity is assumed to be 0). The theoretical lines are overlaid to the results pre-

sented from the DIC scheme. Due to the missing streamwise velocity information

for FC2B in Table 7.1, the figures for this condition are not presented. Figures 7.6

7.7 7.8 7.9 7.10 present the Fourier representation of the DIC recovery for the case

where ky = 0 and kx = 0 for all the flow conditions outlined in Table 7.1. In the

tests with higher flow velocities and deeper water depths (Fig.7.9 and 7.10), and

where a higher proportion of data is missing, the dispersion relations blur more in

the negative wavenumber region. This is to be expected, as the proportion of miss-

ing data increases more noise appears on ω = 0 line. Throughout all of the flow

conditions, the kx = 0 curves fit well to the center of the dispersion curves acquired

from the Fourier representation of the DIC results.

For Flow Condition 1A,1B and 2A,2B in Figures. 7.6 7.7, there is good agree-

ment for both the turbulent advection dispersion relation (Eq.(7.1)) and the down-
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stream gravity capillary waves (Eq.(7.4)) for the wavenumber larger than 0. There

is good agreement for the negative wavenumber until less than −100, then the

agreement decreases. This behaviour is replicated for flow condition 2. For Flow

Conditions 3 on-wards, the features of the advection and the downstream gravity

capillary waves blur together, there is not as clear a separation from the advection

and the gravity capillary waves as in flow condition 1 and 2. An issue that has arisen

through the analysis of the results is the lack of information for downstream gravity

waves, which would not be present in laboratory conditions. Due to this, there is

no information in the Fourier representation of the DIC recovery where there is a

theoretical line shown in Flow Conditions 3,4, and 5.

For the recovery for the lateral waves, the agreement is good throughout. Al-

though the blur does increase as the flow conditions get higher, the overall shape

adheres to the theoretical dispersion curve well especially in cases such as the ones

presented in Figure 7.8. Where, in the streamwise direction the gravity dispersion

relation has been blurred and dominated by the effect of the turbulence-generated

advection. However, the in lateral direction there is still good agreement with the

theoretical dispersion curve.

In order to visualise the separation of the dispersion relation with respect to

the change of parameters, the dispersion relations for all flow conditions were pre-

sented in Figure 7.12. There is a clear separation in the streamwise direction for

both the A and B measurements, with emphasis on the negative wavenumber. The

behaviour is mimicked in the lateral direction, although the change with respect to

depth decays very quickly, with minimal separation in FC4 FC5 for both the A and B

measurements. The ability to separate out the gravity-capillary behaviour and the

forced behaviour is an extremely powerful benefit of this approach, allowing for

further analysis in the structures. This is achieved due to the full three-dimensional

spectral reconstruction the DIC method allows for.

7.5 Conclusion

The work in this paper analysed the quality of the frequency-wavenumber analysis

of the free-surface of shallow turbulent flows, from data collection using Digital

Image Correlation (DIC). The DIC scheme was tested in a laboratory, under various

uniform, steady flow conditions. The DIC scheme relies on particles that are placed

in the flow that float on the surface, this causes some issues in reconstruction when

particles submerge into the flow, via downwelling or other phenomena. As the
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(a) (b)

(c) (d)

Figure 7.6: Frequency wavenumber spectrum for (a) Ky = 0, (b) Kx = 0 for flow
condition 1(A), (c) Ky = 0, and (d) Kx = 0 for flow condition 1(B) (solid line relates
to Equations 7.1 and 7.2, dotted relates to 7.4, colour online).

missing data follows the same structure as the recovered data, due to the hydraulic

conditions, this appears to not hinder analysis much, even as the proportion of

missing data reached 60% of the interrogated region. The method used to analyse

the behaviour of the reconstructed free-surface elevation profile was the frequency-

wavenumber spectrum.

For the A series and the B series of measurements, care was taken to maintain

the same experiment setup for a pair of flow conditions (i.e. FC1A and FC1B). This

can be seen with the matching of the discharge given in Table 7.1. This allows for

an investigation on the effect of the different bed layouts to the streamwise velocity

and the depth. Overall, the B series of measurements has a higher surface velocity,

depth, and Froude number, in comparison to the A series of measurements. Care

should be taken in comparing FC1A and FC1B, where the change in discharge is
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(a) (b)

(c)

Figure 7.7: Frequency wavenumber spectrum for (a) Ky = 0, (b) Kx = 0 for flow
condition 2(A).(solid line relates to Equations 7.1 and 7.2, dotted relates to 7.4,
colour online).

high. These effects are represented in the frequency-wavenumber plots, and the

theoretical dispersion relations fit well.

The results presented in this work relate to the matching of the experimental

frequency-wavenumber spectrum and the theoretical dispersion relations. Good

matching, and separation, indicates that the reconstruction from the DIC scheme

has good agreement to theoretical relations, as well as being predictable. The

results show that gravity capillary waves are present in Flow conditions 1 and 2

for both the A and B measurements, and this information is captured in the dis-

persion relation. As the flow rate increase, the gravity capillary waves appear to

change substantially, and seem to be following the trend of the velocity dominated

advection dispersion curve. Throughout all flow conditions, the lateral frequency-

wavenumber plot shows excellent agreement to the expected dispersion relation,
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(a) (b)

(c) (d)

Figure 7.8: Frequency wavenumber spectrum for (a) Ky = 0, (b) Kx = 0 for flow
condition 3(A), (c) Ky = 0, and (d) Kx = 0 for flow condition 3(B) (solid line relates
to Equations 7.1 and 7.2, dotted relates to 7.4, colour online).

and the streamwise frequency-wavenumber plot shows great agreement to the ex-

pected dispersion relation. This validates the approach for non-intrusive DIC-based

systems to analyse the free-surface of shallow turbulent flow, even with the issue of

data sparsity.
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(a) (b)

(c) (d)

Figure 7.9: Frequency wavenumber spectrum for (a) Ky = 0, (b) Kx = 0 for flow
condition 4(A), (c) Ky = 0, and (d) Kx = 0 for flow condition 4(B) (solid line relates
to Equations 7.1 and 7.2, dotted relates to 7.4, colour online).
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(a) (b)

(c) (d)

Figure 7.10: Frequency wavenumber spectrum for (a) Ky = 0, (b) Kx = 0 for flow
condition 5(A), (c) Ky = 0, and (d) Kx = 0 for flow condition 5(B) (solid line relates
to Equations 7.1 and 7.2, dotted relates to 7.4, colour online).
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(a) (b)

(c) (d)

Figure 7.11: Extraction of the forced waves and the gravity-capillary waves using a
mask centered at the forced dispersion relation. In (a) The gravity-capillary waves
for FC1B, (b) contains the forced waves for FC1B. In (c) and (d) FC5B gravity-
capillary waves, and forced waves are presented, respectively. The image corre-
sponds to 5.21 seconds in the data.
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(a) (b)

(c) (d)

Figure 7.12: Comparison of the theoretical dispersion relation lines grouped by
the A set of measurements, and the B set of measurements. In (a) the streamwise
dispersion relations are shown for the A measurements, (b) contains the lateral
dispersion relations for the A measurements. In (c) and (d) the B measurement’s
streamwise and lateral relations are presented, respectively.
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Chapter 8

Using Metropolis-Hastings to
estimate parameters of shallow
turbulent flow from the free-surface
elevation, a study

Reference

Johnson, M. D., Muraro, F., Tait, S., Dolcetti, G., and Krynkin, A. Using Metropolis-

Hastings to estimate parameters of shallow turbulent flow from the free-surface

elevation.
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Summary

For the reasons already given in chapters 4-6, it is desirable to extract the param-

eters of the moving surface from the frequency wavenumber spectrum generated
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using the technique given in the chapter 7. The practical application of this for a

moving surface is to extract the depth and velocity of a river from its free-surface.

The following Chapter attempts to do this. Due to the noisy nature of the frequency-

wavenumber plots, as well as the fact that there is inherent spatial dependence in

x and y, the model used for inversion needs to take advantage of these conditions.

Because of these factors, random forests, K-nearest neighbours and other models

were omitted in favour of the iterative MCMC approach, which in the likelihood

function can get a metric of spatial dependence.

This Chapter aims to find the posterior distribution of the streamwise velocity,

the lateral velocity, and depth given a set of two frequency-wavenumber slices cor-

responding to kx = 0, ky = 0. The Adaptive Metropolis scheme was tested on this,

due to the relatively low dimensionality of the parameter space and the input space.

If more slices were used (increasing the dimension of the input space) then Hamil-

tonian Monte Carlo would be more appropriate, as it has a greater ability to handle

higher dimensional spaces.

The model was tested on two sets of experimental data. The first set of experi-

mental data was the DIC data used previously in Chapter 7, the second set of data

was collected at the River Sheaf in Sheffield. This data was provided open access

from the paper [2].

The underlying methodology of this approach is first to assume that the disper-

sion curves can be approximated in analytic form. Therefore, artificial images can

be produced by setting the value 1 to a pixel corresponding to the correct kx ,ω,

ky ,ω bin. Once done, the theoretical image can be compared with the normalised

experimental data in order to evaluate the likelihood. The further assumption is

then made that once normalised, the maximal value at each frequency must cor-

respond with the signal of the underlying flow dispersion, otherwise the MCMC

method is fitting to noise.

Through both the DIC and the CCTV images from the River Sheaf, the mean ve-

locity is recovered well. Investigating the credible interval overlaid on the frequency-

wavenumber plot, the spread of the velocities in the data is also well recovered. This

posterior distribution could then give further information regarding the spread of

velocities present in the videos, which is an upgrade to the typical average approach

one gets when using a frequency-wavenumber optimiser. This is a significant im-

provement in generating results from a frequency-wavenumber based approach.

The main problem with this approach is the recovery of the depth. The depth

is not recovered well. This could be due to a multitude of factors. Changing the
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mean flow velocity rotates the dispersion curves due to the Doppler effect, and thus

causes a large amount of noise in the depth component. The depth is also much

less sensitive than the velocity, causing minimal overall change in the dispersion

relation compared to the velocity.

This work paves the way for a Bayesian reconstruction of the flow velocity, with-

out the need for tracers. Further work is needed to be able to recover the depth,

but initial results are promising.

8.1 Abstract

Estimating parameters in river monitoring non-intrusively has been a major area

of research, especially with respect to gaining velocity information. Two key meth-

ods currently used for this are Particle Image Velocimetry (PIV) and Fourier based

methods. Although PIV methods are superior with their spatial resolution, there is a

strict requirement on movable tracers in the flow. Fourier methods have the benefit

of probing the underlying dispersion relation, and do not need tracers. However,

they can only capture the spatial and temporal average. This work aims to extract

further information than the average one typically gets from Fourier based meth-

ods. In order to capture the spread of information that is present in the underlying

frequency-wavenumber relation, this work aims to use an Adaptive Metropolis algo-

rithm to obtain posterior distributions of predicted flow velocities and depths such

that more information about the flow can be obtained as opposed to a single point

estimate.

8.2 Introduction

Non-intrusive evaluation of the behaviour of flow that can be observed in river flow

is of great importance. Floods are one of the leading causes of naturally occurring

damage to property in the UK. For example, the estimated cost over the winter of

2015/2016 for property and business affected by storm Desmond was “likely to be

>£1.3 billion" [5], and in November 2019 estimated insurance payouts to homes

and business that were effected by flooded “would reach £110 million" [6]. Due

to this the prediction and prevention of floods is an area of active research [7] [8]

[9]. Much of this research is the development of non-intrusive evaluation of the

river flow, typically to target the discharge which takes the velocity of the flow and

the depth of the flow into account. It should be noted that any technique should
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be evaluated not only on its accuracy but also the ease of its implementation and

cost given that surveying a wise area is key to building a network of information to

prevent damage.

A key issue when monitoring some rivers is where they are shallow and turbu-

lent. If intrusive measurement systems are in place, the local depth and the velocity

could reduce the reliability of the results that can be observed. A key non-intrusive

evaluation method that is prominent in this field is Particle Image Velocimetry (PIV).

PIV methods rely on “tracers" that are present through the video recording of the

region. These tracers may be naturally occurring or may be introduced into the

flow, the restriction on this is that the chosen tracers need follow appropriately the

movement of the flow, and the interrogation area needs to be sufficiently covered

in order to drive the high spatial resolution that PIV benefits from. Many review pa-

pers have been released since its inception in 1984 [132] such as [133] [134] and

most relevantly [135]. PIV has proven to be a powerful method for obtaining ve-

locity field measurements over a large region. This has lent itself to measuring the

velocities at the free surface of rivers. For example [136] collates several different

examples where this has been used for rivers, such as the Katsura river.

A defining feature PIV is the reliance on tracers in the flow that are either natu-

rally present in the flow, or are artificially introduced into the flow in such a way as

to not significantly change the flow, the motion of these is used to find the velocity

field. This poses a significant issue, especially when attempting to scale this up.

There are two options: one is being completely passive, having cameras in a vast

amount of locations and only capturing data in the event of natural tracers appear-

ing, thus reducing the region of interrogation in space and time or automatically

add seeder to the flow. Or the motion of flow can be looked at directly, two of these

approaches are optical flow (some examples of using this for free-surface measure-

ments are [137], [138], [139], [140]), or Fourier analysis. This work will focus on

the latter.

The specific method of Fourier analysis that will be considered is that of the

frequency-wavenumber spectrum. Using spectral analysis for ocean waves has been

studied extensively, and has been explained clearly in [17], it has been extended

to the study of shallow turbulent flows using wave probes in [18] and [127]. The

key point of these papers was to investigate how the free-surface’s dispersion rela-

tion changed with rough beds, which cause a large factor in shallow flows where

boundary conditions have more of an effect [2]. The culmination of this was a non-

invasive approach in [2] where an approximation of the dispersion relation due to
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advection was linked with the dispersion relation due to gravity capillary waves.

Good agreement was found experimentally with these relations, then an optimizer

was fit to be able to estimate the discharge and the depth. An issue that arises when

considering an optimizer on Fourier transformed data is that only a single value for

velocity and depth can be recovered. These values represent the spatial and tempo-

ral average of the system. However, as it is not true that the velocity and the depth

are constant in space and time, this work aims to extend the prediction by using

a Bayesian framework. This is done by first treating the frequency-wavenumber

spectrum as an image, and these images are formed from the theoretical dispersion

relations. The images are compared through the use of the MCMC methods, which

have shown promise in gathering information from dispersion relations in the seis-

mic domain [142]. The MCMC generates a posterior distribution of the depth and

the velocity, which should captures the noise in the data from measurement noise

and also the spread of velocities in the timeline of measurement.

This work is presented as follows: Section 2 contains relevant summaries of the

theory of dispersion relations, investigates the sensitivity of the dispersion relations

to their parameters, explains how the frequency-wavenumber plots were obtained

and outlines the theory for the Adaptive Metropolis scheme. Section 3 outlines the

setup of the two experiments that provide the data used in the analysis. Section 4

contains the results, and section 5 the conclusions.

8.3 Theory

The key structure that one obtains from a frequency-wavenumber spectrum is a

measure of the underlying dispersion relation. This section introduces three disper-

sion relations that well approximate the shallow turbulent flow. If the mean speed

of the flow is faster than pattern deformations, the fluctuations in time at a fixed

point is primarily due to advection yielding an approximate dispersion relation[2]:

ΩA(k,U0)≈ kU0 (8.1)

Where U is the velocity in the streamwise and lateral direction. The dispersion

relation due to gravity capillary waves can also be approximated as[151] [2] [126]

ΩGW (k, d,U0) = (1− β)ΩA±
q

(βΩA)2 +Ω2
i (8.2)
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Ωi(k, d) = k

√

√

gd
1+ B

B
tanh kd

kd
(8.3)

Where

B =
ρg
k2γ

(8.4)

Is the Bond number, and

β =
m
2

tanh kd. (8.5)

In this work, m, the velocity gradient, is set to 0.34, g ≈ 9.81 is acceleration due

to gravity, γ is the surface tension between water and air, ρ is the density of water,

and d is the depth.

The dispersion relations are mainly affected by the depth averaged flow velocity

U0 and the depth of the flow. However, the dispersion relation is substantially more

sensitive to the velocity in comparison to the depth[2], usually only being able to

visibly see a change at k ∈ [−60,60], as

∂ΩGW

∂ U0
= k(1− 0.17 tanh (kd)) +

0.0289k2U0 tanh (kd)2
√

√

�

γk3(1+ gρ
γk2 ) tanh (kd)

ρ + 0.0289k2u2 tanh (kd)2
�

(8.6)

∂ΩGW

∂ d
=

k2

cosh (kd)2



−0.17U0 +
0.5γk2 + 0.5gρ + 0.0289kρU2

0 tanh (kd)

ρ

r

k tanh (kd)(γk2+gρ+0.0289kρU2
0 tanh (kd))

ρ



 (8.7)

Sensitivity analysis of the parameters are presented in Figures 8.1 and 8.2, which

show the change in Equations (8.6) and (8.7) (here the ± is reduced to the plus

case) respectively. As can be seen in the figures, the change with respect to depth

happens only in a small region below 0.5m and this change cannot be observed

easily at wavelengths when the depth increases. The scale difference between the

values presented in the sensitivity to the velocity in comparison to the sensitivity

due to the depth also highlights a potential issue, as the velocity is much higher

than the depth.

The underlying assumption driving this work is that the observed free-surface el-

evation is behaving similarly to what is expected from the dispersion relations. That

is to say, taking the Fourier transform in both spatial directions and the temporal
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Figure 8.1: Heatmap presenting the 10 log10 sensitivity of the gravity-capillary dis-
persion relation with respect to the velocity as the velocity varies from 0m/s to 4m/s
and wavenumber between -400 and 400. The depth was fixed at 0.3.

direction (to obtain a frequency-wavenumber spectrum ) should yield information

that can be related back to the dispersion relations.

In the case of this work, the resulting frequency-wavenumber spectrum is treated

like a pattern in an image. Suppose ζ represents an image of size Nx×Ny×Nt , where

x = [x0, ..., xNx−1], x = [y0, ..., yNy−1] x = [t0, ..., tNt−1], and ζ(x i, y j, tk) represents the

pixel intensity at a specific location and time. Then, the Discrete Fourier Transform

(DFT) is applied as such:

ζ̂(ki, k j,ωk) =
Nx−1
∑

m=0

Ny−1
∑

n=0

Nt−1
∑

p=0

ζ(xm, yn, tp)exp (−i(
2π
Nx

kin+
2π
Ny

k jm+
2π
Nt
ω j p)) (8.8)

This was implemented in the data analysis and model through numpy’s fftn

function. Figure 8.3 highlights what the resulting frequency-wavenumber plot looks
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Figure 8.2: Heatmap presenting the 10 log10 sensitivity of the gravity-capillary dis-
persion relation with respect to the depth as the depth varies from 0m to 4m and
wavenumber between -400 and 400. The velocity was fixed at 0.1.

like, for ky = 0. The results were obtained by producing a dynamic surface that

strictly obeyed the above dispersion relations. Three distinct lines are present in

the figure, and these align to the theoretical dispersion relations for the velocity

and depth which were presented in Equations 8.2 8.1.

Similar to the behaviour that can be seen in Figure 8.3 this work considers only

the slices of frequency-wavenumber when kx = ky = 0. This allows for treating the

two slices as “images", where each pixel in the image corresponds to a particular

(frequency, wavenumber) bin. Images can be produced from the theoretical disper-

sion relations, for a specific velocity U0 and depth d, given in Equations (8.1) and

(8.2) by the given relation.
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Figure 8.3: Absolute value 10 log10 frequency-wavenumber spectrum from a surface
generated using the dispersion relations given in Equations 8.18.2, for: depth =
0.4m, streamwise velocity = 0.5m/s, temporal sample rate = 200Hz, spatial sample
rate = 10001/m.

I(ωi, k j, U0, d) =











1 abs(ωi − k jU0)≤ ε
1 abs
�

ωi −
�

(1− β)ΩA±
Æ

(βΩA)2 +Ω2
i

��

≤ ε
0 else

(8.9)

With this, a theoretical image can be produced that is 1 when the current pixel

relating to ωi, k j is close to the theoretical dispersion relation and is 0 otherwise.

Once a theoretical image is produced, errors can be calculated.

8.3.1 Metropolis-Hastings

Figure 8.3 presented an idealised representation of the frequency-wavenumber spec-

tra. No representative noise sources were added. This causes three very clear lines

in this figure. In reality, this will not be observed due to noise such as unstable

lighting, objects interfering with the video (e.g. a duck swimming through the

frame), and other miscellaneous camera issues. Due to the noise sources, it was

decided that a model under the Bayesian framework would be more representative

171



of the underlying data. The Metropolis-Hastings algorithm was selected for this due

to the relatively low dimension of the parameter space. In order to introduce the

Metropolis-Hastings algorithm, define D to be a given dataset, and θ to be a set of

parameters to infer. In this case, streamwise velocity, depth, and lateral velocity. By

Bayes’ theorem:

P (θ |D̃)∝P (D̃|θ )P (θ ). (8.10)

Where P (θ ) is the Prior distribution, which contains information about existing

beliefs about the physics of the system and acts as a starting point for the algorithm.

In this work, this is defined as

P (θ ) = fHN(θ1, 0, 1.1) fHN(θ2, 0.0005,0.2) fHN(θ3, 0, 0.01) (8.11)

Where fHN denotes the Half Normal distribution, where the first argument is

a parameter that is estimated through the MCMC scheme. The second argument

is the location where the step discontinuity occurs, and the third argument is the

standard deviation.

P (θ |D̃) is the Posterior distribution, which yields probability distributions for

each parameter of interest. In the case of this work, the posterior distribution is

used to infer the distributions of the streamwise velocity, the depth, and the lateral

velocity.

The likelihood function isP (D̃|θ )which is a term which evaluates how likely the

data was produced from the selected parameters. In this work, Gaussian likelihood

was selected and is defined as

P (D̃|θ ) = fMN (D̃,θ ,Σ) (8.12)

with

fMN (D̃,θ ,Σ) =
exp
�

−αTΣ−1α/2
	

p

(2π)k|Σ|
, (8.13)

α = [D̃x − I(ω, k,θ0,θ1) + D̃y − I(ω, k,θ2,θ1))] (8.14)

Where Σ is a covariance matrix representing the estimated error in the data. The

likelihood function aims to compare the real data and the theoretical result. The

relationship between the parameters θ and the flow parameters are [θ0,θ1,θ2] =
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[Ux , d, Uy]. The Metropolis-Hastings algorithm acts on two slices of the frequency-

wavenumber representation, one for kx = 0 and the other for ky = 0. These two

theoretical images are then compared to the slices of the real data which corre-

sponds to kx = 0, ky = 0 through the use of fMN . If the model perfectly fits the

data, this value will be maximal. The required values are defined so the Metropolis-

Hastings algorithm can be applied as in Algorithm 3. The proposal step was altered

adaptively through the application of an updated covariance matrix as in [164] and

is known as Adaptive Metropolis (AM).

The workflow used throughout this work is as follows. First, extract each frame

of a video as separate images then, using the Fast Fourier Transform, construct the

full frequency-wavenumber spectra. These spectra contain all values of kx and ky ,

so the slices relating to kx = 0 and ky = 0 need to be extracted. Following this, a

normalisation scheme was applied. For each frequency, the maximum value of kx

(or ky) was found, the whole range was then divided by this maximum. The reason

for this normalisation scheme was that the signal in the presence of noise should

be maximal at - or close to - the theoretical value, and normalising to 1 causes the

difference with Equation 8.9 to be 0 and thus the likelihood function is maximised.

Algorithm 3 Metropolis-Hastings Algorithm
Initialise θ0

for n= 0, . . . , N − 1 do
Sample u∼ U(0,1)
Sample θ ′ ∼ q(θ ′ | θn)
if u≤ α(θn,θ ′) =min

�

1, p̃(θ ′)q(θn|θ ′)
p̃(θn)q(θ ′|θn)

�

then
θn+1 = θ ′ ▷ Accept sample.

else
θn+1 = θn ▷ Reject sample.

end if
end for

8.4 Data collection

In order to evaluate the viability of using the Metropolis-Hastings approach to re-

construct the posterior probability distribution of the streamwise velocity, depth and

lateral velocity, the method was used to infer these values from two distinct data

collection schemes. The first scheme was Digital Image Correlation (DIC) acquired
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elevation profile of the free-surface, in laboratory conditions. DIC benefits from

reconstructing true elevation based on tracers in the flow.

The next collection scheme is from the field, as opposed to the laboratory. This

collection scheme was from the river Sheaf, through the analysis of Closed-Circuit

Television (CCTV). A CCTV camera was placed such that the free-surface of the

river can be viewed. Although the elevation isn’t directly recovered, the change in

intensity of the pixels should exhibit the same motion as what would be expected

from the frequency-wavenumber spectrum. The data collected from the river Sheaf

has more potential issues than the DIC recovery, due to uncontrollable lighting

conditions, as well as interference in the motion of the pixels due to wildlife or

debris. Some specifics of the measurements are presented below.

8.4.1 DIC measurements

Ten experiments were conducted with steady, uniform flow conditions over two

different bed arrangements. The surface behaviour was investigated using a Dig-

ital Image Correlation system positioned 4.4 m downstream from the beginning

of a given bed. The DIC system was comprised of two Imager MX 4M cameras

(2048x2048 pixel, 5.5 µm size pixel) with Tamron M112FM16 lenses (16 mm focal

length, F/2.0). The cameras were placed 0.40 m above the bed and spaced 0.70 m

apart. Because of the different flow conditions, the field of view varied between a

square of side 325 to 363 mm, and the camera’s spatial resolution varied between

0.16 and 0.18 mm/pixel. The angle between the cameras varied from 40.8◦ to

47.3◦ with respect to the horizontal plane. Two blue LEDs illuminated a total area

of 350x250 mm2, and were positioned 0.20 m above the cameras in elevation.

The tracers used in order to reconstruct the free-surface profile were ceno-

spheres (POS-IBW 300 by Possehl Erzkontor). These were used to identify the

location of the water surface. These tracers are designed to have low density ρcs

= 700 kg/m3 such that they float on the water surface. They also produce a light

colour on the free-surface, allowing the DIC to reconstruct the free-surface eleva-

tion.

The streamwise velocity and depths for all the experiments are located in Table

8.1, where the lateral velocity was taken to be 0, and thus not taken into account

in this table. This table also contains some of the results from the MCMC, discussed

further in Section 4.
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8.4.2 River Sheaf

Field measurements were taken at the River Sheaf, in Sheffield. This was selected

to allow direct comparison with [2] which also used measurements from this site

to test an optimiser based approach to estimate the discharge and depth. The site

was originally selected because of nearby gauging stations where the interrogation

area was situated 25 m upstream of a river gauging station operated by the UK En-

vironment Agency. The channel width was approximately 9.25 m. Dolcetti provides

more contextual information regarding the selection process of this river, as well

as the methods to recover depth in [2]. Orthorectified images for 17 different flow

conditions were provided in [2] and all that was required was a further rotation of

45 degrees before processing into the frequency-wavenumber representation. The

streamwise velocity was recovered from the discharge estimations given in [2], the

depth information, and the bed width. Table 8.2 provides the wave gauge infor-

mation on the streamwise velocity and depth, as well as the reconstruction effort

from Dolcetti [2] followed by the reconstruction efforts in this work, as well as the

corresponding errors.

8.5 Results

The algorithm was run for all flow conditions with 100,000 epochs. The first 10,000

of these was classified as the burn in period and thus was removed from the analysis.

For both experiments the following figures and metrics are used to visualise the re-

sults of the analysis and evaluate its performance. First, a frequency-wavenumber

plot of the data is shown, with overlaid lines that relate to the model prediction

found from the mode of the parameters and the ±σ interval, found from a highest

density interval (HDI). Following this, the smoothed plots, generated with a Gaus-

sian kernel density estimation, of the distribution of streamwise velocity and depth

are shown, as well as distributions of the streamwise velocity along the mode of

the depth and the distribution of the depth along the mode of the streamwise ve-

locity. Following this, the density plot of the streamwise velocity and the depth is

produced, overlaid with black lines indicating the mode solution the location of the

crossing point is thus the mode prediction.
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8.5.1 DIC recovery

Figures 8.4, 8.5,8.6,8.7, 8.8, and the top half of Table 8.1 relate to the results from

the Adaptive Metropolis scheme for the F series of measurements. Here, the F

series of measurements relate to flow conditions that were measured in laboratory

conditions in February 2022.

Figure 8.4 presents the frequency-wavenumber spectra from the data, overlaid

with the mode prediction from the MCMC, overlaid with the 68% credible interval.

Investigating the resulting overlays in Figure 8.4 it can be observed that the mode

prediction and the 68% credible region capture the signal in the image well, this

indicates that the Adaptive Metropolis traces have found the signal in the image.

In order to further understand the posterior distribution, Figures 8.5,8.6,8.7 are

presented. This shows a Gaussian Kernel Density estimation of the results from

the MCMC scheme. Investigating the mode predictions of the streamwise velocity,

the errors are at worst −12%. The key outlier to this is FC2 where the streamwise

velocity is 33.6%, this is identified as an outlier where the model has swapped

from predicting the turbulence curve to the gravity capillary curve, causing a very

distinct bi-modality in Figures 8.5,8.6,8.7. Looking at the first mode, the value is

much closer to the full value. As long as the separation of the modes are distinct,

then it should be easy to extract the true value (which will be the slower one) in

these cases. Looking at the distributions of the streamwise velocity specifically in

Figure 7.5 it can be observed that velocities tend to have a nice peak and tend to be

Gaussian like, but tend to skew slightly to the right at the higher flow conditions.

The errors with respect to the depth reconstruction are much higher, peaking at

−63.1% for FC5. This can be observed in the distributions with respect to depth in

Figures 8.5,8.6,8.7 with a consistently wide spread, indicating a lack of sensitivity

to the depth for the F measurements.

The 2D densities from the streamwise velocity and the depths were produced

in Figure 8.8, which visualises the spread over both dimensions. Investigating the

densities shown in Figure 8.8 it can be observed that the location of the ground

truth is always close to a region of high density.

Figures 8.9, 8.10,8.11,8.12, 8.13, and the bottom half of Table 8.1 relate to

the results from the Adaptive Metropolis scheme for the J series of measurements,

similar behaviour can be observed in comparison to the F series of measurements,

within 20% error of the streamwise velocity. The depth is marginally improved,

but still not entirely consistent with the ground truth. The same behaviour can be
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Test ŪS (m/s) D (mm) Ūest S (m/s) Dest (mm) ErrU ErrD

FC1A 0.18 19.8 0.16 28 −11% 41.4%
FC2A 0.26 33.1 0.35 38 33.6% 14%
FC3A 0.43 64.1 0.38 75 −11.6% 17%
FC4A 0.47 81.6 0.45 45 −4.26% −44.9%
FC5A 0.53 97.5 0.51 36 −3.78% −63.1%
FC1B 0.23 20.7 0.22 30 −4.35% −45.0%
FC2B 0.31 30.7 0.29 42 −6.45% 36.8%
FC3B 0.45 61.5 0.40 40 −11.1% −35.0%
FC4B 0.51 76.7 0.44 56 −13.7% −27.0%
FC5B 0.58 91.9 0.54 36 −6.9% 60.8%

Table 8.1: Table representing the different experiments from the DIC collection
scheme. The first column represents names of the experiments. The second column
represents the streamwise velocity. The information regarding the depth is in the
third column, the fourth column represents the recovered mode streamwise velocity
from the MCMC scheme, the fifth column represents the recovered mode depth
from the MCMC scheme. The final two columns showcase the percentage error
difference between the two.

observed in the smoothed results from the traces in Figures 8.10,8.11,8.12 as well

as the densities presented in Figure 8.13.

8.5.2 CCTV recovery - River Sheaf

The full table of results from the Adaptive Metropolis (AM) scheme from the pa-

rameter recovery from the CCTV data is provided in Table 8.2. This table contains a

comparison between the wave gauge measurements, as well as the predictions from

the optimiser scheme in Dolcetti et al [2]. For visualisation of the results, a subset

of the full dataset was selected that represents an even spacing of data to ensure

that most flow regimes were covered without selection bias. Table 8.2 shows good

self consistency in the velocity predictions, in comparison to the optimiser provided

in [2], with an average absolute error in the velocity of approximately 4%. These

results therefore are a further extension to the optimizer results in [2], because the

resulting velocities recovered in the MCMC scheme form a full posterior distribution

that can be used to gauge uncertainty in the prediction. For the depth however, the

model fails at recovering the true depth through all flow conditions.

Investigating the frequency-wavenumber plots overlaid with the Adaptive Metropo-

lis results (Figure 8.14) the significantly increased amount of noise in the form of

blurring should be noted. Mostly this is due to the fact that clearly the flow is not
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Figure 8.4: Frequency-wavenumber plot of the F series of measurements from the
DIC collection scheme, with the overlaid mode prediction, as well as the prediction
from the upper and lower bound of the 68 percent credible interval. For a) FC1 b)
FC2 c) FC3 d) FC4

uniform in space and in time. This means that different regions propagate at differ-

ent velocities at different points in time, which causes a blurring that increases with

wavenumber, as velocity rotates the dispersion relation. Also, there is the presence

of zero frequency noise in the
ky

2π images, presumably due to stationary noise ele-

ments present in the image. Clearly, this is a more complicated domain than the

DIC recovery scheme. In the presence of these increased challenges, however, the

lines created from the results of the Adaptive Metropolis scheme capture the signal

in the data well, widening at regions of higher blur. Looking at these plots also gives

some insight on a potential reason the depth was not recovered: there is little to

no signal in the
ky

2π slices close to 0, which is where the sensitivity to depth is most

present.

Figure 8.15 presents the 2D density plot for the streamwise velocity and the

depth. It can be observed that the velocity mode line is close to the velocity re-

covered by Dolcetti in [2]. As the flow conditions increase, there is a widening of

the velocity in the density plot, indicating more uncertainty present in the data.

The depth 120mm onwards covers most of the domain space for the depth, again

showcasing the lack of ability to reconstruct depth.
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Figure 8.5: Smoothed histograms recovered from the MCMC scheme for the stream-
wise velocity and depth, as well as the streamwise velocity along the mode of the
depth, and the depth along the mode of the streamwise velocity. For FC1A FC2A.

8.6 Conclusion

This work investigated using the theoretical dispersion relations to approximate pa-

rameters of the underlying flow through the application of an Adaptive Metropolis-

Hastings scheme and the frequency-wavenumber spectrum. Because the dispersion

relation is defined from its streamwise and lateral velocity, as well as its depth,

an MCMC scheme was used to infer the posterior distribution of these three pa-

rameters. As the lateral velocity in all experiments was zero, this was omitted in

presentation in favour of analysing the streamwise and lateral velocity. First, the

sensitivity of the dispersion relations was analysed, which found that the sensitiv-

ity to changes in velocity was much higher throughout all values of frequency and

wavenumber while the the sensitivity to depth was relatively small. An AM MCMC

was tested on two distinct measurement schemes, both of which gave estimations

of the free surface. It was found that the streamwise velocity was recovered well
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Figure 8.6: Smoothed histograms recovered from the MCMC scheme for the stream-
wise velocity and depth, as well as the streamwise velocity along the mode of the
depth, and the depth along the mode of the streamwise velocity. For FC3A FC4A.

throughout the measurements, forming narrow Gaussian-like distributions in the

posterior distribution. The method struggled to recover the depth. In order to make

the likelihood function more sensitive to depth changes, such as one that integrates

the energy in the image, as opposed to the line fitting approach in this work. The

main benefit of the approach presented in this paper is that it successfully recovered

the velocity of a moving surface using both DIC and CCTV measurements; an accu-

rate means of recovering the surface velocity using CCTV measurements allows for

tracer-free river tracking. This paper has also demonstrated that MCMC methods

provide a credible interval for the velocity, this contains information about both the

noise sources in the image and the distribution of surface velocities that are present

.Future work could exploit this behaviour, and thus get more information about the

surface velocimetry than the existing technologies which only provide the average

flow velocity. Fully exploiting this ability to extract the distribution of surface ve-

locities from spectra would represent a considerable step forward in using spectra
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Figure 8.7: Smoothed histograms recovered from the MCMC scheme for the stream-
wise velocity and depth, as well as the streamwise velocity along the mode of the
depth, and the depth along the mode of the streamwise velocity. For FC5A.

for surface velocimetry.
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Figure 8.8: 2D densities of the recovered streamwise velocity and depth from the
Adaptive Metropolis scheme, overlayed with black lines indicating the mode of the
velocity (x axis) and the mode of the depth (y axis). The cross is the ground truth.
For the F measurements where a) FC1 b) FC2 c) FC3 d) FC4
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Figure 8.9: Frequency-wavenumber plot of the J series of measurements from the
DIC collection scheme, with the overlaid mode prediction, as well as the prediction
from the upper and lower bound of the 68 percent credible interval. For a) JFC1 b)
JFC2 c) JFC3 d) JFC4

Test ŪS (m/s) D (mm) ŪS2 (m/s) D2 (mm) ŪestS (m/s) Dest (mm) ErrU ErrD ErrUS2 ErrD2

FC1 0.540 70 0.335 70 0.334 146.1 −39% 41.4% −0.30% −40.9%
FC2 0.539 70 0.335 70 0.310 127.1 33.6% 81.57% −0.299% 81.57%
FC3 0.543 120 0.623 140 0.625 208.2 15.1% 73.5% 0.321% 48.7%
FC4 0.564 120 0.456 100 0.436 150.0 −22.7% 25.0% −4.39% 50.0%
FC5 0.590 150 0.547 100 0.491 148.3 −16.78% −1.133% −10.23% 48.3%
FC6 0.611 160 0.571 130 0.530 586.3 13.26% 266.4% −7.18% 351.0%
FC7 0.644 170 0.590 150 0.560 242.8 −13.0% 42.8% −5.08% 61.87%
FC8 0.630 180 0.630 180 0.605 425.7 −3.97% 136.44% −3.97% 136.44%
FC9 0.710 220 0.740 230 0.712 151.2 0.28% −31.27% −4.80% −34.26%

FC10 0.734 220 0.721 300 0.704 209.9 −4.09% −4.60% −2.40% −30.03%
FC11 0.80 260 0.844 270 0.811 422.6 1.38% 62.5% −3.91% 56.52%
FC12 0.891 310 0.994 300 0.945 418.4 6.06% 35.0% 4.93% 39.5%
FC13 0.996 340 1.04 340 1.01 471.9 1.41% 38.8% −2.89% 38.8%
FC14 1.07 370 1.20 410 1.21 350.0 13.1% −5.41% 0.833% −14.63%
FC15 1.185 420 1.49 510 1.520 501.6 28.27% 19.4% 2.01% −1.65%
FC16 1.370 490 1.524 570 1.497 495.5 9.28% 1.12% −1.77% −13.1%
FC17 1.366 490 1.501 510 1.517 531.0 11.1% 8.37% 1.1% 4.12%

Table 8.2: Table representing the different experiments from the river Sheaf CCTV
collection scheme. The first column represents names of the experiments. The sec-
ond and third columns represents the measured streamwise velocity and depth. The
fourth and fifth columns represents the recovered streamwise velocity and depth
from [2]. The fifth and sixth column report the mode streamwise velocity and depth
recovered from the MCMC scheme. The final four columns highlight the percentage
difference from the MCMC scheme and the gauge station, and the reconstruction
from [2], respectively.
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Figure 8.10: Smoothed histograms recovered from the MCMC scheme for the
streamwise velocity and depth, as well as the streamwise velocity along the mode
of the depth, and the depth along the mode of the streamwise velocity. For FC1B
FC2B.
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Figure 8.11: Smoothed histograms recovered from the MCMC scheme for the
streamwise velocity and depth, as well as the streamwise velocity along the mode
of the depth, and the depth along the mode of the streamwise velocity. For FC3B
FC4B.

Figure 8.12: Smoothed histograms recovered from the MCMC scheme for the
streamwise velocity and depth, as well as the streamwise velocity along the mode
of the depth, and the depth along the mode of the streamwise velocity. For FC5B.
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Figure 8.13: 2D densities of the recovered streamwise velocity and depth from the
Adaptive Metropolis scheme, overlayed with black lines indicating the mode of the
velocity (x axis) and the mode of the depth (y axis). The cross is the ground truth.
For the F measurements where a) JFC1 b) JFC2 c) JFC3 d) JFC4
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Figure 8.14: Frequency-wavenumber plot from the CCTV collection scheme, with
the overlaid mode prediction, as well as the prediction from the upper and lower
bound of the 68 percent credible interval. For a) FC1, b) FC5, c) FC9, FC13, and
FC17)
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(a) (b)

(c) (d)

(e)

Figure 8.15: 2D densities of the recovered streamwise velocity and depth from the
Adaptive Metropolis scheme, overlaid with black lines indicating the mode of the
velocity (x axis) and the mode of the depth (y axis). The red cross is the ground
truth, the black cross is the prediction from Dolcetti et al for a) FC1, b) FC5, c) FC9,
d) FC13 and e) FC17
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Chapter 9

Conclusions

The main aim of this work was to investigate and build a platform for the appli-

cation of deterministic and stochastic data-driven / machine learning based ap-

proaches for rough surface reconstruction with the aim of inferring characteristics

of the dynamic free-surface produced from shallow turbulent flows. The objectives

identified as way-points to reaching this goal were introduced in chapter 1, the

extent to which they have been achieved is discussed below.

9.1 Research Objectives

• To investigate the validity of data-driven machine learning based approaches

for the inverse problem of acoustic scattering from a rough surface, and com-

pare against more standard approaches.

Chapters 4, 5, and 6 answer this objective. In Chapter 4, a random forest based pro-

cedure was used to further develop and improve the inversion with comparison to

the Short Array method [74]. The random forest was trained on different synthetic

realisations of the scattered field from a harmonic surface. The model was trained

with varying levels of noise introduced to the data, and was tested and evaluated on

different synthetic data with varying noise, and experimental data from laboratory

measurements. An extensive comparison between the short array method and the

random forest was done by investigating the recovery as the amplitude increases.

Investigating Figure 4.9 when the amplitude normalised by the acoustic wavelength

is small, the Short Array method and the random forests are comparable. As the

amplitude increases, the performance of the Short Array method decays rapidly,

whereas the random forest does not have this issue.
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Chapter 5 extended this approach to find a more holistic prediction based on the

nature of the broadband source. Training a model on synthetic data at every fre-

quency in the broadband signal, a prediction histogram can be produced to form an

overall prediction. It is found that over more frequencies, especially when the error

from the experiment to the Kirchhoff approximation is larger k-nearest neighbors

yields a tight histogram over the frequency-range, at the correct value allowing for

confidence in the overall prediction. This removes some of the inherent ambiguity

that occurs when using machine learning on truly unseen data.

A clear issue with this approach is the need for the creation of data at every

frequency, this becomes computationally more expensive and leads to intractably

large data sets as the dimension of the surface increases. Therefore, an iterative

scheme was investigated.

Chapter 6 pursued this iterative approach while maintaining the Bayesian per-

spective with the Adaptive Metropolis scheme. This scheme resulted in the the

most informative representation. This not only gave a measure of prediction for

three-parameters and forty-parameters, the resulting parameter estimation was a

posterior distribution allowing for substantial spatial analysis. This was shown to

a great effect when considering the forty-parameter surface, as the region of high

insonification (where the prediction was accurate), had a much narrower credible

region than the region outside. This meant that it was easy to trust the model

spatially. Other models investigated in this thesis would have just returned the sur-

face as a prediction with no information about spatial uncertainty. In general, this

objective has been achieved.

• Provide a measure of uncertainty in the reconstruction, allowing for reason-

able interpretation for when the model is accurate or not.

Chapters 5, 6, and 8 attempt to answer this objective. Chapter 5 answers this by

training on each frequency, where a histogram of predictions can be made. Chapter

6 used the Adaptive Metropolis scheme for the reconstruction of the same surface

that was highlighted in Chapter 4, as well as a surface much higher in complexity.

Because of the iterative nature of this scheme, no training needs to be made. A

clear advantage of this is that the required amount of data to be generated can

be less. The downside to this is that for each test, the trace has to be produced,

and therefore the runtime at testing is much higher than the approaches shown in

Chapter 4 and 5.
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The mean prediction of the surface introduced in chapter 4 with the Adaptive

Metropolis approach used in chapter 7, was comparable to the random forest pre-

diction, while able to contain the level of spatial uncertainty in the prediction. This

yields information regarding the physical setup of the problem. Further away from

the region of high insonification the uncertainty is higher, which makes sense as it

has a less significant impact on the scattered field. This is extended for the more

complicated surface.

• To extend this inversion methodology to reconstruction of a dynamic rough

surface, i.e. the free-surface of rivers.

Chapter 7, and 8 tackle this objective. These Chapters were concerned with extract-

ing and analysing the frequency-wavenumber spectrum of Digital Image Correlation

(DIC) data in a flume. The DIC method yields elevation, but suffers from holes in

the data. Fortunately, these holes propagate with respect to the underlying flow

structures, so the frequency-wavenumber based analysis works well. It can be seen

that there is good agreement with the theoretical dispersion relations, as well as

low noise in the data.

Combining the DIC data with CCTV footage of the River Sheaf, the Adaptive

Metropolis scheme was fitted in order to get a posterior distribution for the stream-

wise and lateral velocity, as well as the depth. The streamwise velocity is well

recovered in the DIC scheme. The width of the posterior distribution of velocity

estimation is small, indicating confidence in predicted value. As the flow velocities

increase, the distribution shifts to the right slightly meaning there is a slight bias

in predicting higher velocity. The recovery of the depth suffers throughout. As the

CCTV footage is analysed the results in the velocity are consistent with the predic-

tions from the optimizer based approach presented in [2], at worse 10% off from

the results here. The results for the method presented in this work, as well as the

method presented in [2] deviate sometimes from the wave station’s results. Again,

throughout the CCTV recovery, the depth was not recovered consistently. The re-

sults in this work are a further improvement to the results in [2], for the velocity

reconstruction. This is because a posterior distribution of the velocity field is found.

This means that the field can be analysed to be able to check for validity in the

results. For example, bimodality was found in some of the slow conditions. This is

due to the jumping of the advection dispersion line to the gravity capillary, an op-

timizer using the same model function could have selected the wrong one of these

peaks, but as the separation is large, it only requires slight user input to find the
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correct peak. The distribution of the peak is in some way measuring the spread of

signal in the frequency wavenumber plots. Some of this is due to signal noise, and

some of this is due to the simple fact that the flow is not uniform everywhere in

space and time. Deviating from the average nature of the frequency-wavenumber

spectrum is a clear improvement, and should be studied further.

• Validate against experimental data.

Every main result in Chapters 4, 5, 6, 7, 8 has been based on experimental val-

idation. Although the underlying methods are based on a simulation (for acoustics

this was the scattering method of the Kirchhoff Approximation, for the videos this

was creating a theoretical frequency-wavenumber plot from synthesising theoretical

dispersion curves into an image), the conclusions were formed from the application

of the simulation to real-world experiments. In Chapter 4 and 5, a harmonic sur-

face was formed and tested experimentally. In Chapter 6, two surfaces of varying

complexity were formed and tested experimentally. In Chapter 7, the model of

the dispersion curves was checked against the frequency-wavenumber plots and in

Chapter 8, the experiments from Chapter 7 and a data collection scheme in River

Sheaf were used to make conclusions on the frequency-wavenumber inversion.

9.2 Future Work

There are many branching areas of research that were made apparent during the

course of analysis for this thesis. A brief summary of some of these ideas is presented

here. Some have been developed more than others, but all require more work to be

considered complete research sections.

9.2.1 Acoustic Doppler

As the surface moves at a given t ∈ [0, T], the Kirchhoff approximation is used to

calculate the given acoustic field via a frozen-surface [221] approach. Following

this, the Doppler spectra can be calculated [124]

S(ω) =
1
T

�

�

�

�

�

∫ T

0

ψs(R, t)ei(ω+ωa)t d t

�

�

�

�

�

2

(9.1)

Where ω represents the Doppler shift from the acoustic carrier frequency ωa.

The acoustic carrier is introduced as an established ‘trick’ to reduce the required
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sampling rate: whereas usually the sampling rate is determined by Nyquist’s for-

mula where the sampling rate must be twice the frequency of interest, the carrier

frequency can be removed such that it is the difference between the frequency of

interest and the carrier frequency which determines the sampling frequency. The

discrete Fourier transform was used to convert discrete measurements from the

rough surface realisations into discrete frequency bins.

The frozen-surface based approach forms a powerful combination with the Kirch-

hoff approximation approach presented as a main method throughout the thesis.

This means that (especially with the removal of the carrier frequency, i.e. pass-

band down to baseband) the Doppler spectra can be found very quickly. Figure 9.1

presents an example Doppler spectrum.

The spread and the amplitude of these Doppler spectra contains information on

not only the velocity of the flow, but also the depth and the surface slope. The initial

investigation was presented at the Surface Velocimetry Workshop in 2022.

Figure 9.1: Spread of Doppler from a single receiver, obtained from the scattered
field with the Kirchhoff Approximation against a randomly rough moving surface.

This could be thought of a forward-scattered based approach to a "radar gun"

that has had some success in the monitoring of rivers, as long as incidence angle is

taken into account [222]. Further citations on handheld radar guns can be found in

[223] [224] [225] [226]. These papers are concerned with estimating the velocity,

and not necessarily approximating the depth from the spectrum.

Simulations were created at various frequencies, for a single receiver forward-

scattered acoustic pressure from a directed source. The resultant Doppler spectrum

was then run through a Random Forest in order to estimate the discharge, depth,
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and velocity. It could be seen that at higher frequencies, on the order of 40kHz,

there is sensitivity to the depth, as well as sensitivity to the velocity. Figures 9.2,

9.3, 9.4, show initial results from this. Lower than this, at approximately 18kHz,

there was only sensitivity to the velocity. This strikes as an interesting avenue to

pursue, unfortunately it could not be continued as part of this thesis due to a lack

of experimental data.

Figure 9.2: Scatter plot showing predictions against true rough surface amplitude
from simulated data, 43kHz. The blue line represents perfect predictions against
the true values. The orange dotted line represents the line of best fit through the
predictions. The label in the horizontal axis is True, and the vertical axis is Pre-
dicted.
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Figure 9.3: Scatter plot showing predictions against true rough surface depth from
simulated data, 43kHz. The blue line represents perfect predictions against the true
values. The orange dotted line represents the line of best fit through the predictions.
The label in the horizontal axis is True, and the vertical axis is Predicted.
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Figure 9.4: Scatter plot showing predictions against true rough surface velocity
from simulated data, 43kHz. The blue line represents perfect predictions against
the true values. The orange dotted line represents the line of best fit through the
predictions. The label in the horizontal axis is True, and the vertical axis is Pre-
dicted.
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9.2.2 Acoustic frequency-wavenumber spectrum inversion

A further extension to the Doppler approach is to create an array of receivers. For

example, a 2D plane of receivers, or various shapes that form a discretised surface.

All of these time series, for each receiver, can then be used to form an acoustic

frequency-wavenumber spectrum. This can then be analysed in a similar way to

the frequency-wavenumber plots generated from CCTV data in chapter 8. Because

most of the information, particularly the depth value in the dispersion curves, are

in the lower values of acoustic wavenumber and frequency, a camera that drives a

high resolution isn’t too important. Once this is created, then the inversion meth-

ods presented in Chapter 8 could be applied to get posterior distributions of the

parameters. Time constraints and the lack of experimental data were two of the

main reasons the author did not pursue this endeavour.

9.2.3 Further improvements to the MCMC scheme of videos of
the water surface

The method provided in Chapter 8 gives some information on the posterior stream-

wise/lateral velocity and depth. The largest issue is that although the signal is well

represented by the credible region and the streamwise velocity is recovered well,

the depth is inconsistent, performing okay in laboratory DIC measurements, but

giving poor results in the depth reconstruction when going to the field with the

CCTV measurements in river Sheaf. This is due to the noise in the data, the ro-

tation of the frequency-wavenumber representation of the dispersion curves. So,

when comparing the theoretical dispersion curve image against the real data in the

likelihood function, the depth is not as sensitive. The depth itself is also much less

sensitive than the velocity. It is believed that a change in the model used for the

likelihood function could yield a significant improvement in the depth predictions.

For example, the energy in certain regions could be integrated, which would give a

more holistic metric for the image. Further to this, the spatial relationship can be

exploited through the use of a Convolutional Neural Network (CNN) while aban-

doning the stochastic approach.

The posterior of the velocity is much more accurate than that for depth, but still

has room for improvement. In the best, noise-free case the posterior distribution of

the velocity maps exactly to the spread of velocities present in the image, allowing

for a mapping of more than just the average behaviour. This is a large step on from

the Fourier analysis. However, if the image is dominated by noise everywhere, then
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this does not apply. Investigating the histogram of the posterior velocities for two

flow conditions given in chapter 6, FC3A and FC5A presented in Figures 9.5 and 9.6

the mean values of the velocity can be used in the prediction. This can be used to

produce Figures 9.7 and 9.9 respectively. Assuming that the observed structure in

the frequency-wavenumber plots is the presence of different surface velocities in the

image as well as image noise, an assumption can be made that the full-width half-

maximum of the resulting posterior distribution of velocity is dominated by signal,

not image noise. Therefore, this region can be discretised, and Equation (3.116)

can be used to create a random surface such that each discretised component can

then be summed up. This results in the aggregate frequency-wavenumber plots

shown in Figures 9.8, and 9.10. It can be seen visually that outside a larger blur at

zero frequency, the spread of the blurred result roughly follow the results seen in

Figures 7.8 7.10. This shows that empirically, there is some information regarding

the spread of the data in relation to the spread of velocities. This intuitively makes

sense. In a river, the velocity isn’t constant in space and in time. Doing a frequency-

wavenumber based approach with an optimiser results that only the mean can be

found, this method with MCMC yields the mean and a distribution. The reason why

this needs some more work in future is because of the slight bias to the right of the

histograms. This isn’t entirely expected and could be due to the choice of likelihood

function. So this approach would benefit from being investigated further.

Figure 9.5: Posterior distribution of the velocity from the flow condition FC3A,
given in chapter 6.
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Figure 9.6: Posterior distribution of the velocity from the flow condition FC35, given
in chapter 6.

Figure 9.7: Frequency-wavenumber spectra produced from a synthetic random sur-
face that adhered to the mean surface velocity from FC3A.
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Figure 9.8: Frequency-wavenumber spectra produced from a summation of syn-
thetic random surfaces that adhered to the full width half maximum of the velocity
distribution, from FC3A.

Figure 9.9: Frequency-wavenumber spectra produced from a synthetic random sur-
face that adhered to the mean surface velocity from FC5A.
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Figure 9.10: Frequency-wavenumber spectra produced from a summation of syn-
thetic random surfaces that adhered to the full width half maximum of the velocity
distribution, from FC5A.

9.2.4 MCMC for static surface reconstruction with varying wave-
length

An assumption was made in the surface reconstruction in Chapter 6 that the surface

wavelengths can be fixed. This is a reasonable assumption due to the choice of

taking a sine series decomposition. Making this choice for a given length of surface

yields the wavelengths directly. However, it is important to analyse what happens

if the wavelengths were allowed to vary. This constitutes future work, but initial

analysis is presented here.

Firstly, a randomised rough surface was created with wavelengths the same as in

Chapter 6, but amplitudes and phase randomised. Once this was done, the Kirch-

hoff Approximation was used to simulate acoustic data and noise was added to

corrupt the data. The random surface is given in Figure 9.11. Two MCMC instances

were run at different frequencies, 19000Hz and 25000Hz. Having a look at how

the credible interval changes in Figures 9.12 and 9.13 as opposed to 6.7 it first must

be noted that the credible intervals in Figures 9.12 and 9.13 are 95% as opposed

to 68%, meaning that there should be an overall widening as the number of stan-

dard deviations shown is larger. There is also a distinct change of behaviour in the

credible interval. For the varying wavelength, there is a much sharper distinction
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between the region that contributes the most energy to a set of receivers to that

which contributes least, causing a large blob of grey to appear in the images. Errors

around the true surface with the mean of the parameters against the mean of the

surfaces were presented in Figures 9.14 and 9.15 and exhibit the same behaviour

observed in Figure 6.8 where there is a small region where the errors are good,

and this relates to the same region of high ensonification. Zoomed in plots of this

region with the true surface, and the predicted mean surfaces, are presented in Fig-

ures 9.16 and 9.17. The largest amplitude component in the surface is recovered

well, as well as the region before it. In the region after this, the surface and the

prediction decay, presumably because that area has a much lesser contribution to

the overall field seen by the receivers.

There is more that can be analysed with this approach. One of the more inter-

esting would be to look into how the spread of the credible interval can be used to

find optimal probing locations for receivers.

Figure 9.11: Randomised rough surface used in the analysis.

202



Figure 9.12: 95% credible interval formed from the MCMC algorithm recovering the
amplitude, wavelengths, and phases from a random rough surface. 19kHz source
excitation.

Figure 9.13: 95% credible interval formed from the MCMC algorithm recovering the
amplitude, wavelengths, and phases from a random rough surface. 25kHz source
excitation.
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Figure 9.14: Errors of the mean value of the surfaces and the mean value of the
parameters against the true surface, recovered from an MCMC algorithm applied to
recovering the amplitudes, wavelengths, and phases. 19kHz source excitation.
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Figure 9.15: Errors of the mean value of the surfaces and the mean value of the
parameters against the true surface, recovered from an MCMC algorithm applied to
recovering the amplitudes, wavelengths, and phases. 25kHz source excitation.
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Figure 9.16: Mean value of the surfaces recovered from an MCMC algorithm ap-
plied to recovering the amplitudes, wavelengths, and phases. 19kHz source excita-
tion, zoomed in to the region of high insonification.
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Figure 9.17: Mean value of the surfaces recovered from an MCMC algorithm ap-
plied to recovering the amplitudes, wavelengths, and phases. 25kHz source excita-
tion, zoomed in to the region of high insonification.
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9.2.5 Bringing back phase information into the reconstruction

Throughout this work, the author considered phaseless information. That is, look-

ing at the absolute value of the pressure only. This was useful as phaseless recovery

is used less in literature, and is useful in the real world, where amplitude calibra-

tions are much easier to implement than a full calibration. However, extending the

approaches used in this work to include phase information would be an obvious

next step for the future.

9.2.6 Concluding Remarks

The work contained in this thesis was concerned with the application of novel non-

intrusive methods in order to obtain information from a surface of interest. These

surfaces were created as approximations of surface waves that would typically be

seen in the context of shallow river flow. It was seen in the static surface case that

a parameterisation of the surface could be recovered, as well as spatial uncertainty.

This is a useful in itself, however it would be more broadly applicable if it could

be extended to recovering the parameters of dynamic surfaces, such as the free

surface of rivers. Unfortunately this could not be investigated thoroughly due to

a lack of experimental data - instead proof of concept work was conducted using

models. In the case of dynamic surfaces the Doppler effect spreads the information

over many frequencies, and simulated data was created to train models as shown

in Chapter 9.2.1. It is posed in this section that a model can be trained to extract

the overall root-mean-square amplitude, the surface velocity and the depth of the

synthetically created dynamic surfaces. This is all the information one could need

(aside from the velocity index constant) to obtain an estimate for the discharge and,

as such, could be used in river monitoring.

Working with videos collected by CCTV cameras over real rivers was powerful.

Because the intensity of the pixels in an image change according to the dispersion

relation of the surface that the camera is looking at, the depth and the velocity

can be acquired, as well as uncertainty on those parameters. Due to this, a full

posterior probability distribution of the discharge can be obtained, which allows for

substantial understanding of the river properties including the uncertainties therein

and analysis. A significant additional benefit of this approach is that it allows for the

separation of features: this transcends the application shown in this thesis and is not

limited to just obtaining discharge, it can also be used as a step in further, deeper

analysis of the underlying flow structures. As shown in Appendix C, with only
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the posterior distribution of the recovered surface velocity, a mask can be applied

to the experimental data sample which separates the gravity-capillary waves and

the forced turbulence waves into two videos. This clean separation could be used

for further analysis of flow structures that are unclear when the two dispersion

structures are combined.

Inevitably there are unfinished aspects to this work, however in and of itself it

forms a coherent study of the use of machine learning and statistical methods for

surface reconstruction with applications to river monitoring. The work has been

broken down into three main aims and these have been addressed. The author

looks forward to contributing to and witnessing how future research continues to

look into the gaps presented.
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Appendix A

Derivation of the Reflection
Coefficient

Equations 3.63 and 3.64 were introduced as common knowledge. However, the au-

thor views that it is worth the time fleshing out. Therefore, this appendix attempts

to derive the coefficients by considering plane wave scattering and transmission

between two media with two densities and sound speeds.

Figure A.1 showcases a reflected and transmitted plane wave generated from an

indicent wave scattering from a tangent plane. The incident wave hits the bound-

ary between the media at angle θI which leads to reflected and transmitted plane

waves. These propagate at angles θR and θT . The two media have distinct densities

and sound speeds ρ1, c1, ρ2, c2. The acoustic plane-waves represented as complex

pressure are:

PI(x , y, t) = AI e
−iω
�

t−
�

sin(θI )
c1

�

x−
�

cos(θI )
c1

�

y
�

(A.1)

PR(x , y, t) = ARe−iω
�

t−
�

sin(θR)
c1

�

x+
�

cos(θR)
c1

�

y
�

(A.2)

PT (x , y, t) = AT e−iω
�

t−
�

sin(θT )
c2

�

x−
�

cos(θT )
c2

�

y
�

. (A.3)

The equations above are plane waves travelling in a constant direction, this direc-

tion is found from the angles presented in Figure A.1. There are two continuity

conditions for pressure and velocity on the boundary between the two media:

l imy→0−(PI(x , y, t) + pR(x , y, t)) = l imy→0+pT (x , y, t) (A.4)

l imy→0−(uy I(x , y, t) + uyR(x , y, t)) = l imy→0+uyT (x , y, t). (A.5)

Where uy is is the velocity of the waves in the y-direction and the subscript I , R, T

relate to the incident wave, reflected wave, and transmitted wave respectively. The
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relationship between pressure and velocity is defined as Equation (3.13):

uy = −
1
ρ

∫

∂ p
∂ y

d t. (A.6)

Using this relationship one can find values for the velocity of the incident, reflected

and transmitted waves:

uy I(x , y, t) =
AI

ρ1c1
cos(θI)e

−iω
�

t− xsin(θI )
c1
− ycos(θI )

c1

�

(A.7)

uyR(x , y, t) =
AR

ρ1c1
cos(θR)e

−iω
�

t− xsin(θR)
c1

+ ycos(θR)
c1

�

(A.8)

uyT (x , y, t) =
AT

ρ2c2
cos(θT )e

−iω
�

t− xsin(θT )
c1
− ycos(θT )

c1

�

. (A.9)

Now we know always the angle of incident is the same as angle of reflection i.e.

θI = θR by the law of reflection. Considering the continuity of pressure:

lim
y→0−

�

pI(x , y, t) + pR(x , y, t)
�

= lim
y→0+

pT (x , y, t), ∀x , t (A.10)

AI e
−iω
�

t−
�

sin(θI )
c1

�

x
�

+ ARe−iω
�

t−
�

sin(θR)
c1

�

x
�

= AT e−iω
�

t−
�

sin(θT )
c2

�

x
�

(A.11)

Which implies, using the law of reflection:

sin(θI) = sin(θR),
sin(θI)

c1
=

sin(θT )
c2

(A.12)

⇒ AI + AR = AT . (A.13)

Where the second term is the definition of Snell’s law [227]. Similarly, substituting

into the velocity continuity equation yields

AI

ρ1c1
cos(θI)−

AR

ρ1c1
cos(θR) =

AT

ρ2c2
cos(θT ) (A.14)

Now this is a system of equations of which can be solved by utilising Equations

(A.13) (A.14) Doing this to isolate AR and AT respectively yields

AR =

�

cos(θI)−
ρ1c1
ρ2c2

cos(θT )

cos(θI) +
ρ1c1
ρ2c2

cos(θT )

�

AI (A.15)

AT =

�

2cos(θI)
cos(θI) +

ρ1c1
ρ2c2

cos(θT )

�

AI (A.16)
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This gives the Reflection and Transmission coefficients

V =

�

cos(θI)−
ρ1c1
ρ2c2

cos(θT )

cos(θI) +
ρ1c1
ρ2c2

cos(θT )

�

(A.17)

T =

�

2cos(θI)
cos(θI) +

ρ1c1
ρ2c2

cos(θT )

�

(A.18)

Allowing for a redefinition of terms Z1 = ρ1c1, Z2 = ρ2c2 the above equations

can be equated as

V =
�

Z2cos(θI)− Z1cos(θT )
Z2cos(θI) + Z1cos(θT )

�

(A.19)

T =
�

2Z2cos(θI)
Z2cos(θI) + Z1cos(θT )

�

(A.20)

Setting cosθI and cosθT to be 1, which implies that θI ,θT = 2πn, n ∈ Z the reflec-

tion and transmission coefficients look familiar.

V =
�

Z2 − Z1

Z2 + Z1

�

(A.21)

T =
�

2Z2

Z2 + Z1

�

(A.22)

For the tangent plane approximation, the transmission coefficient has no partic-

ular importance, as the scattered field is the priority. All that is left is to rearrange in

order to get the tangent plane method. As the tangent plane method only considers

the boundary between the two media i.e. y = 0. This leaves:

ARe−iω
�

t−x
�

sin(θR)
c1

��

= VAI e
−iω
�

t−x
�

sin(θI )
c1

��

(A.23)

⇒ PR = V PI , (A.24)

using the fact of the law of reflection, the angle of incidence is the same as the angle

of reflection. We aim to take the normal derivative, this is equivalent to multiplying

Equation (A.23) by −cos(θI)c−1
1 :

−cos(θI)c
−1
1 ARe−iω
�

t−
�

sin(θR)
c1

��

= −cos(θI)c
−1
1 VAI e

−iω
�

t−
�

sin(θI )
c1

��

(A.25)

∂ PR

∂ n
= −V

∂ PI

∂ n
(A.26)

Which yields the relationship between the incident field and the scattered field, as-

suming reflection from an infinite plane. Note that this was done in the x-y direction
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and in 2D. This applies easily in 3D and in any orientation. Orientations are just (in

this case) an isomorphism to the case discussed in the appendix, as one can simply

restructure the frame of reference to make the orientation the same as the method

discussed. 3D is similar, however there’s another angle to account for.
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Figure A.1: Graphical representation of the problem. The incident field travels from
one media to another. Because of the discontinuity in density ρ and speed of sound
c, the incident field forms two new plane waves. The scattered wave propagates
in the same media at the same angle as the incident wave, but the y velocity has
changed sign. The transmitted wave propagates through the second media and
refracts due to the change in density and sound speed.
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Appendix B

Rearrangement of dr

In Equation 3.83, a re-arrangement was used in order to remove the normal deriva-

tive and replace as values of q and ζ(x , y). This Appendix presents the derivation

of this. We aim to show

(n · q)
dr
nz
= (qz − q∇rζ(x , y))dr. (B.1)

We begin by expanding the left hand size, noting that the normal derivative is

in the z direction.

(n · q)
dr
nz
= (iz −∇rζ(x , y)) · q)dr, (B.2)

= −k(iz −∇rζ(x , y)) · ∇S(R1 + R2))dr. (B.3)

Expanding this as row vectors we have

= −k

�

−
∂ ζ

∂ x
,−
∂ ζ

∂ y
, 1

�

·
�

∂ (R1 + R2)
∂ x

,
∂ (R1 + R2)
∂ y

,
∂ (R1 + R2)

∂ z

�

dr, (B.4)

= −k

�

−
∂ ζ

∂ x
∂ (R1 + R2)
∂ x

−
∂ ζ

∂ y
∂ (R1 + R2)
∂ y

+
∂ (R1 + R2)

∂ z

�

dr, (B.5)

= −k

�

−
∂ ζ

∂ x
∂ (R1 + R2)
∂ x

−
∂ ζ

∂ y
∂ (R1 + R2)
∂ y

�

+ qzdr. (B.6)

We now have:

∇rζ(x , y) =

�

∂ ζ

∂ x
,
∂ ζ

∂ y
, 0

�

dr (B.7)

We aim to drop the z component, because the z component is 0 everywhere, a

projection can be made from 3D down to 2D by noting the subspace formed from
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all (x , y, 0) ∈ R3 is isomorphic to R2 with the mapping (x , y, 0)→ (x , y). Therefore,

the z component can be dropped leaving

(n · q)
dr
nz
= (qz − q∇rζ(x , y))dr, (B.8)

as required.
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Appendix C

Chapter 7 Supplementary Results

One of the final figures presented in Chapter 7 highlight the benefit of being able

to split apart the reconstructed surface elevation into the components of just the

forced dispersion relation, and the gravity capillary relation. This can only be done

because the full three-dimension frequency-wavenumber spectra was recovered.

Flow conditions 1 and 5 were showcased in the Chapter, but the author believes

that the results are important enough to show every condition recovered from the

data.

The figure produced in Chapter 7 contain an extra mask which removed areas

where the original video did not have any data. The results in this appendix show

the behaviour both with that mask applied, and without.

Further, animations created by ten seconds of footage using this separation for

all flow conditions can be at https://github.com/michaeldavidjohnson/Animations.
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(a) (b)

(c) (d)

Figure C.1: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC1F Gravity-capillary, b) FC1F
Turbulence, c) FC1J Gravity-Capillary, d) FC1J Turbulence. Mask applied to remove
holes.
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(a) (b)

(c) (d)

Figure C.2: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC2F Gravity-capillary, b) FC2F
Turbulence, c) FC2J Gravity-Capillary, d) FC2J Turbulence. Mask applied to remove
holes.
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(a) (b)

(c) (d)

Figure C.3: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC3F Gravity-capillary, b) FC3F
Turbulence, c) FC3J Gravity-Capillary, d) FC3J Turbulence. Mask applied to remove
holes.
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(a) (b)

(c) (d)

Figure C.4: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC4F Gravity-capillary, b) FC4F
Turbulence, c) FC4J Gravity-Capillary, d) FC4J Turbulence. Mask applied to remove
holes.
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(a) (b)

(c) (d)

Figure C.5: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC5F Gravity-capillary, b) FC5F
Turbulence, c) FC5J Gravity-Capillary, d) FC5J Turbulence. Mask applied to remove
holes.
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(a) (b)

(c) (d)

Figure C.6: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC1F Gravity-capillary, b) FC1F
Turbulence, c) FC1J Gravity-Capillary, d) FC1J Turbulence.
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(a) (b)

(c) (d)

Figure C.7: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC2F Gravity-capillary, b) FC2F
Turbulence, c) FC2J Gravity-Capillary, d) FC2J Turbulence.
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(a) (b)

(c) (d)

Figure C.8: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC3F Gravity-capillary, b) FC3F
Turbulence, c) FC3J Gravity-Capillary, d) FC3J Turbulence.
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(a) (b)

(c) (d)

Figure C.9: Reconstructed separation from extracting the forced turbulence relation
and the gravity-capillary dispersion relation for a) FC4F Gravity-capillary, b) FC4F
Turbulence, c) FC4J Gravity-Capillary, d) FC4J Turbulence.
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(a) (b)

(c) (d)

Figure C.10: Reconstructed separation from extracting the forced turbulence rela-
tion and the gravity-capillary dispersion relation for a) FC5F Gravity-capillary, b)
FC5F Turbulence, c) FC5J Gravity-Capillary, d) FC5J Turbulence.
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