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Abstract

Abstract

Can the Zhang—Vinals (ZV) equations be used to understand the underlying mechanism that has
led, in certain experimental settings, to highly localised, oscillating states within the Faraday

wave system?

The Faraday wave system has been found to be quite versatile in terms of the patterns that can
be formed on the surface of a fluid undergoing vertical vibrations. A simple Faraday wave
experiment places a layer of fluid on a rigid, horizontal plate that is vibrated vertically at a
certain frequency and acceleration (in a sinusoidal manner). When a critical acceleration (or
critical forcing) is surpassed, the patternless surface loses stability to patterns whose symmetry
depends on the parameters of the system. The contribution of the Faraday system to the field
of fluid dynamics can be measured by the longevity of interest in its rich dynamics, dating
from the early recordings of Faraday (1831) to more recent experiments that display a range of

fascinating surface patterns.

The stability of various patterns that have been observed has been investigated theoretically,
and it is evident (see |Cross and Hohenberg | 1993| and Miles and Henderson| 1990 for reviews)
that the types of models that aim to describe the Faraday wave system exhibit interesting non-
linear behaviour regarding pattern formation. Most analytical investigations have focused on
global patterns (patterns that fill the experimental domain, for example). However, highly lo-
calised patterns have been found in the Faraday system that have so far received less attention.
Localised patterns that oscillate in time have been termed oscillons (Gleiser, |1994). These os-
cillons can exist in both a homogeneous and a patterned background, and form as peaks and
craters on the fluid surface. Experimentally they have been shown to exist in a variety of situa-
tions in both Newtonian (Arbell and Fineberg, [2000) and non-Newtonian (Lioubashevski et al.,
1999) fluids. The experiments of Umbanhowar et al.| (1996) show that oscillons also exist in

granular media with similar characteristics to those excited in fluids.

The Zhang—Viials (ZV) model is a fluid dynamics model that is derived from first principles
in the limit of small viscosity (via a reduction of the Navier—Stokes equations) and has been
shown to include properties critical to global pattern formation. The ZV model’s potential con-

tribution to the understanding of localised states within the Faraday system has not previously




Abstract

been explored in detail. A derivation is presented in this thesis that closely accounts for the
relative sizes of the fluid properties near onset of instability which is supported by results from
a linear stability analysis of the Navier—Stokes equations. A previously unidentified scaling
assumption was highlighted from the derivation. In order to neglect nonlinear viscous terms in
the derivation of the ZV equations, the size of the surface displacement must be small relative
to the thickness of the viscous boundary layer near the surface. This may be indirectly re-
lated to the “uncontrolled approximation” present in the original derivation (Zhang and Vinals,

1997ab; |Chen and Vinals, [1999).

Results from a combination of analytical and numerical techniques are presented to outline a
methodology for searching for localised states in the ZV equations. Guided by the experiments
of |Arbell and Fineberg| (2000), the new methodology is presented for localised hexagonal pat-
terns which oscillate harmonically with respect to a two-frequency forcing in the ratio 2:3.
A parameter range was found where solutions to numerical simulations of the ZV equations
converged to temporally harmonic, localised hexagonal patterns existing among a flat (pattern-
less) background. The localised patterns were distinguished by the number of fully formed
peaks present on a local hexagonal lattice. Distinct patterns with 31, 43, and 55 localised peaks
were found. The existence of localised solutions in a system describing the Faraday wave phe-
nomenon that is derived from first principles is a new and important result which aids further
investigation regarding localised states in the ZV equations. Localised oscillating states have
been found in model PDEs which incorporate periodic forcing (Alnahdi et al., 2018]), the the-
ory of which may be extended to the ZV system within the parameter range highlighted in the

presented work.
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1 Introduction

First recorded in experiments by Faraday (1831), parametrically forced (or Faraday) waves are
a classic fluid phenomenon that provide a system capable of motivating rich investigation both
theoretically and experimentally. A simple case of the Faraday wave system is where a layer of
fluid on a rigid, horizontal plate is vibrated vertically at one frequency, w, and acceleration, a.

The term for single frequency forcing is given by
g(t) = acos(wt). (1)

Although the fluid moves with the motion of the horizontal plate, the surface remains unde-
formed until a critical acceleration, ay, is reached. An unperturbed fluid surface is termed the
flat (or steady) state. When a surpasses the critical acceleration (or critical forcing) the flat state

surface loses stability to patterns whose symmetry depends on the parameters of the system.

A simple schematic of the Faraday wave experiment is shown in Figure The formation
of Faraday waves has been achieved experimentally by placing a layer of fluid on a horizon-
tally aligned and vertically vibrating rigid boundary, such as a flat plate. Experiments have
demonstrated the variety of patterns that have been found within the system and have helped to
establish parameter regimes where certain patterns were observed. Common variations to the
Faraday experiment since the original work by [Faraday (1831) have included altering the dis-
tances between the boundaries (sidewalls and lower plate), changing the rheology of the fluid
and increasing the complexity of the forcing (by introducing multiple frequencies and phase

differences). Variations between experimental setups are discussed below.

1.1 Linear stability of Faraday waves

The theoretical progression of the Faraday problem has benefited from work on the nature of
the linear stability of the flat surface state. Benjamin and Ursell (1954) modelled the problem
with the forcing given in equation (T for a vertical vessel with arbitrary cross-section and finite
depth using inviscid fluid theory. Benjamin and Ursell (1954) investigated the stability of the
flat state to small perturbations in space. They derived a series of Mathieu equations which

represent the growth of each perturbation. In general, the stability of the flat state is governed
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fluid

depth g(t) = acos(wt)
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Figure 1.1: Schematic of the Faraday wave experiment. A layer of fluid on a horizontal rigid plate can be peri-
odically accelerated in a vertical motion (in the z direction in the Cartesian frame of reference) to form patterns
on its surface. The wavelength of the pattern is represented by ), the typical length scale of the experiments
(diameter/width of conduit) is represented by L, and the acceleration due to gravity is represented by go (acting in

the negative z direction).

by the Mathieu equation in standard form, given by

da +(p—-2 (2T))a =0 (2)
— — 2q cos a=

where a is dependent on time, 7', and p and ¢ are parameters that determine the growth of
a as T — oo. The Mathieu equation given in equation (2)) possesses well known instability

boundaries that depend on p and ¢, shown in Figure [I.2]

For each point on the stability diagram given in Figure [[.2] the variables and parameters of
equation (2) can be related to the physical variables and parameters present in the Faraday
problem. The variable a represents the time dependent amplitude of the perturbation mode.
The time variable in equation (2), T = wt/2, is the nondimensionalised time variable with
respect to the frequency of the forcing, w. The Mathieu system exhibits regions of unstable

solutions with subharmonic and harmonic response frequencies that depend on w (Taylor and

Narendra, |1969). Solutions possessing frequencies equal to odd integer multiples of w/2 are

termed subharmonic, and solutions with frequencies equal to even integer multiples of w/2 are
termed harmonic. Note that, for consistency, the response frequencies are given here in terms
of angular frequency, or 27 /t,, where t, is the time period of the solution. Solutions grow ex-
ponentially within these regions while temporally oscillating at these frequencies. These types
of temporal responses are labelled within each region in Figure [I.2] where half-frequencies
refer to subharmonic responses and isochronous regions refer to harmonic responses. At the

boundary of these tongue-like regions the solution is marginal, where a oscillates at the corre-
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Figure 1.2: Instability boundaries for the Mathieu formulation given in equation (), taken from

(1954). The stability regions are plotted against the nondimensional parameters p and ¢. The regions filled
with a lined pattern are unstable and the corresponding response frequencies are specified within each region. Re-
lating physically to the Faraday phenomenon, q is linearly proportional to the acceleration of the forcing function

and p quantifies the effects of gravity and surface tension important to the physical model (see (2.13) in[Benjamin|

. Both ¢ and p also depend on the fluid depth.
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Figure 1.3: Experimental prediction of the region of unstable modes (dashed lines and hollow circles) against the
predictions of ideal fluid theory (solid lines), taken from Benjamin and Ursell| (1954). The parameters p and q are

the same as in Figure @ adjusted to the experimental values within the same study.

sponding frequency but neither grows nor decays. The value p quantifies the effects of gravity
and surface tension, and ¢ is linearly proportional to the forcing strength (e.g., a in equation
(1)). Both p and ¢ also depend on the fluid depth, the frequency of the forcing, and the spatial

scale of each perturbation (see equation (2.13) in Benjamin and Ursell| 1954 for explicit terms).

Benjamin and Ursell| (1954) reported a discrepancy between the predictions of the ideal fluid
theory and their experiments regarding the location of the instability boundaries, the error is
shown in Figure[I.3] They suggested that the difference in boundary location was due to the ef-
fects of viscosity being neglected in the model. The Mathieu equation formulation also predicts
that several unstable solutions of varying response frequencies grow simultaneously for an ar-
bitrarily small forcing (see the tongue structures near the p axis, ¢ = 0, in Figure[I.2). However,
their experiments and analysis support instability to subharmonic patterns for Faraday waves

forced with a single frequency forcing.
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A stability investigation that accounted for the effects of viscosity was performed by Kumar
and Tuckerman| (1994) using a model describing two fluid layers separated by a horizontal
interface. Kumar and Tuckerman, (1994) referred to their model as the Full Hydrodynamic
System (FHS), which can be derived by linearising the Navier—Stokes equations about the
flat state. The results confirmed that viscosity contributes to the location of the instability
boundaries, showing a preference to one type of response frequency at the onset of instability.
The FHS model is more accurate for small viscosity predictions than the ideal fluid model
of Benjamin and Ursell| (1954). The predictions of the FHS were compared by Kumar and
Tuckerman to the experimental data of Edwards and Fauve (1993) and show good agreement
in terms of the predicted dispersion relation for a glycerine—water mixture. Both models were
derived on a domain with no lateral boundaries (neglecting the effects from sidewalls), which
corresponds to an experimental setup with large Aspect Ratio (AR). The value AR is defined
as AR= L/, where L is a typical length scale of the problem (e.g., container diameter/width
in experiments) and )\ is the wave length of the excited fluid pattern (see Figure [I.1). The
wall effects are no longer negligible for systems where the AR is not large, and are not easily
handled (Miles and Henderson, [1990). Low frequency forcing also affects the thickness of the
viscous boundary layers associated with the sidewalls, meaning that both small AR and low
frequency forcing can make terms that relate to the boundary layer at the sidewalls critical to

accuracy.

A typical linear stability diagram using the FHS is shown in Figure recreated from Kumar
and Tuckerman| (1994). Given a forcing amplitude a greater than the critical forcing, ag, a
spatially varying perturbation to the flat state with assumed wave number k is unstable for
|k| within the range determined by the boundaries of the tongue structures. The value of |k|
ko

that corresponds to a = ag is termed the critical wavenumber magnitude, , with critical

wavenumber k. For the case demonstrated in Figure the first instability due to increasing
a from zero to just above a is to a subharmonic temporal response (SH), as located on the figure
at the minimum of the red curves. On the curve that bounds this region, the neutrally stable
solutions oscillate at a frequency of half the forcing, w /2. Increasing a further introduces modes
with a harmonic (H) response which oscillate at a frequency of w, located at the minimum
of the blue curves. The tongues alternate between subharmonic and harmonic responses for
increasing |k|. Other response frequencies (that are neither harmonic nor subharmonic) are not

considered in the analysis of Kumar and Tuckerman| (1994)) since the linear theory predicts that
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Figure 1.4: Marginal stability diagram using the full hydrodynamic system for p; = 519.933 kg-m~3, p =
415.667 kg~m’3, v = 2.181 x 1078 n-m—2, w = 2007 Hz, m = 3.908 x 10~5 Pa-s and N2 = 3.124 x
1075 Pa-s (Kumar and Tuckerman, [1994). The normalised critical acceleration, a. /g, is plotted as a function of
wavenumber magnitude. On each curve, a perturbation with the corresponding wavenumber will remain neutral
and oscillate either subharmonically or harmonically with the forcing, as indicated by SH/red curves or H/blue
curves, respectively. In each inner region, confined by the curved tongue structures, small perturbations with the

corresponding wavenumber will grow. Outside of these regions perturbations will decay.
only harmonic and subharmonic solutions correspond to growing modes.

Kumar and Tuckerman| (1994)) compared the FHS model to the ideal fluid model used in Ben-
jamin and Ursell (1954) with the inclusion of a linear viscous damping term in the latter. |Ku-
mar and Tuckerman (1994) showed that the preferred wavelength of the most unstable mode
is largely dependent on viscosity. For small viscosity, the dispersion relation for each unstable
mode resembles that of an ideal fluid. As viscosity increases, the wavelength of the most unsta-
ble mode increases sharply. This supports a physical interpretation of a system that minimises
viscous dissipation, corresponding to preferring onset at higher wave lengths as dissipation

strengthens. When the predicted critical forcing accelerations were compared between the two
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models near onset it was found that the ideal fluid model with the inclusion of viscous damping
greatly underestimates the critical acceleration for relatively small viscosity, highlighting the

importance of considering the viscous contributions to accurately predict the stability threshold.

A more complex situation arises when the effects of fluid depth are considered. Following from
Kumar and Tuckerman| (1994)), Kumar (1996) focused in detail on the effects of finite depth on
the stability of the flat state. It was found that when the depth of the fluid becomes comparable
to the viscous boundary layer at the rigid lower plate, a bicritical instability can occur. At
a bicritical instability, two neutrally stable modes, which typically respond harmonically and
subharmonically at certain parameter values, lose stability simultaneously and may interact
nonlinearly with increased forcing. Besson et al. (1996) also demonstrated bicriticallity for
two frequency forcing as an extension to the method used in Kumar and Tuckerman!| (1994), as

shown in Figure[I.5] Two frequency forcing typically involves a forcing function of the form
g(t) = a[cos(x) cos(nwt) + sin(x) cos(mwt + )], 3)

where a is the forcing factor common between the two forcing terms, n : m is the frequency
ratio, x serves to vary the strength of each component, and 1 controls the phase difference
between forcing modes. Following the notation for single frequency forcing, ay is the critical
forcing strength and cos(x) and sin(x) represent the contributions from each respective forcing
mode. Figure shows a series of marginal stability diagrams for increasing y for a two-
frequency forcing function. In comparison to the relatively simple tongue structure shown
in Figure [[.4] it can be seen how the evolution of the diagram displays much more complex
behaviour as forcing is mixed via x. The solid lines in Figure[I.5|represent harmonic responses,
with dashed lines representing the subharmonic responses. The location of the most unstable
mode, in terms of wavenumber and forcing strength, is indicated in each panel by a filled
circle at the corresponding minimum (minima for y = 60°, the bicritical point) of the tongue
structures. The top panel corresponds to parameters in equation (3)) where the most unstable
tongue responds harmonically to the forcing (with n = 4 in equation (3)) and x = 0). Solutions
within other subharmonic and harmonic tongues require a greater forcing strength to become
unstable at y = 0. As the forcing strengths become more mixed by increasing x in equation
(x = 45° indicates equal strengths of the two forcing components), tongues descend from
the higher forcing strength region, with some forming islands at low forcing amplitude. The

diagram goes through the bicritical phase at x = 60°. At this point the two unstable modes may
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Figure 1.5: Neutral stability curves for (n,m) = (4,5), 4w/2m = 44 Hz, and ¢ = 0 for a forcing function of the
form g(t) = a[cos(x) cos(nw) + sin(x) cos(mw + )]. The fluid has a dynamic viscosity value of 20 cS. Solid
(dashed) lines represent solutions with harmonic (subharmonic) response frequencies. The parameter y varies
from 0 in the upper left panel to 7/2 in the upper right panel, read in a anti-clockwise direction. Plotted is the
value of a/g as a function of wave number & (Besson et al.,[1996). At x = 60° the bicritical instability occurs,
with neutrally stable modes responding both harmonically and subharmonically, represented by filled circles at

the minima of each curve.
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interact in a nonlinear way as the strength is increased. As the forcing becomes dominated by
the second forcing frequency for y > 60° (with m = 5 in equation (3)), the system first loses

stability to solutions with subharmonic frequency, this time for a higher critical wavenumber.

Besson et al.| (1996) reported experiments that tested the accuracy of the linear stability calcu-
lation for both single and two-frequency forcing. Their experiments were designed to mimic
the assumptions of the stability calculation procedure set out by Kumar and Tuckerman| (1994)
by ensuring that a large AR is achieved by using a circular container with a radius of over 100
times the critical wavelength. The fluid mixture was silicone oil at 25°C and the apparatus was
capable of achieving accelerations up to 15 times that of gravity. For single-frequency forcing,
it was found that the theory agreed with the experimental data with an error of 2% for up to
moderate frequencies. The origin of the discrepancies at higher frequencies is unknown and
was vaguely suggested to arise due to possible physical effects not captured by the FHS model
(i.e. compressibility, surface viscosity and viscoelastic effects), imperfections of the experi-
mental setup and/or a failure of the numerical calculations to cope with the boundary layers
within the problem. High frequencies may also introduce higher velocities that may contribute
to the problem via nonlinear terms (a nondimensional analysis may be necessary to determine
if these terms are important). For two-frequency forcing, agreement with experimental values
using frequency ratios 2:3, 4:5, and 6:7 was also close for a range of viscosities and relative
forcing strengths. Figure [I.6]shows the agreement achieved between experimental values and
theoretical predictions of the stability boundaries for varying viscosities, at the 4:5 ratio. The
solid lines are the theoretical stability boundaries calculated using the FHS model. Hollow tri-
angles and circles represent experimental data. The triangles in Figure [I.6] represent hysteresis
within the system, where patterns persisted as the acceleration was decreased below the crit-
ical forcing strength. Close agreement between the FHS model and experimental results was
demonstrated, which was elaborated on for other frequency ratio cases in the same study. Un-
like the work of |Besson et al.| (1996), most experiments on Faraday waves were not performed
with the intention of validating specific theoretical estimates. This becomes a problem when
verifying the stability predictions of models when using true parameter values, particularly
since an error in recorded viscosity, when used in the FHS calculation, can lead to the same
error in amplitude prediction (Besson et al.,|1996; |Skeldon and Rucklidge, 2015). Skeldon and
Rucklidge| (2015]) demonstrated that other fluid properties can contribute to the error between

experiment and theory to a lesser degree when compared to the error due to the viscosity.
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Figure 1.6: Comparison of experimental (hollow shapes) and theoretical (solid lines) stability regions for (n,m) =
(4,5), 4wy /2m = 44 Hz and ¢ = 0 for a forcing of the form g(t) = a [cos(x) cos(nwy) + sin(x) cos(mwy + P)].
The values plotted, a sin(x) and a cos(x), represent the strengths of the two terms in the forcing. Viscosity v takes
values of 10, 20 and 50 cS, with error bars representing the 2% accuracy of the viscosity measurements (Besson

et al.l [1996).

1.2 Theoretical approaches to pattern formation in the Faraday problem

The linear theory of Faraday waves has limitations in that it cannot determine the pattern that
forms as the unstable modes grow. Patterns are a nonlinear phenomenon in the Faraday prob-
lem. It is useful to express patterns in terms of a pattern lattice. Examples of pattern lattices
for squares, rhomboids and hexagons are shown in Figure The wave vectors forming the

k;| = |ko| from the

lattice, k;, correspond to the unstable modes present in the problem, i.e.,
linear stability theory, and ¢ depends on the pattern (z = 1 for rolls, ¢ = 2 for squares/rhom-
boids, and ¢ = 3 for hexagons/triangular patterns, all depending on wave vector orientation).
Theoretical studies have been performed to predict which patterns are selected within the Fara-
day system for a range of parameter values and forcing types, typically through deriving a
system of amplitude equations that describe the evolution of the unstable modes. Unstable
modes possessing different wave vectors have been shown to interact with each other and other
damped modes (modes with wave vectors that do not lie on the critical circles in Figure
for example), as well as displaying self-interaction. The strength of the interaction is not only

related to the orientation of the wave vectors but also on the frequency of the corresponding
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Figure 1.7: Schematic of pattern lattices for simple planar patterns with critical wave vectors overlaid, where
|k;| = |ko| fori = 1,2,3. (a) Square pattern lattice with critical wave vectors oriented 7/2 to each other. (b)

Rhomboid pattern lattice. (¢) Hexagonal pattern lattice with critical wave vectors oriented /3 to each other.

modes.

Miles and Henderson| (1990) derived amplitude equations using a Hamiltonian formulation,
which built upon work by Miles| (1984a)) through the incorporation of capillary effects. Their
formulation assumes a perfect fluid, i.e., viscous effects are neglected. They model a layer of
fluid in a circular basin with large lateral dimensions compared to the capillary length, where
capillary length is the length scale on the surface of two fluids subject to surface tension. Their
formulation was first explored by assuming a multiple scales expansion in time of the surface

displacement. The solution is periodic in space and has a fast time scale possessing a frequency
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Figure 1.8: Top view pictures of experiments by |Gollub and MeyeJ (11983I). The excitation frequency is 62 Hz

and the fluid is water. The critical forcing amplitude, A., is the amplitude at the primary instability which is
experimentally determined (comparable to an experimentally determined version of ay from the linear theory).

The variable forcing, A, is increased within the experiments.

of half the value of the forcing frequency. With only a single frequency in the assumed form

of solution, the theory is able to predict an amplitude threshold for subharmonic motion, but is

unable to go further in predicting experimental features shown by [Gollub and Meyer (1983)),

which displayed periodic modulation and chaotic motion. Figure [I.8] shows the experiments
of the latter at different values of forcing, with (a) demonstrating periodic modulation, (b)
the azimuthal modulation which becomes greater in amplitude and more disordered by (c).
Finally in (d) the pattern becomes chaotic, where the extracted subharmonic amplitude becomes

disordered in time with no discernible frequency.

Miles and Henderson| (1990) incorporated internal resonances into their investigation by using

two expansion terms (in the fluid surface variable) with differing frequencies that lie within a

small distance from each other. An expansion using a frequency of w/2 and wy, with w/2 ~ wy,

was analysed by Gu and Sethna (1987) and it was shown that a path to chaos is possible. With

an expansion using frequencies in close proximity, |w; —ws| < 1, Miles and Henderson! (1990)

demonstrated that their theory provides solutions that possess behaviours qualitatively closer
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to experiments. In particular, they found both periodic motion and chaos as predictions of their
model. Miles and Henderson! (1990) also provided a similar review of the nature of bifurcation

in experiments that use rectangular domains.

To explore the pattern selection process for weakly dissipative fluids near onset, Zhang and
Vinals| (1997a) used a reduction of the incompressible Navier—Stokes equations, in a similar
way to Ruvinsky et al. (1991), which lead to the so called Zhang—Vinals (ZV) equations. The
reduction uses various assumptions (discussed in the following sections) that result in a de-
scription that is dependent only on the fluid properties at the surface, reducing the problem to
a two-dimensional formulation. The ZV model describes a fluid of infinite depth in a mov-
ing Cartesian half-space (¢ < 0), such that the unperturbed flat interface is always at z = 0.
The sidewalls are neglected, and the fluid is assumed to lie below a fluid of negligible density
and uniform pressure. A velocity decomposition is used that relies on the assumption that the
fluid is quasi-potential. That is, contributions from the rotational part of the velocity field are
assumed negligible beyond a small viscous boundary layer generated near the surface. This
methodology finds support in [Ruvinsky et al| (1991)), Longuet-Higgins (1992) and Lundgren
and Koumoutsakos| (1999), who outlined the method for zero tangential stress at the surface, as

in the setup of the ZV equations.

/hang and Vinals| (1997a)) investigated the effect of resonant triads on pattern formation within
the Faraday problem in the limit of small viscosity for single-frequency forcing. Triadic in-
teraction is thought to be important to the pattern selection process in Faraday waves in the
weakly viscous limit (Zhang and Vinals, [1997a; Edwards and Fauve, 1993) since it may ex-
plain the arrangement of wave vectors of the most linearly unstable modes (which have no
specific orientation when instability is triggered) to other wave vectors inherent to the problem.
Resonant triads describe the nonlinear interaction between linearly unstable waves with other
linearly unstable and stable waves in a form of energy exchange between unstable and damped
modes (Phillips, [1981). The interaction is dependent on the wave vectors and frequencies of

the interacting modes through a system of the type
kl :l: kg :|: kg == 0,

w(ky) £ w(kz) = w(ks) =0, “4)

where k; represent the excited wave vectors with corresponding frequencies w(k;) for j =
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Figure 1.9: Schematic of the type of resonant triads explored in Zhang and Vifials (1997a). (a) Wave vector
orientation of resonant triads satisfying k1 + ko — k3 = 0, |k1| = |ka| = |ko|. (b) Sketch of a marginal stability
diagram corresponding to the resonant triad shown in panel (a), showing the leading order temporal response of
the linearly unstable (at |kg|) and stable (at |k; + k2|) modes within the triad. The frequency of the response for

each k is labelled within the linear stability tongues.

1,2,3. For single frequency forcing (for w = 2 in equation (I))), [Zhang and Vinals| (19974)
found that the most unstable modes (with critical wave vector magnitude |kq|) respond sub-
harmonically to the forcing (with frequency w/2). Resonant triad interaction between modes
satisfying the system

ki + k; = ks,

w(k1) + w(ks) = w(ks), (5)

where w(k;) = w(ks) = w/2 (w(ks) = w), was explored. A schematic of this case is shown
in Figure where 6 is the angle between the unstable modes, k; and ks, and the mode
corresponding to k; is weakly damped. Figure [[.10] shows the resonant angle satisfying the
system given by (5)), plotted against Iy, where Iy is a measure of the dominance of capillary
action/surface tension (I'y = 0 represents gravity effects only and I'y = 1 represents surface

tension only).

Zhang and Vinals| (1997a) derived amplitude equations to describe the evolution of unstable
modes with arbitrary orientation. The coefficients of the amplitude equations quantify the
effects of the forcing, the excitation of the amplitude with itself (self-interaction), and the inter-

action between amplitudes corresponding to different wave vectors (cross coupling). The cross
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Figure 1.10: Resonance angle, 9;71, between unstable modes (see panel (a) in Figure plotted against 'y, where

T'y represents the strength of surface tension/capillary effects (I'y = 0 represents gravity effects only and I'y = 1

represents surface tension only). Subscripts 7 and [ correspond to the linearly unstable modes (e.g., j = 1 and

1 = 2). Image from Zhang and Vinals|(1997a)).

coupling term (denoted here as b(f) due to its dependence on the angle between the pattern
wave vectors) is important to consider when determining the impact of a resonant triad inter-
action because it determines the strength of the nonlinear interaction between spatial modes.
Upon varying the angle between unstable modes with wave vectors k; and k, to be some di-
vision of 7 for regular patterns (i.e. 7/2 for squares and 7/3 for hexagons), Zhang and Vinals
(1997a)) theoretically approximated, by minimisation of the Lyapunov functional associated
with their amplitude equations, the stability of patterns that range from squares and hexagons
to fourteen-fold quasipatterns. It was found that resonant triads are of critical importance in
a capillary dominated regime (I'y = 1) regarding the formation of global, subharmonically
oscillating square patterns. Figure shows the cross coupling coefficient for two values of
v, where v quantifies the effects due to viscosity (v < 1 for weakly viscous fluids). Peaks
can be observed in the cross coupling coefficient at approximately 74.9°, corresponding to the
maximum resonant angle shown in Figure The results of Edwards and Fauve| (1994)
support resonant triads as an important mechanism to consider, where it was shown experi-
mentally that it was a weak triadic interaction that was responsible for the hexagonal patterns
that were present in their work for a weakly viscous fluid under two-frequency forcing. Zhang
and Vinals (1997a) showed that as capillary effects were weakened, the resonant triad was al-

tered and square patterns became unstable. This was demonstrated within the capillary—gravity
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Figure 1.11: Example of the cross coupling coefficient, b(¢), denoted g(c;;) in the analyisis given in Zhang and
Viiials| (1997a), plotted against c¢;; = cos(f;;), where subscripts ¢ and j represent the index of the unstable modes
with wave vectors separated at an angle of ;. Two examples are shown for I'y = 1 with different -, where
v quantifies effects due to viscosity (y < 1 for weakly viscous fluids). Sharp peaks can be observed near the

resonant angle corresponding to I'y = 1 in Figure

regime (I'y = 1/3), where hexagonal and quasipatterns became preferred near onset, depend-
ing on the strength of the viscous term. It is not discussed in detail whether using variational
techniques (expressing the amplitude equations in gradient form) to analyse a nonvariational
problem affects the validity of the approach. However, predictions of patterns at onset from
/hang and Vinals| (1997a) using this method found qualitative agreement with experimental
work. This is discussed in more detail in Section [[.3] Note that multiple formations of reso-
nant triads can exist, governed by the system given in equation 4, with cases becoming more

complex as the number of frequency modes increases.

Silber and Skeldon| (1999) used the ZV model as a simplified version of the FHS to investi-
gate the effect of normal form symmetries on the role of resonant triads. They focused on the
instability at the bicritical point associated with two-frequency forcing, where the 1:2 and 2:3
frequency ratios were explored. By demonstrating resonance in one dimension, in place of
resonant triad interactions, it was shown how resonant triads may play an important role when
the response to the forcing is subharmonic for a frequency ratio of 1:2, with insensitivity to the
same situation when the response is harmonic with frequency ratio 2:3. Silber et al.| (2000) ex-
tended this work to the 2D case where they found that, for the 2:3 ratio at onset to subharmonic
instability, near the bicritical point, weakly damped harmonic modes have a strong effect on
the bifurcation problem. However, weakly damped subharmonic modes did not affect the har-

monic wave pattern selection mechanism for a harmonic instability. For higher frequencies the




Chapter 1: Introduction 17

case becomes more complex owing to the fact that the neutral stability curve includes weakly
damped harmonic modes that are of more importance to pattern formation at harmonic bifurca-
tion than the critical subharmonic mode, which exists for a frequency ratio of 6:7. The results
of these studies struggled to find proper quantitative validation with experiments due to the fact

that the ZV equations are not valid outside of the assumption of small viscosity.

The ZV equations capture physical behaviour that is not necessarily found in other model for-
mulations for the same problem. The authors compared their formulation against a Hamiltonian
form that uses a dissipative function approach (Miles, [1977). Both approaches deliver the same
energy decay rate for linear surface waves but contradicting linear viscous terms. In a Hamil-
tonian formulation, dissipation functions are often included through phenomenological means.
In this case, the ZV equations deliver the correct linear damping term in the governing equation
for the potential flow and a damping term in the equations for surface displacement which is
missing in a Hamiltonian formulation that applies the same dissipation function as in Miles
(1977). Critical to the successful use of the ZV equations is determining a valid range in pa-
rameter space for which neglecting nonlinear terms in viscosity is an accurate assumption (see
the derivation presented in Zhang and Vinals|[1997a, along with Section [2] of the thesis). This
is an open issue in the ZV formulation, and the neglect of nonlinear viscous terms disagrees
with the conclusions of Milner (1991)). In the latter, it is proposed that nonlinear viscous damp-
ing terms contribute to the pattern formation in an important way. Zhang and Vinals| (1997a)
showed that the inclusion of linear viscous terms leads to effects within the nonlinear ampli-
tude equations, particularly within the coupling function between amplitudes, which are not

accounted for within Milner’s formulation.

Chen and Vinals| (1999) continued the investigation into a valid range for viscosity for use of
the ZV equations in a similar manner to Kumar and Tuckerman, (1994). The authors of the latter
investigated the linear stability of the flat surface for a viscosity range not restricted to small
values. By assuming that the upper fluid layer has negligible density and constant pressure the
FHS system can be reduced to a one layer system with appropriate surface conditions (see also
Kumar|[1996)), similar to that of the ZV setup (see Section [2)). The solution to the one layer
system can be analysed numerically to show that, for as long as the forcing period is much

shorter than the viscous damping time, represented by the condition

2l <1 6)
w
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where v is the viscosity, k£ is magnitude of the wavenumeber at onset, and w is the forcing
frequency, the relative sizes of the fluid properties can be found near onset of instability and
may justify the assumptions made in the ZV equations. |Kumar and Tuckerman (1994)) stressed
that, past a certain limit in viscosity, the flow should be considered fully rotational; the quasi-

potential approximation of the ZV equations breaks down.

More recently, Skeldon and Porter (201 1)) assessed the performance of the ZV equations against
both a model that uses results from the full Navier—Stokes equations, termed the NS model,
and predictions of scaling laws estimated from symmetry based arguments (Porter and Silber,
2002). For parameter choices motivated by experiments, Skeldon and Porter] (2011) demon-
strated that for two-frequency forcing, for the Faraday problem in the limit of weak viscous
dissipation, the ZV and NS predictions are within good agreement between each other as well
as the predicted scaling laws. This agreement was measured quantitatively throughout their
work and it was shown that as viscous dissipation is strengthened, the agreement between NS
and ZV is eventually only qualitative. Their analysis of the ZV model was performed in the
weakly nonlinear regime close to onset of instability to the flat state using a multiple scales
expansion, where results from the resulting amplitude equations were compared. The cross
coupling term (discussed above) used to compare the NS and ZV models, b(f), is shown in
Figure[I.12]for a range of viscosities for two-frequency forcing in the ratio 6:7. The solid lines
were computed from the NS model and the dashed lines were computed from the ZV calcula-
tions. Both the ZV model and the NS model capture prominent resonant triad interactions for
the 6:7 forcing ratio. The singularity at 60° (relating to a resonant triad on a hexagonal lattice)
was due to the calculations being performed for only two of the three critical modes. A region
near # = 60° is removed in subsequent panels for increasing viscosity. At § ~ 22° a resonant
triad occurs between the two critical modes and the 7 — 6 (1) mode (with response frequency
w), shown by the localised peak in Figure [I.12](this interaction favours related patterns). This
feature is consistent in both model predictions for increasing viscosity, although deviations be-
tween the ZV and NS model become more pronounced as viscosity is increased. At § ~ 70° a
resonant triad occurs between the two critical modes and the 6 mode, featuring a large trough
at low viscosity (this interaction avoids related patterns). The resonant interaction becomes
less important near § = 70° as viscosity is increased. Skeldon and Porter| (201 1)) suggested that
pattern selection due to resonant triad interactions behaves in a more complex manner for multi-

frequency forcing when compared to single-frequency forcing. This highlighted that one of the
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Figure 1.12: Comparison of numerical results between the Zhang—Vifials (ZV) model and the Navier—Stokes (NS)
(Skeldon and Porter, 2011)) for 6:7 forcing. The cross coupling coefficient, b(6), is normalised by the absolute

value of the self-interaction coefficient, |s|. The values are y = 55°, Go = 0.0396 and I’y = 0.2104. From (a)-

(d), 21/k:(2) Jwe = 0.01, 0.05, 0.1 and 0.5, where v is the kinematic viscosity, kq is the wave number that satisfies the
inviscid dispersion relation and w, is the dominant frequency. The dashed lines represent the ZV equations and
the solid lines represent the NS equations. As viscosity is increased the results depart between the two models,

but still show some qualitative agreement.
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main conclusions of [Zhang and Vinals (1996)), specifically that patterns are avoided based on
the strength of interaction, is not a general mechanism. This was supported by the finding that
some resonant triad interactions promote related patterns at the 6:7 forcing ratio. It is clear how
increasing the nondimensional viscosity preserves similar structures between both models, but
loses quantitative agreement for the same parameter values. The results of the comparison re-
inforce that the ZV model possesses relevant mechanisms for pattern formation that are present
in the full NS model, even for moderate viscosities, where the ZV retains features predicted

from the NS model (see panel (d) in Figure|1.12).

1.3 Patterns in experiments

Experiments using single-frequency forcing were performed by Douady and Fauve (1988) on a
Newtonian fluid (water), with frequencies ranging between 30 and 40 Hz. By vertically vibrat-
ing a vessel with dimensions 8.06 x 8.06 x 0.50 cm?, they observed patterns with both square
and hexagonal symmetry and investigated the interaction of the spatial modes that determine
the pattern. Table 1 of Kudrolli and Gollub (1996b)), and the phase diagrams for different vis-
cosities (Figures 2-4 therein), give a detailed description of pattern selection at onset for larger
viscosities than were investigated by [Douady and Fauve (1988). They observed a variety of
patterns which onset as hexagons, squares or stripes depending on the forcing amplitude and
frequency. An example of a phase diagram is shown in Figure[I.13] Edwards and Fauve| (1994)
performed the single-frequency experiment on a glycerol-water mixture of larger viscosity than
the water in |Douady and Fauve (1988)), and argued that the onset to a square pattern found in
the latter is not necessarily independent of the domain shape, although their study had a small
depth that may not be comparable to other low viscosity experiments performed with a large
depth layer. |Besson et al.|(1996)) investigated the instability of the flat state for small fluid depth,
but only thoroughly for two-frequency forcing. Edwards and Fauve found that, as viscosity is

increased, the preferred pattern at onset is parallel rolls.

The situation becomes more complicated, as well as the patterns becoming more intriguing,
when the forcing term contains two frequencies. Edwards and Fauve (1994) investigated pat-
terns using two-frequency forcing in the same glycerol-water mixture as previously mentioned

for the single-frequency forcing experiments. They found that the pattern at onset, and ranges
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Figure 1.13: Phase diagram from Kudrolli and Gollub| (1996b) from experimental data. The forcing acceleration
is a, g is the acceleration due to gravity, and a/g is plotted against forcing frequency. The lines in the diagram
represent the transition between the regions in parameter space that display different patterns, with each region
labelled by its pattern. STC stands for spatiotemporal chaos, TAM is transverse amplitude modulation and mixed

is the region where stripes and STC are bistable. The viscosity of the fluid is 0.5 cm?s~1.
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Figure 1.14: Stability boundaries (solid lines) for a two-frequency forcing of the form
a[cos(x) cos(nw)+sin(x) cos(mw + )], with n = 4, m = 4 and ¢ = 75° from |[Edwards and Fauve

(1994). The label “F™ represents the flat state, “L2” and “L1” are roll patterns of different wave numbers, “H”

represents hexagons, and “Q” is the quasi pattern (see Figure E}) The dashed line indicates hysteresis.

in parameter space where bifurcations to different patterns happen, are strongly dependent on
the frequency ratio, the amplitudes, and the phase difference between the two modes used in
the two-frequency forcing. The parameters they referred to are the ones given in equation (3)).
The phase diagram in Figure[I.14]shows an example of the type of patterns that were observed
for two-frequency forcing, along with their location in parameter space. It can be seen that
roll patterns (labelled “L” for lines), hexagons, and quasipatterns exist for various ranges in
parameter space. Quasipatterns are patterns with long-range order but do not possess spatial
periodicity (they have also been found to be periodic in time). The quasipattern state inside the
dashed box of Figure [I.14]is shown in Figure and was investigated in detail in [Edwards
and Fauve (1993)).

Miiller (1993) performed experiments using a low viscosity silicon oil under two-frequency
forcing and found triangle patterns on the fluid surface. The vessel was a plastic cylindrical
container with a diameter of 80 mm and the fluid depth was 2.3 mm. The triangular patterns

were observed for n = 2 and m = 4 over a range of phase differences, 1. These triangular pat-
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Figure 1.15: A top view picture of a Faraday wave experiment by |Edwards and Fauve| (il994|). Light reflected from

the surface of a vertically vibrated, Newtonian fluid is used to visualise the quasipattern of twelve-fold symmetry.

The fluid is a mixture of 88% glycerol and 12% distilled water.

terns existed in a region where they competed for stability with hexagons, where both patterns
oscillated subharmonically to the forcing (with response frequency w). Other experimental in-
vestigations using two-frequency forcing reported the existence of superlattice patterns, defined
as patterns that consist of two interacting lattices. For example, one type of hexagonal super-
lattice (with 12 wave vectors on the critical circle) can be represented by two lattices of the
type displayed in Figure superposed and rotated with an angle between 0 and 7/3 to each
other. Superlattice patterns differ to quasipatterns in that they have spatial periodicity.
found two kinds of superlattice patterns composed of two hexagonal lattices for
two-frequency forcing. Their investigation was performed in a large AR system using silicone

oils with viscosities ranging between 20 and 50 cm?s~!. The two cases explored were the 4:5

and 6:7 frequency ratios. Arbell and Fineberg (2002) found four types of superlattice patterns

in a similar two-frequency investigation, and highlighted that lattices with wave vectors that
do not all lie on the critical circle can interact in an important way. They concluded that the
patterns arise due to either a symmetry breaking bifurcation to a hexagonal pattern composed
of one unstable mode, or the interaction of the two unstable modes corresponding to the two
forcing frequencies. The choice of which of these nonlinear process occurs depends on the

parameters in equation (3)).
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The theoretical analysis given by|Zhang and Vinals|(1997a) showed qualitative agreement with
experiments in terms of which patterns are preferred at onset, particularly with Kudrolli and
Gollub| (1996b)) in the capillary-dominated regime where the preferred onset pattern was deter-
mined to be square at onset — passing to hexagons as the frequency was modified. However, at
the smallest viscosity and frequency measured (in the single-frequency forcing case), the ZV
amplitude equations predicted an eight-fold quasi-pattern in contrast to the hexagons actually
observed. This discrepancy may have been due to the finite depth of the experiments (the ZV
equations were formulated for a fluid of infinite depth). [Zhang and Vinals| (1997b) tested their
formulation for two-frequency forcing against experiments reported in |Miiller| (1993)). Qualita-
tive agreement was found in the parameter space where stability exists for different onset pat-
terns, and a comparison of the bicritical line (a line that separates the dominant subharmonic
from harmonic responses) was performed. The parameter values used in the experiments of
Miiller leads the results of the comparison to the predictions of the ZV model to lack quan-
titative justification, since the experiments used a value for the damping parameter that may
have been too large for the small viscosity assumption used to derive the ZV equations. The
ZV equations performed well, however, in comparison to experiments reported by Binks and
van de Water| (1997)). The experiment was performed using a Newtonian fluid in the limit of
small viscous dissipation, measured by the value 4vk?/w (equal to 0.03 in the experiments),
where v is the dynamic viscosity, & is the wavenumber at onset and w is the frequency of the
forcing. The authors seemed to have performed the experiments with the aim of validating the
ZVN theory. The stability boundaries of patterns with different symmetries were found to lie
within 10% of those predicted by the ZV theory, and were closer when accounting for a cor-
rected critical acceleration (the dependence of the critical forcing to the viscous dissipation),

although an error was not given for the latter case.

1.4 Theoretical examples of localised states

A good starting point for discussing systems of PDEs with localised state solutions is the much
studied Swift—-Hohenberg equation in one spatial dimension with a nonlinear source term. A

simple version of the PDE is given by

Ou = ru — (qf+8§)2u—|—f(u), (7)
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where wu is a scalar function of = and ¢, r is the bifurcation parameter and f is a nonlinear
function of u. In general, there are also bifurcation parameters inside f. The value q. represents
the critical wavenumber. Swift and Hohenberg| (1977) first put forward the general form of the
equation to model convective instabilities in one-dimensional (1D) hydrodynamic systems. The
steady state solutions to equation (7)) are found by eliminating the time dependence and solving
the resulting ODE in the space variable . Of the steady state solutions to equation (for
certain parameter ranges and choices for the form of f), there exists a patterned state (where
u is spatially periodic) and the trivial homogeneous zero state (where u = 0) in a region of
bistability. A bistability region occurs when two steady states are stable over the same region
in parameter space. Since the Swift-Hohenberg equation is variational problem, stability with
respect to equation (/) refers to the minimisation of the associated Lyapunov functional. In the
bistable case, stability corresponds to local minima of the Lyapunov functional. As an example,
Burke and Knobloch|(2007) investigated the localised states of equation (7)) for f(u) = 2u3—u®
(treatment for the general quadratic—cubic form can be found in Burke and Knobloch|2006).
The bifurcation diagram within the region of bistability is shown in Figure [[.16] The system
has a saddle-node bifurcation to patterned states at the value of » = r3 ~ —0.8891, and a
subcritical primary bifurcation at r = ry = 0. One patterned state (the upper branch labelled
up) is stable and the other is unstable. Therefore, bistability exists between the stable patterned
state and the stable flat state, u, for r5 < r < 1. The point 7y, in [[.16]is referred to as the
Maxwell point. The Maxwell point occurs when the energy of the patterned state, up, is equal
to the energy of the flat state, u(, where the energy is calculated via the associated Lyapunov

functional for each r.

For localised states among a homogeneous background (uy = 0) in 1D, with f(ug) = 0, solu-
tions have a form, u;, say, that decays to 0 as * — +00, matching the homogeneous state, but
that grows and decays in some range for x. This is equivalent to forming what is termed a ho-
moclinic orbit to the flat state in the space variable. In general, a homoclinic solution represents
an orbit in phase space that asymptotes in both directions (increasing and decreasing x) to the
same steady state, with a deviation for some range in space. Heteroclinic solutions asymptote
to different solutions in space, with a front between them. The structures of the stable and
unstable manifolds of the homogeneous zero state, that are locally tangent to the stable and
unstable eigenspaces close to the equilibrium point, determine the types of orbits that are pos-

sible through their interaction with each other and other stable and unstable manifolds related
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Figure 1.16: Bifurcatioln diagram for system in equation (7), with f(u) = 2u® — u® and ¢. = 1. The norm
N = (L% fOL° |u|2d;v) % is plotted as a function of the bifurcation parameter r, where bold lines indicate stability
of the solution and thin lines are unstable. The u( branch represents the flat state and w,, represents the patterned
state. The saddle—node bifurcation is located at » = r3 and the subcritical primary bifurcation is at r = rg = 0.
Solutions of the w4 branch are nonzero homogeneous steady states. The point 751 ~ —0.6752 is where the

Lyapunov functional (or free energy) of the system is zero for both the zero state and the patterned state. Figure

from |[Burke and Knobloch! (2007)).
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to other steady solutions, as well as properties of the system such as reversibility (Knobloch,

2015; Champneys, 1998)).

For r < 0, |r| < 1, steady localised states are found in equation analytically using a
multiple scales expansion in x by introducing the slow variable X = ex, where € is a small
parameter. Using an asymptotic expansion for u = € (A(X)e* + A(z)e™*) + O(€?), with
¢. = land f(u) = 2u? — u°, Burke and Knobloch| (2007) found the solvability condition that

leads to the slow varying amplitude equation,

d’A 9
where r = —€219, 1o > 0, and A is the complex amplitude of the small perturbation. The

solutions to equation (8)) are invariant under the transformation A — Ae™®, where ¢ determines
the phase of the underlying wave pattern at O(¢) in u. The trivial homogeneous solution to
equation (8] corresponds to the flat state, and the constant value homogeneous solution corre-
sponds to the patterned state. Of interest, however, is the elliptic solution at leading order to
equation (&), which is modulated in amplitude over the slow scale and is of the form

A(X) = (%) ’ ech (X \2/“_2) it

The phase shift, ¢, for this solution does not remain arbitrary. The specific values for ¢ can be
determined by considering a multiple scales analysis beyond all orders (Bensimon et al., 1988}
Yang and Akylas, 1997; Melbourne, |1998}; Chapman and Kozyreft], 2009). The values corre-
spond to the crossing of the stable and unstable manifolds of u, (Burke and Knobloch, 2007),
which leads to what is termed homoclinic snaking, shown in Figure Solution profiles
corresponding to labels in Figure[I.17| are shown in Figure Localised solutions bifurcate
subcritically at 7. Following the branches for decreasing r, the localised solutions are initially
unstable (thin curves) and go through saddle—node bifurcations (located at the branch turning
points). The localised states stabilise passing through the first saddle-node. Following further
along the branches, the points in » where saddle-node bifurcations exist become asymptoti-
cally close to the fold limits rp; and rps. The region bound by rp; and rp, is associated with
a stretching of the Maxwell point, and relates to the conclusions of Pomeau (1986) in that,
for variational systems, fronts (which are connections between states) between the patterned
state and w are possibly robust for a range of parameters. Pitchfork bifurcations to asymmetric

states exist near the saddle—nodes within the snaking region, forming “rungs” between each
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Figure 1.17: (a) Full bifurcation diagram for the Swift-Hohenberg equation (7), which includes the steady so-
lutions shown in Figure The localised branches with phases ¢ = 0 and 7 represent states that are even
(u;(z) = u(—x)), and branches with ¢ = 7/2 and 37/2 are odd (u;(—z) = —u;(x)). These branches oscillate
between r = rp; and r = rpy in a formation klnown as snaking. The even and odd solutions lie on the same
branches under the norm N = (L% fOL” |u|2dx> ?) (b) Close up of the branches in the snaking region, where the
branches start to go through saddle—node bifurcations ((a), (c), (d) and (f)). The location of the saddle-nodes,
following the branches further, tend to the edges of the region shaded in both panels, rp; < r < rpy. Points (b)

and (e) lie on solution branches that break the symmetry of the problem, which occur as pitch-fork bifurcations

near the location of the saddle—nodes. Figure from Burke and Knobloch| (2007).
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Figure 1.18: Solution profiles corresponding to labels (a) — (f) in Figure Solutions (a) and (f) lie on the
¢ = /2 branch and (¢) and (d) lie on the ¢ = 0 branch in Figure Solutions (b) and (e) are asymmetric,
lying on the branches that originate at pitchfork bifurcations near the saddle-nodes in Figure PE}

pair of branches (details on how these states are formed and their stability can be found in
Burke and Knobloch|2007). [Coullet et al. (2000) investigated localised structures within the

parameter space where stable fronts are robust in 1D, and showed a more complex situation for

2D systems. They demonstrated that within a region for their bifurcation parameter, the fronts
of localised states are stable. Either side of this region, the fronts travel to form a flat state
(peaks/troughs disappear from each end of the localised state until the state is homogeneous)
or a patterned state (peaks/troughs appear at each end of the localised state until the global
patterned state is reached). The appearance of localised states is linked to the evolution of the

stable and unstable manifolds in phase space as the bifurcation parameter is varied.

An interesting investigation on localised solutions of the 2D Swift-Hohenberg equation was

given by Lloyd et al.|(2008), where stationary localised states were sought in the equation

%:_(1+V2)2u—pu+yu2—u3, )

where V2 = 9,, + 0,,, the function u depends on space, (x,y) € R?, y is the bifurcation pa-

rameter, and v is a paramter of the system. [Lloyd et al.|(2008) explored the region in parameter
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Figure 1.19: Planar hexagon pulses calculated from equation (9)), image from ILloyd et al.l (]2008[). Both fronts

have different orientations with respect to a hexagonal pattern lattice that can be categorised via the Bravais—

Miller index, (10) for the left panel, and (11) for the panel on the right (see [Lloyd et al[2008| for a detailed

definition of the Bravais—Miller index notation).

space where the trivial state, u = 0, and regular hexagon patterns were both stable. Equation
(9) admits a first integral and an associated energy functional (Lyapunov functional) that allows
the Maxwell point to be calculated, identifying a search region for localised states.
solved equation (9) numerically to find regular hexagons (globally filling the domain
on a hexagonal lattice), planar hexagon pulses, and localised hexagon patches. Examples of
planar hexagon pulses are shown in Figure [I.19] Both fronts have different orientations with
respect to a hexagonal pattern lattice, and therefore have different front configurations where
the hexagonal pattern evolves to the flat state. Planar hexagonal pulses can be expressed via
the Bravais—Miller index, (10) for the left panel in Figure and (11) for the panel on the
right (see [Lloyd et al.2008|for a detailed definition of the Bravais—Miller index notation). Us-

ing continuation techniques, the solutions branches for planar hexagonal pulses and localised
hexagonal patches were plotted on the bifurcation diagram for a range of parameter values. The
snaking behaviour along the solution branches (as described above and shown in Figure [I.17)
was present for each type solution. It was found that the orientation of the planar hexagonal

pulse solutions has a significant effect on the location of the fold limits (analogous to rp; and

7 po in Figure [I.17).

An example of the snaking region on the bifurcation diagram for the localised hexagonal
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Figure 1.20: Close up of the bifurcation diagram (middle panel) for equation (9) for v = 1.6. The L?-norm (y-
axis) is calculated in u and plotted against the bifurcation parameter, 1, showing the solution branch for localised
hexagonal patches. Stable (unstable) solutions are represented by solid (dashed) lines. Panels 1-4 show solution
profiles at the corresponding locations of the branch shown in the middle panel. The vertical lines correspond
to the fold limits defining the snaking region for planar hexagon pulses; the leftmost vertical line, p = 0.267,
corresponds to the fold limits of a (10) hexagonal pulse solution with the middle and rightmost vertical lines,

w = 0.2964 and p = 0.3364, corresponding to the fold limits of a (11) planar hexagon pulse solution. Image

from [Lloyd et al | (2008).

patches found in Lloyd et al.| (2008) is shown in Figure As with previous examples,

the localised solutions lose and regain stability at sadde—nodes. The snaking behaviour was
found to be qualitatively different to the other patterns explored in that three fold limits were
observed (as opposed to two for planar hexagon pulses). Interestingly, the fold limits of the
localised hexagonal patches seemed to initially align with the fold limits of the planar hexag-
onal pulses depending on how the front of the localised hexagonal patches developed. It was
suggested that this observation may contribute to an explanation of how hexagon patterns grow,
where growth of localised hexagonal patches refers to the adding of peaks around the localised
solution to form an outer ring of peaks around the localised patch, as is shown by the evolution
in panels 1-4 in Figure Note that the location of the localised branch for the patterns in
panel 1 and 4 almost align with the fold limit of the (10) planar hexagonal pulse and the inter-
mediate stages, panels 2 and 3, almost align with the (11) planar hexagonal pulse. However, an
overall mechanism to explain the growth of hexagon patterns has not yet been identified. It was
shown that further along the localised branch, the evolution of localised hexagonal patches be-
comes more complicated and “self-interaction” of the bifurcation curve can occur where peaks

are lost at the corners of the hexagonal patches as the solution develops. This could indicate that
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Figure 1.21: Results from a numerical simulation of equation (9) with v = 1.6, performed by |L10yd et a1.| (120081).

(a) Localised patch with a corner peak removed, use an an initial condition. (b) Solution at ¢ = 100 for p = 0.27

(to the left of the central (11) fold limit in Figure[1.20). (¢) Solution at ¢ = 100 for x = 0.3 (to the right of the
central (11) fold limit in Figure|1.20).

a non-local mechanism is responsible for the development of localised patches when traversing

the bifurcation branch.

Lloyd et al| (2008) numerically simulated equation (9) for initial conditions that were asym-

metric by manipulating solutions of the type shown in panel 1 in Figure[1.20] such that one of
the peaks at the corner of the hexagon patch was eliminated. Results from this investigation are
shown in Figure[I.21] It was found that, depending on the bifurcation parameter, /1, asymmetric
states (panel a) can evolve back to symmetric states (panel b) or remain asymmetric (panel c).
It was suggested that the location of the fold limits of the planar hexagonal pulses may con-
tribute to the understanding of the temporal evolution of asymmetric states. However, further

investigation is necessary to determine the underlying mechanism.

For hydrodynamic systems that are nonvariational, localisation of solutions can not be exam-
ined or explained in the same way as those that benefit from variational techniques described

above. For example, there exists no Maxwell point that relates to the energy of the system.

Descalzi et al.| (2005) reported several types of localised states within the quintic complex

Ginzburg-Landau equation, found numerically. They also investigated the effects of changing
the boundary condition type from periodic to Neumann (once the stable localised solution had
been found). The results showed that, when the localised solution is not homoclinic to the
flat state in space at the time of changing boundary conditions, the solutions were qualitatively
changed. However, the investigation only demonstrated the changes in the solution numerically

and did not offer much in terms of an intuitive explanation.




Chapter 1: Introduction 33

Figure 1.22: Schematic diagram of a stable standard oscillon (SSO) from Burke et al.|(2008). The arrows indicate

the oscillation of the structure, which oscillates at half the frequency of the forcing term.

Burke et al.|(2008)) analysed the formation of several types of localised states in detail using the
forced complex Ginzburg—Landau (FCGL) equation in 1D with a 2:1 resonance (solutions on
the marginal stability curve respond at half the frequency of the forcing). The types of localised
states analysed consisted of both homoclinic and heteroclinic orbits in phase space, oscillating
in time according to the 2:1 resonance. One result within Burke et al.| (2008), relevant to
structures found in experiments, is the stabilisation of a certain type of localised state, termed
therein as a stable standard oscillon. The structure, which is shown in Figure(1.22] is homoclinic

in space to the zero state.

Alnahdi et al.| (2014) used the results of Burke et al. (2008)) to compare the predictions of
the Forced Complex Ginzburg—Landau (FCGL) model to a Phenomenological Faraday Model
(PFM) designed by Rucklidge and Silber (2009), given by

%—[tj =(a+iw)U + <6z + ZB) 227[5 + C|UPU + i Re{U} F cos(2t), (10)
where U is a complex function, /i is the distance from onset of the oscillatory instability, w,
&, B, and F are real parameters, and C' is a complex parameter. As stated in Alnahdi et al.
(2014), the PFM does not have a direct physical interpretation with regards to the Faraday
wave experiment. However, the model was designed such that the linearised problem reduces
to a damped Mathieu equation, common to hydrodynamic models of the Faraday system in the
limit of small viscosity. The complex variable U acts as the representative pattern forming field
and is not directly interpreted in terms of the physical properties of the Faraday problem. In the
limit of weak forcing (F' — ¢2F), weak damping (i — €%f1), weak detuning (0 — 1 + €%0),

and small amplitude (U expandable in powers of a small parameter €), the PFM was reduced to
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Figure 1.23: Bifurcation diagram with both the PFM model of Rucklidge and Silber| (2009) (thin red line)
and the FCGL equation (thin blue line). Thick/dark blue lines represent stable solutions, patterned for

the upper line and flat for the lower line. Dashed lines represent unstable solutions. The norm N =

\/wi foLz 027r (|U)? 4 |0,U|?) dtdx is plotted as a function of the forcing I'. Transitions between stable and
unstable standard oscillons occur at saddle-node bifurcations in a similar way to the homoclinic snaking of the

variational system given by equation (7). Figure from Alnahdi et al.|(2014). Solution profiles (a)—(f) are shown

in Figure

the FCGL equation given by
Ap = (i +i7) A+ (6+iB) Axx + CJAPA+TA, (11)

where A is the complex amplitude (A is the complex conjugate) at leading order with large
spatial, X, and temporal, 7', scales, and I' = F'/4. The types of solutions that were sought in
equation (11]) are homoclinic in space. When the forcing is very close to the critical forcing
at onset, the FCGL equation can be reduced to the Allen—Cahn equations, where analytical
solutions can be found and exhibit (at leading order) the sech type profile similar to that of the
localised solution of the Swift—-Hohenberg model. The agreement between the solutions to the
FCGL equation and the PFM is good and is shown in the bifurcation diagram in Figure
with labelled solution profiles, (a)—(f), shown in Figure The solution branch for this type
of oscillon bifurcates subcritically and exists in a bistability region for both the FCGL equation
and the PFM. In comparison to the snaking in the variational (Swift—-Hohenberg) problem, the

locations of the saddle—nodes eventually limit to a much narrower region.

An open question from the work of Burke et al.| (2008)) and |Alnahdi et al.| (2014) was the
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Figure 1.24: Solution profiles corresponding to Figure Blue (red) lines represent the real (imaginary) com-
ponents of U. Solutions were numerically calculated from the PFM. Figure from[Alnahdi et al. (PTTI_AIP
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applicability of the theory to equations that relate more directly to the physical problem of
Faraday waves. One issue was in the fact that the unstable solutions of the FCGL equations
onset with a preferred wavenumber of zero, in contrast to what is observed in experiments and
the linear stability theory of |Benjamin and Ursell (1954) and Kumar and Tuckerman| (1994).
Alnahdi et al.| (2018)) proposed a modification to the PFM and sought solutions in the form of
travelling waves. By using an ansatz of the form A(X, T)e'®*+) + B(X, T)e'*=) (where A and
B are complex amplitudes of the perturbations), the PFM was reduced to the coupled FCGL

equations,

AT = (p—|— ZI/)A — 2(0{ —|—Zﬁ) AXX —|—’UgAX + C (’A|2 + ’B|2) A+ZFB,

Br=(p+iv)B—2(a+iB)Bxx —vyBx + C (|A]” + |B|*) B+il'A, (12)

in the limit of small amplitude, weak damping, weak detuning, weak forcing and small group
velocity, v,. The group velocity is found from the dispersion relation, and in the investigation
was controlled by the parameter values. Other parameters in equation (12)) can be related to the
model PDE for physical interpretation (see table 1 of Alnahdi et al.[2018)). Similar to the FCGL
equations, very close to the critical forcing these equations can be further reduced to the real
Ginzburg—Landau equations. The analytical solution that describes a localised state in the real
Ginzburg—Landau equation agreed well with the solution to PFM, apart from a small difference
in the amplitude of the real part of the solution. The work of Alnahdi et al.| (2018) provides a
guide for the analysis of a system with similar mechanics that is more directly related to the
Faraday wave problem, e.g., the ZV equations. However, the ZV equations include parameters

that cannot be as easily controlled as the PFM, as well as more complicated nonlinear terms.

1.5 Localised oscillons in experiments

Lioubashevski et al.| (1999) performed the Faraday experiment on a non-Newtonian clay sus-
pension using a forcing with single frequency, asin(wt). The dimensions of the two exper-
imental basins (with circular cross-section) were 20 cm and 29 cm, with a fluid depth that
varied between 0.4 cm and 4 cm. They found that the primary instability was to finger-like
states that oscillated subharmonically to the forcing. Localised states were excited by creating
local defects in the fluid and increasing the acceleration until oscillons were observed. The

oscillon structures they found are shown in Figure [I.25] The oscillons oscillated subharmon-
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Figure 1.25: Pictures from experiments of various types of oscillon structures (from the side view) from a clay

suspension in [Lioubashevski et al] (1999). Panel (a) shows a single oscillon among a homogeneous background

with a forcing frequency of 14 Hz. Panels (b) and (c) show an oscillon pair at forcing frequency 20 Hz, and an
oscillon triad at 25 Hz, respectively. All oscillons respond at half of the driving frequency, meaning that, from top

to bottom in each panel, the time passed is twice the forcing period.

Figure 1.26: Top view pictures of Faraday wave experiments by |Arbell and Finebergl dZOOOI). Left: a single

oscillon is observed existing within a homogeneous background. Right: a single oscillon is observed that exists
within a global square patterned state. The fluid is Dow Corning silicone oil of viscosity 47 ¢S and the vertical
vibration signal consisted of two frequencies in the ratio 3:2. The cross-section of the domain is cylindrical, and a

cylindrical screen placed above the container with varying light intensity was used to visualise the patterns.




Chapter 1: Introduction 38

ically to the forcing, with the most robust being an oscillon pair temporally out of phase by
m (Figure[I.25b). As discussed above for the Swift-Hohenberg model and in Pomeau| (1986),
specifically that there is a region in parameter space where localised structures are robust (the
pinning region), Lioubashevski et al.|(1999) found that the region of existence of oscillons was
experimentally consistent with these predictions, using the scalings from Crawford and Riecke

(1999).

Similar stuctures were investigated in a Newtonian fluid by |Arbell and Fineberg| (2000). In the
experiments the forcing term contained two frequencies, as in equation (3). They vertically
vibrated a cylindrical container with diameter 14.4 cm and fluid depths were varied between
0.15 cm and 0.55 cm. The fluids used were Dow—Corning 200 silicone oils with kinematic
viscosities of 8.7, 23, 47 and 87 ¢S (centi—Stokes, 1 ¢S= 1072 cm?s~!). The oscillons in Figure
[1.26] were observed for one of the cases where the forcing frequencies were in the ratio 2:3.
Oscillons were also found for a 4:5 frequency ratio. Interestingly, the oscillons formed in this
system differed in the non-Newtonian case above in that they were harmonic to the forcing,
and did not appear solely in a subcritical region where bistability between two states occurs.
For example, oscillons were found to exist within a patterned background near a supercritical
bifurcation (see Figure [I.26). It may seem that for oscillons in a Newtonian fluid to exist,
two-frequency forcing is needed. However, for a single frequency forcing in the experiments
of Kudrolli and Gollub| (19964a)), it was shown that two states can coexist under the simpler
forcing. The experiments of the latter investigated the localisation of chaos in a domain of

laminar stripes, and may not be applicable to oscillon formation.

Urra et al.| (2017) recreated the Faraday experiment with a non-homogeneous forcing for a
Newtonian fluid (Photoflo-water). The lower plate consisted of a soft bed with 13 pistons
below, which could be arranged to create a Gaussian-type profile oscillatory forcing of the soft
bed. The domain was a rectangular, transparent 15 x 490 x 100 mm? box filled with Photoflo-
water, designed to be “quasi one-dimensional”. The localised structures oscillated at half the
frequency of the inhomogeneous forcing, and a typical profile in time and space is shown in
Figure[I.27] Similar experiments in a larger domain may be required to see if the results remain
consistent, since the narrow domain may have affected the fluid, which was not investigated or
mentioned in the study. The authors of the study compared their results to the 1D nonlinear

Schrodinger equation, with good agreement found between both. The parametric dissipative
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Figure 1.27: Surface displacement, 7, plotted as a function of time ¢ and space z, where the forcing of the Faraday
experiment is heterogeneous. The values plotted are measured from experiments. The experiments use a setup of
13 pistons located underneath a soft bed, which forces a narrow channel of water by vibrating the soft bed in an

inhomogeneous profile. The left panel uses only 6 pistons arranged in a Gaussian-type profile, and the right panel

uses 13 for a similar profile. Figure from (2017).

nonlinear Schrodinger equation is based on a Hamiltonian formulation of the problem with an

added dissipative term given by (1984D)) (the accuracy of which is studied in [Gordillo
and Mujical2014). Their comparison was demonstrated in the predictions of the width of the

envelope of the localised state as a function of the width of the envelope of the forcing profile.
The Schrodinger equation predicted that the envelope width of the localised state depends on
the envelope width of the forcing profile in a square-root power law. The experimental results

reflected this power law prediction closely.

1.6 Thesis plan and methodology

The goal of this thesis is demonstrate the existence of localised states in a system that describes
the Faraday problem with equations derived from first principles, the Zhang—Vifals (ZV) equa-
tions. Demonstrating the existence of localised solutions within the ZV equations provides a
starting point for future work in bridging the gap between theoretical approaches to localised
states and observations from experimental data. Since the Navier—Stokes equations are com-
plex and intensive to simulate numerically, the ZV system (a reduction of the Navier—Stokes
equations) offers a useful tool that has already been shown to capture mechanics important to

pattern formation in vibrating fluids. In Section [2] the ZV equations are derived through scal-
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Figure 1.28: Experimental phase diagram from |Arbell and Fineberg| (120001). Observed patterns are shown for

two-frequency forcing of the form in equation (3) with frequencies in a ratio of 2:3, with w/27 = 30 Hz. The
horizontal axis corresponds to the driving amplitude of 60 Hz forcing, and the vertical axis corresponds to a forcing

of 90 Hz. The fluid was Newtonian with a viscosity of 0.23 ¢S cm?/s, and a depth of 0.2 cm.

ing arguments, supported by a linear stability analysis of the Navier—Stokes equations using the

same techniques described in Kumar and Tuckerman| (1994).

The motivating example for the methodology presented in the following chapters comes from

the work of |[Arbell and Fineberg| (2000). Localised oscillating states (oscillons) were observed

experimentally in a Newtonian fluid using a forcing function composed of two frequencies.
Figure [I.28] shows a typical phase diagram from their experiments. On the phase diagram,
the region of stability of the flat state is labelled “Flat” and is bound by filled circles. The
boundary of this region corresponds to the linear stability boundary of the flat state. To the
right of this region, where the driving amplitude of the 60 Hz forcing component was dominant,
harmonic hexagonal patterns were observed. When the driving amplitude of the 90 Hz forcing
was dominant, subharmonic square patterns were observed. Temporally harmonic oscillon
states were observed against a patternless background in a region of bistability between the
flat state and hexagonal patterns. The region is located near the bicritical point (a point of
bicriticallity is illustrated for the Faraday problem in Figure [I.5] for an alternative frequency

ratio).
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Figure [1.29] shows a phase diagram created via the linear stability analysis outlined in [Kumar
(1996) for a fluid of finite depth. The parameters used to create the diagram are the same as in
Arbell and Fineberg (2000), with data overlaid from Figure for comparison purposes. Data
was extracted from the experimental phase diagram using the online data extraction software
PlotDigitizer, PORBITAL (2023). The parameters used to create the phase diagram may offer
some guidance in determining a starting point for searching for localised states numerically.
However, in creating the linear phase diagram for the experimental results comparison it was

found that the results were sensitive to fluid depth, which the ZV equations do not account for.

Results from linear stability and weakly nonlinear analyses of the ZV equations are presented
in Section (3| The analyses were performed to determine both the theoretical location of the
bicritical point (determined through linear stability), and the existence and extent of the bistable
region between the flat and patterned state (via the coefficients of the amplitude equations from
the weakly nonlinear analysis). Guided by the experiments of |Arbell and Fineberg (2000), this
was performed for two-frequency forcing in the ratio 2:3 for harmonic hexagon patterns. The
two-frequency forcing case was chosen over single frequency forcing due to their presence in
experiments for a Newtonian fluid and the form of amplitude equation in the weakly nonlinear
analysis. More specifically on the latter point, the extent of the bistable region was found to
be more readily optimised due to the extra terms in the amplitude equations (see Section [3)).
These initial analytical steps were necessary to reduce the computational cost of searching for
localised states in the simulations of the ZV equations that followed. The chosen numerical

method and subsequent verification of the numerics is also presented in Section 3]

The results from numerical simulations of the ZV equations for localised states are presented in
Section[d] The parameter range chosen for these simulations was determined using the analyses
in Section (3| Together, Sections (3| and 4 outline a successful methodology for searching for
localised states in the ZV equations. The limitations of the approach, the implications of the

findings within this thesis, and the potential avenues for future work are discussed in Section

&l
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Figure 1.29: Phase diagram (linear stability boundary only) created from the method described in (1996)
for finite depth (solid line) and infinite depth (dashed line). Experimental parameters from |Arbell and Fineberg|

(2000) have been used (see Figure[1.28)), with assumed fluid density, p = 950 kg m~2, surface tension, v = 0.021

Nm~!, and forcing phase shift, 1/; = 0 (not specified in the experimental study). Experimental data taken from

Figurel'lzgl are plotted as crosses.
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2 The Zhang—Vinals equations

Throughout section [2.1] the linear stability analysis of the Navier—Stokes equations for the
Faraday problem, outlined in [Kumar and Tuckerman|(1994), is presented. The derivation of the
Zhang—Vinals (ZV) equations begins in section Important results from the linear stability
analysis of section are later used in section to support the derivation. Specifically, the
solution to the linear problem and the relative sizes of the fluid properties at onset of instability
for small viscosity are highlighted as a guide for the size arguments used in the derivation of
the ZV equations. Sections to demonstrate the steps and tools necessary to complete

the derivation of the ZV equations.

2.1 Linear stability of the periodically forced Navier—Stokes equations

The Faraday system can be modelled as two unperturbed layers of fluid that are separated by
an initially flat interface located at Z = 0 in the Cartesian frame of reference. The periodic
acceleration is denoted by g, (t) (as in equation (I)) or (3))) and has a frequency that is a multiple
of w. A change of coordinate system, z = Z — O(g.(t)/w?), depending on g.(t), allows a
Cartesian frame of reference that moves with the vibrational motion such that the unperturbed

interface (flat state) is located at z = (. Deformation to the flat state is described by z =

h(z,y,t).

Kumar and Tuckerman| (1994) used a two-fluid interface system that included consideration of
the upper infinite domain, where z > 0, and the lower infinite domain, z < 0. The Navier—
Stokes equations for an incompressible, viscous, Newtonian fluid describe the system in each

layer and are given by

Pi (8(;:1 + (u; - V) U1> = —Vpi + Vi, + VG;, V-u; =0, (13)

where p is the fluid density, p is the fluid pressure, w = (u,v,w) is the fluid velocity in the
x, y, and z directions, respectively, n is the dynamic viscosity, and VG is the body force.
The subscript 7 indicates the fluid properties for lower (z < 0, ¢ = 1) and upper (z > 0,
i = 2) layers. The body force VG; is given by G; = —p;z (go + ¢.(t)). The pressure, p;,

can be expressed as the sum of the solution to the flat state (where u; = 0 everywhere) and
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Figure 2.1: 2D schematic of the Full Hydrodynamic System (FHS) presented in [Kumar and Tuckerman| (1994)
for two fluids of infinite depth and large aspect ratio (allowing the neglect of side walls). Equation (T3) is satisfied
within each fluid layer, indexed by ¢ = 1, 2, where p; is the fluid density, p; is the fluid pressure, w; = (u;, vy, w;)
is the fluid velocity in the x, y, and z directions, respectively, ; is the dynamic viscosity, and VG, is the body
force within the respective layers. The interface between the two fluids is located at z = h(z,y,t). The vector

normal to the surface, 7, can also have components in the y-direction.
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pertubrations to this, as p; = G; + pl.

Assuming an infinite fluid layer in both the upper and lower infinite domains allows effects from
the lower rigid boundary to be neglected. The boundary conditions are therefore described by
u; — 0 as z — +oo, which implies wy — 0, d,wy — 0, w; — 0 and 0,w; — 0 as z — to0.
Effects from sidewalls can be neglected by assuming a high aspect ratio setup; sidewalls are
assumed to be spaced far apart compared to onset wavelengths, allowing for the neglect of wall

effects. A schematic of the two-layer system used in Kumar and Tuckerman| (1994) is shown

in Figure 2.1]

The boundary conditions at the interface (z = h(x,y,t)) include continuity of the tangential

stresses and the normal stresses balancing surface tension forces, given by

(01-7)-a=(02-7)-a, (14)
(o1 -7)-b=(0y-7)-b, (15)
(o9 -n) -1 — (01 N) 1=K, (16)

where 0, , = —p;0r ; + 21;7;, , is the stress tensor with

1 0u[ aUJ

TI’J_§<8_IJ+8_$[>'
The unit vector 72 is normal to the surface, given by
_1

A= (14 (V1h)?) 2 (=0.h,—0,h,1), (17)

where V| h indicates (0, 0,,0)h. The vectors @ and b are unit vectors that are tangential to

the surface in the x2z— and yz— plane, respectively, and are given by

. o2\ oh
b=|1+ (@y - (0 1 @) (19)
N oy "oy )

An example of the orientation for a is shown in Figure The unit vector b has an analogous

orientation in the yz— plane. The surface tension is given by +, and x is the surface curvature,

k=-V - n.
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The kinematic surface condition, that the surface moves at the speed of the fluid, is given by

oh
wi = -+ ui - V_h, (20)

for i = 1,2, where the symbol * indicates the  and iy components only. Continuity of velocity
across the surface gives us — uwy; = 0 at z = h which implies wy, — w; = 0. The condi-
tion 0, (wy —w;) = 0 at the surface ensures the velocity profiles in the z component meet

smoothly.

2.1.1 Perturbation equations

The operator —V x V x can be applied to to equation (13)) along with the identity —V x V x

u = V?u for incompressible fluids to obtain
(0, — V) Vu; = =V X V x (u; x Q) 21)

where ; = V x w; is the vorticity and v; = n;/p; is the kinematic viscosity of the fluid in

each layer. The z component of equation is
(0 — uiV?) VPw; = [V X V x (u; x Q)] - 2, (22)
where 2 is the unit vector in the z direction and wj is the velocity in z for layers ¢ = 1, 2.

The solution is sought as a perturbation to the flate state with w; = 0+ w/. For small |u/| and h,

the governing equations can be linearised about z = 0. The governing equation (21)) becomes
(0, — v V?) V?u] = 0. (23)
The linearised tangential stress balance equations, from and (13)), give
m (0,uy + O,wh) = mo (O.uy + dpwh)  and 1y (O,v] + Oyw)) = ne (0,0) + Dywh) ,
which after cross differentiation and use of the continuity equation gives
An(Vi-0)w' =0 atz=0, (24)

where V2 = 92 + 85. The symbol A is used to represent the difference in fluid properties over

the fluid layer, for example, AA = A, — A; for a fluid property A over the interface.
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The linearised normal condition from equation (I6) results in
p1— p2 4 2A (nd.w') = =V h. (25)

Applying V2 to equation (23) and using the Taylor expansion for pressure about z = 0 (with
pi = —pih(go + g(t)) + p}) gives

Ap(go+9(8) Vih = A (V1Y) +2A (0. Viw) = = Vih.

The linearised version of equation (13]) can be used to eliminate the perturbation to pressure

using V2 pl = p;(0; — v;V?)d,w;, to give
A [-2nV7 + p(8, — vV?)] 0.0 = [yVE + Ap (g, + g(t))] V1. (26)
Linearising the kinematic surface condition in equation gives

w; =wy =0h atz=0. (27)

In summary, a solution is sought for the linear stability system governed by equation (23),
subject to surface stress conditions given by equations (24)) and (26) along with the kinematic
condition given by equation (27). Continuity of the vertical velocity along with the smoothness
condition also gives w| = wj and J,w] = J,w} at z = 0, while as z — oo, w}, wh, d,wi,

and 0,wy tend to 0.

2.1.2 One-layer full hydrodynamic system

The primes (') on the perturbation variables are dropped in the following sections. The solution
to the linear problem can be sought in the form w;(x,y, z,t) = sin(k - , )W;(z, t) for vertical
velocity, and h(x,y,t) = sin(k - «, ) H (t) for surface displacement. Substituting this form into
equations (23)—(27) and using continuity at the surface and boundary conditions as z — +oo

gives the full hydrodynamic system:
(0 — 11 (07— k%)) (02— K*) W1 =0 forz <0, (28)

(0 — 1 (02 — k%)) (02 = K*) Wo =0 forz > 0, (29)

W1 = 8ZW1 =0 asz— —0Q, (30)
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Wy =0,Wy =0 asz— oo, (31
W1(0,1) = 8, W»(0, 1), (32)

m (02 + K*) Wi(0,t) = (92 + k%) Wa(0,¢), (33)
Wi(0,t) = Wy(0,t) = 9,H, (34)

A { [277k2 + p(0y + v (k2 — 822)] 0. W (0, t)} = —k? [—’ka + (p2 — p1) (90 + g(t))] H(t),
(35)
where |k| = k.

Kumar and Tuckerman! (1994) performed a linear stability analysis of the Faraday problem for
two fluid layers using equations (28)—(35)). The assumption that 7, and p, are negligible in
the FHS is analogous to the Faraday setup for a fluid—air interface (the layer represented by
1 = 2 in Figure 2.1 can be neglected), and leads to a system for the total vertical velocity, after

linearisation, given by

(O — 11 (02— k%)) (02 = K*) Wy =0 forz <0, (36)
Wy =0.Wy =0 asz— —oo, (37)

(92 + K*) W1(0,t) =0, (38)

W1(0,t) = 9,H,, (39)

(2K + p1(0; + v1 (K* — 02)] 0.W1(0,t) = —k* [v1k® + pi(g0 + 9:(t))] Hi(t).  (40)

Equations (36)—#0) are solved here to highlight the relative size between the components of
fluid velocity and surface displacement for the Faraday system near onset of instability and
under weak viscous dissipation. The vibrational forcing term is chosen to be of the form g, (t) =
—a cos wt to demonstrate the relative scaling. The calculation is numerically similar to solving

the FHS in Kumar and Tuckerman| (1994).

As a second order system, equations (39) and (40) contain a forcing term that has time period

T, = 27 /w, and so is of Floquet form. The solution can therefore be expressed as

Wi(z,t) = exp (o +ic;)t) > Win(2) exp(inwt), (41)
H,(t) = exp ((ay + iav,)t) Z Hy,, exp(inwt), (42)

n=—0oo
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where o, + iq; is the Floquet exponent governing the stability and frequency of the solution,

with a,., ; € R. The method involves searching for the required forcing strength, a, for each

wavenumber, |k| = k, that leads to instability, where the real part of the Floquet exponent

Crosses Zero.

Upon substitution of equation (41)) into equation (36)), the form for 11, is obtained to be
Win(z) = A exp(kz) + By, exp(—kz) + Cr, exp(qinz) + Din exp(—qin2),

where

a, + i(a; + nw)

G =K+
141

(43)

When k& > 0, Re{q:,} > 0. Application of the boundary condition as z — —oo leads to
By, = Dy,, = 0 for all n. This leaves two coefficients (A;,, and By,,) for each n, to be related

to Hy,, through equations and (39). This gives
A =1 (Q%n + k’z) Hip, (44)
By, = —2u1k*Hy,, (45)
for q1, # k.
To find a at onset of instability, «. is set to the value of zero and the resulting system is solved
for a; = w/2, yielding a subharmonic response, or o; = 0, for a harmonic response. Sub-

stitution of the expansions for W, and H;, along with the identity a cos(wt) = a(exp(iwt) +

exp(—iwt))/2, leads to a system of equations for each n,

2 K
= {uf (k; (K% +¢2,)" — 4k2q1n> + 7; + gOkQ} Hi, = a(Higir) + Hin-1)) ,  (46)
1

or

Y(n)Hy, =a (Hl(n+1) + Hl(n—l)) ) 47)

where
2

TR

Chen and Vinals|(1999) solved system (46)) recursively, and derived an analytic approximation

k4
S(n) [yf (k (K + a2,)" = 4k, ) + 7;1 + gOkQ} . (48)

for the dispersion relation for this problem. The method used here is that described by Kumar
and Tuckerman (1994)). By splitting each component of /1, into its real and imaginary parts,

the system can be written as a generalised eigenvalue problem given by

ArpsH = aArusH s (49)
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where H = (Re{Hyo}, Im{Hyo}, Re{Hy,}, Im{H,}, ..., Re{H n}, Im{H;x})". The Fourier
series for both surface displacement and vertical velocity is truncated at /N + 1 modes in time.
The condition for reality of the subharmonic solution is given by Hy(_(n,41)) = Hj, and the
condition for reality of the solution for the harmonic response is given by Hy(_,) = H7,,, giv-
ing Hy, forn = —1,—2,..., —N without having to explicitly calculate each component. The
matrix Arpyg is dependent on the frequency of the response, which for the subharmonic case,

a; = w/2, gives

(1 0 10...000 0
0 -1 0 1 0000
1 0 00 00 00
0 1 00 0000
Apps =+ ¢ ¢ 1 e ononn (50)
0 0 00 0010
0 0 00 0001
0 0 00 1000
00 00 010 0
and for the harmonic response, «; = 0, is given by
00200 0000 0
00 00O 000O0O0
100 01 00 00O
01000 000O0O 0
00100 000O0O
Apgs = |+ + + 1 b oceobonononoh (51)
00 00O 00100
00 00O 00010
00 00O 1 0001
00 00O 01000
00000 0010 0]




Chapter 2: Derivation of the Zhang—Vifials equations 51

The matrix Ay gg is given by

[Re{3(0)} —Im{(0)} 0 0 0 0
Im{S(0)} Re{=(0)} 0 0 0 0
0 0 Re{2(1)} —Im{Z(1)} 0 0
Arps = 0 0 Im{X(1)} Re{XZ(1)} 0 0
0 0 0 0 ... Re{S(N)} —Im{Z(N)}
0 0 0 0 . Im{3(N)} Re{S(N)}
(52)

The matrices Az ys and Agpyg are both 2(N + 1) x 2(N + 1) square matrices. The amplitude
a can be found by treating the problem as an ordinary eigenvalue problem and calculating the
eigenvalues of the matrix A7}, ¢ Arys, where H is the corresponding eigenvector and 1/a is
the corresponding eigenvalue. This was the chosen method for the work presented within this
thesis. Note that Ay pg is invertible for £ # 0 and v # 0. The flat state first loses stability
to perturbations with nonzero wavenumber, ko, that was large enough in all cases to not cause
numerical issues by having to solve the problem near £ = 0. Alternative methods for treating
the eigenvalue problem are discussed in Kumar and Tuckerman| (1994). Minimising a over the

wavenumber £ gives ay, the critical amplitude where the flat state becomes unstable.

The solution to the one-layer system for the vertical velocity is

wy = Fsin(k - x) Z nHiy, [(K +qi,) € — 2k*e?] ei(n+3)wt, (53)

n=—oo

The horizontal velocity can be constructed using the continuity equation,

u = —F COS(k . iL‘) Z v Hi, [(k?2 + q%n> LI qulneqwz} ei(nJr%)wt’ (54)

n=—oo

and the surface displacement is written as

hi=Fsin(k-z) Y Hye("2), (55)

The rotational part of the flow is given by terms that are proportional to exp(q;,,z) in equations
and (54), since taking the curl of the velocity results in terms proportional to exp(kz)
cancelling out. The normalisation of the eigenvector H is given through the value of F'. The

relative size arguments are demonstrated here in 2D for a subharmonic response to the forcing,
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but hold in 3D and harmonic responses in a similar way. The rotational parts of both velocities,

reducing the system to be invariant in ¥, are then given by

- 1
wi = —2k*Fu, sin(kx) Z Hy, exp(qinz) exp (z (n + 5) wt) , (56)
oo " 1
ut = —2k*Fuvy cos(kx) %Hln exp(qinz) exp (z (n + 5) wt) . (57)
Recall that ¢;,, (with o, = 0 and «; = w/2) is given by
. _'_ l
RN Ut L) (58)
1
The second term in equation dominates when
k‘2
A<, (59)
w

i.e., weak viscous decay over an oscillation period. The second term in equation (58)) is small-
est when n = 0, and so the value w/2v; is used to compare the relative sizes of the terms
numerically. The calculation 21, k?/w is plotted in Figure which shows where condition
(59) holds for a range of ; and ;. The dynamic viscosity, 7;, is used to vary the kinematic vis-
cosity, v; = 11/p1, with p; kept constant. Where the inequality (59) holds, the dominant term
is at least two orders of magnitude larger than k2. Increasing the surface tension, 7, allows
the same condition to be satisfied in a fluid of higher viscosity. Within this range, H is the
dominant contribution to the solution given in equation (53)), being several orders of magnitude
larger than H,, for n > 0, as demonstrated in Figure for n = 1, 2. The top figure of Figure
shows the calculation |Hy;|/|Hjp| and the bottom figure shows |His|/|H11|. Comparing
the regions of values less than 102 with that of Figure where condition (59) holds, Hj is
at least two orders of magnitude larger, in absolute value, than /;,,. Truncating the solution at
leading order leads to the analytical calculation of the relative sizes of the fluid properties near

onset to guide the derivation of the ZV equations within this validity region.

Where equation (59) holds, the scale of decay of the rotational part of the solution in z (given
in equation (43))) can be approximated as
i(n + 3w (n+ 3w (1+9)

2
qln = — Q1n

151 B 151 \/5

(60)
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Figure 2.2: Contour plot of the value 214 k2 /w, where v is the kinematic viscosity, k is the wavenumber at onset
and w is the frequency of the oscillating solution. Fluid parameters for the one layer system are p; = 103 kg m~3,
w = 100 s~! and the truncation of solution (33)) is taken at N = 20 for a range of surface tension coefficient v,
and dynamic viscosity 7;. The valid parameter range, where the dominant term in equation (38) is at least two

orders of magnitude larger than the k2 term, lies under the line at 0.01.
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Figure 2.3: Upper panel: contour plot of |Hyq|/|H1o| for varying viscosity and surface tension. The value Hjq is

the complex coefficient of the Fourier mode when n = 0, i.e. the oscillating part of the solution with a frequency

of half the forcing. The complex number H; is the contribution from the mode with frequency 3w/2 Hz. Lower

panel: |Hyo|/|H11| is plotted for the same range of viscosity and surface tension. The value His corresponds

to the part of the solution to vertical velocity that oscillates at a frequency of 5w/2 Hz. Within the region where

condition (]3_9[) is satisfied, the dominant contribution is from Hq. This allows a truncation to leading order of the

solution to the one layer problem at n = 0.
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The rate of decay in z of the rotational parts of the fluid velocity, given by equations (56)) and
(57), is determined by the real part of equation (60). The smallest value of ¢, g9, corre-
sponds to the slowest decaying contribution to the rotational part of the flow for decreasing z.

Therefore, the boundary layer thickness near the fluid surface is given by

51 = Lsy| 2, 61)
w

where L; is a constant that determines the extent of the decay length. It is enough for Ls =

O(1) for a substantial reduction of the rotational part of the velocity.

The truncation at n = 0 is used to determine an estimate of the relative sizes at subharmonic

onset at the viscosity limit described above, with rotational part given by
t
wi = —2k*Fu, sin(kx)eRe{qw}z{Q Re{H o} cos (% + Im{qlo}z) -

t
2 Tm{Hyo} sin (% + Im{qlo}z) } (62)
and irrotational part given by
ir : kz 2 wt 2 . wt
w{" = Fuysin(kz)e® < 2Re{qi,Hio } cos 5 )~ 2Im{qiyHio} sin 5 ) ( (63)

where the inequality (39) is used to reduce the coefficient proportional to k*+¢3, to its dominant

term. The rotational part of the lateral velocity is

H t
W = —2k*Fi cos(k:x)eRe{qm}Z{Q Re{%} cos (% + Im{gw}Z) -

9 Im{ %0510 } sin (%t + Im{qlo}z) } (64)

Similarly, the surface displacement is given by

hy = Fsin(kx) {2 Re{H1o} cos(%t) — 2Im{Hp}sin (%t) } : (65)

The norm defined as

ir||2 _ wk % 2% ’ |2
!MH—V%%é A | luiPdzdod, (66)

is used to compare the relative values of each part of the velocity field.
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Applying this to the truncated equations (62)) and (64)) gives

1— 6—2Re{q10}6L %
2Re{q10}(5L )

1— 672 Re{qi0}dL %
2Re{Q10}5L )

bll 2 5, )
o P

€=k /w. (68)

The nondimensional parameter € < 1 appears in the condition in equation (59), and is related to

meQ = 2|H10|/fQFV1 (

1P = 2| Hroguol b Fvs (

Taking the ratio of these,

where

the strength of viscous dissipation (Chen and Vinals, 1999; Kumar and Tuckerman, |1994)). This

can be interpreted as the viscous decay timescale compared to the oscillation period. Similarly,

= |q%0H10|FV1 (W) s (69)

which gives

lwil® 22 ( k(1 — e~2Re{mold) >;
lwir|)®  ladol \Re{qo}(1 —e=2¥t) )
For the term in the bracket, £/ Re{q10} = 2¢, 2Re{q10}0r, = 2Ls = O(1) and 2ko;, = 2eLs =

O(e). Using the approximation e~ 2L ~ 1 — 2¢Ls for small ¢, the term in the brackets is an

O(1) term. The order of the ratio then depends only on k?/|q?,|, which follows

2 9Ls\ 5 1.2 —2Ls\ 3

1—e2Ls\2 | 1— e 2L\ 2
Jwill” _ < c ) =4 <—6 ) 2. (70)
[Jwy| Ls 4ol Ls

Jug||® (1—6“5) (1 —6“5)
-9 = 2V2 €. (71)
[ wir||? Ls |q10] Ls

These sizes agree with Ruvinsky et al.| (1991) for gravity—capillary waves (see their appendix

In a similar way,

[SIE

A). It is clear that the irrotational parts of the velocity are of the same order in all directions, as
can be seen in equations (53) and (54). The situation here is a reduction to 2D waves, but the
scaling for a velocity component in the y direction satisfies the same size predictions as u;. The
final step is to take the norm of the surface displacement defined in equation (66)), but without

the integral over the boundary layer. This gives

Hh1H2 = \/§|H10‘F:
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which upon comparison to equation (69) shows that
[ H——wwﬁ (72)

Equation ((72) suggests that the scale for velocity can be related to the displacement height

within this region.

Equation (36) corresponds to the linearisation of equation (I3)) about the flat state (recall we are

solving for the perturbations w and p). The z component of the linearised version of equation
(T3)) is given by

8p1 . 2 8w1
E—pl (V wy — 8t> (73)

The pressure term for the linearised problem can be expressed as
pr=pi+ 1, (74)

where p] represents the pressure corresponding to the rotational flow (with 2 component given
in equation (62))) and p{" represents the pressure corresponding to the irrotational flow (with
z component given in equation (63)). Equation (74)) can be substituted into equation (73] to

determine the order of variations in pressure across the boundary layer, given by

9pt
0z

where H.O.T. represents higher order terms. The pressure corresponding to the rotational

= O(p1?w?Hy) + HO.T., (75)

flow, p{, decays on the boundary layer scale (1/ Re{qi0}, see z dependence in equation (62))).
Assuming that p} = o(p,e>w?Hy) or smaller outside of the boundary layer, the pressure within

the boundary layer at linear order then follows

(76)

2H
= 8, Hy)  or p;:o(w)_

k

2.2 Derivation of the Zhang—Vinals equations

The derivation of the Zhang—Vifials equations begins with the same setup as described in sec-
tion The assumption that 7, po, and the ratio 7,/ p- are negligible in equation (13)) leads to
governing equations for an incompressible, viscous, Newtonian fluid of constant density in the

domain z < 0, given by

[%;+m V>}:—Vp+mﬁu+VG7 V-u=0, (77)
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where the subscript identifying the upper and lower fluid layers has been dropped. The fluid
velocity is given by w = (uy, uy, u.), p is the constant fluid density, p is the fluid pressure, 7
is the dynamic viscosity and G is the forcing potential, G = —p(go + g.(t))z, where g is the
acceleration due to gravity. The time dependence of ¢.(t) is represented by its frequency, w.
The ZV system is therefore shown schematically via Figure 2.1by neglecting the layer indexed

by ¢ = 2 and dropping the index notation.

The boundary conditions at the fluid interface include the tangential stress free conditions,
a-o-n=bo n=0 (78)

where o is the stress tensor, given in tensor notation by

1 (9ul 8uj
0y = —poij + 20Ty, Tij = A + op ]
j i

and 7v is the unit normal to the surface given by

S -3 (_Oh Oh \ _(_Oh Oh
f=(1+(V_h)) (81:’ ay,l)N( o ay,l), (79)

where the approximation in is valid for small surface deformation, |V | < 1. The unit
vectors @ and b are perpendicular to the normal to the surface in the xz— and yz—planes, re-

spectively, and are given by

. on\? E oh oh
G = <1+ (%) ) (1,0,%> ~ (1,0,%) (80)
. oh\ > 2 oh oh
b= <1+ (a_y) ) (0,1,a—y) ~ (0’1’a_y> . (81)

The normal stress jump condition is given by

and

P — Do — NiTjil; = YK, (82)

where 7 is the surface tension, py is the atmospheric pressure and « is a measure of the curvature

of the surface, K = —V - 7. The final condition at the surface is the kinematic condition,
Oh
E"’UJ_'VJ_}L:'U/';%, (83)

where | denotes the components perpendicular to 2, the unit vector in the z direction, i.e.
V=20, +90,and u, = u, &+ u,y. The depth of the fluid is assumed to be infinite giving
the condition

u—0 as z— —oo. (84)
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Viscous
boundary O( ’—f)
layer  __.-77 w
u=Vo
Bulkﬂow v2¢:0

Figure 2.4: Schematic of the velocity decomposition used in the derivation of the ZV equations (see equation
@)). For small viscosity, v, the flow is approximately irrotational within the bulk, where the velocity, u, can be
expressed by the potential, ¢, where V2¢ = 0. Near the surface, a smaller scale rotational velocity component, v,

is excited due to viscous effects. The thickness of the vortical boundary layer is of O (/v /w).

2.3 Quasi-potential approximation for the ZV equation

For small viscosity, the flow in the bulk is approximately irrotational and can be expressed by

a velocity potential © = V ¢, which (from incompressiblity) satisfies
V2 = 0. (85)

Near the surface, there exists a small viscous vortical layer of O(\/l//_w> thickness (Lundgren
and Koumoutsakos| /1999 and equation (61)), where v = 7/p is the kinematic viscosity. The
rotational part of the velocity is excited by its irrotational part through the tangential stress
condition at the surface given in equation (78]). The velocity in the vortical layer can be decom-

posed into its irrotational (potential) part and its rotational part as
u=Vo¢+wv, (860)

where v = (v,,v,,v,) is the rotational part of the velocity field that contributes to vorticity.

This decomposition is shown schematically in Figure [2.4

The scalings provided by equations (67)), (70), (71), (72)), and in the previous section can

be used in the derivation of the ZV equations by associating the relative size of each variable
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quantity | order
¢ Uo/ko

Vg, Uy eUy
v, e2U,

Table 1: Summary of the relative sizes of the fluid properties within the boundary layer when the inequality in

equation (88)) is satisfied.

to a typical surface height and velocity. To leading order, the rotational flow, v, varies on a
different length scale in the z direction to ¢ in the bulk flow, as demonstrated in equation (56)).

Equation is valid within the boundary layer, yielding

V-v=0. (87)

Using the linear stability analysis of the one-layer system, if V¢ = O(U)), the relative sizes
of the components of the rotational velocity to the leading order part of the irrotational veloc-
ity, near onset and in the boundary layer, satisfy v,,v, = O(el) and v, = O(e*Uy). The
value U represents the velocity scale, where the specific choice of U in relation to the size of
the surface displacement is discussed later. These relative size conditions hold as long as the

nondimensional parameter, €, which is as chosen in equation (68)), satisfies

Ezko\/V/w:ko5<<1, (88)

where kg is the wave number at onset and w is the common factor in the forcing frequency in
g.. The boundary layer thickness near the surface of the fluid is of O(¢). Equation (88) can
be interpreted to have the physical meaning that the boundary layer width is small compared
to the wavelength of the pattern at onset, with the wavelength of O(1/kg). A summary of the

relative sizes is given in Table[I]

Substituting the decomposition given in equation (86) into equation (77)) gives

% (Vo+v)+[(Vo+v) V] (Vo+v) = —%Vp%— vV (Vo +v)+ VTG (89)

For the flat state solution, where the forcing is too weak to disturb the flat state, the pressure
satisfies

p=po+G. (90)
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The pressure can be expressed as a perturbation to the pressure when the surface undergoes no

deformation, given in equation (90), as

_ dp 1 2 .
P =Do— (at+2(V¢))+G+p- 91)

The second term in equation (91)) has been included to eliminate the corresponding terms in

equation relating to the pressure due to the irrotational flow only.

Substituting the term given in equation (91)) into (89)), and expanding the nonlinear advection

term, gives

9 (Vo+v)+ (V- V)Vo+[(Vé+v)-V]v

ot
99 | 2
+(v-V)Vo= ——V +V 875 (V¢)
+ vV + Ve _ V& (92)
Using the identity
1
A><V><A:§V|A|2—(A-V)A (93)
with A = V¢ and V x V¢ = 0, equation (92)) becomes
1
& +[(Vop+v) - V]v+(v- V)V = —;Vﬁ + vV3. (94)

The = component of equation (94) is given by

O, op  0¢ v,
En +[(Vig+vi) Vi]u, + (v Vi)a T 5.9,
v, 0% 10p ) 0*v,
+UZ§+UzaZax——;%+ (VL an 822)’ (95)

where v, = (v,, v,). Equation (93] has been arranged to highlight the scaling differences that
come from derivatives in z within the boundary layer. To nondimensionalise, Table [1|is used
for the fluid properties. This is combined with a length scale in the = and y directions of 1/kg,
a time scale for ¢ of 1/w, and the scale of the boundary layer of § = \/V/_w Any derivatives of
¢ in space are of the order k(, whereas for any other fluid property, the derivative is of the order
1/, where § satisfies (88]). A scale for the pressure term, P, is introduced such that p = Py

The nondimensional values that follow are denoted by a prime.
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62
Nondimensionalising equation (93) and dividing by eUyw gives
02;; Uok’o U()k‘o 8¢’ Uok’o 8¢’ 8?];
5 (V' ¢/ +ev') V' v, + W (v - Vl)~% e 97 0o
EUoko ,811, EU()]{O ’ 62¢/ Pko 8}3’ D 82?}/
- _ L ey (96
+ W 2o w 297097 eUpwp Oz FeVLI 022’ 6)

where equation (88) has been used. A nondimensional parameter representing the ratio between

the fluid velocity and the time and length scale of the pattern at onset is introduced as

g = Doko 97)
w
Substitution of equation (97) into (96) yields
o d¢' £ 0¢
A\ AR ALSIC AL AL

ox’ + €07 07

v, Rt Pk2 opf o,
+ e, 0z + e, 020z _engp% TV 022’ ©8)

A similar equation is found for the y component, given by

ov! o E0¢ Ov,
Y Y Iy ! ! I, 1 hd Y
at/ + 5 [( J_¢ + EUJ_) VJ_] Uy + g (’UJ_ VJ.) ay/ + € az/ 82,
v, 0%/ Pk op ‘v,
! y ! _ 0 Y 2! 2,/ y
+ e€v, 5 + €€, 970y cEuwtpdy + eV, v, + 5 (99)

The =z component of (93)) is given by

Ov. 0o 06 v,
5 TI(Vidtvl) Viju.+ (v Vi) o2+ 277
v, 9% 19p , 20,
+Uz§+vzﬁ = —;g-l-l/(Vlvzﬂ— 5 2) . (100)

Nondimensionalisation of equation (T00) and division by eUyw gives

ov’

£ o9 € 0¢' o]
z ol 1y . / ! = o N 7 —_ - z
e SV +el) V4 () V) 90 4 SO0
Jou, 0% Pk 0F | 4oa,
+ €0, 5 + Ev,, 527 = T Ogutp + eV v, +

The scale for pressure (see equation (76))) due to the irrotational flow is chosen as

2,,/
z

- (10D

potete
kO

(102)
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The nondimensional components of the Navier—Stokes equations are then given by

avl 1o / 11,/ / a¢, 58¢/ av;
8t/ +8[( J_¢ +€/UJ_) Vl]vx+g< v, -V )ax +E%azl
, Ov), / 82¢, _ 2 Op €2 /2/ 5’221;
e Bl =~ an T VLN + o (109
80/ Y ’ / / / agb, 8a¢’80
dv, Pe E) ) /2, 82'0;
—l—e&)za ; —i—eEvza ’ay 3 ,—i-e % 8z’2’ (104)
ov’, , , 1, € , 00 E0¢ Ovl
at,+5[( L¢+EUL)'VL]U,Z+_<’U -V )0—24‘?%62
, Ovl, ,0%¢/ op , 0%
+6528,+528i:—$+ Vivz—f—m. (105)

The decomposition given in equation (86)) can be substituted into equation (83) to give

% +Vi¢-Vih+v -V h= % +0,. (106)

It is assumed that derivatives in the surface height, h, are small. A length scale for surface

displacement, Hy, is introduced and is chosen to satisfy equation (72), i.e.,

How = U. (107)
Substituting the choice for into equation (107) gives

Hoko = E. (108)

This gives an interpretation to the nondimensional variable £ as the ratio of the displacement of
the surface to the critical wavelength of the unstable mode. This is also the scale for derivatives
in h which are assumed to be small. Nondimensionalising equation using the scalings

summarised in Table[I] gives (after dividing by the common factor U)

on ¢’
W—i—ﬁ[ l(ﬁ'-Vlh'+evi-Vlh’]—a—¢/+ev (109)

The nonlinear terms that are proportional to £ can be neglected, as long as £ = o(e). Using
this approximation,

oh’ o
- / /‘ /h/: - /‘ 11
57 +EV, ¢ -V, 5 + €7v, (110)
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The decomposition for the velocity given in equation (86) is substituted into the tangential
stress conditions given in equation (78)). Presenting only linear terms and the leading order of
the nonlinear terms, the left-hand side of equation (78) becomes

0 (0¢ 9 (09 _
92 (% +'Ug:) + e <% —i—vz) + O(EUoko) = 0. (111)

Nondimensionalisation and dividing by Uyk, gives

9%¢ ol Lol
ox' 0z’ + 0z te ox’ +0(6) =0. (112)

Keeping only the leading order terms,

ov! 0%
z =2 . 113
0z 0x'0%' (113
Following a similar method for the middle term in equation (78]),
o’ 82 ¢/
Y= -2 . 114
0z oy’ 0z (114

Substituting the velocity decomposition into the normal stress condition given in equation (82)

and rearranging gives

i

1 ¢ Ov,
ot 2

(V6)’ + (g0 + g:(8) h — ]ﬁ Y (W L2

+(’)(5ng0)) - —%n. (115)

Nondimensionalising and dividing by Uyw/ k¢ gives

d¢' & n2 - Goko I, N 2
—+—(V — (1 — 2
@t’+2( ¢)+w2 ( +gz(t))h €p +2€

0%¢/ N o’
022 682’

3
+ (9(5)) = —’V—kgn’. (116)
pw

Note that gy has been factored out of the forcing function. The strength of the nondimensional
forcing function is expressed as a ratio with acceleration due to gravity for the remainder of
this thesis. The contribution from gravity is represented by the term B = gyko/w? and the con-
tribution from surface tension is represented by the term C' = vk3 /pw?. The nondimensional
parameters B and C' can be recognised from the dispersion relationship for inviscid gravity—
capillary surface waves on water of infinite depth (Lighthill, 2001}, given by

w? :gok0+7—k3. (117)

p

For small viscosity (supported by Chen and Vinals||1999))

B+C ~1. (118)
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2.4 Linear problem

In the following sections, primes denoting nondimensional variables have been dropped for
readability. To derive a relationship between the rotational velocity and 5, it is necessary to first
consider the linear problem. Since / is assumed to be small, the linear problem can be expanded
as a Taylor series about z = (. Because the rotational velocity appears in the derivation at terms
that are of O(€?) or smaller, only the leading order system given by equations (TT9) — (123)
is used to solve for v,, v, and v, in terms of ¢ and h. Any higher order terms in rotational
velocity are neglected in the derivation of the ZV equations. This reduces the overall problem
to a system involving only ¢ and h, and is one of the main benefits of the ZV system. The
linear problem is given by

O, ap v,

_ 2
5% = oy +esz+82, (119)
Ov 0%v
8ty_—e—+evw+aj, (120)
dv,  Op 272 0%,
8t__8z+ Vit t (12
oh 09
oh _ _ 122
3 = T at z=0, (122)
o¢ ¢ 2
o B+t )) h 4 2¢2 o2 =-CVih at z=0 (123)
In the bulk of the flow,
V2o = 0. (124)

The asymptotic expansion for the linear problem, based on the small parameter ¢, is given by
h=ho+eh +0("), ¢=c¢o+ ¢ +O(e), vy =150+ €vm +O(),
vy = Vyo + vy + O(h), v, = v+ vy + O(H). (125)

where a long time scale T' = €2t is introduced.

Substitution of (123) into equations (122)) and (123) gives, at O(1), for weak forcing g, (t) =
O(e?),

8¢0 2 (9h0 8¢0
—+B V —_— == 12
5 ho =—-CV7ihy and 5 5 (126)
We can express ¢q as a 2D inverse Fourier transform,
do(x, 2) = / eik'me‘klzqgo(k:, t, T)dk, (127)
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where the wavenumber is k = (k,, k,). This satisfies both equation (124)) and the condition that
V ¢y — 0as z — —oo. In a similar way the leading order solution to the surface displacement

can be expressed as

ho(x) = / e*hy(k,t,T)dk. (128)
Substituting (127) and (128) into (126)), it can be shown that

39250
ot

+(B+Clkl’)hg=0 and aho = |k (129)

These can be combined into a single second order ODE giving

9%hy
o2

+ || (B + C|k[*) ho = 0, (130)

which has the general solution

hO AO k, T Z\/|’<7| B+C|k| + By k} T —Z\/\kl B+C|k| = A k T irt 4 BO(]{Z T) 7th

(131)
where I' = \/ k| (B+C |k|2) Substituting this into equation (129)) gives
1 i A _ B —il't
¢o = ’k’( et — Boe M) . (132)
Expanding v, as an inverse Fourier transform gives
Vo = / e* e 0k, 2,t, T)dk, (133)
where it can be found by the leading terms from equation (1 13)) that
00, . .
U0 9Tk, Age™ — 2Tk, Bye (134)
0z |,_,
The next step is to assume a general solution of the form
Vyo = 20k, F(k, 2) Age™ — 2Tk, G (K, 2) Bye ™", (135)

with the conditions

oF oG

%(k,o) = a(k,O) =1 and F(k,z) > 0,G(k,z) >0 as z— —oo. (136)

The leading order terms of equation (119),

aUzO o 821)10
ot 022

(137)
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must be satisfied by F' and G, so

2 2
8622 i'F and %:—ZTG. (138)

The general solutions to these are

T

Fk,2) = Ap(k)eVE0+0% | Bp(k)e~VE1+): (139)

and

L
2

Gk, 2) = Ag(k)eVE1=D% 4 Bg(k)e ViD=, (140)

From the conditions in equations (I136)), it must be that Br = B = 0 and

1 , 1 .
Ap=1gp (=i and Ag= /55 (1+1). (141)
Then,
Ba0 = V2T ky (1 — ) eV 20H02 406 _ /2T, (14 4) eV 20707 BT, (142)
Similarly,

B0 = V2Tk, (1 — ) eV EIHD2 40T VAT (1 4 4) eV 2002 Bpeit, (143)

Using equation (87) at leading order,

8UZ0 8vx0 (%yo
= — — 144
0z ox oy (144)
= —/ e*2j|k|*v/2r ((1 — 1) Ag eV/F 1)z il —(1+19) Bge\/g(lfi)ze’irﬁ dk.
(145)
Integrating in 2z over the half-space z < 0 gives
® e 2(1—1) , \/5(1+¢) _
ik-x 2 il't ir't
= — 2T = A —1\/= B
V0 . /_ooe ilk|"V <\/;(1+z) 0€ Ta—9) e dk
= - / e*®2|k[* (Aoe™ + Boe ™) dk
— 22 g, (146)

Here, the leading order solution to the vortical velocity at the surface is expressed in terms of

h. This relationship is used in equation (T10).
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2.5 Dirichlet-Neumann operator

A significant benefit to using the ZV equations is the ability to project the full 3D problem onto
a 2D surface. This is achieved through the use of the Dirichlet—-Neumann operator (DNO). The

DNO can be used on the potential function since it satisfies the elliptic equation
Vip=0. (147)
The DNO relates the value of the potential on the surface, ®(x,t), where
O(x,t) = ¢(x,y,2,t), at z=h(z,y,t), (148)

to the normal derivative of the potential taken at the surface through an operator of the form

18@5

G(h)® = (1+ & (V. h)?)? al

(149)

The term 0,,¢ is the normal gradient, V ¢-n. For small h, the DNO can be expanded as a Taylor
series about z = 0 which can be easily calculated (Craig and Groves, |1994). The derivation of
the DNO is beyond the scope of this thesis, what follows is a Taylor expansion of both sides of

equation (T49) to determine the terms of the expanded DNO.

Consider the solution to equation expressed as an inverse Fourier transform,

6= / " e ek, 1), (150)

where the exp(—|k|z) terms are eliminated by the far field boundary condition ¢ — 0 as z —-

0o. This also means that

d :/ etkeelkh@) bk t)dk, (151)
and, as a Taylor series expanded around z = 0, is given by
OO ik-x ) * ikx ] Eh? ~ 2 _ikx ]
b = e *pdk + Eh |kle"™®odk + 5 |k e ®pdk + . . ., (152)
where ® = ®+ED,;+E?Py+. . .. The £ terms come from the choice of nondimensionalisation

for the surface displacement and the pattern length scale (Hyko, see equation [108).

The right hand side of equation (I49)) is given by

1 . 99 0¢Oh  _0¢0h
2 2\ 2 . A
(1+&*(V.ih))*Vo-n T gax o gay oyl
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To calculate the terms of the Taylor expansion of the DNO, the left-hand side of equation (149)

is expanded as a Taylor series in h to give
(Go(h) + EGi(h) + E*Ga(h) + ... ) (Do + EPy + E2Pr + ... ). (153)

This is equated to the expansion of the right-hand side of equation (I49) to find G;(h) up to

second order in £.

2.5.1 Leading order balance of the Taylor expanded Dirichlet-Neumann operator

At leading order,
Go(R)Dy = / k|e™®®pdk = Dby, (154)

—00

where @ is the first term in the expansion of (I5T]). The function D acts as a weighted inverse
Fourier transform, with the weight being the norm of the corresponding wavenumber in Fourier

space.

2.5.2 First order balance of the Taylor expanded Dirichlet-Neumann operator

At the next order,

R N ey R

or J_o

—0o0

—za—y/_ook:yek odk. (155)

The second term in the expansion, given by equation (152)) ($,), can be expressed as
P, = h/ |k|e*®ddk = hD®,.
The first term on the right-hand side of (I55) can be expressed as

h / k|>e*®gdk = —h V2 By,

oo
and the last two terms on the right-hand side of (I55)) can be expressed as

o / ba ™k — i / ke *gdk = =V L h -V 1 .
ox y

—00 —00
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Using these in equation (153)) leads to

Go(1) By — —D (hDy) — WV By — V1 1 - VB, (156)
= —D (hD®y) — V1 - (hV 1 Dy), (157)

using (154).

2.5.3 Second order balance of the Taylor expanded Dirichlet-Neumann operator

At second order,

W (%8 ik oh [ o
gZ(h)(Do + g1<h)q)1 —+ Qo(h)q)2 — E ’k’3ezkz¢dk - Zh@/ kx|k‘elkw¢dk
. Oh [~ il
_’ha_y /_OO kylkle®*gdk. (158)
The function P, is given by
h2
@2 - _EVifbo,

and @4, G;(h) and Gy(h) are already calculated above in terms of ®,. The first terms on the
right-hand side of equation (158)) can be expressed as
h2 o0

2

oo h2
[kl e™ = pdk = —=-V1 (D),
and the last term in equation (158) can be expressed as
h [ LA h [ A
— ihg—x / ko |k|e®®pdR — z’hg—y ky|kle®*®pdk = —hV L h -V | (D®) .

Together, this makes
Go(h)®) = D (HV30,) + D (D (1D®,)) + V.. - (V. (hD (&) — 72 (D)
—hV h- -V (D®y). (159)
The last three terms of equation (159) can be collected into one term,
%vi (R*Ddy) .

To second order, the DNO is given by

G(h)® =Dd — E[D(hDP) + V- (hV  ®)] + &

1
D <§h2vi<b + hD (hD<I>))

+ %vi (R*D) ] . (160)




Chapter 2: Derivation of the Zhang—Vinals equations 71

2.6 Substitution of the Dirichlet-Neumann operator

So far, the governing equations have been reduced to

g—}; +EV . ¢-V h= % +26¢*V3 h, (161)
and
oo &
af (V)Y +B+g.(t) h—22V2 ¢ = — (162)

with the assumption that terms of O(E¢), O(€®), or smaller, can be neglected, with £ < e.
Primes have been dropped and all fluid properties are nondimensional. Equation (161)) has been
achieved by replacing the rotational velocity terms in equation (110) using the relationship at
leading order for weak forcing, given by (146). The continuity for the potential flow in the
bulk, equation (83), has been used in equation (162).

Expressing ¢ as its value on the surface,
O(x,t) = o(x, h(z,1),1),

and using the chain rule gives

00 _ .0hdp 99  .0hd¢
V@_(a +ES o 7 +88y82) (163)
9> 9 _Ohdo (164)

9t "ot St ar
) 0O\ | .00y, o
Vi =V%2¢p+EV. h-V, O 5, ) €5 Vih-¢€ (V. h)?>V2 6. (165)

Further to this,

9 _ve.n (166)
on

= (1+ & (VLh)Z)_% (% AR qus) : (167)

Relating this to the DNO gives

G(h)® = % — &V h-V,0, (168)

or, expressing 0, ¢ in terms of surface variables only,

9¢
0z

1

= (1+&E*(V.1h)?)  (G(R)D+EV -V )

~G(R)D +EV h-V, & —EX(V h)G(h)D, (169)
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while neglecting terms smaller than O(E?). Substitution into equation (T6T)) gives,

% =2¢*Vih +G(h)®. (170)
Substitution into equation gives
o  _0p0h E|[0p\? ) o
5t [(5) +(Vi®) = 26V.ih- V.57 |+ B(L+g.()h

1
—2V2 0 = CV2h — 5f:QCVL -((VLh)*V  h). (171)

Using equations (T69) and (T70), and neglecting terms that are smaller than O(E?), it can be

shown that

9 e (GR)D +EV h- V. D) GR)D + &

= | @) +(v.0)’

+B(1+g.(t)h

1
—2e8V2d = CV%h — 5520VL -((VLh)*V k). (172)

Rearranging gives

%—(f =2°V20 + COVAh —B(1+g.(t)h+E& (% (G(h)®)* — % (V@)?)

+ &2 (g(h)qbvm V.D— %CVL (V. h)? VLh)) . (173)

The final step is to expand the DNO in equations (170) and (T73)) using (I60)), neglecting terms
of order smaller than £2. Equation (T70)) becomes

g_’z _ 9V2 1+ Db — E[D (hDD) + V., - (hV . B)]

+ &2

D (%hQViQ + hD (hpcb)) + %vi (R*D) ] . (174)

Performing the same process on equation ({1/3)) and collecting terms of the same order,

%_f —2V2 0 1 OV2h — B(1+ g.(£)h + %5 (DD) — (V. 0)’]

— &2 [ch (D(hD®) + hV3i®) + %CVl - ((VLh)*V 1h) ] . (175)

2.7 Recap and scaling assumptions

Equations and (I73) are the ZV equations. When rescaled by 1/&,




Chapter 2: Derivation of the Zhang—Vifials equations 73

% =2’V h 4+ D® — [D (hD®) + V. - (hV  ®)]
1 1

+ |D <§h2vic1> + hD (hpcb)) + évi (R*D) ] , (176)

a(I) 272 2 1 2 2

5 = 2€Vie+CVih - B(1+g:(t)h+ 3 [(D®)* — (V1 9)°]

1
— [DCI) (D(hD®) + hV3 @) + 5OV (V.1 h)*V .h) ] (177)
where

Du = / |k|e®*udk. (178)

Note that the operator given in equation makes the problem nonlocal in space. The
derivation of the ZV equations relies only on the existence of the DNO (the form of which
is given in equation (149)) and the operator’s property that it can be expressed as a Taylor
series expansion around z = 0. The general form of the DNO does not need to be calculated
explicitly in the derivation. Note that the ZV equations possess similar spatial properties to
the 2D Swift—-Hohenberg equation where localised states have been found (Lloyd et al., 2008),
i.e., they are both equivariant under the action of the Euclidean group, E(2) (the group of

translations, reflections, and rotations on a 2D plane).

The derivation of the ZV equations given in this chapter has closely accounted for the relative
sizes between fluid properties that previous derivations of the ZV equations have not. These size
assumptions were supported by results from a linear stability analysis of the full Navier—Stokes
equations. In deriving the ZV equations through consideration of the scaling, the following two

scaling assumptions were made:
* Viscous effects, quantified by ¢, are small, and terms of 0(63) can be neglected within
the derivation

* The ratio of surface displacement to onset wavelength, quantified by £, compared to

viscous effects, ¢, is small.
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The second of these scaling assumptions has the physical interpretation that

€_Ho oy (179)
€ )

i.e., the scale of the surface displacement is small compared to the viscous boundary layer. This
scaling assumption has not previously been identified in the literature regarding the derivation
of the ZV equations and contributes to understanding their validity. This is a restrictive condi-
tion, and is indirectly related to the “uncontrolled approximation” made in Zhang and Vinals
(1997a). Without this assumption, the advective terms that are eliminated within the deriva-
tion (from equation (I09))) cannot be justified with relative scale arguments alone. However,
as described in section [I] the ZV equations not only contain mechanisms important to pattern
formation but achieve qualitative agreement with other models based on the Navier—Stokes
equations for moderate viscosities. There may be a cost associated to using the ZV equations
— the benefit of projecting the problem onto the fluid surface as a 2D formulation increases
the restriction on the assumptions. This is an interesting problem that leaves the question of
the validity of the ZV equations open. Since the concern for this thesis is to search for lo-
calised states in a fluid system derived from first principles, the ZV equations still provide an

appropriate starting point.
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3 Weakly nonlinear analysis and numerics

In the following sections both the linear stability and the weakly nonlinear analysis of the
ZV system given in and is presented. Results from both are vital in determining
the bicritical point and the extent of the bistable region between the flat and patterned state.
Section [3.3] describes the numerical scheme used to simulate the ZV equations and is followed

by validation of the numerical scheme.

3.1 Linear stability of the Zhang—Vinals equations

Linearising equations and (I77) gives
oh

= 26V%h + DO, (180)
ot
%_T =26V?® — B(1+ g.(t)) h + CV3h. (181)

By expressing i and @ as inverse Fourier transforms,

h:/ e**h(k, t)dk and @:/ e* Pk, t)dk, (182)

[e.e] o0

equations (I80) and (I81) can be given by their Fourier space counterparts as

Oh . »

— = 2 |k[*h + |k|®, (183)
ot

8@ 2 22 2\ 7 7

o = 2 k[0 - (B+ C|k|*) h — Bg.(t)h. (184)

The system described in equations (183]) and (184) has Floquet form and can be solved using
the same method as in |Kumar and Tuckerman (1994) (previously described in Section [2.1.2)).

The Floquet system has solutions of the form
h = X H)lip (k. 1), (185)

where h = (h, )’ and p(k,t) = (H(k,t), P(k,t)). The function p(k, t) has the same period
as g,(t) and (A, + i)\;) is the Floquet exponent. The real part of the Floquet exponent, \,,
determines the growth rate of the linear solution. The imaginary part of the Floquet exponent
determines the type of temporal response, harmonic or subharmonic. It can be shown that

(Kumar and Tuckerman, 1994) when 0 < \; < 1/2, A\, < 0, i.e., the Floquet solution is
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temporally decaying and therefore unimportant when considering instability. The values of
A; important to this problem are \; = 0 for the harmonic response, and \; = 1/2 for the

subharmonic response of the solution to the forcing function.

Since g, (t) is a superposition of time modes with integer frequencies, the period of p(k,t), in

time, is 27. Therefore, a Fourier expansion in time of the form
p(k,t) =Y p.(k)e™ (186)

is used, where p,, = (H,, P,)". Forcing p to be real simplifies the calculations. For a harmonic
response, the reality condition gives p_,, = p,,, where a bar represents the complex conjugate.

For a subharmonic response, p_,, = pp,_1.

Combining equations (183]) and (184) to calculate the forcing strength, a, where the mode with

spatial wavenumber k becomes unstable, gives

0 2, A A
(& + 262|k|2) h+ |k| (B + C|k[*) h = —|k|Bg.(t)h. (187)
Truncating the Fourier expansion at N; modes in time in equation (186) gives a solution of the
form
Ny
h=e™" " Hy(k)e™. (188)
n=—N;

Substituting equation (188)) into (187)), and equating modes in time, gives
(i (\i + n) + 2¢2 k%) H,, + k| (B + C|k[*) H, = —|k|Ba [gz(t)fz] , (189)

where ¢.(t) = ag.(t) and [gz(zﬁ)ﬁ} represents the resolved component of the solution mul-
tiplied by the forcing function that corresponds to the mode n in (I88). A simple example is
given by g, (t) = cos(mt) = (" + e~"™) /2. Then, for B and |k| # 0,

2

_ W [(Z (Ai+n)+ 262|k‘|2>2 + | k| (B + C|k|2>] H,=aHpim+ Hy).  (190)

For n — m < 0 with harmonic solutions, the reality condition gives

_ % [(m + 2€2|k:y2)2 + |k| (B + C,kﬁ)} Hy,=a(Hpim + Himy) . (191)

For a subharmonic response,

2

1 2
~ Blk| (Z (5 +”) + 2€2|k¢|2) H, + |k| (B+Clk[®)| Hy, = a(Hnwm + Hpn-1) -

(192)
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The above can be combined into a system of equations for all /7,,. By separating /,, into its real
and imaginary parts, H,, = H" + iH', and expressing each as a component in the vector H,
such that H = (H}, H}, H, HY, ...)/, the calculation for the linear stability can be expressed

as the eigenvalue problem
1
ALHSH = aARHSH or AZII-ISARHSH = —H, (193)
a

where Ap s and Aryg are 2(N; + 1) x 2(V; + 1) matrices. The second of the ordinary eigen-
value problems expressed in equation (193) was used to find @ via the same method discussed
in Section The matrix Agpyg can be easily adapted to include multiple frequency forcing
with different phases, although the form of both matrices depends on the forcing frequency and
the temporal nature of the ansatz substituted. As with the linear stability of the Navier—Stokes
equations for the Faraday problem, discussed in Section the marginal stability diagram has
the form of tongues that alternate between harmonic (“H”) and subharmonic (“SH”) temporal
response for increasing |k|. An example of the marginal stability diagram for two-frequency

forcing is shown in Figure The nondimensional forcing function used is given by
g(t) = a[cos(x) cos(2t) + sin(x) cos(3t)] . (194)

Figure is plotted for x = m/4 (or 45°) in equation (194)). For the magnitude of a given
wavenumber, k, the real eigenvalues of system (193) determine the forcing strengths, a, re-
quired for instability of the flat state to perturbations. Minimising a over |k| gives aq, the crit-
ical forcing strength for the most unstable mode with wavenumber k. In the example phase
diagram, shown in Figure [3.1] a, is located on the first harmonic tongue, highlighted by the
intersection of the dashed lines. For small ¢, the critical forcing, ag, is proportional to €2 (see
Appendix [A)). For a given forcing, the growth rates of the range of modes in % can be calcu-
lated by numerically solving the linearised ZV equations to determine which modes are closest
to instability (by neglecting the nonlinear terms in the numerical method described in Section
. The real part of the Floquet multipliers corresponding to equation (I83), Re{e*+)7r
where T, is the period of the forcing, are plotted for each k at a = a, in Figure The Floquet
multipliers confirm the calculations from the linear theory in that the system first loses stability
to harmonic modes with wave vector magnitude kg for this choice of parameters, with damped
harmonic and subharmonic modes corresponding to wave vector magnitudes above and below

ko.
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Figure 3.1: Marginal stability diagram constructed using the linearised ZV equations for nondimensional values
€2 = 0.1, B = C = 0.5. The forcing is given by g(t) = a (cos(x) cos(It) + sin(x) cos(mt + 1)), with [ = 2,
m = 3,1 = 0, and x = 7/4. The forcing strength, a, is nondimensionalised with gravity, go, and is plotted as a
function of nondimensional, normalised wavenumber & /kq. Blue lines show the marginal stability tongues for a
subharmonic response (SH in diagram) and red lines show the marginal stability for the harmonic response (H in

diagram). Dashed lines indicate the location of the minima for harmonic and subharmonic responses.
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Figure 3.2: Real part of the Floquet multipliers corresponding to equation (I83)) plotted against k/ko, where
ko is the magnitude of the critical wave vector, at critical forcing, a = ag. A mode is marginally stable and
oscillates with harmonic (subharmonic) response when the real part of the Floquet multiplier is equal to 1 (—1).
The parameters are those used to plot Figure The leftmost (blue) vertical dashed line corresponds to the
magnitude of the wave vector at the minimum of the subharmonic tongues. The right (red) vertical dashed line
corresponds to the minimum of the harmonic tongues. The system first loses stability to harmonically oscillating

modes, with damped harmonic and subharmonic modes either side of the critical wave vector.

By varying the parameter controlling the dominance of each forcing mode in equation (194),
X, a phase diagram highlighting the linear stability boundary of the flat state can be created.
An example is shown in Figure For x = 81°, point a on Figure [3.3] the flat state first loses
stability to modes that respond subharmonically in time to the forcing for increasing a. For
x = 45°, point ¢ on Figure [3.3] the flat state loses stability to modes that respond harmonically
in time to the forcing for increasing forcing strength, a. There is a point of bicriticallity, where
the flat state loses stability to both subharmonic and harmonic modes in time, located near point
b on the phase diagram, where y = 68.85°. Experimentally, temporally harmonic localised
oscillating states have been found near the bicritical point (see Arbell and Fineberg| 2000).
The bicritical point is used as an important guide in the search for localised states in the ZV

equations.

The accuracy of the linear stability analysis (which extends to the accuracy of the weakly non-
linear analysis described in section [3.2)) is dependent upon the number of time modes included
in the truncation of the Fourier series given in equation (188). The components of the eigen-

vector corresponding to @ in equation (193) form the coefficients of the Fourier series. Figure
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Figure 3.3: Left: Phase diagram showing the linear stability boundary plotted against the strength of forcing with
frequency 2, ag cos(x), and the strength of forcing corresponding to frequency 3, ag sin(x). Right: Corresponding
marginal stability diagrams for varying , with a at y = 81°, b at y = 68.85°, and c at x = 45°. The minimum a

in the marginal stability diagrams correspond to the values of ag (points labelled a, b, and ¢) on the phase diagram.




Chapter 3: Weakly nonlinear analysis and numerics 81

—+— Subharmonic modes

——— Harmonic modes
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Time mode

Figure 3.4: Absolute value of the coefficients of the Fourier series expansion given in equation (I88) plotted
against nondimensional frequency. The linear system is solved at the subharmonic (\; = 1/2, line with plus
symbols) and harmonic (A\; = 0, line with crosses) minima in a shown in Figure The eigenvector that

corresponds to the coefficients of the Fourier series expansion has been normalised such that |H| = 1.

[3.4]shows the absolute values of the modes corresponding to n in equation (I88) (and therefore
(186)) after normalisation such that the Euclidean norm of the eigenvector is equal to 1, for the
harmonic and subharmonic minima shown Figure[3.1] Figure[3.4]indicates that the relative size
of the temporal modes decays exponentially for increasing frequency. This result can be antic-
ipated by the findings highlighted in Section [2.1.2] for the linear analysis of the Navier—Stokes

equations.
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3.2 Weakly nonlinear analysis of the Zhang—Vinals equations

A weakly nonlinear analysis of the ZV equations can be performed to derive an amplitude
equation (or a system of amplitude equations) governing the amplitude of the most unstable

modes. A perturbation to the critical forcing is chosen of the form
a=ag(l+p), (195)
where q is the critical forcing, and ;o < 1. The forcing is then given by

9:(t) = ao(1 + p)g:(t), (196)

where §.(t) represents the time dependent part of the forcing function (with forcing strength

factored out).

A multiple scales approach is used to balance terms up to O(,u%), where the scaling is antici-
pated from Zhang and Vinals|(1997a)) and Rucklidge and Silber; (2009). A ‘slow’ timescale, 7',

is introduced, where 1" = ut, such that

0 0 0

A perturbation expansion of the fluid properties on the surface, h and ¢, in terms of the pertur-

bation parameter, gives

h(m,t) = pehy (2,6, T) + pho(z, t,T) + p2 ha(,t, T) + O(i?),

O(x,t) = pz®y(z,t,T) + p®s(x, t, T) + p2®s(w, t, T) + O(12), (198)

where x = (x,y).

3.2.1 Weakly nonlinear analysis at order ,u%

Substituting the expansion given in (198) into equations and (I77), and keeping terms
of (’)(;ﬁ), gives the linear system described by (183) and (184). Leading order solutions are
sought near the point of onset of instability in the form

= fi(6) Y (An(T)e*® + A (T)e ™ %) (199)

n




Chapter 3: Weakly nonlinear analysis and numerics 83

Oy =gi(t) > (An(T)e*™ + A, (T)e *n ™) | (200)
where f;(t) and ¢ (t) represent the temporal response of the unstable mode in space, A, (7))
represents the slowly varying amplitude of the mode corresponding to wavenumber k,,, where
|k,.| = |ko| (the absolute value of the critical wavenumber near onset), and n = 1,2, ..., N.
In general, N represents the number of modes in space creating a pattern lattice. For example,
roll patterns can be expressed with one mode, NV, = 1, square/rhombus patterns require at most
N, = 2, and Ny = 3 for triangular/hexagonal patterns for the simplest Faraday waves. The
patterns on different lattices rely on the orientation of the wave vectors (i.e., rolls can exist on
a square or hexagonal lattice depending on the amplitude of the modes). Amplitude equations
for N, = 1,2, 3 are derived here. Note that all spatial modes at leading order have the same
temporal response, fi; and g;, since the system at leading order (the linearised ZV equations)
are dependent only on the magnitude of the wavenumber near onset. Together, f; and g; solve

the Floquet problem given by

df:

= L(k 201
dt ‘C( U)fh ( O )
where
—2€2|k|” k| fi
L(k) = ) and f; = ) (202)
— (B + Clkl") — Bagg.(t) —2¢*k?| g1

The system given by (201) is analogous to equations (183)) and (184), and can be combined
into a second order ODE in terms of f; only, becoming the damped Mathieu equation

d? d -

WJQ + 462|k0|2£ +4€(ko| " f1 + T3 f1 + Baolkolg:(t) f = 0, (203)
where I'2 = |k, | (B +C |kn|2) The frequency of the functions f; and g; correspond to the
marginal stability of the mode with wavenumber ky. If the mode of wavenumber k¢ has a
harmonic (subharmonic) temporal response, f; and g; will be harmonic (subharmonic) in time.
The calculation for f; and g; is the same as the linear stability calculations of Section (3.1}
where the eigenvector that corresponds to a( forms the coefficients of the Fourier series in time

for fi. The function g; is constructed from f; using equation (201).
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3.2.2 Weakly nonlinear analysis at order

The weakly nonlinear analysis of the ZV equations gives, at order p,

8;52 =26’V hy + D(P2) — [D (D (91)) + V1 - (h1VL<I>1)] : (204)

a@2+ CV3 hy — B(1 + aog.(t))hi + 262V3 &y + = 5 [(ch = (Vi®1)?].  (205)

ot

Solutions are sought in the form

h2 — [ ( )A A ez(k:1+k:2 + f23< )A A ez(k2+k3 + flS( )AlAgei(erkg)-w + C.C.} +
[f372(t) Ay Age’ )@ 278 (1) Ay Ageilkeka) @ o £173(1) Ay Age'®r k)™ 4 ce] +
|:+f211(t)14_%€2ik1.w + f222(t)A%62ik2'$ + fg’g(t)A%€2ik3'm + C.C.] 7

(206)

and

o, = [g%Q(t>A1A26i(k1+k2)m +g§3(t)A2A3€i(k2+k3)~m + 953(t)A1A36i(k1+k3)'m + C.C.] +
(9572 (t) Ay Age®1 7R o 6278 (4) Ay Agelho ko) @ o gl =3 (1) Ay Age'®r R0 e ] +
[+g3* () AZe® 1@ 4 g22(1) AZe® 2™ 4 g33(1) AZe?™ s 4 c.c] .

(207)

For N;, = 2, the terms including wave vector k3 can be omitted. For N, = 1, the terms with
wave vectors k, and k3 can be omitted. The functions £’ (¢) and g5 (t) represent the temporal
response at second order of the mode corresponding to the wavenumber k; + k;, with fé_j and
g;_j corresponding to the wave vector k; — k;. The system at second order, corresponding to
the wave vector k; + k; (fori, 7 = —3, -2, —1,1,2,3), is given by

afy
dt

— L(ki + k) fy) = NLY. (208)

The nonlinear terms at this order are represented by
]
—[D(mD (1)) + V- (lV1)]

NLj = ) ,
L(Dé1)* = (Vn)?]

(209)

where N L;j denotes the resolved part of the nonlinear contribution corresponding to k; + k;.
The quadratic terms in N L (that depend on f; and g;) lead to a solution for i’ = (fs’, g5')’

that is always harmonic in time regardless of whether f; and g; are harmonic or subharmonic.
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Equation (208]) can be combined into a second order ODE of the form

2 fij dri 3 3 3
dt; + 4€%|k; + kj|2d—§ + €' ki + Ky | ) + T3, £y + Baolk: + kjl . (t) 3

dt

d
(_ L2l +kj|2) Frgr (1B + Ry — (IRl + 1By) Ko + ey

+ |ki + kjlg; (|kil|kj| + ki - k;) | (210)

The terms on the right-hand side of (210)) are the resolved nonlinear terms corresponding to the
wave number k; + k;. The equations for f;fj (fy '7) can be constructed by replacing k; by —k;

(k; by —k;) in equation (210).

It is usual to apply the Fredholm Alternative Theorem to ensure the system is solvable at second

order, briefly described here. Take a system of the form
Lu=f, L'v=g, (211)

where L* is the adjoint operator of L defined by requiring (Lu,v) = (u, L*v) for all u and v.

The inner product in this instance is given by

1 /T
(u,v) = T/ uvdt. (212)
0

The Fredholm alternative states that only one of the following cases is true:

1. The inhomogenous equations (211)) have unique solutions, u and v, respectively. The

corresponding homogenous systems,
Lu=0, L'v=0, (213)
each have only the trivial solutions, where ©v = v = 0.

2. The inhomogeneous equations are not solvable for every f and g. In this case, the in-
homogeneous equations have either no solutions, or infinitely many solutions in the case
where

(fiv)=0 and (g,u) =0, (214)

where u and v satisfy the homogeneous equations

Lu=0, Lv=0. (215)
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The adjoint problem at leading order is given by

d ~
Fél — 4%\ kg Fi + 4€*|ko|* f + T2 f1 + Bag|kolj.(t) fi = 0. (216)

The adjoint problem has a solution that has the same temporal frequency as the solution to

equation (201).

There are four cases to consider when determining solvability at this order depending on
whether f; is subharmonic or harmonic and on whether there are any quadratic interactions
leading to modes on the critical circle (as is possible for when /N, = 3). The first two cases are
when f; is subharmonic, with |k; + k;| # |ko| or |k; + k;| = |ko|. In these cases, the solu-
tion to the adjoint problem, fl, is also subharmonic, which automatically satisfies the condition
<RH S, f1> = 0, since the RH S is always harmonic in time, where RH S is short-hand for the
right-hand side of equation (210). The third case is when f; is harmonic and |k; + k;| # |ko|.
No solvability condition is needed due to the adjoint solution having a nonzero real part in the
Floquet exponents. The fourth case is when f; is harmonic and |k; + k;| = |ko| for some
1 and 7. The search for localised states presented in Section 4| concerns the fourth case (har-
monic hexagons), as observed in |/Arbell and Fineberg (2000). The equations require special
treatment. In the harmonic hexagon case, an additional time scale is necessary to satisfy solv-
ability, T}, = /ﬁt, which introduces a derivative in time at order p that leads to an alternative
equation to equation (208). For example, the equation corresponding to wave vector k; + ko in

the harmonic hexagon case is

d
Cj;t fl— — L(ky + ko) f3°A1Ay = NL' A Ay, (217)
using ki + ky = —kj3. This system can be combined to give, in terms of f;2
d2
dj; A A2+4€2|k0| A A2+4€4|k0| f212A A2+F +2f22A A2+Ba0|k0|gz( )f212A1A2

f1 2 2 8A3
= — — 2 —
( + ‘ko’ f1+‘k0’gl aTh

d
| (dt 2 k| >f1g1 (kol? — (1Kol + [kol) ko]

+ |kolg? (Ikol” + K1 - ko) |, (218)

where |k, + k2| = |ko| has been applied. The equations for all combinations of A;, As, Aj,
and their complex conjugates can be found by permuting A;, A, and A3, and their complex

conjugates, in equation (218).
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The Fredholm Alternative Theorem states that the condition

(

dt

d
(_ . ze2|ko|2) Fign (1Kol — (1kol + [kol) ko)

¢ kolg? (Jkol? + For - k2>]

OA;

o,

d
_ <£ + 2€2|k0|2f1 + |k0|gl>

ﬂ>=0<m%

must be satisfied for solvability at second order. This leads to the solvability condition

aA'g, . 6&12
ar = A, (220)
where
. 0
Q5 = < (a + 2€2|k0|2) f191 (|k0|2 — (|k0| + |k70|) |k§0|) (221)

T lkolg? (Kol + ks - k) f>
0 N
T = <(§+262|k0‘2> f1+|k:0\g1,f1>. (222)

All other combinations of wave vectors (for |k; + k;| # |ko|) at this order are solved using
(210) for the harmonic hexagon case. Note that &;; = &;j;, and that &;p = a3 = Q3 ona

hexagonal lattice.

3.2.3 Weakly nonlinear analysis at order ,u%

At third order, the weakly nonlinear equations are given by

Ohs  Oh
a—;’ + 8_T1 = 22V2 hy + DOy — V| - (M V Dy + hoV | 8y) — D (b DDy + hyDDy)
1 1
+ D |hD (hDd,) + §h§vi<b1 + §vi (RiD®), (223)
od; 0D
a—; + 8_T1 = 262V &3 — B(1 + agd.(t))hs — Bagg.(t)hy + CV?> hs + (D(D1)D(Dy))

C
— (V191 -V &y) = D(®1) [0V Py + D (hDPy)] — FV1 (Vihi (Vih)?). (224)

The left-hand side of each equation has a time derivative of the second order solution with

respect to 7, when dealing with harmonic hexagons for the relevant wave vector combinations
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(see above section). Only the wavenumbers that satisfy |k, | = |ko| need to be considered for

the solvability condition at order u%. For simplicity, hg is expressed as

hy =" [h” ik | c.c.] , (225)

n

and ¢ is expressed as

b= [&gei’“n'w + c.c.] , (226)

n

neglecting any combinations of k,,. Expressing equation (223) and (224) in Fourier space gives

OH?Y 0 0 0A
atg - [’(kn)Hi? - = B flAn - fl oT
Ba[)gz(t> 0

+ (N L3)", (227)

where H} = (h,¢7) and (IN L3)" represents the nonlinear components resolved for corre-

sponding wavenumber k,,. The nonlinear components are given by

—V - (MVi¢s+ hoV 1) — D (hi Doy + hoDehy)

+D [hﬂ) (hiD¢y) + %hfviéf)l] + %Vi (hiD¢y)
NL; = . (228)

(D(¢1)D(¢2)) — (V11 - Viga) = D(¢1) [mV7 1 + D (h D)
—OV, (Vihy (Vi)

Combining both components of system into a single equation gives

82Bn 2 A 4 n 21 n
oz T A€ [k \ S e |y + T2 + [k Bagg. ()5 =
o, o DA,
<8t+2€ e ) ((NLg) o aT)
n 0A,
el (N25)" = 0057 - Baud(0A04,) . @29
where
NLh n
NL} = (VL") (230)
(NLY)"

From equation (229) an amplitude equation can be found by again applying the Fredholm
Alternative Theorem. The resulting amplitude equations depend on N, with the nonlinear
terms N L% and N Lf determining the interaction between modes in space on the pattern lattice.
The basic patterns in the Faraday system consist of choosing N, = 1 for rolls, N, = 2 for

squares or rhomboids, and /N, = 3 for triangle/hexagons patterns.
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For the simplest case, N, = 1, the amplitude equation has the form

dA
T = agads + BlAiP Ay, (231)
where
= <_B’k1|§z(t)f1;f1>, (232)
d 2 3 9 3C 4,3 -
B = - + 283 k1) (2lkiPoifat + kil fRgn) + Rl | 1Kl frg +7|k1| EANAY
(233)

The function « quantifies the influence of the forcing on the wave amplitude, and 3 can be

interpreted as the self-interaction of a wave mode.

For Ni, = 2 or 3, the amplitude equations (a /N system of equations) are given by the system

dA

T = a0 +BIAPA + vl A A, (234)
Jj#i
fori = 1,2,..., Ni. In the harmonic hexagon case, additional quadratic terms at O(u) need

to be taken into account (see below). The strength of the interaction between spatial modes is

quantified by ;;, where

9 N
Yij = <(6’t + 267 ki ) Qij + |ki|bij7f1> , (235)
with
aiy =2 (ki - (ki + k;) — |kl |ki + Kj) frg8 + 2 (ki - (ki — k) — kil ki — ;) frgs
— 2 (|ki| ks | + Fi - kg) gi f5) — 2 ([ReillBes| — ki Kej) g1 fs

+ (|kil? (R + Fej| + ki — Kj|) + sl Kej| (1B + ki | + |Ki — Kj])) g1 f7
— 2 (|ks” + |kl | s |* + s |[Beal”) gn f2. (236)

=2 (|k; + kj||kj| — k- (ki + k7)) 195 + 2 (|| |Fei — ky| + K - (ki — k) g1g5 7
+ (2 (ke 1* + |Feil B | + |Kejl| sl ) — |Ks1” (1B + ey | + |Fes — K1)
el (R 4 | B —kj|>)flg%

C (|kil?|k;|* + 2 (Ri - k5)?) 2. (237)
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Both a;; and b;; represent the resolved components of /N L3 for general Nj, corresponding to
the interaction between modes associated to wave vectors k; and k;. Recall that f37 and gy are

defined in equation (208).

The amplitude equation system differs when considering the special case of harmonic hexagons,
in that equation (229) has time derivatives in 7). For N, = 3 on a hexagonal lattice, with

—ky — ks = ki,

oh 0
(a—Ti) 21, 3 (A2A3) (238)
0A _ 0A
= 2f; 23 (A2 8T3 + As 8T§) (239)
2f,27° 2, - 2
. (a2 Ao|” + a1 |As[”) Ay, (240)

where the superscript denotes the resolved component’s corresponding wavenumber index.

Equation (220)) has been used. Similarly, for ¢,

002\ 5.5 0
(8Th) =20 g, (Aads) D
0A 0A
5. —-2-3 3 2
= 29, (A2 oT, + Ay 3Th) (242)
2 —2—-3 R ~
g (0421‘A2|2 + CK31|A3’2) Al' (243)

When resolved as above, the amplitude equation for harmonic hexagons is given by the system,

8AZ djk = -
=——A;A 244
or, T h (244)

where (ijk) = (123) and its permutations, and

GA

o7 = G0ad, +BIAPA+ Y vl AP A (245)

JF#iLkF

where

_ 9 2f,7 70 20" 1\
'7ijk: <(8t+2 2|k | ) ( —QTOQ]‘> —|—|kl| (bij_ZTOéij ,h . (246)

To combine equations (244) and ([243)), a new time scale, t*, is introduced such that the deriva-

tive in time is given by

d 0 0 1 0 0 d
——>—+<£><M—+M2 >=—+ . (247)
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The amplitude system can then be represented by

dA; 106K« = B2 1 . 2
el (GoAi + E|Ai| At~ | Z '%‘jkz|Aj‘ A ). (248)
JF#ULkFLLg
To further simplify, A; can be rescaled by 1/ ,u% to give
dA; ik — = 1 .
dt* o o O

The amplitude equation is used to estimate the extent of the region of bistability between the
flat state and the hexagon pattern state by searching for where steady solutions of equation

(249), satisfying d/dt* = 0, exist.

For patterns on a hexagonal lattice, the coefficients of the amplitude equation are the same
for all amplitudes due to the lattice symmetry. That is, ¢&;; and 7;;, remain unchanged by
permutations of ¢, j, and k. Equation 249 admits a variety of simple patterns on a hexagonal
lattice with well studied symmetries and stability in parameter space (Golubitsky et al., [1984;
Hoylel 2006). For waves on a hexagonal pattern lattice of equal amplitude, where A; = A, for

i =1,2,3, equation (249), given here for A;, becomes

pag + %Ao + é (B + V123 + F132) Ag | Ao = 0. (250)
The discriminant of the quadratic in Aq (bracketed in equation (250))) can be used to determine
the range in parameter space where hexagon solutions of the amplitude equations exist. These
solutions exist for p > ps, where
_ (ds)°

4apa (B + Fr23 + Fis2)

s (251)

A typical bifurcation diagram for hexagon patterns is shown in Figure for a(f8 + 123 +
A132) < 0. The bifurcation diagram typically features a transcritical bifurcation to unstable
hexagons at ;. = 0. Here, hexagon patterns of different amplitudes, labelled H; and H,, branch
from the origin. The H; solution corresponds to Ay > 0 (or up-hexagons) and H, corresponds
to Ay < 0 (down-hexagons) (Golubitsky et al., 1984} [Hoylel [2006). The H; branch typically
features a saddle-node bifurcation from unstable to stable hexagons, located at p; (labelled
in Figure [3.5). Note that hysteresis is present within the system when the up-hexagon pattern
is stable for 1 < 0 (a desirable feature when considering where local hexagon patterns were
found in |Arbell and Fineberg 2000). Within this region both the flat state and hexagon pattern

are stable.
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Figure 3.5: Schematic of a typical bifurcation diagram for hexagon solutions of system (249). Plotted is the
absolute value of the amplitude A; against the bifurcation parameter, ;. Solid (dashed) curves indicate linearly
stable (unstable) solutions. The hexagon solutions labelled H; and H5 correspond to amplitudes with positive and
negative real part, respectively. The saddle-node bifurcation on the H; branch is located at © = ps. The region

of bistability, where the flat state and the hexagon state are both stable, is bound by ¢ and 0.

For the same parameter values as in Figure the estimated location of the saddle-node
bifurcation from the amplitude equations, relative to the linear stability boundary, is plotted in
Figure [3.6] It is predicted from the amplitude equation that the distance between the point of
linear instability of the flat state, © = 0, and the location of the saddle—node, 15 from equation
(251)), increases as x increases, i.e., the parameter space corresponding to where harmonic
hexagon solutions have been found widens closer to the point of bicriticallity. This result
qualitatively agrees with the phase diagram from Arbell and Fineberg (2000), see Figure [I.28]
where their plotted open circles represent points of transition from hexagonal patterns to the
flat state for decreasing forcing strength, implying a region of hysteresis/bistability between the

flat state and the hexagon state.

The methodology for searching for localised states requires simulation of the ZV equations
within the region of bistability between the flat state and oscillating hexagons, while simul-

taneously being located near the bicritical point in parameter space. Finding a large enough
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Figure 3.6: Phase diagram plotted for a forcing function of the form in equation (T94), where ag cos(x) is the
strength of the forcing corresponding to frequency 2, ag sin(x) the strength corresponding to the forcing mode of
frequency 3. The predicted location of the saddle-node bifurcation from equation (Z31)) is plotted at coordinates
ag(1 + ps)(cos(x),sin()). Left: Phase diagram plotted at a 1:1 aspect ratio; Right: Close up of the region in

phase space near the bicritical point.
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region in parameter space satisfying these requirements is important when considering com-
putational costs, search efficiency and required numerical accuracy. It should be noted that
the amplitude predictions are only a guide. Near the bicritical point, the unstable subharmonic
solutions may be important to the weakly nonlinear analysis, and have not been included in the
analysis. The amplitude equations also lose validity for increasing ;+ and amplitude of the solu-
tion. Although the amplitude equations derived in this thesis have been previously investigated
(Zhang and Vinals, 1997a; |Skeldon and Porter, [2011), they have not been used explicitly to
find a parameter space to maximise the region of bistability between two stable states (a feature
typical to systems with localised solutions). A comparison between the amplitude equations for
hexagons and the numerically simulated ZV equations regarding the prediction of the location

(in p) of the saddle—node bifurcation is presented in Section 4.2

3.3 Exponential time differencing

Given the nature of the ZV system described by equations and and its application
to pattern formation within this thesis, it is natural to solve the ZV equations in Fourier space.
Exponential Time Differencing (ETD) schemes (Cox and Matthews, 2002)) offer appropriate
numerical methods that take into account the stiff nature of dealing with a range of wavenum-
bers in Fourier space. ETD schemes were developed with a common treatment of the linear
part of the system, that being that the linear part is resolved exactly. ETD schemes differ in

their treatment of the nonlinear terms of the systems they are applied to.

The simplest ETD scheme uses a first order approximation of the nonlinear terms, hence its
name, ETD1. The ETD2 scheme applies a second order approximation of the nonlinear terms
in the equations (as described below) and was chosen to simulate the ZV equations. The ETD2
scheme offers a good balance between accuracy and computational cost and is locally third
order in time step, O(At?), where At represents the size of time step. Results only benefit from
a factor of % in order of accuracy when extended to include a Runga—Kutta type treatment of the
nonlinear terms in the PDEs it solves (the ETD2RK scheme). ETD3RK and ETD4RK schemes
offer better approximations of the nonlinear terms, but increase computational cost. Since the
objective of this thesis is to demonstrate the existence of localised states via simulation of the

ZV equations, the computational domain size needed was many wavelengths of the typical
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pattern state. The numerical searches were also planned for several parameter regimes. For
these reasons, the ETD2 was chosen to reduce computational cost. The ETD2 scheme for the

ZV equations was simulated using the software MATLAB (MATLAB, [2019).

In discrete Fourier space the ZV equations become

OH* —2¢%|k[? k|
ot —(B+ Clk]) —2¢2|k|?

H*+ NL" = MH* + NL*,  (252)

where HP is the vector (h(k,t), ¢(k,t)), the solution in Fourier space corresponding to the
wave vector k, and N Lk is the resolved Fourier component of the nonlinear terms, corre-
sponding to the same wave vector. The time dependent forcing can be treated as a nonlinear
term and has been absorbed into IN Lk. Multiplying the system by the exponential matrix

exp(—Mt) and integrating over one time interval [t,,, t,,.1]|, where ¢, 1 — t,, = At, gives
tn+1 ~ k
HEF | =M HE 4 Minnt / e M NL (7)dr, (253)
tn

where H* | = H*(t, + At). Applying the ETD2 scheme introduces a second order approxi-

mation for N Lk(T), for 7 € [t,,, tpy1], given by
~_ k ~_k ~_k ~_k
NL" =NL'+ (NLn - NLn_1> /At (254)
For each wave vector, the ETD2 scheme is given by
HE | = MAHE L VUNLY + M, (NL: - NL:_I) , (255)
with
My=M"(eM¥—1), and My= M2 (e — (I 4+ MAt)) /At, (256)
where M, and M, are also dependent on wave vector k.

The scheme described in was applied to each Fourier mode for the range of wave vectors
considered in the simulations. Periodic boundary conditions were chosen for the simulations.
This is an appropriate choice for pattern forming systems simulated on a domain size of one
wavelength, or for solutions on large domains where the solution decays to 0 (for example,
localised states against a flat background). The periodic domain was based on the magnitude

of the most critical wavenumber of the problem given by the linear theory, |kq|. The absolute
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values of the wavenumbers considered for the ZV simulations were then integer multiples of
|ko|. On the computational domain, the spatial resolution in x is denoted by N,, where N, is

the number of samples in the z—direction. Grid points in x are given by

xi:xl—l—(i—l)ﬁ, for i=1,2,...,N,. (257)
Similarly, for V),
L
y@-:yl—i-(i—l)ﬁy, for i=1,2,...,N,. (258)
y

When solving the equations in Fourier space on a discrete mesh, the Discrete Fourier Transform
(DFT) is a useful tool. MATLAB’s Fast Fourier Transform (FFT) algorithm was used in all
simulations to compute the DFT. Since the ZV equations contain cubic terms, dealiasing was
used to cubic order, applied to the solution at it progressed in time. This involved keeping
(N, — 1)/2 nontrivial modes in space in the = direction, with the same number of modes in

space kept in the y direction for (N, — 1) /2.

3.4 Validation, verification and mesh independence

To determine the order of the error in time step, At, of the scheme, the ZV equations were
simulated for hexagon patterns in 2D with multifrequency forcing. Given that ¢, (¢) is at most
periodic in 27, a time step of At = 27 /N, was chosen, where N, represents the number of time
steps per period. Figure|3.7|shows the order of the numerical scheme, which is globally of order
O(At?), as opposed to the local O(At*) mentioned above. This relation is maintained from the

worked example given in|Cox and Matthews (2002). The Root Mean Squared measure (RMS),

1
1 2
URMS = [LmLyTp / / / uzdxdydt} , (259)

where T}, is the period of the solution in time, was used to measure the error of the solution

defined here as

after it converged. Subharmonic solutions have a maximum period of 7,, = 4. For harmonic
solutions, the oscillating pattern has a maximum temporal period of 7, = 2. The agreement
between the computed and theoretical order confirms that the timestepping was working as
expected. A time step of 27/, with N, = 200, was used in all following simulations to
achieve a timestepping error of less than around 0.5%, a reasonable balance between accuracy

and computational cost.
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Figure 3.7: Error between the high resolution solution, N; = 10°, and solutions of varying N;, where At =
27 /Ny. Data are taken at the plus symbols and the solid line demonstrates the order of the error. The N; vary
between 50 and 5000. Other nondimensional values are €2 = le=!, B=1,C =1, N, = N, = 25. For the

forcing given in equation (3)), with a = ag, ¥, = 7/4, x =0.87/2,1 = 1 and m = 2.

The weakly nonlinear analysis was compared to the predictions of the simulated ZV equations.
Since the weakly nonlinear analysis has a limited range of validity, a rolls solution was sought,
where the primary bifurcation is supercritical. The validity of the ZV equations as compared
to the weakly nonlinear analysis also depends on how well the ZV predict the value for critical
forcing. Using equation (23T]) to predict the amplitude of a rolls solution for small perturbations
to the forcing, the ETD2 scheme for the ZV equations was compared to the results of the weakly
nonlinear analysis and is shown in Figure[3.8] The simulations were performed over a region in
parameter space where the primary bifurcation is supercritical, as shown in Figure[3.8al On the
same figure, the prediction of a solution with the same amplitude as the weakly nonlinear theory
is overlaid to compare to the results of the ETD2 scheme for the ZV equations, confirming the
correctness of both the code and the weakly nonlinear theory. The agreement is stronger the
closer the solution is to the bifurcation point, as ;© — 0. Figure [3.8b] shows a log—log plot of
the rolls branch over the same region, which follows the square-root profile predicted by the
weakly nonlinear theory. The solid line in Figure [3.8b] highlights the expected order of the

numerical solution (not the results of the WNLA as in panel [3.8a).

Figure demonstrates the accuracy of the numerical scheme due to increasing the mesh
resolution (important for more complicated patterns like localised states) in both the z and y

directions, IV, and IV, respectively. Two cases are shown, simulated on a restricted domain for
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Figure 3.8: (a) Comparison between the RMS measure of a solution with amplitude from (237)), shown as a solid
line, and numerics, dashed crosses line, for a roll solution near the primary bifurcation, ¢ = 0. (b) Order of the
numerical solutions to the ZV for rolls on a log scale, crosses, compared to the expected order from the weakly
nonlinear analysis (WNLA), solid line. Other nondimensional values are €2 = 0.1, B =1,C = 1 and [ = 1 for

single frequency forcing.
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Figure 3.9: Difference in the RMS measure between a solution with N, = N, = 256 modes in space and

solutions with varying total space modes, plotted against time for two simulation Cases (the Cases were designed to
independently test the numerical code in each direction with a randomised initial condition). Solid lines represent
the error for a solution with variation in x (Case 1), with crosses representing the error for solutions with variation
in y (Case 2). The small discrepancy between Case 1 and Case 2 solutions for 128 modes is due to the application

of the fast Fourier transform on MATLAB.




Chapter 3: Weakly nonlinear analysis and numerics 99

a rolls solution in either the x (Case 1, solid lines) or y (Case 2, crosses) directions. The initial
condition for the Case 2 simulation was a rotated version of the randomised initial condition for
Case 1. Note that the restricted domain allowed only the modes corresponding to the unstable
wavenumber to grow, converging to the expected rolls solution in either the x or y direction.
The resolution N, = N, = 32 over two pattern wavelengths was chosen for the following
simulations due to finding reasonable accuracy at this resolution. Note that the resolution in x
(y) used for the localised states search was a multiple of the resolution NV, (/V,) used for the

pattern domain (see Sectiond.3.1)).

A sample of the solution was taken (in time) to represent the state of the numerical solution as
it progressed. Since the solutions sought in this thesis respond either harmonically or subhar-
monically to the forcing, a sample period of 47 was chosen. This choice includes all possible
response periods, generalising the sampling period over all runs. The sample that was taken
is the RMS measure of the surface displacement, h, and the potential function evaluated at the

surface, ®, in space only, represented by

1
1 2
URMS, = [LmLy / / u%la:dy} , (260)

where u is either h or . An example of the RMS, measure over time is given in Figure for

a converged, harmonic hexagon pattern at parameter values ;1 = 0.001, B = 0.28, C' = 0.64,

€2 = 0.1, with a forcing of the form with a = ag, x = 75°, (n,m) = (2,3) and ¢, = 97/8.

All nontrivial solutions found in the numerical simulations oscillated in time, so were not steady
in a temporal sense. For the simulations presented in this thesis, a solution was determined to
asymptotically converge if the relative difference in the RMS, measure (sampled every re-

sponse period), given by

RMS, (¢ + T,,) — RMS, (¢
ARMS, (t) = ( ;Mg) 0 (), (261)

fell below a specified tolerance over a time scale of O(1/). The amplitude equations evolve on
a timescale of O(1/), and were used as an estimate of timescale for the nonlinear interaction.
An example is shown in Figure [3.T1|for the same parameter values used to produce Figure[3.10]

The error tolerance was set to 1075, plotted as a horizontal line.
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Figure 3.10: The RMS, measure given in equation (260) over time for i and ¢ solutions for parameter values
p=0.001, B =0.28, C = 0.64, 2 = 0.1, with a forcing of the foml where a = ag, x = 75°, (n,m) = (2, 3)
and ¢; = 97/8.
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Figure 3.11: The ARMS,, measure given in equation over time for h and ¢ solutions for parameter values
p=0.001, B =0.28, C = 0.64, > = 0.1, with a forcing of the foml where a = ag, x = 75°, (n,m) = (2, 3)

and ¢; = 97/8. The tolerance (107%) is shown as a horizontal line.
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4 Localised states in the Zhang—Vinals equations

The results of this thesis focus on localised, temporally harmonic hexagon patterns found in the
Zhang—Vifals equations via the methodology described in Section 3| Section@.1|demonstrates
the challenges associated with estimating a range in parameter space where bistability between
the flat state and global hexagonal patterns is robust (large enough to explore with reasonable
numerical resolution in the bifurcation parameter). The bifurcation diagram for global hexagon
patterns is traced out (via results from numerically simulating the ZV equations) and discussed
in Section 4.2l The localised states found within this thesis are identified in Section 4.3 and
their associated localised branches are plotted on the primary bifurcation diagram to highlight

their potential branch structure.

4.1 Parameter initialisation for localised states

The parameters of the ZV equations, for a two-frequency forcing function of the form
g(t) = a(1 + p) [cos(x) cos(2t) + sin(x) cos(3t + )], (262)

are summarised in Table[2] The first step in searching for localised states (via numerical simu-
lation of the ZV equations) involves estimating parameter values where the region of bistability
between oscillating hexagons and the flat state is large enough to be captured numerically. An
initial estimate can be achieved by minimising y, as determined by equation (251)). Modify-
ing the forcing perturbation to vary the relative amplitude between the two components of the

forcing, given by

g(t) = a[(1+ p)cos(x) cos(2t) + sin(x) cos(3t + )], (263)

with corresponding modification to the amplitude equations, allows the parameter search to
be performed closer to the region identified in experiments, since varying p in equation (262))
restricts travel in phase space towards (or away from) the origin. This approach is similar to
Arbell and Fineberg| (2000) when considering the transition between a global pattern and an

oscillon state. Modifications to the prediction of y, are made through the parameter «, given

by (232).
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Parameter Physical description
€ Quantifies viscosity
B Quantifies gravity
C Quantifies surface tension
U Forcing phase shift
X Forcing dominance/mixing
Perturbation to forcing

Table 2: Parameters of the Zhang—Vifials equations and their physical description for two—frequency forcing in

the ratio of 2:3.

Further refinement is added to the task above by considering the nature of the bicritical point.
Following the experimental results of Arbell and Fineberg (2000), for a forcing function with
frequency ratio 2:3 (see equation (194))), localised states were found experimentally near the
bicritical point where the flat state loses stability to solutions corresponding to both the 2 fre-
quency forcing mode (harmonic response) and the 3 frequency forcing mode (subharmonic
response). Figure shows a case from the linear stability analysis of the ZV equations
where the bicritical point was found between solutions that did not both correspond to the forc-
ing frequencies used in the forcing function. Bicriticality can be observed between solutions
with nondimensional frequencies 1/2 (corresponding to the first subharmonic tongue on the
marginal stability curve) and 1 (corresponding to the first harmonic tongue, or forcing mode of
frequency 2), between points a and b for increasing . This was also evident for solutions with
nondimensional frequencies 1/2 and 3/2 (the latter corresponding to the second subharmonic
tongue, or the forcing mode of frequency 3), between points b and c. This occurs when the
critical forcing strength, a(, becomes large enough to allow instability to the first subharmonic
tongue. Increasing € has the greatest influence on increasing the size of ag, although (as with
the parameters in the following results section for €2 = 1) other parameters of the system can
affect the occurrence of these types of bicritical points. In searching for a suitable parameter
regime to search for localised states, a bicritical point with solutions corresponding to forcing
frequencies in the ratio 2:3 was preserved through varying B and C'. An optimisation study to
determine how each parameter (outlined i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>