
Localised states in the Zhang–Viñals
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(a) Wave vector orientation of resonant triads satisfying k1 + k2 − k3 = 0,

|k1| = |k2| = |k0|. (b) Sketch of a marginal stability diagram corresponding

to the resonant triad shown in panel (a), showing the leading order temporal

response of the linearly unstable (at |k0|) and stable (at |k1 + k2|) modes within

the triad. The frequency of the response for each k is labelled within the linear

stability tongues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.10 Resonance angle, θrjl, between unstable modes (see panel (a) in Figure 1.9)

plotted against Γ0, where Γ0 represents the strength of surface tension/capillary

effects (Γ0 = 0 represents gravity effects only and Γ0 = 1 represents surface

tension only). Subscripts j and l correspond to the linearly unstable modes

(e.g., j = 1 and i = 2). Image from Zhang and Viñals (1997a). . . . . . . . . . 15
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Abstract

Abstract

Can the Zhang–Viñals (ZV) equations be used to understand the underlying mechanism that has

led, in certain experimental settings, to highly localised, oscillating states within the Faraday

wave system?

The Faraday wave system has been found to be quite versatile in terms of the patterns that can

be formed on the surface of a fluid undergoing vertical vibrations. A simple Faraday wave

experiment places a layer of fluid on a rigid, horizontal plate that is vibrated vertically at a

certain frequency and acceleration (in a sinusoidal manner). When a critical acceleration (or

critical forcing) is surpassed, the patternless surface loses stability to patterns whose symmetry

depends on the parameters of the system. The contribution of the Faraday system to the field

of fluid dynamics can be measured by the longevity of interest in its rich dynamics, dating

from the early recordings of Faraday (1831) to more recent experiments that display a range of

fascinating surface patterns.

The stability of various patterns that have been observed has been investigated theoretically,

and it is evident (see Cross and Hohenberg 1993 and Miles and Henderson 1990 for reviews)

that the types of models that aim to describe the Faraday wave system exhibit interesting non-

linear behaviour regarding pattern formation. Most analytical investigations have focused on

global patterns (patterns that fill the experimental domain, for example). However, highly lo-

calised patterns have been found in the Faraday system that have so far received less attention.

Localised patterns that oscillate in time have been termed oscillons (Gleiser, 1994). These os-

cillons can exist in both a homogeneous and a patterned background, and form as peaks and

craters on the fluid surface. Experimentally they have been shown to exist in a variety of situa-

tions in both Newtonian (Arbell and Fineberg, 2000) and non-Newtonian (Lioubashevski et al.,

1999) fluids. The experiments of Umbanhowar et al. (1996) show that oscillons also exist in

granular media with similar characteristics to those excited in fluids.

The Zhang–Viñals (ZV) model is a fluid dynamics model that is derived from first principles

in the limit of small viscosity (via a reduction of the Navier–Stokes equations) and has been

shown to include properties critical to global pattern formation. The ZV model’s potential con-

tribution to the understanding of localised states within the Faraday system has not previously



Abstract

been explored in detail. A derivation is presented in this thesis that closely accounts for the

relative sizes of the fluid properties near onset of instability which is supported by results from

a linear stability analysis of the Navier–Stokes equations. A previously unidentified scaling

assumption was highlighted from the derivation. In order to neglect nonlinear viscous terms in

the derivation of the ZV equations, the size of the surface displacement must be small relative

to the thickness of the viscous boundary layer near the surface. This may be indirectly re-

lated to the “uncontrolled approximation” present in the original derivation (Zhang and Viñals,

1997a,b; Chen and Viñals, 1999).

Results from a combination of analytical and numerical techniques are presented to outline a

methodology for searching for localised states in the ZV equations. Guided by the experiments

of Arbell and Fineberg (2000), the new methodology is presented for localised hexagonal pat-

terns which oscillate harmonically with respect to a two-frequency forcing in the ratio 2:3.

A parameter range was found where solutions to numerical simulations of the ZV equations

converged to temporally harmonic, localised hexagonal patterns existing among a flat (pattern-

less) background. The localised patterns were distinguished by the number of fully formed

peaks present on a local hexagonal lattice. Distinct patterns with 31, 43, and 55 localised peaks

were found. The existence of localised solutions in a system describing the Faraday wave phe-

nomenon that is derived from first principles is a new and important result which aids further

investigation regarding localised states in the ZV equations. Localised oscillating states have

been found in model PDEs which incorporate periodic forcing (Alnahdi et al., 2018), the the-

ory of which may be extended to the ZV system within the parameter range highlighted in the

presented work.
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1 Introduction

First recorded in experiments by Faraday (1831), parametrically forced (or Faraday) waves are

a classic fluid phenomenon that provide a system capable of motivating rich investigation both

theoretically and experimentally. A simple case of the Faraday wave system is where a layer of

fluid on a rigid, horizontal plate is vibrated vertically at one frequency, ω, and acceleration, a.

The term for single frequency forcing is given by

g(t) = a cos(ωt). (1)

Although the fluid moves with the motion of the horizontal plate, the surface remains unde-

formed until a critical acceleration, a0, is reached. An unperturbed fluid surface is termed the

flat (or steady) state. When a surpasses the critical acceleration (or critical forcing) the flat state

surface loses stability to patterns whose symmetry depends on the parameters of the system.

A simple schematic of the Faraday wave experiment is shown in Figure 1.1. The formation

of Faraday waves has been achieved experimentally by placing a layer of fluid on a horizon-

tally aligned and vertically vibrating rigid boundary, such as a flat plate. Experiments have

demonstrated the variety of patterns that have been found within the system and have helped to

establish parameter regimes where certain patterns were observed. Common variations to the

Faraday experiment since the original work by Faraday (1831) have included altering the dis-

tances between the boundaries (sidewalls and lower plate), changing the rheology of the fluid

and increasing the complexity of the forcing (by introducing multiple frequencies and phase

differences). Variations between experimental setups are discussed below.

1.1 Linear stability of Faraday waves

The theoretical progression of the Faraday problem has benefited from work on the nature of

the linear stability of the flat surface state. Benjamin and Ursell (1954) modelled the problem

with the forcing given in equation (1) for a vertical vessel with arbitrary cross-section and finite

depth using inviscid fluid theory. Benjamin and Ursell (1954) investigated the stability of the

flat state to small perturbations in space. They derived a series of Mathieu equations which

represent the growth of each perturbation. In general, the stability of the flat state is governed
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Figure 1.1: Schematic of the Faraday wave experiment. A layer of fluid on a horizontal rigid plate can be peri-

odically accelerated in a vertical motion (in the z direction in the Cartesian frame of reference) to form patterns

on its surface. The wavelength of the pattern is represented by λ, the typical length scale of the experiments

(diameter/width of conduit) is represented by L, and the acceleration due to gravity is represented by g0 (acting in

the negative z direction).

by the Mathieu equation in standard form, given by

d2â

dT 2
+ (p− 2q cos(2T )) â = 0, (2)

where â is dependent on time, T , and p and q are parameters that determine the growth of

â as T → ∞. The Mathieu equation given in equation (2) possesses well known instability

boundaries that depend on p and q, shown in Figure 1.2.

For each point on the stability diagram given in Figure 1.2, the variables and parameters of

equation (2) can be related to the physical variables and parameters present in the Faraday

problem. The variable â represents the time dependent amplitude of the perturbation mode.

The time variable in equation (2), T = ωt/2, is the nondimensionalised time variable with

respect to the frequency of the forcing, ω. The Mathieu system exhibits regions of unstable

solutions with subharmonic and harmonic response frequencies that depend on ω (Taylor and

Narendra, 1969). Solutions possessing frequencies equal to odd integer multiples of ω/2 are

termed subharmonic, and solutions with frequencies equal to even integer multiples of ω/2 are

termed harmonic. Note that, for consistency, the response frequencies are given here in terms

of angular frequency, or 2π/tp, where tp is the time period of the solution. Solutions grow ex-

ponentially within these regions while temporally oscillating at these frequencies. These types

of temporal responses are labelled within each region in Figure 1.2, where half-frequencies

refer to subharmonic responses and isochronous regions refer to harmonic responses. At the

boundary of these tongue-like regions the solution is marginal, where â oscillates at the corre-
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Figure 1.2: Instability boundaries for the Mathieu formulation given in equation (2), taken from Benjamin and

Ursell (1954). The stability regions are plotted against the nondimensional parameters p and q. The regions filled

with a lined pattern are unstable and the corresponding response frequencies are specified within each region. Re-

lating physically to the Faraday phenomenon, q is linearly proportional to the acceleration of the forcing function

and p quantifies the effects of gravity and surface tension important to the physical model (see (2.13) in Benjamin

and Ursell 1954). Both q and p also depend on the fluid depth.
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Figure 1.3: Experimental prediction of the region of unstable modes (dashed lines and hollow circles) against the

predictions of ideal fluid theory (solid lines), taken from Benjamin and Ursell (1954). The parameters p and q are

the same as in Figure 1.2, adjusted to the experimental values within the same study.

sponding frequency but neither grows nor decays. The value p quantifies the effects of gravity

and surface tension, and q is linearly proportional to the forcing strength (e.g., a in equation

(1)). Both p and q also depend on the fluid depth, the frequency of the forcing, and the spatial

scale of each perturbation (see equation (2.13) in Benjamin and Ursell 1954 for explicit terms).

Benjamin and Ursell (1954) reported a discrepancy between the predictions of the ideal fluid

theory and their experiments regarding the location of the instability boundaries, the error is

shown in Figure 1.3. They suggested that the difference in boundary location was due to the ef-

fects of viscosity being neglected in the model. The Mathieu equation formulation also predicts

that several unstable solutions of varying response frequencies grow simultaneously for an ar-

bitrarily small forcing (see the tongue structures near the p axis, q = 0, in Figure 1.2). However,

their experiments and analysis support instability to subharmonic patterns for Faraday waves

forced with a single frequency forcing.
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A stability investigation that accounted for the effects of viscosity was performed by Kumar

and Tuckerman (1994) using a model describing two fluid layers separated by a horizontal

interface. Kumar and Tuckerman (1994) referred to their model as the Full Hydrodynamic

System (FHS), which can be derived by linearising the Navier–Stokes equations about the

flat state. The results confirmed that viscosity contributes to the location of the instability

boundaries, showing a preference to one type of response frequency at the onset of instability.

The FHS model is more accurate for small viscosity predictions than the ideal fluid model

of Benjamin and Ursell (1954). The predictions of the FHS were compared by Kumar and

Tuckerman to the experimental data of Edwards and Fauve (1993) and show good agreement

in terms of the predicted dispersion relation for a glycerine–water mixture. Both models were

derived on a domain with no lateral boundaries (neglecting the effects from sidewalls), which

corresponds to an experimental setup with large Aspect Ratio (AR). The value AR is defined

as AR= L/λ, where L is a typical length scale of the problem (e.g., container diameter/width

in experiments) and λ is the wave length of the excited fluid pattern (see Figure 1.1). The

wall effects are no longer negligible for systems where the AR is not large, and are not easily

handled (Miles and Henderson, 1990). Low frequency forcing also affects the thickness of the

viscous boundary layers associated with the sidewalls, meaning that both small AR and low

frequency forcing can make terms that relate to the boundary layer at the sidewalls critical to

accuracy.

A typical linear stability diagram using the FHS is shown in Figure 1.4, recreated from Kumar

and Tuckerman (1994). Given a forcing amplitude a greater than the critical forcing, a0, a

spatially varying perturbation to the flat state with assumed wave number k is unstable for

|k| within the range determined by the boundaries of the tongue structures. The value of |k|

that corresponds to a = a0 is termed the critical wavenumber magnitude, |k0|, with critical

wavenumber k0. For the case demonstrated in Figure 1.4, the first instability due to increasing

a from zero to just above a0 is to a subharmonic temporal response (SH), as located on the figure

at the minimum of the red curves. On the curve that bounds this region, the neutrally stable

solutions oscillate at a frequency of half the forcing, ω/2. Increasing a further introduces modes

with a harmonic (H) response which oscillate at a frequency of ω, located at the minimum

of the blue curves. The tongues alternate between subharmonic and harmonic responses for

increasing |k|. Other response frequencies (that are neither harmonic nor subharmonic) are not

considered in the analysis of Kumar and Tuckerman (1994) since the linear theory predicts that
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Figure 1.4: Marginal stability diagram using the full hydrodynamic system for ρ1 = 519.933 kg·m−3, ρ2 =

415.667 kg·m−3, γ = 2.181 × 10−6 n·m−2, ω = 200π Hz, η1 = 3.908 × 10−5 Pa·s and η2 = 3.124 ×

10−5 Pa·s (Kumar and Tuckerman, 1994). The normalised critical acceleration, ac/g, is plotted as a function of

wavenumber magnitude. On each curve, a perturbation with the corresponding wavenumber will remain neutral

and oscillate either subharmonically or harmonically with the forcing, as indicated by SH/red curves or H/blue

curves, respectively. In each inner region, confined by the curved tongue structures, small perturbations with the

corresponding wavenumber will grow. Outside of these regions perturbations will decay.

only harmonic and subharmonic solutions correspond to growing modes.

Kumar and Tuckerman (1994) compared the FHS model to the ideal fluid model used in Ben-

jamin and Ursell (1954) with the inclusion of a linear viscous damping term in the latter. Ku-

mar and Tuckerman (1994) showed that the preferred wavelength of the most unstable mode

is largely dependent on viscosity. For small viscosity, the dispersion relation for each unstable

mode resembles that of an ideal fluid. As viscosity increases, the wavelength of the most unsta-

ble mode increases sharply. This supports a physical interpretation of a system that minimises

viscous dissipation, corresponding to preferring onset at higher wave lengths as dissipation

strengthens. When the predicted critical forcing accelerations were compared between the two
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models near onset it was found that the ideal fluid model with the inclusion of viscous damping

greatly underestimates the critical acceleration for relatively small viscosity, highlighting the

importance of considering the viscous contributions to accurately predict the stability threshold.

A more complex situation arises when the effects of fluid depth are considered. Following from

Kumar and Tuckerman (1994), Kumar (1996) focused in detail on the effects of finite depth on

the stability of the flat state. It was found that when the depth of the fluid becomes comparable

to the viscous boundary layer at the rigid lower plate, a bicritical instability can occur. At

a bicritical instability, two neutrally stable modes, which typically respond harmonically and

subharmonically at certain parameter values, lose stability simultaneously and may interact

nonlinearly with increased forcing. Besson et al. (1996) also demonstrated bicriticallity for

two frequency forcing as an extension to the method used in Kumar and Tuckerman (1994), as

shown in Figure 1.5. Two frequency forcing typically involves a forcing function of the form

g(t) = a [cos(χ) cos(nωt) + sin(χ) cos(mωt+ ψ)] , (3)

where a is the forcing factor common between the two forcing terms, n : m is the frequency

ratio, χ serves to vary the strength of each component, and ψ controls the phase difference

between forcing modes. Following the notation for single frequency forcing, a0 is the critical

forcing strength and cos(χ) and sin(χ) represent the contributions from each respective forcing

mode. Figure 1.5 shows a series of marginal stability diagrams for increasing χ for a two-

frequency forcing function. In comparison to the relatively simple tongue structure shown

in Figure 1.4, it can be seen how the evolution of the diagram displays much more complex

behaviour as forcing is mixed via χ. The solid lines in Figure 1.5 represent harmonic responses,

with dashed lines representing the subharmonic responses. The location of the most unstable

mode, in terms of wavenumber and forcing strength, is indicated in each panel by a filled

circle at the corresponding minimum (minima for χ = 60◦, the bicritical point) of the tongue

structures. The top panel corresponds to parameters in equation (3) where the most unstable

tongue responds harmonically to the forcing (with n = 4 in equation (3) and χ = 0). Solutions

within other subharmonic and harmonic tongues require a greater forcing strength to become

unstable at χ = 0. As the forcing strengths become more mixed by increasing χ in equation

(3) (χ = 45◦ indicates equal strengths of the two forcing components), tongues descend from

the higher forcing strength region, with some forming islands at low forcing amplitude. The

diagram goes through the bicritical phase at χ = 60◦. At this point the two unstable modes may
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Figure 1.5: Neutral stability curves for (n,m) = (4, 5), 4ω/2π = 44 Hz, and ψ = 0 for a forcing function of the

form g(t) = a [cos(χ) cos(nω) + sin(χ) cos(mω + ψ)]. The fluid has a dynamic viscosity value of 20 cS. Solid

(dashed) lines represent solutions with harmonic (subharmonic) response frequencies. The parameter χ varies

from 0 in the upper left panel to π/2 in the upper right panel, read in a anti-clockwise direction. Plotted is the

value of a/g as a function of wave number k (Besson et al., 1996). At χ = 60◦ the bicritical instability occurs,

with neutrally stable modes responding both harmonically and subharmonically, represented by filled circles at

the minima of each curve.
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interact in a nonlinear way as the strength is increased. As the forcing becomes dominated by

the second forcing frequency for χ > 60◦ (with m = 5 in equation (3)), the system first loses

stability to solutions with subharmonic frequency, this time for a higher critical wavenumber.

Besson et al. (1996) reported experiments that tested the accuracy of the linear stability calcu-

lation for both single and two-frequency forcing. Their experiments were designed to mimic

the assumptions of the stability calculation procedure set out by Kumar and Tuckerman (1994)

by ensuring that a large AR is achieved by using a circular container with a radius of over 100

times the critical wavelength. The fluid mixture was silicone oil at 25◦C and the apparatus was

capable of achieving accelerations up to 15 times that of gravity. For single-frequency forcing,

it was found that the theory agreed with the experimental data with an error of 2% for up to

moderate frequencies. The origin of the discrepancies at higher frequencies is unknown and

was vaguely suggested to arise due to possible physical effects not captured by the FHS model

(i.e. compressibility, surface viscosity and viscoelastic effects), imperfections of the experi-

mental setup and/or a failure of the numerical calculations to cope with the boundary layers

within the problem. High frequencies may also introduce higher velocities that may contribute

to the problem via nonlinear terms (a nondimensional analysis may be necessary to determine

if these terms are important). For two-frequency forcing, agreement with experimental values

using frequency ratios 2:3, 4:5, and 6:7 was also close for a range of viscosities and relative

forcing strengths. Figure 1.6 shows the agreement achieved between experimental values and

theoretical predictions of the stability boundaries for varying viscosities, at the 4:5 ratio. The

solid lines are the theoretical stability boundaries calculated using the FHS model. Hollow tri-

angles and circles represent experimental data. The triangles in Figure 1.6 represent hysteresis

within the system, where patterns persisted as the acceleration was decreased below the crit-

ical forcing strength. Close agreement between the FHS model and experimental results was

demonstrated, which was elaborated on for other frequency ratio cases in the same study. Un-

like the work of Besson et al. (1996), most experiments on Faraday waves were not performed

with the intention of validating specific theoretical estimates. This becomes a problem when

verifying the stability predictions of models when using true parameter values, particularly

since an error in recorded viscosity, when used in the FHS calculation, can lead to the same

error in amplitude prediction (Besson et al., 1996; Skeldon and Rucklidge, 2015). Skeldon and

Rucklidge (2015) demonstrated that other fluid properties can contribute to the error between

experiment and theory to a lesser degree when compared to the error due to the viscosity.
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Figure 1.6: Comparison of experimental (hollow shapes) and theoretical (solid lines) stability regions for (n,m) =

(4, 5), 4ωf/2π = 44 Hz and φ = 0 for a forcing of the form g(t) = a [cos(χ) cos(nωf ) + sin(χ) cos(mωf + Φ)].

The values plotted, a sin(χ) and a cos(χ), represent the strengths of the two terms in the forcing. Viscosity ν takes

values of 10, 20 and 50 cS, with error bars representing the 2% accuracy of the viscosity measurements (Besson

et al., 1996).

1.2 Theoretical approaches to pattern formation in the Faraday problem

The linear theory of Faraday waves has limitations in that it cannot determine the pattern that

forms as the unstable modes grow. Patterns are a nonlinear phenomenon in the Faraday prob-

lem. It is useful to express patterns in terms of a pattern lattice. Examples of pattern lattices

for squares, rhomboids and hexagons are shown in Figure 1.7. The wave vectors forming the

lattice, ki, correspond to the unstable modes present in the problem, i.e., |ki| = |k0| from the

linear stability theory, and i depends on the pattern (i = 1 for rolls, i = 2 for squares/rhom-

boids, and i = 3 for hexagons/triangular patterns, all depending on wave vector orientation).

Theoretical studies have been performed to predict which patterns are selected within the Fara-

day system for a range of parameter values and forcing types, typically through deriving a

system of amplitude equations that describe the evolution of the unstable modes. Unstable

modes possessing different wave vectors have been shown to interact with each other and other

damped modes (modes with wave vectors that do not lie on the critical circles in Figure 1.7,

for example), as well as displaying self-interaction. The strength of the interaction is not only

related to the orientation of the wave vectors but also on the frequency of the corresponding
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Figure 1.7: Schematic of pattern lattices for simple planar patterns with critical wave vectors overlaid, where

|ki| = |k0| for i = 1, 2, 3. (a) Square pattern lattice with critical wave vectors oriented π/2 to each other. (b)

Rhomboid pattern lattice. (c) Hexagonal pattern lattice with critical wave vectors oriented π/3 to each other.

modes.

Miles and Henderson (1990) derived amplitude equations using a Hamiltonian formulation,

which built upon work by Miles (1984a) through the incorporation of capillary effects. Their

formulation assumes a perfect fluid, i.e., viscous effects are neglected. They model a layer of

fluid in a circular basin with large lateral dimensions compared to the capillary length, where

capillary length is the length scale on the surface of two fluids subject to surface tension. Their

formulation was first explored by assuming a multiple scales expansion in time of the surface

displacement. The solution is periodic in space and has a fast time scale possessing a frequency
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Figure 1.8: Top view pictures of experiments by Gollub and Meyer (1983). The excitation frequency is 62 Hz

and the fluid is water. The critical forcing amplitude, Ac, is the amplitude at the primary instability which is

experimentally determined (comparable to an experimentally determined version of a0 from the linear theory).

The variable forcing, A, is increased within the experiments.

of half the value of the forcing frequency. With only a single frequency in the assumed form

of solution, the theory is able to predict an amplitude threshold for subharmonic motion, but is

unable to go further in predicting experimental features shown by Gollub and Meyer (1983),

which displayed periodic modulation and chaotic motion. Figure 1.8 shows the experiments

of the latter at different values of forcing, with (a) demonstrating periodic modulation, (b)

the azimuthal modulation which becomes greater in amplitude and more disordered by (c).

Finally in (d) the pattern becomes chaotic, where the extracted subharmonic amplitude becomes

disordered in time with no discernible frequency.

Miles and Henderson (1990) incorporated internal resonances into their investigation by using

two expansion terms (in the fluid surface variable) with differing frequencies that lie within a

small distance from each other. An expansion using a frequency of ω/2 and ω1, with ω/2 ' ω1,

was analysed by Gu and Sethna (1987) and it was shown that a path to chaos is possible. With

an expansion using frequencies in close proximity, |ω1−ω2| � 1, Miles and Henderson (1990)

demonstrated that their theory provides solutions that possess behaviours qualitatively closer
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to experiments. In particular, they found both periodic motion and chaos as predictions of their

model. Miles and Henderson (1990) also provided a similar review of the nature of bifurcation

in experiments that use rectangular domains.

To explore the pattern selection process for weakly dissipative fluids near onset, Zhang and

Viñals (1997a) used a reduction of the incompressible Navier–Stokes equations, in a similar

way to Ruvinsky et al. (1991), which lead to the so called Zhang–Viñals (ZV) equations. The

reduction uses various assumptions (discussed in the following sections) that result in a de-

scription that is dependent only on the fluid properties at the surface, reducing the problem to

a two-dimensional formulation. The ZV model describes a fluid of infinite depth in a mov-

ing Cartesian half-space (z < 0), such that the unperturbed flat interface is always at z = 0.

The sidewalls are neglected, and the fluid is assumed to lie below a fluid of negligible density

and uniform pressure. A velocity decomposition is used that relies on the assumption that the

fluid is quasi-potential. That is, contributions from the rotational part of the velocity field are

assumed negligible beyond a small viscous boundary layer generated near the surface. This

methodology finds support in Ruvinsky et al. (1991), Longuet-Higgins (1992) and Lundgren

and Koumoutsakos (1999), who outlined the method for zero tangential stress at the surface, as

in the setup of the ZV equations.

Zhang and Viñals (1997a) investigated the effect of resonant triads on pattern formation within

the Faraday problem in the limit of small viscosity for single-frequency forcing. Triadic in-

teraction is thought to be important to the pattern selection process in Faraday waves in the

weakly viscous limit (Zhang and Viñals, 1997a; Edwards and Fauve, 1993) since it may ex-

plain the arrangement of wave vectors of the most linearly unstable modes (which have no

specific orientation when instability is triggered) to other wave vectors inherent to the problem.

Resonant triads describe the nonlinear interaction between linearly unstable waves with other

linearly unstable and stable waves in a form of energy exchange between unstable and damped

modes (Phillips, 1981). The interaction is dependent on the wave vectors and frequencies of

the interacting modes through a system of the type

k1 ± k2 ± k3 = 0,

ω(k1)± ω(k2)± ω(k3) = 0, (4)

where kj represent the excited wave vectors with corresponding frequencies ω(kj) for j =
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Figure 1.9: Schematic of the type of resonant triads explored in Zhang and Viñals (1997a). (a) Wave vector

orientation of resonant triads satisfying k1 + k2 − k3 = 0, |k1| = |k2| = |k0|. (b) Sketch of a marginal stability

diagram corresponding to the resonant triad shown in panel (a), showing the leading order temporal response of

the linearly unstable (at |k0|) and stable (at |k1 + k2|) modes within the triad. The frequency of the response for

each k is labelled within the linear stability tongues.

1, 2, 3. For single frequency forcing (for ω = 2 in equation (1)), Zhang and Viñals (1997a)

found that the most unstable modes (with critical wave vector magnitude |k0|) respond sub-

harmonically to the forcing (with frequency ω/2). Resonant triad interaction between modes

satisfying the system

k1 + k2 = k3,

ω(k1) + ω(k2) = ω(k3), (5)

where ω(k1) = ω(k2) = ω/2 (ω(k3) = ω), was explored. A schematic of this case is shown

in Figure 1.9, where θ is the angle between the unstable modes, k1 and k2, and the mode

corresponding to k3 is weakly damped. Figure 1.10 shows the resonant angle satisfying the

system given by (5), plotted against Γ0, where Γ0 is a measure of the dominance of capillary

action/surface tension (Γ0 = 0 represents gravity effects only and Γ0 = 1 represents surface

tension only).

Zhang and Viñals (1997a) derived amplitude equations to describe the evolution of unstable

modes with arbitrary orientation. The coefficients of the amplitude equations quantify the

effects of the forcing, the excitation of the amplitude with itself (self-interaction), and the inter-

action between amplitudes corresponding to different wave vectors (cross coupling). The cross
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Figure 1.10: Resonance angle, θrjl, between unstable modes (see panel (a) in Figure 1.9) plotted against Γ0, where

Γ0 represents the strength of surface tension/capillary effects (Γ0 = 0 represents gravity effects only and Γ0 = 1

represents surface tension only). Subscripts j and l correspond to the linearly unstable modes (e.g., j = 1 and

i = 2). Image from Zhang and Viñals (1997a).

coupling term (denoted here as b(θ) due to its dependence on the angle between the pattern

wave vectors) is important to consider when determining the impact of a resonant triad inter-

action because it determines the strength of the nonlinear interaction between spatial modes.

Upon varying the angle between unstable modes with wave vectors k1 and k2 to be some di-

vision of π for regular patterns (i.e. π/2 for squares and π/3 for hexagons), Zhang and Viñals

(1997a) theoretically approximated, by minimisation of the Lyapunov functional associated

with their amplitude equations, the stability of patterns that range from squares and hexagons

to fourteen-fold quasipatterns. It was found that resonant triads are of critical importance in

a capillary dominated regime (Γ0 = 1) regarding the formation of global, subharmonically

oscillating square patterns. Figure 1.11 shows the cross coupling coefficient for two values of

γ, where γ quantifies the effects due to viscosity (γ � 1 for weakly viscous fluids). Peaks

can be observed in the cross coupling coefficient at approximately 74.9◦, corresponding to the

maximum resonant angle shown in Figure 1.10. The results of Edwards and Fauve (1994)

support resonant triads as an important mechanism to consider, where it was shown experi-

mentally that it was a weak triadic interaction that was responsible for the hexagonal patterns

that were present in their work for a weakly viscous fluid under two-frequency forcing. Zhang

and Viñals (1997a) showed that as capillary effects were weakened, the resonant triad was al-

tered and square patterns became unstable. This was demonstrated within the capillary–gravity
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Figure 1.11: Example of the cross coupling coefficient, b(θ), denoted g(cjl) in the analyisis given in Zhang and

Viñals (1997a), plotted against cjl = cos(θjl), where subscripts i and j represent the index of the unstable modes

with wave vectors separated at an angle of θjl. Two examples are shown for Γ0 = 1 with different γ, where

γ quantifies effects due to viscosity (γ � 1 for weakly viscous fluids). Sharp peaks can be observed near the

resonant angle corresponding to Γ0 = 1 in Figure 1.10.

regime (Γ0 = 1/3), where hexagonal and quasipatterns became preferred near onset, depend-

ing on the strength of the viscous term. It is not discussed in detail whether using variational

techniques (expressing the amplitude equations in gradient form) to analyse a nonvariational

problem affects the validity of the approach. However, predictions of patterns at onset from

Zhang and Viñals (1997a) using this method found qualitative agreement with experimental

work. This is discussed in more detail in Section 1.3. Note that multiple formations of reso-

nant triads can exist, governed by the system given in equation 4, with cases becoming more

complex as the number of frequency modes increases.

Silber and Skeldon (1999) used the ZV model as a simplified version of the FHS to investi-

gate the effect of normal form symmetries on the role of resonant triads. They focused on the

instability at the bicritical point associated with two-frequency forcing, where the 1:2 and 2:3

frequency ratios were explored. By demonstrating resonance in one dimension, in place of

resonant triad interactions, it was shown how resonant triads may play an important role when

the response to the forcing is subharmonic for a frequency ratio of 1:2, with insensitivity to the

same situation when the response is harmonic with frequency ratio 2:3. Silber et al. (2000) ex-

tended this work to the 2D case where they found that, for the 2:3 ratio at onset to subharmonic

instability, near the bicritical point, weakly damped harmonic modes have a strong effect on

the bifurcation problem. However, weakly damped subharmonic modes did not affect the har-

monic wave pattern selection mechanism for a harmonic instability. For higher frequencies the
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case becomes more complex owing to the fact that the neutral stability curve includes weakly

damped harmonic modes that are of more importance to pattern formation at harmonic bifurca-

tion than the critical subharmonic mode, which exists for a frequency ratio of 6:7. The results

of these studies struggled to find proper quantitative validation with experiments due to the fact

that the ZV equations are not valid outside of the assumption of small viscosity.

The ZV equations capture physical behaviour that is not necessarily found in other model for-

mulations for the same problem. The authors compared their formulation against a Hamiltonian

form that uses a dissipative function approach (Miles, 1977). Both approaches deliver the same

energy decay rate for linear surface waves but contradicting linear viscous terms. In a Hamil-

tonian formulation, dissipation functions are often included through phenomenological means.

In this case, the ZV equations deliver the correct linear damping term in the governing equation

for the potential flow and a damping term in the equations for surface displacement which is

missing in a Hamiltonian formulation that applies the same dissipation function as in Miles

(1977). Critical to the successful use of the ZV equations is determining a valid range in pa-

rameter space for which neglecting nonlinear terms in viscosity is an accurate assumption (see

the derivation presented in Zhang and Viñals 1997a, along with Section 2 of the thesis). This

is an open issue in the ZV formulation, and the neglect of nonlinear viscous terms disagrees

with the conclusions of Milner (1991). In the latter, it is proposed that nonlinear viscous damp-

ing terms contribute to the pattern formation in an important way. Zhang and Viñals (1997a)

showed that the inclusion of linear viscous terms leads to effects within the nonlinear ampli-

tude equations, particularly within the coupling function between amplitudes, which are not

accounted for within Milner’s formulation.

Chen and Viñals (1999) continued the investigation into a valid range for viscosity for use of

the ZV equations in a similar manner to Kumar and Tuckerman (1994). The authors of the latter

investigated the linear stability of the flat surface for a viscosity range not restricted to small

values. By assuming that the upper fluid layer has negligible density and constant pressure the

FHS system can be reduced to a one layer system with appropriate surface conditions (see also

Kumar 1996), similar to that of the ZV setup (see Section 2). The solution to the one layer

system can be analysed numerically to show that, for as long as the forcing period is much

shorter than the viscous damping time, represented by the condition

k2 ν

ω
� 1, (6)
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where ν is the viscosity, k is magnitude of the wavenumeber at onset, and ω is the forcing

frequency, the relative sizes of the fluid properties can be found near onset of instability and

may justify the assumptions made in the ZV equations. Kumar and Tuckerman (1994) stressed

that, past a certain limit in viscosity, the flow should be considered fully rotational; the quasi-

potential approximation of the ZV equations breaks down.

More recently, Skeldon and Porter (2011) assessed the performance of the ZV equations against

both a model that uses results from the full Navier–Stokes equations, termed the NS model,

and predictions of scaling laws estimated from symmetry based arguments (Porter and Silber,

2002). For parameter choices motivated by experiments, Skeldon and Porter (2011) demon-

strated that for two-frequency forcing, for the Faraday problem in the limit of weak viscous

dissipation, the ZV and NS predictions are within good agreement between each other as well

as the predicted scaling laws. This agreement was measured quantitatively throughout their

work and it was shown that as viscous dissipation is strengthened, the agreement between NS

and ZV is eventually only qualitative. Their analysis of the ZV model was performed in the

weakly nonlinear regime close to onset of instability to the flat state using a multiple scales

expansion, where results from the resulting amplitude equations were compared. The cross

coupling term (discussed above) used to compare the NS and ZV models, b(θ), is shown in

Figure 1.12 for a range of viscosities for two-frequency forcing in the ratio 6:7. The solid lines

were computed from the NS model and the dashed lines were computed from the ZV calcula-

tions. Both the ZV model and the NS model capture prominent resonant triad interactions for

the 6:7 forcing ratio. The singularity at 60◦ (relating to a resonant triad on a hexagonal lattice)

was due to the calculations being performed for only two of the three critical modes. A region

near θ = 60◦ is removed in subsequent panels for increasing viscosity. At θ ≈ 22◦ a resonant

triad occurs between the two critical modes and the 7 − 6 (1) mode (with response frequency

ω), shown by the localised peak in Figure 1.12 (this interaction favours related patterns). This

feature is consistent in both model predictions for increasing viscosity, although deviations be-

tween the ZV and NS model become more pronounced as viscosity is increased. At θ ≈ 70◦ a

resonant triad occurs between the two critical modes and the 6 mode, featuring a large trough

at low viscosity (this interaction avoids related patterns). The resonant interaction becomes

less important near θ = 70◦ as viscosity is increased. Skeldon and Porter (2011) suggested that

pattern selection due to resonant triad interactions behaves in a more complex manner for multi-

frequency forcing when compared to single-frequency forcing. This highlighted that one of the
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Figure 1.12: Comparison of numerical results between the Zhang–Viñals (ZV) model and the Navier–Stokes (NS)

(Skeldon and Porter, 2011) for 6:7 forcing. The cross coupling coefficient, b(θ), is normalised by the absolute

value of the self-interaction coefficient, |s|. The values are χ = 55◦, G0 = 0.0396 and Γ0 = 0.2104. From (a)–

(d), 2νk20/ωc = 0.01, 0.05, 0.1 and 0.5, where ν is the kinematic viscosity, k0 is the wave number that satisfies the

inviscid dispersion relation and ωc is the dominant frequency. The dashed lines represent the ZV equations and

the solid lines represent the NS equations. As viscosity is increased the results depart between the two models,

but still show some qualitative agreement.
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main conclusions of Zhang and Vinals (1996), specifically that patterns are avoided based on

the strength of interaction, is not a general mechanism. This was supported by the finding that

some resonant triad interactions promote related patterns at the 6:7 forcing ratio. It is clear how

increasing the nondimensional viscosity preserves similar structures between both models, but

loses quantitative agreement for the same parameter values. The results of the comparison re-

inforce that the ZV model possesses relevant mechanisms for pattern formation that are present

in the full NS model, even for moderate viscosities, where the ZV retains features predicted

from the NS model (see panel (d) in Figure 1.12).

1.3 Patterns in experiments

Experiments using single-frequency forcing were performed by Douady and Fauve (1988) on a

Newtonian fluid (water), with frequencies ranging between 30 and 40 Hz. By vertically vibrat-

ing a vessel with dimensions 8.06× 8.06× 0.50 cm3, they observed patterns with both square

and hexagonal symmetry and investigated the interaction of the spatial modes that determine

the pattern. Table 1 of Kudrolli and Gollub (1996b), and the phase diagrams for different vis-

cosities (Figures 2-4 therein), give a detailed description of pattern selection at onset for larger

viscosities than were investigated by Douady and Fauve (1988). They observed a variety of

patterns which onset as hexagons, squares or stripes depending on the forcing amplitude and

frequency. An example of a phase diagram is shown in Figure 1.13. Edwards and Fauve (1994)

performed the single-frequency experiment on a glycerol–water mixture of larger viscosity than

the water in Douady and Fauve (1988), and argued that the onset to a square pattern found in

the latter is not necessarily independent of the domain shape, although their study had a small

depth that may not be comparable to other low viscosity experiments performed with a large

depth layer. Besson et al. (1996) investigated the instability of the flat state for small fluid depth,

but only thoroughly for two-frequency forcing. Edwards and Fauve found that, as viscosity is

increased, the preferred pattern at onset is parallel rolls.

The situation becomes more complicated, as well as the patterns becoming more intriguing,

when the forcing term contains two frequencies. Edwards and Fauve (1994) investigated pat-

terns using two-frequency forcing in the same glycerol–water mixture as previously mentioned

for the single-frequency forcing experiments. They found that the pattern at onset, and ranges
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Figure 1.13: Phase diagram from Kudrolli and Gollub (1996b) from experimental data. The forcing acceleration

is a, g is the acceleration due to gravity, and a/g is plotted against forcing frequency. The lines in the diagram

represent the transition between the regions in parameter space that display different patterns, with each region

labelled by its pattern. STC stands for spatiotemporal chaos, TAM is transverse amplitude modulation and mixed

is the region where stripes and STC are bistable. The viscosity of the fluid is 0.5 cm2s−1.
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Figure 1.14: Stability boundaries (solid lines) for a two-frequency forcing of the form

a[cos(χ) cos(nω)+sin(χ) cos(mω + ψ)], with n = 4, m = 4 and ψ = 75◦, from Edwards and Fauve

(1994). The label “F ” represents the flat state, “L2” and “L1” are roll patterns of different wave numbers, “H”

represents hexagons, and “Q” is the quasi pattern (see Figure 1.15). The dashed line indicates hysteresis.

in parameter space where bifurcations to different patterns happen, are strongly dependent on

the frequency ratio, the amplitudes, and the phase difference between the two modes used in

the two-frequency forcing. The parameters they referred to are the ones given in equation (3).

The phase diagram in Figure 1.14 shows an example of the type of patterns that were observed

for two-frequency forcing, along with their location in parameter space. It can be seen that

roll patterns (labelled “L” for lines), hexagons, and quasipatterns exist for various ranges in

parameter space. Quasipatterns are patterns with long-range order but do not possess spatial

periodicity (they have also been found to be periodic in time). The quasipattern state inside the

dashed box of Figure 1.14 is shown in Figure 1.15, and was investigated in detail in Edwards

and Fauve (1993).

Müller (1993) performed experiments using a low viscosity silicon oil under two-frequency

forcing and found triangle patterns on the fluid surface. The vessel was a plastic cylindrical

container with a diameter of 80 mm and the fluid depth was 2.3 mm. The triangular patterns

were observed for n = 2 and m = 4 over a range of phase differences, ψ. These triangular pat-
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Figure 1.15: A top view picture of a Faraday wave experiment by Edwards and Fauve (1994). Light reflected from

the surface of a vertically vibrated, Newtonian fluid is used to visualise the quasipattern of twelve-fold symmetry.

The fluid is a mixture of 88% glycerol and 12% distilled water.

terns existed in a region where they competed for stability with hexagons, where both patterns

oscillated subharmonically to the forcing (with response frequency ω). Other experimental in-

vestigations using two-frequency forcing reported the existence of superlattice patterns, defined

as patterns that consist of two interacting lattices. For example, one type of hexagonal super-

lattice (with 12 wave vectors on the critical circle) can be represented by two lattices of the

type displayed in Figure 1.7c superposed and rotated with an angle between 0 and π/3 to each

other. Superlattice patterns differ to quasipatterns in that they have spatial periodicity. Kudrolli

et al. (1998) found two kinds of superlattice patterns composed of two hexagonal lattices for

two-frequency forcing. Their investigation was performed in a large AR system using silicone

oils with viscosities ranging between 20 and 50 cm2s−1. The two cases explored were the 4:5

and 6:7 frequency ratios. Arbell and Fineberg (2002) found four types of superlattice patterns

in a similar two-frequency investigation, and highlighted that lattices with wave vectors that

do not all lie on the critical circle can interact in an important way. They concluded that the

patterns arise due to either a symmetry breaking bifurcation to a hexagonal pattern composed

of one unstable mode, or the interaction of the two unstable modes corresponding to the two

forcing frequencies. The choice of which of these nonlinear process occurs depends on the

parameters in equation (3).
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The theoretical analysis given by Zhang and Viñals (1997a) showed qualitative agreement with

experiments in terms of which patterns are preferred at onset, particularly with Kudrolli and

Gollub (1996b) in the capillary-dominated regime where the preferred onset pattern was deter-

mined to be square at onset – passing to hexagons as the frequency was modified. However, at

the smallest viscosity and frequency measured (in the single-frequency forcing case), the ZV

amplitude equations predicted an eight-fold quasi-pattern in contrast to the hexagons actually

observed. This discrepancy may have been due to the finite depth of the experiments (the ZV

equations were formulated for a fluid of infinite depth). Zhang and Viñals (1997b) tested their

formulation for two-frequency forcing against experiments reported in Müller (1993). Qualita-

tive agreement was found in the parameter space where stability exists for different onset pat-

terns, and a comparison of the bicritical line (a line that separates the dominant subharmonic

from harmonic responses) was performed. The parameter values used in the experiments of

Müller leads the results of the comparison to the predictions of the ZV model to lack quan-

titative justification, since the experiments used a value for the damping parameter that may

have been too large for the small viscosity assumption used to derive the ZV equations. The

ZV equations performed well, however, in comparison to experiments reported by Binks and

van de Water (1997). The experiment was performed using a Newtonian fluid in the limit of

small viscous dissipation, measured by the value 4νk2/ω (equal to 0.03 in the experiments),

where ν is the dynamic viscosity, k is the wavenumber at onset and ω is the frequency of the

forcing. The authors seemed to have performed the experiments with the aim of validating the

ZV theory. The stability boundaries of patterns with different symmetries were found to lie

within 10% of those predicted by the ZV theory, and were closer when accounting for a cor-

rected critical acceleration (the dependence of the critical forcing to the viscous dissipation),

although an error was not given for the latter case.

1.4 Theoretical examples of localised states

A good starting point for discussing systems of PDEs with localised state solutions is the much

studied Swift–Hohenberg equation in one spatial dimension with a nonlinear source term. A

simple version of the PDE is given by

∂tu = ru−
(
q2
c + ∂2

x

)2
u+ f(u), (7)
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where u is a scalar function of x and t, r is the bifurcation parameter and f is a nonlinear

function of u. In general, there are also bifurcation parameters inside f . The value qc represents

the critical wavenumber. Swift and Hohenberg (1977) first put forward the general form of the

equation to model convective instabilities in one-dimensional (1D) hydrodynamic systems. The

steady state solutions to equation (7) are found by eliminating the time dependence and solving

the resulting ODE in the space variable x. Of the steady state solutions to equation (7) (for

certain parameter ranges and choices for the form of f ), there exists a patterned state (where

u is spatially periodic) and the trivial homogeneous zero state (where u = 0) in a region of

bistability. A bistability region occurs when two steady states are stable over the same region

in parameter space. Since the Swift–Hohenberg equation is variational problem, stability with

respect to equation (7) refers to the minimisation of the associated Lyapunov functional. In the

bistable case, stability corresponds to local minima of the Lyapunov functional. As an example,

Burke and Knobloch (2007) investigated the localised states of equation (7) for f(u) = 2u3−u5

(treatment for the general quadratic–cubic form can be found in Burke and Knobloch 2006).

The bifurcation diagram within the region of bistability is shown in Figure 1.16. The system

has a saddle–node bifurcation to patterned states at the value of r = r3 ' −0.8891, and a

subcritical primary bifurcation at r = r0 = 0. One patterned state (the upper branch labelled

uP ) is stable and the other is unstable. Therefore, bistability exists between the stable patterned

state and the stable flat state, u0, for r3 < r < r0. The point rM1 in 1.16 is referred to as the

Maxwell point. The Maxwell point occurs when the energy of the patterned state, uP , is equal

to the energy of the flat state, u0, where the energy is calculated via the associated Lyapunov

functional for each r.

For localised states among a homogeneous background (u0 = 0) in 1D , with f(u0) = 0, solu-

tions have a form, ul, say, that decays to 0 as x → ±∞, matching the homogeneous state, but

that grows and decays in some range for x. This is equivalent to forming what is termed a ho-

moclinic orbit to the flat state in the space variable. In general, a homoclinic solution represents

an orbit in phase space that asymptotes in both directions (increasing and decreasing x) to the

same steady state, with a deviation for some range in space. Heteroclinic solutions asymptote

to different solutions in space, with a front between them. The structures of the stable and

unstable manifolds of the homogeneous zero state, that are locally tangent to the stable and

unstable eigenspaces close to the equilibrium point, determine the types of orbits that are pos-

sible through their interaction with each other and other stable and unstable manifolds related
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Figure 1.16: Bifurcation diagram for system in equation (7), with f(u) = 2u3 − u5 and qc = 1. The norm

N =
(

1
Lc

∫ Lc

0
|u|2dx

) 1
2

is plotted as a function of the bifurcation parameter r, where bold lines indicate stability

of the solution and thin lines are unstable. The u0 branch represents the flat state and up represents the patterned

state. The saddle–node bifurcation is located at r = r3 and the subcritical primary bifurcation is at r = r0 = 0.

Solutions of the u+ branch are nonzero homogeneous steady states. The point rM1 ' −0.6752 is where the

Lyapunov functional (or free energy) of the system is zero for both the zero state and the patterned state. Figure

from Burke and Knobloch (2007).
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to other steady solutions, as well as properties of the system such as reversibility (Knobloch,

2015; Champneys, 1998).

For r < 0, |r| � 1, steady localised states are found in equation (7) analytically using a

multiple scales expansion in x by introducing the slow variable X = εx, where ε is a small

parameter. Using an asymptotic expansion for u = ε
(
A(X)eiqcx + Ā(x)e−iqcx

)
+O(ε2), with

qc = 1 and f(u) = 2u3 − u5, Burke and Knobloch (2007) found the solvability condition that

leads to the slow varying amplitude equation,

4
d2A

dX2
= µ2A− 6A|A|2 +O(ε), (8)

where r = −ε2µ2, µ2 > 0, and A is the complex amplitude of the small perturbation. The

solutions to equation (8) are invariant under the transformation A→ Aeiφ, where φ determines

the phase of the underlying wave pattern at O(ε) in u. The trivial homogeneous solution to

equation (8) corresponds to the flat state, and the constant value homogeneous solution corre-

sponds to the patterned state. Of interest, however, is the elliptic solution at leading order to

equation (8), which is modulated in amplitude over the slow scale and is of the form

A(X) =

(
2µ2

3

) 1
2

sech

(
X
√
µ2

2

)
eiφ.

The phase shift, φ, for this solution does not remain arbitrary. The specific values for φ can be

determined by considering a multiple scales analysis beyond all orders (Bensimon et al., 1988;

Yang and Akylas, 1997; Melbourne, 1998; Chapman and Kozyreff, 2009). The values corre-

spond to the crossing of the stable and unstable manifolds of u0 (Burke and Knobloch, 2007),

which leads to what is termed homoclinic snaking, shown in Figure 1.17. Solution profiles

corresponding to labels in Figure 1.17 are shown in Figure 1.18. Localised solutions bifurcate

subcritically at r0. Following the branches for decreasing r, the localised solutions are initially

unstable (thin curves) and go through saddle–node bifurcations (located at the branch turning

points). The localised states stabilise passing through the first saddle–node. Following further

along the branches, the points in r where saddle–node bifurcations exist become asymptoti-

cally close to the fold limits rP1 and rP2. The region bound by rP1 and rP2 is associated with

a stretching of the Maxwell point, and relates to the conclusions of Pomeau (1986) in that,

for variational systems, fronts (which are connections between states) between the patterned

state and u0 are possibly robust for a range of parameters. Pitchfork bifurcations to asymmetric

states exist near the saddle–nodes within the snaking region, forming “rungs” between each



Chapter 1: Introduction 28

Figure 1.17: (a) Full bifurcation diagram for the Swift–Hohenberg equation (7), which includes the steady so-

lutions shown in Figure 1.16. The localised branches with phases φ = 0 and π represent states that are even

(ul(x) = ul(−x)), and branches with φ = π/2 and 3π/2 are odd (ul(−x) = −ul(x)). These branches oscillate

between r = rP1 and r = rP2 in a formation known as snaking. The even and odd solutions lie on the same

branches under the norm N =
(

1
Lc

∫ Lc

0
|u|2dx

) 1
2

. (b) Close up of the branches in the snaking region, where the

branches start to go through saddle–node bifurcations ((a), (c), (d) and (f)). The location of the saddle–nodes,

following the branches further, tend to the edges of the region shaded in both panels, rP1 ≤ r ≤ rP2. Points (b)

and (e) lie on solution branches that break the symmetry of the problem, which occur as pitch-fork bifurcations

near the location of the saddle–nodes. Figure from Burke and Knobloch (2007).
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Figure 1.18: Solution profiles corresponding to labels (a) – (f) in Figure 1.17. Solutions (a) and (f) lie on the

φ = π/2 branch and (c) and (d) lie on the φ = 0 branch in Figure 1.17. Solutions (b) and (e) are asymmetric,

lying on the branches that originate at pitchfork bifurcations near the saddle–nodes in Figure 1.17.

pair of branches (details on how these states are formed and their stability can be found in

Burke and Knobloch 2007). Coullet et al. (2000) investigated localised structures within the

parameter space where stable fronts are robust in 1D, and showed a more complex situation for

2D systems. They demonstrated that within a region for their bifurcation parameter, the fronts

of localised states are stable. Either side of this region, the fronts travel to form a flat state

(peaks/troughs disappear from each end of the localised state until the state is homogeneous)

or a patterned state (peaks/troughs appear at each end of the localised state until the global

patterned state is reached). The appearance of localised states is linked to the evolution of the

stable and unstable manifolds in phase space as the bifurcation parameter is varied.

An interesting investigation on localised solutions of the 2D Swift–Hohenberg equation was

given by Lloyd et al. (2008), where stationary localised states were sought in the equation

∂u

∂t
= −

(
1 +∇2

)2
u− µu+ νu2 − u3, (9)

where ∇2 = ∂xx + ∂yy, the function u depends on space, (x, y) ∈ R2, µ is the bifurcation pa-

rameter, and ν is a paramter of the system. Lloyd et al. (2008) explored the region in parameter
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Figure 1.19: Planar hexagon pulses calculated from equation (9), image from Lloyd et al. (2008). Both fronts

have different orientations with respect to a hexagonal pattern lattice that can be categorised via the Bravais–

Miller index, 〈10〉 for the left panel, and 〈11〉 for the panel on the right (see Lloyd et al. 2008 for a detailed

definition of the Bravais–Miller index notation).

space where the trivial state, u = 0, and regular hexagon patterns were both stable. Equation

(9) admits a first integral and an associated energy functional (Lyapunov functional) that allows

the Maxwell point to be calculated, identifying a search region for localised states. Lloyd et al.

(2008) solved equation (9) numerically to find regular hexagons (globally filling the domain

on a hexagonal lattice), planar hexagon pulses, and localised hexagon patches. Examples of

planar hexagon pulses are shown in Figure 1.19. Both fronts have different orientations with

respect to a hexagonal pattern lattice, and therefore have different front configurations where

the hexagonal pattern evolves to the flat state. Planar hexagonal pulses can be expressed via

the Bravais–Miller index, 〈10〉 for the left panel in Figure 1.19, and 〈11〉 for the panel on the

right (see Lloyd et al. 2008 for a detailed definition of the Bravais–Miller index notation). Us-

ing continuation techniques, the solutions branches for planar hexagonal pulses and localised

hexagonal patches were plotted on the bifurcation diagram for a range of parameter values. The

snaking behaviour along the solution branches (as described above and shown in Figure 1.17)

was present for each type solution. It was found that the orientation of the planar hexagonal

pulse solutions has a significant effect on the location of the fold limits (analogous to rP1 and

rP2 in Figure 1.17).

An example of the snaking region on the bifurcation diagram for the localised hexagonal
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Figure 1.20: Close up of the bifurcation diagram (middle panel) for equation (9) for ν = 1.6. The L2-norm (y-

axis) is calculated in u and plotted against the bifurcation parameter, µ, showing the solution branch for localised

hexagonal patches. Stable (unstable) solutions are represented by solid (dashed) lines. Panels 1–4 show solution

profiles at the corresponding locations of the branch shown in the middle panel. The vertical lines correspond

to the fold limits defining the snaking region for planar hexagon pulses; the leftmost vertical line, µ = 0.267,

corresponds to the fold limits of a 〈10〉 hexagonal pulse solution with the middle and rightmost vertical lines,

µ = 0.2964 and µ = 0.3364, corresponding to the fold limits of a 〈11〉 planar hexagon pulse solution. Image

from Lloyd et al. (2008).

patches found in Lloyd et al. (2008) is shown in Figure 1.20. As with previous examples,

the localised solutions lose and regain stability at sadde–nodes. The snaking behaviour was

found to be qualitatively different to the other patterns explored in that three fold limits were

observed (as opposed to two for planar hexagon pulses). Interestingly, the fold limits of the

localised hexagonal patches seemed to initially align with the fold limits of the planar hexag-

onal pulses depending on how the front of the localised hexagonal patches developed. It was

suggested that this observation may contribute to an explanation of how hexagon patterns grow,

where growth of localised hexagonal patches refers to the adding of peaks around the localised

solution to form an outer ring of peaks around the localised patch, as is shown by the evolution

in panels 1–4 in Figure 1.20. Note that the location of the localised branch for the patterns in

panel 1 and 4 almost align with the fold limit of the 〈10〉 planar hexagonal pulse and the inter-

mediate stages, panels 2 and 3, almost align with the 〈11〉 planar hexagonal pulse. However, an

overall mechanism to explain the growth of hexagon patterns has not yet been identified. It was

shown that further along the localised branch, the evolution of localised hexagonal patches be-

comes more complicated and “self-interaction” of the bifurcation curve can occur where peaks

are lost at the corners of the hexagonal patches as the solution develops. This could indicate that
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Figure 1.21: Results from a numerical simulation of equation (9) with ν = 1.6, performed by Lloyd et al. (2008).

(a) Localised patch with a corner peak removed, use an an initial condition. (b) Solution at t = 100 for µ = 0.27

(to the left of the central 〈11〉 fold limit in Figure 1.20). (c) Solution at t = 100 for µ = 0.3 (to the right of the

central 〈11〉 fold limit in Figure 1.20).

a non-local mechanism is responsible for the development of localised patches when traversing

the bifurcation branch.

Lloyd et al. (2008) numerically simulated equation (9) for initial conditions that were asym-

metric by manipulating solutions of the type shown in panel 1 in Figure 1.20 such that one of

the peaks at the corner of the hexagon patch was eliminated. Results from this investigation are

shown in Figure 1.21. It was found that, depending on the bifurcation parameter, µ, asymmetric

states (panel a) can evolve back to symmetric states (panel b) or remain asymmetric (panel c).

It was suggested that the location of the fold limits of the planar hexagonal pulses may con-

tribute to the understanding of the temporal evolution of asymmetric states. However, further

investigation is necessary to determine the underlying mechanism.

For hydrodynamic systems that are nonvariational, localisation of solutions can not be exam-

ined or explained in the same way as those that benefit from variational techniques described

above. For example, there exists no Maxwell point that relates to the energy of the system.

Descalzi et al. (2005) reported several types of localised states within the quintic complex

Ginzburg–Landau equation, found numerically. They also investigated the effects of changing

the boundary condition type from periodic to Neumann (once the stable localised solution had

been found). The results showed that, when the localised solution is not homoclinic to the

flat state in space at the time of changing boundary conditions, the solutions were qualitatively

changed. However, the investigation only demonstrated the changes in the solution numerically

and did not offer much in terms of an intuitive explanation.
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Figure 1.22: Schematic diagram of a stable standard oscillon (SSO) from Burke et al. (2008). The arrows indicate

the oscillation of the structure, which oscillates at half the frequency of the forcing term.

Burke et al. (2008) analysed the formation of several types of localised states in detail using the

forced complex Ginzburg–Landau (FCGL) equation in 1D with a 2:1 resonance (solutions on

the marginal stability curve respond at half the frequency of the forcing). The types of localised

states analysed consisted of both homoclinic and heteroclinic orbits in phase space, oscillating

in time according to the 2:1 resonance. One result within Burke et al. (2008), relevant to

structures found in experiments, is the stabilisation of a certain type of localised state, termed

therein as a stable standard oscillon. The structure, which is shown in Figure 1.22, is homoclinic

in space to the zero state.

Alnahdi et al. (2014) used the results of Burke et al. (2008) to compare the predictions of

the Forced Complex Ginzburg–Landau (FCGL) model to a Phenomenological Faraday Model

(PFM) designed by Rucklidge and Silber (2009), given by

∂U

∂t
= (µ̃+ iω̃)U +

(
α̃ + iβ̃

) ∂2U

∂x2
+ C|U |2U + iRe{U}F cos(2t), (10)

where U is a complex function, µ̃ is the distance from onset of the oscillatory instability, ω̃,

α̃, β̃, and F are real parameters, and C is a complex parameter. As stated in Alnahdi et al.

(2014), the PFM does not have a direct physical interpretation with regards to the Faraday

wave experiment. However, the model was designed such that the linearised problem reduces

to a damped Mathieu equation, common to hydrodynamic models of the Faraday system in the

limit of small viscosity. The complex variable U acts as the representative pattern forming field

and is not directly interpreted in terms of the physical properties of the Faraday problem. In the

limit of weak forcing (F → ε2F ), weak damping (µ̃ → ε2µ̃), weak detuning (ω̃ → 1 + ε2ν̃),

and small amplitude (U expandable in powers of a small parameter ε), the PFM was reduced to
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Figure 1.23: Bifurcation diagram with both the PFM model of Rucklidge and Silber (2009) (thin red line)

and the FCGL equation (thin blue line). Thick/dark blue lines represent stable solutions, patterned for

the upper line and flat for the lower line. Dashed lines represent unstable solutions. The norm N =√
1

πLx

∫ Lx

0

∫ 2π

0
(|U |2 + |∂xU |2) dtdx is plotted as a function of the forcing Γ. Transitions between stable and

unstable standard oscillons occur at saddle–node bifurcations in a similar way to the homoclinic snaking of the

variational system given by equation (7). Figure from Alnahdi et al. (2014). Solution profiles (a)–(f) are shown

in Figure 1.24.

the FCGL equation given by

AT = (µ̃+ iν̃)A+
(
α̃ + iβ̃

)
AXX + C|A|2A+ ΓĀ, (11)

where A is the complex amplitude (Ā is the complex conjugate) at leading order with large

spatial, X , and temporal, T , scales, and Γ = F/4. The types of solutions that were sought in

equation (11) are homoclinic in space. When the forcing is very close to the critical forcing

at onset, the FCGL equation can be reduced to the Allen–Cahn equations, where analytical

solutions can be found and exhibit (at leading order) the sech type profile similar to that of the

localised solution of the Swift–Hohenberg model. The agreement between the solutions to the

FCGL equation and the PFM is good and is shown in the bifurcation diagram in Figure 1.23,

with labelled solution profiles, (a)–(f), shown in Figure 1.24. The solution branch for this type

of oscillon bifurcates subcritically and exists in a bistability region for both the FCGL equation

and the PFM. In comparison to the snaking in the variational (Swift–Hohenberg) problem, the

locations of the saddle–nodes eventually limit to a much narrower region.

An open question from the work of Burke et al. (2008) and Alnahdi et al. (2014) was the
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Figure 1.24: Solution profiles corresponding to Figure 1.23. Blue (red) lines represent the real (imaginary) com-

ponents of U . Solutions were numerically calculated from the PFM. Figure from Alnahdi et al. (2014).
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applicability of the theory to equations that relate more directly to the physical problem of

Faraday waves. One issue was in the fact that the unstable solutions of the FCGL equations

onset with a preferred wavenumber of zero, in contrast to what is observed in experiments and

the linear stability theory of Benjamin and Ursell (1954) and Kumar and Tuckerman (1994).

Alnahdi et al. (2018) proposed a modification to the PFM and sought solutions in the form of

travelling waves. By using an ansatz of the formA(X,T )ei(x+t)+B(X,T )ei(t−x) (whereA and

B are complex amplitudes of the perturbations), the PFM was reduced to the coupled FCGL

equations,

AT = (ρ+ iν)A− 2 (α + iβ)AXX + vgAX + C
(
|A|2 + |B|2

)
A+ iΓB̄,

BT = (ρ+ iν)B − 2 (α + iβ)BXX − vgBX + C
(
|A|2 + |B|2

)
B + iΓĀ, (12)

in the limit of small amplitude, weak damping, weak detuning, weak forcing and small group

velocity, vg. The group velocity is found from the dispersion relation, and in the investigation

was controlled by the parameter values. Other parameters in equation (12) can be related to the

model PDE for physical interpretation (see table 1 of Alnahdi et al. 2018). Similar to the FCGL

equations, very close to the critical forcing these equations can be further reduced to the real

Ginzburg–Landau equations. The analytical solution that describes a localised state in the real

Ginzburg–Landau equation agreed well with the solution to PFM, apart from a small difference

in the amplitude of the real part of the solution. The work of Alnahdi et al. (2018) provides a

guide for the analysis of a system with similar mechanics that is more directly related to the

Faraday wave problem, e.g., the ZV equations. However, the ZV equations include parameters

that cannot be as easily controlled as the PFM, as well as more complicated nonlinear terms.

1.5 Localised oscillons in experiments

Lioubashevski et al. (1999) performed the Faraday experiment on a non-Newtonian clay sus-

pension using a forcing with single frequency, a sin(ωt). The dimensions of the two exper-

imental basins (with circular cross-section) were 20 cm and 29 cm, with a fluid depth that

varied between 0.4 cm and 4 cm. They found that the primary instability was to finger-like

states that oscillated subharmonically to the forcing. Localised states were excited by creating

local defects in the fluid and increasing the acceleration until oscillons were observed. The

oscillon structures they found are shown in Figure 1.25. The oscillons oscillated subharmon-
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Figure 1.25: Pictures from experiments of various types of oscillon structures (from the side view) from a clay

suspension in Lioubashevski et al. (1999). Panel (a) shows a single oscillon among a homogeneous background

with a forcing frequency of 14 Hz. Panels (b) and (c) show an oscillon pair at forcing frequency 20 Hz, and an

oscillon triad at 25 Hz, respectively. All oscillons respond at half of the driving frequency, meaning that, from top

to bottom in each panel, the time passed is twice the forcing period.

Figure 1.26: Top view pictures of Faraday wave experiments by Arbell and Fineberg (2000). Left: a single

oscillon is observed existing within a homogeneous background. Right: a single oscillon is observed that exists

within a global square patterned state. The fluid is Dow Corning silicone oil of viscosity 47 cS and the vertical

vibration signal consisted of two frequencies in the ratio 3:2. The cross-section of the domain is cylindrical, and a

cylindrical screen placed above the container with varying light intensity was used to visualise the patterns.
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ically to the forcing, with the most robust being an oscillon pair temporally out of phase by

π (Figure 1.25b). As discussed above for the Swift–Hohenberg model and in Pomeau (1986),

specifically that there is a region in parameter space where localised structures are robust (the

pinning region), Lioubashevski et al. (1999) found that the region of existence of oscillons was

experimentally consistent with these predictions, using the scalings from Crawford and Riecke

(1999).

Similar stuctures were investigated in a Newtonian fluid by Arbell and Fineberg (2000). In the

experiments the forcing term contained two frequencies, as in equation (3). They vertically

vibrated a cylindrical container with diameter 14.4 cm and fluid depths were varied between

0.15 cm and 0.55 cm. The fluids used were Dow–Corning 200 silicone oils with kinematic

viscosities of 8.7, 23, 47 and 87 cS (centi–Stokes, 1 cS= 10−2 cm2s−1). The oscillons in Figure

1.26 were observed for one of the cases where the forcing frequencies were in the ratio 2:3.

Oscillons were also found for a 4:5 frequency ratio. Interestingly, the oscillons formed in this

system differed in the non-Newtonian case above in that they were harmonic to the forcing,

and did not appear solely in a subcritical region where bistability between two states occurs.

For example, oscillons were found to exist within a patterned background near a supercritical

bifurcation (see Figure 1.26). It may seem that for oscillons in a Newtonian fluid to exist,

two-frequency forcing is needed. However, for a single frequency forcing in the experiments

of Kudrolli and Gollub (1996a), it was shown that two states can coexist under the simpler

forcing. The experiments of the latter investigated the localisation of chaos in a domain of

laminar stripes, and may not be applicable to oscillon formation.

Urra et al. (2017) recreated the Faraday experiment with a non-homogeneous forcing for a

Newtonian fluid (Photoflo-water). The lower plate consisted of a soft bed with 13 pistons

below, which could be arranged to create a Gaussian-type profile oscillatory forcing of the soft

bed. The domain was a rectangular, transparent 15× 490× 100 mm3 box filled with Photoflo-

water, designed to be “quasi one-dimensional”. The localised structures oscillated at half the

frequency of the inhomogeneous forcing, and a typical profile in time and space is shown in

Figure 1.27. Similar experiments in a larger domain may be required to see if the results remain

consistent, since the narrow domain may have affected the fluid, which was not investigated or

mentioned in the study. The authors of the study compared their results to the 1D nonlinear

Schrödinger equation, with good agreement found between both. The parametric dissipative
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Figure 1.27: Surface displacement, η, plotted as a function of time t and space x, where the forcing of the Faraday

experiment is heterogeneous. The values plotted are measured from experiments. The experiments use a setup of

13 pistons located underneath a soft bed, which forces a narrow channel of water by vibrating the soft bed in an

inhomogeneous profile. The left panel uses only 6 pistons arranged in a Gaussian-type profile, and the right panel

uses 13 for a similar profile. Figure from Urra et al. (2017).

nonlinear Schrödinger equation is based on a Hamiltonian formulation of the problem with an

added dissipative term given by Miles (1984b) (the accuracy of which is studied in Gordillo

and Mujica 2014). Their comparison was demonstrated in the predictions of the width of the

envelope of the localised state as a function of the width of the envelope of the forcing profile.

The Schrödinger equation predicted that the envelope width of the localised state depends on

the envelope width of the forcing profile in a square-root power law. The experimental results

reflected this power law prediction closely.

1.6 Thesis plan and methodology

The goal of this thesis is demonstrate the existence of localised states in a system that describes

the Faraday problem with equations derived from first principles, the Zhang–Viñals (ZV) equa-

tions. Demonstrating the existence of localised solutions within the ZV equations provides a

starting point for future work in bridging the gap between theoretical approaches to localised

states and observations from experimental data. Since the Navier–Stokes equations are com-

plex and intensive to simulate numerically, the ZV system (a reduction of the Navier–Stokes

equations) offers a useful tool that has already been shown to capture mechanics important to

pattern formation in vibrating fluids. In Section 2, the ZV equations are derived through scal-
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Figure 1.28: Experimental phase diagram from Arbell and Fineberg (2000). Observed patterns are shown for

two-frequency forcing of the form in equation (3) with frequencies in a ratio of 2:3, with ω/2π = 30 Hz. The

horizontal axis corresponds to the driving amplitude of 60 Hz forcing, and the vertical axis corresponds to a forcing

of 90 Hz. The fluid was Newtonian with a viscosity of 0.23 cS cm3/s, and a depth of 0.2 cm.

ing arguments, supported by a linear stability analysis of the Navier–Stokes equations using the

same techniques described in Kumar and Tuckerman (1994).

The motivating example for the methodology presented in the following chapters comes from

the work of Arbell and Fineberg (2000). Localised oscillating states (oscillons) were observed

experimentally in a Newtonian fluid using a forcing function composed of two frequencies.

Figure 1.28 shows a typical phase diagram from their experiments. On the phase diagram,

the region of stability of the flat state is labelled “Flat” and is bound by filled circles. The

boundary of this region corresponds to the linear stability boundary of the flat state. To the

right of this region, where the driving amplitude of the 60 Hz forcing component was dominant,

harmonic hexagonal patterns were observed. When the driving amplitude of the 90 Hz forcing

was dominant, subharmonic square patterns were observed. Temporally harmonic oscillon

states were observed against a patternless background in a region of bistability between the

flat state and hexagonal patterns. The region is located near the bicritical point (a point of

bicriticallity is illustrated for the Faraday problem in Figure 1.5 for an alternative frequency

ratio).
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Figure 1.29 shows a phase diagram created via the linear stability analysis outlined in Kumar

(1996) for a fluid of finite depth. The parameters used to create the diagram are the same as in

Arbell and Fineberg (2000), with data overlaid from Figure 1.28 for comparison purposes. Data

was extracted from the experimental phase diagram using the online data extraction software

PlotDigitizer, PORBITAL (2023). The parameters used to create the phase diagram may offer

some guidance in determining a starting point for searching for localised states numerically.

However, in creating the linear phase diagram for the experimental results comparison it was

found that the results were sensitive to fluid depth, which the ZV equations do not account for.

Results from linear stability and weakly nonlinear analyses of the ZV equations are presented

in Section 3. The analyses were performed to determine both the theoretical location of the

bicritical point (determined through linear stability), and the existence and extent of the bistable

region between the flat and patterned state (via the coefficients of the amplitude equations from

the weakly nonlinear analysis). Guided by the experiments of Arbell and Fineberg (2000), this

was performed for two-frequency forcing in the ratio 2:3 for harmonic hexagon patterns. The

two-frequency forcing case was chosen over single frequency forcing due to their presence in

experiments for a Newtonian fluid and the form of amplitude equation in the weakly nonlinear

analysis. More specifically on the latter point, the extent of the bistable region was found to

be more readily optimised due to the extra terms in the amplitude equations (see Section 3).

These initial analytical steps were necessary to reduce the computational cost of searching for

localised states in the simulations of the ZV equations that followed. The chosen numerical

method and subsequent verification of the numerics is also presented in Section 3.

The results from numerical simulations of the ZV equations for localised states are presented in

Section 4. The parameter range chosen for these simulations was determined using the analyses

in Section 3. Together, Sections 3 and 4 outline a successful methodology for searching for

localised states in the ZV equations. The limitations of the approach, the implications of the

findings within this thesis, and the potential avenues for future work are discussed in Section

5.
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Figure 1.29: Phase diagram (linear stability boundary only) created from the method described in Kumar (1996)

for finite depth (solid line) and infinite depth (dashed line). Experimental parameters from Arbell and Fineberg

(2000) have been used (see Figure 1.28), with assumed fluid density, ρ = 950 kg m−3, surface tension, γ = 0.021

Nm−1, and forcing phase shift, ψl = 0 (not specified in the experimental study). Experimental data taken from

Figure 1.28 are plotted as crosses.
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2 The Zhang–Viñals equations

Throughout section 2.1, the linear stability analysis of the Navier–Stokes equations for the

Faraday problem, outlined in Kumar and Tuckerman (1994), is presented. The derivation of the

Zhang–Viñals (ZV) equations begins in section 2.2. Important results from the linear stability

analysis of section 2.1 are later used in section 2.3 to support the derivation. Specifically, the

solution to the linear problem and the relative sizes of the fluid properties at onset of instability

for small viscosity are highlighted as a guide for the size arguments used in the derivation of

the ZV equations. Sections 2.4 to 2.6 demonstrate the steps and tools necessary to complete

the derivation of the ZV equations.

2.1 Linear stability of the periodically forced Navier–Stokes equations

The Faraday system can be modelled as two unperturbed layers of fluid that are separated by

an initially flat interface located at z̃ = 0 in the Cartesian frame of reference. The periodic

acceleration is denoted by gz(t) (as in equation (1) or (3)) and has a frequency that is a multiple

of ω. A change of coordinate system, z = z̃ − O(gz(t)/ω
2), depending on gz(t), allows a

Cartesian frame of reference that moves with the vibrational motion such that the unperturbed

interface (flat state) is located at z = 0. Deformation to the flat state is described by z =

h(x, y, t).

Kumar and Tuckerman (1994) used a two-fluid interface system that included consideration of

the upper infinite domain, where z > 0, and the lower infinite domain, z < 0. The Navier–

Stokes equations for an incompressible, viscous, Newtonian fluid describe the system in each

layer and are given by

ρi

(
∂ui
∂t

+ (ui ·∇)ui

)
= −∇pi + ηi∇2ui + ∇Gi, ∇ · ui = 0, (13)

where ρ is the fluid density, p is the fluid pressure, u = (u, v, w) is the fluid velocity in the

x, y, and z directions, respectively, η is the dynamic viscosity, and ∇G is the body force.

The subscript i indicates the fluid properties for lower (z < 0, i = 1) and upper (z > 0,

i = 2) layers. The body force ∇Gi is given by Gi = −ρiz (g0 + gz(t)). The pressure, pi,

can be expressed as the sum of the solution to the flat state (where ui = 0 everywhere) and
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Figure 2.1: 2D schematic of the Full Hydrodynamic System (FHS) presented in Kumar and Tuckerman (1994)

for two fluids of infinite depth and large aspect ratio (allowing the neglect of side walls). Equation (13) is satisfied

within each fluid layer, indexed by i = 1, 2, where ρi is the fluid density, pi is the fluid pressure, ui = (ui, vi, wi)

is the fluid velocity in the x, y, and z directions, respectively, ηi is the dynamic viscosity, and ∇Gi is the body

force within the respective layers. The interface between the two fluids is located at z = h(x, y, t). The vector

normal to the surface, n̂, can also have components in the y-direction.
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pertubrations to this, as pi = Gi + p′i.

Assuming an infinite fluid layer in both the upper and lower infinite domains allows effects from

the lower rigid boundary to be neglected. The boundary conditions are therefore described by

ui → 0 as z → ±∞, which implies w2 → 0, ∂zw2 → 0, w1 → 0 and ∂zw1 → 0 as z → ±∞.

Effects from sidewalls can be neglected by assuming a high aspect ratio setup; sidewalls are

assumed to be spaced far apart compared to onset wavelengths, allowing for the neglect of wall

effects. A schematic of the two-layer system used in Kumar and Tuckerman (1994) is shown

in Figure 2.1.

The boundary conditions at the interface (z = h(x, y, t)) include continuity of the tangential

stresses and the normal stresses balancing surface tension forces, given by

(σ1 · n̂) · â = (σ2 · n̂) · â, (14)

(σ1 · n̂) · b̂ = (σ2 · n̂) · b̂, (15)

(σ2 · n̂) · n̂− (σ1 · n̂) · n̂ = γκ, (16)

where σiI,J = −piδI,J + 2ηiτiI,J is the stress tensor with

τI,J =
1

2

(
∂uI
∂xJ

+
∂uJ
∂xI

)
.

The unit vector n̂ is normal to the surface, given by

n̂ =
(
1 + (∇⊥h)2)− 1

2 (−∂xh,−∂yh, 1), (17)

where ∇⊥h indicates (∂x, ∂y, 0)h. The vectors â and b̂ are unit vectors that are tangential to

the surface in the xz− and yz− plane, respectively, and are given by

â =

(
1 +

(
∂h

∂x

)2
)− 1

2 (
1, 0,

∂h

∂x

)
, (18)

b̂ =

(
1 +

(
∂h

∂y

)2
)− 1

2 (
0, 1,

∂h

∂y

)
. (19)

An example of the orientation for â is shown in Figure 2.1. The unit vector b̂ has an analogous

orientation in the yz− plane. The surface tension is given by γ, and κ is the surface curvature,

κ = −∇ · n̂.
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The kinematic surface condition, that the surface moves at the speed of the fluid, is given by

wi =
∂h

∂t
+ u⊥i ·∇⊥h, (20)

for i = 1, 2, where the symbol ⊥ indicates the x and y components only. Continuity of velocity

across the surface gives u2 − u1 = 0 at z = h which implies w2 − w1 = 0. The condi-

tion ∂z (w2 − w1) = 0 at the surface ensures the velocity profiles in the z component meet

smoothly.

2.1.1 Perturbation equations

The operator −∇×∇× can be applied to to equation (13) along with the identity −∇×∇×

u = ∇2u for incompressible fluids to obtain

(
∂t − νi∇2

)
∇2ui = −∇×∇× (ui ×Ωi) , (21)

where Ωi = ∇ × ui is the vorticity and νi = ηi/ρi is the kinematic viscosity of the fluid in

each layer. The z component of equation (21) is

(
∂t − νi∇2

)
∇2wi = [−∇×∇× (ui ×Ωi)] · ẑ, (22)

where ẑ is the unit vector in the z direction and wi is the velocity in z for layers i = 1, 2.

The solution is sought as a perturbation to the flate state with ui = 0+u′
i. For small |u′

i| and h,

the governing equations can be linearised about z = 0. The governing equation (21) becomes

(
∂t − νi∇2

)
∇2u′

i = 0. (23)

The linearised tangential stress balance equations, from (14) and (15), give

η1 (∂zu
′
1 + ∂xw

′
1) = η2 (∂zu

′
2 + ∂xw

′
2) and η1 (∂zv

′
1 + ∂yw

′
1) = η2 (∂zv

′
2 + ∂yw

′
2) ,

which after cross differentiation and use of the continuity equation gives

∆η
(
∇2
⊥ − ∂2

z

)
w′ = 0 at z = 0, (24)

where∇2
⊥ = ∂2

x + ∂2
y . The symbol ∆ is used to represent the difference in fluid properties over

the fluid layer, for example, ∆A = A2 − A1 for a fluid property A over the interface.
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The linearised normal condition from equation (16) results in

p1 − p2 + 2∆ (η∂zw
′) = −γ∇2

⊥h. (25)

Applying ∇2
⊥ to equation (25) and using the Taylor expansion for pressure about z = 0 (with

pi ≈ −ρih(g0 + g(t)) + p′i) gives

∆ρ (go + g(t))∇2
⊥h−∆

(
∇2
⊥p
′)+ 2∆

(
η∂z∇2

⊥w
)

= −γ∇4
⊥h.

The linearised version of equation (13) can be used to eliminate the perturbation to pressure

using∇2
⊥p
′
i = ρi(∂t − νi∇2)∂zwi, to give

∆
[
−2η∇2

⊥ + ρ(∂t − ν∇2)
]
∂zw

′ =
[
γ∇2
⊥ + ∆ρ (go + g(t))

]
∇2
⊥h. (26)

Linearising the kinematic surface condition in equation (20) gives

w′1 = w′2 = ∂th at z = 0. (27)

In summary, a solution is sought for the linear stability system governed by equation (23),

subject to surface stress conditions given by equations (24) and (26) along with the kinematic

condition given by equation (27). Continuity of the vertical velocity along with the smoothness

condition also gives w′1 = w′2 and ∂zw′1 = ∂zw
′
2 at z = 0, while as z → ±∞, w′1, w′2, ∂zw′1,

and ∂zw′2 tend to 0.

2.1.2 One-layer full hydrodynamic system

The primes (′) on the perturbation variables are dropped in the following sections. The solution

to the linear problem can be sought in the form wi(x, y, z, t) = sin(k · x⊥)Wi(z, t) for vertical

velocity, and h(x, y, t) = sin(k · x⊥)H(t) for surface displacement. Substituting this form into

equations (23)–(27) and using continuity at the surface and boundary conditions as z → ±∞

gives the full hydrodynamic system:

(
∂t − ν1

(
∂2
z − k2

)) (
∂2
z − k2

)
W1 = 0 for z < 0, (28)

(
∂t − ν2

(
∂2
z − k2

)) (
∂2
z − k2

)
W2 = 0 for z > 0, (29)

W1 = ∂zW1 = 0 as z → −∞, (30)
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W2 = ∂zW2 = 0 as z →∞, (31)

∂zW1(0, t) = ∂zW2(0, t), (32)

η1

(
∂2
z + k2

)
W1(0, t) = η2

(
∂2
z + k2

)
W2(0, t), (33)

W1(0, t) = W2(0, t) = ∂tH, (34)

∆
{[

2ηk2 + ρ(∂t + ν
(
k2 − ∂2

z

)]
∂zW (0, t)

}
= −k2

[
−γk2 + (ρ2 − ρ1) (g0 + g(t))

]
H(t),

(35)

where |k| = k.

Kumar and Tuckerman (1994) performed a linear stability analysis of the Faraday problem for

two fluid layers using equations (28)–(35). The assumption that η2 and ρ2 are negligible in

the FHS is analogous to the Faraday setup for a fluid–air interface (the layer represented by

i = 2 in Figure 2.1 can be neglected), and leads to a system for the total vertical velocity, after

linearisation, given by

(
∂t − ν1

(
∂2
z − k2

)) (
∂2
z − k2

)
W1 = 0 for z < 0, (36)

W1 = ∂zW1 = 0 as z → −∞, (37)(
∂2
z + k2

)
W1(0, t) = 0, (38)

W1(0, t) = ∂tH1, (39)[
2η1k

2 + ρ1(∂t + ν1

(
k2 − ∂2

z

)]
∂zW1(0, t) = −k2

[
γ1k

2 + ρ1(g0 + gz(t))
]
H1(t). (40)

Equations (36)–(40) are solved here to highlight the relative size between the components of

fluid velocity and surface displacement for the Faraday system near onset of instability and

under weak viscous dissipation. The vibrational forcing term is chosen to be of the form gz(t) =

−a cosωt to demonstrate the relative scaling. The calculation is numerically similar to solving

the FHS in Kumar and Tuckerman (1994).

As a second order system, equations (39) and (40) contain a forcing term that has time period

Tp = 2π/ω, and so is of Floquet form. The solution can therefore be expressed as

W1(z, t) = exp ((αr + iαi)t)
∞∑

n=−∞

W1n(z) exp(inωt), (41)

H1(t) = exp ((αr + iαr)t)
∞∑

n=−∞

H1n exp(inωt), (42)
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where αr + iαi is the Floquet exponent governing the stability and frequency of the solution,

with αr, αi ∈ R. The method involves searching for the required forcing strength, a, for each

wavenumber, |k| = k, that leads to instability, where the real part of the Floquet exponent

crosses zero.

Upon substitution of equation (41) into equation (36), the form for W1n is obtained to be

W1n(z) = A1n exp(kz) +B1n exp(−kz) + C1n exp(q1nz) +D1n exp(−q1nz),

where

q2
1n = k2 +

αr + i(αi + nω)

ν1

. (43)

When k > 0, Re{q1n} > 0. Application of the boundary condition as z → −∞ leads to

B1n = D1n = 0 for all n. This leaves two coefficients (A1n and B1n) for each n, to be related

to H1n through equations (38) and (39). This gives

A1n = ν1

(
q2

1n + k2
)
H1n, (44)

B1n = −2ν1k
2H1n, (45)

for q1n 6= k.

To find a at onset of instability, αr is set to the value of zero and the resulting system is solved

for αi = ω/2, yielding a subharmonic response, or αi = 0, for a harmonic response. Sub-

stitution of the expansions for W1 and H1, along with the identity a cos(ωt) = a(exp(iωt) +

exp(−iωt))/2, leads to a system of equations for each n,

2

k2

[
ν2

1

(
k
(
k2 + q2

1n

)2 − 4k2q1n

)
+
γ1k

4

ρ1

+ g0k
2

]
H1n = a

(
H1(n+1) +H1(n−1)

)
, (46)

or

Σ(n)H1n = a
(
H1(n+1) +H1(n−1)

)
, (47)

where

Σ(n) =
2

k2

[
ν2

1

(
k
(
k2 + q2

1n

)2 − 4k2q1n

)
+
γ1k

4

ρ1

+ g0k
2

]
. (48)

Chen and Viñals (1999) solved system (46) recursively, and derived an analytic approximation

for the dispersion relation for this problem. The method used here is that described by Kumar

and Tuckerman (1994). By splitting each component of H1n into its real and imaginary parts,

the system can be written as a generalised eigenvalue problem given by

ALHSH = aARHSH , (49)
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whereH = (Re{H10}, Im{H10}, Re{H11}, Im{H11}, ..., Re{H1N}, Im{H1N})T . The Fourier

series for both surface displacement and vertical velocity is truncated at N + 1 modes in time.

The condition for reality of the subharmonic solution is given by H1(−(n+1)) = H∗1n and the

condition for reality of the solution for the harmonic response is given by H1(−n) = H∗1n, giv-

ing H1n for n = −1,−2, . . . ,−N without having to explicitly calculate each component. The

matrix ARHS is dependent on the frequency of the response, which for the subharmonic case,

αi = ω/2, gives

ARHS =



1 0 1 0 . . . 0 0 0 0

0 −1 0 1 . . . 0 0 0 0

1 0 0 0 . . . 0 0 0 0

0 1 0 0 . . . 0 0 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 0 . . . 0 0 1 0

0 0 0 0 . . . 0 0 0 1

0 0 0 0 . . . 1 0 0 0

0 0 0 0 . . . 0 1 0 0



, (50)

and for the harmonic response, αi = 0, is given by

ARHS =



0 0 2 0 0 . . . 0 0 0 0 0

0 0 0 0 0 . . . 0 0 0 0 0

1 0 0 0 1 . . . 0 0 0 0 0

0 1 0 0 0 . . . 0 0 0 0 0

0 0 1 0 0 . . . 0 0 0 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 0 0 0 . . . 0 0 1 0 0

0 0 0 0 0 . . . 0 0 0 1 0

0 0 0 0 0 . . . 1 0 0 0 1

0 0 0 0 0 . . . 0 1 0 0 0

0 0 0 0 0 . . . 0 0 1 0 0



. (51)
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The matrix ALHS is given by

ALHS =



Re{Σ(0)} − Im{Σ(0)} 0 0 . . . 0 0

Im{Σ(0)} Re{Σ(0)} 0 0 . . . 0 0

0 0 Re{Σ(1)} − Im{Σ(1)} . . . 0 0

0 0 Im{Σ(1)} Re{Σ(1)} . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . Re{Σ(N)} − Im{Σ(N)}

0 0 0 0 . . . Im{Σ(N)} Re{Σ(N)}


.

(52)

The matrices ALHS and ARHS are both 2(N + 1)× 2(N + 1) square matrices. The amplitude

a can be found by treating the problem as an ordinary eigenvalue problem and calculating the

eigenvalues of the matrix A−1
LHSARHS , where H is the corresponding eigenvector and 1/a is

the corresponding eigenvalue. This was the chosen method for the work presented within this

thesis. Note that ALHS is invertible for k 6= 0 and ν 6= 0. The flat state first loses stability

to perturbations with nonzero wavenumber, k0, that was large enough in all cases to not cause

numerical issues by having to solve the problem near k = 0. Alternative methods for treating

the eigenvalue problem are discussed in Kumar and Tuckerman (1994). Minimising a over the

wavenumber k gives a0, the critical amplitude where the flat state becomes unstable.

The solution to the one-layer system for the vertical velocity is

w1 = F sin(k · x)
∞∑

n=−∞

ν1H1n

[(
k2 + q2

1n

)
ekz − 2k2eq1nz

]
ei(n+ 1

2)ωt. (53)

The horizontal velocity can be constructed using the continuity equation,

u1 = −F cos(k · x)
∞∑

n=−∞

ν1H1n

[(
k2 + q2

1n

)
ekz − 2kq1ne

q1nz
]
ei(n+ 1

2)ωt, (54)

and the surface displacement is written as

h1 = F sin(k · x)
∞∑

n=−∞

H1ne
i(n+ 1

2)ωt. (55)

The rotational part of the flow is given by terms that are proportional to exp(q1nz) in equations

(53) and (54), since taking the curl of the velocity results in terms proportional to exp(kz)

cancelling out. The normalisation of the eigenvector H is given through the value of F . The

relative size arguments are demonstrated here in 2D for a subharmonic response to the forcing,



Chapter 2: Derivation of the Zhang–Viñals equations 52

but hold in 3D and harmonic responses in a similar way. The rotational parts of both velocities,

reducing the system to be invariant in y, are then given by

wr1 = −2k2Fν1 sin(kx)
∞∑
−∞

H1n exp(q1nz) exp

(
i

(
n+

1

2

)
ωt

)
, (56)

ur1 = −2k2Fν1 cos(kx)
∞∑
−∞

q1n

k
H1n exp(q1nz) exp

(
i

(
n+

1

2

)
ωt

)
. (57)

Recall that q1n (with αr = 0 and αi = ω/2) is given by

q2
1n = k2 +

i
(
n+ 1

2

)
ω

ν1

. (58)

The second term in equation (58) dominates when

k2ν1

ω
� 1, (59)

i.e., weak viscous decay over an oscillation period. The second term in equation (58) is small-

est when n = 0, and so the value ω/2ν1 is used to compare the relative sizes of the terms

numerically. The calculation 2ν1k
2/ω is plotted in Figure 2.2, which shows where condition

(59) holds for a range of γ1 and η1. The dynamic viscosity, η1, is used to vary the kinematic vis-

cosity, ν1 = η1/ρ1, with ρ1 kept constant. Where the inequality (59) holds, the dominant term

is at least two orders of magnitude larger than k2. Increasing the surface tension, γ1, allows

the same condition to be satisfied in a fluid of higher viscosity. Within this range, H0 is the

dominant contribution to the solution given in equation (53), being several orders of magnitude

larger than Hn for n > 0, as demonstrated in Figure 2.3 for n = 1, 2. The top figure of Figure

2.3 shows the calculation |H11|/|H10| and the bottom figure shows |H12|/|H11|. Comparing

the regions of values less than 10−2 with that of Figure 2.2, where condition (59) holds, H10 is

at least two orders of magnitude larger, in absolute value, than H1n. Truncating the solution at

leading order leads to the analytical calculation of the relative sizes of the fluid properties near

onset to guide the derivation of the ZV equations within this validity region.

Where equation (59) holds, the scale of decay of the rotational part of the solution in z (given

in equation (43)) can be approximated as

q2
1n =

i(n+ 1
2
)ω

ν1

=⇒ q1n =

√
(n+ 1

2
)ω

ν1

(1 + i)√
2

. (60)
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Figure 2.2: Contour plot of the value 2ν1k
2/ω, where ν1 is the kinematic viscosity, k is the wavenumber at onset

and ω is the frequency of the oscillating solution. Fluid parameters for the one layer system are ρ1 = 103 kg m−3,

ω = 100 s−1 and the truncation of solution (53) is taken at N = 20 for a range of surface tension coefficient γ1

and dynamic viscosity η1. The valid parameter range, where the dominant term in equation (58) is at least two

orders of magnitude larger than the k2 term, lies under the line at 0.01.
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Figure 2.3: Upper panel: contour plot of |H11|/|H10| for varying viscosity and surface tension. The value H10 is

the complex coefficient of the Fourier mode when n = 0, i.e. the oscillating part of the solution with a frequency

of half the forcing. The complex number H11 is the contribution from the mode with frequency 3ω/2 Hz. Lower

panel: |H12|/|H11| is plotted for the same range of viscosity and surface tension. The value H12 corresponds

to the part of the solution to vertical velocity that oscillates at a frequency of 5ω/2 Hz. Within the region where

condition (59) is satisfied, the dominant contribution is from H10. This allows a truncation to leading order of the

solution to the one layer problem at n = 0.
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The rate of decay in z of the rotational parts of the fluid velocity, given by equations (56) and

(57), is determined by the real part of equation (60). The smallest value of q1n, q10, corre-

sponds to the slowest decaying contribution to the rotational part of the flow for decreasing z.

Therefore, the boundary layer thickness near the fluid surface is given by

δL = Lδ

√
ν1

ω
, (61)

where Lδ is a constant that determines the extent of the decay length. It is enough for Lδ =

O(1) for a substantial reduction of the rotational part of the velocity.

The truncation at n = 0 is used to determine an estimate of the relative sizes at subharmonic

onset at the viscosity limit described above, with rotational part given by

wr1 = −2k2Fν1 sin(kx)eRe{q10}z

{
2 Re{H10} cos

(
ωt

2
+ Im{q10}z

)
−

2 Im{H10} sin

(
ωt

2
+ Im{q10}z

)}
, (62)

and irrotational part given by

wir1 = Fν1 sin(kx)ekz
{

2 Re
{
q2

10H10

}
cos

(
ωt

2

)
− 2 Im

{
q2

10H10

}
sin

(
ωt

2

)}
, (63)

where the inequality (59) is used to reduce the coefficient proportional to k2+q2
10 to its dominant

term. The rotational part of the lateral velocity is

ur1 = −2k2Fν1 cos(kx)eRe{q10}z

{
2 Re

{
q10H10

k

}
cos

(
ωt

2
+ Im{q10}z

)
−

2 Im

{
q10H10

k

}
sin

(
ωt

2
+ Im{q10}z

)}
. (64)

Similarly, the surface displacement is given by

h1 = F sin(kx)

{
2 Re{H10} cos

(
ωt

2

)
− 2 Im{H10} sin

(
ωt

2

)}
. (65)

The norm defined as

∥∥wir1 ∥∥2
=

√
ωk

8π2δL

∫ 4π
ω

0

∫ 2π
k

0

∫ 0

δL

|wir1 |2 dz dx dt, (66)

is used to compare the relative values of each part of the velocity field.
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Applying this to the truncated equations (62) and (64) gives

‖wr1‖
2 = 2|H10|k2Fν1

(
1− e−2 Re{q10}δL

2 Re{q10}δL

) 1
2

,

‖ur1‖
2 = 2|H10q10|kFν1

(
1− e−2 Re{q10}δL

2 Re{q10}δL

) 1
2

.

Taking the ratio of these,
‖wr1‖

2

‖ur1‖
2 = k

√
2ν1

ω
=
√

2ε, (67)

where

ε = k
√
ν1/ω. (68)

The nondimensional parameter ε� 1 appears in the condition in equation (59), and is related to

the strength of viscous dissipation (Chen and Viñals, 1999; Kumar and Tuckerman, 1994). This

can be interpreted as the viscous decay timescale compared to the oscillation period. Similarly,

∥∥wir1 ∥∥2
= |q2

10H10|Fν1

(
1− e−2kδL

2kδL

) 1
2

, (69)

which gives
‖wr1‖

2

‖wir1 ‖
2 =

2k2

|q2
10|

(
k(1− e−2 Re{q10}δL)

Re{q10}(1− e−2kδL)

) 1
2

.

For the term in the bracket, k/Re{q10} = 2ε, 2 Re{q10}δL = 2Lδ = O(1) and 2kδL = 2εLδ =

O(ε). Using the approximation e−2εLδ ≈ 1 − 2εLδ for small ε, the term in the brackets is an

O(1) term. The order of the ratio then depends only on k2/|q2
10|, which follows

‖wr1‖
2

‖wir1 ‖
2 = 2

(
1− e−2Lδ

Lδ

) 1
2 k2

|q2
10|

= 4

(
1− e−2Lδ

Lδ

) 1
2

ε2. (70)

In a similar way,

‖ur1‖
2

‖wir1 ‖
2 = 2

(
1− e−2Lδ

Lδ

) 1
2 k

|q10|
= 2
√

2

(
1− e−2Lδ

Lδ

) 1
2

ε. (71)

These sizes agree with Ruvinsky et al. (1991) for gravity–capillary waves (see their appendix

A). It is clear that the irrotational parts of the velocity are of the same order in all directions, as

can be seen in equations (53) and (54). The situation here is a reduction to 2D waves, but the

scaling for a velocity component in the y direction satisfies the same size predictions as u1. The

final step is to take the norm of the surface displacement defined in equation (66), but without

the integral over the boundary layer. This gives

‖h1‖2 =
√

2|H10|F,
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which upon comparison to equation (69) shows that∥∥wir1 ∥∥2
=

√
2

4
ω‖h1‖2. (72)

Equation (72) suggests that the scale for velocity can be related to the displacement height

within this region.

Equation (36) corresponds to the linearisation of equation (13) about the flat state (recall we are

solving for the perturbations u and p). The z component of the linearised version of equation

(13) is given by
∂p1

∂z
= ρ1

(
∇2w1 −

∂w1

∂t

)
(73)

The pressure term for the linearised problem can be expressed as

p1 = pr1 + pir1 , (74)

where pr1 represents the pressure corresponding to the rotational flow (with z component given

in equation (62)) and pir1 represents the pressure corresponding to the irrotational flow (with

z component given in equation (63)). Equation (74) can be substituted into equation (73) to

determine the order of variations in pressure across the boundary layer, given by

∂pr1
∂z

= O(ρ1ε
2ω2H0) +H.O.T., (75)

where H.O.T. represents higher order terms. The pressure corresponding to the rotational

flow, pr1, decays on the boundary layer scale (1/Re{q10}, see z dependence in equation (62)).

Assuming that pr1 = o(ρ1ε
2ω2H0) or smaller outside of the boundary layer, the pressure within

the boundary layer at linear order then follows

pr1 = O(ρδLε
2ω2H0) or pr1 = O

(
ρ1ε

3ω2H0

k

)
. (76)

2.2 Derivation of the Zhang–Viñals equations

The derivation of the Zhang–Viñals equations begins with the same setup as described in sec-

tion 2.1. The assumption that η2, ρ2, and the ratio η2/ρ2 are negligible in equation (13) leads to

governing equations for an incompressible, viscous, Newtonian fluid of constant density in the

domain z < 0, given by

ρ

[
∂u

∂t
+ (u ·∇)u

]
= −∇p+ η∇2u+ ∇G, ∇ · u = 0, (77)
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where the subscript identifying the upper and lower fluid layers has been dropped. The fluid

velocity is given by u = (ux, uy, uz), ρ is the constant fluid density, p is the fluid pressure, η

is the dynamic viscosity and G is the forcing potential, G = −ρ(g0 + gz(t))z, where g0 is the

acceleration due to gravity. The time dependence of gz(t) is represented by its frequency, ω.

The ZV system is therefore shown schematically via Figure 2.1 by neglecting the layer indexed

by i = 2 and dropping the index notation.

The boundary conditions at the fluid interface include the tangential stress free conditions,

â · σ · n̂ = b̂ · σ · n̂ = 0, (78)

where σ is the stress tensor, given in tensor notation by

σij = −pδij + 2ητij, τij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

and n̂ is the unit normal to the surface given by

n̂ =
(
1 + (∇⊥h)2)− 1

2

(
−∂h
∂x
,−∂h

∂y
, 1

)
≈
(
−∂h
∂x
,−∂h

∂y
, 1

)
, (79)

where the approximation in (79) is valid for small surface deformation, |∇h| � 1. The unit

vectors â and b̂ are perpendicular to the normal to the surface in the xz– and yz–planes, re-

spectively, and are given by

â =

(
1 +

(
∂h

∂x

)2
)− 1

2 (
1, 0,

∂h

∂x

)
≈
(

1, 0,
∂h

∂x

)
(80)

and

b̂ =

(
1 +

(
∂h

∂y

)2
)− 1

2 (
0, 1,

∂h

∂y

)
≈
(

0, 1,
∂h

∂y

)
. (81)

The normal stress jump condition is given by

p− p0 − n̂iτjin̂j = γκ, (82)

where γ is the surface tension, p0 is the atmospheric pressure and κ is a measure of the curvature

of the surface, κ = −∇ · n̂. The final condition at the surface is the kinematic condition,

∂h

∂t
+ u⊥ ·∇⊥h = u · ẑ, (83)

where ⊥ denotes the components perpendicular to ẑ, the unit vector in the z direction, i.e.

∇⊥ = x̂∂x + ŷ∂y and u⊥ = uxx̂+uyŷ. The depth of the fluid is assumed to be infinite giving

the condition

u→ 0 as z → −∞. (84)
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Figure 2.4: Schematic of the velocity decomposition used in the derivation of the ZV equations (see equation

(86)). For small viscosity, ν, the flow is approximately irrotational within the bulk, where the velocity, u, can be

expressed by the potential, φ, where∇2φ = 0. Near the surface, a smaller scale rotational velocity component, v,

is excited due to viscous effects. The thickness of the vortical boundary layer is of O(
√
ν/ω).

2.3 Quasi-potential approximation for the ZV equation

For small viscosity, the flow in the bulk is approximately irrotational and can be expressed by

a velocity potential u = ∇φ, which (from incompressiblity) satisfies

∇2φ = 0. (85)

Near the surface, there exists a small viscous vortical layer of O(
√
ν/ω) thickness (Lundgren

and Koumoutsakos 1999 and equation (61)), where ν = η/ρ is the kinematic viscosity. The

rotational part of the velocity is excited by its irrotational part through the tangential stress

condition at the surface given in equation (78). The velocity in the vortical layer can be decom-

posed into its irrotational (potential) part and its rotational part as

u = ∇φ+ v, (86)

where v = (vx, vy, vz) is the rotational part of the velocity field that contributes to vorticity.

This decomposition is shown schematically in Figure 2.4.

The scalings provided by equations (67), (70), (71), (72), and (76) in the previous section can

be used in the derivation of the ZV equations by associating the relative size of each variable
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quantity order

φ U0/k0

∂φ
∂z

, ∂φ
∂x

, ∂φ
∂y

U0

vx, vy εU0

vz ε2U0

Table 1: Summary of the relative sizes of the fluid properties within the boundary layer when the inequality in

equation (88) is satisfied.

to a typical surface height and velocity. To leading order, the rotational flow, v, varies on a

different length scale in the z direction to φ in the bulk flow, as demonstrated in equation (56).

Equation (85) is valid within the boundary layer, yielding

∇ · v = 0. (87)

Using the linear stability analysis of the one-layer system, if ∇φ = O(U0), the relative sizes

of the components of the rotational velocity to the leading order part of the irrotational veloc-

ity, near onset and in the boundary layer, satisfy vx, vy = O(εU0) and vz = O(ε2U0). The

value U0 represents the velocity scale, where the specific choice of U0 in relation to the size of

the surface displacement is discussed later. These relative size conditions hold as long as the

nondimensional parameter, ε, which is as chosen in equation (68), satisfies

ε = k0

√
ν/ω = k0δ � 1, (88)

where k0 is the wave number at onset and ω is the common factor in the forcing frequency in

gz. The boundary layer thickness near the surface of the fluid is of O(δ). Equation (88) can

be interpreted to have the physical meaning that the boundary layer width is small compared

to the wavelength of the pattern at onset, with the wavelength of O(1/k0). A summary of the

relative sizes is given in Table 1.

Substituting the decomposition given in equation (86) into equation (77) gives

∂

∂t
(∇φ+ v) + [(∇φ+ v) ·∇] (∇φ+ v) = −1

ρ
∇p+ ν∇2 (∇φ+ v) +

∇G

ρ
. (89)

For the flat state solution, where the forcing is too weak to disturb the flat state, the pressure

satisfies

p = p0 +G. (90)
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The pressure can be expressed as a perturbation to the pressure when the surface undergoes no

deformation, given in equation (90), as

p = p0 − ρ
(
∂φ

∂t
+

1

2
(∇φ)2

)
+G+ p̂. (91)

The second term in equation (91) has been included to eliminate the corresponding terms in

equation (89) relating to the pressure due to the irrotational flow only.

Substituting the term given in equation (91) into (89), and expanding the nonlinear advection

term, gives

∂

∂t
(∇φ+ v) + (∇φ ·∇)∇φ+ [(∇φ+ v) ·∇]v

+ (v ·∇)∇φ = −1

ρ
∇p̂+ ∇

(
∂φ

∂t
+

1

2
(∇φ)2

)
+ ν∇2v +

∇G

ρ
− ∇G

ρ
. (92)

Using the identity

A×∇×A =
1

2
∇|A|2 − (A ·∇)A (93)

withA = ∇φ and ∇×∇φ = 0, equation (92) becomes

∂v

∂t
+ [(∇φ+ v) ·∇]v + (v ·∇)∇φ = −1

ρ
∇p̂+ ν∇2v. (94)

The x component of equation (94) is given by

∂vx
∂t

+ [(∇⊥φ+ v⊥) ·∇⊥] vx + (v⊥ ·∇⊥)
∂φ

∂x
+
∂φ

∂z

∂vx
∂z

+ vz
∂vx
∂z

+ vz
∂2φ

∂z∂x
= −1

ρ

∂p̂

∂x
+ ν

(
∇2
⊥vx +

∂2vx
∂z2

)
, (95)

where v⊥ = (vx, vy). Equation (95) has been arranged to highlight the scaling differences that

come from derivatives in z within the boundary layer. To nondimensionalise, Table 1 is used

for the fluid properties. This is combined with a length scale in the x and y directions of 1/k0,

a time scale for t of 1/ω, and the scale of the boundary layer of δ =
√
ν/ω. Any derivatives of

φ in space are of the order k0, whereas for any other fluid property, the derivative is of the order

1/δ, where δ satisfies (88). A scale for the pressure term, P̃ , is introduced such that p̂ = P̃ p̂′.

The nondimensional values that follow are denoted by a prime.
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Nondimensionalising equation (95) and dividing by εU0ω gives

∂v′x
∂t′

+
U0k0

ω
[(∇′⊥φ′ + εv′⊥) ·∇′⊥] v′x +

U0k0

ω
(v′⊥ ·∇′⊥)

∂φ′

∂x′
+
U0k0

ωε

∂φ′

∂z′
∂v′x
∂z′

+
εU0k0

ω
v′z
∂v′x
∂z′

+
εU0k0

ω
v′z

∂2φ′

∂z′∂x′
= − P̃ k0

εU0ωρ

∂p̂′

∂x′
+ ε2∇′⊥2v′x +

∂2v′x
∂z′2

, (96)

where equation (88) has been used. A nondimensional parameter representing the ratio between

the fluid velocity and the time and length scale of the pattern at onset is introduced as

E =
U0k0

ω
. (97)

Substitution of equation (97) into (96) yields

∂v′x
∂t′

+ E [(∇′⊥φ′ + εv′⊥) ·∇′⊥] v′x + E (v′⊥ ·∇′⊥)
∂φ′

∂x′
+
E
ε

∂φ′

∂z′
∂v′x
∂z′

+ εEv′z
∂v′x
∂z′

+ εEv′z
∂2φ′

∂z′∂x′
= − P̃ k2

0

εEω2ρ

∂p̂′

∂x′
+ ε2∇′⊥2v′x +

∂2v′x
∂z′2

, (98)

A similar equation is found for the y component, given by

∂v′y
∂t′

+ E [(∇′⊥φ′ + εv′⊥) ·∇′⊥] v′y + E (v′⊥ ·∇′⊥)
∂φ′

∂y′
+
E
ε

∂φ′

∂z′
∂v′y
∂z′

+ εEv′z
∂v′y
∂z′

+ εEv′z
∂2φ′

∂z′∂y′
= − P̃ k2

0

εEω2ρ

∂p̂′

∂y′
+ ε2∇′⊥2v′y +

∂2v′y
∂z′2

. (99)

The z component of (95) is given by

∂vz
∂t

+ [(∇⊥φ+ v⊥) ·∇⊥] vz + (v⊥ ·∇⊥)
∂φ

∂z
+
∂φ

∂z

∂vz
∂z

+ vz
∂vz
∂z

+ vz
∂2φ

∂z2
= −1

ρ

∂p̂

∂z
+ ν

(
∇2
⊥vz +

∂2vz
∂z2

)
. (100)

Nondimensionalisation of equation (100) and division by ε2U0ω gives

∂v′z
∂t′

+ E [(∇′⊥φ′ + εv′⊥) ·∇′⊥] v′z +
E
ε

(v′⊥ ·∇′⊥)
∂φ′

∂z′
+
E
ε

∂φ′

∂z′
∂v′z
∂z′

+ εEv′z
∂v′z
∂z′

+ Ev′z
∂2φ′

∂z′2
= − P̃ k2

0

ε3Eω2ρ

∂p̂′

∂z′
+ ε2∇′⊥2v′z +

∂2v′z
∂z′2

. (101)

The scale for pressure (see equation (76)) due to the irrotational flow is chosen as

P̃ =
ρε3Eω2

k2
0

. (102)
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The nondimensional components of the Navier–Stokes equations are then given by

∂v′x
∂t′

+ E [(∇′⊥φ′ + εv′⊥) ·∇′⊥] v′x + E (v′⊥ ·∇′⊥)
∂φ′

∂x′
+
E
ε

∂φ′

∂z′
∂v′x
∂z′

+ εEv′z
∂v′x
∂z′

+ εEv′z
∂2φ′

∂z′∂x′
= −ε2 ∂p̂

′

∂x′
+ ε2∇′⊥2v′x +

∂2v′x
∂z′2

, (103)

∂v′y
∂t′

+ E [(∇′⊥φ′ + εv′⊥) ·∇′⊥] v′y + E (v′⊥ ·∇′⊥)
∂φ′

∂y′
+
E
ε

∂φ′

∂z′
∂v′y
∂z′

+ εEv′z
∂v′y
∂z′

+ εEv′z
∂2φ′

∂z′∂y′
= −ε2∂p̂

′

∂y′
+ ε2∇′⊥2v′y +

∂2v′y
∂z′2

, (104)

∂v′z
∂t′

+ E [(∇′⊥φ+ εv′⊥) ·∇′⊥] v′z +
E
ε

(v′⊥ ·∇′⊥)
∂φ′

∂z′
+
E
ε

∂φ′

∂z′
∂v′z
∂z′

+ εEv′z
∂v′z
∂z′

+ Ev′z
∂2φ′

∂z′2
= −∂p̂

′

∂z′
+ ε2∇2

⊥v
′
z +

∂2v′z
∂z′2

. (105)

The decomposition given in equation (86) can be substituted into equation (83) to give

∂h

∂t
+ ∇⊥φ ·∇⊥h+ v⊥ ·∇⊥h =

∂φ

∂z
+ vz. (106)

It is assumed that derivatives in the surface height, h, are small. A length scale for surface

displacement, H0, is introduced and is chosen to satisfy equation (72), i.e.,

H0ω = U0. (107)

Substituting the choice for (97) into equation (107) gives

H0k0 = E . (108)

This gives an interpretation to the nondimensional variable E as the ratio of the displacement of

the surface to the critical wavelength of the unstable mode. This is also the scale for derivatives

in h which are assumed to be small. Nondimensionalising equation (106) using the scalings

summarised in Table 1 gives (after dividing by the common factor U0)

∂h′

∂t′
+ E [∇′⊥φ′ ·∇′⊥h′ + εv′⊥ ·∇′⊥h′] =

∂φ′

∂z′
+ ε2v′z. (109)

The nonlinear terms that are proportional to εE can be neglected, as long as E = o(ε). Using

this approximation,
∂h′

∂t′
+ E∇′⊥φ′ ·∇′⊥h′ =

∂φ′

∂z′
+ ε2v′z. (110)
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The decomposition for the velocity given in equation (86) is substituted into the tangential

stress conditions given in equation (78). Presenting only linear terms and the leading order of

the nonlinear terms, the left-hand side of equation (78) becomes

∂

∂z

(
∂φ

∂x
+ vx

)
+

∂

∂x

(
∂φ

∂z
+ vz

)
+O(EU0k0) = 0. (111)

Nondimensionalisation and dividing by U0k0 gives

2
∂2φ′

∂x′∂z′
+
∂v′x
∂z′

+ ε2
∂v′z
∂x′

+O(E) = 0. (112)

Keeping only the leading order terms,

∂v′x
∂z′

= −2
∂2φ′

∂x′∂z′
. (113)

Following a similar method for the middle term in equation (78),

∂v′y
∂z′

= −2
∂2φ′

∂y′∂z′
. (114)

Substituting the velocity decomposition into the normal stress condition given in equation (82)

and rearranging gives

∂φ

∂t
+

1

2
(∇φ)2 + (g0 + gz(t))h −

p̂

ρ
+ 2ν

(
∂2φ

∂z2
+
∂vz
∂z

+O(EU0k0)

)
= −γ

ρ
κ. (115)

Nondimensionalising and dividing by U0ω/k0 gives

∂φ′

∂t′
+
E
2

(∇φ′)
2
+
g0k0

ω2
(1 + g′z(t

′))h′−ε3p̂′+2ε2
(
∂2φ′

∂z′2
+ ε

∂v′z
∂z′

+O(E)

)
= −γk

3
0

ρω2
κ′. (116)

Note that g0 has been factored out of the forcing function. The strength of the nondimensional

forcing function is expressed as a ratio with acceleration due to gravity for the remainder of

this thesis. The contribution from gravity is represented by the term B = g0k0/ω
2 and the con-

tribution from surface tension is represented by the term C = γk3
0/ρω

2. The nondimensional

parameters B and C can be recognised from the dispersion relationship for inviscid gravity–

capillary surface waves on water of infinite depth (Lighthill, 2001), given by

ω2 = g0k0 +
γk3

0

ρ
. (117)

For small viscosity (supported by Chen and Viñals 1999)

B + C ≈ 1. (118)
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2.4 Linear problem

In the following sections, primes denoting nondimensional variables have been dropped for

readability. To derive a relationship between the rotational velocity and h, it is necessary to first

consider the linear problem. Since h is assumed to be small, the linear problem can be expanded

as a Taylor series about z = 0. Because the rotational velocity appears in the derivation at terms

that are of O(ε2) or smaller, only the leading order system given by equations (119) – (123)

is used to solve for vx, vy and vz in terms of φ and h. Any higher order terms in rotational

velocity are neglected in the derivation of the ZV equations. This reduces the overall problem

to a system involving only φ and h, and is one of the main benefits of the ZV system. The

linear problem is given by

∂vx
∂t

= −ε2 ∂p
∂x

+ ε2∇2
⊥vx +

∂2vx
∂z2

, (119)

∂vy
∂t

= −ε2∂p
∂y

+ ε2∇2
⊥vy +

∂2vy
∂z2

, (120)

∂vz
∂t

= −∂p
∂z

+ ε2∇2
⊥vz +

∂2vz
∂z2

, (121)

∂h

∂t
=
∂φ

∂z
+ ε2vz at z = 0, (122)

∂φ

∂t
+B (1 + gz(t))h+ 2ε2

∂2φ

∂z2
= −C∇2

⊥h at z = 0. (123)

In the bulk of the flow,

∇2φ = 0. (124)

The asymptotic expansion for the linear problem, based on the small parameter ε, is given by

h = h0 + ε2h1 +O(ε4), φ = φ0 + ε2φ1 +O(ε4), vx = vx0 + ε2vx1 +O(ε4),

vy = vy0 + ε2vy1 +O(ε4), vz = vz0 + ε2vz1 +O(ε4). (125)

where a long time scale T = ε2t is introduced.

Substitution of (125) into equations (122) and (123) gives, at O(1), for weak forcing gz(t) =

O(ε2),
∂φ0

∂t
+Bh0 = −C∇2

⊥h0 and
∂h0

∂t
=
∂φ0

∂z
. (126)

We can express φ0 as a 2D inverse Fourier transform,

φ0(x, z) =

∫ ∞
−∞

eik·xe|k|zφ̂0(k, t, T )dk, (127)



Chapter 2: Derivation of the Zhang–Viñals equations 66

where the wavenumber is k = (kx, ky). This satisfies both equation (124) and the condition that

∇φ0 → 0 as z → −∞. In a similar way the leading order solution to the surface displacement

can be expressed as

h0(x) =

∫ ∞
−∞

eik·xĥ0(k, t, T )dk. (128)

Substituting (127) and (128) into (126), it can be shown that

∂φ̂0

∂t
+
(
B + C|k|2

)
ĥ0 = 0 and

∂ĥ0

∂t
= |k|φ̂0. (129)

These can be combined into a single second order ODE giving

∂2ĥ0

∂t2
+ |k|

(
B + C|k|2

)
ĥ0 = 0, (130)

which has the general solution

ĥ0 = A0(k, T )e
i
√
|k|(B+C|k|2)t +B0(k, T )e

−i
√
|k|(B+C|k|2)t = A0(k, T )eiΓt +B0(k, T )e−iΓt,

(131)

where Γ =
√
|k|
(
B + C|k|2

)
. Substituting this into equation (129) gives

φ̂0 =
iΓ

|k|
(
A0e

iΓt −B0e
−iΓt) . (132)

Expanding vx0 as an inverse Fourier transform gives

vx0 =

∫ ∞
−∞

eik·xv̂x0(k, z, t, T )dk, (133)

where it can be found by the leading terms from equation (113) that

∂v̂x0

∂z

∣∣∣∣
z=0

= 2ΓkxA0e
iΓt − 2ΓkxB0e

−iΓt. (134)

The next step is to assume a general solution of the form

v̂x0 = 2ΓkxF (k, z)A0e
iΓt − 2ΓkxG(k, z)B0e

−iΓt, (135)

with the conditions

∂F

∂z
(k, 0) =

∂G

∂z
(k, 0) = 1 and F (k, z)→ 0, G(k, z)→ 0 as z → −∞. (136)

The leading order terms of equation (119),

∂vx0

∂t
=
∂2vx0

∂z2
, (137)
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must be satisfied by F and G, so

∂2F

∂z2
= iΓF and

∂2G

∂z2
= −iΓG. (138)

The general solutions to these are

F (k, z) = AF (k)e
√

Γ
2

(1+i)z +BF (k)e−
√

Γ
2

(1+i)z (139)

and

G(k, z) = AG(k)e
√

Γ
2

(1−i)z +BG(k)e−
√

Γ
2

(1−i)z. (140)

From the conditions in equations (136), it must be that BF = BG = 0 and

AF =

√
1

2Γ
(1− i) and AG =

√
1

2Γ
(1 + i) . (141)

Then,

v̂x0 =
√

2Γkx (1− i) e
√

Γ
2

(1+i)zA0e
iΓt −

√
2Γkx (1 + i) e

√
Γ
2

(1−i)zB0e
−iΓt. (142)

Similarly,

v̂y0 =
√

2Γky (1− i) e
√

Γ
2

(1+i)zA0e
iΓt −

√
2Γky (1 + i) e

√
Γ
2

(1−i)zB0e
−iΓt. (143)

Using equation (87) at leading order,

∂vz0
∂z

= −∂vx0

∂x
− ∂vy0

∂y
(144)

= −
∫ ∞
−∞

eik·xi|k|2
√

2Γ
(

(1− i)A0e
√

Γ
2

(1+i)zeiΓt − (1 + i)B0e
√

Γ
2

(1−i)ze−iΓt
)
dk.

(145)

Integrating in z over the half-space z < 0 gives

vz0

∣∣∣∣
z=0

= −
∫ ∞
−∞

eik·xi|k|2
√

2Γ

(√
2

Γ

(1− i)
(1 + i)

A0e
iΓt −

√
2

Γ

(1 + i)

(1− i)
B0e

−iΓt

)
dk

= −
∫ ∞
−∞

eik·x2|k|2
(
A0e

iΓt +B0e
−iΓt) dk

= 2∇2
⊥h0. (146)

Here, the leading order solution to the vortical velocity at the surface is expressed in terms of

h. This relationship is used in equation (110).
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2.5 Dirichlet–Neumann operator

A significant benefit to using the ZV equations is the ability to project the full 3D problem onto

a 2D surface. This is achieved through the use of the Dirichlet–Neumann operator (DNO). The

DNO can be used on the potential function since it satisfies the elliptic equation

∇2φ = 0. (147)

The DNO relates the value of the potential on the surface, Φ(x, t), where

Φ(x, t) = φ(x, y, z, t), at z = h(x, y, t), (148)

to the normal derivative of the potential taken at the surface through an operator of the form

G(h)Φ =
(
1 + E2 (∇⊥h)2) 1

2
∂φ

∂n

∣∣∣∣
z=h

. (149)

The term ∂nφ is the normal gradient, ∇φ·n̂. For small h, the DNO can be expanded as a Taylor

series about z = 0 which can be easily calculated (Craig and Groves, 1994). The derivation of

the DNO is beyond the scope of this thesis, what follows is a Taylor expansion of both sides of

equation (149) to determine the terms of the expanded DNO.

Consider the solution to equation (147) expressed as an inverse Fourier transform,

φ =

∫ ∞
−∞

eik·xe|k|zφ̂(k, t)dk, (150)

where the exp(−|k|z) terms are eliminated by the far field boundary condition φ→ 0 as z →-

∞. This also means that

Φ =

∫ ∞
−∞

eik·xe|k|h(x,t)φ̂(k, t)dk, (151)

and, as a Taylor series expanded around z = 0, is given by

Φ =

∫ ∞
∞

eik·xφ̂dk + Eh
∫ ∞
−∞
|k|eik·xφ̂dk +

E2h2

2

∫ ∞
−∞
|k|2eik·xφ̂dk + . . . , (152)

where Φ = Φ0+EΦ1+E2Φ2+. . . . The E terms come from the choice of nondimensionalisation

for the surface displacement and the pattern length scale (H0k0, see equation 108).

The right hand side of equation (149) is given by

(
1 + E2 (∇⊥h)2) 1

2 ∇φ · n̂
∣∣∣∣
z=h

=
∂φ

∂z
− E ∂φ

∂x

∂h

∂x
− E ∂φ

∂y

∂h

∂y

∣∣∣∣
z=h

.
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To calculate the terms of the Taylor expansion of the DNO, the left-hand side of equation (149)

is expanded as a Taylor series in h to give

(
G0(h) + EG1(h) + E2G2(h) + . . .

) (
Φ0 + EΦ1 + E2Φ2 + . . .

)
. (153)

This is equated to the expansion of the right-hand side of equation (149) to find Gi(h) up to

second order in E .

2.5.1 Leading order balance of the Taylor expanded Dirichlet–Neumann operator

At leading order,

G0(h)Φ0 =

∫ ∞
−∞
|k|eik·xφ̂dk = DΦ0, (154)

where Φ0 is the first term in the expansion of (151). The function D acts as a weighted inverse

Fourier transform, with the weight being the norm of the corresponding wavenumber in Fourier

space.

2.5.2 First order balance of the Taylor expanded Dirichlet–Neumann operator

At the next order,

G1(h)Φ0 + G0(h)Φ1 = h

∫ ∞
−∞
|k|2eik·xφ̂dk − i∂h

∂x

∫ ∞
−∞

kxe
ik·xφ̂dk

− i∂h
∂y

∫ ∞
−∞

kye
ik·xφ̂dk. (155)

The second term in the expansion, given by equation (152) (Φ1), can be expressed as

Φ1 = h

∫ ∞
−∞
|k|eik·xφ̂dk = hDΦ0.

The first term on the right-hand side of (155) can be expressed as

h

∫ ∞
−∞
|k|2eik·xφ̂dk = −h∇2

⊥Φ0,

and the last two terms on the right-hand side of (155) can be expressed as

− i∂h
∂x

∫ ∞
−∞

kxe
ik·xφ̂dk − i∂h

∂y

∫ ∞
−∞

kye
ik·xφ̂dk = −∇⊥h ·∇⊥φ0.
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Using these in equation (155) leads to

G1(h)Φ0 = −D (hDΦ0)− h∇2
⊥Φ0 −∇⊥h ·∇⊥Φ0 (156)

= −D (hDΦ0)−∇⊥ · (h∇⊥Φ0) , (157)

using (154).

2.5.3 Second order balance of the Taylor expanded Dirichlet–Neumann operator

At second order,

G2(h)Φ0 + G1(h)Φ1 + G0(h)Φ2 =
h2

2

∫ ∞
−∞
|k|3eik·xφ̂dk − ih∂h

∂x

∫ ∞
−∞

kx|k|eik·xφ̂dk

− ih∂h
∂y

∫ ∞
−∞

ky|k|eik·xφ̂dk. (158)

The function Φ2 is given by

Φ2 = −h
2

2
∇2
⊥Φ0,

and Φ1, G1(h) and G0(h) are already calculated above in terms of Φ0. The first terms on the

right-hand side of equation (158) can be expressed as

h2

2

∫ ∞
−∞
|k|3eik·xφ̂dk = −h

2

2
∇2
⊥ (DΦ0) ,

and the last term in equation (158) can be expressed as

− ih∂h
∂x

∫ ∞
−∞

kx|k|eik·xφ̂dk − ih
∂h

∂y

∫ ∞
−∞

ky|k|eik·xφ̂dk = −h∇⊥h ·∇⊥ (DΦ0) .

Together, this makes

G2(h)Φ0 =
1

2
D
(
h2∇2

⊥Φ0

)
+D (hD (hDΦ0)) + ∇⊥ · (h∇⊥ (hD (Φ0)))− h2

2
∇2
⊥ (DΦ0)

− h∇⊥h ·∇⊥ (DΦ0) . (159)

The last three terms of equation (159) can be collected into one term,

1

2
∇2
⊥
(
h2DΦ0

)
.

To second order, the DNO is given by

G(h)Φ = DΦ− E [D (hDΦ) + ∇⊥ · (h∇⊥Φ)] + E2

[
D
(

1

2
h2∇2

⊥Φ + hD (hDΦ)

)

+
1

2
∇2
⊥
(
h2DΦ

) ]
. (160)
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2.6 Substitution of the Dirichlet–Neumann operator

So far, the governing equations have been reduced to

∂h

∂t
+ E∇⊥φ ·∇⊥h =

∂φ

∂z
+ 2ε2∇2

⊥h, (161)

and
∂φ

∂t
+
E
2

(∇φ)2 +B (1 + gz(t))h− 2ε2∇2
⊥φ = −Cκ, (162)

with the assumption that terms of O(Eε), O(ε3), or smaller, can be neglected, with E � ε.

Primes have been dropped and all fluid properties are nondimensional. Equation (161) has been

achieved by replacing the rotational velocity terms in equation (110) using the relationship at

leading order for weak forcing, given by (146). The continuity for the potential flow in the

bulk, equation (85), has been used in equation (162).

Expressing φ as its value on the surface,

Φ(x, t) = φ(x, h(x, t), t),

and using the chain rule gives

∇⊥Φ =

(
∂φ

∂x
+ E ∂h

∂x

∂φ

∂z
,
∂φ

∂y
+ E ∂h

∂y

∂φ

∂z

)
, (163)

∂Φ

∂t
=
∂φ

∂t
+ E ∂h

∂t

∂φ

∂z
, (164)

∇2
⊥Φ = ∇2

⊥φ+ E∇⊥h ·∇⊥Φ

(
∂φ

∂z

)
+ E ∂φ

∂z
∇2
⊥h− E2 (∇⊥h)2∇2

⊥φ. (165)

Further to this,

∂φ

∂n
= ∇φ · n̂, (166)

=
(
1 + E2 (∇⊥h)2)− 1

2

(
∂φ

∂z
− E∇⊥h ·∇⊥φ

)
. (167)

Relating this to the DNO gives

G(h)Φ =
∂φ

∂z
− E∇⊥h ·∇⊥φ, (168)

or, expressing ∂zφ in terms of surface variables only,

∂φ

∂z
=
(
1 + E2 (∇⊥h)2)−1

(G(h)Φ + E∇⊥h ·∇⊥Φ)

≈ G(h)Φ + E∇⊥h ·∇⊥Φ− E2 (∇⊥h)2 G(h)Φ, (169)
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while neglecting terms smaller than O(E2). Substitution into equation (161) gives,

∂h

∂t
= 2ε2∇2

⊥h+ G(h)Φ. (170)

Substitution into equation (162) gives

∂Φ

∂t
− E ∂φ

∂z

∂h

∂t
+
E
2

[(
∂φ

∂z

)2

+ (∇⊥Φ)2 − 2E∇⊥h ·∇⊥Φ
∂φ

∂z

]
+B (1 + gz(t))h

− 2ε2∇2
⊥Φ = C∇2

⊥h−
1

2
E2C∇⊥ ·

(
(∇⊥h)2 ∇⊥h

)
. (171)

Using equations (169) and (170), and neglecting terms that are smaller than O(E2), it can be

shown that

∂Φ

∂t
− E (G(h)Φ + E∇⊥h ·∇⊥Φ)G(h)Φ +

E
2

[
(G(h)Φ)2 + (∇⊥Φ)2

]
+B (1 + gz(t))h

− 2ε2∇2
⊥Φ = C∇2

⊥h−
1

2
E2C∇⊥ ·

(
(∇⊥h)2 ∇⊥h

)
. (172)

Rearranging gives

∂Φ

∂t
= 2ε2∇2

⊥Φ + C∇2
⊥h−B (1 + gz(t))h+ E

(
1

2
(G(h)Φ)2 − 1

2
(∇⊥Φ)2

)
+ E2

(
G(h)Φ∇⊥h ·∇⊥Φ− 1

2
C∇⊥ ·

(
(∇⊥h)2 ∇⊥h

))
. (173)

The final step is to expand the DNO in equations (170) and (173) using (160), neglecting terms

of order smaller than E2. Equation (170) becomes

∂h

∂t
= 2ε2∇2

⊥h+DΦ− E [D (hDΦ) + ∇⊥ · (h∇⊥Φ)]

+ E2

[
D
(

1

2
h2∇2

⊥Φ + hD (hDΦ)

)
+

1

2
∇2
⊥
(
h2DΦ

) ]
. (174)

Performing the same process on equation (173) and collecting terms of the same order,

∂Φ

∂t
= 2ε2∇2

⊥Φ + C∇2
⊥h−B(1 + gz(t))h+

1

2
E
[
(DΦ)2 − (∇⊥Φ)2]

− E2

[
DΦ

(
D(hDΦ) + h∇2

⊥Φ
)

+
1

2
C∇⊥ ·

(
(∇⊥h)2 ∇⊥h

) ]
. (175)

2.7 Recap and scaling assumptions

Equations (174) and (175) are the ZV equations. When rescaled by 1/E ,
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∂h

∂t
= 2ε2∇2

⊥h+DΦ− [D (hDΦ) + ∇⊥ · (h∇⊥Φ)]

+

[
D
(

1

2
h2∇2

⊥Φ + hD (hDΦ)

)
+

1

2
∇2
⊥
(
h2DΦ

) ]
, (176)

∂Φ

∂t
= 2ε2∇2

⊥Φ + C∇2
⊥h−B(1 + gz(t))h+

1

2

[
(DΦ)2 − (∇⊥Φ)2]

−

[
DΦ

(
D(hDΦ) + h∇2

⊥Φ
)

+
1

2
C∇⊥ ·

(
(∇⊥h)2 ∇⊥h

) ]
, (177)

where

Du =

∫ ∞
−∞
|k|eik·xûdk. (178)

Note that the operator given in equation (178) makes the problem nonlocal in space. The

derivation of the ZV equations relies only on the existence of the DNO (the form of which

is given in equation (149)) and the operator’s property that it can be expressed as a Taylor

series expansion around z = 0. The general form of the DNO does not need to be calculated

explicitly in the derivation. Note that the ZV equations possess similar spatial properties to

the 2D Swift–Hohenberg equation where localised states have been found (Lloyd et al., 2008),

i.e., they are both equivariant under the action of the Euclidean group, E(2) (the group of

translations, reflections, and rotations on a 2D plane).

The derivation of the ZV equations given in this chapter has closely accounted for the relative

sizes between fluid properties that previous derivations of the ZV equations have not. These size

assumptions were supported by results from a linear stability analysis of the full Navier–Stokes

equations. In deriving the ZV equations through consideration of the scaling, the following two

scaling assumptions were made:

• Viscous effects, quantified by ε, are small, and terms of O(ε3) can be neglected within

the derivation

• The ratio of surface displacement to onset wavelength, quantified by E , compared to

viscous effects, ε, is small.
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The second of these scaling assumptions has the physical interpretation that

E
ε

=
H0

δ
� 1, (179)

i.e., the scale of the surface displacement is small compared to the viscous boundary layer. This

scaling assumption has not previously been identified in the literature regarding the derivation

of the ZV equations and contributes to understanding their validity. This is a restrictive condi-

tion, and is indirectly related to the “uncontrolled approximation” made in Zhang and Viñals

(1997a). Without this assumption, the advective terms that are eliminated within the deriva-

tion (from equation (109)) cannot be justified with relative scale arguments alone. However,

as described in section 1, the ZV equations not only contain mechanisms important to pattern

formation but achieve qualitative agreement with other models based on the Navier–Stokes

equations for moderate viscosities. There may be a cost associated to using the ZV equations

— the benefit of projecting the problem onto the fluid surface as a 2D formulation increases

the restriction on the assumptions. This is an interesting problem that leaves the question of

the validity of the ZV equations open. Since the concern for this thesis is to search for lo-

calised states in a fluid system derived from first principles, the ZV equations still provide an

appropriate starting point.
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3 Weakly nonlinear analysis and numerics

In the following sections both the linear stability and the weakly nonlinear analysis of the

ZV system given in (174) and (175) is presented. Results from both are vital in determining

the bicritical point and the extent of the bistable region between the flat and patterned state.

Section 3.3 describes the numerical scheme used to simulate the ZV equations and is followed

by validation of the numerical scheme.

3.1 Linear stability of the Zhang–Viñals equations

Linearising equations (176) and (177) gives

∂h

∂t
= 2ε2∇2h+DΦ, (180)

∂Φ

∂t
= 2ε2∇2Φ−B (1 + gz(t))h+ C∇2

⊥h. (181)

By expressing h and Φ as inverse Fourier transforms,

h =

∫ ∞
−∞

eik·xĥ(k, t)dk and Φ =

∫ ∞
−∞

eik·xΦ̂(k, t)dk, (182)

equations (180) and (181) can be given by their Fourier space counterparts as

∂ĥ

∂t
= −2ε2|k|2ĥ+ |k|Φ̂, (183)

∂Φ̂

∂t
= −2ε2|k|2Φ̂−

(
B + C|k|2

)
ĥ−Bgz(t)ĥ. (184)

The system described in equations (183) and (184) has Floquet form and can be solved using

the same method as in Kumar and Tuckerman (1994) (previously described in Section 2.1.2).

The Floquet system has solutions of the form

ĥ = e(λr+iλi)tp(k, t), (185)

where ĥ = (ĥ, Φ̂)′ and p(k, t) = (H(k, t), P (k, t))′. The function p(k, t) has the same period

as gz(t) and (λr + iλi) is the Floquet exponent. The real part of the Floquet exponent, λr,

determines the growth rate of the linear solution. The imaginary part of the Floquet exponent

determines the type of temporal response, harmonic or subharmonic. It can be shown that

(Kumar and Tuckerman, 1994) when 0 < λi < 1/2, λr < 0, i.e., the Floquet solution is
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temporally decaying and therefore unimportant when considering instability. The values of

λi important to this problem are λi = 0 for the harmonic response, and λi = 1/2 for the

subharmonic response of the solution to the forcing function.

Since gz(t) is a superposition of time modes with integer frequencies, the period of p(k, t), in

time, is 2π. Therefore, a Fourier expansion in time of the form

p(k, t) =
∑
n

pn(k)eint (186)

is used, where pn = (Hn, Pn)′. Forcing p to be real simplifies the calculations. For a harmonic

response, the reality condition gives p−n = p̄n, where a bar represents the complex conjugate.

For a subharmonic response, p−n = p̄n−1.

Combining equations (183) and (184) to calculate the forcing strength, a, where the mode with

spatial wavenumber k becomes unstable, gives(
∂

∂t
+ 2ε2|k|2

)2

ĥ+ |k|
(
B + C|k|2

)
ĥ = −|k|Bgz(t)ĥ. (187)

Truncating the Fourier expansion at Nt modes in time in equation (186) gives a solution of the

form

ĥ = eiλit
Nt∑

n=−Nt

Hn(k)eint. (188)

Substituting equation (188) into (187), and equating modes in time, gives(
i (λi + n) + 2ε2|k|2

)2
Hn + |k|

(
B + C|k|2

)
Hn = −|k|Ba

[
g̃z(t)ĥ

]
n
, (189)

where gz(t) = ag̃z(t) and
[
g̃z(t)ĥ

]
n

represents the resolved component of the solution mul-

tiplied by the forcing function that corresponds to the mode n in (188). A simple example is

given by g̃z(t) = cos(mt) = (eimt + e−imt) /2. Then, for B and |k| 6= 0,

− 2

B|k|

[(
i (λi + n) + 2ε2|k|2

)2
+ |k|

(
B + C|k|2

)]
Hn = a (Hn+m +Hn−m) . (190)

For n−m < 0 with harmonic solutions, the reality condition gives

− 2

B|k|

[(
in+ 2ε2|k|2

)2
+ |k|

(
B + C|k|2

)]
Hn = a

(
Hn+m + H̄m−n

)
. (191)

For a subharmonic response,

− 2

B|k|

[(
i

(
1

2
+ n

)
+ 2ε2|k|2

)2

Hn + |k|
(
B + C|k|2

)]
Hn = a (Hn+m +Hm−n−1) .

(192)
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The above can be combined into a system of equations for allHn. By separatingHn into its real

and imaginary parts, Hn = Hr
n + iH i

n, and expressing each as a component in the vector H ,

such that H = (Hr
0 , H

i
0, H

r
1 , H

i
1, ...)

′, the calculation for the linear stability can be expressed

as the eigenvalue problem

ALHSH = aARHSH or A−1
LHSARHSH =

1

a
H , (193)

where ALHS and ARHS are 2(Nt + 1)× 2(Nt + 1) matrices. The second of the ordinary eigen-

value problems expressed in equation (193) was used to find a via the same method discussed

in Section 2.1.2. The matrix ARHS can be easily adapted to include multiple frequency forcing

with different phases, although the form of both matrices depends on the forcing frequency and

the temporal nature of the ansatz substituted. As with the linear stability of the Navier–Stokes

equations for the Faraday problem, discussed in Section 1.1, the marginal stability diagram has

the form of tongues that alternate between harmonic (“H”) and subharmonic (“SH”) temporal

response for increasing |k|. An example of the marginal stability diagram for two-frequency

forcing is shown in Figure 3.1. The nondimensional forcing function used is given by

g(t) = a [cos(χ) cos(2t) + sin(χ) cos(3t)] . (194)

Figure 3.1 is plotted for χ = π/4 (or 45◦) in equation (194). For the magnitude of a given

wavenumber, k, the real eigenvalues of system (193) determine the forcing strengths, a, re-

quired for instability of the flat state to perturbations. Minimising a over |k| gives a0, the crit-

ical forcing strength for the most unstable mode with wavenumber k0. In the example phase

diagram, shown in Figure 3.1, a0 is located on the first harmonic tongue, highlighted by the

intersection of the dashed lines. For small ε, the critical forcing, a0, is proportional to ε2 (see

Appendix A). For a given forcing, the growth rates of the range of modes in k can be calcu-

lated by numerically solving the linearised ZV equations to determine which modes are closest

to instability (by neglecting the nonlinear terms in the numerical method described in Section

3.3). The real part of the Floquet multipliers corresponding to equation (185), Re
{
e(λr+iλi)Tp

}
,

where Tp is the period of the forcing, are plotted for each k at a = a0 in Figure 3.2. The Floquet

multipliers confirm the calculations from the linear theory in that the system first loses stability

to harmonic modes with wave vector magnitude k0 for this choice of parameters, with damped

harmonic and subharmonic modes corresponding to wave vector magnitudes above and below

k0.
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Figure 3.1: Marginal stability diagram constructed using the linearised ZV equations for nondimensional values

ε2 = 0.1, B = C = 0.5. The forcing is given by g(t) = a (cos(χ) cos(lt) + sin(χ) cos(mt+ ψ)), with l = 2,

m = 3, ψ = 0, and χ = π/4. The forcing strength, a, is nondimensionalised with gravity, g0, and is plotted as a

function of nondimensional, normalised wavenumber k/k0. Blue lines show the marginal stability tongues for a

subharmonic response (SH in diagram) and red lines show the marginal stability for the harmonic response (H in

diagram). Dashed lines indicate the location of the minima for harmonic and subharmonic responses.
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Figure 3.2: Real part of the Floquet multipliers corresponding to equation (185) plotted against k/k0, where

k0 is the magnitude of the critical wave vector, at critical forcing, a = a0. A mode is marginally stable and

oscillates with harmonic (subharmonic) response when the real part of the Floquet multiplier is equal to 1 (−1).

The parameters are those used to plot Figure 3.1. The leftmost (blue) vertical dashed line corresponds to the

magnitude of the wave vector at the minimum of the subharmonic tongues. The right (red) vertical dashed line

corresponds to the minimum of the harmonic tongues. The system first loses stability to harmonically oscillating

modes, with damped harmonic and subharmonic modes either side of the critical wave vector.

By varying the parameter controlling the dominance of each forcing mode in equation (194),

χ, a phase diagram highlighting the linear stability boundary of the flat state can be created.

An example is shown in Figure 3.3. For χ = 81◦, point a on Figure 3.3, the flat state first loses

stability to modes that respond subharmonically in time to the forcing for increasing a. For

χ = 45◦, point c on Figure 3.3, the flat state loses stability to modes that respond harmonically

in time to the forcing for increasing forcing strength, a. There is a point of bicriticallity, where

the flat state loses stability to both subharmonic and harmonic modes in time, located near point

b on the phase diagram, where χ = 68.85◦. Experimentally, temporally harmonic localised

oscillating states have been found near the bicritical point (see Arbell and Fineberg 2000).

The bicritical point is used as an important guide in the search for localised states in the ZV

equations.

The accuracy of the linear stability analysis (which extends to the accuracy of the weakly non-

linear analysis described in section 3.2) is dependent upon the number of time modes included

in the truncation of the Fourier series given in equation (188). The components of the eigen-

vector corresponding to a in equation (193) form the coefficients of the Fourier series. Figure
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Figure 3.3: Left: Phase diagram showing the linear stability boundary plotted against the strength of forcing with

frequency 2, a0 cos(χ), and the strength of forcing corresponding to frequency 3, a0 sin(χ). Right: Corresponding

marginal stability diagrams for varying χ, with a at χ = 81◦, b at χ = 68.85◦, and c at χ = 45◦. The minimum a

in the marginal stability diagrams correspond to the values of a0 (points labelled a, b, and c) on the phase diagram.
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Figure 3.4: Absolute value of the coefficients of the Fourier series expansion given in equation (188) plotted

against nondimensional frequency. The linear system is solved at the subharmonic (λi = 1/2, line with plus

symbols) and harmonic (λi = 0, line with crosses) minima in a shown in Figure 3.1. The eigenvector that

corresponds to the coefficients of the Fourier series expansion has been normalised such that |H| = 1.

3.4 shows the absolute values of the modes corresponding to n in equation (188) (and therefore

(186)) after normalisation such that the Euclidean norm of the eigenvector is equal to 1, for the

harmonic and subharmonic minima shown Figure 3.1. Figure 3.4 indicates that the relative size

of the temporal modes decays exponentially for increasing frequency. This result can be antic-

ipated by the findings highlighted in Section 2.1.2 for the linear analysis of the Navier–Stokes

equations.
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3.2 Weakly nonlinear analysis of the Zhang–Viñals equations

A weakly nonlinear analysis of the ZV equations can be performed to derive an amplitude

equation (or a system of amplitude equations) governing the amplitude of the most unstable

modes. A perturbation to the critical forcing is chosen of the form

a = a0 (1 + µ) , (195)

where a0 is the critical forcing, and µ� 1. The forcing is then given by

gz(t) = a0(1 + µ)g̃z(t), (196)

where g̃z(t) represents the time dependent part of the forcing function (with forcing strength

factored out).

A multiple scales approach is used to balance terms up to O(µ
3
2 ), where the scaling is antici-

pated from Zhang and Viñals (1997a) and Rucklidge and Silber (2009). A ‘slow’ timescale, T ,

is introduced, where T = µt, such that

∂

∂t
−→ ∂

∂t
+ µ

∂

∂T
. (197)

A perturbation expansion of the fluid properties on the surface, h and φ, in terms of the pertur-

bation parameter, gives

h(x, t) = µ
1
2h1(x, t, T ) + µh2(x, t, T ) + µ

3
2h3(x, t, T ) +O(µ2),

Φ(x, t) = µ
1
2 Φ1(x, t, T ) + µΦ2(x, t, T ) + µ

3
2 Φ3(x, t, T ) +O(µ2), (198)

where x = (x, y).

3.2.1 Weakly nonlinear analysis at order µ 1
2

Substituting the expansion given in (198) into equations (176) and (177), and keeping terms

of O(µ
1
2 ), gives the linear system described by (183) and (184). Leading order solutions are

sought near the point of onset of instability in the form

h1 = f1(t)
∑
n

(
An(T )eikn·x + Ān(T )e−ikn·x

)
, (199)
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Φ1 = g1(t)
∑
n

(
An(T )eikn·x + Ān(T )e−ikn·x

)
, (200)

where f1(t) and g1(t) represent the temporal response of the unstable mode in space, An(T )

represents the slowly varying amplitude of the mode corresponding to wavenumber kn, where

|kn| = |k0| (the absolute value of the critical wavenumber near onset), and n = 1, 2, . . . , Nk.

In general, Nk represents the number of modes in space creating a pattern lattice. For example,

roll patterns can be expressed with one mode, Nk = 1, square/rhombus patterns require at most

Nk = 2, and Nk = 3 for triangular/hexagonal patterns for the simplest Faraday waves. The

patterns on different lattices rely on the orientation of the wave vectors (i.e., rolls can exist on

a square or hexagonal lattice depending on the amplitude of the modes). Amplitude equations

for Nk = 1, 2, 3 are derived here. Note that all spatial modes at leading order have the same

temporal response, f1 and g1, since the system at leading order (the linearised ZV equations)

are dependent only on the magnitude of the wavenumber near onset. Together, f1 and g1 solve

the Floquet problem given by

df1

dt
= L(k0)f1, (201)

where

L(k) =

 −2ε2|k|2 |k|

−
(
B + C|k|2

)
−Ba0g̃z(t) −2ε2|k2|

 and f1 =

f1

g1

 . (202)

The system given by (201) is analogous to equations (183) and (184), and can be combined

into a second order ODE in terms of f1 only, becoming the damped Mathieu equation

d2f1

dt2
+ 4ε2|k0|2

df1

dt
+ 4ε4|k0|4f1 + Γ2

0f1 +Ba0|k0|g̃z(t)f1 = 0, (203)

where Γ2
n = |kn|

(
B + C|kn|2

)
. The frequency of the functions f1 and g1 correspond to the

marginal stability of the mode with wavenumber k0. If the mode of wavenumber k0 has a

harmonic (subharmonic) temporal response, f1 and g1 will be harmonic (subharmonic) in time.

The calculation for f1 and g1 is the same as the linear stability calculations of Section 3.1,

where the eigenvector that corresponds to a0 forms the coefficients of the Fourier series in time

for f1. The function g1 is constructed from f1 using equation (201).
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3.2.2 Weakly nonlinear analysis at order µ

The weakly nonlinear analysis of the ZV equations gives, at order µ,

∂h2

∂t
= 2ε2∇2

⊥h2 +D(Φ2)− [D (h1D (Φ1)) + ∇⊥ · (h1∇⊥Φ1)] , (204)

∂Φ2

∂t
+ = C∇2

⊥h2 −B(1 + a0g̃z(t))h1 + 2ε2∇2
⊥Φ2 +

1

2

[
(DΦ1)2 − (∇⊥Φ1)2] . (205)

Solutions are sought in the form

h2 =
[
f 12

2 (t)A1A2e
i(k1+k2)·x + f 23

2 (t)A2A3e
i(k2+k3)·x + f 13

2 (t)A1A3e
i(k1+k3)·x + c.c.

]
+[

f 1−2
2 (t)A1Ā2e

i(k1−k2)·x + f 2−3
2 (t)A2Ā3e

i(k2−k3)·x + f 1−3
2 (t)A1Ā3e

i(k1−k3)·x + c.c.
]

+[
+f 11

2 (t)A2
1e

2ik1·x + f 22
2 (t)A2

1e
2ik2·x + f 33

2 (t)A2
1e

2ik3·x + c.c.
]
,

(206)

and

Φ2 =
[
g12

2 (t)A1A2e
i(k1+k2)·x + g23

2 (t)A2A3e
i(k2+k3)·x + g13

2 (t)A1A3e
i(k1+k3)·x + c.c.

]
+[

g1−2
2 (t)A1Ā2e

i(k1−k2)·x + g2−3
2 (t)A2Ā3e

i(k2−k3)·x + g1−3
2 (t)A1Ā3e

i(k1−k3)·x + c.c.
]

+[
+g11

2 (t)A2
1e

2ik1·x + g22
2 (t)A2

1e
2ik2·x + g33

2 (t)A2
1e

2ik3·x + c.c.
]
.

(207)

For Nk = 2, the terms including wave vector k3 can be omitted. For Nk = 1, the terms with

wave vectors k2 and k3 can be omitted. The functions f ij2 (t) and gij2 (t) represent the temporal

response at second order of the mode corresponding to the wavenumber ki +kj , with f i−j2 and

gi−j2 corresponding to the wave vector ki − kj . The system at second order, corresponding to

the wave vector ki + kj (for i, j = −3,−2,−1, 1, 2, 3), is given by

df ij2
dt
− L(ki + kj)f

ij
2 = NLij2 . (208)

The nonlinear terms at this order are represented by

NLij2 =

− [D (h1D (φ1)) + ∇⊥ · (h1∇φ1)]

1
2

[
(Dφ1)2 − (∇φ1)2]

ij

, (209)

where NLij2 denotes the resolved part of the nonlinear contribution corresponding to ki + kj .

The quadratic terms in NLij2 (that depend on f1 and g1) lead to a solution for f ij2 = (f ij2 , g
ij
2 )′

that is always harmonic in time regardless of whether f1 and g1 are harmonic or subharmonic.
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Equation (208) can be combined into a second order ODE of the form

d2f ij2
dt2

+ 4ε2|ki + kj|2
df ij2
dt

+ 4ε4|ki + kj|4f ij2 + Γ2
i+jf

ij
2 +Ba0|ki + kj|g̃z(t)f ij2

=

[(
d

dt
+ 2ε2|ki + kj|2

)
f1g1

(
|ki + kj|2 − (|ki|+ |kj|) |ki + kj|

)
+ |ki + kj|g2

1 (|ki||kj|+ ki · kj)

]
. (210)

The terms on the right-hand side of (210) are the resolved nonlinear terms corresponding to the

wave number ki+kj . The equations for f i−j2 (f−ij2 ) can be constructed by replacing kj by−kj
(ki by −ki) in equation (210).

It is usual to apply the Fredholm Alternative Theorem to ensure the system is solvable at second

order, briefly described here. Take a system of the form

Lu = f, L∗v = g, (211)

where L∗ is the adjoint operator of L defined by requiring 〈Lu, v〉 = 〈u, L∗v〉 for all u and v.

The inner product in this instance is given by

〈u, v〉 =
1

T

∫ T

0

ūvdt. (212)

The Fredholm alternative states that only one of the following cases is true:

1. The inhomogenous equations (211) have unique solutions, u and v, respectively. The

corresponding homogenous systems,

Lu = 0, L∗v = 0, (213)

each have only the trivial solutions, where u = v = 0.

2. The inhomogeneous equations are not solvable for every f and g. In this case, the in-

homogeneous equations have either no solutions, or infinitely many solutions in the case

where

〈f, v〉 = 0 and 〈g, u〉 = 0, (214)

where u and v satisfy the homogeneous equations

Lu = 0, L∗v = 0. (215)
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The adjoint problem at leading order is given by

d2f̃1

dt2
− 4ε2|k0|2

df̃1

dt
+ 4ε4|k0|4f̃1 + Γ2

0f̃1 +Ba0|k0|g̃z(t)f̃1 = 0. (216)

The adjoint problem has a solution that has the same temporal frequency as the solution to

equation (201).

There are four cases to consider when determining solvability at this order depending on

whether f1 is subharmonic or harmonic and on whether there are any quadratic interactions

leading to modes on the critical circle (as is possible for when Nk = 3). The first two cases are

when f1 is subharmonic, with |ki + kj| 6= |k0| or |ki + kj| = |k0|. In these cases, the solu-

tion to the adjoint problem, f̃1, is also subharmonic, which automatically satisfies the condition〈
RHS, f̃1

〉
= 0, since the RHS is always harmonic in time, where RHS is short-hand for the

right-hand side of equation (210). The third case is when f1 is harmonic and |ki + kj| 6= |k0|.

No solvability condition is needed due to the adjoint solution having a nonzero real part in the

Floquet exponents. The fourth case is when f1 is harmonic and |ki + kj| = |k0| for some

i and j. The search for localised states presented in Section 4 concerns the fourth case (har-

monic hexagons), as observed in Arbell and Fineberg (2000). The equations require special

treatment. In the harmonic hexagon case, an additional time scale is necessary to satisfy solv-

ability, Th = µ
1
2 t, which introduces a derivative in time at order µ that leads to an alternative

equation to equation (208). For example, the equation corresponding to wave vector k1 +k2 in

the harmonic hexagon case is

df 12
2

dt
A1A2 + f1

∂Ā3

∂Th
− L(k1 + k2)f 12

2 A1A2 = NL12A1A2, (217)

using k1 + k2 = −k3. This system can be combined to give, in terms of f 12
2 ,

d2f 12
2

dt2
A1A2+4ε2|k0|2

df 12
2

dt
A1A2+4ε4|k0|4f 12

2 A1A2+Γ2
1+2f

12
2 A1A2+Ba0|k0|g̃z(t)f 12

2 A1A2

= −
(
df1

dt
+ 2ε2|k0|2f1 + |k0|g1

)
∂Ā3

∂Th

+

[(
d

dt
+ 2ε2|k0|2

)
f1g1

(
|k0|2 − (|k0|+ |k0|) |k0|

)
+ |k0|g2

1

(
|k0|2 + k1 · k2

) ]
, (218)

where |k1 + k2| = |k0| has been applied. The equations for all combinations of A1, A2, A3,

and their complex conjugates can be found by permuting A1, A2 and A3, and their complex

conjugates, in equation (218).
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The Fredholm Alternative Theorem states that the condition〈[(
d

dt
+ 2ε2|k0|2

)
f1g1

(
|k0|2 − (|k0|+ |k0|) |k0|

)
+ |k0|g2

1

(
|k0|2 + k1 · k2

) ]

−
(
df1

dt
+ 2ε2|k0|2f1 + |k0|g1

)
∂Ā3

∂Th
, f̃1

〉
= 0 (219)

must be satisfied for solvability at second order. This leads to the solvability condition

∂Ā3

∂Th
=
α̃12

τ
A1A2, (220)

where

α̃ij =

〈(
∂

∂t
+ 2ε2|k0|2

)
f1g1

(
|k0|2 − (|k0|+ |k0|) |k0|

)
(221)

+ |k0|g2
1

(
|k0|2 + ki · kj

)
, f̃1

〉
,

τ =

〈(
∂

∂t
+ 2ε2|k0|2

)
f1 + |k0|g1, f̃1

〉
. (222)

All other combinations of wave vectors (for |ki + kj| 6= |k0|) at this order are solved using

(210) for the harmonic hexagon case. Note that α̃ij = α̃ji, and that α̃12 = α̃23 = α̃13 on a

hexagonal lattice.

3.2.3 Weakly nonlinear analysis at order µ 3
2

At third order, the weakly nonlinear equations are given by

∂h3

∂t
+
∂h1

∂T
= 2ε2∇2

⊥h3 +DΦ3 −∇⊥ · (h1∇⊥Φ2 + h2∇⊥Φ1)−D (h1DΦ2 + h2DΦ1)

+D
[
h1D (h1DΦ1) +

1

2
h2

1∇2
⊥Φ1

]
+

1

2
∇2
⊥
(
h2

1DΦ1

)
, (223)

∂Φ3

∂t
+
∂Φ1

∂T
= 2ε2∇2

⊥Φ3 −B(1 + a0g̃z(t))h3 −Ba0g̃z(t)h1 + C∇2
⊥h3 + (D(Φ1)D(Φ2))

− (∇⊥Φ1 ·∇⊥Φ2)−D(Φ1)
[
h1∇2

⊥Φ1 +D (h1DΦ1)
]
− C

2
∇⊥ ·

(
∇⊥h1 (∇⊥h1)2) . (224)

The left-hand side of each equation has a time derivative of the second order solution with

respect to Th when dealing with harmonic hexagons for the relevant wave vector combinations
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(see above section). Only the wavenumbers that satisfy |kn| = |k0| need to be considered for

the solvability condition at order µ
3
2 . For simplicity, h3 is expressed as

h3 =
∑
n

[
ĥn3e

ikn·x + c.c.
]
, (225)

and φ3 is expressed as

φ3 =
∑
n

[
φ̂n3e

ikn·x + c.c.
]
, (226)

neglecting any combinations of kn. Expressing equation (223) and (224) in Fourier space gives

∂Hn
3

∂t
− L(kn)Hn

3 = −

 0 0

Ba0g̃z(t) 0

f1An − f1
∂An
∂T

+ (NL3)n , (227)

where Hn
3 = (ĥn3 , φ̂

n
3 )′ and (NL3)n represents the nonlinear components resolved for corre-

sponding wavenumber kn. The nonlinear components are given by

NL3 =



−∇⊥ · (h1∇⊥φ2 + h2∇⊥φ1)−D (h1Dφ2 + h2Dφ1)

+D
[
h1D (h1Dφ1) + 1

2
h2

1∇2
⊥φ1

]
+ 1

2
∇2
⊥ (h2

1Dφ1)

(D(φ1)D(φ2))− (∇⊥φ1 ·∇⊥φ2)−D(φ1) [h1∇2
⊥φ1 +D (h1Dφ1)]

−C
2
∇⊥ ·

(
∇⊥h1 (∇⊥h1)2)


. (228)

Combining both components of system (227) into a single equation gives

∂2ĥn3
∂t2

+ 4ε2|kn|2
∂ĥn3
∂t

+ 4ε4|kn|4ĥn3 + Γ2
nĥ

n
3 + |kn|Ba0g̃z(t)ĥ

n
3 =(

∂

∂t
+ 2ε2|kn|2

)((
NLh3

)n − f1(t)
∂An
∂T

)
+ |kn|

((
NLφ3

)n
− g1(t)

∂An
∂T
−Ba0g̃z(t)f1(t)An

)
, (229)

where

NLn3 =

(NLh3)n

(NLφ3)n

 . (230)

From equation (229) an amplitude equation can be found by again applying the Fredholm

Alternative Theorem. The resulting amplitude equations depend on Nk, with the nonlinear

termsNLh3 andNLφ3 determining the interaction between modes in space on the pattern lattice.

The basic patterns in the Faraday system consist of choosing Nk = 1 for rolls, Nk = 2 for

squares or rhomboids, and Nk = 3 for triangle/hexagons patterns.
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For the simplest case, Nk = 1, the amplitude equation has the form

τ
dA1

dT
= a0αA1 + β|A1|2A1, (231)

where

α =
〈
−B|k1|g̃z(t)f1, f̃1

〉
, (232)

β =

〈
−
(
d

dt
+ 2ε2|k1|2

)(
2|k1|2g1f

11
2 + |k1|3f 2

1 g1

)
+ |k1|

(
|k1|3f1g

2
1 +

3C

2
|k1|4f 3

1

)
, f̃1

〉
.

(233)

The function α quantifies the influence of the forcing on the wave amplitude, and β can be

interpreted as the self-interaction of a wave mode.

For Nk = 2 or 3, the amplitude equations (a Nk system of equations) are given by the system

τ
dAi
dT

= a0αAi + β|Ai|2Ai +
∑
j 6=i

γij|Aj|2Ai, (234)

for i = 1, 2, . . . , Nk. In the harmonic hexagon case, additional quadratic terms at O(µ) need

to be taken into account (see below). The strength of the interaction between spatial modes is

quantified by γij , where

γij =

〈(
∂

∂t
+ 2ε2|ki|2

)
aij + |ki|bij, f̃1

〉
, (235)

with

aij = 2 (ki · (ki + kj)− |ki||ki + kj|) f1g
ij
2 + 2 (ki · (ki − kj)− |ki||ki − kj|) f1g

i−j
2

− 2 (|ki||kj|+ ki · kj) g1f
ij
2 − 2 (|ki||kj| − ki · kj) g1f

i−j
2

+
(
|ki|2 (|ki + kj|+ |ki − kj|) + |ki||kj| (|ki + kj|+ |ki − kj|)

)
g1f

2
1

− 2
(
|ki|3 + |ki||kj|2 + |kj||ki|2

)
g1f

2
1 , (236)

bij = 2 (|ki + kj||kj| − kj · (ki + kj)) g1g
ij
2 + 2 (|kj||ki − kj|+ kj · (ki − kj)) g1g

i−j
2

+

(
2
(
|kj|3 + |ki||kj|2 + |kj||ki|2

)
− |kj|2 (|ki + kj|+ |ki − kj|)

− |ki||kj| (|ki + kj|+ |ki − kj|)
)
f1g

2
1

+ C
(
|ki|2|kj|2 + 2 (ki · kj)2) f 3

1 . (237)
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Both aij and bij represent the resolved components of NL3 for general Nk, corresponding to

the interaction between modes associated to wave vectors ki and kj . Recall that f ij2 and gij2 are

defined in equation (208).

The amplitude equation system differs when considering the special case of harmonic hexagons,

in that equation (229) has time derivatives in Th. For Nk = 3 on a hexagonal lattice, with

−k2 − k3 = k1, (
∂h2

∂Th

)1

= 2f−2−3
2

∂

∂Th

(
Ā2Ā3

)
(238)

= 2f−2−3
2

(
Ā2
∂Ā3

∂Th
+ Ā3

∂Ā2

∂Th

)
(239)

=
2f−2−3

2

τ

(
α̃21|A2|2 + α̃31|A3|2

)
A1, (240)

where the superscript denotes the resolved component’s corresponding wavenumber index.

Equation (220) has been used. Similarly, for φ2,(
∂φ2

∂Th

)1

= 2g−2−3
2

∂

∂Th

(
Ā2Ā3

)
(241)

= 2g−2−3
2

(
Ā2
∂Ā3

∂Th
+ Ā3

∂Ā2

∂Th

)
(242)

=
2g−2−3

2

τ

(
α̃21|A2|2 + α̃31|A3|2

)
A1. (243)

When resolved as above, the amplitude equation for harmonic hexagons is given by the system,

∂Ai
∂Th

=
α̃jk
τ
ĀjĀk, (244)

where (ijk) = (123) and its permutations, and

τ
∂Ai
∂T

= a0αAi + β|Ai|2Ai +
∑

j 6=i,k 6=i

˜γijk|Aj|2Ai, (245)

where

˜γijk =

〈(
∂

∂t
+ 2ε2|ki|2

)(
aij −

2f−j−k2

τ
α̃ij

)
+ |ki|

(
bij −

2g−j−k2

τ
α̃ij

)
, h̃

〉
. (246)

To combine equations (244) and (245), a new time scale, t∗, is introduced such that the deriva-

tive in time is given by

d

dt
→ ∂

∂t
+
( τ
α

)(
µ
∂

∂T
+ µ

1
2
∂

∂Th

)
=

∂

∂t
+

d

dt∗
. (247)
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The amplitude system can then be represented by

dAi
dt∗

= µ
1
2
α̃jk
α
ĀjĀk + µ

(
a0Ai +

β

α
|Ai|2Ai +

1

α

∑
j 6=i,k 6=i,j

˜γijk|Aj|2Ai

)
. (248)

To further simplify, Ai can be rescaled by 1/µ
1
2 to give

dAi
dt∗

= µa0Ai +
α̃jk
α
ĀjĀk +

β

α
|Ai|2Ai +

1

α

∑
j 6=i,k 6=i

˜γijk|Aj|2Ai. (249)

The amplitude equation is used to estimate the extent of the region of bistability between the

flat state and the hexagon pattern state by searching for where steady solutions of equation

(249), satisfying d/dt∗ = 0, exist.

For patterns on a hexagonal lattice, the coefficients of the amplitude equation are the same

for all amplitudes due to the lattice symmetry. That is, α̃ij and γ̃ijk remain unchanged by

permutations of i, j, and k. Equation 249 admits a variety of simple patterns on a hexagonal

lattice with well studied symmetries and stability in parameter space (Golubitsky et al., 1984;

Hoyle, 2006). For waves on a hexagonal pattern lattice of equal amplitude, where Ai = A0 for

i = 1, 2, 3, equation (249), given here for A1, becomes[
µa0 +

α̃23

α
A0 +

1

α
(β + ˜γ123 + γ̃132)A2

0

]
A0 = 0. (250)

The discriminant of the quadratic in A0 (bracketed in equation (250)) can be used to determine

the range in parameter space where hexagon solutions of the amplitude equations exist. These

solutions exist for µ > µs, where

µs =
(α̃23)2

4a0α (β + γ̃123 + γ̃132)
. (251)

A typical bifurcation diagram for hexagon patterns is shown in Figure 3.5 for α(β + γ̃123 +

γ̃132) < 0. The bifurcation diagram typically features a transcritical bifurcation to unstable

hexagons at µ = 0. Here, hexagon patterns of different amplitudes, labelled H1 and H2, branch

from the origin. The H1 solution corresponds to A0 > 0 (or up-hexagons) and H2 corresponds

to A0 < 0 (down-hexagons) (Golubitsky et al., 1984; Hoyle, 2006). The H1 branch typically

features a saddle–node bifurcation from unstable to stable hexagons, located at µs (labelled

in Figure 3.5). Note that hysteresis is present within the system when the up-hexagon pattern

is stable for µ < 0 (a desirable feature when considering where local hexagon patterns were

found in Arbell and Fineberg 2000). Within this region both the flat state and hexagon pattern

are stable.
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Figure 3.5: Schematic of a typical bifurcation diagram for hexagon solutions of system (249). Plotted is the

absolute value of the amplitude A1 against the bifurcation parameter, µ. Solid (dashed) curves indicate linearly

stable (unstable) solutions. The hexagon solutions labelledH1 andH2 correspond to amplitudes with positive and

negative real part, respectively. The saddle–node bifurcation on the H1 branch is located at µ = µs. The region

of bistability, where the flat state and the hexagon state are both stable, is bound by µs and 0.

For the same parameter values as in Figure 3.3, the estimated location of the saddle–node

bifurcation from the amplitude equations, relative to the linear stability boundary, is plotted in

Figure 3.6. It is predicted from the amplitude equation that the distance between the point of

linear instability of the flat state, µ = 0, and the location of the saddle–node, µs from equation

(251), increases as χ increases, i.e., the parameter space corresponding to where harmonic

hexagon solutions have been found widens closer to the point of bicriticallity. This result

qualitatively agrees with the phase diagram from Arbell and Fineberg (2000), see Figure 1.28,

where their plotted open circles represent points of transition from hexagonal patterns to the

flat state for decreasing forcing strength, implying a region of hysteresis/bistability between the

flat state and the hexagon state.

The methodology for searching for localised states requires simulation of the ZV equations

within the region of bistability between the flat state and oscillating hexagons, while simul-

taneously being located near the bicritical point in parameter space. Finding a large enough
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Figure 3.6: Phase diagram plotted for a forcing function of the form in equation (194), where a0 cos(χ) is the

strength of the forcing corresponding to frequency 2, a0 sin(χ) the strength corresponding to the forcing mode of

frequency 3. The predicted location of the saddle–node bifurcation from equation (251) is plotted at coordinates

a0(1 + µs)(cos(χ), sin(χ)). Left: Phase diagram plotted at a 1:1 aspect ratio; Right: Close up of the region in

phase space near the bicritical point.
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region in parameter space satisfying these requirements is important when considering com-

putational costs, search efficiency and required numerical accuracy. It should be noted that

the amplitude predictions are only a guide. Near the bicritical point, the unstable subharmonic

solutions may be important to the weakly nonlinear analysis, and have not been included in the

analysis. The amplitude equations also lose validity for increasing µ and amplitude of the solu-

tion. Although the amplitude equations derived in this thesis have been previously investigated

(Zhang and Viñals, 1997a; Skeldon and Porter, 2011), they have not been used explicitly to

find a parameter space to maximise the region of bistability between two stable states (a feature

typical to systems with localised solutions). A comparison between the amplitude equations for

hexagons and the numerically simulated ZV equations regarding the prediction of the location

(in µ) of the saddle–node bifurcation is presented in Section 4.2.

3.3 Exponential time differencing

Given the nature of the ZV system described by equations (176) and (177) and its application

to pattern formation within this thesis, it is natural to solve the ZV equations in Fourier space.

Exponential Time Differencing (ETD) schemes (Cox and Matthews, 2002) offer appropriate

numerical methods that take into account the stiff nature of dealing with a range of wavenum-

bers in Fourier space. ETD schemes were developed with a common treatment of the linear

part of the system, that being that the linear part is resolved exactly. ETD schemes differ in

their treatment of the nonlinear terms of the systems they are applied to.

The simplest ETD scheme uses a first order approximation of the nonlinear terms, hence its

name, ETD1. The ETD2 scheme applies a second order approximation of the nonlinear terms

in the equations (as described below) and was chosen to simulate the ZV equations. The ETD2

scheme offers a good balance between accuracy and computational cost and is locally third

order in time step, O(∆t3), where ∆t represents the size of time step. Results only benefit from

a factor of 1
5

in order of accuracy when extended to include a Runga–Kutta type treatment of the

nonlinear terms in the PDEs it solves (the ETD2RK scheme). ETD3RK and ETD4RK schemes

offer better approximations of the nonlinear terms, but increase computational cost. Since the

objective of this thesis is to demonstrate the existence of localised states via simulation of the

ZV equations, the computational domain size needed was many wavelengths of the typical
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pattern state. The numerical searches were also planned for several parameter regimes. For

these reasons, the ETD2 was chosen to reduce computational cost. The ETD2 scheme for the

ZV equations was simulated using the software MATLAB (MATLAB, 2019).

In discrete Fourier space the ZV equations become

∂Hk

∂t
=

 −2ε2|k|2 |k|

−(B + C|k|2) −2ε2|k|2

Hk + N̂L
k

= MHk + N̂L
k
, (252)

where Hk is the vector (ĥ(k, t), φ̂(k, t)), the solution in Fourier space corresponding to the

wave vector k, and N̂L
k

is the resolved Fourier component of the nonlinear terms, corre-

sponding to the same wave vector. The time dependent forcing can be treated as a nonlinear

term and has been absorbed into N̂L
k
. Multiplying the system by the exponential matrix

exp(−Mt) and integrating over one time interval [tn, tn+1], where tn+1 − tn = ∆t, gives

Hk
n+1 = eM∆tHk

n + eMtn+1

∫ tn+1

tn

e−MτN̂L
k
(τ)dτ, (253)

whereHk
n+1 = Hk(tn + ∆t). Applying the ETD2 scheme introduces a second order approxi-

mation for N̂L
k
(τ), for τ ∈ [tn, tn+1], given by

N̂L
k

= N̂L
k

n +
(
N̂L

k

n − N̂L
k

n−1

)
τ/∆t. (254)

For each wave vector, the ETD2 scheme is given by

Hk
n+1 = eM∆tHk

n +M1N̂L
k

n +M2

(
N̂L

k

n − N̂L
k

n−1

)
, (255)

with

M1 = M−1
(
eM∆t − I

)
, and M2 = M−2

(
eM∆t − (I +M∆t)

)
/∆t, (256)

where M1 and M2 are also dependent on wave vector k.

The scheme described in (255) was applied to each Fourier mode for the range of wave vectors

considered in the simulations. Periodic boundary conditions were chosen for the simulations.

This is an appropriate choice for pattern forming systems simulated on a domain size of one

wavelength, or for solutions on large domains where the solution decays to 0 (for example,

localised states against a flat background). The periodic domain was based on the magnitude

of the most critical wavenumber of the problem given by the linear theory, |k0|. The absolute
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values of the wavenumbers considered for the ZV simulations were then integer multiples of

|k0|. On the computational domain, the spatial resolution in x is denoted by Nx, where Nx is

the number of samples in the x–direction. Grid points in x are given by

xi = x1 + (i− 1)
Lx
Nx

, for i = 1, 2, . . . , Nx. (257)

Similarly, for Ny,

yi = y1 + (i− 1)
Ly
Ny

, for i = 1, 2, . . . , Ny. (258)

When solving the equations in Fourier space on a discrete mesh, the Discrete Fourier Transform

(DFT) is a useful tool. MATLAB’s Fast Fourier Transform (FFT) algorithm was used in all

simulations to compute the DFT. Since the ZV equations contain cubic terms, dealiasing was

used to cubic order, applied to the solution at it progressed in time. This involved keeping

(Nx − 1)/2 nontrivial modes in space in the x direction, with the same number of modes in

space kept in the y direction for (Ny − 1)/2.

3.4 Validation, verification and mesh independence

To determine the order of the error in time step, ∆t, of the scheme, the ZV equations were

simulated for hexagon patterns in 2D with multifrequency forcing. Given that gz(t) is at most

periodic in 2π, a time step of ∆t = 2π/Nt was chosen, where Nt represents the number of time

steps per period. Figure 3.7 shows the order of the numerical scheme, which is globally of order

O(∆t2), as opposed to the local O(∆t3) mentioned above. This relation is maintained from the

worked example given in Cox and Matthews (2002). The Root Mean Squared measure (RMS),

defined here as

uRMS =

[
1

LxLyTp

∫ ∫ ∫
u2dxdydt

] 1
2

, (259)

where Tp is the period of the solution in time, was used to measure the error of the solution

after it converged. Subharmonic solutions have a maximum period of Tp = 4π. For harmonic

solutions, the oscillating pattern has a maximum temporal period of Tp = 2π. The agreement

between the computed and theoretical order confirms that the timestepping was working as

expected. A time step of 2π/Nt, with Nt = 200, was used in all following simulations to

achieve a timestepping error of less than around 0.5%, a reasonable balance between accuracy

and computational cost.
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Figure 3.7: Error between the high resolution solution, Nt = 105, and solutions of varying Nt, where ∆t =

2π/Nt. Data are taken at the plus symbols and the solid line demonstrates the order of the error. The Nt vary

between 50 and 5000. Other nondimensional values are ε2 = 1e−1, B = 1, C = 1, Nx = Ny = 25. For the

forcing given in equation (3), with a = a0, ψl = π/4, χ = 0.8π/2, l = 1 and m = 2.

The weakly nonlinear analysis was compared to the predictions of the simulated ZV equations.

Since the weakly nonlinear analysis has a limited range of validity, a rolls solution was sought,

where the primary bifurcation is supercritical. The validity of the ZV equations as compared

to the weakly nonlinear analysis also depends on how well the ZV predict the value for critical

forcing. Using equation (231) to predict the amplitude of a rolls solution for small perturbations

to the forcing, the ETD2 scheme for the ZV equations was compared to the results of the weakly

nonlinear analysis and is shown in Figure 3.8. The simulations were performed over a region in

parameter space where the primary bifurcation is supercritical, as shown in Figure 3.8a. On the

same figure, the prediction of a solution with the same amplitude as the weakly nonlinear theory

is overlaid to compare to the results of the ETD2 scheme for the ZV equations, confirming the

correctness of both the code and the weakly nonlinear theory. The agreement is stronger the

closer the solution is to the bifurcation point, as µ → 0. Figure 3.8b shows a log–log plot of

the rolls branch over the same region, which follows the square-root profile predicted by the

weakly nonlinear theory. The solid line in Figure 3.8b highlights the expected order of the

numerical solution (not the results of the WNLA as in panel 3.8a).

Figure 3.9 demonstrates the accuracy of the numerical scheme due to increasing the mesh

resolution (important for more complicated patterns like localised states) in both the x and y

directions, Nx and Ny, respectively. Two cases are shown, simulated on a restricted domain for
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(a) (b)

Figure 3.8: (a) Comparison between the RMS measure of a solution with amplitude from (231), shown as a solid

line, and numerics, dashed crosses line, for a roll solution near the primary bifurcation, µ = 0. (b) Order of the

numerical solutions to the ZV for rolls on a log scale, crosses, compared to the expected order from the weakly

nonlinear analysis (WNLA), solid line. Other nondimensional values are ε2 = 0.1, B = 1, C = 1 and l = 1 for

single frequency forcing.

Figure 3.9: Difference in the RMS measure between a solution with Nx = Ny = 256 modes in space and

solutions with varying total space modes, plotted against time for two simulation Cases (the Cases were designed to

independently test the numerical code in each direction with a randomised initial condition). Solid lines represent

the error for a solution with variation in x (Case 1), with crosses representing the error for solutions with variation

in y (Case 2). The small discrepancy between Case 1 and Case 2 solutions for 128 modes is due to the application

of the fast Fourier transform on MATLAB.
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a rolls solution in either the x (Case 1, solid lines) or y (Case 2, crosses) directions. The initial

condition for the Case 2 simulation was a rotated version of the randomised initial condition for

Case 1. Note that the restricted domain allowed only the modes corresponding to the unstable

wavenumber to grow, converging to the expected rolls solution in either the x or y direction.

The resolution Nx = Ny = 32 over two pattern wavelengths was chosen for the following

simulations due to finding reasonable accuracy at this resolution. Note that the resolution in x

(y) used for the localised states search was a multiple of the resolution Nx (Ny) used for the

pattern domain (see Section 4.3.1).

A sample of the solution was taken (in time) to represent the state of the numerical solution as

it progressed. Since the solutions sought in this thesis respond either harmonically or subhar-

monically to the forcing, a sample period of 4π was chosen. This choice includes all possible

response periods, generalising the sampling period over all runs. The sample that was taken

is the RMS measure of the surface displacement, h, and the potential function evaluated at the

surface, Φ, in space only, represented by

uRMSx =

[
1

LxLy

∫ ∫
u2dxdy

] 1
2

, (260)

where u is either h or Φ. An example of the RMSx measure over time is given in Figure 3.10 for

a converged, harmonic hexagon pattern at parameter values µ = 0.001, B = 0.28, C = 0.64,

ε2 = 0.1, with a forcing of the form 3, with a = a0, χ = 75◦, (n,m) = (2, 3) and ψl = 9π/8.

All nontrivial solutions found in the numerical simulations oscillated in time, so were not steady

in a temporal sense. For the simulations presented in this thesis, a solution was determined to

asymptotically converge if the relative difference in the RMSx measure (sampled every re-

sponse period), given by

∆RMSx(t) =
RMSx(t+ Tp)− RMSx(t)

RMSx(t)
, (261)

fell below a specified tolerance over a time scale ofO(1/µ). The amplitude equations evolve on

a timescale of O(1/µ), and were used as an estimate of timescale for the nonlinear interaction.

An example is shown in Figure 3.11 for the same parameter values used to produce Figure 3.10.

The error tolerance was set to 10−6, plotted as a horizontal line.



Chapter 3: Weakly nonlinear analysis and numerics 100

Figure 3.10: The RMSx measure given in equation (260) over time for h and φ solutions for parameter values

µ = 0.001, B = 0.28, C = 0.64, ε2 = 0.1, with a forcing of the form 3, where a = a0, χ = 75◦, (n,m) = (2, 3)

and ψl = 9π/8.

Figure 3.11: The ∆RMSx measure given in equation (261) over time for h and φ solutions for parameter values

µ = 0.001, B = 0.28, C = 0.64, ε2 = 0.1, with a forcing of the form 3, where a = a0, χ = 75◦, (n,m) = (2, 3)

and ψl = 9π/8. The tolerance (10−6) is shown as a horizontal line.
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4 Localised states in the Zhang–Viñals equations

The results of this thesis focus on localised, temporally harmonic hexagon patterns found in the

Zhang–Viñals equations via the methodology described in Section 3. Section 4.1 demonstrates

the challenges associated with estimating a range in parameter space where bistability between

the flat state and global hexagonal patterns is robust (large enough to explore with reasonable

numerical resolution in the bifurcation parameter). The bifurcation diagram for global hexagon

patterns is traced out (via results from numerically simulating the ZV equations) and discussed

in Section 4.2. The localised states found within this thesis are identified in Section 4.3 and

their associated localised branches are plotted on the primary bifurcation diagram to highlight

their potential branch structure.

4.1 Parameter initialisation for localised states

The parameters of the ZV equations, for a two-frequency forcing function of the form

g(t) = a(1 + µ) [cos(χ) cos(2t) + sin(χ) cos(3t+ ψl)] , (262)

are summarised in Table 2. The first step in searching for localised states (via numerical simu-

lation of the ZV equations) involves estimating parameter values where the region of bistability

between oscillating hexagons and the flat state is large enough to be captured numerically. An

initial estimate can be achieved by minimising µs, as determined by equation (251). Modify-

ing the forcing perturbation to vary the relative amplitude between the two components of the

forcing, given by

g(t) = a [(1 + µ) cos(χ) cos(2t) + sin(χ) cos(3t+ ψl)] , (263)

with corresponding modification to the amplitude equations, allows the parameter search to

be performed closer to the region identified in experiments, since varying µ in equation (262)

restricts travel in phase space towards (or away from) the origin. This approach is similar to

Arbell and Fineberg (2000) when considering the transition between a global pattern and an

oscillon state. Modifications to the prediction of µs are made through the parameter α, given

by (232).
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Parameter Physical description

ε Quantifies viscosity

B Quantifies gravity

C Quantifies surface tension

ψl Forcing phase shift

χ Forcing dominance/mixing

µ Perturbation to forcing

Table 2: Parameters of the Zhang–Viñals equations and their physical description for two–frequency forcing in

the ratio of 2:3.

Further refinement is added to the task above by considering the nature of the bicritical point.

Following the experimental results of Arbell and Fineberg (2000), for a forcing function with

frequency ratio 2:3 (see equation (194)), localised states were found experimentally near the

bicritical point where the flat state loses stability to solutions corresponding to both the 2 fre-

quency forcing mode (harmonic response) and the 3 frequency forcing mode (subharmonic

response). Figure 4.1 shows a case from the linear stability analysis of the ZV equations

where the bicritical point was found between solutions that did not both correspond to the forc-

ing frequencies used in the forcing function. Bicriticality can be observed between solutions

with nondimensional frequencies 1/2 (corresponding to the first subharmonic tongue on the

marginal stability curve) and 1 (corresponding to the first harmonic tongue, or forcing mode of

frequency 2), between points a and b for increasing χ. This was also evident for solutions with

nondimensional frequencies 1/2 and 3/2 (the latter corresponding to the second subharmonic

tongue, or the forcing mode of frequency 3), between points b and c. This occurs when the

critical forcing strength, a0, becomes large enough to allow instability to the first subharmonic

tongue. Increasing ε has the greatest influence on increasing the size of a0, although (as with

the parameters in the following results section for ε2 = 1) other parameters of the system can

affect the occurrence of these types of bicritical points. In searching for a suitable parameter

regime to search for localised states, a bicritical point with solutions corresponding to forcing

frequencies in the ratio 2:3 was preserved through varying B and C. An optimisation study to

determine how each parameter (outlined in Table 2) affects the extent of the region of bistability

has not been performed as part of this thesis. This is a complex task since, as described above,

the nature of the bicritical point can change and the location in phase space of the bicritical
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Figure 4.1: Left: Phase diagram (with linear instability boundary only) plotted as a function of forcing strength

for the 2 frequency forcing (x–axis) and 3 frequency forcing (y–axis). Parameter values are ε2 = 0.6, B = 0.5,

C = 0.5, ψl = 0. Inserts a, b, and c show the linear stability diagram for χ = 45◦, χ = 72◦, and χ = 81◦,

respectively. Inserts a, b, and c correspond to the points labelled on the phase diagram (left).
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Figure 4.2: The amplitude equation prediction of the location of the saddle–node, µs, plotted as a function of forc-

ing mixing strength, χ, for parameter set 1, P1 where (ε2, B, C, φl, χ, µ) = (1, 4, 1, 9π/8, χ, µs), and parameter

set 2, P2, where(ε2, B,C, φl, χ, µ) = (0.1, 0.5, 0.5, 0, χ, µs).

point is dependent on all parameters. Optimisation requires tracking the changing location of

the bicritical point and the temporal response of the critical modes.

Although the ZV equations were derived for small ε, increasing the value of ε aided the numer-

ics, allowing for faster convergence. This is because, for ε � 1, the time scale for the linear

growth rate is approximately O(1/(µε2)) (see Appendix A). For the initial numerical search,

a value of ε2 = 1 was used. Figures 4.2 and 4.3 show the difference between the predicted

saddle–node location for ε2 = 0.1 and ε2 = 1 for varying χ. Other parameters for ε2 = 1

were chosen to preserve the 2:3 bicritical point, with B = 4, C = 1, ψl = 9π/8. The forcing

strengths shown in the left-hand panel of Figure 4.3 have been scaled in the right-hand panel

such that the linear stability curves intersect at the x and y axes. The overlap between the sta-

ble flat state and the oscillating hexagon state is (relatively) much larger for the P1 parameter

choice. The parameter ψl has a dramatic effect on the value of µs over a range ofB and C. Fig-

ure 4.4 shows the amplitude equation prediction of the location of the saddle–node for varying

ψl for a range of B and C.

Prior to simulating the ZV equations for harmonic hexagons for forcing frequencies in the ra-

tio 2:3, the amplitude equations were analysed for subharmonically oscillating solutions with
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Figure 4.3: Left: Phase diagrams with corresponding amplitude equation estimates for the location of the

saddle–node for P1, where (ε2, B, C, φl, χ, µ) = (1, 4, 1, 9π/8, χ, µs), and P2, where (ε2, B,C, φl, χ, µ) =

(0.1, 0.5, 0.5, 0, χ, µs). Right: Scaled version of left–hand image for visibility close to the bicritical point.
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Figure 4.4: Amplitude equation prediction of the saddle–node location, µs, plotted against ψl for various com-

binations of B and C (for ε2 = 1 and χ = 72.9◦, close to the bicritical point in Figure 4.3). Crosses are for

(B,C) = (0.1, 0.9) ; Plus symbols are for (B,C) = (0.9, 0.1); Open circles are for (B,C) = (1, 2); Open

squares are for (B,C) = (4, 1). Note that for (B,C) = (0.1, 0.9), the bicritical point falls below χ = 9π/8 for

certain values of ψl. Vertical line is plotted at ψl = 9π/8.
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forcing frequencies in the ratio 1:2. This was performed to determine if localised roll patterns

could be studied numerically, which would have allowed the ZV equations to be simulated in

1D for the simplest frequency pairing. It was found that the region of bistability was relatively

narrow compared to the harmonic hexagon case. Due to time constraints, localised hexagon

patterns were searched for in the ZV equations, prompted by their existence in the previous

experimental work of Arbell and Fineberg (2000) for forcing frequencies in the ratio 2:3. Note

that global square patterns were found experimentally for the 2:3 forcing case above a certain

threshold in χ. A harmonically localised pattern was observed among a subharmonically os-

cillating global pattern (squares) in the experiments. This highlights the complex nature of the

types of localised patterns that can exist and their potential for complicated dynamics. Lo-

calised hexagons among a flat background were focused on in this thesis due to their relatively

simple structure and the fact that their amplitude equations include terms that allowed greater

manipulation of the range in parameter space for bistability (the quadratic dependence of the

location of the saddle–node on α̃23 in equation (251), for example).

4.2 Hexagons and bistability

4.2.1 Hexagon patterns

The results of the amplitude equation for harmonic hexagons were used as a guide to the extent

of the bistable region between the flat state and oscillating hexagons. The parameter space

identified in Section 4.1 was adopted through the process of minimising µs in equation (251)

for ε2 = 1. A forcing function of the form given in equation (263) was used. Other parameter

values were chosen as B = 4, C = 1, and ψl = 9π/8. Figure 4.5 shows a close up of the

phase diagram near the bicritical point, highlighting the point at which the numerical search

was initiated (circled).

For µ = 0.001, an initial hexagonal pattern solution was sought near the circled point in Figure

4.5, which was then used as the initial condition for the remaining hexagon pattern simulations.

This was performed for χ = 72.9◦. The dashed line originating at the circled point (where

µ = 0), in a direction of travel from right to left, represents the search region for decreasing µ.

This corresponds to µ < 0 in equation (263). These simulations were performed to determine
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Figure 4.5: Phase diagram plotted for a forcing function of the form in equation (194), where a0 cos(χ) is the

strength of the forcing corresponding to frequency 2, a0 sin(χ) the strength corresponding to the forcing mode of

frequency 3. The linear stability boundary is plotted as a solid line for varying χ, with ε2 = 1, B = 4, C = 1,

ψl = 9π/8, µ = 0. The circled point is at χ = 72.9◦. The dashed line represents the initial search space for µ < 0

(in equation 263) where the bifurcation diagram is constructed.
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the range of bistability between the hexagon pattern state and the flat state, i.e., the numerical

prediction of the point µs. The simulations that follow were run using values of critical forcing

strength, a0, and critical wavenumber, |k0|, calculated from the linear stability theory for the

ZV equations (see Section 3.1). The number of time modes used in calculating results from the

linear stability was chosen to be Nt = 40 in all simulation cases (see Figure 3.4). The marginal

stability diagram at the chosen parameter range is shown in Figure 4.6, and the corresponding

Floquet multipliers are shown in Figure 4.7.

To establish hexagonal patterns, the computational domain size in x and y was set up at a

specific aspect ratio. The length of the domain in the x–direction, Lx, was chosen to be Lx =

4π/|k0|, and the length in the y–direction, Ly, was chosen as Ly = 4π/(
√

3|k0|). This spatial

resolution restricted wavenumbers to those that lie on a hexagonal lattice.

The spatial resolution in x was chosen as Nx = 32. For the spatial resolution in y, Ny = 32.

The initial condition used for surface displacement, h, on the hexagon domain is given by

h0 = 0.1

[
cos

(
4πx

Lx

)
+ cos

(
2πx

Lx
+

2πy

Ly

)
+ cos

(
2πx

Lx
− 2πy

Ly

)]
, (264)

with the initial condition for the potential function evaluated on the surface satisfying φ0 =

h0. The initial condition, h0, is plotted in Figure 4.8. The progression of the chosen initial

condition, to its asymptotic state, is shown in Figure 4.9 in terms of the RMSx measure sampled

every 4π in time. The final oscillating state is shown in Figure 4.10 over a period of 2π for

surface displacement, h. The plotted solution has been repeated over a domain of size 2Lx×2Ly

to emphasise spatial periodicity. The hexagonal state oscillates harmonically to the forcing

(corresponding to a dominant forcing mode of frequency 2). Starting at the “trough” stage, say

t0, where the peaks in the hexagonal pattern are inverted, the state grows to its peak state at

time t0 + π. The amplitude of the pattern then evolves back to its trough stage at time t0 + 2π.

This asymptotic final state was stable, and the same outcome was found with initial conditions

of different sizes and unequal amplitudes of the cosines in (264). A rolls solution is found for

an initial condition containing only the first cosine term in equation (264).
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Figure 4.6: Marginal stability diagram, a plotted as a function of nondimensional wavenumber k, for ε2 = 1,

B = 4, C = 1, ψl = 9π/8, χ = 72.9◦, and µ = 0. Harmonic (subharmonic) response tongues are shown in red

(blue). At this parameter set, a0 = 1.3626, corresponding the the lowest tongue harmonic tongue, for wavenumber

|k0| = 0.21122.

Figure 4.7: Real part of the Floquet multipliers plotted against wave vector magnitude, k, for the values used

in Figure 4.6. The leftmost (red) vertical dashed line corresponds to the magnitude of the wave vector at the

minimum of the harmonic tongues. The rightmost (blue) vertical dashed line corresponds to the minimum of the

subharmonic tongues. The middle (dotted) vertical line represents a wave vector with magnitude
√

3k0, i.e., the

magnitude of the wave vector made up of two critical wave vectors on a hexagonal lattice.



Chapter 4: Localised states in the Zhang–Viñals equations 111

Figure 4.8: Plan view of initial condition for surface displacement, h, plotted in nondimensional space x and y,

given by equation (264).

Figure 4.9: RMSx measure as a function of time, t, for surface displacement, h, and potential function at the

surface, φ. The hexagon pattern in Figure 4.8 was used as an initial condition.
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Figure 4.10: Plan view of converged solution in h, plotted in x and y, over a time period of 2π. From top to

bottom, each plot corresponds to a time step of π/2, beginning at time t0 where the peaks in the solution are at

their lowest value. Solution has been repeated over a larger domain to emphasise periodicity.
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Figure 4.11: Bifurcation diagram shown in terms of the RMS measure applied to h, plotted against the bifurcation

parameter µ. The solid line and crosses represent the predicted stable branch for harmonic hexagon patterns,

initialised with the solution shown in Figure 4.10. The dashed lines represent a bound for the prediction of the

location of the unstable hexagon branch. The solid horizontal line represents the stable flat state, which becomes

unstable (dashed) for µ > 0.

4.2.2 Bifurcation diagram

With an oscillating hexagon state exhibiting a steady amplitude for µ = 0.001, simulations

were repeated for decreasing µ (see the travel direction highlighted on the phase diagram via

a dashed line in Figure 4.6). The state that was found (shown in Figure 4.10) was used as an

initial condition for the next value of µ. The resulting solution either converged to a global

hexagonal harmonically oscillating pattern (above the location of the saddle–node, µ > µs) or

decayed to the flat state (below the location of the saddle–node, µ < µs). These results were

used to trace out the stable hexagon branch on a bifurcation diagram, shown in Figure 4.11.
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The resolution of the search space in µ was increased near the location of the saddle–node to

capture a more accurate numerical estimate of µs. By decreasing the amplitude of the initial

condition (in steps of 0.01) during these runs, a bound for the unstable hexagon branch was

traced out, shown as red lines bounding the region where the unstable branch is estimated to

be. The solid (dashed) black horizontal line at 0 represents the stable (unstable) flat state. For

the parameter values considered in this chapter, µs was predicted to be approximately−0.1109,

giving an initial search range for localised states of µ ∈ [−0.1109, 0]. Note that this range was

treated as the initial search range; no assumption was made on the existence of a stable localised

branch strictly confined to this range.

Although the search for localised states was performed over the parameter range mentioned

above (χ = 72.6◦), χ was varied in the numerical simulations to determine how closely the

predictions of the numerics agree with that of the amplitude equation. Specifically, whether

increasing χ led to a similar predicted decrease in µs. Figure 4.12 shows the predicted saddle–

node locations in µ from the numerics for varying χ (overlaid on the phase diagram). The

dotted black lines bound the location of the saddle–node as predicted by the numerical simula-

tions, with the blue cross representing the average µs between the bounds. The neglect of the

effects from the subharmonic mode in both the numerics (through forcing hexagonal patterns

which are harmonic) and the amplitude equations (amplitude equation interaction for unsta-

ble subharmonic modes was not considered) may explain the close agreement between both

predictions.
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Figure 4.12: Phase diagram plotted for a forcing function of the form in equation (194), where a0 cos(χ) is

the strength of the forcing corresponding to frequency 2, a0 sin(χ) the strength corresponding to the forcing

mode of frequency 3. The linear stability boundary (solid blue line), saddle–node location estimate from the

amplitude equations (red line with crosses), and the saddle–node estimate from the simulated ZV equations (blue

plus symbols bounded by black dashed lines) are shown. Parameters values are ε2 = 1, B = 4, C = 1, and

ψl = 9π/8.



Chapter 4: Localised states in the Zhang–Viñals equations 116

4.3 Localised states in the Zhang–Viñals equations

4.3.1 Initial search pattern and domain

A numerical search for localised states was performed using the ZV equations within the pa-

rameter regime described in the two previous sections. The initial conditions for the localised

states simulations were constructed using the steady hexagonal pattern found at µ = 0.001,

presented as a localised version of this state on a large domain (multiple wavelengths of the

pattern domain). The resolution over one wavelength of the patterned state domain, Nx = 32

and Ny = 32, was preserved for the localised state runs. In the following numerical searches,

the number of points over the domain in the x–direction was chosen to be 16Nx (correspond-

ing to a length 16Lx), and 16Ny in the y–direction (corresponding to a length of 16Ly). This

resulted in a 512× 512 mesh resolution for all runs.

The construction of an initial condition for a localised state search involved repeating the steady

hexagonal pattern in a 16× 16 pattern domain, and multiplying the repeated pattern by a func-

tion of the form

D(x;R, S) =
1

2

1− tanh

S
√(x− Lx

2

)2

+

(
y − Ly

2

)2

− RLy
16

 , (265)

where S controls the gradient of the front between the pattern and the flat state and R controls

the size of the localised pattern. The function given in (265) is plotted over the domain in

Figure 4.13 for R = 4 and S = 0.1. The properties of the function are described here in polar

coordinates, where
√

(x− Lx/2)2 + (y − Ly/2)2 = r. For r = 0 (x and y at the centre of

the domain), D(0;S,R) = 1. For increasing r, the function remains close to the value of 1

until r reaches a value where a sharp transition occurs between 1 and 0, the value of r where

this transition happens and the steepness of the transition depends on S and R. Multiplying

this function by a hexagon pattern that is repeated globally across the domain gives the initial

condition used in the simulations. An example of a localised version of the initial state is

shown in Figure 4.14 for S = 0.1 and R = 4. A numerical search was preformed for various

combinations of S and R which replicated localised states from one peak to several peaks on a

hexagonal lattice. To reduce the influence of the domain size on the solution, R was limited to

a maximum of 4. Although localised hexagonal patterns have been found experimentally with

a radius of hexagonal peaks smaller than that shown in Figure 4.14, converging localised states
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Figure 4.13: Plan view of the function given in equation (265) plotted in x and y, with R = 4 and S = 0.1. This

function is used to control the initial condition for localised state searches.

Figure 4.14: Plan view of the initial condition used for localised state simulations plotted against x and y. The

condition is constructed by multiplying the function given in equation (265) by the stable hexagonal state (Figure

4.10) repeated over the computational domain.
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were only found for R = 4 and S = 0.1 in the following numerical search. The search for

localised states was performed in two stages:

• Stage 1 – An initial search for localised states was performed using the initial condition

constructed via the method described above.

• Stage 2 – If a localised state converged, the search was repeated using the localised state

as the initial condition for a range of µ.

4.3.2 Localised states search – stage 1

All results in the following sections are shown in terms of surface displacement, h. The con-

structed localised state shown in Figure 4.14 was used as an initial condition for simulations on

a large domain, initially for−0.109 < µ < 0, with a step size in µ of ∆µ = 0.001. RMSx sam-

ples were taken every 4π in nondimensional time to determine convergence, the progression of

which, for µ ∈ [−0.109,−0.091], is plotted in Figure 4.15. Highlighted in the figure (red dot-

ted lines with µ labels) are the series of samples that satisfied the condition set out in equation

(261), with a chosen tolerance of ∆RMSx< 10−6 over timescales greater than O(1/µ). For

µ = −0.1, and µ = −0.098, solutions were found with amplitudes that neither decayed to the

flat state (as solutions for µ < −0.1 did) nor grew to fill the domain with a hexagon pattern (as

solutions for µ > −0.098 did).

A sample of the solution for µ = −0.1 is shown in the top panel of Figure 4.16. The solution

is displayed at a time where the localised state in its peak phase, i.e., the developed local peaks

are at their maximum value. The solution is qualitatively similar to the constructed localised

state used as the initial condition. However, the front between the hexagon pattern and the flat

state has a less steep gradient. Within this front region, the peaks are not fully developed, i.e.,

the peaks on a hexagonal lattice do not reach the maximum value of the peak at the centre of the

localised state. There are also fewer developed peaks overall in the localised pattern (compared

to Figure 4.14). The pattern has rotational symmetry of order 6, centered on the middle point

of the domain. Notation is introduced to describe localised states found within this thesis, hrs.

The value s is the number of developed peaks at the outer edge of the localised pattern divided

by 6 (2 for the pattern shown in the top panel of Figure 4.16). The value for r is one more than
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Figure 4.15: The RMSx measure against time for states with initial condition shown in Figure 4.14. Red dotted

lines bound the localised states that stabilised, with values of µ labelled.

the number of peaks on the hexagonal ring before the outer edge divided by 6 (3 for the same

example). For visibility, a closeup of the h32 state is shown in Figure 4.17. The localised state

found at µ = −0.98 can be identified as h43 via this notation, and is shown in the bottom panel

of Figure 4.16. Figure 4.18 shows a comparison of the two states via a 1D cut across at the

centre of the domain, with varying y. The developed peaks in h32 and h43 have similar sized

amplitudes and the same orientation.

Figures 4.19 and 4.20 show the converged localised solutions over a period of 2π. For visibil-

ity, the corresponding times (top to bottom) are t0, t0 +π, and t0 +2π. To ensure the states were

converged, the condition in equation (261) was applied with a tolerance of 10−6. Figures 4.21

and 4.22 show an example of the convergence of localised states for the h32 and h43 solutions,

respectively. Convergence with respect to this criteria was checked for all localised states in

this section.
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Figure 4.16: Plan view of stable localised states, in h, plotted against x and y. Top: Stable h32 state corresponding

to µ = −0.1. Bottom: Stable h43 state corresponding to µ = −0.098.
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Figure 4.17: Closeup of the localised h32 state shown in the top panel of Figure 4.16.

Figure 4.18: Log profile comparison of the localised states h43 and h32 at the centre of the domain, varying in the

y–axis. Crosses are located at the mesh grid points.
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Figure 4.19: Plan view of the h32 localised state, plotted against x and y, over a period of 2π. From top to bottom,

t = t0, t0 + π, and t0 + 2π.
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Figure 4.20: Plan view of the h43 localised state, plotted against x and y, over a period of 2π. From top to bottom,

t = t0, t0 + π, and t0 + 2π.
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Figure 4.21: Convergence criterion for the h32 localised state. Equation (261) is used to determine when the

solution has converged, with a tolerance of 106 plotted as a dashed line.

Figure 4.22: Convergence criterion for the h43 localised state. Equation (261) is used to determine when the

solution has converged, with a tolerance of 106 plotted as a dashed line.
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Figure 4.23: Plan view of the h32 localised state, plotted against x and y, with domain size 24Lx × 24Ly .

The effect of domain size was also considered for these states. Figure 4.23 shows the same

localised state as in the top panel of Figure 4.16, but with a domain size of 24Lx × 24Ly

(compared to 16Lx × 16Ly). A log-scale comparison of solutions on two different domain

sizes is shown in Figure 4.24. The comparison is plotted across the shortest length through the

middle of each domain, the y direction, since Ly < Lx. The solution on the smaller domain

is aligned with the solution on the larger domain at the middle peak of the localised pattern,

represented by xm. The domain size only slightly affected the solution near the edge of the

domain; the difference in solution at the middle of the domain was small. For computational

efficiency, the smaller domain size was used in all stage 2 simulations.
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Figure 4.24: Log profile comparison of the localised state h32 through the middle of the computational domain

for simulations with domain size 16Lx × 16Ly and 24Lx × 24Ly .
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Figure 4.25: The RMSx measure plotted against time for states with initial condition shown in the top panel of

Figure 4.16, the h32 state. Red dotted lines represent bounds in µ (for the considered resolution) where h32 states

stabilised for µ ∈ [−0.104,−0.096].

4.3.3 Localised states search – stage 2

The solution shown in Figure 4.19 was used as an initial condition for the next stage of simu-

lations, which again searched over a range of µ with an initial condition close to the localised

states found. The objective of stage 2 was to determine ranges in µwhere each type of localised

state persists. For converged localised states, a localised branch can be traced on the bifurcation

diagram (see Figure 4.11). This was performed for the state corresponding to µ = −0.1, the h32

state. Figure 4.25 shows the RMSx measure for solutions initialised with the h32 localised state

shown in the top panel of Figure 4.16. In Figure 4.25, the extremes of the range in µ where h32

states did not diverge are labelled, with the RMSx measure in time corresponding to these val-

ues in µ represented by red dashed lines. Note, solutions corresponding to values of µ outside

of this range either decayed to the flat state or grew to fill the domain globally with hexagonal

patterns (at this resolution in µ). Steady h32 solutions were found for µ ∈ [−0.104,−0.096]

(with ∆µ = 10−3).
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Figure 4.26: The RMSx measure plotted against time for states with initial condition shown in the bottom panel

of Figure 4.16, the h43 state. Red (upper) lines stabilised to h43 states, and the green (lower) line stabilised to a

h41 state. The blue (middle) lines represent states that stabilised to a state in between the h41 and h43 state.

Similar stage 2 simulations were performed for h43, with more interesting results. Figure 4.26

shows that the solutions initialised with the localised state corresponding to µ = −0.98 split

into three branches, each corresponding to different localised states. For µ ∈ [−0.102,−0.098],

solutions converged to h43 states (see bottom panel of Figure 4.15). For µ ∈ [−0.106], a

solution converged to a h41 state, shown in Figure 4.27. Since a new state was found, stage

2 was repeated for the h41 state, with the RMSx measure over time plotted in Figure 4.28.

Converged h41 states were found for values of µ ∈ [−0.106,−0.1].

Localised hexagon patches were found within the bistable region between the flat state and reg-

ular hexagon pattern state in a 2D Swift–Hohenberg model, presented in Lloyd et al. (2008) (see

Figure 1.20). The states found in the present work resemble a temporally oscillating version

of those found in the 2D Swift–Hohenberg equation that possess the same rotational symmetry

and evidence of a similar structure on the bifurcation diagram (see Section 4.3.4).

For the states in Figure 4.26 corresponding to the range µ ∈ [−0.105,−0.103], solutions were

attracted to a state with broken the rotational symmetry. An example of the state is shown
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Figure 4.27: Plan view of stable localised state h41, plotted against x and y.

Figure 4.28: The RMSx measure plotted against time for states with initial condition shown in Figure 4.27, the

h41 state. Red dotted lines represent bounds in µ (for the considered resolution) where h41 states stabilised for

µ ∈ [−0.106,−0.1].
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Figure 4.29: Plan view of localised state with defects, plotted against x and y.

in Figure 4.29. The state has defects around the outer edge where an inconsistent number of

developed peaks are found, with either 1 or 2 developed outer peaks. To explore this state,

stage 2 was performed with this solution as an initial condition. The RMSx is plotted in Figure

4.30, where it is shown that the state developed into the h41 state for µ < −0.105, and into

the h43 state for µ > −0.1 (for µ within the ranges specified for h41 and h43). It is possible

that the symmetry defects in this state were due to the domain size being too small, or that the

states were developing in a transition regime between the h43 and h41 states over a long time. It

is interesting to note that asymmetrical states were found by Lloyd et al. (2008) (discussed in

Section 1.4). It is possible that the solution converged to a defect state. This is more convincing

when considering that the asymmetries observed in the defect states were due to the peaks on

the outer rings of the localised hexagonal patch, as is apparent in the solution shown in Figure

4.29. However, without variational techniques available (i.e., the existence of fold limits around

the Maxwell point), it is difficult to determine whether the solutions share any other properties

with the states found in the 2D Swift–Hohenberg equation.
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Figure 4.30: The RMSx measure plotted against time for states with initial condition shown in Figure 4.29, the

defect state. Red dotted lines represent states that stabilised to either the h41 or the h43 states.
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4.3.4 Bifurcation diagram with localised branches

With steady localised states established over ranges in µ, the bifurcation diagram was expanded

to include localised stable branches. The RMS measure was used for the h32, h41, and h43 states,

over their respective ranges in µ, to plot the bifurcation diagram shown in Figure 4.31. In the

numerical search presented, all converged localised states were found in the region of bistability

between the flat state and the oscillating hexagon state. The initial search included values of µ

up to the instability of the flat state, µ = 0. However, solutions that converged to localised states

were found close to the saddle–node bifurcation. It is possible that localised states that were

not captured by the numerical search exist near the region shown in the bifurcation diagram,

for example, h30 states. Within this study, numerical searches initialised in stage 2 with the h32

state did not converge to other pattern states for decreasing/increasing µ (as the h43 state did to

the h41 state for decreasing µ).

The localised states observed in the 2D Swift–Hohenberg model share similarities with the

results presented in this thesis in that several states, categorised by the number of developed

peaks, were found in the bistable region. Since continuation was used to determine the branch

structure in Lloyd et al. (2008), a clear story of how the localised hexagon patches evolved when

traversing the bifurcation branch was presented. Continuation should be performed within the

parameter space identified within this thesis using the localised states found in the ZV model

to determine if the hexagonal patches evolve in the same way. For example, states that were

not captured by the numerics, h40, h50, h52, and so on, may be found using the h32 state if the

localised hexagon branch on the bifurcation diagram is continuous. However, it is difficult to

determine if the ZV system (which is nonvariational) admits something similar to the snaking

structure demonstrated in Lloyd et al. (2008) within the bistable region, and, if so, how the

region behaves as the branch is traversed.

Planar hexagon pulses similar to those demonstrated in Lloyd et al. (2008), shown in Figure

1.19, were not sought within this thesis. However, due to their suggested relation to the pinning

mechanism for localised hexagonal patches found in the 2D Swift–Hohenberg model, it would

be interesting to search for this type of solution in the region of converged branches, shown

in Figure 4.31. Specifically, near the values in µ where the solutions no longer converged to

localised hexagons. This could help to determine if planar hexagon pulses (which oscillate in
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Figure 4.31: Bifurcation diagram shown in terms of the RMS measure applied to h, plotted against the bifurcation

parameter µ. The solid line represents the predicted stable branch for harmonic hexagon patterns. The dashed

lines represent a bound for the prediction of the location of the unstable hexagon branch. The solid horizontal line

at 0 represents the stable flat state, which becomes unstable (dashed) for µ > 0. The ranges in µ where localised

states are stable and the corresponding RMS measures are plotted as solid lines, labelled, h32, h41, and h43.

time if they exist) play a similar role in the growth of oscillating localised hexagonal solutions

along the bifurcation branch and to check whether pinning exists.

The method used to calculate the bound for unstable global hexagons was too computationally

expensive to perform for the localised states branch due to the domain size. It is possible that

the parameter range found and the type of state identified can be used as a starting point for

continuation techniques, which offer a way to trace the localised branch through its unstable

regions that is more efficient. In fact, searching for h50 (or larger) localised patterns is likely

to require an increased domain size using the method in this thesis, increasing computational

cost.
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5 Discussion

5.1 Key findings and implications

Within this thesis, the Zhang–Viñals equations (given in equations (176)–(177)) were used

as the catalyst to develop and implement a methodology to search for localised states in a

physical system describing the Faraday wave phenomenon. A derivation of the system was

presented that closely accounted for the relative sizes of the fluid properties near onset. A

linear stability analysis of the Navier–Stokes equations (via methods described in Kumar and

Tuckerman 1994) was used to support the derivation of the ZV equations. The derivation

presented in this thesis demonstrated that the ZV equations may only be valid in the limit where

the surface displacement is much smaller than the viscous boundary layer (see equation (179).

This is an insight into the validity of the ZV system that has not been previously discussed in

the literature.

Two main criteria for searching for localised states were defined, based on previous experimen-

tal and theoretical results. To satisfy these criteria:

1. The search for localised states was performed near the bicritical point with respect to the

forcing modes,

2. The search for localised states was performed for a parameter range where both the flat

state and the oscillating pattern state were stable.

To address criterion 1, a linear stability analysis of the ZV equations was performed to deter-

mine the location of the bicritical point for a forcing function of general form. The critical

forcing strength and the wavelength of the unstable mode in space were also calculated from

the linear stability analysis. Amplitude equations for simple patterns (on a lattice composed

of up to 3 wavenumbers) were derived via a weakly nonlinear analysis performed on the ZV

system. The amplitude equations offered a tool to approximate the parameter regime where

criterion 2 was satisfied.

The experimental results of Arbell and Fineberg (2000) motivated the choice of forcing function
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Nondimensional parameter Value

ε 1

B 4

C 1

ψl 9π/8

χ 72.9◦

Table 3: Parameters of the Zhang–Viñals equations and their values for where localised, oscillating hexagonal

patterns have been found via numerical simulation.

and type of pattern searched for in the main results of this thesis. For a two frequency forcing

function of the form

g(t) = a [cos(χ) cos(2t) + sin(χ) cos(3t+ ψl)] , (266)

results from the linear stability analysis and weakly nonlinear analysis of the ZV equations

were used to determine a region in parameter space where the search criteria were met. For

harmonically oscillating hexagons, the amplitude equations were used to approximate the lo-

cation of the saddle–node related to a subcritical bifurcation (and hence a region of bistability).

The parameters chosen for the localised states search are shown in Table 3. These parameters

were chosen to maximise the region of bistability, before committing to a more computationally

expensive numerical simulation.

A Fourier spectral method in space with time stepping using the ETD2 scheme described in

Cox and Matthews (2002) was used to simulate the ZV equations over the search range. Re-

sults from the numerical study confirmed the existence of a region of bistability between the

flat state and the hexagon pattern state. Close agreement was found between the numerical

simulations and the weakly nonlinear analysis regarding the estimated location of the saddle–

node. A localised version of the harmonically oscillating hexagon pattern was used as an initial

condition for simulations on a large domain (32 times larger than the pattern wavelength). The

initial conditions converged to three distinct localised states. These states where localised, har-

monically oscillating hexagon patterns (of the same wavenumber as the global hexagon pattern)

among a flat background. The states differed in the number of developed peaks on a hexagonal

lattice.
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The existence of localised states in the ZV equations is an important result demonstrated in this

thesis. Three radially localised, harmonically oscillating hexagonal states were found within

the ZV system that were identified by the number of fully developed peaks within their local

pattern. Localised states have not yet been found/demonstrated in a dynamical system that is

derived from first principles relating to the field of fluid dynamics. The ZV equations are known

to possess relevant properties for pattern formation (Zhang and Viñals, 1997a,b; Skeldon and

Porter, 2011). This, paired with the fact that they are derived from first principles, suggests

that the ZV equations are a promising tool for continued investigation of localised states within

the Faraday wave phenomenon. Although more involved than the phenomenological model of

Rucklidge and Silber (2009), the ZV equations have the potential to bridge the gap between

the theory of localised states and the physics inherent to Faraday waves. Their analysis has

less costs than those related to solving the full Navier–Stokes equations on a 3D domain. Fur-

ther analysis of the ZV equations is worthwhile, whether it be through additional numerical

simulation or more complex analytical techniques.

A search method has been demonstrated within this thesis that combines analytical investiga-

tion and numerical simulation of the ZV equations. This has been successful in demonstrating

the existence of localised solutions within the equations. Experimental results gave an indica-

tion of the type of behaviour expected in the system (Arbell and Fineberg, 2000), and the linear

and weakly nonlinear analysis provided a cost effective way to estimate the behaviour of the

ZV system before committing to numerical simulation for a given parameter range. For the

ZV equations, the weakly nonlinear analysis is less intensive than for the Navier–Stokes equa-

tions (Skeldon and Guidoboni, 2007). It is also a vital step within the search due the potential

number of scenario permutations inherent to the forcing function (e.g., frequencies of arbitrary

ratio and the inclusion of greater than two forcing terms) and the temporal response of the

solution (harmonic and subharmonic patterns on varying lattices). A search methodology in-

volving numerical simulation of the ZV equations alone would be computationally demanding

and unnecessary.

The results from numerically simulating the ZV equations qualitatively support the experimen-

tal results of Arbell and Fineberg (2000) in that the localised states were found for a parameter

range close to the bicritical point where the flat state and the harmonic hexagon state were both

stable. No qualitative support from a fluid dynamics system derived from first principles has
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previously been demostrated for localised states within the Faraday system for a Newtonian

fluid. An important observation from the results of the ZV equations, when compared to the

motivating experimental example, is that the depth of the fluid was not an essential factor for

the formation of the type of localised states found in this thesis (see Figure 1.29), since the ZV

equations are derived under the assumption of infinite depth.

5.2 Research limitations

One of the natural limitations to consider are the assumptions used to derive the ZV equations.

The ZV equations are derived for a weakly viscous, Newtonian fluid in the limit of infinite

depth. When describing the derivation of the ZV equations, Zhang and Viñals (1997a) note

that the neglect of certain terms related to the viscosity was an “uncontrolled approximation”.

Within the derivation presented in this thesis, scaling arguments were used to determine the

relative sizes of the fluid properties near onset. There is an error associated with reducing the

Faraday wave problem to a 2D formulation (the ZV equations) that has not been addressed

within this thesis and is related to the newly proposed scaling condition given in equation

(179). Chen and Viñals (1999) address this drawback in the ZV equations (instead deriving

amplitude equations from the Navier–Stokes equations), but no formal exploration of the cost

has been presented in the literature. This makes the validity of the ZV equations hard to deter-

mine. However, the ZV equations have been found to qualitatively agree well with experiments

(Binks and van de Water, 1997; Westra et al., 2003; Arbell and Fineberg, 2002). They have

also been successful in supporting theories of pattern formation (Silber and Skeldon, 1999;

Silber et al., 2000; Porter and Silber, 2004). An analytical comparison between the ZV and

the Navier–Stokes equations, in terms of weakly nonlinear analyses (Skeldon and Guidoboni,

2007; Skeldon and Porter, 2011) has shown that the ZV equations perform well for moderate

viscosities.

Localised solutions of the type observed in Urra et al. (2017), i.e., localised states that are

strongly dependent on resolving depth, cannot be investigated using the ZV equations. Simi-

larly, the effects from lateral boundaries are not considered in the model. The phase diagram

comparison to experiments shown in Figure 1.29 was created via a linear stability analysis of

the Full Hydrodynamic System (FHS) (Kumar, 1996) for both limited depth and infinite depth.
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The analytical results suggested that the experimental results had some dependence on the depth

of the fluid. Localised states found in non–Newtonian fluids, for example the experiments of

Lioubashevski et al. (1999), are also not within the capabilities of the ZV equations. So far,

there are no experimental studies that can be used to quantitatively validate the results within

this thesis. The regime of validity of the ZV equation would need to be considered regarding

future experimental work within this area.

Another limitation of the ZV equations is the potential computational cost. The search method-

ology presented within this thesis can become computationally expensive for the following

reasons:

• A large domain must be used and there is no established way to determine the size of the

localised solution before numerical simulation.

• The localised states that converged were sensitive to the initial condition (constructed as a

localised version of the global hexagon pattern). Many variations of the initial conditions

(through varying R and S in equation (265)) did not converge to a localised state.

• For small ε, the linear growth of the solution acts on a time scale of approximately

O(1/(µε2)). The nonlinear time scale is approximately O(1/µ). Solutions can take a

long (simulated) time to converge depending on the parameters of the system.

The choice to demonstrate the search method for localised states at ε2 = 1, while minimis-

ing µs, was made to promote faster convergence due time constraints, although the results of

Skeldon and Porter (2011) show that the ZV may perform qualitatively well for moderate vis-

cosities.

5.3 Future work

Now that the existence of localised states within the ZV equations has been established, there

are several avenues for future research that have the potential to greatly contribute to the ex-

isting knowledge around localised states within the Faraday wave system. The search method-

ology presented within this thesis can be performed for a parameter space both closer to ex-
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Figure 5.1: The location of the amplitude equation prediction of the saddle–node, µs, plotted as a function of

forcing mixing strength, χ, for (ε2, B,C, φl, χ, µ) = (1, 4, 1, 9π/8, χ, µs) (solid line), and (ε2, B, C, φl, χ, µ) =

(0.1, 0.28, 0.64, 9π/8, χ, µs). The solid vertical lines represent the transition from harmonic solution response to

subharmonic solution response.

perimental values and for smaller viscosity (where agreement between the weakly nonlinear

analysis of the Navier–Stokes equations and the ZV equations is strongest). The nondimen-

sional form of the ZV equations were used to search for localised states within this thesis. As

an example, take the parameters B and C. Both were treated as independent variables in order

to freely influence the location of the saddle–node in µ, µs. For small viscosity,

B + C ≈ 1, (267)

following the dispersion relationship for surface waves on water of infinite depth (Lighthill,

2001; Chen and Viñals, 1999). The nondimensional parameters of the experiments of Arbell

and Fineberg (2000) were estimated from the experimental parameters using the linear analysis

of the FHS (see Figure 1.29). They are, approximately, ε2 = 0.1, B = 0.28, and C = 0.64.

For ψl = 9π/8, a promising range in µ exists (where bistability is observed between the flat

state and oscillating hexagon state) for parameters closer to the experimental values. Figure 5.1

shows a comparison between the parameter scenario chosen for the results of this thesis and the

estimated nondimensional parameter space of the experiments of Arbell and Fineberg (2000).

In terms of the amplitude equation prediction for µs (for the same type of forcing), a similar

size region exists that may exhibit steady branches of localised solutions on the corresponding
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bifurcation diagram.

Within this thesis, there was a strong focus on localised hexagonal pattern states that had a har-

monic response (temporally). This was due to experimental observations and ease of control

of the region of bistability between the global hexagon pattern and the flat state (through the

quadratic term in the amplitude equations). There is a wide range of forcing frequency com-

binations to explore, as well as pattern types and their response frequencies (i.e. subharmonic

patterns). Note that this problem is non–variational and periodically oscillates in time; the

variational techniques traditionally used to explore localised states (for example, Champneys

1998; Burke and Knobloch 2007; Lloyd et al. 2008) cannot be applied. This does not mean

that the problem is not tractable. For example, similar features between variational problems

and non-variational problems have been highlighted by Burke and Dawes (2012). Searching

for planar hexagonal pulses within the ZV system using the identified parameter space, as in

Lloyd et al. (2008), may help to clarify if the similarities between the two types of systems

extend further in terms of pattern formation. Previous investigation of systems close in na-

ture to the ZV equations (Alnahdi et al., 2018) have less complicated nonlinear terms and are

not as strictly bound to the physics of fluid mechanics, but provide vital theoretical guidance

for the formation of localised states in parametrically driven systems. The ZV equations may

bridge the gap between the theory of localised states in periodically forced systems and our

understanding of the physical mechanisms behind how these states are formed when they are

explored via methods outside of this thesis (Alnahdi et al., 2018).

With a parameter space identified for the existence of localised states, the techniques described

by Alnahdi et al. (2018) may be extended to the ZV equations (with a potential starting point

identified in this thesis). This would provide a different type of analysis of localised states

within the ZV equations that could support both experimental findings and the results within

this thesis. The PDE model in Alnahdi et al. (2018) was used to trace the localised solution

branch (in the region of a subcritical bifurcation/bistability within the PDE) via numerical con-

tinuation. A localised state is needed to perform numerical continuation to trace a localised

solution branch using the ZV equations. The work presented within this thesis identifies both

a parameter range for their existence and a search method for other parameter ranges. This

type of analysis will be vital when comparing the features of the bifurcation branch structure

for localised states in a nonvariational system (the ZV equations) to a variational system (the
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2D Swift–Hohenberg equation in Lloyd et al. 2008, for example) for patterns of the same type

(spatially).

Numerical simulation of the Navier–Stokes equations may also contribute to understanding

and should be considered for validation of the ZV system. Most previous validation for the

ZV equations has been presented within the weakly nonlinear regime using the Navier–Stokes

equations. Périnet et al. (2009) performed 3D numerical simulations that were not limited to

small viscosities for the Faraday system (see Périnet et al. 2012a,b; Kahouadji et al. 2015).

They demonstrated that their formulation is capable of capturing both simple and complex

global pattern states. Use of the full 3D formulation to search for localised states would require

domain sizes much larger than the domain size used to investigate global pattern states within

their work. However, it would be interesting to investigate the formation of localised states

using their model for the parameter range identified within this thesis. This would not only

further support the ZV equations as a tool for investigating localised states, but would allow

investigation within parameter regimes that are not as restrictive as the ZV equations. This may

provide validation for localised states observed in experiments, accounting for effects that are

not captured within the ZV equations. For example, the formulation in Périnet et al. (2009) is

not limited by the assumption of infinite depth, one of the main drawbacks of the ZV equations

when directly compared to the experiments of Arbell and Fineberg (2000). However, the ZV

system benefits from reduced computational cost and is more easily adaptable to exploration

via analytical methods.
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A Further linear analysis of the Zhang–Vinals equations

A.1 Analytical linear stability of the Zhang–Viñals equations

The linearised ZV equations, after applying the DNO and the replacement given by equation

(146), are given by

∂h

∂t
= 2ε2∇2h+DΦ, (268)

∂Φ

∂t
+B (1 + gz(t))h− 2ε2∇2Φ = −C∇2

⊥h. (269)

An asymptotic expansion can be used based on the small parameter ε, given by

h = h0 + ε2h1 +O(ε4), Φ = Φ0 + ε2Φ1 +O(ε4), . . . (270)

where a long time scale T = ε2t is introduced. Each term in the expansion given by (270) is

based on a perturbation about the critical wavenumber k0, for example,

hi =
∑
n

H i
n(t, T ))eikn·x, Φi =

∑
n

P i
n(t, T ))eikn·x, for i = 1, 2, . . . , (271)

where kn = k0 + ∆kn and ∆kn = O(ε2).

A.1.1 Leading order solution

Substitution of (270) into equations (268) and (269) gives, at O(1), for weak forcing g(t) =

O(ε2),
∂H0

n

∂t
= |k0|P 0

n and
∂P 0

n

∂t
= −(B + C|k0|2)H0

n, (272)

which has the general solution

H0
n = A0

n(T )e
i
√
|k0|(B+C|k0|2)t +B0

n(T )e
−i

√
|k0|(B+C|k0|2)t = A0

n(T )eiΓ0t +B0
n(T )e−iΓ0t,

(273)

where Γ0 =
√
|k0|

(
B + C|k0|2

)
. Substituting this into equation (272) gives

P 0
n =

iΓ0

|k0|
(
A0
ne
iΓ0t −B0

ne
−iΓ0t

)
(274)
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A.1.2 First order and growth rate of the linear solution

Equations (268) and (269) give

∂H1
n

∂t
= −∂H

0
n

∂T
− 2|k0|2H0

n +
∆kn · k0
|k0|

P 0
n + |k0|P 1

n (275)

∂P 1
n

∂t
= −∂P

0
n

∂T
− 2|k0|2P 0

n − (B + C|k0|2)H1
n −Bg(t)H0

n − 2k0 ·∆knH0
n. (276)

Combining these together into one equation for H1
n gives

∂2H1
n

∂t2
+ Γ2

0H
1
n = −∂

2H0
n

∂t∂T
+

∆kn · k0
|k0|

∂P 0
n

∂t
− |k0|

∂P 0
n

∂T

− 4|k0|3P 0
n − 2|k0|k0 ·∆knH0

n −B|k0|g(t)H0
n (277)

where some terms have been simplified according to (272). Any terms on the right-hand side

of equation (277) proportional to exp{±iΓ0t} introduce secular terms in the asymptotic expan-

sion. Eliminating these terms leads to the system for A0
n and B0

n. The linear stability depends

on the forcing term. A typical two frequency forcing function is given by

g(t) = a (M cos(mt) + L cos(lt+ ψl)) , (278)

= a

(
M

2

(
eimt + e−imt

)
+
L

2

(
ei(lt+ψl) + e−i(lt+ψl)

))
(279)

where M and L represent the forcing strength of each frequency, with m and l the forcing

frequencies. The phase difference is given by ψl. Mixing the strengths in a controlled way can

be achieved by setting m = cos(χ) and L = sin(χ), where χ acts as a mixing angle of the

relative strengths. The contribution to linear instability, when ε2 � 1, from the forcing is then

approximately determined by the values of Γ,m and l. TreatingB and C as fixed, if k0 satisfies

either √
|k0|

(
B + C|k0|2

)
=
m

2
or

√
|k0|

(
B + C|k0|2

)
=
l

2
, (280)

then the system for the linear growth of the solution with wavenumber k0 satisfying Γ = m/2

becomes

∂A0
n

∂T
= −2|k0|2A0

n + i
k0 ·∆kn

2Γ0

(
Γ2

0

|k0|
+ 2

)
A0
n +

iB|k0|aM
4Γ0

B0
n, (281)

∂B0
n

∂T
= −2|k0|2B0

n − i
k0 ·∆kn

2Γ0

(
Γ2

0

|k0|
+ 2

)
B0
n +

iB|k0|aM
4Γ0

A0
n, (282)

The eigenvalues, which determine the growth rate of the linear solution for ∆kn, are given by

λn = −2|k0|2 ±

((
B|k0|aM

4Γ0

)2

−

(
k0 ·∆kn

2Γ0

(
Γ2

0

|k0|
+ 2

)2
)) 1

2

. (283)
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Figure A.1: Critical forcing a0 plotted against nondimensional value ε2. The red solid line represents the critical

forcing calculated from the linear stability analysis of the ZV equations. The open circles represent a line of order

ε2.

For any ∆kn,

λn ≤ −2|k0|2 +
B|k0|aM

4Γ0

(284)

The growth rate of the mode corresponding to the m frequency forcing can be found in the

same way.

The linear stability analysis described in Kumar and Tuckerman (1994) was extended to the

ZV equations to demonstrate the typical order of the critical forcing, plotted in Figure A.1, for

single frequency forcing. The dynamic viscosity, ν (cm2/s), was varied between 10−6 and 10,

and other parameters used were ρ = 950 ·10−3 (g/cm3), g0 = 9.81 ·102 (cm/s2), ω = 10π (1/s),

and γ = 150 (cm/s2).
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B MATLAB code

B.1 Case configuration scripts

The code below simulates the ZV equations over a hexagonal pattern domain (domain size

restricted to one pattern domain).

1 clc

2 clear all

3 close all

4

5 % all nondimensional

6 addpath('./FINAL_functions_2d_hex/')

7 addpath('./functions_amp_eqn_3freq/')

8 % configuration

9 % set up parameters of the system

10 epsilon_2=1;

11 C=1;

12 B=4;

13 psil=4.5*pi/4;

14 psip=0;

15

16 ang=0.81*pi/2;

17

18 m=2;

19 m_forcing=cos(ang);

20 l=3;

21 l_forcing=sin(ang);

22 p=4;

23 p_forcing=0;

24

25 % time nodes to calculate stability

26 N_t=40;
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27 k_start=0.01;

28 k_end=2;

29 k_step=1000;

30 dk=(k_end-k_start)/k_step;

31

32 visc_option=1; % include all visc in linear approximations? (1

for yes, 0 for no)

33

34 % find first critical value of a for SH (1,:) and H (2,:)

tongues

35 a_and_k_crit=bisect_for_min_a_and_k_3freq(B,C,epsilon_2,psil,

psip,...

36 m_forcing,l_forcing,p_forcing,m,l,p,k_start,k_end,dk,N_t,

visc_option);

37 [a_c,a_pos]=min(a_and_k_crit(:,1));

38 k_0=a_and_k_crit(a_pos,2);

39

40 % forcing amplitude

41 a_0=1;%(4*epsilon_2/B);

42 % distance from critical forcing as a multiple of (4*epsilon_2

/B)

43 EPS=0.001;

44 % nondim forcing

45 a_forcing=(1+EPS)*a_and_k_crit(a_pos,1); % already nondim

46

47 % number of space modes

48 N_x=2ˆ5;

49 N_y=2ˆ5;

50

51 % time steps per period

52 time_steps_per_period=200;

53 % how many multpiles of the period of forcing to go
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54 time_step_multiple=2000; % set to 1 to represent nonstop

55

56 % set up nondim spatial domain

57 if a_pos>1.5 % harmonic hexagons

58

59 x_st=0;

60 x_l=2*2*pi/k_0; % corresponds to n=1 mode

61 x_en=x_st+x_l;

62 % set up nondim spatial domain

63 y_st=0;

64 y_l=2*2*pi/sqrt(3)/k_0; % corresponds to n=1 mode

65 y_en=y_st+y_l;

66 % sample points in nondim space

67 x_i=linspace(x_st,x_en-x_l/N_x,N_x);

68 y_i=linspace(y_st,y_en-y_l/N_y,N_y)';

69

70 h_0=0.1*(cos(4*pi*x_i/x_l)+cos(2*pi*x_i/x_l+2*pi*y_i/y_l)+cos

(2*pi*x_i/x_l-2*pi*y_i/y_l));

71 phi_0=0.1*(cos(4*pi*x_i/x_l)+cos(2*pi*x_i/x_l+2*pi*y_i/y_l)+

cos(2*pi*x_i/x_l-2*pi*y_i/y_l));

72 %h_0=0.1*rand(N_y,N_x);

73 %phi_0=0.1*rand(N_y,N_x);

74

75 else % squares

76

77 x_st=0;

78 x_l=2*pi/k_0; % corresponds to n=1 mode

79 x_en=x_st+x_l;

80 % set up nondim spatial domain

81 y_st=0;

82 y_l=2*pi/k_0; % corresponds to n=1 mode

83 y_en=y_st+y_l;
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84 % sample points in nondim space

85 x_i=linspace(x_st,x_en-x_l/N_x,N_x);

86 y_i=linspace(y_st,y_en-y_l/N_y,N_y)';

87

88 % initial conditions % currently set to sin % writen to file

89 h_0=0.1*(cos(x_i)+cos(y_i)); % make sure not too big

90 phi_0=0.1*(cos(x_i)+cos(y_i)); % make sure not too big

91

92 end

93

94 % determine time step

95 total_time_steps=time_step_multiple*time_steps_per_period; %

total amount of steps

96 % to keep DT the same over whole time

97 % total time values

98 time_start=0; % for starting fresh

99 % time_start=readmatrix('time_end.txt'); % for continuing

solution

100 time_end=time_start+time_step_multiple*2*pi; % end time

101

102 % set up periodic forcing vector for one period nondim

103 t_i=linspace(0,2*pi-2*pi/time_steps_per_period,

time_steps_per_period);

104 prop_m=1; prop_l=1;

105 sin_2_t=prop_m*m_forcing*cos(m*t_i)+prop_l*l_forcing*cos(l*t_i

+psil);

106

107 % take a sample every sample_point steps

108 sample_point=time_steps_per_period;

109

110 % % write path for configuration

111 file_path=strcat('final_result_hex_',num2str(epsilon_2),'_',
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num2str(B),'_',...

112 num2str(C),'_',num2str(N_y),'_',num2str(N_x),'_',num2str(

EPS,'%1.7f'),'_',...

113 num2str(ang,'%1.4f'),'_',num2str(psil,'%1.4f'),...

114 '_',num2str(time_steps_per_period));

115 file_path=replace(file_path,'.','p');

116 file_path=replace(file_path,'-','minus');

117 file_path=strcat('/nobackup/scrco/',file_path);

118 if not(isfolder(file_path))

119 mkdir(strcat(file_path))

120 end

121

122 % to continue solution

123 % clear h_0 phi_0

124 % h_0(:,:,1)=1*readmatrix(strcat(file_path,'/CONT_h_min1.txt')

);

125 % phi_0(:,:,1)=1*readmatrix(strcat(file_path,'/CONT_phi_min1.

txt'));

126 % h_0(:,:,2)=1*readmatrix(strcat(file_path,'/CONT_h.txt'));

127 % phi_0(:,:,2)=1*readmatrix(strcat(file_path,'/CONT_phi.txt'))

;

128

129 % read initial condition from other solution

130 % clear h_0 phi_0

131 % h_0(:,:,1)=1*readmatrix(strcat('/CONT_h_min1.txt'));

132 % phi_0(:,:,1)=1*readmatrix(strcat('/CONT_phi_min1.txt'));

133 % h_0(:,:,2)=1*readmatrix(strcat('/CONT_h.txt'));

134 % phi_0(:,:,2)=1*readmatrix(strcat('/CONT_phi.txt'));

135

136 % write configuration in full

137 str=["B",num2str(B);...

138 "C",num2str(C);...
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139 "m",num2str(m);...

140 "m_forcing",num2str(m_forcing);...

141 "l",num2str(l);...

142 "l_forcing",num2str(l_forcing);...

143 "p",num2str(p);...

144 "p_forcing",num2str(p_forcing);...

145 "psil",num2str(psil);...

146 "psip",num2str(psip);...

147 "N_t",num2str(N_t);...

148 "k_start",num2str(k_start);...

149 "k_end",num2str(k_end);...

150 "visc_option (1 yes, 0 no)",num2str(visc_option);...

151 "a_crit",num2str(a_c);...

152 "a_forcing",num2str(a_forcing);...

153 "EPS",num2str(EPS);...

154 "a_pos (1 subharmonic, 2 harmonic)",num2str(a_pos);...

155 "k_0",num2str(k_0);...

156 "epsilon_2",num2str(epsilon_2);...

157 "domain_size",strcat(num2str(N_x)," by ",num2str(N_y))];

158 writematrix(str,strcat(file_path,'/configuration.txt'))

159

160 % for first run

161 [sol_h,sol_phi,T,L2]=step_in_ETD2_2d_arc(time_start,time_end,

...

162 time_steps_per_period,total_time_steps,x_l,y_l,N_x,N_y,h_0,

phi_0...

163 ,a_forcing,epsilon_2,B,C,sin_2_t,sample_point,x_i,y_i,

file_path);

164

165 % for continuing

166 % [sol_h,sol_phi,T,L2]=step_in_ETD2_continued_2d_arc(

time_start,time_end,...
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167 % time_steps_per_period,total_time_steps,x_l,y_l,N_x,N_y...

168 % ,a_forcing,epsilon_2,B,C,sin_2_t,sample_point,x_i,y_i,h_0

(:,:,1)...

169 % ,h_0(:,:,2),phi_0(:,:,1),phi_0(:,:,2),file_path);

170

171 config_vec=[epsilon_2,C,B,psil,psip,ang,m,m_forcing,l,

l_forcing,...

172 p,p_forcing,a_c,k_0,EPS,time_steps_per_period,N_x,N_y,

a_pos]';

173 writematrix(config_vec,strcat(file_path,'/config_vec.txt'));

174 fid=fopen('config_path.txt','wt');

175 fprintf(fid,file_path);

176 fclose(fid);

177

178 quit;

The code below simulates the ZV equations over a large domain (many wavelengths of the

pattern domain size), initialised with a pattern.

1 % for local only

2 clc

3 clear all

4 close all

5

6 % all nondimensional

7 addpath('./FINAL_functions_2d_local/')

8 addpath('./functions_amp_eqn_3freq/')

9 % configuration

10 load('./config_vec.txt');

11

12 % set up parameters of the system

13 epsilon_2=config_vec(1);

14 C=config_vec(2);
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15 B=config_vec(3);

16 psil=config_vec(4);

17 psip=config_vec(5);

18

19 ang=config_vec(6);

20

21 m=config_vec(7);

22 m_forcing=cos(ang);

23 l=config_vec(9);

24 l_forcing=sin(ang);

25 p=config_vec(11);

26 p_forcing=0;

27

28 visc_option=1; % include all visc in linear approximations? (1

for yes, 0 for no)

29

30 % find first critical value of a for SH (1,:) and H (2,:)

tongues

31 a_c=config_vec(13)

32 k_0=config_vec(14);

33

34 % forcing amplitude

35 a_0=1;%(4*epsilon_2/B);

36 % distance from critical forcing as a multiple of (4*epsilon_2

/B)

37 EPS=config_vec(15);

38 % nondim forcing

39 a_forcing=(1+EPS)*a_c; % already nondim

40

41 % number of space modes

42 N_x=config_vec(17);

43 N_y=config_vec(18);
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44

45 % time steps per period

46 time_steps_per_period=200;

47 % how many multpiles of the period of forcing to go

48 time_step_multiple=400; % set to 1 to represent nonstop

49

50 % set up pattern domain

51 x_st=0;

52 x_l=2*2*pi/k_0; % corresponds to n=1 mode

53 x_en=x_st+x_l;

54 % set up nondim spatial domain

55 y_st=0;

56 y_l=2*2*pi/sqrt(3)/k_0; % corresponds to n=1 mode

57 y_en=y_st+y_l;

58

59 % sample points in nondim space

60 x_i=linspace(x_st,x_en-x_l/N_x,N_x);

61 y_i=linspace(y_st,y_en-y_l/N_y,N_y)';

62

63 % set up interp domain

64 prop_x=2ˆ5;% how many points of the domain should represent

one pattern domain?

65 prop_y=2ˆ5;

66 x_int=linspace(x_st,x_en-x_l/prop_x,prop_x);

67 y_int=linspace(y_st,y_en-y_l/prop_y,prop_y)';

68

69 % create localised initial conditions

70 [X_i,Y_i]=meshgrid(x_i,y_i);

71 [X_int,Y_int]=meshgrid(x_int,y_int);

72 mid_A=interp2(X_i,Y_i,load('./CONT_h.txt'),X_int,Y_int);

73 mid_B=interp2(X_i,Y_i,load('./CONT_phi.txt'),X_int,Y_int);

74
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75 % proportion of total domain in power of 2

76 domain_multiple=2ˆ4; % multiply pattern domain by this

77 N_x=domain_multiple*prop_x; N_y=domain_multiple*prop_y; % full

domain

78 % repeat pattern over the domain

79 A_local=repmat(mid_A,domain_multiple,domain_multiple);

80 B_local=repmat(mid_B,domain_multiple,domain_multiple);

81

82 % set up nondim spatial domain

83 x_st=0;

84 x_l=domain_multiple*x_l; % corresponds to n=1 mode

85 x_en=x_st+x_l;

86 % set up nondim spatial domain

87 y_st=0;

88 y_l=domain_multiple*y_l; % corresponds to n=1 mode

89 y_en=y_st+y_l;

90

91 % sample points in nondim space

92 x_i=linspace(x_st,x_en-x_l/N_x,N_x);

93 y_i=linspace(y_st,y_en-y_l/N_y,N_y)';

94

95 % set up localised IC

96 [X,Y]=meshgrid(x_i,y_i);

97 damping_strength=0.1;

98 damping_radius=4;

99 damping_local=(-tanh(damping_strength.*(sqrt((X-x_l/2).ˆ2+(Y-

y_l/2).ˆ2)-damping_radius*x_l/domain_multiple))+1)/2;

100 A_local=damping_local.*A_local;

101 B_local=damping_local.*B_local;

102

103 % determine time step

104 total_time_steps=time_step_multiple*time_steps_per_period; %
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total amount of steps

105 % to keep DT the same over whole time

106 % total time values

107 time_start=0; % for starting fresh

108 % time_start=readmatrix('time_end.txt'); % for continuing

solution

109 time_end=time_start+time_step_multiple*2*pi; % end time

110

111 % set up periodic forcing vector for one period nondim

112 t_i=linspace(0,2*pi-2*pi/time_steps_per_period,

time_steps_per_period);

113 prop_m=0.893;

114 prop_l=1;

115 sin_2_t=prop_m*m_forcing*cos(m*t_i)+prop_l*l_forcing*cos(l*t_i

+psil);

116

117 % take a sample every sample_point steps

118 sample_point=time_steps_per_period;

119

120 % % write path for configuration

121 file_path1=strcat('peaks_rec',num2str(epsilon_2),'_',num2str(B

),...

122 '_',num2str(C),'_',num2str(N_y),'_',...

123 num2str(N_x),'_',num2str(prop_m,'%1.7f'),'_',...

124 num2str(ang*2/pi,'%1.2f'),'_',...

125 num2str(time_steps_per_period),'_',num2str(

damping_strength),'_',num2str(damping_radius));

126 file_path1=replace(file_path1,'.','p');

127 file_path1=replace(file_path1,'-','minus');

128

129 file_path2=strcat('/nobackup/scrco/BIG_FILES_',file_path1);

130 if not(isfolder(file_path2))
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131 mkdir(strcat(file_path2))

132 end

133

134 file_path1=strcat('/nobackup/scrco/',file_path1);

135 if not(isfolder(file_path1))

136 mkdir(strcat(file_path1))

137 end

138

139 % write space domain for plotting

140 writematrix(x_i,strcat(file_path1,'/x_domain.txt'));

141 writematrix(y_i,strcat(file_path1,'/y_domain.txt'));

142

143 % use localised initial condition

144 %h_0=1*A_local;

145 %phi_0=1*B_local;

146 %writematrix(h_0,strcat(file_path1,'/IC_h.txt'));

147 %writematrix(phi_0,strcat(file_path1,'/IC_phi.txt'));

148

149 % initial conditions % currently set to sin % writen to file

150 % h_0=0.1*rand(length(y_i),length(x_i)); % make sure not too

big

151 % phi_0=0.1*rand(length(y_i),length(x_i)); % make sure not too

big

152 % writematrix(h_0,'./IC_h.txt')

153 % writematrix(phi_0,'./IC_phi.txt')

154

155 % read initial conditions (for DT independence etc)

156 %h_0=readmatrix('./IC_h.txt');

157 %phi_0=readmatrix('./IC_phi.txt');

158

159 % to continue solution

160 %clear h_0 phi_0
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161 %h_0(:,:,1)=1*readmatrix(strcat(file_path1,'/sol_h_min1time.

txt'));

162 %phi_0(:,:,1)=1*readmatrix(strcat(file_path1,'/

sol_phi_min1time.txt'));

163 %h_0(:,:,2)=1*readmatrix(strcat(file_path1,'/sol_h.txt'));

164 %phi_0(:,:,2)=1*readmatrix(strcat(file_path1,'/sol_phi.txt'));

165

166 clear h_0 phi_0

167 h_0(:,:,1)=1*readmatrix(strcat(file_path1,'/CONT_h_min1.txt'))

;

168 phi_0(:,:,1)=1*readmatrix(strcat(file_path1,'/CONT_phi_min1.

txt'));

169 h_0(:,:,2)=1*readmatrix(strcat(file_path1,'/CONT_h.txt'));

170 phi_0(:,:,2)=1*readmatrix(strcat(file_path1,'/CONT_phi.txt'));

171

172 % write configuration in full

173 str=["m",num2str(m);...

174 "m_forcing",num2str(m_forcing);...

175 "l",num2str(l);...

176 "l_forcing",num2str(l_forcing);...

177 "p",num2str(p);...

178 "p_forcing",num2str(p_forcing);...

179 "psil",num2str(psil);...

180 "psip",num2str(psip);...

181 "visc_option (1 yes, 0 no)",num2str(visc_option);...

182 "a_forcing",num2str(a_forcing);...

183 "EPS",num2str(EPS);...

184 "a_pos (1 subharmonic, 2 harmonic)",num2str(config_vec(19));

...

185 "k_0",num2str(k_0);...

186 "epsilon_2",num2str(epsilon_2);...

187 "B",num2str(B);...
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188 "C",num2str(C);...

189 "damping_strength",num2str(damping_strength);...

190 "damping_radius",num2str(damping_radius);...

191 "prop_x",num2str(prop_x);...

192 "prop_y",num2str(prop_y);...

193 "domain_multiple",num2str(domain_multiple);...

194 "domain_size",strcat(num2str(N_x)," by ",num2str(N_y))];

195 writematrix(str,strcat(file_path1,'/configuration.txt'))

196

197 % for first run

198 %[sol_h,sol_phi,T,L2]=step_in_ETD2_2d_arc(time_start,time_end

,...

199 % time_steps_per_period,total_time_steps,x_l,y_l,N_x,N_y,

h_0,phi_0...

200 % ,a_forcing,epsilon_2,B,C,sin_2_t,sample_point,x_i,y_i,...

201 % file_path1,file_path2);

202

203 % for continuing

204 [sol_h,sol_phi,T,L2]=step_in_ETD2_continued_2d_arc(time_start

,time_end,...

205 time_steps_per_period,total_time_steps,x_l,y_l,N_x,N_y...

206 ,a_forcing,epsilon_2,B,C,sin_2_t,sample_point,x_i,y_i,h_0

(:,:,1)...

207 ,h_0(:,:,2),phi_0(:,:,1),phi_0(:,:,2),file_path1,

file_path2);

208

209 quit;
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B.2 Functions

The functions below are called by the case configuration scripts in alphabetical order. Two

versions exist for different outputs depending on whether hexagons on a pattern domain or

localised states on a large domain are simulated. The functions shown are for the localised

states searches.

1 function y=bisect_for_min_a(func,k_start,Dk,tol)

2

3 while func(k_start+Dk)<func(k_start)

4 k_start=k_start+Dk;

5 end

6

7 x_l=k_start-Dk;

8 x_m=k_start;

9 x_r=k_start+Dk;

10

11 while (x_r-x_l)>tol

12 if func((x_m+x_l)/2)<func((x_r+x_m)/2)

13 x_r=x_m;

14 x_m=(x_r+x_l)/2;

15 elseif func((x_m+x_l)/2)==func((x_m+x_r)/2)

16 x_l=(x_l+x_m)/2;

17 x_r=(x_r+x_m)/2;

18 else

19 x_l=x_m;

20 x_m=(x_r+x_l)/2;

21 end

22 end

23 y(1,1)=func(x_m);

24 y(1,2)=x_m;

25 end
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1 % fully checked, final version, DO NOT CHANGE

2 function y=dno(f_u,l_x,l_y)

3 % get index length from input data

4 length_x=length(f_u(1,:));

5 length_y=length(f_u(:,1));

6 YY=fft2(f_u);

7 % set up wavenumbers for ALL modes in x

8 K_x=zeros(1,length_x);

9 K_x(2:length_x/2)=(2*pi/l_x)*[1:length_x/2-1];

10 K_x(length_x/2+2:end)=-fliplr(K_x(2:length_x/2));

11 K_y(2:length_y/2)=(2*pi/l_y)*[1:length_y/2-1];

12 % perform dno/ multiply mode by abs val of its wavenumber

13 for i_y=1:length_y/2

14 for i_x=1:length_x

15 YY(i_y,i_x)=sqrt(K_y(i_y)ˆ2+K_x(i_x)ˆ2)*YY(i_y,i_x);

16 end

17 end

18 % reset x mode index to halfway

19 i_x=length_x/2;

20 % use symmetry of 2d fft to derive rest of solution

21 YY(i_y+2:end,1)=flipud(conj(YY(2:i_y,1)));

22 YY(i_y+1,:)=zeros(1,length_x); % remove nyquist

23 YY(:,i_x+1)=zeros(length_y,1);% remove nyquist

24 % other modes

25 YY(i_y+2:end,i_x+2:end)=rot90(conj(YY(2:i_y,2:i_x)),2);

26 YY(i_y+2:end,2:i_x)=rot90(conj(YY(2:i_y,i_x+2:end)),2);

27 y=ifft2(YY);

28 end

1 function y=ETD_1(f_u_old,f_exp_Lh,f_M1,f_a,f_sin_2_t,f_B,

f_NL_old)

2
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3 y=f_exp_Lh*f_u_old+f_M1*(time_dependent_forcing(f_u_old,f_B,

f_sin_2_t,f_a)+...

4 f_NL_old);

5 end

1 function y=ETD_2(f_u_older,f_u_old,f_sin_2_t_older,

f_sin_2_t_old,f_exp_Lh,f_M1,f_M2,f_a,f_B,f_NL_older,f_NL_old

)

2

3 y=ETD_1(f_u_old,f_exp_Lh,f_M1,f_a,f_sin_2_t_old,f_B,f_NL_old)+

...

4 f_M2*(time_dependent_forcing(f_u_old,f_B,f_sin_2_t_old,f_a

)+...

5 f_NL_old-...

6 f_NL_older-...

7 time_dependent_forcing(f_u_older,f_B,f_sin_2_t_older,f_a))

;

8 end

1 % fully checked, final version, DO NOT CHANGE

2 function y=filter_3_2d(f_u)

3 % get lengths from input

4 N_x=length(f_u(1,:));

5 N_y=length(f_u(:,1));

6 % fft

7 Y=fft2(f_u);

8 % select mode to start suppressing based on order of

nonlinearity

9 stop_mode_x=floor((N_x-1)/4)+2; % INDEX of the mode to stop in

x

10 stop_mode_y=floor((N_y-1)/4)+2; % INDEX of the mode to stop in

y

11 % eliminate problem modes in x
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12 for i_x=stop_mode_x:(N_x-(stop_mode_x-2))

13 Y(:,i_x)=zeros(N_y,1);

14 end

15 % do same in y modes

16 for i_y=stop_mode_y:(N_y-(stop_mode_y-2))

17 Y(i_y,:)=zeros(1,N_x);

18 end

19 y=ifft2(Y);

20 end

1 % for a sin forcing with SH response!

2 function y=find_a_min(k,omega,nu,g_0,gamma,rho)

3 N=40;

4 A=zeros(2*N,2*N);

5 B=A;

6 nu_factor=0;

7 B(1,1:6)=[0,1,0,1,0,0]; % DC

8 B(2,1:6)=[1,0,-1,0,0,0]; % DC

9 E_A=(-omegaˆ2*(0.5)ˆ2+4*nu*1i*kˆ2*omega*(0.5)+nu_factor*4*

nuˆ2*kˆ4)/k+...

10 (g_0+gamma*kˆ2/rho); % DC

11 A(1,1)=real(E_A); A(1,2)=-imag(E_A);

12 A(2,1)=imag(E_A); A(2,2)=real(E_A); %DC

13 n_count=1;

14 for n=3:2:2*N-3 %DC

15 % make matrix A

16 E_A=(-omegaˆ2*(n_count+0.5)ˆ2+4*nu*1i*kˆ2*omega*(

n_count+0.5)...

17 +nu_factor*4*nuˆ2*kˆ4)/k+(g_0+gamma*kˆ2/rho);%DC

18 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);

19 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%DC

20
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21 % make matrix B

22 B(n,n-2:n+3)=[0,-1,0,0,0,1]; %DC

23 B(n+1,n-2:n+3)=[1,0,0,0,-1,0]; %DC

24 n_count=n_count+1;

25 end

26 for n=2*N-1

27 % N-0.5 because n=19 when truncating at N=20

28 E_A=(-omegaˆ2*(N-0.5)ˆ2+4*nu*1i*kˆ2*omega*(N-0.5)...

29 +nu_factor*4*nuˆ2*kˆ4)/k+(g_0+gamma*kˆ2/rho);%DC

30 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);

31 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%DC

32

33 B(n,n-2:end)=[0,-1,0,0]; B(n+1,n-2:end)=[1,0,0,0];

34 end

35

36 [P,D]=eig(((2/g_0).*A)\B);

37

38 J=diag(D);%CHECKED

39 p_count=1;%CHECKED

40 for I=1:length(J)%CHECKED

41 if abs(imag(J(I,1)))<1e-9%CHECKED

42 J_2(p_count)=real(J(I,1));%CHECKED

43 p_count=p_count+1;%CHECKED

44 end

45 end

46 J_3=max((J_2));%CHECKED

47 y=1/J_3;%CHECKED

48 end

1 function y=find_min_a_and_k(rho,nu,g_0,omega,gamma)

2

3 k_start=1e-3; % start search here for bisection method
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4 Dk=1e-3; % search step % careful, this has jumped to the wrong

one when too big

5 tol=1e-15;

6 func=@(k) find_a_min(k,omega,nu,g_0,gamma,rho);

7

8 y=bisect_for_min_a(func,k_start,Dk,tol);

9

10 end

1 % fully checked, final version, DO NOT CHANGE

2 function y=nonlinear_part_2d(f_u,x_l,y_l,f_C)

3 % get space domain solution from input

4 h=ifft2(f_u(:,:,1));

5 phi=ifft2(f_u(:,:,2));

6 % dno on phi

7 D_phi=dno(phi,x_l,y_l);

8 % dno(hdno(phi))

9 D_h_D_phi=dno(h.*D_phi,x_l,y_l);

10 % dno(hdno(hdno(phi)))

11 D_h_D_h_D_phi=dno(h.*D_h_D_phi,x_l,y_l);

12 % calculate hˆ2

13 h_2=h.ˆ2;

14 % laplacian phi

15 dxxyy_phi=partial_xx(phi,x_l)+partial_yy(phi,y_l);

16 % partial derivatives of variables

17 dx_h=partial_x(h,x_l);

18 dy_h=partial_y(h,y_l);

19 dx_phi=partial_x(phi,x_l);

20 dy_phi=partial_y(phi,y_l);

21 % find nonlinear part in space domain

22 % for h equation

23 y(:,:,1)=-partial_x(h.*dx_phi,x_l)-partial_y(h.*dy_phi,y_l)...
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24 +0.5*(partial_xx(h_2.*D_phi,x_l)+partial_yy(h_2.*D_phi,y_l

))...

25 -D_h_D_phi...

26 +D_h_D_h_D_phi...

27 +0.5*dno(h_2.*dxxyy_phi,x_l,y_l);

28 % for phi equation

29 y(:,:,2)=0.5*(D_phi.ˆ2)...

30 -0.5*((dx_phi).ˆ2+(dy_phi).ˆ2)...

31 -D_phi.*(h.*dxxyy_phi+D_h_D_phi)...

32 -0.5*f_C*(partial_x((dx_h.ˆ2+dy_h.ˆ2).*dx_h,x_l)...

33 +partial_y((dx_h.ˆ2+dy_h.ˆ2).*dy_h,y_l));

34 end

1 function y=partial_x(f_u,l_x)

2 % get lengths from input

3 length_x=length(f_u(1,:));

4 length_y=length(f_u(:,1));

5 % fft

6 YY=fft2(f_u);

7 % set up wavenumbers in x

8 K_x=zeros(1,length_x);

9 K_x(2:length_x/2)=(2*pi/l_x)*[1:length_x/2-1];

10 K_x(length_x/2+2:end)=-fliplr(K_x(2:length_x/2));

11 % perform differential

12 for i_y=1:length_y/2

13 for i_x=1:length_x

14 YY(i_y,i_x)=1i*K_x(i_x)*YY(i_y,i_x);

15 end

16 end

17 % reset x mode index to halfway

18 i_x=length_x/2;

19 % use symmetry of 2d fft to derive rest of solution
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20 YY(i_y+2:end,1)=flipud(conj(YY(2:i_y,1)));

21 YY(i_y+1,:)=zeros(1,length_x); % remove nyquist

22 YY(:,i_x+1)=zeros(length_y,1);% remove nyquist

23 % other modes

24 YY(i_y+2:end,i_x+2:end)=rot90(conj(YY(2:i_y,2:i_x)),2);

25 YY(i_y+2:end,2:i_x)=rot90(conj(YY(2:i_y,i_x+2:end)),2);

26 y=ifft2(YY);

27 end

1 function y=partial_xx(f_u,l_x)

2 % get lengths from input

3 length_x=length(f_u(1,:));

4 length_y=length(f_u(:,1));

5 % fft

6 YY=fft2(f_u);

7 % setup x mode wavenumbers

8 K_x=zeros(1,length_x);

9 K_x(2:length_x/2)=(2*pi/l_x)*[1:length_x/2-1];

10 K_x(length_x/2+2:end)=-fliplr(K_x(2:length_x/2));

11 % perform differential

12 for i_y=1:length_y/2

13 for i_x=1:length_x

14 YY(i_y,i_x)=-K_x(i_x)ˆ2*YY(i_y,i_x);

15 end

16 end

17 % reset x mode index to halfway

18 i_x=length_x/2;

19 % use symmetry of 2d fft to derive rest of solution

20 YY(i_y+2:end,1)=flipud(conj(YY(2:i_y,1)));

21 YY(i_y+1,:)=zeros(1,length_x); % remove nyquist

22 YY(:,i_x+1)=zeros(length_y,1);% remove nyquist

23 % other modes
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24 YY(i_y+2:end,i_x+2:end)=rot90(conj(YY(2:i_y,2:i_x)),2);

25 YY(i_y+2:end,2:i_x)=rot90(conj(YY(2:i_y,i_x+2:end)),2);

26 y=ifft2(YY);

27 end

1 function y=partial_xy(f_u,l_x,l_y)

2 % get lengths from input

3 length_x=length(f_u(1,:));

4 length_y=length(f_u(:,1));

5 % fft

6 YY=fft2(f_u);

7 % setup x mode wavenumbers

8 K_x=zeros(1,length_x);

9 K_x(2:length_x/2)=(2*pi/l_x)*[1:length_x/2-1];

10 K_x(length_x/2+2:end)=-fliplr(K_x(2:length_x/2));

11 % setup half of y mode wavenumbers

12 K_y(2:length_y/2)=(2*pi/l_y)*[1:length_y/2-1];

13 % perform differential

14 for i_y=1:length_y/2

15 for i_x=1:length_x

16 YY(i_y,i_x)=-K_y(i_y)*K_x(i_x)*YY(i_y,i_x);

17 end

18 end

19 % reset x mode index to halfway

20 i_x=length_x/2;

21 % use symmetry of 2d fft to derive rest of solution

22 YY(i_y+2:end,1)=flipud(conj(YY(2:i_y,1)));

23 YY(i_y+1,:)=zeros(1,length_x); % remove nyquist

24 YY(:,i_x+1)=zeros(length_y,1);% remove nyquist

25 % other modes

26 YY(i_y+2:end,i_x+2:end)=rot90(conj(YY(2:i_y,2:i_x)),2);

27 YY(i_y+2:end,2:i_x)=rot90(conj(YY(2:i_y,i_x+2:end)),2);
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28 y=ifft2(YY);

29 end

1 function y=partial_y(f_u,l_y)

2 % get lengths from input

3 length_x=length(f_u(1,:));

4 length_y=length(f_u(:,1));

5 % fft

6 YY=fft2(f_u);

7 % setup y mode wavenumbers

8 K_y=zeros(1,length_y);

9 K_y(2:length_y/2)=(2*pi/l_y)*[1:length_y/2-1];

10 K_y(length_y/2+2:end)=-fliplr(K_y(2:length_y/2));

11 %perform differential

12 for i_x=1:length_x/2

13 for i_y=1:length_y

14 YY(i_y,i_x)=1i*K_y(i_y)*YY(i_y,i_x);

15 end

16 end

17 % reset wavenumber to half in y mode

18 i_y=length_y/2;

19 % use symmetry to determine other modes

20 YY(1,i_x+2:end)=fliplr(conj(YY(1,2:i_x)));

21 YY(i_y+1,:)=zeros(1,length_x);% eliminate nyquist

22 YY(:,i_x+1)=zeros(length_y,1);% eliminate nyquist

23 % other modes

24 YY(i_y+2:end,i_x+2:end)=rot90(conj(YY(2:i_y,2:i_x)),2);

25 YY(2:i_y,i_x+2:end)=rot90(conj(YY(i_y+2:end,2:i_x)),2);

26 y=ifft2(YY);

27 end

1 function y=partial_yy(f_u,l_y)

2 % get lengths from input
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3 length_x=length(f_u(1,:));

4 length_y=length(f_u(:,1));

5 % fft

6 YY=fft2(f_u);

7 % setup wavenumbers in y

8 K_y=zeros(1,length_y);

9 K_y(2:length_y/2)=(2*pi/l_y)*[1:length_y/2-1];

10 K_y(length_y/2+2:end)=-fliplr(K_y(2:length_y/2));

11 % perform differential

12 for i_x=1:length_x/2

13 for i_y=1:length_y

14 YY(i_y,i_x)=-K_y(i_y)ˆ2*YY(i_y,i_x);

15 end

16 end

17 % reset wavenumber to half in y mode

18 i_y=length_y/2;

19 % use symmetry to determine other modes

20 YY(1,i_x+2:end)=fliplr(conj(YY(1,2:i_x)));

21 YY(i_y+1,:)=zeros(1,length_x);% eliminate nyquist

22 YY(:,i_x+1)=zeros(length_y,1);% eliminate nyquist

23 % other modes

24 YY(i_y+2:end,i_x+2:end)=rot90(conj(YY(2:i_y,2:i_x)),2);

25 YY(2:i_y,i_x+2:end)=rot90(conj(YY(i_y+2:end,2:i_x)),2);

26 y=ifft2(YY);

27 end

1 % checked, final version, DO NOT CHANGE

2 function [y,z,T,l2]=step_in_ETD2_2d_arc(time_start,time_end,

time_steps_per_period,...

3 time_steps_tot,x_l,y_l,N_x,N_y,h_0,phi_0,a_forcing,

epsilon_2,B,C,...

4 sin_2_t,sample_index,x_i,y_i,file_path1,file_path2)
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5 % set write path for L2

6 if not(isfile(strcat(file_path1,'/T_count.txt')))

7 T_count=1;

8 writematrix(T_count,strcat(file_path1,'/T_count.txt'))

9 else

10 T_count=load(strcat(file_path1,'/T_count.txt'))+1;

11 writematrix(T_count,strcat(file_path1,'/T_count.txt'))

12 end

13 % filter for dealiasing, _3 for order 3 nonlinearity

14 h_0=filter_3_2d(h_0); phi_0=filter_3_2d(phi_0); %CHECKED%

CHECKED

15 % filter out zero mode from initial condition, doesn't really

matter

16 fft_h_0=fft2(h_0); fft_h_0(1,1)=0;%CHECKED

17 fft_phi_0=fft2(phi_0); fft_phi_0(1,1)=0;%CHECKED

18

19 if T_count==1

20 writematrix(h_0(N_y/2,:),strcat(file_path1,'/half_y_sample0.

txt'),...

21 'writemode','append')

22 writematrix(h_0(:,N_x/2)',strcat(file_path1,'/half_x_sample0.

txt'),...

23 'writemode','append')

24 writematrix(ifft2(fft_h_0),strcat(file_path1,'/IC_h.

txt'));

25 writematrix(ifft2(fft_phi_0),strcat(file_path1,'/

IC_phi.txt'));

26

27 end

28

29 DT=(time_end-time_start)/time_steps_tot;%CHECKED

30
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31 % set start of solution

32 U_new(:,:,1)=fft_h_0;%CHECKED

33 U_new(:,:,2)=fft_phi_0;%CHECKED

34 % work out the nonlinear part of the initial solution

35 NL_old=nonlinear_part_2d(U_new,x_l,y_l,C);%CHECKED

36 fft_NL_old(:,:,1)=fft2(NL_old(:,:,1));%CHECKED

37 fft_NL_old(:,:,2)=fft2(NL_old(:,:,2));%CHECKED

38

39 U_old=U_new;%CHECKED

40

41 K_x=zeros(1,N_x);%CHECKED

42 K_x(2:N_x/2)=(2*pi/x_l)*[1:N_x/2-1];%CHECKED

43 K_x(N_x/2+2:end)=-fliplr(K_x(2:N_x/2));%CHECKED

44 % first step with ETD 1 (i=1)

45 % vector of kept modes according to nonlinearity

46 keep_modes_setter=2:floor((N_x-1)/4)+1;%CHECKED

47 % iterate through modes in x from 0 to relevant

48 for n_x=[1,keep_modes_setter,(N_x-length(keep_modes_setter)+1)

:N_x] % index of last kept mode in x %CHECKED

49 for n_y=1:floor((N_y-1)/4)+1 % index of last kept mode in

y %CHECKED

50 if n_x>1 || n_y>1 %CHECKED

51 K_y(n_y)=2*pi*(n_y-1)/y_l; %CHECKED

52 % linear matrix

53 L_nxy{n_x,n_y}=[-2*epsilon_2*(K_x(n_x)ˆ2+K_y(n_y)ˆ2),

sqrt(K_x(n_x)ˆ2+K_y(n_y)ˆ2);...

54 -B-C*(K_x(n_x)ˆ2+K_y(n_y)ˆ2), -2*epsilon_2*(K_x(

n_x)ˆ2+K_y(n_y)ˆ2)];%CHECKED

55 % work out exponential matrix

56 [P,D]=eig(L_nxy{n_x,n_y});%CHECKED

57 exp_Lhxy{n_x,n_y}=real(P*[exp(DT*D(1,1)),0;0,exp(DT*D

(2,2))]*inv(P));%CHECKED
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58 M1xy{n_x,n_y}=L_nxy{n_x,n_y}\(exp_Lhxy{n_x,n_y}-eye

(2,2));%CHECKED

59 M2xy{n_x,n_y}=inv(L_nxy{n_x,n_y})*inv(L_nxy{n_x,n_y})

*(exp_Lhxy{n_x,n_y}-(eye(2,2)+(L_nxy{n_x,n_y}).*DT))

/DT;%CHECKED

60 % counter for time dependent part

61 t_count_old=0;%CHECKED

62 % step in ETD 1

63 vec_old=[U_old(n_y,n_x,1);U_old(n_y,n_x,2)];%CHECKED

64 NL_vec_old=[fft_NL_old(n_y,n_x,1);fft_NL_old(n_y,n_x

,2)];%CHECKED

65 vec_new=ETD_1(vec_old,exp_Lhxy{n_x,n_y},M1xy{n_x,n_y},

a_forcing,sin_2_t(t_count_old+1),B,NL_vec_old);%

CHECKED

66 % update solution

67 U_new(n_y,n_x,1)=vec_new(1,1);%CHECKED

68 U_new(n_y,n_x,2)=vec_new(2,1);%CHECKED

69 end

70 end

71 end

72

73 U_new(N_y-floor((N_y-1)/4)+1:end,1,1)=flipud(conj(U_new(2:n_y

,1,1)));%CHECKED

74 U_new(N_y-floor((N_y-1)/4)+1:end,1,2)=flipud(conj(U_new(2:n_y

,1,2)));%CHECKED

75 U_new(N_y/2+1,:,1)=zeros(1,N_x);U_new(N_y/2+1,:,2)=zeros(1,N_x

);%CHECKED

76 U_new(:,N_x/2+1,1)=zeros(N_y,1);U_new(:,N_x/2+1,2)=zeros(N_y

,1);%CHECKED

77

78 U_new(N_y-floor((N_y-1)/4)+1:end,keep_modes_setter,1)=rot90(

conj(U_new(2:n_y,(N_x-length(keep_modes_setter)+1):N_x,1))
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,2);

79 U_new(N_y-floor((N_y-1)/4)+1:end,keep_modes_setter,2)=rot90(

conj(U_new(2:n_y,(N_x-length(keep_modes_setter)+1):N_x,2))

,2);

80 U_new(N_y-floor((N_y-1)/4)+1:end,(N_x-length(keep_modes_setter

)+1):end,1)=rot90(conj(U_new(2:n_y,keep_modes_setter,1)),2);

81 U_new(N_y-floor((N_y-1)/4)+1:end,(N_x-length(keep_modes_setter

)+1):end,2)=rot90(conj(U_new(2:n_y,keep_modes_setter,2)),2);

82

83 % filter for dealiasing

84 h_new=filter_3_2d(ifft2(U_new(:,:,1))); phi_new=filter_3_2d(

ifft2(U_new(:,:,2)));%CHECKED

85 U_new(:,:,1)=fft2(h_new);%CHECKED

86 U_new(:,:,2)=fft2(phi_new);%CHECKED

87

88 % sample parts of the solution

89 s_count=1;

90 run_count=1;

91 % iterate with ETD 2

92 for i=2:time_steps_tot

93 % update time dependent part, add one to these for index

94 t_count_older=mod(t_count_old,time_steps_per_period);%

CHECKED

95 t_count_old=mod(t_count_older+1,time_steps_per_period);%

CHECKED

96

97 % update older solutions

98 U_older=U_old;%CHECKED

99 U_old=U_new;%CHECKED

100

101 % update nonlinear part

102 fft_NL_older=fft_NL_old;%CHECKED
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103 NL_old=nonlinear_part_2d(U_old,x_l,y_l,C);%CHECKED

104 fft_NL_old(:,:,1)=fft2(NL_old(:,:,1));%CHECKED

105 fft_NL_old(:,:,2)=fft2(NL_old(:,:,2));%CHECKED

106

107 % iterate through modes

108 for n_x=[1,keep_modes_setter,(N_x-length(keep_modes_setter

)+1):N_x] % index of last kept mode in x %CHECKED

109 for n_y=1:floor((N_y-1)/4)+1 % index of last kept mode in

y %CHECKED

110 if n_x>1 || n_y>1 %CHECKED

111 vec_older=[U_older(n_y,n_x,1);U_older(n_y,n_x,2)];%

Mistake (wasn't a 2 in U_older before)

112 vec_old=[U_old(n_y,n_x,1);U_old(n_y,n_x,2)];%CHECKED

113 NL_vec_older=[fft_NL_older(n_y,n_x,1);fft_NL_older(n_y

,n_x,2)]; %CHECKED

114 NL_vec_old=[fft_NL_old(n_y,n_x,1);fft_NL_old(n_y,n_x

,2)];%CHECKED

115 vec_new=ETD_2(vec_older,vec_old,sin_2_t(t_count_older

+1),...

116 sin_2_t(t_count_old+1),exp_Lhxy{n_x,n_y},M1xy{n_x,n_y

},M2xy{n_x,n_y},a_forcing...

117 ,B,NL_vec_older,NL_vec_old);%CHECKED

118 U_new(n_y,n_x,1)=vec_new(1,1);%CHECKED

119 U_new(n_y,n_x,2)=vec_new(2,1);%CHECKED

120 end

121 end

122 end

123

124 U_new(N_y-floor((N_y-1)/4)+1:end,1,1)=flipud(conj(U_new(2:n_y

,1,1)));%CHECKED

125 U_new(N_y-floor((N_y-1)/4)+1:end,1,2)=flipud(conj(U_new(2:n_y

,1,2)));%CHECKED
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126 U_new(N_y/2+1,:,1)=zeros(1,N_x);U_new(N_y/2+1,:,2)=zeros(1,N_x

);%CHECKED

127 U_new(:,N_x/2+1,1)=zeros(N_y,1);U_new(:,N_x/2+1,2)=zeros(N_y

,1);%CHECKED

128

129 U_new(N_y-floor((N_y-1)/4)+1:end,keep_modes_setter,1)=rot90(

conj(U_new(2:n_y,(N_x-length(keep_modes_setter)+1):N_x,1))

,2);

130 U_new(N_y-floor((N_y-1)/4)+1:end,keep_modes_setter,2)=rot90(

conj(U_new(2:n_y,(N_x-length(keep_modes_setter)+1):N_x,2))

,2);

131 U_new(N_y-floor((N_y-1)/4)+1:end,(N_x-length(keep_modes_setter

)+1):end,1)=rot90(conj(U_new(2:n_y,keep_modes_setter,1)),2);

132 U_new(N_y-floor((N_y-1)/4)+1:end,(N_x-length(keep_modes_setter

)+1):end,2)=rot90(conj(U_new(2:n_y,keep_modes_setter,2)),2);

133

134 % filter for dealiasing

135 h_new=filter_3_2d(ifft2(U_new(:,:,1))); phi_new=filter_3_2d(

ifft2(U_new(:,:,2)));%CHECKED

136 U_new(:,:,1)=fft2(h_new);%CHECKED

137 U_new(:,:,2)=fft2(phi_new);%CHECKED

138

139 % output per sample

140 if mod(i,2*sample_index)==0 && i<=time_steps_tot-2*

time_steps_per_period %CHECKED

141 writematrix(ifft2(U_old(:,:,1)),strcat(file_path1,'/

sol_h_min1time.txt'));

142 writematrix(i,strcat(file_path1,'/tracker_sol_h_min_1.

txt'));

143 writematrix(ifft2(U_new(:,:,1)),strcat(file_path1,'/

sol_h.txt'));

144 writematrix(i,strcat(file_path1,'/tracker_sol_h.txt'))
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;

145 writematrix(ifft2(U_old(:,:,2)),strcat(file_path1,'/

sol_phi_min1time.txt'));

146 writematrix(i,strcat(file_path1,'/

tracker_sol_phi_min_1.txt'));

147 writematrix(ifft2(U_new(:,:,2)),strcat(file_path1,'/

sol_phi.txt'));

148 writematrix(i,strcat(file_path1,'/tracker_sol_phi.txt'

));

149 for i_y=1:N_y

150 l2hx(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[h_new(

i_y,:),h_new(i_y,1)].ˆ2);%CHECKED

151 l2phix(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[

phi_new(i_y,:),phi_new(i_y,1)].ˆ2);%CHECKED

152 end

153 l2hxy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2hx

(1,:),l2hx(1,1)]));%CHECKED

154 l2phixy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2phix

(1,:),l2phix(1,1)]));%CHECKED

155 writematrix([l2hxy,l2phixy],strcat(file_path1,'/L2_',

num2str(T_count),'.txt'),'writemode','append');%

CHECKED

156 writematrix(exp((B*a_forcing/2-2*epsilon_2)*(

time_start+i*DT)),strcat(file_path1,'/linear_growth.

txt'),...

157 'writemode','append')%CHECKED

158 writematrix((time_start+i*DT),strcat(file_path1,'/

running_sample_time.txt'),...

159 'writemode','append') %CHECKED

160 writematrix(h_new(N_y/2,:),strcat(file_path1,'/

half_y_sample',num2str(T_count),'.txt'),...

161 'writemode','append')
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162 writematrix(h_new(:,N_x/2)',strcat(file_path1,'/

half_x_sample',num2str(T_count),'.txt'),...

163 'writemode','append')

164 end

165 div_count=1;

166 if mod(i,0.5*sample_index)==0

167 writematrix(h_new,strcat(file_path2,'/h_progress',

num2str(T_count),'.txt'),...

168 'writemode','append')

169 div_count=div_count+1;

170 end

171 % output information for the final period

172 if i>time_steps_tot-2*time_steps_per_period

173 y(:,:,s_count)=h_new;%CHECKED

174 z(:,:,s_count)=phi_new;%CHECKED

175 T(1,s_count)=exp((B*a_forcing/4-2*epsilon_2)*(

time_start+i*DT));%CHECKED

176 T(2,s_count)=time_start+i*DT;%CHECKED

177 for i_y=1:N_y

178 l2hx(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[h_new(

i_y,:),h_new(i_y,1)].ˆ2);%CHECKED

179 l2phix(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[

phi_new(i_y,:),phi_new(i_y,1)].ˆ2);%CHECKED

180 end

181 l2hxy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2hx

(1,:),l2hx(1,1)]));%CHECKED

182 l2phixy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2phix

(1,:),l2phix(1,1)]));%CHECKED

183 l2(:,s_count)=[l2hxy;l2phixy];%CHECKED

184 s_count=s_count+1;%CHECKED

185 end

186 % output every step
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187 writematrix(U_new(1,33,1),strcat(file_path2,'/mode_0_32',

num2str(T_count),'.txt'),'writemode','append')

188 writematrix(U_new(17,17,1),strcat(file_path2,'/mode_16_16'

,num2str(T_count),'.txt'),'writemode','append')

189 writematrix(U_new(1,2,1),strcat(file_path2,'/mode_0_1',

num2str(T_count),'.txt'),'writemode','append')

190 writematrix(U_new(2,1,1),strcat(file_path2,'/mode_1_0',

num2str(T_count),'.txt'),'writemode','append')

191 writematrix(U_new(2,2,1),strcat(file_path2,'/mode_1_1',

num2str(T_count),'.txt'),'writemode','append')

192 writematrix(U_new(3,1,1),strcat(file_path2,'/mode_2_0',

num2str(T_count),'.txt'),'writemode','append')

193 writematrix(U_new(3,2,1),strcat(file_path2,'/mode_2_1',

num2str(T_count),'.txt'),'writemode','append')

194 writematrix(U_new(3,3,1),strcat(file_path2,'/mode_2_2',

num2str(T_count),'.txt'),'writemode','append')

195 writematrix(U_new(2,3,1),strcat(file_path2,'/mode_1_2',

num2str(T_count),'.txt'),'writemode','append')

196 writematrix(U_new(1,3,1),strcat(file_path2,'/mode_0_2',

num2str(T_count),'.txt'),'writemode','append')

197 writematrix(max(max(h_new)),strcat(file_path1,'/MAX_h',

num2str(T_count),'.txt'),...

198 'writemode','append')

199 writematrix(min(min(h_new)),strcat(file_path1,'/MIN_h',

num2str(T_count),'.txt'),...

200 'writemode','append')

201 writematrix(max(max(phi_new)),strcat(file_path1,'/MAX_phi'

,num2str(T_count),'.txt'),...

202 'writemode','append')

203 writematrix(min(min(phi_new)),strcat(file_path1,'/MIN_phi'

,num2str(T_count),'.txt'),...

204 'writemode','append')
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205

206 writematrix(h_new,strcat(file_path2,'/h_',num2str(T_count)

,'_',num2str(i),'.txt'))

207 if mod(i,time_steps_per_period)==0

208 writematrix(h_new,strcat(file_path1,'/h_',num2str(

T_count),'_',num2str(i),'.txt'))

209 end

210

211 end

212 % writematrix(y,strcat(file_path,'/final_period_h.txt'))%

CHECKED

213 % writematrix(z,strcat(file_path,'/final_period_phi.txt'))%

CHECKED

214 % writematrix(T,strcat(file_path,'/final_period_time.txt'))%

CHECKED

215 writematrix(l2,strcat(file_path1,'/final_period_L2.txt'))%

CHECKED

216 writematrix([l2hxy,l2phixy],strcat(file_path1,'/L2_',num2str(

T_count),'.txt'),'writemode','append');%CHECKED

217 writematrix(h_new(N_y/2,:),strcat(file_path1,'/half_y_sample',

num2str(T_count),'.txt'),...

218 'writemode','append')

219 writematrix(h_new(:,N_x/2)',strcat(file_path1,'/half_x_sample'

,num2str(T_count),'.txt'),...

220 'writemode','append')

221

222 writematrix(y(:,:,s_count-2),strcat(file_path1,'/CONT_h_min1.

txt'))%CHECKED

223 writematrix(z(:,:,s_count-2),strcat(file_path1,'/CONT_phi_min1

.txt'))%CHECKED

224 writematrix(y(:,:,s_count-1),strcat(file_path1,'/CONT_h.txt'))

%CHECKED
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225 writematrix(z(:,:,s_count-1),strcat(file_path1,'/CONT_phi.txt'

))%CHECKED

226

227 writematrix(div_count-1,strcat(file_path1,'/div_count',num2str

(T_count),'.txt'))

228 end

1 function [y,z,T,l2]=step_in_ETD2_continued_2d_arc(time_start,

time_end,time_steps_per_period,...

2 time_steps_tot,x_l,y_l,N_x,N_y,a_forcing,epsilon_2,B,C,...

3 sin_2_t,sample_index,x_i,y_i,f_h_older,f_h_old,f_phi_older

,f_phi_old,file_path1,file_path2)

4 % solutions should come in pre-filtered

5 % set write path for L2

6 if not(isfile(strcat(file_path1,'/T_count.txt')))

7 T_count=1;

8 writematrix(T_count,strcat(file_path1,'/T_count.txt'))

9 else

10 T_count=load(strcat(file_path1,'/T_count.txt'))+1;

11 writematrix(T_count,strcat(file_path1,'/T_count.txt'))

12 end

13 if T_count==1

14 writematrix(f_h_old(N_y/2,:),strcat(file_path1,'/

half_y_sample0.txt'),...

15 'writemode','append')

16 writematrix(f_h_old(:,N_x/2)',strcat(file_path1,'/

half_x_sample0.txt'),...

17 'writemode','append')

18 writematrix(f_h_older,strcat(file_path1,'/IC_hmin1.txt'));

19 writematrix(f_phi_older,strcat(file_path1,'/IC_phimin1

.txt'));

20 writematrix(f_h_old,strcat(file_path1,'/IC_h.txt'));
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21 writematrix(f_phi_old,strcat(file_path1,'/IC_phi.txt')

);

22

23 end

24 % time step

25 DT=(time_end-time_start)/time_steps_tot; %CHECKED% CHECKED%

CHECKED

26

27 K_x=zeros(1,N_x);

28 K_x(2:N_x/2)=(2*pi/x_l)*[1:N_x/2-1];

29 K_x(N_x/2+2:end)=-fliplr(K_x(2:N_x/2));

30 % first step with ETD 1 (i=1)

31 n_setter=2:floor((N_x-1)/4)+1;

32 % iterate through modes

33 for n_x=[1,n_setter,(N_x-length(n_setter)+1):N_x] % index of

last kept mode in x

34 for n_y=1:floor((N_y-1)/4)+1 % index of last kept mode in

y

35 if n_x>1 || n_y>1

36 K_y(n_y)=2*pi*(n_y-1)/y_l;

37 % linear matrix

38 L_nxy{n_x,n_y}=[-2*epsilon_2*(K_x(n_x)ˆ2+K_y(n_y)ˆ2),

sqrt(K_x(n_x)ˆ2+K_y(n_y)ˆ2);...

39 -B-C*(K_x(n_x)ˆ2+K_y(n_y)ˆ2), -2*epsilon_2*(K_x(

n_x)ˆ2+K_y(n_y)ˆ2)];

40 % work out exponential matrix

41 [P,D]=eig(L_nxy{n_x,n_y});

42 exp_Lhxy{n_x,n_y}=real(P*[exp(DT*D(1,1)),0;0,exp(DT*D

(2,2))]*inv(P));

43 M1xy{n_x,n_y}=L_nxy{n_x,n_y}\(exp_Lhxy{n_x,n_y}-eye

(2,2));

44 M2xy{n_x,n_y}=inv(L_nxy{n_x,n_y})*inv(L_nxy{n_x,n_y})
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*(exp_Lhxy{n_x,n_y}-(eye(2,2)+(L_nxy{n_x,n_y}).*DT))

/DT;

45 end

46 end

47 end

48

49 % set start of solution, pre-filtered

50 U_old(:,:,1)=fft2(f_h_older);

51 U_old(:,:,2)=fft2(f_phi_older);

52 U_new(:,:,1)=fft2(f_h_old);

53 U_new(:,:,2)=fft2(f_phi_old);

54 % setup nonlinear part

55 NL_old=nonlinear_part_2d(U_old,x_l,y_l,C);

56 fft_NL_old(:,:,1)=fft2(NL_old(:,:,1));

57 fft_NL_old(:,:,2)=fft2(NL_old(:,:,2));

58 % sample parts of the solution

59 s_count=1;

60 % counter for time dependent part

61 t_count_old=-1;%CHECKED

62 % iterate with ETD 2

63 for i=1:time_steps_tot

64 % update time dependent part, add one to these for index

65 t_count_older=mod(t_count_old,time_steps_per_period);

66 t_count_old=mod(t_count_older+1,time_steps_per_period);

67

68 % update older solutions

69 U_older=U_old;

70 U_old=U_new;

71

72 % update nonlinear part

73 fft_NL_older=fft_NL_old;

74 NL_old=nonlinear_part_2d(U_old,x_l,y_l,C);
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75 fft_NL_old(:,:,1)=fft2(NL_old(:,:,1));

76 fft_NL_old(:,:,2)=fft2(NL_old(:,:,2));

77

78 % iterate through modes

79 for n_x=[1,n_setter,(N_x-length(n_setter)+1):N_x] % index

of last kept mode in x

80 for n_y=1:floor((N_y-1)/4)+1 % index of last kept mode in

y

81 if n_x>1 || n_y>1

82 vec_older=[U_older(n_y,n_x,1);U_older(n_y,n_x,2)]; %

mistake, should have a 2 in second entry

83 vec_old=[U_old(n_y,n_x,1);U_old(n_y,n_x,2)];

84 NL_vec_older=[fft_NL_older(n_y,n_x,1);fft_NL_older(n_y

,n_x,2)];

85 NL_vec_old=[fft_NL_old(n_y,n_x,1);fft_NL_old(n_y,n_x

,2)];

86 vec_new=ETD_2(vec_older,vec_old,sin_2_t(t_count_older

+1),...

87 sin_2_t(t_count_old+1),exp_Lhxy{n_x,n_y},M1xy{n_x,n_y

},M2xy{n_x,n_y},a_forcing...

88 ,B,NL_vec_older,NL_vec_old);

89 U_new(n_y,n_x,1)=vec_new(1,1);

90 U_new(n_y,n_x,2)=vec_new(2,1);

91 end

92 end

93 end

94 % sort out other modes

95 U_new(N_y-floor((N_y-1)/4)+1:end,1,1)=flipud(conj(U_new(2:n_y

,1,1)));

96 U_new(N_y-floor((N_y-1)/4)+1:end,1,2)=flipud(conj(U_new(2:n_y

,1,2)));

97 U_new(N_y/2+1,:,1)=zeros(1,N_x);U_new(N_y/2+1,:,2)=zeros(1,N_x
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);

98 U_new(:,N_x/2+1,1)=zeros(N_y,1);U_new(:,N_x/2+1,2)=zeros(N_y

,1);

99

100 U_new(N_y-floor((N_y-1)/4)+1:end,n_setter,1)=rot90(conj(U_new

(2:n_y,(N_x-length(n_setter)+1):N_x,1)),2);

101 U_new(N_y-floor((N_y-1)/4)+1:end,n_setter,2)=rot90(conj(U_new

(2:n_y,(N_x-length(n_setter)+1):N_x,2)),2);

102 U_new(N_y-floor((N_y-1)/4)+1:end,(N_x-length(n_setter)+1):end

,1)=rot90(conj(U_new(2:n_y,n_setter,1)),2);

103 U_new(N_y-floor((N_y-1)/4)+1:end,(N_x-length(n_setter)+1):end

,2)=rot90(conj(U_new(2:n_y,n_setter,2)),2);

104

105 % filter for dealiasing

106 h_new=filter_3_2d(ifft2(U_new(:,:,1))); phi_new=filter_3_2d(

ifft2(U_new(:,:,2)));

107 U_new(:,:,1)=fft2(h_new);

108 U_new(:,:,2)=fft2(phi_new);

109

110 % output per sample

111 if mod(i,2*sample_index)==0 && i<=time_steps_tot-2*

time_steps_per_period

112 writematrix(ifft2(U_old(:,:,1)),strcat(file_path1,'/

sol_h_min1time.txt'));

113 writematrix(i,strcat(file_path1,'/tracker_sol_h_min_1.

txt'));

114 writematrix(ifft2(U_new(:,:,1)),strcat(file_path1,'/

sol_h.txt'));

115 writematrix(i,strcat(file_path1,'/tracker_sol_h.txt'))

;

116 writematrix(ifft2(U_old(:,:,2)),strcat(file_path1,'/

sol_phi_min1time.txt'));
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117 writematrix(i,strcat(file_path1,'/

tracker_sol_phi_min_1.txt'));

118 writematrix(ifft2(U_new(:,:,2)),strcat(file_path1,'/

sol_phi.txt'));

119 writematrix(i,strcat(file_path1,'/tracker_sol_phi.txt'

));

120 for i_y=1:N_y

121 l2hx(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[h_new(

i_y,:),h_new(i_y,1)].ˆ2);

122 l2phix(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[

phi_new(i_y,:),phi_new(i_y,1)].ˆ2);

123 end

124 l2hxy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2hx

(1,:),l2hx(1,1)]));

125 l2phixy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2phix

(1,:),l2phix(1,1)]));

126 writematrix([l2hxy,l2phixy],strcat(file_path1,'/L2_',

num2str(T_count),'.txt'),'writemode','append');%

CHECKED

127 writematrix(exp((B*a_forcing/2-2*epsilon_2)*(

time_start+i*DT)),strcat(file_path1,'/linear_growth.

txt'),...

128 'writemode','append')%CHECKED

129 writematrix((time_start+i*DT),strcat(file_path1,'/

running_sample_time.txt'),...

130 'writemode','append') %CHECKED

131 writematrix(h_new(N_y/2,:),strcat(file_path1,'/

half_y_sample',num2str(T_count),'.txt'),...

132 'writemode','append')

133 writematrix(h_new(:,N_x/2)',strcat(file_path1,'/

half_x_sample',num2str(T_count),'.txt'),...

134 'writemode','append')
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135 end

136 div_count=1;

137 if mod(i,0.5*sample_index)==0

138 writematrix(h_new,strcat(file_path2,'/h_progress',

num2str(T_count),'.txt'),...

139 'writemode','append')

140 div_count=div_count+1;

141 end

142 % output information for the final period

143 if i>time_steps_tot-2*time_steps_per_period

144 y(:,:,s_count)=h_new;

145 z(:,:,s_count)=phi_new;

146 T(1,s_count)=exp((B*a_forcing/4-2*epsilon_2)*(

time_start+i*DT));

147 T(2,s_count)=time_start+i*DT;

148 for i_y=1:N_y

149 l2hx(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[h_new(

i_y,:),h_new(i_y,1)].ˆ2);

150 l2phix(1,i_y)=(1/(x_l))*trapz([x_i,x_i(1)+x_l],[

phi_new(i_y,:),phi_new(i_y,1)].ˆ2);

151 end

152 l2hxy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2hx

(1,:),l2hx(1,1)]));

153 l2phixy=sqrt((1/(y_l))*trapz([y_i',y_i(1)+y_l],[l2phix

(1,:),l2phix(1,1)]));

154 l2(:,s_count)=[l2hxy;l2phixy];

155 s_count=s_count+1;

156 end

157 % output every step

158 writematrix(U_new(1,33,1),strcat(file_path2,'/mode_0_32',

num2str(T_count),'.txt'),'writemode','append')

159 writematrix(U_new(17,17,1),strcat(file_path2,'/mode_16_16'
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,num2str(T_count),'.txt'),'writemode','append')

160 writematrix(U_new(1,2,1),strcat(file_path2,'/mode_0_1',

num2str(T_count),'.txt'),'writemode','append')

161 writematrix(U_new(2,1,1),strcat(file_path2,'/mode_1_0',

num2str(T_count),'.txt'),'writemode','append')

162 writematrix(U_new(2,2,1),strcat(file_path2,'/mode_1_1',

num2str(T_count),'.txt'),'writemode','append')

163 writematrix(U_new(3,1,1),strcat(file_path2,'/mode_2_0',

num2str(T_count),'.txt'),'writemode','append')

164 writematrix(U_new(3,2,1),strcat(file_path2,'/mode_2_1',

num2str(T_count),'.txt'),'writemode','append')

165 writematrix(U_new(3,3,1),strcat(file_path2,'/mode_2_2',

num2str(T_count),'.txt'),'writemode','append')

166 writematrix(U_new(2,3,1),strcat(file_path2,'/mode_1_2',

num2str(T_count),'.txt'),'writemode','append')

167 writematrix(U_new(1,3,1),strcat(file_path2,'/mode_0_2',

num2str(T_count),'.txt'),'writemode','append')

168

169 writematrix(max(max(h_new)),strcat(file_path1,'/MAX_h',

num2str(T_count),'.txt'),...

170 'writemode','append')

171 writematrix(min(min(h_new)),strcat(file_path1,'/MIN_h',

num2str(T_count),'.txt'),...

172 'writemode','append')

173 writematrix(max(max(phi_new)),strcat(file_path1,'/MAX_phi'

,num2str(T_count),'.txt'),...

174 'writemode','append')

175 writematrix(min(min(phi_new)),strcat(file_path1,'/MIN_phi'

,num2str(T_count),'.txt'),...

176 'writemode','append')

177

178 writematrix(h_new,strcat(file_path2,'/h_',num2str(T_count)
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,'_',num2str(i),'.txt'))

179 if mod(i,time_steps_per_period)==0

180 writematrix(h_new,strcat(file_path1,'/h_',num2str(

T_count),'_',num2str(i),'.txt'))

181 end

182 end

183 writematrix(y,strcat(file_path1,'/final_period_h.txt'))

184 writematrix(z,strcat(file_path1,'/final_period_phi.txt'))

185 % writematrix(T,strcat(file_path,'/final_period_time.txt'))

186 writematrix(l2,strcat(file_path1,'/final_period_L2.txt'))

187 writematrix([l2hxy,l2phixy],strcat(file_path1,'/L2_',num2str(

T_count),'.txt'),'writemode','append');

188 writematrix(h_new(N_y/2,:),strcat(file_path1,'/half_y_sample',

num2str(T_count),'.txt'),...

189 'writemode','append')

190 writematrix(h_new(:,N_x/2)',strcat(file_path1,'/half_x_sample'

,num2str(T_count),'.txt'),...

191 'writemode','append')

192

193 writematrix(y(:,:,s_count-2),strcat(file_path1,'/CONT_h_min1.

txt'))

194 writematrix(z(:,:,s_count-2),strcat(file_path1,'/CONT_phi_min1

.txt'))

195 writematrix(y(:,:,s_count-1),strcat(file_path1,'/CONT_h.txt'))

196 writematrix(z(:,:,s_count-1),strcat(file_path1,'/CONT_phi.txt'

))

197

198 writematrix(div_count-1,strcat(file_path1,'/div_count',num2str

(T_count),'.txt'))

199 end

1 function y=time_dependent_forcing(f_u,f_B,f_sin_2_t,f_a)
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2 y=[0,0;-f_B*f_a*f_sin_2_t,0]*f_u;

3 end

B.3 Scripts related to the linear stability analysis of the ZV equations

1 function y=bisect_for_k_at_min_a(func,k_start,Dk,tol)

2

3 while func(k_start+Dk)<func(k_start)

4 k_start=k_start+Dk;

5 end

6 x_l=k_start-Dk;

7 x_m=k_start;

8 x_r=k_start+Dk;

9 % fprintf('bisection started \n')

10 inf_count=1;

11 while (x_r-x_l)>tol && inf_count<1e4

12 if func((x_m+x_l)/2)<func((x_r+x_m)/2)

13 x_r=x_m;

14 x_m=(x_r+x_l)/2;

15 elseif func((x_m+x_l)/2)==func((x_m+x_r)/2)

16 x_l=(x_l+x_m)/2;

17 x_r=(x_r+x_m)/2;

18 else

19 x_l=x_m;

20 x_m=(x_r+x_l)/2;

21 end

22 inf_count=inf_count+1;

23 end

24 y(1,1)=func(x_m);

25 y(1,2)=x_m;

26 % fprintf('bisection finished \n')
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27 if inf_count==1e4

28 fprintf('infinite loop in bisection \n')

29 end

30 end

1 % dangers are getting stuck on a "tongue jump"

2 function y=bisect_for_min_a_and_k_3freq(B_gam,C,epsilon_2,psil

,psip,...

3 m_forcing,l_forcing,p_forcing,m,l,p,k_s,k_e,dk,N,

visc_option)

4

5 k_count=1;

6 for k=k_s:dk:k_e

7 K(k_count)=k;

8 y1(k_count)=find_a_at_k_3freq_SH(k,B_gam,C,epsilon_2,psil,

psip,...

9 m,l,p,m_forcing,l_forcing,p_forcing,N,visc_option);

10 y2(k_count)=find_a_at_k_3freq_H(k,B_gam,C,epsilon_2,psil,

psip,...

11 m,l,p,m_forcing,l_forcing,p_forcing,N,visc_option);

12 k_count=k_count+1;

13 end

14

15 [b,c]=min(y1(:));

16 k1=K(c);

17 [b,c]=min(y2(:));

18 k2=K(c);

19

20 k_s1=k1-2*dk;

21 Dk=dk*1e-1; % search step % careful, this has jumped to the

wrong one when too big

22 tol=1e-8;
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23 func1=@(k) find_a_at_k_3freq_SH(k,B_gam,C,epsilon_2,psil,psip,

m,l,p,...

24 m_forcing,l_forcing,p_forcing,N,visc_option);

25

26 y(1,:)=bisect_for_k_at_min_a(func1,k_s1,Dk,tol);

27

28 k_s2=k2-2*dk;

29 Dk=dk*1e-1; % search step % careful, this has jumped to the

wrong one when too big

30 tol=1e-8;

31 func2=@(k) find_a_at_k_3freq_H(k,B_gam,C,epsilon_2,psil,psip,m

,l,p,...

32 m_forcing,l_forcing,p_forcing,N,visc_option);

33

34 y(2,:)=bisect_for_k_at_min_a(func2,k_s2,Dk,tol);

35

36 end

1 % always make l bigger than m & coprime

2 function y=find_a_at_k_3freq_SH(k,B_gam,C,epsilon_2,psi1,psi2,

m,l,p,...

3 m_forcing,l_forcing,p_forcing,N,visc_option)

4 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

5 % subharmonic, mu=0.5

6 A=zeros(2*N,2*N);%CHECKED

7 B=A;%CHECKED

8 visc_2=visc_option*4*epsilon_2ˆ2*kˆ4;

9 for n=1:2:2*p-1

10 n_count=(n-1)/2;

11 % matrix A
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12 E_A=(2/B_gam)*((-(n_count+0.5)ˆ2+4*epsilon_2*1i*kˆ2*(

n_count+0.5)+visc_2)/k...

13 +((B_gam+C*kˆ2)));%CHECKED

14 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);%C

15 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%C

16

17 % make matrix B

18 B(n,2*(abs(n_count-p)-1)+1)=B(n,2*(abs(n_count-p)-1)+1)-

p_forcing*cos(psi2);%C%C

19 B(n,2*(abs(n_count-p)-1)+2)=B(n,2*(abs(n_count-p)-1)+2)-

p_forcing*sin(psi2);%C%C

20 B(n+1,2*(abs(n_count-p)-1)+1)=B(n+1,2*(abs(n_count-p)-1)

+1)-p_forcing*sin(psi2);%C%C

21 B(n+1,2*(abs(n_count-p)-1)+2)=B(n+1,2*(abs(n_count-p)-1)

+2)+p_forcing*cos(psi2);

22 % n<l

23 if n_count-l<0

24 B(n,2*(abs(n_count-l)-1)+1)=B(n,2*(abs(n_count-l)-1)+1)-

l_forcing*cos(psi1);%C%C

25 B(n,2*(abs(n_count-l)-1)+2)=B(n,2*(abs(n_count-l)-1)+2)-

l_forcing*sin(psi1);%C%C

26 B(n+1,2*(abs(n_count-l)-1)+1)=B(n+1,2*(abs(n_count-l)-1)

+1)-l_forcing*sin(psi1);%C%C

27 B(n+1,2*(abs(n_count-l)-1)+2)=B(n+1,2*(abs(n_count-l)-1)

+2)+l_forcing*cos(psi1);%C%C

28 else

29 B(n,n-2*l)=B(n,n-2*l)-l_forcing*cos(psi1);%C%C

30 B(n,n-2*l+1)=B(n,n-2*l+1)+l_forcing*sin(psi1);%C%C

31 B(n+1,n-2*l)=B(n+1,n-2*l)-l_forcing*sin(psi1);%C%C

32 B(n+1,n-2*l+1)=B(n+1,n-2*l+1)-l_forcing*cos(psi1);

33 end

34 if n_count-m<0
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35 B(n,2*(abs(n_count-m)-1)+1)=B(n,2*(abs(n_count-m)-1)+1)-

m_forcing;%C%C%C%C

36 B(n+1,2*(abs(n_count-m)-1)+2)=B(n+1,2*(abs(n_count-m)-1)

+2)+m_forcing;%C%C%C%C

37 else

38 B(n,2*(n_count-m)+1)=B(n,2*(n_count-m)+1)-m_forcing;%C%C%C

%C

39 B(n+1,2*(n_count-m)+2)=B(n+1,2*(n_count-m)+2)-m_forcing;%C

%C%C%C

40 end

41

42 B(n,n+2*m)=B(n,n+2*m)-m_forcing;%C%C

43 B(n,n+2*l)=B(n,n+2*l)-l_forcing*cos(psi1);%C%C

44 B(n,n+2*l+1)=B(n,n+2*l+1)-l_forcing*sin(psi1);%C%C

45 B(n,n+2*p)=B(n,n+2*p)-p_forcing*cos(psi2);%C%C

46 B(n,n+2*p+1)=B(n,n+2*p+1)-p_forcing*sin(psi2);%C%C

47

48 B(n+1,n+2*m+1)=B(n+1,n+2*m+1)-m_forcing;%C%C

49 B(n+1,n+2*l)=B(n+1,n+2*l)+l_forcing*sin(psi1);%C%C

50 B(n+1,n+2*l+1)=B(n+1,n+2*l+1)-l_forcing*cos(psi1);%C%C

51 B(n+1,n+2*p)=B(n+1,n+2*p)+p_forcing*sin(psi2);%C%C

52 B(n+1,n+2*p+1)=B(n+1,n+2*p+1)-p_forcing*cos(psi2);%C%C

53 end

54 for n=2*p+1:2:2*N-2*p-1

55 % make matrix A

56 n_count=(n-1)/2;

57 E_A=(2/B_gam)*((-(n_count+0.5)ˆ2+4*epsilon_2*1i*kˆ2*(

n_count+0.5)+visc_2)/k...

58 +((B_gam+C*kˆ2)));%CHECKED;

59 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);%C

60 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%C

61
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62 % make matrix B

63 B(n,n-2*p)=-p_forcing*cos(psi2);%C%C

64 B(n,n-2*p+1)=p_forcing*sin(psi2);%C%C

65 B(n,n-2*l)=-l_forcing*cos(psi1);%C%C

66 B(n,n-2*l+1)=l_forcing*sin(psi1);%C%C

67 B(n,n-2*m)=-m_forcing;%C%C

68 B(n,n+2*m)=-m_forcing;%C%C

69 B(n,n+2*l)=-l_forcing*cos(psi1);%C%C

70 B(n,n+2*l+1)=-l_forcing*sin(psi1);%C%C

71 B(n,n+2*p)=-p_forcing*cos(psi2);%C%C

72 B(n,n+2*p+1)=-p_forcing*sin(psi2);%C%C

73

74 B(n+1,n-2*p)=-p_forcing*sin(psi2);%C%C

75 B(n+1,n-2*p+1)=-p_forcing*cos(psi2);%C%C

76 B(n+1,n-2*l)=-l_forcing*sin(psi1);%C%C

77 B(n+1,n-2*l+1)=-l_forcing*cos(psi1);%C%C

78 B(n+1,n-2*m+1)=-m_forcing;%C%C

79 B(n+1,n+2*m+1)=-m_forcing;%C%C

80 B(n+1,n+2*l)=l_forcing*sin(psi1);%C%C

81 B(n+1,n+2*l+1)=-l_forcing*cos(psi1);%C%C

82 B(n+1,n+2*p)=p_forcing*sin(psi2);%C%C

83 B(n+1,n+2*p+1)=-p_forcing*cos(psi2);%C%C

84 end

85 for n=2*N-2*p+1:2:2*N-1

86 n_count=(n-1)/2;

87 % matrix A

88 E_A=(2/B_gam)*((-(n_count+0.5)ˆ2+4*epsilon_2*1i*kˆ2*(

n_count+0.5)+visc_2)/k...

89 +((B_gam+C*kˆ2)));%CHECKED

90 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);%C

91 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%C

92 % make matrix B
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93 B(n,n-2*p)=-p_forcing*cos(psi2);%C

94 B(n,n-2*p+1)=p_forcing*sin(psi2);%C

95 B(n,n-2*l)=-l_forcing*cos(psi1);%C

96 B(n,n-2*l+1)=l_forcing*sin(psi1);%C

97 B(n,n-2*m)=-m_forcing;%C

98 if n_count+m<=N-1

99 B(n,n+2*m)=-m_forcing;%C%C

100 B(n+1,n+2*m+1)=-m_forcing;%C%C

101 end

102 if n_count+l<=N-1

103 B(n,n+2*l)=-l_forcing*cos(psi1);%C%C

104 B(n,n+2*l+1)=-l_forcing*sin(psi1);

105 B(n+1,n+2*l)=l_forcing*sin(psi1);%C%C

106 B(n+1,n+2*l+1)=-l_forcing*cos(psi1);

107 end

108

109 B(n+1,n-2*p)=-p_forcing*sin(psi2);%C%C

110 B(n+1,n-2*p+1)=-p_forcing*cos(psi2);%C%C

111 B(n+1,n-2*l)=-l_forcing*sin(psi1);%C%C

112 B(n+1,n-2*l+1)=-l_forcing*cos(psi1);%C%C

113 B(n+1,n-2*m+1)=-m_forcing;%C%C

114 end

115 [˜,D]=eig(A\B);

116 J=diag(D);

117 p_count=1;

118 for I=1:length(J)

119 if abs(imag(J(I,1)))<1e-9

120 J_2(p_count)=real(J(I,1));

121 p_count=p_count+1;

122 end

123 end

124 J_3=max((J_2));
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125 y=1/J_3;

126 end

1 % always make l bigger than m & coprime

2 function y=find_a_at_k_3freq_H(k,B_gam,C,epsilon_2,psi1,psi2,m

,l,p,...

3 m_forcing,l_forcing,p_forcing,N,visc_option)

4 % harmonic, mu=0

5 A=zeros(2*N,2*N); %CHECKED

6 B=A; %CHECKED

7 visc_2=visc_option*4*epsilon_2ˆ2*kˆ4;

8 for n=1:2:2*p-1

9 n_count=(n-1)/2; %CHECKED

10 % matrix A

11 E_A=(2/B_gam)*((-(n_count)ˆ2+4*epsilon_2*1i*kˆ2*(n_count)+

visc_2)/k...

12 +((B_gam+C*kˆ2)));%CHECKED));

13 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);%C%C

14 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%C%C

15 % make matrix B

16 % n_count<l

17 B(n,2*(abs(n_count-p))+1)=B(n,2*(abs(n_count-p))+1)-

p_forcing*cos(psi2);%C%C

18 B(n,2*(abs(n_count-p))+2)=B(n,2*(abs(n_count-p))+2)-

p_forcing*sin(psi2);%C%C

19 B(n+1,2*(abs(n_count-p))+1)=B(n+1,2*(abs(n_count-p))+1)-

p_forcing*sin(psi2);%C%C

20 B(n+1,2*(abs(n_count-p))+2)=B(n+1,2*(abs(n_count-p))+2)+

p_forcing*cos(psi2);%C%C

21

22 if n_count-l<0

23 B(n,2*(abs(n_count-l))+1)=B(n,2*(abs(n_count-l))+1)-
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l_forcing*cos(psi1);%C%C

24 B(n,2*(abs(n_count-l))+2)=B(n,2*(abs(n_count-l))+2)-

l_forcing*sin(psi1);%C%C

25 B(n+1,2*(abs(n_count-l))+1)=B(n+1,2*(abs(n_count-l))+1)-

l_forcing*sin(psi1);%C%C

26 B(n+1,2*(abs(n_count-l))+2)=B(n+1,2*(abs(n_count-l))+2)+

l_forcing*cos(psi1);%C%C

27 else

28 B(n,n-2*l)=B(n,n-2*l)-l_forcing*cos(psi1);%C%C

29 B(n,n-2*l+1)=B(n,n-2*l+1)+l_forcing*sin(psi1);%C%C

30 B(n+1,n-2*l)=B(n+1,n-2*l)-l_forcing*sin(psi1);%C%C

31 B(n+1,n-2*l+1)=B(n+1,n-2*l+1)-l_forcing*cos(psi1);%C%C

32 end

33

34 if n_count-m<0

35 B(n,2*(abs(n_count-m))+1)=B(n,2*(abs(n_count-m))+1)-

m_forcing;%C%C

36 B(n+1,2*(abs(n_count-m))+2)=B(n+1,2*(abs(n_count-m))+2)+

m_forcing;%C%C

37 else

38 B(n,2*(n_count-m)+1)=B(n,2*(n_count-m)+1)-m_forcing;%C%C

39 B(n+1,2*(n_count-m)+2)=B(n+1,2*(n_count-m)+2)-m_forcing;%C

%C

40 end

41

42 B(n,n+2*m)=B(n,n+2*m)-m_forcing;%C%C

43 B(n,n+2*l)=B(n,n+2*l)-l_forcing*cos(psi1);%C%C

44 B(n,n+2*l+1)=B(n,n+2*l+1)-l_forcing*sin(psi1);%C%C

45 B(n,n+2*p)=B(n,n+2*p)-p_forcing*cos(psi2);%C%C

46 B(n,n+2*p+1)=B(n,n+2*p+1)-p_forcing*sin(psi2);%C%C

47

48 B(n+1,n+2*m+1)=B(n+1,n+2*m+1)-m_forcing;%C%C



Appendix B 204

49 B(n+1,n+2*l)=B(n+1,n+2*l)+l_forcing*sin(psi1);%C%C

50 B(n+1,n+2*l+1)=B(n+1,n+2*l+1)-l_forcing*cos(psi1);%C%C

51 B(n+1,n+2*p)=B(n+1,n+2*p)+p_forcing*sin(psi2);%C%C

52 B(n+1,n+2*p+1)=B(n+1,n+2*p+1)-p_forcing*cos(psi2);%C%C

53 end %C

54 for n=2*p+1:2:2*N-2*p-1

55 % make matrix A

56 n_count=(n-1)/2;

57 E_A=(2/B_gam)*((-(n_count)ˆ2+4*epsilon_2*1i*kˆ2*(n_count)+

visc_2)/k...

58 +((B_gam+C*kˆ2)));%CHECKED

59 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);%C

60 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%C

61

62 % make matrix B

63 B(n,n-2*p)=-p_forcing*cos(psi2);%C%C

64 B(n,n-2*p+1)=p_forcing*sin(psi2);%C%C

65 B(n,n-2*l)=-l_forcing*cos(psi1);%C%C

66 B(n,n-2*l+1)=l_forcing*sin(psi1);%C%C

67 B(n,n-2*m)=-m_forcing;%C%C

68 B(n,n+2*m)=-m_forcing;%C%C

69 B(n,n+2*l)=-l_forcing*cos(psi1);%C%C

70 B(n,n+2*l+1)=-l_forcing*sin(psi1);%C%C

71 B(n,n+2*p)=-p_forcing*cos(psi2);%C%C

72 B(n,n+2*p+1)=-p_forcing*sin(psi2);%C%C

73

74 B(n+1,n-2*p)=-p_forcing*sin(psi2);%C%C

75 B(n+1,n-2*p+1)=-p_forcing*cos(psi2);%C%C

76 B(n+1,n-2*l)=-l_forcing*sin(psi1);%C%C

77 B(n+1,n-2*l+1)=-l_forcing*cos(psi1);%C%C

78 B(n+1,n-2*m+1)=-m_forcing;%C%C

79 B(n+1,n+2*m+1)=-m_forcing;%C%C
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80 B(n+1,n+2*l)=l_forcing*sin(psi1);%C%C

81 B(n+1,n+2*l+1)=-l_forcing*cos(psi1);%C%C

82 B(n+1,n+2*p)=p_forcing*sin(psi2);%C%C

83 B(n+1,n+2*p+1)=-p_forcing*cos(psi2);%C%C

84 end

85 for n=2*N-2*p+1:2:2*N-1

86 n_count=(n-1)/2;

87 % matrix A

88 E_A=(2/B_gam)*((-(n_count)ˆ2+4*epsilon_2*1i*kˆ2*(n_count)+

visc_2)/k...

89 +((B_gam+C*kˆ2)));%CHECKED

90 A(n,n)=real(E_A); A(n,n+1)=-imag(E_A);%C

91 A(n+1,n)=imag(E_A); A(n+1,n+1)=real(E_A);%C

92 % make matrix B

93 B(n,n-2*p)=-p_forcing*cos(psi2);%C%C

94 B(n,n-2*p+1)=p_forcing*sin(psi2);%C%C

95

96 B(n,n-2*l)=-l_forcing*cos(psi1);%C%C

97 B(n,n-2*l+1)=l_forcing*sin(psi1);%C%C

98 B(n,n-2*m)=-m_forcing;%C%C

99 if n_count+l<=N-1

100 B(n,n+2*l)=-l_forcing*cos(psi1);%C%C

101 B(n,n+2*l+1)=-l_forcing*sin(psi1);

102 B(n+1,n+2*l)=l_forcing*sin(psi1);%C%C

103 B(n+1,n+2*l+1)=-l_forcing*cos(psi1);

104 end

105 if n_count+m<=N-1

106 B(n,n+2*m)=-m_forcing;%C%C

107 B(n+1,n+2*m+1)=-m_forcing;%C%C

108 end

109

110 B(n+1,n-2*l)=-l_forcing*sin(psi1);%C%C
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111 B(n+1,n-2*l+1)=-l_forcing*cos(psi1);%C%C

112 B(n+1,n-2*m+1)=-m_forcing;%C%C

113 end

114 clear P D J J_2 J_4 J_3

115 [P,D]=eig(A\B);

116

117 J=diag(D);

118

119 p_count=1;

120 for I=1:length(J)

121 if abs(imag(J(I,1)))<1e-9

122 J_2(p_count)=real(J(I,1));

123 p_count=p_count+1;

124 end

125 end

126 J_3=max((J_2));

127 y=1/J_3(end);

128 end
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