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Abstract

The assessment of human injuries and structural damage following the detonation of a

high explosive requires a comprehensive understanding of the blast load parameters. As

explosive events are inherently unpredictable, and key details associated to the charge

size, shape, location and material cannot be known a priori, obtaining these parameters

often requires probabilistic approaches that feature large batches of numerical models with

varying input conditions to embrace this uncertainty.

Machine learning (ML) methods have been shown to rapidly provide accurate predictions

for many complex multi-parameter problems in a range of disciplines, including applica-

tions featuring blast wave coalescence. However, since ML tools develop their predictive

accuracy through a training process that requires data from the problem being modelled, a

dependency on potentially costly numerical solvers or physical experiments remains. Fur-

thermore, ML tools are often provided with inputs relating to domain-specific parameters,

preventing them from being used beyond the initial problem set, reducing their generality,

and thus, requiring the tools to be re-trained when a new scenario is generated.

This thesis introduces two novel methods that independently reduce the impact of costly

data collection processes, and prevent the development of tools with limited potential

uses. Firstly, when a batch of numerical models are required for probabilistic assess-

ments or training ML tools, any given model can share a number of solution steps with

the others. Hence, simulating all domains from birth to termination may result in large

amounts of calculation repetition that needlessly increases the overall computation time.

The Branching Algorithm (BA) is therefore introduced as a means of mapping data be-

tween domains to ensure that calculation steps are only computed once, by identifying

when the parameter fields of each model in the batch becomes unique.

Following this, a Direction-encoded Framework for ML tools is developed to enable pre-

dictions of blast loading parameters that are based on the surroundings of each point of

interest and its position relative to the charge. Through comparisons to a traditional

Artificial Neural Network (ANN), provided with global domain inputs, the framework is

applied as the Direction-encoded Neural Network (DeNN) to show that the adapted ap-

proach enables predictions to be generated in domains with variable sizes and movable

obstacles without requiring additional task-specific training.

The computational benefits of BA and the DeNN are then leveraged in a combined analysis,

whereby a dataset is incrementally generated using a numerical solver and the BA, and

simultaneously used to train the DeNN until a prescribed performance threshold is met.

The DeNN then replaces the solver to generate results for any remaining scenarios being

evaluated to further reduce the computation time without a detrimental loss of accuracy.

By reducing the time required to conduct a batch analysis, and developing versatile,

robust ML based tools, this thesis has shown that complex obstructed environments can be

rapidly modelled with consideration of varied geometrical and charge conditions. Results

presented throughout the study therefore contribute to the goal of being able to effectively

assess the risk posed by a given threat in a probabilistic manner.
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Chapter 1

Introduction

1.1 Background and motivation

On May 22nd 2017, a suicide bomber detonated an improvised explosive device (IED) in

the foyer of Manchester Arena, killing 22 people and injuring at least 160 more (Pringle

et al. 2020). More recently on August 4th 2020, over 181 deaths and 6000 injuries were

reported in the city of Beirut following the accidental detonation of an approximately 2750

tonnes of ammonium nitrate (Rigby et al. 2020a).

With the continual presence of terrorist attacks, industrial accidents and conflict taking

places all over the world, understanding the risk associated to the detonation of explosive

materials is vital for designing and developing protective structures and procedures that

can reduce any detrimental impact on human life. A key component of this involves

understanding how the blast wave that emanates from an explosive compound propagates

and interacts with its surroundings.

Historically, this understanding has been developed using physical experiments in con-

trolled environments where the number of trials, extractable data points and variety of

test scenarios is limited by cost, safety and expertise. However, with the widespread avail-

ability of computing power, validated numerical methods have become increasingly popular

as a means of understanding various phenomena without the aforementioned drawbacks

associated to data extraction or health and safety.

Semi-empirical tools, such as the Kingery and Bulmash method (Kingery & Bulmash

1984), have been derived from experimental trials that enable the relationships between

variables to be defined by simplified equations and charts. They can therefore be evaluated

rapidly with a reduced number of inputs, yet this also restricts their use to a limited

range of modelling scenarios. Conversely, validated Computational Fluid Dynamics (CFD)

or Finite Element (FE) numerical models, such as Viper::Blast (Stirling 2023) and LS-

DYNA (Livermore Software Technology Company 2015), obey conservation laws in a

discretisation of space and time to accurately model the physics of a detonation, and

the subsequent wave propagation or structural response. This makes them well suited

to evaluating diverse problems, but, computation times can last many hours, or days,

depending on the complexity of the problem and the desired level of predictive accuracy.

At present, regardless of the tool being selected to analyse a given problem, the analysis is

often conducted deterministically, meaning a single output is provided for a well-defined

problem. However, this approach disregards the inherent uncertainty associated to the

charge size, shape, location and material, hence, relying on a number of assumptions

that cannot be known before an explosion occurs. Probabilistic approaches are therefore

becoming more common so that the risk associated to a specific outcome can be evaluated.
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Despite this, the move towards this approach still relies on a suitable deterministic model

that can accurately represent the physics of the various scenarios being simulated. More-

over, the chosen model must be rapid in its execution of each unique scenario so that the

time required to develop a comprehensive understanding of the threat is not unfeasible.

Figure 1.1 presents this challenge with a zone that is often thought to be the goal for the

development of new Fast Running Engineering Models (FREMs).

Quick-running methods

• Not based on physics

• Very quick

• “Good enough” accuracy

• Probabilistic

Physics-based modelling

• Finite element modelling or 

computational fluid dynamics

• Time-varying solutions

• Requires validation

• Deterministic

Target zone

Model computation time
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Figure 1.1: A comparison between physics-based modelling tools and quick-running meth-
ods in terms of computation time and solution accuracy.

Machine Learning (ML) methods present a means of achieving this goal due to their rapid

execution times and simplified mathematical operations that have been shown to provide

low percentage errors and high correlation coefficients between targets and predictions in

a wide range of disciplines. Through a process of training, ML tools learn the relation-

ships between a series of input variables to optimise various parameters and improve the

predictive accuracy. This enables a developed model to generalise highly complex, multi-

parameter problems to generate predictions for unseen input combinations, provided that

they fall within the bounds of the training variables (Dennis et al. 2021).

There are many instances of ML tools being used to solve problems related to blast

wave propagation, including applications for Boiling Liquid Expanding Vapour Explosions

(BLEVEs) and the assessment of localised blast on naval structures (Li, Wang, Shao, Li

& Hao 2023, Neto et al. 2017). Each study presents notable developments related to how

ML based tools could be created, yet, the input parameters are intrinsically linked to the

scenario being modelled. In some cases this means that a change to the basic domain

arrangement would require a new model to be developed, and since it is also common

for training datasets to be formed through a data collection process that requires the

simulation of tens, or hundreds, of physics-based numerical models, the computation time

associated to development can therefore become comparable to exclusively using numerical

models in the analysis of a given problem.

Consequently, Figure 1.2 provides an updated view of the target zone for FREM devel-

opment considering a new set of axes that includes model versatility. This provides a

distinction between ML tools that are developed with limited scope for reuse in alterna-



4 1.2. Aims and objectives

tive studies and tools that are able to be applied more generally to blast loading based

problems in probabilistic frameworks. Furthermore, it shows the target zone of this thesis,

which discusses the development of a computationally efficient data collection approach

that reduces the time required to develop tools directly, in addition to a novel ML model

that can be applied to a wide variety of explosive scenarios.

It is hoped that by approaching the development of ML tools with a focus on versatility

and development time, future research will expand upon these ideas and continue to work

towards creating FREMs that allow for emergency response efforts and protective structure

designs to be optimised and improved.
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• Very quick

• “Good enough” accuracy

• Probabilistic
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Figure 1.2: Comparison of modelling approaches considering computation time, solution
accuracy and tool versatility.

1.2 Aims and objectives

The aim of this thesis is to produce the next generation of predictive tools that leverage

novel machine learning techniques to evaluate blast loading in complex environments. In

particular relating to the computational efficiency of CFD modelling for batch analyses,

and the development of versatile ML tools themselves. In order to meet this aim, this

project therefore has the following objectives:
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1. Evaluate current literature to identify the limitations and opportunities associated

to Machine Learning tools used in Fast Running Engineering Model development.

2. Establish a pipeline for generating experimentally validated data from numerical

models.

3. Develop an approach for reducing the computation time required to generate training

datasets featuring many models that share comparable setup characteristics.

4. Engineer an input set for Machine Learning models that allows for the tool to be

used with movable obstacles, and changing domain sizes.

5. Produce a framework for probabilistically modelling variable explosive scenarios that

incorporates the training phase of Machine Learning development with its use, re-

moving the need for batches of tests to be evaluated exclusively with numerical

models.

1.3 Thesis outline

To meet the aforementioned objectives, the following chapters of this thesis are organised

as follows:

Chapter 2: Theory background and literature review

Background information concerning blast wave mechanics and Machine Learn-

ing is presented alongside a critical evaluation of current literature related to

domains featuring various obstacles, computational blast analysis approaches,

and existing Fast Running Engineering Models (FREMs).

Objective 1 met.

Chapter 3: Numerical modelling

Experimental validation of LS-DYNA and Viper::Blast, establishing parame-

ters used throughout this study to generate data used in the development of

various tools.

Objective 2 met.

Chapter 4: Informed data mapping to reduce computation times

Development of the Branching Algorithm, an approach that ensures calculation

steps in batches of models are only computed once, thus enabling informed data

mapping to reduce the required computation time.

Objective 3 met.

Chapter 5: The Branching Algorithm in 3D

Adaptation of the Branching Algorithm in three dimensions, including results

from its application with a batch of models.
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Chapter 6: A Direction-encoded Framework for Machine Learning Tools

Introduction to the Direction-encoded Framework for Machine Learning Tools,

a novel approach to structuring the inputs of a model to predict blast load-

ing in obstructed environments with varying charge locations and structural

arrangements. Applied as the Direction-encoded Neural Network (DeNN).

Objective 4 met.

Chapter 7: Direction-encoded Neural Network in series (DeNNIS)

Integration and application of the Direction-encoded Neural Network with the

Branching Algorithm. Highlighting the cumulative benefit in terms of compu-

tation time.

Objective 5 met.

Chapter 8: Summary and Conclusions

Conclusions from this thesis with suggestions for future work in this subject

area.

1.4 Published work

Various works from this thesis have been published in peer-reviewed journals or presented

at conferences. This following list provides each publication in order of submission:

� Dennis, A. A., Smyl, D. J., Stirling, C. G., & Rigby, S. E. (2023). ‘A branching algo-

rithm to reduce computational time of batch models: Application for blast analyses’,

International Journal of Protective Structures 14(2), 135–167.

� Dennis, A. A. & Rigby, S. E. (2023b) ‘The Direction-encoded Neural Network: A

machine learning approach to rapidly predict blast loading in obstructed environ-

ments’, International Journal of Protective Structures.

� Dennis, A. A., Stirling, C. G. & Rigby, S. E. (2023), Towards the development of

Machine Learning tools for blast load prediction, in ‘6th International Conference

on Protective Structures (ICPS6)’, 14–17 May, Auburn, AL.

� Kirchner, M. R., Kirchner, S. R., Dennis, A. A. & Rigby, S. E. (2023) ‘Non-

parametric characterization of blast loads’, International Journal of Protective Struc-

tures.

� Dennis, A. A. & Rigby, S. E. (2023a), Prediction of Blast Loads using Machine

Learning Approaches, in ‘SECED 2023 Conference, Earthquake Engineering & Dy-

namics for a Sustainable Future’, 14–15 September 2023. Cambridge, UK.



Chapter 2

Theory background and literature review

2.1 Introduction

This chapter provides the background information required to understand the theory and

challenges associated with blast wave mechanics in addition to a review of current literature

concerning the computational analysis of explosions and various modelling approaches.

Included is a introduction to Machine Learning (ML), with a particular focus on the

implementation of Artificial Neural Networks (ANNs) for blast applications. This aims

to identify ways in which this thesis can improve on the current practice for blast load

prediction.

2.2 Blast wave mechanics

2.2.1 Shock wave formation and detonation in free air

The development of a shock wave and the release of a high amount of energy can be

observed from physical, chemical, or nuclear explosions. In each case, significant loads can

be experienced by an impacted body or obstacle as a result of a disturbance of the air

molecules in environment surrounding the detonation point.

Physical and nuclear explosions are beyond the scope of this study as they are not com-

monly associated to blast protection design. Nevertheless, in a chemical explosion in free

air, rapid oxidation of carbon and hydrogen atoms breaks intermolecular bonds within

the material, releasing the energy that contributes to the devastating effects seen in many

of the attacks and accidents discussed in Chapter 1. This is instigated by a detonator

that creates a shock wave of energy to start a chemical reaction within the charge mass

(Wilkinson & Anderson 2003). As chain reaction process continues, oxygen is used to

facilitate oxidation of the fuel elements and the mass is converted into a dense gas that

expands rapidly outwards from the initiation point. Any mass of explosive behind the

wave front is forced to react, driving the expansion as the air increases in pressure, density

and temperature, which in turn displaces surrounding air molecules outside of the charge

boundaries. The gases involved in this detonation process can reach pressures of up to 30

GPa and temperatures of 4000°C (Cormie et al. 2009).

Following detonation, the greatest proportion of energy from the explosion is contained as

pressure energy in the air molecules that are displaced and compressed by the shock front

(Cormie et al. 2009). Higher wave velocities are linked to greater amounts of pressure

energy and so a velocity gradient will be present across the shock wave as it emerges from

the explosive. This propagates outwards from the charge until the high pressure regions

overtake the front of the disturbance, ultimately resulting in a discontinuous step change

7
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in pressure, density and temperature that is characteristic of identifying when the shock

front arrives at a target (Baker 1973).

As the blast wave continues to expand, its energy dissipates to the surrounding air, main-

taining constant energy within the system. Yet, this causes a reduction in the wave’s

pressure and density, meaning that at larger stand-off distances from the charge, the im-

pact of the blast wave is also reduced.

2.2.2 Pressure-Time histories

Figure 2.1 displays an example of the Friedlander waveform, representing an idealised

pressure-time history that corresponds to a passing shock front at a given stand-off distance

in free air.
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Figure 2.1: Friedlander Waveform.

It is shown that initially atmospheric pressure, p0, is maintained, but, as the shock front

arrives at time ta, the pressure suddenly increases to a peak overpressure. This then

decays back to the ambient level over a period of time known as the ‘positive phase’, with

a duration td. As the wave continues to propagate, the decay continues into a period

of negative overpressure known as the ‘negative phase’. This phenomena is caused by

the air that expands after the shock wave has passed, lasting for a duration t−d . Finally,

atmospheric pressure is restored after the blast wave has propagated beyond the point of

interest, and its energy has been dissipated.

It should be noted that Figure 2.1 shows two different profiles of pressure. The first relating

to incident, or ‘side on’ pressure, and the other corresponding to reflected pressure. The

reason for the maximum and minimum reflected overpressures, pr,max and pr,min, being

higher in magnitude than the incident overpressures, pso,max and pso,min will be explained

in the following section.

Another key parameter linked to blast loading is the specific impulse, found through

integrating the pressure with respect to time. In Figure 2.1 these values are denoted by

ir & iso for the positive phase and i−r & i−so for the negative phase of the reflected and

incident profiles respectively.
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2.2.3 TNT equivalence

The chemical compound Trinitrotoluene (TNT) was a commonly used as an explosive

during the mid 1900s when many of the foundational semi-empirical models and equations

were derived for use in blast engineering (Kingery & Bulmash 1984). The development

of these tools was therefore reliant on the properties associated to this specific material,

limiting them from being applied with any other explosive unless the mass of a new

compound is converted to an equivalent in TNT.

Termed the TNT equivalence, TNTe, Equation 2.1 shows how this process is applied,

using a conversion factor to scale the mass of a given explosive, W , to an equivalent mass

of TNT, WTNT , that would maintain the same energy release.

WTNT = TNTe ×W (2.1)

For each explosive compound, it is common for differing factors to be used for pressure

and impulse conversions. Similarly, variations in experimental work that aims to compare

the energy release from multiple materials has also resulted in many different equivalency

values being reported in literature. It is therefore essential to understand the potential

inaccuracies of predictions formed using this approach, despite recent studies attempting

to refine these factors for compounds such as PE4 and C4 (Rigby & Sielicki 2014, Bogosian

et al. 2016).

2.2.4 Blast scaling

Hopkinson-Cranz blast scaling laws dictate that there is similarity between blast waves

produced by two different charge masses at equal scaled distances (Hopkinson 1915, Cranz

1926). This allows for the comparison of multiple blast scenarios through the use of scaled

parameters since the pressure generated at a stand-off distance, R, from an explosive mass,

W , will be similar to that produced by a charge mass, K3W , at a distance KR. This is

formalised in Equation 2.2 and visualised by Figure 2.2.

Z =
R

W 1/3
(2.2)

Where Z is the scaled distance in units of m/kg1/3. Here the charge mass is in kilograms

of TNT and so equivalency conversions will be required. This law does however only apply

to the effects from the same charge material and shape (Wilkinson and Anderson, 2003).

Time dependant parameters are scaled by the same value as the stand-off distance, whereas

the pressures and velocities are not factored at all. The factor that is used to perform the

adjustment on the time dependant values is given by the cube-root of the charge mass as

shown in the following set of equations:

pactual = pscaled (2.3)

tactual = tscaledW
1/3 (2.4)

iactual = iscaledW
1/3 (2.5)
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Figure 2.2: Representation of Hopkinson-Cranz blast wave scaling that can be applied to
reflected and incident blast wave parameters (Hopkinson 1915, Cranz 1926).

2.2.5 Blast wave reflection

As an incident blast wave impacts a target, the laws of conservation of mass, momentum

and energy are preserved through an increase in pressure, density and temperature of the

blast wave itself. This is because, at the collision interface, the reflected wave propagates

back out to the free air, whilst another wave translates through the impacted medium.

To understand this effect, conservation of mass, momentum and energy across discon-

tinuity of compressed air on both sides of the shock front can be considered with the

Rankine-Hugoniot Jump conditions to derive Equation 2.6 (Anderson 2011).

pr = 2pso
7po + 4pso
7po + pso

(2.6)

Where pr is the reflected pressure, pso is the incident pressure, and po is the ambient

pressure. Furthermore, a reflection coefficient, C, given by Equation 2.7, can be defined

to represent the ratio of reflected pressure to the incident pressure.

Cr =
pr
pso

(2.7)
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Disregarding the assumption that air behaves as an ideal gas at extremely high pressures

and temperatures, this coefficient has been shown to reach values as high as 20 (US

Army Material Command 1974). Reflected parameters, typically given the subscript ‘r’,

are therefore critical in the assessment of blast loads. This also highlights how complex

loading topologies can be created when multiple reflecting surfaces are present in a domain,

as waves will reflect and coalesce numerous times before the energy has dissipated.

2.2.6 Modelling methods

Traditionally, experiments have been widely employed as a means of gaining valuable

insights into various aspects of blast loading, including structural response and human

injury. With test arrangements that are designed to simulate real-world scenarios, the

effects caused by the detonation of an explosive can be directly measured and used to

understand the relevant physical phenomena. This includes the derivation of various

TNT equivalency values, as demonstrated by Rigby & Sielicki (2014) where hemispherical

PE4 charges are found to have an equivalency of 1.2 at any far-field scaled distance, and

the characterisation of detonation mechanisms, such as in a study by Tyas et al. (2016)

where afterburn is shown to have a large influence on the reflected shock parameters in

the near-field. Whilst there is no exact demarcation between the near-field and far-field,

it is commonly accepted that the near-field region relates to when the shock wave is still

attached to, and driven by, the detonation product cloud (Rigby et al. 2020b). This finding

was also enabled by physical experiments and generally persists to a scaled distance of

around 1 m/kg1/3.

Despite these benefits, requirements for specialised testing facilities, expertise, and finan-

cial resources often restricts the number of trials that can be conducted. This therefore

limits the ability for complex, large domains to be investigated, particularly because the

construction costs associated to each full scale arrangement are likely to be prohibitively

high. As a result, Sauvan et al. (2012) suggests that the findings from scaled models

show good agreement with the full-sized counterparts, making laboratory-scale testing a

cost-effective and safe option. Fouchier et al. (2017) utilises a similar approach to present

results from a study using five 1:200 scale models representing different urban layouts.

This facilitates the analysis of varied street widths and building heights on key blast

parameters.

In situations where scaled models are not required, the location and limited number of

extractable data points can also limit the depth of insights that can be obtained from each

trial. For each pressure trace that needs to be recorded, an individual gauge must to be

calibrated, powered and fixed to a rigid surface at a precise location. In a study concerning

the propagation of a blast wave around a corner, Gajewski & Sielicki (2020) contend with

this limitation by distributing four gauges along the side of a rigid wall. Findings are used

to assess the variability of the blast and the human injury risk for civilians or members of

special forces that hide from an explosion. This enables precise wave superposition effects

to be captured in each pressure profile, allowing for damage/safety criteria to be assessed.

However, gaps in the spatial distribution of recorded values could prevent key conclusions

from being derived.
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As a means of addressing the aforementioned limitations associated with experimental ap-

proaches, numerical analysis provides an alternative modelling method that allows diverse

phenomena to be investigated with significant advantages related to cost, safety and effi-

ciency. They can also be used in situations where experimental trials would be impractical

or unfeasible given current technological and resource constraints. With a focus on blast

wave loading, and not structural response, tools capable of predicting the key variables

associated with blast waves are often compared using two performance metrics, accuracy

and computational expense. With this, the majority of widely used methods fall into

two broad categories, fast running and reasonably accurate, or slow running and highly

accurate.

An example from the former is known as the Kingery and Bulmash (KB) method (Kingery

& Bulmash 1984). This semi-empirical solver operates with curves that are fit to a dataset

generated partly by field tests and partly by computer analyses. It can provide a user with

pressure, impulse, duration and the arrival time of explosions with scaled distances between

0.067 and 39.67 m/kg1/3. An explosive can also be characterised as either a spherical free

air burst, or a hemispherical surface burst. The former being associated to scenarios where

the charge is detonated at a sufficient distance from the ground surface such that the wave

duration time has elapsed before any reflections arrive at the initiation point. Conversely, a

surface burst requires consideration of the reflecting surface that is assumed to be perfectly

rigid. The KB approach therefore provides rapid analyses with a good accuracy for simple

scenarios that do not require any physical conservation laws. Its simplicity also means

that it underpins many widely used tools including the computer programme ConWep

and the United States Department of Defence Design Manual UFC-3-340-02 (Hyde 1991,

US DoD 2008).

Conversely, computational fluid dynamics (CFD) software packages such as APOLLO

Blastsimulator and Viper::Blast are purpose written to solve complex blast scenarios,

accounting for conversation laws and wave interactions (Fraunhofer EMI 2018, Stirling

2023). They directly solve the physics of a given problem in a time stepped, discretised

calculation procedure that provides the user with a detailed parameter space at the expense

of increased computation times that can last many hours, or even days. Despite this, varied

charge compositions, sizes and locations can be positioned in domains featuring hundreds

or thousands of gauges.

As a result of the large variation in modelling performance, the use of each style of solver

will depend on the scenario being modelled, the constraints of the project, and the ex-

pertise of the users of each type of tool. It should be noted that while computational

modelling and simulation techniques have gained significant popularity in recent years,

experiments remain an essential capability in blast research, offering direct observations

and validation for theoretical models (e.g. Wu et al. 2013). The combination of experi-

ments and simulations therefore enables a comprehensive understanding of blast effects,

leading to improved safety measures and informed design practices.
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2.2.7 Explosions in confined environments

In Section 2.2.5, the effect of reflecting a blast wave was shown to be critical for the eval-

uation of structural damage or human injury due to the possibility for increased loading.

When analysing internal or confined environments, the inability of the waves to dissipate

outside of the domain results in multiple reflections that can lead to far more complex

loading profiles than those seen in free-air. This causes regions of intense pressure build-up,

particularly in corners where adjoining rigid surfaces meet.

The ‘venting’ capability of a confined environment defines its ability to allow gas to escape,

thus alleviating the energy and pressure build-up to allow the blast waves to decay. If a

structure has little to no venting capabilities (i.e. no openings or window glazing that is

allowed to break upon impact), a Quasi-Static Pressure (QSP) will remain after the initial

blast and subsequent reflections have occurred.

𝑝𝑄𝑆𝑃
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𝒕
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Figure 2.3: Example pressure-time history for a confined explosion.

Figure 2.3 shows how the energy released from the charge is irreversibly transferred to

the surrounding air, leading to a increase in the temperature and ambient pressure. In

this case, the QSP is shown to remain constant after the event, yet there will always be a

mechanism to allow for gradual dissipation that may last for a number of seconds.

The importance of being able to model the effect of confinement is shown by Shehu et al.

(2023), where the presence of a QSP and an increased number of reflections is shown to

cause larger deformations on plates in confined environments when compared to detona-

tions in free air. Similarly, Anthistle et al. (2016) conduct a series of quarter symmetry

experimental trials to assess the influence of adding rigid baffles to an enclosed space that

could replicate a train carriage. It is shown that the baffles can have a detrimental impact

on the peak pressures and cumulative impulses along the walls where they are placed, due

to the increased number of reflections compared to when no baffles are included. Further-

more, the number and spacing of the baffles had a minimal effect on the pressures along
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the symmetry plane, highlighting that adding local mitigation measures may not have the

desired effect when considering the global domain.

As the complexity of the test space increases, it may be impractical to experimentally

model confined explosions, thus necessitating the use of numerical models or simplified

calculation procedures. For this, a comparison between empirically derived loading profiles

from the UFC-3-340 design manual and a series of recording from a full scale tests of a

partially vented room is made by Codina & Ambrosini (2018). It is shown that the

simplified approach is able to accurately predict the peak reflected overpressure both

inside and outside the room, however, underestimations of impulse are possible and only

a select number of locations could be compared due to experimental limitations.

On the other hand, Remennikov et al. (2022) conducts a series of scaled experimental

trials of underground coal mine openings to calibrate the CFD solver, Viper::Blast. The

complex loading profiles could not be predicted throughout the domain with any existing

simplified approach, and so the CFD tool was shown to be critical for validating that the

results could be scaled up to full-scale dimensions. Similarly, in the assessment of train

carriages, Larcher et al. (2011) and Larcher et al. (2016) use the FE solver, EUROPLEXUS

to conduct analyses of the venting capabilities, structural damage, and human injuries. In

Larcher et al. (2016), comparisons are made to experimental data with the authors noting

that the numerical model displays good agreement for carriage displacements, but the

critical considerations associated to risk of death and ear drum rupture are over predicted.

2.2.8 Explosions in obstructed environments

Confined explosions are not considered throughout the remainder of this thesis, however,

the previous section aims to highlight how understanding the complexities associated with

blast wave coalescence can be both challenging and critical for various applications. In

the remaining chapters, domains featuring structural arrangements that will cause the

blast wave to undergo reflection, clearing and channelling, with only one rigid reflecting

boundary at the ground plane are considered. They are herein defined as ‘obstructed

environments’.

Figure 2.4 displays an example of an obstructed environment where a range of these effects

can be observed. A 1 kg, hemispherical, TNT charge is detonated on a rigid ground plane

and pressure traces are compared to equivalent profiles from a free air burst with the

same charge conditions. These illustrative results were generated in the CFD solver,

Viper::Blast, according to the methodology detailed in Chapter 3. A gauge focussed on

shielding is also included to highlight how the common mitigation measure of adding a

barrier between the target and charge can significantly reduce the loading whilst also

delaying the pressure peak (plot A). It should be noted that the domain is 2 m tall, with

obstacles that are also 2 m in height. This prevents the blast wave from passing over

the obstacles to be representative of environments with very tall structures, such as city

streets.

The process of clearing occurs when an impacted obstacle has finite dimensions perpen-

dicular to the direction of travel of the blast wave (Rigby et al. 2013). As the blast wave

reaches the free edge of the reflecting surface, a reflected shock front propagates away from

the target at the same time that the incident shock continues beyond the edge. The pres-
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Figure 2.4: Example pressure-time histories throughout an obstructed environment.

sure imbalance causes diffraction around the free edge and the generation of a low pressure

rarefaction wave that travels along the loaded surface towards the centre of the target.

This reduces the positive phase pressure and impulse acting on the loaded face, making

clearing an important mechanism to consider when modelling blast-structure interaction

(e.g. Alshammari et al. 2022). However, simplified methods such as the KB approach

assumes infinite lateral dimensions, making no adjustment for this effect.

Similarly, channelling (plot C) occurs when the geometry of the surrounding environment

influences the propagation of the blast wave, causing multiple reflections to concentrate in

certain areas (Isaac et al. 2022a). Simplified methods are therefore unable to calculate the

amplification that would be expected in a recorded pressure trace. However, in a study by

Codina et al. (2013), use of a numerical model shows that channelling can increase pressure

and impulse by a factor of 8 when comparing a confined city street to an unconfined control

domain. Remennikov & Rose (2005) also reached a similar conclusion when assessing the

validity of the assumption made by simplified tools that blast effects on buildings occur in

an isolated open space. It is shown that ConWep is unable to account for multiple wave

reflections, in particular when a 300% increase in pressure should be generated as a result

of channelling between two buildings.
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The drastic amplifications and reductions in pressure and impulse show how the wave

interaction processes should be considered in the evaluation of structural response and

human safety, particularly in obstructed environments where combinations of each effect

can contribute to a single pressure trace. This presents a need for analysis approaches

that can accurately model loading variations throughout a given domain, with respect to

the specific geometry. Typically, due to the real-world nature of obstructed environments,

this is achieved using numerical models or scale experiments.

In the assessment of city-scale explosions, Valsamos et al. (2021) developed an approach

that utilises a 3D FE solver with geospatial data from the open-source geographic database,

OpenStreetMap. This allows the structural geometry of a city to be modelled, with the

subsequent simulation taking into account blast wave interactions at building surfaces

throughout the entire obstructed environment. Results from a performance review of the

method are presented for a model that aims to replicate the detonation of 2,750 tonnes

of ammonium nitrate at the port of Beirut in Lebanon which took place on August 4th

2020. It shows that human injury assessments and structural damage estimations can be

generated with an appreciation for the city’s unique layout, ultimately allowing for better

protective measures to be implemented when considering explosions of this scale.

Furthermore, studies focussed on identifying optimal geometrical shapes that could be

used to improve protective designs rely on accurate characterisation of blast effects. For

example, in an experimental study of pre-fractal obstacles, Isaac et al. (2022b) observe that

reductions in peak overpressure and specific impulse of up to 26% and 19% respectively

can occur due to ‘trapping’. This is a mechanism that involves a blast wave losing energy

through multiple reflections inside a shape with an array of smaller obstacles. Additionally,

Gautier et al. (2020) use scaled experiments to investigate the influence of the distribution

and areal density of cylinders on overpressure and impulse throughout a domain. The

cylinders themselves are intended to approximately represent poles, trees, traffic lights or

people, thus informing urban planning for blast mitigation.

Clearly, the combination of various wave interaction effects results in a highly non-linear

and chaotic process that is dependent upon many factors. Thus making explosions in

confined and obstructed environments challenging to model, and predict, even with cur-

rent state of the art numerical tools. Nevertheless, gaining an understanding of unique

geometrical layouts can provide more complete information on the threats posed by ex-

plosive events in urban settings, it is therefore key for understanding many accidental and

terrorist explosions in populated areas.

2.2.9 Computational modelling approaches

The need to understand the effects of an explosion on various targets is underpinned by the

devastating impact that an attack or accidental detonation can have, both economically

and in terms of loss of life. The inherent uncertainty associated with an explosive event

is made evident by how the specific explosive material, its location, and its mass/shape

cannot be known a priori. As a result, there is a shifting focus in the sector to move

away from solely using deterministic analysis methods (providing a definitive output for

a well-defined set of input conditions, as shown in Figure 2.5), as these assume that the

given scenario replicates the exact, and only, explosion that the target should be designed

to resist.
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Figure 2.5: Example progression through a deterministic model for blast analysis.

Probabilistic approaches are therefore becoming more prevalent in blast protection re-

search and design as they combat this uncertainty by enabling the analysis of a large

number of randomly generated model inputs with additional consideration for modelling

uncertainties (Stewart et al. 2006, Stewart & Netherton 2015). Use of various sampling

techniques, such as Monte-Carlo (MC) sampling, of the input variables means that ran-

domly selected explosive events are simulated based on the predefined possibilities of each

parameter (Murmu et al. 2018). Consequently, instead of being provided with a single

output, the user obtains probability distributions of each tracked variable that can be

used to inform cost-benefit analyses in decision making processes that consider the risk

to a higher fidelity (Netherton & Stewart 2010, 2016). A visual representation of this

approach is given in Figure 2.6.
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Figure 2.6: Example probabilistic model using Monte-Carlo sampling for a blast analysis,
where ‘n’ is the number of randomly selected input combinations adapted from Netherton
& Stewart (2016).

The nature of the risk based output from probabilistic analyses is well suited to the deter-

mination of human injuries, where the variability of the explosive event can significantly

alter the regions where specific injuries could be expected to occur. For example, a study

by Gan et al. (2022) utilises this approach to quantify the influence of obstacle density

in an internal environment with a focus on the influence of channelling and shielding.

However, it has also been shown that it is equally useful to vary key model inputs when

optimising structural assessments, such as with the design of sacrificial cladding, or domed

structures (Qi et al. 2020, Rebelo & Cismasiu 2021).
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In a study by Marks et al. (2021), the authors used MC sampling of select input parameters

to conduct a fatality risk assessment along a city street layout with an explosive charge

positioned behind a row of bollards. Two significant findings emerged from this analysis,

highlighting the efficacy of numerical modelling in this context. Firstly, it was observed

that by strategically positioning bollards at a distance of 10 m from the main street within

the simulated layout, the fatality risk for individuals in proximity to that street decreased

by more than 90%. Secondly, the fatality risks are 10–60% higher if deterministic modelling

is used when compared to a probabilistic approach. Both conclusions show how the use

of a large number of batch-run numerical models ensures that safer design practices can

be identified with a greater level of optimisation.

Despite these benefits, probabilistic studies still require a deterministic model to provide

the results for every input combination. Accordingly, if a complex CFD solver were to be

used in a probabilistic framework, as with a study by Alterman et al. (2019), the time

taken to model all scenarios could be beyond what is acceptable. Here, MC sampling

was used to estimate blast loads resulting from the detonation of an improvised explosive

device (IED) within a typical ground floor foyer of a commercial or government building.

In forming the risk assessment, a computation time of 1.55 hours was required for each

of the 100 unique models. Use of a simplified tool such as the KB method would have

reduced this computational requirement, however, this would have also limited the depth

of the author’s conclusions considering the complexity of the investigated domain. Ideally,

a balance between these options would be available to provide rapid, accurate probabilistic

results for explosive arrangements of any complexity.

2.3 Fast Running Engineering Models (FREMs)

2.3.1 Surrogate and Reduced Order Modelling

Surrogate Models (SMs) and Reduced Order Models (ROMs) play a crucial role in Fast

Running Engineering Model (FREM) development as they provide methodologies for the

creation of computationally efficient representations of complex systems.

A SM, sometimes referred to as a meta-model, serves as an approximation of a system

that has a resource-intensive data collection process. They can be developed using vari-

ous techniques, response surfaces, linear and polynomial regression and Gaussian process

regression (Kudela & Matousek 2022). For example, in blast engineering, Pannell et al.

(2021) derives a Gaussian function to approximate the specific impulse distribution on

a plate in extreme near-field scenarios. This acts as a simplified analysis approach that

enables loading to be determined for a wide range of plate widths and explosive stand-off

distances without the need for experimentation or numerical analysis.

Additional benefits are also noted by Westermann & Evins (2019), where the use of SMs

in sustainable building design covers conceptual design, sensitivity analysis, uncertainty

analysis, and optimisation. Here, the authors note that rapid analysis times prevent

creativity interruptions, maximise the potential for design exploration and enable a greater

appreciation for the impact of varied building parameters to be understood.
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Conversely, ROMs strategically reduce the dimensionality of a high-dimensional system

while preserving essential features. This is achieved through the identification of domi-

nant modes or patterns in the system’s behaviour, and the subsequent construction of a

lower-dimensional model (Guo & Hesthaven 2019). A range of methods can be used to

construct a ROM, including Proper Orthogonal Decomposition (POD), Dynamic Mode

Decomposition (DMD), and Galerkin projection (Hijazi et al. 2020). These approaches

combine multiple basis functions that relate the dominant modes, or patterns, in the data

to create the required compact representation of a given system. For instance, Xiao et al.

(2015) uses POD to solve the Navier-Stokes equations for fluid dynamics, analytically de-

termining the POD coefficients using two novel methods. Results are shown to be highly

accurate for flow past a cylinder and the movement of circulating air in domain. As with

SMs, the authors also note that this is observed alongside a significant computational

speed-up, equal to two orders of magnitude in this case.

The development of a model using either of these methodologies can incorporate data-

driven or model-based approaches, with the former utilising a comprehensive dataset of

example inputs and outputs to learn the system’s behaviour, and the latter producing an

analytical representation of the known the processes. Despite this, data-driven techniques,

such as Machine Learning (ML), are often used for SMs, where underlying equations may

not be known or established (e.g. Pannell et al. 2022). Whereas, ROMs are typically

developed for systems where governing equations are known, and the improvement in

computational efficiency is required due to complex full-order calculation processes.

Nevertheless, whilst both methodologies serve as a means of developing accurate approxi-

mations for complex and computationally demanding processes, ensuring the reliability of

a developed model will always require appropriate validation that compares the achieved

accuracy to the associated full-order system.

2.3.2 FREMs in Blast

In Section 2.2.9, probabilistic analyses were introduced as a means of developing a compre-

hensive understanding of the threat posed by given explosive with an appreciation for the

uncertainty of the event. These methods commonly require deterministic numerical mod-

els, however, the solution of complex problems using physics-based modelling approaches

typically results in unfeasible computation times that restrict the number of scenarios

that can be evaluated. Accordingly, there is a need for the development of analysis tools

that yield significant improvements in computational time, with a minimal reduction in

accuracy of the results.

The benefits of using a FREM in a probabilistic analysis are shown by Seisson et al.

(2020), where structural response assessments of masonry panels are performed using a

surrogate model based on a single degree of freedom (SDoF) and simplified blast loads that

are represented by triangular pressure profiles. The availability of these methods enabled

10000 unique scenarios to be simulated with limited computational expense, ultimately

allowing for the influence of changing material properties on failure probability to be

assessed. Despite this, limitations associated to the simplified SDoF approach means that

the analysis is unable to account for the presence of windows, doors, or any other type of

openings in the masonry.
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For characterising blast loads on structures, Angelides et al. (2022) present the prediction

software, EMBlast. This solver calculates the free-field and reflected blast parameters

from a combination of polynomial equations that are fitted to blast trial results and semi-

empirical methods. This application of reduced order modelling uses the Low Altitude

Multiple Burst (LAMB) shock addition rules (Hikida & Needham 1981) to superpose

the outputs from the real charge and numerous image charges to generate pressure-time

histories for finite targets with a greater appreciation for the domain geometry than the KB

method. The authors note that an additional module is planned to include consideration

for internal explosions, but at present, complex, obstructed or confined environments

cannot be analysed.

This is partially addressed by Gault et al. (2020), where a fast-running analysis code is

developed following a series of experimental trials focussed on the influence of a variation

in the charge position in a confined room. Using a combination of path tracing and the

derived experimental relations, the code traces the shortest path of the wave to target,

predicting the pressure, impulse and time of arrival in around 1 s. However, since ex-

perimental relations are used to form the predictions, is not clear whether this approach

could be applied to confined rooms with variable geometries. Thus, limiting the scope of

its applications.

Nevertheless, the potential for the code to be expanded to account for varied geometries is

evidenced by Frank et al. (2008) and Halswijk (2015), where path tracing (or ray tracing)

is shown to provide a means of rapidly analysing the propagation of blast waves in urban

environments. In the study by Frank et al. (2008), an image burst method is used to model

wave reflections on surfaces around a charge with approximations from the CFD solver,

SHAMRC, assisting with capturing the effects of shielding and diffraction. The tool also

includes a mechanism to account for Mach stem development from ground reflections. It

is noted that within a dense urban environment, predictions are generally good for targets

around a corner of with a direct line of sight to the charge, with percentage errors between

the peak pressure from experiments and the model being as low as 9.82%. However,

pressure amplification and reduction in confined and shielded areas are not represented as

consistently, with errors in peak pressure reaching upwards of 50% in many locations.

A similar method is used by Halswijk (2015) in the software, BeamBlast. Here, all of the

physically valid paths between the charge and a target are identified and used to super-

pose a pressure-time history using KB predictions that are modified to account for the

path’s interactions with domain geometry. This tool can be applied to obstructed and

confined geometries, with the authors providing validation for three targets that require

an increasing number of reflections to be considered when forming the predictions. For a

target on the front face of block that is next to the charge, peak pressure and impulse are

predicted with less than 30% and 10% error respectively. Furthermore, arrival times and

durations are less than 5% away from scaled experimental data. As the required complex-

ity increases, and the target is positioned within an obstructed environment, predictions

of peak values display <20% error. However, the time histories showed that accuracy

decreased as the time increases, leading the authors to note that the tool can reproduce

the propagation of ”relatively weak blast waves around rectangular obstacles up to a few

blast time lengths”.
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Within this tool the user is able to control the level of recursion, specifically related to the

number of wave reflections that can be processed. This draws attention to how neither

this paper, or the previous one from Frank et al. (2008) provides a numerical run time

of the developed methods. Additionally, both studies comment that the tools are fast

running, however, neither makes a comparison to the state of the art of CFD solvers

and computing power at the time of publication. This makes it challenging to determine

whether the path tracing based tools can provide a significant computational benefit to

enable the rapid analysis of obstructed environments in 2023, where CFD analyses can be

conducted in a number of hours, rather than days.

Lastly, Pope (2011) introduces the Human Injury Predictor (HIP) as a tool that was de-

signed to rapidly predict weapon and injury effects caused by a person-borne improvised

explosive device (PBIED) in crowded obstructed environments. It expands upon the afore-

mentioned path tracing tools by incorporating probabilistic positioning of people within

a domain to form human injury predictions that account for blast loads and fragment

throw on five distinct sections of the human body. To generate a pressure-time history

at a target, the HIP code uses a dataset of pre-simulated, free-field blast quantities with

scaling and superposition methods to account for interactions with the geometry of the

domain. There is an increase in error between the predicted pressure-time histories and

comparative CFD analyses as the distance from the explosive increases. This is likely to

be associated to the omission of Mach stem consideration, and the application of LAMB

rules that breakdown after a certain number of reflections are used to superpose a pressure

profile. However, the comprehensive nature of the blast load and fragmentation analysis

is well suited to operational needs, meaning that the tool can be used to assist security

services in planning crowd management layouts and medical professionals in optimising

their response to explosive events.

The benefits of fast running engineering models (FREMs) are therefore clear when con-

sidering the need to simulate a wide range of scenarios that help to develop robust under-

standing of the threat being posed. The range of tools that can applied to obstructed en-

vironments is largely limited by the range of methods that can be used to predict reflected

blast quantities in unique geometries where multiple reflections are present. Similarly,

it is not clear how efficient many of the published tools are with respect to the current

standard of CFD analyses. Throughout the following sections, the concept of Machine

Learning (ML) is introduced as an approach that could contribute to the removal of these

issues. A review of existing applications of ML in blast analyses is presented following an

introduction to the basic concepts of ML that are needed to understand the remainder of

this thesis.

2.4 An introduction to Machine Learning

2.4.1 Introduction

The term Machine Learning (ML) is often used interchangeably with Artificial Intelligence

(AI), however, the former is commonly said to be a subset of the latter. Specifically, ML is

a branch of AI that is concerned with the development of algorithms that learn from sets of

data to make predictions when new data is made available. The output can be interpreted

to make decisions, however, the role of ML tools is linked to pattern recognition and the
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representation of the relationships between variables (Mohri et al. 2018). Conversely, AI

has a larger scope related to the development of systems that can make decisions directly in

ways that would normally require human intelligence (Russell & Norvig 2010). To achieve

this, Machine Learning algorithms, that may involve Natural Language Processing (NLP),

Computer Vision or regressive predictions for example, are often used collaboratively.

The contents of this thesis is focussed on the use of ML tools for blast parameter predictions

in environments featuring various obstacles, and so details concerning AI, and its other

subsidiaries, are not covered in the remainder of this chapter. Instead, an introduction

to how ML tools are developed, with a focus on Artificial Neural Networks (ANNs), is

provided.

2.4.2 Applications

The use of Machine Learning algorithms in Structural Engineering has seen an exponential

rise over the last 10-15 years as researchers aim to implement data driven approaches when

solving complex problems (Tapeh & Naser 2023). The specific applications of these algo-

rithms vary greatly depending on the field of study, yet, reviews by Thai (2022) and Flah

et al. (2021) note that the most common tasks are focussed on regression, classification,

and image processing.

Firstly, Thai (2022) discusses how most publications using ML in structural design focus

on regressive parameter predictions for unknown material properties, or classification of

failure modes. Many of the typical algorithms, discussed in Section 2.4.6, can be adapted

for both of these tasks. However, the key difference is that the former predicts continuous

numerical outputs, whereas the latter assigns a discrete category, or class, to an input.

Furthermore, in the area of Structural Health Monitoring (SHM), Flah et al. (2021) notes

that Computer Vision based models are seeing increased popularity as they use image

processing techniques that allow for the identification of patterns, features or objects in

images or videos (Voulodimos et al. 2018). This has resulted in studies that generate

accurate crack detection predictions or stress fields reconstructions that can assist with

understanding the material behaviour with a greater fidelity than a more basic classifica-

tion output (Cha et al. 2018, Chen et al. 2022).

Beyond this, at the time of writing, the most well-known application of ML is related

to Natural Language Processing (NLP). This is driven by the popularity of OpenAI’s

generative tool, ChatGPT, that combines NLP with Computer Vision to analyse text

or image inputs to generate content that resembles human created outputs (Ray 2023).

This allows the tool to answer questions and respond to prompts given by a user for

tasks including language translation, text simplification and coding (Koubaa et al. 2023).

The core function of an NLP is to emulate natural text or speech (Devlin et al. 2019)

and so fundamentally, the use cases for these tools differ greatly from the regression and

classification models discussed previously. Therefore, whilst ChatGPT, and similar tools,

can provide numerical outputs to problems, many scientific applications will benefit from

having structured outputs that relate closely to the problem being modelled.

In summary, the core applications of ML algorithms are related to regression, classification,

computer vision and language processing. These ideas underpin many other potential

uses, with regression allowing for the prediction of future values based on historical data
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in forecasting, and distinct classes being used in recommendation problems where the most

likely outcome needs to be determined. Throughout this thesis, models are developed using

ML algorithms to predict blast loads in environments that feature various obstructions,

and so the remainder of this section will focus on regressive applications of ML.

2.4.3 Development approaches

A training process underpins the development and performance of ML algorithms, with

statistical models and trial and error driving improvements in the ability of the tool to

represent a given process. Depending on the type of ML algorithm being deployed and

the problem being simulated, differing training regimes can be used. Three of the most

common are introduced below, however, hybrid approaches are also possible Russell &

Norvig (2010).

� Supervised learning: Use of known input and output combinations (a labelled dataset)

to enable the model to directly learn the relationship between each variable. Allows

for predictions of the outputs associated to new, unseen input data.

� Unsupervised learning: Use of known inputs without known outputs (an unlabelled

dataset), requiring the model to identify data structures and patterns.

� Reinforcement learning: Use of inputs from interactions with an environment that

leads to feedback in the form of rewards or punishments depending on the chosen

action (output).

In each case, the goal of the training process is to iteratively reduce the amount of error

in the output (or action). Therefore, there is often a need for large amounts of data to

ensure that the interdependencies of the inputs are correctly represented when forming

predictions of the outputs.

For applications in Blast Protection Engineering, it is important to validate the per-

formance of a trained model with data that is accurate to the explosive scenario being

explored. Accordingly, supervised training is used throughout this thesis to ensure that

the model’s output is compared to a known target.

2.4.4 Normalisation

Prior to training a chosen ML algorithm, normalisation can be employed to scale input, or

output, data. This has the effect of standardising variable ranges so that different features

are more comparable, thus, preventing a specific variable from having a disproportionate

effect on the training progress (Flood & Kartam 1994).

This benefit is highlighted by Sola & Sevilla (1997) where linear transformations are used

to normalise inputs that were expressed in different units, with magnitudes that differed

by a factor of 100000. For this study, focussed on determining the output from a nuclear

power plant, this ensured that larger variables did not insert bias into the algorithm’s

training process whilst also improving the training speed. Similar positive conclusions

are drawn by Singh & Singh (2020), where the authors test 14 different normalisation
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techniques for a classification problem. However, it is also noted that some normalisation

techniques do not benefit the ultimate performance or training time of a model. Addition-

ally, different normalisation approaches can change the relevance of each variable, which

in turn influences the resulting accuracy.

Overall, this preprocessing technique could improve performance of a model, however there

is not a single normalisation approach that will guarantee a positive change. In some cases,

particularly those where inputs are of comparable magnitude and unit, it is also possible

for the process to not be required at all.

2.4.5 Feature engineering

In ML, a feature is the name given to a specific input to a model. Feature engineering is

therefore concerned with the extraction, transformation, selection, analysis and evaluation

of the raw data that is subsequently used to interface with the chosen algorithm (Dong

& Liu 2018). It is a process that aims to enhance learning and predictive accuracy by

providing relevant and discriminative information.

Normalisation, discussed in the previous section, is therefore considered as feature engi-

neering, as it manipulates the input data in an attempt to improve the ML algorithm’s

ability to learn. Other common approaches include imputation, where missing values are

filled in with mean, median, or advanced techniques (Mera-Gaona et al. 2021); categori-

cal data handling, where categorical variables are converted into numerical formats using

methods such as one-hot encoding (Li, Wang, Shao, Li & Hao 2023); and the removal of

variables that are deemed to be redundant for an approximation of the system to be pro-

duced (Hua et al. 2009). These processes are often considered as standard preprocessing

techniques that can be applied to all applications of ML., with the aim of providing a

cohesive dataset that has no inconsistencies or gaps that will be difficult for the algorithm

to generalise between.

Despite this, domain-specific feature engineering can also be used to provide features

that focus on the specific characteristics of a particular problem. This is evidenced by

Mende et al. (2023), where the use of domain knowledge when selecting features improves

the performance of a regression based Decision Tree model when compared to features

that were selected using automatic tools. This is because the relationships between the

parameters are better understood by a practitioner in the associated field of manufacturing

engineering. However, automatic processes can still be successful, with Huang et al. (2023)

showing that predictions of heart disease in patients is improved following a recursive

feature elimination process. Here, the chosen model initially trains with all features.

Then, the least significant is removed and the processes is repeated until only one feature

remains to give a ranking of importance. Further experiments then identify the optimal

number of features that provide the best predictive accuracy. Again, this highlights how

the process of feature engineering is often iterative, and dependant on the specific problem

being modelled.

An alternative approach to selecting features directly from a raw dataset involves feature

construction. Here, the developer aims to be provide interaction/combination parameters

that either segments a feature or links two or more features together to identify the best

way to translate information about the problem to the algorithm. In their study aiming to
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estimate ultra-short-term power outputs from turbines, Wei et al. (2023) explores this ap-

proach by introducing four new features based on bespoke equations that better represent

the characteristics of wind power fluctuations. For example, the horizontal and vertical

components of wind speed are calculated using trigonometry to standardise the axes that

the measured value is acting on, and lost wind power is estimated by removing actual wind

power from a theoretically calculated value for previous time steps. The authors report

that this use of domain specific feature engineering allows for high correlations between

the inputs and outputs, and the prediction of extreme fluctuation with a high level of

accuracy compared to standard approaches.

In summary, many feature engineering techniques exist to format raw data in a way that

benefits training of a ML algorithm. The core concepts are typically presented as standard

preprocessing techniques, but domain-specific modifications are rarely used to maximise

performance. The combination of domain knowledge and suitable ML architectures are

vital for the development of useful models, and so this thesis will aim to use the concepts

of blast wave mechanics to inform the creation of ML based tools.

2.4.6 Algorithms

There are a number of different ML algorithms that can be developed to solve a given task,

including Artificial Neural Networks (ANNs), Decision Trees (DTs) and Support Vector

Machines (SVMs). Each option provides a range of positives and negatives associated

to their accuracy, training requirements and complexity, and will vary in performance de-

pending on the application, dataset size, data format, training time, memory requirements

and interpretability of predictions.

Support Vector Machines (SVMs)

SVMs can be applied to classification problems by defining an optimal hyperplane (or

decision surface) that separates the parameter space of a given problem into multiple

categories. The position of the hyperplane is determined with the goal of maximising the

margin between the groups of data, thus making it simple to determine the class that

a new input pattern is associated to (Boser et al. 1992). Originally, this was applied to

linearly separable patterns, however kernel functions can be used to transform the input

features so that SVMs can define non-linear hyperplanes (Cortes & Vapnik 1995, Burges

1998). This enables multi-dimensional, non-linear problems to be evaluated with limited

added computational complexity. Similarly, for regression analyses, where the hyperplane

is used as a continuous prediction line, kernel functions allow non-linear approximations

of the data to be formed. SVMs are therefore easy to interpret and highly effective for

analysing smaller datasets.

Decision Trees (DT) and Ensemble Learning (EL)

DTs can also applied to classification and regression tasks with a hierarchical structure

that found early success with improving the effectiveness of analysing survey data (e.g.

Morgan & Sonquist 1963). A DT is formed from a root node and internal (or decision)

nodes, that represent a feature or attribute, branches, representing a decision based on

the associated feature, and leaf nodes, assigned to a class or prediction. In supervised
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learning regimes, DTs recursively split the input data based on identified features, with

the goal of creating subsets that contain samples of the same class or with similar target

values for regression problems.

The performance of DTs are often improved by utilising an Ensemble Learning (EL)

technique that requires multiple models to be trained independently and then combined

when forming final predictions. Various approaches for developing each framework exist,

including the following given by Ganaie et al. (2022):

� Bagging: Multiple models are trained on different subsets of the training data, using

a process called bootstrap sampling. The predictions of the individual models are

then combined by averaging or taking the majority vote.

� Boosting: Multiple models are trained in a sequence, with each model being trained

to correct the errors of the previous model. The final model is a weighted combination

of all the individual models.

� Stacking: Multiple models are trained on the same data, and their predictions are

combined using an additional model that is trained on the outputs of the individual

models.

Whilst EL can be applied to any ML algorithm, its application is most common for DTs

since an individual tree may not be able to generalise a complex problem space to a suffi-

cient level by itself (Chencho et al. 2021). The original application of the bagging approach

is therefore presented by Ho (1995), where the ‘Random Forest’ (RF) algorithm, based

on DTs, is introduced. Use of the RF approach improves the generalisation capabilities,

robustness and outlier resilience of the developed tool. However, as the complexity of

the forest increases, the computation cost also increases and the ability to interpret the

predictions is lost.

Artificial Neural Networks (ANNs)

Finally, taking inspiration from how neurons operate in the human brain (Rosenblatt

1958), ANNs are able to identify features in an input dataset, to form predicted outputs,

by processing signals of information that are passed between multiple layers of intercon-

nected nodes (or perceptrons/neurons). Typically a network will include of input and

output layers, that correspond to the problem being modelled, and a number of hidden

layers, where the input information is processed and features are extracted. The particu-

lar operation and interconnectivity of the neurons in each layer is dictated by the type of

ANN being developed and the desired application, however, when fully trained, they are

capable of replicating and generalising multi-parameter, high-complexity problems.

For example, neurons in Multi-Layer Perceptrons (MLPs) receive input signals from all

neurons in the previous layer, multiply them by weights, and then standardised the output

signal that is passed to all neurons in the following layer. They are therefore commonly

used for regression and classification tasks (e.g. Zaleski & Prozument 2018, Chen et al.

2022, Bakalis et al. 2023). Alternatively, Convolution Neural Networks (CNNs) require

convolution and pooling layers to transform and subsample pixel values in image and video
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processing (Jing et al. 2022). This adaptability of the neuron based approach has encour-

aged mass experimentation with controlling how information is used in ANNs, resulting in

the development of numerous other architectures that provide bespoke benefits for specific

tasks. These include, time series analysis and language processing with Recurrent Neural

Networks (RNNs) and the generation of realistic images, audio and text using Generative

Adversarial Networks (GANs) (Kumar et al. 2021, Goodfellow et al. 2014).

As the number of neurons increases, ANNs can become computationally expensive to train

and they may not provide outputs that are interpretable. However, they are commonly

applied to problems involving high dimensional data and non-linearity, and are well suited

to processing large amounts of data of varied types (Flood & Kartam 1994, Alpaydin 2016).

As a result, ANNs are the most commonly used ML algorithm in the field of structural

engineering, with 29% of publications using ML from between 2011 and 2020 using this

approach (Tapeh & Naser 2023). Although there are no survey papers that provide a

similar statistic, it is discussed in Section 2.6 that this trend continues for blast related

publications. The remainder of this thesis therefore employs regression MLPs as a means

of rapidly predicting blast loads in obstructed environments. This enables meaningful

comparisons with the current state of the art, whilst also ensuring that the models are

developed with an algorithm that will be capable of accurately representing the highly

non-linear wave coalescence effects.

The following sections expand on the information provided by this summary of the core

ML algorithms to provide the theory for how MLPs are trained, and how they process

information. This is followed by a review of ML applications in blast and protection

engineering.

2.4.7 Multi-layer Perceptrons (MLPs)

Structure

Multi-layer Perceptrons, such as the example shown in Figure 2.7, are formed of individual

neurons that are arranged to pass data between input, hidden and output layers via

connections. They are defined as ‘fully connected’ ANNs, meaning that each neuron is

connected to every other neuron in the layers on step before and after it, and information

is passed from left to right in a ‘forward pass’.

The number of hidden layers and neurons in each layer can take any integer value. It is

therefore common to experiment with various structures when developing an MLP as the

performance of each option will vary, and it cannot be known if a specific structure will

provide optimal performance before the analysis has taken place.

Neuron calculation

Each neuron is evaluated using the calculation process shown in Figure 2.8. In this exam-

ple, the inputs to the network (x1, x2 and x3) are multiplied by numerical ‘weights’ that

are assigned to each connection to control the magnitude of the values being passed from

neuron to neuron. The summation of the input-weight products is added to a neuron spe-

cific ‘bias’ that provides a basline value to each neuron, before the an ‘activation function’
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is used to produce the output value that is translated along the outgoing connections to

the next layer.

…

𝑥1

𝑥2

𝑥3

𝑥𝑛

𝑦1

𝑦𝑛

…

…

…

…

…

…

… …

Input Hidden Output

Connection Neurons
…

…

…

…

…

…

…

… …

Input Hidden Output

Connection Neurons

Figure 2.7: Example ANN structure.
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Figure 2.8: Example mathematical procedure for a single hidden neuron.

Activation functions are used to standardise the summation result at each neuron so that

inputs of various magnitudes do not skew the values being passed through the network.

It is not essential for every neuron to use the same function, however, it is common

for regression based analyses to use an unrestricted linear function for the output layer,

and either the sigmoid or rectified linear unit (ReLU) functions, given by Figure 2.9 and

Equations 2.8 & 2.9, for input and hidden layers.
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Figure 2.9: ReLU and Sigmoid activation functions.

ReLU(x) = max(x, 0) (2.8)

Sigmoid(x) =
1

1 + e−x
(2.9)

Training through Gradient Descent

Performance of an MLP is improved throughout a supervised training process by eval-

uating a loss function that quantifies the magnitude of error between a target and the

output from the forward pass. This error is passed back through the network as part of

a gradient descent optimisation algorithm to identify and update the weights and biases

that caused the incorrect prediction. This process, known as ‘backpropagation’, occurs

once per training step, with each step often including a batch of individual training input

sets to benefit computational efficiency.

Gradient descent can be thought of as a means of descending down a topographical repre-

sentation of the predictive error with each parameter (weights and biases) of the network

representing the surface variables. The algorithm’s purpose is to find the adjustment in

each parameter that steps closer to the global minima that is associated with optimal

performance for the given network structure. Consequently, as with many other factors

involved with the construction of an MLP, identification of the best algorithm requires

experimentation with various options since the efficiency and accuracy of each method

will vary depending on the complexity of the model.

Regularisation

Following completion of the training process, validation using data that was not used

in the training dataset can be evaluated to identify the performance of the ML model

without updating any parameters. This process helps to identify if the network has been

trained sufficiently, or if underfitting or overfitting has occurred. A model is overfit if it

has learnt how to replicate the training dataset instead of generalising the process that is

being modelled, learning the noise instead of the underling patterns in the data. In this

instance, the network will need to be retrained with a different setup or number of training

steps to reduce its complexity. Conversely, a model that is underfit has not been able to

learn the underlying processes, often due to an insufficient number of hidden neurons,

training steps, or amount of training data.
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Regularisation techniques exist to avoid overfitting in ANNs by applying constraints to the

model during training to prevent over complexity. Lasso (L1) and Ridge (L2) regularisation

encourages the weights of the network to tend towards 0 by applying a penalty to the

loss function based on the sum of the absolute weights or sum of the squared weights

respectively. Both methods have the effect of forcing each hidden neuron to have a lesser

influence on the model, thus making it more difficult for the algorithm to exhibit high

variance in its predictions.

Next, ‘dropout’ is a technique that is used to remove some hidden neurons from each

training step, preventing their parameters from being updated in every iteration of the

gradient descent process. This helps to restrict the formation of “brittle co-adaptations

that work for the training data but do not generalise to unseen data” (Srivastava et al.

2014).

Lastly, ‘early stopping’ prevents the use of too many training steps by monitoring the per-

formance of the model after each set of parameter updates. This is achieved by evaluating

the validation dataset after each training step, without updating the model parameters.

If the validation performance does not improve over a specified number of training steps,

the process is terminated as any further improvements are associated to learning noise in

the training data.

2.5 Machine Learning in wider engineering

Within the extensive domain of engineering, regressive Machine Learning (ML) has become

integral in improving the computational efficiency of complex processes. Before discussing

its application in blast loading analyses, this section addresses several overarching themes,

offering insights into the effective implementation of suitable approaches to maximize the

potential benefits.

As discussed in Section 2.3.1, ML can be used in data-driven Reduced Order Modelling

(ROM) whereby a chosen algorithm can assist in evaluating the features that define a

given process. This is achieved by Wang et al. (2018) where the authors develop a hy-

brid ROM based on Proper Orthogonal Decomposition (POD) and a Long Short-Term

Memory network (LSTM). They note that the ML component is used to construct a set

of hypersurfaces that represent the reduced system. The key benefit of this approach is

therefore that the trained algorithm can be used to predict the coefficients needed for the

POD basis functions for new scenarios without the need for snapshots of data from the

corresponding full-order model.

A similar process is described by Xiao et al. (2019) where POD is combined with Gaussian

Process Regression (GPR). In this case, the authors identify that the ROM is six orders

of magnitude faster than the full-order counterpart and it produces similar results to

experimental readings from a wind tunnel. GPR uses a linear combination of Gaussian-

shaped functions to construct the surface representation of the system making it suitable

for lower dimensional problems. However, the authors note that ”neural networks are often

more effective for high-dimensional surface fitting”. This further reinforces the conclusion

of Section 2.4.6, where ANNs were identified to be the most suited to predicting the

complexities of blast loading.
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Generally, the use of ML in ROM emphasises the capability of various algorithms to gener-

alise a process that is characterised by a series of inputs and outputs. As mentioned above,

this is often achieved without replacing an entire full-order model, yet various ML algo-

rithms are capable of learning high-dimensional problems based on many parameters. The

alternative, based on Surrogate Modelling (SM), therefore requires the selected approach

to learn the intricacies of full-order processes directly.

In predicting the buckling behaviour of thin-walled columns, Mojtabaei et al. (2023) uses a

MLP to estimate elastic critical buckling loads, bending moments and the contributions of

the key buckling modes. This replaces the Finite Strip Method (FSM) and the Equivalent

Nodal Force Method (ENFM) that are computationally expensive to evaluate when the

cross-section of a member becomes geometrically advanced. Thus, the surrogate approach

allows for more effective design optimisation and experimentation without the use of a

reduced-order model.

Surrogates that incorporate ML are also useful when the relationship between outputs

and inputs is not explicitly known. For example, Zaparoli Cunha et al. (2023) comments

that in active control of noise and vibration, ML is able to map the problem space for

scenarios where the mechanistic models are currently unknown and/or incomplete. With

this, Cunha et al. (2022) compared four ML algorithms that acted as a surrogate for

sound transmission loss. It was found that the regression neural network outperformed

the GPR, Random Forest (RF) and Gradient Boosted Trees (GBT) and that accuracy

was satisfactory for ”highly non-smooth behaviour resulting from resonant and coincidence

phenomena”. Furthermore, through this performance assessment, the authors placed em-

phasis on the advantages of applying domain knowledge through feature engineering to

produce more accurate and physically consistent predictions. This plays a key role in

ensuring the validity of produced model, as it is noted that surrogates based on ML can

have poor interpretability due to the lack of a connection to physical equations.

Finally, in situations where the problem surface is too complex for a single ML algorithm

to learn the full-order system to a suitable standard, the problem can be broken down

into smaller sections. This is best represented in a study by Zaleski & Prozument (2018),

where rotational spectra, that can have many species, are evaluated in a framework called

RAINet. Here, due to there being a measurable distinction between each type of spectra,

a classifier is firstly trained to sort the problem space into known groups. Once classified,

an input set is then fed into the relevant ANN that is used to regressively predict key

parameters for that specific spectra type. This has the effect of reducing the complexity

of the problem space to enhance the predictive accuracy of each individual ANN.

In summary, ML is widely used for SM and ROM across many fields in engineering and

science. The ability to produce fast running models in a data-driven way enables robust

analyses to be performed for computationally expensive or unknown processes. Risks asso-

ciated to the generation of physically inaccurate predictions for highly complex processes

present challenges to the validation of such tools, yet method such as feature engineering

and the us of ML frameworks have been shown to assist with the development of accurate

models.
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2.6 Machine Learning in blast

As discussed in the previous section, ML tools are commonly used to model highly complex,

non-linear problems in many fields of study, particularly those where the relationship

between the inputs and outputs is not explicitly known (Alizadeh et al. 2017). They are

therefore well suited to the analysis of blast waves where complex wave interactions can

occur.

MLPs are among the most common type of ANNs and have been shown to be successful

in predicting values associated to various task-specific blast scenarios. Most notably work

by Remennikov & Mendis (2006), Remennikov & Rose (2007) and Dennis et al. (2021)

shows how relatively basic network structures can result in prediction-target correlations

(R2
t ) over 0.99 for various blast parameters on city streets, behind blast barriers and in

enclosed rooms respectively. A correlation of 1 indicates perfect agreement between model

outputs and the known targets.

Despite this, in a study by Pannell et al. (2022), it is shown that the predictive performance

of an MLP can be improved by incorporating a physical constraint to the loss function

that is used in training. This kind of physics informed neural network (PINN) utilised the

knowledge that blast waves decay with increasing stand-off to punish the network when

predictions were made that did not fit with that expected decrease in blast parameters.

This results in improved training times and resulting accuracy, whilst also giving the user

confidence that the tool has been developed with a form of physical reasoning that is often

omitted from ML development.

Furthermore, Pannell et al. (2023) presents the benefit of an alternative technique termed

transfer learning. Here, the requirement for large datasets of new scenarios can be alle-

viated through knowledge sharing between multiple networks. In this example a trained

MLP that predicts the impulse from a spherical charge is embedded into a new network

that aims to predict for cylindrical charges. Only the weights and biases of the new con-

nections and neurons are updated throughout the training process, and so the addition to

the spherical network effectively applies a scale factor to its output to account for the new

charge shape. Ultimately it is shown that the transfer neural network (TNN) consistently

outperforms an MLP that was trained without prior knowledge, particularly when less

data is available for training.

Recent studies have demonstrated the advantages of using different network types and ML

tools over the more commonly used MLP. For instance, 3-dimensional convolution neural

networks, typically used in image processing, have been applied to predict peak pressure

between buildings with relative errors of less than 7% when compared to equivalent nu-

merical model outputs (Kang & Park 2023). Similarly, transformer neural networks have

shown relative errors of less than 3.5% and 14% for predictions of Boiling Liquid Expand-

ing Vapour Explosions (BLEVEs) in free air and around rigid obstacles (Li, Wang, Shao,

Li & Hao 2023, Li, Wang, Li, Hao, Wang & Li 2023). These adapted ANNs outperform

MLPs when modelling the complexities associated with explosions and wave propagation,

and a similar conclusion is reached by Zahedi & Golchin (2022) when using a gradient

boosted decision tree to evaluate protruded structures. However, it is important to note

that these conclusions require further exploration to assess more varied applications, data

processing approaches, amounts of training data, and hyperparameter restrictions.
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Regardless of the specific ML tools that is used, the key benefit of using ML approaches

is related to the reduction in the computation time required to analyse specific problems.

However, training and validation processes require large amounts of high quality data,

which is often generated entirely (or at least supplemented by) numerical modelling results,

(e.g. Bortolan Neto et al. 2020). Thus, generation of the database itself brings a significant

capital investment in computation time. For many studies in the sector, this remains a

key issue that is not commonly discussed.

An example of how this becomes prohibitive is made evident in a study by Dennis et al.

(2021) where an MLP was trained to predict peak specific impulse on a 2D plane for

a charge size of 3–10 kg located within a specific rectangle of a 10×7m domain with

around 10% error. Achieving this performance required 72 individual numerical analyses to

populate the training/validation data set, each requiring around two hours of computation.

The benefit of developing a fast running ANN is clearly offset by this initial investment,

highlighting how the reliance on computationally expensive numerical models remains a

key issue.
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Figure 2.10: Previous approach to blast wave analysis using ANNs (Dennis et al. 2021).
Reference to the prediction point and charge are made to a user-defined origin.

Additionally, the application of ML tools is often limited to very specific scenarios due to

the nature of task-specific input features and training data. For example, as mentioned

above, the study by Dennis et al. (2021) focussed on predictions in an internal environment

with a fixed domain size. But, requiring a prediction of a different domain would provide

inputs to the network that are outside of its training ranges. The prediction would there-

fore rely on the model’s ability to extrapolate based on the relationships it derived during

the training process, yet without the application of transfer learning, neural networks

cannot reliably achieve this (Pannell et al. 2023).
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This issue is highlighted by Figure 2.10 which shows how inputs are assigned to the network

for each prediction point relative to the user-defined origin of the domain. By providing

the charge and point of interest (POI) location to the network, a prediction is made with

details of the domain size and boundary conditions being embedded into the architecture

of the ANN during the training process. A change in these conditions therefore renders

the developed network unusable, with the user being required to develop a new tool or

conduct additional CFD analysis if, for example, they wanted to evaluate the effect of a

blast barrier on the output. Therefore, considering the relationship between computation

time, solution accuracy and model versatility, Figure 2.11 shows where a study from the

current state of the art is positioned relative to the optimal combination at the target

zone.
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Figure 2.11: Comparison of modelling approaches in relation to the output from Dennis
et al. (2021) considering computation time, solution accuracy and tool versatility.

As evidenced by the previous sections of this literature review, the need for probabilistic

analyses of complex, obstructed environments is hindered by the lack of analysis tools that

are versatile, accurate and fast running. ML approaches provide a means of achieving this

goal, however, at present, no such tool exists.
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2.7 Summary

This section has presented the background theory of various concepts in Blast Engineering

that are deemed to be relevant for the contents of this thesis. Through an introduction to

detonations and blast wave propagation, it is shown that regions of intense loading caused

by wave reflections are critical for the evaluation of confined or obstructed environments.

Insights from the analysis of these environments using probabilistic approaches are shown

to account for the inherent uncertainty related to various charge conditions and structural

properties. However, use of numerical solvers or physical experiments can limit the number

of unique domains being evaluated, thus restricting the depth of the conclusions being

formed. Existing simplified analysis tools that generate predictions for these scenarios

typically use path finding algorithms and modified free air predictions. This results in poor

performance when multiple reflections and dense environments need to be considered, and

it is unclear how these tools compare to the current state of the art of CFD analyses in

terms of computation time. Surrogate Modelling and Reduced Order Modelling through

Machine Learning (ML) was therefore introduced as a means of rapidly analysing non-

linear, multi-dimensional regression based tasks. This included a summary of various

ML applications, algorithms and development approaches, followed by the key details

associated to the development of one of the most common architectures, the multi-layer

perceptron.

Findings from this chapter highlight the need for the development of tools that improve the

computational efficiency of conducting probabilistic analyses in obstructed environments,

resulting inObjective 1 of this study being met. Throughout Chapters 4, 5, 6 and 7, various

methods and tools are developed to address the key issues associated to ML and predictions

in complex environments. Specifically, the need for a comprehensive training dataset to

be formed using CFD/FE or experimental data, and the lack of a generalised approach to

producing predictions in obstructed environments with varied domain geometries.
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Numerical modelling

3.1 Introduction

Simulating the detonation of a high explosive and the resulting blast wave can be achieved

using physics-based numerical solvers that apply the governing equations associated to the

conservation of mass, momentum and energy in a discretiation of space and time. The

blast-specific Computational Fluid Dynamics (CFD) solver, Viper::Blast (Stirling 2023),

is used as the primary numerical model in this thesis. It is experimentally validated in

this Chapter following an introduction to its key features, a mesh sensitivity study and

an assessment of a suitable scale factor to transfer simulation data to a domain using 3D

elements after the initial detonation is modelled in 1D.

Following this, the Finite Element (FE) solver LS-DYNA is also introduced as a means

of modelling blast wave propagation, with experimental validation being provided for a

specific scenario that replicates the simulations conducted in this thesis. A comprehensive

scale factor analysis and mesh sensitivity study are not provided for this tool seeing as

previous articles have also conducted the same simulations to perform experimental vali-

dation (Rigby et al. 2018, 2020b). It is also not the focus of Chapter 4 (where this solver

is used) to evaluate the accuracy of the models directly.

The contents of this chapter are presented to meet Objective 2 of this study.

3.2 Viper::Blast

3.2.1 Introduction

The numerical solver Viper::Blast (herein referred to as Viper) is a CFD solver that is

founded upon the theoretical framework established by Wada & Liou (1997) and Rose

(2001), using the AUSMDV numerical scheme to solve the inviscid Euler equations. It has

a wide range of applications in a number of recent studies including an air blast variability

analysis, the evaluation of multiple simultaneously detonated charges, and the evaluation

of explosions at the opening of a mine (Marks et al. 2021, Zaghloul et al. 2021, Remennikov

et al. 2022). It is therefore shown to provide a diverse set of features that enable it to be

applied to a range of scenarios, with the most important being detailed in the following

sections.

Seeing as this tool also utilises the computing power of Graphics Processing Units (GPUs),

it should be noted that all simulations in this thesis were performed using Viper version

1.20.6a on a computer that utilises a NVIDIA T1000 dedicated graphics card with a CUDA

compute capability of 7.5, in addition to 16GB of system RAM and an Intel Core i7-10700

processor.

36
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3.2.2 Simulations methods

Simulations can be performed in Viper using the Jones-Wilkins-Lee afterburn (JWLAB) or

Ideal Gas (IG) methods. These approaches represent the charge in differing ways, with the

latter applying a single material isothermal burst that represents a fully detonated charge,

without detonation products. This is accompanied by an Ideal Gas (IG) model that

assumes the domain is filled with gas that obeys ideal gas laws, including the assumptions

that the particles are point masses that do not interact except through elastic collisions.

The IG laws are true for low pressure, high temperature interactions, and since the det-

onation of an explosive will create a high pressure blast wave, these laws are not always

applicable and can result in some physical inaccuracies in the simulations. The JWLAB

method therefore uses a multi-material, initially undetonated explosive with detonation

products that are defined by the Jones-Wilkins-Lee (JWL) (Lee et al. 1968) equations of

state. This uses additional parameters for the charge that relates the pressure, volume,

temperature and internal energy to the material being simulated. Furthermore, an after-

burn model is applied with an energy factor and duration so that any additional energy

from detonation product reactions is released into the domain over a specified period of

time.

It is noted in the manual of the solver that the JWLAB approach is more suited to scenarios

where the expansion of the detonation products needs to be more accurately replicated,

such as in the near-field, or if blast-obstacle interaction close to the source is expected.

Whereas, IG simulations require reduced computational effort making them more suited

to to solving far-field problems.

3.2.3 Domain creation and mapping

Viper allows simulations to be conducted 1D, 2D or 3D, with data mapping capabilities

between each option. In the 1D phase, the solution is provided using a spherical calcula-

tion process that terminates as the blast wave reaches the domain boundary. Similarly, 2D

models are cylindrically evaluated, however, boundaries can be set to ‘terminate’, ‘trans-

mit’, or ‘reflect’ to allow the simulation to progress beyond the first interaction of the wave

with the environment. In both phases, the user is able to control the size of the domain,

but additional geometries cannot be added.

Conversely, the 3D phase allows for cuboid domains of any size with obstacle creation via

stereolithography (STL) ASCII format file read-in or nodal input. Each domain boundary

is set as either ‘reflect’ or ‘transmit’ and obstacles can be defined as breakable or rigid

reflecting. For breakable obstacles, an associated Pressure-Impulse diagram should be

provided so that failure is caused at the correct time, after which the simulation will

progress with the entire obstacle being removed.

Any number of monitoring locations (gauges) can be specified in any phase, either through

manual input or text file import. Each gauge can be provided with additional triggers

to either terminate the model, or produce a remap file as soon as a non-ambient value is

recorded.
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3.2.4 Explosive types

The version of Viper that is used throughout this document (1.20.6a) provides built-

in charge properties for Trinitrotoluene (TNT), Composition C-4 (C4), Ammonium Ni-

trate/Fuel Oil (ANFO), Nitromethane, Pentaerythritol Tetranitrate (PETN) and Plastic

Explosive No.4 (PE4). It also allows for vapour detonations and custom compositions

with user defined properties.

It is important to note that the properties provided for PE4 are only suitable for the

JWL solving approach. However, as discussed by Bogosian et al. (2016), C4 and PE4 are

nominally identical and so the C4 model can be used for IG simulations aimed to replicate

the detonation of PE4 if required.

To identify a suitable solving method and cell sizes for both 1D and 3D phases, the

following sections provide a mesh sensitivity study and mapping scale factor analysis. The

former determines a suitable approach through comparisons to the Kingery and Bulmash

(KB) method (Kingery & Bulmash 1984) using TNT and PE4, whereas the latter compares

results from a 3D domain to experimental trails of PE4 hemispheres, using various charge

sizes and stand-off distances.

3.2.5 Mesh sensitivity

Amesh sensitivity analysis is presented to identify the cell size and solving method required

to preserve the initial release of energy when simulating the detonation of an explosive in

a 1D phase, with the intention of mapping these results to 3D domains throughout the

remainder of this thesis. This is achieved by observing convergence of the outputs from a

series of gauges in a 1D Viper model with comparisons made to the KB method (Kingery

& Bulmash 1984).

Table 3.1: Viper::Blast model parameters for PE4 detonations.

Parameter Value Unit

Generic

Pressure 101325 Pa
Temperature 288 K
CFL: 1D 0.5
CFL: 3D 0.4

PE4 (C4): IG
ρ 1580 kg/m3

E0 6.06E6 J/kg

PE4: JWL

ρ 1576 kg/m3

E0 8.698E6 J/kg
A1 9.5929E11 Pa
R1 5.616
A2 4.914E9 Pa
R2 1.804
ω 0.136

DCJ 7929 m/s
PCJ 2.4E10 Pa
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Figure 3.1: Overpressure and specific impulse from mesh sensitivity analysis and evaluation
of IG and JWL detonation models for PE4.
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PE4 is chosen as the explosive since experimental comparisons provided in the next section

will use this compound. Similarly, hemispherical charges are modelled to enable continuity

throughout the validation process. Both the JWL and IG solving methods are evaluated

to output the incident peak overpressure and specific impulse at five stand-off distances

between 2 and 10 m for a charge size of 250 g.

As mentioned in the previous section, the built-in properties provided in Viper for PE4

are only suitable for the JWL solving approach, and so the C4 model can be used for

IG simulations. Additionally, each charge is modelled as twice the hemispherical mass to

account for how the 1D solver (spherically-symmetric) does not include a reflecting ground

surface. Viper input parameters for this process are shown in Table 3.1.

Figure 3.1 shows that as the cell size reduces, the peak pressure and specific impulse of both

solving methods begin to converge on the KB predictions. Since the KB method uses semi-

empirical equations derived from tests using TNT instead of PE4, an equivalency factor

of 1.2 is used to convert the mass of PE4 to an equivalent mass of TNT when predicting

these values (Rigby & Sielicki 2014).

For all stand-off distances, the peak overpressure output from Viper is within 10% of

the KB output as the cell size approaches 0.005 m. However, specific impulse is routinely

under predicted, in particular when using the IG simulation. Convergence of both methods

occurs with a cell size of 0.002 m, providing around 20 cells across the radius of the charge.

3.2.6 Cell size in 3D

When mapping from 1D to 3D, an increased cell size is required to prevent prohibitively

large computation times. However, as the data is interpolated into a 3D domain, cell

sizes that are too large will result in rounding of the pressure traces leading to inaccurate

estimates of the blast parameters.

Figure 3.2: Experimental arrangement and gauge positions (Rigby et al. 2015)

In this section, Viper models featuring 250 g PE4 hemispherical charges are compared

to experimental results obtained by Rigby et al. (2015) for the arrangement shown in

Figure 3.2. A 1D phase is simulated to a stand-off of 2 m with a cell size of 0.002 m to

provide ∼21 cells across the charge radius. This initial detonation is mapped into a series

of 3D domains featuring differing cell sizes to identify a suitable increase.
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Experimental peak values are taken from curves that were fit to the pressure traces of

gauge 1 (G1) to negate the effects of sensor noise and variation. The blockwork wall that

the gauge is mounted to is represented in Viper as a non-reflecting boundary.

As shown in Figure 3.3, for stand-off distances of 4 m and 8 m the computation time greatly

increases as the cell size decreases below 0.016 m, particularly for JWL simulations. There

is also minimal improvement in the peak pressure and specific impulse comparisons below

this point. The peak overpressure may be a function of the number of cells in the domain,

however, there still appears to be a maximum cell size that should be provided to prevent

a loss of resolution that reduces the peak readings. Here, for a 250 g PE4 hemisphere,

this is identified to ten times the 1D cell size, 0.02 m. Conversely, the predictions of the

peak specific impulse are consistent with all cell sizes, suggesting that it is the initial burst

energy, handled in the 1D phase, that is more important to preserve for this parameter.
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Figure 3.3: PE4 validation results for 250g hemispherical charges and gauges placed at
4 m and 8 m stand-offs.
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3.2.7 Far-field experimental validation

The previous sections have shown that in order to preserve the peak overpressure and

specific impulse of a simulation, the 1D cell size of the Viper models should provide at

least 20 cell across the charge radius. Furthermore, in 3D, the cell size should not exceed

ten times the maximum 1D cell size. For a 250 g PE4 hemisphere, this restricts the cells

to be 20 mm or below. To verify these findings, and assess the ability of Viper to produce

reliable pressure-time histories, nine additional comparisons are made against existing

experimental data.

Figures 3.4, 3.5 and 3.6 show the pressure-time and specific impulse-time histories for

the range of stand-off distances and hemispherical PE4 charge sizes shown in Table 3.2.

In every case, IG Viper models have been simulated with 2 mm cells in the 1D phase.

Furthermore, 16 mm cells are used in the 3D phase for all domains apart from when the

stand-off is 10 m in Figure 3.6, here 20 mm cells were specified to ensure that the entire

model could be evaluated using the same Viper solving method, using one GPU.
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Figure 3.4: Overpressure–time histories for 250 g/2 m, 180 g/2 m and 250 g/4 m, PE4
hemispherical charge size/stand-off pairings. Viper arrival times matched to experiments.
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Table 3.2: Far field validation with PE4 hemispheres, model details.

Charge
size (g)

Charge radius
(m)

Cell size (mm) Stand-
off (m)

Scaled distance

(m/kg1/3)1D 3D

250 0.042 0.002 0.016 2 2.99
180 0.038 0.002 0.016 4 6.67
250 0.042 0.002 0.016 4 5.98
350 0.047 0.002 0.016 4 5.34
250 0.042 0.002 0.016 6 8.96
290 0.044 0.002 0.016 6 8.53
350 0.047 0.002 0.016 6 8.01
250 0.042 0.002 0.016 8 11.95
250 0.042 0.002 0.020 10 14.94
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Figure 3.5: Overpressure–time histories for 350 g/4 m, 250 g/6 m and 290 g/6 m, PE4
hemispherical charge size/stand-off pairings. Viper arrival times matched to experiments.
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Figure 3.6: Overpressure–time histories for 350 g/6 m, 250 g/8 m and 250 g/10 m, PE4
hemispherical charge size/stand-off pairings. Viper arrival times matched to experiments.

Agreement is fairly good for all stand-off distances with suitably shaped traces and peak

values, particularly for specific impulse and for when the noise present in the initial rise

of the experimental traces is suitably ignored. However, as expected, when the simulation

progresses to gauges positioned at larger scaled distances (> 8 m/kg1/3), the pressure

traces begin to display increased amounts of rounding in the overpressure peak. Further

reductions in the cell size would help to prevent this at the expense of computation time.

Additionally, the time of arrival of the Viper traces were matched to the experimental

records and the secondary shock is not predicted accurately, however, this is a known

drawback of CFD analyses (Rigby & Gitterman 2016).
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3.2.8 Summary

In summary, the numerical solver Viper::Blast has been experimentally validated for use

in this thesis following mesh sensitivity and mapping scale factor analyses. By ensuring

that each model uses a 1D cell size that provides at least 20 cell across the charge radius,

and a 3D cell size less than ten times the maximum permissible 1D cell size, the peak

overpressure and specific impulse of each simulation will be representative of the physical

problem.

3.3 LS-DYNA for blast analyses

3.3.1 Introduction

LS-DYNA is a Finite Element (FE) solver that has been applied to a wide range of

problems related to material failure and fluid-structure interaction. Its operation is based

on the breakdown of a given domain into sections that represent different materials, each

with differently assigned mechanical properties and equations of state that dictate the

response to a specific stimulus. The materials are discretised by a mesh that creates a

connected array of elements upon which governing differential equations are calculated in

explicit or implicit time stepped procedures.

Unlike the blast focussed solver, Viper::Blast, wave propagation can be modelled using

an explicit Arbitrary Lagrangian-Eulerian (ALE) method. This formulation combines the

Lagrangian and Eulerian approaches to defining elements, where the former provides a

mesh that is fixed to the material to allow for distortion, but not the passing of any

material between elements. Whereas, the latter fixes the mesh in space, allowing flow of

material through the mesh without distortion.

With both meshes applied to a given domain, mapping functions are used to transfer

information between each mesh at each time step. This allows the deformation caused by

the blast wave to be tracked, without excessively large deformations being applied to the

Lagrangian elements. Additionally, the ALE method is able to model material interfaces

to evaluate multi-material problems, making it suitable for simulating the detonation of

an explosive compound in air (Souli et al. 2000).

3.3.2 ALE mapping

A key feature included in LS-DYNA is ALE mapping. It allows the user to begin the

current ALE simulation using data that is read from the last cycle of a previous ALE run

(Livermore Software Technology Company 2015). This applies to Multi-material ALE

(MM-ALE) simulations and is commonly used in cases where symmetry enables part of a

given simulation can be performed with a different number of dimensions to the remainder

of the model.

For example, Aquelet & Souli (2008) explains that in their simulations that evaluate blast

wave propagation through water, a 2D model is used to compute the solution until the

blast wave’s symmetry is no longer respected, at which point the data is mapped to a 3D

domain for the simulation to continue. Through making this adjustment, the computation
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time decreased from 670s to only 371s when compared to running a model fully in 3D

(Aquelet & Souli 2008). Similarly, Lee et al. (2020) utilises a 1D mesh for a symmetric

free air blast, but when the ground is contacted the parameter field is mapped to a 2D

axisymmetric mesh. Then, as the closest wall is impacted, the data is mapped again to

a 3D domain that runs until termination. The obtained results show good agreement

with equivalent experimental data to prove that ALE mapping in LS-DYNA is a viable

approach for applying new element meshes to domains.

Remapping data can also be used to apply a new mesh to a domain if there is movement of

the boundaries in response to the process being simulated. In these cases, the mesh that

was initially defined needs to be adapted to fit the new deformed geometry (Menon et al.

2015). This process results in element connectivity and node position alterations, however

these changes are not intended to reduce simulation times, instead they focus on making

the simulations more accurate to real world experiments where materials can deform in

response to external forces.

Throughout this section, ALE mapping is used in LS-DYNA to ensure the detonation

of an explosive compound is evaluated with a sufficient number of elements in a reduced

domain, before the data is mapped into the full domain with a resolution that benefits

computation time. Experimental validation will indicate the element sizes of each mesh

to prevent a loss in solution accuracy.

3.3.3 Experimental validation

As discussed in Section 3.1, LS-DYNA is not the primary solver used in this thesis. Exper-

imental validation is therefore only provided for a two-dimensional scenario that replicates

the models that are evaluated in Chapter 4. This is because the 2D domains that feature

in that chapter required additional obstructions to be created and Viper does not support

this.

Table 3.3: LS-DYNA keyword values.

*MAT NULL

Parameter Value Unit

ρ 1.225 kg/m3

*MAT HIGH EXPLOSIVE BURN

Parameter Value Unit

ρ 1601 kg/m3

D 8193 m/s
PCJ 28.00E9 Pa

*EOS LINEAR POLYNOMIAL

Parameter Value Unit

C0 0.0 Pa
C1 0.0 Pa
C2 0.0 Pa
C3 0.0 Pa
C4 0.4 -
C5 0.4 -
C6 0.0 -
E0 253.40E3 Pa

*EOS JWL

Parameter Value Unit

A 609.77E9 Pa
B 12.95E9 Pa
R1 4.50 -
R2 1.40 -
ω 0.25 -
E0 9.00E9 Pa
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The experimental results first published in Rigby et al. (2018) are used to validate the

detonation of a spherical 100 g PE4 charge placed 80 mm from the rigid plate using LS-

DYNA’s MM-ALE solver. This allows the solver to simulate explosive scenarios, with each

cell in the domain containing air and high explosive without either material needing to

coincide with the cell boundaries (Peery & Carroll 2000). Table 3.3 provides the values

that are assigned to each of the relevant material model and equation of state parameters.

It is essential for the progression of the blast wave that the initial energy is preserved

throughout the detonation process (Lapoujade et al. 2010) and generally over 10 elements

across the radius of the charge should be used to ensure sufficient accuracy of the detona-

tion in LS-DYNA (Schwer & Rigby 2018). The use of 1.25 mm square elements provides

∼20 elements across the radius of the charge and is deemed acceptable in this instance.

Figure 3.7 shows a comparison on the numerical and experimental reflected pressure and

specific impulse (cumulative temporal integral of pressure) histories at the centre of the

target panel (0 mm), 50 mm away, and 100 mm away from the centre. Furthermore,

Table 3.4 provides the peak values from these plots to verify that the magnitudes and

general form of the profiles are in reasonable agreement, giving confidence in the ability

of the numerical approach to adequately simulate the salient physical processes.
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Figure 3.7: Pressure-time and specific impulse-time histories for the detonation of a 100 g
PE4 charge placed 80 mm from a rigid plate for three distances from the centre of the
plate.
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Table 3.4: Peak reflected pressure and specific impulse values from the experiment and
simulation profiles shown in Figure 3.7.

Distance
from plate

centre (mm)

Peak reflected pressure Peak specific impulse
(MPa) (MPa.ms)

Experiment Simulation Experiment Simulation

0 209.08 256.92 3.87 4.01
50 107.78 146.73 1.96 1.45
100 42.03 43.22 0.65 0.66

The discrepancies between experimental measurements and numerical output have been

seen previously Rigby et al. (2018), and are likely attributed to the strong directional-

ity, high pressure/velocity gradients and magnitudes of the near-field blast. Whilst they

appear significant when viewing discrete pressure and impulse histories, they are less signif-

icant for target response considerations due to the relatively low areas over which they are

acting (compared to the pressure histories at 100 mm from the centre which demonstrate

much better agreement).

3.3.4 Summary

In summary, the solution of a problem is highly dependant on the resolution of the mesh,

the quality of the material models being applied and the contact mechanisms that are

allowed between each element. This section therefore validated LS-DYNA as a means

of evaluating the propagation of a blast wave through 2D domains where rigid obstacles

are present. Use of 1.25 mm square elements and an MM-ALE solving process is shown

to provide results that match to previously published work, ensuring that its use in this

thesis is justified.



Chapter 4

Informed data mapping to reduce

computation times

4.1 Introduction

As discussed in Chapter 2, it is clear that there is a need for rapid analysis tools that

can be used to model environments featuring various obstacles when subjected to the

detonation of a high explosive. Machine learning methods present a means of achieving

this, however, the computational expense associated to data collection and processing

limits their accessibility and ease of development.

This chapter therefore presents ‘The Branching Algorithm’; an algorithm for informed data

mapping between numerical models that feature similar initial conditions. The approach

is introduced in this chapter alongside a proof of concept, before further developments and

applications are shown in the following chapters.
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Figure 4.1: Initial idea for a method that saves computation time with removed simulation
steps shaded in grey. Blast waves shown in red, rigid panel in dark grey.
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4.2 The Branching Algorithm

4.2.1 Concept

The Branching Algorithm (BA) originated from an initial sketch, similar to Figure 4.1,

showing that if the same sized explosive material is detonated using an identical method

in varied domains, multiple models will feature identical parameter fields (relative to the

position of the charge) up to the time when the respective blast waves impact a unique

point in any given domain. In this two-dimensional example, the panel width varies

between ‘small’ and ‘large’, meaning before the blast wave reaches the point where it

would be at the edge of the small panel, all three parameter spaces are identical. The

majority of each field remains ambient, and the blast wave brings a change in pressure

that leads to various other parameter alterations.

This duplication of results, and therefore duplication of calculation steps, means that

modelling in this manner is inefficient in terms of computation time. The BA is therefore

designed to identify when deviations in the parameter field would occur prior to any

numerical simulation. Thus enabling informed data mapping that can be used to remove

the repeated calculation steps.

4.2.2 Inspiration

Code reuse and programming

The idea of removing unnecessarily repeated steps is common in computer programming

and software engineering projects and is often concerned with code that was developed for

one system (source) being reapplied to another (target) (Feitosa et al. 2020). This aims to

reduce the number of person-hours required to successfully implement a system, and since

the source is known to function correctly, the chance of encountering an error is reduced.

In essence, this idea relates to avoiding repeated steps within the development process as

there may be existing solutions for a problem that can be reapplied for the new challenges

that are faced.

A similar ideology is applied to writing code with the term DRY (do not repeat yourself)

programming relating to where a programmer aims to avoid writing code in more places

of the project than is necessary. This term was formally defined in a book by Hunt &

Thomas (1999), but is now commonly seen as a ‘best practice principle’ for researchers

aiming to develop programming skills (Wilson et al. 2014). Various programming software

such as Python and MATLAB allow users to repeatedly call back to a set of instructions

that have been defined in one place to abide by this rule with the use of ‘functions’ (van

Rossum 1995, MathWorks Inc 2021). This removes the need for the same block of code to

be copied throughout the entire project with the key benefit being that a change to the

process included in the function only needs to be coded once, not at every instance in the

overall script. Furthermore, this provides added flexibility to the program due to how the

output of a given function can be edited easily with the changes then being implemented

at every location. This is where the connection to time dependant modelling becomes

apparent as this is gives a foundation to the idea that data can be shared by various

processes. Despite these ideas not featuring in many research papers as a result of them
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being considered as standard practice, the idea of removing repeated steps is not being

utilised outside of computer science and programming despite the potential benefits to

research and design efficiency.

Computer processing and parallel simulation

Running multiple processes in parallel to save computation time is something that has

been explored in computer science for a number of decades. Historically when a computer

was used to execute an operation, a single processor would deal with the request and its

clock speed would indicate how many processing cycles would be performed per second.

A higher clock speed therefore indicates better performance as a greater number of basic

instructions could be executed. With only a single processing unit, tasks could not be

performed simultaneously, instead cycles of the processor would be distributed to make it

appear like multiple tasks progressed at the same time (Alessandrini 2015).

More recent developments in this field saw the introduction of multi-core processors. These

enable tasks to be split up on multiple processing units, or cores, within one processor slot

on the computer motherboard, thus allowing for entire tasks to be performed simultane-

ously. Despite advancements in transistor technology also allowing commercially available

processor clock speeds to increase from around 900 MHz (900 million cycles per second)

to upwards of 5 GHz (5000 million cycles per second) in the last 20 years, there are still

scenarios where the power of a single processor, with multiple cores, is not enough to com-

plete certain tasks. To overcome this challenge, multiple processors can also be used in a

network that enables the joint processing power to be accessed provided that the specific

problem is broken down into smaller executable tasks. One of the world’s most powerful

supercomputers, Summit, utilises this approach with additional graphics processing units

(GPUs) acting as accelerators to achieve a theoretical peak processing capability of 200

quadrillion calculations per second (Hanson 2020).

When considering modelling applications of parallel computing, many are not concerned

with running a framework of tests at the same time. Instead, they aim to simulate highly

complex scenarios with multiple cores acting as one solver (e.g. Wu & Tseng 2005, Meng

& Berzins 2013, Bruneau & Khadra 2016). A common benefit of this being that greater

model fidelity can be achieved as a more refined element mesh can be simulated without

impractical computational expense. Furthermore, tasks that were previously too complex

to solve could be processed provided that a sufficient number of cores were connected with

an effective means of communication. The approach is therefore very useful for specialist

applications such as multi-scale material modelling, where the detailed plastic response

of a material is simulated on a fine-scale model and used to inform a coarse-scale finite

element material model that runs at the same time (Barton et al. 2011). Alternatively,

in gas particle tracking, individual particles and collisions can be modelled throughout a

domain that is split into sections for each processor to compute separately until there is a

crossing of a boundary (Furlani & Lordi 1990).

The ideas presented here concerning the development of parallel computing directly in-

spired the algorithm and approach proposed in this thesis. In particular, the method

followed by Bruneau & Khadra (2016) features sub-domains that are calculated in a pro-

gressive manner, with a given row of cells waiting to be initiated by data that is passed

from the neighbouring cell being is calculated by a separate core. In order to remove



52 4.2. The Branching Algorithm

unnecessary duplicated steps within a framework of models, each model can be thought

of as a section of the overall domain in this example. Now, for the framework of tests, a

single model could begin being simulated on one processor/core until a condition is met

where another model would no longer share the same output. At this point data can

be communicated to another processor for that simulation to begin at the point where

duplicate steps do not need to be simulated again. Instead of allowing for a continuous

dialogue between processors as the examples noted here require, now, each one simply

waits for the model to be passed on to it, and it then runs independently of the others

until the termination time is reached.

4.2.3 Principles and terminology

Time-varying numerical forward models can be used to estimate a parameter field, θ, given

initial conditions, Ω, in some domain, ∆. The parameter field could, for example, include

pressure, temperature and stress at each specified point and it could be used to assess

the impact of an explosive, development of a crack, or variation in any relevant quantity.

With the aim of the proposed algorithm being to avoid duplicate calculation steps in a

batch simulation process, consideration of how the parameter field, θ, changes with respect

to space and time in each given domain is required. The calculated parameter field at a

location given by x, y and z, at time, t, is therefore given by Equation 4.1, with f(·)
representing the given numerical model.

θt(x, y, z) = f(x, y, z,Ω,∆, t, θt-1). (4.1)

Provided that multiple models are compatible for data mapping according to a user defined

subset of the input conditions, χ, it is possible for the Branching Algorithm (BA) to define

a ‘trunk model’, given by ∆T , ΩT and θT , that corresponds to the test arrangement that

simulates a developing parameter field that is common to all other models relative to a

specific domain location up to a certain time step.

The specific time step when the trunk model and any other given model (or ‘branch’ of

models) from the batch of tests stops producing identical parameter fields can be defined

as the ‘deviation point’ for that model. This is given by Equation 4.2, with θTt (x, y, z)r
representing the trunk model’s parameter field at time step, t, in a position given by the

relative x, y and z coordinates. Similarly, θnt (x, y, z)r denotes the parameter field at the

same relative location and time step, in model n of the batch.

θnt (x, y, z)r ̸= θTt (x, y, z)r (4.2)

The relative position in the domain is given by Equation 4.3:

(x, y, z)r = (X,Y, Z)r − (x, y, z) (4.3)

with,

(x, y, z) = Position of the point in model n’s domain

(X,Y, Z)r = Relative point that is common between both models, n and T
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The comparison between the trunk model’s state, θTt , and any other model at the same

time step, θnt , is only possible if the relative domain location is shared as this removes

the influence of varying domain shapes and sizes. Comparing multiple domains that are

modelling an explosion requires the shared location to be at the detonation point of the

explosive as this is the initiation point that causes changes to the parameter field in the

surrounding area. However, this approach could be applied to other fields of study where

differing relative indicators would be required.

Further, a deviation point corresponds to the first time step where the model’s calculated

parameter field would be different from the trunk model. Mapping the data associated to

θTt−1 to the new domain for use with its own input and domain conditions, ∆n and Ωn,

with (X,Y, Z)r acting as the origin, therefore enables simulation steps in model n from

t = 0 to the current mapping time to be saved.

The BA determines the deviation point with respect to the spatial location, (x, y, z), for

each model prior to any numerical simulation by assessing the ‘influences’ present in each

domain. These influences are defined as the factors that change the input conditions

into the observed outputs, meaning they are bespoke to each potential application of

the algorithm. However they will be defined by a subset of the inputs to the numerical

calculation:

λn
i ⊂ [(x, y, z)r,Ω

n] (4.4)

where i is the influence number. Example influences include specific boundary constraints,

time-dependant calculation variables, or possibly entire calculation methods that are in-

troduced after a threshold value is reached.

In order for the algorithm to discern when each influence is reached in each respective

model, a comparison metric, γ, is defined for all entries. The time step associated with

when each potential deviation is reached in the numerical model may not be known prior

to the simulation of each domain, however, an expected sequence of when each point is

met can be defined with consideration of additional parameters. Again, for the example

of modelling an explosion, the distance/time that the blast wave will travel before it will

reach each influence can be used to define the order of influence activation. Therefore

allowing the algorithm to identify if there are any deviating simulations.

The selected influence that correlates to the deviation point of a given model is provided

as the output to the algorithm in an ordered vector denoted by ϵ. Here, ϵ provides the

deviation condition and the associated model number in a list that is sorted according to

when each entry is reached in the trunk model’s simulation. For example:

ϵ =

 1 λ1
3

4 λ4
2

... ...

 (4.5)

This shows that model 1 is the first to deviate from the trunk, due to the influence defined

by λ1
3. Model 4 follows this due to a deviation at its second influence, λ4

2.

As the parameter field of the trunk model, θT , undergoes a change that is not expected

to be present in the model given by ϵ1(n), the latter should be initiated by data that is
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mapped from the last time step of the trunk model. The deviation condition given by ϵ1(λ)

is used to identify when this will occur. Once mapping to this domain has taken place, the

trunk model simulation continues until the condition defined by ϵ2(λ) is met, and another

phase of data mapping can take place. This process continues until all compatible models

have been initialised as shown in Algorithm 1 provided in Section 4.2.4.

4.2.4 The generalised Branching Algorithm

Summary of variables

i influence entry

n model number

T trunk model number

t time step

β greatest unique initial influence

γ comparison measure for when an influence becomes active

∆ model domain

ϵ deviation conditions

θ parameter field

Λ influence table

λ influence

χ subset of inputs

Ω inputs / initial conditions

Algorithm 1: The Branching Algorithm.

1 χ = required compatibility check inputs;
2 n = number of models;
3 for 1 : n do
4 Ωn = model n inputs ;

// Check if the model meets the compatibility requirements.

5 χn ⊂ Ωn;
6 if χn ̸= χ then
7 Model is not compatible, do nothing;
8 else

// Store compatible model numbers.

9 compatible.append(n);
// Create influence list for model n.

10 λn ⊂ [(x, y, z)r,Ω
n] ;

// Create influence table for model n where γn is the comparison metric for

each influence entry, i.

11 Λn = [n,λn
i ,γ

n
i ] ;

// Sort influence table according to the comparison values, with the earliest

occurring entry being listed first.

12 sort(Λn, Λn(γ)) ;

13 end

14 end
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// Define an overall influence table including all compatible model influence tables.

15 Λ = [Λcompatible(1) ; ... ; Λcompatible(end)] ;
// Remove influence entry if it is repeated in every compatible model.

16 Λ(Λ[λ, γ].count(Λi[λ, γ]) = count(compatible)) = [ ] ;
// Sort the influences according to the comparison value, with the earliest occurring

entry being listed first.

17 sort(Λ, Λ(γ)) ;
// Initialise the greatest unique initial influence used to identify the trunk model.

18 β = 0
// Compare the unique initial influence of each compatible model to the existing

greatest unique initial influence, β, in order to find the trunk model, T.

19 for n = compatible(1):compatible(end) do
20 Λn,temp = Λn ;
21 ΛT,temp = ΛT ;

// Temporarily remove influences present in both the trunk model and the comparison

model so that only unique influences are considered.

22 Λn,temp(ΛT [λ, γ].count(Λn,temp
i[λ, γ]) > 0) = [ ] ;

23 ΛT,temp(Λn[λ, γ].count(ΛT,temp
i[λ, γ]) > 0) = [ ] ;

24 i = 1 ;
25 if Λn,temp

1(γ) > β then
// If the unique initial influence of the comparison model occurs at a later

stage than existing greatest unique initial influence, refine the latter and

set the new trunk model.

26 β = Λ
n,temp
1 (γ);

27 T = n;

28 else if Λ
n,temp
1 (γ) = β then

29 while Λ
n,temp
i (γ) = Λ

T,temp
i (γ) do

// If unique initial influences occur at the same step, compare subsequent

entries until there is a difference or until there are no remaining

entries to compare.

30 i = i+ 1;

31 if Λ
n,temp
i (γ) = undefined then

32 Λ
n,temp
i (γ) = 0;

33 if Λ
T,temp
i (γ) = undefined then

34 Λ
T,temp
i (γ) = 0;

35 if Λ
T,temp
i (γ) = 0 and Λ

n,temp
i (γ) = 0 then

36 Λ
T,temp
i (γ) = 1 ; // Ensures the trunk model is not updated.

37 if Λ
n,temp
i (γ) > Λ

T,temp
i (γ) then

// Update the trunk model and greatest unique initial influence.

38 β = Λ
n,temp
1 (γ);

39 T = n;

40 end

41 end
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// Remove all trunk model entries and all entries that are common between the trunk

model and remaining models in the overall influence table.

42 Λ(Λ = ΛT
i ) = [ ] ;

43 Λ(Λ[λ, γ] = ΛT
i [λ, γ]) = [ ] ;

44 j = 0;
45 while Λ is not empty do
46 j = j + 1;

// Store the deviation point for model Λ1(n)

47 ϵj,1 = [Λ1(n), Λ1(λ)] ;
// Check if multiple models deviate at the same time since the influence causing

deviation is equal in back-to-back influence table entries.

48 k = 2;
49 while Λk(λ) = Λ1(λ) do

// Multiple models deviate at the same time. Store the deviation point for

model Λk(n).

50 ϵj,k = [Λk(n), Λk(λn)] ;
// Remove remaining influences associated with this additional deviating model.

51 Λ(Λ(n) = Λk(n)) = [ ] ;
52 k = k + 1;
53 Submodel = 1;

54 end
// Remove remaining influences associated with the deviating model.

55 Λ(Λ(n) = Λ1(n)) = [ ] ;

56 end
// Deviation conditions for all models are given by ϵ, with any entry including

multiple columns requiring a sub-trunk model to be defined for additional time

saving.

57 if Submodel = 1 then
// Multiple models branched from the trunk model at the same point, further time

saving may be possible.

58 Repeat the Branching Algorithm for each set of models that branched off from
the trunk model at the same time ;

59 else
60 Multiple models do not branch from the trunk model at the same point, process

ends;

61 end
Output: Deviation points for each model, ϵ. Trunk model number, T. If required:

sub-trunk model numbers, T’.

4.2.5 Context and potential applications

This section aims to present a non-exhaustive series of examples where a method aiming

to remove duplicated simulation steps could be utilised outside of blast and protection

engineering. The first is related to vehicle design and safety assessments. Here, the sim-

ulation of multiple crashes is required to assess a range of parameters and test conditions

including collision speed, vehicle materials and impacted object (e.g. Lu et al. 2020, Wu

et al. 2020). More recently, numerical models are being used to develop automated driving

systems that can detect when crashes are likely to occur, thus giving the driver a warning
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to avoid a collision (Varnavsky & Rogulina 2020). The results from the analysis models are

used to inform the system’s parameters and there is the requirement for many scenarios to

be modelled in order to form a data set that provides a varied view of potential conditions

on the roads. In a study by Long et al. (2018), the authors simulate “59 crash scenarios,

involving 5 typical roadside obstacles, 2 types of guardrails, 15 embankment slopes, and 3

types of vehicles”. Whilst the specific simulation times are not noted in the article, it is

clear that the duplicated vehicle response, for crashes that each begin in a similar manner,

could be removed to make the modelling process more efficient. In particular, the analysis

of various embankment heights at a range of angles provides a good chance for the removal

of duplicated simulation steps as the outcome will be identical for a larger slope height

and a smaller one up until the point at which the vehicle reaches the top of the smaller

slope and the physical systems diverge.

Similarly, search and rescue tools that aim to identify the region in the ocean where a

missing person or object is located often require the simulation of a large number of

potential flow paths (e.g. Coppini et al. 2016). By using information such as the last

known location, time, and wind speed, the modelling process can incorporate a Monte

Carlo (MC) analysis whereby the influencing parameters are perturbed in a trajectory

model that generates an ensemble of outcomes (Breivik & Allen 2008). Collating the

results provides rescue teams with a focused region where it is likely for the person/object

to be found. This approach lends itself well to the removal of duplicate steps as some

flow paths may remain consistent with each other for a large number of calculations.

A more efficient analysis could therefore be undertaken if these trajectories are grouped

until the randomly selected conditions cause the flows to diverge. This, in turn, benefits

consideration of uncertainty of the flow parameters being incorporated in the solutions of

all potential object starting locations.

Next, the failure of pressurised water mains leading to rapid cratering that may result in

local flooding and injury from debris has recently been studied by Barr et al. (2020). Here,

crater size was evaluated as a function of pipe diameter, internal pressure, air content, and

burial depth using finite element analysis in order to develop a predictive tool. Clearly,

for a batch of models where only burial depth varies, the models will be identical until the

instant where the soil surface is broken by expansion of the water. Hence, this type of study

would be well suited to a modelling approach aimed at removing duplicate calculation

steps.

Further applications in engineering could include fluid-structure interaction or wave over-

topping of flood defences (Mehreganian et al. 2018, Chen et al. 2021). Nevertheless,

considering each potential topic discussed in this section, it is clear that the conclusions

formed from the analyses would be improved by obtaining more data or by completing

the process in a more efficient way. This in turn enables a greater understanding of the

uncertainty associated with the test scenarios to be analysed.

4.2.6 The Branching Algorithm for blast analysis

Adapting the BA methodology, introduced in Section 4.2.4, for use with blast analyses

requires the key terminology to be assigned to blast relevant parameters. Notably, a

deviation point is provided in terms of its spatial location relative to the charge, since the

air that fills the domain will remain at ambient conditions until the blast wave emanating
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from the explosive material reaches that particular point in the associated domain. The

solutions to each model will therefore diverge at the moment that the pressure wave reaches

a location or material in a given domain that is not present in the other models. The

influences used to identify these locations can then be associated to obstacle or boundary

surfaces, or changing material properties.

For the BA to allow for data to be mapped between various models it is essential for

some of the input conditions to be identical. For blast analyses this relates to the ambient

conditions of each domain and the charge shape and composition. If there is a difference

between two models because of these variables, the simulation would be different from

birth and so no mapping would be possible. The algorithm splits models with differing

conditions into various trees that are sorted and analysed separately. However it should

be noted that the size of the charges used in each model will not necessarily be a reason

for defining a new deviation tree as domain scaling can be used according to Hopkinson-

Cranz scaling laws (Hopkinson 1915, Cranz 1926). Use of this approach improves the

compatibility of models because each domain in the batch of tests can be defined in terms

of scaled distance, with a single charge size relating all arrangements. For the examples

given by this study, scaling was not required.

A simplified version of the blast BA is provided below to show how the comparison of each

domain allows for informed data mapping to take place.

1. Identify unique geometries and create discrete influences associated to the obstacles

and boundaries for each model.

2. Identify the groups of models (deviation trees) that can share numerical data with

no loss of modelling accuracy by considering the probabilistic inputs being used (e.g.

separate groups are required for differing charge shapes and/or ambient conditions

as data mapping cannot occur if difference are present from birth of the simulations).

3. For each tree:

(a) Calculate the wave travel distance to each influence of each model so that

comparisons between influences can be made.

(b) Compile all influences and identify which model has the unique influence that

is the furthest distance from its charge. This model acts as the ‘trunk model’,

with all other models deviating from its solution.

(c) Remove influences that are common between the trunk model and any others.

Sort the remaining influences from all models so that the first entry is the one

that is closest to its respective charge.

(d) Take the first entry as the first deviation from the trunk model and remove any

other influences associated to this model from the remaining influence store.

Continue this process until all models have deviated.

(e) If multiple models share the same deviation at any point, a ‘sub-trunk model’

can be defined by repeating the process with this sub-set of models to allow for

additional savings and multiple informed data mappings.
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Ultimately, with the model geometries, boundary and ambient conditions and charge char-

acteristics being defined as the input values, this process automatically produces a mod-

elling order for a batch of tests. Through generating a number of deviation locations

based on the blast wave’s progression through the domain of a parent model (trunk or

sub-trunk), the chosen numerical solver can be monitored so that data maps are created

just before the trunk model’s parameter field diverges from that of a branching model.

The associated branching models can then be initialised with the exported data maps, re-

moving the need for repeated calculations to be computed, specifically around the charge

before the blast wave impacts any boundaries or surfaces.

An example of a deviation tree being output from the algorithm is provided by Figure 4.2

with model ‘n’ being assigned as the trunk model and various branches showing where

data mapping can be utilised. It is also shown how model ‘n-1’ is defined as a sub-trunk

model, meaning models ‘n-1’, ‘n-3’ and ‘n-4’ were all identified to deviate from model

‘n’ at the same influence. Additional repeated simulation steps were then identified in

a second pass through the BA when considering only these three models. The recursion

capability of the algorithm is therefore essential in allowing for the greatest computational

time saving.

Trunk model

Sub-trunk model

n

n-1

n-3 n-4

n-2

Branches

Tier 0 m3

m17

m6 m14

m2

Simulation order:

1. m3 (Trunk model)

2. m17

3. m2

4. m6

5. m14

Tier 1

Tier 2

Figure 4.2: Example deviation tree obtained using the Branching Algorithm.

After application of the BA, a tool capable of performing analysis of the branched network

of models is required. It is important to ensure that there is no/limited detrimental impact

to the progressive accuracy of the solutions as data is transferred from one model to

another. It is not expected that this would be a problem for many modelling techniques

as studies adopting methods such as domain decomposition, multigrid solving and mesh

adaptation are able to efficiently solve highly complex problems with data being transferred

between parallel computing processors many times throughout the simulation (Wu &

Tseng 2005, Bruneau & Khadra 2016, Park & Kwon 2005).

This introduction to the BA aims to provide a basic understanding of the logical process

being employed by the proposed method, however the following section expands on this

for 2D blast simulations with a walk-through of how the influences are identified and

compared.
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4.3 Proof of concept for blast analyses in 2D

4.3.1 Problem scenario

To show that the proposed algorithm and simulation strategy can be highly beneficial

in saving computation time, a batch of nine 2D models based on the experimental work

presented by Rigby et al. (2018) and Rigby et al. (2020b) have been simulated using the

proposed method. Simulation times are compared between when the BA is used, and

when a standard birth to termination approach is adopted for the same nine models. All

other factors remain identical (mesh size, computational resource, etc.).

In the aforementioned experimental work, tests were performed using a 100 g spherical

PE4 charge positioned 80 mm and 380 mm from a rigid target. The results were then

used to validate the numerical solver LS-DYNA for use in modelling near-field explosions.

Expanding upon this framework, Table 4.1 gives additional scenarios that may be ex-

plored, with varied charge locations providing three distinct stand-off distances; 80, 230

and 380 mm for three different target blast panels diameters; 200, 300 and 400 mm. As

shown in Figure 4.3, the panels are assumed to be rigid with a constant thickness of 50 mm

in a domain that features non-reflecting, ambient boundaries (aside from the axis of sym-

metry that enables these problems to be considered in 2D half-space). The charge size,

shape and material also remain consistent in all cases.

Considering how LS-DYNA features ALE mapping, there is a clear capability for data

to be transferred from one model to another in the way that the proposed BA requires.

This is the step that ultimately enables time saving to be significant for CFD or similar

progressive mathematical processes where the scenario can be broken down into a range

of steps, separated by influences that are present within the tests.

Table 4.1: Model setup parameters.

Model No. Panel width
(mm)

Charge
stand-off
(mm)

Charge size
(g)

Charge
material and

shape

1 200 80 100 PE4 sphere
2 300
3 400

4 200 230
5 300
6 400

7 200 380
8 300
9 400



Chapter 4. Informed data mapping 61

 

200 150 100 

50 

380 

50 

380 

50 

380 

200 150 100 

230 

50 

230 

50 

230 

50 

150 

80 

50 

200 

80 

50 

80 

50 

100 

(4) (5) (6) 

(1) (2) (3) 

(7) (8) (9) 

Figure 4.3: Explosive test arrangements to be used with the BA shown in 2D. Charge is
given as a red circle and the impacted panel is shown in grey. Boundaries are ambient
non-reflecting. Model numbers are provided in the lower right corner of each image. All
dimensions are in millimetres.

4.3.2 Model specification

Following the successfully validation of LS-DYNA with 1.25 mm elements (Section 3.3),

each scenario in the example batch of tests given by Table 4.1 and Figure 4.3 is modelled

using this mesh density and the same material model and equation of state parameters

provided by Table 3.3. They are also modelled in 2D axi-symmetry with the domain

boundaries being defined at distances that are sufficiently large so that although reflections

will occur as the shock waves impact the boundary nodes, the returning shock waves will

not reach the panel before the termination time is met.

As shown in Figure 4.4, models 1, 2 and 3 were simulated in a 350 × 230 mm domain,

with the panel positioned with y-coordinates of 160 mm and 210 mm. Models 4, 5 and 6

were simulated in a 350 × 380 mm domain, with the panel positioned with y-coordinates

of 310 mm and 360 mm. Finally, models 7, 8 and 9 were simulated in a 350 × 530 mm

domain, with the panel positioned with y-coordinates of 460 mm and 510 mm.
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Figure 4.4: Numerical models showing the various stand-off distances, blast panel diame-
ters (grey rectangle) and the 49.2 mm diameter charge (red semicircle). (a) Models 1, 2
and 3 (b) Models 4, 5 and 6 (c) Models 7, 8 and 9.

The termination times for models 1, 2 and 3 were then set at 0.12 ms, models 4, 5 and 6

at 0.2 ms and 7, 8 and 9 at 0.28 ms. This allows for the initial blast wave to fully clear

the panel without interference from any unwanted reflections.

In every instance the charge is centred with a y-coordinate of 80 mm so that the data

mapping, achieved using the *initial ale mapping keyword (Aquelet & Souli 2008),

was implemented relative to a consistent point in all domains. Furthermore, since the

panel dimensions and its location coincides well with the element mesh of each domain,

it is modelled by fully restraining the elements that fall within the respective geometry.

This has the effect of creating a rigid reflecting surface and it removes the need to create

a new part and material type in the LS-DYNA model.
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4.3.3 Algorithm walk-through and output

With the model geometries clearly defined, the BA can be used to identify the deviation

points where the numerical outputs from each simulation will cease being identical. This

section steps through the key stages of the algorithm to show how it systematically selects

when each model should be initiated with data mapped from the trunk model.

It is to be noted that this walk-through ignores the complexity that may be required for

other applications or in use with more detailed test scenarios. For example, the panels are

assumed to be rigid, i.e. any motion of the panel following application of the blast loading

occurs on timescales such that the development of loading is itself unaffected. This has

been shown to be a reasonable assumption when considering blast loading on structural

panels (Rigby et al. 2019). Each model is also being solved with the same method, ambient

conditions, charge material/detonation location and panel properties, and therefore it is

only the differing domain geometries that will provide diverging solutions. This also

allows influences to be stored with their spatial locations and comparison values only, as

the material properties and surface slopes will not lead to deviations. In the next example

application, the 3D problems require a more comprehensive set of variables to be stored

to enable influence comparisons to be made correctly.

Table 4.2: Individual influences for each model being considered are formalised in the
influence table below. Rear nodes of the panels are omitted for brevity. Influence defining
the trunk model is shown in italics.

Model
No.

Influence Location Relative
x (mm)

Relative
y (mm)

Distance from
charge centre, γ
(mm, 0 d.p)

1 Panel face 0 80 80
1 Panel vertex 100 80 128

2 Panel face 0 80 80
2 Panel vertex 150 80 170

3 Panel face 0 80 80
3 Panel vertex 200 80 215

4 Panel face 0 230 230
4 Panel vertex 100 230 251

5 Panel face 0 230 230
5 Panel vertex 150 230 275

6 Panel face 0 230 230
6 Panel vertex 200 230 305

7 Panel face 0 380 380
7 Panel vertex 100 380 393

8 Panel face 0 380 380
8 Panel vertex 150 380 409

9 Panel face 0 380 380
9 Panel vertex 200 380 429
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By entering the geometry and charge location in Figure 4.3 into the BA, the influences

associated to rigid obstacle and boundary vertices and faces can be defined as shown in

Table 4.2. Here the coordinates of the key points on the panel relative to the charge are

used to define the influences themselves (columns 3 and 4). These are then assigned a

comparison value (γ) that enables the algorithm to sort when each influence will be reached

in a numerical simulation. For this example γ is equal to the direct distance between the

charge and the identified point (column 5). This value would ideally be assigned to the

arrival time of the blast wave at each location, however for simplicity the distance measure

is used. It is at this stage where any influences that are present in all models would be

removed if required.

Next, the trunk model can be defined by finding the model that encounters its first unique

influence at the latest calculation step in its respective domain. This ‘greatest unique initial

influence’ corresponds to the test arrangement that will see all other models deviate from

its solution before the step where it would have deviated from the other models itself.

Thus enabling the largest number of duplicated steps to be removed from each simulation

process.

By assessing Table 4.2, it can be seen that model 9 will be the trunk model since its

first unique influence corresponds to the blast wave impacting the panel vertices at the

greatest distance from the charge; 429 mm. The influences present in this newly-defined

trunk model can then be removed from all other model’s tables, provided that they would

occur at identical locations within each simulation. For this example, this relates to the

panel face impacts for models 7 and 8, since columns 3, 4 and 5 of Table 4.2 contain

identical values.

Table 4.3: Combined influence table is formed and sorted according to the time when each
entry is encountered by the blast wave. Entries included in the trunk model are removed.

Model
No.

Influence Location Relative
x (mm)

Relative
y (mm)

Distance from
charge centre, γ
(mm, 0 d.p.)

1 Panel face 0 80 80
2 Panel face 0 80 80
3 Panel face 0 80 80
1 Panel vertex 100 80 128
2 Panel vertex 150 80 170
3 Panel vertex 200 80 215
4 Panel face 0 230 230
5 Panel face 0 230 230
6 Panel face 0 230 230
4 Panel vertex 100 230 251
5 Panel vertex 150 230 275
6 Panel vertex 200 230 305
7 Panel vertex 100 380 393
8 Panel vertex 150 380 409
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Following this step, a combined table of influences is formed (Table 4.3) and ordered

according to the direct distance from the charge. The first entry therefore corresponds

to the first model that deviates from the trunk (i.e. the model that reaches an influence

causing the output of the simulation to diverge first). As the algorithm works though

the table of remaining influences, any model that deviates from the trunk has its entries

removed. The order of when each model deviates can therefore progress to each model in

the batch of tests until no entries remain.

For this example, the first deviating model (1) diverges due to an influence that is also

present in two other models (2 and 3). It is therefore essential for the algorithm to compare

the influence causing model 1 to deviate with the next entries to check if a sub-trunk model

can be defined. This allows the algorithm to identify further mapping opportunities that

can save additional computation time by removing duplicate steps that occur after the

initial mapping from the trunk model.

Removing the influences associated with these three diverging models shows that the

second divergence from the trunk model also features three models. Models 4, 5 and 6

are shown to have identical influences for when the blast wave hits the panel at a 230 mm

stand-off distance. After these have branched off from the trunk model, models 7 and

8 remain, with their relative deviation conditions then being defined by the blast wave

reaching the vertices of the panels that are positioned at the same stand-off distance as in

the trunk model.

Since two sub-trunks will be required, the BA utilises recursion and is repeated for the

smaller batches of models that deviated from the trunk model at the same point. Table 4.4

shows the relevant remaining influences for models 1, 2 and 3, with model 3 being defined

as the sub-trunk model. It is clear to see how model 1 will deviate first, as the blast wave

reaches its panel vertex. This occurs before model 2 deviates for the same reason, at its

panel vertex that is slightly further from the charge. The process for models 4, 5 and 6

progresses in a similar way to this example, with model 6 acting as the sub-trunk due to it

having the widest panel in its configuration. Model 5 then follows model 4 as the next to

deviate. It is worth noting that if multiple models within this sub-trunk had an identical

plate diameter but, say, different plate thicknesses, then recursion would be used again to

sort those models according to the additional influence relating to plate thickness.

Table 4.4: Combined influence table for the first sub-trunk. Model 3 is deemed to be the
sub-trunk model.

Model
No.

Influence Location Relative
x (mm)

Relative
y (mm)

Distance from
charge centre, γ
(mm, 0 d.p.)

1 Panel vertex 100 80 128
2 Panel vertex 150 80 170
3 Panel vertex 200 80 215
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According to the sorting process employed by the BA, the output vector for this tree

denoted by ϵ is given by:

ϵ =
[
Model number Influence causing deviation

]
=

[
n λn

i

]
(4.6)

Where the influence number, i, causing deviation for model, n, is defined as:

λn
i =

[
Influence location Relative x coordinate Relative y coordinate

]
(4.7)

This results in the output for this example being equivalent to:

ϵ =


ϵ1
ϵ2

7 Panel vertex, 100, 380

8 Panel vertex, 150, 380

 (4.8)

with,

ϵ1 =

 3 Panel face, 0, 80

1 Panel vertex, 100, 80

2 Panel vertex, 150, 80

 (4.9)

ϵ1 =

 6 Panel face, 0, 230

4 Panel vertex, 100, 230

5 Panel vertex, 150, 230

 (4.10)

Figure 4.5 presents these outputs in the form of a flow chart (a), and deviation tree (b)

to show how the trunk model data can be mapped to various domains at the simulation

step prior to when there is a change in the ambient conditions at the given locations.

As discussed, the recursion capabilities of the method are highlighted by how ϵ1 and ϵ2
present the output from additional passes through the BA for the sets of models that devi-

ated from the trunk model at an identical influence. This process could occur any number

of times to meet the requirements of the models being simulated, with the possibility

of sub-sub-trunk models and beyond being identified as discussed above with regards to

additional parameters such as plate thickness. Thus, the level of recursion is intimately

linked to the number of unique input variables of a batch of numerical models.

4.3.4 Computation times

With the progression of the models through the algorithm now complete, the order of

branching and the corresponding influences causing deviation can be implemented using

the relevant solving software to enable an efficient simulation process.
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Trunk model: 9

1, 2, 3 diverge

Reason: Impact at the 

panel face (0, 80)

4, 5, 6 diverge

Reason: Impact at the 

panel face (0, 230)

7 diverges

Reason: Impact at panel 

corner node (100, 380)

8 diverges

Reason: Impact at panel 

corner node (150, 380)

Sub trunk model: 3

1 diverges

Reason: Impact at panel 

corner node (100, 80)

2 diverges

Reason: Impact at panel 

corner node (150, 80)

9

873

1 2

(a)

(b)

Sub trunk model: 6

4 diverges

Reason: Impact at panel 

corner node (100, 230)

5 diverges

Reason: Impact at panel 

corner node (150, 230)

6

4 5

Figure 4.5: Algorithm output (a) flow chart, (b) deviation tree. Coordinates given in (a)
are given in millimetres to indicate where the model will deviate relative to the charge
centre in each model.

Table 4.5 shows that when simulating all 9 models in LS-DYNA from birth to termination,

the required computation time is 1643 s (27 mins 23 s). Use of the BA and the simulation

order shown in Figure 4.5 reduces this to only 847 s (14 mins 7 s), a saving of approximately

50% (13 mins 16 s; 48.4%). The reported simulation times were achieved with each model

being solved one after another on an Intel Core i7-10700 2.9 GHz processor with 16 GB of

RAM. It should be noted that the magnitude of the achieved benefit can be expected to

vary greatly depending on the similarities and complexity of the models specified in the

batch of tests. However, this basic example still proves that simulation efficiency can be

enhanced with the use of the proposed method.
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Table 4.5: Required computation time with and without use of the BA method.

Model No. 1 2 3 4 5 6 7 8 9

No branching (s) 90 90 88 173 171 175 284 283 289
With branching (s) 55 49 73 74 70 100 72 65 289

Saving (s) 35 41 15 99 101 75 212 218 0
Saving (%) 38.9 45.6 17.0 57.2 59.1 42.9 74.6 77.0 –

Algorithm computation time: 1 s
Standard method computation time: 1643 s

Branched method computation time (inc. algorithm): 848 s
Total saving (inc. algorithm): 48.4%

Time

Model number
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…

62.8 µs
… … …
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0

Continued in the next Figure.
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Model number

1 2 3 4 5 6 7 8 9
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… … …
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… … …
…

159.1 µs

… … …
… … …

170.0 µs

… … …
… … …

…
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Termination
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… … …
… …

Resultant Velocity (m/s)

3000

2500

2000

1500

1000

500

0

Figure 4.6: Progression of the shock front from the LS-DYNA models showing where data
mapping occurs. Faded cells show the simulation steps that are not required if the BA is
used. Data mapping is shown with black arrows.
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Figure 4.7: Continuation of Figure 4.6. Progression of the shock front from the LS-DYNA
models showing where data mapping occurs. Faded cells show the simulation steps that
are not required if the BA is used. Data mapping is shown with black arrows.

As expected, Table 4.5 also shows that when using the BA, models 7 and 8 experience

the greatest reduction in required computation time (75–77%) due to how the deviation

points occur at later stages of the time-stepped solutions. A larger amount of the trunk

model (9) can be simulated without a difference in output for these cases when compared

to models 1, 2 and 3 that must diverge as soon as the shock wave has progressed 80 mm

from the charge. This is why the BA works to identify the trunk model by assessing which

model from the framework has the unique initial influence that occurs at the latest time

step of the simulation.

For a visual representation at how the data is mapped between each domain, Figures 4.6

and 4.7 show how the progression of the blast wave occurs in each domain, with the faded

images relating to steps that are omitted from the analysis if the BA is used. These

figures also highlight the importance of using the charge centre as a coordinate that is

shared between each model since the blast wave can be mapped relative to this point

regardless of the domain size and shape.
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4.3.5 Mapping results

The mapping functionality in many numerical solvers is intended to allow for adaptive

mesh refinement where dense grids of elements and nodes need to be specified for the start

of a simulation where more detail in the parameter field may be required to preserve the

energy of the detonation. When this stage of the process has concluded, the data can

be mapped to the same domain geometry, but with a coarser mesh that helps to reduce

computation time. Consequently, the mapping process requires interpolation of values to

fit to the new mesh.
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Figure 4.8: Pressure time histories for model 1 generated from simulations with and
without use of the BA.
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Interpolation is not required for the models in this example since the mesh conditions

remain consistent throughout the batch. This results in rapid initialisation of the models

receiving the parameter field from a trunk or sub-trunk model with no loss of information

that could lead to differing outputs between a mapped and non-mapped solution.

Figure 4.8 shows this to be the case with results from the branched analysis being compared

to those from the full simulations for model 1. The combined outputs from each stage

of the mapping procedure are shown using different line types, with the results from the

full simulation shown with a solid black line and mapping times shown as black dashed

vertical markers. The results are effectively indistinguishable, demonstrating that the BA

has successfully identified a robust and repeatable methodology for removing unnecessary

steps in the simulations.

4.4 Summary

This chapter has proposed and applied a new branching algorithm that can be used when

modelling a range of similar numerical models with differing input parameters. The algo-

rithm removes the need to simulate the steps of a simulation more than once if they occur

within multiple models by identifying the similarities between the inputs and the newly

defined ‘influences’.

It is shown that by using the developed approach for a simple blast analysis featuring 9

models, approximately 50% of the required computation time can be saved when compared

to simulating each model independently. Furthermore, this process occurs with no loss of

accuracy.

Currently, this method is applied in 2D, with influences being defined by obstacle surfaces

and vertices. However, seeing as blast loads are typically modelled using CFD in 3D, the

following chapter expands on this methodology to ensure that any batch of domains can

be processed by the BA to reduce the required computation time.



Chapter 5

The Branching Algorithm for

blast analyses in 3D

5.1 Introduction

In the previous chapter, the Branching Algorithm (BA) was introduced as a tool that can

reduce the computation time of batches of numerical models. The concept has been shown

to work for a blast scenario in 2D, however the greatest savings will be achieved when

modelling three-dimensional problems.

This chapter discusses the developments required for adapting the BA specifically for use

with blast models in 3D. This includes the development of a range of features that allow

the code to provide suitable data mapping times for any batch of geometries and setup

conditions, with a focus on accurate environment representation and wave tracking.

5.2 Domain discretisation and influence comparison

A key difference between the blast example shown in Section 4.3, where each model 2D,

and the need for the algorithm to function in 3D relates to how influences are represented

and defined. As shown in the previous example and in Figure 5.1, 2D blast models could

be represented by influences that only cover the obstacle vertices and a single surface

definition. This is because if the wave hits the surface, it is known that the next point it

will hit is the closest vertex. Conversely, in a 3D model, the wave can progress in multiple

directions meaning a greater understanding of the wave’s travel path is required.

2D 3D

Figure 5.1: Comparison of how a blast wave may interact with a rigid obstacle in 2D and
3D. Red arrows indicate the path of the blast wave emanating from the charge, shown as
a red circle.

72
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The way in which the algorithm identifies and compares influences must account for varia-

tions in the type of impact the wave is predicted to experience. Specifically, for the BA to

identify which parts of a given domain are reached first, potentially causing a deviation,

the geometries of each model must be represented discretely. This requires a series of

nodes to be defined that act as individual influences on all surfaces of the obstacles and

boundaries, and along all edges in each domain.

A mesh of influences representing each obstacle and boundary in every model of a given

batch can be generated using a user defined mesh spacing that coincides with the edges

of the obstacles and locations of any charges. As shown in Figure 5.2 on the left hand

side, if the mesh spacing is specified to be 0.1 and a local grid of points is used to form

the surface and edges, there is a high possibility of misaligning influences. In this case,

the BA would identify the blast wave’s impact at any node as a numerical deviation when

comparing these models. It is therefore necessary to use a global grid, that is centred on

the respective charge centres of each domain, with the same mesh spacing in every model.

Influences defined on 

local grid

Influences defined on global grid 

(centered on the detonation point)

(0,0)

(0,0)

(0,0)

(0,0)

(0,0)(0,0)

0.1

0.1

0.1

0.1

0.1

0.1

Model 1

Model 2

Comparison

Misaligned Aligned

Figure 5.2: Example of how the adopted meshing strategy, using a mesh spacing of 0.1,
enables influences to be defined relative to the charge centre, (0,0), in comparable terms
regardless of the orientation of the obstacles in each model.
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The right hand side of Figure 5.2 shows of how this adjustment allows for aligned nodes

that the algorithm would ignore when considering if a deviation has occurred. Through

implementing this meshing strategy, if a surface is present in multiple models at the same

relative location, a range of influences will be defined in an identical way regardless of the

domain orientation or size.

Comparison of these globally defined influences is achieved through consideration of the

relevant variables assigned to each new influence type shown in Figure 5.3. These vectors

are stored with the influence locations to allow for the deviation points to be identified in

the BA. An example is given by Table 5.1.

Vector 3

Vertex Edge Surface

Normal 

vector 2

Normal 

vector 1

Normal 

vector 1

Figure 5.3: Variation of values stored by the algorithm enabling comparisons to be made
between each identified influence. Blue dots correspond to each node in the discretisation
of an arbitrary obstacle.

Table 5.1: Example influence table structure for 3D analyses.

Model
No.

Relative coordinate Vector(s) Influence
type

Comparison
metric

x y z

n ∼ ∼ ∼ ∼ ∼ ∼
... ... ... ... ... ... ...
n+1 ∼ ∼ ∼ ∼ ∼ ∼
... ... ... ... ... ... ...

It should also be noted that the comparison metric will no longer be assigned to the direct

distance as seen previously. For the 3D case, a more robust approach will be discussed in

Section 5.5.

5.3 Obstacle influences

Simulating a batch of models using existing numerical solvers requires the user to input

each model’s geometry alongside any input conditions related to the explosive charge

and ambient properties. Due to the complexity of some structures, it is common for

the geometries to be added using the stereolithography (STL) ASCII format, where each

arrangement is represented by a series of triangular surfaces. STL files can also possess

various useful attributes such as the outward normal vector of each surface and node

connectivity, allowing solvers to rapidly initialise a test domain.
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These benefits can be applied to the BA, with the three different influence types, vertex,

edge and surface, being generated using various discretisation methods. The following sec-

tions will explain each process before the adopted approach for wave tracking is presented

to conclude the setup phase of the proposed method.

5.3.1 Surface influences

In defining the influences present on an obstacle’s surfaces, the STL of a given geometry

must be refined so that there are no triangles with equal surface slopes that also possess

a shared edge. This commonly occurs as polygons are divided into multiple triangles with

the dividing lines resting on a surface that maintains a consistent plane. To ensure that

the BA can correctly compare influences, the shared edges possessing this characteristic

must be defined by ‘surface’ rather than ‘edge’ influences.

i.

STL output

ii.

Refined vertex 

connections

iii.

Surface edge 

tracing

iv.

Surface 

identification

Figure 5.4: Surface identification from an STL file required for defining global influence
locations. Between steps i and ii the surface count decreased from 84 to 48 as various
triangles were combined to form polygons with varying vertex counts.
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Figure 5.4 presents the approach for optimising the surface representation of a given

geometry with the first step, given in plot i and ii, being to refine vertex connections. This

requires a comparison of the two connected surface’s outward normal vectors for every

edge given by the STL. Where only one unique vector is present, the edge is removed.

Next, plot iii shows how new surfaces are compiled. Firstly a vertex on the geometry is

selected, then one of its connections is followed to another vertex and the common outward

surface vector for the connected surfaces is stored. From this second vertex, the path is

traced to its connection that shares the stored surface vector. This continues until the

path is back to the starting node with each visited vertex forming part of the new surface,

shown in plot iv.

i.

Surface identified

iii.

Mesh interpolated in the 

third axis

ii.

Mesh defined in 

2D

iv.

Points removed if outside of 

the surface boundary according 

to barycentric coordinates

x

y

z

Figure 5.5: Process of defining influence locations on the surface of an obstacle.
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Using the refined surfaces, the discrete influences can now be defined. Figure 5.5 details

this process that starts with the global mesh of potential points being defined in 2D within

the relevant vertex constraints. Consideration of the surface plane is required for this step

so that the correct axes are used for forming the grid of nodes. For the example geometry

shown in Figure 5.5, this plane is defined in the y and z axes because the smallest variation

between the vertex coordinates is in the x axis.

Plot iii shows the output of interpolation in the 3rd axis, achieved using the 3D surface

plane equation given as:

ax+ by + cz + d = 0 (5.1)

Where, µ, ν and τ are three vertices associated to a given surface with,

a = (νy − µy)(τz − µz)− (τy − µy)(νz − µz) (5.2)

b = (νz − µz)(τx − µx)− (τz − µz)(νx − µx) (5.3)

c = (νx − µx)(τy − µy)− (τx − µx)(νy − µy) (5.4)

d = −(aµx + bµy + cµz) (5.5)

Following interpolation, the nodes lie on the global grid in the y and z axes with x coordi-

nates that place them on the surface of the obstacle. In this example it is clear that there

are a number nodes that lie outside of the surface boundary, consideration of barycentric

coordinates are therefore required as they can be used to determine if the point, P, rests

within the surface constraints of a given triangle.

The concept of barycentric coordinates is given in Figure 5.6, with the point, P, being

positioned according to some combination of the α, β and γ variables that are defined

using the ratio of areas relating all four points of interest. This is represented by the

following equations:

α = Aµ/A (5.6)

β = Aν/A (5.7)

γ = Aτ/A (5.8)

P = αµ+ βν + γτ (5.9)

Where, vector mathematics is required to calculate the area of each triangle on the surface:

v = (ν − µ)× (τ − µ) (5.10)

vµ = (τ − ν)× (P − ν) (5.11)

vν = (µ− τ)× (P − τ) (5.12)

vτ = (ν − µ)× (P − µ) (5.13)
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Leading to the equations for α, β and γ to be:

α =
v.vµ
||v||2

(5.14)

β =
v.vν
||v||2

(5.15)

γ =
v.vτ
||v||2

(5.16)

Resulting in a point being defined as inside the triangular surface if all of the following

constraints are satisfied:

α+ β + γ = 1 (5.17)

0 < α < 1 (5.18)

0 < β < 1 (5.19)

0 < γ < 1 (5.20)

μ

ν

τ

i. ii.

Aμ

Aν

Aτ

A = Aμ + Aν + Aτ

Aμ

P P

μ

ν

τ

Figure 5.6: Visual representation of using area ratios with barycentric coordinates to
identify if a point lies within a triangle. Plot ii shows how the value of Aµ only depends
on α. This also applies to Aν and Aτ , with β and γ respectively.

If a point is on an edge of the triangle, one of either α, β or γ will equal 0, and the other

two will be between 0 and 1. Similarly, a point is at a vertex if two of these values equal

0 and the third is 1. Logically, the centre of the triangle is present at the point where α,

β or γ all equal one third.

For the BA, the STL representation of the geometry is used so that the obstacles are defined

by triangular surfaces in the relevant 3D space. As each surface influence is identified, the

outward normal vector of the surface that it is associated to is stored in the vector column

of the example table shown in Table 5.1.
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5.3.2 Edge influences

The creation of edge influences requires a similar approach to previous section, but with

consideration for the vertex connections rather than the triangular surfaces. For this

process, Figure 5.7 shows how for each edge in the domain, start and end nodes are

identified with a vector being calculated to represent the connection’s direction according

to the following equation:

µ⃗ν = ν − µ (5.21)

The start node is assigned to the vertex with the lowest value in the axis that has the

greatest variation in magnitude between the nodes. Here, this dominant axis is in the z

direction.

Vector

Start node

ii. 

Global grid node 

positions in dominant 

axis

i.

Connection nodes 

identified. Largest variation 

in z axis. x
y

z
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z

Mesh 
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iii. 

Interpolation using the 

connection vector 
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z

Δz

μ

ν

σ

L

Figure 5.7: Defining influence locations on the edges of an obstacle.
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Next, the closest global grid position in the z direction that is greater than the starting

node is used to define the first edge coordinate. The chosen mesh spacing provides the

subsequent influence positions in this axis up to the end node, shown in plot ii.

Following this, each point, P , is interpolated onto the edge using its corresponding length

ratio, r, as a means of scaling the connection vector by an appropriate amount to achieve

the required spacing. This ensures that the edge direction is also preserved. The inter-

polation process using the vector line equation is summarised below, with the numerator

in Equation 5.22 corresponding to the numerical difference in the dominant axis between

the starting node and the point being interpolated.

r =
∆z

L
(5.22)

P = µ+ r × µ⃗ν (5.23)

For clarity the Figure 5.7 shows this process in 2D. However, vector µ⃗ν will also include

the difference in the y values of the vertices, allowing for correct adjustments in every axis.

The comparison values stored with each edge influence equates to the outward normal

vectors of the two connected surfaces running alongside each given edge. These vectors are

provided by STL input files and as discussed in Section 5.3.1, refined surface connections

are generated making it simple to identify the relevant surface properties.

5.3.3 Vertex influences

The final influence type associated to obstacles in a given domain requires no additional

computational effort to generate and store the related comparison values. This is because

the vertex influences are given by obstacle nodes directly in a geometry’s STL variables

with the stored connection vectors being calculated when generating edge influences.

5.4 Boundary influences

Another set of influences that must be included are related to the boundary conditions

of each model. Commonly defined as ambient/transmit or rigid/reflect, both boundary

types are discretised because multiple models may not feature the same domain shape and

size. This means that data mapping might not be possible as the blast wave reaches a

boundary, regardless of if it is able to transmit with a negligible impact to the parameter

field.

Each boundary is discretised using the process shown in Figure 5.8. A mesh of nodes is

defined according the global node spacing in both axes related to the given boundary. Any

obstacle surface influences that share the position of a boundary node are removed along

with the boundary node that they matched to. This is because the duplicate surface

influences are effectively internal and the blast wave would not be able to reach those

points. In plot ii, the removed surface influences are shown as black dots. Similarly,

any boundary nodes that share the position of an obstacle vertex or edge influence are

removed, but the obstacle influences remain as they can still be reached by the blast.
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i.

Boundary selection

ii.

Removal of object surface influences on the boundary and addition of 

boundary influences

Added boundary influences Removed object influences

x

y
z

x

y

Figure 5.8: Generating boundary influences with the removal of obstacle surface influences
on the boundary.

The vectors stored in the influence table relate to the surface vector facing into the domain.

This allows models to share identical parameter spaces even if the wave impact a rigid

boundary in one domain, and an obstacle in another, provided that both are perfectly

rigid and in the same location relative to the charge.

5.5 Comparison metric

The comparison metric used to sort the influences according to the step where they are

encountered in the numerical simulation was previously assigned to the direct distance

between the charge and the relevant point to utilise the simplicity of the 2D geometries

presented in the previous chapter. However, this is not suitable for complex models where

the blast wave is expected to reflect off rigid surfaces and clear around obstacle corners.
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Ideally, the time of arrival of the blast wave would be calculated at each influence to

definitively sort when each influence becomes active in each numerical model. However,

obtaining this value would require some simulation of blast wave propagation before the

algorithm is used, hence ignoring the benefit of the proposed method. Alternative ap-

proaches could include the use of suitable Fast Running Engineering Models for complex

3D geometries that predicts the wave arrival time, but as discussed in Chapter 2, at present

no such method exists.

Consequently, the use of shortest path analysis has been explored and adapted for use

with blast models to provide a reasonable estimation for the order of when each influence

in a given batch of tests is reached in each simulation.

5.5.1 Shortest path analysis

Taking inspiration from route finding algorithms used in modern satellite navigation prod-

ucts such as ArcMap (Environmental Systems Research Institute 2020), the discrete series

of influences can act as nodes on a connected graph linking the charge to all points in

the domain. Well-established shortest path analysis (SPA) methods, such as Dijkstra’s

algorithm, can then be used to identify the distance of each connection that corresponds

to the path the blast wave would have to travel to each point. In the aforementioned

commercial software, SPA is implemented to allow for varied path goals. These include,

finding the route with the shortest distance, lowest travel time, or the one that is the most

scenic.

In the example shown by Figure 5.9, Dijkstra is applied to find the shortest distance

between each node in the same way that it would be applied in the BA. Here the first

node, B, is given the permanent label, 0, and order label, 1. From here, plot i shows that

each connected node is assigned a temporary label with the closest being labelled as a

permanent move. In this case it corresponds to node A, which is then given the order

label, 2. Each temporary label for the connections from this node is then updated only

if the existing value is larger than the new one, as per ii. When moving from node A to

node F, the temporary label is not updated since the distance would equal 7 whereas it

was only 6 when moving from node B. The next permanent label can now be defined as

the smallest temporary label given to any node, corresponding to node F in this case.

Following this process for all connections and nodes allows for the shortest paths through

the network to be discovered, plot iii. By tracing backwards through the network, the route

to a given target can be derived with the path lengths corresponding to the permanent

labels. In navigation applications, the nodes could correspond to cities in the UK, or

houses along a delivery route, with the connections acting as the roads that form overall

graph.

An alternative to Dijkstra that is implemented in a similar way is the is A* method.

The key difference with this adapted approach is that it includes a heuristic to focus the

progression of the search, reducing the number of paths being travelled. The most common

heuristic for travel and distance applications is the direct, ‘as the crow flies’, distance

which is used to assess if movement along a certain connections is getting closer to the

target point. Dijkstra’s algorithm is therefore often reported to be less computationally

efficient for single searches when compared to the A* approach (Ortega-Arranz et al. 2014).
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However, for this application all nodes (influences) in the graph need to be visited by a

route starting at the charge. Using Dijkstra therefore means that every node is reached

in one pass of the algorithm, and the distance to each node can be stored as the shortest

path comparison metric in the influence table.
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Figure 5.9: Example use of Dijkstra’s algorithm for shortest path analysis in 2D.
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This method of obtaining a comparison metric is therefore suitable for the BA, especially

considering that only the connection distances between each pair of nodes need to be

calculated and stored. The resulting travel distances are used for this study directly

as the comparison metric, however, further consideration of the wave velocity could be

included to derive arrival times. Adapting this approach for the BA in 3D therefore

involves condensing the geometry and charge location into a 2D graph similar to the one

shown in Figure 5.9. This requires consideration of physically valid node connections,

discussed in the following sections.

5.6 Node connections

5.6.1 Nearest neighbour analysis

With the shortest path analysis method being used to determine the wave travel distance

to each influence in a given domain, the network of influences must be connected in a

physically accurate way. This must be achieved whilst also maintaining a low algorithm

computation time, hence necessitating a balance between the number of connections and

the freedom of the path’s movement.

Since the obstacle and boundary influences are discretised according to a user specified

mesh spacing, connections made between neighbouring influences can be easily determined

through consideration of the connection distance. In particular, if the connection length

between two influence nodes, l, is less than the distance to the corner of the cube of nodes

formed around a given influence, then the connection is stored. This results in a maximum

number of connections per influence of 26 as shown in Figure 5.10 plot i and formalised

in Equation 5.24.

l =

√√
m2 +m2 +m2 (5.24)

Where m is the mesh spacing.

To identify the connections that meet the condition given by Equation 5.24, a k-dimensional

tree (kd-tree) data structure is adopted (Bentley 1975). This process organises points in

such that for problems involving N samples and D dimensions, the computational cost

scales approximately according to O[DN log(N)]. Therefore, they can be more efficiently

processed when compared to storing and processing data in simple lists or arrays with

scaling according to O[DN2].

Increasing the maximum number of connections by allowing for paths spanning to the

second tier of surrounding nodes would benefit the possible path directions by allowing

for a more accurate representation of a blast wave’s omnidirectional expansion. However,

increasing the number of edges in a connected graph also increases the time required to

analyse the shortest path. The decision has therefore been made to restrict the maxi-

mum connection count to 26 for each node, with an additional optimisation step being

introduced in Section 5.6.5 to assist with the accurate representation of wave propagation.
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ii.

Plan view

Figure 5.10: Visual of the 26 potential connections that an influence or free node can make
in the connected graph of the domain. Red nodes are connected to the central node, black
dots are not connected.
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5.6.2 Charge connections

A key element of establishing node connections for use with SPA is related to how the

charge can link to the network of obstacle and boundary influences. Clearly the charge

may not be close enough to each obstacle to satisfy the distance requirement set out by

Figure 5.10 and so an alternative method must be used.

The first option includes establishing direct connections from the charge to all visible

influences. These being the influences that can form a connection to the charge without

the connecting line intersecting any solid bodies in the domain. However, as shown in

Figure 5.11, obstacles being shielded by others will not be connected to the charge using

this approach in conjunction with the nearest neighbour method. Thus limiting the ability

of the BA to identify if the presence of any of these entries would cause a numerical

deviation.

Route not included in analysis

Non-reflecting 

boundary

Regions out of 

the charge direct 

line of sight

Reflecting 

objects

Figure 5.11: Example of how direct connections from the charge may lead to obstacles
with no traceable wave path.

The alternative, adopted approach therefore takes inspiration from numerical models

where the obstacles and the free space is represented by individual elements. Using the

user defined mesh spacing, a grid of ‘free nodes’ can be formed, allowing the charge to link

into the node network according to the nearest neighbour criteria discussed in Section 5.6.1.

This also enables the existing obstacle and boundary influences to form connections across

the free space, resulting in a fully traversable graph to be used with Dijkstra’s algorithm.

5.6.3 Generating free nodes

Figure 5.12 shows the process required to create the free node network that will link

the charge to the obstacle/boundary influences. In simple terms, the approach works by

projecting lines through the domain according to the chosen mesh spacing. The intersec-

tion points with any obstacles are then identified and the gaps between each intersection

are categorised as ‘internal’ or ‘external’. Only the external spaces are discretised with

increments of the mesh spacing to fill the domains free space with nodes.
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Figure 5.12: Generating free nodes using a 3D line intersection check approach.

Optimising this ‘skewering method’ involves only projecting lines (skwers) in the axis

combination that will produce the fewest lines for the chosen mesh spacing. Plot i shows

that this corresponds to the x and z axes for this example, with plot ii providing a side

view of each skewer position. For all other axis pairs, the number of skewers would be

larger and so more computationally expensive line intersection checks would be required.
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When checking each skewer for intersections in the domain, the following equations are

used to determine if the vector of each skewer intersects with the planes of each surface.

Barycentric coordinates, discussed in Section 5.3.1, are then used to establish if the point

rests within the surface boundaries.

Considering a skewer defined by the coordinates (x0, y0, z0) and (x1, y1, z1), the direction

vector of the line can be given as,

v = [x0 − x1, y0 − y1, z0 − z1] (5.25)

Then, using the vector line equation the intersection point between a vector and surface,

P , can be defined as,

P = P0 + vb (5.26)

Where, P0 is the position of a point on the line, v is the direction vector and b is a scalar

parameter. With,

P0 = (x0, y0, z0) (5.27)

b =
Ps · v − P0 · v

Ps · v
(5.28)

Where Ps is a point on the surface being checked for an intersection. If b is undefined,

the vector and surface are parallel with no intersection. In all other cases, barycentric

coordinates identify if the intersection is within the surface constraints.

Determining if the nodes added to the gaps formed by the intersection points would be free

or internal involves consideration of the number of intersections by the skewer considering

all surfaces. Figure 5.13 presents two cases for a given geometry where an odd number of

intersections from a point signifies it is internal, and an even count shows it to be external.

Using this geometric rule, if a gap has an even number of intersections on one side, it is

external and a series of free nodes should be defined along its length according to the mesh

spacing used in the algorithm. This is shown in Figure 5.12 plot iii, where red nodes are

added outside of the geometry.
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1
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2
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0

Figure 5.13: Example of how a point can be classified as internal or external by projecting
a line with sufficient length in any direction, checking the number of obstacle intersections,
and determining if the count is odd or even. An odd number of intersections relates to
internal points (left), even for external (right). This rule applies in 2D and 3D.
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5.6.4 Connection accuracy: Clipping

It is essential that the possible travel paths for the wave are accurate to the physical

problem being modelled. Connections passing through rigid obstacles are therefore not

possible and should not be included in the graph being analysed using Dijkstra’s algorithm.

i.

Formed connections using nearest neighbour

ii.

Connection passes through solid object

iii.

Connection check using surface vector comparison values

iv.

Resulting connections
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Figure 5.14: Method of preventing connections passing through a rigid obstacle.
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An issue that arises due to the use of the nearest neighbour connection approach is shown

in Figure 5.14 plot i. It shows that an influence on one surface can form a connection to

another influence on an adjacent surface by passing through the corner of the structure,

because the distance between both points satisfies Equation 5.24.

To resolve this ‘clipping’ issue, the outward normal surfaces vectors, stored with every

surface influence entry, can be compared. If two connected surface nodes share the same

surface vector, the connection is formed. If they do not, it is removed. Plots iii and iv of

Figure 5.14 show how this affects the connections in this example to preserve a physically

accurate geometric representation of the domain.

5.6.5 Path optimisation

Despite successful implementation of the SPA method for generating wave travel paths

to each influence, Figure 5.15 highlights how the identified routes can include obscurities

associated to the traversable node grid spacing. In this case, sudden 90◦ movements are

noticeable as the wave path approaches the target surface influence.

x

y
z

y

z

Figure 5.15: Unoptimised path obtained using Dijkstra’s algorithm. Charge shown as red
circle. Influences shown as grey dots. Path shown as red line.

Two features for optimising the Dijkstra’s shortest paths to produce more accurate shortest

paths have been explored in the following sections. The first being named ‘type run’ and

the second, ‘intermediate path storage’.
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Type run optimisation

Type run optimisation of the shortest paths requires each visited node type to be stored

so that any uninterrupted series of the same type can enhanced. Node types include free

nodes and obstacle or boundary influences (vertex, edge and surface), with Figure 5.16

presenting these classifications for the unoptimised path shown previously in Figure 5.15.

41 nodes, to 8

XXXm to XXXm

x y

z

Detonation point

Free node

Edge

Surface

Figure 5.16: Unoptimised path influence types.

If three or more of the same type are included in a sequence in any identified route, then

there must be a direct line of sight between the first and last points of the run. This is

because the node connection rules defined in this Chapter prevent any node from forming

paths beyond its 26 surrounding nodes, hence preventing an identified path from skipping

over nodes in-between the target and the charge.

This means that for any run of the same node type, only the first and last nodes need to be

included when considering the wave travel distance. Figure 5.17 shows how optimisation

of the example path helps to remove the angular movements in the free node section of

the route. Ultimately providing a more accurate path direction and reducing the wave

travel distance to be closer to the true minimum value, as shown by Figure 5.18.

x y

z

Detonation point

Free node

Edge

Surface

Figure 5.17: Optimised path influence types.

Intermediate path storage

The second feature included with generating the comparison metric for 3D blast models

is intermediate path storage. Figure 5.19 shows an example of a type run optimised path

for the wave being tracked to a target surface influence. On the route to this node, the

wave progresses over the top of the containment structure, visiting two edges and one

surface influence. With intermediate path storage, the routes and distances up to these
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x
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z

Figure 5.18: Output path obtained using Dijkstra’s algorithm and type-run optimisation.

x y

z

Detonation point

Visited edge influence

Path target

Figure 5.19: Example of a shortest path for a visited influence that is identified when
assessing the optimised path of a different influence.

nodes are stored as the comparison metrics for these influences during the analysis of

the original target surface. Hence, preventing the need to analyse the same sections of

Dijkstra’s output multiple times. The green line therefore shows the part of the optimised

path that is saved for the second edge that is visited.

For additional computational efficiency, the path optimisation methods are applied to

the influences that have the greatest Dijkstra’s shortest path first, as this ensures a high

number of intermediate routes are found and stored.
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5.7 Alternative methods to represent a domain

This section introduces a number of ideas that were tested as alternatives to the adopted

approaches discussed so far in this chapter. They provide key benefits that make them

suited to rapid implementation, however, issues related to accuracy and robustness have

limited their development for use with the BA. Despite this, the concepts may be suitable

for use with other rapid analysis tools.

5.7.1 Comparison metric: Ray tracing

Ray tracing is a graphical technique commonly used in many modern video games and

animated films that involves tracing a ray of light around the plane of an image to render

a virtual obstacle with realistic lighting (Christensen et al. 2018). It is a process that

considers various effects such as reflection, refraction and diffraction to mimic the physical

process that light experiences with the aim of generating a photo-realistic image of a given

obstacle or scene (Christensen et al. 2006).

Aside from image rendering, ray tracing has also been adapted for applications such as

X-ray diffraction tomography and multi-axis machining simulations (Ulseth et al. 2019,

Jachym et al. 2019). Not only this, but it has been used successfully in blast wave anal-

yses for assessing the impact of explosively driven fragments on electric substations, and

calculating pressure waveforms in urban environments (Roybal et al. 2009, Frank et al.

2008).

However, considering the potential application of the technique for this thesis, the com-

plexity of the fully developed approach that is used to form pressure profiles in these

articles is not required. Instead, the ideas of ray projection, intersection and reflection

could be modified to assess the path that a wave would take in reaching a given point in

a model’s domain.

Charge

x

y

Potential 

wave paths

Reflecting 

obstacle

Non-reflecting 

boundary

Figure 5.20: Example of how ray tracing in 2D can be used to identify wave travel paths.
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To determine the applicability of this idea, Figure 5.20 displays the preliminary results

from the experimental implementation of ray tracing in 2D with the charge acting as the

origin of all potential wave paths. Rays were projected with vectors that were incremented

by one degree to emulate the omnidirectional expansion of the blast wave. Then, if a ray

intersected with a rigid surface, it was cut and a new part of the ray was formed with

a vector that represented a perfect reflection. If no intersection occurred, the ray was

removed.

Seeing as this process does not consider more complex interaction processes such as diffrac-

tion and refraction, it is fast running and can be used to effectively represent the immediate

surroundings of the charge. This could be used to inform the degree of confinement of

the environment, or to relate blast effects to a point of interest based on its location.

Additionally, distances between surfaces that are not in direct view of the charge can be

derived in a way that does not compromise the physical constraints of the obstacles in the

domain.

However, it is clear that not every point on each obstacle is reached by a ray. For a 3D

application of the BA, it is essential that each discretised influence is assigned a relevant

comparison metric, but with ray tracing this cannot be guaranteed. Increasing the number

of rays from the charge, by decreasing the angular spacing of the vectors projected from

it, could improve the number of assigned travel distances, but some influences will still be

omitted. The progression of this approach to 3D was therefore not tested considering that

these issues would remain prevalent.

5.7.2 Domain representation: Voxelisation and skewering

Octrees are a hierarchical data structure that is used to spatially sub-divide a geometry into

3D ‘voxels’, with applications in autonomous robot navigation (Meagher 1982, Hornung

et al. 2012, 2013). In simple terms, voxels are cubes that represent if the space inside of

it is empty, filled or partially filled. Using this information a robot is able to decide if

it can move into a space, or if it the path would be blocked. This section explores the

application of voxelisation of domains used with the BA to determine if computation time

can be saved when discretising a 3D geometry.

In this adaptation, the same influence types discussed in Section 5.2 must be assigned

to each voxel being defined in each geometry. Similarly, free voxels must be included to

enable the wave travel distance comparison metric to be generated using the shortest path

approach. Figure 5.21 shows how a domain could be represented by filled voxels using an

adapted skewering method based on Section 5.6.3. This Figure is presented in 2D, using

a large voxel size to clearly show the simplification effect.

In addition to using the skewers to find the external sections of the model, they are also

used to categorise the internal and surface points depending on the position in the domain

relative to the free space. If a voxel is identified to be on the interface between external and

internal points, it is given the surface or edge designations. Any voxels in inside obstacles

are not included.
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This representation is also similar to how numerical models commonly mesh a given domain

using a set cell size with the model geometry being fit to the cell positions. This results in

the model being slightly shifted in some cases if it does not coincide with the cell structure,

however the alterations are often so small that no significant impact is observed in the

analysis.

i.

Skewer identifies voxels containing intersection points to define 

surface, edge or vertex voxels.

ii.

Free voxels defined based on the intersection point count on each 

part of the skewer.

x
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Voxel type

Free 

Boundary

Influence

Figure 5.21: Voxelisation using the skewering approach discussed in Section 5.6.3. Plot ii
utilises the internal/external point check shown in Figure 5.13 to define free voxels.
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For the BA, the processing steps required to generate the comparison values means that to

keep the code fast running, larger cell sizes, or mesh spacing as it is termed in this thesis,

is required. Simplifying the geometries of each model therefore acts as both a positive

and negative of this approach, because there will be a loss of geometrical complexity.

This can lead to incorrectly identified deviation points in models where surfaces are in

the same location relative to the charge, but the voxel representations differ, as shown in

Figure 5.22. In this example, the panels of each domain have equal stand-off distances from

the same charge, the only difference is the position of the arrangement in each respective

domain. The shortest path analysis of the wave travel paths tracks to the centre of each

voxel and so using a voxelised approach to simplify the geometry leads to differing voxel

representations which in turn gives incorrect deviation conditions.

Intersection point on multiple voxel boundaries, 

results in both being defined as influences.

x

y

𝑅

𝑅

𝑅

𝑅 −
𝑚

2

𝑚 = voxel spacing

Model 1

Model 2

𝑚

Charge

Figure 5.22: Voxel spacing results in different wave travel distances even through the
models have the same stand-off in the un-voxelised form. Leads to a deviation at the
incorrect time, reducing the BA efficiency. Free voxels omitted for clarity.

Similar to the discrete node method presented in this chapter, the voxels themselves are

defined in a global sense. Every model of the batch includes voxels in the same positions

of the domain. However, Figure 5.22 shows that once they are categorised, they can

lose the global benchmark when the model geometry and charge are not aligned with

the voxel boundaries in a specific way. The discrete node method averts this problem

by defining influences globally in a dominant axis only, leaving the remaining axes to

accurately position the influences relative to the charge.
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In this example the deviation of model 1 from 2 as the wave hits the closest influence

voxel would not result in physically incorrect parameter fields in either domain, however

it ignores a large portion of repeated calculation steps that could have been removed

through more considerate data mapping. The algorithm runtime improvement that could

be achieved by implementing the voxelisation method is likely to be cancelled out by this

effect. Thus, no further development of this idea has taken place, yet the concept of

voxelisation provides a means of rapid domain discretisation that may benefit alternative

analysis tools.

5.8 Interfacing with the Branching Algorithm

The BA is coded in the open access programming language Python, with all functions

being written using free to download packages. It is initiated by a single text file of a

standard layout (example shown in Appendix A), with the user only being required to

provide the name of the file to the script that executes the sorting process.

This ‘read-in’ approach is similar to other computational software such as APOLLO Blast-

simulator, where the user is given the option to create a model using the graphical user

interface, or with text inputs alone (Fraunhofer EMI 2018). Combining the latter with

the windows command line brings the advantage of simulating a series of models one af-

ter another with each new text file’s simulation conditions being used to initiate various

models from birth.

An example of the output from the BA is given by Table 5.2. Each row contains a model

number and its associated deviation condition, in addition to parent model number and

any dependants. This simplified output limits the amount of information that needs to be

passed to the numerical solver whilst also allowing for the controlling script to easily handle

incoming data that will need to be merged based on the progression of each simulation.

Table 5.2: Example output mapping table from the BA for use with the numerical solver.

Model No. Parent model
Deviation location

Dependants
[ x , y , z ]

1 4 [ 0 , 8.5 , 2.5 ] ∼
2 5 [ 0.5 , 2.5 , 0 ] ∼
3 ∼ ∼ 5
4 5 [ 0 , -8.5 , 2.5 ] 1
5 3 [ 0 , 2.5 , 0 ] 2,4

5.9 Additional features

5.9.1 Probabilistic grouping

Seeing as models will produce varied parameter fields from birth if various input conditions

are different, probabilistic grouping allows for multiple trees to be created when running

the BA. This ensures that the maximum amount calculation steps can be removed from

the overall analysis, utilising informed data mapping in as many domains as possible.
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It is expected that most uses of the algorithm will only require one probabilistic group.

However there may be analysis cases where multiple explosives need to be considered

when assessing the risk to a given target and so the results from all tests may need to be

gathered in one dataset produced by the algorithm for further risk assessments.

5.9.2 Domain scaling

Hopkinson-Cranz scaling is supported by the BA to allow models with different charge

sizes to benefit from informed data mapping provided that the charge composition remains

the same. This aims to maximise the amount of repeated calculation steps being removed

from the batch of simulations.

Using this relationship between blast parameters, multiple model domains can be scaled

to the size associated to a 1 kg mass of explosive. The BA and all simulations can then run

with the scaled parameters before the outputs are unscaled for use in additional analysis.

5.9.3 Viper::Blast integration

As discussed in Section 3.2.3, the numerical solver Viper::Blast features trigger gauges that

can be positioned in a domain with specific conditions allowing them to either terminate

the current model, or output a remap files of the parameter space as the gauge is contacted.

With the implementation of these features, the BA is able to function seamlessly with the

solver since gauges can be positioned in each relevant domain at the specified deviation

locations when evaluating the output from the BA. Integration with alternative solvers

may require changes to the coded method to ensure that files are output at the correct

time steps.

5.10 Application: Containment structure analysis

5.10.1 Problem scenario and model specification

The following application of the BA in 3D is included to show that the developments

explained in this chapter can lead to meaningful reductions in the computation time

required to analyse batches of models.

Figure 5.23 provides a plan view of the five geometries that feature in a batch of 20, 3D

models that aims to replicate a study where the effect of reducing the material use of

geometry 1 is evaluated in terms of the overpressure recorded at surrounding locations

following an accidental detonation. Each containment structure is 4 m tall, with base

dimensions covering 18×5.5 m.

The locations of the gauges used to monitor the pressure variations are presented in

Figure 5.24 alongside the four charge locations that are used independently with each

geometry. Furthermore, the simulation domain that was adopted for use in the chosen

solver, Viper::Blast, is also provided. The floor is defined as the only reflecting surface

with all others being able to transmit the blast wave outside of the domain.
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Figure 5.23: Plan view of the five containment structures included in the example analysis.
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Figure 5.24: Plan view of the modelling domain, showing the origin point of the contain-
ment structures in Viper::Blast, four potential charge locations, and five gauges used to
record pressure-time profiles.

In each case, the Viper::Blast models are simulated using an ideal gas calculation with a

5 kg, TNT, spherical charge positioned 1.5 m above the ground and a termination time

of 55 ms. Ambient pressure and temperature are 101325 Pa and 288 K respectively.

Simulations including the initial detonation utilised 1D to 3D mapping that takes place

one cell before the wave reaches a rigid surface.
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For all models, the element size of the 1D stage is specified as 0.002 m to provide ∼45

elements across the spherical charge radius for the simulation of the initial detonation.

This stage is evaluated until the shock wave is one cell away from the rigid boundary of

each domain at zmin. The element size is increased to 0.04 m for the 3D solving stage

to comply with the requirement outlined in Section 3.2.6 for a maximum 1D cell size of

0.0045 m, and maximum 3D cell size of 0.045 m. Whilst it is important to respect these

mesh restrictions it is the overall computation times and outputs between branched and

non-branched methods that will be compared. Therefore, provided that conditions remain

the same for both approaches, conclusions will remain valid.

5.10.2 Algorithm output

Figure 5.25 displays the output from the BA,, where four groups are considered based

on the charge location. Red lines on each model show the path of the blast wave that

emanates from the charge to the uniquely identified deviation points. For lines that pass

through the containment walls, the wave is progressing up and over the 4 m structure.

Domains including no red line are the trunk models of each group.

It should be noted that it is the final deviations being shown for each model in each tree.

For example, reviewing the output for the first tree, model 5 deviates from the trunk

model as the blast wave reaches the right hand wall of the central bay. No other model

shows this to be a deviation point, however every other model also deviates from the trunk

model at this step as shown by the resulting deviation tree. Similarly, models 1 and 4

would both deviate at the same time step, however symmetrically opposite influences are

identified to cause the deviations, resulting in an additional sub-trunk model that does

not impact the algorithm’s performance.

5.10.3 Simulation times

The overall computational saving is given by Table 5.4, with Table 5.3 showing that

full simulations of all 20 models requires 20086 seconds when using an Intel i5-8265u

processor, 8 GB of RAM and a Nvidia GTX 1650 dedicated graphics card. Utilising the

BA and informed data mapping reduces this requirement to 16228 seconds, providing a

computation time saving of around 20%.

For this complex scenario, a saving of around 20% means that an additional geometry

could be assessed with all four charge locations at no extra cost when compared to the

standard birth to termination simulation approach. Accordingly, an additional geometry

could be explored that may benefit from the knowledge gained from the first batch at no

additional computational cost.

When discussing the reported time saving it is also important to consider how the individ-

ual computation requirements for each model are variable depending on the termination

time and mesh density used in the numerical calculation. If these models used a higher

resolution of elements, the relative cost of the algorithm would be reduced. This ultimately

drives the total percentage saving to be closer to when the algorithm cost is ignored, in

this case, moving 19.2% closer to 20.8%.
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Figure 5.25: Generated deviation trees for each group and visual representations of the
deviation points for each model. Red lines show the blast wave travel path to the first
influence that results in a parameter field that is no longer identical to the parent model.

Furthermore, this sample study only contains 20 models. If instead, it featured upwards

of 100 different arrangements with various combinations of geometry and charge size, it

would be possible for a greater amount of saving to be observed with each model having

a higher chance of sharing certain simulation steps with another in the batch.
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Table 5.3: Comparison of model computation times.

Model No. 1 2 3 4 5 Tree 1

Without branching (s) 1039 1011 992 1030 1030 5102
With branching (s) 595 977 992 594 1001 4159
Saving (s) 444 34 0 436 29 943
Saving (%) 42.7 3.4 0 42.3 2.8 18.5

Model No. 6 7 8 9 10 Tree 2

Without branching (s) 1015 1009 1015 1013 986 5038
With branching (s) 351 599 971 603 986 3510
Saving (s) 664 410 44 410 0 1528
Saving (%) 65.4 40.6 4.3 40.5 0 30.3

Model No. 11 12 13 14 15 Tree 3

Without branching (s) 1013 1014 994 993 987 5001
With branching (s) 974 968 954 334 987 4217
Saving (s) 39 46 40 659 0 784
Saving (%) 3.8 4.5 4.0 66.4 0 15.7

Model No. 16 17 18 19 20 Tree 4

Without branching (s) 987 990 992 990 986 4945
With branching (s) 634 843 992 630 930 4029
Saving (s) 353 147 0 360 56 916
Saving (%) 35.8 14.8 0 36.4 5.7 18.5

Table 5.4: Comparison of model computation times for the batch.

Full simulation computation time 20086 s
Algorithm computation time 313 s

Branched method computation time (exc. algorithm) 16228 s
Total saving (exc. algorithm) 20.8%

Branched method computation time (inc. algorithm) 15915 s
Total saving (inc. algorithm) 19.2%

Similarly, the solver Viper::Blast utilises Nvidia GPU processing in addition to various op-

timisation methods that significantly reduce the time required to analyse any given model

when compared to alternatives exclusively featuring CPU processing power. Viper::Blast

is therefore already likely to be a less time consuming approach to conducting batch anal-

yses and so the savings noted here are expected to be far greater if less optimised solvers

were to be used instead.

Regarding the implementation of the BA and data mapping, the algorithm could have

used all models in one tree rather than splitting them into four separate trees. This would

have increased the number of simulation steps being removed as the initial detonation of

the charge, that was common to all models, would only need to be simulated once whereas

here it was done four times. However, the sorting process used by the algorithm runs

more efficiently with smaller trees because fewer model to model comparisons are required

when defining the trunk model. Ultimately, this improved algorithm efficiency outweighs
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the potential saving of modelling the detonation once because the 1D solution used for

this stage is already rapid in its execution.

5.10.4 Mapping results

Assessing the output from the BA in Figure 5.26 shows that the branched output for

gauge 2 in model 9 provides a Mean Absolute Error (MAE, Equation 6.2) of 0 kPa when

compared to the output from the same gauge from a simulation that runs without informed

data mapping. The reduction in simulation time from 1013 seconds to 603 seconds in this

instance is therefore achieved with no detrimental impact to the simulation accuracy. This

conclusion remains true for all domains in the batch due to how mapping takes place just

before each associated deviation would occur in the corresponding parent model.
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Figure 5.26: Pressure-time history recorded by gauge 2 when simulating model 9 entirely
in its own domain (left) compared to when informed data mapping is used (right). Each
line type shows which domain the data was record in.

Whilst it was not the aim of this paper to draw conclusions about the containment struc-

tures considering the magnitudes of the simulated results, with the focus instead being

placed on proving the computation time saving potential of the BA, it is important to

appreciate the scenario where the batch analysis approach is useful. Table 5.5 therefore

provides the peak overpressure at each gauge for each containment structure (shown in

Figure 5.23) considering all four potential charge locations when defining the peak over-

pressure at each gauge.

An assessment of these readings clearly shows how the variation is small for gauges 2, 3 and

4. However, gauges 1 and 5 highlight how structures 4 and 5 may result in an unacceptable

risk of increased overpressure either side of the containment model. Containment 3 appears
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Table 5.5: Comparison of the peak overpressure recorded at each gauge for each contain-
ment structure considering all charge locations.

Containment
Structure

Peak Overpressure (kPa) at gauge number

1 2 3 4 5

1 18.53 8.22 11.13 8.22 18.19
2 18.53 8.22 9.91 8.22 18.19
3 18.53 8.22 8.51 8.22 18.19
4 18.53 8.22 11.13 8.22 82.58
5 79.16 8.22 11.13 8.22 82.58

to present the best compromise between peak values and material use, however no human

vulnerability thresholds or fatality assessments, such as the ones featured in studies by

Alterman et al. (2019) and Marks et al. (2021), have been consulted or conducted in

making this judgement. Including such analyses would be required in the next phase of

this analysis so that the data from all 20 models is utilised to make more informed risk

based decisions or in designing a new alternative structural arrangement that benefits from

these observations.

5.11 Summary

This chapter has developed new influence definitions that allow for the Branching Algo-

rithm to be applied to batches of 3D domains. By considering the shortest wave travel

distance, vertices, surface nodes and edges, the algorithm is able to discern when each sim-

ulation deviates from the others using a logical sorting process provided in the previous

chapter. It is shown that when applying this method to a complex set of 20, 3D con-

tainment structures, the computation time can be reduced by approximately 20%. This

is achieved, once again, with no loss of output accuracy, resulting in Objective 3 of this

study being met.

A key advantage of utilising this method is therefore that it provides the researcher with

the ability to conduct a more robust analysis of various problems with the same compu-

tation expense. Thus benefiting the analysis of probabilistic frameworks, or development

of machine learning training datasets to ultimately promote more effective design optimi-

sation and exploration. The ability to remap data from one domain to another relative

to the centre of an explosion lends itself well to transferring data at time steps where a

deviation in the outputs will occur, however, the magnitude of the improvement to the

required computation time will vary depending on the application and complexity of the

batch of models being simulated.

For example, the application included in this chapter aimed to provide representative

time savings for a complex structural layout with charges placed at relatively low stand-

off distances. Yet, scenarios featuring larger stand-off distances and a greater amount of

structural similarity, such as those discussed in Chapter 4, have been shown to save up to

50% of the computation time. Nevertheless, each batch that is processed by the method

will result in time savings that compound with each additional use.
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The key contribution of this chapter is that it provides a robust, reliable and repeat-

able method for formalising efficient remapping of numerical modelling, by identifying a

main ‘trunk’ model and sorting each subsequent model according to when its results are

expected to deviate from that model. Whilst this, and the previous, chapter focusses

on blast analyses, future applications could look to tailor and develop the algorithm for

different numerical problems, where batches of models are equally as important for under-

standing the processes being models. This includes vehicle design and safety assessments

(e.g. Lu et al. (2020); Wu et al. (2020)), search and rescue tools (e.g. Coppini et al.

(2016), pressurised water pipe failure (e.g. Barr et al. (2020)) and structural topology

optimisation.

It should be noted that this chapter and the previous were combined, and condensed, to

form the published article titled ‘A branching algorithm to reduce computational time of

batch models: Application for blast analyses’.



Chapter 6

A Direction-encoded Framework for

Machine Learning Tools

6.1 Introduction

It was discussed in the literature review of existing FREMs (Section 2.6) that Artificial

Neural Networks (ANNs) can be successful in predicting values associated to various task-

specific blast events. However, the inputs of these tools often limits their use to a select

range of pre-defined scenarios that do not allow for probabilistic studies to explore the

impact of varied charge locations or domain geometries.

Consequently, the challenge for improving this approach for blast wave analysis is to

engineer an input pattern that represents the relevant domain geometry in addition to

the prediction point and charge location. Thus, preventing information from being to be

trapped in the tuned network parameters. Using knowledge of how a blast wave interacts

with the surroundings on its journey towards the point of interest (POI), the Direction-

encoded framework for Machine Learning tools, introduced in this chapter, aims to solve

this problem.

The initial idea is firstly tested using an architecture that matches existing literature,

before each step of the feature engineering process is explained and tested. This aims to

highlight the importance of understanding blast wave mechanics when constructing an ML

tool whilst also showing how each input adaptation builds upon the predictive accuracy of

the previous model. Once the inputs are confirmed, the hyperparameters are optimised.

6.2 Introduction to the Direction-encoded Framework

Considering the various mechanisms associated to how blast waves interact with obstacles,

including channelling, clearing, and reflection, it is clear that the cause of varied blast

properties is linked to the path that the blast wave must take to reach a POI, rather than

the shape and size of the domain or the entire topology.

The input pattern utilised by the Direction-encoded Framework is therefore informed by

the underlying physical processes, and structured to include the shortest wave travel path,

the influence of surrounding obstacles according to 8 directional ‘lasers’ on a 2D plane,

and the laser direction that points towards the charge. This initial feature set is shown in

the example given by Figure 6.1, where the inputs are applied to a neural network.

106
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Taking inspiration from robotic vacuum cleaners and how they navigate their surroundings,

each directional input acts as a range finding tool that informs the model about the

proximity of rigid surfaces around the POI. Robot vacuum cleaners use these distances

to identify where they can go, where they cannot go, and where needs to be cleaned,

allowing them to be used in any room (Chiu et al. 2009, Kang et al. 2014). However, in

this application distances to rigid obstacles are calculated for each laser with a input value

of 0 being assigned to those that reach the ambient boundary without obstruction.
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Figure 6.1: Proposed approach for generating blast load predictions using an ANN. Refer-
ence to the prediction point is made relative to the surroundings and the wave’s journey.

The charge direction input relates to the directional input that is closest to the direct

line drawn between the charge and prediction point. In the example shown by Figure 6.1,

direction 7’s laser has the smallest angular difference to the direct connection, resulting

in the input of 7. This aims to show the model that obstacles being detected by lasers

5, 7 and 8 are likely to shield the POI from the wave, leading to a reduction in the peak

overpressure that should be predicted.

Shortest path analysis is used to calculate the wave travel distance with a similar approach

to the BA in 3D (Chapter 5). Since a training dataset needs to be generated, it is beneficial

to discretise each domain being evaluated, with each point providing an independent

input–output combination. This network of nodes can then be traversed using Dijkstra’s

shortest path algorithm to find the wave travel path to each POI. In combination with the

directional inputs, this feature set aims to replicate the versatility of the automated robots

when predicting the peak overpressure in domains featuring various, movable obstacles.
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Development of the framework is restricted to inputs–output combinations associated to

the detonation of a 1 kg spherical TNT charge, with these composition details being

omitted from the model’s feature selection. This allows other domains, featuring different

masses or charge materials, to be compatible with the ANN by being scaled according to

equivalency factors and Hopkinson-Cranz scaling laws (Hopkinson 1915, Cranz 1926).

6.2.1 Adapted wave travel distance calculation

It was discussed in Section 5.6.5 that the shortest path between the charge and a POI

can be calculated using Dijkstra’s algorithm and type-run optimisation for a discretised

domain. This provided an efficient way for the BA to identify when points in various

domains would experience a change in ambient conditions caused by the arrival of a blast

wave, signifying a potential deviation from the parameter space of a parent (trunk) model.
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Figure 6.2: Example of the variation in wave travel distance obtained when using Dijk-
stra’s shortest path algorithm with type-run optimisation (introduced in Section 5.6.5).
Coordinates given in (x,y) to show relative distance between points A and B for a charge
positioned at (7.5,5).

For the BA, the accuracy of this approach proved to be suitable in multiple applications.

However, the arbitrary geometry, shown in Figure 6.2, highlights a potential issue with

this method as points A and B both have a direct line of sight to the charge, but only

point B is optimised to form this path. Instead, the output from Dijkstra’s algorithm

forces point A’s path to visit a rigid panel vertex and since paths are only optimised to

straight lines if every node along the section shares the same node type (free, edge/surface,

vertex), the error is not corrected in the optimisation process.
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Since the accuracy of ML tools is highly dependant on the quality of the inputs in the

training dataset, it is essential that any non-physical or inconsistent wave travel paths are

corrected. Solving this issue therefore requires the an additional smoothing function to

optimise wave travel paths for all nodes in a given domain:

1. Sort nodes in the domain by the wave travel distance, from smallest to largest.

2. For each node (defined as base node):

(a) Find the connected nodes and the connection distances from the base node.

(b) For each connected node,

i. Calculate the potential wave travel distance by adding the corresponding

connection distance to the base node and the wave travel distance to the

connected node.

ii. If the the potential wave travel distance is smaller than the stored distance

for the base node, update the stored value.

3. Repeat steps 1 and 2 until no nodes are updated.

All node connections are physically valid, i.e. no connections pass through obstacles, so

this process does not reduce shortest paths to values that are below the true optimum

for each node. Instead the process takes another step towards this goal without adding

unreasonable levels of computational complexity.

Figure 6.3 provides the wave travel distances throughout a domain featuring a charge at

the centre point, before and after type-run optimisation. It is clear that this step is vital

for removing many physical inconsistencies, yet, many regions with steep gradient changes

are still present, e.g. at (5.5,0.5).

Figure 6.4 shows the reductions generated by using the smoothing function as a contin-

uation of Figure 6.3. In localised areas, corrections of up to 0.7 m are applied, ensuring

that consistency is maintained throughout the entire parameter space.

Using this additional robustness measure when calculating the shortest wave travel dis-

tance, the remainder of this chapter will test and develop the Direction-encoded Framework

to determine how, and when, it could be used to replace current approaches for blast wave

analysis.
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Figure 6.3: Distribution of shortest wave travel paths from the charge to each POI, showing
how type-run optimisation removes most inconsistencies in the domain caused by Dijkstra’s
algorithm. Charge centre positioned at x = 5, y = 3.5, white voids are rigid obstacles.
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Figure 6.4: Additional path reduction caused by smoothing the output from type-run
optimisation. Charge centre positioned at x = 5, y = 3.5, white voids are rigid obstacles.
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6.3 Dataset development and training approach

6.3.1 Initial model architecture

As a result of the paper by Dennis et al. (2021) showing that good performance can

be achieved for regressive blast analysis problems using a multilayer perceptron, a similar

network architecture has been adopted for an initial testing phase of the Direction-encoded

Framework. This aims to provide insight into how the input pattern can be redeveloped

to benefit the generalisation capabilities, and predictive accuracy of the approach. For

the remainder of this thesis, this tool is defined as the Direction-encoded Neural Network

(DeNN).

Table 6.1 provides an overview of the network architecture that is coded in the Python

programming language using the Tensor Flow and Keras packages for Machine Learning.

Training is allowed to continue for up to 500 steps unless the early stopping criteria is

met. This being that there is no improvement in the validation loss for 10 steps, where

‘no improvement’ includes loss variations of 1 kPa2 or less. The network is only saved

after each training step if it provides the best performing validation loss, replicating the

process implemented by Bakalis et al. (2023). This ensures that if the training perfor-

mance continues to improve despite a decline in validation performance, the weights and

biases of the network are not saved. Thus, preventing overfitting and allowing for good

generalisation with unseen inputs.

Table 6.1: Fixed network parameters.

Hidden network structure 500|500
Activation function ReLU (Linear at output)
Loss function Mean squared error
Optimiser AdaGrad
Learning rate 0.01
Training steps 500 (with early stopping if validation loss

does not improve for 10 steps)
Batch size 100
Dropout rate 0.1
Regularisation L2
Weight initialiser Glorot Normal
Bias initialiser Zeros
Cross validation folds 4

Four fold cross validation is utilised to ensure that the network performance is evaluated for

the entire training dataset (introduced in the next section). This process involves splitting

the dataset into four equal sections, with four separate networks being trained on a different

75/25 training/validation subset. Performance is reported as the mean average of all the

folds so that bias in the validation data split is removed whilst also ensuring that every

point in the dataset is predicted by a network that was trained without considering that

point, thus allowing for more robust performance assessment. Following cross validation,

the final model is trained for the number of training steps equal to the average from all

folds considering the early stopping criteria, using all the training data.
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As with the study by Dennis et al. (2021), the AdaGrad (Adaptive Sub-gradient Descent)

gradient descent algorithm is used for training since the dataset features localised effects

and wide variations in outputs (Duchi et al. 2011). The variable learning rate is well suited

to this as common features have smaller impacts on the updates whilst rare features have

larger impacts (Hadgu et al. 2015).

It should be noted that this array of variables is only fixed for initial testing and devel-

opment phases of the DeNN. Tuning of the key hyperparameters will be included once

feature set has been developed throughout the following sections.

6.3.2 Training dataset

A key part of developing a Machine Learning tool that can be useful in practice is related

to the quality and quantity of training data points. To develop a suitable dataset to

analyse the performance of the DeNN, 25 randomly generated Viper numerical models,

shown in Figure 6.5, have been simulated. This aims to provide a range of unbiased

blast scenarios that include obstacles positioned in a wide range of locations so that the

networks can generalise from the training process and provide predictions with suitable

accuracy regardless of the prediction domain.
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Figure 6.5: Randomly generated training models used to develop the DeNN.
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The random generation process applied limits on the number of obstacles (0–5) and their

size (0.01–5 m2), their shape (square/rectangle) and orientation (0◦ or 90◦ to the hori-

zontal), and the size of the overall domain (10×10 m, 10×8 m, 8×10 m, 8×8 m). Each

obstacle is also set to a height of 2 m.

The 1 kg TNT spherical charge was positioned at 1.5m above a rigid reflecting ground

surface in every domain with a grid of gauges also being specified at this height with

regular spacing of 0.1 m. Gauges within 1.5 m of the charge were then removed, and will

not be predicted, as this 1.5 m sphere around the charge is a true free-air case. Standard

rapid analysis methods, such as ConWep, can therefore be used if information about this

region if required. Furthermore, peak overpressures are also expected to be far greater

in this region than in any other part of the domain and so their removal reduces the

range of values that need to be predicted by the ANNs. This will have the same impact

as the specific impulse limit employed by Dennis et al. (2021), where performance was

improved for predictions of lower magnitudes once the rare, especially large, values were

omitted. Overall, this methodology provides 177277 unique datapoints for use in network

development.

The size and shape of the domains used in the training process have little effect on the

ultimate performance of the DeNN due to how the inputs are derived with reference to the

surroundings instead of the domain itself. It is more important to provide a wide range of

target peak overpressures and a range of activated (non-zero) directional input combina-

tions. In this case, the 25 models provide the magnitude ranges shown in Table 6.2. These

form the allowable bounds of inputs associated to future scenarios requiring prediction. It

should be noted that the low mean value associated to the directional inputs is caused by

the number of ambient (0 magnitude) inputs.

Table 6.2: Training dataset variable statistics.

Variable Units Min Max Mean Std.
Deviation

Directions m/kg1/3 0 11.03 0.67 1.45

Wave travel distance m/kg1/3 1.52 13.93 5.39 2.37
Peak Overpressure kPa 4.72 672.34 51.63 51.20

At each gauge location, pressure histories are recorded by Viper. The peak reading is

extracted and aligned with the directional input patterns and wave travel distances that

are calculated using the discretised domain representation given by the 0.1 m gauge grid.

Thus allowing the network to be trained considering inputs with a known target output

from the validated solver. Details of the Viper models are given in section 6.3.5.

6.3.3 Testing models

In order to test the performance of the trained ANNs, two additional models have been

simulated to enable a real world assessment of the predictive performance. These inde-

pendent tests are not restricted by the aforementioned randomisation requirement and are

developed with the aim of replicating some expected domain layouts that could be seen

in practice. By assessing the performance for these unseen inputs, the impact that the

randomised training dataset has on the generalisation capabilities can be observed.
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Figure 6.6 provides the dimensions for both testing models, with all input parameters

falling within the bounds of the training dataset shown previously in Table 6.2. T1 aims to

test the network’s ability to predict the peak overpressure in a simple scenario with various

blast panels, whereas T2 requires greater appreciation for more complex wave interaction

effects, with channelling and shielding replicating a scenario more closely aligned to a

cityscape layout, albeit a simple one. Both models include 1 kg spherical TNT charges

positioned at 1.5 m above the rigid reflecting floor, and obstacles that are 2 m in height.

x

y

Charge location Rigid objectAmbient boundary

All dimensions in meters.Prediction exclusion boundary

T1

0.7

2.5

1

2

3.5

10

2

5

1.5

5

8.5

9

8

1

6
7

T2

1.5

6

4

1.8
3

1.5

2

4.24.5

12

1.5

1.8

3

3.3

6

11

8.5

Figure 6.6: Selected testing models to be used for unseen ANN performance assessment.
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A key feature of both testing domains is that they do not share equal size or shape with

any of the models used to form the training dataset. Seeing as the DeNN references the

surroundings of each prediction point and not the domain itself, predictions can still be

generated on a 0.1 m gauge grid, positioned 1.5 m above the rigid ground plane. It should

be noted that it is possible for the user to change this predictive grid spacing in future use

cases if required.

A large range of input patterns and corresponding outputs are generated for training,

and only specific patterns will also feature in real world applications. In some cases the

accuracy may be better than expected, and in some it may be worse. For example, the

average error of the network may be 10%, however this could include a 1% average error for

points being shielded, and a 30% error for those where channelling with have the largest

impact on the peak parameter. By generating predictions for these specifically designed

testing models, it will highlight these variations.

6.3.4 Analysis method

The schematic shown in Figure 6.7 presents the data splitting process used throughout

training, with 4-fold cross validation and the two independent testing models. As noted in

Section 6.3.1, the final model used to predict the testing data is trained using all training

data for the average number of steps required by the cross validation process.
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Figure 6.7: Representation of how data is split for K-fold cross validation during training,
showing that this is independent of the two additional models that have been devised for
testing the trained DeNN. Adapted from Pannell et al. (2022).

6.3.5 Viper::Blast modelling

Each model in the training dataset will be simulated using the chosen numerical solver,

Viper::Blast. Following its validation in Section 3.2, this solver provides the functionality

required to generate peak overpressure readings throughout each domain at the specified

grid spacing.

Setup parameters are provided by Table 6.3 and in each case all boundaries are set to be

ambient (transmit) aside from the rigid reflecting floor. The simulations utilise 1D–3D

mapping with the 1D stage running until the blast wave has reached one cell away from this

boundary at 1.499 m from the detonation point. Whilst the DeNN will predict for a 2D

plane at 1.5 m elevation, it will be trained with data from a more comprehensive modelling
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process, carried out in 3D with a domain height of 2 m. This matches the obstacle height

to replicate scenarios where the building height is so large that the clearing effects caused

by the wave reaching the top edge do not influence the blast loads at the ground level,

such as along city streets. To remove the potential influence of ambient boundary effects

on the peak overpressures recorded by gauges at the boundaries, each boundary is in the

x and y plane is extended by 0.5 m.

Table 6.3: Viper::Blast training model parameters.

Solving method Ideal gas
Charge size (kg) 1
Charge composition TNT
Charge density (kg/m3) 1600
Charge energy (J/kg) 4.52×106

Mapping 1D–3D
1D cell size (m) 0.001
1D CFL 0.5
3D cell size (m) 0.02
3D CFL 0.4
Ambient temperature (K) 288
Ambient pressure (Pa) 101325
Termination time (s) 0.05

6.3.6 Performance metrics

Comparisons between each network variation will be made using three metrics. The first

is the Young’s Correlation Coefficient, calculated using Equation 6.1.

R2
t (o,m) = 1−

∑N
n=1(mn − on)

2∑N
n=1 o

2
n

(6.1)

Where R2
t is the correlation coefficient, mn is the predicted peak overpressure, on is the

target peak overpressure and N is the total number of data points. An R2
t of 1 shows that

every prediction equalled every target, values close to 1 show high correlation between the

two variables and close to 0 shows little correlation.

The Mean Absolute Error is also used, calculated using Equation 6.2, to assess the average

magnitude of error in the predictions using the associated units of kilo pascals.

MAE =
1

N

N∑
n=1

|mn − on| (6.2)

Finally, the average percentage error is calculated using Equation 6.3. This metric removes

the influence of magnitude from the error assessments.

Avr%E =
1

N

N∑
n=1

|mn − on|
on

× 100 (6.3)
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6.4 Initial performance assessment

To assess the performance of the DeNN using the input pattern design shown in Figure 6.1,

the 4-fold cross validation technique is used. Mean performance statistics are reported in

Table 6.4 for the train and validation stages.

Table 6.4: Mean performance metrics from 4-fold cross validation of the DeNN.

Development stage R2
t MAE (kPa) Avr%E

Training 0.9654 5.84 17.9
Validation 0.9647 5.87 18.0

Correlation coefficients of around 0.96 show good promise for the approach, however, Re-

mennikov & Rose (2007) achieved a coefficient of 0.997 for peak pressure predictions behind

blast barriers using their bespoke ANN. It is therefore clear that further developments are

needed, especially considering the average errors around 18% are also outside of what is

typically defined as ‘good enough’ for blast applications, this being less than 10% (Rigby

et al. 2014). Despite this, there is minimal overfitting as the validation performance is only

slightly worse than training in each metric. The dataset is shown to be generalised con-

sistently with different groups of data being held out in four separate training processes.

As a result, the network used for testing is trained using all of the data with performance

statistics from predicting the outputs for both tests shown in Table 6.5. For this stage, the

number of training steps used equalled the average from each fold during cross validation.

Table 6.5: Performance metrics for both testing domains, simulated using the DeNN,
compared to a Viper model.

Testing model R2
t MAE (kPa) Avr%E

1 0.9202 16.45 51.0
2 0.9594 10.65 44.2

There is a stark decrease in performance from validation to testing, highlighting that

the testing models include points that are similar to those in the randomised training

dataset that are not predicted with good accuracy. Figures 6.8 and 6.9 provide visual

representations of each prediction that forms each domain in addition to Viper outputs and

the absolute error between both modelling approaches. This shows that wave reflections

are largely ignored by the DeNN, in particular around the areas of pressure build up in

front of the rigid obstacles, the network is not able to amplify its predictions. The use

of only 8 directional lasers may also mean that some input patterns omit the presence

of obstacles in the domain. It is likely that the wave travel distance has dominated the

magnitudes of each prediction, with some angularity being present to also ignore any

domain symmetry (as highlighted by the absolute error plots). Performance is therefore

not yet at an acceptable level, despite another testing model potentially matching, or

exceeding, the validation performance, depending on the distribution of points that are

included.
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Figure 6.8: T1 peak overpressure targets generated by Viper::Blast, predictions from the
DeNN, and the resulting absolute errors. White regions are not predicted, either due to
being within a rigid obstacle, or the 1.5 m exclusion zone.
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Figure 6.9: T2 peak overpressure targets generated by Viper::Blast, predictions from the
DeNN, and the resulting absolute errors. White regions are not predicted, either due to
being within a rigid obstacle, or the 1.5 m exclusion zone.
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The following list outlines the five main issues identified in this assessment:

1. Angularity, predictions formed with clear reliance on the angular spacing of the

directional lasers.

2. Wave reflections near surfaces are not considered.

3. Domain symmetry is not respected.

4. Large variations in values are not consistently predicted.

5. Obstacles are missed by the directional lasers that would influence the predictions.

In the following section each area for improvement is addressed by independent, creative

input parameter adjustments before a final feature set for the DeNN is evaluated to de-

termine the capabilities of this approach.

6.5 Feature engineering and development

6.5.1 Introduction

Throughout this section various adaptations are made to the input pattern of the DeNN.

This feature engineering process is tested incrementally to highlight the benefit of each

development. Fair comparisons are ensured through use of a set randomisation seed in

Python, TensorFlow and Keras. This ensures that each fold used in cross validation

remained the same for every network. Similarly, consistency was maintained when initial-

ising and updating the weights and biases, with each training process selecting the same

points in each batch of each step. This removes random variation, so any performance im-

provements are directly linked to the creative feature selection decisions that are explained

throughout the remainder of this section.

6.5.2 Rotating laser directions and a mirrored dataset

Including the closest charge direction input provides a regression network with an input

that is not continuous. Whilst this is valid and predictions may be suitable with this

approach, it is likely that removing this variable by incorporating it into the network itself

would allow for better generalisation. For example, in a scenario where a switch node is

used to take the value of 0 when a criteria is met and 1 when it is not, use of two separate

networks could lead to greater performance because each network can be tailored to each

distinct case.

For the DeNN, a split for each charge direction is not feasible considering the size of the

dataset that would be required to sufficiently train each network based on all 8 possible

closest directions. Instead, the proposed development allows the directional lasers to rotate

such that direction 1 always faces the charge centre. The value of the input associated to

this direction is restricted to the wave travel distance to ensure that obstacles behind the

charge are not translated to the DeNN, thus having no impact on the predictions.
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Figure 6.10: Example of how the network could be provided with differing inputs for the
same expected output prediction. Use of rotating laser directions ensures identical input
patterns to maintain consistency in the predictions.

Including rotating directional lasers and removing the charge direction input is also nec-

essary to help with generating consistent predictions for points that are expected to have

identical outputs. Through analysing the absolute error from the initial DeNN tests,

shown in Figure 6.9, symmetrical consistency is rarely preserved. This is because in the

fixed laser approach, the input patterns used for two points, P1 and P2, shown in Fig-

ure 6.10, are different despite the outputs needing to be identical due to symmetry. P1

activates (non-zero magnitude) lasers 6, 7 & 8, whereas P2 activates 1, 2 & 3. Rotating

lasers corrects for this error by ensuring that direction 1 points towards the charge and

the same input nodes are activated in both instances. Providing the same input pattern

to the network ensures that the same output will be generated.

However, maintaining consistent input patterns is not possible throughout the entire do-

main as the angle of rotation can change which side of the directional laser rosette will be

activated. Considering this in a simple case that builds upon the previous example, Fig-

ure 6.11 shows the differing input patterns are produced for two points that should share
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equal predictions. The directional input rosettes include a distance ‘B’, at input number 2

for P1, but at input number 3 for P2. The tuning of weights and biases associates to each

direction will therefore be inconsistent, resulting in bias towards one side of the rosette

that is likely to cause symmetrical inconsistencies.
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Figure 6.11: Proof of how mirroring the dataset can expand the number of points in
training without duplicating input patterns.

To reduce this issue, the dataset can be mirrored by swapping directional inputs 2/4/6

for 3/5/7 whilst retaining the other inputs and the target output, to double the number

of valid data points can be made available for training without breaking any physical

constraints of the problem. Using this approach, the training dataset increases to 354554

unique data points, allowing the networks being trained to have access to input patterns

that relate to obstacles on both sides of direction 1 in equal quantities.

Table 6.6 notes the training and validation performance metrics from the initial feature

set compared to when rotational lasers and the mirrored dataset are used. The MAE

and average percentage errors decrease slightly, but the correlation coefficient is reduced.

Performance is also shown for T2, where improvements are made for all performance
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metrics, and symmetrical consistency is achieved with a prediction comparison shown in

Figure 6.12. Despite this improvement, average errors remain above 10% with wave reflec-

tions, clearing and channelling not being correctly considered around the rigid obstacles.

Table 6.6: DeNN performance comparison between the initial feature set, presented in
Section 6.4, to when rotating laser directions and a mirrored dataset is incorporated into
input generation.

Improvement method (s) Development
stage

R2
t MAE

(kPa)
Avr%E

Initial - N/A
Training 0.9654 5.84 17.9
Validation 0.9647 5.87 18.0

T2 0.9594 10.65 44.2

Rotating laser directions and
mirrored dataset

Training 0.9626 5.64 15.9
Validation 0.9625 5.65 16.0

T2 0.9696 9.33 32.1
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Figure 6.12: DeNN predictions showing when the directional inputs are fixed in position
relative to the domain compared to when a mirrored dataset is used in addition to allowing
the directional inputs to rotate such that direction 1 points towards the charge centre.
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6.5.3 Wave reflections with superposition

The next method for improving generalisation potential is related to how wave reflections,

shielding and channelling effects are considered. At present, the directional lasers will

provide the network with values associated to any obstructions in specified directions

from the POI. For directions 1, 2 and 3, a small input therefore suggests that there is an

obstacle between the charge and the POI that will lead to a reduced peak reading due

to shielding. Similarly, a low input for directions 6, 7 and 8 suggests that there is an

obstacle immediately behind the POI, leading to amplified blast parameters due to the

wave reflection.

In both cases, a low input relates to a large contribution of contrasted blast wave mechanics

that will heavily alter the predicted values. Setting an ambient directional input as 0 places

an intended ‘no effect’, in between the largest effect in terms of amplification and reduction.

As a result, it is likely that the network will not truly differentiate between points that

should be predicted with larger/smaller peak pressures based on what the blast wave is

experiencing, instead focusing on the wave travel distance as the main reason to alter its

output.
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Figure 6.13: Example of how wave reflections are represented by the input pattern. Larger
values for directional inputs 4, 5, 6, 7 and 8 imply a larger reflection effects.

Figure 6.13 presents the proposed approach for improved wave reflection consideration

with plot a, showing that when a point is on an obstacle surface its directional input is

taken to be the wave travel distance. Then, as the point moves away from the obstacle

(b), the larger laser distance is subtracted from the wave travel distance to provide an
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input closer to 0. Finally, plot c shows that at a sufficient stand-off, the obstruction is

deemed to be sufficiently far away from the point that it is essentially having no effect on

the prediction, i.e. acting like an ambient boundary with a 0 input.

Each directional input is calculated using this approach, shown in Equation 6.4, if a

obstruction is identified. Otherwise the value remains as 0 for an ambient interaction.

Directional input = max(Wave distance−Obstruction distance, 0) (6.4)

This superposition equation is inspired by how existing fast running methods utilise mul-

tiple charge superposition to model blast wave reflections, with a charge at an imaginary

source behind a wall providing the wave that amplifies the predictions at rigid surfaces

(Pope 2011). In this application, this has the effect of defining a ‘zone of influence’ around

the POI such that any obstacle interactions outside of the zone are deemed to be insignif-

icant for the peak pressure prediction i.e. acting like an ambient boundary with a 0 input.

A similar concept is shown to apply to the design of continuous beams (Gallet et al. 2023).

Figure 6.14 provides the zones of influence for two example points in a domain. For point

A, the close proximity to the charge results in a small zone of influence, showing how the

blast wave will not be obstructed by the presence of obstacles outside of this region as it

approaches the POI. The zone for point B is much larger since shortest wave travel path

must wrap around the horizontal obstacle. The directional lasers must therefore consider

obstacles that could contribute to wave coalescence along this path.
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Figure 6.14: Zone of influence examples showing the regions where directional inputs
would be treated as ambient at stand-off distances greater than the wave travel distance
in accordance to Equation 6.4.
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In theory, the polarity of inputs to an ANN does not affect its predictive performance

as long as the network parameters are optimised through sufficient training steps and

remain consistent throughout development and use. The weights and biases of the first

layer of connections can be adjusted to account for positive or negative input values.

However, the magnitudes of each input and their relationships do affect performance.

Equation 6.4 enables larger or smaller interaction effects from obstacles that are closer or

farther from the POI to be translated with correspondingly larger or smaller values relative

to the shortest wave travel distance. However, the network is still responsible for learning

that the forward directions (1, 2, 3) will relate to shielding and channelling, whereas the

backwards directions (6, 7, 8) are associated to reflections, both having different impacts

on amplification or reduction.
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Figure 6.15: Additional example directional inputs for various points. Thick black line in
the directional rosette indicates direction 1.

Figure 6.15 provides three examples of how some common input patterns are represented

using this approach. Point A includes a wall behind the POI and so the inputs in the back-

wards direction are closer to the wave travel distance. The contrast with lower values in

the forward positions helps the network to understand that blast wave reflection should be

considered when forming the prediction. Next, point B is being shielded by a wall resulting
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in larger forward inputs and low backwards ones. Finally, point C is between two rigid

bodies, causing large values to feature in all side directions of the input pattern. In every

case, a distinct combination of directional inputs are activated, thus providing different

routes for information to be passed through the DeNN’s connections when predictions are

formed, ultimately allowing for differing wave processes to be represented.

Following training using Equation 6.4, Table 6.7 shows that performance significantly

improves in all metrics with correlation coefficients surpassing 0.985 and average errors

reducing below 15%. This network design will therefore be used for future comparisons as

further improvements are trialled.

Table 6.7: DeNN performance comparison between the current best performing feature
set, presented in Section 6.5.2, with when the superposition equation is also incorporated
in input generation.

Improvement method (s) Development
stage

R2
t MAE

(kPa)
Avr%E

Rotating laser directions and
mirrored dataset

Training 0.9626 5.64 15.9
Validation 0.9625 5.65 16.0

Rotating laser directions,
mirrored dataset and

superposition equation

Training 0.9894 4.00 13.3

Validation 0.9892 4.02 13.3

6.5.4 Multiple neural networks

When considering the peak pressure distribution through a domain featuring various ob-

stacles, larger magnitudes of peak overpressure are often in positions where no shielding

from obstacles is provided. These positions are dominated by free air blast waves that can

be amplified by channelling or reflections from obstacles behind the POI, whereas POIs

behind obstacles experience clearing and diffraction effects leading to reduced readings.

Requiring a single neural network to learn about the processes associated with both of

these regions may therefore needlessly restrict prediction accuracy. Since a distinction

can be made by considering each POIs position relative to the charge, the DeNN model

is applied as two separate ANNs with identical input-output structures. One network

(ANN–1) is used for POIs with a direct line of sight to the charge, and the other (ANN–2)

is used when an obstruction is present. A flow chart of the splitting process for each POI

is given by Figure 6.16, with Figure 6.17 providing the resulting distribution for T1.

Point of interest 

(POI) identified and 

input pattern created

Line drawn between 

the charge and POI

No

Charge-POI no. 

intersections > 0

Yes

ANN-1

ANN-2

Prediction generated

Figure 6.16: Flowchart showing how all data points are distributed into each ANN.
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While this approach may not fit the definition of ensemble learning, whereby the outputs

from multiple models trained on the same task are combined to improve overall perfor-

mance, the concept aligns with the broader idea of reducing the complexity of the problem

space to enhance the predictive accuracy. It also creates a framework that is similar to

RAINet, presented by Zaleski & Prozument (2018), where inputs are sorted into one of

five ANNs that provide predictions for varying groups of the problem.

Separating each set of points allows ANN–1 to form strong connections with the wave

travel distance as this is the most critical variable being provided in determining the

peak overpressure. Conversely, ANN–2 is is able to form more balanced connections, as

the proximity of surrounding obstacles will be more influential with the wave effects that

must be considered. Although not done in this thesis, separating the simple from the more

complex settings in this way facilitates the implementation aspects of transfer learning.

For example, ANN–1 could be replaced with simple empirical predictions, or different

models to account for TNT equivalence (Grisaro et al. 2021, Pannell et al. 2023).

Charge location

Predicted by ANN-1

Predicted by ANN-2

Figure 6.17: Distribution of points predicted by each ANN for T1. Includes 1.5 m un-
hatched region around the charge that is not predicted.

Table 6.8: DeNN performance comparison between the current best performing feature
set, presented in Section 6.5.3, with when the multiple neural networks are used.

Improvement method (s) Stage ANN
num.

R2
t MAE

(kPa)
Avr%E

Rotating laser directions,
mirrored dataset and
superposition equation

Training − 0.9887 4.03 13.2

Validation − 0.9884 4.06 13.3

Rotating laser directions,
mirrored dataset,

superposition equation and
multiple ANNs

Training
1 0.9922 3.77 7.9
2 0.9412 3.83 22.0

Avr. 0.9763 3.79 12.3

Validation
1 0.9920 3.79 8.0
2 0.9404 3.84 22.1

Avr. 0.9759 3.81 12.4
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Table 6.8 shows the performance of each network when the multiple ANN approach is used,

including an average based on the number of points predicted by each ANN. This allows

for a comparison to when a single ANN is used to show that a reduction in the correlation

coefficients in training and validation is clearly impacted by the inability of the ANN–2

to predict the overpressure to the same standard as ANN–1. However, the overall MAE

and percentage error metrics improve suggesting that the correlation coefficient reduction

is likely to be caused by a greater number of points being over or under predicted as

opposed to there being an even split of over and under estimation that would improve the

R2
t score. The performance when using multiple ANNs is therefore deemed to be better

than the previous approach, meaning all iterations of the DeNN in the remainder of this

thesis includes two independent networks.

6.5.5 Expanded input patterns

Aside from being useful to limit the number of calculations required to produce the input

patterns, there was no physical reasoning for specifying 8 directions in the original DeNN

input design. Figure 6.18 shows how this decision could lead to some obstacles being

missed in the inputs of POI that will be influenced by their presence. It is shown in

scenario a that the inclusion of 16 lasers can be useful in detecting obstacles that would

otherwise be missed when only 8 are used (thin obstacle to the left of the POI). Similarly,

scenario b may benefit from additional laser interactions with each obstacle in the domain

as more directional inputs are provided.

Through providing the network with more data that is relevant to the problem it is trying

to model, the predictive performance is expected to improve. Twelve directional inputs

are also trialled to explore the balance between overloading the DeNN with information

and providing enough to enable good generalisation of the problem.

Table 6.9: Performance comparison between when 8, 12 and 16 directional inputs are
provided in the input pattern of the DeNN. Rotating laser directions, the superposition
equation, mirrored dataset and multiple ANNs are included in input generation.

Directional
laser count

Stage ANN
num.

R2
t MAE

(kPa)
Avr%E

8
Training

1 0.9922 3.77 7.9
2 0.9412 3.83 22.0

Validation
1 0.9920 3.79 8.0
2 0.9404 3.84 22.1

12
Training

1 0.9944 3.32 6.8
2 0.9553 3.30 18.8

Validation
1 0.9941 3.35 6.8
2 0.9539 3.33 19.0

16
Training

1 0.9950 3.26 6.7
2 0.9620 3.04 17.3

Validation
1 0.9946 3.30 6.7
2 0.9600 3.09 17.6
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Table 6.9 shows how all performance metrics improve as the number of lasers increases.

This culminates in 16 lasers providing correlations of 0.96 and above, with a MAE around

3.15 kPa. As the increase from 8 to 12 lasers is larger than from 12 to 16, it is likely that

the network performance will converge after a set number of lasers are added. Ideally, an

infinite number of lasers would be used so that the entire surroundings are translated to

the ML tool. However, adding lasers linearly increases the computation time for a tool

that is intended to function rapidly. Consequently, 16 lasers are used for the remainder of

this document.
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Figure 6.18: Expanded directional input options.
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6.5.6 Kingery and Bulmash pressure input

In the literature review of ML applications in blast (Section 2.6), it was discussed that

Pannell et al. (2022) improved the predictive performance of an MLP by using a physically

informed loss function. The authors utilised the knowledge that blast waves decay with

increasing stand-off, allowing them to apply a penalty to the network when predictions

were made that disobeyed this law. Applying the same approach is not possible with

the DeNN due to how it is used to predict values in complex domains, featuring many

reflections and confinement effects. However, taking inspiration from Pannell et al. (2023),

transfer learning using the free air incident overpressure, calculated using the Kingery

and Bulmash method at a stand-off distance equal to the associated shortest wave travel

distance, could help to improve performance of the DeNN. In this case the overpressure

value replaces the wave travel distance in the input pattern used to provide the network

with a base value that can be scaled appropriately depending on the directional inputs.

Figure 6.19 shows the KB predictions for T2, alongside Viper targets and the absolute

error. This indicates where the DeNN will need to apply amplification and reductions in

the peak overpressure to appropriately quantify the impact of the various obstacles in the

domain. In essence, the ANNs are required to predict the absolute error plot to transform

the KB predictions into the Viper outputs.

Table 6.10 shows the training and validation results for when the KB input is used in

place of the wave travel distance. Although the difference is minimal, use of the KB

inputs reduces performance in nearly every metric for both ANNs. The distribution of the

wave travel distance is similar to the KB distribution in relative terms, and since the order

of magnitude of these distances is similar to the directional inputs, this standardised input

set is likely to benefit the optimisation of the weights and biases. The following section

will therefore explore if normalisation of all inputs changes the outcome of this assessment

when using the KB input.

Table 6.10: DeNN performance comparison between using the wave travel distance as an
input and when this is translated to an equivalent free air incident overpressure generated
by the KB method. Rotating laser directions, the superposition equation, mirrored dataset
and multiple ANNs are included in input generation. Best statistics shown in bold.

DeNN inputs Stage ANN
num.

R2
t MAE

(kPa)
Avr%E

16 directional lasers,
shortest wave travel

distance

Training
1 0.9950 3.26 6.7
2 0.9620 3.04 17.3

Validation
1 0.9946 3.30 6.7
2 0.9600 3.09 17.6

16 directional lasers, KB
incident overpressure

prediction at the shortest
wave travel distance

Training
1 0.9937 3.38 6.8
2 0.9582 3.05 16.6

Validation
1 0.9935 3.41 6.8
2 0.9563 3.11 16.8
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Figure 6.19: Comparison between the peak incident overpressure from a spherical, free
air, 1 kg TNT charge calculated for each point using the shortest wave travel distance as
the stand-off in the KB method, and Viper::Blast, where the domain geometry is included
to account for wave coalescence and reflections.

6.5.7 Input and output normalisation

As discussed in Section 2.4.4, a common method of improving training times and/or

performance of ML tools involves normalisation and standardisation of inputs and outputs.

When providing an input pattern to the network, the magnitudes of each variable will

alter how the weights and biases of each layer are adjusted to understand the process

being modelled, and this could reduce the time required by the iterative process to final a

global minima that corresponds to the lowest predictive error.
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To explore this, the following equation shows the power transformation that is applied to

all inputs and the peak overpressure output to normalise the data prior to training and

validation.

x′ = ln(x+ 1) (6.5)

Where x is the original value and x′ is the normalised value. The constant is applied within

the natural log function to allow for 0 values to be processed. There are many different

forms or power transformation, however, it is not practical to test every option, nor is it

the focus of this study. The chosen method replicates the Yeo-Johnson transformation

introduced by Yeo & Johnson (2000), when λ = 0.

To assess the skew of each input and output variable, Figure 6.20 displays histograms

before and after Equation 6.5 is applied. Skewness values, calculated using the following

equation, are given for each plot to highlight how each distribution is normalised.

s =
1
n

∑n
i=1(xi − x)3

(
√

1
n

∑n
i=1(xi − x)2)3

(6.6)

Where s is skewness, n is the number of samples in the dataset, x is the mean and x is

an individual sample. Positive skew is present if the value of s is positive, meaning the

data is shifted to the left of the mean. Conversely, negative skew corresponds to negative

s values, with a value of 0 indicating that the distribution is perfectly normal.

Figure 6.20 shows that each potential input to the DeNN is transformed to have a distri-

bution with a skewness closer to 0. Each variable is also defined by smaller ranges that are

of the same order of magnitude. Most directional inputs are omitted from the plot since

they have a similar profile to Direction 2, where the large number of 0 inputs remains an

issue with obtaining a truly normalised profile.

Table 6.11 provides the training and validation metrics for when no normalisation is ap-

plied, when normalisation is applied to a network that uses the wave travel distance, and

finally when normalisation is applied to a network using the KB incident overpressure.

Overall, normalisation has a detrimental effect to the DeNN in its current form, however,

using the normalised KB input results in improved predictions when compared to normal-

ising the wave travel distance. This suggests that standardising each variable has benefit

the inclusion of a physically derived value that can be scaled by the network to account

for various obstacles and wave coalescence effects in the domain.

It is likely that the optimum performance from these trials is observed without normali-

sation since the ReLU activation function is used for all hidden neurons in both networks

forming the DeNN. Any variations in the scales of the inputs are therefore handled by

adjustments to the weights and biases associated to the first layer of neurons. In theory,

this enables the networks to find optimal parameters provided that enough training steps

are implemented. Conversely, for networks using activations such as the hyperbolic tan-

gent, standardisation becomes critical as the vanishing gradient problem could prevent

some weights from changing their values, thus preventing an optimum network from being

identified.
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Figure 6.20: Histograms showing the data distributions for three inputs and the peak
overpressure output, before and after a log transformation.

As before, a detailed comparison between each potential network architecture is not pro-

vided as this is beyond the scope of this study. Instead, focus is placed on the feature

engineering process to prove the concept of the Direction-encoded neural network that will

now be used without normalisation or the KB input.
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Table 6.11: DeNN performance statistics comparing when no normalisation is applied to
inputs or outputs versus when log based normalisation is used. Rotating laser directions,
the superposition equation, mirrored dataset, multiple ANNs and 16 directional lasers are
included in input generation. Best statistics shown in bold.

DeNN inputs Stage ANN
num.

R2
t MAE

(kPa)
Avr%E

16 directional lasers,
shortest wave travel

distance

Training
1 0.9950 3.26 6.7
2 0.9620 3.04 17.3

Validation
1 0.9946 3.30 6.7
2 0.9600 3.09 17.6

Normalised: 16
directional lasers, shortest

wave travel distance

Training
1 0.9713 5.88 9.6
2 0.9028 4.35 22.8

Validation
1 0.9713 5.89 9.6
2 0.9027 4.36 22.8

Normalised: 16
directional lasers, KB

incident overpressure

Training
1 0.9750 5.34 9.2
2 0.9115 4.25 22.4

Validation
1 0.9750 5.34 9.2
2 0.9113 4.26 22.4

6.5.8 Summary of performance improvements

In summary, the feature engineering process conducted for this thesis has developed the

initial DeNN architecture to include inputs that represent the physics of the wave coa-

lescence problem with a greater ability for generalisation with unseen inputs. Notably

this includes a superposition equation that accounts for wave reflections in front of, and

around, various obstacles that are present in any given domain. The progression of the

approach, showing the adopted developments, is shown in Table 6.12 in terms of testing

performance to highlight the impact of each feature alteration on points outside of the

training dataset.

Table 6.12: Performance progression with testing models throughout the feature engineer-
ing process for the DeNN. Predictions of peak overpressure.

DeNN feature progression
T1 T2

MAE
(kPa)

Avr%E MAE
(kPa)

Avr%E

Initial feature design 16.45 51.0 10.65 44.2
+ Rotating lasers and mirrored dataset 10.28 31.8 9.33 32.1
+ Superposition equation 5.53 22.3 5.68 27.1
+ Multiple ANNs 5.19 21.4 5.64 27.6
+ 16 directional inputs 4.84 18.2 5.04 24.5

A notable improvement of this method when compared to a Cartesian based approach is

shown in Figure 6.21, where it is shown that a Cartesian network fails to provide equal

input patterns for two points that should be predicted with identical output predictions.
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Conversely, the DeNN assigns the same inputs regardless of domain position, thus allowing

for its use in domains of varied sizes, with movable obstacles. It should be noted that the

procedure for ANN development discussed in this document is one that was devised by the

author to allow for efficient analysis of the various options. Clearly there are a multitude

of other approaches and functions that could achieve improved performance, however, it

is not feasible to test every combination given that the focus of this study is to prove the

concept of the DeNN.

6.6 Hyperparameter tuning

With any machine learning application there are a number of different hyperparameters

that can be tuned to provide an optimal network structure for each unique application.

For ANNs, this includes the number of hidden neurons, number of hidden layers, dropout

rate and the optimiser learning rate. Conducting a grid-search to test every possible

combination would be very time consuming and computationally expensive, so for this

application a range of setup variables, shown in Table 6.13, are fixed throughout the

tuning process. Each parameter is matched to those used by Dennis et al. (2021), since

this study showed that they are suitable for generating accurate predictions for a similar

blast application.

Table 6.13: Fixed network parameters.

Output Activation function Linear
Loss function Mean squared error (MSE)
Training steps 500 (with early stopping if validation loss

does not improve for 10 steps)
Batch size 100
Regularisation L2
Weight initialiser Glorot Normal
Bias initialiser Zeros
Cross validation folds 4

The KerasTuner is applied using the hyperband optimisation process to identify an optimal

combination of the hyperparameters being trialled in this study (O’Malley et al. 2019, Li

et al. 2018). Table 6.14 provides each variable with the associated sampling method,

or step size, and potential values. The ranges of each variable were reduced based on

initial optimisation tests and in the case of hidden neurons and layers, limitations are

applied to prevent prohibitively large training times and overfitting due to excessive model

complexity. It is appreciated that this could prevent the performance of the approach from

being fully realised, however, as mentioned previously, it is not practicable to explore all

hyperparameter combinations.

The AdaGrad (Adaptive Sub-gradient Descent) optimiser remains as an option for training

since it has proved to work effectively for blast applications so far in this chapter. Similarly,

Zahedi & Golchin (2022) notes that the Adam optimiser tends to perform well for most

studies, providing a useful alternative.

Tuned parameters are provided in Table 6.15 for ANN–1 and ANN–2.
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Table 6.14: Tuned hyperparameter options, ranges and sampling methods.

Variable Tuning range /
options

Step size / sampling
method

Hidden layers 2–4 1
Hidden neurons 500–1000 50

Activation function ReLU, ELU, SELU Random
Optimiser AdaGrad, Adam Random

Learning rate 0.001–0.1 log
Dropout rate 0–0.2 linear

Table 6.15: Tuned hyperparameters for the developed DeNNs.

Variable ANN-1 ANN-2

Hidden layers 4 4
Hidden neurons 550 | 900 | 550 | 800 800 | 650 | 950 | 600

Activation function ReLU ReLU
Optimiser AdaGrad AdaGrad

Learning rate 0.0170 0.0033
Dropout rate 0.0290 0.0139

6.7 Developed performance assessment

6.7.1 Training analysis

Mean performance statistics from the 4-fold cross validation technique are reported in

Table 6.16 for the training and validation stages of both ANN–1 and ANN–2 using the

tuned network parameters.

Table 6.16: Mean performance metrics from 4-fold cross validation of the tuned, developed
DeNN.

Development
stage

ANN
num-
ber

R2
t MAE (kPa) Average Error

(%)

Training
1 0.9973 2.63 5.6
2 0.9766 2.38 13.6

Validation
1 0.9967 2.74 5.6
2 0.9734 2.49 14.0

Considering points that are not used to iteratively update the weights and biases, the

average error for points that are unobstructed (ANN–1) is 5.6%, corresponding to a MAE

of 2.74 kPa. On the other hand, the error of obstructed points (ANN–2) is higher at

an average of 14.0%, yet this results in a similar MAE of 2.49 kPa (suggesting a higher

propensity for lower magnitude pressure values for this network, as discussed previously).

Correlation coefficients of around 0.997 for ANN–1 are comparable to those achieved by

Remennikov & Rose (2007) for peak pressure predictions behind blast barriers using a
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bespoke network structure. However, ANN–2’s correlations around 0.975 suggest that

future work should focus on this network’s ability to replicate the relevant wave coalescence

effects, especially considering the average errors around 14% are also outside ‘typical’

variations for blast scenarios, being less than 10% (Rigby et al. 2014).

Despite this, there is minimal overfitting as the validation performance is only slightly

worse than training in each metric. The dataset is shown to be generalised consistently

with different groups of data being held out in four separate training processes.

An assessment of the variation in error from this training and validation process is dis-

played in Table 6.17. It shows that lower magnitudes are commonly predicted with higher

errors compared to those with larger magnitudes, despite the dataset featuring more points

in the lower overpressure ranges. ANN–2, used for predictions of obstructed points, han-

dles a larger number of these lower magnitude targets, hence increasing its average error

and decreasing the reported performance.

Table 6.17: Variation of tuned network predictive performance during validation relative
to the target peak overpressure magnitude.

Target
overpressure
range (kPa)

Number
dataset
points

Percentage of validation dataset points
predicted within percentage error range (%)

E < 5 5 ≤ E < 10 10 ≤ E < 30 E ≥ 30

P < 25 124128 29.3 21.9 39.0 9.9
25 ≤ P < 50 113342 51.8 23.5 22.9 1.8
50 ≤ P < 100 75042 81.3 9.3 8.9 0.4
100 ≤ P < 200 31090 88.7 7.3 3.7 0.3
200 ≤ P < 300 10498 86.1 12.1 1.8 0.1

P ≥ 300 454 75.3 15.0 5.5 4.2

The table also shows how there are only 454 (0.13% of the dataset) targets over 300 kPa,

corresponding to around 10% of points having errors over 10% in this overpressure range.

The low number of input patterns associated to this range means that the DeNN does not

update its weights and biases to suit predictions of this magnitude very often, restricting

its ability to accurately account for the needed pressure amplification. However, for points

between 50 kPa and 300 kPa, performance is generally very good with average errors of

less than 5% for over 81% of the points in each these ranges. Furthermore, over the same

targets, less than 0.5% of points are predicted with errors over 30% giving confidence that

the DeNN can account for wave interaction effects appropriately.

6.7.2 Testing analysis

Performance metrics obtained when using the tuned and developed DeNN to predict both

testing domains are provided in Table 6.18. There is a decrease in performance compared

to the validation and training metrics, yet this is expected considering how the testing

models were structured without the same restrictions that were applied to the randomised

training dataset.
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An average MAE around ∼4.5 kPa and correlation coefficients over 0.99 for both domains

proves that the DeNN has been able to successfully use its training to generalise for unseen,

and independent, inputs. However, average errors throughout both domains are over the

10% target, due to ANN–2 large error contribution of over 40% in both instances. As

before, these errors are coupled with low absolute errors suggesting that the points being

predicted by this network are of very low magnitude.

Table 6.18: Performance metrics for both testing domains, simulated using the DeNN,
compared to a Viper model.

Testing
model

ANN number R2
t MAE (kPa) Average Error

(%)

1
1 0.9961 4.18 5.4
2 0.8989 4.48 42.1

Overall 0.9952 4.26 16.0

2
1 0.9971 3.90 7.1
2 0.8070 6.83 57.6

Overall 0.9938 4.86 23.6

Figure 6.22 presents heat maps for T1, showing the Viper outputs, DeNN predictions and

the resulting absolute errors. The wave superposition equation and rotating lasers are

proved to work effectively since the DeNN achieves good symmetrical consistency and the

magnitude of pressure amplification, caused by wave reflections in front of rigid obstacles,

is replicated appropriately across the majority of each surface. As mentioned previously,

absolute error are generally very low, aside from the regions where multiple surfaces are

close to one another. Here, errors approach 80 kPa, yet this does not prevent to DeNN

from qualitatively representing the distribution of peak overpressure with high accuracy.

Conversely, Figure 6.23, which shows heat maps T2, highlights that channelling is only

partially considered. Errors are low where x = 10 and y = 3, but beyond this as x

reaches 12, the amplification effects are not as accurate. Additionally, the shape of the

high magnitude regions of the DeNN heat maps display some angularity, suggesting that

use of 16 lasers contributes to slight local inconsistencies when obstacles are not captured

in the input pattern correctly for adjacent points. Despite this, once again, the domain

is qualitatively represented by the DeNN with good accuracy, indicating regions where

pressure is reduced due to shielding and clearing, whilst amplifying the predictions in

front of surfaces.

Table 6.19 shows that the trends within the data are consistent from training to testing

when assessing the variation in prediction errors. It is clear that the smaller overpressures

are being predicted with the largest percentage errors, but lower absolute errors and

that ANN–2 is responsible for the majority of the lower magnitude predictions. Future

developments should therefore focus on this network’s ability to handle shielding and

clearing effects that can lead to reductions in the peak overpressure when compared to a

free air prediction. Targets in the range of 50–200 kPa are once again predicted with good

accuracy since the percentage of points with less than 5% error is around 80%, and round

90% are predicted within the desired <10% bracket.
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Figure 6.22: T1 peak overpressure targets generated by Viper::Blast, predictions from the
DeNN, and the resulting absolute errors. White regions are not predicted, either due to
being within a rigid obstacle, or the 1.5 m exclusion zone.
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Figure 6.23: T2 peak overpressure targets generated by Viper::Blast, predictions from the
DeNN, and the resulting absolute errors. White regions are not predicted, either due to
being within a rigid obstacle, or the 1.5 m exclusion zone.
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Overall, the achieved performance highlights that physics-informed structuring of the input

data provided to machine learning tools can produce accurate FREMs that can be applied

to a range of domains. An appreciation for the specific application of the model being

developed is essential for understanding how various features of the problem should be

represented so that the ANNs can effectively learn from the process and replicate the

complex interaction processes.

The next section will explore how this level of performance can be leveraged to allow the

the DeNN to be used for rapid human injury assessments in its current form.

6.8 Application: Ear drum rupture

To highlight a potential use case for the DeNN, eardrum rupture is predicted according

to the rupture levels given by Table 6.20. This information was compiled by Denny et al.

(2021a), and has been used in assessments presented by Denny et al. (2021b, 2022).

Table 6.20: Overpressure eardrum rupture limits (Denny et al. 2021a).

Rupture level Overpressure (kPa)

Threshold 35
50% chance 103
100% chance 202

This criteria is chosen as it relies on peak overpressure, the only parameter involved in

the development of the DeNN so far. It is also the injury criteria that will indicate the

regions where other injuries are likely to be experienced, since overpressures below 35 kPa

will not cause injury from the blast wave itself.

As shown by Figure 6.24, the DeNN provides a very good qualitative representation of the

various injury zones for T1 when compared to Viper. Only slight variations in output are

observed as 95% of points are predicted in the correct rupture category. The remaining

5% are predicted with only one level of error. Regions of shielding are predicted with

a ‘no rupture’ designation and transition zones (where diffraction occurs) are predicted

with a threshold rupture level as the overpressure begins to increase with reduced stand-off

distance. The 50% and 100% chance regions are formed in the correct locations, in front

of the rigid surfaces and directly around the charge.

Rupture predictions for T2 are shown in Figure 6.25. Here, 93% of points are predicted

correctly by the DeNN and the remaining 7% are predicted with only one level of error.

The aforementioned issue related to incorrectly amplifying pressure due to channelling as

x = 10 and y = 11 is captured in the DeNN’s predictions, and some further inconsistencies

are present between the two rigid obstacles to the left of the charge. However, again, the

domain is qualitatively well represented.
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Figure 6.24: Eardrum rupture levels for T1 calculated by the DeNN and Viper. White
regions are not predicted, either due to being within a rigid obstacle, or the 1.5 m exclusion
zone.

This shows that the DeNN, unlike previous task-specific ML tools, could be used in prob-

abilistic assessments that require varied charge and obstacle positions to be evaluated. Its

flexibility, achieved using inputs that reference the surrounding and not the domain itself,

allows for obstacles to be moved, added or removed, with predictions being generated in

under 60 seconds for an entire domain. Compared to Viper, this allows for upwards of 30

unique layouts to be evaluated in the time that it would take to run a single numerical

model from birth to termination. Ultimately, this enables decisions to be made rapidly re-

garding the structural layout of an area, or the regions to focus a response to an explosive

event.

There are, of course, other applications where the DeNN cannot be used in its current

form for probabilistic analyses, and numerical models should be evaluated using Viper

or similar solvers. These include if time histories are required, or if non-rectangular or

frangible/non-rigid obstacles are present. Conversely, it would be possible for the current

form of the DeNN to be retrained for charge and output locations at different elevations,

or for the prediction of values relating to another blast wave parameter that is required

by more robust human injury assessments (see next section). However, these alterations

may require the generation of a new training dataset to train new networks.
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Figure 6.25: Eardrum rupture levels for T2 calculated by the DeNN and Viper. White
regions are not predicted, either due to being within a rigid obstacle, or the 1.5 m exclusion
zone.

6.9 Alternative parameter predictions

This chapter has introduced and developed the DeNN as a tool that generates peak over-

pressure predictions for domains featuring a number of obstacles, however, retraining the

ANNs with different outputs enables them to be used to predict other important variables.

This section therefore explores the predictive accuracy of the tuned network architecture

when the targets are peak specific impulse, and the blast wave time of arrival.

Statistics associated to each target variable within the training dataset are shown in Ta-

ble 6.21. Peak specific impulse has a standard deviation around half of the equivalent

value for peak overpressure, highlighting how the range of targets is more concentrated

around the mean. The mean is also less skewed towards the minimum value and so the

DeNN may have difficulty in discerning when an obstacle being translated to its inputs

via the directional lasers should alter the predicted value. The distribution of the time of

arrival is harder to compare to the other parameters due to the scale change, however, it

has a very high correlation with the shortest wave travel distance in the training dataset,

effectively creating a linear regression problem where predictions will be largely dependant

upon this input value.

Table 6.22 shows the training, validation and testing performance of the DeNN when

predicting peak specific impulse. In training and validation the performance is excellent,

with average errors less than 10% for all points. This relates to an average MAE that

is around double that of the peak overpressure network. However, Table 6.21 showed

that there are fewer specific impulse targets with low magnitudes where this MAE would
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Table 6.21: Training dataset target variable statistics.

Variable Units Min Max Mean Std.
Deviation

Peak overpressure kPa 4.72 672.34 51.63 51.20
Peak specific impulse kPa.ms 4.60 375.55 76.08 26.86

Time of arrival ms 1.10 33.17 9.53 5.92

contribute to larger percentage errors (i.e. a target of 10 kPa.ms predicted as 5 kPa.ms

relates to an absolute error of 5 kPa.ms and percentage error of 100%, whereas a 50 kPa.ms

target predicted as 45 kPa.ms also relates to an absolute error 5 kPa.ms, but a percentage

error of ∼11%). This means that relative to the targets, performance is generally better

than with peak ovepressure.

Table 6.22: Mean performance metrics from 4-fold cross validation of the DeNN when
predicting peak specific impulse.

Development
stage

ANN number R2
t MAE

(kPa.ms)
Average Error

(%)

Training
1 0.9926 4.98 6.2
2 0.9862 4.51 8.4

Validation
1 0.9918 5.22 6.5
2 0.9840 4.82 8.9

T1
1 0.9604 18.06 15.2
2 0.9170 9.86 26.7

Overall 0.9581 15.70 18.5

T2
1 0.9816 8.84 10.5
2 0.8986 13.70 30.2

Overall 0.9681 10.44 17.0

Conversely, the obtained testing metrics do not replicate the validation performance for

unseen data. This once again suggests that the testing models are not representative of

the domains that were randomised to form the training dataset, and so the DeNN is being

required to form predictions based on input patterns that it has not seen frequently in its

training process. A more comprehensive dataset, featuring a greater number of domains

and varied structural arrangements, may help with this issue. However, training with non-

randomised models in a probabilistic framework would ensure that the DeNN develops an

understanding of the specific wave interaction effects that are present in a set of similar

domains. Chapter 7 explores this option as a means of reducing the decline in performance

from validation to testing.

Performance when predicting time of arrival of the blast wave at each POI is given by

Table 6.23. It is clear that the DeNN is able to predict this variable with very high

accuracy as errors are around 3% and correlation coefficients are over 0.999 in all phases

of the network’s development. As expected, the reduced complexity associated with this

parameter, that is closely linked to the shortest wave travel distance input, allows for good

generalisation for unseen inputs.
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Table 6.23: Mean performance metrics from 4-fold cross validation of the DeNN when
predicting time of arrival.

Development
stage

ANN number R2
t MAE (ms) Average Error

(%)

Training
1 0.9994 0.16 3.2
2 0.9996 0.24 1.9

Validation
1 0.9994 0.16 3.2
2 0.9996 0.24 1.9

T1
1 0.9995 0.08 3.2
2 0.9995 0.18 1.8

Overall 0.9995 0.11 2.8

T2
1 0.9994 0.09 3.3
2 0.9993 0.19 2.0

Overall 0.9993 0.12 2.9

The DeNN was developed with the primary goal of providing peak overpressure predictions

in domains featuring various obstacles. Predictions of peak specific impulse and time of

arrival may therefore benefit from an alternative featuring engineering process that tailors

the inputs and network hyperparameters with greater consideration for the distribution of

each variable in a given domain. For example, it is not likely that the wave superposition

equation impacts the predictions of time of arrival, however, knowledge of the number of

bends in the wave’s path to the POI could improve accuracy.

Nevertheless, this section has shown that the DeNN framework is not exclusively applicable

to predictions of peak overpressure. The novel approach to creating a generalised ML tool

can be applied to the prediction of other variables, which could in turn, develop into more

robust probabilistic assessments of risk and human injury where alternative combinations

of parameters are required to determine pulmonary injuries and fatalities.

6.10 Summary

In summary, the Direction-encoded Framework is introduced as a novel approach to pro-

viding geometrical information to a ML algorithm, such that it’s application to a neural

network (referred to as the Direction-encoded Neural Network in this thesis) enables pre-

dictions to be produced for domains of any shape and size. Unlike previous applications

of ANNs in blast engineering, that resulted in the development of bespoke tools with-

out this level of generalisation, the framework removes the need to encode geometrical

information into the network’s architecture when predicting peak overpressure. This is

achieved through task focussed feature engineering that provides the ML algorithm with

each point’s proximity to surrounding obstacles and the blast wave’s shortest travel dis-

tance.

Following a training process using data from 25 randomised domains, it is shown that the

DeNN can accurately predict regions of pressure enhancements through reflection and co-

alescence in addition to shielding and clearing when testing two independent models, with
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differing structural arrangements. Overpressure distributions throughout both domains

were formed in under 60 seconds, with mean absolute errors less than ∼5 kPa and cor-

relation coefficients above 0.993. Translating this into eardrum rupture levels resulted in

over 93% of points being correctly categorised with the remaining percentage only having

one level of error.

The inability of other FREMs to represent complex domain geometries in a general sense

limits their application to studies involving only simple geometries and wave interaction

effects. Since this is not a limitation of the DeNN, it is now feasible to conduct proba-

bilistic assessments, where many domains, featuring various structural layouts, need to be

simulated rapidly. However, it should be noted that at present, charge height and obstacle

materials cannot be probabilistically assessed without further training to enhance the cur-

rent tool’s capabilities. With reference to the plot shown in Figure 2.11, the introduction

of the Direction-encoded Framework improves model versatility for ML based tools that

are used for blast load prediction, as shown by Figure 6.26. Consequently, Objective 4 of

this study has been met.
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Figure 6.26: Improved versatility of the Direction-encoded Neural Network shown in re-
lation to its computation time and solution accuracy when compared to the Cartesian
approach taken by Dennis et al. (2021).

Since all comparison metrics from training and validation outperformed those obtained

throughout testing, the independent testing domains are likely to have provided input

patterns that were not common in the training dataset, thus requiring extensive inter-

polation. Consequently, use of a structured training dataset may improve consistency of

predictions with unseen inputs. As probabilistic assessments commonly feature similar
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domain layouts, data could be taken from the batch to train a new DeNN that could

replace the numerical solver part-way through the computation process. Furthermore, the

DeNN can be used to generate a prediction for a single point, or a series of points, instead

of an entire domain, making it useful for when risk must be assessed at a specific region,

such as congregation areas or egress/ingress points.

There are still many opportunities for the predictive performance of the DeNN to be

improved, however, this chapter has shown the importance of feature selection in machine

learning models by highlighting that prior knowledge of blast engineering can help to form

tools that are more suited to the problems faced in the associated field.

The contents of this chapter has been condensed and published in the International Journal

of Protective Structures with the title ‘The Direction-encoded Neural Network: A machine

learning approach to rapidly predict blast loading in obstructed environments’.



Chapter 7

Direction-encoded Neural Network

in series (DeNNIS)

7.1 Introduction

The Direction-encoded Neural Network can be applied to large batches of unique domains

in a number of ways depending on the accuracy and computation time requirements of

the associated project. Due to the versatility of the tool, summarised in Figure 7.1, there

is no requirement for additional training after the initial process that used 25 randomised

domains. However, as mentioned in Chapter 6, it may be possible to improve the predictive

accuracy of the DeNN with a second wave of task specific training that fine tunes the

network’s parameters.

This additional training phase should not be initiated by numerically simulating every

domain in the new batch to form the new training dataset, because this would remove the

benefit of the DeNN by voiding its versatility advantages over the traditional, Cartesian

approaches. Conversely, if no additional training is required, all models of the new batch

could be evaluated with the pretrained DeNN, maximising the computational benefit.

A balance between these extremes may present an optimal combination of computation

time and predictive accuracy, and so this chapter explores a new approach to developing the

DeNN termed the ‘Direction-encoded Neural Network In Series’ (DeNNIS). By combining

the computation time benefits of each novel method introduced in this thesis, the DeNN

can be incrementally trained using the dataset that is formed as the batch is evaluated

using a numerical solver and the BA. This process continues in series until the DeNN

surpasses a desired performance metric, where it then replaces the solver to evaluate the

remainder of the batch.

Throughout the following sections the incremental training process is introduced, before

various development approaches are compared to determine which analysis option is most

suited to the simulation of a new batch of unique domains.

7.2 Incremental training framework

Incrementally training the DeNN using data from the BA simulation framework combines

the computational benefits of both approaches. This Direction-encoded Neural Network

In Series (DeNNIS) procedure, shown in Figure 7.2, removes the need to simulate entire

domains using Computational Fluid Dynamics (CFD) if the performance of the ML model

surpasses a user-defined target before additional training data is required.

152
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Figure 7.1: Comparison between the development and use of an ANN that uses Cartesian
inputs and the Direction-encoded Neural Network, using inputs that are relative to the
POI and the charge.

The performance of the ML model is made by evaluating a validation dataset that is

formed using values that are independent of the training process. The domains that

supply this validation data can be selected in a number of ways, each of which will be

introduced and explored in the following sections. Furthermore, in determining if/when

the DeNN provides the desired level of predictive accuracy, any performance metrics can

be used, including the mean absolute error (Equation 6.2) of average percentage error

(Equation 6.3).
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Once the required performance is achieved by the DeNN, it replaces the chosen numer-

ical solver to evaluate the remaining models in the batch. Hence, reducing the required

computation time. Additionally, both the BA and the DeNN use shortest path analysis

following discretisation of each domain in the batch and so combining both approaches

with DeNNIS training therefore also reduces the number of calculation steps that are

required when compared to running each method independently.
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Figure 7.2: DeNNIS procedure allowing for incremental training.
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7.3 Analysis options

There are various options involved with conducting a DeNNIS analysis that will alter the

predictive accuracy of the tool being developed during the incremental training process.

Most notably this relates to how the DeNN is initialised before training takes place, how

the validation models are selected, and the order that domains are simulated according to

the BA framework.

The 12 options that will be compared in this chapter are shown in Table 7.1. The initial

state of the DeNN can be ‘untrained’, meaning the weights and biases of ANN–1 and ANN–

2 are initialised using the Glorot Normal and zeros functions that were used throughout

Chapter 6. Alternatively, the DeNN can be ‘pre-trained’, meaning the parameters are

initialised by a separate training process that takes place before the DeNNIS method is

applied.

Table 7.1: DeNNIS analysis options.

Option Initial DeNN
state

BA training
order

Validation selection

1 Untrained Unstructured 10% from batch
2 Untrained Unstructured 20% from batch
3 Untrained Unstructured One domain per batch geometry

4 Pre-trained Unstructured 10% from batch
5 Pre-trained Unstructured 20% from batch
6 Pre-trained Unstructured One domain per batch geometry

7 Untrained Structured 10% from batch
8 Untrained Structured 20% from batch
9 Untrained Structured One domain per batch geometry

10 Pre-trained Structured 10% from batch
11 Pre-trained Structured 20% from batch
12 Pre-trained Structured One domain per batch geometry

The pretraining approach is commonly seen in the creation of ‘deep fakes’, where a person’s

likeness is replaced by another. In this example, the ML tool will be trained on a dataset

formed of random people’s faces prior to learning about the specific person being mapped

onto the target. This enables it to have an understanding of the features of a face before

certain details are introduced for the desired application. In this chapter, pre-training

is achieved using the 25 randomised domains discussed in Section 6.3.2, meaning the

DeNN will have an understanding of blast wave interactions before the required batch is

evaluated. This can also be thought of as a method of transfer learning, where knowledge

of previous scenarios are used to benefit the prediction of new, different domains.

Both initialisation methods are trialled alongside various options for how the validation

models are randomly selected from the batch. Seeing as training will stop early if there is no

improvement in validation loss for 10 steps, where ‘no improvement’ includes variations of

0.5 kPa2 or less, the validation models themselves can influence how the DeNN’s predictive

performance improves throughout the process by controlling how many training steps are

performed.
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The final consideration relates to the order of domains being simulated in line with the

BA framework. Whilst the BA sorts a batch of domains to effectively reduce computation

time, simply evaluating each domain in a sequence overlooks the diversity of the training

points that are used to develop the DeNN’s accuracy during each iteration.

As shown in Figure 7.3, the approach termed ‘unstructured’, firstly evaluates the trunk

model and uses this data to create the training dataset. Next, all models that deviate

from the trunk (tier 1) are simulated in numerical order, with non-duplicate points being

added to the dataset as needed. This process follows along the tree, passing to each tier to

maximise the computational benefit. However, following this process does not guarantee

diversity in the dataset since the BA identified domain number 1 to be the trunk with

geometry A and charge location 1, but progressing to the first tier of deviated models

results in the same geometry contributing to the training dataset multiple times in a row.

The performance of the tool may therefore be developed with a limited view of the batch,

reducing its ability to generalise for all domain geometries.
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Figure 7.3: Simulation order options based on the output from the Branching Algorithm
considering required diversity in training data points in relation to charge location and
domain geometry.

The alternative, ‘structured’, approach requires each tier of the BA tree to be sorted based

on the potential diversity that they add to the training dataset. Throughout the current

chapter, this process prioritises varied domain geometries, then new charge locations. Any

models that do not add to the training dataset diversity are added at the end of the tier

in numerical order based on the model number. Figure 7.3 highlights how this process

shifts the progression of the simulations to ensure that geometries B and C feature in the

DeNN’s development at a far earlier increment than with the previous approach.
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Conclusions formed from the set of of analyses discussed in this section will be highly

dependant on the batch of domains being evaluated, however, exploration of each ap-

proach aims to identify if a specific method significantly outperforms the others for this

application.

7.4 Problem scenario

Figure 7.4 presents the batch of domains that will be used to demonstrate the benefits of

the DeNNIS method. Four unique geometries and five independent charge locations are

included to form a batch of 20 models. All domains are the same size with equivalent

charge positions that are at an elevation of 1.5 m.

ICPS6, Auburn University, May 2023 

 

 
 

Figure 5. Four geometries and five independent charge locations creating 20 models in the batch. 

Model numbers are as follows:  

domain A (1 – 5),  domain B (6 – 10),  domain C (11 – 15), domain D (16 – 20). 

 

 

Each domain is simulated using Viper::Blast, version 1.20.6a, by a computer utilising a NVIDIA T1000 

dedicated graphics card, 16 GB of system RAM and an Intel Core i7-10700 processor with the setup 

parameters shown in Table 1. This allows for performance comparisons between the DeNN and an 

established numerical solver. 

 

The DeNN comprises of two independent networks. One used to predict POIs that are unobstructed by an 

obstacle, hence having a direct line of sight to the charge, and another for obstructed points. The 

hyperparameters and input variables that were determined partially through a tuning process in [8] are 

adopted for this study and shown in Table 2. 
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Figure 7.4: Four geometries and five independent charge locations creating 20 models in
the batch. Model numbers are as follows: domain A (1–5), domain B (6–10), domain C
(11–15), domain D (16–20). Obstacle height of 2 m.

In each geometry, the charge positioned at (11,1) [x,y] corresponds to the first model of

that arrangement. This progresses up the y axis to the fifth domain for each geometry

corresponding to a charge at (11,7). The batch aims to replicate the detonation of an

explosive along a road next to a building entrance being protected by various structural

forms.
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Figure 7.5 shows the branching tree that is produced when evaluating the batch with

the BA. It shows that model 13 is the trunk model that will be simulated and used in

the first stage of DeNNIS training. All other models will be processed using Viper if the

performance metric is not met by the trained DeNN.
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Figure 7.5: Branching Algorithm mapping trees for the batch of domains shown in Fig-
ure 7.4.

7.4.1 Viper::Blast modelling

Modelling parameters for the domains that require CFD simulation are given by Table 7.2

in accordance to Section 3.2. In each domain, 1D–3D mapping is implemented when the

1D stage is one cell length away from the closest rigid boundary, this being at 1.499 m

stand-off.

Table 7.2: Viper::Blast training model parameters.

Solving method Ideal gas
Charge size (kg) 1
Charge composition TNT
Charge density (kg/m3) 1600
Charge energy (J/kg) 4.52×106

Mapping 1D–3D
1D cell size (m) 0.001
1D CFL 0.5
3D cell size (m) 0.02
3D CFL 0.4
Ambient temperature (K) 288
Ambient pressure (Pa) 101325
Termination time (s) 0.05

The DeNN will be trained in a comparable way to the previous chapter, with its predictions

being formed on a 2D plane with 1.5 m elevation. It will therefore also be trained with

data from a 3D modelling process where the domain height is set to 2 m and all boundaries

are ambient apart from the rigid ground plane at zmin.
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7.4.2 DeNN setup conditions

The DeNN architecture being adopted for this analysis is provided in Table 7.3. This

matches the resulting network from Chapter 6 where hyperparameters were optimised for a

multiple network application of the DeNN approach that utilises 16 directional inputs, the

blast wave’s shortest travel distance to the point of interest (POI), and the superposition

equation given by Equation 6.4.

Table 7.3: Direction-encoded Neural Network variables.

Variable ANN–1 (unobstructed
points)

ANN–2 (obstructed
points)

Neuron structure 17–550–900–550–800–1 17–800–650–950–600–1
Learning rate 0.0170 0.0033
Dropout rate 0.0290 0.0139

Activation function ReLU (linear at output)
Loss function Mean squared error (MSE)
Optimiser AdaGrad
Batch size 100

Regularisation L2
Weight initialiser Glorot Normal
Bias initialiser Zeros

Outputs Peak overpressure at an elevation of 1.5 m (kPa)

Inputs

Blast wave’s shortest travel distance to prediction
point, 16 directional inputs with 22.5◦ angular

spacing that rotate so that direction 1 points towards
the charge.

7.5 Initialisation trials

7.5.1 Ultimate validation performance

To compare the initialisation methods shown in Table 7.1, each network is trained with a

performance threshold of 0 kPa.ms MAE. This forces every model in the batch to be used

in training the DeNN so that the ultimate performance of the tool can be determined.

Firstly, Figure 7.6 presents a comparison of the validation performance from pre-trained

and untrained networks when an unstructured BA training framework is used. For ANN–

1 the benefit of pre-training is negligible after the MAE reaches ∼2 kPa at around 7

incremental training steps. However, prior to this, pre-training provides a clear advantage

over an untrained network, particularly after increment 1 when only the trunk model

has been numerically simulated and used in training. Here, the average errors for the

pre-trained model are consistently below 3 kPa, whereas the untrained networks provide

errors up to 4 kPa.
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The benefit of pre-training for ANN–2 is less prominent in all cases, particularly when

the validation dataset is formed from 10% of the batch. Nevertheless, when one domain

per geometry is chosen for the validation dataset, the pre-trained network consistently

provides lower errors than an untrained model up to when all 16 training increments have

been processed.
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Figure 7.6: DeNNIS method comparison considering MAE of ANN–1 and ANN–2 when
evaluating the validation datasets associated with each initialisation option that uses an
unstructured Branching Algorithm training framework.

In all cases, the ultimate performance of the trained networks are consistent with an MAE

∼1.8 kPa and ∼2 kPa for ANN–1 and ANN–2 respectively. Despite this, use of a pre-

trained network is likely to enable the performance to reach this threshold at an earlier

training step. Figure 7.7 therefore compares pre-trained networks for all validation dataset

options, with the structured BA training framework.
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Figure 7.7: DeNNIS method comparison considering MAE of ANN–1 and ANN–2 when
evaluating the validation datasets associated with each initialisation option that uses a
pre-trained DeNN.

Once again, ultimate performance is consistent across all options. However, use of the

structured training framework enables accelerated training at various increments for the

20% and one per geometry methods. For the latter, a notable improvement occurs at

steps 7 and 8 for ANN–1 and ANN–2 to provide average errors that are very similar to the

ultimate performance at a far earlier stage than when an unstructured approach is used.

As mentioned previously, implementing every training step would remove the computation

benefit that the DeNN’s novel approach achieves, and so a suitable performance threshold

should be defined to limit the amount of training that takes place. Reaching near-optimal

performance at an earlier increment is therefore beneficial to the resulting computation

time, and accuracy, of the evaluated batch.
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It should also be noted that the variations in performance across each option are charac-

teristic of the training process that underpins how multi-layer perceptrons (MLPs) develop

their accuracy. These variations will be specific to this training regime and batch of do-

mains, meaning that conclusions formed from the comparison of unstructured or structure

BA frameworks are only indicative of what the expected optimum approach would be for

most cases.

7.5.2 Defined performance target

Ultimate performance can help to inform which analysis option may be optimal for the

batch of domains given in Section 7.4, however, in practice the DeNNIS method will be

implemented with a performance target that prevents the need for all domains to be used

in training. Table 7.4 therefore provides the resulting batch statistics when a performance

target of 2.5 kPa MAE is applied independently to ANN–1 and ANN–2.

A comparison of the overall batch accuracy (including CFD simulation output and DeNN

outputs as appropriate) and computation time indicates that there is a trade off between

these variables. Networks that are trained more effectively, meeting the required perfor-

mance criteria sooner in the DeNNIS process, contribute to worse overall performance, but

are part of a faster analysis process. This is because the CFD solver, Viper, is assumed

to have 0 error and it is used less frequently in these cases.

Table 7.4: Average batch performance following DeNNIS training using a performance
target of 2.5 kPa MAE for both ANN–1 and ANN–2.

Initial
DeNN

BA order Val.
selection

No.
DeNN
uses

Comp.
time
(s)

MAE
(kPa)

Avr.
error
(%)

Untrained Unstructured
10% 4 33521 0.36 1.7
20% 8 24845 0.81 3.8

1 per geom. 9 22684 1.02 4.8

Pre-trained Unstructured
10% 4 33350 0.37 1.8
20% 9 22179 0.96 4.6

1 per geom. 12 16668 1.29 6.6

Untrained Structured
10% 4 33860 0.36 1.7
20% 9 22452 0.95 4.7

1 per geom. 8 24667 0.84 4.1

Pre-trained Structured
10% 4 33537 0.36 1.7
20% 10 20300 1.07 5.3

1 per geom. 13 14466 1.45 7.1

As before, pre-trained networks provide a clear advantage over the associated untrained

options for each validation approach, provided that computation time remains the key

driver for conducting this kind of probabilistic analysis. Nevertheless, with batch errors

below 10%, performance is also considered to be good enough for initial assessments of

the domains in every instance.
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For each validation selection approach, only one example of the random selection is pre-

sented. This is important to consider because performance is controlled by the domains

that are used in training, and the growth of the training dataset is dependant on which

models are removed and used for validation. Variations in performance could therefore oc-

cur if different validation models are selected, yet the trends seen here are likely to remain

consistent. Subsequently, pre-trained networks and a structured BA training framework

will be used throughout the remainder of this chapter due to the low computation times

for each of validation selection option.

7.6 Prediction variations

Seeing as the DeNN is trained in a process that stops early if predictive performance on

a validation dataset surpasses a user-defined value, variation in the accuracy of the model

may vary significantly depending on which domains contributed to training and validation.

To evaluate this hypothesis, a comparison of the 20% and one per geometry validation

options is presented in this section, with the 10% approach being omitted due to overly

large computation times shown in Table 7.4.

Use of one domain per geometry in the validation dataset aims to avert the issue of

developing a bias tool by ensuring that performance is continually compared to an example

of every geometry. As shown in Table 7.5, the consistency in the number of domains

that contribute to training and validation should give the network the highest chance of

generalising across the entire batch. In this example, the variation in prediction accuracy

for each geometry is less significant when a using the one per geometry approach, whereas

the 20% option favours domains using geometries A and B. Overall, the reported MAE’s

are lower than the targetted 2.5 kPa because, as shown in Figure 7.7, ANN–1 achieves

this accuracy before ANN–2, but both networks continue to train as new data becomes

available. The combined performance, shown in this section, is therefore including ANN–1

that performs with an MAE around 1.8 kPa.

Table 7.5: Comparison of DeNN performance variation (ANN–1 and ANN–2) in the batch
considering each geometry for pre-trained networks developed with a performance limit of
2.5 kPa MAE and a structured BA training framework.

Val.
selection

Geom. MAE (kPa)
Avr. error

(%)
Num. domains

Val. Train Pred.

20%

A 1.86 8.23 2 2 1
B 1.69 7.79 1 1 3
C 2.26 12.49 0 3 2
D 2.50 12.34 1 0 4

One per geom.

A 2.11 8.65 1 1 3
B 2.08 10.09 1 1 3
C 2.24 12.83 1 1 3
D 2.44 11.70 1 0 4
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Both instances of the DeNNIS training regime result in networks that predict with around

12% error for the more challenging and complex geometries, C and D. However, for geome-

tries A and B, it is likely that the extra training step used by the 20% option contributes

to the better performance in every metric that is shown in Table 7.5. Despite this, seeing

as the one per geometry approach has similar overall performance, a lack of predictive

bias and reduced training time, this method is assumed to be optimal for evaluating this

batch of domain using the DeNNIS procedure.

7.7 Analysis method comparison

To compare the DeNNIS approach with the other options that a user would have available

to them when evaluating a batch of domains, Table 7.6 presents the average batch accuracy,

computation time, and number of DeNN uses. The options include using a CFD solver for

all domains, incorporating the Branching Algorithm to the CFD process, solely using the

DeNN without additional training, or using the DeNN, CFD and the BA in collaboration

with each other.

Table 7.6: Performance comparison of various approaches for analysing the batch of do-
mains. DeNNIS method implemented using a pre-trained DeNN, structured training pro-
cess and one validation domain selected per geometry.

Method No. DeNN
uses

Comp.
time (s)

Avr. MAE
(kPa)

Avr. error
(%)

Viper 0 41824 0 0
BA – Viper 0 34195 0 0

DeNN 20 20 4.41 24.9
DeNNIS 13 14466 1.45 7.1

Clearly, if a process using only CFD were to be used, the BA should be incorporated to save

7629 s (18%) of computation time without reducing the accuracy. Conversely, only using

the DeNN, trained with 25 randomised domains, saves practically all of the computation

time, however, this results in average errors that are likely to be unacceptable around 25%.

The DeNNIS method compromises between these two extremes with average errors around

7%, but a computation time saving of 27358 s (65%) when compared to using Viper for

every simulation. This approach is therefore recommended as a means of rapidly evaluating

batches of domains. Furthermore, use of an alternative performance target would vary the

statistics reported throughout this chapter, thus potentially granting larger computation

time savings. However, this would come at the expense of overall batch accuracy.

7.8 DeNN performance review

The previous sections have showed that additional, task specific training of the DeNN can

result in a tool that is capable of evaluating complex batches of domains with predictive

errors less than 10%. This was achieved using a version of the DeNN that was pre-trained

using 25 randomised domains that were introduced in Chapter 6. Additional training

should also improve the overall performance of the DeNN for models outside of the batch

by developing the tools ability to generalise to unseen input patterns. Therefore, this
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section compares the performance of the resulting model from the DeNNIS procedure,

using a 2.5 kPa MAE performance target, to the original DeNN when predicting domains

T1 and T2 from Section 6.3.3.

Table 7.7 provides each performance metric for each ANN that forms the DeNN, in addi-

tion to the overall performance for each domain. Notably, the reduction of ANN–2 error

from 42.1% to 25.7%, and 57.6% to 36.8%, for T1 and T2 respectively, shows how the

initial dataset formed from 25 randomised domains may have restricted the tools ability to

understand the complexities associated with wave coalescence that occurs behind obsta-

cles. This is enforced by the significant improvement in the correlation between predictions

and targets for ANN–2 and testing model 2, where an increase of 0.0607 is observed.

Table 7.7: Performance metrics for both testing domains, simulated using the DeNN and
DeNNIS methods, compared to equivalent Viper models. Bold statistics indicate best
performance for each testing model.

Testing
model

Training
models

ANN
num-
ber

R2
t MAE (kPa) Average

Error (%)

1

Randomised
×25

1 0.9961 4.18 5.4
2 0.8989 4.48 42.1

Overall 0.9952 4.26 16.0

Randomised
×25 +
DeNNIS

1 0.9948 4.74 6.4
2 0.9174 3.64 25.7

Overall 0.9940 4.42 12.0

2

Randomised
×25

1 0.9971 3.90 7.1
2 0.8070 6.83 57.6

Overall 0.9938 4.86 23.6

Randomised
×25 +
DeNNIS

1 0.9963 4.32 7.3
2 0.8677 5.27 36.3

Overall 0.9941 4.63 16.8

In contrast, ANN–1 performs slightly worse following additional training, with average

errors up to 1% higher. However, this change is considered to be negligible, and generally

insignificant, in determining if the tool is suitable for use considering that performance

of this network remains within the targeted 10% error threshold. It is possible that this

network has become overfit to some training data, however this is unlikely considering the

regularisation procedures and early stopping methods that have been employed throughout

this thesis.

Overall, the DeNNIS model is shown to produce more accurate predictions for both unseen

test domains, with average errors below 17% in both cases. The developed tool should

therefore be used as the new ‘pre-trained’ model for future DeNNIS assessments so that

even more additional training can continue to improve the predictive accuracy of the tool.
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7.9 Summary

In summary, this chapter has introduced a new methodology that combines the benefits of

two previously published approaches that enable the rapid assessment of various explosive

events. It is shown that computational savings of up to 65% are possible, when compared

to exclusively using CFD analysis, by incrementally training the Direction-encoded Neu-

ral Network (DeNN) in series with a simulation framework produced by the Branching

algorithm (BA) for a batch of 20 models.

A comparison of various analysis options showed that use of a pre-trained DeNN, and a

BA framework that was structured to ensure a diverse training dataset was developed after

each iteration, decreased the amount of training steps that were required to reduce the

predictive error of the tool to an acceptable level. Similarly, it was shown that although

a validation dataset formed from a random selection of 20% of the domains provided

comparable ANN performance, in order to maximise the tools ability to generalise to each

unique geometry in the batch, use of one model per geometry was preferred.

Overall, predictive error for the batch of 20 domains reached 7.1% compared to 24.9%

if no additional, task specific training was used. Subsequently, as a result of conducting

additional training for the DeNN, performance of the tool improved when considering the

testing domains that were originally evaluated in Chapter 6. In this case, reducing errors

for T1 and T2 from 16% and 24% to 12% and 17% respectively. Objective 5 of this study

is therefore met as this methodology enables the DeNN to be used in probabilistic risk

assessments of explosive events, exploring the influence of various uncertainties such as

charge location and structural arrangements, with computation times that enable a large

number of unique domains to be evaluated.

Preliminary results from the development of the DeNNIS procedure were presented at

the 6th International Conference on Protective Structures, and provided in the conference

proceedings in a paper titled ‘Towards the Development of Machine Learning Tools for

Blast Load Prediction’.



Chapter 8

Summary and Conclusions

8.1 Summary

The need for Fast Running Engineering Models (FREMs) is supported by the requirement

for large batches of numerical models to be analysed in probabilistic assessments that

account for the uncertainty and variability of an explosion when assessing risk. As part

of developing Machine learning tools for blast load prediction in obstructed environments,

this thesis aimed to improve the computational efficiency of CFD modelling approaches

for batch analysis in addition to creating a new, hybrid method of conducting probabilistic

assessments using ML based models. This aim was met in conjunction with the following

objectives that identified specific requirements to ensure the contents of this thesis would

be novel:

1. Evaluate current literature to identify the limitations and opportunities associated

to Machine Learning tools used in Fast Running Engineering Model development.

2. Establish a pipeline for generating experimentally validated data from numerical

models.

3. Develop an approach for reducing the computation time required to generate training

datasets featuring many models that share comparable setup characteristics.

4. Engineer an input set for Machine Learning models that allows for the tool to be

used with movable obstacles, and changing domain sizes.

5. Produce a framework for probabilistically modelling variable explosive scenarios that

incorporates the training phase of Machine Learning development with its use, re-

moving the need for batches of tests to be evaluated exclusively with numerical

models.

In Chapter 2, the background theory required to understand blast wave mechanics and

Machine Learning was presented alongside a comprehensive review of current literature.

This enabled the threat posed by the detonation of a high explosive to surrounding in-

frastructure and human life to be understood, whilst also providing a focussed view of

the methods that are used to simulate a given explosive scenario. It was discussed that

confined and obstructed environments lead to highly complex wave interactions that are

often very computationally expensive to predict. Due to this increased complexity, many

of the established FREMs are unsuitable for generating these predictions. Machine Learn-

ing tools have been used to accurately model a range of multi-parameter problems for

various blast applications, showing promise for future use in this field, yet the lack of tool
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versatility also restricts their use to a select number of pre-defined scenarios. The findings

of this chapters therefore meet Objective 1 of this study.

In order to work towards developing Machine Learning tools, Chapter 3 introduced and

experimentally validated two numerical solvers, Viper::Blast and LS-DYNA, that are ca-

pable of modelling the propagation of a shock wave throughout domains featuring various

obstacles. This ensured that Objective 2 of this study would be met since the pipeline for

data generation and use in developing FREMs was established with both solvers providing

a means of extracting pressure traces from domains that feature varied charge locations,

compositions, and obstacle geometries.

Using the validated solvers discussed above, Chapter 4 introduced a novel approach to

conducting batch analyses whereby the repeated simulation steps can be removed through

informed data mapping. This ‘Branching Algorithm’ is proved to work effectively for

a series of 9 domains, saving ∼50% of the 2D computation time without any loss to

the accuracy of the outputs from each domain. Following this, Chapter 5 expanded the

methodology to 3D, improving the scope of its potential applications by adding more com-

prehensive consideration for wave tracking and simulation deviations. Here it was shown

that ∼20% computation time could be saved for a batch of 20 containment structures,

with 4 charge locations and 5 unique domain geometries. Therefore, since the computa-

tion time required to generate training datasets for ML tools can be reduced by using the

Branching Algorithm, Objective 3 of this study was met.

Next, with a focus on developing a model to predict blast loads in obstructed environments,

Chapter 6 presented a Direction-encoded Framework for Machine Learning tools. By

using a novel set of inputs, each point in a domain can be independently predicted with

consideration of its proximity to obstacles and distance from the charge. This contrasts

typical models where user-defined coordinates would be used to ultimately restrict the

generalisation capabilities of the developed tool. It was shown that the key benefit of

the framework, when applied as the Direction-encoded Neural Network (DeNN), is that

predictions can be formed in domains of varied sizes with obstacles that do not have a

fixed location, hence meeting Objective 4 of this study.

To emphasise the combined benefit of each approach discussed here, Chapter 7 meets

Objective 5 by presenting an incremental training procedure whereby the DeNN is trained

in series with data that is generated from a BA framework. It is shown that for a batch

of 20 unique domains, additional training of the resulting DeNN from Chapter 6 leads to

computation time savings of 65% when compared to exclusively running CFD analyses.

Moreover, average predictions errors of 7.1% and 1.45 kPa provide a means of deriving

useful quantitative conclusions about the batch of tests. The approach is therefore well

suited for use in probabilistic assessments that aim to explore the effect of varied domain

geometries and charge positions, but not the effect of breakable obstacles or the charge

height. Furthermore, provided that the chosen numerical solver can be activated through

the command line, implementation of this framework can controlled entirely through the

associated Python scripts for the BA and DeNN.

The findings of this thesis should be used to inspire a new generation of Machine Learning

based tools in blast protection engineering that are versatile, robust and validated for

use in probabilistic assessments that consider the inherent variability and uncertainty of

explosive events. This thesis has explored methods of improving each key aspect of ML
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development, including data generation (The Branching Algorithm), model use (Direction-

encoded Neural Network), and training & validation (Direction-encoded Neural Network

In Series) to highlight how creative approaches to problems can provide meaningful results

and improvements to efficiency that will ultimately help to rapidly assess the infrastructure

that protects society.

8.2 Conclusions

The key conclusions of from this thesis are listed below:

� Obtaining blast load parameters in complex domains often requires computation-

ally expensive numerical solvers, since experimental trials require expertise and test

facilities that are not widely available, and established rapid analysis tools are not

able to model the sophisticated physics associated with multiple wave reflections and

interaction effects.

� Machine Learning tools provide a means of modelling highly complex, multi-parameter

problems, however, most models that are developed for blast applications are be-

spoke to a very limited number of scenarios that ultimately prevent the tools from

being useful outside of the developmental study.

� Viper::Blast and LS-DYNA can be used to accurately simulate shock wave propaga-

tion and the detonation of a high explosives provided that mesh size requirements

are adhered to.

� The Branching Algorithm should be used when modelling a batch of domains that

use the same charge composition and ambient conditions to reduce the required

computation time by removing repeat simulation steps.

� A fully connected multi-layer perceptron model can be tuned to accurately provide

predictions for peak overpressure in obstructed domains when utilising a novel set

of inputs that relate the surroundings of a given point of interest to the network via

a range of directional lasers.

� The Direction-encoded Neural Network can be used to rapidly analyse obstructed

domains without the need for additional training or further CFD analysis. However,

if it is being applied to a new batch of domains, incremental training as part of

the DeNNIS procedure should be used to continue to improve the tool’s predictive

accuracy whilst also reducing the computation time required to evaluate all domains.

8.3 Future work opportunities and outlook

As noted previously, this thesis aims to inspire the next generation of Machine Learning

tools in blast protection engineering by showing that creative adjustments to established

methodologies can provide significant improvements to processes that have remained un-

changed for a number of years. Through the process of developing the tools and analysis

approaches included in this thesis, a number of opportunities for future work have arisen.

For each tool, they are as follows:
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8.3.1 The Branching Algorithm (BA)

� The inclusion of breakable obstacles and varied material properties when considering

the deviation conditions of a domain. Allowing for more comprehensive probabilistic

analyses to be conducted for scenarios that incorporate structural response.

� Direct integration of the BA with additional solvers to improve the usability of the

method. Currently a Python script can be used to process a batch of models, but

manual intervention is required to enact the required mapping procedures.

� Exploration of additional fields of study where the principles of the BA can be

adapted and applied.

8.3.2 The Direction-encoded Framework and Neural Network

� Tailoring the inputs to the network so that non-rectangular objects and objects that

are not orthogonal to the domain boundaries can be included in the obstructed

environments. Required so that people, trees, lampposts, vehicles can be better

represented when forming predictions throughout an urban environment.

� Expand the input pattern with additional directional lasers that project from the

point of interest in 3D to enable predictions that consider the height of the domain

and any obstacles, and the topology of the domain. Alternatively, generate 3D

predictions by using multiple, stacked DeNNs that are trained for predictions at

various heights above the ground.

� Adapt the principle of the framework and apply it to recurrent neural networks

so that temporal predictions can be formed, providing a more complete assessment

of the blast loads in obstructed environments whilst also enabling human injury

assessments to include phase durations and impulse predictions that are required by

some criteria.

� Considering the findings of Section 7.8, increase the size of, and diversify, the training

dataset to determine if performance continues to improve with additional training.

� Test the principle of transfer learning, discussed by Pannell et al. (2023), to identify

if the DeNN in its current form could be used to assist with predictions of alternative

charge sizes or compositions in obstructed environments.

� Test alternative ML architectures, such as Transformer and Graph Neural Networks,

to ascertain whether a particular ML tool can provide better prediction performance

for the application discussed throughout this study when the Direction-encoded

framework is applied.

� Sielicki et al. (2020) notes that most casualties from terrorist attacks in Western

countries are caused by fragmentation and overpressure, rather than structural fail-

ure. The Human Injury Predictor, developed by Pope (2011), therefore accounts

for both of these effects, and so future iterations of the DeNN should also aim to

integrate fragmentation predictions. Alternatively, new ML tools should be devel-

oped to account for fragmentation, and the predictions should be combined with the

DeNN to enable robust human injury assessments to be conducted rapidly.
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� Validate predictions generated by the DeNN with experimental data to confirm that

its training data, generated using Viper::Blast, and its learned representations of

complex wave interaction effects are true to the physical problem.

� Explore uses of the DeNN that expand the scope of its application. This could include

using its ability to produce rapid predictions as a means of forensically identifying

the size and shape of an explosive charge relative to reported injuries and damage

assessments throughout a complex domain.

8.3.3 Outlook

The findings of this thesis have contributed to the goal of creating versatile and accurate

FREMs that can be applied to blast loading problems. Probabilistic analyses, that focus on

varying charge location and structural arrangement, can now be conducted for obstructed

environments with significant reductions in computational expense by using the DeNN and

BA. This allows for an increased number of scenarios to be evaluated when determining the

risk posed to a given target, providing a greater appreciation of the uncertainty associated

to the event.

With consideration of these findings, the concept of ML for FREMs has been proved,

creating a gap for the development of similar tools that can be applied to situations with

more specific loading conditions, including underwater or buried charges, and structural

response assessments. This process may require additional efforts to improve how experi-

ential trials are conducted in a timely and cost effective manner, so that newly developed

models are calibrated to provide an accurate representation of the physical processes being

observed. In some instances, this may also highlight the need for a greater understanding

of initiation, detonation and propagation processes for various explosive compounds at a

thermochemical or molecular level that is yet to be considered at the time of writing this

thesis.

Ultimately, the continual development in this field leads towards a future where a single

FREM is able to provide a complete solution to any problem through accurate character-

isation of an explosion, with probabilistic outputs associated to human injury, structural

response and damage mitigation.
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Appendix A

BA in 3D: Example read-in file

Figure A.1: Branching Algorithm read-in file example.
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