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Summary 

There is an increasing realisation that public perceptions of landscape should be taken 
into account in national landscape governance and planning. The international treaty of 
European Landscape Convention (ELC) has placed the public central to any 
understanding of landscape and the signatories of the Convention are obligated to work 
towards that goal. Despite the call for of public involvement, most national landscape 
assessments in practice are still highly expert-centred and in a top-down manner which 
hardly ever matches the participatory stance. Limited resources and methodological 
challenges often restrict public engagement and consultation on a large scale. The lack of 
more inclusive and citizen-centric approaches to collect different views of the public on 
landscapes are identified. Furthermore, more pragmatic and inclusive approaches that 
facilitate a systematic integration of multiple perspectives of landscapes are required for 
countries that have ratified the Convention, such as the United Kingdom, to narrow the 
gap between the participatory rhetoric and practice. 
 
With the development of Web 2.0 technologies and the proliferation of smartphones and 
other location-aware devices, people are enabled to contribute contents (e.g., 
photographs and texts) with georeferenced information, often in relation to how they 
individually perceive the environment. In this respect, prodigious amounts of such 
crowdsourced geographic information associated with subjective opinions on perceived 
environment have become ubiquitously available. Despite a rapid increase of efforts to 
incorporate these bottom-up data collection and analysis in the field of landscape 
assessment, relatively little progress has been made in better understanding the 
association of expert-based metrics of landscape quality with these public inputs. The 
expert-based objectivist paradigms of landscape assessment might be prone to fall into 
inconsistency with the nonexpert-based subjectivist one. This could, in turn, lead to less 
informed decision and practices in the context of public participation in landscape 
conservation, planning, and management. 
 
The aim here sought to integrate the objective and subjective measures of landscape 
aesthetic quality, regarded as complementary and supplementary to each other. This 
thesis concentrated on crowdsourced geo-information, specifically regarding public 
perceived values of landscape aesthetics or environmental aesthetics in a broader sense, 
as captured in the Scenic-Or-Not initiative for Great Britain. GIS-based Wildness spatial 
layers—consisting of four components: absence of modern human artefacts (absence), 
perceived naturalness of land cover (naturalness), remoteness from mechanised access 
(remoteness) and rugged and physically challenging nature of the terrain (ruggedness)—
as well as the LANDMAP dataset regarding visual and sensory landscape classification 
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for Wales were also utilised herein, both of which served as expert-based objectivist 
paradigms of landscape assessment. 
 
To approach this aim, several studies were conducted: first, an investigation into the 
degree of correlations between the four formal measures of wildness components and the 
crowdsourced measures of landscape aesthetic quality, and to further explore the spatial 
variation and the geographic scale (or influence scope) in their relationships across Great 
Britain using the multiscale geographically weighted regression (MGWR) framework 
which is a recent extension to the geographically weighted regression (GWR) model 
(Publication I). Second, a comparison of landscape aesthetic perceptions held by experts 
and citizens was drawn based on the results of five generalised linear models (GLMs). 
These models were constructed over the visual and sensory areas from the LANDMAP 
classification (a national baseline about landscape in Wales). The similarities and 
discrepancies between these two perspectives of scenic quality concerning the ranking 
orders of the landscape typologies were pinpointed (Publication II). Finally, an 
integrative approach that conflates the aforementioned three datasets – LANDMAP, 
Scenic-Or-Not, Wildness – was proposed to address the lack of any systematic and 
reproducible evaluations of landscape quality and aesthetics for England and Scotland. 
As the LANDMAP data of landscape aesthetics was undertaken by two separate expert 
groups, two extreme gradient boost (XGBoost) models were constructed over the 
LANDMAP areas for each group and then applied to predict the spatial patterns and 
distribution of landscape aesthetics across England and Scotland (as well as Wales) 
(Paper III). 
 
The first study evidenced that the relationships between objective measures of landscape 
wildness quality and subjective measures of landscape aesthetics are statistically 
significant; each wildness component display different degrees of correlations. Overall, 
MGWR is more sensitive than GWR to the analysis of spatial heterogeneity in the 
statistical relationships between landscape factors and public perceptions. Notably, the 
MGWR output for remoteness exhibited very limited variation and a wide bandwidth, 
indicating a stationary or globally fixed process. Remoteness is mainly concerned with 
the opposite side of the ease of reaching or travelling to a specific landscape, which can 
therefore be interpreted as a contextual factor for aesthetic perceptions of landscapes. In 
contrast, the relationships for absence, naturalness and ruggedness showed different 
degrees of localness which can be used to facilitate targeted landscape management. 
Based on these findings, both wildness and scenicness measures were feasible to be 
incorporated into formal landscape aesthetic assessment. The second study further 
provided a few observations that were summarized as follows: first, water-related 
landforms generally received higher appraisal from citizens, followed by upland, 
lowland, and development while upland typologies were found to be highly variable, 
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followed by lowland, water, and development. Second, a higher level of agreement 
between experts and non-experts was observed in assessing landscapes at both extremes 
of the scenic spectrum – that is, those universally perceived as highly aesthetically 
pleasing or the contrary. Conversely, there was less consensus on landscapes falling in 
the middle of the spectrum, where aesthetic judgements tend to be more subjective and 
varied. This consultation with on-the-ground views of landscape scenic quality has made 
it possible to identify the contesting landform typologies and subsequently suggestions 
were made in relation to the deficiency in the principally vertical, bird’s-eye assessment 
led by professionals. 
 
These results motivated the third study to construct models of LANDMAP classes 
evaluated by two groups of experts using data from the Scenic-Or-Not initiatives and 
Wildness spatial layers. Two extreme gradient boost (XGBoost) models were constructed 
over the LANDMAP areas for each group and then applied to predict the spatial patterns 
and distribution of landscape aesthetics in the manner of LANDMAP across Great Britain. 
The two predictive models reach Overall classification accuracies of 67.3% and 74.5%, 
and the Kappa statistics of 0.50 and 0.64, and are comparable to the previous studies 
based on traditional statistical models that use spatial metrics or landscape features (e.g., 
terrain roughness and proximity to water) to predict scenic beauty. If different expert 
perceptions are explored (as in Figure 5.4), then a consensus of important regions of 
outstanding scenery, can be determined, across different evaluations (as in Figure 5.5). 
The resulting maps can potentially be used to complement current Landscape Character 
Assessment (LCA) practices in support of relevant landscape policy decisions. 
 
From a data point of view, one should be aware of the limitations and biases inherent in 
those data generated from the crowdsourcing initiative in relation to their data quality 
such as spatial coverage and sampling as well as representative uncertainties. From a 
methodological point of view, the aggregation strategy was required to alleviate the 
biases in crowdsourced data and make the computation manageable and operational. 
Caution should also be exercised in aggregating the point-based Scenicness scores and 
grid-based wildness measures to a hexagonal grid as well as the LANDMAP areas. The 
classic geospatial analytic issue, associated with the modifiable areal unit problem 
(MAUP), which refers to a statistical bias occurred when point-based observations 
aggregated over different areal units and scales, could produce misleading prediction or 
inference results, has been recognised and discussed. 
 
This thesis is structured as follows. Chapter 1 describes the motivation and relevance, 
while Chapter 2 puts the questions analysed in this project into a broader context of 
background. The 3 papers (2 published and 1 for submission as below) are presented in 
Chapter 3, Chapter 4, and Chapter 5. Finally, Chapter 6 devotes to the discussion of 
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each presented paper as well as the overall limitations with regard to data and methods 
along with the conclusion. 
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Chapter 1 Introduction 

1.1 Motivation and relevance 

Landscape and land are related constructs, but landscape involves human perception 
while land does not. Landscapes hold different meanings for various individuals in 
diverse contexts and play a crucial role in people’s identity and well-being, evoking 
strong emotions and providing numerous benefits, such as stress relief. Over the past two 
decades, landscape issues have gained prominence within European policy agenda, 
significantly influenced by the European Landscape Convention (Council of Europe, 
2000). The Convention defines landscape as ‘an area, as perceived by people, whose 
character is the result of the action and interaction of natural and/or human factors.’ 
Article 6 of the ELC mandates public consultation for defining landscape quality 
objectives (LQO), placing the public at the centre of any understanding of landscapes (see 
Section 2.6). The Convention promotes participatory and democratic approaches (Prieur, 
2006), prioritising public involvement in landscape policy discussions. 
 
However, there is currently no consensus on best practices for public consultation and 
public input has not been adequately incorporated into landscape assessment and 
planning, leading to limited influence on national policy issues (Conrad, F. Cassar, et al., 
2011). The first challenge of implementing the ELC involve the elicitation of public 
landscape perception. Traditional methods, such as household surveys and in-situ 
interviews, have primarily focused on visual perception, but are limited to small-scale 
case studies with restricted respondent groups due to associated costs (Daniel, 2001). The 
lack of large-scale or national-level perception data hinders fulfilling the ELC’s 
participatory stance (Conrad, F. Cassar, et al., 2011). Thus, there is a need for innovative 
approaches to gather varying perceptions of landscapes from broader populations and 
operationalize public participation on a larger scale. 
 
Advances in information and communications technology (ICT) have paved the way for 
research on landscape perception and preference (LP&P) and cultural ecosystem services 
(CES). The emergence of Web 2.0 technology enables individuals to create and share large 
amounts and varieties of content with each other online (O’Reilly, 2005). This “bottom-
up” content generation, combined with top-down organisational goals is referred to as 
crowdsourcing (Brabham, 2013). For instance, the advent of photo-sharing platforms 
with location-based services (e.g., Geograph and Flickr) has facilitated the contribution 
of crowdsourced, geotagged photographs and information that is relevant to landscapes 
(Bubalo et al., 2019). These online initiatives enhance understanding of how people 
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perceive their environments and facilitate the engagement of diverse public groups, 
which is often unattainable with traditional data collection methods, such as field 
questionnaires (Dunkel, 2015). From a practical perspective, crowdsourcing strategies 
can help in understanding people’s perceived landscapes and meeting the requirements 
of the ELC, which forms an integral part of this thesis. 
 
Landscape studies attract interest from numerous disciplines, each with various, 
disparate focuses, and distinct methods and tools. There are different methodologies for 
assessing visual landscape quality (Daniel, 2001). Among these, an important conceptual 
distinction can be made between objective (physical) and subjective (psychological) 
methodologies, often associated with quantitative and qualitative evaluation approaches. 
The objectivist interprets visual quality as inherent to the landscape, whereas the 
subjectivist views it as a construct of the observer (Lothian, 1999). Previous studies have 
established relationships between expert-based and perception-based assessments 
(Dramstad et al., 2001; Dramstad et al., 2006; Schirpke et al., 2019). It has been suggested 
that the integration of objective and subjective methodologies could be the ideal tool for 
any understanding of landscapes (Lothian, 1999; Daniel, 2001). In a more recent review, 
a research trend towards transdisciplinary and integrative landscape assessment 
practices that evaluate objective and subject factors in combination has also been 
observed (Medeiros et al., 2021). 
 
Over the past few decades, landscape character assessment (LCA) methods have been 
widely employed to analyse, classify, and map landscape types, using a combination of 
a map-based objective characterisation with an expert-based subjective assessment (Van 
Eetvelde and Antrop, 2009). Initially developed in the United Kingdom (UK), LCA has 
become an essential property of landscape in the ELC’s definition (Van Eetvelde and 
Antrop, 2009). As a key communicative framework, it serves as a basis for landscape 
management and planning (Swanwick, 2002). However, little effort has been made to 
incorporate public inputs into LCA, allowing for direct comparisons between expert and 
public opinions. By identifying similarities and differences, this could facilitate the 
reconciliation of varying approaches. Moreover, landscape characterization relies on the 
visual interpretation and integration of mapped data sources, which can be labour-
intensive and time-consuming. In response to rapid landscape changes, land managers 
and policymakers require more efficient methods to evaluate landscape scenic quality. 

1.2 Research aim 

This thesis not only seeks to ascertain the extent to which crowdsourced geographic 
information can supplement existing landscape assessment practices, but also aims to 
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demonstrate the application of cutting-edge modelling techniques that support 
integration. Consequently, the research objectives are outlined and discussed in a 
separate chapter as follows: 

• Objective 1: Explore the link between the objective and subjective assessments of 
landscapes in terms of spatial patterns (Chapter 3). 

• Objective 2: Conduct a comparative study of landscape scenic quality evaluations 
made by experts versus non-experts (Chapter 4). 

• Objective 3: Develop an integrative approach that efficiently combines expert and 
public perspectives relevant to landscape aesthetic quality (Chapter 5). 

1.3 Study area 

This thesis comprises three studies, all conducted within Great Britain (GB), which 
consists of three countries: England, Scotland, and Wales (Figure 1.1). Each country 
follows a similar expert-based methodology for assessing landscapes. However, Wales 
adopts a unique approach to establishing a landscape baseline that includes perceptual 
information, used as expert-based landscape evaluations. The difference in practices 
among these countries will be discussed in greater detail in Section 2.5. Chapter 3 focuses 
on the geographic region of GB while Chapter 4 is centred solely on Wales. Chapter 5 
uses data from Wales for modelling and the predictive models are subsequently applied 
to map scenic quality across GB.  

 

Figure 1.1 The study area (GB) comprising three countries: England, Scotland, and 
Wales. 
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1.4 Chapter outline 

The remainder of this thesis, including the corresponding publications, is structured as 
follows:  

• Chapter 2: Literature Review - This chapter reviews different approaches and 
relevant concepts related to studying visual landscape quality, as well as 
methodological approaches for modelling. 

• Chapter 3: Publication I - Published in Landscape and Urban Planning (Chang 
Chien et al., 2020), this paper quantitatively explores the relationships between 
formal measures of landscape wildness and crowdsourced measures of perceived 
landscape scenic quality, illustrating the potential of a more spatially nuanced 
model. 

• Chapter 4: Publication II - Published in Land (Chang Chien et al., 2021), this paper 
compares expert and public evaluations of landscape scenic quality and discusses 
potentially contested landscape typologies. 

• Chapter 5: Publication III with the title: “Using crowdsourced scenic ratings and 
wildness measures to model landscape aesthetic quality: an integrative approach 
using supervised machine learning” – Submitted to Landscape and Urban Planning, 
this paper demonstrates how information and data from diverse sources can be 
integrated with formal evaluations of landscape scenic quality to provide extensive 
and consistent landscape quality assessments. 

• Chapter 6: Discussion and conclusion - This chapter synthesizes the research 
findings, discusses potential broader implications for current assessment practices, 
and examines overall limitations. Several future research directions are suggested 
to make current landscape assessment practices more consistent, tractable, 
democratic, and accountable. 
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Chapter 2 Literature review 
2.1 Objectivist and subjectivist landscape assessments 

Approaches for assessing landscape quality can be grouped into two general categories: 
objectivist and subjectivist (Lothian, 1999). These contrasting views stem from the long-
standing question of whether beauty lies ‘in the object’ or ‘in the eyes of the beholder’ 
(Meinig, 1976). Objectivist approaches, which primarily rely on expert knowledge to 
measure physical landscape characteristics, have long dominated visual landscape 
quality assessments. In contrast, subjectivist approaches, which mainly focus on 
understanding observers’ perceptual reactions to landscapes in varying contexts, have 
been widely adopted in much landscape research. A range of different approaches for 
visual landscape quality assessment can be roughly situated between these two positions. 
However, these approaches differ in the relative importance they confer on the landscape 
and the observer.  
 
Lothian (1999) proposed that landscape research and practices should shift from 
objectivist paradigms to subjectivist ones (Lothian, 1999). Several researchers also 
believed that visual landscape quality should be assessed and measured through the 
appreciation of the observer (de la Fuente de Val et al., 2006; G Fry et al., 2009). Yet, the 
subjectivist approaches have been found difficult to apply in practice due to large 
individual differences in individual perceptions and preferences. Thus far, it has become 
generally accepted that landscape quality is derived from the interaction between 
biophysical and perceived components of landscapes. In this respect, combining both 
objective and subjective assessments is deemed as a more inclusive and appropriate 
practice (Daniel, 2001). 
 
Zube, Sell, and Taylor (1982) proposed a classification scheme which grouped the 
different approaches concerning visual landscape quality into four paradigms: expert, 
psychophysical, cognitive, and experiential (see Table 2.1) (Zube et al., 1982). Later, 
(Daniel and Vining, 1983) suggested a rather similar classification criteria where these 
approaches can be split into the ecological, formal-aesthetic, psychophysical, 
psychological, and phenomenological models. The difference in these two reviews is that 
(Daniel and Vining, 1983) further distinguished the former’s expert paradigm into the 
ecological and formal-aesthetic models and described the former’s cognitive and the 
experiential paradigms as the psychological and phenomenological models. The expert, 
ecological and formal-aesthetic sets are adherents of the objectivist, whereas the 
psychophysical, cognitive/psychological, and experiential/phenomenological sets hold 
the subjectivist position. 
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The ecological model assumes landscape quality as directly related to naturalness, or 
ecosystem integrity which can be entirely determined by ecological and biological 
features in the landscape and is, consequently, independent of the observer’s judgement. 
Implicit in such model is the assumption that areas left undisturbed by human activity 
have the highest scenic quality. The formal-aesthetic model is primarily concerned with 
the visual characteristics of landscapes. Visual elements such as shapes, lines, colours, 
and textures are applied to represent the innate visual qualities of a landscape. The 
relationships between these elements are then examined to classify each area in terms of 
aesthetic qualities such as unity, symmetry, harmony, and contrast. The ecological and 
formal-aesthetic models are usually carried out by qualified and trained experts in the 
field of ecology, art and design or resource management. Both models can therefore be 
cross-referenced to the expert paradigm noted by (Zube et al., 1982). However, such 
expert-based assessment approach that stresses the evaluation of “scene” has been 
criticised as deficient because people’s “sensory” responses are ignored. 
 
The psychophysical model aims to investigate the statistical relationship between the 
physical characteristics of a landscape and the perceptual judgements of human 
observers, operating under the assumption of a stimuli-response relationship. Remote 
sensing and geospatial technologies are usually employed to measure landscape features 
(e.g., perceived naturalness and landscape type). Various representations of landscapes, 
such as photographs and street view images, have been used to elicit people's perceptions 
(Dubey et al., 2016; Zoderer et al., 2019). The perceptual response is generally limited to 
a single dimension, focusing on scenic and visual qualities of landscapes, and measured 
using an interval rating scale. Consequently, these perceptual measures of landscape 
quality can be effectively integrated with expert-based measures, including spatial 
indicators and metrics, that quantify specific aspects of the landscape. Psychophysical 
assessments, which capture a consensus of opinions between experts and laypeople, have 
demonstrated reliability in various management contexts (Daniel and Vining, 1983). The 
conceptual framework presented in Section 2.9 is inspired by this psychophysical model. 
 
The cognitive/psychological model also takes a position in between the objectivist and 
subjectivist approach which is regarded as methodologically rigorous as well (Taylor et 
al., 1990). However, the cognitive/psychological approaches tend to be not directly 
applied to landscape quality assessments as with an in-depth focus on the human aspect 
of human-landscape interaction in terms of human cognitive, emotional, and behavioural 
responses to landscapes. Over decades, enormous efforts have also been put into 
understanding the impact of a variety of factors (e.g., gender, age, occupation, hobbies, 
education, profession, familiarity, nationality, and religion) on landscape perception and 
experience (Aoki, 1999). These studies provide the basis for explaining human aesthetics 
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to landscape through evolutionary processes and functional demands and form the 
theoretical foundations (see Section 2.2). 
 
Finally, the experiential/phenomenological model places greater emphasis on 
individual’s personal experiences to comprehend the underlying meanings of human–
environment interactions (Ohta, 2001). Such approaches treat landscapes as “more-than-
visual and more-than-symbolic” product from the interactions. Both are mutually 
shaping and being shaped by each other. As such, landscape is imbued with emotions, 
meanings, identity, and hidden narratives ascribed by people. To describe this, a number 
of inventories such as surveys, verbal questionnaires, open-ended interview questions 
have been developed for inspiring individual expression and creativity. The information 
is recorded descriptively and qualitatively that is often without numerical support. 
 
Table 2.1 summarises these two classification schemes that range on a scale from 
objectivist to subjectivist. The objectivist paradigm comprises expert, ecological and 
formal aesthetic typologies, which are based on objective measurements and assessments. 
In contrast, the subjectivist paradigm encompasses psychophysical, 
psychological/cognitive, experiential/phenomenological aspects, which are more 
subjective and based on human perception and experience. These two seminal works 
provide an overview of the diverse contemporary paradigms for landscape assessment 
which remains salient to the work of landscape planners. It has been hypothesised that 
neither of these models are capable of achieving all the goals of aesthetic landscape 
assessment, but that landscape assessment practices that incorporate objective and 
subjective methodologies are considered to be balanced, valid, and trustworthy, enabling 
better-informed policymaking (Gobster et al., 2019). 
 

Table 2.1. Comparison of paradigms of landscape quality assessment (Lothian, 1999). 

Lothian, 1999 Objectivist/Physical paradigm Subjectivist/Psychological paradigm 

Zube et al., 1982 Expert Psychophysical Cognitive Experiential 

Daniel and Vining, 
1983 

Ecological 
Aesthetic 

Formal 
Aesthetic 

Psychophysical Psychological Phenomenological 

2.2 Landscape aesthetic theories 

Accordingly, theories explaining landscape aesthetic preferences can be broadly 
categorised into two distinct premises, evolutionary and cultural preference theories, 
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relating to innate and learned human behaviours respectively (Tveit et al., 2018) which 
will be explained in more detail in the following sections. 

2.2.1 Evolutionary theories 
Evolutionary theories posit that human aesthetic responses to landscape are partially 
innate and fixed in the course of evolution. The basic tent of evolutionary explanations is 
that our primitive ancestors preferred landscapes that enhanced their survival and well-
being and the genetic bases for such landscape preference would still be inherent in 
modern humans today. This may explain why certain landscapes are generally preferred 
across population groups, such as the desire for a landscape with water. Several theories 
such as Appleton’s prospect-refuge theory, Orians’ habitat theory, and Kaplan’s 
information-processing theory are salient examples. The prospect-refuge theory focuses 
on the role of our primitive ancestors as both predator and prey, thus needing to be able 
to survey the landscape for food and to hide from large predators (Appleton, 1975). The 
presence of prospect and refuge in a landscape that allow to see without being seen is, 
thus, favourable to survival in early human communities. Following Appleton, Gordon 
Orians postulated the habitat theory, explaining environmental preferences as the results 
of the search for a suitable habitat (Orians, 1980). It is stated that humans tend to favour 
savannah-like environments because these are suitable habitats for our distant ancestors 
(Orians, 1980). The Kaplans’ information processing theory added to the evolutionary 
explanation by stating that people have intrinsic needs for understanding and exploring 
environments (Kaplan and Kaplan, 1989). Landscapes that aid in rapid understanding 
and incite further exploration of the environment would hence be favoured over those 
that fail to satisfy or even hinder these needs. The four “informational variables”—
coherence, legibility, complexity, and mystery—were identified by crossing the two 
needs, i.e., understanding and exploration, with the two levels of interpretation, i.e., 
immediacy and inference, that is required in extracting the information in two-
dimensional and three-dimensional space. Table 2.2 depicts the preference matrix. 
Coherence and legibility help one understand the environment at different levels of 
immediacy or degree of inference while complexity and mystery encourage further 
exploration in a similar vein. In this regard, the more coherent, complex, legible, and 
mysterious the scene, the more desirable it is. Further, a close link between Kaplan’s and 
Appleton’s theories (e.g., legibility and prospect, mystery and refuge) can be seen. 
  



5 
 

Table 2.2. Relationship between factors predicting environmental preference. 

 Informational needs 

Level of interpretation Understanding Exploration 

Immediacy (two-dimensional) Coherence Complexity 

Inference (three-dimensional) Legibility Mystery 

2.2.2 Cultural theories 
Cultural theories, in contrast to evolutionary ones, explain landscape preference as learnt 
and shaped by social, cultural, and personal characteristics, focusing on the influences of 
individual attributes such as age, gender, occupation, ethnicity, education, and 
familiarity, rather than the immediate and affective preference responses (Bell, 2012). 
Much quoted cultural theories include topophilia and the ecological aesthetics. First, 
topophilia, coined by (Tuan, 1990), means “the affective bond between people and place 
or setting”, implying that familiarity and experience plays an important role in the 
forming of landscape preference (Tuan, 1990). Thus, this theory focusses on the historical 
aspect of landscape perception and advocates that a person tends to have a strong 
attachment to familiar places. Congruent with topophilic ideas, (Adevi and Grahn, 2012) 
discovered strong general support for an influence of the childhood landscape on adult 
preferences. Several variations of topophilia, such as sense or spirit of place, place-
identity, and place-attachment, were developed to express the idea that ‘place’ goes 
beyond landscape and involves characteristics such as identity, history, and memory 
(Bell, 2012). Second, the ecological aesthetic recognises knowledge is an important driver 
of landscape preference, arguing that scientific knowledge about the ecological functions 
of a landscape will lead to appreciate its beauty (Gobster, 1999). This new type of beauty 
has largely been advocated to address issues concerning the preservation of ecologically 
significant landscapes which is seen as an attack on traditional notions of scenic beauty 
(Gobster, 2008). There have been many attempts to expand this scope of landscape 
aesthetics in order to better understand and bridge the gap between aesthetics and 
ecology (Carlson, 2004). However, this concept is omnipresent in debates about its 
overemphasis on the role of ecological knowledge and the neglect of richly aesthetic 
experience of landscape that is affected by different contextual environments (Brady and 
Prior, 2020). Other cultural theories include landscape heritage approaches highlighting 
the importance of cultural heritage, such as stone walls, archaeological ruins, and grave 
sites (Fairclough et al., 1999) and aesthetics of care highlighting the role of human agency 
in creating and maintaining landscapes (Nassauer, 2011).  
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2.2.3 Integrative theoretical framework 
Thus far, a widely accepted theory of landscape, providing an all-encompassing 
framework with which to understand and to predict landscape preferences does not exist. 
However, there is a growing recognition of the interplay between biological and cultural 
components in shaping human landscape preferences (Zube et al., 1982; Bourassa, 1990; 
Dramstad et al., 2006) that promotes the development of integrative theoretical 
frameworks. These frameworks rely on a combination of evolutionary and cultural 
preference theories where the assumption is made that human aesthetic preferences for 
landscapes are rooted in the same evolutionary history, and subsequently modified by 
cultural, social and personal factors, leading to the divergence in aesthetic preferences 
observed across different cultures and individuals (Tveit, 2009; Bell, 2012). Some 
landscape elements, such as water, appear to be rather universally valued whereas the 
evaluations of other attributes, such as openness, vary depending on observer 
characteristics (M. Tveit et al., 2006; Sevenant and Antrop, 2010). 
 
Tveit et al. (2006) developed a seminal framework for analysing visual landscape 
characteristics, identifying nine key concepts: stewardship, coherence, disturbance, 
historicity, visual scale, imageability, complexity, naturalness, ephemera (see Table 2.3). 
These visual landscape characteristics are also presented in the visual guidelines of LCA 
(see Section 2.5.1). The interpretation of these visual aspects is, nevertheless, context-
dependent where the surrounding environment come into play as well as the observer’s 
interest and values (G. Fry et al., 2009). In order to position the following section, it is 
necessary to mention that besides complexity (Kaplan and Kaplan, 1989), naturalness is 
a widely used concept as a key aspect of visual landscape quality (Ode et al., 2009). A 
dimension closely related to naturalness is the idea of wilderness that is regarded as the 
most extreme manifestation of naturalness in a biological and ecological sense. Studies 
on mapping wilderness perception are a more specified sub-research area of the 
broader field of landscape perception whereas many approaches and methods are 
similar. 
 
These visual concepts can be further categorised into four levels of above-mentioned 
aesthetic cognition (Nohl, 2001). Perceptual level includes visual scale, coherence, and 
complexity; expressive level includes ephemera; interpretative level includes naturalness, 
disturbance, and stewardship; and symbolic level includes historicity and imageability 
(Lee and Son, 2017). These levels of cognitive processes can be referred to Section 2.6.2. 
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Table 2.3. Theory-based concepts of visual landscapes character with their definition 
(complied from Tveit et al., 2006; Ode et al., 2008) 

Concept Definition Theory 

Stewardship 

Degree of human care for the landscape 
through active and careful management, 
contributing to a perceived accordance to 
an ‘ideal’ situation 

Aesthetic of care 

Coherence 
Unity of a scene, repeating patterns of 
colour and texture, correspondence 
between land use and natural conditions 

Information processing 
Theory 

Disturbance 
Lack of contextual fit and coherence, 
constructions and interventions 

Information processing 
theory, 
Biophilia hypothesis 

Historicity 
Historical continuity and historical 
richness, different time layers, amount and 
diversity of cultural elements 

Topophilia 

Visual scale 
Landscape rooms or perceptual units: their 
size, shape and diversity, degree of 
openness 

Prospect-refuge theory 
Habitat theory 

Imageability 

Qualities of a landscape present in totality 
or through elements; landmarks and 
special features, both natural and cultural, 
making the landscape create a strong 
visual image in the observer, and making 
landscapes distinguishable and memorable 

Spirit of place,  
Vividness, Topophilia 

Complexity 
Diversity, richness of landscape elements 
and features, interspersion of pattern 

Information processing 
theory, 
Biophilia hypothesis 

Naturalness Closeness to a preconceived natural state Biophilia hypothesis 

Ephemera 
Changes with season, weather or other 
temporal effects Restorative environments 
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2.3 Conceptual links between wilderness and aesthetics 

2.3.1 Wildness of wilderness 
The concept of wilderness is complex and debated, as it encompasses both tangible 
natural environments as well as abstract, subjective feelings and preconceptions onto it 
that are constantly evolving and changing (Bell, 2012). As Roderick Nash observes, 
“wilderness is so heavily freighted with meaning of a personal, symbolic, and changing 
kind as to resist easy definition.” Studies on wilderness experiences demonstrate its 
multidimensional nature, encompassing naturalness, primitiveness, remoteness, solitude, 
freedom, spirituality, and aesthetics, all of which are important in cognitive and affective 
senses. It is now widely accepted in academic circles (though not uncontroversial) that 
the idea of nature and wilderness is culturally constructed (Warren, 2009). 
 
Despite of the controversy, there is an increasingly accepted idea that any land can be 
characterised by two fundamental and independent qualities: naturalness and freedom 
(Aplet et al., 2000). Naturalness refers to a state of a land free from human effects while 
freedom is determined by the degree to which it is free from human intent. Wilderness is 
that portion of the land that possess the most pristine and self-willed while built 
environments are at the most artificial and controlled ends of the spectra. As there is very 
little pristine wilderness left in modern time due to the prolonged anthropocentric 
activities, the concept of ‘wild land’ has been created, which refers to wilderness in 
cultural landscape context. The term refers to lands that have been, or are, uninhabited 
or less influenced by human activities in terms of their characters and qualities 
(Fairclough, 2006). Figure 2.1 illustrates the wilderness continuum concept and gives a 
few broad types of land (i.e., non-wilderness wildland, semi-wildland, and ex-urban non-
wildland) along the spectrum of naturalness and freedom. 
 
On these grounds, there is a shift in language and concept from wilderness to wildness 
(Warren, 2009). As Howard Zahniser, the author of the 1964 Wilderness Act, stated, “We 
must remember always that the essential quality of the wilderness is its wildness” 
(Zahniser, 1992), wilderness is a place dedicated to the wildness of nature and wildness 
refers to a perceptive quality that is a function of both naturalness and freedom from 
human control. This suggest that wildness may be a more appropriate term to describe 
natural landscapes, rather than the controversial notion of wilderness, which often means 
different things to different people. 
 
Wildness refers to a perceptive quality that is a function of both naturalness and freedom 
from human control (Aplet et al., 2000). The continuum concept takes respect to the vague 
nature of wildness and represents it as relative rather than absolute quantification which 
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allows to distinguish areas with superior qualities for conservation efforts. GIS modelling 
allows to characterise landscapes on a wilderness continuum, and Section 2.4 will 
describe a specific method for mapping wildness quality in the study area.  

 
Figure 2.1 The wilderness continuum concept (source: Aplet et al., 2000). 

2.3.2 Landscape naturalness and aesthetics 
Nature beauty is an integral part of the traditional realm of aesthetics (Bell, 2012), and the 
concept of naturalness has theoretical support in the Biophilia hypothesis (Kellert and 
Wilson, 1993), as well as theories about restorative landscapes (Ulrich, 1986; Kaplan and 
Kaplan, 1989). Empirical studies have highlighted the importance of naturalness in 
shaping landscape aesthetic preferences (Purcell and Lamb, 1998; Ode et al., 2009). 
However, the definition of naturalness remains vague and elusive. For example, human-
modified environments, such as well-managed parks, manicured gardens, and cultivated 
fields, might also be perceived as naturalness, and evoke aesthetic experiences. Although 
these environments adhere to cultural expectations for orderly landscapes, they often 
tend to be less ecologically functioning (Nassauer, 1995). Conversely, many ecologically 
significant wildlands, such as tidal wetland or prairies, are consistently attributed to low 
aesthetic values, as their beauty mainly relies on the hidden riches of health and 
sustainability (Gobster et al., 2007). 
 
The intricate conceptual relationship between naturalness and aesthetics can be better 
understood from two perspectives. From an ecological standpoint, naturalness is linked 
to the ecological integrity of an ecosystem, and an ecologically sound landscape is 
preferred when considering ethical dimensions (Machado, 2004). Previous studies have 
also suggested that the ecological knowledge associated with an individual’s background 
is significantly relevant to proper aesthetic appreciation of landscapes at a higher 
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cognitive level (A. Carlson, 2001). However, the scientific basis about ecosystem health is 
likely to change with scientific advancements (Matthews, 2002).  
 
Perceptually, naturalness is associated with the perceived closeness to a natural state, 
primarily based on sensory experience rather than a clear biophysical assessment of 
ecological processes, which can be influenced by cultural norms. Therefore, perceived 
naturalness may not always align with ecological naturalness (M Tveit et al., 2006; Ode 
et al., 2008). For example, an intensively managed park with neatly trimmed lawns and 
flowerbeds may be perceived as highly natural and favoured by people despite 
containing few or no native species and lacking ecological processes found in natural 
ecosystems. As outlined above, ecological naturalness is at a higher cognitive level while 
perceived naturalness is simply of the sensuous surface of nature. 
 
While the concepts of wildness, naturalness, and aesthetics are somehow intertwined, the 
relationship between landscape wildness and aesthetics, specifically in terms of their 
spatial patterns, remains empirically unexplored. As previously discussed, some 
wildlands may be positively perceived as scenic, while others might not evoke the same 
response. Since these qualities are related to human subjective perception and do not 
have a specific form, their connections are highly context dependent. There are myriad 
factors influencing aesthetic preferences for landscapes, such as local landscape features, 
which can vary significantly across different regions and cultures. As such, it would be 
worthwhile to further examine the spatial variability in their relationships using an 
approach that is sensitive to local contexts. This thesis aims to contribute to the existing 
body of knowledge on landscape aesthetics by exploring the relationships between 
landscape wildness and landscape aesthetics qualities, and the spatial variability in these 
relationships. 

2.4 Mapping of wildness in the UK 

Wilderness has been analysed and mapped across scales, from global to local level (Aplet 
et al., 2000). Prior qualitative studies into the characterisation of wild spaces, such as 
Australia’s National Wilderness Inventory, have focussed focused on a set of generally 
accepted attributes of wildness, pertaining to perceived degree of naturalness and 
remoteness (Lesslie et al., 1993). In the wilderness mapping literature, the methodologies 
have considered man as a central role in characterising the relativity of the wilderness 
concept based on measurable objective criteria and using GIS modelling techniques. 
Researchers typically use available spatial data, such as human infrastructures, land 
cover, and topography, as proxies for wilderness quality. Expert knowledge is also 
incorporated to determine the degree of naturalness and ecosystem modification. 
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Compared to England and Wales, Scotland has relatively unspoilt natural environments 
in the study area. However, there are no true wilderness areas left in Scotland, only wild 
lands which are defined as “uninhabited and often relatively inaccessible countryside, 
where the influence of human activity on the character and quality of the environment 
has been minimal” (Scottish Natural Heritage, 2002). Despite this, these wild lands still 
possess certain attributes of wildness. Carver et al. (2012) developed a GIS model for 
Scottish Natural Heritage (SNH) to map relative wildness across Scotland, using four 
basic physical attributes: human impact, naturalness, remoteness, and ruggedness, 
describe in more detail in the following subsections and shown in Figure 2.2 (Carver et 
al., 2012). These four attributes were identified and further used to define the associated 
components. These components are weighted according to a uni-modal perception 
survey and combined using multi-criteria evaluation (MCE) to estimate overall wildness 
qualities (see Figure 2.3). This GIS-based approach was applied to GB in this research. 

2.4.1 Absence of modern human artefacts 
The visual perception of wildness was adversely affected by the presence of built features 
(e.g., buildings and structures), energy infrastructures (e.g., pylons, dams, and wind 
turbines), and recreational amenities (e.g., off-road tracks, hiking routes, and ski lifts). 
These man-made elements can create a sense of disturbance that spoil the perception of 
wildness. A high degree of perceptual human disturbance is likely to result in a low 
degree of natural conditions in an area. Further, the disturbance allows the unity of the 
scene to be gauged (G. Fry et al., 2009), which can be closely linked to the visual concept 
of coherence, associated with one of the Kaplan’s information factors in landscape 
aesthetics and Kaplan, 1989). The lack of coherence in a visual scene can lower its 
aesthetic preference ratings. Carver and Washtell (2012) have developed a voxel 
viewshed approach that quantifies the horizontal and vertical proportion of the view 
obstructed by these human artefacts relative to terrain and distance. This approach 
provides an informed characterisation of how a person might perceive the relative levels 
of disturbance within a landscape setting. This can also be used as a visual indicator for 
landscape aesthetics and applied in landscape assessment and planning. 

2.4.2 Perceived naturalness of land cover 
From the visual point of view, the perceived naturalness in a landscape is broadly 
associated with its vegetation and land cover patterns. These patterns are shaped by 
natural processes and influenced by the level of land management. Land management 
activities, such as fencing, improved pasture, and stocking rates, and the presence of 
natural or near-natural vegetation patterns reflects human care for the landscape, which 
play a role in shaping perceptions of wilderness. The land cover data was categorised 
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into 1 to 5 naturalness classes by utilising ancillary information and expert knowledge 
(refer to Table 3.1). To ensure accuracy, the reclassification was cross-checked with aerial 
photography and local knowledge to detect any inconsistencies. The area-weighted mean 
naturalness score was then computed within a 250-metre radius neighbourhood for each 
target cell to account for the influence of land cover patterns upon perceived naturalness. 
This unitless value reflects the overall perceived naturalness in the immediate vicinity of 
the observer at a given location. As discussed in Section 2.3, this unitless indicator 
indicates the perceived closeness to a natural state that aligns with the visual concept of 
naturalness and stewardship, and it may be correspond to the visually aesthetic qualities 
of landscapes. 

2.4.3 Remoteness from mechanised access 
Remoteness from mechanised access, that is mainly connected to landscape accessibility, 
can coincide with the feeling of solitude and tranquillity intrinsic to the wilderness 
experience. Landscape accessibility can be measured through the walking time from a 
location to roads to the nearest road access, as expressed in second. Carver and Fritz (1999) 
have developed anisotropic measures of remoteness using an adaptation of Naismith’s 
rule which assumes differentiated relative traveling time depending on terrain, land 
cover, and river networks (see Table 3.2). Patterns of remoteness can be mapped as cost 
surfaces using least-cost (or cost-distance) modelling in GIS that that incorporates both 
the travelled distance and the traversed costs across landscapes, including the influences 
of ground cover, relative gradient, and barrier features. Remoteness, in contrast to the 
other wildness components, does not indicate the visual characteristics of the 
environment which may not have a significant impact on landscape aesthetics. Its 
primary importance lies in assessing human access and evoking a sense of areas relatively 
free from human influence. 

2.4.4 Rugged and physically challenging nature of the terrain 
According to SNH’s definition, wild lands are generally related to rugged terrain and 
dramatic landscapes formed by natural processes. Thus, the indicator of terrain 
ruggedness was devised to capture both the topographical variation and the likelihood 
of encountering harsh weather conditions at higher altitudes (Carver et al., 2012). The 
ruggedness of terrain, along with the greater wind speeds and lower temperature caused 
by the increase at altitudes, can contribute to the sense of wildness in a landscape. A 10-
metre digital elevation model (DEM) was used to obtain measures of terrain curvature 
that account for gradient, aspect, and relative relief. The visual ruggedness index is 
defined as the 2 standard deviation (SD) of terrain curvature within a 250-metre radius 
of the observer, combined with the altitude data. As with perceived naturalness, the 
choice of a 250-metre radius corresponds to the immediate landscape that an individual 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aerial-photography
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aerial-photography
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may experience. Ruggedness is related to the visual concept of complexity and may 
contribute to perceived naturalness, which can evoke aesthetically pleasing perceptions. 
Hereafter, the four wildness components are simply referred to as absence, naturalness, 
remoteness, and ruggedness. 

 
Figure 2.2 Maps of the four wildness components. (a) Absence of modern human 

artefacts (Absence), (b) Perceived naturalness of land cover (Naturalness), (c) 
Remoteness from mechanized access (Remoteness), and (d) Rugged and physically 

challenging nature of the terrain (Ruggedness). These components are rescaled using a 
256-level scale, which are displayed using quantile breaks. Reproduced with permission 

of Dr. Steve Carver. 
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Figure 2.3 Map of the wildness index, derived from an equally weighted combination of 

the four wildness components, using a multi-criteria evaluation (MCE) approach. 
Reproduced with permission of Dr. Steve Carver. 

 
Based on the conceptual common ground, the four attributes of wildness are expected to 
be related to the aesthetic characteristics of landscapes in terms of their spatial patterns. 
However, there is limited empirical research on the relationships between these cognitive 
characteristics to date. The emergence of crowdsourced datasets on public scenic 
perceptions of landscapes provides an opportunity to examine the spatial correlation 
between wildness and scenic beauty. Therefore, it is worthwhile to explore spatial 
variations in model calibration results in order to better understand the relationship 
between wildness characteristics and scenic qualities of landscapes (as described in 
Chapter 3). 

2.5 Landscape character assessments (LCA) in the UK 

The ELC recognises landscape ‘character’ as an essential property of landscape (Van 
Eetvelde and Antrop, 2009). Landscape character refers to a unique, recognisable and 
consistent pattern of elements in a landscape that distinguishes it from another/others 
(rather than better or worse) (Swanwick, 2002). It is not to be confused with landscape 
quality, which is mainly dependent on the assigned functions including aesthetic, 
recreational, economic and ecological aspects. 
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2.5.1 LCA procedures 
Character-based approaches, such as Landscape Character Assessment (LCA), originated 
in the UK and have been adopted in various modified forms in many other countries. 
LCA is a process of identifying and describing the distinctive characteristics of all 
landscapes through the development of a hierarchical classification system (Swanwick, 
2002). It has become an increasingly formalized tool for understanding and articulating 
the character of the landscape to facilitate communication in landscape policymaking and 
management at the national and local government levels. 
 
The LCA is an iterative process, consisting of two main stages: desk study and field 
survey, which are not separable and refined iteratively in practice. During the desk study, 
natural and socio-cultural information, as listed in Table 2.4, along with remotely sensed 
images, are collated and analysed to identify landscape character types and delineate 
boundaries of landscape character areas using GIS. The characterisation can be conducted 
at nested and multiple scales depending on the goal of the assessment and the availability 
of spatial information with the corresponding level of detail. For each landscape character 
area, additional dimensions of landscape character are examined via field study, 
including aesthetic and perceptual or experiential factors such as memories, associations, 
preferences, sensory experiences through sight, sound, smell, touch/feel. Visual 
characteristics such as colour, texture, pattern, form, scale, enclosure, balance, movement) 
are also used in assessing the overall aesthetic quality of a landscape and informing 
management decisions to maintain or enhance its visual appeal.  
 

Table 2.4. Factors likely to be considered at the desk study stage (Tudor, 2014) 

 Landscape Desk study 
Natural 
factors 

Geology Geology (solid and drift) 
Landform Landform/topography 

Geomorphology 
Hydrology Rivers and drainage 

Water quality and water flows 
Air and climate Climate 

Microclimate 
Patterns of weather 

Soils Soils 
Agricultural Land 
Classification (ALC) 

Land cover/flora and fauna Habitats/biodiversity 
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Land cover 
Vegetation cover 
Tree cover – forest/woodland 
etc 

Socio-cultural 
factors 

Land use (and management) Land cover 
Agricultural land use 

Settlement Settlement patterns 
Building types, styles, and 
materials 
Built structures 

Enclosure Pattern and type of field 
enclosure (rural) 
Urban morphology 

Land ownership Land ownership and tenure 
Time depth Archaeology and the historic 

dimension 
Cultural 
associations 

Art, literature, descriptive 
writings, music, 
myth/legend/folklore, people, 
events, and associations 

Obtained through desk review 

Perceptual 
and aesthetic 
factors 
(largely 
ascertained 
via field 
study) 

Memories Obtained via stakeholder 
engagement Associations 

Perceptions Some aesthetic factors might 
be identified as part of the desk 
study e.g., sense of wildness, 
remoteness and tranquillity 

Touch/feel Identified largely via field 
survey Smells/sounds 

Sight 

2.5.2 National/Regional level LCAs 
In the study area, each country has developed its own methodologies for undertaking 
LCA. Focusing on nationwide coverage and public availability, Table 2.5 summarises the 
assessments conducted by the three countries at both national/regional and local 
authority scale. Key differences in these existing LCAs are briefly outlined below. 
 
England and Wales both have compatible assessments at the national/regional scale 
(1:250,000), specifically National Character Areas (NCAs) in England and National 
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Landscape Character Areas (NLCAs) in Wales. These assessments capture broad patterns 
of landscape character variation, providing a broader context for more detailed LCAs. 
England’s NCAs consist of 159 distinct natural areas while Welsh NLCAs comprise 48 
individual character areas. These areas are characterised by a unique combination of 
landscape, biodiversity, geodiversity, history, and cultural and economic activity. In 
contrast, Scotland lacks a comparable characterisation and assessment approach at this 
strategic level. Instead, it features a national suite of generic landscape character types 
(LCTs) that evolved from local authority initiatives and did not follow a prescriptive 
classification system. Although the existing landscape assessments provide nationwide 
coverage, their focus on character identification and documentation rather than quality 
evaluation limits their contribution to national policy on designating high-quality 
landscapes. Nonetheless, these spatial units are developed into landscape typologies that 
form a reference basis for future landscape evaluations. 

2.5.3 Landscape assessment decision making process 
(LANDMAP) in Wales 
In Wales, all LCAs begin with reference to the Landscape Assessment Decision Making 
Process, known as LANDMAP, the most comprehensive landscape evidence baseline 
created through 'top-down' expert assessments and evaluations of various landscape 
aspects using predetermined typologies. LANDMAP offers a nationally consistent 
framework for developing regional and local LCAs, ensuring ‘top-down’ and consistent 
assessments across the country. Landscape information is compiled at county level 
(generally by consultants) as well as organised and validated at national level. This 
approach achieves greater consistency and provides defensible information for both 
national- and local-scale planning and policy-making. It both classifies and evaluates 
landscape resources in a hierarchical way based on predetermined typologies, consisting 
of five themes: geological, ecological, visual and sensory, historic, and cultural aspects of 
landscape. Each evaluated aspect is delineated as a spatial layer, managed through GIS. 
For each aspect area identified, specialists develop a field survey record that describes 
and documents the specific landscape character, features, and qualities with a set of 
criteria. These aspect layers can be used individually or in combination to interrogate the 
data to support analysis and decision-making. This thesis concentrates on the visual and 
sensory aspect, particularly its qualitative evaluation of scenic quality, which is an 
important consideration for designation. A key feature of this evaluative output is its 
comparative and overall larger scale (1:2,5000) framework, allowing for the analysis of 
professional perspectives on landscape visual and perceptual qualities with other 
compatible datasets. Conversely, England and Scotland lack comparable baseline 
information that can be consistently applied across both countries. The absence of a 
national ‘top-down’ perspective may result in variations in classifications and qualities 
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among different study areas. Therefore, their regional and local LCAs, regarded as 
‘bottom-up’ assessments, lack the same legal status and standardised quality assurance 
procedures. 
 
Table 2.5. Summary comparison of the national LCA systems in the study area, adapted 

from (Julie Martin Associates and Swanwick, 2003). 

Country System Scale Responsibility Approach 
Principal 
Units 

England NCAs National/ 
regional level, 
mapped at 
1:250,000 

Natural England ‘Top down’ 
assessment, 
coordinated by 
a single 
consultant 

159 
Countryside 
Character 
Areas 

Scotland LCTs Detailed, local 
authority 
level, mapped 
at 1:50,000 

NatureScot in 
collaboration 
with other 
government 
agencies and 
local authorities 

‘Bottom up’ 
assessments by 
consultants, 
later 
amalgamated 
on GIS and 
database 
without using 
predetermined 
typology 

394 Landscape 
Character 
Types 

Wales NLCA National/ 
regional level, 
mapped at 
1:250,000 

Natural 
Resources Wales 

‘Top down’ 
assessment,  

48 individual 
character 
areas 

 LANDMAP Hierarchical 
with a focus 
on detailed, 
local authority 
level, mapped 
at various 
scales 

 ’Top down’ 
expert 
assessment 
and evaluation 
of different 
landscape 
aspects using 
predetermined 
typologies, 
coordinated 
and quality-
assured by 
NRW 

Level 1, 2, 3 
and 4 aspect 
classifications 
(1,991 aspect 
areas for the 
visual and 
sensory 
classification)  
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2.6 Public participation and crowdsourcing 

2.6.1 Public participation according to the ELC 
Table 2.6. summarises the ELC's provisions related to public participation. As discussed 
in Section1.1, one of the core challenges in implementing the ELC is to define landscape 
quality objectives (LQO) by establishing effective public participation procedures. This is 
particularly important because experts often formulate LQO without any direct input 
from the general public. In order to truly reflect the opinions and perceptions of the public, 
these participation processes should incorporate the public's landscape preferences and 
values into the definition of LQO. 
 

Table 2.6. Public participation according to the ELC (Jones, 2007). 

Article 1 – Definitions 
a. “Landscape” means an area, as perceived by people … 
c. “Landscape quality objective” means, for a specific landscape, the formulation 

by the competent public authorities of the aspirations of the public with regard 
to the landscape features of their surroundings. 

Article 5 – General measures 
c. to establish procedures for the participation of the general public, local and 

regional authorities, and other parties with an interest in the definition and 
implementation of … landscape policies …  

Article 6 – Specific measures 
C. Identification and assessment 

1. With the active participation of the interested parties, as stipulated in Article 
5.c, and with a view to improving knowledge of its landscapes, each Party 
undertakes: 

c. To assess the landscape thus identified, taking into account the particular 
values assigned to them by the interested parties and the population 
concerned. 

D. Landscape quality objectives 
Each party undertakes to define landscape quality objectives for the landscapes 
identified and assessed, after public consultation in accordance with Article 5.c. 

 
Crowdsourcing has been increasingly harnessed to facilitate participatory planning 
activities, and to support research on LP&P and CES (Bubalo et al., 2019). Brabham (2013) 
has defined crowdsourcing more narrowly, as “…an online, distributed problem-solving 
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and production model that leverages the collective intelligence of online communities 
(i.e., crowds) to serve specific organisational goals” (Brabham, 2013). The scope of 
crowdsourcing in this thesis extends beyond Brabham’s definition to be more inclusive 
which includes crowdsourced geographic information (Harvey, 2013), the emergence of 
which is driven by the proliferation of geolocatable devices and the participatory 
websites with geographical and mapping tools. In theory, using online crowdsourcing 
techniques enable reaching a large number of people in a relatively short time frame and 
at limited costs, thereby facilitating wider public involvement. The process relies on the 
perceptual and cognitive abilities of a large, distributed network of volunteers who 
participate (especially online) in data production and problem-solving tasks. 

2.6.2 Crowdsourcing typologies 
Gómez-Barrón et al. (2016) proposed a broad differentiation of crowdsourcing methods. 
These methods are arranged on a spectrum based on the level of participant engagement. 
At one end of the spectrum, participants exhibit relative passivity, while at the other end, 
they engage in a higher level of active contribution, and even extending to proactive 
action when required (Gómez-Barrón et al., 2016). Along this spectrum, they identified 
three main levels and their related modes of organising people: non-collaborative 
participation (contributory), collaboration (collaborative), and co-creation (participatory), 
as illustrated in Figure 2.4. The first level refers to basic participation where autonomous 
activities and tasks are accomplished independently from other volunteers’ contributions. 
The second level requires communication and relationship among participants to acquire 
major complex contributions, focusing on collaborative operation. Finally, the most active 
level of crowdsourcing engagement is through projects that facilitate participatory 
processes, providing individuals the opportunity to actively decide how the project will 
be conducted and define necessary outcomes. The three modes of organisation 
correspond to different sets of motives for contributing. Also, higher levels of 
involvement or engagement are correlated with the increasing use of volunteers’ 
cognitive abilities, enabling them to tackle more complex problems and tasks.  
 

 
Figure 2.4 Volunteers’ level of involvement/engagement and related modes of 

organisation (source: Gómez-Barrón et al., 2016). 
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This thesis focuses on landscape perception, considering perception as a special cognitive 
instrument and landscape as a special cognitive object. The cognitive process can be 
categorised into four typologies: perceptual, expressive, interpretative, and symbolic, as 
detailed in Table 2.7. The perceptual and expressive levels of cognitive process align with 
evolutionary theories, emphasising the commonality in human landscape preferences. In 
contrast, the interpretative and symbolic levels align with cultural theories, focusing on 
the diversity of perceptions shaped by individual characteristics. Moreover, the 
perceptual and interpretative levels contribute to a landscape’s narrative function, while 
the expressive and symbolic levels contribute to its poetic function (Nohl, 2001), as 
depicted in Figure 2.5. This thesis considers the lower levels of the cognitive process, 
including the perceptual and interpretative levels. 

 
Figure 2.5 Types of the cognitive process of landscape perception, adapted from (Lee 

and Son, 2017). 

Table 2.7. Cognitive typologies of landscape perception (Lee and Son, 2017). 

Cognitive Process Description 

Perceptual 
The beholder of a landscape immediately captures 
relevant information through the senses (e.g., viewing, 
hearing, touching, or smelling). 

Expressive 
All perceived elements and compositions are 
associated with the beholder’s feelings and emotions. 

Interpretative 
The beholder already understands and interprets the 
landscape as signs or symptoms. For instance, a 
sandbank may signify the river’s low water power. 
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Symbolic 
Landscape realities become ideas, imaginations, 
utopian images, which are generated in the head of the 
beholder. 

2.6.3 Crowdsourced geographic information 
Crowdsourced geographic information (CGI) has been proved to effectively capture how 
people perceive and interact with landscapes (Dunkel, 2015), serving as a valuable 
resource for quantifying and mapping landscape values and CES (Tenerelli et al., 2016; 
Boris T. van Zanten et al., 2016). The Geograph Britain and Ireland project 
(https://www.geograph.org.uk/) is an example, inviting people to contribute 
geographically representative photographs and information for every square kilometre 
with a nationwide scope. These geolocated photographs collected with awareness or 
permission of contributors are often viewed as volunteered geographic information (VGI) 
which refers to intentionally created and shared data (Michael F. Goodchild, 2007). 
 
A number of Geograph photographs were further used by a web-based crowdsourcing 
campaign, Scenic-Or-Not, to gather people’s scenic perceptions of landscapes across 
Great Britain. Until February 2015, over 1.5 million ratings have been collected for 212,212 
geotagged photos available on (http://scenicornot.datasciencelab.co.uk/faq). The 
campaign employed a spatially even sampling to ensures the even distribution of 
landscape photos, covering nearly 80% of GB (see Figure 2.6). Participants are asked to 
rate randomly presented photos for their scenic beauty on an integer scale from 1 (the 
least scenic) to 10 (the most scenic) without immediately knowing their locations. This 
dataset provides an otherwise unavailable measure of landscape scenic beauty, capturing 
the perceptions of the broader public at the national level, which have been utilised to 
understand the impact of environmental aesthetics on human health (Seresinhe et al., 
2015) and happiness (Seresinhe et al., 2019). Research has also used this dataset to verify 
the estimation of landscape scenic beauty based on social media and OpenStreetMap data 
(Seresinhe et al., 2018), as well as to train a deep neural network for extracting scenic 
features and predicting the beauty of scenes for new places (Seresinhe et al., 2017). 
 
The photographic ratings with location information allow for assessing the geographic 
variation in publicly perceived visual landscape quality (hereafter referred to as 
‘scenicness’). This CGI data inherently reflects people’s subjective emotions, opinions, 
and values related to landscapes and/or ecosystems, potentially facilitating a deeper 
understanding of the correlations, similarities and differences in perspectives between 
experts and the public. The granularity and spatial coverage of this data compensate for 
the absence of national or regional perception surveys, making it suitable for spatial 
modelling and mapping in response to the ELC’s policy. 

https://www.geograph.org.uk/
http://scenicornot.datasciencelab.co.uk/faq
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Figure 2.6 Choropleth map showing the scenic ratings across Great Britain. Blue regions 
mark less scenic areas, mainly around major cities, while more scenic areas, indicated in 
red, appear in the Scottish Highlands and Northern England. Data scarcity is noted in 

the Highlands. Image adapted from Journal of Urban Design and Mental Health (2016), 
retrieved from (https://www.urbandesignmentalhealth.com/journal1-

beautifulplacesandwellbeing.html). 

2.7 Advanced modelling methods for integrating 
objectivist and subjectivist landscape assessments 

2.7.1 Spatial autocorrelation and heterogeneity 
In the field of landscape research, numerous efforts have been made to relate landscape 
features to preferences (Schirpke et al., 2013; Tenerelli et al., 2016; van Zanten et al., 2016; 
Zoderer et al., 2019). Global regression techniques, such as multiple linear regression 
(MLR), have been used to determine the relationships between spatial variables 
representing landscape features and their corresponding values or qualities (Schirpke et 
al., 2013). Nevertheless, these non-spatial models are incapable of integrating the spatial 
dependence structures often observed in geospatial data into their model specification. 
Consequently, they fail to reveal local-specific relationships or spatial autocorrelation in 

https://www.urbandesignmentalhealth.com/journal1-beautifulplacesandwellbeing.html
https://www.urbandesignmentalhealth.com/journal1-beautifulplacesandwellbeing.html
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model residuals. Earlier developments in spatial regression modelling primarily focused 
on parametric models, including the spatial lag models (SLM), spatial error models (SEM), 
and spatial Durbin models (SDM), that effectively account for stationary autocorrelation 
effects (Anselin, 2002). 
 
However, these global models fall short in accounting for spatial heterogeneity or non-
stationarity, which have relatively recently been considered when working with spatial 
data (LeSage and Pace, 2009). Both spatial autocorrelation and spatial heterogeneity, with 
respect to processes and functions, have long been acknowledged as important effects in 
the landscape ecology literature (Dale and Fortin, 2014). These spatial effects are also 
expected in perceptual landscapes but received limited attention in landscape perception 
and preference studies. 

2.7.2 Geographically weighted (GW) framework 
Geographically Weighted Regression (GWR) has been increasingly employed as an 
exploratory tool in spatial analyses of social and environmental data, accounting for both 
spatial dependence and heterogeneity (Fotheringham et al., 2003). It involves the spatial 
disaggregation of a classical regression model, in which separate models are calibrated 
locally by “borrowing data” from nearby locations and weighting these data based on 
their distance from the observation unit. The resulting GWR estimates can be mapped to 
facilitate targeted land and ecosystem management efforts (Tenerelli et al., 2016). 
 
Despite its advantages, several potential weaknesses of GWR have been reported in the 
literature. Firstly, there is an issue of correlation among the coefficient estimates (Wheeler 
and Tiefelsdorf, 2005). Specifically, high correlation hinders the separation of individual 
variables effects from those of other variables. Hence, the GWR techniques do not 
necessarily establish any real cause-effect relationships. Secondly, GWR can be highly 
susceptible to multicollinearity and overfitting, especially when dealing with sample 
sizes (Páez et al., 2011). In light of this concern, extended GWR approaches, such as ridge 
GWR (Wheeler, 2007) and GW lasso (Wheeler, 2009), are devised to remedy the 
multicollinearity issue. However, Fotheringham and Oshan (2016) asserted, based on a 
simulation study with 2500 spatial units, that GWR is robust to the multicollinearity issue 
when the sample size is sufficiently large (A. Stewart Fotheringham and Oshan, 2016). 
Lastly, a key step to GWR is the optimisation of bandwidth, determined through a 
measure of model fit, which defines the variation in the local outputs (i.e., the degree of 
smoothing). However, the use of a “one-size-fit-all” bandwidth across all the covariates 
in GWR relies on the implicit assumption that each investigated process operates at the 
same spatial scale, which is unrealistic in a real-world case. 
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Multiscale geographically weighted regression (MGWR) overcomes this limitation of the 
GWR framework by allowing separate bandwidths to be estimated for each covariate. 
These predictor-specific bandwidths enhance the process understanding by revealing the 
scale of spatial heterogeneity associated with each covariate’s relationship to the response. 
Allowing bandwidth to be distinct for each relationship can also avoid inducing 
multicollinearity (T.M. Oshan et al., 2019). In theory, MGWR provides a more intuitive 
and accurate model of real-world processes than GWR, and as such, has been suggested 
as the default GWR (Comber et al., 2023).  

2.7.3 Alternative modelling approaches 
On one hand, there exist long-standing objections to geographically weighted modelling, 
rooted in the view that spatial dependencies in data are a statistical "nuisance" that need 
to be corrected (Harris, 2019). Further critiques concern the presence of local cluster 
outliers in the global model, suggesting that any observed spatial effects may indicate the 
omission of key predictors (McMillen, 2003). If the underlying process is not adequately 
represented by the model inputs, one remedy is to simply incorporate additional 
explanatory variables. This might also imply that the theoretical understanding of the 
investigated process is lacking. 
 
On the other hand, researchers still prefer to use alternative modelling approaches, such 
as mixed-effect models and Bayesian models, which are considered to provide more 
robust statistical inference and are commonly seen in landscape and Ecosystem Services 
(ES) studies. For example, van Zanten et al. (2016) employed a generalised mixed effects 
(GME) model to estimate the spatial patterns of landscape values using geolocated social 
media posts as response variables and both landscape features and socioeconomic factors 
as predictors. They removed spatial autocorrelation by applying eigenvector spatial 
filtering (Murakami and Griffith, 2019), ensuring a more accurate estimation of the 
relationships (Boris T. van Zanten et al., 2016). Zoderer et al. (2019) utilised a cumulative 
link mixed model (CLMM) to explore the casual relationship between different 
stakeholder groups’ perception of ES supply, measured on an ordinal scale, and the 
spatial information on landscape features (Zoderer et al., 2019). Advanced spatial 
statistical techniques, such as conditional autoregressive (CAR) models, are also used to 
account for spatial dependence by including random effects that represent spatially 
structured random components (Seresinhe et al., 2015; Seresinhe et al., 2018). However, 
these models may not effectively capture local heterogeneity in data relationship.  
 
The persistence of the GW framework can be attributed to its practical rather than 
theoretical merits, as it not only serves as an exploratory tool for identifying spatial 
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heterogeneity, but also helps in detecting potential model misspecifications (Comber et 
al., 2023). 

2.7.4 Machine learning modelling 
In order to effectively conduct predictive tasks of complex phenomena and processes, 
such as landscape scenic quality, it is crucial to consider not only spatial effects, but also 
non-linearity and factor interdependence. This consideration is particularly important 
when integrating potentially correlated objective and subjective assessments of landscape 
scenic quality, as explored in the present thesis. Alternative modelling approaches, such 
as machine learning and, more broadly, artificial intelligence (ML/AI) techniques, require 
fewer assumptions about the investigated processes, and might be more suitable for 
capturing complex non-linear interactions and functional forms of relationships from a 
large amount of data (Bzdok et al., 2018). 
 
ML/AI techniques hold the potential to provide significant benefits, including improved 
model performance, enhanced representational flexibility, and effective handling of 
noisy data (Bishop, 1996). XGBoost (eXtreme Gradient Boosting) is one of the most widely 
used ML algorithms to solve classification or regression problems (Chen and Guestrin, 
2016). Studies have demonstrated that well-tuned XGBoost often outperforms 
alternatives methods (e.g., random forest or deep neural networks) (Joharestani et al., 
2019; Shwartz-Ziv and Armon, 2022). Additionally, XGBoost was evidently capable of 
accounting for possible spatial effects with the aid of a model agnostic explainer, SHAP 
(SHapley Additive exPlanations) (Lundberg and Lee, 2017) in a simulation study (Li, 
2022). The combination of XGBoost and SHAP can also be used to guide the choice of 
statistical models for rigorous inference, which may help to reinforce some conclusions 
drawn from statistical models while providing additional insights through differences in 
results. However, the applications of these techniques remain unexplored in landscape 
assessments. The primary purpose of this thesis is to integrate potentially correlated 
objective and subjective assessments of landscape scenic quality. The XGBoost model was 
used to account for non-linearity effects, and then to map aesthetic values of landscapes 
across Great Britain (see Chapter 5). 

2.8 Research questions 

A literature review highlights the need to reconcile expert and public perspectives, as 
well as objective and subjective approaches in landscape assessments. In recent years, the 
use of crowdsourced geographic information has significantly increased, offering 
potential solutions to the lack of large-scale, perception-based landscape evaluations 
across extensive geographic areas. The hypothesis is that these subjective measures may 
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complement the objective measures of landscape qualities to produce more informed and 
inclusive evaluation outcomes, albeit with the caveats associated with their qualities and 
representativeness (Bubalo et al., 2019). The following research questions aim to explore 
the pragmatic benefits of integrating crowdsourced geotagged data into national-scale 
landscape assessments:  

• RQ. 1: How are crowdsourced perceptions of scenic beauty associated with expert-
based measures relevant to landscape wildness quality, and at what scale? (Chapter 
3) 

• RQ. 2: To what extent do people’s photographic ratings for landscape scenic beauty 
correspond with expert-led, character-based evaluations of scenic quality? (Chapter 
4) 

• RQ. 3: Can the integration of the subjective perceptions, objective assessments, and 
character-based evaluations mentioned above be used to effectively map landscape 
scenic quality? (Chapter 5) 

2.9 Conceptual framework 

An overarching conceptual framework was developed to guide the analyses in this thesis, 
in response to increasing policy demands at the national level (Figure 2.7). This 
framework is grounded in the assumption of a high degree of commonality in human 
landscape preferences, as emphasised by evolutionary theories (see Section 2.2.1), and 
the integration of objective and subjective landscape in response to the growing trend 
towards integrated methods (Medeiros et al., 2021). The framework primarily 
encompasses three spatial datasets: Scenic-Or-Not, Wildness, and LANDMAP, each 
representing either expert or public, and objective or subjective, and quantitative or 
qualitative assessments. The underlying assumption is that spatial association between 
these three datasets likely exist at a comparable extent and resolution as they are partially 
informed by landscape physical characteristics (e.g., landform, land cover and land use), 
albeit with involving certain level of subjectivity. 
 
Chapter 3 explores the spatial association between the four wildness components (i.e., 
absence, naturalness, remoteness, and ruggedness) and perceived scenicness, as they 
share certain underlying concepts in common. This exploration also includes the 
investigation of the spatial variation in these relationships and their spatial scales of 
processes. Chapter 4 further explores the similarities and differences in subjective 
perceptions between experts and the public, based on the LANDMAP visual and sensory 
LCTs and LCAs. The underlying premise is that photographic scenic ratings, which are 
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more closely linked to ground-level perceptions, can complement the objective 
characterisation of a landscape’s perceptual qualities, which are primarily reliant on 
bird’s-eye views. Chapter 5 combines both the wildness index and Scenic-Or-Not ratings 
to construct predictive models of LANDMAP scenic quality classes, which are, in turn, 
used to effectively map landscape scenic quality. The main objective is to present a 
nationwide, integrative landscape assessment, illustrating the variations in scenic quality, 
in line with the LANDMAP’s evaluative levels across Great Britain, while maintaining 
an appropriate balance between objective and subjective assessments. 

 
Figure 2.7 Conceptual framework. 
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Chapter 3 Linking wildness with scenicness 
 

Abstract 

This study explores how formal measures of landscape wildness (i.e. absence of human 
artefacts, perceived naturalness of land cover, remoteness from mechanised access, and 
ruggedness of the terrain) correlate with crowdsourced measures of landscape aesthetic 
quality as captured in Scenic-Or-Not data for Great Britain. It evaluates multiple linear 
regression (MLR) and two spatially varying coefficients models: geographically weighted 
regression (GWR) and multiscale geographically weighted regression (MGWR). The 
MLR provided a baseline model in an analysis of national data, exhibiting the presence 
of spatially autocorrelated residuals and suggesting that geographically weighted 
models may be appropriate. A standard GWR was found to exacerbate local collinearity 
between covariates, both overfitting and underfitting the model with highly varied and 
localised results. This was due to its single one-size-fits-all bandwidth and the 
assumption that all relationships between the target and predictor variables operate over 
the same spatial scale. MGWR relaxes this assumption by determining parameter-specific 
bandwidths, mitigating the local collinearity issues found in a standard GWR and 
resulting in more spatially stable and consistent coefficient estimates. The findings also 
indicated that the relationship between some covariates (such as remoteness) and 
perceived landscape quality varied little spatially, while clear gradients were found for 
other covariates. For example, naturalness was stronger in the north and west, 
ruggedness was stronger in the south and east, and the absence of human artefacts was 
weaker in Scotland and the north than in England and the south. Overall, the study 
showed that MGWR is more sensitive than GWR to the spatial heterogeneity in the 
statistical relationships between landscape factors and public perceptions. These findings 
provide nuanced understandings of how these relationships vary spatially, underscoring 
the value of such approaches in landscape scale analyses to support policy and planning. 
The discussion section of this paper considers the MGWR as the default geographically 
weighted model, assessing the potential for the use of crowdsourced data in landscape 
studies. In so doing, it illustrates how such approaches could be used to explore both 
subjective and objective landscape evaluations. 
 
Keywords: landscape character assessments; crowdsourcing; wildness; Scenic-Or-Not  
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3.1 Introduction 

The aesthetic quality of landscapes has a clear positive correlation with human health 
and well-being, and aesthetics have been recognised as a key benefit of landscapes in 
ecosystem service modelling (Zoderer et al., 2019). However, aesthetic preferences vary 
widely across social and cultural contexts (Zube and Pitt, 1981; Dramstad et al., 2006), 
making objective evaluations difficult. As a result, there is a long-standing tension 
between objectivist and subjectivist paradigms in landscape assessment (Daniel, 2001). 
At the heart of this ideological rift lies the question of whether a landscape’s quality is 
determined by inherent physical landscape properties, or by how it is perceived (Lothian, 
1999). The objectivist paradigm is based on landscape’s visual properties and biophysical 
features, often as defined by specialists such as landscape architects. This is the most 
prevalent approach in formal landscape assessment practices. The subjectivist model 
focuses on human perceptions, opinions and preferences. However, there is a general 
consensus is that landscape quality is derived from the interaction between biophysical 
and perceived components (Daniel, 2001). Integrated approaches linking both subjectivist 
and objectivist considerations provide a basis for enhancing landscape planning and 
decision making, and an analytical framework is needed to link the two paradigms and 
handle discrepancies between them. However, effective landscape assessments involving 
both expert and non-expert perspectives also pose a challenge, as demonstrated by the 
landscape character assessments (LCA) (Swanwick, 2002) in the United Kingdom. This 
approach uses a classification system to assess and value landscapes in a two-phase 
process: characterisation and evaluation. Characterisation sub-divides the landscape into 
distinct areas based on the visual continuity of physical characteristics (such as geology, 
landform, and land cover), applied through the lens of spatial hierarchical mapping. 
Evaluation occurs through in situ site visits, during which landscape character 
descriptions are formulated qualitatively. The practice of LCA often fails in its stated aim 
of centring public perceptions, as both phases are typically undertaken by professionals 
and therefore do not capture collective or public landscape perceptions (Conrad, Christie, 
et al., 2011; Butler and Berglund, 2014). The disconnect between public and professional 
perceptions in this field illustrates the need for integrated assessment frameworks, 
accommodating both subjectivist-based landscape evaluations (i.e. non-expert opinions) 
and objectivist-based ones (i.e. expert opinions). 
 
In recent decades, the increased availability of crowdsourced geo-information offers the 
potential for new avenues of research to further understand links between perceptions 
and objective landscape measures. Such data has already been applied in numerous 
research areas, including place preferences (Gliozzo et al., 2016), values (Boris T van 
Zanten et al., 2016) and perceptions (Dunkel, 2015). The Scenic-Or-Not campaign in the 



3 
 

UK (http://scenicornot.datasciencelab.co.uk) captures public evaluations and perceptions 
of landscapes using photographs. Scenic-Or-Not data have been used to investigate the 
impact of scenic environments on human well-being (Seresinhe et al., 2015) and 
happiness (Seresinhe et al., 2019), enabling a clearer understanding of public perceptions 
regarding landscape composition and scenic beauty (Seresinhe et al., 2017). The dataset 
is geo-referenced with national coverage, enabling spatial analyses of how public 
preferences and aesthetic perceptions are related to objective indicators of landscape 
quality. 
 
Wilderness-related research has developed several formal methods for measuring 
landscape character by wilderness and wildness, and many people intuitively associate 
the concept of wilderness with certain aesthetic values (Carlson, 2019). The term 
‘wilderness’ can be understood in multiple ways: it is partially a human construct based 
on romantic notions about nature and landscape, and partly an ecological reality of intact 
ecosystems devoid of human influence (Nash, 1982). Although there is little wilderness 
(in the term’s truest sense) left within Great Britain, the concept of a wilderness 
continuum – an idea which models anthropogenic environmental modification using 
inherent underlying landscape characteristics (Fritz et al., 2000) – is still a useful tool for 
mapping the spectrum of relative wildness. So-called ‘wild land areas’ refer to large 
natural areas that are relatively undisturbed by human activity (Carver et al., 2012). 
Aesthetic values, meanwhile, are more closely related to perceptions of scenic beauty. 
Many studies use multi-criteria approaches to capture and link the various spatial 
characteristics of wilderness areas. These assess wilderness quality based on four 
principal characteristics: absence of modern human artefacts, perceived naturalness of 
land cover, remoteness from mechanised access, and rugged and physically challenging 
nature of the terrain (Fritz et al., 2000; Carver et al., 2002; Comber et al., 2010; Carver and 
Washtell, 2012). These four indicators can be used to identify landscapes that are highly 
valued and thought to merit conservation due to their wilderness qualities. It is unclear 
whether these formal wildness measures could contribute to landscape aesthetic 
assessments, and to what extent these indicators are associated with the public’s 
landscape preferences. Nonetheless, such approaches have been adopted by the United 
States National Park Service to model, map and monitor variations in wilderness 
character (Carver et al., 2013). 
 
Previous studies that have examined the relationships between measures of landscape 
values or qualities and features (topography, land cover, etc.) have typically applied 
global statistical models. In these models, the relationships between input variables are 
assumed to be spatially invariable (Schirpke et al., 2013; Frank et al., 2013; Boris T van 
Zanten et al., 2016). However, the relationships between landscape-related predictor and 
response variables may vary in different locations (i.e., exhibit process spatial 

http://scenicornot.datasciencelab.co.uk/
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heterogeneity). Spatially-varying coefficient models such as geographically weighted 
regression (GWR) can be used to identify and explore these relationships, supporting an 
enhanced understanding of geographical processes (Brunsdon et al., 1996). GWR uses a 
moving kernel to generate subsets of the data from which local regression models are 
determined. It has been applied in several landscape studies to understand local 
processes (Luo and Wei, 2009; Y.-F. Su et al., 2012; Hong and Jeon, 2017; Sun et al., 2018). 
The critical consideration in any GWR analysis is the specification of the kernel size, or 
bandwidth. This determines the number of observations that are included in each local 
subset, thus establishing the degree of spatial smoothing in the model’s outputs. GWR 
bandwidths can be implemented at a fixed or an adaptive distance (where adaptive 
includes the same number of observations in each subset). They are optimally determined 
using some measure of model fit such as Akaike Information Criterion (Akaike, 1973) or 
leave-one-out cross-validation (Cleveland, 1979; Bowman, 1984; Brunsdon et al., 1996). 
Although a standard GWR can capture process and relationship heterogeneity, its single 
kernel size assumes that each response-to-predictor relationship operates over the same 
spatial scale. Multiscale geographically weighted regression (MGWR) relaxes this 
assumption and identifies the individual scale at which each response-to-predictor 
relationship operates (Yang, 2014; A Stewart Fotheringham et al., 2017), thus elucidating 
geographic processes. 
 
This study explores how measures of wildness (Carver et al., 2012) correlate with 
crowdsourced perceptions of landscape aesthetics from Scenic-or-Not using both non-
spatial and spatial statistical models. The aim is to better understand the relationship 
between objective and subjective measures of landscape quality – with particular 
attention to variations across space and spatial scale – to develop a more holistic model 
for landscape character assessments. To this end, bivariate correlations were initially 
evaluated, and the global relationships were examined through multiple linear 
regression (MLR). A GWR was then applied to examine spatial non-stationarity in the 
relationships. The analysis was refined by applying an MGWR to examine the differing 
scales of the relationships. 

3.2 Data and methods 

3.2.1 Scenic-Or-Not data (response variable) 
The Scenic-Or-Not data are freely available. At the time of writing, the dataset includes 
212,212 images covering nearly 80% of the Ordnance Survey (OS) 1 km! grid squares of 
Great Britain. Each grid square contains at least three ratings. The dataset uses Geograph 
geo-referenced photographs taken and uploaded by members of the public. Scenic-Or-
Not participants are presented with randomly selected photographs and are invited to 
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rate each one on a scale of 1–10, wherein 1 is the least scenic and 10 is the most scenic. 
The mean scenic rating, which captured an average measure of public perceptions of 
landscape scenic beauty, was used as the response variable in the scenic quality 
regression models of this study. However, these methodologies feature some limitations: 
in most cases, landscape visual aesthetic quality or preference values were given for a 
single photograph, which was assumed to capture the local landscape characteristics 
present in a 1 km! region. The mechanism of representative image selection for each grid 
cell in Scenic-Or-Not is unclear, and visual inspection of some photographs reveals 
potential sources of bias in subject choice and framing. For example, a focus on a barn in 
the composition of a rural landscape photograph for aesthetic effect may misrepresent 
the local landscape. Such biases illustrate the problem of the uncertain reliability and 
quality of crowdsourced datasets (Comber et al., 2016; Oteros-Rozas et al., 2018). 
Additionally, the image locations reported in the Scenic-Or-Not dataset may vary by 100 
m from those reported in Geograph, and some Scenic-Or-Not images may have been 
removed from the Geograph repository altogether. Thus, the measures captured via 
Scenic-Or-Not may be representative of the landscape scenic quality of a broader area 
with better accuracy. 

3.2.2 Wildness components (predictor variables) 
Formal measures of wildness quality, as described in full by (Carver et al., 2012) in the 
context of Scotland and later extended across the United Kingdom, were used as 
explanatory variables of landscape aesthetic quality. Overall, wildness quality can be 
defined by four attributes: absence of modern human artefacts, perceived naturalness of 
land cover, remoteness from mechanised access, and rugged and challenging terrain. 
These were calculated over a 25 m grid and summarised below: 

• Absence of modern human artefacts (absence): 

This indicator measures the visual absence of man-made structures in a 360-degree arc at 
a given location. Structures were extracted from OS MasterMap data and included linear 
features (e.g. railways and roads), non-natural vegetation (e.g. hard-edged plantation 
forestry), built features (e.g. buildings and structures), engineering structures (e.g. pylons 
and hydro-electric/reservoir drawdown lines), and novel industrial features (e.g. wind 
turbines). The absence measure at each location was derived from the proportions of 
these structures within the 360-degree field of view (FOV) in a GIS-viewshed. The 
cumulative percentage of the view that was obstructed by man-made features based on 
the horizontally and vertically visible proportions of the features was calculated over a 
digital surface model (DSM). This voxel viewshed approach accounts for the effects of 
visual distance decay and relative size (Carver and Washtell, 2012). 
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• Perceived naturalness of land cover (naturalness): 

The evaluation of naturalness was based on a reclassification of the Land Cover Map 2007 
(LCM2007) (Morton et al., 2014), using ancillary forest data from the National Forest 
Inventory (https://www.gov.uk/guidance/access-forestry-commission-datasets). Each 
LCM2007 class was allocated a naturalness score of 0–5 based on its level of human 
intervention (see Table 3.1). These allocations were visually checked against aerial 
photography and local knowledge to identify any inconsistencies. The area weighted 
mean naturalness score was calculated within a 250-metre radius for each grid cell. 

• Remoteness from mechanised access (remoteness): 

Remoteness refers to the time needed to walk to a destination from the nearest road access. 
This measurement accounts for the effects of distance, relative gradient, ground cover, 
and barrier features such as open water and steep terrain. It is essentially an adaption of 
Naismith’s rule (Naismith, 1892) which allocates 15 min of walking time for 1 km on 
horizontal surfaces, plus 10 min for every 100 m of ascent. The rule includes an assumed 
speed of 5 km per hour over flat terrain (i.e. slopes between 0° and 5°) and corrections for 
the slope and angle at which the terrain is crossed. For example, it features penalties of 
30 min for every 300 m of ascent and 10 min for every 300 m of descent on slopes greater 
than 12°. Table 3.2 details the derivation of the factors that were used to generate the 
cumulative cost surface. 

• Rugged and physically challenging nature of the terrain (ruggedness): 

This indicator was devised to capture physical variations in terrain morphology, as well 
as weather conditions caused by the nature of the terrain (in cases where the challenging 
weather at high altitudes can influence human perceptions). The OS landform profile 10-
metre digital elevation model (DEM) was used to initially derive indices of terrain 
complexity that account for gradient, aspect and relative relief. Ruggedness was 
calculated from 2 standard deviations of terrain curvature within a 250-metre radius of 
the target cell, combined by linear summation with altitude from the DEM, to reflect the 
weather conditions at higher locations with lower temperatures and greater wind speeds. 
 
Hereafter, the response and the explanatory covariates are referred to simply as 
‘scenicness’, absence, naturalness, remoteness, and ruggedness. 
  

https://www.gov.uk/guidance/access-forestry-commission-datasets
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Table 3.1 Land cover naturalness scores, adapted with permission from (Carver et al., 
2012). 

LCM2007 class Naturalness score 

Broad-leaved woodland: semi-natural 5 
Broad-leaved woodland: mixed 4 
Broad-leaved woodland: planted 3 
Coniferous woodland: semi-natural 5 
Coniferous woodland: mixed 4 
Coniferous woodland: planted 3 
Arable and horticultural 2 
Improved grass 2 
Neutral grass 3 
Calcareous grass 3 
Acid grass 4 
Bracken 4 
Dwarf shrub heath 4 
Bog 5 
Inland water: natural 5 
Inland water: raised 4 
Inland water: impounded 3 
Montane habitats 5 
Inland rock 5 
Built up areas 0 
Supra littoral rock 5 
Supra littoral sediment 5 
Littoral rock 5 
Littoral sediment 5 
Saltmarsh 4 
Sea/Estuary 5 
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Table 3.2 The calculations of walking time for the remoteness indicator. 

 Data source Specific type Speed (km/h) Cost (second) Criteria 

Ground 
cover 
influence 

LCM2007 
OS MasterMap™ 

Heather and forest 3 𝑇 = 1.2 ∗ Δ𝑆 self-defined 
Bog 2 𝑇 = 1.8 ∗ Δ𝑆 
Other types 5 𝑇 = 0.72 ∗ Δ𝑆 
Crossable rivers 0.03 𝑇 = 120 ∗ Δ𝑆 
Roads and tracks 15 𝑇 = 0.24 ∗ Δ𝑆 

Gradient 
influence 

DEM Uphill (slope > 0°) +10 mins/100 m of ascent 𝑇 = 𝑎 ∗ Δ𝑆 + 6 ∗ ΔH Naismith’s rule 
Slight downhill (-5° < slope < 0°) 5 𝑇 = 𝑎 ∗ Δ𝑆 Langmuir’s 

correction Moderate downhill (-12° < slope < -5°) −10	min/300 m of descent 𝑇 = 𝑎 ∗ Δ𝑆 + 2 ∗ ΔH 
Steep downhill (slope < -12°) +10 min/300 m of descent 𝑇 = 𝑎 ∗ Δ𝑆 − 2 ∗ ΔH 

Barrier 
influence 

OS MasterMap™ Unfordable rivers (i.e. polygons)   self-defined 

where 𝑇 is time in second. 
Δ𝑆 is the horizontal cell distance/resolution in metre. 
Δ𝐻 is the vertical elevation difference between cells in metre. 
𝑎 is the horizontal cost factor according to different land cover types. 
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3.2.3 Sampling scheme 
To overcome potential sampling bias, the Scenic-Or-Not data were aggregated over 5 km 
hexagonal grid cells. Hexagonal grids enable the exploration of more subtle spatial 
patterns than square grids due to their more consistent connectivity (Wang et al., 2020). 
The median values of both response and explanatory variables within the cells were 
determined for each of the 11,786 grid cells. Figure 3.1 shows the spatial pattern of the 
aggregated data for the scenicness response and the standardised covariates. 

3.2.4 Data analysis 
A multiple linear regression (MLR) model was constructed to model the relationships 
between the predictor and target variables as follows: 
 

𝑦" = 𝛽# +E 𝛽$𝑥"$
%

$&'
+ 𝜀" 

(3.1) 

 
where for observations indexed by 𝑖 = 1,⋯ , 𝑛, 𝑦" is the target variable,  𝑥"$ is the value of 
the  𝑗() predictor variable, 𝑚 is the number of predictor variables, 𝛽# is the intercept term, 
𝛽$  is the regression coefficient for the 𝑗()  predictor variable and 𝜀"  is the random error 
term. The coefficients 𝛽$  are commonly estimated by the ordinary least squares (OLS) 
method. A MLR model frequently suffers from two commonly observed effects in spatial 
data: spatial autocorrelation of observation and process spatial heterogeneity (Anselin, 
2010). To overcome these effects, a GWR can be applied (Brunsdon et al., 1996). A GWR 
is similar to a linear regression, except that it calculates a series of local linear regressions 
rather than a global one. It uses data falling within a moving window or kernel at a series 
of discrete locations, such as grid cells. In this process, it gathers data from nearby 
locations and thereby generates local and spatially varying coefficient estimates. A GWR 
model has locations associated with the coefficient terms and can be expressed as: 
 

𝑦" = 𝛽#(𝑢" , 𝑣" 	) +E 𝛽$(𝑢" , 𝑣")𝑥"$
%

$&'
+ 𝜀" 

(3.2) 

 
where (𝑢" , 𝑣" 	) is the spatial location of the 𝑖() observation and 𝛽$(𝑢" , 𝑣") is a realization of 
the continuous function 𝛽$(𝑢, 𝑣) at point 𝑖. As with the linear regression model, the set of 
𝜀" obeys an independent normal distribution with a zero mean and common variance 𝜎!. 
 
Critical to any GWR is the specification of the kernel, which selects and weights data to
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Figure 3.1 The unstandardised Scenic-Or-Not ratings (scenicness) and the four wildness components (i.e. absence, 

naturalness, remoteness and ruggedness) for Great Britain aggregated over a hexagonal grid with a cell width of 5 km. 
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be used in each local model. This geographical weighting process produces data nearer 
to the kernel’s centre, making a greater contribution to the estimation of local regression 
coefficients at each local regression calibration point. The bandwidth can either be 
specified as a constant (fixed) distance value or as an adaptive one, in which the number 
of nearest neighbours is fixed. In this study, a Gaussian kernel was used to determine the 
optimal fixed bandwidth. 
 
However, a uniform bandwidth specified in a standard GWR may be inappropriate in 
situations in which different predictor variables operate over different spatial scales and, 
therefore, have unique spatial relationships with the target variable (Yang, 2014; A 
Stewart Fotheringham et al., 2017). A standard GWR, as previously outlined, ignores 
these differences and identifies a best-on-average scale of relationship non-stationarity 
for a single kernel bandwidth. This approach may be limited because it implicitly 
assumes the same spatial scale for each predictor, and these scales may be incorrect. To 
rectify this problem, a mixed (or semiparametric) GWR (MX-GWR) can be applied 
(Brunsdon et al., 1999; Mei et al., 2016), in which some relationships are assumed to be 
stationary (i.e. globally fixed as in a standard OLS), whereas others are assumed to be 
non-stationary (i.e. locally varied as in a standard GWR). However, a mixed GWR only 
partially addresses the problem, as locally-varying relationships are assumed to operate 
at one of two spatial scales. Consequently, a multiscale GWR was proposed by (Yang, 
2014; A Stewart Fotheringham et al., 2017). In a MGWR model, an individual bandwidth 
is determined for each predictor variable. This allows the scale of relationship non-
stationarity to vary for each target-to-predictor variable relationship, as described in 
Equation ((3.3):  

𝑦" = 𝛽#(𝑢" , 𝑣" 	) +E 𝛽*+$(𝑢" , 𝑣")𝑥"$
%

$&'
+ 𝜀" (3.3) 

where 𝑏𝑤𝑗  in 𝛽*+$  indicates the bandwidth used to calibrate the 𝑗()  conditional 
relationship. The MGWR model calibration uses an iterative back-fitting procedure; thus, 
the computational overheads are high when handling a large number of observations (T. 
Oshan et al., 2019). 

3.3 Results 

3.3.1 Exploratory analysis 
The pairwise Pearson correlation analysis is shown in Figure 3.2. It reveals significant 
positive associations between each wildness component and scenicness. Naturalness has 
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the highest correlation (𝛾 = 0.75, 𝑝 < 0.001) , and the scatter plot shows that the 
association approximates to a linear relationship. Similar values were found for absence 
(𝛾 = 0.7, 𝑝 < 0.001) , ruggedness (𝛾 = 0.62, 𝑝 < 0.001) , and remoteness (𝛾 = 0.56, 𝑝 <
0.001) . There is little evidence of bivariate correlation among explanatory variables 
except for that between absence and remoteness (𝛾 = 0.76, 𝑝 < 0.001). This correlation is 
plausible; a lack of intervening man-made features is likely to be confounded by 
inaccessibility. Hence, two multiple regression analyses were used to deduce whether 
remoteness acted as a confounder, coupled with the diagnostics of collinearity. Variable 
collinearity may have adverse effects on the estimation of MLR coefficients (O’Brien, 
2007). Local collinearity may be found in local data subsets in a GWR, even when not 
observed globally (Wheeler and Tiefelsdorf, 2005). However, more recent research has 
suggested that collinearity is unproblematic where the correlation is  < 0.8	or	> − 0.8 
(Comber and Harris, 2018). The robustness of GWR to the effects of multicollinearity has 
been also demonstrated, particularly with a large sample size (Páez et al., 2011b; A 
Stewart Fotheringham and Oshan, 2016). 

 
Figure 3.2 Pearson pairwise correlation, scatterplots and distributions of the input data 

(significance indicated by *** < 0.001, ** < 0.01, * < 0.05).  
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3.3.2 Multiple linear regression 
Two MLR models of scenicness were fitted, one with remoteness and one without. The 
inclusion of remoteness mildly influenced the coefficient estimates of the other predictors 
(Table 3.3). The sign of the coefficient estimate for remoteness was negative, contradicting 
the positive correlation reported in the previous section but indicating interaction 
amongst predictors. The variance inflation factor (VIF) diagnostics for each predictor 
confirmed the lack of collinearity in both models with all VIFs values below 10 (Belsley 
et al., 1980). A marginally improved model fit with all covariates was found, as indicated 
by the adjusted R-squared and corrected Akaike information criterion (AICc) values (see 
Table 3.3). The model had an adjusted R-squared of 0.71, suggesting that the 71% 
variation in public scenic ratings can be explained by them. The coefficient estimates in 
Table 3.3 indicate that all covariates are significantly associated with scenicness. Absence, 
naturalness, and ruggedness exhibited significantly positive relationships with 
scenicness, while remoteness exhibited a negative one. However, the MLR coefficient 
estimates should be interpreted with caution as the model residuals were found to be 
spatially autocorrelated (Moran's	I = 267, 𝑝 < 0.001; Jarque-Bera	statistic = 15074, 𝑝 <
0.001) . The map of residuals (Figure 3.3) highlights areas where the global model 
overestimated (red) and underestimated (blue) landscape scenic beauty, showing some 
evidence of clustering (and, therefore, spatial autocorrelation). The overpredictions 
tended to occur in urbanised regions, including major cities in England, Wales and 
Scotland, whilst the underpredictions emerged predominantly in rural regions. The map 
of outliers (i.e. where t-values are greater than +1.96 or less than −1.96 (Figure 3.3) 
indicates that negative outliers were largely found along the coastline. Positive ones were 
clustered around the Lake District and the Northwest Highlands, both of which are scenic 
mountainous landscapes with high cultural value. A plausible explanation could be that 
cultural and topographical characteristics not captured by the covariates (e.g. agro-
pastoral scenery and terrain openness) may positively influence perceptions of aesthetic 
value in these areas. The Koenker’s studentised Breusch-Pagan statistic was used to 
further determine if there was a non-constant variance in the residuals. It was found to 
be statistically significant (BP = 2337.7, df = 4, p-value < 0.001), indicating that the 
relationships between some or all of the predictors and the response were non-stationary. 
This finding emphasizes the need for methodologies such as the GWR and MGWR, which 
can explore spatial heterogeneity in data relationships and account for the spatial 
autocorrelation of the input variables. The following analyses and comparisons were 
undertaken using all four covariates. 
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Figure 3.3 The quantile-classified residual map (left) and the outlier map (right) 
highlights areas where the global model overestimated (red) and under-estimated (blue) 
landscape scenic beauty.  

3.3.3 Standard GWR and multiscale GWR 
As collinearity may be present in local subsets under the GW framework (Wheeler and 
Tiefelsdorf, 2005) despite a global absence, the GWR and MGWR analyses were coupled 
with the local collinearity diagnostic tests using the mgwr Python package (T. Oshan et 
al., 2019). Figure 3.4 shows the variability of the local condition numbers (CN) for both 
the GWR and the MGWR models. In the GWR model, some areas (predominantly in 
Southern England) were highly affected by collinearity, with many areas having a CN 
greater than 30. These numbers are indicative of significant collinearity amongst the 
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predictor variables (Belsley et al., 1980; Gollini et al., 2015). This collinearity may be 
caused by the single GWR bandwidth, which can increase collinearity between variables 
(Oshan and Fotheringham, 2018). All of the local MGWR models were found to have CNs 
of less than 3. 

 
Figure 3.4 The diagnostic tests of the local collinearity for the GWR (left) and the MGWR 
(right) models using quantile breaks. 
 
Bandwidth selections for both the GWR and MGWR models were optimised using a 
cross-validation approach under a Gaussian weighting kernel. Table 3.4 summarises the 
spatial distribution and variation of the coefficient estimates from the two analyses, along 
with the MGWR bandwidths. The GWR and MGWR improve the fit as expected (GWR: 
adjusted 𝑅! = 0.818; MGWR: adjusted 𝑅! = 0.831) over the MLR (adjusted 𝑅! = 0.710). 
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However, it would be unwise to compare the three models by their adjusted R2 only. 
Cross-model fits can be compared more effectively using specific information criteria 
such as the AICc, which accounts for both model parsimony and prediction accuracy. 
Large improvements (decreases) in the AICc fit were found using GWR and MGWR 
models (AICc = 18,430 and 18,313 respectively) than that found using a MLR model (AICc 
= 23,001). Overall, the GWR coefficient estimates show a higher variation than the MGWR 
ones – as indicated by the interquartile range (IQR) – except for the intercept. The low 
variation of the intercept could be caused by the single average bandwidth of the GWR 
model, which is narrower than the bespoke bandwidth for the individual predictor but 
wider than the bandwidth for the intercept from the MGWR. 
 
Figure 3.5 and 3.6 show the mapped GWR and MGWR coefficient estimates for the 
intercept and each covariate along with their statistical significance (i.e. t-values over 1.96 
or below −1.96), as indicated by the grid outlines, creating darker areas on the maps. 
Comparisons of coefficient surfaces can deepen understandings of spatial and scale 
variations. Some marked differences between the standard GWR and MGWR models are 
present. First and foremost, all of the covariate coefficient estimates in the GWR model 
inflect from negative (red) to positive (blue), indicating both negative and positive 
associations with scenicness. Nearly all the coefficient estimates in the MGWR model are 
positive, with some highly localised negative values for absence (highlighting the 
limitations of a standard GWR with a 15.2 km bandwidth, which may misrepresent 
parameter-specific relationship scales). This is confirmed by the MGWR bandwidths of 
32.9 km for absence, 118.6 km for naturalness, 1944.2 km for remoteness, and 48.7 km for 
ruggedness. Similarly, the GWR model has the largest variation in coefficient estimates 
for remoteness (IQR = 0.704), with its effects changing in sign for England in particular 
but with little significance. The MGWR output for remoteness shows limited variation, 
indicating a largely stationary process. This stationary quality is reflected by its wide 
bandwidth; it has a weak relationship with scenicness compared to the other covariates. 
This weak correlation is plausible given that remoteness is mainly concerned with 
landscape accessibility. While accessibility is essential for stimulating people’s 
perceptions of a landscape, it does not necessarily contribute to an area’s scenic 
attractiveness. 
 
The MGWR bandwidths for the intercept and the other covariates indicate their degree 
of localness in their relationships with perceived landscape scenic beauty. The intercept 
operates at a highly localised scale of 5.7 km, with a similar spatial pattern to that 
observed in the map of MLR residuals (Figure 3.3). This suggests that much of the 
residual autocorrelation may have been captured by the locally varying intercepts which 
could help guide further data acquisition and analysis. The MGWR coefficient estimates 
for absence are similar to the GWR estimates because the MGWR bandwidth of 32.9 km 
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is broadly similar to the GWR bandwidth of 15.2 km. The difference between the GWR 
and MGWR is in the significance of those relationships; however, a greater number of 
locations have significant coefficient estimates obtained from the MGWR calibration. 
 
The MGWR results shown in Table 3.4 demonstrate that absence has a relatively strong 
relationship with scenicness (a median coefficient estimate of 0.326). However, this 
relationship was somewhat localised; it occurred with a MGWR bandwidth of 32.9 km 
and considerable local variation, as shown by the IQR of the local coefficient estimates 
(0.335). Naturalness has a similar median coefficient value (0.336) and a wider bandwidth 
(118.6 km). However, it also has a low IQR (0.047), indicating weak spatial variation and 
overall tendencies towards a global trend. The coefficient estimates for ruggedness has a 
median value (0.325), a moderate IQR (0.227), and a localised bandwidth (48.7 km), 
indicating that the relationship between this variable and scenicness varies locally within 
the study area. The maps in Figure 3.6 illustrate the spatial variation of the coefficient 
estimates derived from the MGWR calibration. The MGWR coefficient estimates for 
naturalness show a clear pattern, with a strongly positive effect in Scotland, suggesting 
that naturalness may be of particular importance in areas that are widely renowned for 
their natural beauty. Comparatively, a decline in East of England suggests that public 
perceptions of scenic beauty in England may be context-dependent – what is perceived 
as naturalness in an urban setting might not be seen as such in a more natural context. 
Likewise, there are clear differences from west to east in Wales. The MGWR ruggedness 
coefficient estimates highlight two areas with high values: the Lake District, which 
comprises many areas with rugged characteristics, and East of England, which does not. 
In some of the most rugged landscapes, such as the Northwest Highlands, the association 
was weakly positive. This also suggests that the effects of ruggedness on landscape scenic 
beauty are relative and context-dependent. 
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Table 3.3 The coefficient estimates and associated p-values of the MLRs with and without remoteness. 
 

MLR without Remoteness MLR with Remoteness 

Variable Coefficient 
Estimate 

Standard 
Error 

t-value p-value VIF Coefficient 
Estimate 

Standard 
Error 

t-value p-value VIF 

Intercept 4.606 0.006 778.220 0.000 – 4.606 0.006 779.099 0.000 – 

Absence 0.421 0.007 57.440 0.000 1.533 0.454 0.010 47.222 0.000 2.641 

Naturalness 0.489 0.008 62.630 0.000 1.741 0.496 0.008 62.732 0.000 1.787 

Remoteness – – – – – −0.048 0.009 −5.261 0.000 2.415 

Ruggedness 0.303 0.007 42.890 0.000 1.423 0.303 0.007 42.942 0.000 1.423 
 

Adjusted R2 = 0.709, AICc = 23,027 Adjusted R2 = 0.710, AICc = 23,001 
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Table 3.4 The coefficient estimates arising from the GWR and MGWR models (1Q = 1st quartile, Med = median, 3Q = 3rd 
quartile, IQR = interquartile range). 

 

 GWR Bandwidth: 15.2 km MGWR     

Parameter 1Q Med 3Q IQR 
Bandwidth 
(km)  1Q Med 3Q IQR 

Intercept  4.636 4.821 5.103 0.467 5.7 4.440 4.648 4.956 0.516 

Absence  0.148 0.387 0.547 0.399 32.9 0.151 0.326 0.486 0.335 

Naturalness  0.217 0.353 0.504 0.287 118.6 0.308 0.336 0.355 0.047 

Remoteness -0.090 0.086 0.546 0.636 1944.2 0.035 0.035 0.035 0.000 

Ruggedness  0.264 0.429 0.628 0.364 48.7 0.217 0.325 0.444 0.227 

GWR: adjusted 𝑅! = 0.818, AICc = 18,430; MGWR: adjusted 𝑅! = 0.831, AICc = 18,313 
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Figure 3.5 The GWR coefficient estimates for the intercept and each wildness covariate with the significance of coefficient 

estimates denoted by black shaded outlines. 
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Figure 3.6 The MGWR coefficient estimates for the intercept and each wildness covariate with the significance of 

coefficient estimates denoted by black shaded outlines. 
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3.4 Discussion 

3.4.1 Model estimation 
In this study, a MLR was fitted as a baseline model after confirming that the variable 
collinearity was not an issue globally. The MLR model did not account for spatial context 
and its residuals exhibited autocorrelation, emphasizing the applicability of spatially 
varying coefficient models such as GWR. Consequently, a standard GWR was used to 
explore the local variations of the relationships between the response and predictor 
variables under a single kernel bandwidth, which resulted in significant levels of local 
variable collinearity (T. Oshan et al., 2019). The MGWR analysis, incorporating variable-
specific bandwidths, was found to eliminate local collinearity with a greater number of 
locations at which the covariates were found to be significant. MGWR has thus been 
advanced as the default geographically weighted model (Lu et al., 2017; A Stewart 
Fotheringham et al., 2017; Wolf et al., 2018; Murakami et al., 2018; Comber et al., 2020) as 
it makes fewer assumptions about the spatial scales of processes related to individual 
covariates, reducing susceptibility to collinearity. 
 
Of the MGWR estimates, absence has a weaker relationship with scenicness in Scotland 
than in England, whereas naturalness showed strong to weak gradients running north to 
south and west to east. Absence has a stronger relationship with scenicness in parts of 
the Midlands, East of England and Southwest Wales, with the remainder of Great Britain 
either weakly positive or largely non-existent, particularly Scotland (the landscape with 
the fewest human modifications). Yet, there are clear exceptions to this pattern. One such 
exception was Scotland’s Central Lowlands – where the country’s largest cities (i.e. 
Edinburgh and Glasgow) are located – and the Orkney Islands. Remoteness was found 
to have a weak relationship with scenicness and varied little, and ruggedness was a 
stronger predictor of scenic beauty to the south and east – almost the inverse of 
naturalness. These results suggest that, aside from remoteness, the factors associated with 
crowdsourced measures of landscape aesthetic quality vary by location and the local 
landscape contexts. In areas with high urban density, ruggedness and the absence of 
human of artefacts have a greater impact on public landscape preferences. Perceived 
naturalness, by contrast, was more strongly associated with scenic beauty in areas with a 
sparser population and fewer urban centres. While recognizing that the wildness 
covariates may not fully capture landscape aesthetic values (for example, by failing to 
capture the cultural aspects of landscapes) (Tieskens et al., 2018) these findings highlight 
strategies for future landscape enhancement and conservation throughout the United 
Kingdom. 
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3.4.2 Limitations and future research 
This analysis used data aggregated to 5-km hexagonal grid cells. All analyses of spatial 
data are subject to the modifiable areal unit problem (MAUP) (Stan Openshaw, 1984; Stan. 
Openshaw, 1984). In brief, the MAUP posits that statistical distributions, relationships 
and trends exhibit widely different properties when the same data are aggregated or 
combined over various reporting units at different spatial scales. It describes the process 
of distortion in calculations and differences in outcomes due to aggregation (the scale 
effect), as well as the configuration of the zoning system (the zoning effect) 
(Fotheringham and Wong, 1991). Future work will examine the effects on the findings of 
different scales of aggregation and zonings, particularly in the context of determining 
optimal MGWR bandwidth and the process scales they suggest. 
 
A further limitation relates to the opinions captured in the Scenic-Or-Not dataset. Each 
image in the Scenic-Or-Not database has at least three ratings, but nothing is known 
about the demography of the contributors. It is well known, however, that different 
groups interpret landscapes in different ways (Comber et al., 2016) and that these 
interpretations may or may not be representative of general public opinion (Oteros-Rozas 
et al., 2018). The Scenic-Or-Not data may represent a biased sample of landscape 
aesthetics preferences. Additionally, the motivations of contributors for their scores were 
unknown. Finally, the use of photographs as a proxy for the in-person experience of a 
landscape may cause bias associated with aesthetic considerations or framing. 
Perceptions of an online photograph do not always relate to in situ direct observations 
and perceptions (James F Palmer and Hoffman, 2001). 
 
This work showed how spatially explicit approaches such as MGWR support enhanced 
understandings of the relationships between landscape covariates and public landscape 
preferences. Such methods (including the use of crowd-sourced data, such as the dataset 
provided by Scenic-Or-Not), can be effective exploratory tools for spatially unpacking 
socio-environmental relationships. These methods offer a bridge between subjectivist 
and objectivist paradigms in support of local planning. Landscape planners and 
practitioners might benefit from using this technique to facilitate targeted management, 
thus conserving valuable landscape characteristics and features. The identification of 
spatially varying relationships can also be used to guide further data acquisition and 
analysis, augmenting the development of more informed landscape policies. This 
supports integrated mapping approaches for incorporating data from perception-based 
surveys. By supplementing inputs into current LCA evaluations and complementing 
current conceptual frameworks for CES (Kerebel et al., 2019), such efforts sensitively 
connect both the human and the natural components of landscapes. 
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3.5 Conclusions 

This study explored the relationships between crowdsourced measures of perceived 
landscape scenic beauty as captured in the Scenic-Or-Not dataset (scenicness), alongside 
components of formal landscape wildness (i.e. absence of human artefacts, perceived 
naturalness of land cover, remoteness from mechanised access and rugged and 
challenging terrain). It used both non-spatial (standard regression) and spatial regression 
(GWR and MGWR) models. The results of this analysis illustrate the limitations of a 
standard GWR, which is liable to overfit some variables while underfitting others. The 
variable-specific, or bespoke, bandwidths in the MGWR resulted in a more spatially 
nuanced model with the potential to facilitate deeper understandings of landscape 
processes and relationships. 
 
Under a standard regression model, the model residuals (errors) were found to be 
spatially autocorrelated. A standard GWR was undertaken but was found to both overfit 
and underfit the model due to the use of a single bandwidth for all variables. This resulted 
in highly localised patterns of variation in the coefficient estimates, demonstrating both 
positive and negative associations with perceived landscape beauty in different locations. 
To address this limitation, a MGWR was undertaken to allow the parameter-specific scale 
of the relationship between the target variable and each landscape factor to vary, enabling 
local (spatially non-stationary) and global (stationary) relationships between them. The 
MGWR results indicate that the relationship between remoteness and scenicness operates 
on a global scale, whereas the relationships for absence, naturalness and ruggedness 
operate over several degrees of localness. These findings support the use of MGWR as an 
exploratory tool, reinforcing the notion that it should function as the default 
geographically weighted model. It holds great potential for bridging objectivist and 
subjectivist paradigms and supporting integrated landscape assessments. A standard 
GWR should only be undertaken if there is evidence that the covariates have the same 
scale of relationship with the target variable. Unfortunately, most existing applications of 
a GWR in landscape literature and practice do not do this. 
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Chapter 4 Comparing scenic evaluations between 
experts and non-experts 

 

Abstract 

The debate over the conceptual constructs of landscape aesthetics, specifically whether 
landscape quality is inherently related to landscape physical characteristics or is 
subjectively “in the eye of the beholder,” has continued for years. Solutions 
accommodating both the biophysical and perceptual aspects of landscapes are thus 
desirable for landscape planners and policymakers. In response to policy shifts that 
emphasise both expert and public landscape perspectives, this study investigates the 
relationships between formal and informal landscape evaluations. It analyses 
crowdsourced data describing landscape aesthetic quality (Scenic-Or-Not) and 
authoritative landscape quality assessments (the Landscape Assessment Decision 
Making Process (LANDMAP) of Wales). Some agreement was found regarding 
landforms most likely to be perceived as scenic or unattractive by experts and non-
experts, which aligns with previous landscape perception studies. However, contested 
landscape typologies are identified formal and informal landscape aesthetic evaluations 
are compared. Several limitations and implications for current formal landscape as- 
sessment paradigms (GIS based and vertical) are discussed and several approaches for 
capturing on-the-ground perceptions are suggested including recent extensions to GIS 
derived viewsheds (e.g., vertical voxel viewsheds).  
 
Keywords: landscape character assessments; crowdsourcing; Scenic-Or-Not  

4.1 Introduction 

For many years there has been a vigorous debate on whether landscape quality relates to 
inherent physical landscape characteristics or is in the eye of the beholder (Lothian, 1999; 
Daniel, 2001). Given these philosophical contrasts, a successful marriage of these 
objective and subjective paradigms has not yet been achieved, making landscape 
evaluation challenging. There have been numerous efforts to devise techniques for 
landscape assessment (Dunkel, 2015; Antrop and Van Eetvelde, 2017; Bubalo et al., 2019), 
and solutions that balance the perceptual and biophysical aspects of landscapes are still 
being sought (Daniel, 2001). Perceptual approaches to landscape aesthetic assessment are 
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unavoidably problematic due to differentiated preferences driven by varying cultural 
backgrounds (Zube and Pitt, 1981) and social stratum (Dramstad et al., 2006), as well as 
the cost of eliciting collective perspectives. Thus, bio-physical approaches that rely 
heavily on expert knowledge remain favoured choices in landscape management and 
planning practices, such as nature preservation and designation (Daniel, 2001; Simensen 
et al., 2018; Gosal and Ziv, 2020). Inevitably, such expert-based approaches have also 
faced criticism for their lack of objectivity, transparency, and replicability (even among 
experts) (Terkenli, 2001; Daniel, 2001). 
 
The development and ratification of the European Landscape Convention’s (ELC) 
landscape policy set a broader definition of landscape as, “an area... perceived by people,” 
placing the public as central to any understanding of landscape. This document aims at 
pressing on the establishment of procedures for public participation in landscape 
management, protection, and planning practices (Council of Europe, 2000). The 
identification and classification of landscapes were underlined, and the definition of 
landscape quality objectives derived from public consultations were required (Santé et 
al., 2020). The focus of landscape assessments in the signatory countries has since shifted 
from expert to local/nonexpert knowledge in response to this guidance (Jones, 2007).  
Despite emphasis on the public involvement, the formulation of landscape quality 
objectives has not been standardised and the concept of quality indicators in the ELC 
continues to be questioned (Santé et al., 2020). As such, it is expedient for practitioners to 
avoid dealing with diverse perspectives and perceptions from multiple people (Conrad, 
Christie, et al., 2011). 
 
The implementation of the ELC landscape policies, the UK Landscape Character 
Assessment (LCA) framework (Swanwick, 2002), has at its centre a hierarchical 
classification system of landscape character. The LCA initially uses a typology of 
landscape character based on the visual distinctiveness and continuity of combinations 
of geology, landform, soils, vegetation, land use, field patterns, and human settlement 
that is applied through spatial hierarchical mapping. Next, judgements are imparted 
about landscape character, leading to decisions concerning the management, planning, 
and protection of the various landscape types and areas. The process of characterisation 
in the first phase is considered objective while assigning quality or value in the second 
phase is subjective. 
 
Notwithstanding, both processes in the framing of landscape characters and values are 
dominated by expert perspectives as the mainstay of formal landscape evaluation (Butler, 
2016). The expert appraisal of landscape aesthetic values as part of the LCA has been 
largely criticised as a subjective and opaque process, where the landscape perceptions 
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held by the public have hitherto been insufficiently included (Conrad, F. Cassar, et al., 
2011). 
 
A few landscape characteristics that are well-recognised by experts to contribute to scenic 
quality are used in the LCA classification scheme. For instance, physical factors such as 
topography, water, land cover, and human artefacts are seen as determinants of scenic 
quality, and the landscape is classified into relatively homogenous units of land (i.e., 
character areas) based on visual interpretations of these data. The characterisation of 
landscape description units (LDUs) based on static maps with the aid of GIS is claimed 
to be an objective process, utilising landscape perceptions from a birds-eye perspective 
rather than that of a human (Groom G. et al., 2006). However, this overlooks the 
subjectivity involved in choosing predetermined criteria for LDUs (Crofts, 1975). 
Moreover, the subsequent on-site assessment heavily relies on the subjective judgments 
of experts at a few representative locations from which the valuation is formulated and 
generalised to the entire character area. Thus landscape- intrinsic qualities are assessed 
at limited, predefined locations and are subject to interpreter preferences, shaped by their 
professional backgrounds and experiences (Dramstad et al., 2006). Such qualitative 
evaluations may overlook any interactive effects of landscape components, for example, 
visual screening effects caused by vegetative patterns or terrain (Arriaza, J. F. Cañas-
Ortega, et al., 2004), and scenic quality may be inappropriately extrapolated over a large 
area. There have been very few studies that have examined how professional landscape 
evaluations relate to those held by citizens. 
 
Crowdsourced spatial information has been increasingly used to understand 
human/landscape interactions from local to continental scales (Dunkel, 2015; Tenerelli et 
al., 2016; Boris T van Zanten et al., 2016). Data generated by citizen sensors (Michael F 
Goodchild, 2007) have the potential to be more closely related to on-the-ground 
perceptions and less bounded by professional biases (Bubalo et al., 2019). They also have 
the potential to contribute to formal landscape assessments. In the UK, a web-based 
crowdsourcing project, Scenic-Or-Not [http://scenicornot.datasciencelab.co.uk/ (accessed 
on 12 February 2, 2021)] collects people’s landscape preferences at a granularity of 1 km. 
Participants are invited to rate the scenicness of randomly presented photographs from 
each 1 km! grid on a 1 to 10 scale. Empirical studies using these data have investigated 
the impact of scenic beauty on human health (Seresinhe et al., 2015) and happiness 
(Seresinhe et al., 2019), explored the composition of landscape scenic beauty as perceived 
by the public (Seresinhe et al., 2017), verified landscape scenic estimation based on Flickr 
and OpenStreetMap data (Seresinhe et al., 2018) and constructed a language model to 
predict landscape scenic beauty (Chesnokova, Nowak and Ross S Purves, 2017). In 
landscape evaluation, using photographs as proxies to elicit public landscape preferences 
is generally considered an acceptable approach for landscape aesthetic assessments, since 



32 
 

each ground-level image approximates what people perceive at each specific location, 
despite a continuing debate on its reliability and validity (Daniel, 2001; Unwin, 2006; 
Gyllin and Grahn, 2015). Scenic-Or-Not’s wide and granular coverage provides a 
valuable resource that could be used within LCA practice, and to respond to the ELC’s 
policy to involve public perception. 
 
It is not the intention of this study to aspire to any ultimate resolution for the landscape 
classification system, but instead to seek the benefits of synergy to supplement the formal 
practice of LCA. The central aim is to leverage the granular coverage of crowdsourced 
spatial data concerned with scenic beauty and evaluate the validity of the LDUs of the 
formal paradigm by investigating the variability of public opinions underneath these 
distinct character areas ”objectively” delineated by experts. Based on these units, this 
study attempts not only to understand which perspectives on landform typology are 
viewed differently between landscape architects and the public but also to identify which 
perspectives are unlikely to be disputed. 

4.2 Data and methods 

4.2.1 Study area 
Wales is a relatively small country (approximately 21,000 km!) in the United Kingdom, 
bordered by England to its east and surrounded by the Irish Sea and the Bristol Channel 
to its north, west and south. It is famed for the mountainous and coastal landscapes with 
three National Parks—Snowdonia, the Brecon Beacons and the Pembrokeshire Coast—
bringing numerous economic value and benefits of tourism (see Figure 4.1). The main 
population areas are situated in South Wales, including cities such as Cardiff, Swansea, 
and Newport, with another significant population area in North East Wales. 
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Figure 4.1 The study area. 

4.2.2 Data 

4.2.2.1 LANDMAP visual and sensory aspect  

In the early 1990s, the methodological deficiencies of conventional landscape character 
mapping in terms of the vagueness of the qualitatively evaluative criteria and the 
robustness of quality assurance were evident, hindering the justification of policy-
making, e.g., designation of “quality” landscapes. Consequently, Wales commenced 
developing its national landscape assessment methodology (known as the Landscape 
Assessment Decision Making Process, LANDMAP), providing greater consistency and 
defensible information on landscape for policy- and decision-making. 
 
The LANDMAP data serves as the Welsh landscape baseline, comprising five landscape 
aspects—geological landscape, landscape habitats, visual and sensory, historic landscape, 
and cultural landscape—each of which considers a different theme but collectively covers 
the scope of a landscape’s character. Each aspect has its own unique map layer and survey 
records carried out by the local authority and landscape architects which have been, in 
turn, joined as five nationwide themed datasets. 
 
The visual and sensory aspects were used in this study where the landscape was 
classified into the distinct character areas as perceived through human senses. These 
areas were drawn upon the spatial overlays using the physical attributes of landform and 
land cover information accessed through the Geo-Portal for Wales 
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(http://lle.gov.wales/catalogue/item/LANDMAPVisualSensory/ (accessed on 12 
February 2021)). This dataset consists of 1,991 distinct character areas which were 
characterised in the form of discrete polygons and allocated on a hierarchy of four levels. 
The level 1 typology was defined in accordance with broad landform and land cover and 
was consecutively collated into levels 2 and 3 as landform and land cover, respectively 
(Table 4.1). 
 

Table 4.1 The level 1–3 classification categories used for characterising the visual and 
sensory aspect areas in the Landscape Assessment Decision Making Process 

(LANDMAP) approach, adapted from (Weledol and Landmap, 2016). The grey 
background is used to easily distinguish the descendants of each level-2 typology. 

Level 1 Level 2 Level 3 
Broad landform 
and land cover 

Landform Land cover 

Upland Exposed upland or plateau Barren or rocky upland  
Upland moorland  
Upland grazing  
Wooded upland and plateau  
Mosaic upland and plateau 

Upland valleys Open upland valleys 
Open or wooded mosaic upland valleys 
Wooded upland valleys 

Hills, lower plateau, and 
scarp slopes 

Hillside and scarp slopes moorland 
Hillside and scarp slopes grazing  
Wooded hillside and scarp slopes  
Hillside and scarp slopes mosaic  
Open hillside and scarp slopes  
Hill and lower plateau moorland  
Hill and lower plateau grazing  
Wooded hill and lower plateau  
Hill and lower plateau mosaic  
Open hill and lower plateau 

Lowland Lowland valleys Open lowland valleys 
Mosaic lowland valleys  
Wooded lowland valleys 

Rolling lowland Open rolling lowland  
Mosaic rolling lowland  
Wooded rolling lowland 

Flat lowland or levels Flat open lowland farmland  

http://lle.gov.wales/catalogue/item/LandmapVisualSensory/
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Flat wooded lowland  
Flat lowland mosaic  
Lowland wetland 

Coastal Intertidal Dunes and dune slack  
Cliffs and cliff tops 
Other coastal wildland 
Small island 

Development Built land Village 
Dispersed settlement 
Urban 

Developed unbuilt land Amenity land  
Informal open space 
Excavation 
Derelict or waste ground 
Road corridor 

Water Coastal waters Sea 
Estuary 

Inland water (including the 
associated edge) 

River 
Lake 
Ria 

4.2.2.2 Scenic-Or-Not 

This website allows people to evaluate places in Britain by rating photos collected from 
the Geograph project (https://www.geograph.org.uk/ (accessed on 12 February 2021), 
which is the early volunteered geographic information (VGI) campaign in the UK. This 
project invites people to contribute geographically representative photographs and 
information for every square kilometre. The Scenic-Or-Not dataset contains 212,212 
photos at distinct locations, each of which has been rated by at least three people on an 
integer scale of 1 to 10, with 10 being the most scenic and each square kilometre contains 
one photo. Following the homogenous assumption of scenic quality implicitly made by 
the landscape characterisation approach, all scenic ratings within each aspect area were 
aggregated to calculate the mean and entropy of scenic scores. A subset of the Scenic-Or-
Not dataset covering the study area was employed to represent the public opinions on 
landscape aesthetics, containing a total number of 138,312 scenic scores associated 19,063 
images. Hereafter, “scenicness” is used to simply refer to these scenic ratings. 
  

https://www.geograph.org.uk/
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Table 4.2 The importance definitions of LANDMAP evaluation (Natural Resources 
Wales, 2017). 

Evaluation score Definition of importance 

Outstanding International or national 
High Regional and county 
Moderate Local 
Low Little or no importance 

4.2.3 Methods 

4.2.3.1 Shannon entropy 

Given the Scenic-Or-Not images with different numbers of ratings but at least 3 votes on 
a discrete 1–10 scale, these integer scores allow the calculation of not only the central 
tendency of scenicness but also the variability or dispersion of collective opinions. The 
Shannon entropy metric was borrowed from the information field and used to quantify 
the dispersion of opinions regarding each specific landform (Shannon, 1948). This metric 
was originally developed to determine the average minimum number of bits required to 
fully encode a message in relation to the statistical distribution of possible messages. It 
has been widely employed in many disciplines (e.g., statistics, physics, and 
communication). The mathematical equation is as follows: 

𝐻(𝑋) = −E𝑝"log!𝑝"
"

 (4.1) 

where 𝑋 represents the collective scenic scores for each image, and 𝑝" is the probability of 
occurrence of the 𝑖() discrete outcome (𝑖 = 1,⋯ ,10 herein). 

4.2.3.2 Generalised linear model 

The associations between the landscape typologies and scenic quality assigned by experts 
and non-experts were analysed using general linear models (GLMs) where the dummy 
coding was used with the same reference category for comparison. For the expert-based 
evaluation, each of the ordinal levels was dichotomised as a binary response variable 𝑦"- 
to fit the binary logistic regression model as follows: 
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log g
𝑃(𝑦"- = 1|𝑥"$)

1 − 𝑃(𝑦"- = 1|𝑥"$)
j = 𝛽# +E𝛽$𝑥"$

$

+ 𝜖" (4.2) 

where 𝑖  indexes the 𝑖()  observation, and 𝑘  denotes the four memberships of scenic 
quality; 𝑥"$  represents the 𝑗()  dummy-coded categorical variables (𝑗 = 1,⋯ ,10 herein). 
The logit link function is employed as the left side of Equation (4.2) to model the log of 
the odds, resting on the assumption of a logistic distribution for the error term. However, 
it is not suited for modelling the continuous response such as average of scenicness herein. 
Thus, the normal GLM, employing the identity link function and assuming a normal 
distribution for 𝑦", known as an ordinary linear regression model, was used with the form 
shown in Equation (4.3): 

𝑦" = 𝛽# +E𝛽$𝑥"$
$

+ 𝜖" (4.3) 

As mentioned, the difference in the equation is on the left side and the coefficients 𝛽$ are 
commonly estimated by the ordinary least squares (OLS) rather than the maximum 
likelihood (ML) method, viewed as a special case of GLM thereof (Myers and 
Montgomery, 1997). All statistics and analyses were implemented via a set of packages 
in the open-source RStudio Environment (v. 1.3). 

4.3 Results 

4.3.1 Exploratory analysis 
Table 4.3 shows the contingency table of the landscape typologies (11 level-2 classes) and 
the corresponding four ordinal levels of scenic quality rated by experts. From the 
marginal distribution, 19% of the 1,986 distinct aspect areas were categorised as ‘built 
land,’ probably indicating the highly fragmented but clearly human-made patterns for 
map-based characterisation, and the majority of these aspect areas were evaluated as the 
middle of scenic spectrum (moderate scenic quality: 38%, high scenic quality: 36%). 
 
Given the aspect areas with low scenic quality, 56% of the corresponding landforms turns 
out to be the ‘built land’ with a probability of 0.19 when considering the moderate scenic 
quality. At the opposite spectrum, the rate of the ‘coastal’ typology (2.72%) was higher 
than other landforms. Despite the same marginal distributions (13%), the respective 
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conditional distributions of the ‘exposed upland or plateau’ and ‘hills, lower plateau, and 
scarp slopes’ rated as high scenic quality were 13% and 19%. A chi-square test of 
independence showed that there was a significant association between landform and 
scenic quality, 𝜒!(30, 𝑁 = 1,986) = 886.1, 𝑝 < .001. 
 
The point-based Scenic-Or-Not data were aggregated over the aspect areas of the formal 
landscape assessment to make these data comparable with the areal unit-based data. 
Following the implicit assumption of homogenous character adopted by the LCA 
approach regarding landscape perceptions, the equal weighting for each scenic vote, 
regardless of the corresponding image content, was considered to calculate the 
underlying central tendency and variability of public scenic perceptions for a given 
aspect area. There were 1,716 aspect areas intersected by the locational Scenic-Or-Not 
data. 
 

Table 4.3 Contingency (cross-tabulation) table of the level-2 landscape typologies and 
the expert-evaluated scenic quality. A total of 1,991 aspect areas were classified with 5 

unassessed areas. 

LANDMAP Level-2 class 
Low 
(%) 

Moderate 
(%) 

High 
(%) 

Outstanding 
(%) 

Total 
(%) 

Coastal waters 0 (0%) 1 (0.05%) 9 (0.45%) 8 (0.40%) 18 (1%) 
Coastal 1 (0.05%) 11 (0.55%) 79 (3.98%) 54 (2.72%) 145 (7%) 

Inland water 0 (0%) 16 (0.81%) 23 (1.16%) 19 (0.96%) 58 (3%) 
Exposed upland or plateau 20 (1%) 102 (5.14%) 97 (4.88%) 48 (2.42%) 267 (13%) 

Upland valleys 5 (0.25%) 70 (3.52%) 68 (3.42%) 21 (1.06%) 164 (8%) 
Lowland valleys 5 (0.25%) 92 (4.63%) 123 (6.19%) 19 (0.96%) 239 (12%) 

Flat lowland or levels 11 (0.55%) 51 (2.57%) 33 (1.66%) 7 (0.35%) 102 (5%) 
Hills, lower plateau, and scarp slopes 7 (0.35%) 99 (4.98%) 136 (6.84%) 16 (0.81%) 258 (13%) 

Rolling lowland 6 (0.30%) 122 (6.14%) 75 (3.77%) 11 (0.55%) 214 (11%) 
Developed unbuilt land 75 (3.78%) 56 (2.82%) 10 (0.50%) 6 (0.30%) 147 (7%) 

Built land 168 (8.46%) 142 (7.15%) 61 (3.07%) 3 (0.15%) 374 (19%) 
Sum (%) 298 (15%) 762 (38%) 714 (36%) 212 (11%) 1,986 

 
Figure 4.2 illustrates the distribution and density characteristics of the mean and Shannon 
entropy measures of collective scenic ratings for each landform typology. The former 
nearly follows a normal distribution, ranging from 1–9 with a mean of 4.41 and a median 
of 4.45, while the latter exhibits a negatively skewed distribution ranging from 0 to 3.25 
with a mean of 2.6 and a median of 2.78. The boxplots for each landform type illustrate a 
difference in the collective scenic perceptions among these typologies in terms of their 
central tendency and variability. 39% of the total variation in average scenic score was 
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accounted for by these classification typologies, confirmed by a Welch one-way ANOVA, 
𝑊𝑒𝑙𝑐ℎ’𝑠	𝐹(10, 264.45) = 76.59, 𝑝 < .001, 𝑒𝑠𝑡. 𝜔! = .389. 

4.3.2 Variability of public perceptions on scenic beauty 
The entropy metric provides an insight into the underlying variability of the public 
opinions on landscape scenic beauty within a given landform. Several features are 
worthy of observation here. At first glance, all distributional patterns exhibited negative 
skewness in different degrees, indicating the deficiency in using these presumably 
homogeneous LDUs to delineate landscape perceptions. The typologies associated with 
upland turned out to exhibit sharply peaked distributions and concentration around a 
higher entropy of 3 bits. The “exposed upland or plateau” typology exemplified these 
highly sharp and compact unimodal distributions while the peak splitting was observed 
in the case of “upland valleys.” Likewise, those concerning lowland, except “coastal,” 
demonstrated similar unimodal shapes but with slightly gentle curves such as “rolling 
lowland” and “lowland valleys.” Noteworthy is that the “flat lowland or levels” and 
“coastal” typologies with fewer effects in topographic relief had a wider range in the 
entropy measures of scenic scores. Some characteristics possibly overlooked and 
subsumed within one typology were briefly reported in the discussion. 
 
A few landforms concerning development and water typologies, such as “built land,” 
“developed unbuilt land,” and “inland water” had relatively low central values with 
wider dispersion, compared with those regarding upland and lowland. This suggests 
that the public opinions on the scenic quality of these landforms were generally less 
variable than the other typologies, but there were larger variations in the entropy metrics 
as well. A possible interpretation is that a consensus of scenic quality on these landforms 
exists; nevertheless, the consent could be context-specific and vary drastically from place 
to place. 
 
Notably, the “inland water” falls into a bimodal distribution, reflecting two different 
groups of variability where the major group displays greater variation than the minor 
one. Although the presence of water has been empirically evidenced as a preferable 
landscape element in the previous landscape perception studies (Dramstad et al., 2006; 
Brown and Brabyn, 2012), radically diverging views on scenic beauty within water areas 
was also evidenced, which could be explored further by breaking this landform down 
into the level-3 typologies to investigate whether different types of water bodies such as 
lakes and rivers exert an influence over the observed distribution that is, nonetheless, 
beyond the scope of this study. 
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Figure 4.2 Boxplots of the mean (left) and Shannon entropy (right) measures of public 

scenic ratings for each level-2 landform typology show the underlying central tendency 
and variability of opinions based on the intersected 1716 aspect areas/observations. 
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Shading reflects the root of the hierarchical classification scheme (that is, level-1 
typology) and the width of the boxplot is proportional to the sample size. 

4.3.3 Summary of expert perspectives  
The relationships between landscape typologies and scenic quality assigned by the 
experts and non-experts were further assessed by a set of generalised linear regressions 
and a simple linear regression. For ranking, the same dummy coding was used with the 
reference category of ‘built land,’ which allows for the calculation of the odds ratio and 
confidence intervals associated with different landscape typologies compared to the 
identical baseline. Figure 4.3 illustrates the outcomes of each GLM on a log scale to 
visually compare the degree of uncertainty associated with the point estimate that was 
denoted by the error bar of 95% confidence interval and standard error. The point 
estimates at 5% significance levels were denoted by the colour blue. The associated 
exponentiated coefficients, indicating the odds ratios between the specific landform and 
the baseline one, are summarised in Table 4.4 Table 4.4for ease of interpretation. 
 
In Figure 4.3, the model for the low scenic quality shows the best performance among the 
four logistic models, as indicated by the goodness-of-fit measures of pesudo	R!  and 
Akaike information criterion (Nagelkerke.s	R! = .407; AIC = 1176.508)  (Akaike, 1973; 
Nagelkerke, 1991). This appears to be plausible given that the abundant aspect areas of 
‘developed unbuilt land’ and ‘built land’ were consistently associated with low scenic 
quality. By contrast, the model for moderate scenic quality exhibited the lowest 
performance ( Nagelkerke.s	R! = .082; AIC = 2542.847 ) where only the odds ratios 
associated with four of the landforms (i.e., ‘coastal water,’ ‘coastal,’ ‘flat lowland or levels,’ 
and ‘rolling lowland’) were statistically significant, as denoted by the colour blue. 
Concerning high and outstanding scenic quality, all landform types were statistically 
significant at 5% significance levels. A glimpse of performances over the four models 
suggests that these landform typologies explain the probabilities for the middle scenic 
qualities less than those for both ends of the spectrum. 
 
Considering the low scenic quality, the effects of all the landform types except ‘developed 
unbuilt land’ were negative and statistically significant, suggesting a decreased 
likelihood of being rated as low when compared to the ‘built land.’ In other words, ‘built 
land’ is more likely linked to low quality than other typologies based on expert 
professional views (see Table 4.4). This is prima facie evidence of the subjectivity in the 
characterisation process of the desk study despite the claimed objectivity. Among the 
significant typologies, the respective odds of being evaluated as moderate within the 
landforms of ‘rolling lowland’ and ‘flat lowland or levels’ were around 2.2 and 1.6 times 
greater than within areas of ‘built land.’ In contrast, the relative odds within the ‘built 
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land’ were around 10.4 and 7.5 times greater than within the ‘coastal water’ and ‘coastal’ 
areas, respectively. The coastal landforms were not only the most likely to be evaluated 
as having high scenic quality, but also to have an increased likelihood of being rated with 
outstanding quality. Additionally, ‘hills, lower plateau, and scarp slopes’ and ‘lowland 
valleys’ were respectively 5.72 and 5.44 times more likely than ‘built land’ to be evaluated 
as having high scenic quality. Notably, these two landforms were relatively easier to 
access compared to those most likely associated with outstanding beauty. The typologies 
associated with water bodies (i.e., ‘coastal waters,’ ‘coastal,’ and ‘inland water’) were 
consistently the most likely to be evaluated as having outstanding scenic quality, 
corresponding to the human preference for water presence found in previous studies 
(Dramstad et al., 2006; Brown and Brabyn, 2012). The second most likely landforms to be 
assessed as outstanding were upland landforms. The odds of ‘exposed upland or plateau’ 
and ‘upland valleys’ being rated as outstanding were respectively 27 and 18 times greater 
than that of ‘built land.’ 
 
Table 4.4 Results of the logistic regressions for the four levels of scenic quality evaluated 

by experts to the level-2 classes which were dummy-coded and the ‘built land’ class 
was used as the reference category (*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001). 

Categorical variable 
(LANDMAP Level-2 class) 

Odds ratio 
Low Moderate High Outstanding 

Intercept 0.816* 0.612*** 0.195*** 0.008*** 
Coastal waters 0.033*** 0.096* 5.131** 98.933*** 
Coastal 0.013*** 0.134*** 6.142*** 73.385*** 
Inland water 0.010*** 0.622 3.372*** 60.248*** 
Exposed upland or plateau 0.102*** 1.010 2.928*** 27.105*** 
Upland valleys 0.042*** 1.217 3.635*** 18.161*** 
Lowland valleys 0.029*** 1.023 5.441*** 10.680*** 
Flat lowland or levels 0.154*** 1.634* 2.454*** 9.112** 
Hills, lower plateau, and scarp slopes 0.037*** 1.017 5.720*** 8.176** 
Rolling lowland 0.038*** 2.167*** 2.769*** 6.701** 
Developed unbuilt land 1.276 1.005 0.375** 5.262* 
Built land (reference) - - - - 
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Figure 4.3 The effect of various landforms on different levels of scenic quality were 
graphed on log scales, allowing a visual comparison of the magnitudes of confidence 
intervals and standard errors. Dots represent unstandardised point estimates (that is, 
log odds ratios) derived from the binary logistic linear regressions for the landform 

typologies concerning different levels of scenic quality evaluated by experts where the 
referent class was “built land.” The vertical dash line represents the line of null effect, 
denoting there is no difference from the baseline. The goodness-of-fit of the model is 

indicated by Nagelkerke.s	R! and AIC measures. The error bar denotes 95% confidence 
intervals, indicating the uncertainty of the estimate. While the confidence interval 

crosses the line of null effect, the point estimate is statistically significant, denoted by 
dot colour (blue: p < 0.05; red: p ≥ 0.05). 

4.3.4 Summary of non-expert perspectives  
Since the average scenic scores aggregated over the aspect areas exhibit a normal 
distribution, this average scenicness is regressed on the dummy-coded covariate, using 
an OLS model. The result is summarised in Table 4.5, and the coefficient estimates yielded 
are statistically significant at the 0.001 level. This suggests there are significant 
discrepancies in collective scenic perceptions between different landforms that could be 
informed by the map-based characterisation procedure. The intercept corresponds to the 
average scenic scores for the reference category (‘built land’) and the individual 
coefficient estimate of each landform class denotes the expected difference in the mean of 
scenic ratings compared to the baseline one. For example, the ‘upland valleys’ and 
‘lowland valleys’ predict average scenicness around 1.7 and 1.4 greater than that of the 
baseline category, respectively. 

4.3.5 Comparison of perspectives between experts and non-
experts 
The marginal effects of the landform typologies on the public scenic ratings and the 
expert evaluations of scenic quality could be used to further produce different ranking 
orders. These relative rank positions enable the comparison of the orders from both 
perspectives. Figure 4.4 illustrates the changes in order between both sides across four 
levels of scenic quality. The larger rank-order differences (i.e., change greater than or 
equal to 3 position) are highlighted in green (≥ 3) and red (≤ −3) and the rest are shaded 
in grey, showing which typology may be contesting from both perspectives. A relatively 
small amount of significant change in rankings is seen at the outstanding scenic quality, 
suggesting there exists mutual consent at the highest end of the spectrum. There is, 
however, a large amount of significant disparity in ranking at the level of high scenic 
quality. Moreover, the landform typologies associated with water bodies are generally 
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ranked in the top three whilst those associated with man-made landscapes are bottom-
ranked. 
 
Table 4.5 Results of the simple linear regression, examining the relationship between the 
dummy-coded level-2 classes and the ‘built land’ class is used as the reference category 

and the average scenic ratings that are aggregated over the units of the visual and 
sensory aspect areas (*𝑝 < .05, **𝑝 < .01, ***𝑝 < .001). 

Categorical variable 
(LANDMAP Level-2 class) Number 

Coefficient 
estimate 

Standard 
error t-value p-value 

Intercept - 3.204 0.058 55.089 0.000*** 
Coastal waters 14 2.443 0.278 8.800 0.000*** 
Coastal 117 2.257 0.110 20.440 0.000*** 
Inland water 40 2.020 0.171 11.827 0.000*** 
Exposed upland or plateau 256 1.908 0.086 22.164 0.000*** 
Upland valleys 157 1.652 0.100 16.558 0.000*** 
Lowland valleys 216 1.400 0.090 15.499 0.000*** 
Flat lowland or levels 91 0.690 0.121 5.684 0.000*** 
Hills, lower plateau, and scarp slopes 241 1.408 0.088 16.088 0.000*** 
Rolling lowland 201 1.015 0.092 11.001 0.000*** 
Developed unbuilt land 78 0.455 0.129 3.528 0.000*** 
Built land (reference) 305 - - - - 

R! = 0.331; AIC = 4935.927      
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Figure 4.4 Landform rankings of scenic quality were compared between experts and 

non-experts, based on the results of the four GLMs and the OLS. The larger rank 
differences are highlighted where changes of greater than 3 or less than 3 are coloured 

green and red, respectively, and the rest are shown in grey. 
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4.4 Discussion 

4.4.1 Implications for Landscape Character Assessment 
The exploratory analysis provides some insights into the central tendency and variability 
in the public perceived scenicness within ‘aspect areas.’ Defined as regions sharing 
similar physical attributes, these ‘aspect areas’ are perceived as homogeneous in quality 
by the landscape architects. Broadly speaking, areas of water received the highest scores 
on average scenicness, followed by those of upland, lowland, and development, with a 
sole exception of “coastal” areas that recorded higher scenic values than the upland areas 
but are categorised as lowland. Concerning the underlying variability indicated by 
entropy metrics, upland areas were found to be highly variable, followed by lowland, 
water, and development areas. 
 
It has been acknowledged in the field of landscape assessment that some landscape 
characteristics—terrain, water, ground cover, and human artefacts—are permanently 
recognised as contributing factors of scenic quality (Wherrett, 1996). In line with the 
literature and irrespective of professional expertise, the water-related typologies were 
ranked in the top three among all the landforms, while those associated with human 
artefacts were on the opposite end (Real et al., 2000a; Arriaza, J.F. Cañas-Ortega, et al., 
2004). Meanwhile, the underlying scenic ratings of the characterised units associated with 
water and human artefacts features tend to exhibit less variability, reflecting consensual 
values in scenic quality. Also, this observation may suggest the formal classification 
scheme and evaluation for these characters could effectively correspond to the 
perceptions on the ground, compared to other landforms. This is, nevertheless, not the 
case for the landforms with a complex interaction of terrain and ground cover, resulting 
in the diversity of physical landscape characteristics as well as the variability of landscape 
perceptions. The “exposed upland or plateau” typology particularly exemplifies this type 
of landform where there is a consistently high amount of variation in the scoring, 
depicting the extreme variability in opinions, given the high centre and narrow spread of 
entropy measures. A possible justification is that an increase in relief implies diversity 
and complexity involved therein, where the topographical and meteorological effects 
were probably magnified. This may lead to positive or negative influences on landscape 
perceptions (e.g., the grandeur of mountains or harsh weather conditions). However, 
these landscape intricacies could be overlooked and subsumed within one type by the 
simplicity of the current spatial framework. 
 
The most plausible explanation of this finding might be that the classification scheme 
rests on the assumption that visual quality is an amalgamation of landform and land 
cover elements where a variable relationship presumably exists. As the landform 
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characteristics increase in dimension, for instance, the increase of relative elevation in 
magnitude (e.g., from flatlands through hills to mountains), the land cover pattern 
becomes less important as an element of visual quality. In contrast, with the decrease in 
landform dimension, the importance of the variety of ground cover increases for the 
maintenance of high scenic value (Zube, 1984). However, the complex interrelation of 
landforms and land covers on human perception, such as the visual screening effects 
caused by vegetation or adjacent hills may hardly be accounted for by the current practice. 
Hence, the classification method would remain an appropriate basis of appraisal for low-
lying landscapes, but any interactive effects of the individual elements could be 
overlooked (Crofts, 1975). 
 
The comparison of aesthetic assessments between the experts and non-experts also has 
implications for the formal landscape assessment paradigm in the context of public 
participation. Regardless of professional expertise, water bodies (that is, “inland water” 
and “coastal waters”) were generally perceived to possess comparatively high scenic 
quality among all the landforms by the public, which was also the case in the expert 
evaluations. Likewise, landscapes dominated by human-imposed changes (that is, 
“developed unbuilt land” and “built land”) were more likely rated as having low scenic 
quality from both sides. Furthermore, the pairwise ranking comparisons of subjectivity 
in terms of the geomorphological effects on scenic quality reveals that mutual consent is 
located towards the upper end of the scenic spectrum. There was a relatively small 
amount of significant change in rankings at the highest end of the scale, and less 
consensus was found in the middle of the spectrum. It may be noteworthy that at the 
opposite end of the spectrum, the “exposed upland or plateau” typology tends to be more 
appreciated by the laymen, rising four places to fourth. In contrast, the ranking of the 
“lowland valleys” typology drops from fourth to seventh position. Given low scenic 
quality generally typified by slightly undulating topography and monotonous patterns 
of vegetation, this may suggest the scenic quality of these two landforms could be under- 
(or over-) estimated by specialists. The virtue of the hierarchical classification approach 
allows identification of the most likely contesting descendant by digging deeper into the 
finer classes (that is, level 3 typologies). The textual information associated with those 
scenic ratings can also be retrieved in the sourced repository that gives researchers insight 
into what landscape features might be ignored; however, that is beyond the scope of this 
study. 

4.4.2 Limitations and outlook 
The critical issues in crowdsourced data are centred around their reliability and veracity 
(Brunsdon and Comber, 2021). The demography of the participants of Scenic-Or-Not is 
untold, and the reliability of scenic ratings may not be asserted due to the inherent biases 
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concerning participant inequality (Bubalo et al., 2019). For instance, without demographic 
characteristics of participants, the representativeness of the scenic ratings for the general 
public is questionable for meeting the research context (Goodspeed, 2017). Biases, 
introduced by a small group of prolific contributors (Koblet and Purves, 2020), could not 
be filtered out in parallel as well. Albeit with these issues, researchers have continuously 
sought the best practice to harness the benefits of these increasingly growing sources, 
facilitating the understanding of dynamic landscape perceptions and preferences 
(Goodspeed, 2017; Bubalo et al., 2019). 
 
Furthermore, there is no guarantee for the geographical representation of photographs 
employed in the scenic rating campaign despite being sourced from Geograph.org where 
a quality control protocol regarding the image and location information of each 
contribution exists. Additionally, for the Scenic-Or-Not, every square kilometre contains 
only one photo where landscapes with diverse and complex characteristics may hardly 
be captured fully and nothing is known about its actual mechanism behind image 
selection (Chang Chien et al., 2020). Moreover, unlike site assessment where 360° views 
from a given standpoint could be evaluated, the participants of Scenic-Or-Not only 
evaluated a particular vista framed in the given photo without knowing any local context 
information, which is very much at the mercy of image composition and has been 
recognised as the pitfall of photographic preference surveys (Unwin, 2006). Hence, this 
study was notably based on the untenable assumption that the crowdsourcing initiative 
adequately provides a discerning measure for public landscape perceptions. 
 
It should be noted that the scenic ratings evenly distributed across the entire country were 
confined within the expert delineated boundaries as the statistical inferences were based 
on the units of the aspect areas. This parallels the compromise solution of handling public 
perceptions in the earlier work, conducted at the county level (Scott, 2002). An interlinked 
challenge, therefore, remains for landscape planners and architects to test the validity of 
expert-led landscape characterisation as reflective of on-the-ground experiences. The 
empirical results of this national study may be reconciled with the existing evaluations 
to achieve a further improved practice of LANDMAP systematically. 
 
Landscape quality evaluations of either areas or points as discussed herein fail to capture 
the quality of the scenery, experienced and perceived by a viewer from the point the 
viewer stands in all directions. Recent developments in GIS-based viewshed analyses 
(e.g., vertical voxel viewsheds), taking the viewer’s contexts (for example, viewpoints, 
distance-decay effects) into account to model visual landscape experiences on the ground, 
shed light on measuring people’s experiences of landscape characters through an 
automated process. These metrics could be integrated with landscape preference 
judgements and subsequently converted to landscape quality (Carver and Washtell, 2012; 
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Brabyn, 2015). Recent studies further investigated the diverse contents of crowdsourced 
data, ranging from geographical to textual and imagery dimensions, to gain a variety of 
perceptual details and contextual information of landscapes (Callau et al., 2019; Koblet 
and Purves, 2020). They demonstrate potential ways to alleviate the challenges of current 
LCA, efficiently eliciting multiple perspectives—that are not expert-dominated —and 
involve other sensory features – that are not predominantly visual – of landscapes. In 
pursuance of more informed landscape policy- and decision-making, the incorporation 
of such supplementary information with respect to public perspectives into a practical 
landscape assessment should remain a major research avenue to explore. 

4.5 Conclusions 

Despite calls for the inclusion of public opinions into a formal paradigm of landscape 
assessments, an integrated solution of the two has not yet been achieved due to the 
methodological limitations and the deficiency of large-scale surveys. The crowdsourcing 
paradigm provides a viable solution for efficiently eliciting large-scale public 
perspectives on landscape aesthetics. The present study has been one of relatively few 
attempts to investigate a potential synergy of crowdsourced data to supplement a 
practical landscape assessment, albeit with the acknowledgement of inevitable biases 
embedded in these data. The authoritative data, delineating the bespoke landscape 
characters concerning overall perceptual quality, has not sufficiently addressed situations 
of topographical diversity, such as screening effects from adjacent hills. The results show 
some mutual consent in landforms perceived as scenic or unattractive by experts and 
non-experts which are consistent with the previous landscape perception studies and 
suggest some potentially contested landscape typologies from both sides. It is concluded 
that there are potential opportunities to develop landscape metrics for the assessment of 
visual landscape perception to better reflect the perceived landscape character on the 
ground by utilising the established GIS viewshed approaches. These landscape metrics 
could be further combined with landscape preference information to contribute to a 
gradual improvement of the authoritative spatial framework in the evaluation of 
landscape scenic quality. 
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Chapter 5 Integrating objective and subjective 
landscape assessments 

 

Abstract 

This study integrates citizen generated assessments of landscape scenicness with 
measures of landscape wildness to construct models of landscape aesthetic quality. In so 
doing it integrates different landscape paradigms related to citizen and expert 
evaluations, and to objectivist landscape measurements and subjectivist perceptions, in 
order to train ensemble machine learning models using extreme gradient boosting 
(XGBoost). These were constructed and validated using the LANDMAP classification of 
Wales and then applied to Great Britain to construct predictive maps of landscape 
aesthetic quality at 1 km resolution. Two distinct models were developed to represent the 
assessments conducted by two separate expert groups, each responsible for the 
LANDMAP classification in the northern and southern parts of Wales, respectively. Both 
models achieved an overall classification accuracy of over 67% and their predictions of 
landscape aesthetic quality were compared. Both models identified the same regions, in 
the South of Scotland in particular, that are not currently under any form of landscape 
designation, but potentially could be. Some methodological implications are discussed, 
including the opportunity to integrate citizen derived perceptions of landscape quality 
and spatial data describing the formal wildness measures into current evaluations of 
landscape character, such as the Landscape Character Assessment (LCA) in the UK. A 
number of areas of further work are suggested including some detail about how current 
LCA practice could be advanced and in so doing make it more consistent, tractable, 
democratic and accountable. 
 
Keywords: Landscape Character Assessments, Crowdsourcing, Wildness, Scenic-Or-Not. 

5.1 Introduction 

Landscapes possess many attributes values, with common examples including aesthetic, 
recreational and economical value, not all of which are material and tangible, such as 
those exclusively held by people. Landscape scenic beauty (and more broadly, 
environmental aesthetics) is a closely intertwined product of human-nature interactions 
and has been one of the most emphasised landscape values and as such widely is 
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recognised as providing benefits to social well-being and a healthy society (Selman and 
Swanwick, 2010). 
 
Research regarding landscape aesthetics and aesthetic quality has typically taken one of 
two different but not mutually exclusive routes based on objectivist or subjectivist 
approaches (Lothian, 1999). The objectivist paradigm mainly relates to expert-based 
approaches that aim to identify physical landscape properties related to assumed human 
preferences. This is exemplified by the landscape metrics commonly used in the 
landscape ecology literature that are used to model and quantify landscape scenic quality 
(Palmer, 2004). In contrast, the subjectivist paradigm focuses on perceptual or 
judgemental responses of observers. For example, the preference surveys employed in 
some landscape studies use photos as proxies in order to investigate the link between 
respondent preferences, normally measured on a Likert-type scale, and physical 
landscape features (James F Palmer and Hoffman, 2001) and these measures can be 
associated with respondent attributes and socio-cultural backgrounds. Both paradigms 
are complementary and some theoretical work has been undertaken to, for instance, link 
landscape evolutionary theories (Appleton, 1975; Kaplan and Kaplan, 1989) with cultural 
preference ones (Allen Carlson, 2001), where landscape beauty is conceptualised to be in 
the eye of the beholder (M Tveit et al., 2006). 
 
This paper seeks to integrate both expert, objectivist and citizen perceptions of landscape 
in order to construct predictive models of landscape character, and thereby to support 
landscape assessments and policy-making. The models are applied over new areas to 
predict landscape character in those places, and to suggest potential areas suitable for 
designation. The aim was to demonstrate a novel method for assessing landscape 
character, one that integrates landscape perceptions held by citizens and professionals. 
The rationale and potential data sources for this work are described in the next section. 

5.2 Background 

5.2.1 Formal Landscape Assessments 
The adoption of the European Landscape Convention (ELC) in 2000 resulted in a 
definition of landscape as “an area, as perceived by people” (Council of Europe, 2000), 
which started to inform broader notions of Ecosystem Service (Boris T van Zanten et al., 
2016). The Millennium Ecosystem Assessment (MEA) categorised landscape aesthetics as 
‘non-material’ cultural services (MA, 2005), reflecting a wider sense of landscape value 
and a greater emphasis on public involvement in landscape initiatives. Despite this 
development, a commonly accepted definition of landscape ‘quality’ has not emerged 
because of its intangible, and often subjective nature (Santé et al., 2020). Consequently, 
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the views of the public are often bypassed and technical, expert led evaluations continue 
to prevail in landscape assessments (Conrad, F. Cassar, et al., 2011; Butler and Berglund, 
2014). 
 
Due to the devolved nature of environmental policy matters, each country within the 
United Kingdom upholds its own landscape policies. These policies align with the 
principles of the ELC, which they have signed and ratified. Implementation of these 
policies is guided by the Landscape Character Assessment (LCA) framework (Swanwick, 
2002). The essence of this approach is to identify areas with a uniform character and to 
describe the associated attributes or qualities that distinguish a given area via a 
hierarchical classification, which can be applied at a number of different scales (Simensen 
et al., 2018). Its process is primarily comprised of two iterative stages: desk-based 
characterisation and fieldwork evaluation, involving both objective and subjective 
assessments (Terkenli et al., 2021). The initial characterisation is considered to be objective 
although the subjectivity of the prescriptive hierarchical classification system is 
frequently overlooked (Crofts, 1975), while the valuation procedure may be subjective 
due to variations in professional or institutional perspectives, and with qualitative 
assessments that typically have a more descriptive rather than comparative focus. 
 
In Wales, a detailed national landscape assessment methodology was devised: the 
LANDMAP (Landscape Assessment Decision Making Process, LANDMAP). This aims 
to provide baseline characteristics describing landscape character, quality and value, 
recorded in different mapped layers to inform wider practices (Scott, 2002). The 
development of a national classification scheme for different landscape types, supports 
consistent land use planning and policy, such as designations and visual impact 
assessments at national and local levels. The amalgamation of these aspects – character, 
quality and value – using GIS layers supports transparency and accountability in 
decision-making. However, the values and definitions of quality landscape may not 
adequately represent public perspectives, and professional valuations of the landscape 
may vary. 

5.2.2 Crowdsourcing 
In recent decades, the proliferation of location-aware, connected devices and services has 
enabled public landscape experiences and locally relevant landscape perceptions to be 
captured (Boris T van Zanten et al., 2016; Callau et al., 2019). Examples include Geograph 
(https://m.geograph.org.uk) in which the public upload and share pictures of Ordnance 
Surveys 1 km grid square. Users can include captions as well as location information and 
tags. The project aims to establish an archive of photographs at eye-level over every 
square kilometre in Great Britain and Ireland. Such georeferenced information, often 



57 
 

referred to as volunteered geographic information (VGI) (Michael F Goodchild, 2007), 
can be of immense value to both academia and practitioners who seek to supplement and 
enrich land management and planning (Dunkel, 2015; Bubalo et al., 2019). 
 
The existence of Geograph supported a further internet-based crowdsourcing 
campaign—Scenic-Or-Not (https://scenicornot.datasciencelab.co.uk). This randomly 
selects Geograph photos and asks users to rate their scenic beauty on an integer scale 
from 1 (the least scenic) to 10 (the most scenic). Over 1.5 million contributions have been 
made since February 2015, enabling quantitative analyses of perceived landscape 
environmental aesthetics (Seresinhe et al., 2018) and the relationship between landscape 
scenicness and wildness (Chang Chien et al., 2020). In landscape studies, the reliability 
and validity of photographic media is generally accepted as a fair representation of 
portions of landscape’s visible condition (James F Palmer and Hoffman, 2001; Palmer, 
2004). The Scenic-Or-Not, thus, offers an otherwise unavailable measure of landscape 
scenic beauty, as held by the wider public, despite data sparsity in some areas, related to 
the Geograph coverage. The granularity and spatial coverage of the data allows it to be 
used in support of national and regional landscape policy and planning. 

5.2.3 Integrating Landscape Wildness 
Wildness (or more widely wilderness) and aesthetics share some conceptual common 
ground in landscape assessment, with similar dependencies on landscape spatial form, 
components and structure. Approaches using GIS-based wildness mapping, e.g. (Carver 
et al., 2002; Carver et al., 2013), can provide spatially explicit and quantitative insights 
into areas of potential conservation value (Carver et al., 2012). In a recent study, 80% of 
the variation in the crowdsourced measures of landscape aesthetics were explained by 
the formal wildness measures (Chang Chien et al., 2020). This suggests that there are 
opportunities for such wildness measure to be used to complement perception-based 
data in an integrated framework, thereby linking both subjectivist and objectivist 
paradigms and potentially providing a more holistic approach to landscape studies and 
assessments. 

5.2.4 Study aims 
A comparative and systematic assessment of landscape aesthetic value, in the manner of 
LANDMAP in Wales, has so far not been developed in England and Scotland. The 
valuation of landscape aesthetics encapsulated in LANDMAP may be transferable to 
these countries. To this end, a data-driven framework using machine learning techniques 
was developed. The gradient boosting model framework has been found to have high 
prediction accuracy, flexibility, scalability, transparent outputs, and ease of 
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implementation(Chen and Guestrin, 2016). It can handle data sparsity and is not affected 
by multicollinearity.  
 
This study constructs a model of LANDMAP classes using data from the Scenic-Or-Not 
initiative and wildness spatial layers, described below, utilising the XGBoost algorithm. 
After calibration and tuning, the model is then applied to Scenic-Or-Not and wildness 
data to predict the LANDMAP classes for England and Scotland. As the LANDMAP data 
of landscape aesthetics in Wales was undertaken by two separate expert groups, two 
XGBoost models were constructed and applied to predict the spatial distribution of 
landscape scenic quality across England and Scotland (as well as Wales), where such 
assessments are lacking: there is no GB wide assessment of landscape aesthetic quality. 

5.3 Data and methods 

5.3.1 Data 
LANDMAP is comprised of five spatial datasets concerning the geological, ecological, 
visual and sensory, historic and cultural facets of the landscape. These are used to 
construct areas whose scenic quality was then evaluated by one of two consulting groups, 
referred to as Consultant A and B (Figure 5.1). The scenic quality of each area was labelled 
using an ordinal scale from Low (little or no importance), Moderate (local importance), 
High (regional and county importance) to Outstanding (international or national 
importance). In this study the scenic quality was used as the target variable in the models. 
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Figure 5.1 The LANDMAP project split of Wales into two subsets for assessment by 

Consultant A and B. 

The Scenic-Or-Not data set includes ratings for 212,212 of the Geograph images covering 
nearly 80% of the Ordnance Survey (OS) 1 km grid squares of Great Britain. The data 
includes each grid square contains one picture for which there is at least three ratings 
from unknown users. These subjective measures were referred to hereafter as ‘scenicness’. 
Grid cells with missing values and photos are concentrated in remote areas such as the 
Scottish Highlands. 
 
Formal wildness measures were also examined. Wildness has been calculated from four 
components: the absence of modern human artefacts, perceived naturalness of land cover, 
remoteness from mechanised access, and rugged and challenging terrain. These are 
briefly described in Table 5.1 and more detailed description can be found in (Carver et 
al., 2012; Chang Chien et al., 2020). Each component was given equal weighting to create 
a wildness layer with a resolution of 25 m. 
 
In the LANDMAP data, some character areas were represented by non-contiguous multi-
polygons. These were divided into individual areas to serve as units of analysis. The 
point-based scenicness scores and grid-based wildness layer were aggregated to these 
areas to capture central tendency and dispersion. However, these discrete areas did not 



60 
 

align well with the spatial structure of continuous wildness indices, leading to a skewed 
distribution. On the other hand, the aggregate scenicness demonstrated a normal 
distribution. Given these observations, the resistant measures were chosen for the 
wildness covariates and the sensitive measures were employed for the scenicness 
covariates. For each of these character areas, the median and interquartile range (IQR) of 
the intersecting wildness indices, and the mean and entropy of intersecting scenicness 
were determined. Thus, the LANDMAP evaluations of scenic quality were modelled 
using four predictor features: the mean of scenicness, the median of wildnesss, the 
entropy of scenicness, and the IQR of wildness. 
 
The 2,968 LANDMAP areas included 1,315 whose aesthetic values were determined by 
Consultant A and 1,653 by Consultant B, with uneven distributions among different 
aesthetic quality classes (Table 5.2). The data for each consultant was subject to an 80/20 
split into training and validation subsets to support the creation of two models, one for 
each consultant. This was done using a within class stratification to ensure representative 
split across classes and consultants. 
 

Table 5.1 The components of the wildness layer. 

Wildness component Description 

Absence of modern 
human artefacts 

The visual absence of man-made structures—including 
linear, non-natural vegetation, built, engineering, and 
novel industrial features—within a 360-degree 
panoramic view of each location. This is achieved by 
quantifying the visible proportions of these structures 
using a novel viewshed approach that accounts for both 
the horizontal and vertical aspects, as well as distance 
decay effects. 

Perceived naturalness 
of land cover 

A reclassification of land cover data, in which each class 
was allocated a naturalness score of 0-5 based on its 
degree of human intervention. Under the assumption of 
a visibility limit, the area weighted mean naturalness 
score for a given location was calculated within a 250-
metre radius for each location. 

Remoteness from 
mechanised access 

Remoteness refers to the time needed to walk to a 
destination from the nearest road access. It is essentially 
the cumulative cost surface based on an assumed speed 
of 5 km per hour over flat terrain with cross slope 
correction. 



61 
 

Rugged and physically 
challenging nature of 
the terrain 

Physical variations in terrain morphology, as well as 
weather conditions caused by the nature of the terrain, 
primarily calculated from 2 standard deviations of terrain 
curvature within a 250-metre radius of each location. 

 
Table 5.2 The distribution of the LANDMAP aesthetic quality classes across the two 

consulting groups. 

Consultan
t NA Low Moderate High Outstanding Total 

A 9 164  (13%) 473  (36%) 549  (42%) 120  (9%) 1,315 

B 1 273  (17%) 575  (35%) 563  (34%) 241  (15%) 1,653 

5.3.2 Analysis 
EXtreme Gradient Boosting (XGBoost) is an efficient and scalable variant of the Gradient 
Boosting Machine (GBM), using classification and regression trees (CART) to predict the 
outcome variable (Chen and Guestrin, 2016). The individual leaf scores are summed up 
as a final score and evaluated through an additive function, as shown in Equation (5.1): 

𝑦�" = 𝜙(𝑥") = E𝑓-(𝑥"), 𝑓- ∈ ℱ
/

-&'

 (5.1) 

where 𝑦�" represents the estimated output of the gradient boosting tree model, 𝑥" is the 
feature corresponding to sample i, 𝐾  represents the number of trees, and 𝑓-  is an 
independent tree structure with leaf scores in the functional space ℱ which denotes the 
space of all possible CARTs. 
 
The difference between GBM and XGBoost lies in model formalisation and computational 
power—parallelising the tree formation. Moreover, it comprises an objective function, 
which combines the loss function and a regularization term that controls model 
complexity and avoid over-fitting (Chen and Guestrin, 2016), which is given by: 

𝑂𝑏𝑗(Θ) =E𝑙(𝑦" , 𝑦�")
0

"&'

+EΩ
/

-&'

(𝑓-) (5.2) 
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For a multi-class classification problem such as this, the first term 𝑙 in Equation (5.2) is a 
cross-entropy (CE) loss function that compares the predicted probability distribution (𝑦�"$) 
with the expected probability distribution (𝑦"$) where 𝑦"$ denotes the probability for the 
𝑖() instance 𝑗() class. The CE loss is computed given a list of ground-truth labels for a set 
of samples that was encoded as a 1– 𝑜𝑓–𝑀 binary indicator matrix – 𝑌 – as well as a 
matrix of probability estimates – 𝑃 – with	𝑝"$ = Pr	(𝑦"$ = 1). The mathematic express is as 
follows: 

𝐿123(𝑌, 𝑃) = −logPr(𝑌|𝑃) = −
1
𝑁EE𝑦"$ log�𝑝"$�

4

$&'

5

"&'

 (5.3) 

where 𝑦"$ = 1 if sample 𝑖 has label 𝑗 taken from a set of 𝑗 labels, M is the number of classes 
and N is given data samples. Cross-entropy loss increases as the predicted probability 
diverges from the actual label. 
 
The second term Ω is the ensemble regulariser, penalising both the number of the tree 
leaves and the 𝐿2 norms of its leaf weight vector, as defined by: 

Ω(𝑓) = 𝛾𝑇 +
1
2 𝜆E𝑤$!

6

$&'

 (5.4) 

where 𝑇 and 𝑤 are the number of leaves and the score on each leaf, respectively, and 𝛾 
and 𝜆  are constants to control the degree of regularisation. Apart from the use of 
regularisation, shrinkage and descriptor subsampling provide two additional techniques 
used to prevent over-fitting. 

5.3.3 Hyperparameter tuning and model training 
Hyperparameters are manually set before training machine learning algorithms. The best 
set of these is determined by tuning. Hyperparameter tunning is needed to deal with the 
potential for bias variance trade-off, which plays a vital role in the learning process 
(Geman et al., 1992). The XGBoost model has a number of tuneable hyperparameters as 
shown in Table 5.3 and three tuning strategies are often employed – grid search, random 
search, and Bayesian optimisation. A grid search is simply an exhaustive searching 
through manually specified combinations of hyperparameters, with the best combination 
identified by some performance metric, such internal measures of model fit. The search 
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space can be very large and computationally demanding and requiring too much time to 
be impractical. 
 
A random search is similar to a grid search but the number of hyperparameter 
combinations that are evaluated is reduced by examining the hyperparameter space, 
using the statistical distribution for each hyperparameter (Bergstra and Bengio, 2012). 
Both grid and random searches can be inefficient since the optimisation procedure is 
uninformed by any past evaluations, within the search. 
 
The Bayesian optimisation provides a solution to these issues (Bergstra et al., 2011). Here, 
it was undertaken using the MIBayesOpt R package. The Bayesian framework is 
comprised of two main components: a “surrogate” model of the objective function and 
an acquisition function. The idea is to optimise a probabilistic model for the objective 
function where the fitness evaluation of the former is much computationally cheaper than 
the latter (Snoek et al., 2012). An initial proxy function is specified based on the 
assumption of a Gaussian process (GP) (Rasmussen and Williams, 2006) and the posterior 
distribution over function is continuously updated with the added set of observations. 
The expected improvement (EI) function drawn from the posterior is commonly used as 
the acquisition function and hence chosen to indicate where to evaluate the function next 
in this study (Močkus, 1975).  
 
During the training phase, a procedure of repeated k-fold cross validation was employed 
to increase the predictive performance of the classifiers (Kuhn and Johnson, 2013). The 
training set was randomly partitioned into 10 folds of roughly equal size, each of which 
was held out in turn for validation while the other 9 folds were used for training. 
Meanwhile, each fold maintained the approximate proportion of each class identified in 
the previous step to alleviate the potential classification deterioration. The entire 
procedure was iterated 10 times with different permutations of the training set and the 
mean performance across all folds were averaged. 
 

Table 5.3. The XGBoost hyperparameters to be tuned. 
 

Hyperparameter Definition 
nrounds Boosting iterations 

eta 
Learning rate by which to shrink the feature 
weights 

max_depth Maximum tree depth 
gamma Minimum loss reduction 
Subsample Subsample percentage 
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colsample_bytree Subsample ratio of columns 
min_child_weight Minimum sum of instance weight 

 
XGBoost provides variable or feature importance metrics as part of its output to facilitate 
understanding of the model, clustered using k-means. The gain metric describes the 
average training loss gained when including a feature and provides the most relevant 
metric to interpret the relative importance of each feature.  

5.3.4 Accuracy assessment 
Model accuracy was quantified using confusion matrices, comparing predicted with 
observed classes in the test subsets. Several accuracy measures can be derived from the 
confusion matrix including Overall accuracy (the proportion of correctly classified 
observations) whose utility is reduced in case with imbalanced class distributions (Haibo 
He and Garcia, 2009) and Kappa accuracy which incorporates adjustments for random 
allocation agreement, and is more usually reported as an overall measure of accuracy 
(Foody, 2002).  

5.3.5 Mapping outputs  
The two models were applied to predict the evaluative level of scenic quality adopted in 
LANDMAP across the entirety of Great Britain, with a spatial resolution of 1 km. The 
Scenic-Or-Not data are reported over these units and the wildness attributes were 
aggregated to them in the following way: for each dataset, the central tendency and the 
variability within the 1 km were calculated (the mean and entropy for scenicness and the 
median and IQR for wildness) were calculated. The predictive models for both 
consultants were applied to these to predict the level of scenic quality for each grid square 
in Great Britain. The resulting maps capture the integration of different landscape 
assessment paradigms, and a bivariate choropleth map was created to compare the 
predictions from the two models.  

5.4 Results 

5.4.1 Hyperparameter optimisation and model building 
The optimisation of hyperparameter tuning is important for predictive performance. A 
Bayesian approach to this was taken using the hold-out method and the softmax function 
was used to estimate the normalised probability [0, 1] for each class. The best combination 
of parameters for the 2 models are shown in Table 5.4. 
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Table 5.4 The results of the Bayesian optimisation of model hyperparameters. 
 

Hyperparameter Consultant A Consultant B 
nrounds 209.910 1433.996 
eta 0.451 0.892 
max_depth 12 4 
gamma 0 0 
subsample 0.758 0.500 
colsample_bytree 1 1 
min_child_weight 0.2 0.6 

5.4.2 Classification performance  
The confusion matrices for each classification are shown in Figure 5.2. The Overall 
classification accuracies are 67.3% for Model A (Consultant A) and 74.5% for Model B 
(Consultant B), and the Kappa statistics for these models were 0.5 and 0.64 respectively. 
This suggest some inconsistencies in the relationships between the input spatial features 
and the LANDMAP classes, with the prediction performance of Model B being 
“substantially good” (Landis and Koch, 1977; Cicchetti and Sparrow, 1981), explaining 
the variation of the target variable better than Model A.  
 
In addition to these assessments, an evaluation was conducted where Model A was used 
to predict the test data sets of Consultant B and vice versa. These tests result in the Kappa 
statistics of 0.52 and 0.54 respectively, which served as an internal validation within the 
Wales dataset, examining the interoperability of the two models before considering 
spatial extrapolation to the UK. The results of this reciprocal prediction test further shed 
light on the comparative performance of the two models. The performance disparities 
may be due to geographical differences, variations in expert training and institutional 
background, as well as the variability of public scenic perceptions. However, the models' 
performance is therefore generally in line with existing landscape perception literature, 
albeit with some potential for improvement and further refinement. 
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Figure 5.2 The confusion matrices for Consultant A (left) and B (right) with the number 

and proportion of correspondences, and shading reflecting these. 

5.4.3 Relative importance of variables 
The relative importance of the variables was assessed through the gain metric and 
provides some understanding of the modelled processes. The results are shown in Figure 
5.3. For both models, the median of wildness was the most significant feature, followed 
by the mean of scenicness, with the IQR of wildness and the entropy of scenicness in a 
different order in the two models. Thus, there is considerable commonality in the models 
but with much less variation in the importance of the 4 predictor variables in the 
Consultant A model. Potentially these reflect the differences in the types of area assessed 
and classified by the two groups as described in Table 5.2 as well as potential differences 
in their landscape assessments. 

 
Figure 5.3 The variable importance metrics for each model. 
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5.4.4 Spatial distributions of landscape scenic significance 
The two XGBoost classification models were applied to predict the landscape scenic 
significance for each 1 km square grid cell and the results are shown in Figure 5.4. Areas 
of Outstanding scenic quality were mostly concentrated in the uplands of Scotland, the 
North of England and Wales, regions which are closely associated with higher levels of 
topographic variation, greater visual scales, and landscape diversity than those are not 
found in flat, lowland regions. However, there are some notable local differences in the 
levels of aesthetic landscape quality predicted by the two models, particularly in the 
differentiation of High and Outstanding and landscape quality. The spatial distribution 
of Low scenic quality was far less pronounced in the predictions of the Consultant A 
model, whereas these areas are obviously associated with urban regions in the 
predictions of the Consultant B model. 

5.4.5 Comparison of conceived maps regarding landscape 
aesthetics 
The bivariate choropleth map in Figure 5.5 directly compares the model predictions. It 
uses a 2-dimensional colormap to allow differences between the two classifications to be 
unpicked: areas that were classified as Outstanding scenic quality in both models are 
shown in green and were generally located in upland areas, whereas those of Low scenic 
quality in both models are shaded in magenta. These were mainly located in densely 
populated urban areas, including the London and Birmingham metropolitan areas. There 
are clearly substantial similarities between the two models, especially at either end of the 
quality scale (Low and Outstanding), suggesting the presence of a degree of consensus 
on landscape aesthetic quality for these classes. There is more confusion across the 
Moderate and High classes, as might be expected. Additionally, very few of the existing 
designated areas (National Parks, AONBs see https://landscapesforlife.org.uk/about-
aonbs/aonbs/overview), particularly those in a lowland context and situated in the south 
England, are identified as having High or Outstanding scenic quality in both models. One 
plausible explanation for this is that these protected areas are in close proximity to urban 
areas and their designation reflects a different set of priorities, for example related to 
access in support of recreation and relaxation. A further noteworthy observation is the 
large undesignated areas with Outstanding scenic value in Scotland, particularly around 
the southern uplands of Scotland. 

https://landscapesforlife.org.uk/about-aonbs/aonbs/overview
https://landscapesforlife.org.uk/about-aonbs/aonbs/overview


68 
 

 
Figure 5.4 Predicted scenic quality from the models trained on landscape quality 

assessment produced by Consultant A (left) and Consultant B (right). 
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Figure 5.5 A bivariate map of predictive outcomes of scenic quality from the two 

models. 

5.5 Discussion 

5.5.1 Integration of objective and subjective assessments 
This study sought to take an integrated and holistic approach to modelling landscape 
character, and to potentially complement current LCA practices. It combined citizen-
generated perceptions of landscape scenicness with objective measures of landscape 
wildness to predict landscape aesthetic quality, using models trained on data – expert 
assessments of aesthetic quality in Wales – generated by two different groups. The 
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models were then used to predict landscape quality over England, Scotland and Wales. 
The spatial distributions of the two model predictions are broadly similar, especially at 
the Low and Outstanding ends of the aesthetic quality spectrum, with model differences 
potentially reflecting differences in the areas upon which each model was trained (as 
shown in Figure 5.1). Despite the inherent limitations of crowdsourced data, as discussed 
below, a web-based preference survey of georeferenced landscape photos capturing 
public perceptions of landscape has been shown to mitigate the need for labour-intensive 
and time-consuming practices of traditional participative methods (e.g., in-situ 
questionnaires and interviews). This suggests that there are opportunities for landscape 
planners to adapt similar strategies by collecting and incorporating public opinions 
quickly and cheaply on a large scale, to augment the expert-led approaches of current 
assessments, such as LCAs. 
 
The novelty of this study lies in the systematic integration of physical and socially derived 
measures of landscapes characteristics to construct models of expert-based valuations of 
landscape aesthetic quality, using state-of-art machine learning approaches. The Overall 
classification accuracies of 67.3% and 74.5% and the Kappa statistics of 0.50 and 0.64 are 
comparable to the previous studies and reflect some of the vagaries associated with 
human perceptions and cultural preferences (Palmer, 2004; Warnock and Griffiths, 2015; 
Chesnokova, Nowak and Ross S Purves, 2017). The methods employed in this study 
demonstrate how current paradigms in landscape character and aesthetic assessments 
could be augmented and used to construct consensus across experts and non-experts. 
They also indicate a potential approach that addressed the lack of any systematic and 
reproducible evaluations of landscape quality and aesthetics for England and Scotland, 
rather than the current exclusive focus on opaque Landscape Character Assessments. 
Such approaches and the resulting maps can be seen as a fusion of these three existing 
paradigms – the LANDMAP classification, the physical landscape measures related to 
wildness and the public perceptions of scenicness – and represent an integration of 
different types of views about the landscape. If different expert perceptions are explored 
(as in Figure 5.4 and 5.5), then a consensus of important regions of outstanding scenery, 
can be determined, across different evaluations. 

5.5.2 Implication for landscape management and planning 
The application of the predictive models provides crucial insights into the distribution of 
landscape aesthetic quality across Great Britain. Specifically, these models could help fill 
the void of landscape baseline in England and Scotland, regions that currently lack such 
landscape baselines. The resulting spatial outputs embody the collective influence of the 
predictor features and offer adequate detail for national-scale management and planning 
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and could potentially supplement the existing national/regional landscape character 
framework. 
 
In the broader context of landscape conservation and enhancement, the findings present 
several critical implications for making nuanced, context-specific strategies in landscape 
management. Regions of outstanding scenic quality were highlighted, including some of 
the existing protected landscapes such as the Cairngorms, the Lake District, and the 
Snowdonia National Parks. These areas, characterized by their high aesthetic scenery, 
necessitate concerted preservation efforts to maintain their unique landscapes. 
Conversely, regions exhibiting low scenic quality, most of which are densely populated 
urban areas, including the London and Birmingham metropolitan areas, point towards 
areas that could benefit from targeted landscape enhancement interventions. 
 
Moving to a more specific geographic lens, these models could guide discussions about 
potential locations for Scotland’s new national park – a significant concern on the Scottish 
government’s landscape policy agenda. Following public consultation, seven potential 
sites—Harris, Wester Ross, Glen Affric, Ben Nevis/Glen Coe, Cheviots, Galloway, and 
Coastal and Marine—have been identified. The models offer authorities crucial insights 
into the scenic quality of these sites, a crucial consideration in the decision-making 
process for designation. 
 
Particularly noteworthy is the case of Galloway, an area marked by extensive coniferous 
woodland, a land use which may not traditionally be perceived as aesthetically pleasing. 
Galloway is currently home to several distinct landscape designations, including the 
Galloway Forest Park, the Galloway International Dark Sky Park, and a UNESCO 
Biosphere Reserve. Despite these recognitions, the area's existing designation status is 
considered insufficient for ensuring its adequate protection. Rapid land use changes—
reflected in large-scale afforestation, hydro development, shifts in agriculture, and 
renewable energy development—pose significant threats to Galloway’s exceptional 
natural beauty. The spatial outputs can significantly contribute to understanding the 
landscape's aesthetic quality and potential future management strategies for the area, 
particularly in the context of its suitability for designation as a National Park. 
 
Given the “very real concerns” about the costs associated with establishing any new 
national parks, the Scottish government is eager to maximise the potential of existing 
designations and associated economic development opportunities. However, the existing 
designation status of Galloway is considered insufficient for ensuring its adequate 
protection. In light of rapid land use changes—reflected in large-scale afforestation, 
hydro development, shifts in agriculture, and renewable energy development—
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Galloway’s exceptional natural beauty warrants dedicated efforts and resources for its 
preservation. 

5.5.3 Limitations of data and method 
There are some limitations to this study, especially regarding the use of crowdsourced 
data and the associated, well recognised issues related to its data quality. The Scenic-Or-
Not project employs only one Geograph photograph to represent the local landscape 
characteristics of each 1 km, resulting in the potential for bias around the 
representativeness of the scenicness rating (James F Palmer and Hoffman, 2001) and of 
the contributors. There may also be issues of consistency across public contributors, with 
individual participant’s assessments of the same scene varying (Daniel and Boster, 1976). 
There are also issues associated with the perceived quality in the photographic view not 
always matching in situ assessments and their multisensory ‘engagement’ (Palmer & 
Hoffman, 2001). 
 
There are also potential limitations associated with the scales of analysis undertaken in 
this study. The machine learning models were trained on data assembled over the 
LANDMAP areas, and then applied over 1 km grid cells, and thus potentially affected by 
the differences in the model scale and the inference scale. Such issues are reflected in the 
modifiable areal unit problem (S. Openshaw, 1984), which posits that any statistical 
correlations and relationships may vary when data are brought together over different 
scales of analysis.  
 
A final set of considerations relates to the areas over which the models were trained. First, 
none of the selection criteria used in the delineation of the LANDMAP areas were 
incorporated in this analysis. These were unknown to this study, but a greater 
understanding how individual areas were delineated and constructed could be used to 
refine the predictive models. Second, the model constructed over the areas classified by 
Consultant A were mainly mid and North Wales, where the landscape is predominantly 
mountainous, and has a profound effect on the observer’s experience, such as the 
topographic screening and impacts on views and aspect. Thus, there is uncertainty 
associated with extrapolating over the area with different characteristics, such as lowland 
and flat coastal plains. No such local context was included in the models but the inclusion 
of local frameworks to capture local structure amongst variables could support a more 
nuanced model (explanation). For instance, the shapley additive explanations (SHAP) is 
a fast practical method based on game theory that attempts to enhance interpretability by 
computing the importance values for each input feature for individual predictions 
(Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal and S.-I. Lee, 
2020). Such approaches could enhance the relatability of landscape predictions. 

https://www.sciencedirect.com/science/article/pii/S0169204620304667#b0230
https://www.sciencedirect.com/science/article/pii/S0169204620304667#b0230
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5.5.4 Outlook for LCA 
This study has shown how more inclusive landscape assessment practices could evolve 
to incorporate multiple perspectives, perceptions and evaluations into the LCA processes 
(Wascher, 2005; Fairclough et al., 2018). It has demonstrated how information and data 
from diverse sources (including citizen science, user-generated content, social media, etc) 
can be integrated with geographical information to provide extensive and consistent 
landscape assessments. 
 
It is hoped that approaches to landscape assessment and research will continue to 
develop around approaches that seek to include understandings of how people think 
about, conceptualise and value their landscapes, focusing on their individual perceptions, 
experiences, cognitions and behaviours (Dunkel, 2015; Koblet and Purves, 2020). These 
embedded micro-level views may also, in the future, contain not just visual but aural and 
olfactory facets of landscapes, for example. Whilst this poses potential methodological 
challenge to handle these diverse sources of information, requiring interdisciplinary 
techniques (e.g., text mining and computer vision, etc), such inputs and approaches could 
be intertwined with the existing LCA to improve the validity of the assessment itself and 
evaluations of the integrity of a landscape (Koblet and Purves, 2020). However, this more 
inclusive approach to LCA is unlikely to happen unless practitioners are willing to 
expand their thinking, rather than preserving their primacy, and are prepared to handle 
diverse and potentially conflicting views to their own within assessments in support of 
decision-making (Butler, 2016). 
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Chapter 6 Discussion and conclusion 
This chapter provides a critical review of the research results, data, and methods. It 
follows the structure of Chapter 3 – Chapter 5, with each research question being 
discussed in a dedicated section. The fourth section delves into the limitations of the data 
and methodological issues. The fifth section is centred on the potential implications of 
this research. The concluding remarks provide a comprehensive summary and highlight 
the future prospects in landscape assessments. 

6.1 Linking wildness with scenicness 

6.1.1 Answering research question 1: 
How are crowdsourced perceptions of scenic beauty associated with expert-based measures 
relevant to landscape wildness quality, and at what scale? (Chapter 3) 
 
In Chapter 3, a range of statistical methods, including correlation analysis, global and 
local regression modelling, was applied to examine the spatial relationships between the 
crowdsourced scenic ratings and the GIS-based measures of wildness quality. Upon 
aggregating these variables into larger, regular grids, they revealed statistically 
significant correlations. These findings align with earlier research (e.g., Palmer, 2004), 
demonstrating a high correlation between GIS-described landscape patterns and human 
perceptions. The findings serve to strengthen the conceptual common ground between 
wildness and scenicness, bridging two related fields of study.  
 
However, it is important to acknowledge the role of the scale of analysis, in this case, the 
grid size, in shaping the findings. Different levels of abstraction introduced by the chosen 
scale can influence the relationships within the spatial data. A detailed discussions on 
this scale effect is provided in Section 6.4.2. For this study, a hexagon was used as the grid 
shape. This choice was made because a hexagonal grid structure provides distinct 
advantages in terms of consistent and equidistant neighbour traversal, compared to 
triangle or square grids (Brodsky, 2018). Further, the selection of a 5 km grid size was 
driven by three primary considerations: Firstly, there are certain reservations concerning 
the spatial accuracy and representativeness of the Scenic-Or-Not data, as further 
discussed in Section 6.4.1. The process of data aggregation might help to reduce biases 
associated with these concerns. Secondly, for a national scale case study, this grid size is 
deemed capable of capturing an appropriate level of spatial variability. Thirdly, dealing 
with large sample sizes through the MGWR framework poses significant computational 
complexity, an issue that cannot be overlooked. This computational burden can be 
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mitigated by the process of data aggregation. Nonetheless, it is essential to bear in mind 
that the effect of data aggregation could result in difference in inferences and conclusion 
drawn from the study. 

6.1.2 Bandwidth selection and the role of remoteness in 
landscape perception 
Chapter 3 presents a contrast of the results from GWR and MGWR. This comparison 
highlights the sensitivity of bandwidth selection within the geographically weighted 
(GW) regression framework, which can lead to contradictory sets of local coefficient 
estimates produced by different local model specifications (Li et al., 2020). This is evident 
in the case of “remoteness” where the appropriate bandwidth for remoteness, as 
determined by MGWR (1,944.2 km) — a distance that spans the entire study area, is 
significantly larger than the ‘average’ bandwidth obtained in GWR (15.2 km). The 
incongruent scales result in the drastic difference in the local coefficient estimates. For 
example, the local coefficient estimates for remoteness, derived from GWR, show spatial 
non-stationarity, with a majority of local parameter estimates failing to reach statistical 
significance (see Figure 3.5). This may be attributed to the ‘one-size-fits-all’ bandwidth 
selection employed in GWR calibration. In contrast, the MGWR coefficient estimates for 
remoteness exhibit a nearly consistent relationship across space due to the smoothing 
effect of the very large bandwidth. Consequently, these estimates, though appearing 
much smaller in magnitude when compared to the other covariates, nevertheless attain 
an increased level of statistical significance (see Figure 3.6). This revelation contributes to 
a nuanced understanding of the stationary or global effect, albeit marginal, of remoteness 
on scenicness. 
 
Meanwhile, this study emphasises the importance of bandwidth selection in GW 
modelling. This can be interpreted as follows: remoteness, mainly pertaining to landscape 
accessibility, does not significantly affect the aesthetic characteristics of a landscape. 
Rather, it serves as a contextual factor in landscape perception. For example, an 
outstanding yet remote landscape might be inaccessible for visitation, thereby inhibiting 
the formation of aesthetically pleasing perceptions of such a landscape. Meanwhile, 
previous research on landscape value modelling has shown that accessibility account for 
a significant amount of the observed variation in photo concentrations across various 
photo-sharing platforms (Boris T. van Zanten et al., 2016). These findings could 
potentially inform future theoretical development that non-visual factors (such as 
remoteness or roadlessness and accessibility) could play a marginal effect on an appraisal 
of visual quality. Hence, Chapter 3 make a distinct contribution by distinguishing the 
difference in the spatial scales of processes between the non-visual factor—remoteness—
and the other visual landscape characteristics—absence, naturalness, and ruggedness. 
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The MGWR outputs—the bandwidth estimates, local coefficients and their significance—
are clearly more sensible than those calibrated from GWR. It also advances the 
knowledge regarding the different levels of spatial heterogeneity exhibited by the four 
separate processes. 

6.1.3 Superiority and applicability of MGWR 
In the results, the goodness-of-fit of the MGWR model was slightly higher than that of 
GWR (adjusted	R! = 0.831	and	0.818 , respectively), both of which outperformed the 
MLR (adjusted	R! = 0.710). Moreover, obvious decreases in AICc of MGWR over GWR 
(AICc = 18,313	and	18,430, respectively) were observed. Both were much lower than that 
of MLR (AICc = 23,001). This comparative result is in alignment with prior research (Li 
et al., 2020) as MGWR relaxes the unrealistic restriction of the same bandwidth for each 
modelled process and the intercept in GWR, allowing each relationship at the same 
location to have a different spatial weighting matrix (A. Stewart Fotheringham et al., 
2017). This adjustment mitigates the susceptibility to local collinearity typically 
associated with GWR, enhancing the reliability and precision of the model. All these 
findings denoted that MGWR was superior to GWR in explaining the relationships 
between scenicness and four wildness components. Hence, this empirical study supports 
the advocacy that MGWR is now regarded as the default local model specification, with 
GWR being used only in specific circumstances (Comber et al., 2023). 
 
The calibration of the MGWR model employs a more complex backfitting algorithm, and 
thus, requires more time to converge. Nonetheless, recent advancements have made it 
possible to calibrate even massive datasets within a manageable timeframe (Li and 
Fotheringham, 2020). Such advancements have paved the way for wider interdisciplinary 
applications of MGWR in various fields such as epidemiology and tourism (Mansour et 
al., 2021; Shabrina et al., 2021), but its application in the field of LP&P remains limited. 
Notably, the MGWR modelling is grounded on the premise of linearity and additivity, 
implicitly suggesting that more complex non-additive higher-order interactions are 
negligible or absent. However, the validity of this assumption is often unknown, which 
poses a potential limitation. Notwithstanding, even without explicit underlying theories, 
MGWR serves as an exploratory tool to grasp the spatial context of the underlying 
heterogeneity of perspectives from experts and laypeople, thereby facilitating 
collaborative planning. 

6.2 Comparing scenic evaluations between experts and 
non-experts 
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6.2.1 Answering research question 2: 
To what extent do people’s photographic ratings for landscape scenic beauty correspond with 
expert-led, character-based evaluations of scenic quality? (Chapter 4) 
 
Average of public scenic perceptions within character areas 
Chapter 4 presents a comparative study to determine the extent to which public 
perceptual ratings for landscape scenery, derived from the Scenic-Or-Not campaign, 
correspond with expert-led, character-based evaluations of scenic quality, sourced from 
the LANDMAP visual and sensory dataset. The underlying central tendency and 
variability of public perceptions were initially obtained through calculating the mean and 
entropy of crowdsourced scenicness underneath each aspect area. The process of data 
aggregation is further considered and discussed in Section 6.4.2. These collective 
summary statistics for every Level-2 landform type were visualised through boxplots, as 
illustrated in Figure 4.2, to examine the assumption of homogeneous qualities made in 
this character-based evaluation. It comes no surprise that the most aesthetically 
appreciated landforms are water-related, including coastal waters, coastal, and inland 
water, which are contrasted to those landforms associated with development. This 
observation provides an evidence base to underpin much of the previous work on human 
landscape perception and preference (Real et al., 2000; Arriaza, J. F. Cañas-Ortega, et al., 
2004). Among the four Level-1 classifications, water classes received the highest average 
scenic scores, followed by upland, lowland, and development classes, respectively. 
 
Variability of public scenic perceptions within character areas 
Landforms associated with upland regions, particularly ‘exposed upland or plateau,’ 
exhibited distributions sharply peaked around a higher average entropy of scenicness, 
indicating considerable variability. Conversely, those associated with water bodies and 
developed areas tend to demonstrate less variability. This discrepancy could be due to 
the increased diversity and complexity implied by elevated terrains where topographical 
and meteorological effects may be amplified (e.g., mountain grandeur or harsh weather 
conditions), resulting in a broad range of visual perceptions for landscape images. This 
observation points to a limitation in the broad classification of continuous elevation and 
land cover patterns into different landform categories. It is recognised that as the 
landform characteristics increase in dimension, for instance, an increase in relative 
elevation (e.g., from flatlands through hills to mountains), the land cover pattern becomes 
less important as an element of visual quality. Conversely, as landform dimensions 
decrease, the variety of ground cover becomes increasingly important for maintaining 
high scenic value. Nevertheless, the complex interrelation between elevation and land 
cover, which significantly impacts the landscape pattern in human visual perception, is 
not adequately accounted for by the current characterisation practices. 
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Comparing expert and non-expert perspectives 
The crowdsourced average scenicness were regressed onto the dummy-coded covariates 
of the landform types, using an OLS model. The resulting coefficients were found to be 
statistically significant at the 0.001 level and could be ordered rationally, as detailed in 
Table 4.5. This result affirms the relevance of this typology for evaluating the aesthetic 
and perceptual value of landscapes. On the other hand, the effect of these landform types 
on each level of scenic quality, as evaluated by experts, were estimated by constructing 
four logistic regressions using the same reference category (built land). These coefficients 
were then used to rank the categories after being transformed into the odds of being rated 
at each of the four levels of scenic quality. Although these landform types are not 
influential to the evaluations of scenic quality, as indicated by their poor goodness-of-fits, 
most of the coefficients fell below the significance level of 0.05. It is important to note that 
the ranking order is subject to the uncertainty inherent in these estimates. Only the model 
for outstanding scenic quality yielded more reliable and stable coefficients than the other 
models, as depicted by their corresponding 95% error bars (see Figure 4.3). Despite this 
uncertainty, the pairwise comparisons of the rank-order between expert and public 
perspectives revealed a degree of rationale and similarity (see Figure 4.4). For example, 
both groups attributed the highest valuation to landforms associated with water among 
the four first-level classes. 

6.2.2 Landscape appraisal: shared and divergent perspectives 
While much of the literature concentrates on the development of analytical and expert 
techniques for landscape appraisal, a counterargument posits a lack of consensus on what 
constitutes aesthetic value (Daniel, 2001). Despite this contention, there is indisputable 
statistical significance in people’s preferences for landscapes (Real et al., 2000; Arriaza, J. 
F. Cañas-Ortega, et al., 2004). The findings presented in Chapter 4 further reinforce these 
common preferences, though differences in perspectives between the two groups do exist. 
Notably, a clear consensus between experts and the public is noticeable at the upper end 
of the scenic spectrum, where significant changes in rankings are minimal. This 
congruence in landscape appraisal also supports evolutionary principles and provides a 
foundation for formulating new hypotheses about the potential of leveraging 
crowdsourced scenicness. These could be used to predict the evaluative levels of scenic 
quality in line with LANDMAP’s qualitative scale, as demonstrated in Chapter 5. In 
contrast, less consensus is evident in the mid-range of the scenic spectrum, where some 
variation in landscape preferences between these two groups is observed. Public 
assessments play an integral role, complementing expert-based assessments of physical 
landscapes in guiding landscape management and planning. However, there is a 
challenge in reconciling the multi-dimensional landscape assessment used by experts in 
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defining the character areas with the mono-dimensional response obtained from the 
public responding to the photographs, where the visual component clearly dominates the 
assessment. These discrepancies in landscape appraisal could guide future refinement of 
the approach. Therefore, this comparison serves as a starting point for further inquiry. 

6.2.3 Methodological enhancement in landscape characterisation 
LANDMAP provides a valuable hierarchical classification system for the visual and 
sensory characterisation of landscapes and the evaluation of their quality, utilising 
consistent and objective criteria. This output is represented as GIS polygons with distinct 
and sharp boundaries. One methodological limitation, however, is the focus of the 
landscape characterisation process on a bird-eye’s view, rather than a ground-level 
perspective. Furthermore, human visual perceptions of landscapes are generally not 
unique, well-bounded spatial entities. Instead, their shape and extent depend on the 
observer’s spatial position, height, and elevation. With advancements in fast 
intervisibility analyses, it is timely to stand back and reappraise the methodology and its 
outputs. There are promising possibilities in characterising visual landscapes via 
advanced GIS-based viewshed analyses. These techniques include vertical voxel 
viewsheds (Carver and Washtell, 2012), used in constructing specific wildness 
components, and experion viewsheds (Brabyn, 2015), which consider the viewer’s 
localised contexts and the screening effect of nearby topographical features. These 
viewshed analyses offer a more nuanced and realistic understanding of how landscapes 
are perceived from a human perspective, thereby enhancing the relevance to human 
perception. This direction provides a promising avenue for future research and 
development in the field of LP&P. 

6.3 Integrating objective and subjective landscape 
assessments 

6.3.1 Answering research question 3 
Can the integration of the subjective perceptions, objective assessments, and character-based 
evaluations mentioned above be used to effectively map landscape scenic quality? (Chapter 5) 
 
The evidence from Chapter 3 and Chapter 4 somewhat provides an a priori expectation 
and justification for potential correlations in datasets derived from the Scenic-Or-Not, 
wildness mapping, and LANDMAP initiatives. Each of these initiatives captures different 
aspects of landscape quality using various measurement scales, which are closely 
associated with landscape aesthetics. The fundamental premise of this study is that these 
measures may exhibit a certain level of agreement or correlation, forming the basis for 
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modelling these relationships in Chapter 5. The ultimate research aim is to integrate both 
expert-based, objective assessments and nonexpert-based, subjective assessments, 
namely wildness and scenicness, into a comprehensive nationwide landscape assessment. 
The expert-based judgements served as the standard criteria to determine the optimally 
combined configuration (weights) of wildness and scenicness assessment scales, which is 
then used to standardise these scales into a consistent format. Unlike the purpose of 
modelling in Chapter 3, spatial dependency was not considered in this modelling. To 
maximise predictability, the state-of-the-art machine learning (ML) algorithm, XGBoost, 
was employed which allowed for a thorough examination of potential nonlinear 
relationships and higher-order interactions among the variables. Two separate models 
were trained based on the assessments conducted by two different expert groups in the 
northern and southern parts of Wales, respectively. Both models achieved an overall 
classification accuracy exceeding 67%, providing empirical support for the underlying 
motive and evolutionary theories (refer to Section 2.2.1). 
 
These models were then applied to predict the levels of scenic quality across Great Britain 
(GB), particularly benefiting England and Scotland, which lack such landscape baselines. 
One key caveat is that the models, built using aggregate measures, were used to predict 
grid units of 1 km, potentially presenting an unresolved issue further discussed in Section 
6.4.2. Nonetheless, the spatial outputs from this extrapolation essentially reflect the 
ensemble of the predictor features, which can be regarded as a rescaled fusion of wildness 
and scenicness measures. The spatial ‘resolution’ of these outputs depends on the 
granularity of available scenic ratings. Despite this limitation, they offer adequate detail 
for national-scale management and planning, potentially supplementing the existing 
national/regional landscape character framework (refer to Section 2.5.2). These maps 
could be integrated into a single bivariate map, using a colormap to highlight regions of 
common outstanding and low quality for landscape conservation and enhancement, as 
shown in Figure 5.5 This map is particularly useful in identifying special areas based on 
scenery and aesthetics. The outstanding areas align well with some of the existing 
protected landscapes, including the Cairngorms, the Lake District, and the Snowdonia 
National Parks. Importantly, these findings could guide discussions about potential 
locations for Scotland’s new national park, a topic on the Scottish government’s 
landscape policy agenda. Following public consultation, seven potential sites have been 
identified. These findings offer authorities key insights into each site’s scenic quality, 
which is a crucial consideration in designation decision-making. 
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6.3.2 Automating characterisation process through multiple data 
integration  
The LANDMAP project crucially establishes a systematic and detailed methodology for 
assessing the visual and sensory characteristics of the landscape in Wales. However, the 
landscape characterisation and evaluation processes can be heavily manual and costly 
tasks for a country, let alone the whole of the UK. It is important to acknowledge the 
potential for incompatibility in such assessments, as being largely relied on expert 
interpretations and valuations. However, the consistency of assessments cannot be 
assured though within the highly institutionalised framework, as different experts may 
arrive at different conclusions to produce a typology and hierarchy of spatial units that 
may not be comparable. Further, the following field valuation for the prior-defined 
spatial typology of landscape may vary even among experts. Moreover, defining ‘quality’ 
landscape through such methodological approach may not adequately represent public 
opinions (Butler, 2016). Altogether, these considerations might explain why landscape 
planners are sometimes reluctant to tackle the visual and perceptual aspects of 
landscapes, despite the prevalence of character-based approaches in the UK’s landscape 
assessments. 
 
Previous research has demonstrated the effective use of CGI data from social media 
platforms (i.e., Panoramio, Flickr, and Instagram) in modelling landscape values (Boris T. 
van Zanten et al., 2016). However, the incorporation of perceptual ratings from people, 
like the crowdsourced scenicness highlighted in this thesis, is still uncommon in 
contemporary landscape assessment practices (Medeiros et al., 2021). The Scenic-Or-Not 
campaign offers an otherwise bottom-up approach to crowdsourcing public perceptions 
of scenic beauty with a basic level of engagement. However, this approach is not without 
potential biases, which will be further discussed in Section 6.4.1. A significant challenge 
with using CGI is data scarcity, often resulting from issues of accessibility. Certain remote 
areas may be difficult to access, resulting in limited or no data availability. Efficient 
indicators, such as the wildness index used herein, are particularly needed to fill this gap, 
and they should rely on open and regularly updated data sources. The methodology 
proposed in Chapter 5 highlights the analytical and inferential benefits of integrating 
ground-level views with bird’s-eye views of the landscape for empirical modelling. This 
indicates a potential opportunity for automating and standardising the land 
characterisation process of scenic quality. However, further research is needed in this 
direction due to the lack of a shared theoretical basis, a common operational framework, 
and a harmonised data collection approach. 
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6.3.3 Pros and cons of machine learning 
To integrate both objective and subjective assessments from expert and the public 
respectively, Chapter 5 presents the advantages of employing a machine learning (ML) 
predictive model, XGBoost. Unlike traditional statistical modelling, ML models often do 
not require certain assumptions such as normality, independence, or linearity. XGBoost 
is highly flexible and efficient in capturing complex non-linear relationships among 
variables while reducing the need for extensive data pre-processing tasks such as 
imputation and normalisation. This is particularly useful when integrating CGI data with 
missing values into the model parameterisation process. As shown in Chapter 5, each 
trained model provides a prediction accuracy comparable to sophisticated statistical 
methods used in previous landscape perception research (Boris T. van Zanten et al., 2016). 
 
However, XGBoost models tend to overfit the training data if the model complexity is too 
high or if the hyperparameters are not properly tuned. In this case, model complexity is 
not an issue as the XGBoost models involves two predictor features. Bayesian 
optimization provides a computationally efficient and effective solution for the latter 
issue, as detailed in Section 5.3.3. It is also worth noting that ML/AI techniques cannot 
infer statistical significance, which limits their applicability for hypothesis testing. 
Furthermore, their predictions have often been characterised as lack of transparency and 
interpretability. Therefore, understanding how these ‘black box’ models work is vital for 
their practical implementation in decision-making processes including land use planning. 
The gain metric, illustrated in Figure 5.3, offers an overall estimate of each feature’s 
contribution to the XGBoost model’s predictions, but fails to capture the specific influence 
each predictor has on a given prediction. Moreover, unlike the geographically weighted 
(GW) modelling, spatial autocorrelation cannot be directly embedded within ML/AI 
models and their predictions. Recent studies have used coordinates and their derivatives 
as proxies to partially account for spatial dependency effects (Li, 2019; Li, 2022). 
 
Future endeavours can, thus, focus on integrating locational covariates to account for 
spatial dependency and continuity, as well as on analysing the importance of each feature 
in every prediction using local interpretative frameworks such as shapley additive 
explanations (SHAP) (Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, 
Bansal and S.I. Lee, 2020). There remain opportunities to leverage XGBoost and some 
local interpretative frameworks to facilitate more nuanced spatial-context investigations. 

6.4 Data limitations and methodological issues 
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6.4.1 Data quality issues 
Despite the large volume and bottom-up nature of CGI can supplement authoritative 
information, potential issues related to its representativeness and accuracy should not be 
ignored. Considering that the images used in Scenic-Or-Not originate from Geograph, it 
is necessary to first discuss any potential biases inherent in Geograph. Moreover, 
although using photographs as a proxy is a widely accepted practice in landscape 
perception studies, potential quality issues that might arise in Scenic-Or-Not are also 
worthy of discussion. 
 
Potential biases in Geograph 
The Geograph project principally encourage public contributions of geographically 
representative photographs for each grid square, rather than focusing on ‘artistic’ images. 
This project calls for the actual visitation of each square to document prominent 
geographical features. Yet, the essence in photographing landscapes often involves a 
process where photographers direct their ‘aesthetic, socio-cultural and historical lens’ 
towards the landscapes, expressing their complex experiences. This entails a process of 
interpretation mediated by perceived meanings and perhaps emotional responses to the 
landscape. Further, the current distribution of contributed photographs is influenced by 
a combination of biophysical and socio-ecological factors, such as accessibility and 
population densities. While any submission of inappropriate images would be rejected 
by a panel of moderators, it remains inevitable that contributors can introduce a degree 
of personal biases through subjective selection and framing of landscape scenes. 
 
Moreover, the current guidances stipulate that a genuine ‘Geograph’ image should be 
taken within the same grid square as the subject, providing a sufficient context of the 
surroundings. However, when in mountainous areas, the availability of vantage points 
can alter the scale and quantity of the landscape visible in both horizontal and vertical 
directions, thus changing people’s perception of the landscape (Bell, 2019). Coastal 
regions also offer wider viewing distance with a unique character arising from the 
conjunction of land and water, thereby enhancing perceived aesthetic qualities. 
Photographs taken from these areas likely present ’cross-grid’ views, capturing distant 
subjects or features beyond the one square kilometre extent. Viewing distance can greatly 
impact the perceived visual scale (Bell, 2019). However, such far-reaching photos are 
generally discouraged as the rules encourage visiting all possible land squares. This could 
lead to an underrepresentation of samples with viewsheds larger than 1 km, potentially 
affecting the scenic appreciation associated with these grid squares. 
 
Potential biases in Scenic-Or-Not 
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Scenic-Or-Not participants, unlike Geograph contributors who generally visit landscapes 
in person, simply rate photographs presented randomly, without knowing their locations. 
Essentially, these online scenic ratings are surface-level reactions to visual stimuli, with 
the primary focus on immediate visual perception and no involvement of any conceptual 
judgement. Furthermore, the sequence in which these photographs are presented may 
direct attention and influence scenic evaluations (Bruce Hull and Revell, 1989). This basic 
cognitive process does not take into account historical and ecological ideologies, values, 
or perspectives. Consequently, images that lack of an effective pictorial composition, or 
that do not evoke excitement or amusement, are often perceived as less scenic. The 
reliability and validity of these photographic surrogates for ‘real-world’ experiences 
heavily relies on the representativeness of selected photographs (Bubalo et al., 2019), as 
each photo samples a fixed, limited view rather than the entire landscape of a given 
location. Additionally, general concerns persist that photographs would not be able to 
simulate the multi-sensory stimuli of an in-situ landscape experience (James F. Palmer 
and Hoffman, 2001). 
 
In the Scenic-Or-Not campaign, most squares include only a single Geograph photograph, 
with unknown selection criteria. Notably, a case of non-random selection was observed 
in the Lake District, where nearly 850 out of the 2,300 chosen photographs were taken by 
the same Geograph user (Chesnokova, Nowak and Ross S. Purves, 2017). This could 
potentially introduce personal biases towards landscapes, thereby influencing the rating 
outcomes. Considering that a 1 km by 1 km area seldom consist of just one type of 
landscape, it might be more representative to use multiple pictures to capture the variety 
of the landscape. Hence, questions about the representativeness of the data raise when 
applied at larger scales. Despite this, the granularity of these perceptual ratings appears 
sufficient for national level applications, suggesting that the scope of application might 
influence the effectiveness of these ratings as suitable input for landscape assessment. 
 
Notably, the feature in Scenic-Or-Not that allows rating without login or registration has 
both potential strength and weakness: strength because it may help in increasing 
motivation to contribute; weakness because it obscures the demographic information of 
participants, hindering further investigation of the differences between social groups. 
Consequently, it becomes a challenge to determine if the crowdsourced scenic ratings 
truly reflect the wider public’s opinions, or just represent those of a small, highly engaged 
subset of the population. Moreover, there may be potential source of uncertainty in the 
ratings caused by the misunderstanding of the Likert. For instance, participants might 
reverse the scoring system, attributing a score of 10 to the least scenic beauty and 1 to the 
most attractive scene. In addition, the issue of vandalism, which is pervasive among CGI 
data, might contribute to such uncertainty (Degrossi et al., 2018). 



88 
 

6.4.2 Change of support problem (COSP) and modifiable area 
unit problem (MAUP) 
This thesis aimed to integrate three spatial datasets, collected at various types and scales: 
Scenic-Or-Not (point data), Wildness (raster data), and LANDMAP (areal data). The 
analyses conducted in this thesis inevitably led to concern about common issues 
discussed in geostatistics, specifically the change-of-support problem (COSP). The term 
“support” refers to the geometric properties – size, shape, and spatial orientation – of the 
regions from which the measurements are taken (Olea, 1991). The COSPs often arise from 
spatial misalignment, which occurs when observations are collected at one scale, but 
inferences are required at another one. Changing the support of a variable, usually 
through averaging or aggregation, yields a new variable with distinct spatial and 
statistical properties while maintaining a relationship with the original. Concurrently, the 
modifiable areal unit problem (MAUP) represents a relevant issue highlighted in spatial 
analysis and geographical literature (Openshaw and Taylor, 1979). Essentially, the 
MAUP is an area-to-area COSP, which is concerned with two interrelated problems: the 
scale/grouping effect or zoning/aggregation effect. Therefore, the results of spatial 
analyses are scale-dependent and sensitive to the defined spatial units (Gotway and 
Young, 2002). Hence, attention must be paid to both the aggregation and zoning aspects 
of the MAUP when working with spatial data. 
 
In Chapter 3, the results from GW modelling were influenced by two intertwined scale 
effects: the scale of sampling block and the kernel bandwidth used for weight 
determination (S. Su et al., 2012). The analyses were conducted at a higher level of 
abstraction through aggregating variables, using a series of 5 km hexagons. This 
aggregation process led to noticeable improvements in both the correlations and the 
coefficients of determinations, compared to those obtained from point-level 
measurements as a reduction in heterogeneity at the individual level due to aggregation. 
As such, it becomes critical to contextualise these results in conjunction with the scale of 
the blocks used. For example, the optimally calibrated bandwidth of 5.7 km for the 
intercept term from MGWR closely aligns with the size of the hexagons. This implies a 
potential variability of the local intercept almost on a per-hexagon basis, with a slight 
degree of smoothing, which might prevent overfitting during the analysis. Notably, the 
local coefficients of MGWR for the intercept, as depicted in Figure 3.6, show close 
resemblance to the dependent variable (see Figure 3.1). This may suggest an over-reliance 
on the intercept term for accounting for spatial variability. Therefore, the MGWR 
outcomes for the other predictors is primarily to evaluate the local deviance rather than 
the magnitude of the dependent variable. While the individual bandwidths of MGWR do 
provide valuable insights into the scales of relationships between response and predictor 
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variables, it remains uncertain whether the interpretation of these bandwidths should be 
associated with human-scale, particularly visual perception distances. In contrast to the 
global process of remoteness discussed earlier, the other three covariates related to visual 
landscape characteristics operate at scales ranging from local to regional. Specifically, the 
local parameters for naturalness vary at a broader spatial scale (118.6 km) than the other 
two local parameters. The optimal bandwidth for the relationship between scenicness 
and absence (32.9 km) is smaller than that between scenicness and ruggedness (48.7 km), 
indicating a more localised process for the former. However, the meaning of these 
bandwidths is difficult or impossible to ascertain. A systematic understanding of the 
impact of sampling block scale on the parameter-specific bandwidth derived from 
MGWR is yet to be established. This highlights the need for more comprehensive 
investigations and detailed discussions on scale-related issues in future research. Thus, 
further studies could aim to elucidate the intertwined scale effects within the MGWR 
framework. 
 
In Chapter 4, different spatial supports and measurement are noted in the assessments 
conducted by non-experts and experts. The crowdsourced scenic ratings were collected 
through point-based observations. In contrast, the authoritative assessments were 
primarily characterised as polygonal areas with qualitative evaluations. Before 
comparing these two perspectives, resolving this mismatch in spatial support becomes 
essential, which may give rise to a point-to-area COSP. When analysing the central 
tendency and variability in public opinions, the applied metrics include the mean and 
entropy. These were calculated from aggregating responses across all images within a 
given aspect area. Following the logic of character-based evaluation, this aggregation 
procedure assumed a homogeneity of landscape quality within each aspect area. 
However, this is a speculative and unrealistic assumption as this aggregation failed to 
distinguish between individual disagreement and heterogeneity of landscape quality 
across different photos. Furthermore, larger aspect areas would naturally encompass 
more photos, given the spatially even distribution of photo sampling from Scenic-Or-Not. 
The current calculation for the average and entropy of scenicness do not consider the 
different number of photos for each aspect area, nor the varying number of votes received 
per photo. Both of these factors could influence the areal estimates of central tendency 
and variability in scenicness. While most CGI data is point-referenced observations, 
contemporary LCA methodologies are specific to area-based characterisation and 
evaluation. The challenge of relating these two distinct types of spatial data in a way that 
allows for valid inference remains an unsolved problem. 
 
In Chapter 5, measures of scenicness and wildness were overlaid with the visual and 
sensory character areas. Summary statistics, particularly measures of centre and variation, 
were considered as predictor features for each of these character areas. These discrete 
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areas did not align well with the spatial structure of continuous wildness indices, 
resulting in quite skewed distribution. Therefore, for the wildness covariates, the 
resistant measures, specifically median and interquartile range, could provide more 
representative statistics. Following the data aggregation procedure introduced in 
Chapter 4, the mean and entropy continue to serve as the preferred measures to 
summarise the centre and variability of crowdsourced scenicness. However, as these 
three measurements inherently differ in their spatial scales and supports, the aggregation 
processes inevitably introduce a point-to-area COSP. These central tendency and 
variability measures were subsequently used as input features for predictive modelling. 
The models were trained at the character-based level, and then applied over the smaller 
grid level (downscaling). It is important to note that using such models of scenic quality 
was based on the assumption that the relationship existing between the covariates and 
the response variable at the training level are consistent with that at the prediction level. 
This assumption may not always hold true, potentially making the results susceptible to 
area-to-area COSP or MAUP. Therefore, the limitations and confidence of such results 
should be informed, as much as their advantages. However, end-users of these models 
should keep in mind the quote from Box et al., 2005: “The most that can be expected from 
any model is that it can supply a useful approximation to reality: All models are wrong; 
some models are useful.” 

6.5 Possible implications 

6.5.1 Implications for landscape planning and management 
The implications for landscape management and planning are threefold. First, 
geographically weighted spatial statistics has the potential for applications in landscape 
management practices. The outcome of GW analyses is a set of mappable local statistics, 
particularly useful for strategic planning and management purposes. This allows 
landscape practitioners to make better informed decisions for the priority allocation of 
resources. For example, based on the results of the MGWR analysis, it was found that the 
public’s perception of scenic beauty in Scotland is influenced by the degree of perceived 
naturalness, more so than in the other two countries within Great Britain. Indeed, 
Scotland is universally acclaimed for its remarkable natural beauty. Accordingly, 
landscape authorities or institutes could lay out more targeted and practical guidance for 
the national conservation interest. A further implication for landscape assessments is the 
potential application of wildness mapping. This methodology, reflecting aspects of the 
natural state, has not yet been widely used in LCA practices. In particularly, the visibility-
based approaches that characterise visual landscape structure (i.e., the visual absence of 
man-made structures, perceived naturalness of land cover, and terrain ruggedness) are 
closely related to human perceptual dimension. These could provide valuable references 
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for landscape visual character, which is foundational to any assessment and management 
action. 
 
The second broad implication is that the integration of objective and subjective landscape 
assessments also has the potential to spawn new areas of investigation. The further 
understanding of the difference in perspectives between experts and non-experts can also 
push the current assessment practices forward, likely yielding more inclusive evaluations. 
While the intent of this thesis is not to provide a comprehensive assessment, it seeks to 
inspire interdisciplinary conversations and encourage dual communication between 
experts and non-experts. 
 
Third, the individual maps of predicted scenic quality could be amalgamated into a 
bivariate map. This carries significant implications for the ongoing discussion concerning 
the establishment of a new National Park in Scotland. From the perspective of scenery 
and natural beauty, the southern uplands of Scotland including landscapes of Dumfries 
and Galloway, merit further consideration for conservation. Galloway is currently home 
to several distinct landscape designations, including the Galloway Forest Park, the 
Galloway International Dark Sky Park, and a UNESCO Biosphere Reserve. Given the 
“very real concerns” about the costs associated with establishing any new national parks, 
the Scottish government is eager to maximise the potential of existing designations and 
associated economic development opportunities. However, the existing designation 
status of Galloway is considered insufficient for ensuring its adequate protection. In light 
of rapid land use changes—reflected in large-scale afforestation, hydro development, 
shifts in agriculture, and renewable energy development—Galloway’s exceptional 
natural beauty warrants dedicated efforts and resources for its preservation. 

6.5.2 Implications for public participation in landscape 
perception 
Level of public participation 
Article 5 of the ELC stipulates the establishment of “procedures for public participation”. 
The ELC’s Explanatory Report recommends evaluating landscapes based on objective 
criteria first, and then comparing the findings with the views of various public groups 
(Council of Europe, 2000). The recommended procedures for fostering public 
participation include providing the public with information, consulting all representative 
bodies, using the media, and conducting awareness-raising campaigns at all levels. 
However, these procedures are somewhat top-down in nature, which is hardly 
compatible with the bottom-up approach advocated elsewhere and with the conception 
of landscape as ‘an area … as perceived by people’ (Council of Europe, 2000). From a 
practical standpoint, the investments required for these top-down procedures can be 
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time-consuming and cost-intensive, which may have a deterrent effect on planners. While 
public participation is a leitmotiv of the ELC (Prieur and Durousseau, 2006), the 
achievable level of involvement or engagement in practice remains unclear. To this point, 
instances of proactive, large-scale public involvement in landscape perception have been 
rarely seen, largely due to concerns that it could overwhelm the public, thereby 
potentially impeding the overall planning process. Ideally, viable participation methods 
should allow individuals to unconsciously contribute to spatial planning processes 
without feeling overstrained. The crowdsourcing projects utilised in this thesis may yield 
insights into implementing the participatory stance, as detailed follow. 
 
Gamification strategy 
Gamification is a popular strategy used to enhance participation in crowdsourcing 
initiatives, as exemplified by platforms such as Geograph and Scenic-Or-Not. These 
initiatives leverage gamified data collection methods to mobilise public engagement, 
encouraging people to document landscapes with varying levels of cognitive 
participation, as detailed in Section 2.6.2. For instance, Geograph invites contributors to 
provide representative images and associated information for every square kilometre, a 
task that necessitates an interpretative level of cognitive processing. This repository has 
so far contained abundant landscape photographs and related descriptive texts. These 
resources offer a wealth of information not only for traditional visual-centric studies, but 
also for explorations into other sensory modalities like aural landscape perception, thus 
enabling a more holistic understanding of people’s experiences and perceptions of 
landscapes (Chesnokova and Purves, 2018; Chesnokova et al., 2019). Conversely, many 
participants in Scenic-Or-Not are likely drawn by the pursuit of simple pleasure and 
entertainment, as the campaign demands relatively basic cognitive processing compared 
to Geograph. Hence, this photo-based survey can effectively capture the broad public 
perception of scenic beauty. This form of participation involves a simple appraisal of the 
landscape appearance and does not require deep though or extensive interpretation. 
 
Landscape sampling and presentation strategy 
A landscape can be viewed from an infinite number of positions and perspectives. When 
assessing landscape visual quality, it is critical to systematically sample this infinitude, 
though little attention has been paid to landscape sampling methods. To date, a 
universally optimal approach for landscape sampling has not been found. However, the 
Geograph project offers a systematic bottom-up data collection process, with simple 
guidance that seemingly helps to bridge this gap. It can assist in identifying landscape 
scenes used by persons who visit the landscape. Persons conducting the sample will be 
located in the landscape, familiar with it and hence sensitive to its nuances and meanings 
- the sample will reflect this. Similar practices involving public participation in landscape 
sampling could present an opportunity for a democratic and inclusive governance in 
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accordance with the ELC, in which rights and responsibilities in relationship to landscape 
are shared. 
 
On the other hand, the Scenic-Or-Not campaign has adopted a spatially even sampling 
procedure to ensure broad spatial coverage and avoid clustering of samples. However, 
the underlying criteria for selecting representative photographs remain undisclosed and 
the photos looked randomly chosen within the grid squares. Methodologically, the 
sampling grid size can be refined further to achieve a finer resolution than a 1 km square, 
allowing for more nuanced evaluation of spatial variations in public perceptions and 
preferences of landscapes. Far more experimental work is required to determine the 
effectiveness of the sampling granularity for the scope of landscape assessment. In 
addition, involving both insiders (local experts) and outsiders (landscape planners) is 
proffered in obtaining the best representative photographs. However, this approach is 
time-consuming and typically needs large-scale efforts to be implemented, compared to 
the use of scientific sampling. Moreover, future practices can also consider the use of 
advanced panoramic representations at any given location to truly reflect a human’s 
normal field of vision to address the limitation of photographic surrogates discussed in 
Section 6.4.1. Technologies employing panoramic street-level imagery or photosphere, 
together with an interactive, rotatable viewer that presents the image in a natural 
projection, have evolved to deliver a virtual, immersive experience of visual landscapes. 

6.6 Conclusions and prospects 

In response to the ELC’s call for public participation in the management and planning of 
all landscapes, this thesis proposes a pathway towards more inclusive and integrative 
landscape assessment methodologies. These methodologies aim to maintain a balance 
between expert-based, objectivist evaluations of landscapes and nonexpert-based 
subjectivist ones. To facilitate this integration, the thesis introduces innovative tools, 
demonstrating their applications in landscape perception and preference (LP&P) studies. 
The primary objective of this thesis is to answer three key research questions. 
 
First, the spatial relationships between crowdsourced perceptions of scenic beauty and 
expert-based evaluations of landscape wildness quality were explored, using MLR, GWR, 
and MGWR models. The results highlighted the limitations of GWR and revealed the 
promise of MGWR. The latter, by allowing for variable-specific bandwidths, yielded 
more spatially nuanced and statistically significant results. Furthermore, a distinct 
difference in the spatial the spatial scales of processes between the non-visual factor of 
remoteness and the other visual landscape characteristics—absence, naturalness, and 
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ruggedness—was identified by the MGWR findings. This study reinforced the advocate 
that MGWR should function as the default model for geographically weighted analyses. 
 
Second, a comparison of landscape scenic evaluations from experts and non-experts was 
undertaken. Essentially, these evaluations are respectively based on two different 
viewpoints: bird’s-eye and ground-level perspectives. The results indicated that water-
related landforms received the highest aesthetic ratings, while those associated with 
development scored the lowest. Greater variability in the perceptual ratings was evident 
in upland-related landforms. Further statistical exploration confirmed the relevance of 
the LANDMAP visual and sensory typology in assessing landscape aesthetics. Moreover, 
when the scenic rankings in the landform types were compared, a commonality in scenic 
evaluations between experts and the public was found, particularly at the higher end of 
the spectrum. 
 
Third, an integrative landscape assessment methodology has been proposed that 
combines subjective perceptions, objective assessments, and character-based evaluations 
for the empirical modelling of scenic quality. This methodology has resulted in models 
with a classification accuracy of over 67%. Techniques such as crowdsourcing and 
machine learning, specifically XGBoost, offer promising avenues for automating 
landscape characterisation, even though potential biases and data scarcity issues may 
arise. However, these models often suffer from overfitting and lack of interpretability. 
Future research could focus on enhancing model transparency by applying local 
interpretative frameworks. This might be coupled with the incorporation of locational 
information to address the lack of consideration for spatial dependency and continuity 
in current ML modelling practices. 
 
This thesis highlights the potential of CGI data in landscape assessment, advocating for 
the further development of analytical strategies to leverage these valuable, albeit 
imperfect, data sources. Recent studies have delved into the diverse contents of 
crowdsourced data, which include geographic, textual, and imagery dimensions. These 
sources provide a wealth of perceptual details and contextual information about 
landscapes (Callau et al., 2019; Koblet and Purves, 2020). Such studies offer potential 
solutions to some of the challenges in current LCA practices. It is expected that future 
LP&P studies will increasingly investigate how individuals perceive, conceptualise, and 
value landscapes via these data sources. These studies will acknowledge not just the 
visual aspects but also other sensory dimensions. The application of interdisciplinary 
techniques, such as text mining and computer vision, will likely be instrumental. Such 
inputs and approaches, when intertwined with existing LCA, can enhance both the 
validity and integrity of landscape assessments. 
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Appendix A – Supplementary notes for Paper I 

A.1 Interpretation of intercept variability 

In this appendix, the importance of considering the variability in MGWR coefficient 
estimates for the intercept term is emphasised. Such variability holds critical implications 
for understanding the estimates for the other covariates. The optimally calibrated 
bandwidth for the intercept term is found to be 5.7 km, which closely aligns with the size 
of the hexagonal units of analysis. This suggests that there might be a variability in the 
local intercept on a nearly hexagon-by-hexagon basis. However, a degree of smoothing 
is introduced by the bandwidth being slightly larger than one hexagon. This is likely to 
prevent overfitting during the analysis. 
 
Turning to Figure 3.6, it is observed that the local MGWR coefficients for the intercept 
bear a striking similarity to the dependent variable, as shown in Figure 3.1. This 
resemblance may point to a potential over-reliance on the intercept term when it comes 
to accounting for the spatial variability of the dependent variable. As such, the 
interpretation of the MGWR outcomes for the other predictors is to evaluate local 
deviance, rather than to explaining the spatial variation in the dependent variable.  
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Appendix B – Supplementary notes for Paper II 

B.1 The limitation of the used aggregation method 

The current approach to centre and entropy calculation, as outlined in Chapter 4, 
aggregates all responses across images within each aspect area. This approach has its 
limitation as it fails to discern between disagreements among individuals and variations 
in landscape quality across different photos within the same aspect area. Consequently, 
this approach operates based on the implicit assumption of homogeneity in landscape 
quality within each aspect area—an assumption that may be speculative and potentially 
misleading. 
 
Furthermore, another influential variable in this context is the number of votes each 
photo receives as well as the number of photos each aspect area includes. Although each 
photo in the Scenic-Or-Not dataset has at least 3 ratings, photos with more votes might 
offer more reliable measures of publicly perceived scenic beauty, being less prone to 
outlier influence. Furthermore, larger aspect areas would naturally contain more photos 
due to the spatially even distribution of photo sampling from Scenic-Or-Not. These 
factors could impact the estimated central tendency and variability for every aspect area, 
yet were not considered in the current approach. 
 
To address these limitations, a more nuanced approach would be to incorporate the use 
of Bayesian statistics when estimating average ratings, thereby taking into account the 
number of ratings each photo receives. Such a Bayesian framework would be more 
sensitive to the number of ratings each photo receives as well as the quantity of photos 
each aspect area contain. This enabling a more robust and accurate reflection of public 
perceptions. Future research could also focus on developing and testing more 
sophisticated metrics capable of capturing the heterogeneity of public opinions in this 
context. This will help in overcoming the limitations identified in the current study and 
provide more nuanced insights into the landscape quality assessment process. 
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B.2 Uncertainty and sensitivity in parameter ranking 

The limited goodness-of-fit of the four logistic regression models is recognized, 
suggesting constraints in the ability of landform types to fully explain scenic quality 
evaluations. Despite this limitation, the derived coefficients' statistical significance at the 
0.001 level and their rational ordering are noteworthy. Specific attention is drawn to the 
sensitivity of parameter rankings, particularly in the 'moderate' and 'high' categories – 
where R! values are indeed low (0.082 and 0.144). 
 
It is admitted that the inherent uncertainty in some coefficient estimates, depicted by their 
corresponding error bars, necessitates caution in using these estimates for ranking 
purposes. In light of this and given that bootstrapping was not used in this study, it's 
recognized that concluding firm differences in the aesthetic valuation of landscapes 
between experts and non-experts may be challenging. 
 
Despite the uncertainty, the existence of a degree of coherence between expert and non-
expert perspectives is encouraging. Future research can potentially benefit from 
techniques such as bootstrapping to better quantify uncertainty linked to each predictor's 
ranking. Such an approach could contribute to enhancing the robustness of the 
methodology, and in turn, the validity of the conclusions drawn. 
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B.3 Exploring public perceptions in designated areas 

Considering the potential implications for landscape policy and management, 
particularly in Wales, future research could further explore the realm of public 
perceptions of scenic beauty within designated areas such as National Parks (NP) and 
Area of Outstanding Natural Beauty (AONB). This research could employ a 
methodology analogous to that used in Chapter 4, by aggregating public perception data 
from the Scenic-Or-Not dataset within these designated area boundaries. Such a study 
would allow an evaluation of the influence of designation status, coded as dummy 
variables, on public perceptions of landscape aesthetics. While this line of inquiry extends 
beyond the central focus of the current study—a comparative analysis of expert and non-
expert perspectives on scenic quality—it undoubtedly holds potential. This proposed 
research could shed light on whether the legal protection and status of landscapes, such 
as those offered by National Park designation, can influence public evaluations of scenic 
quality.   
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B.4 Detailed landscape evaluation criteria 

The table below is an expanded version of Table 4.2 specifying the criteria for evaluating 
landscape quality across four distinct levels. 
 

Evaluation 
Score 

Definition of 
Importance Description 

Outstanding International or national 

A landscape offering many scenes of a picturesque 
quality throughout the area, which are aesthetically 
pleasing in composition. The area is iconic for these 
nationally and internationally. 

High Regional and county 

A landscape with some scenes of a picturesque 
quality, which are aesthetically pleasing in 
composition. The area is notable for these 
regionally. 

Moderate Local 

Landscapes with a few scenes of a picturesque 
quality, which are aesthetically pleasing in 
composition. These areas are notable locally for 
these. 

Low Little or no importance Landscapes with very limited aesthetically pleasing 
scenes. 
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B.5 Geograph photos of each landscape typology  

A random selection of three Geograph photos for each LANDMAP visual and sensory 
Level-2 typologies, as utilised in Chapter 4, is now provided as below. These images 
demonstrate the distinct characteristics and diversity inherent within each typology, 
giving a more intuitive understanding of each landform type. 
 

    

Coastal waters 

   
    

Coastal 

   
    

Inland water 

  
 

    

Exposed upland or 
plateau 
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Upland valleys 

  

 
    

Lowland valleys 

   
    

Flat lowland or 
levels 

   
    

Hills, lower plateau, 
and scarp slopes 
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Rolling lowland 

  
 

    

Developed unbuilt 
land 

 
 

 
    

Built land 
(reference) 

   

    

Photographers of scenic images from left to right,  top to bottom: Nigel Homer, Mick Lobb, Jonathan Wilkins, 
Humphrey Bolton, Colin Park, Robin Drayton, Shaun Butler, Nigel Brown, Row17, Bill Rowley, Alan Bowring, Philip 
Halling, Nigel Davies, Graham Cole, Philip Halling, Andrew Jones, Dot Potter, Dylan Moore, David Stowell, Colin Bell, 
Ian Medcalf, Graham Horn, John Lord, Eirian Evans, Penri Williams, Dylan Moore, Dot Potter, Philip Halling, Paul 
Roberts, Robin Drayton, Natasha Ceridwen de Chroustchoff,  Natasha Ceridwen de Chroustchoff, Robert Cuthill. 
Copyright of the images is retained by the photographers. Images are licensed for reuse under the Creative Commons 
Attribution-Share Alike 2.0 Generic License. 
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https://www.geograph.org.uk/photo/596342
https://www.geograph.org.uk/photo/1050033
https://www.geograph.org.uk/photo/848804
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