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Abstract
Form-resistant structures are efficient structural systems that can contribute to addressing the
adverse climate impacts of the construction industry by reducing material usage. Also, the
availability of improved assessment and strengthening methods for masonry form-resistant
structures can extend the life of many ageing buildings and other structures, ensuring these
are not needlessly replaced at great cost to the planet.

Building on an observation by Hooke, Heyman’s ‘safe theorem’ has been widely used to
assess the safety of form-resistant structures. However, Heyman used a funicular thrust line
to represent equilibrium, which has been found to be problematic in some cases. Seeking to
improve upon the funicular thrust line, the notion of a ‘thrust layout’ is presented here. This
can accurately represent the state of equilibrium while also enabling visualization of the flow
of forces within a form-resistant structure. This is achieved by explicit consideration of block
stereotomy and more realistic treatment of tensile forces.

A new automated analysis procedure, termed thrust layout optimization (TLO), is pre-
sented to allow identification of thrust layouts in masonry gravity structures comprising gen-
eral arrangements of masonry blocks. The procedure employs a modified truss layout op-
timization with transmissible loads formulation and allows explicit consideration of sliding
failures. A range of examples that demonstrate the efficacy of the TLO procedure are pre-
sented; these show that thrust line bifurcations can be automatically identified in problems
involving openings, and that there is no need to estimate the ‘ineffective area’ in buttress wall
problems, both issues encountered when using the traditional thrust line analysis method.

The TLO procedure is then extended to determine the optimal placement of auxiliary
strengthening measures. While current practice is to use engineering intuition to determine
the placement of strengthening measures, TLO provides a more robust physics-based ap-
proach, with clear visualization of force flows in strengthened structures.
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සාරාංශය

ප්‍රතිෙරා්ධී-ආකෘතියක්සහිත ව̼හ (form-resistant structures) යනුෙගාඩනගිලි අමුද්‍රව්‍ය භාවිතය අවමකිරීම මගින්

ඉදිකිරීම් කර්මාන්තෙය් අහිතකර පාරිසරික බලපෑම් අවම කරනකාර්යක්ෂම ව̼හාත්මක පද්ධති (structural systems)
ෙව්. තව ද, ෙපදෙර්රුමය ප්‍රතිෙරා්ධී-ආකෘතියක් සහිත ව̼හ සඳහා වැඩිදියුණු කළ විශ්ෙල්ෂණ ක්‍රම සහ සවිගැන්වීම් ක්‍රම

ෙයාදා ගැනීෙමන් ෙබාෙහා් පැරණි ෙගාඩනැගිලි සහ අෙනකුත් ඉදිකිරීම්වල ආයු කාලය දීර්ඝ කළ හැකි අතර එමගින් එම

ඉදිකිරීම් පරිසරයට හානිකර ෙලසින්කඩා ෙනාදැෙමන වගතහවුරුකරයි.

ප්‍රතිෙරා්ධී-ආකෘති සහිත ව̼හයක සුරක්ෂිත බව තක්ෙස්රු කිරීමට, හූක් විසින් සිදු කරන ලද නිරීක්ෂණයක් පසුබිම්

කරෙගන, ෙහයිමන්ෙග් 'ආරක්ෂිත ප්‍රෙම්යය' බහුලව භාවිත ෙව්. ෙහයිමන්ෙග් ආරක්ෂිත ප්‍රෙම්යෙය් දී ප්‍රතිෙරා්ධී-ආකෘති

සහිත ව̼හයක සමතුලිතතාවය නිරූපණය කිරීමට රැහැන් ෙතරපුම් ෙර්ඛාව ක් (funicular thrust line) උපෙයා්ගී කර
ගනු ලැෙබ්. ෙකෙස් ෙවතත් ෙමම රැහැන් ෙතරපුම් ෙර්ඛාෙව් භාවිතය ගැටලු සහගත බව පසුව අනාවරණය කර ගැනිණ.

ෙමම අධ්‍යයනෙය්දී රැහන් ෙතරපුම් ෙර්ඛාව වැඩිදියුණු කරමින් 'ෙතරපුම් ජාලය' (thrust layout) නම් සංකල්පයක්

ඉදිරිපත් ෙකෙර්. ෙතරපුම් ජාලා නිවැරදිව සමතුලිතතාවය නිරූපණය කරන අතර නිසි පරිදි ව̼හය තුළ බල ප්‍රවාහය

(force flow) දදෘශ්‍යමානකරයි. ෙතරපුම්ජාලාවලටෙමමහැකියාවලැෙබනුෙය්එයගෙඩාලුරටාවඑෙලසමනිරූපණයත්,

ගෙඩාලුවලආතන්‍ය බල ධාරිතාව වඩා යථාවාදීව නිරුපනයත්ෙහ්තුෙවනි.

ෙපදෙර්රුමය ප්‍රතිෙරා්ධී-ආකෘති සහිත ව̼හ තුළ බල ප්‍රවාහ (එනම් ෙතරපුම් ජාලා) හඳුනාගැනීමට ෙතරපුම් ජාලා

ප්‍රශස්තකරණය (thrust layout optimization) ෙලස හඳුන්වන නව ස්වයංǱය විශ්ෙල්ෂණ ǰයා පටිපාටියක්

ෙමහිදී ඉදිරිපත් ෙකෙර්. එය සම්ෙʱෂණය කළ හැකි බල (transmissible loads) සහිත නවීකරණය කරන ලද සැකිලි

පිරිසැලසුම් ප්‍රශස්තකරණයක් (truss layout optimisation) භාවිතා කරන අතර ගෙඩාලු එකිෙනක මත ලිස්සා යාම

මගින්වනකඩාවැටීම්සෘජුවමසලකාබැලීමටඉඩසලසයි. ෙතරපුම්ජාලාප්‍රශස්තකරණǰයාපටිපාටිෙය්කාර්යක්ෂමතාවය

ෙපන්නුම් කරන උදාහරණ මාලාවක් ෙමහි ඉදිරිපත් කර ඇත. අභ්‍යන්තර කවුළු සහිත ආකෘතිවල ෙතරපුම් ෙර්ඛා ෙබදීම්

(bifurcations) ස්වයංǱයව හඳුනාගත හැකි බව සහ ආධාරක පවුරු (buttress wall) විශ්ෙල්ෂණෙය්දී අකාර්යක්ෂම

ප්‍රෙද්ශය තක්ෙස්රු කිරීම අනවශ්‍ය බව ෙම්වා ෙපන්නුම් කරයි. ෙම්වා සම්ප්‍රදායික ෙතරපුම් ෙර්ඛා විශ්ෙල්ෂණ ක්‍රමය

භාවිතෙය්දී පැනනගින දුර්වලතා ෙව්.

පසුව ෙතරපුම් ජාලා ප්‍රශස්තකරණය ǰයා පටිපාටිය ෙපදෙර්රුමය ඉදිකිරීම්වල සවිගැන්වීම් ස්ථානගත කිරීම ප්‍රශස්ත

කිරීම සඳහා වැඩි දියුණු ෙකරිණ. සවිගැන්වීම් ස්ථානගත කිරීම නිර්ණය කිරීෙම්දී වර්තමාන පරිචය වන්ෙන් ඉංජිෙන්රු

බුද්ධිය භාවිතා කිරීමයි. ඉන් ඔබ්බට යමින් වැඩි දියුණු කළ ෙතරපුම් ජාලා ප්‍රශස්තකරණ (extended TLO) ǰයා
පටිපාටිය සවිගැන්වීම් මගින් ශක්තිමත් කරන ලද ව̼හ තුළ බල ප්‍රවාහ පැහැදිලිව දෘශ්‍යකරණය කරමින් ෙභෟතික විද්‍යා

මූලධර්ම පදනම්කරගත් ප්‍රෙව්ශයක්සපයයි.
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Chapter 1

Introduction

Structural engineering and architecture professionals in the UK have declared a climate and

biodiversity emergency, calling everyone in the building and construction industry into action

towards a more responsible construction industry [1, 2]: In its annual global status report for

building and construction [3], in 2022, the United Nations Environment Programme reports

that the sector has accounted for around 37% of energy and process related carbon dioxide

emissions, of which about 25% comes from building construction industry.

Amongst other things, the declaration by structural engineers calls for upgrading exist-

ing buildings for extended use, a shift to low embodied carbon materials, and minimiza-

tion of wasteful use of resources in structural engineering design. Along similar lines, the

United Nations’ Sustainable Development Goals [4] identify ‘sustainable cities and commu-

nities’ (Goal 11) and ‘responsible consumption and production’ (Goal 12), in more general

terms—reaching beyond the building and construction industry.

Within these frameworks, we can identify two paths for potential construction projects: (i)

to assess and strengthen existing structures (Fig. 1.1a), thereby avoiding new construction;

and (ii) when it is absolutely necessary to build anew, to design more sustainable buildings by

using efficient structural forms and materials with low embodied carbon (Fig. 1.1b).

A considerable number of existing masonry housing, in the UK [7] and across the globe,

are reaching their end of life. Their useful life can be extended by assessment of the current

state of the structure and carrying out appropriate structural interventions as required. Al-

though there are various methods for the assessment of load carrying capacity of structures,

the identification of strengthening measures required is in most cases based on engineering

intuition, rather than physics-based procedures.

Form-resistant structures are an efficient structural form as they fully utilize material at ev-

1
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(a) (b)

Figure 1.1: Way forward for building and construction industry; (a) restore and strengthen
existing structures—application of CFRP strips to strengthen a masonry vault (after [5]); (b)
build efficiently with efficient structural forms and low carbon materials—15m span earthen
shell roof (after [6]).

ery cross-section, as opposed to the commonly used column-beam frames, which are compar-

atively inefficient. Masonry gravity structures—from simple housing units to grand cathedrals—

are also form-resistant structures. These structures, which are made of material stronger in

compression than tension, predominantly carry the applied loads in compression. Nonethe-

less, they possess and use some tensile capacity in resisting externally applied loads. In fact,

it has been shown that the optimal structural form to carry a uniformly distributed load across

a single span above two fixed-pin supports will be predominantly in compression, but with

some amount of tension allowed [8, 9].

It is typical for a form-resistant structure to be represented by a line of thrust (Fig. 1.2a) or

a force (or thrust) network (Fig. 1.2b), for the purposes of analysis and form-finding. This net-

work of forces is a discrete representation of a (possible) equilibrium force flow in an assembly

of blocks or a continuum of material. Although these methods have been successfully applied

in the design and analysis of form-resistant structures, they do not make use of the tensile

strength capacity present in the material. It is also noted that the choice of the topology of

the force network will influence the geometry of the optimal form [10], where the optimal

solution sought can be the minimum volume structure, the closest fit to a target geometry,

etc.

The discrete representation of forces in thrust lines and thrust networks makes it possible

for them to be integrated with techniques such as ground structure layout optimization (LO),

which were first developed for application to truss-like structures. Therefore, the possibil-

ity exists for the use of LO in the analysis and design of form-resistant structures. The use

of a ground structure to identify the topology of a possible thrust network is a particularly

interesting feature to be explored.
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(a) line of thrust (b) thrust network

Figure 1.2: Representation of equilibrium of form resistant structures: (a) line of thrust for
a stepped buttress under self-weight and thrust from an arch (after [11]); (b) thrust network
used in the design of a free-form unreinforced tile vault, subjected to self-weight and a point
load (after [12]).

In ground structure layout optimization, a ground structure representing all possible mem-

ber connections (Fig. 1.3b) is defined within the design domain (Fig. 1.3a) and the opti-

mization procedure picks up the appropriate members from the ground structure, under

the constraints of equilibrium and yielding. Ground structure layout optimization, with its

improvements—e.g., using a post-processing geometry optimization step to allow ground

structure nodes to be moved (Fig. 1.3d)—has shown to be an efficient tool to identify opti-

mal pin jointed structures [13] [14].

Figure 1.3: Steps in ground structure layout optimization: (a) design domain; (b) ground
structure; (c) optimal layout found; (d) post-processing step of geometry optimization (after
[15]).

The work presented here critically evaluates the methods used in practice for the assess-

ment of form-resistant structures and seeks to make use of ground structure layout optimiza-

tion to develop readily usable tools to assist engineers in addressing the demands of the

climate emergency, within the building and construction industry.



Chapter 2

Motivation: The Climate

Emergency

The United Nations defines climate change as “long-term shifts in temperatures and weather

patterns” [16]. During the past 200 years of the post-industrialization era, the earth’s temper-

ature has risen by nearly 1oC [17]. This directly impacts food production (due to increased and

more severe draughts), displaces communities (due to rising sea levels), and threatens human

and other life forms on earth (from increased heat-related illnesses in humans to acidification

of the oceans threatening marine life) [18]. The earth’s rising temperature is a result of human

activities (Fig. 2.1) producing more greenhouse gases than the earth’s systems can handle

(i.e., safely absorb). These anthropogenic greenhouse gas emissions are also observed to be

contributing towards the rising number and the severity of natural disasters across the globe:

from droughts and wildfires to storms and flooding [19].

Recognizing the severity of the impacts of climate change and the urgency of making

significant changes, not only at an individual level but also at local government, state govern-

ment and global levels, declarations of ‘climate emergency’ have come about: the first such

instance is by the city of Darebin in Australia [21] and now by nation-states (from Bangladesh

[22] to the European Union [23]) and professionals (from medical [24] to engineering [25]).

These declarations of climate emergency are of significance as they make addressing climate

change a common goal and demand the governments (and the professionals) to prioritize the

same: ‘emergency’ allude to the urgency of action. However, some drawbacks of the ‘emer-

gency’ framing have been noted: e.g., technocratic governing leading to anti-democratic

policies and action, higher political pressure leading to placebo policies [26].

4
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Figure 2.1: Evidence of anthropogenic climate change: The global temperatures observed
can be reproduced only when human-caused emissions are considered. Solid/dashed lines
show the average of the corresponding models and shading indicates the uncertainty ranges
of the simulations. Average temperature between 1850-1900 as base temperature (after [20]).

Themain greenhouse gases contributing to climate change are carbon dioxide andmethane

[16]. The main causes of these greenhouse gas emissions are power generation (for manu-

facturing industries, construction industry as well as domestic usage), transportation (from

internal combustion engines), and food production (in various stages from land clearance to

fertilizer production; farm equipment to methane emissions from cattle) [18]. Furthermore,

deforestation exacerbates the effects of greenhouse gas emissions by limiting the capacity

of the earth’s systems to absorb greenhouse gases.

In its annual global status report for building and construction [3], in 2022, the United

Nations Environment Programme (UNEP) reports that the sector has accounted for around

37% of energy and process-related carbon dioxide emissions (Fig. 2.2): of that, about 25%

comes from building construction industry (i.e., about 9% of all global carbon dioxide emis-

sions). The report highlights the importance of addressing the issue of embodied carbon in

buildings so that it does not undermine the reductions achieved from energy efficiency. This

is of particular importance in the African continent, as an estimated 70% of its 2040 building

stock is yet to be built.

Paris Agreement reached at the 21st Conference of Parties (COP21) in Paris in 2015, is

a landmark call for action towards reducing anthropogenic carbon emissions and mitigating

effects of climate change. The Paris Agreement [27] recognizes the urgent threat of climate

change and the parties agreed to “holding the increase in the global average temperature
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Figure 2.2: CO2 emissions from building in 2010-2021: The building construction industry has
contributed to∼9% of global CO2 emissions in the past decade. Emissions from construction
materials include raw material preparation, processing and production. Other construction
refers to infrastructure construction (after [3]).

to well below 2oC above pre-industrial levels and pursuing efforts to limit the temperature

increase to 1.5oC above pre-industrial levels.” The agreement also recognizes the principle of

“common but differentiated responsibilities” noting the differences by country in their carbon

emission, the level of development, and the degree to which the effects of climate change

have been experienced. For instance, developed countries which are responsible for a major

part of the global carbon emissions over the past 200 years and reaping benefits of the same

(e.g., built large-scale industries, supply chains and research facilities) hold a responsibility to-

wards developing technologies that could mitigate the future carbon footprint of developing

countries, while assisting them in their development goals.

In the UK, its Climate Change Act of 2008 (amended in 2019) [28] commits the government

“to ensure that the net UK carbon account for the year 2050 is at least 100% lower than the

1990 baseline”: the UK’s net zero target. Although legislation towards achieving net zero

targets is still in works, the Institution of Structural Engineers-UK have made the commitment

to “treat sustainability and the climate emergency with equal importance to life safety” [1],

thus recognizing the importance and urgency of action towards net-zero emissions.

Historic England [7] reports that, in 2018, 5.1 million homes (21% of all homes) in England
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were over 100 years old: This building stock consists of solid brick or stone masonry, or

timber construction. And in the 2010-2018 period over 70,000 of the pre-1919 homes in

England were demolished. The report notes a 60% saving on whole-life carbon emissions (by

2050) by opting for refurbishment and retrofits instead of demolition and new constructions.

Furthermore, the UK Committee on Climate Change [29] notes retrofitting of existing homes

as one of five key priorities for the UK housing sector in achieving the UK’s net zero target.

The Intergovernmental Panel on Climate Change (IPCC) in its 2022 summary for policymakers

[30] notes the importance of renovation, retrofitting and repurposing existing buildings, whilst

also noting the importance of low-emission construction materials, building typologies and

form.

Noting the severity of climate change and the urgency to address the issue of anthro-

pogenic greenhouse gas emissions, the need to urgently address the contribution of the

global building construction sector is noted. One way of addressing this is by preserving the

existing building stock so that no new constructions are needed: However, the need for new

building stock in the developing economies is also noted. Noting that a major portion of

the UK’s building stock is of brick and stone masonry (and that a sizeable portion of that is

ageing), the importance of having tools to assess the state of masonry gravity structures, and

form-resistant structures in general, is recognized. Similarly, the need for the development of

low-carbon building materials and typologies is noted, while recognizing stone masonry and

stabilised earth block masonry to be such materials.
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Literature Review

Over the centuries, structural engineering designs have shifted from form-resistant systems;

e.g., Inca rope bridges, to trusses, and then to concrete beam and slab systems. However, as

the structural systems have progressed, the efficiency of the systems has reduced; hanging

cables working purely in tension can carry more load per unit of material compared to an

equivalent beam in bending (Fig. 3.1).

Hanging Cables Trusses Beams/Slabs

increasing structural e�ciency

progression of structural engineering design

Figure 3.1: Hierarchy of structures.

Recalling our motivation of reducing the building and construction industry’s impact on

climate change, the structural efficiency of form-resistant structures, such as hanging cable

models and arches, can be made use of. Furthermore, masonry gravity structures that form

a major part of the existing building infrastructure in the UK and many other parts of the

world can also be considered to be form-resistant. In the following sections, form-resistant

structures and means of analysing them are explored in detail.

8
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3.1 Form-resistant structures

Following Salvadori and Heller [31], form-resistant structures are defined as, “structures in

which strength [sic] is obtained by shaping the material according to the loads they must

carry”, where here, the term strength refers to the load carrying capacity of the structure, not

the strength of the material. For instance, consider the inclined columns in Colònia Güell and

Park Güell (Fig. 3.2). If they were vertical columns, as typically found in column-beam frame

structures, they would likely be subjected to bending and would either require increasing the

material strength in tension (e.g., by having reinforcing steel) or increasing the size of the

column. Instead, the same amount of material is used, without extra tensile reinforcement,

by simply moving the material to where it is needed to carry the load as a compressive force.

Note that this “form following force” approach reduces the amount of material used and al-

lows for construction with natural materials, which, in most cases, are stronger in compression;

e.g., stone, earthen material, etc.

(a) Colònia Güell (b) Park Güell

Figure 3.2: Form following force: inclined columns in Antoni Gaudi’s designs are a classic
example of form-resistant structures.

In designing the Colònia Güell, between 1898 and 1908, Antoni Gaudi used a hanging

chain model to achieve this “form following force” objective [32], as shown in Fig. 3.3. As

Robert Hooke previously observed, the form of a hanging chain (i.e., a catenary) inverted

gives the form of an equivalent rigid arch, where the boundary forces (support reactions and
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loading) and the internal force are also inverted in the process. Thus, the hanging chain, which

carries only tensile forces, can be inverted to give an arch only in compression (Section 3.1.1).

Thus, the process of letting a (nearly) weightless cable take its desired form when the cor-

responding loads are hung on it, realizes the idea of “form following force”. Although not

necessarily inspired by this observation by Hooke [32], Gaudi used the same idea, here via a

network of cables.

Figure 3.3: Form following force model generated via suspended cables: a CNC scale model
(top), the geometry of which is generated from the (reconstructed) hanging chain model (bot-
tom) for the Colònia Güell (after [32]).

A more comprehensive review of form-resistant structures (from their historical context in

design philosophy to the development of design methodologies through rules-of-thumb to

tools in the information age, to developments in material and construction technology) was

presented in an article published by the author in The Structural Engineer (Annex A), also

presented at a public lecture at the Institution of Structural Engineers [33, 34]. It is recog-

nized that masonry gravity structures, with their varied traditions across the globe, form an

important subset of existing form-resistant structures. This ageing stock of masonry gravity

structures includes structures of historic value, such as historic cathedrals found across Eu-

rope, as well as residential units, all of which need to be properly assessed and their useful
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life maximized.

The equilibrium methods commonly used for the analysis and design of form-resistant

structures stem from Robert Hooke’s observation of funicular forms. They were later formal-

ized within the context of limit state design by Jacques Heyman, in his seminal work entitled

‘The Masonry Arch’ [35]. The following section gives a brief historical overview from Hooke’s

observation to Heyman’s ‘safe theorem’, followed by a discussion of existing analytical meth-

ods used in the analysis of form-resistant structures.

3.1.1 A historical view: from Hooke to Heyman

The catenary

The English scientist Robert Hooke observed the analogy between the form of a catenary and

that of an arch, and embedded his observation in the form of a Latin anagram in a 1663 paper.

When deciphered and translated to English, the anagram reads, “As hangs the flexible line,

so but inverted will stand the rigid arch” [36]. This intuition of Hooke, although not rigorously

proven [36], implies that if a hanging cable fixed between two supports is solidified and then

inverted, it would stand as a rigid arch (Fig. 3.4).

Figure 3.4: Form of a hanging chain (BGAHC) and its inverted rigid arch (DKFLE) (after [37]).

Moving a step further, the English mathematician David Gregory found the mathematical

expression of the catenary and restated Hooke’s observation thus: “none but the catenaria
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is the figure of a true legitimate arch... And when an arch of any other figure is supported,

it is because in its thickness some catenaria is included” [38, 39]. It is important to note that

this simple restatement is significant in that it deviates from Robert Hooke’s claim of the arch

shape being a catenary, to one whereby the arch can be of any shape, though must contain

one or more catenaries within it.

One famous early example of this idea being put into practice was by Poleni, in 1748, in

his analysis of the dome of St. Peter’s in Rome [40]. In analysing the cracked dome of St.

Peter’s, he divided the dome into a number of hemispherical lunes, following the meridional

cracks in the dome. The stability of two opposing lunes forming an arch was considered.

Then, a hanging chain model was constructed by loading a chain with loads corresponding to

the distribution of the self-weight of the arch elements. The resulting form of the chain was

found to be contained within the section of the arch (Fig. 3.5). Thus, he concluded that the

meridional cracking observed would not lead to instability [39].

Figure 3.5: Using Hooke’s observation for the analysis of masonry gravity structures: Poleni’s
investigation of St. Peter’s Dome. A hanging chain contained within the section of the dome
can be found, confirming its safety (after [37]).
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Line of thrust

The development of graphic statics by Carl Culmann, and others (e.g., Simon Stevin, Pierre

Varignon, etc.,) made it possible to geometrically construct the form of a catenary [36, 40, 41];

this graphical construction is called a funicular polygon (Fig. 3.6). Jacques Heyman, particu-

larly in the application of his ‘safe theorem’ [39], used the funicular polygon as the thrust line

representing the equilibrium of voussoirs forming an arch.

Figure 3.6: Graphical analysis of a funicular: the triangle EFS in the funicular polygon (indi-
cated by dotted lines) correspond to the equilibrium of node C of the catenary, and similarly
for other nodes (after [36]).

Barlow, in 1846, demonstrated the possibility of alternative positions for the line of thrust

[39]. A model arch of six voussoirs, with each joint made up of four pieces of timber was

considered (Fig. 3.7). By removing three of the four timber pieces in each of the joints, he

visualized the different possible paths of the line of thrust.

Figure 3.7: Barlow’s experiment demonstrating the existence of multiple possible lines of
thrust: each interface of a voussoir arch is made up of four timber pieces covering the full
width, but only a quarter of the thickness of the arch. By removing these interface pieces
(one or multiple at a time) and verifying the stability of the arch, the existence of multiple
possible equilibrium states is demonstrated (after [39]).
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With the possibility of having multiple possible thrust lines, the question of identifying the

true line of thrust arises. Kurrer [40] notes previous attempts towards this end: (i) Moseley’s

principle states: “of all statically possible force systems in equilibrium, the one that prevails is

the one in which the resistance is minimal”; and (ii) Navier’s arch theory based on linear elastic

theory. As Kurrer [40] further reports, the search for the true line of thrust was faced with

much resistance and seen to be of purely academic interest, of no benefit to engineers. From

an engineering perspective, the key issue is whether an arch is safe, with its imperfections,

subjected to real loading conditions (which are variable) and real support conditions (which

may yield and settle). The mathematical solution for the exact stress state of an ideal arch

subjected to ideal boundary conditions was found to be of little use when the real behaviour of

arches was considered; e.g., arches with settled abutments and visible cracks were observed

to be functioning satisfactorily.

Heyman’s safe theorem

Heyman [39] reformulated the thrust line method based on the theorems of plastic limit anal-

ysis to develop his ‘safe theorem’. This, while not relying on the exact state of the stresses

in the structure, provides a useful tool for practising engineers to assess the safety of form-

resistant structures.

Theorems of limit analysis were originally presented for reinforced concrete by Gvozdev

in 1936, and later for structural steelwork [40]. The advantages of plastic limit analysis are

its simplicity, its ability to find bounds on the exact collapse load without consideration of

deformations, and its ability to predict failure mechanisms.

The lower-bound (static) solution is a distribution of internal forces where: (a) the allowable

forces are bounded by limit values (yield condition); and (b) internal forces are in equilibrium

with external forces (equilibrium condition) (solution A, Fig. 3.8). In contrast, the upper-bound

(kinematic) solution is associated with a collapse mechanism, where: (a) the equilibrium con-

dition is satisfied; and (b) the assumed mechanism is valid (kinematic condition): solution B

in Fig. 3.8, where while the above is satisfied, the yield condition is not satisfied. The lower-

bound solution is always less than or equal to the true collapse load, whereas the upper-bound

solution is always greater than or equal to this. The uniqueness theorem brings these together

and states that if the upper-bound and lower-bound solutions are the same, i.e., the equilib-

rium, kinematic and yield conditions are all satisfied, then that solution is the true collapse

load (solution C, Fig. 3.8).

Alternatively, the upper bound solution can be defined as a condition where the structure
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collapses in a compatible plastic-failure mechanism for which the rate at which the external

forces do work equals or exceeds the rate of internal dissipation [42]. This follows from an

associated plastic flow rule where the plastic strain rate is in a direction normal to the yield

surface. However, if the plastic strain rate is in a direction that is not normal to the yield

surface due to the presence of a non-associative material then lower-bound and upper-bound

solutions may not converge to a unique solution, thus leaving a ‘duality-gap’ [43].

load factor

(x Mp/PL)

2 P

P

0.66

0.60

0.50
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an upper bound
solution

a lower bound
solution

the unique collapse 

load
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Figure 3.8: Limit analysis solutions for a frame subjected to vertical and horizontal loads: (A) a
lower-bound solution with equilibrium and yield criteria satisfied; (B) an upper-bound solution
with equilibrium and an admissible collapse mechanism; and (C) a solution corresponding to
the unique collapse load, where equilibrium, yield and collapse mechanism criteria are all
satisfied (moment capacity of all frame elements taken as Mp; yield envelopes shaded in
grey).

According to Kurrer [40], the use of plastic limit analysis for arches was first suggested

by Onat and Prager [44]; they apply both lower and upper-bound theorems to two-hinged

steel arches. Around the same time, Kooharian [45] presented an application of plastic limit

analysis to voussoir arches, with the assumptions of infinite compressive strength and zero

tensile strength. While presenting the use of funicular thrust lines for lower-bound estimates,

the emphasis was on determining the upper-bound by identifying an appropriate collapse

mechanism. The lower-bound solution was used as a guide to locate the hinges.

The safe theorempresented by Heyman [35], with its general applicability tomasonry load-

bearing structures, has garnered wider attention than the aforementioned studies. While

many of the basic ideas of Kooharian [45] were used, the emphasis was on establishing lower-
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bound solutions, i.e., safe solutions. The concept of a geometrical factor of safety was pre-

sented as a measure of the capacity reserves available, whereas Kooharian [45] focussed on

establishing an upper-bound collapse load estimate.

In arriving at his safe theorem, Heyman [39] made three assumptions in relation to material

properties: (i) sliding failure cannot occur (i.e., friction between voussoirs is high enough

to prevent this); (ii) the masonry has zero tensile strength; and (iii) the masonry has infinite

compressive strength. Heyman [39] asserted that the first assumption is reasonable. However,

it is possible to find cases where slippage has occurred in form-resistant structures; e.g., at

the header of a flying buttress [46, 47] (Fig. 3.9). The assumption of zero tensile strength

is conservative as masonry often has some tensile strength, albeit finite. Furthermore, with

the interlocking of masonry units and the presence of friction, masonry can create apparent

tension locally [48, 49, 50]. Assuming infinite strength of masonry is also often reasonable,

as the stress levels in masonry structures are generally an order or two below the crushing

strength in magnitude. However, both strength and friction criteria should be checked after

an analysis to verify the reasonableness of these assumptions.

Figure 3.9: Failure due to slippage in a form-resistant structure: sliding near the head of a
flying buttress at Saint-Julien in Royaucourt (after [47]).

Heyman [51] states his safe theorem as follows: “if a set of internal forces in a masonry

structure can be found that equilibrate the external loads, and which lie everywhere within the

masonry, then the structure is safe - in the sense that it cannot collapse under those loads”.

The “set of internal forces in equilibrium with external loads” is taken to be given by a line of

thrust, with a line of thrust found to be fully contained within the structure indicating a safe
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structure. In terms of limit analysis, this would be a lower-bound solution.

Heyman [39] concedes that the ‘safe’ line of thrust may or may not define the actual state

of the structure. However, importantly, he states that once a valid thrust line is found, it will be

still valid if the arch is subjected to small deformations, e.g., support movements (Ochsendorf

[52] reports, from experiments, a significant 15.4% span increase at collapse in the case of a

semi-circular arch of thickness to radius ratio of 0.23 (Fig. 3.10)). As such, the engineer need

not know the true line of thrust, as long as he or she can find a possible equilibrium solution.

This is indeed a key advantage of limit analysis over elastic analysis methods.

(a) (b)

Figure 3.10: Significant deformation of the supports can occur at failure: the semi-circular
arch in (a), made of 16 blocks and thickness to radius ratio of 0.23, requires a 15.4% span
increase at collapse (after [52]).

How this falls within the remit of limit analysis can be explained as follows. Once the cen-

tring of a masonry arch is struck, the arch exerts a horizontal thrust on the abutments and the

abutments may yield. Cracks will appear on the intrados and extrados of the arch to permit

this movement. These cracks are not necessarily dangerous and in fact, are an essential part

of how the load-bearing structure responds to changes in the boundary conditions. Where

the line of thrust touches the extrados or intrados, the cracks extend to almost the full thick-

ness, creating a hinge. Once three such hinges are formed, the arch is statically determinate;

the formation of (at least) one more hinge will turn the arch into a kinematically admissible

mechanism (Fig. 3.11). At that point, there exists a valid line of thrust; i.e., equilibrium and

yield conditions are satisfied and a valid mechanism exists, with the kinematic mechanism

condition now satisfied. Thus, the arch has reached its unique collapse load, in this case,

subjected to its self-weight only.
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(a) (b)

Figure 3.11: An arch at its unique collapse load: (a) equilibrium satisfied as the line of thrust
is contained within the arch; and (b) a valid mechanism as a sufficient number of hinges are
formed, with the material at yield at hinge points. Hinges correspond to sections (or joints)
where the line of thrust is touching the extrados or intrados (after [39]).

The yield condition for a material with no-tensile resistance, though which is infinitely

strong in compression, is presented in Fig. 3.12a, where line OA and OB represent ‘bending

moment’ M = ±hN , with the arch thickness being 2h at the section (or the voussoir joint)

considered and N being the normal component of the thrust force. A point within AOB

represents a section where the line of thrust is fully within the masonry, a point on OA (or OB)

is a hinge forming at the intrados (or extrados), and a point outside AOB is not possible due to

the no tension condition. The yield criterion for a finite compressive strength material would

be as in Fig. 3.12b, as the limited strength requires a growing ’crushing zone’ as the thrust

increases; now the normal force N cannot be at the edge of the section and thus the lever-

arm gradually becomes smaller, from h to 0. However, the typically observed low compressive

forces N suggest that it may be reasonable to instead use the region within OCE. Heyman

also suggests conducting the analysis in a ‘shrunk’ arch thickness of (say) 2× 0.9h, such that,

by providing a margin of safety, the results obtained will almost always be safe.

The minimum arch thickness that can safely carry a given load is termed the limit thick-

ness, for the given load and geometry; for a semi-circular arch under its self-weight, the limit

thickness would be approximately 1/18 of the span. Following this, Heyman [39] proposes

the concept of a ‘geometrical factor of safety’ for arches, which is an arch thickness to limiting

thickness ratio (Fig. 3.13); he suggests a value of 2 under the most unfavourable loading con-

dition. This proposed geometric factor of safety contrasts with the collapse load factor used

in the plastic limit analysis of steel and reinforced concrete structures; as such the geometrical

factor of safety appears to be seldom used in engineering practice.

It is clear that this approach is based primarily on the stability criterion and not the material

strength criterion (although the latter is accounted for in the yield criterion); hence the safety

of a masonry structure is made a matter primarily of geometry. Heyman [39] notes that this is
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N

e=h

(a)

e<h
N

(b) (c)

Figure 3.12: Yield criterion for masonry: (a) assuming infinitely strong masonry in compres-
sion; (b) accounting for finite compressive strength of masonry via a crushing zone; and (c)
considering low operational forces in masonry. Yield criteria presented in M − N domain
where ‘bending moment’ M = Ne; N is the normal force component of the thrust at the
joint considered; e is the eccentricity of the normal forceN from the centre-line at the section
considered (adapted from [39]).

Figure 3.13: Geometrical safety factor for arches - defined as the ratio of the arch thickness
(D) to limiting thickness (d) (after [53]).

in fact the case, as the stresses in a masonry arch at failure are much lower than that required

for material failure. Huerta [38] shows that an arch of medium sandstone (density 20 kN/m2

and crushing strength 20N/mm2) will require a span of 640m to have both the strength and

stability criterion reached at the same time, in the absence of a factor of safety. None of the

known, built or planned, masonry bridges come close to the aforementioned limit of 640m;

the stone arch bridge of Fong-Huan in China (built in the 1970s) spans 120m, whilst the bridge

over Adda in Trezzo (built in the 1370s) spans 72m, and Da Vinci’s proposed single arch bridge

over the Golden Horn in Istanbul (1500AD) spans 240m.
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3.1.2 A review of tools in current practice

Existing methods for the analysis of form-resistant structures are now reviewed, taking into

consideration the complexity of the idealization, and in turn, the analysis process and their

performance in predicting the collapse load (Fig. 3.14). Based on the complexity of the ide-

alization, they can be broadly categorized as: (i) a discretized force system - i.e., thrust lines,

thrust networks, strut-and-tie model, etc.; (ii) a rigid block assembly; or (iii) an elastic con-

tinuum - i.e., finite element models, discrete element models, etc. As will be evident later,

discretized force systems and rigid block systems can be identified as geometric methods

whereas elastic continuum methods are stiffness-based methods.

load 

collapse load

complexity of idealization

compression-only
solution

at first crack

Thrust Lines / 
Thrust Networks

discretized force
systems

rigid blocks elastic 

continuum

Livesley, 1978
Linear FEM

Non-linear 
FEM

Gilbert and 
Melbourne, 1994

 solutions with tensile 

forces in blocks

visualization:

Figure 3.14: Framework for the review of current tools in practice to analyse form-resistant
structures: methods in increasing complexity of idealization exist, from discrete force systems
to elastic continuum, giving lower and upper-bound estimates of the exact collapse load. The
thrust line method and Linear-FEM have limitations in achieving the exact collapse.

Thrust lines

Thrust lines, discussed thus far, are a discrete representation of equilibrium forces within a

form-resistant structure. Heyman’s safe theorem, along with the funicular thrust lines used

to represent the equilibrium, provide a quick and easy method to assess the safety of form-

resistant structures, including masonry gravity structures.

The traditional thrust line method will give a lower-bound solution (Fig. 3.14) as a funicular

thrust line fully contained within the structure is taken to guarantee a solution in equilibrium
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without violating the yield criterion (with the assumption that the kinematics are such that the

associativity of flow rule holds). However, not accounting for the finite, but present, tensile

capacity of the block material may result in collapse load estimates lower than the exact

value; i.e., give a compression-only solution (Fig. 3.14). One way to account for this is by

constraining the thrust line only at block interfaces, thus assuming no tensile failure of the

blocks themselves.

The thrust line method is not without fault: although a visual method, it lacks clarity when

e.g., a thrust line passes through internal voids of a structure (i.e., should the thrust line in

this case be taken as ‘fully contained within the structure’?). Certain special cases require

special treatment; e.g., a masonry buttress requires determination of an ineffective zone of

masonry [54, 52, 55]; the treatment of friction as infinite has been noted to be unsatisfactory,

e.g., at the head of the flying buttress [47, 46]. Furthermore, some limitations of the usage

of funicular thrust lines have been noted, specifically due to it not properly considering the

block stereotomy [56, 57, 58], discussed in detail in Chapter 4.

Force/Thrust networks

A force network for a vault or dome can be seen as the three-dimensional equivalent of

a line of thrust for an arch. O’Dwyer [53] first presented an application of force networks

for the analysis of three-dimensional masonry forms (Fig. 3.15). A force network, satisfying

equilibrium at nodes of the force network and the nodes contained within the structure, is

looked for by solving a linear programming problem; the problem is made linear by assuming

the horizontal thrust forces a priori, and the linear programming problem is solved repeatedly

at different horizontal thrusts to obtain the optimal solution.

Block and Ochsendorf [59] later extended force networks to incorporate force densities,

presented by Schek [60], to linearize the nodal equilibrium equations. This extension, termed

Thrust Network Analysis (TNA), is presented as a form exploration tool for form-resistant struc-

tures. It uses reciprocal figures by J. Clerk [61], matrix analysis of indeterminate frameworks

by Pellegrino and Calladine [62], and graphic statics.

In addition to the above ‘geometric stiffness’ methods, ‘dynamic equilibrium’ methods

have also been used to solve force network systems (taxonomy following Veenendaal and

Block [63]). In dynamic equilibrium methods, the motion of the structure is followed through

time under applied loads; i.e., a flat grid of members (with elasticity and damping) connected

at nodes are allowed to deform under gravity, and the position of the nodes are updated

at each time step [64, 65]. While dynamic relaxation methods involve material properties
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(a) (b)

Figure 3.15: Force network for a masonry barrel vault: (a) a possible load path for a point
load applied on a barrel vault; and (b) the optimal force network obtained by O’Dwyer [53].

and iterative solution (that may lead to convergence issues), it avoids the inversion of the

connectivity matrix, which is a required step in the geometric stiffness methods; the dynamic

equilibrium method only requires the inversion of the mass matrix, which is a diagonal matrix.

In general, force (thrust) network approaches improve upon the slicing method used by

Poleni and Heyman, by allowing for more efficient load paths. However, the solution still

depends on the topology of the chosen network [10, 66]. While O’Dwyer [53] leaves the user

to identify the principal load paths, Oval et al. [67, 68, 69, 70] present a rule-based approach

(founded on heuristics identified from experience) for the meshing process.

Thus, although force (thrust) network approaches provide ameans of designing and analysing

three-dimensional form-resistant structures, they are limited by the topology of the network

chosen. Furthermore, as the method follows on from the traditional thrust line method for

two-dimensional analysis, it inherits the same shortcomings.

Strut-and-tie method

The ‘strut-and-tie’ methodwas introduced by Prof. Schlaich and his colleagues for the analysis

of reinforced concrete structures [71]. When the applied loads and geometry are likely to

result in geometrical and statical discontinuities (e.g., in corbels, deep beams and pile caps),

it is appropriate to model the internal forces as being concentrated in regions of concrete

compression struts, steel tension ties, and nodal zones.

More recently, the strut-and-tie method has been applied to masonry structures; e.g.,

[72, 73, 74]. In contrast to the discrete force methods following the thrust line method, the

strut-and-tie method accounts for the tensile capacity present in masonry gravity structures.
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However, improper consideration of tensile capacity leads to overestimation of the load ca-

pacity.

To generate appropriate strut-and-tie models for masonry, Roca et al. [72] present a set

of rules and specific strut-and-tie models, based on previous experimental and numerical re-

sults. Palmisano and Elia [74] employ the evolutionary structural optimization (ESO) method

to identify the ‘most plausible’ strut-and-tie model, i.e., the solution with the lowest total

strain energy. Foraboschi and Vanin [73] present an alternative approach involving an ‘evo-

lutive’ strut-and-tie model in which the model is updated by removing ties as they reach a

limiting tensile strain (Fig. 3.16).

Although the application of the strut-and-tie method is noted for considering the tensile

capacity within masonry, the need to reliably know the mode of failure, a priori, makes it an

involved process for general application (i.e., for structures other than walls), in some cases

needing complex finite element models as a pre-processing step.

(a) (b) (c) (d)

Figure 3.16: Evolutive strut-and-tie model for masonry: a masonry wall is subject to an in-
plane lateral load at the top corner, and fails in flexure. Tie members reaching their tensile
capacities are removed during the evolution process (a-c), prior to failure (d) (after [73]).

Membrane analysis

Membrane theory of shells is applicable to thin shells where either no bending is possible (i.e.,

the shell is not stiff enough) or the loading is low in comparison to the self-weight which is reli-

ably resisted by the shell with the given geometry, giving rise to primarily normal stresses and

negligible shear stresses. Under the assumption of smoothly distributed loading, membrane

theory can be applied to assess the state of stress in thin shells.

Masonry shells—e.g., vaults and domes—can be analysed assuming a no-tension elastic

membrane. This governing equation—i.e., Pucher’s equation in Eq. (3.1)—combines the shell

geometry (z(x, y) in Fig. 3.17), loading (pz, px, py), and the stress state—which is given as a



24 3.1. Form-resistant structures

stress function (ψ)—i.e., the Airy potential [75, 76, 77, 78].
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Figure 3.17: Surface element of a membrane shell - where the element at point P(x, y) at
elevation z(x, y) is subjected to external loading (pz, px, py). Nij are membrane forces (after
[76]).

Thus, to analyse amasonry structure, it is possible to find the geometry of amembrane that

is fully contained within the structure, along with a stress function satisfying the no-tension

condition [76]. Baratta and Corbi [76] show that, given only vertical loading is present and

the shell geometry is convex, equilibrium implies the fulfilment of the no-tension condition.

However, determining a valid membrane geometry and a stress function is much easier when

the geometry of the shell is simpler and some intuition of the nature of the stress function

exists (e.g., a barrel vault); the process is much more difficult when applied to free-form shells.

Chiang and Borgart [78] propose an iterative procedure for solving Pucher’s equation,

where the geometry and the stress function are given as radial basis functions and thus, the

problem is re-formulated as a least-square regression problem. Similarly, Fraternali [77] em-

ploys an iterative strategy where the geometry (constrained within the extrados and intrados)

is updated while checking the no-tension condition through the concavity of the stress func-

tion.

Barsi et al. [79] note a mapping from thrust lines to membranes: the membrane solution,

which is a continuous representation of equilibrium, emerges when the size of the blocks is

made infinitesimally small in the corresponding force network problem (Fig. 3.18).
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(a) (b) (c)

Figure 3.18: From funicular polygon to membrane solution: (a) funicular polygon, in 2D,
and (b) thrust network, in 3D, are discrete representations of equilibrium in block assemblies,
whereas in (c) the membrane is a continuum representation of equilibrium, where blocks are
made infinitesimally small (after [79]).

Similarly, there is a relationship between force networks and Airy stress functions. Note

here, that the force networks are referring to pin-jointed structures in general, with no re-

striction on the nature of the force. Then, the structure can be converted to an equivalent

self-stressed structure (by replacing external forces with pin-jointedmembers), which is in turn

a projection of a polyhedral function (Fig. 3.19). The polyhedral function is an Airy stress func-

tion, where the changes in slopes between adjacent faces give the forces in the members,

while the convexity/concavity of the polyhedral functions indicates the compressive/tensile

nature of forces [80, 81].

Polyhedral stress function 

Form of the structure

Figure 3.19: From force network to Airy stress function: polyhedral stress function (P ) rep-
resents the forces of the structure, while its projection gives the form (F ) of the structure.
The change of slope in P gives the magnitude of the force in the corresponding member,
while the nature of the change in slope (ridge/valley) corresponds to the nature of the force
(compression/tension) (adapted from [81]).

Thus, the equivalence of the solution of discrete force networks and continuum mem-
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branes is noted. The equivalence exists in Airy stress functions defining the state of stress

as well. The difference in the complexity of the solution in the two formulations, discrete

and continuum, is also noted. However, unlike other elastic continuum methods in Fig. 3.14,

the solution does not require stiffness properties of the material and remains a geometric

problem.

Rigid block method

Livesley [82] presents a computational limit analysis procedure to determine the collapse load

of a structure made of rigid blocks. In this work, the equilibrium of the structure is imposed

along with yield constraints, for normal and shear forces, at block interfaces, adopting a lower-

bound approach. Solving the resulting linear programming problem gives the collapse load

factor. It is possible to plot the failure mode (Fig. 3.20) and to draw the corresponding line of

thrust using the stress resultants from the analysis. The method was later extended to treat

three-dimensional cases [83].

(a) (b)

Figure 3.20: Rigid block method of analysis applied to masonry gravity structures: compar-
ison of the failure mode of a wall specimen from: (a) an experimental investigation; and (b)
the rigid block method of analysis (after [84]).

Livesley [82] further extends the procedure to account for friction at the interfaces, con-

sidering Coulomb friction with no cohesion; i.e., −nµ ≤ t ≤ nµ, where n and t are normal

and shear (friction) forces and µ is the friction coefficient. However, the linear programming

algorithm used assumes the normality rule, whereas Coulomb friction does not obey the nor-

mality rule. Thus the rigid block method (when solved ‘naively’) will assume deformation in

the direction of the resultant of the normal and the shear force at the interface, whereas, in

reality, with Coulomb friction, the deformation will be along the shear direction (Fig. 3.21).

This may result in the failure mechanism being incorrectly identified. This error can be cor-

rected by re-solving the problem by replacing constraint −nµ− t = u ≤ 0 with t = tA, where
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tA is the result obtained from the first solution.

(a) (b)

Figure 3.21: Coulomb friction and the normality rule: (a) normal, n, and shear, t, force com-
ponent of a block on a rough surface; and (b) corresponding yield surface in n, t space and
the direction of the normal deformation ϵnorm. Corrected yield surface PA, for failure at a
shear force t = tA, is also indicated (after [82]).

In addition to the deformations being incorrect, the assumption of the normality rule can

result in the collapse load being overestimated. This is when the failure load is affected by

the kinematics. Such situations can be checked by inspecting the work done at interfaces,

considering the corrected failure mechanism; a positive work done at interfaces will indicate

an overestimated collapse load. That is, if Coulomb friction is held, only the friction will be

doing work and that would be negative work as the friction force is in a direction opposite to

the motion of the block. If no work is done at interfaces then the estimated collapse load is

correct, despite the assumption of normality.

In contrast to the equilibrium formulation of Livesley [82], but still considering rigid block

assemblies, Gilbert and Melbourne [85] present an equivalent kinematic formulation. Mini-

mization of virtual work is carried out with kinematically admissible deformation fields for the

rigid blocks (with sliding failure initially assumed not to occur) and themechanism correspond-

ing to the exact collapse mechanism is found. The formulation is made linear by assuming

small deflections, thus enabling the use of linear programming solvers. It is noted that a so-

lution may not exist if either the form is ‘geometrically locked’ (i.e., the arch will not fail in a

hinged mechanism), or the structure is already unstable under its own self-weight.

The procedure was extended to incorporate sliding between rigid blocks, assuming the

normality rule to hold. Thus, similar shortcomings as discussed for the equilibrium formulation

exist. However, it is noted that many problems involving arches will give the exact collapse

loads, while, in general, the obtained collapse load will be an upper bound on the exact
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collapse load [85].

Furthermore, as indicated in Fig. 3.14, the rigid block method does not give any indication

as to how forces flow within the rigid blocks. However, considering resultant forces at the

interfaces, it is possible to generate a thrust line.

Finite element analysis

Linear finite element (FE) analysis is not well suited to the analysis of masonry gravity struc-

tures. The linearity condition of materials and geometry is insufficient to model the real be-

haviour of masonry gravity structures; e.g., no-tension and orthotropic material, presence of

cracks, yielding of abutments, etc. Block et al. [86] demonstrate the inability of linear FE

analysis to differentiate between an unstable arch geometry (Fig. 3.22a) and a stable one

(Fig. 3.22b). While FE analysis cannot say anything conclusive about the stability of the arch,

limit analysis can clearly indicate the instability of the form through the presentation of a line of

thrust. Nonetheless, linear FE can give a lower-bound estimate of collapse load, considering

the initiation of the first crack [86].

(a)

(b)

Figure 3.22: Linear-elastic finite element (FE) analysis (left) versus limit state analysis (right),
for arches with: (a) an unstable geometry, t/R = 0.08; (b) a stable geometry t/R = 0.16. While
the FE results cannot distinguish between the stable and unstable geometries, the thrust line
clearly indicates instability as it moves out from the arch section (after [86]).

Non-linear FE analysis can incorporate the complexities in masonry behaviour, both in

terms of geometry and material. Masonry can be modelled under two idealization strategies:
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(i) macro-modelling; and (ii) micro-modelling, often further categorized into detailed and sim-

plified micro-models. Macro-modelling considers a fictitious homogeneous orthotropic con-

tinuum material model, forgoing a detailed description of the interaction between individual

blocks and mortar joints (Fig. 3.23). The material parameters of the continuum (i.e., con-

stitutive model) can be determined via numerical homogenization along with experimental

results from testing of individual components or simple wallettes or cores from masonry pan-

els. Lourenço and Rots [87], and later others, demonstrate how the damage laws can be

incorporated in the constitutive laws. Isotropic criteria have been preferred in these contin-

uum damage finite element models for their mathematical simplicity, although orthotropic

models have been also proposed (e.g., Pelà et al. [88]). However, macro modelling results in

damage described as spreading over a large volume, whereas real damage tends to be local-

ized in the form of cracks. Roca et al. [89] notes new developments enabling more realistic

damage distributions.

Micro-modelling explicitly differentiates between block and interface material behaviour

and hence is the more accurate tool, but carries a considerable computational cost. Vari-

ous simplified micro models have been developed in an attempt to address this: e.g., Lotfi

and Shing [90] modelled mortar joints with zero-thickness interface elements with a dilatant

constitutive module capable of simulating the initiation and propagation of interface fracture

under normal (both compressive and tensile) and shear stresses; Lourenço and Rots [87] pro-

pose a multi-surface interface-based model where sliding, tensile cracking and compressive

crushing are concentrated to the interfaces.

An intermediate homogenization solution can be realized by first analysing a micro model

to set up the unit element of a macro model. Primarily there are two approaches; one based

on micromechanical deformation mechanisms, and the second based on a polynomial ex-

pansion of stress fields [91]. In the latter masonry is assumed to be rigid, perfectly plastic

materials with associative flow rule [92]. Milani et al. [93] analyse masonry vaults considering

a six-node triangular curved element with a suitable FE homogenization procedure.

Discrete element method

The discrete element method (DEM) was first introduced by Cundall and Hart in the 1970s,

and first applied to the assessment of masonry structures by Pagnoni in the mid-1990s [89].

Roca et al. [89] give a list of DEM applications for the analysis of masonry structures, including

load-bearing walls, stone bridges, arches, etc., but notes that the application of DEM to

complex structures is a controversial topic.
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(a) (b)

(c) (d)

Figure 3.23: Modelling strategies for masonry structures: (a) real masonry; (b) detailed mod-
elling strategy; (c) simplified micro-modelling strategy; (d) macro-modelling strategy (after
[89]).

DEM models material as an assemblage of distinct units allowed to displace and rotate,

including complete detachment from each other, and automatically detect contact between

the distinct units as the calculation progresses. While different classifications of DEM formu-

lations have been observed, the following are the most commonly identified types: (i) distinct

element methods; (ii) discontinuous deformation analysis (DDA) methods; (iii) discrete finite

element methods (DFEM); and (iv) non-smooth contact dynamics..

Distinct element models directly derive from work by Cundall and Hart. They use a soft

contact formulation (i.e., all deformations occur at the surface of the blocks) and explicitly

solve the equations of motion. The blocks can be assumed rigid or deformable. In the latter

case, they are divided into equal strain elements. This was implemented in the UDEC code

[94] and later extended to 3D as 3DEC.

DDA method was developed by Shi and Goodman [95] for rock engineering and was later

applied to masonry [96]. DDA uses deformable blocks (having a uniform stress and strain

state) with rigid contacts [89, 97]. Contacts are no tension, allow no penetration, and follow

Coulomb’s law [98].

There have been various attempts at combining FEM with ideas from DEM. Munjiza et al.

[99] developed aDFEM formulation to simulate fracturing problems, using deformable blocks.

Mamaghani et al. [100] presented DFEM for masonry assemblies using zero-thickness inter-

face elements, where the finite deformations are concentrated at interfaces that have no

tensile strength and obey the Mohr-Coulomb yield criterion.
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Non-smooth contact dynamics (NSCD) models consider contact dynamics, where the mo-

tion of bodies is simulated considering energy dissipation due to the impact between the

bodies, with contacts possessing friction and zero tensile resistance; these have also been

successfully applied in the analysis of masonry gravity structures [49].

Commentary

In summary, the complex material behaviour and difficulty in characterizing masonry proper-

ties due to their variability bring a degree of complexity to the solution process and uncer-

tainty to the results obtained via stiffness-based methods [98]. Additionally, stiffness-based

methods methods tend to require significant computational power and user expertise to set

up the models involved. In contrast, the geometry-based methods (e.g., thrust line and rigid

block methods) avoid the use of material properties and form the problem as a problem

primarily of geometry, involving easy-to-understand equilibrium formulations. Nonetheless,

shortcomings in the thrust line and rigid block methods are also recognized.

3.2 Mapping from thrust lines to layout optimization

The discretized force systems mentioned earlier (thrust lines and their derivative forms) have

a close relationship with the ground structure layout optimization (LO) method used in the

optimization of trusses. This relationship is due to the graphic statics (GS) used in thrust

lines, their derivative methods, and their close mapping to LO. First, a brief introduction to

graphic statics (in Section 3.2.1) and ground structure layout optimization (in Section 3.2.2) is

provided, considering two-dimensional cases. This is followed by a mapping between GS and

LO for the case of trusses in Section 3.2.3; thereafter, this mapping is extended in Section 3.2.4

to the analysis of arches, vaults, and domes, the traditional triad of form-resistant structures.

3.2.1 Graphic statics

Graphic statics (GS) is the usage of graphical methods (i.e., visualizations such as graphs,

charts and diagrams) to study forces in equilibrium. For instance, GS can be used to determine

forces in a pin-jointed bar structure loaded at joints, such as a truss.

A force diagram, which is dual to the form (geometry) of the truss, is constructed when

analysing a truss via graphic statics. Consider the pin-jointed-bar structure in Fig. 3.24(a)

carrying a horizontal load P at node A and vertical load W at node C, and supported at

nodes E and F. The corresponding force diagram is shown in Fig. 3.24(b). The links in the
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force diagram are vectors representing the internal forces in the members of the truss, and

the corresponding links and members are parallel to each other (following Cremona’s con-

vention; Maxwell drew dual diagrams with corresponding members perpendicular to each

other). Following vector summation, if all the forces on a node of the truss are in equilibrium,

then the corresponding force vectors would form a closed polygon in the force diagram, as

in the triangle representing the force equilibrium of node D shaded in the force diagram in

Fig. 3.24(b).

P

W

A

B

E F

FAD
FAB

FCD

FFC

FEC

FFD

P

W

(a) form diagram (b) force diagram

C D

D

Figure 3.24: Graphic static (GS) analysis of a truss structure: considering the structure shown
in (a), the dual force diagram satisfying equilibrium can be constructed as in (b). The equilib-
rium of a node in (a) is represented by a closed polygon of forces in (b), as indicated by the
polygon shaded in (b) that corresponds to the equilibrium of node D in (a). (Members in red
and blue represent tensile and compressive forces respectively; the member in grey carries
no force.)

When the structure is statically determinate, as in the case in Fig. 3.24, the dual force

diagram is unique up to a scale. If the structure is statically indeterminate, the force diagram

generated is not unique. Changing the length (i.e., the force) in the set of independent

branches of the force diagram will give rise to different possible force paths (solutions) in the

indeterminate system. The number of independent force branches is equal to the degree

of statical indeterminacy of the structure. Fig. 3.25 shows two possible force diagrams for a

statically indeterminate structure, with a single degree of statical indeterminacy. Here, the

force branch FAB is taken as the independent force branch, changing the length of which

changes the force diagram. Note that, in this example, any branch could have been taken as

the independent branch to alter the force diagram.

Graphic statics has been extended to three-dimensional cases via two approaches. Fol-

lowing Rankine, the force diagram can be presented as an assembly of polyhedral cells where

closed polyhedrons represent nodal equilibrium with the face areas representing the forces in
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FAB

FAD
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(a) form diagram (b) force diagram

C D

Figure 3.25: Graphic static (GS) analysis of a statically indeterminate truss structure: con-
sidering the structure shown in (a), the dual force diagram satisfying equilibrium can be con-
structed as in (b). The force diagram is not unique: by changing the length of branch FAB the
force diagram changes by changing the forces in the members of the structure. Two possible
solutions are indicated in solid and dashed lines. (Members in red and blue represent tensile
and compressive forces respectively.)

members perpendicular to the corresponding face [101]. Alternatively, following Cremona,

a three-dimensional force diagram where the corresponding members in form and force dia-

grams are parallel to each other can be constructed [102, 103].

Millar et al. [104] andMcRobie et al. [105] present a graphic stability analysis usingMaxwell-

Minkowski diagrams (in 2D), constructed by translating pieces in the form diagram [106], and

Maxwell-Williot diagrams, constructed by translating pieces in the force diagram to give a dis-

placement diagram [107]. By calculating the internal work done (in the self-stressed form) the

stability of the structure is determined; a positive work done indicates a stable structure. With

the graphical presentation of the work done via Maxwell-Minkowski, and Maxwell-Williot di-

agrams, it is possible to manipulate the form and force diagrams to adjust the stiffness of the

structure, with the diagrams giving visual feedback. However, the increasing complexity of

the form, force, and other graphs as the complexity of the structure increases is to be noted;

some of these may be alleviated with the aid of modern visualization tools.

3.2.2 Ground structure layout optimization procedure

The ground structure layout optimization (LO) process was originally developed to identify

minimum volume truss structures [13, 108, 109, 110, 111]. It considers the plastic analysis of a

truss with an unknown form (i.e., here, all truss members are stressed to their yield strength)

to determine the optimal form of the truss by solving an optimization problem.

In Fig. 3.26, the problem of determining the minimum volume truss within the design

space (shaded in grey), while adhering to the boundary conditions (i.e., loads P and W , and

the support at base) is considered. First, a set of nodes, dispersed across the physical design
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space, is generated. They are then connected to each other with links, which also remain

inside the design domain. This collection of nodes and links is called the ‘ground structure’

(Fig. 3.26b). The links in the ground structure represent potential members of the structure

and have an area of zero or a positive number; the links with non-zero areas at the end of the

optimization process represent the members present in the optimal structure.

Nodes

Links

(b) 

P

W

(a) (c)

P

Figure 3.26: Ground structure layout optimization (LO) procedure: (a) specified design do-
main with loading and support conditions; (b) nodes linked by potential members, creating
a ‘ground structure’; and (c) optimal (minimum volume) layout identified by solving the un-
derlying layout optimization problem. (Tension and compression forces are shown in red and
blue, respectively, with line thickness proportional to force magnitude.)

The optimization problem (Eq. (3.2)) is formulated and solved with the objective of finding

the minimum volume truss structure possible within the ground structure defined (Eq. (3.2a)),

under the constraints of equilibrium at nodes (Eq. (3.2b)), and members yielding at their ma-

terial strength (Eq. (3.2c)). As both the objective function and the constraints are linear with

respect to the variables, this is a linear programming problem.

min
a,q

V = lTa (3.2a)

s.t. Bq = f (3.2b)

−σ−a ≤ q ≤ σ+a (3.2c)

a ≥ 0 (3.2d)

where, V is the volume of the force network, l = [l1, l2, ..., lm]T is a vector of link lengths,

a = [a1, a2, ..., am]T is a vector containing the member cross-sectional areas of links, B is

2n × m equilibrium matrix containing direction cosines (see [112]), q = [q1, q2, ..., qm]T is a

vector containing internal forces of the links, f = [f1x, f1y, f2x, f2y, ..., fnx, fny]
T is a vector

containing the external loads applied at nodes, n is the number of nodes,m is the number of
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links, and σ+ and σ− are limiting tensile and compressive stresses respectively.

The basic formulation of the LO problem presented here for the two-dimensional case

can be readily extended to the three-dimensional case by including the nodal equilibrium

equations in the third spatial dimension, in Eq. (3.2b). Furthermore, the basic formulation of

the LO problem has been improved by using an adaptive ‘member-adding’ process to reduce

the computational cost of the process [13]; also rationalization via geometry optimization has

been added as a post-processing step to produce more practically viable structures [113],

and is discussed in more detail in Section 3.3.

3.2.3 Trusses

Application of GS and LO techniques to truss structures can be compared, considering their

formulation and application (Table 3.1). Aspects of the problem formulation (i.e., how the

geometry, equilibrium, and stability of trusses are represented) and how this is applied (i.e.,

how these tools are used in engineering analysis and design) are compared.

Table 3.1: A mapping from graphic statics to ground structure layout optimization, consider-
ing trusses.

Graphic statics (GS) Ground structure layout optimiza-
tion (LO)

Design
problem Can explore a design space An optimal solution emerges

Analysis
problem

Formulated as an analysis prob-
lem; determine the member
forces

Can be formed as an analysis
problem

Equilibrium Enforce equilibrium at nodes Enforce equilibrium at nodes and
yield in members

Stability Graphic stability Destabilizing loads
Geometry /
Topology

Nodes in continuous space, with
fixed topology/connectivity

Nodes in predefined positions
with topology emerging from the
process

Both GS and LO can be used in the design of trusses, but the output from the twomethod-

ologies is different. The GS formulation, in combination with form-force duality, allows a de-

signer (architect or engineer) to explore a wide range of feasible solutions and choose a form

that fits other design requirements as well. In contrast, LO looks for a unique solution(s) that

optimizes a given objective, typically, minimizing the volume of the structure, while satisfying

feasibility.

To ensure the feasibility of a solution, GS imposes equilibrium at pin joints (nodes) by

having closed polygons in the corresponding force diagram. Similarly, feasible solutions in LO
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also need to satisfy equilibrium. However, this is done by explicitly considering equilibrium

via equations for the balance of forces. In addition, as a unique solution is searched for,

LO formulation will include other constraints, such as yielding of members at their strength

capacity when volume minimization is the objective.

The explorable design space in GS is restricted by the topology of the truss, which is de-

cided a priori. In contrast, in the LO process, the optimal topology emerges from the ground

structure, with inactive members having zero force (and thus zero cross-sectional area). Fur-

thermore, nodes in LO have fixed coordinates whereas nodes in GS can be moved within the

design space while different geometries are being explored (but the topology is fixed). LO

can address this by increasing the number of nodes in the ground structure. However, this may

result in an increased computational cost, i.e., CPU time and memory. This can be alleviated

by rationalization via geometry optimization (allowing nodes to move) and a member-adding

process (reducing computational time by considering only a subset of all members).

Both GS and LO problems can be formulated as analysis problems, e.g., to verify the

structure’s ability to safely carry a given loading. In the case of GS, this is a straightforward

exercise of constructing a dual force diagram, with all polygons corresponding to the nodal

equilibrium condition being closed. In the case of LO, the problem can be formulated as a

loadmaximization problem, with the member areas being fixed and the magnitude of loading

being a variable.

Stability is not explicitly considered in the basic formulation of either method. However,

recent research has introduced methods to incorporate stability checking. McRobie and col-

leagues [104, 105] present graphic stability using Maxwell-Minkowski and Maxwell-Williot di-

agrams, briefly discussed in Section 3.2.1. In LO, a pragmatic method is to add destabilizing

loads to check the stability of the truss, typically added as separate load cases.

3.2.4 Arches-vaults-domes

While graphic statics (GS) based methods have been widely used in the design and assess-

ment of form-resistant structures, application of ground structure layout optimization (LO)

to such problems is more limited [114, 115, 116]. Application of GS to the analysis of form-

resistant structures follows from Hooke’s observation and Heyman’s safe theorem and is dis-

cussed in detail in Section 3.1.1 and Section 3.1.2. A potential mapping between GS and

LO for its application to the analysis and design of form-resistant structures is presented in

Table 3.2.
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Table 3.2: A potential mapping from graphic statics to ground structure layout optimization,
considering forms in compression.

Graphic statics (GS) Ground structure layout optimiza-
tion (LO)

Design
problem

Find a compression-only thrust
network of the desired form

Given the loading and supports, a
minimum volume form emerges

Analysis
problem

Find a thrust network to fit within
the structure -

Equilibrium Enforce equilibrium at nodes with
no tension allowed;

Enforce equilibrium at nodes,
with tension allowed;

self-weight loads move in the di-
rection of gravity

self-weight considered as trans-
missible loads

Geometry /
Topology

Nodes in continuous space, with
fixed topology/connectivity

Nodes in predefined positions
with topology emerging from the
process

The main challenge in extending GS and LO to form-resistant structures is how the self-

weight loads are handled. In GS, this restricts the movement of nodes to the direction of

gravity, as now the self-weight loads are lumped at nodes. In contrast in LO, where nodes are

fixed at coordinates, this effect is reproduced using transmissible loads; i.e., loads shareable

between multiple nodes [8, 114]. Furthermore, Fairclough et al. [117] introduce equal stress

catenary members where the self-weight of long-span members is properly accounted for,

as opposed to masses lumped at nodes. This novel approach has been used to find optimal

forms for long-span bridges.

The stringent no-compression condition is typically used in the analysis of form-resistant

structures. This is ensured by using force networks mimicking hanging chains and nets. Here,

as was noted previously in Section 3.1.2, the dependence of the results on the topology of

the force network is also recognized. In LO, compression-only conditions can be imposed by

giving the members in the underlying LO problem zero (or negligible) tensile strength.

In the design problem (in contrast to the analysis problem) the self-weight is not yet known,

as the structure is unknown at the start. Thus, in TNA (the most commonly used GS-based

formulation for the design of form-resistant structures) a self-weight updating strategy is em-

ployed [118]. Although a similar approach is possible in an LO formulation, the fact that

the emergent solution is not a surface brings in additional challenges (Fig. 3.27a). However,

recently, Bołbotowski [116] presented a mathematical formulation to solve the optimal vault

problem, where the least volume compression-only vault (also a surface) is sought (Fig. 3.27b);

here, the topology of the force network and the form (i.e., the elevation ) are determined si-

multaneously, representing a major breakthrough in the field.
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(a) (b)

Figure 3.27: Optimal volume vault occupying a cuboidal design domain in the presence
of uniformly distributed transmissible loads: (a) from Gilbert et al. [114]; and (b) from
Bołbotowski [116]. (Note that the structure in (a) is supported at a central point, in addi-
tion to the eight corner points used in (b).)

In summary, mapping GS and LO indicates the potential for LO to be used in the analysis of

form-resistant structures. The ability of LO to include tensile forces (with controls on the force

magnitude) and the fact that there is no need to define the topology of the force network a

priori is potentially a major benefit.

3.3 Layout optimization techniques

Ground structure layout optimization, referred to here as LO, is one of many layout optimiza-

tion techniques in use. However, its use of a ground structure and the plastic limit assumption

of members make it unique. In the following section, developments in ground structure lay-

out optimization are further expanded upon from Section 3.2.2, and other layout optimization

techniques are also briefly introduced.

3.3.1 Ground structure layout optimization

Gilbert and Tyas [13] significantly reduced the computational cost (CPU time and memory)

of the standard LO process (presented in Section 3.2.2) by using a ‘member adding’ solution

procedure based on the dual formulation of the LO problem. This allows optimization to ini-

tially consider a limited number of potential members and, as the optimization progresses,

‘add’ members (to the reduced ground structure) that are likely to make the structure more

optimal. This makes it possible for LO to handle problems involving very large ground struc-

tures.

He and Gilbert [14] proposed a post-processing step involving geometry optimization

to simplify the solution obtained from the standard LO problem; the standard LO solution
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is rationalized by allowing the nodes to move and merge, with new nodes created where

members cross over. Although the proposed rationalization process is more effective than

the simple rationalization technique involving the use of joint length penalties, due to the

non-linear non-convex nature of the geometry optimization procedure, there is no guarantee

of obtaining a globally optimal solution.

He et al. [15] propose the use of a further post-processing step to minimize structural

complexity. In this case, the number of members connected to a node can potentially be

controlled; e.g., members connected to nodes that have more than nmax connecting mem-

bers can be penalized, where nmax is a user-defined parameter. In this case, the presence or

otherwise of members (for the complexity measure) is represented by the use of a smooth

Heaviside projection, with the member area projected to discrete integers, 0 and 1. The

presented design optimization allows users to obtain near-optimal solutions for problems in-

volving structural complexity constraints, with these having volumes within a user-specified

percentage of the volume of the optimal solution of the corresponding problem involving no

structural complexity constraints.

Furthermore, an advantage of using a plastic formulation in the LO problem is that multiple

load cases can be handled easily [109]; an elastic formulation results in statically indeterminate

structures under multiple load cases, meaning that compatibility of deformations needs to be

explicitly considered. Note that the geometry post-processing procedure presented by He

et al. [15] can also handle multiple load cases.

Ground structure layout optimization has been used with transmissible loads, where the

load position of the applied load is also optimized; i.e., the line of action of a load is specified

and the exact point(s) of application is determined as part of the optimization. This may yield

solutions more optimal than when the location of the load application is specified a priori

(Fig. 3.28).

Transmissible loads can be applied using one of two strategies: (i) a rigid bar approach,

where the load is transferred to the structure via rigid, cost-free bars; and (ii) a migrating

loads approach, where the load is shared between nodes along the line of action of the load

(Fig. 5.2). Although both methods have been used, the rigid bar approach is only valid for

funicular nets (either in compression or tension), with members oriented at a specific angle to

the line of loading action. When the resulting structure is fully stressed, with mutually orthog-

onal members in tension and compression, the rigid bar approach will artificially strengthen

the structure, resulting in spurious solutions [120].
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(a) (b) (c)

Figure 3.28: Solutions obtained using fixed vs transmissible loads: (a) optimal structure ob-
tained when specifying a point load at a fixed location; (b) a transmissible load, acting along
a vertical line of action; (c) optimal structure obtained when using this transmissible load, with
the optimization process now finding the optimal position of the load as well as the optimal
structure (after [119]).

(a) (b)

Figure 3.29: Strategies for application of transmissible loads in LO: (a) rigid bar approach;
and (b) migrating load approach (after [120]).

3.3.2 Growth method

The growth method presented byMartínez et al. [121] is a topology optimization method that

starts with a simple initial structure satisfying the boundary conditions (restraint and loading)

and iteratively adds new joints and members until the optimal structure is found (Fig. 3.30).

The growth process is controlled by heuristics: (a) the number of crossovers created by

newly added members, and (b) the number of new members connected to the new nodes

created. In the latter case, preference is given to members that are close to being orthogo-

nal to existing members. Furthermore, the procedure is only presented for single-load case

scenarios. Thus the versatility of the method is doubtful, specifically when more general (i.e.,

structures other than Michell trusses) and more complex problems are involved.
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(a) (b) (c)

Figure 3.30: An iteration of the growth method for truss topology optimization: (a) new
node position is found; (b) potential new members are identified; (c) optimal structure with
new node and new member(s) found (after [121]).

Generalized shape optimization

In contrast to the above methods, where the layout is determined by the size of the elements

in a ground structure, the topology optimization problem can also be formulated as a material

distribution problem [122]. Bendsøe and Kikuchi [123] and Suzuki and Kikuchi [124] find the

optimal distribution of an anisotropic material constructed by the distribution of small holes

in a homogeneous isotropic material, i.e., introducing microscopic voids in a domain of micro-

cells to create a porousmedium (Fig. 3.31). Typically, the underlying analysis problem is solved

via the finite element method, with finite elements overlapping the micro-cells.

The objective of optimization is to minimize compliance, subject to equilibrium and vol-

ume of material used (volume fraction) constraints. The effective material properties depend

on the size and the orientation of the holes and are determined by using an explicit rela-

tionship between the material mechanical properties, computed using homogenization, and

the porosity (or density). Thus, the density of the cell becomes the design variable, effec-

tively converting the problem of determining topology into one of determining the sizes (i.e.,

densities) of the cells.

Suzuki and Kikuchi [124] present a solution for the two-bar frame problem, considering

a grid of 40 × 96 finite elements (Fig. 3.32). The solution is dependent on the volume frac-

tion, where a larger volume fraction leads to a thicker solution and vice versa. Similarly, it

is noted that using an insufficient volume fraction may lead to a non-continuous solution (a

checker-board pattern), while very high-volume fractions will lead to denser structures [125].

Furthermore, the solutions are influenced by other process parameters, such as the penalty

power that relates the porosity of a unit cell to its compliance, and the filter radius used to

avoid disconnected solutions.

The homogenization method described above, which involves the use of a continuously

varying material density field, can be converted into a discrete domain; i.e., at any given loca-

tion material is either present (1) or absent (0), using a penalty function to push intermediate
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Figure 3.31: Generalized shape optimization: design domain with boundary conditions,
where the design space is filled with quadratic micro-cells containing rectangular holes (after
[125]).

densities to extreme values. Solid Isotropic Microstructure/Material with Penalization (SIMP)

is one such approach, where ‘porous’ elements are suppressed (pushed to be a solid or void

element) using a penalty function. This results in a solution with solid and void regions only,

making the results more practical, albeit sub-optimal [126, 127].

Xie and Steven [128] present an evolutionary topology optimization procedure, termed

Evolutionary Structural Optimization (ESO); this builds on the works of Bendsøe and Kikuchi

[123] and others. In ESO, an optimal structure is produced by removing inefficiently used

material; i.e., material subject to low-stress or with low-strain energy. This methodology is

largely based on intuition, and lacks a sound theoretical basis [129].

An improvement on ESO, Bidirectional Evolutionary Structural Optimization (BESO), al-

lows the addition of material to alleviate high-stress areas, in addition to eliminating material

from low-stress areas [130] (Fig. 3.33). Noting the possibility of obtaining sub-optimal results

after complete removal of material from the design domain (‘hard kill’), Huang and Xi [131]

present an alternative (‘soft kill’) BESO method, which allows previously removed material to

be reinstated at later iterations in the optimization procedure.

3.3.3 Boundary-based methods

Shape optimization techniques have also been used to find optimal structures [132]. How-

ever, these have drawbacks in that they can only explore the boundary shapes of an existing

topology (i.e., they cannot create new holes in the structure); also FE re-meshing can be

problematic. In contrast, the level set method provides a topology optimization methodol-

ogy based on boundary variation but is able to generate new topologies as well.
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(a) (b) (c)

Figure 3.32: Generalized shape optimization with homogenization for the two-bar example:
solutions for the two-bar frame problem with increasing volume fractions (after [124]).

(a) Iter.=0 (b) Iter.=25 (c) Iter.=45 (d) Iter.=62 (e) Iter.=83 (f) Iter.=93

Figure 3.33: BESO method applied to the two-bar example: (a)-(f) results obtained at differ-
ent iterations (after [130]).

Wang et al. [133] present a structural topology optimization method based on the level

set method to represent the boundaries of the structural form as the optimization process

progresses (Fig. 3.35). The level-set method provides an implicit way of representing inter-

faces as a set of contours in a scalar field; the movement of the interface is represented by the

evolution of the scalar field. Using the level set method allows easy, robust, and efficient rep-

resentation of complex boundaries, with the ability for complex topologies to form, including

bodies containing holes, or split into multiple pieces.

The optimization problem minimizes some physical properties of the structure (e.g., the

strain energy of the structure), subject to equilibrium constraints and a limit on the maximum

admissible volume of the design domain (Fig. 3.34). The design variable is the boundary of

the structure, represented implicitly by a level-set. The equilibrium equations can be imposed

using an FE analysis.
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Figure 3.34: An illustration of the level-set model: level set function (red surface) gives the
well-behaved boundary (in grey) as the flat plane (in blue) moves upward (after [134]).

(a) (b) (c) (d) (e) (f)

Figure 3.35: Level set method applied to the two-bar example: (a)-(f) results of different level
set optimization iterations, transitioning from a solid initial design without holes (after [133]).

3.3.4 Commentary

Considering the available methods, the ground structure layout optimization procedure ap-

pears to have most potential when considering the analysis of form-resistant structures, given

its ability to handle transmissible loads, large networks, and to generate new topologies.

While other methods of generating topologies are available, their reliance on underlying fi-

nite element models (which are computationally expensive and may require user expertise)

and also the need for tuning parameters (which lack physical meaning) make them less at-

tractive for the current application. In contrast, LO provides a simple, physically explainable,

optimization problem formulation that can be solved via linear programming (LP), allowing it

to be solved using robust commercially available LP solvers.
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3.4 Concluding remarks

3.4.1 Key observations

In summary:

• Form-resistant structures are efficient structural systems that have been used for cen-

turies, mostly in the form of masonry gravity structures. Design and analysis methods

to assess form-resistant structures have stemmed from Robert Hooke’s observation of a

the form of a hanging chain and later, have been formalized into the thrust line method

and other similar discretized force systems in use today.

• Existing analysis methods for masonry gravity structures range from discretized force

systems (e.g., thrust lines and derivative methods), to rigid block methods, to elastic

continuum analysis methods (e.g., finite element (FE) methods) and discrete element

methods. While the thrust line method is simpe to use, the information provided by

the method is, at times, not intuitive and lacks clarity. In contrast, although FE mod-

els can give detailed information on the state of stress, they require material stiffness

properties that are variable and difficult to estimate, require user expertise, and are

computationally expensive. As such, the need for rapid, easy-to-use, assessment tools,

which provide reliable information on how a structure carries load, is clear.

• The ground structure layout optimization (LO) method, which to date has been primarily

used for the analysis of trusses, bears similarities to graphic statics (GS) methods used to

generate thrust lines in the analysis of form-resistant structures. The mapping between

the two suggests that LO has the potential to form the basis for a new analysis tool

for form-resistant structures. In comparison to other layout optimization procedures,

ground structure-based layout optimization is attractive as it is simple (does not require

an FE solver and can be solved using linear programming) and versatile (has shown the

potential to handle transmissible loads, multiple load cases, and new member types).

3.4.2 Research gaps

From the review of current literature, the following research gaps have been identified.

• While thrust lines methods are easy-to-use for the analysis of form-resistant structures,

they may not give the exact collapse load as the limited tensile strength within blocks

is not explicitly included. This leads to the question, can the inclusion of tensile forces
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in thrust lines improve their ability to accurately predict collapse loads? Would the

inclusion of tensile forces in a thrust line analysis improve the visualization of force flows

within form-resistant structures?

• The ground structure layout optimization (LO) method appears to have the potential to

automatically generate thrust lines; i.e., force flows within form-resistant structures, and

this has not been explored previously. This thus poses the questions: how can thrust

lines be generated via layout optimization, and what benefits would this bring?

• The mapping between graphic statics and LO points to the potential for truss stability

considerations be treated in an improved manner in LO. However, this is out of the

scope of the current study, and hence is not explored further.



Chapter 4

From Thrust Lines to Thrust Layouts

Preface

Following Hooke’s observation and Heyman’s safe theorem, the thrust line method is widely

applied to the analysis and design of masonry gravity structures and other form-resistant

structures. However, there is contention as to what is to be considered as a thrust line—

there are competing notions and nomenclatures in usage. In this chapter, it is attempted

to untangle the different notions of thrust lines and identify the differences between them.

Recognizing the benefits of the different notions of thrust lines a novel concept of thrust

layouts, building upon thrust lines, is presented.

The content of this chapter was originally prepared for a journal paper: Nanayakkara,

K.I.U., Liew, A., Gilbert, M. (2023), ‘Thrust layouts in masonry gravity structures’, International

Journal of Solids and Structures (in preparation).

47
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Abstract

Heyman’s ‘safe theorem’ is widely used to assess the safety of masonry gravity structures. In

its original incarnation, a funicular thrust line—i.e., a hanging chain—was used to represent

a possible flow of forces through a structure, though this was later found to be problematic

in some cases. Following the work of Moseley, a line of resistance has also been used as a

thrust line. However, although this provides a valid representation of equilibrium, it does not

facilitate clear visualization of a flow of forces in a structure, making it less intuitive than a

funicular thrust line. With the aim of addressing shortcomings associated with funicular thrust

lines, the notion of a ‘thrust layout’ is also considered here. This can accurately represent

a state of equilibrium while also enabling visualization of a flow of forces within a structure.

Thrust layouts also allow explicit consideration of the tensile forces that can (or cannot) be

reasonably sustained in a masonry construction (e.g., within constituent blocks but not across

weak joints).

4.1 Introduction

Robert Hooke (1635-1703) observed the correspondence between a hanging chain and a

rigid arch and stated ‘As hangs the flexible line, so but inverted will stand the rigid arch’

[35, 36, 135]. Thus originated the idea of a ‘funicular’ to represent the equilibrium of an arch.

In 1748, Poleni successfully applied this to the analysis of the cracked dome of St. Peter’s in

Rome [135].

Since then, thrust lines generated from funiculars have been extensively used in the anal-

ysis of masonry gravity structures, such as arches, vaults, and domes. Here, such thrust lines

generated from funiculars will be referred to as ‘funicular thrust lines’, where the funiculars can

be from physical hanging chain/cloth models [32, 136, 137], graphic statics [36, 59, 136, 138],

or various other numerical methods (e.g., particle spring models [64, 65]). The usage of fu-

nicular thrust lines was further popularized by the development of Heyman’s ‘safe theorem’

[35], as this placed it within the realm of limit analysis, giving structural engineers the confi-

dence to use it in everyday practice. Here, it is noted that a thrust line may not represent

the exact state of the structure, where these masonry gravity structures are highly statically

indeterminate a thrust line would only show one possible flow of forces within the structure.

As Heyman [39] notes, and experimental evidence suggest [52], this is sufficient to guarantee

the safety of masonry gravity structure.
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However, as was later noted by Heyman himself [57, 139], along with others, funicular

thrust lines unintentionally assume the structure to be made up of equivalent vertical strips

of material, rather than using the actual block stereotomy present. If care is not exercised

then this assumption may lead to unsafe designs—e.g., when analysing a masonry buttress,

the masonry effective in resisting the external loads needs to be determined first to prevent

ineffective material from being inadvertently ‘lifted up’ to the thrust line, leading to an over-

estimation of the load carrying capacity [52, 54].

The usage of thrust lines is further complicated by the different notions of thrust lines that

arise from Moseley’s ‘line of resistance’ and ‘line of pressure’, where the latter coincides with

what is here referred to as a funicular thrust line [135, 58]. Although the subtle but important

distinctions between the two have been previously noted, they have both been referred to

as ‘thrust lines’*, and used in the application of Heyman’s safe theorem (e.g., the line of

resistance is used as the thrust line in [136, 140, 141], whilst the line of pressure / funicular

thrust line is used for this purpose in [36, 39, 142])

Drawing upon previous attempts to resolve these issues (e.g., [57, 58, 79]), a thorough

discussion is provided here. In addition, the notion of a ‘thrust layout’ is introduced, which

allows new light to be shed on the various notions of thrust lines. Thrust layouts are a valid

representation of equilibrium (as is the line of resistance) and a valid force flow (as is the line

of pressure / funicular thrust line) of masonry gravity structures, thus providing a means of

bringing together the current competing notions.

Issues related to frictional contacts in thrust lines are noted but not explored in depth in this

work. Heyman’s safe theorem assumes infinite friction capacity at masonry block interfaces,

notwithstanding that frictional failures in masonry gravity structures have been previously ob-

served, e.g., sliding failure at the head of a flying buttress [47]. In this case Bagi [143] has

pointed out that rigid block systems can fail even when an equilibrium solution exists and the

sliding resistance is not exceeded anywhere, with additional kinematic conditions needing to

be considered to make Heyman’s safe theorem truly ‘safe’ in this case.

In this contribution, the limitations of using funicular thrust lines are first carefully consid-

ered. Then, to remedy these, thrust layouts are introduced. Two observations on detecting

erroneous funicular thrust lines are also presented.

*In this chapter, the term ‘thrust lines’ is used as an umbrella term for all usages of thrust lines. Furthermore,
‘thrust lines’ and ‘lines of thrust’ are considered interchangeable terms, referring to the same.
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4.2 Funicular thrust line

A funicular thrust line (or a ‘line of pressure’) is defined here as a funicular polygon represent-

ing a possible state of equilibrium of a masonry gravity structure. It can be generated from

a hanging chain model or from an equivalent graphic static or numerical procedure. Formal

definitions of these are as follows.

Definition 1. A funicular polygon is an open or closed polygon that takes the form of a

(weightless) cable acted upon at a number of points by forces in various directions. (see

Fig. 4.1)

Figure 4.1: A funicular polygon generated by hanging loads on a cable or thread (in blue),
the weight of which is negligible.

Definition 2. A funicular thrust line is a funicular polygon, where the forces acting upon the

cable represent the boundary conditions of a masonry gravity structure (i.e., external loading,

self-weight, and support reactions), and the cable represents one possible state of equilibrium

of the masonry gravity structure.

Jacques Heyman, in his eponymous ‘safe theorem’, used funicular thrust lines to represent

the equilibrium of a masonry gravity structure [35], with the zero tensile capacity yield criterion

satisfied when these thrust lines are completely contained within the extent of the structure.

Thus, if a funicular thrust line subjected to self-weight and external loading can be contained

entirely within the structure, it can be deemed safe; see Fig. 4.2.
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Figure 4.2: Heyman’s safe theorem: the funicular thrust line (in blue), generated by a hanging
chain model (inverted), is fully contained within the arch section; assuming the self-weight of
the arch is negligible, the arch can be considered safe.

4.2.1 Assumption of equivalent vertical-strips

Heyman [57] notes that his earlier work (i.e., [35]) “unintentionally” assumes the voussoirs to

have vertical cuts between them. He concludes that, although the safe theorem can rea-

sonably be applied to e.g., a monolithic arch, it fails to account for the effects of cuts, or

interfaces, between voussoirs (la coupe des pierres or block stereotomy).

For instance, consider the segmental arch shown in Fig. 4.3. A funicular thrust line, shown

in blue, is generated considering the weight of the voussoirs, lumped at their mass centres.

As noted previously, the usage of a funicular unintentionally assumes a series of vertical strips,

with lines of action that pass through the centres of mass of the real voussoirs present. Figure

4.3 indicates the geometry of the real voussoirs, and the corresponding equivalent vertical

strips (shown shaded in grey) for two voussoirs, A and B.

Now consider the funicular thrust line segments within those voussoirs, real and equiva-

lent, and the corresponding thrusts at their interfaces (see the inset figures in Fig. 4.3b). As

seen in inset (i), the thrust line segment within the voussoir (blue line) and the thrusts at the

interfaces (green arrows) do not exactly coincide, leaving an offset; i.e., they are inconsis-

tent, albeit only slightly. This inconsistency implies that the funicular thrust line is not a valid

representation of the equilibrium of the voussoir, and thus the arch.

Also, note that the self-weight of voussoir A is applied to the thrust line at a point beyond

its extent. Thus the trajectory of the thrust line would change (to match that of the thrust at
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Figure 4.3: Funicular thrust lines unintentionally assume a series of equivalent vertical strips
instead of the actual voussoir stereotomy: funicular thrust line within voussoir (a) is not consis-
tent with the thrust at the interfaces, whereas it is for the assumed equivalent vertical strip; in
contrast, for voussoir (b), the funicular thrust line within both the voussoir and the equivalent
vertical strip are consistent with the thrust at interfaces.

the interface) only after the point of application of this self-weight force. This leads to the

thrust line within the block being inconsistent with the thrust at the interfaces.

However, as shown in inset (ii) of Fig. 4.3b, the funicular thrust line and the thrusts at

interfaces are consistent for the corresponding equivalent vertical strip. Note that the self-

weight is now applied to the thrust line within the extent of the equivalent vertical strip; this is

guaranteed to be the case when the lines of actions of self-weight are parallel to the voussoir

interfaces. Thus the equilibrium representation of a funicular thrust line is only strictly valid

for equivalent vertical strips.

Nevertheless, the geometry and orientation of the voussoirs can be such that the static

equilibrium representation of a thrust line is still valid. For instance, consider voussoir B in

Fig. 4.3. As seen in inset (iii) the funicular thrust line and the thrusts at interfaces are in this

case consistent with the real voussoir. This is in fact guaranteed to be the case if the line of

action of the self-weight of the voussoir does not cross a radial joint (i.e., the line of action of

the self-weight remains within the corresponding block).

4.2.2 Implicit tensile strength

Now consider the segmental arch shown in Fig. 4.4. A funicular thrust line (corresponding

to one possible flow of forces) is also constructed, shown in a blue solid line, considering
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self-weights lumped at the centres of mass of the voussoirs.

Now observe in Fig. 4.4 the positions of the centres of mass (marked with an ×) relative

to the funicular thrust line. It is evident that some of the mass centres lie above the funic-

ular thrust line, while others lie below. This implies that struts in compression are required

to transfer the self-weight of voussoirs to the thrust line, as indicated by blue vertical lines

running from the centres of mass in Fig. 4.4. Similarly, ties in tension are required to transfer

the self-weight loads in cases where the centres of mass of voussoirs are below the funicular

thrust line; see red vertical lines in Fig. 4.4. Thus, this construction of a funicular thrust line

implicitly assumes that tensile forces can be resisted by the masonry.

Figure 4.4: Implicit tension in funicular thrust lines: Funicular thrust lines assume tensile forces
to transfer the self-weight loads from their points of application to the thrust line, as indicated
by red verticals where the self-weights are lumped at the centres of mass of the voussoirs.
Equivalently, when the self-weight is considered distributed, the areas below the funicular
thrust line (shaded in pink) will be in tension in the vertical direction. Similarly, blue indicates
compressive forces.

By extension, if the self-weight were to be considered distributed, instead of being lumped

at the centres ofmass, thematerial below the thrust line, shaded in pink, is carrying self-weight

loads in tension (in the vertical direction), and the material above the thrust line is carrying

these in compression (in the vertical direction).

In summary, funicular thrust lines (i) assume equivalent vertical strips instead of the real

voussoir configuration, which is likely to lead to an invalid representation of the state of equi-

librium of the structure; and (ii) implicitly assume tensile forces can be resisted by the vous-

soirs, although this is not made explicitly clear to the users, though no tensile forces are

allowed in the funicular thrust line itself.

For a typical example involving a segmental arch subjected to self-weight and other ver-

tical loads, the aforementioned shortcomings may lead to conservative predictions of safety.

Consider for example the two voussoirs shown in Fig. 4.5, where the voussoirs share a com-

mon interface, have self-weightsWA andWB , and are subjected to thrust forces FA and FB .

Here, the funicular thrust line considered (and shown in a solid blue line) moves outside the
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two-voussoir configuration indicating according to Heyman’s safe theorem that the structure

will not stand due to the absence of a valid equilibrium solution. However, the structure is

safe: the three forces on each of the voussoirs (self-weight, external thrust force, and the

thrust between the voussoirs) create closed force polygons (see force diagram in Fig. 4.5)

guaranteeing equilibrium, and all thrust forces are contained within corresponding interfaces

ensuring the yield condition for masonry is not violated. Thus, here, the funicular thrust line

indicates an unsafe structure even when the structure is safe, therefore leading to a conser-

vative assessment of safety.

WA

WB

FA

FA

FB

X

Y

FB

WA

WB

force diagram

Figure 4.5: Funicular thrust line in two-voussoir example: although an equilibrium solution
exists, the funicular thrust line moving outside the extent of the assembly indicates an unsafe
solution. (The two voussoirs are of weightWA andWB , share an interface, and are subjected
to thrusts FA and FB .)

Alternatively, assuming infinitely rigid blocks (which was not an explicit assumption of Hey-

man [35]) would rectify the issues caused by the assumption of vertical strips and implicit ten-

sile strength [144]. However, thrust lines generated with this assumption would no longer be

a funicular thrust line: they would align with the notion of line of resistance.

4.3 Line of resistance

In 1843 Moseley [145] presented the notion of a ‘line of resistance’ to represent a possible

state of equilibrium of ‘a structure made of uncemented stone’ (the same notion was in 1907

also presented by Milankovich, though in this case referred to as die druckkrve [146, 147]).

Definition 3. A line of resistance is a geometrical locus of points-of-application of the resul-

tant thrust forces that develop at interfaces within a masonry arch or other structure.
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Revisiting the two-voussoir example, now consider a line of resistance. The line of resis-

tance drawn as a solid purple line in Fig. 4.6 is constructed by first determining the points-

of-application of thrust at each interface (marked X, Y, Z) and then connecting them by line

segments.

Thus a line of resistance is a valid equilibrium representation that explicitly considers block

stereotomy. However, it does not necessarily align with the thrust trajectory at interfaces; this

happens if and only if the interfaces are vertical [146, 147]. Thus, it can be argued that a

line of resistance does not represent a valid force flow within the structure. Also, as a line of

resistance does not follow the thrust force vectors, it is visually less intuitive than a funicular

thrust line and does not make it clear to a structural engineer how the structure could safely

carry the applied loads.

WA

WB

FA

FB

X

Y

Z

Figure 4.6: Line of resistance in two-voussoir example: although the line of resistance is fully
contained within the structure, it does not correspond to a force flow as the line segments
do not align with the corresponding thrusts at the interface.

Furthermore, a convenient, albeit non-rigorous, way of checking for sliding failure is to

check the angle of incidence of a thrust line at an interface against the angle of friction of the

material; e.g., see [145, 46]. Now, since a line of resistance representing a thrust line does

not reflect the actual thrust trajectory, such a geometrical check is not possible.

Finally, given that vertical strips are implicitly assumed in the case of funicular thrust lines,

it follows that a line of resistance and the corresponding funicular thrust line will coincide if,

and only if, the interfaces between masonry blocks are vertical (i.e., are aligned parallel to the

direction of gravity loading).
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T

WA

WB

FA

FB

Figure 4.7: Thrust layout in two-voussoir example: the thrust layout is fully contained within
the structure and properly corresponds to a force flow.

4.4 The thrust layout

Now consider the network of forces in Fig. 4.7 for the same two-voussior example considered

earlier. The network is fully contained within the structure; its links align with the force vectors

and the forces satisfy equilibrium constraints for each of the voussoirs, and hence in turn the

whole assembly. Therefore, this network of forces is both a valid representation of equilibrium

and a meaningful visualisation of force flow. This network of forces is here termed the ‘thrust

layout’.

The thrust layout is formally defined below:

Definition 4. A thrust layout is a network of forces in equilibrium, representing a possible

flow of forces in an assembly of blocks, where:

1. compressive forces of any magnitude are allowed;

2. self-weight forces must be transferred to the network within the extent of the corre-

sponding masonry block;

3. tensile forces are allowed within blocks, but not across the weak interfaces that lie be-

tween them.

Note the presence of a tensile link in the force network shown in Fig. 4.7, and in the defini-

tion of a thrust layout. It was previously observed that tensile forces are implicitly associated

with funicular thrust lines; instead here these forces are explicitly shown, and can usually be
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carried provided that some, albeit limited, tensile capacity can be transmitted within a given

masonry block.

Taking a thrust layout to be a natural extension of a funicular thrust line, the condition

of infinite compressive forces is adopted here and two additional constraints are introduced:

(i) self-weight is assumed to be transferred to a thrust layout within the extent of a given

block; (ii) tension is explicitly allowed within the extents of a given block. The effects of these

additional constraints are explored further in the following sections.

4.4.1 Transferring self-weight to the thrust layout within the extent of a
given block

Consider the simple two-block example shown in Fig. 4.8a, which shows a small block stacked

on a larger block. An increasing horizontal load P is applied at the top left corner of the top

block, which will eventually overturn that block about its bottom right corner, opening up the

weak interface between the two blocks. Onemay construct a hanging chain model (Fig. 4.8b),

or a corresponding graphic static funicular thrust line (Fig. 4.8c), considering the self-weights

of the blocks, WA and WB , to be lumped at their mass centres. Both methods predict the

same collapse load, of P = P1.

However, the force flow represented by this funicular thrust line is not admissible in the

real structure, since it implicitly assumes that a tensile force can be transmitted across a weak

interface, which in reality is not possible. This error is easily detected when the forces carry-

ing self-weight from the mass centres to the funicular thrust line are plotted (see Fig. 4.8c),

whereas not so obvious in the physical hanging chain model (see Fig. 4.8b).

This erroneous funicular thrust line can be corrected by ensuring the self-weight load cor-

responding to a given block is mobilized only within the extent of that block. A valid thrust

layout is presented in Fig. 4.8d, where the self-weight of the bottom block WB is not trans-

mitted up to the main thrust line, but instead is directly transferred down to the supporting

ground. In this solution equilibrium of each individual block is satisfied, and hence so is the

equilibrium of the whole structure. Also, the yield condition is satisfied at all interfaces (i.e., no

tension is applied across weak interfaces), with the solution also corresponding to a valid col-

lapse mechanism (where the top block rotates about the bottom right corner, as in Fig. 4.8a),

thus giving the exact collapse load, of P = P2.

Contrary to the commonly held belief that thrust line solutions will always be conservative,

the solution of P = P1 given by the funicular thrust line in Fig. 4.8c, is higher than the exact
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Figure 4.8: Mobilizing self-weight load within the extent of a given block: (a) experimentally
observed failure mechanism when a horizontal load P is applied at the top left corner of the
top block; (b) physical hanging chain model at failure, with P = P1; (c) corresponding graphic
statics model, with again P = P1; (d) thrust layout model, with now P = P2, where P2 < P1;
in this case the self-weight of the bottom block is carried directly by the supporting ground
whereas the funicular thrust line implicitly assumes that a tensile force can be transmitted
across the weak interface between the blocks, inadmissible in the physical model. (Compres-
sion and tension forces are shown in blue and red respectively.)
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equivalent beam:

Figure 4.9: Incorporating tension explicitly: (a) experimentally observed failure mechanism
when an inclined load P is applied at the top right corner of the top block; (b) a thrust line
lying entirely within the structure cannot be constructed; (c) observing the equivalence of
the rocking top block (in the physical model) to a beam in bending, the requirement for
tensile forces to be present inside the block is noted; (d) a valid thrust layout incorporating
tensile forces is constructed. (Compression and tension forces are shown in blue and red
respectively.)

collapse load of P = P2, since the self-weight of the bottom block will help resist the applied

load.

4.4.2 Incorporating tension explicitly

Now consider another example involving two blocks, where in this case the top block over-

hangs the bottom block (Fig. 4.9a). The two block assemblage is in this case subjected to an

inclined load applied to the top right corner of the overhanging block.
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Firstly, an attempt is made to construct a funicular thrust line for this example (Fig. 4.9b).

For this, a compressive force along the line of action of the external load P is required, in

order to satisfy equilibrium at point X. However, this compressive force would move outside

of the structure before intersecting the line of action of the self-weight WA of the top block

(indicated in a dashed line). Thus a funicular thrust line fully contained within the structure

cannot be constructed.

Yet the physical model (Fig. 4.9a) suggests that a valid solution must exist. Investigating

this further, a free body diagram for the rocking top block is drawn (Fig. 4.9c); observe the

top block rocking about point Y in the physical model. This is equivalent to a beam subjected

to a point load in bending. The presence of bending in the beam suggests that tensile forces

must be mobilized in the block, likely to be in the upper portion of the block. Following

this intuition, a force network that includes a tensile force (i.e., a thrust layout) is constructed

(Fig. 4.9d), where the forces are in equilibrium and the network is fully contained within the

structure.

Thus, a valid thrust layout is constructed by explicitly allowing tensile forces within con-

stituent blocks, where a funicular thrust line would have suggested an unstable structure un-

der the given loading. Note that the thrust layout presented in Fig. 4.9d is one of many

possible valid thrust layouts.

4.5 Identifying erroneous funicular thrust lines

The two examples studied in the previous section demonstrate the limitations of using a

funicular thrust line to represent the equilibrium of block assemblies. Now, considering the

geometry of the funicular thrust line, the two examples are re-examined to see if general rules

can be found to detect erroneous funicular thrust lines.

4.5.1 Case 1: collapse load over-estimation

Consider the example shown in Fig. 4.8, now reproduced in Fig. 4.10. Observe the funicular

thrust line changing its orientation, from being horizontal at the loading point to being near-

vertical as the self-weight of the constituent blocks is transferred to it. This is the general

behaviour observed in funicular thrust lines in regions where no external horizontal load is

applied; e.g., see the arches in Fig. 4.3 and Fig. 4.4.

Now consider the equilibrium of the bottom block in Fig. 4.10. The block is in equilibrium

under three forces: the thrust from the top block, FA; the reaction from the ground, FB ; and
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self-weight, WB . These equilibrating forces meet at a point above the block (point Z), but

this still lies within the structure.

free body diagram 

for the bottom block

force diagram

P

WA

WB

FB 

(b)(a)

F
A
 

X

Z

(c)

P

WA

WB

FA 

FB 

FA 

Z

YX

WB

FB 

Figure 4.10: Over-estimation of the collapse load by the funicular thrust line: Although the
thrust line is fully contained within the structure, the equilibrium of the bottom block is not
valid: The thrust FA between the blocks is outside the interface between the two blocks—
passing through point Y, in the free body diagram. Note the equilibrating forces of the bottom
block coincide at a point above the block.

The funicular thrust line approaching point Z follows the trajectory of the thrust force vec-

tor FA, and then changes orientation, becoming more vertical. The deflected thrust line then

intersects the block boundary at point X, whereas the thrust force vector FA, when extrap-

olated, goes on to intersect the block boundary at point Y. Thus, the (deflected) funicular

thrust line intersects the block boundary at a point some distance within where the real thrust

would intersect the block boundary.

This means, in a limiting case where the funicular thrust line is on the boundary of the

structure (point X in Fig. 4.10), the thrust itself would likely be outside (point Y). Hence the

equilibrium representation of the funicular thrust line is not valid.

4.5.2 Case 2: collapse load under-estimation

Now, consider the example shown in Fig. 4.9, now reproduced in Fig. 4.11. The funicular

thrust line in Fig. 4.11 is only partially contained within the structure.

The top block in Fig. 4.11 is in equilibrium under three forces: the externally applied load,

P ; the thrust from the bottom block, FB ; and the self-weight, WA. These forces intersect at

a point below the block (point Z), but still within the structure.

The funicular thrust line following external load P changes its orientation towards the

vertical at point Z and then follows the trajectory of the thrust FB . This results in the funicular
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Figure 4.11: Under-estimation of the collapse load by the funicular thrust line: Although the
funicular thrust line lies outside the structure, the equilibrium of the blocks and the structure
is satisfied: Thrust force F2 between the blocks lies within the interface between the two
blocks—passing through point B. Note the equilibrating forces of the top block coincide at a
point below the block.

thrust line intersecting the block boundary at point X, which is exterior to the point where the

thrust FB is being applied on the block (point Y).

This means, that, even when the funicular thrust line is outside the structure, there may

still exist a valid equilibrium solution. That is the case here as point Y is on the boundary of

the structure.

4.6 Discussion

Thrust layouts can be used for the analysis of masonry gravity structures where the block

stereotomy is known; a structure is safe if a thrust layout fully contained within the structure

can be found. One method of generating thrust layouts is by starting with a hanging chain

model, and then using the two observations noted to identify locations where either an al-

ternative load path is required or tension needs to be introduced; i.e., add struts and add/re-

move extra ties from the hanging chain model. However, this would be impractical where the

geometry is complex and a large number of constituent blocks are involved. For such cases,

user-friendly computer tools will be required to automatically generate thrust layouts, as has

been the case for the generation of funicular thrust lines, e.g., [64, 86, 148].

Masonry gravity structures are generally statically indeterminate and thus have multiple

possible ‘safe’ load paths. Knowing one of these would be satisfactory for an engineer to

assess an existing structure (or to verify the design of a new one). In other words, although
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only one load path may exist in reality, knowing that particular load path is not necessary.

The thrust layout optimization (TLO) procedure presented recently by Nanayakkara et al.

[149] automates the generation of thrust layouts. The presented numerical method solves an

underlying linear programming (LP) problem, taking advantage of efficient and widely avail-

able LP solvers. Furthermore, the TLO procedure also takes account of the limited frictional

capacity of block interfaces, albeit implicitly assuming associative friction. Thus the concerns

of Bagi [143] are not addressed here, though this could be remedied by adopting an iterative

solution scheme, e.g., the approach proposed in [150].

While noting that funicular thrust lines implicitly assume vertical tension-weak planes, Hey-

man suggests that a funicular thrust line would be valid for a monolithic continuum [57]. How-

ever, testing on monolithic arches made of rammed earth suggests that the failure planes of

the arch are unlikely to be vertical [151, 152]. This suggests that a methodology which auto-

matically identifies critical failure planes (e.g., [153, 154]) would be more appropriate for the

analysis of form-resistant continua (e.g., arches formed using rammed earth construction).

Thrust networks are the equivalent three-dimensional extension of funicular thrust lines,

and similar shortcomings exist there too. Fantin and Ciblac [155] extend thrust networks

with additional ‘partial branches’ to account for solutions where the forces on a block do not

converge to a point, whereas thrust networks restrict the domain of acceptable solutions to

where all forces on a block coincide at a point. This, however, does not appear in the two-

dimensional problem as the blocks are in equilibrium under only three forces and therefore

must meet at a point to satisfy equilibrium. Furthermore, Barsi et al. [79] map the funicular

thrust lines to the classic membrane solution (in 3D) and the line of resistance to thrust surfaces

(in 3D).

4.7 Conclusions

Heyman’s ‘safe theorem’ is widely used in the assessment of masonry gravity structures. In

developing his theorem, Heyman used a funicular thrust line to represent the equilibrium

of a masonry gravity structure. However, as noted in this contribution, there are limitations

associated with using a funicular thrust line to represent the state of equilibrium of a masonry

gravity structure. These limitations arise from not taking account of block stereotomy, which

can lead to either under- or over-estimation of the collapse load of amasonry gravity structure,

contrary to the commonly held belief that the thrust line method will generally give safe

solutions. Furthermore, the implicit reliance on tensile strength when working with funicular
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thrust lines is not clear to users.

Here, the notion of a ‘thrust layout’ is proposed. Block stereotomy is explicitly taken

into account in a thrust layout, with tensile forces allowed within constituent blocks, but not

across the weak interfaces between blocks. Thrust layouts can be used in the application of

Heyman’s safe theorem to any structure, as this now appropriately represents the equilibrium

of the structure. Furthermore, similar to funicular thrust lines, thrust layouts visualize a flow of

forces within a structure. Thus, in contrast to the ‘line of resistance’ presented by Moseley, a

thrust layout enables the structural engineer to clearly grasp how a masonry gravity structure

safely carries applied loads.

Authors’ Contributions

KIUN conceptualized the paper, carried out the investigation, and generated the visualiza-

tions in consultation with MG and AL. KIUN wrote the original draft, which was reviewed and

edited by AL and MG.



Chapter 5

Thrust Layout Optimization (TLO)

Preface

Generation of thrust layouts presented in Chapter 4 can be automated so that practising engi-

neers can readily use it for the analysis of masonry gravity structures, and other form-resistant

structures. Using the mapping between the graphic statics used to generate the traditional

funicular thrust lines and the ground structure layout optimization, a novel procedure termed

thrust layout optimization (TLO) is presented.

The TLO procedure presented is further extended to include a post-processing geometry

optimization rationalization process (GO), inspired by the same presented for trusses by He

and Gilbert [113]. This post-processing procedure was used to improve the visual clarity of

thrust layouts. Technical details of the procedure are provided in Annex B.

The content of this chapter was originally prepared for a journal paper: Nanayakkara,

K.I.U., Liew, A., Gilbert, M. (2023), ‘Application of thrust layout optimization to masonry struc-

tures’, Proceedings of the Royal Society A 479 (2273), 20230053. The text presented in this

chapter includes the following additions to the original text: (i) a note on the nature of the

thrust lines generated, found on lines 11-13 on page 72, (ii) a note on the relative importance

of internal and boundary node densities, on lines 9-14 on page 85, and (iii) a note on the

effects of material strength limits on the presented results, on lines 5-11 on page 92.

Additional examples of the application of TLO are provided in Annex C, which is a paper

presented at the Structural Analysis of Historical Constructions conference held in Kyoto in

September 2023: Nanayakkara, I., Liew, A., Gilbert, M. (2024). ‘Thrust Layout Optimization

for the Analysis of Historic Masonry Structures’. In: Endo, Y., Hanazato, T. (eds) Structural

Analysis of Historical Constructions. SAHC 2023. RILEM Bookseries, vol 46. Springer.
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Abstract

A new automated analysis procedure designed to overcome limitations of the traditional

thrust line analysis method formasonry gravity structures is presented. The procedure, termed

thrust layout optimization (TLO), is capable of automatically identifying admissible thrust lines

in masonry gravity structures comprising general arrangements of masonry blocks. The pro-

cedure employs a modified truss layout optimization with transmissible loads formulation,

which means that an initial thrust line layout does not need to be specified in advance. Highly

visual output is generated, allowing areas where tensile strength has been implicitly assumed

to be clearly identified, which is beyond the scope of traditional thrust line analysis. Also,

sliding failures can be modelled without difficulty. Finally, examples are used to demonstrate

the efficacy of the TLO procedure; these show that thrust line bifurcations can be automat-

ically identified in problems involving openings, and that there is no need to estimate the

ineffective area in buttress wall problems, both issues for the traditional thrust line analysis

method.

5.1 Introduction

Traditional load-bearing masonry structures have been used for millennia in construction,

ranging in scale from individual dwelling houses to viaducts and cathedrals. Many of these

structures have considerable historic value, and, to ensure they remain safe and fit for pur-

pose, effective assessment methods are required [40, 89]. The current climate emergency is

also leading to renewed interest in stone masonry as a low embodied carbon means of con-

struction [156, 157] and this also makes it important that these structures are not needlessly

demolished and replaced, at considerable cost to the environment.

To confirm the stability of masonry gravity structures, thrust line methods have been used

since at least the time of Poleni [32]. As first pointed out by Hooke [39], ‘as hangs the flexible

line, so but inverted will stand the rigid arch’. This suggests that if a line of thrust can be

found that lies entirely within the thickness of a masonry arch then the structure will be stable

(neglecting the possibility for sliding failure or material crushing). This observation led to the

development of the thrust line method, which has also been widely used in design, perhaps

most famously by Gaudi when designing the Colònia Güell church near Barcelona [32]. In

this case a geometrically complex physical cable-net model was constructed to ensure the

network of supports, ribs and vaults forming the building were appropriately proportioned
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to ensure stability.

More recently computer based methods have been used to assess the stability of masonry

constructions. Although finite element analysis methods have proved popular in a wide range

of engineering disciplines, traditional linear elastic finite element analysis is of limited use in

the case of traditional masonry gravity structures, principally due to the typically minimal

tensile stresses that can safely be sustained by masonry materials. Conversely, non-linear

finite element methods, although powerful, are generally too computationally expensive and

demanding of operator expertise for routine use. Similarly, although discrete element [158]

methods, including non-smooth contact dynamics (NSCD) [49], can be applied to masonry

problems, the iterative solution procedure and requirement for the use of small timesteps

makes them comparatively computationally expensive when a static analysis is involved.

Thus limit analysis approaches have proved popular, principally due to their ability to

rapidly and directly analyse the collapse limit state. Building on the work of Kooharian [45]

and Heyman [35], Livesley [82] proposed a rigid block limit analysis method, later extended

by workers such as Ferris and Tin-Loi [159], Orduna and Lourenco [160] , Gilbert at al. [150]

and Nodargi et al.[161] to treat problems involving non-associative sliding friction between

blocks. Although usually used to identify instantaneous collapse mechanisms, rigid block

analysis problems involving gross displacements can also be handled (e.g. [162, 163]).

However, rigid block methods require a masonry construction to be split either into con-

stituent units, of which there are usually many, or into macro-blocks (e.g. [164]) to approxi-

mately represent these. In the latter case, since failure planes must coincide with the inter-

faces between blocks, there is a danger of over-estimating the stability of a given masonry

construction when a number of physical units are represented by a single macro block. Also,

particularly when treating complex geometries, it is not straightforward to infer a continuous

line of thrust from the output—e.g. in the recent contribution by Iannuzzo et al. [163] the

lines are discontinuous.

As an alternative to explicitly discretizing a masonry structure into constituent blocks, in

recent years there has been a resurgence in interest in thrust line methods, now taking ad-

vantage of various computer based implementations. Notably, building on work by O’Dwyer

[53], Block and Ochsendorf [165] developed the thrust network analysis (TNA) procedure to

provide a rapid means of analysing and designing three-dimensional vaulted masonry struc-

tures. Using TNA the geometry of a predefined network of thrust lines is adjusted until a

stable solution is found, in which the thrust lines lie entirely within the masonry. TNA can

be used to evaluate the safety of masonry structures by computing a geometric safety fac-
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tor, or, by considering limiting horizontal thrusts at the supports, a ‘stability domain’ that

describes admissible stress states [166]. However, the dependence of the results obtained

on the topology of the initially defined thrust network remains an issue.

However, the thrust line method, whether undertaken by hand or via computer, has a

number of inherent limitations. For example, to enable the self-weight of masonry lying below

a thrust-line to be mobilized (i.e. be effectively ‘lifted up’) it is implicitly assumed that the

masonry possesses a degree of tensile resistance, but this is not necessarily transparent to

the user. Consequently, to avoid non-conservative outcomes, an inclined crack may need to

be introduced when modelling masonry buttresses [54, 55, 56], and results are also sensitive

to the way in which the masonry is discretized into blocks [57], something that is not always

obvious to users. Furthermore, the usual assumption that the masonry possesses unlimited

friction capacity can lead to non-conservative predictions of stability; e.g. even though a line

of thrust can be identified that fits entirely within the masonry, sliding failure at the head of

a flying buttress may lead to premature failure [46, 47]. Premature, friction-induced, failure

may also arise in multi-ring arches [167]. Finally, when complex geometries are involved (e.g.

consider a gothic cathedral) it is often necessary to analyse parts of the structure separately

and to then combine these to check overall stability, a somewhat cumbersome process [55].

In this paper, a new computational means of identifying admissible thrust lines in masonry

gravity structures is proposed to overcome the aforementioned issues. The proposed pro-

cedure takes advantage of powerful layout (or ‘topology’) optimization techniques that have

already been successfully used to automate the so-called ‘strut and tie’ method of design

for reinforced concrete structures, where the goal is to identify tensile and compressive force

paths in deep beams and other elements, enabling efficient layouts of tensile reinforcement

to be identified [168]. In a traditional unreinforced masonry structure the goal is somewhat

different, with the priority being to identify compressive force paths, with self-weight effects

handled appropriately. Topology optimization has been little used previously in the field of

masonry structures, with a rare example being usage in [169] to identify regions of compres-

sion for use in subsequent nonlinear finite element pushover analyses of masonry walls. In the

present contribution it will be shown that a formulation employing truss layout optimization

[13, 108], used in tandem with transmissible loads [8, 120], can be built on to directly identify

compressive force paths and to establish margins of safety. It will be shown that this requires

the introduction of interfaces to represent weak masonry joints, thereby allowing both tensile

and sliding failures to be modelled, as well as changes to the optimization objective function.

The present chapter is organized as follows. In Section 5.2 the development of the thrust
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layout optimization formulation is outlined, with this then applied to a wide range of example

problems in Section 5.3; in Section 5.4 conclusions are drawn.

5.2 Thrust layout optimization method

5.2.1 Standard ground structure layout optimization (LO) procedure

The standard ‘ground structure’ layout optimizationmethod was originally developed to iden-

tify optimal (minimum volume) truss structures [13, 108, 109, 110, 111]. The process involves

the steps of: (i) specifying a design domain and boundary conditions—i.e. loading and sup-

port conditions (Fig. 5.1a); (ii) positioning nodes across the design domain, then interlinking

these with potential members to form a ‘ground structure’ (Fig. 5.1b); and (iii) using linear

programming (LP) to find the optimal structure to carry the applied loads (Fig. 5.1c). (Note

that the basic LO formulation may result in structures that are in unstable equilibrium with the

applied loads, e.g. see the structure shown in Fig. 5.1c.)

Nodes

Links

(b) 

P

W

b/2

(a) 

h

b/2

Plow

(c)

Phigh

(d)

Figure 5.1: Standard ‘ground structure’ truss layout optimization (LO) procedure: (a) speci-
fied design domain, loading and support conditions; (b) nodes linked by potential members,
creating a ‘ground structure’; (c) optimal (minimum volume) layout identified by solving the
underlying layout optimization problem; (d) optimal solution when a higher horizontal load is
applied, involving the need for a support reaction that would be inadmissible if tension could
not be transmitted to the support. Optimized truss layouts shown for values of Plow, Phigh,W,
h, b, σt and σc of 1, 2, 4, 2, 1, 1 and 100 respectively. Tension and compression forces shown
in red and blue respectively, with line thickness proportional to force magnitude.

In terms of mathematics, for a problem involving a ground structure comprising n nodes

and m potential members, the associated underlying LP problem formulation that involves

finding the minimum volume truss structure (or ’truss-like’ flow of forces) can be written as

follows:
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min
a,q

V = lTa (5.1a)

s.t. Bq = f (5.1b)

−σca ≤ q ≤ σta (5.1c)

a ≥ 0, (5.1d)

where V is the volume of the truss structure; l = [l1, l2, ..., lm]T is a vector of ground struc-

ture member lengths and a = [a1, a2, ..., am]T is a vector of member cross-sectional areas.

Force equilibrium is imposed at nodes by Eq. (5.1b), where B is a 2n × m matrix contain-

ing direction cosines, q = [q1, q2, ..., qm]T is a vector of internal member forces, and f =

[f1x, f1y, f2x, f2y, ..., fnx, fny]
T is a vector of external applied loads. Yield constraints are en-

forced for each member by Eq. (5.1c), where σt and σc are limiting tensile and compressive

stresses respectively. Truss members are constrained to have zero or positive cross-section

area in Eq. (5.1d). Since the objective function Eq. (5.1a) and all constraints are linear with re-

spect to the optimization variables—member areas a and internal forces q—this is therefore

a LP problem, that can be solved efficiently using modern LP solvers.

However, the problem setup shown in Fig. 5.1 can alternatively be interpreted as a means

of determining an admissible flow of forces in a loaded masonry gravity structure, here com-

prising a single stone block of height h, breadth b, and weightW , resting on a rough horizontal

base. In this case the design domain in Fig. 5.1a now represents the extent of the block, with

the self-weight of the block applied as a downward loadW at its centre of mass. A horizontal

external load P is applied at the top left corner. The generated minimum volume truss struc-

ture shown in Fig. 5.1c now corresponds to an admissible pattern of internal forces, where

in this case the horizontal load Plow is (just) capable of overturning the block. Application

of a larger horizontal load, Phigh, corresponds to a solution involving support reactions that

cannot be sustained by the masonry, assuming that the interface at the base of the block

possesses zero tensile strength (Fig. 5.1d). This basic conceptual model will be developed

further in subsequent sections of the present paper.

5.2.2 Interface nodes representing weak masonry bonds

In the standard ground structure layout optimization solution shown in Fig. 5.1d, the node at

the bottom left of the domain is supported and so can sustain an upward force; similarly the
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node at the bottom right of the domain can sustain a downward force. However, if the desire

is to represent the stability of a stone block, as considered at the end of the previous section,

the upward (tensile) force present at the left support cannot be sustained, assuming that the

interface between the base of this block and the support cannot resist tension. To appro-

priately represent the required behaviour at block-to-block and block-to-support interfaces,

interface nodes can now be introduced.

Interface nodes share the same physical location at a weak interface, but with each be-

ing associated with one of the adjacent blocks. This gives rise to node pairs that are each

connected via a normal force qn and a shear force qs, respectively aligned perpendicular and

parallel to the interface. The weak interface is enforced by constraining the normal force to

always be compressive, Eq. (5.2b), and the shear force to be limited by the normal force and

friction coefficient between blocks at the interface, Eq. (5.2c).

To incorporate interfaces, mathematical formulation Eq. (5.1) is modified by replacing

Eq. (5.1b) with the following equilibrium and yield constraints:

Bq+Bnqn +Bsqs = f (5.2a)

qn ≤ 0 (5.2b)

µqn ≤ qs ≤ −µqn, (5.2c)

where in Eq. (5.2a) interface equilibriummatricesBn andBs are introduced, containing direc-

tion cosines on the basis of notional zero-lengthmembers oriented respectively perpendicular

and parallel to the corresponding interface. Both matrices are of size 2n × p, where p is the

number of interface node pairs. Also qn = [qn,1, qn,2, ..., qn,p]
T is the interface normal force

vector and qs = [qs,1, qs,2, ..., qs,p]
T is the interface shear force vector. Finally, µ is the static

friction coefficient for block-to-block and block-to-support interfaces.

5.2.3 Transmissible self-weight loads

Returning to the example shown in Fig. 5.1, when this was interpreted as a single block grav-

ity structure analysis problem, the self-weight of the block was assumed to be applied at the

centre of mass, leading to somewhat convoluted patterns of internal forces being identified.

However, when constructing a funicular polygon using the traditional thrust line method,

self-weight loads are allowed to move along their lines of action, permitting identification

of simpler, compression-only, patterns of internal forces. This is something that can be re-

produced in layout optimization by the use of ‘transmissible’ loads [8, 119, 120]. These are
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loads that are shared across multiple nodes lying along a given vertical line of action when

self-weight loads are involved.

To illustrate the concept, in Fig. 5.2a, the self-weight in the single stone block example

is now modelled using two vertical strips of material. The self-weight of each strip can be

considered as a transmissible load, with this shared between nodes lying along its line of

action (Fig. 5.2a and b), as opposed to being fixed at its centre of mass (as in Fig. 5.1). As the

number of strips (or transmissible load lines) and the number of nodes on a strip are increased,

it is evident that the solution will tend towards the form of a traditional thrust line solution—

see Fig. 5.2c, where here 25 transmissible load lines have been employed, with σt and σc set

respectively to 1 and 100 to identify a thrust layout where compressive forces are dominant.

Note that, unlike a traditional thrust line, here the thickness of the line corresponds to the

magnitude of force. Also note that here it is necessary to increase the number of vertical

strips to obtain a more faithful representation of self-weight effects.

P

(a)

W

2
W

2

(b) (c)

Figure 5.2: Including self-weight via transmissible loads: (a) discretization of the self-weight
of a notional masonry block via two vertical strips; (b) positions of nodes along transmissible
load lines and the resulting optimal force flow; (c) optimal force flow obtained using a finer
resolution—with block self-weight now discretized via 25 transmissible load lines and using a
post-processing geometry optimization rationalization step to improve clarity (after [113]).

In comparison to constraint Eq. (5.1b), which was used when generating Fig. 5.1, intro-

duction of transmissible self-weight loads w requires these to be separated from externally

applied loads f in the equilibrium equation—see Eq. (5.3a) below. Also, the self-weight load-

ing applied to a given node (denoted w) now needs to be represented by an optimization

variable, with the total self-weight load associatedwith each transmissible load group (w̄) fixed

for a given discretization by constraint Eq. (5.3b). Finally, constraint Eq. (5.3c) is also needed

in order to avoid spurious solutions from being identified (see [120] for an explanation of why
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this is necessary):

Bq−w = f (5.3a)

Hw = w̄ (5.3b)

w ≥ 0, (5.3c)

where, w = [0, w1, 0, w2, ..., 0, wn]
T is the nodal self-weight load vector. Note that as self-

weight loads are applied in the vertical direction, only vertical equilibrium constraints are

affected. Also w̄ = [w̄1, w̄2, ..., w̄g]
T is the load group vector, where g is the number of trans-

missible self-weight load groups in the problem and w̄i is the total load applied in transmis-

sible load group i. Binary matrix H specifies which nodal load components in w belong to

which load group in w̄, where H is of size g × 2n and is given by:

Hij =


1 if load component j exists in load group i

0 otherwise.
. (5.4)

5.2.4 Proposed thrust layout optimization (TLO) procedure

The developments described in the preceding sections provide the basic foundations for

a new analysis method for masonry gravity structures, henceforth termed thrust layout opti-

mization (TLO). The method builds on the standard ground structure truss layout optimization

method by (i) introducing interface nodes to represent weak interfaces; and (ii) representing

self-weight loads as transmissible loads. However, several further developments are required

to realise the TLO procedure; these include changes to the optimization objective function,

and are described in this section.

As with the standard truss layout optimization procedure, TLO first requires that the ex-

tent of the problem domain and the nature of loading and boundary conditions are prescribed

(Fig. 5.3a). However, in this case the problem domain is bounded by the outline of the ma-

sonry gravity structure, and the presence of weak interfaces between blocks need to be iden-

tified. Nodes are generated in both the interior and at boundaries of blocks, while interfaces

are populated with interface nodes. Links are created between all nodes in the same block

(Fig. 5.3b). These links, representing potential internal force paths, are allowed to take any

compression force, but the maximum tensile force is limited by a value qtmax, to reflect the

non-zero, albeit usually relatively low, tensile strength of masonry blocks. Self-weight loading

is applied as transmissible loads, with the line of action constrained to lie within any given



74 5.2. Thrust layout optimization method

block (Fig. 5.3c). This prevents the self-weight of a given block being ‘lifted up’ across a weak

interface.

(g)(f)(e)

(d)

P

(a) (b)

q shear

q normal

Internal links (q)

(c)

W1

W2

Figure 5.3: Application of proposed thrust layout optimization (TLO) procedure to a simple
two block problem: (a) geometry of blocks and location of external load P and support; (b)
problem discretized via nodes and links; (c) masonry self-weight represented by transmissible
loadsW1 andW2; (d) collapse load and thrust layout found by solving the associated layout
optimization problem; (e) thrust layout obtained when using a finer resolution nodal grid
(as indicated); (f) thrust layout obtained after also performing a post-processing geometry
optimization rationalization step; and (g) layout with transmissible self-weight vectors also
plotted—compression and tensile transmissible self-weight vectors are shown in blue and
red, respectively, with line thicknesses representing the magnitude of the forces.

When assessing the stability of a masonry gravity structure, a common goal is to seek

the magnitude of applied load that can be applied before collapse occurs. To achieve this,

rather than seeking the minimum volume truss associated with Eq. (5.1), the objective of the

optimization needs to be changed to one of finding the collapse load factor (the multiplier

on a given load required to trigger failure). This can be achieved by maximizing the load

factor subject to equilibrium and yield constraints, using the defined ground structure and

set of transmissible self-weight loads created—resulting in the modified formulation given in
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Eq. (5.5) below:

max
q,qn,qs,w,λ

λ (5.5a)

s.t. Bq+Bnqn +Bsqs −w − λf = 0 (5.5b)

Hw = w̄ (5.5c)

q ≤ qtmax1 (5.5d)

qn ≤ 0 (5.5e)

µqn ≤ qs ≤ −µqn (5.5f)

w ≥ 0 (5.5g)

λ ≥ 0, (5.5h)

where λ is the load factor on the externally applied loads, and other terms are as defined

previously. Thus the factor on externally applied loads is maximized under the constraints of

(i) static equilibrium at nodes—Eq. (5.5b) and Eq. (5.5c); (ii) a maximum tensile force allowed

within blocks Eq. (5.5d), with no tensile forces allowed across weak interfaces Eq. (5.5e); and

(iii) interface friction force limited by friction coefficient, Eq. (5.5f). The linear nature of the

objective function and constraints means that the problem can be solved using LP.

Finally, although solving Eq. (5.5) will determine the collapse load factor, the associated

solution may include spurious self-equilibriating force networks, since these are not explicitly

penalized in Eq. (5.5). This will in turn lead to thrust layouts that are not visually clear. To ad-

dress this, a volume minimization post-processing step can be performed, with the computed

load factor constrained to lie at the value found in the load evaluation step. This is carried out

using the basic layout optimization formulation presented in Eq. (5.1), with interface nodes

(Eq. (5.2)) and transmissible self-weights (Eq. (5.3)) now also included in the model. Outcomes

from the process are shown in (Fig. 5.3d-e). A further post processing geometry optimiza-

tion rationalization step (after [113]) can help further improve the visual clarity of the force

flow; see Fig. 5.3f. Furthermore, in addition to the thrust lines obtained via the TLO process

(shown in Fig. 5.3d-f), the vertical self-weight vectors hidden by the assumed transmissibility

of self-weight loads can also be optionally plotted to provide additional visual information;

see Fig. 5.3g. These transmissible self-weight vectors are force vectors indicating the force in

the notional link required to move the self-weight either up or down from its original position

to where it is transmitted to, the former requiring tensile links and the latter compressive links.
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5.2.5 Software implementation

To enable 2D mesh geometries created in a CAD environment to be efficiently converted

into an appropriate data structure for use with the developed TLO procedure, a suitable

digital workflow was developed. Thus the software Rhinoceros [170] was used to prepare

the presented examples, with an export process developed to transfer vertex and face data.

The TLO procedure itself was implemented as a computational algorithm using the Python

programming language [171], making use of the numerical package NumPy [172], geometry

package Shapely [173] and linear programming solver MOSEK [174].

When working with problems involving large numbers of discrete blocks, it is important

to employ a robust and efficient data structure for: (i) tracking connectivity between ver-

tices, edges, faces and links; (ii) storing information on loads, degrees-of-freedom and inter-

nal forces as properties; (iii) performing efficient algorithmic operations and manipulations on

the underlying geometry; and (iv) saving, loading and editing instances of the data structure

through the optimization pipeline. Thus for data handling, a hybrid data structure was created

to facilitate storing of information and performing operations on geometric data through ver-

tices, edges, faces and links, where the links are the straight lines connecting vertices. Thus

the general purpose open-source half-edge data structure OpenMesh [175] was used for the

management of vertices, edges and faces, and NetworkX [176] was used for handling link

connectivity.

5.2.6 Verification of method

To verify the proposed method, two simple example problems are now considered: (i) a

simple two block problem (Fig. 5.4); (ii) a semicircular arch problem (Fig. 5.5).

Considering first the two block problem shown in Fig. 5.4, this comprises a solid block

(breadth 3 units; height 5 units; width 2 units) stacked on a larger solid block (breadth 5 units;

height 5 units; width 2 units). The blocks are composed of masonry with a unit weight of

2 units. The stack of blocks is subjected to a horizontal point load at the top left corner

as indicated. Two cases are considered: (i) assuming the interfaces possess infinite friction

capacity (Fig. 5.4a-b); and (ii) that the friction coefficient at the interfaces is 0.25 (Fig. 5.4c-

d). In the former case the failure load is found to be 18, with the top block overturning

(Fig. 5.4a-b), while in the latter case the failure load is found to be 15, with the top block

sliding (Fig. 5.4c-d).

The correctness of these values can be verified via simple analytical calculations or rigid
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block analysis software, confirming the ability of TLO to correctly determine the failure load

for problems with or without frictional failure. Here the LimitState:GEO software package

[177], which implements the discontinuity layout optimization method [178, 179], was used to

perform the rigid block analysis calculations. For the overturning block case, the TLO thrust

layout shows forces passing through the bottom right corner of the top block (Fig. 5.4a),

coinciding with where the rigid block model indicates overturning failure of this block occurs

(Fig. 5.4b). In contrast, in the sliding block case (Fig. 5.4c), the thrust line bifurcates and

spreads over a region at the block interface.

5

3

5

5
 

(a) (c)

18

(b) (d)

15 18 15 

Figure 5.4: Two block problem - influence of friction: (a) TLO solution assuming infinite fric-
tion; (b) corresponding rigid blockmechanism; (c) TLO solution assuming coefficient of friction
of 0.25; (d) corresponding rigid block mechanism (blocks have width of 2 units and unit weight
of 2 units; thrust layouts obtained using internal and boundary node spacings of 0.2 and 0.1
units respectively; layouts then rationalized via geometry optimization post-processing step,
with transmissible load vectors also plotted; rigid block solutions obtained independently us-
ing LimitState:GEO software [177]).

Considering next a semicircular arch with a centreline radius (R) of 10m , unit width and

unit density. In this case the minimum arch thickness t required to carry its self-weight can be

determined for any given friction coefficient by trying a range of different arch thicknesses;

results are shown in Fig. 5.5. For friction coefficients higher than 0.395, a minimum arch thick-

ness ratio (t/R) of 10.68% was obtained. This matches well with the minimum arch thickness

ratio of 10.75% obtained by Ocshendorf [56], assuming a continuum arch (the difference is

because a continuum arch can fail at any radial plane whereas weak planes were here posi-

tioned between the 27 voussoirs assumed to form the arch). At friction coefficients smaller

than 0.31 the minimum thickness required was found to rise rapidly as the arches undergo

sliding failure. In contrast, at friction coefficients greater than 0.395 failure is due to hing-

ing, with a mixed mode of sliding and hinging failure in the intermediate range. Across the
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full range of friction coefficients considered, the results obtained using TLO were found to

coincide perfectly with the numerical results obtained previously by Gilbert et al. [150].
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Figure 5.5: Semicircular arch problem: minimum arch thickness required for stability under
self-weight for various coefficient of friction values, showing agreement between TLO results
and those of Gilbert et al.[150] (arch contains 27 voussoirs).

5.2.7 Commentary

In his seminal work Heyman [39] presented the funicular polygon (i.e. a graphic static con-

struction of a hanging chain) as a line of thrust that could be used to check the safety of a ma-

sonry gravity structure; this has subsequently been widely adopted by practicing engineers.

However, more recently, it has been pointed out that the funicular polygon may not always

represent a valid thrust line [57, 58, 139]. The issue stems from the fact that the arrangement

of the interfaces, or joints, between blocks (termed the ‘stereotomy’) is not explicitly consid-

ered in the construction of a funicular polygon. Instead, as demonstrated in [57, 146, 147],

a given arch or other structure is implicitly taken to be made up of a series of vertical strips

of material. This is likely to lead to incorrect predicted collapse loads, as the importance of

stereotomy on the latter has previously been demonstrated [58, 154]. Furthermore, this may

lead to situations where a self-weight load is inadvertently assumed to be transferred up-

wards across a weak interface, leading to an overestimated predicted load carrying capacity.

In contrast, in the TLO procedure weak interfaces are explicitly considered, preventing this

from occurring. Thus a thrust layout obtained by TLO can be viewed as a corrected thrust

line solution, with the corresponding computed collapse load converging towards the exact

limit load as the numerical discretization is refined. Also, in a TLO solution, the flow of the

principal forces remains clearly evident, with, in the interests of transparency, transmissible
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self-weight loads also plottable if required.

Note that in the literature variousmeans of constructing a thrust line are described, leading

to differences in the form of the thrust line itself; see [58, 79]. Here, a funicular polygon is

used for this purpose (after Heyman [35]). Of the different forms of thrust line, the funicular

polygon compares well with the thrust layouts described herein, with both providing a clear

means of visualizing force-flows.

5.3 Examples

A selection of illustrative examples and applications are presented in this section to demon-

strate the efficacy of the proposed TLO method. Results are compared with those from tra-

ditional thrust line and rigid block analysis methods. All computations were performed on a

PC employing an Intel(R) Core(TM) i7-8700 processor running at 3.20 GHz under Microsoft

Windows 10. A Python implementation of the TLO method has been made available to ac-

company the paper, along with detailed nodal coordinate and connectivity information for

all the example problems described (see Data Accessibility statement). The nodal spacings

used to generate the thrust layouts presented were selected primarily to ensure visual clarity,

given that the computed TLO collapse loads can be observed to be comparatively insensitive

to the nodal spacing used, providing a reasonable number of nodes are used—see results

from the parametric study conducted in the case of Example (5.3.1), which involves a flat

arch on stone columns. For the volume minimization post-processing step of the TLO runs

a material strength ratio (σt : σc) of 1:100 was set to penalize the presence of tensile forces.

For the range of material strength ratios typically observed for stone masonry, this has been

observed to have little effect on the visualization, i.e., where the tension is present remains

unaffected while the amount of tension present may slightly vary.

In the case of some examples, traditional thrust line solutions are also presented for com-

parative purposes. These are funicular polygons drawn at the point of incipient collapse,

identified using custom written code written in Matlab R2019b, taking advantage of its opti-

mization toolbox. Rigid block models were also created for some examples; in this case the

analyses were performed using the commercially available LimitState:GEO software package

[177].

In the case of both the traditional thrust line solutions and the TLO solutions, compressive

and tensile forces are plotted respectively using blue and red lines. In the case of the tradi-

tional thrust line solutions, thrust lines are plotted with uniform thickness whilst in the case of
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the TLO solutions the line thickness is varied to reflect the magnitude of the forces involved,

scaled linearly from 0.05 at qmin to 1.0 at qmax. In the interests of visual clarity, forces q lower

than qmin are not plotted, with qmin set as 0.001 qmax, and forces below 0.05 qmax plotted in a

progressively lighter colour shade. Finally, in the case of some TLO plots, transmissible load

vectors are also plotted; in this case the associated line thickness is scaled up by a factor of 5

relative to other force vectors to ensure these are visible. Finally, the post-processing geom-

etry optimization rationalization step described in [113] is employed to improve visual clarity

as required.

5.3.1 Illustrative examples

Capabilities of the proposed TLO method are first explored via three illustrative examples,

consisting of: (i) stacked blocks with voids; (ii) a segmental arch with and without voids; and

(iii) a flat arch on stone columns.

Stacked blocks with voids

This problem consists of two hollow blocks placed on top of each other, subjected to a hor-

izontal force at the top left corner of the upper block, as shown in Fig. 5.6. The predicted

collapse load and visual representation of internal forces obtained using TLO is compared

with those obtainable using the traditional thrust line and rigid block methods.

Firstly, consider the traditional thrust line analysis solutions shown in Fig. 5.6a-b. These

show thrust lines that pass through the internal void, with it not being clear whether these

are acceptable—given that Heyman’s safe theorem [35] requires thrust lines to ‘lie wholly

within the masonry’. In the first thrust line solution (Fig. 5.6a) the stereotomy of blocks is

not considered, leading to an unrealistically high collapse load estimate of 27.6 units. This

arises from ’lifting up’ of the lower block across the weak interface between blocks. When

this weak interface is explicitly modelled, e.g., by only considering equilibrium of the upper

block, the traditional thrust line method then yields a more realistic collapse load (of 14.4

units, Fig. 5.6b). This can be shown to be the exact collapse load for this problem, and is also

predicted by the TLO and rigid block method (Fig. 5.6c-d respectively).

Considering now the TLO solution (Fig. 5.6c), this explicitly respects block stereotomy (by

including no-tension interfaces and allowing transmisibility of self-weight only within blocks)

and also successfully identifies a force flow that remains entirely within the material volume,

passing from the externally applied load through to the supports. The TLO solution also
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correctly indicates that some intrinsic tensile strength of the masonry block material needs

to be mobilized. In comparison, although the rigid block limit analysis solution shown in

Fig. 5.6d depicts the critical collapse mechanism, no information about the internal distribu-

tion of forces within the structure is provided.
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Figure 5.6: Stacked blocks with voids - solutions obtained via: (a) traditional thrust line
method, assuming monolithic masonry; (b) traditional thrust line method, only considering
upper block; (c) TLO, showing a force flow that is confined to areas where material is present;
(d) rigid block analysis method, showing collapse mechanism only (blocks have width of 2
units and a unit weight of 2 units; thrust lines obtained using 0.2 unit wide vertical strips;
thrust layouts obtained using internal and boundary node spacings of 0.2 units and qtmax =
0.005; thrust layout rationalized via geometry optimization post-processing step; infinite fric-
tion assumed at interfaces between blocks; note that although the thrust lines in (a) and (b)
are qualitatively similar, they are not identical).

Segmental arch

The next example involves two segmental arches composed of a number of equally sized

voussoirs, one solid and one including three internal holes positioned on the arch centreline;

see Fig. 5.7. Both arches are subjected to an offcentre point load, as indicated. To ensure no

sliding failures occur, a friction coefficient of 1 is assumed.

Firstly, the traditional thrust lines shown in Fig. 5.7a and b both lie entirely within the ma-

sonry, not passing through the holes in the case of the structure shown in Fig. 5.7b. However,

these correspond to very conservative estimates of collapse load (P of 39.8 kN for the solid

arch and 27.6 kN for the arch with holes). By recognising that the blocks do possess some

tensile strength, the traditional no tension condition can instead be enforced only at inter-

faces between blocks, resulting in the thrust line solutions shown in Fig. 5.7c and d, which

correspond to significantly higher collapse loads (P of 62.4 kN for the solid arch and 57.4 kN
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for the arch with holes). However, the thrust lines no longer lie entirely within the masonry,

rendering the status of these solutions potentially unclear.
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Figure 5.7: Segmental arch - solutions obtained via: (a-b) traditional thrust line method; (c-d)
thrust line method with thrust constrained at block interfaces only; (e-f) TLO, showing force
flows confined to areas where material is present; (g-h) rigid block method, showing collapse
mechanisms only (arch span: 5.80m, rise 1.85m, width 0.1m, unit weight: 25 kN/m3; circular
voids on arch centreline at locations indicated have diameter of 0.35m; collapse load P in kN
applied 0.72m from left support; thrust lines obtained assuming self-weight lumped at block
centroids; thrust layouts obtained using internal and boundary node spacings of 0.05m and
qtmax = 250N; thrust layout tensile force line thickness scaled by a factor of 2 for emphasis).

Considering now the corresponding TLO solutions, shown in Fig. 5.7e and f, the predicted

collapse loads (P of 63.1 kN for the solid arch and 58.1 kN for the arch with holes) are similar

to those obtained via thrust line analysis with the no tension condition enforced only at block

interfaces*, though force flows that remains entirely within thematerial volume are now clearly
*The slight difference between the collapse loads predicted via traditional thrust line analysis (see Fig. 5.7c and

d) and TLO (see Fig. 5.7e and f) is due to the thrust line analysis not considering block stereotomy, instead assuming
the arches to be formed using notional vertical strips [57]. This issue is further explored in (5.3.1), the flat arch on
stone columns example.
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identified. Specifically, areas of the blocks where tensile strength is required are now evident

(e.g., where the traditional thrust lines lie outside the thickness of the arch), and the bifurcation

of the thrust line around one of the internal voids (see Fig. 5.7f) now effectively verifies the

reasonableness of allowing the traditional thrust line to pass through this (see Fig. 5.7d). Thus

TLO provides a new, and potentially extremely valuable, perspective on how forces flow in

such structures. Finally, although the collapse loads predicted via rigid block limit analysis are

the same as the TLO method (compare Fig. 5.7e-f with Fig. 5.7g-h), no information about the

internal distribution of forces within the structure is provided when using this method.

Flat arch on stone columns

The next example, involving a flat arch supported by two stone columns, demonstrates that

the collapse load predicted using the thrust line method can be significantly in error, even

when the thrust line is constrained to lie within the thickness of the masonry only at interfaces.

The structure is shown in Fig. 5.8 and is made up of five equally sized blocks, plus associated

springing blocks. To ensure no sliding failures occur, a friction coefficient of 1 is assumed.

Firstly, a traditional thrust line analysis solution, with the thrust line lying entirely within the

thickness of the masonry, is shown in Fig. 5.8a. However, while this solution appears qualita-

tively reasonable, it is evident that the associated collapse load is low, at P = 10.1 kN. When

the thrust line is constrained only to lie within the thickness of the masonry at block interfaces,

a higher associated collapse load, of P = 16.2 kN, is obtained, as shown in Fig. 5.8c. How-

ever, this is still significantly lower than the predicted collapse load of P = 45.1 kN obtained

when using TLO (see Fig. 5.8e), with the correctness of this solution verified using the rigid

block method (see Fig. 5.8f). The discrepancy in computed collapse loads is a consequence of

the thrust line solutions being represented by funicular polygons, derived by discretizing the

structure using vertical strips of material [57], with here each strip having a width of 0.05m.

These solutions can be reproduced using the rigid blockmethod by introducing vertical cracks

at locations where the thrust line touches the edges of the masonry; thus the rigid block so-

lution shown in Fig. 5.8b corresponds to the thrust line solution shown in Fig. 5.8a. Similarly,

when the keystone crack is omitted, the rigid block solution shown in Fig. 5.8d is obtained,

corresponding to the less constrained thrust line solution shown in Fig. 5.8c. (The collapse

loads shown in Fig. 5.8c and d are not exactly the same—16.191 kN in (c) and 16.171 kN in

(d), with the small difference being due to the two sides of the keystone block being slightly

off from vertical.)

In contrast, when using TLO, weak interfaces are explicitly taken into account, with a lim-
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Figure 5.8: Flat arch on stone columns - solutions obtained via: (a) traditional thrust line
method; (b) rigid block method, after three extra vertical failure planes added; (c) thrust line
methodwith thrust constrained at block interfaces only; (d) rigid blockmethod, after two extra
vertical failure planes added; (e) TLO, showing force flows confined to areas where material is
present (transmissible self-weight vectors also plotted); (f) rigid block method, with no extra
failure planes added to provide agreement with TLO solution, since that takes actual block
stereotomy into account (all five blocks in the arch have a top breadth of 0.54m and a bottom
breadth of 0.42m; a width of 1m and material unit weight of 25 kN/m3 are assumed; thrust
lines obtained using vertical strips of 0.05m width; thrust layouts obtained using internal and
boundary node spacings of 0.05m and 0.01m respectively and qtmax = 250N).

ited amount of tension inside blocks permitted as part of the formulation. While the resulting

TLO solution (see Fig. 5.8e) includes thick blue lines reminiscent of a traditional thrust line,

tensile forces are now also evident in the keystone and springing blocks, providing an indi-

cation as to how the self-weight of the latter are mobilized. In the keystone block, the thrust

layout resembles the form of the optimal half-wheel truss structure, whereas in each springing
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block the thrust layout resembles an optimal Michell cantilever truss structure [180]. In addi-

tion, transmissible self-weight vectors are also shown in Fig. 5.8e, making the transmissible

load representation of the self-weight of the masonry clear.

It is also of interest to investigate the sensitivity of the TLO solutions for this example to

both the selected nodal density and the maximum allowed tensile force, qtmax. Thus Fig. 5.9

shows how the computed collapse load converges towards the exact value, of P = 45.1 kN,

as the nodal density is increased for a range of values of qtmax. It is evident that for higher

qtmax values, convergence occurs at lower nodal densities, with the computed collapse load

converging to the exact collapse load at a very low nodal density when qtmax = 1000N. The

increase in internal node density reduces the self-weight on an internal node (and within

the transmissible load groups) and therefore reduces the demand for explicit tensile forces

within blocks. Similarly, the increase in boundary node density allows more points for the

compressive thrust line to pass across blocks, thereby reducing the need for force layouts

involving tensile forces.
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Figure 5.9: Flat arch on stone columns: computed collapse load vs nodal density for a range
of maximum allowed tensile force values, qtmax (quoted nodal density is the reciprocal of the
internal node spacing; boundary node spacing is 0.2 × internal node spacing; values in bold
used to generate Fig. 5.8e).

As an alternative to considering the maximum tensile force, qtmax, the thickness of material

required to carry this can instead be considered, calculated assuming the masonry blocks

possess finite but low tensile strength, here taken as 1N/mm
2. Thus Fig. 5.10 shows how the

computed collapse load varies with required stressed thickness, for a range of different nodal

densities. It is evident that a very low required stressed thickness of 0.25mm (equivalent

to qtmax = 250N) is required in order for the solution to converge to the exact rigid block

collapse load in this case. This stressed thickness is several orders of magnitude smaller than
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the physical dimensions of the structure, and is well within the limits of what could safely be

carried by most stone materials. Also, when even lower maximum stressed thickness values

are used (e.g., 10−5mm, equivalent to qtmax = 0.01N) it is evident from Fig. 5.10 that the

solutions lie in close proximity to the compression-only thrust line solution of Fig. 5.8a. (Note

though that the compression-only TLO solution will at the limit lie below the corresponding

thrust line method solution. This is because the transmissibility of the block self-weight is

constrained at interfaces when using TLO, such that ‘pulling up’ the weight of lower blocks

to the main part of the thrust line will require a finite, albeit small, tensile capacity.)
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Figure 5.10: Flat arch on stone columns: computed collapse load vs stressed thickness, for a
range of nodal densities (stressed thickness indicated based on an assumed tensile strength
of 1N/mm2; values in bold used to generate Fig. 5.8e).

Finally, the CPU time required to obtain TLO solutions for a range of nodal densities are

summarised in Table 5.1, with the associated number of links and nodal interface pairs also

shown. Note that internal nodes are positioned on a Cartesian grid while boundary nodes are

uniformly spacing though with extra boundary nodes added to model load transmissibility.

It is observed that although the exact collapse load can be obtained using a coarse nodal

density, the use of finer nodal densities often allows the flow of forces to be more clearly

visualized, albeit at higher computational cost.
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Table 5.1: Flat arch on stone columns: CPU time for solutions at different nodal densities
(nodal density with respect to internal nodes; boundary node spacing is ×0.2 internal node
spacing; qtmax of 250N ; values in bold used in Fig. 5.8e).

Nodal
density
(divs/m)

Nodes Links Interface
pairs

Collapse
load
(kN)

CPU time (s)†
Load
eval.

Vol.
min.

5 1,091 61,672 264 43.536 0.4 3.1
6.67 1,430 106,641 326 44.265 0.6 6.3
10 2,261 274,726 470 45.100 2.0 9.9
15 3,968 858,443 776 45.100 5.7 24.5
20 5,628 1,769,939 990 45.100 15.2 48.6
30 9,645 5,465,060 1,384 45.100 49.1 122.4
40 15,146 13,713,614 1,984 45.100 139.8 476.8

†: LP time as reported by the solver; load evaluation with full ground-structure; volume
minimization with member adding starting with a minimal ground structure—see [112]

5.3.2 Applications

The TLO method is now applied to two rather more practical masonry structures, namely (i)

a two-ring arch, and (ii) a masonry buttress wall.

Two-ring arch

This examples involves a two ring brickwork arch rib load tested to collapse in the laboratory

by Melbourne and Gilbert [167]. The specific arch rib considered here incorporated a contin-

uous sand joint between the two rings of brickwork to replicate a structure in the field with

debonded arch rings; see Fig. 5.11. The material unit weight was reported to be 23.7 kN/m3

and the friction coefficient of the sand joint to be 0.53.

(a) (b) (c)

Figure 5.11: Two-ring arch - experimental testing: (a) initial setup; (b) hinges forming; (c)
collapse of structure (arch has 3m span, 0.75m rise, 215mm thickness and 215mm width
and is subject to point load 0.84m from left abutment [167]).

Firstly, considering the traditional thrust line analysis method, to bound the solution from

above the arch can be represented by a single 215mm thick arch ring. Thus, assuming the

thrust line is constrained only at weak radial interfaces, the predicted collapse load is 3.79 kN,
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and the corresponding thrust line solution is shown in Fig. 5.12a. Alternatively, by constructing

a separate thrust line for each arch-ring, the solution can be bounded from below, with the

predicted collapse load now 1.15 kN (based on 0.55 kN being carried by the top ring and

0.60 kN carried by the bottom ring, and no interaction between rings), and the corresponding

thrust line solution is shown in Fig. 5.12b.

In contrast, when using TLO the combined effects of both rings can be modelled directly.

The TLO solution for this problem is shown in Fig. 5.12c, with the corresponding predicted col-

lapse load being 1.48 kN, which closely matches the experimentally obtained value of 1.5 kN

[167]. Whereas the thrust line method is able to successfully bracket the experimental value,

the upper and lower bound thrust line solutions (3.79 kN and 1.15 kN) are too far apart to be

practically useful.

P = 1.48 kN 

(d)(c)

P = 1.15 kN 

(b)

P = 3.79 kN 

(a)

 

Thrust Line 

ExperimentalThrust Layout Optimization

P = 1.5 kN 

Figure 5.12: Two-ring arch - solutions obtained via: (a) traditional thrust-line method, assum-
ing single monolithic arch ring; (b) traditional thrust-line method, determining separate thrust
lines for each arch ring; (c) TLO, showing associated force flows; (d) experimental test, show-
ing observed failure mechanism [167] (thrust lines obtained assuming self-weight lumped at
block centroids; thrust layouts obtained using internal and boundary node spacings of 0.01m
and 0.005m respectively and qtmax = 1N; thrust layout tensile force line thickness scaled by a
factor of 2 for emphasis).

The TLO solution shown in Fig. 5.12c also provides an indication as to how the load is

being carried, here indicating that the loading is primarily carried by the bottom arch ring,

with the main thrust hugging the intrados near the left hand support and in the three-quarter

span region, also touching the extrados of the bottom arch ring directly below the loading

point and at the right hand support. These appear broadly in line with the experimentally

observed mechanism; see Fig. 5.12d.
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Masonry buttress

When the traditional thrust linemethod is applied to structures such as leaning towers [54] and

buttresses [52] an additional step is generally required in order to identify how much of the

masonry will be effective in resisting the applied loading; e.g., see Fig. 5.13. A benefit of TLO

is that this is not required when the structure is modelled using the appropriate discretization

of blocks (size, aspect-ratio and stacking pattern) and friction capacity, since the effective (and

ineffective) regions can in this case be identified automatically. Alternatively, were a buttress

wall to be modelled as a continuum using TLO then plotting the transmissible self-weight

load vectors would likely cause the engineer to quickly question this representation, as the

self-weight of sections of the wall being ‘lifted up’ would be clearly visible. Furthermore,

this suggests that only the region of masonry lying below the thrust line would need to be

faithfully modelled - and hence also to a potential staged approach to modelling, in which

the masonry is only modelled in detail in regions where an initial analysis has indicated that

this is necessary.

Figure 5.13: Masonry buttress - horizontal mid-height load test: blocks below diagonal black
line deemed ineffective in resisting the load (test carried out by Ochsendorf [52], reproduced
here as a colourized image).

Here the masonry buttress in Fig. 5.14a is considered; this has a base width of 0.54m and

a total weight of 19.05 kN, acting along a line of action at 0.30m distance from the left-hand

corner. An external load, inclined to the horizontal at an angle tan−1 1.25, is applied at a

height of 1.68m. This loading is representative of the load applied from a flying buttress.
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The material unit weight is 18 kN/m3 and a unit width of buttress is assumed.

(d)

P = 9.04 kN 

(c)

P = 6.61 kN 

Ineffective
area

(b)

P = 9.04 kN 

(a)
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Thrust Layout Optimization 
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Figure 5.14: Masonry buttress: of geometry shown in (a) and assessed using (b) traditional
thrust line method; (c) traditional thrust line method considering fracture of the buttress;
TLO, considering the structure (d) as a continuum, rationalized via a geometry optimization
post-processing step and with transmissible load vectors plotted; (e) as a block assembly with
infinite friction resistance; (f) as a block assembly with friction limited by a friction coefficient
of 0.7 (thrust lines obtained using vertical strips of 0.03m width; thrust layouts in continuum
obtained using internal and boundary node spacings of 0.03m; thrust layouts in block assem-
bly obtained using internal and boundary node spacings of 0.025m and 0.01m respectively;
qtmax = 150N; tensile force line thickness scaled by a factor of 2 for emphasis; links with forces
lower than 0.0001 fmax not plotted; all dimensions in metres.)
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Using the traditional thrust line method, a collapse load of 9.04 kN is predicted for the

buttress (Fig. 5.14b), reducing to 6.61 kN if an ineffective area of the structure is assumed

(using the method proposed by Ochsendorf [52]; see Fig. 5.14c). In this example, the fracture

giving the ineffective area extends to 0.87m above ground level.

Modelling the structure as a continuum in TLO reproduces the traditional thrust linemethod

collapse load of 9.04 kN, but how the self-weight loading is carried is now clearer (Fig. 5.14d).

Taking account of the masonry bonding pattern but assuming infinite joint friction capacity,

the same collapse load of 9.04 kN is predicted via TLO. However, the self-weight load is now

mobilzed via a different mechanism (see Fig. 5.14e). The figure inset gives a closer view of the

flow of forces, which suggest that tensile forces are being transmitted across block interfaces,

even though these have been prescribed to be non-tensile resistant; this arises from the fric-

tional resistance of block interfaces. This is also influenced by the aspect ratio of the blocks

and the adopted bonding (interlocking) pattern, a phenomenon previously investigated by

Bacigalupo et al. [48], and more recently in [50, 181].

When the friction coefficient is set to a realistic value, in this case 0.7, the predicted col-

lapse load reduces to 7.91 kN. The resulting thrust layout in Fig. 5.14f indicates that the self-

weight of several blocks in the bottom-right corner are now not ‘lifted up’ to the main line

of compression that runs from the applied load down to the supports. However this region

is not fully inactive, and does contribute to resisting the applied load. This suggests that

the method proposed by Ochsendorf provides a conservative estimate of the load capacity

(amounting to 84% of the TLO solution in this case). This is because it does not consider the

tensile strength of the blocks or the bonding pattern, with the degree of under-estimation

becoming more significant as blocks become larger.

5.3.3 Commentary

In several of the examples considered in this section it has been demonstrated that frictional

(sliding) failures at interfaces between blocks can readily be modelled in the TLO procedure.

However, it is worth noting that although the flow rule is not explicitly specified in the TLO

formulation presented, the use of amaximization step in the proceduremeans that the friction

is implicitly assumed to be associative (i.e. that any sliding movement will be accompanied

by dilation (see e.g., [82]), with the angle of dilation equal to the angle of sliding friction, i.e.,

tan−1 µ). Although this behaviour is not physically realistic, and can lead to over-estimates

of the safety of a given structure, the degree of any over-estimation is likely to be relatively
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modest when the structure is discretized using a large number of blocks [153]. Also, this

issue could potentially be addressed by replacing the single maximization step used in the

presented TLOmethod with an iterative procedure, similar to that proposed for use with rigid

block limit analysis by Gilbert et al. [150].

It is noted that for typical masonry gravity structures, of the sort considered in the ex-

amples presented herein, the material strength limits in both compression and tension are

unlikely to be reached. Load carrying capacity estimates from TLO will only be strictly valid

in such cases. In extreme cases where material strength is likely to be reached, safety needs

to be verified by considering stress resultants (at nodal points) and checking them against

material failure criteria. However, by visualising a possible flow of forces, TLO points towards

how the structure can be strengthened, if needed.

Finally, although two-dimensional examples have been used to demonstrate the capability

of the TLO procedure, this is in principle readily extendable to three-dimensional problems.

The procedure can also potentially be extended to be applicable to retrofit design problems,

allowing optimally placed strengthening measures to be identified in existing masonry gravity

structures.

5.4 Conclusions

A new procedure has been developed that allows both the safety of masonry gravity struc-

tures to be evaluated and the transmission of internal forces to be clearly visualized. The

procedure builds on a truss layout optimization with transmissible loads formulation, using

this to model self-weight, and with interfaces included in the formulation to model weak ma-

sonry joints. The new procedure is herein termed thrust layout optimization (TLO):

• Although the traditional thrust line analysis method has proved useful for many years,

it has some limitations. For example, block stereotomy is not considered, leading to

self-weight being ‘lifted up’ across weak interfaces. Also, unlimited friction capacity

is usually assumed, leading to sliding failures not being identified. The TLO procedure

overcomes these limitations by considering block stereotomy, the low (but finite) tensile

strength of blocks, and the limited friction capacity of interfaces, to furnish the exact

collapse load for any given problem. Furthermore, TLO eliminates the need for case

specific assumptions, which are very often required when using the traditional thrust line

method (e.g., estimating the ineffective area in a buttress wall, or postulating potential

load paths in a multi-ring arch).
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• The thrust layouts identified via TLO provide a rich visual representation of force flows

in masonry gravity structures. The procedure takes on board the limited tensile capac-

ity of masonry blocks and makes no prior assumptions about the topology of thrust

layouts. This enables visualizion of forces flowing around internal holes, with the force

flows associated with blocks rocking about vertices often resembling classical Michell

structures; more familiar funicular thrust line solutions can also be identified. It is also

possible to plot transmissible self-weight vectors, eliminating ambiguity as to how self-

weight forces are mobilized.

• The TLO procedure thus provides a fully automated means of generating a thrust lay-

out and determining the associated collapse load for any given problem, comprising

an arbitrary arrangement of masonry blocks. Computed collapse loads are found to

be comparatively insensitive to the chosen numerical discretization (spacing of nodes)

and the tensile force allowed within masonry blocks, with exact solutions obtainable at

modest computational cost by taking advantage of efficient and widely available linear

programming (LP) solvers.

Although a range of sophisticated non-linear analysis methods are now available for ma-

sonry structures, these are generally too demanding of computer time and operator expertise

for routine use. This means that there remains a need for simple and intuitive analysis mod-

els, which provide clear and reliable results. Since the proposed TLO procedure successfully

overcomes a number of the known weaknesses of the traditional thrust line analysis method,

it has the potential to form an invaluable part of the tool-sets of engineers responsible for

analysing masonry gravity structures.
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Data Accessibility
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obtained herein via the TLOprocedure to be replicated: https://dx.doi.org/10.15131/shef.data.21836541.



Chapter 6

Extended TLO with Auxiliary

Strengthening Measures

Preface

TLO formulation is readily extended to determine optimal strengthening measures for form-

resistant structures, including masonry gravity structures. This is a natural extension of the

TLO procedure by extending the ground structure to include the domain of auxiliary strength-

ening measures. Furthermore, the formulation is readily extended to account for multiple

load cases, including seismic loading as well.

This chapter is written in the format of a manuscript for potential publication in a journal.
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Abstract

Recognising the need to extend the useful life of buildings and infrastructure of masonry

construction and to preserve historic masonry structures that are part of our cultural heritage,

tools capable of assessing their load-carrying capacity and determining the best placement

of strengthening measures are needed. While current practice is to determine these based

on engineering intuition, more robust physics-based methods are required given the com-

plex geometries and loading conditions encountered and the need to minimize the usage

of the additional material used in strengthening works. The thrust layout optimization (TLO)

procedure developed to estimate the collapse load and to generate force flows (i.e., thrust

layouts) within masonry gravity structures is here extended to consider auxiliary strengthening

measures. The TLO procedure is reformulated to find the optimal placement of such strength-

ening measures, for a loading regime, and to visualize the corresponding thrust layout. Small

increases in the collapse load relative to the unstrengthened construction can be achieved

by introducing strengthening measures to locally inhibit the formation of masonry hinges.

Less intuitively obvious strengthening measures emerge when higher load-carrying capaci-

ties are required. The rationale of these can be explained with the aid of visualization of the

corresponding thrust layouts. Furthermore, the extended formulation containing an auxiliary

strengthening domain can readily be used to design new masonry structures, incorporating

an external metallic structure to carry additional tensile and compression forces.

6.1 Introduction

The world is facing a climate emergency caused by the anthropogenic emission of green-

house gases [18], with the construction industry being one of the major contributors [3]. The

demolition of existing structures is exacerbating the situation, increasing the demand for

new construction and creating material waste; e.g., between 2010-2018, 70,000 houses of

masonry construction in the UK were demolished [7]. At the same time, historic masonry

structures form an essential part of the world’s collective cultural heritage, ranging from the

grand arches of the Sassanian Empire in the 3rd Century CE to Saint Peter’s Basilica in Rome

in the 17th Century CE [135]. Assessment of their load-carrying capacity and making any

necessary corrective measures to strengthen them is essential for the preservation of this cul-

tural heritage [89]. Thus, the need to strengthen masonry gravity structures has two main

drivers: (i) the need to increase the useful life of our existing housing stock, much of which is
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constructed of masonry, and (ii) the need to preserve our important cultural heritage.

Repairing and strengthening have been carried out on both historical and modern ma-

sonry structures, where damage may have been due to years of weathering or an incident

such as an earthquake. Retrofit and repair techniques used in current practice include re-

pointing, grout/epoxy injection, anchoring, tying, overlays (e.g., textile-reinforced mortar),

bracing, internal/external reinforcement (steel bars, CFRP, etc.) and post-tensioning, each

with their specific advantages and disadvantages [182, 183, 184]. It is noted that repointing

and grout/epoxy injection will only restore the original load-carrying capacity of masonry grav-

ity structure, whereas the other methods can improve load-carrying capacity by introducing

additional tensile members or imposing confinement to the system [182, 183].

Repair and retrofit techniques have been successfully carried out over the years on various

masonry structures, such as bridges [185, 186], domes [187, 188], and buildings and towers

[189, 190, 191]. However, there is no widely acceptedmeans of determining themost suitable

strengthening intervention (i.e., of determining the optimal placement or pattern and amount

of additional material) and in practice, this is often guided by ‘expert opinion’. Usually, the

strengthening measures adopted are justified by analysis of a model of the strengthened

structure, but the selection of the strengthening measures and their positioning is usually

based on intuition [192], or some often narrowly scoped experimental evidence [193, 194].

A need for a more rigorous, physics-based, approach to determine the placement of

strengthening is needed. This is driven by (i) the increased complexity of structural geome-

tries and typologies and complex loading scenarios, (ii) the need to reduce material usage,

and (iii) the potentially detrimental effects of over-strengthening. The ability of masonry to

form cracks is a desirable behaviour, whereby the structure can safely adapt to changing

boundary conditions, e.g., support movements [195]. As evident by Poleni’s analysis of St.

Peter’s dome, a masonry structure can still be safe in its cracked state [196], requiring no

further intervention. However, severe over-strengthening will inhibit this capacity of crack

adaptation in masonry gravity structures [193, 197].

Basilio et al. [198] attempted to identify optimal strengthening solutions for a semi-circular

arch, such as the optimal width, length and location of CFRP strips. However, the results ob-

tained were based on a limited number of strip widths and assumed strengthening at the sur-

face of the masonry only. Although the results give some insights on behaviour, the study was

limited in scope. Krevikas and Tiantafillou [199] presented details of an early attempt to auto-

matically determine the optimal placement of strengthening measures, where a strut-and-tie

model was used to determine the optimal volume of strengthening measures. However, the
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topology of the strut-and-tie model was user-defined, though guided by results from a finite

element model.

Bruggi and Taliercio [200] developed a procedure based on topology optimization to de-

termine the optimal placement of strengthening measures in masonry gravity structures. The

presented procedure determines the placement of strengthening measures by maximizing

overall stiffness, given a volume fraction of strengthening measures (though the influence

of the specified volume fraction on the results obtained is noted). A similar methodology

was presented by Bruggi et al. [201], though in that case using minimization of the volume

of strengthening elements as the objective function. However, both these methodologies

are limited to surface strengthening (i.e., disregard the possibility of more radical external

strengthening measures) and rely on involved numerical simulations requiring user expertise

and reliable determination of the material stiffness properties.

Fraternali et al. [197], Carpentieri et al. [202] presented a tensegrity-based approach for

finding the “optimal” reinforcement for masonry structures subjected to multiple load cases.

They represented the masonry structure as a minimal mass system of masonry rods in com-

pression that was reinforced via tensile elements. The procedure proposed starts with an

initial network of prescribed members. Thus, similar to the issues faced in thrust network

analysis [10, 66], the choice of the topology of the underlying network will inevitably influ-

ence the optimal solution found.

Gilbert [203] outlined the potential for the optimal placement of strengthening measures

to be identified by combining a rigid block analysis model for the masonry with a ground

structure-based truss layout optimization procedure, solving a simple linear programming

problem to obtain the optimal placement of external strengthening measures. As a fully con-

nected ground structure is used, the solution obtained will tend to be increasingly optimal as

a more densely populated ground structure is used. However, an in-depth study of the po-

tential of this approach was not presented. The Thrust Layout Optimization (TLO) procedure

[149], which similarly uses ground structure layout optimization to obtain force flows within

masonry gravity structures could potentially be extended to find optimal strengthening mea-

sures. This would now allow identification of both internal, external and surface strengthening

measures, and would also provide users with the ability to visualize the new force flows in the

system, altered via the addition of strengthening measures.

The present contribution is organized as follows. In Section 6.2 the TLO formulation is

extended to include optimal strengthening measures and, to extend its range of applicability,

also seismic loading. Thereafter, a range of example problems are considered in Section 6.3;
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their implications are discussed in Section 6.4; and in Section 6.5 conclusions are drawn.

6.2 Thrust layout optimization (TLO)

The TLO procedure adapts the standard ground structure layout optimization (LO) method,

which has long been used for the optimization of trusses. TLO extends LO by incorporating:

(a) transmissible self-weight loads, and (b) interface node pairs to model weak joints (inter-

faces) in masonry. In the following sections, the basic TLO procedure is outlined and then

extended to account for strengthening measures and seismic loading.

6.2.1 The basic TLO formulation

The TLO procedure for the analysis of masonry gravity structures is presented in detail in [149];

a summary is provided here. In the basic TLO formulation, the maximum load factor subject

to equilibrium and yield constraints is sought for an assembly of blocks with given boundary

conditions (Fig. 6.1a), using a ground structure defined (Fig. 6.1b) and a set of transmissible

self-weight loads (Fig. 6.1c). The optimization formulation is as follows:

max
q,qn,qs,w,λ

λ (6.1a)

s.t. Bq+Bnqn +Bsqs −w − λf = 0 (6.1b)

Hw = w̄ (6.1c)

q ≤ qtmax1 (6.1d)

qn ≤ 0 (6.1e)

µqn ≤ qs ≤ −µqn (6.1f)

w ≥ 0 (6.1g)

λ ≥ 0, (6.1h)

where λ is the load factor on the externally applied loads: B is a 2n ×m matrix containing

direction cosines, q = [q1, q2, ..., qm]T is a vector of internal member forces, where n is the

number of nodes in the ground structure and m the number of internal links: Interface equi-

librium matrices Bn and Bs are 2n × p matrices containing direction cosines on the basis of

notional zero-length members oriented respectively perpendicular and parallel to the corre-

sponding interface, where p is the number of interface node pairs: qn = [qn,1, qn,2, ..., qn,p]
T is
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the interface normal force vector and qs = [qs,1, qs,2, ..., qs,p]
T is the interface shear force vec-

tor: and f = [f1x, f1y, f2x, f2y, ..., fnx, fny]
T is a vector of external applied loads. Self-weight

loads, which are all in the vertical direction, are given by w = [0, w1, 0, w2, ..., 0, wn]
T is the

nodal self-weight load vector: w̄ = [w̄1, w̄2, ..., w̄g]
T is the load group vector, where g is the

number of transmissible self-weight load groups in the problem and w̄i is the total load ap-

plied in transmissible load group i. Binary matrix H specifies which nodal load components

in w belong to which load group in w̄, where H is of size g × 2n and is given by:

Hij =


1 if load component j exists in load group i

0 otherwise.
. (6.2)

Finally, the maximum tensile force in internal links is limited by a value qtmax, and µ is the

static friction coefficient for block-to-block and block-to-support interfaces.

(d)

P

(a) (b)

q shear

q normal

Internal links (q)

(c)

W1

W2

Figure 6.1: Application of the TLO procedure to a simple two-block problem: (a) geometry
of blocks and location of external load P and support; (b) problem discretized via nodes and
links; (c) masonry self-weight represented by transmissible loadsW1 andW2; (d) collapse load
and thrust layout found by solving the associated layout optimization problem (compression
and tensile forces are shown in blue and red, respectively, with line thicknesses representing
the magnitude of the forces).

6.2.2 Extended TLO formulation incorporating strengthening measures

The TLO process considers a ground structure that defines the domain of all possible links

(i.e., thrusts). The links of the ground structure are restricted to be within each individual

block making up the structure, such that links crossing weak joints or extending beyond the

boundaries of the structure are not allowed. As was observed byNanayakkara et al. [149], and

as the commonly understood nature of masonry gravity structures dictates, the load carried

by the structure is limited by its geometry and stereotomy, such that no amount of increase

in the compressive strength of the masonry blocks will give a higher load capacity. However,
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an increase in load capacity can be achieved via the introduction of additional strengthening

links (i.e., additional load paths), which are external to the structure and which can cross weak

interfaces.

(c)(a)

P P

allowed zone for 
strengthening elements

(b)

external strengthening 

surface strengthening 

internal strengthening 

P

Figure 6.2: Application of the proposed extended TLO procedure to a simple two-block
problem: (a) problem definition now including a surrounding zone where strengthening ele-
ments are allowed; (b) ground structure to additionally include external, surface and internal
strengthening elements; (d) thrust layout with optimal placement of strengthening measures
found by solving the associated layout optimization problem (compression and tensile forces
are shown in blue and red, respectively, with line thicknesses representing the magnitude of
the forces; strengthening elements highlighted in yellow).

The extended TLO formulation considers an extended ground structure (see Fig. 6.2),

where the additional links correspond to strengthening elements, and seeks to find minimum

volume strengthening measures for a prescribed level of applied loading, subject to equilib-

rium and yield constraints. The modified optimization formulation can be written as follows:

min
q,qn,qs,qrf ,arf ,w

Vrf = lrf
Tarf (6.3a)

s.t. Bq+Bnqn +Bsqs +Brfqrf −w = f (6.3b)

Hw = w̄ (6.3c)

q ≤ qtmax1 (6.3d)

qn ≤ 0 (6.3e)

µqn ≤ qs ≤ −µqn (6.3f)

−σc,rfarf ≤ qrf ≤ σt,rfarf (6.3g)

w ≥ 0, (6.3h)

where Vrf is the volume of the strengthening elements; lrf = [l1, l2, ..., lmrf
]T is a vector of

ground structure strengthening member lengths and arf = [a1, a2, ..., amrf
]T is a vector of

strengthening member cross-sectional areas; Brf is a 2n × mrf matrix containing direction
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cosines for strengthening members, qrf = [q1, q2, ..., qmrf
]T is a vector of strengthening mem-

ber forces, where mrf is the number of strengthening links: σt,rf and σc,rf are limiting tensile

and compressive stresses respectively of strengthening links: and other terms are as defined

previously.

Therefore, the optimization seeks to find the group of strengthening measures that con-

sume the least volume of material under the constraints of: (i) static equilibrium at nodes

(Eq. (6.3b) and Eq. (6.3c)); (ii) a maximum tensile force allowed within blocks, Eq. (6.3d), with

no tensile forces allowed across weak interfaces, Eq. (6.3e); (iii) the interface friction force

limited by friction coefficient, Eq. (6.3f); and (iv) strengthening links must be at or below their

yield strength Eq. (6.3g). The extended formulation remains linear and thus can be solved us-

ing linear programming solvers. Similar to the TLO procedure, once the optimal placement

of strengthening measures has been found, a volume minimization process is carried out to

obtain a visually clear thrust layout within the masonry structure. This is carried out with the

areas of the reinforcing links (arf ) fixed at the values found in the previous step.

In the basic formulation described above, all the different types of strengthening links are

treated the same, not taking into account the practicalities of installing them. However, the

latter can be accounted for by using a comprehensive cost function rather than the volume

of the strengthening measures as the objective function.

6.2.3 Extended TLO formulation to model seismic loading

To extend the range of applicability of the TLO procedure, it is now extended to consider the

seismic loading by considering an equivalent horizontal acceleration (av) applied to the mass

of the material. The equilibrium constraints are adjusted as below, where external loads (if

present) are fixed at their given values.

Bq+Bnqn +Bsqs −w = f (6.4a)

Hw = kT w̄ (6.4b)

w ≥ 0, (6.4c)

where, w = [w1x, w1y, w2x, w2y, ..., wnx, wny]
T is the nodal self-weight load vector; the load

group vector is w̄ = [w̄1, w̄2, ..., w̄gr]
T where the first grx load groups correspond to seismic

loading in horizontal direction (x) and the next gry load groups correspond to self-weight

load in gravity (y) direction (and gr = grx + gry); k = [ah, ah, ..., ah, 1, 1, ..., 1]
T is the seismic
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coefficient vector, where the first nx elements are ah the horizontal acceleration and the next

ny elements are unity (i.e., correspond to self-weight). ah is a new variable and is the pa-

rameter being maximized, in the determination of the seismic loading capacity of a structure.

The binary matrix H is as earlier, and the constraint on Eq. (6.4c) also follows from the TLO

formulation presented earlier. Note that formulation in Eq. (6.4) can be readily extended to

consider vertical seismic loading as well, by appropriately changing the seismic coefficient

vector k.

Here, seismic loading is also considered a transmissible load. Thus the horizontal and ver-

tical components of forces applied to the same mass can potentially be mobilized at different

locations. While this is not strictly true in practice, it has been observed that this gives a

clearer visualization of force flows and appears not to greatly affect collapse load estimates.

6.3 Numerical examples

In the following section, examples are used to explore the capabilities of the extended TLO

formulation. Firstly, three examples are used to demonstrate the capability of the extended

TLO formulation to determine the optimal placement of strengthening measures in masonry

gravity structures, considering strengthening of: (i) a flat arch on stone columns; (ii) a semi-

circular arch with strengthening element exclusion zones; and (iii) a wall with openings sub-

jected to seismic loading. In a final example involving a stone beam, the extended TLO

procedure is applied to the design of a structure with external tension zones.

6.3.1 Flat Arch

A flat arch on stone column example, following Nanayakkara et al. [149], is used here to

explore the optimal placement of strengtheningmeasures in masonry gravity structures, using

the extended TLO formulation.

In this case, the flat arch can safely carry a mid-span point load P of 45.1 kN without any

additional strengthening, and the corresponding thrust layout indicates a collapsemechanism

where the keystone is hinging about its top corners and the springing blocks hinge about the

internal corners of the corresponding stone columns; see Fig. 6.3a. As intuition suggests, the

load-carrying capacity could be increased if the masonry hinges that are opening could be

suppressed. The extended TLO formulation incorporating strengthening measures indicates

an increase in the load capacity P to 150 kN if the springing blocks are physically joined to

the columns; see Fig. 6.3b. While this can be achieved in many ways, the theoretical optimal
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is to have straps carrying tension (24.5kN at P=150 kN) at the outer surface, across the joints

between the blocks.

P = 200 kN 

Frf,2 = 7.41 kN
Frf,1 = 32.8 kN

(c)

P = 150 kN 

(b)

Frf = 24.5 kN

2
.3

m

5.6m

P = 45.1 kN 

1
.2

m
0
.6

m

0.9m 2.7m

0.3m

(a)

Figure 6.3: Strengthening a flat arch: (a) a flat arch with a collapse load estimate of 45.1 kN; (b)
the flat arch optimally strengthened to carry an increased load of 150kN; (c) the flat arch opti-
mally strengthened to carry an increased load of 200 kN (thrust layouts obtained using internal
and boundary node spacing of 0.5m and 0.1m; the boundary of the domain of strengthening
measures is indicated in light blue with the nodal spacing there being 0.5m; strengthening
elements are highlighted in yellow; compression to tensile strength ratio of 1:100 in thrust
layout; compression to tensile strength ratio of 100:100 in strengthening elements).

Further showing the form-dependence of the load-carrying capacity of masonry gravity

structures, increasing the capacity of the strengthening (i.e., increasing the tensile capacity
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of the tensile strap mentioned above) alone will not dramatically increase the load-carrying

capacity of the structure. For that to happen, the keystone is now required to be joined to the

adjacent blocks (at the intrados corners of the keystone block), with straps capable of carrying

7.41 kN tension at P=200 kN (Fig. 6.3c). This, along with the previous set of strengthening

measures (though with the straps now increased to carry a tensile force of 32.8 kN), will ‘geo-

metrically lock’ the failure mechanism, providing notionally an infinite load carrying capacity if

the capacity of the strengthening straps continues to be increased and the blocks themselves

do not fail in fracture or crushing.

Note that practical implementation of the theoretically obtained strengthening measures

requires additional material as the theoretical length of the surface straps found above would

tend to zero as the boundary node spacing used in TLO tends to zero; however, in practice,

anchorage would be required to keep the straps in place. Similarly, locations where external

strengthening elements join would require a mechanical joint. Furthermore, the possibility

of having different materials as external, surface, and internal strengthening measures is rec-

ognized, for example, steel rods, CFRP straps, etc. To incorporate these practicalities, an

extended cost function incorporating anchorage, joint and material costs can be used.

Similarly, it is possible to avoid certain types of strengthening measures altogether, for

example, due to local availability issues for a given material leading to prohibitive economic

and/or environmental costs. Fig. 6.4 presents an alternative solution where surface strength-

ening elements are eliminated. The solution is sub-optimal when only the volume of the

strengthening elements is considered (i.e., disregarding the cost of fixing, etc.). Taking a hy-

pothetical strength capacity of 100N/mm
2 in both compression and tension (and a nodal

spacing of 0.01m at block boundaries) the optimal volume of strengthening elements is

29,316mm3 when surface strengthening is present (Fig. 6.3c) and 159,975mm3 when surface

strengthening is not present (Fig. 6.4), for a load capacity of 200 kN.

Note that the strengthening elements in Fig. 6.4 include compression elements. Although

buckling failure is not explicitly considered, this can be accounted for e.g., by using circular

hollow sections of sufficient stockiness. Furthermore, it is noted that in contrast to the optimal

solution that connects the keystone block with the adjacent blocks (Fig. 6.3c), the solution in

Fig. 6.4 connects the springing blocks with adjacent blocks; this, like the optimal solution,

‘geometrically locks’ the structural system giving a notional load carrying capacity of infinity

if the strength of the strengthening elements can be increased without limit.

The above load capacities are of course only realizable if the masonry possesses infinite

compression strength and the strengthening elements are composed of material possessing
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P = 200 kN 

Figure 6.4: Strengthening a flat arch with only external elements: two distinct zones of
strengthening are identified (see insets) where the springing blocks are connected to ad-
jacent blocks.

sufficient tensile strength. Although the assumption of infinite strength is often reasonable

for typical form-resistant structures, at the higher loads achieved when strengthening mea-

sures are employed, this assumption becomes less realistic as the working stresses are now

significantly higher, leading to crushing of greater areas of material in compressive regions.

Similarly, the tensile stresses in the masonry may exceed the finite tensile capacity of the

material leading to fracture of the stone blocks.

The limited crushing strength can be accounted for by considering a thrust zone. This

can be done by incorporating a node radius based on the forces connected to it (following

[204]) and then moving the node to be fully contained within the structure. The volume min-

imization step for thrust layout visualization is in this case repeated until the maximum node

movement is within a prescribed tolerance. However, note that in Fig. 6.3 and Fig. 6.4, al-

though the thrust layout visualization suggests that stressed zones extend beyond the extent

of the structure (e.g., see half of the main compressive thrust along the bottom-inner corner

of the springing block being outside of the structure), this is due to scaling of force lines for

visibility (e.g., in Fig. 6.3c the maximum calculated node radius (taking a compressive strength

of 100N/mm
2 and a tensile strength of 1N/mm

2) is of the order of 1mm, which is negligible

in comparison to the dimensions of the structure).

6.3.2 Semicircular arch

As observed in the previous section, the theoretical optimal solution will often be an intuitively

obvious one, that involves applying strengthening material to restrain the opening of hinges

forming a mechanism. However, at increased load demands, the extended TLO procedure

generates solutions that would not necessarily be obvious to a structural engineer.



Chapter 6. Extended TLO with Auxiliary Strengthening Measures 107

Now consider a semicircular arch composed of 16 straight-edged voussoirs and subjected

to a mid-span point load. The arch is of 10m centreline radius and 1.1m thickness. Voussoir

material has a unit weight of 25 kN/m3 and a friction coefficient of 0.7. The maximum mid-

span load that can safely be carried is 7.1 kN; see Fig. 6.5a.

The extended TLO formulation was used to identify the optimal placement of strengthen-

ing measures for the arch to carry loads in excess of its normal capacity; target loads of 15 kN

and 75 kN were considered. To achieve the lower of these two target loads the intuitively ob-

vious strengthening solution involving connecting the two blocks directly below the applied

load is identified; see Fig. 6.5b. At the higher of these two target loads, an arrangement

of strengthening measures that is less intuitively obvious is identified; see Fig. 6.5c. Here,

the two blocks directly below the applied load are again connected but in this case attached

to these are two compressive elements that apply forces to a tension cable running at mid-

height; the latter restrains outward movement of the arch, at locations where the voussoirs

are hinging at the intrados.

Furthermore, an edge clearance is considered here as a crude approach to account for

the practicalities of providing connections near the corners of the voussoirs. This edge clear-

ance also affects the form of the solution found. In this case, the strengthening measures

are considered with an edge clearance of 0.67m (1/3rd of the centreline length of voussoirs).

If a lower edge clearance (say 0.4m) was specified, then connecting the two blocks directly

below the applied load would be optimal at the higher load as well. In a more refined formula-

tion, the edge clearance can be replaced by considering embedment lengths and anchorage

zones in an extended cost function, along with strengthening elements penetrating the stone

masonry (i.e., one end not being outside and the other being inside the structure).

The same arch is now considered to demonstrate the capability of the extended TLO pro-

cedure to identify strengthening measures in the presence of various strengthening measure

exclusion zones. In Fig. 6.6 outcomes for three different cases are shown: (a) unrestricted

zone for strengthening elements; (b) a rectangular exclusion zone; and (c) a hexagonal exclu-

sion zone. These are representative of the practical restrictions that might be present, e.g.,

to allow traffic to pass under the arch.

When an exclusion zone is introduced, preventing the solution obtained in Fig. 6.6a, addi-

tional sets of strengthening elements are introduced at the extrados, near the quarter-spans,

where hinges are present at the intrados (Fig. 6.6b). As the exclusion zone is expanded, three

distinct zones emerge: one at the intrados near the crown (where hinges occur at the extra-

dos) and the others at the extrados at quarter spans (where hinges occur at the intrados);
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Plimit = 7.1 kN 

10m 1.1m

(a)

Plow = 15 kN 

(b)

Phigh = 75 kN 

(c)

Figure 6.5: Strengthening a semi-circular arch: (a) the unreinforced arch at its collapse limit
load of 7.1 kN; (b) the optimal strengtheningmeasures to achieve a higher limit load, of 15 kN;
and (c) the optimal strengthening measures to achieve a significantly higher limit load, of
75 kN (edge clearance of 0.67m; thrust layouts obtained using internal and boundary node
spacings of 0.2m; for the strengthening measures a grid spacing of 1.0m has been used).

see Fig. 6.6c. These strengthening measures effectively increase the depth of the section by

introducing new tensile zones outside the masonry forming the arch. In relation to this, the
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solution shown in Fig. 6.6a is particularly interesting as it combines these three zones in a

single optimal solution. It can also be observed that the results obtained here correspond

well with the results obtained by Gilbert [203], where a rigid block method was extended to

find the optimal placement of strengthening elements for a semicircular arch.

6.3.3 Wall with openings subjected to seismic loading

A 3.0m × 3.0m masonry wall with a 1.0m × 1.2m opening and composed of 500mm ×

150mm masonry units is considered. Masonry above the opening is supported by a flat

arch of 300mm in height and made of 6 blocks. The in-plane seismic capacity of the wall,

assuming a quasi-static analysis, and the corresponding thrust layout were obtained using

TLO; see Fig. 6.7.

The in-plane seismic capacity is determined as the maximum horizontal acceleration that

can be safely carried, and in this case was found to be 0.33g, where g is the acceleration

due to gravity. The thrust layout obtained (Fig. 6.7) indicates a significant thrust zone moving

from the top-right of the opening to the bottom-right of the wall and two fanning tensile

zones, one above the opening and one below, coinciding with the ends of the main thrust.

The top-right and bottom-left corners of the opening have concentrations of compressive

forces. Thus, the thrust layout provides a useful visualization of the state of stress within the

structure, comparable to that which could be obtained using a finite element model, though

without the need for material stiffness properties and at a much lower computational cost.

Now, the optimal placement of strengthening measures in the masonry wall is considered,

in this case, if the maximum in-plane horizontal acceleration is to be increased to 0.45g. The

thrust layout at the increased seismic demand is given in Fig. 6.8, where the strengthening

measures are highlighted in yellow. As might be expected, the vertical portion of the main

vertical thrust layout at the bottom-right of the wall is shorter, and individual movement of

the blocks (see tensile-fans contained within blocks in Fig. 6.8) predominates as opposed to

the movement of large sections of masonry observed at the seismic capacity (see tensile fans

cutting across blocks in Fig. 6.7).

In this case, strengthening measures were only sought within the extent of the wall; i.e.,

no external strengthening measures were sought. It is interesting to note that the optimal

strengtheningmeasures found are a series of tensile connectors (see the elements highlighted

in yellow in Fig. 6.8) where these connectors straddle across two adjacent blocks, stitching

together the weak interface between them. These are reminiscent of the metal clamps ob-
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Figure 6.6: Change in optimal placement of strengthening with increasingly restrictive exclu-
sion zone: (a) minimum volume strengthening elements with no exclusion zone; (b) solution
with a rectangular exclusion zone; and (c) solution with a highly restrictive hexagonal exclu-
sion zone - in this case, since the exclusion zones restrict the placement of strengthening
elements, three distinct zones of strengthening appears. The total volume of strengthening
measures in each case, as a percentage of the case (a), are noted (edge clearance of 0.67m;
thrust layouts considering an internal and boundary node spacings of 0.2m, and the strength-
ening measures with a grid spacing of 1.0m).
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Figure 6.7: Seismic capacity of a masonry wall: thrust layout obtained using TLO, extended to
account for seismic loading. The geometry and the limiting seismic action are as indicated,
with individual blocks of 500mm length and 150mm height (thrust layouts obtained using
internal and boundary node spacings of 0.025m; tensile links scaled by a factor of 2 for clarity).

served in historical stone masonry construction, from the Incas in South America [205, 206] to

the Greeks and Romans in ancient Europe [207, 208], to builders in far-East Asia [209]—see

Fig. 6.9. These are now also used in the retrofit of ancient structures [210].

The optimal placement of strengthening measures was determined in a staged process

where the problem was first solved with a coarser grid and then solved using a finer grid, now,

the placement of strengthening measures is constrained within a limited zone based on the

results of the first solve. This staged approach reduces the overall computational time and

memory demand.

6.3.4 Design of a stone-beam

There has recently been renewed interest in stone masonry as a low embodied-carbon means

of construction [156, 157]. However, it has been observed that the stone-beam cross-sections

used in recent projects have sometimes been very large; having an external strengthening



112 6.3. Numerical examples

Figure 6.8: Strengthening of a masonry wall against seismic loading: optimal placement of
strengthening measures and the corresponding thrust layout obtained using the extended
TLO method for a masonry wall subjected to a seismic load of 0.450g, which is higher than
its capacity (0.332g) (thrust layouts obtained using internal and boundary node spacings of
0.025m; tensile links scaled by a factor of 2 for clarity).

domain could therefore reduce material usage.

A stone beam of 3.0m span and 250mm height and thickness is now considered. The

beam is made of 11 blocks, including a keystone and two springing blocks. The block inter-

faces are inclined 15o to the vertical, and the springing blocks are supported on a 225mm

ledge on either side. The stone has a unit weight of 25 kN/m2 and joints have a friction

coefficient of 0.7.

A preliminary investigation with varying the number of blocks (3 to 15), block inclinations

(0o to 30o), and friction coefficients indicated that an unrealistically high friction coefficient

(>1.5) was required to enable the stone beam to stand on its own. The following design

considers three load cases: a central point load, a 1/3rd span load, and a 2/3rd span load,

each of which has a magnitude of 25 kN. The strengthening measures are restricted to a

250mm deep zone below the stone blocks.

The optimal strengthening solution obtained includes two tensile cables starting and end-

ing from stone blocks and hugging the edge of the strengthening zone at mid-span, creating

the maximum lever arm there. Then a secondary set of 1 bar-2 cable systems prevent the

opening up of individual joints between blocks.
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(a) (b) (c)

Figure 6.9: Historical evidence ofmetal clamps in stonemasonry: (a) Inca civilization example,
in modern-day Bolivia (at Puma Punku); (b) example from ancient Greece; and (c) example
from ancient China (Zhaozhou Bridge built in 600 CE).

6.4 Discussion

Masonry gravity structures are types of form-resistant structures, in that their load-carrying

capacity is primarily determined by geometry (i.e., where the material is, as opposed to the

strength of the material employed). This is also observed to be the case when the structure is

strengthened via the addition of strengthening elements. As observed in the example of a flat

arch on stone columns (Section 6.3.1) the first set of strengthening elements can increase the

load-carrying capacity of the structure up to a point, with the strength of the extra elements

in this case influencing the extra load carrying capacity. However, to further increase load

capacity beyond this point strengthening elements need to be introduced elsewhere. Similar

observations have been made in previous numerical studies of semicircular arches carried out

by Basilio et al. [198], who note that “beyond a certain reinforcement width, insignificant load

capacity increments are obtained”. Load capacity can be increased by adding further sets

of strengthening measures until the structure is ‘geometrically locked’, with a notional load

capacity of infinity.

However, that infinite capacity is not always achievable or desired. A procedure to handle

finite compressive strength via using a calculated nodal thickness was noted in Section 6.3.1;

this is reasonable as the highly compressed regions are at the edges of the masonry, where

hinges occur. However, handling the tensile strength limit accurately would require consid-

eration of stress resultants from compressive and tensile forces intersecting at nodes, and

also link overlaps; tensile forces in thrust layouts are observed in fan regions with tensile and

compressive forces intersecting. Similarly, the strengthening measures required for higher

load capacities may inhibit the ductility of the structure, diminishing the ability of a masonry

gravity structure to adjust to changing boundary conditions. Further investigations, poten-
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P = 25 kN 

3 m

0.25m

P = 25 kN 

Figure 6.10: Design of a stone beam with external strengthening under multiple loads: (a)
with a central point load of 25 kN; and (b) 1/3rd span loads of 25 kN, one at either side con-
sidered as separate load cases (thrust layouts considering an internal and boundary node
spacings of 0.03m; auxiliary strengthening structure indicated in black; tensile links scaled by
a factor of 2 for clarity).

tially involving the dual kinematic solutions obtainable when solving the linear programming

problem of extended TLO, will be required to incorporate this.

Two distinct patterns of placement were observed in the strengthening measures. In the

first pattern (see the left column in Fig. 6.11) an additional load path is created to carry the

extra external load applied,∆P . Here the bending capacity is achieved by having an external

tension element and increasing the lever arm of the section reduces the force and thus the

cross-sectional area of the member involved. In contrast, the second pattern involves ‘lifting

up’ of self-weight from an adjacent block to act as a counter-weight against the applied addi-

tional load; see Fig. 6.11, right column. In the optimal placement of strengthening elements

observed in the current contribution (e.g., see Fig. 6.4) the fanning compression elements

collapse to a single compression element as the ground structure grid is coarse; a subse-

quent optimization employing a locally refined grid is likely to produce the more optimal fan

structure expected.

The requirement of anchorage provision, for both surface strengthening (Section 6.3.1)

and external strengthening (Section 6.3.2) is noted. The forces to be resisted at these con-

nection points can be obtained from the current extended TLO implementation and can feed
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Figure 6.11: Patterns of optimal placement of strengthening measures: in pattern A (in the
left column) an additional structure is formed to create a new load path to carry the extra
loading ∆P , whereas, in Pattern B (in the right column) a new load path is created to lift up
the self-weight from adjacent blocks. The strengthening elements added are highlighted in
yellow.

into the process of designing the connections. Furthermore, constraints on edge clearance

are also considered to account for the practicalities of providing sufficient pull-out resistance

near the edges in the case of external strengthening elements. In the basic cost function

used here, only the cost of the material is considered, though this can easily be extended to

incorporate costs related to joint anchorage requirements.

The extended TLO procedure is not limited to determining the optimal placement of

strengthening measures in masonry gravity structures, but can also potentially be used in

the design of novel externally tensioned structures. These types of structures were first con-

ceived by the French architect Viollet-lu-Duc [211], and later put into practice by Peter Rice

at the Seville Expo in 1992 [212]; they have also recently been researched by Todisco et al.

[213, 214]. When using the extended TLO formulation such structures can be designed by first

defining the visually dominant compression field (i.e., the arrangement of masonry blocks),

with the placement of the external strengthening elements (in both tension and compression)

then sought via TLO. Various constraints may need to be added to generate visually striking
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external member fields, since the optimal solutions may sometimes be obvious and hence

not visually striking (e.g., Fig. 6.5b). Nonetheless, knowing the potential optimal volume of

strengthening will be useful in justifying a balanced option; i.e., a visually striking solution that

is within a reasonable margin of the optimal. A similar approach has been used to rationalize

solutions in the interests of constructibility [15].

6.5 Conclusions

In this work, the thrust layout optimization (TLO) procedure for the analysis of masonry gravity

structures has been extended to incorporate a domain of auxiliary strengthening measures,

which may lie exterior to, interior to, or on the surface of a given structure. Specific conclu-

sions are as follows:

• The TLO procedure has been extended to include a domain of auxiliary strengthen-

ing elements to provide a physics-based tool for determining the optimal placement

of strengthening measures in masonry gravity structures. In addition, the extended

process can handle seismic loading and multiple load cases, with force flows clearly

visualized when strengthening elements are active.

• At low levels of loading, the optimal strengtheningmeasures identified via TLO are likely

to correspond to intuitively obvious solutions (e.g., surface strengthening to prevent the

opening of hinges). However, at higher levels of loading, and/or with practical consid-

erations taken account of, less intuitively obvious strengthening measures are likely to

be identified. In this case, the corresponding thrust layout helps to rationalize these

solutions.

• The addition of an auxiliary strengthening domain to the TLOmakes it possible to design

stone masonry structures with an external compression-tension structure. This provides

a powerful physics-based means of exploring new structural systems.



Chapter 7

Discussion and Conclusions

7.1 Discussion

This thesis presents thrust layouts to represent force flows within form-resistant structures in

equilibrium. In Chapter 4, prevalent notions of thrust lines are discussed and the benefits of

thrust layouts over them are noted. However, generating thrust layouts by traditional means—

i.e., physical models and graphic statics—is an involved process as now the topology of the

thrust layout also needs to be decided a priori. Overcoming this, in Chapter 5, an automated

procedure, termed thrust layout optimization (TLO), is presented for the generation of thrust

layouts. In addition, TLO provides an opportunity to incorporate friction at block interfaces.

Furthermore, the TLO procedure can be further extended to find an external strengthening

domain to increase the load carrying capacity of the form-resistant structure.

Thrust layouts thus generated present advantages over the traditional thrust line method:

(i) avoids the confusion present in traditional thrust lines and clearly demonstrates a force

flow that stays within the bounds of the structure (if an equilibrium is indeed satisfied); (ii)

gives better estimates of the exact collapse load (otherwise giving a lower bound solution);

(iii) avoids the case specific pre-processing steps present in the traditional thrust line method,

and is generally applicable to form-resistant structures.

While there are other useful techniques, such as the rigid block method, that exist for the

estimation of the collapse load of block assemblies, a key advantage of thrust layouts lies in

their highly visual nature. Traditional thrust lines give a single compression line of force flow,

disregarding the tensile force that may be present in the real structure (e.g., bifurcation of

thrust layouts around internal holes when a traditional thrust line would still run through it).

In contrast, the rigid block method would give a failure mechanism, but not how the forces

117



118 7.1. Discussion

flow inside the rigid blocks. Thrust layouts consider the possibility of limited tensile forces

within the blocks, and the multitude of possible force flows (via the use of the underlying

ground structure). This gives a much richer visualization of force flows, at a considerably

lower computational cost and level of required user expertise compared to a non-linear finite

element model. Arguably, thrust layouts give a designer a muchmore understandable picture

of how a form-resistant structure carries loads.

It is further emphasised here that the thrust layout will only show one possible flow of

forces within the structure: This may or may not reflect the actual internal stress state. Stresses

within a structure are applied to areas whereas the thrust layout considers forces flowing along

linear elements connected at nodes. Further, as infinite compression capacity is assumed

this allows for compressive forces to pass through corners where blocks hinge against each

other. When the working stresses in the structure are very low the corresponding stressed

thicknesses are small and therefore the above idealization is reasonable. However, when the

working stresses are closer to the material yield, this assumption becomes invalid and TLO

will overestimate load capacity: When the assumption of infinite strength is valid, the TLO

procedure will give the exact collapse load or a lower-bound solution.

As the TLO method solves a solid block system considering interfaces, there are some

limitations arising from the kinematics at the interfaces. There are instances where although

a valid equilibrium solution exists, the solution is not realistic. Consider ‘the boy with the

backpack’ and ‘ Drucker’s two block problem’ in Fig. 7.1. Both these problems have equilib-

rium solutions, but neither is stable. In the case of the boy with the backpack, there exists a

mechanically admissible virtual displacement system where the deformations are either con-

tact separation, relative rotation about a point on the contact face, or a combination of the

above (see Fig. 7.1a lower). Following Bagi [143], this violates the kinematic requirement for

the structure to be safe. In contrast, the invalidity of the equilibrium solution in Drucker’s

two-block problem stems from the non-associativity of Coulomb friction. Here, an equilib-

rium solution giving a normal force at the frictionless contact between the two blocks will

only be realisable if the smaller block on the inclined face has a friction response with dila-

tion, therefore pushing the smaller block against the bigger block. In reality, with Coulomb

friction present, and depending on the angle of friction and the inclination of the inclined

surface, the smaller block will slide down (see Fig. 7.1b lower). Therefore, statics alone are

not sufficient to verify the solution, and the relevant kinematics of the solution also need to

be considered.

Furthermore, the TLO formulation uses transmissible loads to represent self-weight loads,
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(a) (b)

Figure 7.1: Special cases of solid block systems: (i) “the boy with the backpack” problem
following Or [215]; and (ii) “two-block problem” following Drucker [216].

so that force flows resembling traditional thrust lines can be realised. This, however, removes

some of the important visual information, specifically that related to self-weight loads. How-

ever, this visual information can be added back to thrust layouts by plotting transmissible

self-weight load vectors—i.e., force vectors indicating the force in the notional link required

to move the self-weight either up or down from its original position to where it is transmitted

to. Plotting of transmissible self-weights could also benefit traditional thrust lines, leading to

potentially erroneous thrust lines being identified. Furthermore, a quasi-static seismic load

can also be applied as a transmissible load set, now in the horizontal direction, and the cor-

responding seismic capacity (as a horizontal acceleration) and thrust layout can be obtained.

As a natural extension of the TLO, an extra set of ground structure nodes and links (i.e.,

an auxiliary strengthening domain) can be incorporated to represent potential strengthening

measures that could be applied to form-resistant structures. This has been shown to be ca-

pable of determining optimal placement of strengthening measures—which in practice are

primarily determined by expert opinion and rarely on physics-based models. Small incre-

ments of collapse load can be achieved by introducing strengthening measures to inhibit the

formation of masonry hinges—i.e., the obvious solution. Furthermore, it is noted that the

strengthened structure too retains the form-resistant nature until the structural system be-

comes ‘geometrically locked’, with a notional load capacity of infinity—i.e., closing one set of

hinges would only increase the load capacity to a certain level and beyond that the increment

of load carrying capacity of the strengthening elements would not increase the load carrying
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capacity of the structure any further. Thus making the load carrying capacity of the structure

form-dependent, and not strength-dependent. Once a structure is geometrically locked the

failure in practice would inevitably be material strength dependent.

One key element of thrust layouts is that they recognise the limited but finite tensile

strength of the block material making up the structure. Furthermore, it has been shown

that the tensile strength requirement for the results to converge to the exact collapse load

is very low. However, with the external strengthening measures pushing up both tensile and

compressive forces within the structure, it will be required to calibrate the yield properties

with experimental results. Nevertheless, the thrust layout would indicate where the forces

are likely to cause fracture (due to tension) or crushing (due to compression).

However, there are limitations to the TLO formulation. The reliance of TLO on a linear

programming solver implicitly results in the assumption of associative friction. This could

be included in a modified version of the proposed procedure and would likely need to be

considered for usage as a general tool. Similarly, the issue of increasing problem complexity

as the number of blocks in the assembly is noted. It has been noted that this issue could be

addressed by staged refinement of the model, starting with a coarse blocking pattern. This

strategy can be used (and demonstrated in this thesis) for the determination of strengthening

measures as well, where the areas to be strengthened can be first identified using a coarse

grid.
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7.2 Conclusions

From the study presented in this thesis, the following conclusions are drawn:

• Thrust layouts, which are networks of forces, are presented to visualize the flow of forces

in equilibrium in form-resistant structures. They have benefits compared with traditional

funicular thrust lines as they permit tensile links within blocks, but not across block inter-

faces, and require self-weight to be mobilized within corresponding blocks—thus, they

explicitly consider the block stereotomy of form-resistant structures. Thrust layouts are

superior to Moseley’s line of resistance (which is also referred to as a line of thrust by

some) in that they represent flows of forces where the lines correspond to force vectors.

Therefore, thrust layouts are presented as an enhanced means of representing equili-

brated forces in form-resistance structures, at the same time resolving the issues caused

by the competing, and often confused, notions of thrust lines in use.

• Thrust layout optimization (TLO) is presented as a general numerical procedure to es-

timate the load carrying capacity of form-resistant structures and to visualize the force

flow within a structure as a thrust layout. The rich visualization of forces provided by the

thrust layouts and the possibility of plotting the load transmissibility provide useful infor-

mation to a structural engineer on how form-resistant structures resist external loads.

The procedure does away with the case specific pre-processing sometimes required

when applying the traditional thrust line method and explicitly considers the interfaces

and friction capacities therein. In contrast to sophisticated non-linear numerical models,

which require significant computer time and user expertise, the TLO method relies only

on the availability of a linear programming solver and physically meaningful parameters

in order to obtain solutions, such that it appears better suited for application in general

engineering practice.

• An extended TLO formulation provides a physics-based tool for the determination of

optimal placement of strengthening elements in masonry gravity structures, where cur-

rent practice requires intuition and/or expert opinion. The newmethodology presented

has the potential to identify locations for strengthening measures that are structurally

efficient but not intuitively obvious. However, with the corresponding thrust layout plot-

ted, how the structural system works becomes clearly explainable.



Chapter 8

Recommendations for Future Work

There is scope to improve on the methodologies presented in the thesis. Also, the research

work described can be used as a foundation for new lines of investigation.

• Improving user readiness: while the proposed TLO procedure has been shown to be

especially useful in analysing form-resistant structures, the efficiency of the specific im-

plementation used in the current study can be further improved—efficient generation

andmanagement of self-weight data as transmissible load groups and the efficient man-

agement of ground structure node, link data are identified as potential areas for im-

provement. Currently, the transmissible load groups are generated taking a brute-force

approach and general-purpose open-source packages are used for the management of

ground structure data. A ready-to-use tool—like LayOpt [148]—where a user can build

a block assembly in a GUI, along with more efficient solving of the LP problem, would

allow wider adoption of the technique proposed.

• Staged refinement of blocking patterns: the rapidly increasing requirement of compu-

tational resources when solving large scale problems is noted. This could be potentially

addressed by employing a refinement strategy where the structure is first analysed with

a crude discretization and subsequently refined based on previous results. In the re-

finement stages, those block interfaces which have the potential to reduce the load

capacity estimate are added to the model. These critical interfaces can potentially be

identified by observing the thrust layouts—i.e., areas with tensile forces. In contrast,

in areas where the blocks simply act as ‘ballast’, a coarser blocking to represent the

effect of the self-weight would be sufficient. While the current implementation allows

for manually staged refinement by the user, an automated refinement process would
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be useful. Furthermore, studying different refinement strategies and interpretations of

the results from coarser patterns can give further insights into the behaviour of form-

resistant structures.

• Incorporating friction constraints more realistically: the TLO formulation could see

further refinements, particularly related to friction. While the current implementation

is using an associative law of friction, it is noted (in Section 3.1.2) that this could lead

to over-estimation of load capacity. This is likely to be especially important when mod-

elling 3D examples such as hemispherical domes. Load capacity over-estimation can

be checked by incorporating a re-analysis step with a modified friction constraint, e.g.

using the approach adopted by Gilbert et al. [150].

• Improvements to geometry post-processingwhen using TLO: a geometry post-processing

procedure is implemented to improve the visual clarity of thrust layouts. While this

proved effective for small scale problems, the improvement in visual clarity diminishes

as the problem becomes larger. The problem being readily separated into sub-domains

(i.e., blocks) makes it ideal for parallel-processing, thereby benefiting from improved ef-

ficiency. However, the major bottleneck with the geometry post-processing are the in-

terface nodes which also carry transmissible self-weight loads—they are locked in place

due to them being constrained by both the interface and the transmissible load line.

Providing an effective way to split them and allow them to move independently (sepa-

rately along the interface and the transmissible load line) would allow further clarity to

be achieved in thrust layouts.

• Generating rigid block mechanisms from TLO solutions: the nature of LP problems

is such that a dual problem is solved parallel to the primal one—i.e., a dual kinematic

problem is solved while the static problem is being solved. Using the dual problem, it is

possible to obtain a deformation field for the nodes in the underlying ground structure.

When the dual deformations from the TLO solution are considered, the nodes along

the thrust layout would move (flow) along the force path while the other nodes (i.e.,

nodes which are in the original ground structure but not part of the thrust layout) will

deform giving an overall form similar to that of a rigid block mechanism. The ‘flow’ of

nodes along the thrust layout gives indentation-like deformations in the blocks, where

thrust lines (i.e., compression links in the thrust layout) pass from one block to the other.

Addressing this to generate rigid block mechanisms would further improve the visual

feedback from TLO.
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• A TLO formulation for a form-generation tool: while thrust layouts improve upon

thrust lines by explicitly considering block interfaces and tensile forces within blocks,

TLO provides an analysis tool implementing the ideas of thrust layouts. While the anal-

ysis tool can be repeatedly applied to check, or even optimize, a design, a complemen-

tary design tool implementing thrust layouts would be an interesting potential new line

for investigation. In this, several potential avenues of investigation are available: (1) fol-

lowing the idea of force networks for shells, and recent developments by Bołbotowski

[116], but accounting for block stereotomy; (2) making use of optimal stress-regions

(following Fairclough [217]), and studying the stress-regions identified from analysis

problems, a ground structure based design problem may be formulated; (3) a ground

structure formulation with explicit representation of interfaces in the ground structure,

around the nodes which are representing potential blocks (and carrying transmissible

loads).

• Optimal strengtheningmeasures with practical considerations: the current work iden-

tifies the theoretical optimal locations of external strengtheningmeasures while offering

the potential for practical considerations to be accounted for via a richer cost function.

Also, the need to consider the crushing and tensile strength limits of the material is

noted. These aspects need further investigation taking practical considerations into

account.

• Externally tensioned structures: there exist a handful of classic examples of exter-

nally tensioned form-resistant structures, designs of which were based on a structural

designer’s intuition and understanding of the structure. As case studies, it would be in-

teresting to see how these structures compare with corresponding optimized structures

obtained using extended TLO.
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Introduction
As we move towards a sustainable 
planet, the developing world is faced 
with the dilemma of a need for rapid 
expansion of housing and infrastructure 
on one hand and the constraints of 
sustainability on the other. However, 
a closer look at local strengths and 
technology elsewhere can lead to 
creative solutions.

Shells are a more eѝ  cient structural 
form than the widely used column–
beam frames, which make use of 
bending strength and hence underutilise 
the structural capacity of materials. 
Superior structural eѝ  ciency allows shell 
structures to be lightweight, reducing the 
demand for materials. The wide range 
of possible material solutions – from 
compressed earth to concrete – allows 
for an appropriate local material to be 
used in the realisation of the structural 
form.

Shell structures are by no means 
a modern invention. Evidence of the 
earliest vaulted structures comes from 
Mesopotamia in 3000BC: a 5000-year-
old Mesopotamian burial chamber 
with a barrel vault of approx. 1m span 
is on display at the Berlin Museum of 
Prehistory and Ancient History1.

The Roman arch, the bridges and 
cathedrals of Renaissance Europe, 
Barcelona’s Modernisme movement, 
and Guastavino vaulting on the east 
coast of the USA have left us with a 
rich collection of form-resistant shell 
structures. More modern examples 
include Hassan Fathy’s reinvigoration 

Shell structures: lessons 
in structural eѝ  ciency for 
sustainable construction

SYNOPSIS
Shells are a highly effi  cient, lightweight structural form that 
have been used in construction for thousands of years. Shell 
structures can be formed from a wide range of materials – from 
compressed earth to concrete – allowing local materials to 
be used in their construction. However, social and economic 
factors mean that local materials are often perceived as inferior 
to steel or concrete in developing countries.

In this article, stemming from his Pai Lin Li Travel Award 
in 2018, Isuru Nanayakkara looks at traditional technologies 
and modern approaches to lightweight shell construction to 
seek a better perspective on how shell technology can be 
appropriated to diɈ erent local contexts.

of the Nubian technique, Heinz 
Isler, Frei Otto and Pier Luigi Nervi’s 
compression-only shells, followed by 
Jacque Heyman’s safe theorem giving 
a systematic approach to designing 
compression-only shells.

This article looks at traditional 
technologies (and adaptations thereof) 
and explores new frontiers in lightweight 

shell construction. An understanding 
of the sociocultural impacts of these 
structures, technologies and materials 
will give a better perspective on how 
technology can be appropriated to 
diff erent local contexts.

Knowledge for this article was 
gathered from travels to India, Europe 
and the USA; the former two funded by 

FIGURE 1:
Nubian vaulting 
technique2

KAVINDA ISURU 
NANAYAKKARA
BSc, CPGS, MSc
PhD Student, University 
of Sheɉ  eld, UK 
(formerly at University of 
Moratuwa, Sri Lanka)

 MAINI & DAVIS

P8-17_SHELL_TSE APRIL 20_The Structural Engineer   8 18/03/2020   17:34



Pai Lin Li Travel Award 2018  Feature

9
thestructuralengineer.org  |  April 2020

CATALAN 
VAULTING IS ALSO 
A FREE-SPANNING 
TECHNIQUE

the Pai Lin Li Travel Award presented by 
the IStructE Educational Trust.

 
Design philosophy: 
an exploration
The arch as a structural form came into 
being when beams were no longer able 
to bridge increasingly long spans. Vaults 
and domes may also have evolved for 
this reason, although some historians 
and architects suggest that domical 
roofs in cathedrals are suggestive 
of heaven or the realm of gods. 
Nonetheless, vaults and domes (the 
most common early shell geometries) 
were used for diff erent functions and 
built from diff erent materials in diff erent 
places around the globe.

 
Nubian technique
Earthen structures as practised by 
the Auroville Earth Institute (AVEI), a 
partner institute of the UNESCO Chair of 
Earthen Architecture, are not necessarily 
a traditional Indian technology, but 
rather a mindful adoption of the Nubian 
technique, as popularised by Egyptian 
architect Hassan Fathy. However, 
signifi cant improvements to the design 
methodology, production of material and 
construction have taken place at AVEI 
during its 30 years of existence.

The Nubian technique originated in 
southern Egypt, with the famous vaults 
of the granaries of the Ramesseum at 
Gourna testament to the success of 
the technique. The basis of the Nubian 
technique is that the earthen blocks 
adhere to each other with an earthen 
binder (Figure 1)2. The dryer blocks 
draw in water by capillary suction and 
the clay components of the soil act as 
an adhesive to bind the blocks.

Traditionally, the Nubian technique 
requires a back wall to mark the curve 
and ‘lean’ the fi rst course of blocks. The 

vault is built as a sequence of arches 
slightly leaning on each other. The binder 
is a silty-clayey soil (traditionally from the 
Nile) and a binder layer of 10–15 mm is 
used with sun-dried earthen blocks.

 
Catalan vaulting
In contrast to the heavy, thick masonry 
shells of the Nubian technique, Catalan 
vaulting (known as Guastavino vaulting in 
the USA) uses multiple layers of very thin 
tiles (usually three layers of 15–20mm 
thick tiles). 

Catalan vaulting is also a free-
spanning technique, using guides to 
defi ne the geometry in space. This 
makes it an interesting technique to 

be used with free-form shells such as 
that proposed for the Martin Luther 
King (MLK) Jr Pavilion in Austin, Texas 
(Figure 2). The fi rst layer of a Catalan 
vault is built in space with a fast-setting 
gypsum mortar. The subsequent layers 
are built with the fi rst layer acting as the 
formwork.

There are many examples of Catalan 
vaulting in both Barcelona and the USA. 
Examples in Barcelona include Teatre 
La Massa (Rafael Guastavino), a factory 
building in Terrassa (Lluís Muncunill i 
Parellada), Palau de la Música Catalana 
(Lluís Domènech i Montaner) and 
Restaurant En Ville (Guastavino).

Examples in Boston include the 
Boston Public Library, the patio of 
the Boston Coast Guard building and 
Fariborz Maseeh Hall at MIT, while 
examples in New York City include the 
Municipal Building on Chambers Street, 
Queensboro Bridge, and the Oyster Bar 
at Grand Central Station (Figure 3). All 
these US examples were designed and 
built by the Guastavino company.

 
Gaudí’s forms following forces
With an understanding of the fl  ow of 
forces, gained from his physical models, 
Antoni Gaudí was able to use the full 

FIGURE 2: Model 
of proposed MLK Jr 
Pavilion in Austin, 
Texas

FIGURE 3: 
Guastavino vaulted 
ceiling at Oyster Bar 
in Grand Central 
Station, New York
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canvas of the three-dimensional (3D) 
space to produce some wonderful 
structures. Although one might be 
hesitant to call them shells, they follow 
the principle of form resistance. 

Park Güell houses simple examples 
of forms following forces (Figure 4), 
whereas La Sagrada Família, Colònia 
Güell, Casa Milà and Casa Batlló depict 
more elaborate expressions of this idea.

 
Similar yet diɈ erent
All three traditions of shell structures – 
Roman, Nubian and Catalan – do the 
same fundamental thing: they carry 
loads primarily in compression. However, 
there are interesting diff erences in (i) how 
they account for variable loading, and (ii) 
how the lateral thrusts at supports are 
resisted.

 
Accounting for variable load
Like Roman arches, the heavy Nubian 
vaults have a much higher self-weight 
in comparison to variable loads. Also, 
these shell structures are typically used 

one quadrant gives a maximum stress 
of 11.2MPa; by adjusting itself through 
active controls, the shell can reduce the 
maximum stress to 3.2MPa.

The hand-off  point between the mass-
resistant system and the active-control 
system (i.e. the material utilisation 
factor) is determined based on energy: 
the embodied energy of the material 
that resists permanent loads and the 
actuation energy required for active 
control of the structure. Further research 
on active-control structures continues at 
ILEK Stuttgart.

 
Resisting lateral thrust
The heavy masonry structures observed 
in Auroville (Nubian technique) and in 
traditional masonry structures (i.e. Roman 
arches) use masonry buttresses to safely 
carry the large horizontal thrusts created. 
In contrast, lightweight Catalan vault 
systems use steel tie rods (Fig. 5a) to 
carry the horizontal thrusts. 

These tie-back techniques are 
observed in more modern projects by 
the Block Research Group (BRG) at ETH 
Zurich. The Armadillo Vault for the Venice 
Biennale in 2016 used steel support 
plates tied back with steel rods so as 
not to damage the historical fl  oor of the 
exhibition hall. The ETH Zurich pavilion for 
the 2015 Ideas City festival in New York 
did not use any ties. The lighter weight 
of the vault (due to the material used) 
meant that the stability of the stack of 
timber pallets supporting the vault (tied 
together to act as a single unit) could be 
guaranteed by weighing down the timber 
pallets with ballast loads.

Gaudí took a diff erent view of 
transferring the thrusts from heavy shells. 
Instead of traditional buttressing, which 
stays true to the concept of rectilinear 
spaces, he used inclined columns to 
support the random rubble vaulted 
viaducts at Park Güell (Fig. 4). These are 
oriented so that the columns primarily 
resist axial loads and minimise bending 
moments.

 
Prinzip leichtbau
The lightweight principle presented by 
Frei Otto compares masses and how 
they can transmit forces. The ability to 
transmit forces (Tra) is quantifi ed using 
the force that can be transmitted (F) 
and the length of the load path (s). This 
extends the concept of form and forces 
to include masses. With masses brought 
into the mix, it is now possible to relate 
form and forces to energy and cost – 
which are much easier parameters for the 
public and policy makers to comprehend.

In ILEK publication IL 24, Otto presents 
a parameter called Bic (with units g/
Nm), which is the ratio of mass to Tra. 
An interesting observation from his study 
is that tension systems (e.g. cable nets) 

FIGURE 4: Gaudí’s 
forms following forces, 
Park Güell, Barcelona

a) Domed roof slab

b) Vaulted viaduct

c) Tilted columns

ALL THREE TRADITIONS 
DO THE SAME 
FUNDAMENTAL THING: THEY 
CARRY LOADS PRIMARILY 
IN COMPRESSION

as roof structures rather than slab 
systems. Thus, the self-weight itself is 
the signifi cant loading and the eff ects 
of variable action can be reasonably 
accounted for by having a ‘safety 
margin’ on the thickness of the shell. 

Catalan vaults are used as slab 
systems (Figure 5) and have a much 
thinner shell. As such, the variable 
loading is a signifi cant factor for the 
safety of the structure. Catalan vaulted 
fl  oor slabs account for the variable 
loading by having vertical stiff eners 
(Fig. 5c). Furthermore, the doubly 
curved shell is extremely stiff  and is 
capable of safely carrying asymmetric 
loadings due to its multiple load paths. 
This was masterfully exploited by 
Guastavino (Fig. 3).

The next generation of ‘engineered’ 
shells can be observed at the Institute 
of Lightweight Structures (ILEK) in 
Stuttgart: the SmartShell (Figure 6). 
This 40mm thick timber shell of 10.28m 
span and 3.57m rise has three supports 
which can be actively controlled and one 
stationary support. The shell is sized to 
resist only the permanent actions. The 
variable loads are resisted by the active 
control of the structure at the supports 
(Fig. 6b). A 0.4kN/m2 additional load on 
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will always give a lighter-weight solution 
than a compression-only solution (e.g. 
compression shell), although the latter still 
gives a positive Bic value.

This shows that compression-only 
shells are not the end of the path for 
optimising material usage – lighter-
weight solutions can be found. However, 
considering the material at hand (e.g. 
materials with low tensile capacity) or 
other constraints, a compression-only 
solution may be the best one can aim for.

Design methodology: 
from intuition to the 
information age
Structural analysis of compression-only 
forms has evolved over the years. But 
all the methods of analysis observed 
during this study were based on one 
fundamental idea – Robert Hooke’s 
observation of the hanging chain: ‘as 
hangs the fl  exible cable, so but inverted 
stands the rigid arch’.

Physical models
Antoni Gaudí
Physical models are the most 
fundamental manifestation of Hooke’s 
observation. Gaudí made extensive use 
of physical models (Figure 7) which are 
daring in their size and complexity, as are 
his realised structures.

Hanging-chain models are a more 
complex manifestation of Hooke’s 
hanging chain. Diff erent weights are 
attached to nodes to represent the 
loadings on the structure, due to self-
weight or otherwise. Unlike Heinz Isler’s 
models described later, the hanging-chain 
model is not rigidifi ed, but the inversion 
is done on paper with the geometry 
measured from the hanging-chain model. 
Gaudí used a glass mirror to get a sense 
of the inverted shape generated.

Heinz Isler
Isler’s physical models are much simpler. 
The scale model in Figure 8 is a hanging-
cloth model rigidifi ed in plaster of Paris 
(gypsum plaster), which also include 
cables to resist the horizontal thrusts. It 
was built as a form-fi nding model for the 
Norwich Sports Village roof structures in 
the UK3.

Frei Otto
ILEK – under Frei Otto’s guidance – 
developed a systematic approach and 
expertise in using hanging-chain models 
for form-fi nding of compression-only 
structures. These approaches were 
developed for projects such as the 
Mannheim Multihalle and the Munich 
Olympic Stadium in Germany (the former 
is a timber gridshell and the latter a 
cable-net structure). Note that gridshells, 
although not fully solid, are considered 
shell structures and are designed to have 

minimum bending forces.
A 1:500 scale model (design model) 

was fi rst built to get a sense of the size 
and the form of the structure. A 1:100 
scale model (form-fi nding model) was 
then built to carry out a rigorous form-
fi nding exercise and determine the fi nal 
geometry. Playing around with these 
scale models gave a better understanding 
of the force fl  ows and the fi nal 
geometries were adjusted based on the 
understanding gained. Separate models 

were used to extract the geometry and 
member forces.

Three methods were developed 
at ILEK to take measurements of the 
geometry from a hanging-chain model. 
A measurement table with a pointer to 
drop a plumb line was the most basic 
method used. Measurements with a 
precision of ±0.1 mm are possible with 
this method. Aerial photogrammetry for 
cartography adjusted for close range was 
a more advanced method used. This can 
achieve a similar level of accuracy, but 
the technology of the day meant it was 
time-consuming and costly. Parallel light 
measurement was the third method used.

From line of thrust to thrust network
The concept of ‘line of thrust’ (or thrust 
line) has been attributed to Thomas 
Young (1817), Franz Joseph Ritter von 
Gerstner (1789), Méry (1840) and Henry 
Moseley (1835).

Jacque Heyman’s safe theorem is the 
formalisation of Hooke’s observation and 
concept of the line of thrust into the realm 
of limit state analysis. Heyman’s safe 
theorem states that ‘if a set of internal 
forces in a masonry structure can be 
found that equilibrate the external loads, 
and which lie everywhere within the 
masonry, then the structure is safe – safe 
in the sense that it cannot collapse under 
those loads (i.e. a lower-bound solution)’.

In ‘The stone skeleton’4, he describes 
this safe theorem and notes the 
corresponding uniqueness theorem 
with the additional requirement of the 
thrust line allowing ‘… the formation 
of suѝ  cient hinges to transform the 
structure into a mechanism’. 

At AVEI, Heyman’s safe theorem is 

FIGURE 5: Catalan 
vaulted slab system 
in old weaving mill in 
Vilassar de Dalt, Spain

FIGURE 5: Stuttgart 
SmartShell

a) Under renovation

b) Cross-section

c) Partially 
demolished part of 

slab showing vertical 
stiff eners in hollow 

slab

b) Actuator system

a) Prototype shell at ILEK, 
University of Stuttgart
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used with Karl Culmann’s graphic statics 
and James Clerk Maxwell’s force and 
form duality to generate lines of thrust. 
With years of experience in design and 
construction, AVEI has developed its 
optimisation method. This is an empirical 
set of rules that can be used to optimise 
the thickness of vaults constructed of 
known geometries (e.g. segmental arch, 
pointed arch, equilateral arch, Egyptian 
arch).

The optimisation procedure relies on a 
fundamental understanding of hanging-
chain models: if the line of thrust moves 
out of the middle third near the crown, 
increase the thickness near the 
support. 

Since AVEI uses a 2D 
canvas as its design space, 
this methodology is only 
applicable to vaults – i.e. 
extrusions of 2D cross-
sections. A 3D geometry, as 
in a dome, would have a 3D 
force fl  ow. In a 1921 textbook 
on graphic statics, William S. Wolfe 
describes a graphical analysis method to 
analyse the equilibrium of domical shells 
by considering both meridional and hoop 
forces. 

A full 3D analysis considering 
Heyman’s safe theorem (and 
improvements thereof) is only possible 
using computers. The idea of a line of 
thrust then becomes a thrust network 
in the 3D case. In fact, the cable nets 
used by Gaudí (e.g. Fig. 7) are physical 
representations of force networks.

In his PhD thesis, Prof. Philippe Block 
presents thrust network analysis, which is 
a form-exploration tool where he merges 
Heyman’s safe theorem and Clerk 
Maxwell’s reciprocal diagrams. At BRG, 
thrust network analysis is implemented as 
a plugin for the Rhinoceros CAD platform 
– as RhinoVAULT – and in the open-
source computation platform developed 
at BRG – COMPAS.

Both these tools facilitate analysis of 
3D shells via evaluation of the equilibrium 
of a 3D force network representing the 
shell.

It is important to note that thrust 
network analysis has been developed 
as a form-exploration tool, and as such 
is not only capable of analysing existing 
shell structures but also coming up with 
free-form compression-only shells – e.g. 
the Armadillo Vault. However, the form-
exploration capabilities come at the cost 
of analysis being possible with parallel 
sets of loads only (e.g. gravity load).

Non-structural design aspects
The design requirements also include 
non-structural aspects. The possibility 
of building free-form structures – as 
opposed to the rectilinear footprints 

and elevations we are so used to – is 
one advantage of shell structures. In 
contrast, the acoustic performance of 
shells – reverberations and echo – could 
be either benefi cial or problematic.

The MLK Jr pavilion (Fig. 2) and the 
Armadillo Vault by BRG are examples 
of the free-form possibilities of shell 
structures. Both these projects made 
use of the form-exploration capabilities 
of the software developed at BRG 
(RhinoVAULT and COMPAS). Maya 
Somaiya Library for the Shri Sharda 
English Medium School in Maharashtra, 
India, designed by Sameep Padora 
and Associates, is an example of 
RhinoVAULT being used by a group 
independent of BRG to design a free-
form shell structure.

Raphael Guastavino Jr. was interested 
in acoustic architecture. Along with 
Wallace Clement Sabine – a professor 
of physics at Harvard – he improved 
the acoustics of the Catalan thin tiles 
and produced six patents related to 
acoustical innovations. The aim of 
these developments was to reduce 
reverberations by absorbing sound 
rather than refl  ecting it. This worked too 
well and was a problem in churches 
where the reverberation of sound is an 
important characteristic.

AVEI has also studied this problem, 
identifying three reasons for the high 
level of reverberations in vaults and 
domes: (i) the relatively large volume 
created by the vaulted structure; (ii) 
the propensity of the shape to refl  ect 
sound; and (iii) the surface quality of the 
materials of the shell interior.

At AVEI, Helmholtz resonators (single 
resonator absorbers) made of PVC pipes 
or clay pots are used to absorb sounds 

FIGURE 7: Hanging 
chain model of La 
Sagrada Familia, 
Barcelona

FIGURE 8: Heinz 
Isler’s scale model 
for roof structure of 
Norwich Sports Village 
tennis court

FIGURE 9: Examples of clay pots or tube 
being used as resonator absorbers2

THE CABLE NETS 
USED BY GAUDÍ 
ARE PHYSICAL 
REPRESENTATIONS 
OF FORCE 
NETWORKS

b) Hole of resonator, 
once completed

d) Tube being used as 
resonator absorber

c) Clay pot 
resonators to 
absorb three 
frequencies

a) During 
construction D
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(Figure 9). This reduces echo in spherical 
domes and segments thereof. Echo is 
rarely an issue in other types of domes 
(e.g. pointed domes, groin vaults).

 
Construction: from earthen 
masonry to concrete and 
beyond
Material plays an integral role in 
compression-only structures. In fact, the 
need for a compression-only shell stems 
from the masonry itself not being able to 
carry signifi cant tensile stresses.

 
Construction materials
Unbonded stone
Early Roman arches were made of 
unbonded dressed stones. BRG 
demonstrated the possibility of thin 
shells with unbonded dressed stones 
at the Venice Biennale in 2016 with the 
design and construction of the Armadillo 
Vault.

As well as highlighting possibilities 
with shell structures, the Armadillo 
Vault was a showcase for the material 
technology involved. The shell was 
discretised to blocks considering 
the principal stress directions and 
interlocking of blocks. The fabrication 
and assembly processes were also 
considered in the discretisation: 
smaller blocks would mean a longer 

construction time but larger blocks 
would be heavier and diѝ  cult to handle.

A fi ve-axis CNC (computer numerical 
controlled) machining process was 
used to cut the limestone blocks to 
the required geometry. Considering the 
time constraints, the geometry was 
selected so that the extrados face was 
planar, requiring cutting in only one 
face. Further, all the contact faces were 
maintained as planar surfaces to enable 
a single cut with a circular saw. The 
curved intrados surface was formed by 
CNC cutting grooves at close spacings 
and then hacking away the resulting 
stone fi ns to give a rough surface.

 
Bonded masonry
Bonded masonry is used in both 
Catalan vaulting and Nubian vaulting 
technologies. But the blocks and 
the binder used are diff erent and 
demonstrate the possibility of adopting 
a local material for construction of 
compression-only shells. 

Catalan vaulting uses a thin burnt clay 
tile of 15–20mm thickness. The shell is 
typically of three layers, giving a shell 
thickness of less than 100mm, with a 
10mm mortar layer between courses. 
The thinness of the tiles is essential to 
make full use of the optimal shape of the 
shell. 

The construction process does not 
involve any formwork and the fi rst 
layer of tiles acts as the formwork for 
subsequent layers. A system of guides 
is used to mark the geometry of the fi rst 
layer (discussed further on). The fi rst 
layer is built free standing and requires 
a fast-setting mortar. Gypsum mortar 
is used in Catalonia, where it is readily 
available.

In contrast, good-quality gypsum is 
not easy to come by in southern India 
(and in many other places) and would be 
expensive. The Nubian vaulting practised 
in Auroville therefore uses a completely 
diff erent construction system: cement-
stabilised and compressed earth blocks 
(CSEB) with a cement-stabilised clay 
mortar. The blocks are typically 9cm 
thick and the plan dimensions range 
from 19 × 9cm2 to 39 × 9cm2.

The construction proceeds without 
formwork. The clay mixture is applied to 
the block to be fi xed, and the surface to 
which it is to be attached is wetted. Then 

FIGURE 10: Wyss 
Garden Centre in 
Solothurn, Switzerland

ISLER’S SHELLS ARE A 
CLASSIC EXAMPLE OF THIN 
CONCRETE SHELLS
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the block is placed. The block is pressed 
on with a repetitive left, to right, to left 
sliding motion. During this process, most 
of the clay mortar extrudes out from the 
sides. An excessive amount of mortar 
is initially used to guarantee a void-less 
bond.

Once a scratching sound is heard, 
the block can be released and will stay 
in place. For a skilled bricklayer this 
process will take less than 30 seconds. 
If the position of the block is not 
correct, the brick and the binder must 
be removed, and the surface cleaned 
before the block is re-laid. The block 
should not be tapped in to place as is 
done with regular masonry work.

The blocks are 5% cement stabilised if 
the soil is a sandy soil. Lime stabilisation 
is recommended for clayey soils. The 
blocks are cured under shade for two 
weeks and then for a further 4–6 months 
in the open before they are ready for use 
in construction. 

The embodied energy of the blocks 
is shown to be less than 10% of that of 
fi red bricks (6122.54MJ/m3 for a fi red 
brick and 548.32MJ/m3 in CSEB bricks 
produced in Auroville). The blocks are 
also claimed to be 15–20% cheaper 
than fi red bricks – although in a context 
where labour is cheap and good-quality 
soil is readily available.

The mortar used is also a cement-
stabilised earthen mortar, typically 
stabilised 1.5 times more than the 
blocks. The mortar includes sand to 
reduce the eff ects of drying shrinkage. 
The mix proportions and the fl  uidity 
of the earthen mortar depend on the 
characteristics of the soil and the usage 
of the mix (e.g. type of vault). AVEI 
has developed guidelines for the mix 

proportions and simple in situ tests to 
check the consistency of the mortar.

 
Concrete shells
Isler’s shells are a classic example of 
thin concrete shells. The Wyss Garden 
Centre in Solothurn, Switzerland was 
built in 1962 (Figure 10). This is a 
geometric shell (with a thickness of 
70mm), but has a cantilevered edge 
(with a maximum cantilevered length 
of 3.5m) which mimics the upturned 
lips observed in hanging-cloth models. 
These lips act as edge stiff eners, in lieu 
of bulky edge beams.

The twin, 31.6m long, 26.0m wide, 
three-point-supported, prestressed 
concrete shells at a highway service 
station in Deitingen, Switzerland (built in 
1968) are another classic Isler shell. This 
shape was derived from a hanging-cloth 
model. The shells are 90mm thick and 
the doubly curved nature gives it a high 
load capacity.

Rosenstein Pavilion, built by ILEK, is 

a segmental concrete shell structure. 
The porosity of this 3cm thick shell is to 
give an illusion of a translucent material, 
while still being identifi ed as a shell. The 
need for segmental shells came out of 
the limitations in constructing the shell as 
a single unit. Precast sections are bolted 
using M4 bolts along the connecting 
edges. The compression-only shell 
(under self-weight) guarantees that the 
bolts do not have to carry any bending.

The concrete shell fl  oor system 
developed at BRG is a 2cm thick, 
unreinforced, doubly curved ribbed slab. 
The complex rib pattern is to activate the 
compression shell action, and external 
steel ties are used to resist the horizontal 
thrust. This system is found to result in 
a 70% cost reduction compared with 
conventional concrete slabs. However, 
the complex formwork required to 
achieve the rib pattern makes it more 
suitable for a repetitive fl  oor footprint.

A full-scale prototype of the HiLo 
roof shell was constructed at ETH 
Zurich using fabric formwork supported 
on a cable net. Node markers of the 
cable net were used to monitor its 

FIGURE 11: Glass 
dome at ILEK, 
University of Stuttgart

FIGURE 12: Blocks 
made of recycled 
beverage carton 
boards, used for BRG 
pavilion at Ideas City 
Festival 2015 in New 
York
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FIGURE 13: Surface expanded joinery system 
developed at IAAC

FIGURE 14: 3D 
printed slab system 
developed by BRG

geometry, and to adjust the net if 
necessary. The adjustments were not 
straightforward, since the nodes do not 
move independently. Hence, a control 
algorithm was developed to determine 
the adjustments at the boundary such 
that the diff erences in node geometry 
– from planned to observed – are 
minimised.

A reinforcement net was provided and 
grade C90 concrete was used to reduce 
the likelihood of shrinkage cracking. 
Sprayed concrete was used to give 
the desired thicknesses of 3–12mm, 
as required. Once the concrete had 
set, both the cable net and fabric 
formwork were removed. The cable net 
was prepared for this specifi c project 
and is not readily reusable, but this 
method allows for greater control of shell 
geometry.

 
Glass shells
A few experimental shells were produced 
at ILEK in Stuttgart using glass as the 
construction material. The glass dome 
in Figure 11 is a segmental spherical 

dome of 8.5m span and 6m radius, 
giving a rise of 176cm. The glass is 
1cm thick, giving a slenderness ratio 
of 1:850, making its relative thickness 
smaller than that of an eggshell (0.3mm 
thick). The shell is of 44 panes of 
chemically tempered fl  oat glass bonded 
with a 10mm thick stiff  adhesive and 
supported on a titanium ring fi xed to a 
base by 32 stainless steel supports.

 
Recycled waste
BRG has previously completed a 
project using hollow blocks made of 
recycled beverage cartons: a temporary 
pavilion for the 2015 Ideas City festival 
in New York. The doubly curved shell 
covers an area of 20m2 and consists 
of 442 unique blocks in 34 arches. The 
arches span between two stacks of 
ballasted wooden pallets. Triangular 
prismatic blocks were made from 9mm 
thick boards (Figure 12), produced 
by ReWall by compressing shredded 
cartons without the addition of any 
binders. The blocks were CNC cut and 
then manually assembled and strapped.

 
Timber shells
The Institute for Advanced Architecture 
of Catalonia (IAAC) has developed a 
formwork-less construction system for 
shells with interlocking timber blocks 
(Figure 13). The timber pieces are 
made by gluing together layers of 
plywood boards, cut in diff erent shapes. 
The notches (or cuts) are to facilitate 
interlocking and to prevent blocks 
knocking each other at the edges.

3D printing
The compression-only shell fl  oor system 
designed by BRG was fi rst cast using 
concrete. This was subsequently tested 
with 3D printing, using a silica sand 
bonded by phenolic binders (Figure 
14). However, this technology is still in 
its infancy (with regards to building of 
structures) as the strength of the printed 
material is limited and integration of steel 
reinforcement during printing is diѝ  cult.

 
Formwork, falsework and free spans
Some type of formwork or falsework is 
required to keep track of the geometry 
of a shell during construction. Free-
spanning construction techniques, such 
as the Nubian technique and Catalan 
vaulting, do not require any formwork, 
but guide work is required. Building free-
form shapes with irregular geometries 
would require elaborate guide systems. 
However, in some cases, formwork is 
unavoidable as there are no intermediate 
stable geometries and the stability 
comes from the whole system working 
together (e.g. the voussoirs making up 
an arch).

Figure 15 shows guide work 
developed at AVEI for construction of 
prototype domes. The same technique 
has been used in various projects carried 
out by AVEI, including the segmental 
elliptical dome (22.16m span, 7.9m 
rise and 22.16m base diameter) for the 
Dhyanalinga Temple5. Although some 
early problems were encountered, 
regular checks with height surveys and 
extreme care with tape measurements 

a) Prototype model of shell

b) Segment of timber 
block assembly

c) Single timber block
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ensured that the dome was completed 
successfully, with an accepted tolerance 
of 2–3mm from the defi ned geometry.

A free-spanning technique inspired 
by the Nubian technique has been 
developed at AVEI. This distinguishes 
between horizontal courses – blocks 
laid in a length-by-width surface – and 
vertical courses – blocks laid in a 
breadth (or length)-by-height surface. 
This is made possible by the various 
block sizes manufactured at Auroville 
and the vaults generally having a wider 
base and a thinner crown.

The number of horizontal courses 
is based on the height of the leaning 
wall segment that can support its own 
weight, i.e. the moment of the horizontal 
courses about the vertical line passing 
through the intrados at the support 
should be balanced (Figure 16). Beyond 
that, the vertical courses commence. 
The fi rst vertical course requires a side 
wall to adhere to or temporary formwork 
to support it. The subsequent vertical 
courses can be built sequentially, 
providing safe load paths to the 

intermediate stages of construction.
The construction sequence needs 

to be decided during the design stage: 
the decision is based on equilibrium 
analysis, but the number and size of 
the blocks needs to be determined well 
before construction begins.

Diff erent types of guide work for thin 
tile vaulting have been tested in various 
free-form shell construction projects. 
Simple guide work has been used for 
vaults (which are essentially extrusions of 
arches). Two steel frames are placed at 
either end of the longitudinal axis of the 
vault and guide strings are run between 
the two guide frames. This system was 
used in BRG’s SUDU urban housing 
project in Ethiopia. A skeletal structure 
made of freely bent rebars was used as 
guide work for two Catalan free-form 
shells built at IAAC’s Valldaura Labs 
and at the Universitat Politècnica de 
Catalunya in Barcelona.

In some cases, it is not possible to 
avoid formwork. In the New York pavilion 
project, BRG used temporary guide 
work supported on a moveable industrial 

lift to support the blocks. Once settled 
under self-weight, the thrusting 
between the blocks could keep them in 
place. A tensioned cable was also sent 
through the blocks (along the axis of the 
arch) as additional support.

The Armadillo Vault used timber 
skeletal formwork to support the stones 
until the keystone was placed and the 
shell was able to carry its own weight. 
The block placement was assisted by 
grooves in the blocks. A total station 
was used to locate the exact positions 
of the blocks and wooden shims were 
used to make fi ner adjustments to the 
position.

The shell started to carry its own 
weight only after the formwork was 
decentred and the blocks settled into 
their fi nal positions. The decentring 
sequence was crucial as the decentring 
is equivalent to applying a large 
asymmetric load to the shell.

Formwork for the Armadillo Vault 
was placed on eleven independent 
scaff olding towers which allowed for 
a gradual and sequential decentring. 

FIGURE 15:
Compasses developed 
at AVEI

d) Spherical dome

b) Cloister domea) Segmental pointed dome

c) Conical dome
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This was done in a circular pattern 
with stiff er parts decentred fi rst. The 
scaff olds were lowered in stages of 
0.4mm in each cycle. Falling of shims 
indicated that the shell was no longer 
supported by the formwork but was 
supporting its own weight. A fi nal 
maximum settlement of the shell of 
4mm was measured.

 
Socioeconomic dimensions
Structural eѝ  ciency or material 
technology alone do not determine the 
successful adoption of a construction 
system. Social and economic reasons 
can force out certain technologies, as 
evidenced by many historic events.

The rise of thin tile vaulting on the east 
coast of the USA was primarily due to 
the fi re resistance characteristics of this 
construction – which timber structures 
of the day were unable to fulfi l. The 
load-carrying capacity of the system was 
not a priority, although it had a superior 
load-carrying capacity due to its double 
curvature.

In a similar vein, the downfall of 
the Guastavino company and thin tile 
vaulting in the USA was not due to the 
introduction of a superior material or a 
structural system. In the 1940s, concrete 
was simply seen as ‘the material of the 
future’, although thin tile vaulting was a 
far superior load-carrying system.

In the current world of hyper-
connectivity, the same can be observed 
in developing countries. People view 
concrete and steel construction – 
primarily using imported materials and 
technology – as ‘modern’ and regard 
earthen construction as ‘poor quality’. 
This view neglects both the economies 
of using local materials and the local 
climatic conditions under which the 
earthen constructions are likely to 
perform far better (in terms of creating 
liveable spaces). 

Auroville is an exception to this – or 
rather a case study of how people’s 
mindset can play a role in wise adoption 
of technology. Auroville is a global village 
founded in southern India in 1968. It 
aspires to live by the four main ideas of 
the Auroville Charter: Auroville (i) belongs 
to no one in particular; (ii) is a place 
of unending education; (iii) is a bridge 
between the past and the future; and (iv) 
is a site of material and spiritual research.

This environment has created an 
ideal platform for the development 
of earthen construction technologies 
and their successful implementation. 
Many structures there are earthen shell 
structures using Auroville’s take on the 
Nubian technique. Elsewhere in India – 
as in many parts of the developing world 
– earthen construction is looked down 
upon.

In contrast, Casa Milà is an example 

of structural eѝ  ciency and architectural 
beauty dictating the terms regardless of 
people’s perceptions. People are said to 
have mocked this ‘strange’ house built 
for an elite family in Barcelona. But 100 
years later, it is one of the main tourist 
attractions in the city. The proposed 
MLK Jr Pavilion project in Texas is an 
example of local availability being a 
primary reason for the choice of material. 
However, although these exceptions 
may exist – especially for marquee 
projects – people generally like to have 
new things: novelty is perceived as an 
indicator of quality.

 
The future: opportunities, 
possibilities and challenges
The many projects mentioned in this 
article demonstrate the potential of shell 
structures in producing aesthetically 
pleasing, eѝ  cient and sustainable 
structures. However, in many cases – 
apart from Auroville – these have been 
used mostly in landmark structures 
rather than everyday public spaces or 
domestic dwellings. 

It remains possible – and necessary 
in view of the call for a sustainable 
construction industry – to make shell 
structures a more common structural 
form: from domestic dwellings to public 
spaces and landmark structures. The 
Stuttgart SmartShell demonstrates 
the potential to use shells in the next 
generation of structures: active-control 
structures.

However, there remain key 
challenges in using shells as structural 
systems. One of the main issues is 
the rigorous development of material 
technologies and simultaneous 
development of codes of practices. The 
variability of material properties and the 
vast range of possible material solutions 
will be a challenge in developing 
relevant codes of practices.

One of the key missing pieces in a fully 
earthen construction is the slab system. 
Catalan vaulting has demonstrated the 
potential of shells to be the structural 
component for an earthen slab system. 
However, Catalan vaulting may not be 
possible everywhere in the world. Other 
local material technologies need to be 
developed and tested, with earthen slab 
systems based on shell forms.

But the greatest challenge of all is 
how to convince engineers and the 
general public of the merits of using the 
structural eѝ  ciency of shell structures; 
that shells are not just part of history, but 
the future as well.

 
Conclusions

In conclusion, it is recognised that:
Ò|  there are several local traditions in 

building shell structures, which are 
practised around the globe

Ò|  various tools have been developed 
and used for analysis of shell 
structures, all of which can be traced 
back to Hooke’s observation of a 
hanging chain

Ò|  the diff erent material technologies 
used with shell structures include 
unbonded and bonded masonry, 
concrete, glass, timber, and even 
recycled materials and 3D printed 
materials. Allied construction methods 
have also been developed

Ò|  there is a genuine interest among 
researchers in showcasing the 
benefi ts of shell structures in moving 
towards a sustainable construction 
industry.
 
However, the biggest obstacles to 

more widespread use of shell structures 
appear to be:
Ò| people’s perception
Ò|  the lack of design freedom in rigid 

design and building codes.
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FIGURE 16: 
Limit on height of 
horizontal courses 
of vault considering 
varying block sizes2
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Appendix B

Thrust Layout Optimization with
Geometry Optimization
Post-processing

A post-processing geometry optimization rationalization process (GO) for standard ground
structure layout optimization (LO) was presented by He and Gilbert [113]. It is adapted here
for the TLO procedure: changes were necessitated by the presence of transmissible self-
weight loads and the interface node pairs. The GO process allows moving ground structure
nodes—which are otherwise fixed in the LO and TLO processes—along with merging nodes
in close proximity and creating nodes where links crossover resulting in thrust layouts with
much improved visual clarity.

B.1 Mathematical Formulation

The variables (Annex B.1.1), objective function f (Annex B.1.2), and constraints g (Annex B.1.3)
are first presented, followed by the analytical derivatives for gradient∇f (Annex B.1.4), Jaco-
bian ∇g (Annex B.1.5), and Hessian (Annex B.1.6). The derivations presented here make use
of the connectivity matrixCwhich defines the connectivity of the underlying ground structure
of the problem.

The connectivity matrix C is defined as

Cij =


1 if link i starts at node j
−1 if link i ends at node j
0 otherwise

. (B.1)

Furthermore, the diag() operation on a n dimensional vector v = [v1, v2, · · · , vn]T is de-
fined as diag(v) = I ⊙ (v1T ). The expanded operation is presented as below in Eq. (B.2).

136
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diag(v) = I ⊙ (v1T ) (B.2)

=


1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

⊙


v1

v2
...
vn


[
1 1 · · · 1

]
(B.3)

=


1 0 · · · 0

0 1 · · · 0
...

... . . . ...
0 0 · · · 1

⊙


v1 v1 · · · v1

v2 v2 · · · v2
...

... . . . ...
vn vn · · · vn

 (B.4)

=


v1 0 · · · 0

0 v2 · · · 0
...

... . . . ...
0 0 · · · vn

 (B.5)

B.1.1 Variables

var =



x (x-coordinates)
y (y-coordinates)
a (link area)
q (link force)
qn (interface normal force)
qs (interface shear force)
w (transmissible load)



B.1.2 Objective (f )

vol = aT l, (B.6)

where l is link length vector of the thrust layout.
Link length vector l forms the diagonal of the link length matrix L, defined as follows:

L =
√
UU+VV, (B.7)

where

U = diag(Cx),

V = diag(Cy).
(B.8)

B.1.3 Constraints (g)

Equilibrium

Bq+Bnqn +Bsqs −w = f , (B.9)
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where

B− equilibrium matrix,
Bn,Bs − equilibrium matrices for interface links,

f − external loads on nodes.

Equilibrium matrix B can be computed as follows:

B = EL−1 (B.10)

⇒ E =

[
CTU

CTV

]
. (B.11)

Transmissible loads

Hw = w̄, (B.12)

where

Hij =

1 if load component j exists in load group i
0 otherwise

. (B.13)

Group load vector w̄ = [w̄1, w̄2, ..., w̄g]
T, where g is the number of transmissible self-weight

load groups.

Yield

−σ−a− q ≤ 0, (B.14)

−σ+a+ q ≤ 0, (B.15)

where σ+ and σ− are limiting tensile and compressive stresses respectively.

Interface node

To ensure interface nodes (x̄i, ȳi) move along the interface, which is a line segment between
(xs,i, ys,i) and (xe,i, ye,i):

Tax̄+Tbȳ+Tc = 0, (B.16)

where

Ta = diag([ys,i − ye,i]) (B.17)
Tb = diag([xs,i − xe,i]) (B.18)
Tc = [xs,iye,i − xe,iys,i]). (B.19)

To ensure interface node pairs move together:

Px̄ = 0, (B.20)

Pȳ = 0, (B.21)
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where

Pij =


1 if nodes i and j are an interface pair with i < j

−1 if nodes i and j are an interface pair with i > j

0 otherwise
. (B.22)

Variable bounds

a,w ≤ 0, (B.23)

and
xb ≤ x ≤ xt, (B.24)

yb ≤ y ≤ yt, (B.25)

where

xt,xb − upper and lower bounds of x cordinates, (B.26)
yt,yb − upper and lower bounds of y cordinates. (B.27)

B.1.4 Gradient (∇f )

∇vol =
[
∂vol
∂x

∂vol
∂y

∂vol
∂a

∂vol
∂q

∂vol
∂qn

∂vol
∂qs

∂vol
∂w

]T
, (B.28)

where

∂vol
∂x

= CT diag (−r1)Cx, (B.29)
∂vol
∂y

= CT diag (−r1)Cy, (B.30)

∂vol
∂a

,
∂vol
∂q

= 0, (B.31)

∂vol
∂qn

,
∂vol
∂qs

= 0, (B.32)

∂vol
∂w

= 0, (B.33)

and

r1 =

[
...
ai
li
...

]
. (B.34)

B.1.5 Jacobian (∇g)

Jacobian =



∂Bq

∂x

∂Bq

∂y
0 B Bn Bs −I

0 0 0 0 0 0 H

0 0 −σ−I −I 0 0 0

0 0 −σ+I I 0 0 0

Ta Tb 0 0 0 0 0

PI 0 0 0 0 0 0

0 PI 0 0 0 0 0


, (B.35)
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where

∂Bq

∂x
=

[
CT diag (diag (r2)Cy)VC

CT diag (diag (−r2)Cx)VC

]
, (B.36)

∂Bq

∂y
=

[
CT diag (diag (−r2)Cy)UC

CT diag (diag (r2)Cx)UC

]
, (B.37)

and

r2 =

[
...

qi
l3i

...
]T

, (B.38)

I− identity matrix. (B.39)

B.1.6 Hessian (∇2f , ∇2g)

Lagrangian function:
f(var) + g(var)Tλ (B.40)

⇒ σf∇2f(var) +
∑
i

λi∇2gi(var), (B.41)

where

∇2f(var) =



∂2vol
∂x2

∂2vol
∂x∂y

∂2vol
∂y2

∂2vol
∂x∂a

∂2vol
∂y∂a

0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0


, (B.42)

with

∂2vol
∂x2

= CT diag (−r1)C+CT diag (diag (r3)Cx)UC, (B.43)
∂2vol
∂y2

= CT diag (−r1)C+CT diag (diag (r3)Cy)VC, (B.44)

∂2vol
∂x∂y

= CT diag (diag (r3)Cy)UC, (B.45)

∂2vol
∂x∂a

= diag (−r4)UC, (B.46)
∂2vol
∂y∂a

= diag (−r4)VC, (B.47)

and

r3 =

[
...

ai
l3i

...
]T

, (B.48)

r4 =

[
...

1

li
...

]T
. (B.49)
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∇2g(Eqm.,j)(var) =



∂2(Bq)j
∂x2

∂2(Bq)j
∂x∂y

∂2(Bq)j
∂y2

0 0 0

∂2(Bq)j
∂x∂q

∂2(Bq)j
∂y∂q

0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0


, (B.50)

∂2(Bq)j
∂x2

=

[
(diag (C[:, j])C)

T
diag (−3r5)CxVVC

(diag (C[:, j])C)
T
diag (r5)Cy[2UU−VV]C

]
, (B.51)

∂2(Bq)j
∂y2

=

[
(diag (C[:, j])C)

T
diag (r5)Cx[2VV −UU]C

(diag (C[:, j])C)
T
diag (−3r5)CyUUC

]
, (B.52)

∂2(Bq)j
∂x∂y

=

[
(diag (C[:, j])C)

T
diag (r5)Cy[2UU−VV]C

(diag (C[:, j])C)
T
diag (r5)Cx[2VV −UU]C

]
, (B.53)

∂2(Bq)j
∂x∂q

=

[
diag (C[:, j]) diag (r6)CyVC

diag (C[:, j]) diag (−r6)CxVC

]
, (B.54)

∂2(Bq)j
∂y∂q

=

[
diag (C[:, j]) diag (−r6)CyUC

diag (C[:, j]) diag (r6)CxUC

]
, (B.55)

with

r5 =

[
...

qi
l5i

...
]T

, (B.56)

r6 =

[
...

1

l3i
...

]T
. (B.57)

and C[:, j] denoting the jth column of matrix C.
Hessians of the remaining constraints are null matrices:

∇2g(TrLoads.)(var) = 0; (B.58)
∇2g(Y ield)(var) = 0; (B.59)

∇2g(NodeMove.)(var) = 0. (B.60)

B.2 Procedure

The GO process presented by He and Gilbert [113] was adapted for the TLO procedure—
see Fig. B.1. A new step of ‘split lines’ (Section B.2.1) is added while the ‘merge and move
process’ (Section B.2.2) is adapted for the TLO process. The ‘filter process’ and ‘crossover
process’ (Section B.2.3) largely follow the original form with only minor changes.
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split lines

crossover

NO

YES

crossovers
exist

validate
(LO) YES

NO

obj - ref

ref

|obj - ref|

ref

filter copy
NO

YES
validate

(LO)

merge copy GO
NO

YES

validate
(GO)

COMPLETE

FAIL

> tol2

< tol2

volume minimization
(LO)

load maximization

Problem

> tol1

< tol1

filtered problem

merged problem

problem, ref

problem, load factor

FILTER
PROCESS

MERGE AND MOVE
PROCESS

CROSSOVER
PROCESS

Figure B.1: Flowchart of the geometry optimization (GO) post-processing process for TLO.
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B.2.1 Split-lines
TLO process uses transmissible self-weight loads to mimic the traditional funicular thrust lines,
where self-weight loads are allowed tomove along their lines of action so they can be attached
to the funicular. To recreate this behaviour in the geometry optimization post-processing
procedure, new nodes are created in the ‘split lines’ step to allow the transmissible self-
weight loads to be attached to the thrust line. New nodes are created where the links in the
thrust layout intersect transmissible load lines.

B.2.2 Node merge and move process
The presence of transmissible self-weight loads and interface node pairs put additional con-
straints on the node merge and move process. The merge and move behaviour are dictated
by the nature of the nodes attempted to be merged—e.g., do they carry transmissible self-
weights, are they part of an interface node pair, etc. A classification of nodes is presented in
Fig. B.2—the figure also summarises move and merge constraints on the nodes, and if they
are allowed to be filtered out during the filtering process.

internal 

transmissible

bound

interface

support

load

filter     : unprotected
move   : along load line
merge : on the load line

filter     : protected
move   : fixed at point
merge : to point

filter     : protected (conditionally)
move   : along interface
merge : on the interface

filter     : unprotected
move   : freely within domain
merge : freely within domain

filter     : unprotected
move   : freely within domain
merge : freely within domain

Figure B.2: Classification of nodes in the underlying ground structure of a TLO problem.
Move, merge, and filter constraints for the geometry optimization post-processing step is
also noted.

A given node in the ground structure of a TLO problem will be either an internal or a
bound node—bound nodes are at the boundary of the corresponding block. All nodes have
the default setting of being unprotected against being filtered out and are free to move and
merge within the block (domain).

At the start of the GO process, all internal nodes will carry transmissible loads as they are
created to discretize the self-weight of the block. However, new internal nodes not carrying
self-weight are created in the crossover process. Transmissible loads will also be mobilized at
some of the bound nodes—i.e., if they are on a load line.

Where bound nodes are at a common boundary between two blocks, they are called
interface nodes—interface nodes are in pairs, one belonging to each of the blocks sharing
the common interface (boundary). Interface nodes are also protected against being filtered,
on the condition they have interface forces above a given threshold—interface nodes having
interface forces below the threshold are reclassified as bound nodes (i.e., the interface is
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opening up). Support nodes are interface nodes—each supported node shares its nodal
location with a block—but does not carry transmissible loads. External loads are applied only
at the boundary of the structure and are not allowed to be filtered out or moved.

The merge process is simplified by only considering two nodes at a time. Two nodes lying
within a pre-defined merge radius are selected at in turn and merged, if a valid merge can
be carried out. This continues until no two mergeable nodes are within the merge radius.
Furthermore, only nodes within the same block are considered for merging.

The possible scenarios of node combinations and how the nodes are merged is summa-
rized in Table B.1. Also noting that interface and transmissible load nodes constrained on a
line, and loaded nodes are fixed to a point, 5 types of potential combinations are noted—
although only 3 of them would result in a merge and move occurring.

Table B.1: Node merge combinations for GO with TLO: five types of node combinations
considered based on the constraints applied on different node types. Free nodes include
unconstrained internal and bound nodes.

free interface transmissible load
Type 1 2 merge to mean point

Type 2
1 1 move bound node to the

constrained node1 1
1 1

Type 3
1 1

no merge1 1
1 1

Type 4
2 merge to mean point, if line

constraints are consistent2
Type 5 2 no merge

If the two nodes are free to move and merge (i.e., unconstrained nodes), they will be
merged to a node at the midpoint between the two (Type 1 in Table B.1). If only one of
the nodes is an unconstrained node, the unconstrained node will move (and merge) to the
constrained node (Type 2 in Table B.1). If the two nodes are of different constraint types no
merge is carried out (Type 3 in Table B.1). If the two nodes are of the same constraint type, a
merge might be possible: if the two nodes are in the same interface or the transmissible load
line, then a merge is possible (Type 4 in Table B.1); no merge is possible with two externally
loaded points (Type 5 in Table B.1).

Note that a pair of interface nodes are merged only when both the pair and its duals are
mergeable: when interface pairs are merged, the corresponding dual pair should also be
merged—interface node pairs move together and thus, merge together.

B.2.3 Filter and crossover processes

A filtering process following He and Gilbert [113] is used. Links having forces below a thresh-
old value are removed—to further simplify the problem unconnected nodes are also removed
and transmissible load groups updated. To ensure that the link is not structurally significant,
albeit being a lower force, a validation is carried out where a volumeminimization (LO without



Chapter B. Thrust Layout Optimization with Geometry Optimization Post-processing145

GO) is carried out and checked if the volume of the reduced problem is within a tolerance of
the original volume.

The crossover process creates new nodes where links cross each other and this follows the
process of He and Gilbert [113]. In the case of TLO, gives rise to internal nodes that are not
carrying self-weight loads (i.e., internal nodes without the transmissibility constraint).



Appendix C

Conference Paper: Thrust Layout
Optimization for the Analysis of
Historic Masonry Structures*

*Nanayakkara, I., Liew, A., Gilbert, M. (2024). ‘Thrust Layout Optimization for the Analysis of Historic Masonry
Structures’. In: Endo, Y., Hanazato, T. (eds) Structural Analysis of Historical Constructions. SAHC 2023. RILEM
Bookseries, vol 46. Springer, Cham.
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