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Abstract 

Advancements in continuous in-situ water quality monitoring provide a unique opportunity to 

enhance our understanding of water distribution systems, ensuring safe and clean drinking 

water for all while mitigating contamination risks. However, this kind of monitoring is 

relatively new, with its true value yet to be fully demonstrated. This research developed novel 

analytical routines to extract actionable information from diverse real-world datasets 

provided by five different water service providers. A vital first step to maximising the value 

of these datasets was taken with the development of a data quality assessment framework, 

specifically tailored to address the challenge of water quality sensors' sensitivity to errors 

when deployed in drinking water distribution systems. Next, an investigation into the optimal 

analysis of in-network discolouration events using turbidity time series was conducted. This 

was informed by an innovative crowd-sourced event labelling exercise, integrating the 

perspectives of 48 domain experts and employing time series forecasting to devise a turbidity 

event scale. This scale effectively distinguishes between advisory (<2 NTU), alert (2-4 NTU), 

and alarm (>4 NTU) events, enabling reactive and proactive analysis of network events. An 

overarching finding of this research was the demonstration that the level of insight obtainable 

when moving from single parameter single sensor to multiple parameters and sensors 

increases in a multiplicative fashion, as evidenced by the application of developed 

approaches to multiple real-world examples. This research paves a clear path towards 

enhanced intelligent utilisation of water quality sensor networks to improve network 

management capabilities. This digitalisation-driven approach, in the face of increasing 

climate change related challenges, promises to provide the resilience required to safeguard 

these vital public health assets. 
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Chapter 1: Introduction 

1.1 Introduction to Project 

Decoding Distribution Data is a University of Sheffield PhD project supported by an 

Engineering and Physical Sciences Research Council (EPSRC) studentship as part of the 

Centre for Doctoral Training in Water Infrastructure and Resilience (EP/S023666/1), with 

support from industrial sponsor Siemens UK. This project has been a collaboration with 

multiple UK water service providers (WSP), who have provided time series datasets from 

water quality sensors continuously deployed along drinking water distribution systems 

(DWDS). It is relevant to note that these datasets were not collected bespoke for this project, 

they were from WSPs’ own internal deployment projects, though insights obtained from 

applying the methods developed in this research influenced deployment strategy and 

improved the quality of data taken in some cases. The research in this project has focused on 

developing analytic routines to extract information from the datasets that could inform 

improved network management. Particular attention has been given to the two most 

commonly measured parameters in these datasets: turbidity, a measure of cloudiness in water, 

and chlorine, which is relied upon for prolonged disinfection. In exploring the use of 

continuously monitoring water quality sensors (generally taking measurements at intervals 

between 1 and 15 minutes), this research represents a move away from the status-quo when it 

comes to monitoring water quality post treatment works. This has traditionally comprised 

only of infrequent grab sampling, which is insufficient for such a dynamic complex 

environment that entire societies continuously rely on for their health and wellbeing. It also 

represents a move away from the reliance on customers to inform of drinking water quality 

incidents to a more proactive digitalised form of operating these vital assets and ensuring they 

perform as intended, ensuring the delivery of the high quality treated drinking water safely to 

customer taps. The existence of this collaborative project and the availability of the necessary 

datasets demonstrates how widespread such monitoring is becoming, but also suggests that 

WSP have yet to fully reap the rewards. This is partially due to such monitoring being a 

relatively new pursuit, meaning the necessary datasets for developing analytical routines have 

only been recently available. Therefore, for such monitoring to continue to expand in its use 

and become a more widespread practice for managing these assets, it is vital to develop 
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analytical methods to translate the raw data into useful actionable information capable of 

informing and improving DWDS management. 

1.2 Thesis Structure 

This thesis consists of 8 chapters, with the significant research contributions detailed in 

Chapters 4-6. Chapter 2 provides the background and motivation behind water quality 

monitoring within DWDS. An overview of drinking water quality within DWDS is included, 

including how it can change on its journey from treatment to tap, and common approaches to 

managing these assets. The next section discusses the practice of deploying water quality 

sensors within DWDS, with a focus on what parameters are best suited and different 

deployment strategies. The final section discusses methods for analysing water quality time 

series data, with a focus on data quality assessment, combining parameters and sensors, time 

series forecasting, and event detection. Chapter 3 presents the aims and objectives for this 

research, which were driven by the knowledge gaps identified in Chapter 2.  

Chapters 4 and 5 are from manuscripts prepared for publication in peer review journals, that 

address the first two objectives listed in Chapter 3. Chapter 4 describes a data quality 

assessment framework for turbidity and chlorine sensors, including a cross-correlation 

method that determines connectivity between sensor locations, with this spatiotemporal 

information finally used to cross-validate any flagged data quality issues. Chapter 5 is 

focused entirely on turbidity events, and features a unique crowd-sourcing approach that 

asked domain experts their opinions on events in turbidity time series, before developing 

algorithms that were able to best mimic such human interpretation. Chapter 6 demonstrates 

how actionable information can be derived from DWDS water quality time series datasets 

and explores the impact of different combinations of parameters and sensors. In order to 

perform a robust examination and review multiple examples, Chapter 6 is a longer-form 

chapter than the previous manuscript-type chapters. Chapter 7 is a discussion that connects 

and builds upon the previous 3 chapters, adding depth and significance to the overall work, 

reflecting on the contributions made with respect to prior research reviewed in Chapter 2, as 

well as providing recommendations for operators and future research. The conclusions of this 

research project are stated in Chapter 8. 
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1.3 Publications and Talks 

This research has produced a number of publications and conference talks that are presented 

in this section. 

1.3.1 Journal Papers 

Gleeson, Husband, Gaffney, Boxall. “A data quality assessment framework for drinking 

water distribution system water quality time series datasets.” IWA Aqua: Water 

Infrastructure, Ecosystems and Society (2023). doi:10.2166/aqua.2023.228 (Chapter 4 is a 

reproduction of this paper) 

Gleeson, Husband, Gaffney, Boxall. “Algorithms to Mimic Human Interpretation of 

Turbidity Events from Drinking Water Distribution Systems.” IWA Journal of 

Hydroinformatics (Accepted for publication, September 2023). (Chapter 5 is a reproduction 

of this paper) 

1.3.2 Conference Talks 

Gleeson, Husband, Gaffney, Boxall. “Automated Data Quality Assurance for Water Quality 

Sensors in Drinking Water Distribution Systems.” AWWA Water Quality Technology 

Conference (Washington, USA, 2021). (Based on work from Chapter 4) 

Gleeson, Husband, Gaffney, Boxall. “Determining the spatiotemporal relationship between 

water quality monitors in drinking water systems.” IWA Hydroinformatics Conference 

(Bucharest, Romania, 2022). Resulting conference paper was published in IOP Conference 

Series: Earth and Environmental Science 1136 (1), 012046. doi:10.1088/1755-

1315/1136/1/012046. (Based on work from Chapter 4) 

Gleeson, Husband, Gaffney, Boxall. “Linking Water Quality Sensors in Distribution 

Systems.” Water Wastewater and Environmental Monitoring (Telford, UK, 2022). Finished 

second in the Sensor for Water Interest Group (SWIG) Early Career Innovation Poster Prize. 

(Based on work from Chapter 4) 
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Gleeson, Husband, Gaffney, Boxall. “Leveraging Water Quality Data to Support Intelligent 

Decision Making.” WWT Smart Water (Birmingham, UK, 2023). (Based on work from 

Chapter 5) 

Gleeson K, Husband S, Gaffney J, Boxall J. “Root-cause Analysis of Discolouration Events 

in Drinking Water Distribution Systems using Time Series Data.” Computing and Control in 

the Water Industry (Leicester, UK, 2023). (Based on work from Chapters 5 & 6)  
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Chapter 2: Background 

2.1 Introduction 

DWDS are extensive buried engineered networks that function to provide a continuous 

source of high-quality drinking water to entire populations. Drinking water is generally 

treated to high standards; in the UK 99.97% of tested drinking water complied with the Water 

Supply (Water Quality) Regulations in 2021 (DWI 2022). However, most water quality 

monitoring is done as the water leaves the water treatment works (WTW), which is not 

representative of the water that eventually reaches consumers via DWDS. It would be 

optimistic to expect even the most pristine DWDS to continuously transport treated water 

from treatment to tap without any risk of deterioration occurring along the way. However, 

these assets are buried, often many decades old and consist of sections with burst or leaking 

pipes, which can allow contaminants to enter. There are therefore many complex and poorly 

understood chemical, biological, and physical processes that occur within DWDS that can 

lead to water quality deterioration and ultimately pose a risk to public health. Due to the vital 

importance of DWDS to public health and well-being, it is worth investigating the use of 

more sophisticated and widespread monitoring methods, to ensure the quality of transported 

drinking water.  

This project is focused on deriving insight from continuously deployed water quality sensors 

along DWDS. In this context, the term continuous refers to the sensors taking measurements 

at regular intervals, generally between 1 and 15 minutes, as opposed to discrete grab 

sampling. In recent years WSP have started deploying continuous water quality monitors 

along DWDS, a practice driven by regulatory pressures under the Drinking Water 

Inspectorate (DWI 2023) to move from reactive to proactive asset management and to better 

understand and manage these complex systems. However, little work has been done to 

understand how actionable information can be derived from this newly available time series 

sensor data. Without knowing the potential value, WSP can't perform a cost-benefit analysis 

regarding increased investment in monitoring campaigns. This Chapter provides a 

background firstly on drinking water quality in DWDS (Section 2.2), including how it can 

change and how it can be managed by WSP. The subsequent Section 2.3 focuses on 

monitoring water quality within DWDS, looking at both traditional grab sampling and newer 

continuous online sensing. The final Section 2.4 reviews methods of analysing the resulting 
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water quality time series data, with focuses on sensor data quality, combinations of different 

parameters and sensors, time series forecasting and event detection. A summary of the main 

research gaps identified is provided in Section 2.5, which was used to inform the overall 

project aims and objectives in Chapter 3. 

2.2 Water Quality in Drinking Water Distribution Systems 

2.2.1 Drinking Water Quality 

Johnson et al. (1997) defined water quality as: 

“a measure of the condition of water relative to the requirements of one or more 

species and/or to any human need or purpose”. 

Water quality is therefore a subjective term that depends on who is using it and for what 

purpose. Since this work is focused on drinking water, water quality refers to water’s 

suitability and safety for human consumption. As a matter of survival, humans have been 

acutely aware of the importance of drinking water quality throughout history, and have relied 

on senses of smell, vision and taste to determine its suitability for consumption (Angelakis 

and Mays 2014). However, water can contain many different pathogens and contaminants 

undetectable to human senses but potentially leading to serious illnesses or death.  

Waterborne disease was not well understood until the 19th century. After John Snow linked a 

cholera outbreak to a water supply in England, Louis Pasteur published his “germ theory” 

which recognised the threat posed by bacteria in water (Pasteur 1861). These findings 

initiated efforts to pipe water from safer sources and eventually lead to the development of 

WTW, where the objective was to monitor and remove dangerous contaminants. In the 

middle of the 20th century, the long-term toxic effects of chemicals found in DWDS, such as 

lead, were also better understood (Gray 2008). This resulted in the development of drinking 

water quality standards in many parts of the world, dictating concentration limits for various 

chemicals and pathogens (EU 1998; WHO 2017; DWI 2018; USEPA 2018).  

The palatability of water to human senses also remains an instinctive factor for consumers. 

Tap water could be entirely safe for human consumption but if it is unappetising it may be 

avoided. Since there are health benefits associated with drinking water as opposed to sugary 

soft drinks or alcohol, and environmental benefits from avoiding bottled water, the 
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palatability of water supplied by a DWDS is important, and is impacted by appearance, odour 

and taste.  

2.2.2 Drinking Water Distribution Systems 

Throughout human history, societies have depended on availability of drinking water, a 

critical factor in determining the location of cities. DWDS have evolved over several 

thousand years, with sophisticated pipe water distribution networks developed by ancient 

civilisations in places such as Pakistan, Greece (which was later built upon by the Roman 

Empire) and Mesopotamia as early as 2600 BC (Angelakis and Mays 2014). Most of the 

advances in hydrology, bacteriology, public hygiene and water treatment, that lead to the 

development of modern day treated and distributed drinking water, came in the past 2-3 

centuries, after the Renaissance. Such advances have improved public health. Life expectancy 

in the United States rose from 47 to 63 between 1900 and 1940, with access to safe drinking 

water attributed for nearly half the overall mortality rate drop, and three-quarters of the infant 

mortality reduction (Cutler and Miller 2004). 

Modern day DWDS deliver enormous volumes of water to industrial and private users 

through vast underground pressurised piped networks, broken up by service reservoirs, 

pumping stations and valves. Many are ageing and have deteriorated over many decades. 

They have not been proactively maintained and sections have been repaired or replaced upon 

failure, leading to huge variations in pipe material, age and dimensions. How DWDS will 

evolve in the future is difficult to predict due to potentially unforeseen political, social, 

economic and environmental changes. However, it can be expected they will come under 

increased strain due to increasing urban populations and the devastating impacts of climate 

change. These impacts are already being seen, with water quantity, water quality, and water-

related extremes identified as three major push factors influencing several million migrants 

and similar conditions may affect more than half the global population by 2050 (UN-INWEH 

2020). Therefore, it is crucial for DWDS to be resilient and responsive to threats with 

increased monitoring an essential part of achieving this. 

2.2.3 How Water Quality Changes in Drinking Water Distribution Systems 

The long journey treated drinking water makes from treatment to tap comes with a risk of 

contamination and/or deterioration. This can range from the introduction of deadly pathogens 
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to subtler degradations impacting the aesthetic quality of the final drinking water received by 

customers. Such changes can occur quickly and unpredictably and the buried nature of 

DWDS, combined with its ability to quickly spread contaminants to large populations, 

meaning the results can be catastrophic. In the UK, 36% of waterborne disease outbreaks 

from 1911 to 1995 have been attributed to issues within the DWDS (Ainsworth 2013). Since 

most DWDS were built many decades ago, many of the materials used in their construction 

are now thought to have negative health impacts, such as coal-tar linings, asbestos and lead 

(Gray 2008). Coal-tar linings, used to protect ductile iron, are known to add carcinogenic 

polycyclic aromatic hydrocarbons (PAHs) into drinking water. Asbestos has been found in 

drinking water in the UK and, though the effects of consumption through drinking water are 

unclear, there has been a sharp increase since the 90’s of mesothelioma, a lung cancer known 

to be caused by inhaling asbestos, in people who have not inhaled asbestos (Gray 2008) and 

the WHO currently warns that latest evidence suggests ingesting asbestos through drinking 

water increases risk of getting cancer (WHO 2021). Aside from the presence of harmful 

materials embedded within DWDS infrastructure, the journey water takes from treatment to 

tap offers additional avenues for water quality to deteriorate. 

Some common causes of water deterioration within DWDS are summarised in Table 2.1. 

These processes are all interlinked and all impacted by the state of the pipework, which is 

highly variable and often unknown, most obviously in the case of bursts and leaks allowing 

contaminants to enter the DWDS (Fox et al. 2016). It is difficult to determine how commonly 

this occurs though one study found a positive correlation between broken pipes and internet 

searches for gastrointestinal illnesses (Shortridge and Guikema 2014). The way water 

interacts with pipe surfaces plays a major role in water quality deteriorations. In the UK, the 

most common water quality related customer complaint is related to discolouration (DWI 

2022), which is often caused by increased daily flow rates mobilising material from pipe 

walls. There are two main theories behind how this material accumulates: gravitational 

settling of larger particles during low flow rates or the formation of cohesive layers on pipe-

walls (Boxall et al. 2023). Regardless of accumulation process, the subsequent mobilisation 

of pipe-wall material is driven by increased hydraulics. UK WSP face regulatory fines and/or 

monitoring instructions based on discolouration contacts (DWI 2023), making it a priority to 

reduce their occurrence. Discoloured water is often safe to consume but indicates an 

increased risk of the presence of suspended solids such as iron or manganese (Boxall and 

Saul 2005) and consumption of water with increased turbidity has been associated with an 
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increased risk of gastrointestinal illness (Mann et al. 2007). Even when not posing a health 

risk, discoloured water could be unappetising to customers and reduce trust in the utility. As 

well as having links to flow rate increases, discolouration is also more likely at higher air 

temperatures (van Summeren et al. 2015). Additionally, the microbiology of pipe wall 

biofilms have been shown to have a stronger impact on the bacteria present in tap water than 

water source and treatment (El-Chakhtoura et al. 2018), further demonstrating the strength of 

impact pipe-wall material has on final drinking water quality.  

Table 2.1. Types and examples of water quality deteriorations within DWDS. 

Type Example 

Interaction with 

pipe surface 

Material accumulating along pipe wall and subsequently becoming mobilised through 

increased hydraulics (Husband et al. 2008). 

Bulk water 

transformation 

Excessive disinfectant residual decay, often overlooked due to simplistic modelling 

(Speight and Boxall 2015), leaving sections unprotected against contamination. 

Infrastructure 

failure 

Damaged and leaking pipes allow contaminants to enter DWDS from surrounding soil 

(LeChevallier et al. 2003). 

Most countries rely on a disinfectant residual, most commonly chlorine, to provide lasting 

protection against contamination at a relatively low cost (McGuire 2006). Consuming 

excessive levels of chlorine is bad for human health and can cause dangerous disinfection by-

products so careful dosing is required to ensure sufficient but not excessive residuals reaches 

the farthest points in the network, with additional dosing points common. Predicting chlorine 

decay is not straightforward, particularly due to complex interactions with pipe wall biofilms 

(Speight and Boxall 2015). Badly deteriorated pipework has a serious impact, with rusted 

pipes found to rapidly increase disinfection decay (Savane et al. 2019). Such an interaction 

with organic matter can lead to the formation of disinfection by-products (Sadiq and 

Rodriguez 2004), posing a chemical risk to human health and adding complexity to the 

decision of whether to rely on disinfection to protect against contamination. The risk of any 

form of deterioration increases for remote properties towards the end of DWDS, both due to 

more opportunities for contamination and the difficulty in maintaining a sufficient 

disinfection residual. In summary, many avenues exist that can lead to drinking water quality 
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worsening as it travels from treatment to tap but, without sufficient monitoring in place, the 

true scale is not well understood. 

2.2.4 Managing Water Quality in Drinking Water Distribution Systems 

How the system is managed plays a significant role in how likely water quality deteriorations 

are (Weston et al. 2022). A number of practices have been developed by water utilities to 

prevent and limit water quality deterioration within DWDS, including routine repairs, 

planned responses to deterioration events, online monitoring, primary and secondary 

chlorination dosing, and network cleaning operations to manage material accumulation along 

pipe walls (Speight et al. 2020). However, major changes to DWDS, such as switching water 

sources or changing disinfection strategy, can have disastrous results on water quality if the 

risks are not properly understood (Liu et al. 2017). Though online monitoring is sometimes 

used as a preventative method in itself, it is also an important part of any attempt to manage 

DWDS deterioration as it enables operators to examine the impacts of any intervention. 

Service reservoirs have commonly been assumed to be the source for many DWDS 

deterioration events, leading to many utilities installing monitors at their outlet. However, 

assuming any detected events could only be from the service reservoir ignored the entire 

upstream section of DWDS, meaning inlet and outlet monitoring at service reservoirs is 

required to paint a full picture (Doronina et al. 2020). 

As already covered, DWDS tend to have sections that are badly ageing and in need of repair 

or replacement. Pipe replacement is however very disruptive particularly in dense urban 

environments. These repair activities can also be disruptive to water quality, as they risk 

external contaminants entering the system and without careful planning could cause major 

hydraulic disturbances leading to mobilisation of pipe wall material. How a utility responds 

to a water quality deterioration incident and how much of the risk posed to customers is 

minimised is a factor in how well-equipped utilities are for managing water quality in 

DWDS. Without online water quality monitoring within DWDS, the majority of decisions 

utilities take regarding issues such as discolouration are dealt with in a reactive and 

unscientific manner with utilities often learning of discoloured water solely through customer 

contacts (Cook et al. 2016; Boxall et al. 2023). The actions the utility takes in response to 

such an incident is vital, though they are hampered by being forced to response to something 

that has already reached and impacted customers. 
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Once a network section is identified as requiring cleaning, a number of options are available. 

The most intensive, expensive and disruptive option is to shut down a section for mechanical 

cleaning, while the cheapest and least disruptive options is to perform flushing or 

conditioning exercises (Friedman et al. 2012). Traditionally, mechanical cleaning has been 

widely used though flushing has become more commonplace, as well as ice pigging and 

swabbing. Ice pigging involves forcing ice through a water main to remove bulk water 

sediment, while swabbing is similar but uses a sponge like object and effectively scrapes the 

pipe walls. However, such operations risk causing disturbances that increase the risk of 

discolouration in other network areas (Husband et al. 2010). Flushing or conditioning 

activities involve carefully planned increased hydraulics such that pipe wall material is 

mobilised in a controlled manner. Flushing was originally done in response to customer 

complaints but more recently has been employed on a more regular basis (Boxall et al. 2011), 

with the idea of reducing risk of a later sudden uncontrolled mobilisation of large quantities 

of pipe wall material which could potentially contain dangerous bacteria.  

Though conditioning activities have been shown to reduce overall discolouration risk (Sunny 

et al. 2019), utilities are often nervous to attempt them due to the perceived potential risk to 

customers if done poorly. A Variable Condition Discolouration Model (VCDM) was 

developed to simulate turbidity responses to hydraulic interventions (Furnass et al. 2019), 

enabling utilities to plan their conditioning practices so that a certain level of turbidity is not 

exceeded and reducing any potential risk to customers. VCDM was developed using the 

concept of material accumulating on pipe walls in cohesive layers conditioned by the daily 

peak flow rates (Husband and Boxall 2016). Flow conditioning gives utilities a way to 

proactively manage discolouration, minimising more disruptive reactive approaches that 

involve taking sections of DWDS out of service. One of the main downsides is its excessive 

use of water, which may not always be appropriate particularly during droughts, which are 

becoming a more common factor. Monitoring both flow rate and turbidity is an essential part 

of any flow conditioning exercise, and having continuous monitors before and after allows 

for the impact to be determined. 

Where disinfection is used, management of residual disinfection levels throughout DWDS is 

a factor. However, chlorine residual is unpredictable and challenging to accurately model due 

to the impact of local characteristics like pipe wall chlorine demand. This makes ensuring a 

sufficient residual at all sections very difficult and often secondary disinfection dosing points 
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will be installed. Such dosing points can also be reliant on a chlorine sensor to inform when 

dosing is required. The accuracy of this is therefore dependent on how well calibrated the 

chlorine sensor is. Though disinfection is relied upon in most countries, including the UK, 

recent research showed that in certain environments a disinfection residual can actually 

promote the colonisation of pathogens in pipe-wall biofilm as well as increased 

discolouration (Fish et al. 2020), suggesting more research is needed to better understand the 

overall impacts of disinfecting DWDS. 

2.3 Monitoring Water Quality in Drinking Water Distribution Systems 

2.3.1 Current State of Monitoring 

Drinking water quality guidelines have been developed by many international governing 

bodies (EU 1998; WHO 2017; DWI 2018; USEPA 2018) but the majority of samples are 

taken as the water exits the WTW. There is a lack of international consistency with regards to 

equipment, parameters measured and sampling protocols, making any comparisons within 

and between countries challenging. Regulatory post WTW monitoring tends to consist of 

periodic grab sampling, with WSP often becoming aware of in-network deterioration through 

customer contacts meaning any interventions are by definition reactive (Mounce 2020). 

Periodic grab samples post-WTW only offer a snap shot into these 24/7 complex dynamic 

and unpredictable DWDS that provide such a vital public health and wellbeing service. With 

advances in remote data acquisition and communication technologies, it is now possible to 

monitor water quality at greater temporal and spatial resolutions, yet the benefits of such 

monitoring remains largely unknown. In recent years, such technology is being deployed and 

experimented with and it has been expected to become more commonplace in future DWDS 

(Boxall et al. 2011). However, this remains a new practice and work needs to be done to 

understand what parameters are most useful and how sensor networks can be deployed and 

maintain as to ensure high quality data is taken. This subsection will review strategic options 

for continuous deployment of water quality sensor networks within DWDS. 

2.3.2 Water Quality Parameters 

There are a variety of different parameters that can be used to describe drinking water quality, 

ranging from the direct detection of specific contaminants or pathogens, to measurements of 

indirect proxy parameters. Water quality parameters can loosely be categorised as microbial 



13 

 

and non-microbial. In an ideal world, many of these could be combined in order to build up a 

complete and thorough understanding of the water quality. However, not all parameters are 

equally suited for continuous remote measurement. Therefore, this work considers which 

parameters are both suited to DWDS deployment and can lead to the best understanding of 

water quality within DWDS. 

Awareness and restriction of microbial pathogens in drinking water has reduced transmission 

of disease in the DWDS of many countries. Disease carrying pathogens in drinking water 

include protozoans (5-100 µm), bacteria (0.5-1 µm) and viruses (0.01-0.1 µm) (Gray 2008). 

Total coliform bacteria is a useful parameter for indicating the presence of faecal 

contamination without having to monitor each contaminant. Their ease of detection has led to 

them becoming standardised. However, many coliforms are not pathogens and they can form 

part of the pipe wall’s biofilm (Camper et al. 1998), meaning lack of detection does not mean 

zero risk of future contamination while detection does not always infer a health risk. E. coli is 

a more reliable pathogenic indicator as it is found in human and animal faeces but, like 

coliforms, is more sensitive to disinfection than certain harmful pathogens (Payment et al. 

2003). While a positive coliform or e. coli test requires immediate attention, negative tests 

provide a false sense of security. Dissolved oxygen (DO) is a useful parameter for indicating 

how suitable an environment the water is for certain living organisms. Oxidation reduction 

potential (ORP) offers a wider scale than DO as it can monitor anaerobic conditions as well 

as aerobic and can indicate the level of disinfection in the water. Heterotrophic plate counts 

are often used to count microbial cells but can only detect certain microorganisms (Boe-

Hansen et al. 2002). Flow cytometry has emerged as a popular sampling method that 

produces a more complete microbial profile in just 15-20 minutes, compared to over a day for 

more traditional methods (Berney et al. 2008). These microbial indicator parameters tend to 

be popular due to their inexpensive testing but cannot be easily automated and require well-

trained laboratory technicians though flow cytometry is more suited to online monitoring. 

Physical and chemical parameters tend to more suited to automatic sampling but their link to 

water quality can be complicated. Turbidity, for example, is an optical measure of how clear 

the water is and has been shown to be well-suited for measuring discolouration material 

(Boxall and Saul 2005), making it an important parameter due to the pervasiveness of 

discolouration incidents. Where relied upon, monitoring of the disinfection residual within 

DWDS can inform about water quality deterioration. Chlorine decay rates are challenging to 
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accurately model (Speight and Boxall 2015), meaning monitoring is required to ensure 

sufficient but not excessive residuals are present. These decay rates can be suddenly and 

unexpectedly accelerated due to increased demand from sources such as bacteria, natural 

organic matter (NOM), and the pipe-wall biofilm. Therefore, monitoring the disinfection 

residual can inform about water quality changes and risk of contamination. Additionally, 

research looking into intentional contaminants in DWDS found that free chlorine responded 

to 10 of 15 contaminants tested (Murray and Haxton 2010), indicating its use as a proxy 

contamination indicator. Temperature is a useful parameter as any in-network reaction is 

influenced by water temperature. Water held at elevated temperatures increases the rate of 

disinfection decay and can lead to infection via deadly pathogens such as legionella, with the 

WHO (2017) recommending temperatures be kept below 25°C and ideally below 20°C. 

Water temperature within DWDS is determined more by the surrounding conditions and pipe 

diameter than source water temperature (Blokker and Pieterse-Quirijns 2013; Douterelo et al. 

2019). DWDS in urban environments competes for space with heating pipes, underground 

infrastructure and electric cables, all of which can heat sections leading to localised hot spots 

that can pose a risk to end users. 

Other useful water quality parameters are conductivity, which indicative the level of ionic 

salts, including toxic salts (Banna et al. 2014), and potential of hydrogen or pH, which is a 

measure of water acidity and usually remains within its ideal range of 6.5 and 8.5 within the 

DWDS (Payment et al. 2003) thought the impact of smaller deviations are not well 

understood (Fish et al. 2016). DWDS pipe characteristics such as pipe material, size, surface 

roughness and level of deterioration can all have dramatic localised impact on water quality 

and should be considered where available. Water age refers to how long the water has spent 

inside the DWDS and is related to water quality due to the increased opportunities for 

contamination (Machell and Boxall 2014). However, water age is not a measurable 

parameter. Hydraulic parameters, such as flow and pressure, are also relevant to 

understanding water quality due to the tendency of hydraulic changes to initiate water quality 

deterioration events, as was highlighted in Section 2.2.3. Flow and pressure sensors are more 

widely deployed in DWDS than water quality parameters as part of efforts to tackle leakage 

rates, meaning they may be available to supplement any deployed water quality sensors. In 

general, it is not well understood what parameters are best suited to online monitoring, or 

indeed what combination of parameters can yield the greatest level of insight regarding the 

state of DWDS water quality. 
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2.3.3 Temporal and Spatial Resolutions 

Selecting the temporal and spatial resolution of a sensor network is a trade-off between cost 

and the value of increased quantities and densities of data. WSP in the UK have traditionally 

used 15-minute sampling intervals for flow rate and pressure monitors (S. R. Mounce et al. 

2012), and this practice has been adopted when deploying water quality sensors. However, 

there are clear benefits of increased sampling frequencies of up to 1 minute, particularly 

when you consider that these are instantaneous measurements of a remarkably dynamic and 

unpredictable subject matter (Gaffney and Boult 2012). The clearest trade-off with an 

increased sampling rate is that these remote installations rely on a battery, which will run out 

quicker with increased sampling. However, dial out rate, the frequency with which the sensor 

uploads data to a server, is a more significant factor for battery life than sampling rate (ATi 

2022). Renewable energy sources represent an alternative approach for powering water 

quality sensors and have been used in other remote environmental monitoring applications 

(Dewan et al. 2014). 

When considering the optimal spatial resolution of a water quality sensor network, the 

number of suitable installation locations is of course a major factor as is the ultimate 

objective of the sensor deployment project. Research on sensor placement within DWDS has 

produced algorithms that are capable of optimising sensor placement strategies for a given 

objective, such as quickest detection time or protection of most members of the public 

(Krause et al. 2008). An open-source Python package called Chama was recently released 

that uses mixed-integer, stochastic programming methods to determine optimal sensor 

placement (Klise et al. 2017). However, much of this work requires the number of sensor to 

be already selected, and it is also focused on simple detection of specific contaminants. 

Sankary and Ostfeld (2018) showed that non-specific water quality parameters such as 

turbidity, chlorine and pH could be used to detect intentional contamination and sensor 

placement could be optimised based on simulated responses. Such research is interested in 

multiple parameters at each location and in combining information from multiple sensor 

locations, which distance between locations may dictate. Being able to understand how 

sensor locations are connected could be vital in enabling a move from single sensor analysis 

to analysing DWDS network sections as connected entities. Therefore, this research will 

explore sensor connectivity between water quality sensors installed within DWDS, including 

what spatial densities facilitates such an approach. 



16 

 

2.3.4 Deploying and Maintaining Water Quality Sensors 

Once the quantity and spatial density of sensors is chosen, consideration is needed for 

ensuring the sensors perform to take representative data. Typically a maintenance plan is 

required, which involves visiting installation sites and validating sensor performance. How 

frequently this is needed depends on the desired data quality, the parameters monitored, the 

deployment length and the installation site itself. Water quality sensors monitoring 

parameters such as turbidity and free chlorine were traditionally designed for laboratory use 

and can become fouled and damaged when installed remotely in the harsh DWDS 

environment. Turbidity sensors are optical and their optics can get fouled or damaged during 

deployment, often resulting in data drift (Mounce et al. 2015). Turbidity drift is a common 

problem and, though there is evidence that drift corrected data is still useful, after a certain 

point the sensor’s optical lens will need to be cleaned. The problem of drift in turbidity 

sensors has led to the use of the daily standard deviation as a metric for assessing 

discolouration risk that, unlike averaging, is unaffected by drift (Cook et al. 2016). Chlorine 

sensors tend to rely on a membrane electrolyte which loses sensitivity over time and therefore 

require regular re-calibration (Garcia et al. 2020). 

Selecting a suitable installation location for water quality monitoring is difficult primarily due 

to the buried nature of DWDS. Additionally, much DWDS infrastructure was built many 

decades ago and the precise location and geometry of entire sections can be unknown. 

Installing directly into pipes would in theory lead to the most representative sampling but 

without custom built sensor chambers, there are very few installation locations that provide 

this opportunity. Sensors are commonly installed at hydrants (fire, wash out etc), which are 

more convenient to access than the buried pipework, though it is unclear how representative 

this water is of the water in the actual pipes. By the time the water reaches a hydrant, the 

water has slowed down considerably, with potential impacts on water quality. Some 

installations include a purge mechanism which flushes out any stagnant water before 

measurements are taken to account for this (Gaffney and Boult 2012). The ease of access for 

an installation point not only dictates difficulty of install, but also serves to make subsequent 

sensor validation and maintenance operations more challenging and costly. 
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2.4 Analysing Water Quality Time Series Data 

The main analysis done to water quality data from DWDS is related to meeting regulatory 

compliance using discrete sampling data (Boxall et al. 2011). Continuously monitored water 

quality data, resulting in time series datasets, are becoming more commonplace particularly 

in response to a particular network issue or event. However, potential analytical approaches 

will be entirely different for such higher-frequency time series datasets. Therefore, a first 

general introduction into time series data is provided, to highlight the value in continuous 

timestamped monitoring. As outlined already, remotely deployed water quality sensors can 

be prone to erroneous measurements, as opposed to regulatory grab sampling which are 

typically done in a controlled laboratory environment. Therefore, the next section reviews 

data quality assessment approaches, along with methods for handling sensor errors. Next, the 

benefits of understanding the relationships between time series from different water quality 

parameters and sensor locations is discussed. The final two sections cover two common time 

series analysis tasks: time series forecasting and event detection, both of which are highly 

desired in the context of DWDS.  

2.4.1 Introduction to Time Series Data 

Sensors are increasingly linking the physical and digital worlds through vast amounts of time 

series data and are driving a new industrial revolution focused on autonomous systems 

(Vaidya et al. 2018). Time series data refers to datasets ordered chronologically with each 

entry usually accompanied by a timestamp. This provides powerful temporal information that 

allows for parameters and cross parameter relationships to be analysed over time, which is 

vital for forecasting future values and for understanding interactions in complex systems and 

control engineering (Box et al. 2015). Time series data is found in increasing volumes in 

many applications such as economics, epidemiology, network monitoring, social science, 

medicine, and engineering (Shumway and Stoffer 2017) though the nature of the time series 

data can vary enormously depending on the data sources. Important attributes of any time 

series dataset include: the number of parameters, sample rates, availability of labels, 

availability of metadata, nature of the data, and data quality. These factors impact what 

analytic approach can be taken, which can range from simple statistical descriptors, 

applicable to univariate time series data, to supervised machine learning algorithms, 

applicable to multivariate labelled datasets.  
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Before sophisticated analytics can be done on any time series dataset, there is usually some 

primary reviewing of the dataset, in order to gain a better understanding of the nature of the 

data. This practice is called exploratory data analysis (EDA), a term first coined by John 

Tukey (Tukey 1977), and involves visualising the data in various different graphical 

representations and producing simple statistical descriptions, in order to understand the 

underlying data better. This stage will often include an assessment of the data quality, which 

would inform any data cleaning processes necessary to prepare the dataset for subsequent 

analysis. Data quality assessment is seen as a vital first step in analysing any continuously 

deployed water quality sensor data, both in terms of preparing the dataset for further analysis 

and assessing sensor performance while deployed. There exist many potential manipulations 

of raw datasets, a process often called feature engineering, such as normalisation, particularly 

important for certain machine learning algorithms, reformatting data, replacement of missing 

or removed data points, or generating custom variables (Reid Turner et al. 1999). Often it is 

desirable to understand how each variable is correlated, as such information could help 

inform feature engineering operations. In a sensor network, such correlations are important in 

differentiating local and global events. Once a time series dataset is prepared and validated, 

further analytics can be done with confidence. Two main topics of interest are forecasting 

future values, and the detection of unusual events, often termed outliers or anomalies. 

Understanding the variables in time series datasets is often an important goal of analytics, 

with other common goals focused on forecasting future values, and detecting. This section 

reviews data quality, relating time series variables, forecasting and event detection, with 

respect to water quality time series datasets.  

2.4.2 Data Quality 

Data quality refers to how well suited data is for its intended purpose (Wang and Strong 

1996) and therefore its meaning changes according to application and context. Where sensor 

data is describing real-world systems, data quality can be considered to be how accurately it 

represents the system under observation. Therefore, its importance when it comes to 

generating accurate information from sensor data cannot be understated. As this accuracy can 

be inhibited by sensing errors or artefacts introduced environmentally, data quality can be 

determined by assessing the degree of sensing and environmental errors in the sensor data 

(Karkouch et al. 2016). Assessing degree of sensing errors has the benefit of assessing sensor 

performance. As with most technological equipment, failures can occur and sensors can 
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degrade or malfunction leading to spurious measurements, particularly for sensitive 

traditionally laboratory-based instruments like water quality sensors, when deployed in a 

harsh environment such as a DWDS. Detecting sensor errors generally requires knowledge 

both of the sensor and the application, so that unrealistic or untrustworthy measurements can 

be detected. 

The water industry in general has a perception of being ‘data rich information poor’ (DRIP) 

(Mounce 2020), meaning there is a lot of willingness to gather and store data, yet the vast 

majority of collected data remains largely unused or used only within specific silos 

(Kyritsakas et al. 2023). While the quality will be better for data required for regulatory 

purposes, this does not translate to continuously monitored DWDS water quality data. This 

has the unfortunate result of requiring any data science project, seeking to extract information 

and knowledge from water industry datasets, to start with a time-consuming and challenging 

process of manually trawling through the data and determine which parts are suitable for 

subsequent analysis (Kyritsakas et al. 2023). Therefore, there is a need to introduce more 

robust data acquisition practices that focus more on ensuring sensor functionality.  

2.4.2.1 Assessing Data Quality 

There are many different approaches to assessing data quality, both in terms of methods of 

detection to approaches for handling erroneous data for subsequent analytic use, a process 

often referred to as data pre-processing or data cleaning. Selection of an appropriate approach 

for assessing sensor data quality requires an appreciation of the nature of the sensor 

technology, the availability of any reference sensors, and the difficulty of the measurement 

they are intended for. For some applications, data quality assessment will be based on a 

model of normal operating behaviour, with any deviations detected as erroneous (Teh et al. 

2020). Such a model could be based on labelled past data or an assumed or theoretical 

distribution. Common model-based approaches are principal component analysis (PCA) and 

artificial neural networks (ANN) (Teh et al. 2020). PCA is a common dimensionality 

reduction technique and has been used to detect sensor faults in systems where sensors are 

highly correlated with each other (Dunia et al. 1996). ANN are supervised machine learning 

algorithms consisting of multiple neurons, that together aim to learn in a way that mimics the 

human brain. ANN can be used for detecting sensor faults by learning the normal behaviour 

and subsequently detecting deviations. However, a model-based approach is not always 

applicable in applications without a clearly definable set of normal operating conditions. 
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An alternative approach involves defining data quality metrics and writing rules to detect the 

presence of such metrics or errors (Karkouch et al. 2016; Kirchen et al. 2017). Defining data 

quality rules for any application would again be helped by labelled data, this time with the 

errors labelled. However, there are some errors that are commonly accepted to be undesirable 

for any sensor time series data. These include outliers, missing data, bias, drift, repeated 

values, and ‘stuck-at-zero’ (Teh et al. 2020). Though outliers are the most commonly studied 

sensor error (Teh et al. 2020), care needs to be taken to ensure real but abnormal events are 

not being incorrectly detected as errors and subsequently removed or imputed. Differentiating 

between sensor errors and real system events is difficult without the ability to cross-validate 

with other sensors in a network, using the logic that system events will be seen in multiple 

sensors unlike sensor faults (Krishnamachari and Iyengar 2004). García et al. (2017) 

developed a method for differentiating between sensor faults and real water quality events 

using known-to-be spatially correlated sensors, following the detection of an unusual data 

point. Time series data requires specific consideration for the consistency of timestamps 

(Pastorello et al. 2014; Gschwandtner and Erhart 2018), as many time series analytics require 

timestamps to be equally spaced. In the absence of labelled sensor errors, developing data 

quality rules requires knowledge of the sensor technology and the nature of the 

measurements. 

2.4.2.2 Handling Sensor Errors 

In most real-world applications, sensor data must be prepared and cleaned before any 

meaningful analysis can be undertaken. The extent to which this must be done depends both 

on the sensor data quality and the intended usage of its data. There are many different options 

to take with a poor quality time series dataset. In some cases, the data quality may be so poor 

that any analysis would not only be meaningless but could lead to erroneous interpretations. 

In these instances, the data should not be used and the source of the issue should be rectified 

for future monitoring. The two main issues that must be dealt with are erroneous data points 

and missing data. Erroneous data points are either removed or replaced, depending on the 

specific needs of the subsequent analysis. The extent to which erroneous data points must be 

dealt with depends on how frequent they are and what the required data formats are for the 

subsequent analytics. Gaps caused by missing data can greatly limit analytics where 

consistent timestamps are needed, commonly a requirement for time series analysis, but 

excessive imputation can lead to a dataset that no longer accurately represents the original 
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measurement. Nonetheless, missing data is inevitable to occur at some point, commonly due 

to battery issues or data corruption,  and some analysis methods require them to be replaced. 

The process of replacing data points is known as imputation and common methods include 

smoothing, averaging or interpolation, usually based on a window of previous values, or 

comparing to a model describing normality (Palma 2016). Multiple imputation involves 

replacing missing data with several different plausible values, leading to a range of possible 

analysis solutions representing the uncertainty of the missing data (van Buuren 2018). 

As mentioned in the previous section, methods for event detection and the detection of sensor 

errors can be similar in terms of methods and differentiating between these can be 

challenging. This can lead to a highly undesirable situation in which real and potentially 

alarming events are being automatically filtered by a data quality system. A famous example 

of this occurred when a British Antarctic Survey (Farman et al. 1985) detected a large drop in 

ozone concentrations. NASA had been monitoring the Antarctic ozone concentrations since 

the 1970’s but their data quality control system had disregarded these previously unseen low 

measurements, which they then corrected in response to Farman et al. (Stolarski et al. 1986). 

This example demonstrates the importance of reporting and investigating anomalous data 

rather than simply excluding it. In a highly-correlated sensor network, differentiation of real 

events from sensor errors can be assisted by looking at whether the unusual feature occurred 

in more than one sensor. Li and Parker (2014) presented a method for replacing missing 

values using spatio-temporally correlated sensor data, a method that has greater accuracy and 

suitability for complex networks than other imputation techniques. This is similar to the 

approach used by Garcia et al. (2020), where chlorine loss of sensitivity incidents were 

differentiated from real low chlorine events using spatially correlated sensors, and confirmed 

by domain expert labels. However, the more complex a DWDS the harder it is to assume 

spatial connectivity between sensors, meaning without a method for assessing sensor 

connectivity, the above approach is reliant on having directly upstream sensors always 

available which could only be achieved with a very dense and expensive network of water 

quality sensors. 

2.4.3 Combining Parameters and Sensor Locations 

Multivariate time series datasets allow not only for each parameter to be examined over time, 

but for inter-variable relationships to be both discovered and examined. Taken at face value 

and without context, a multivariate time series dataset is a collection of independent 
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variables. However, understanding which variables are related to each other, and examining 

the nature of that relationship, can enhance overall understanding of the dataset. This can lead 

to informed feature engineering activities and a more enlightened analysis. In a sensor 

network with multiple-parameter monitors installed at a range of locations, it is valuable to 

understand not only relationships between different parameters in one location, but also 

between installation locations, in order to enable data fusion and for subsequent analytics to 

focus on multi-parameter multi-sensor data rather than being limited to analysing each 

parameter and sensor individually.  

2.4.3.1 Understanding Relationships Between Variables 

There are many situations where it is desirable to understand the relationship between time 

series variables, including to study known or assumed relationships in more detail and to 

discover previously unknown relationships. In some cases, the link between two variables 

may be obvious from the context of the monitoring, such as in input/output control processes 

(Box et al. 2015). This takes advantage of known connectivity between sensors in highly 

interconnected processes, and aims to develop a transfer function model that captures this 

relationship. Where sensor interconnectivity is less certain, it is often desirable to calculate 

the strength of relationship between multiple time series signals. Cross-correlation involves 

correlating two signals for various different time lags, and is the most common method for 

determining strength of relationship and time lag between time series signals (Benesty et al. 

2004). This method can also be used where the strength of relationship is known but 

determining the time lag between variables is of importance, such as estimating tele seismic 

arrival times (Vandecar and Crosson 1990).  

Dynamic time warping (DTW) also quantifies the similarity of two time series, and allows 

for a greater degree of fuzziness in terms of similarity of signal profiles than cross-correlation 

(Keogh and Pazzani 2001). Wavelet-based semblance analysis allows for the frequency 

content of two parameters to be compared over time in a 2d scalogram plot (Cooper and 

Cowan 2008). However, Pearson’s correlation coefficient (PCC), commonly used in cross-

correlation, has the advantage of providing an easily understood value between -1 and 1 that 

informs about strength of relationship. In some analytics, such as regression, the presence of 

correlations between independent variables can lead to unreliable results, a phenomenon 

known as multicollinearity (P. Vatcheva and Lee 2016). Knowledge of inter-variable 

relationships can lead to custom variables being generated during feature engineering, which 
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can lead to improved understanding and is particularly helpful for training machine learning 

models.  

For water quality monitoring within DWDS, it is uncommon to have multiple water quality 

parameters monitored or to have multiple linked locations monitored. Where these are 

monitored, some of these parameters will have inherent relationships with each other that can 

be exploited in any subsequent analysis. One example is chlorine and temperature, where 

higher temperature water increases the rate of chlorine decay, as discussed in Section 2.3.2. 

Another is turbidity and flow rate, as sudden increased flow rate mobilises material leading to 

a period of increased turbidity, as discussed in Section 2.2.3. The relationship between 

hydraulics and turbidity in a UK DWDS, pre and post flushing operations, was examined 

using wavelet-based semblance (Mounce et al. 2015). The relationship between sensors at 

different locations within DWDS is generally more challenging to determine, with precise 

locations often unknown and hydraulic models are not accurate enough to determine transit 

times between sensor install locations. Even with flow rates being monitored, transit time is 

difficult to determine due to often lack of availability of pipe dimension. Therefore, 

estimating relationship and transit times between locations would enhance such datasets. 

DTW was used to estimate transit time between sensors in a sewer (Dürrenmatt et al. 2013), 

though the temperature sensors used were installed directly inline meaning determining the 

strength of connectivity was not necessary. Cross-correlation has been used to determine 

transit time between known-to-be connected locations in a straight DWDS using chlorine 

time series data (Bowden et al. 2006), though it has not been used to determine the strength 

of connectivity between sensor locations in more complex network layouts. 

2.4.3.2 Utilising Relationships Between Variables 

Once the relationship between two variables is understood, overall ability to examine the 

process or system under observation is enhanced. Returning to the example of modelling a 

transfer function between input and output processes, such a model will improve the ability to 

respond when the output time series changes, as the model will inform what necessary input 

signal changes can help to maintain and keep the process on track. Similarly, this relationship 

could be used to forecast future output values. With regards to DWDS water quality time 

series, knowledge of a strong relationship could be used to make estimates of expected values 

in correlated parameters. This could be valuable when detecting abnormal data, sensor errors, 

local and global events, and for replacing missing data. Relationships between variables also 
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refers to parameters that have a known association, such as turbidity and flow rate, and across 

and between different sensor locations. 

Feature engineering can involve taking advantage of known or assumed links between 

variables to create a custom variable that can aide analysis (Geron 2019). Continuing the 

water quality example of turbidity and flow rate, knowledge of this link can be used to 

determine if the cause of turbidity increases are hydraulic or not. However when it comes to 

accurate analysis of discolouration events, turbidity alone does not tell the whole story, as it 

is effectively informing about the concentration of particulate matter in the water (Boxall and 

Saul 2005). Therefore, to understand the quantity of particulate matter, or discolouration 

material, passing a sensor location the turbidity signal needs to be multiplied by the flow rate 

signal, to generate a custom parameter often called material flux with units NTU.m3/hr 

(Furnass 2015). Material flux can then be integrated to calculate total volume of 

discolouration material passing a location for a given time period, in units of NTU.m3. This 

can also be converted to total mass of particulate matter, if the relationship between 

particulate matter and turbidity is known (Gaffney and Boult 2012). Less work has been done 

to combine data from more than one monitoring location in a water quality sensor network 

deployed in a DWDS, but this has the potential to enable a move from single sensor to 

network-wide analytics. 

2.4.4 Time Series Forecasting 

Forecasting is the practice of predicting the future, based on past and current observations. 

There are many fields in which time series forecasting plays a leading role, such as 

meteorology, stock broking, demand predictions, and epidemiology (Hyndman and 

Athanasopoulos 2021). Such forecasting applications range widely in their general 

importance, prediction accuracy, and how predictable the phenomenon of interest is. The 

accuracy of any forecast depends on several factors, such as our understanding of the 

underlying factors, data availability and quality, and how similar the future is to the past 

(Hyndman and Athanasopoulos 2021). The forecast horizon refers to how far into the future 

it is wished to predict, and of course this will impact forecast accuracy, as it is much easier to 

predict something right before it happens. For example, short-term weather forecasts are now 

very accurate due to improvements in weather modelling but predicting the weather with a 

longer forecast horizon, say a week, is much more challenging. Time series forecasting has 

been an active field of development since the 1980’s with two main types of forecasting: 
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exponential smoothing and ARIMA (autoregressive integrated moving average), both with 

many variations to account for time series components such as seasonality and trend (De 

Gooijer and Hyndman 2006).  

2.4.4.1 Traditional and Modern Approaches 

Exponential smoothing as a form of time series forecasting has been studied since the 1950’s 

(Holt 1957; Brown 1959), the original simple exponential smoothing (SES) approach has 

been expanded into around 15 different methods that account for different trend and 

seasonality (De Gooijer and Hyndman 2006) and are conveniently viewed through the ETS 

(error trend seasonality) framework (Hyndman and Athanasopoulos 2021). Exponential 

smoothing has been found to perform robustly for a variety of different univariate time series 

(Chatfield et al. 2001) and, unlike ARIMA-based approaches, model selection can be done 

automatically by minimising the Information Criterion (IC) (Hyndman and Athanasopoulos 

2021). The use of ARIMA-based forecasting was formalised by Box and Jenkins (1970), who 

compiled previous research developing autoregressive (AR) and moving average (MA) 

approaches into an accessible framework. This book was very influential and there are many 

examples of research using ARIMA-based forecasting models throughout the 1980’s and 

1990’s (De Gooijer and Hyndman 2006). Multivariate VARIMA (vector ARIMA) and 

ARIMAX (where X represents exogenous variables) were developed, though multivariate 

exponential smoothing is less common (De Gooijer and Hyndman 2006). In cases where 

there is a known relationship between two time series, a linear or non-linear regression model 

can be used to forecast one variable from the other (Hyndman and Athanasopoulos 2021), but 

of course this is dependent on having a suitable predictor variable.  

The recent non-linear regression Prophet model (Taylor and Letham 2018) was developed to 

perform automatically on time series with significant and complex seasonality considerations. 

Significant research has also gone into adapting neural network approaches for time series 

forecasting, including neural network autoregression (NNAR) which uses lagged values 

(Hyndman and Athanasopoulos 2021) and LSTM (long short-term memory) (Hochreiter and 

Schmidhuber 1997). The increased interest in neural networks came following computing 

advances in the 1990’s, making neural networks more practical (Geron 2019). However, it 

has been shown that classical time series forecasting tends to outperform machine learning in 

time series forecasting while also requiring far less computational power (Makridakis et al. 

2018). Research has also shown that combining multiple forecasting approaches and taking 
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an average of their forecasts can lead to improvements compared to relying on any one 

forecasting approach (Bates and Granger 1969; Clemen 1989). This is clearly demonstrated 

by 12 of the 17 most accurate methods in the M4 time series forecasting competition being 

combinations (Makridakis et al. 2020). 

2.4.4.2 Forecasting within Drinking Water Distribution Systems 

Forecasting water quality parameters within DWDS is inherently challenging due to the 

dynamic unpredictable nature of these vast networks that are linked to human and weather 

patterns but also contain many inter-dependent and unknowable complex biological, 

chemical and physical reactions. Existing hydraulic models are not considered accurate 

enough to be expanded to water quality capabilities (Vreeburg 2007; Machell et al. 2014). 

Additionally, when you consider the amount of notice a water utility would require to be able 

to respond to a predicted water quality incident, this becomes an extremely difficult task. 

Significant research has gone into forecasting water demand, seen as important for strategic 

planning and useful in detecting leaks. As water quality is intrinsically linked to in-pipe 

hydraulics, water quality forecasting can learn from demand forecasting research. Longer 

term demand forecasting of several years horizon requires more consideration of 

anthropogenic factors, while shorter term forecasts of the scale of hours and days are 

improved by using meteorological data (Sebri 2016). Mu et al. (2020) found that LSTM 

produced better forecasts for water demand, at time resolutions between 15 minute to 24 

hours, though ARIMA performed comparably for 24 hour resolutions. LSTM was shown to 

outperform other machine learning forecasting methods in predicting water demand in a 

network in China by Du et al. (2021), after pre-processing input data that included weather 

and holiday patterns using discrete wavelet transform (DWT) and PCA. A large-scale study 

using over 2 million domestic water meters compared seven different traditional and machine 

learning forecasting approaches and found that ARIMA performed the best, with the multi-

layer perceptron (MLP) neural network approach the least reliable (Karamaziotis et al. 2020). 

Stańczyk et al. (2022) showed that modelling weekly seasonality can greatly improve short-

term demand forecasting. 

Less research has focused on DWDS forecasting water quality as opposed to quantity. 

Machine learning approaches have shown promise in predicting turbidity in DWDS several 

hours ahead. Random forests work by combining multiple decision trees, all trained on a 

subset of data and features, and Meyers, et al. (2017) found that they outperformed ANN and 
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SVM for classification-based predictions while Kazemi et al. (2018) used a nonlinear 

autoregressive exogenous ANN (NARX) to predict turbidity responses and demonstrated the 

value in calculating new input variables as it showed that the addition of a custom input 

parameter describing the time since last turbidity event improved model performance. 

However, these papers were based on very little data, the former using one turbidity time 

series and latter using two, meaning they are unlikely to generalise well. Additionally, both 

these examples involved training models using data containing events and utilised the clear 

relationship with flow rate to predict turbidity data during events, by including flow rate as a 

model input. However, training data containing turbidity events may not always be available 

and flow rate data is not always available so research is needed to forecast turbidity, and 

detect turbidity events, without requiring flow rates or previous events. At best, a turbidity 

forecasting method would consider any potential seasonality, though daily or sub-daily 

seasonality is difficult to capture (Hyndman and Athanasopoulos 2021), in order to estimate 

future turbidity values. Though, any unexpected water quality deteriorations, such as but not 

only hydraulic interventions, will most likely not be predictable without more information.  

The challenges in maintaining a residual chlorine sufficient to prevent contamination has also 

lead to research forecasting chlorine residual levels in DWDS.  Gibbs et al. (2006) found that 

a MLP outperformed other predictive models in forecasting chlorine concentration levels, 

using data from the WTWs and chlorine and temperature data from the two forecasted 

locations in an Australian DWDS. Bowden et al. (2006) developed a GRNN (general 

regression neural network) to forecast chlorine residuals at a single location in a DWDS up to 

3 days in advance, with 24 hours the optimal forecast horizon, using 3 chlorine sensors within 

the DWDS. Turbidity, flow rate, pH and temperature were also used as model inputs. 

Maintaining adequate residual chlorine in drinking water was given increased importance due 

to the need for clean drinking water during the COVID-19 pandemic, with García-Ávila et al. 

(2021) developing a chlorine decay model with the aim to ensure a minimum concentration 

of 0.5 mg/l at end points in a DWDS in a town in Ecuador. However, this is challenging to 

perform on a wide scale as the wall decay factor will change depending on local pipe 

characteristics.  

2.4.5 Event Detection 

Algorithms detecting events using sensor data are found everywhere in modern life, from 

washing machines detecting an unbalanced load, to cars reporting system faults. Frequently a 
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human analyst will be able to visually identify events from looking at graphical 

representations of datasets. Likewise, a human expert may be able to quickly tell if there is a 

fault in a system. For example, a car mechanic will know sooner than someone unfamiliar 

with vehicles if there is a serious problem with the car they are driving. However, most 

people operating cars do not have this level of expertise and rely on dashboard alerts to tell 

them when something is going wrong. In many industries and applications, the quantity of 

data being measured is increasing exponentially and it is considered excessively expensive to 

rely on manual human interpretation for each event of interest (Shaukat et al. 2021). 

Additionally, there are applications where no human expert could feasibly handle the 

complexity of the data as efficiently as a computer can. Therefore, computing algorithms are 

necessary to provide adequate safety and efficiency in many processes.  

The meaning of event detection varies enormously depending on application, in part because 

the word event is often not defined in this context and even when it is, definitions can be very 

different (Yu et al. 2020). This has led to many highly specialised approaches with limited 

cross-sector applicability. Where forecasting is about predicting the future, event detection is 

about accurate and timely recognition of something of interest. That the accurate and timely 

detection of things like natural hazards, pollution events, disease outbreaks, and network 

hacking (Aggarwal 2016; Yu et al. 2020), is still considered so vital speaks to our inability to 

accurately predict the future, despite advanced modelling existing in all these areas. For some 

event types, such as disease outbreaks or resource contamination locating the source spatially 

is vital in mitigating the effects. An obvious example is the recent COVID-19 outbreak, 

which is thought to have started in China around November 2019, yet was allowed to spread 

seemingly without notice for several weeks (Roberts et al. 2021). However, it is difficult to 

detect something you are not actively looking for and the same can be said of water quality 

deterioration events in DWDS: without taking high quality data, such events will only be 

learned about through customer contacts, as is currently frequently the case (Mounce 2020).   

2.4.5.1 Selecting a Detection Method 

Determining a suitable event detection approach requires consideration for both the type of 

event in question, and the nature of available data (Chandola, Banerjee, et al. 2009). Events 

can broadly be categorised as either unusual events, sometimes termed outliers or anomalies, 

and important but not necessarily unusual events. Many methods have been developed to 

detect anomalous or outlying events in data, with the availability of supporting data labels 
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influential in method choice. Supervised anomaly detection requires a training dataset with 

all data labelled either anomalous or not, while semi-supervised approaches require either 

normality or anomalies to be labelled (Chandola, Cheboli, et al. 2009). Unsupervised 

approaches have been heavily researched due to many real-world applications not having 

labelled data available, and tend to be based on assumptions that the normal portion of data 

will be represented by a particular distribution. Isolation forests (Liu et al. 2008), elliptical 

envelopes (Rousseeuw and Driessen 1999) and local outlier factor (LOF) (Breunig et al. 

2000) are popular unsupervised anomaly detection methods that look to create a boundary 

between normal and abnormal datapoints. Isolation forests identify anomalous datapoints as 

opposed to profiling normal data, elliptical envelopes assumes the normal data follows a 

Gaussian distribution, and LOF works by measuring local deviations from each neighbouring 

point. One-class SVM (OCSVM) is a variant of the popular supervised classification method 

SVM that is unsupervised and splits data in two distinct classes. The suitability of any of 

these approaches is dependent on the nature of the data, but these are most commonly applied 

to multivariate datasets. PCA is a dimensionality reduction technique that was discussed in 

Section 2.4.2.1 as a data quality assessment method. It has been found to be an effective way 

to reduce such highly-correlated high-dimensional datasets into smaller uncorrelated datasets 

more suited to unsupervised anomaly detection (Dunia et al. 1996; Aggarwal 2016).  

Once commonality between the many event detection approaches is some sort of attempt to 

model or capture normal patterns of behaviour (Aggarwal 2016), with a boundary line often 

made to distinguish normal from abnormal. However, in many cases this distinction is not 

black and white. For events that are not necessarily rare, a more specific approach is usually 

required, that appreciates the nature of the event in question and the sensing technology relied 

upon to detect it. Where the data is a time series, the temporal context for each datapoint is an 

important consideration, particularly where there is some seasonality involved. For example, 

a thermometer measuring 35 degrees in winter might be a sensor error but in summer would 

be believable. The former is often termed a contextual anomaly. Continuing this example, 

any suspected anomalous thermometer could be checked against other thermometers or 

weather stations to confirm where the measurement is real or not. Where this is not available, 

suspected anomalies should be checked against preceding values. The most common method 

for anomaly detection in time series involves comparing a value to its forecast equivalent, 

with a threshold above which an event is reported (Aggarwal 2016). Supervised approaches 

for anomaly detection in time series include ANN-based approaches, with the Long Short 
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Term Memory (LSTM) variant of recurrent neural networks (RNNs) proving to produce 

excellent results for time series where labelled datasets are available (Hochreiter and 

Schmidhuber 1997; Shaukat et al. 2021).  

Events within time series data are often multiple continuous data points, or subsequences, 

rather than single points, and dynamic time warping (DTW) has been successfully 

implemented to find the most unusual subsequence within a time series (Keogh and Pazzani 

2001), an important problem for analysing electrocardiogram (ECG) time series (Lin et al. 

2005). Where a specific subsequence signal is the event in question, pattern matching can be 

done to look for its presence within a time series. A robust method was developed to achieve 

this based on a piecewise linear representation (Keogh 2012). These are also sometimes 

called collective anomalies (Shaukat et al. 2021). Change point or novelty detection 

algorithms look for the point at which there is a change in the overall state. This can be 

achieved by looking for points where the model best describing the underlying data changes, 

as proposed by Guralnik and Srivastava (1999). This paper also asked four human experts to 

label change points and the resulting labels showed significant disagreements and bias from 

including noise for two of the experts, highlighting the complexity of determining ground 

truth for what is and isn’t an event. Often events in time series are required to be detected in 

real-time, which can be done by comparing some expected or forecast value to the latest 

detected value,  

2.4.5.2 Event Detection in Drinking Water Distribution Systems 

Detection of leaking or bursting pipes is the most common event detection task for DWDS, 

with algorithms developed tending to require either acoustic or pressure time series data 

(Romano et al. 2014; El-Zahab and Zayed 2019). Other approaches have also been 

investigated, such as the use of pattern matching to search for specific subsequences (Mounce 

et al. 2014). Though this only had limited success due to the difficulty in generating a 

collection of subsequences to cover all potential scenarios. However, the link between 

leaking pipes and acoustic and pressure data is strong, while the link between water quality 

contamination and commonly monitored water quality parameters can be more complex. 

Significant research, led by the US Environmental Protection Agency (EPA), developed 

methods to detect intentional contamination of DWDS by comparing detected values to 

values predicted by windowed statistical algorithms, with the addition of a Binomial Event 

Discriminator (BED) that outputs a probabilistic event score from counting detected outliers 
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(McKenna et al. 2007). The BED approach effectively treats each BED window as a 

Bernoulli process, which means each data point in a sequence is considered an independent 

trial carried out under the same conditions. However, this assumption might not fully hold for 

water quality time series data, which could somewhat restrict the interpretability of the BED 

probability score. Nonetheless, it was shown to effectively cluster groups of detected outliers 

and reduce the very high level of false positives (>0.9 for 4/9 thresholds tested in McKenna et 

al. (2007) from using the multivariate nearest neighbour (MVNN) approach on its own. This 

research lead to the production of the open-source water quality event detection tool 

CANARY (Hart et al. 2007). CANARY’s use of sliding window statistics, to effectively 

describe normality within that window, is designed to account for the ever-changing nature of 

water quality time series.  

A review of recent research into water quality in DWDS by Weston et al. (2022) found that 

13% of related publications since 2000 reference intentional contamination, often referring to 

the ‘9/11’ terrorist attack in New York, though these have become less frequent over time. 

Perelman et al. (2012) proposed an ANN model for multivariate water quality and Bayesian 

analysis to identify outliers from the residuals. The ANN was trained on labelled normal data, 

with simulated intentional contamination events, with Gaussian distributions and 8 hour 

durations, introduced and subsequently detected. As mentioned previously in Section 2.3.2, 

chlorine has been shown to be useful in detecting some potential contaminants and Eliades et 

al. (2014) developed a contamination event detection system, by comparing modelled 

chlorine concentrations, based on chlorine input data, to actual chlorine sensors. Yu et al. 

(2017) proposed combining known-to-be hydraulically connected sensors to improve 

detection ability, once again using simulated intentional contamination events. Li et al. 

(2019) used a multivariate GAN (generative adversarial network) to train a LSTM model to 

detect simulated contamination events using data generated from a Water Distribution 

(WADI) testbed. Muharemi et al. (2019) won a water quality event detection competition, 

using a real-world multivariate dataset from a DWDS in Germany, with a LSTM approach. 

However, the dataset provided had artificial events inserted, as has become common practice 

for DWDS water quality event research. Simulated events were also used to develop 

CANARY (Murray and Haxton 2010), highlighting one of the central problems of water 

quality event detection in DWDS: the difficulty of obtaining real-world confirmed events.  
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Furthermore, intentional contamination events are significantly different and more rare than 

unintentional DWDS water quality deterioration events. As identified in Section 2.2.3, 

discolouration events are the most common type of water quality deterioration event and, 

though their frequency will vary depending on sensor location, millions of people in the UK 

and worldwide are forced to deal with discoloured water each year (DWI 2022). Therefore, 

utilities have, in theory, millions of examples of confirmed discolouration events. But the 

problem is the absence of water quality time series data from within relevant DWDS. The 

link between DWDS turbidity time series and discolouration events at customer taps is 

therefore difficult to study. The two turbidity forecasting research papers outlined previously 

in Section 2.4.4 included a focus on turbidity events, yet had very different definitions. 

Meyers et al. (2017) used classification metrics based on event thresholds of 1, 2 and 4 NTU, 

while Kazemi et al. (2018) did not clearly define a threshold though the events presented are 

all under 1 NTU. However, both of these papers attempted to forecast future turbidity values, 

events and all, as opposed to first calculating a residual. In further developing turbidity event 

detection methods, there is a need to first better understand what a turbidity event is. 

Although turbidity events are not necessarily rare, they can still be considered deviations 

from normal operating conditions meaning the approach of comparing forecasts may be 

useful. 

2.5 Summary 

Advancements in technology have empowered WSPs to implement continuous monitoring of 

water quality within DWDS. This evolution marks a departure from traditional reliance on 

sporadic grab sampling or customer interactions to ascertain network conditions and identify 

potential contamination incidents. Nevertheless, the deployment of water quality sensors 

within DWDS is relatively new, meaning both deployment strategies and analytic routines 

have not attracted much research attention. Water quality sensors have thus far been mainly 

used in laboratory environments and are prone to sensing errors when remotely deployed. 

Therefore, research is required to understand the nature of these errors and to develop 

effective methods for their detection and mitigation.  

This review has identified discoloration events as being a particularly promising focal point 

for investigation. This is both due to the frequency of in-network discoloration events and the 

fact that turbidity sensors are proxy discoloration sensors that are suited to online deployment 
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within DWDS. Furthermore, little research has gone into water quality sensor deployment 

strategies. Additionally, more research is required to understand what parameters are most 

useful and how combinations of parameters and sensors can improve understanding and 

insight. In particular, the presumed increase in insight obtainable with more parameters and 

sensor locations requires better understanding, as this directly impacts the value of deployed 

sensors. These knowledge gaps have limited the progress of DWDS water quality sensor 

networks and require addressing to realise the benefits of more sophisticated digitalised 

DWDS water quality monitoring. 
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Chapter 3: Aims and Objectives 

The aim of this research is to develop analytical routines that transform water quality time 

series data from DWDS into actionable insight in order to aide operational management. A 

central concept driving this research is that the value obtained increases moving from 

analysis based on single parameter single sensor to multiple parameter multiple sensors, as 

illustrated in Figure 3.1, but the nature of this increase is unknown.  

The following objectives have been defined: 

1. Develop methods to assess sensor performance, both to assist with analysis of 

historical datasets and to improve sensor management during deployment. 

2. Investigate and understand how discolouration events can be identified and 

understood through water quality time series data. 

3. Explore how different combinations of parameters and sensors impacts the level of 

insight that can be derived. 

Objective 1 and 2 are addressed in Chapters 4 and 5, respectively. Objective 3 will be 

examined throughout but in particular through the longer form Chapter 6, which features 

examples ranging from single parameter single sensors (SPSS), to combining multiple 

sensors measuring the same parameter (SPMS), combining multiple parameter in a single 

location (MPSS) to finally explore the added value from having multiple parameters 

monitored at different locations (MPMS).  

 

Figure 3.1. Analysis moving from single parameter single sensor (SPSS) to multi parameter multi 

sensor (MPMS). 
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Chapter 4: A Data Quality Assessment Framework for 

Drinking Water Distribution System Water Quality Time 

Series Datasets. 

Reproduced from Gleeson K, Husband S, Gaffney J, Boxall J. A data quality assessment 

framework for drinking water distribution system water quality time series datasets. IWA 

AQUA - Water Infrastructure, Ecosystems and Society (2023) 72 (3): 329–347. Submitted 

December 2022. Published March 2023. https://doi.org/10.2166/aqua.2023.228 
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of this chapter, including proposing changes to the narrative and presentation. 

4.1 Abstract 

Derivation of information from monitoring drinking water quality at high spatiotemporal 

resolution as it passes through complex, ageing distribution systems is limited by the variable 

data quality from the sensitive scientific instruments necessary. A framework is developed to 

overcome this. Application to three extensive real-world datasets, consisting of 92 multi-

parameter water quality time-series of data taken from different hardware configurations, 

shows how the algorithms can provide quality assured data and actionable insight.  Focusing 

on turbidity and chlorine, the framework consists of three steps to bridge the gap between 

data and information; firstly, an automated rules-based data quality assessment is developed 

and applied to each water quality sensor, then cross-correlation to determine spatiotemporal 
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relationships and finally spatiotemporal information enabled multi-sensor data quality 

validation. The framework provides a method to achieve automated data quality assurance, 

applicable to both historic or online datasets, such that insight and actionable insight can be 

gained to help ensure the supply of safe clean drinking water to protect public health. 

 

Figure 4.1. Chapter 4 graphical abstract. 

4.2 Introduction 

Monitoring of distributed drinking water quality typically consists of periodic discrete 

sampling that fulfils regulatory purposes but only offers limited opportunity to understand the 

performance of these extensive and complex engineered environments. The sparse data from 

discrete sampling does not enable examination of water quality deterioration processes that 

are known to occur between treatment and tap, such as hydraulic-induced discolouration 

(Husband and Boxall 2011) and disinfection residual decay (Speight and Boxall 2015). 

Without more dense data water utilities can only be reactive, informed of water quality 

incidents through customer contacts (Mounce 2020). This is becoming increasingly 

unacceptable, including an estimated 4-12 million cases of gastrointestinal illnesses 

attributable to public drinking water systems in the United States (Colford et al. 2006). High-

frequency water quality monitors (generally considered as sampling every 15 minutes or less) 

suitable for deployment within drinking water distribution systems (DWDS) offer the 

potential to change this.  Such instruments measure parameters such as turbidity and free 

chlorine, both of which can indicate pathogen presence. Turbidity has been linked to 

gastrointestinal illness (Mann et al. 2007), and is a proxy measurement for discolouration 
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(Boxall and Saul 2005), which is primarily caused by hydraulic changes mobilising material 

accumulated on pipe walls which can include pathogens from biofilms (Husband et al. 2016). 

While disinfection residuals are relied upon to provide protection against planktonic cells and 

limit microbial regrowth within DWDS (Thayanukul et al. 2013), meaning a drop in free 

chlorine may indicate increased pathogen risk. However, these are relatively (to flow rate and 

pressure) sensitive scientific instruments and as such the quality of data obtained from their 

deployment can be variable. 

The potential for such instruments is clear and utilities are embracing these sensing 

technologies within DWDS but the questionable data quality due to instrument sensitivity and 

issues connected to the often remote and harsh locations is currently a major barrier to the 

resulting data being used to inform network operations. Many turbidity sensors have optical 

lenses in contact with sample streams that can get fouled by accumulating material (Mounce 

et al. 2015). Online chlorine sensors commonly rely on membrane technology which requires 

regular recalibration and servicing. Even with regular maintenance data may not be 

representative of the water quality being studied. This has resulted in water quality data often 

requiring extensive manual data quality assessment and cleaning to remove spurious signals 

before analysis is possible (Mounce et al. 2015).  

There is a need to develop rapid and robust automated methods for checking water quality 

sensor performance and assessing data quality. Differentiating between sensor errors and real 

system events is difficult without the ability to cross-validate with other sensors in a network 

if applying the logic that system events will be seen in multiple sensors unlike sensor faults 

(Krishnamachari and Iyengar 2004). Sensors deployed within a DWDS can be entirely 

unconnected to each other, or separated by network features such as service reservoirs, valves 

and pumps which alter the water quality to such a degree that direct comparison may not be 

possible. It is also not considered practical to install two sensors at every location, so 

understanding how sensors at different locations are connected to each other is a key step in 

improving the effectiveness of data quality assessment.  

4.2.1 Background 

In general sensor data quality describes how accurately the sensor data represents the system 

under observation. There are generally two routes to automatically assessing sensor data 

quality: define normality for the system being monitored and quantify degree of conformity 
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to this normality (Teh et al. 2020); or define data quality metrics or errors and quantify the 

degree these errors present in the sensor data (Kirchen et al. 2017). Selection of a data quality 

method depends both on the type of data available and the intended usage of the data. 

Normality can be modelled from past observations or taken from an assumed distribution, but 

this may not always be available or applicable. A systematic review of sensor data quality 

detection and correction by Teh et al. (2020) revealed that outliers were the most commonly 

studied sensor error, followed by missing data, bias, drift, repeated values, uncertainty, and 

“stuck-at-zero”. The fact that outliers are both indicative of sensor faults and real system 

events in sensor networks (Yang Zhang et al. 2010) demonstrates the need to be able to 

validate these, and other potentially erroneous occurrences, with other sensors. A rules-based 

approach, looking at features such as data spikes and missing data, was employed on river 

water quality sensors in a study from Australia in 2019 (Talagala et al. 2019) but this 

approach has not yet been applied to DWDS water quality sensor data. Though this work 

focuses on assessing sensor data quality, subsequent analysis may require any removed or 

missing data to be filled in. A review of missing data imputation techniques using DWDS 

demonstrated the range of potential methods from simple statistical single imputation to 

model-based and machine learning multiple imputation algorithms (Osman et al. 2018). A 

recent study compared such approaches on river water quality parameters and found that 

most will work well for short periods, longer gaps require consideration of the temporal 

fluctuations present in water quality time series (Zhang and Thorburn 2022). 

Understanding how simultaneously recorded time series are related to each other 

spatiotemporally has been studied in areas such as seismology (Vandecar and Crosson 1990), 

astronomy (Peterson et al. 1998), ultrasound imaging (Bonnefous 1986), and psychology 

(Boker et al. 2002). A variety of similarity metrics have been used ranging from simple 

Euclidean distances, to dynamic time warping (DTW), and correlation coefficients 

(Kianimajd et al. 2017). Cross-correlation is the most commonly used method for 

determining the strength of relationship and time lag between two time series signals 

(Benesty et al. 2004). This involves shifting one time series relative to another and 

calculating a correlation coefficient at each step, with the step giving the highest correlation 

taken as the time lag. Pearson’s correlation coefficient (PCC) is a commonly used coefficient 

as it measures the linear relationship between two variables. Many variants on cross 

correlation, such as detrended cross correlation analysis have been developed to deal with 

non-stationarity and the presence of unwanted periodicity (Horvatic et al. 2011). In DWDS, 
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one recent study used cross-correlation analysis between flow rate and pressure sensors in a 

DWDS to detect leakages, indicated by sudden drops in cross-correlations (Gomes et al. 

2021). DTW is another method for quantifying the similarity of two time series, and can deal 

with different durations and sample rates (Keogh and Pazzani 2001). It has been shown to 

effectively determine transit times in sewers using temperature sensors (Dürrenmatt et al. 

2013), though its similarity metric is not as easily interpretable as PCC, which provides a 

value between -1 and 1 that informs about the strength of relationship. Though cross-

correlation has not been used previously to relate water quality sensors spatiotemporally, 

semblance correlations between turbidity and hydraulic data have been to infer changes in 

risks of asset deterioration (Mounce et al. 2015). 

The aim of this work was to develop a data quality assessment framework suitable for water 

quality monitoring within DWDS. Specifically, this work aimed to establish and automate an 

appropriate method for accurate detection and quantification of anomalous data in high-

frequency remote turbidity and chlorine sensors. A key element of the framework was to 

develop a method to understand connectivity between water quality sensors at different 

locations, enabling data quality assessments to be cross-validated. A final stage would allow 

data quality assurance, providing confidence in further analysis.  

4.3 Method 

4.3.1 Multi-Sensor Data Quality Assessment Framework 

A rules-based data quality assessment approach was decided upon, as opposed to an approach 

involving defining system normality, which would be problematic due to the lack of labelled 

datasets, combined with water quality data neither being stationary nor normally distributed. 

Therefore, a framework was developed, illustrated in Figure 4.2, for assessing data quality of 

water quality sensors deployed within DWDS. The framework consists of three steps that 

work sequentially to perform high confidence data quality assessment for water quality 

sensor networks deployed within DWDS. The first step involves a single-sensor data quality 

assessment, using eight data quality rules that were developed to identify data quality issues. 

These are developed here specifically for turbidity and chlorine sensor data but will have 

wider applicability. Detecting and quantifying the prevalence of data flagged by the rules in 

each time series allows for the performance of the sensors to be ranked and compared within 

and across datasets. However, removal and/or replacement of flagged data depends on the 
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needs of any subsequent analysis.  When used in the multi-sensor framework presented in 

this work, the first single sensor pass of the data quality rules involves filtering out any period 

of data that is flagged by a data quality rule. This is to enable the cross-correlation analysis to 

be performed on the remaining data, without anomalous features negatively impacting the 

correlation calculations. Next, cross correlation analysis is performed to gain an 

understanding of how the sensors are related in time and space. This results in a peak 

Pearson’s cross-correlation coefficient (PCC) for each sensor pair, as well as an estimated 

transit time between the highly correlated sensors. This information can enhance other water 

quality analyses by allowing for sensor information to be combined across locations. In terms 

of this data quality assessment framework, this spatiotemporal information is used to enhance 

the data quality assessment, by enabling cross-sensor validation to take place, stage 3, on four 

of the eight rules identified in Stage 1. Methods for each framework stage were written in 

Python, primarily using the data science library Pandas (McKinney 2010). 

 

Figure 4.2. Multi-Sensor Data Quality Assessment Framework. 

 

4.3.2 Data Quality Rules 

The data quality issues, which were identified as the basis of each rule, are outlined in Table 

4.1, along with the corresponding method to detect their occurrence and a possible cause 

described. In many cases the causes cannot be determined with confidence without other 

supporting information, such as the data from other related sensors (stage 3). The reasoning 

behind each rule, along with the detection methods, are expanded upon in this section. This 
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rules-based approach does not rely on predicting or modelling these highly complex non-

stationary parameters, but instead focuses on developing methods to detect the presence of 

the specific issues identified.   

Table 4.1. Data Quality Rules: detection methods and possible causes. 

Rule Detection by Possible Cause 

Time Stamp Errors Sample rate changes Malfunctioning data acquisition 

Missing Data Resample and compare to maximum 

possible data points at resampled rate 

Battery or communications issue 

Flat lining Data Repeated values for minimum duration Sensor or communications issue 

Single Point Outliers Z-score for window pre and post each 

data point 

Interference with sensor measurement or 

location issue (if persistent) 

Extended periods above 

threshold 

Minimum rolling values for minimum 

duration 

Sensor issue, such as fouling, or real event 

Extended periods below 

threshold 

Maximum rolling values for minimum 

duration 

Sensor issue, such as loss in sensitivity, or 

real event 

Bimodal Noise Minimum median non-zero delta in a 

window 

Sensor issue related to power cycle or 

other electrical interference 

Drift Successive duration of weekly median 

increases 

Lens/membrane fouling 

 

4.3.2.1 Time Stamp Errors 

Time stamp errors refer to data points that have an unintended sampling interval, compared to 

the previous data points. Imbalanced datasets as such suffer from bias, the lack of consistent 

time stamps being problematic for time series analyses and the data may require 

interpolation, leading to information loss (Bors et al. 2017). It also could be indicative of 

malfunctioning instrumentation and/or human intervention. Perfect detection of time stamp 

errors requires knowledge of intended sampling rates, information not always available and 

can change strategically during monitor deployment. A more robust method, not requiring 

such information, is therefore used involving calculating the sampling interval for each data 

point and detecting any instances of interval changes compared to the previously taken data 

point. In the datasets reviewed, target sample rates changed at most a couple of times a year, 

meaning this method would result in a negligible percentage of time stamp errors with normal 

strategic sample rate changes and well-functioning data acquisition. 

4.3.2.2 Missing Data 

For remotely deployed water quality sensors it is likely that at some point some data will be 

missing, often due to battery or communication issues. How to detect and handle missing data 

is a subject that is widely studied, with some form of imputation usually employed where a 
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complete dataset is highly desirable (Allison 2000; van Buuren 2018). Detecting and 

quantifying degree of missing data in a time series is once again helped by knowledge of the 

target sample rate. To avoid having to rely on this knowledge, an alternative approach 

involved first resampling the time series to the highest employed sample rate (generally 15 

minutes). The maximum number of samples for this sample rate and timeframe was then 

calculated and compared to the samples in the resampled time series. This method also 

ensures that periods of oversampling do not interfere with the calculation of missing data as 

these periods would be resampled first. 

4.3.2.3 Flat Lining Data 

Flat lining data occurs when sensors return the same value repeatedly. This would not be 

expected for sensitive water quality instruments in a dynamic environment and often (but not 

always) occurs at (close to) zero or at the maximum sensor value. To detect period of flat 

lining data that are erroneous and a sign of a faulty sensor, it was decided to look at the total 

time that a sensor repeats the same value. This is intended to make detection less sensitive to 

sampling rate, as opposed to looking at total number of data points with repeating values. For 

example, a sensor sampling every 10 seconds might return the same value 10 times in a row, 

but this is a quite a different prospect to a sensor sampling every 15 minutes returning the 

same value 10 times in a row, as that would mean no water quality changes have been 

detected for 2 and a half hours. Nonetheless, sampling rate is unavoidably a significant 

influencing factor on a sensor’s tendency to flat line, as is the resolution of the sensor. 

4.3.2.4 Single Point Outliers 

Single point outliers (SPO) refer to values that are unrepresentative relative to data before and 

after. These can occur in turbidity sensor data due to the presence of air bubbles or single 

highly reflective particles occurring at the point of measurement. It may however also 

represent a genuine, if short-lived, event (again influenced by sample rate). As potentially 

unrepresentative, these are flagged for further inspection before further analysis (Kazemi et 

al. 2018). A method was written to compare each individual data point to its surrounding data 

(Kazemi et al. 2018). The z-score, difference from sample mean divided by the standard 

deviation, is a commonly used metric for single point outliers in univariate signals (Grubbs 

1969). This rule involves calculating the z score for a window both ‘pre’ and ‘post the data 

point in question. The data point is considered a SPO if it exceeds a threshold, which was 
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selected using sensitivity analysis. The window size to consider for each data point was also 

included in sensitivity studies. 

4.3.2.5 Extended periods above (or below) a threshold 

Extended periods above a threshold can indicate a sensor error or external interference but 

could also be a real event, so are flagged for further inspection. Extended periods below a 

threshold can equally indicate a sensor error and are also flagged. The thresholds used here 

were designed to be generic across datasets but could also be tuned to specific network 

locations. 

4.3.2.6 Bimodal Noise 

Bimodal noise was an issue identified as specific to the turbidity sensors during this trial 

when the sensor often fluctuated between two distinct data points. A detection method was 

developed which involves calculating the median non-zero delta (with delta being the 

difference in amplitude from one data point to the next) over a period of time. This method 

uses the knowledge that turbidity sensors monitoring at or below every 15 minutes in DWDS 

are expected to record small changes in NTU, and if the median delta is high then that 

indicates the presence of bimodal noise. This issue was identified because of this work, with 

the rule developed and added to the data quality assessment, highlighting the ability to simply 

add or amend when employing a rules-based approach. 

4.3.2.7 Drift 

Drift can occur in turbidity sensors, historically linked to light source degradation but now 

more likely due to optical lens fouling from material accumulation, usually manifesting as a 

gradual baseline increase over several weeks. Drift can also occur in chlorine sensors due to 

deteriorating or fouling membranes, although chlorine sensor drift is often related to the 

sensitivity of the membrane and ability to respond, meaning it requires recalibration but may 

not exhibit gradual baseline drift behaviour. A drift detection method was developed that 

involved calculating the median weekly values and looking for periods that see successive 

changes. As there is evidence that drift in turbidity sensors can be corrected (Gaffney and 

Boult 2012), a drift correction method was developed that involves fitting the drift data using 

asymmetric least squares (Peng et al. 2010). 
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4.3.3 Linking Sensors Spatiotemporally 

To understand the spatiotemporal relationships between water quality sensors deployed 

within a DWDS, a cross-correlation method previously developed (Gleeson et al. 2023) was 

used on both turbidity and chlorine, as well as some lesser measured parameters such as pH, 

temperature, and conductivity. As cross-correlation is particularly sensitive to the presence of 

erroneous data, it is important that this followed the stage 1 rules. Cross-correlation is then 

applied to determine the strength of relationship and transit time between two water quality 

sensors, as illustrated in Figure 4.3. Transit time is defined as the average difference in 

hydraulic arrival times between two locations, which are not necessarily directly inline. The 

top plot in Figure 4.3 shows two chlorine sensor time series, over the course of twenty-four 

days. The bottom plot displays the cross-correlation curve, the peak of which is the time shift 

which results in the strongest correlation. The maximum correlation coefficient was found to 

occur for a time shift of 7.7 hours (indicated by the dotted red vertical line).  As this example 

shows, this method can handle missing data (seen in Sensor 1) which is vital for use in this 

framework due to the first stage involving removing flagged data points. However, 

calculating meaningful cross-correlations from chlorine sensor data is not always as 

straightforward as this example may imply due to network and hydraulic complexities. The 

steps required before such calculations can be done are explored in the results and discussion.  
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Figure 4.3. Two example chlorine time series (a) and corresponding cross-correlation curve (b). 

4.3.4 Multi Sensor Data Quality Validation 

The final stage of the data quality framework combines the output from the single sensor data 

quality rules and the spatiotemporal information. Where the spatiotemporal information 

indicates that a sensor has one or more sensors with strong connectivity, the detected data 

quality rules can be reassessed with the additional context of these connected and therefore 

comparable sensor(s). The derived transit time between the sensor locations can also be 

helpful in synchronising the errors. For example, if sensors A and B are connected, and have 

data quality rules detected that are synchronised according to the derived transit times, these 

periods of data can be considered to be real and not containing sensor errors. Similarly, if a 

flagged rule is only seen in one sensor, it should be investigated as a sensor error. In reality, it 

is not possible to make absolute statements without physically inspecting the sensor or 

obtaining metadata regarding network operations, but this framework provides the tools to 

perform a cross-sensor validated data quality assessment purely based on turbidity and 

chlorine time series data. 
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4.3.5 Datasets 

Three real-world water quality DWDS time series datasets from three different parts of the 

UK were used to develop and demonstrate the data quality assessment framework. The 

details of these datasets are given in Table 4.2. All water quality sensors listed monitored 

turbidity and chlorine, with some other water quality parameters also included less 

frequently, such as conductivity, pH, and temperature. Dataset B was completed before this 

work began, with A and C becoming available while monitoring was ongoing. This meant 

that ability of the framework to assess sensor performance could be assessed both off-line 

with historic data and in near real-time via an API (Application Programming Interface). 

Table 4.2. Datasets used. 

Dataset Number of Sensors Duration Sampling Interval 

A 12 1 year 2 minutes 

B 62 1.5 years 

51 sensors at 15 minutes for 12 months, 

then 1 minute for 6 months.  

11 sensors every 2 minutes 

C 
18 originally (later 

reduced to 11) 

2.5 years  

(ongoing) 

15 minutes for first 20 months, 2 

minutes for 2 months, 5 minutes for last 

8 months 

 

4.4 Results 

4.4.1 Data Quality Assessment Rules 

The rules were developed and refined on the 92 available multi-parameter sensors from the 

three independent DWDS datasets. 

4.4.1.1 User Defined Input Parameter Values 

Sensitivity studies were conducted for rules where there were user defined input parameters 

in order to understand the impacts of changing these values on the total amount of data points 
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flagged. Figure 4.4 shows an example of the sensitivity data for single point outliers, which 

informed the selection of a z-score threshold of 100 with a window of 6 hours, ensuring that 

only significant instances of single point outliers are detected. The values ultimately selected 

for each rule, determined with the aid of further sensitivity analysis, are listed in Table 4.3. 

There was no need to perform sensitivity studies on missing data or timestamp errors as these 

do not have user definable values. It is noted that input duration or window size was selected 

using all datasets so accommodates the different sampling rates encountered in this work, 

whilst thresholds were based on reasonable expected values. An advantage of the rules-based 

approach adopted here is there is no need for labelling of sensor errors. However, if labelled 

sensor errors were available, it would be possible to investigate and fine-tune parameter 

selection. 

 

Figure 4.4. Boxplots showing sensitivity of single point outlier rule for turbidity sensors, with (a) z-

score threshold and (b) window size, and for chlorine sensors, with (c) z-score threshold and (d) 

window size. 
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Table 4.3. Data Quality Rules: Input Parameter Values. 

Rule Detection by User defined Input Parameter values 
Flat lining Data Repeated values for minimum 

duration 

Minimum duration = 8 hours 

Single Point Outliers Z-score for window pre and 

post each data point 

Z-score threshold = 100 

Window size = 6 hours 

Extended periods above threshold Minimum rolling values for 

minimum duration 

Minimum threshold = 1.5 NTU/ 1.5 mg/l Cl 

Minimum duration = 6 hours 

Extended periods below threshold Maximum rolling values for 

minimum duration 

Maximum threshold = 0.05 NTU/0.15 mg/l Cl 

Minimum duration = 6 hours 

Bimodal Noise Minimum median non-zero 

delta in a window 

Minimum threshold = 0.1 

Window size = 6 hours 

Drift Successive duration of weekly 

median increases 

Minimum duration = 4 weeks 

Minimum overall rise = 0.3 NTU/ 0.3 mg/l Cl 

 

4.4.1.2 Time Stamp Errors and Missing Data 

Figure 4.5 is a plot of the sampling intervals for a single water quality sensor over the course 

of 18 months (blue dots), with the redline showing the accumulated time stamp errors, where 

each detected time stamp error equals 1. In this example, 13.7% of the data points were 

detected as time stamp errors. Using an assumed target sample interval of 15 minutes for the 

first 12 months, and 1 minute for the last 6 months, the actual intervals can be compared to 

this assumed target. Using this method results in 12% of the data points being flagged as time 

stamp errors. This shows that the original method slightly overestimated the prevalence of 

time stamp errors, explained by this example fluctuating in and out of target sample intervals 

(the first instance of return to target sample rate will be flagged as a time stamp errors). To 

determine the quantity of missing data in this example, the time series resampled to 15-

minute intervals results in 44,264 nonempty samples, compared to a maximum of 52,323 for 

this timeframe, meaning a total of 8,059 missing resampled data points were calculated (or 

15% of maximum potential data). 
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Figure 4.5. Time series plots of sampling intervals (blue) and accumulated time stamp errors (red). 

 

4.4.1.3 Flat Lining Data 

Figure 4.6 is an example of a chlorine sensor with significant levels of flat lining. The flat 

lining duration threshold here was set to 8 hours, with 66% of the data surpassing this level in 

the 8 months’ worth of data shown here.  

 

Figure 4.6. Chlorine time series with flat lines of at least 8 hours highlighted. 

 

4.4.1.4 Single Point Outliers 

Figure 4.7 shows an example, using a z-score threshold of 100 and window size of 6 hours, of 

a detected single point outlier on the left, and two spikes left undetected on the right. In the 
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LHS example, a single point outlier was detected as the z score both 6 hours pre and post 

scored above the threshold, while the RHS example illustrates how this method deals with 

two spikes occurring within the same window. For the first spike, only the pre z-score went 

above 50 while the post z-score was influenced by the presence of the next spike. The 

opposite occurred for the second spike.  

 

Figure 4.7. (a) Turbidity time series with single point outlier detected, (b) turbidity time series with 

no single point outlier detected, (c) pre and post z scores corresponding to (a), (d) pre and post z 

scores corresponding to (b). 

 

4.4.1.5 Extended periods above (or below) a threshold 

Figure 4.8 shows a chlorine time series where both extended periods above and below the set 

thresholds were detected. The upper limit used in this example was 1.5 mg/l, with the lower 

limit 0.15 mg/l, and the minimum duration was 6 hours. In this example, nearly 1 month of 

data was above 1.5 mg/l, followed by about a week at very low levels below 0.15 mg/l. 

Disinfection residuals for the UK system in which this was deployed was designed to stay 

above 0.2 mg/l and below 1 mg/l.  
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Figure 4.8. Chlorine time series with regions staying over 1.5 mg/l, or under 0.15 mg/l, for 6 hours 

highlighted. 

 

4.4.1.6 Bimodal Noise 

Bimodal noise is illustrated in Figure 4.9, where bimodal noise was detected to be occurring 

for around 78% of the 15-month period shown, using a threshold of 0.1 NTU and window 

size of 6 hours.  

 

Figure 4.9. Turbidity time series with closeup of highlighted bimodal noise. 

 

4.4.1.7 Drift 

Figure 4.10 shows a turbidity sensor that was prone to drift. Over the 11-month period shown 

in this plot, over 90% of the data was calculated to be part of a drift period, using a minimum 
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of 4 weeks of successive weekly median increases as a drift period and minimum overall 

increase of 0.3 NTU. The bottom plot of Figure 4.10 shows the drift data corrected using 

asymmetric least squares. 

 

Figure 4.10. (a) turbidity time series with two periods of drift highlighted, (b) drift corrected 

turbidity data. 

 

4.4.1.8 Rules applied to datasets 

The eight rules were applied to each of the three datasets listed in Table 4.2, enabling sensor 

performance to be assessed and ranked, illustrated in stacked bar charts in Figure 4.11. These 

results highlight the multiple data quality issues seen in these three datasets and show how 

prevalent each rule was for turbidity and chlorine sensors. Time stamp errors were only seen 

in Dataset B. Missing data was consistently seen in all datasets. Flat lining data was seen 

most in Dataset C and was in both chlorine and turbidity sensors, often (but not always) at the 

same time. Single point outliers and bimodal noise were more common in turbidity sensors. 

Drift was seen equally in turbidity and chlorine. 
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Figure 4.11. Data quality rules applied to Dataset A turbidity (a) and chlorine sensors (b), Dataset 

B turbidity (c) and chlorine sensors (d), and Dataset C turbidity (e) and chlorine sensors (f). 
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4.4.2 Linking Sensors Spatiotemporally 

4.4.2.1 Cross Correlating Water Quality Sensors 

Cross correlation was tested on multiple water quality parameters to determine which were 

the most suited. Suitability was determined by manually examining DWDS schematics and 

by discussing with utilities. For the correlations to be valid sensors must provide sufficient 

good-quality data in common, set as 50% of total window length for this work. This 50% 

commonality limit was selected to ensure that correlations were meaningful while also 

allowing for the long periods of missing or low-quality data experienced. PCC’s are 

calculated at different time shifts for each possible sensor pair, with strength of connectivity 

represented by the highest correlation coefficient, and with the temporal shift of this highest 

correlation also designating the transit time. The transit time is only valid if the maximum 

PCC is sufficiently high. For this work, a threshold of 0.7 was used as any values above this 

are widely accepted to indicate a strong correlation (Schober et al. 2018). For longer time 

series up to a year in duration, the cross-correlations were done on shorter four-week periods, 

with the median cross-correlation coefficient across the entire time series reported. This was 

done to avoid the correlations being dominated by seasonal trends shared by many unrelated 

locations, with shorter time frames more likely to support hydraulic connectivity. 

Cross-correlations results presented were all calculated on chlorine time series data, a 

parameter that was well-suited for this method. Figure 4.12 illustrates why longer time series 

need to be split into smaller sections for the correlations to be meaningful. In this example, 

two chlorine sensor pairs (A and B; and C and D) were found to be highly correlated over the 

8-month period shown, but upon inspection A and B were only distantly related in the 

network but over a long timeframe displayed similar seasonal chlorine trends, possibly due to 

their sharing of the same treatment works. When cross-correlations were performed using 

window sizes of four weeks, the median PCC for A-B was below the significance level of 0.7 

while the median PCC for C-D was above. A four-week window size was used, calculated 

once a week, with median coefficients presented for each sensor pair in heatmaps in Figure 

4.13(a), (b) and (c) for Datasets A, B and C respectively. The implied connectivity was 

verified using schematics showing sensor locations and through discussion with utility 

operators for Dataset C, indicating this method’s suitability in implying sensor connectivity. 

The blank squares in these plots indicate sensor pairs with insufficient data in common, after 

removing flagged anomalies. 
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Figure 4.12. Chlorine time series profile for two pairs, shown in (a) and (b), and (c) the sliding 

cross-correlation coefficients calculated using overlapping 4-week windows every 7 days. 

 

Figure 4.13. Heatmaps with peak PCC for each chlorine sensor pair in Datasets A (a), B (b), and C 

(c). Blank squares indicated insufficient data. 
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4.4.3 Multi-sensor Data Quality Validation 

The final step in the framework uses the spatiotemporal information, derived from cross-

correlation of chlorine sensors, to enable multi-sensor data validation. Figure 4.14(a) shows 

an example of chlorine sensor X with two extended periods above and below selected 

thresholds. In this case, the cross-correlation results provided information that two other 

connected sensors, shown in Figure 4.14(b) along with chlorine Sensor X with anomalous 

periods filtered out, continued to record chlorine data similar to that seen in normal operation. 

This provides higher confidence that these anomalous periods are data quality issues, rather 

than real network events. Hence rather than flagging this data it can be more confidently 

removed. 

Figure 4.15 illustrates how the spatiotemporal information derived from cross-correlations 

done on chlorine sensors can be utilised for other parameters in the same locations. In this 

case, the chlorine based cross-correlations provide information that Sensor P in Figure 

4.15(a) and Sensor Q in Figure 4.15(b) are connected and can be compared. In this example, 

a period of drift is detected in Sensor P but not seen in Sensor Q, indicating that this drift is 

likely a sensor issue. Sensor P also had two detected instances of extended periods above 1.5 

NTU and a detected period of drift. Sensor Q had similar corresponding extended periods 

above 1.5 NTU, indicating that these are real events passing through this network section. 

Sensor Q also had an additional period above 1.5 NTU in May 2021, not seen in Sensor P. As 

this third event cannot be validated as a real network event, this remains a potential sensor 

error. Of course, this could also be an event localised to sensor Q, particularly as it has 

confirmed similar events before and after. This example highlights the complexity of these 

natural systems and underlines why this final stage of the framework currently requires a 

subjective evaluation using all the information at hand. The only way to be certain these are 

sensor errors is through a physical inspection of the sensor, though this framework provides 

tools to make informed cross-validated decisions based purely on turbidity and chlorine data. 
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Figure 4.14. Multi-sensor data quality validation example, with (a) flagging of periods above 1.5 

mg/l and below 0.15 mg/l for 6 hours in Sensor A and (B) showing absence of anomalous feature 

in two sensors calculated to be correlated to Sensor A. 

 

Figure 4.15. Multi-sensor data quality validation example, with (a) showing instances of periods 

above 1.5 NTU for 6 hours and a detected period of drift in Sensor A and (b) showing detected 

periods above 1.5 NTU for 6 hours in Sensor B which was calculated to be highly correlated to 

Sensor A. 
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4.5 Discussion 

This work provides a data quality assessment framework for water quality sensors within 

DWDS, developed and demonstrated on turbidity and chlorine. Of the three-stage framework, 

the first has been automated, meaning a single sensor data quality assessment can be quickly 

provided for any dataset containing turbidity and chlorine time series data. The second stage 

has not been fully automated as care must be taken when interpreting cross-correlation results 

to be indicative of network connectivity and it is still recommended to perform a visual check 

on the chlorine data. The final stage is the least automated and requires an analyst to evaluate 

rules detected in single sensors using the derived spatiotemporal information. However, the 

logic presented in this framework provides a platform from which an automated multi-sensor 

multi-parameter data quality assessment system could be developed. The data sets used 

comprised different hardware and software and installation and maintenance practices with 

the quality assurance framework agnostic to these. Another strength of the framework is that 

as it is unsupervised and applicable across multiple parameters, it does not require labelled 

data sets, such as previously developed for water quality sensors deployed in rivers (Talagala 

et al. 2019). Such labelling of outliers by experts, to inform and compare detection 

performance, is (if possible) time consuming and is often parameter specific and even data set 

specific. A risk of the rules-based approach taken is the requirement for user defined values, 

but the sensitivity studies and application of single values across the diverse datasets explored 

here gives confidence that these were robust. The framework presented was developed on UK 

DWDS datasets and focused on turbidity and chlorine, two of the most measured water 

quality parameters. The datasets did not include sufficient data from other parameters, but the 

limited exploration possible showed them to be suitable to this approach. Two of the three 

datasets were analysed during sensor deployment, by accessing uploaded sensor data through 

an API, enabling sensor maintenance and deployment strategies to be informed by latest 

sensor performance and demonstrating the near real time potential of this framework. 

4.5.1 Rules, framework stage 1 

The data quality rules, stage 1, were developed to detect specific anomalous instances and 

have been shown to effectively achieve this, but each rule, and hence resulting data flagged, 

is subject to user defined input variables. The single point outlier rule considers that a data 

point unrepresentative of its surrounding data is an error, but this is not necessarily the case 
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and care must be taken to avoid removal of real, if irregular, data.  If a sensor has repeated 

instances of single point outliers, this could be indicative of a real but potentially undesired 

external factor such as a nearby valve, which could cause short discolouration events due to 

small amounts of material building up and becoming dislodged. Higher frequency sampling 

(closer to 1 sample/minute) would assist in determining whether single point outliers are 

genuine or not. The ‘extended period above/below a threshold’ rule has perhaps the greatest 

potential for flagging of valid data. Dismissal of these periods as sensor errors without cross-

sensor validation is not recommended. Hence the framework revisits the appropriate rules in 

step 3 following cross correlation in stage 2. This re-checking of data flagged by the rules 

following cross-correlation is also recommended for single point outliers and drift. An 

additional advantage of a rules-based approach is that they can easily be added or changed, as 

was the case with the bimodal noise rule which was added after being identified during 

monitoring. 

The data quality assessment results shown in Figure 4.11 provide a visual impression of the 

data quality seen in each dataset. The rules-based approach allows for the prevalence of each 

specific feature to be compared across sensor locations and datasets. Time stamp errors were 

only seen in Dataset B, which was the earliest of the datasets and used similar 

instrumentation, indicating that this data acquisition error may have since been fixed. 

However, due to the potential negative implications of this error, it is worth continuing to 

detect. Missing data was consistently seen in all datasets but quantifying missing data was 

limited by the lack of knowledge of intended sensor deployment timeframes. For example, a 

sensor in a dataset may have been intentionally taken out of service but this analysis did not 

always have access to that kind of operational information. Dataset C had the most flat lining 

data, the cause of which is unknown but could potentially be related to sensors being 

removed from deployment but continuing to take data as maintenance information was not 

always available. Single point outliers and bimodal noise were more common in turbidity 

sensors, as expected as these rules were originally developed for errors seen in turbidity 

sensors. Drift was seen equally in turbidity and chlorine, but not with equal confidence. 

Chlorine ‘drift’ could be due to changes in chlorine dosing, such as in response to seasonal 

temperature change, with revisiting chlorine flagged as drifting following cross correlation 

valuable. 
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4.5.2 Cross correlation, framework stage 2 

The cross-correlation analysis was found to work well for chlorine time series data, due the 

way chlorine decays steadily as it passes through a DWDS, leaving connected sensors with 

similar chlorine time series profiles, with a decay and time lag that cross-correlation can 

determine. This method was not found to work as well for turbidity sensors due to the time 

series profiles tending to be flatter unless there were specific network events. Cross 

correlation was explored for the limited data for other parameters available here. 

Conductivity and pH showed some promise, as did temperature. Patterns in temperature data 

occur and propagate within DWDS due to heating or cooling effects of the surrounding 

ground as a function of patterns of residence time. Hence the parameters likely to be effective 

for cross correlation are those with an expected time dependent behaviour occurring within 

DWDS pipes. Where the chlorine time series is too flat, for example immediately 

downstream of a well-controlled dosing point, this method will not work well. DWDS 

network features such as service reservoirs, valves, pumps etc. also interfere with water 

quality, making sensors either side of such features difficult to correlate. As shown in the 

results, window size is a major factor to consider when doing this analysis and using too big a 

window can lead to the correlations being dominated by in-common seasonal trends. 

Performing the cross-correlation using the overlapping four-week windows helped ensure 

that over the course of long-term datasets, flat periods or seasonal trends would not dominate 

the results. An issue with chlorine sensors is the need for regular recalibration to promote 

confidence in the baseline values. As correlations are not however affected by absolute 

values, this method is unaffected by poorly calibrated chlorine sensors, resulting in an 

effective method for determining the spatiotemporal relationship between chlorine sensors.   

The cross-correlation analysis provides an indication of connectivity and transit time.  It 

should be noted that connectivity is not as simple as up and down stream, rather that the two-

sensor location experience similar water at some time lag. This could, for example, be 

sensors on two legs of a branched system.  Hence the transit time is not simply the time to go 

from A to B, it can also be the difference in time for similar water to reach to different points 

in a network. This is still valuable insight, but care must be taken in interpretation of meaning 

and further use. The spatiotemporal information is used in this work to improve data quality 

assessment, but it can also be used to characterise network events. For example, an event 

could be described as local to a specific sensor, or global and seen by multiple sensors. 
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Knowing the connectivity and transit times is necessary to be sure about such conclusions. 

Global events that travel through the network can be assessed with knowledge of hydraulic 

transit times, which could help in locating source and destination of an event, allowing for 

event mitigation. Connectivity and transit time information can support and improve 

hydraulic models, particular useful when adding water quality functionality as higher 

standards of calibration would be required (Boxall et al. 2004), and accuracy of otherwise 

not-straightforward disinfection residual modelling (Speight and Boxall 2015). The use of 

cross-correlation analysis in DWDS is not unique and has been used to detect leaks by 

looking for drops in cross-correlations (Gomes et al. 2021). A similar method could 

potentially be explored to detect anomalous data in chlorine sensors that are correlated, but 

the data quality rules would be required to enable the correlations initially. A form of 

correlation, semblance analysis, was also previously used to associate daily cycles in turbidity 

and flow rate or pressure (Mounce et al. 2015). This analysis replied on time consuming 

manual data quality checking, addressed here, but more importantly showing the value and 

deeper insight that can potentially be gained by further analysis of quality assured data 

integrated across quantity and quality data.  

4.5.3 Multi-sensor validation, framework stage 3 

Whether to remove, flag or interpolate detected anomalies depends on the requirements of the 

subsequent analysis. For cross-correlation, it was desired to correlate the baseline 

performance of chlorine sensors. Therefore, the rules were applied with any detected 

instances removed. Even though this may have resulted in real network events being 

removed, this was desired in this case. For most other analytic needs rules such as time stamp 

errors, flat lining data and bimodal noise should rarely be left in. For other detections, a 

single sensor and parameter does not give enough information, which is why the cross-sensor 

validation is required. This idea is illustrated with the two cases studies in Figure 4.14 and 

Figure 4.15. Figure 4.14 shows a chlorine sensor with detected anomalous periods of both 

high and low chlorine. Comparisons to connected sensors, known from cross-correlation 

results, shows that this anomalous behaviour is likely a fault specific to this sensor, rather 

than a real network event. Such a conclusion could not have been made with high confidence 

without the additional context provided by the connected sensor data. Figure 4.15 shows how 

the cross-correlation results from chlorine sensors can be applied to other parameters, in this 

case turbidity. In this example, both sensors experience periods of elevated turbidity at the 
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same time, indicating a real network event. The transit time information given by the cross-

correlation analysis allows for the direction of travel to be known and for the event to be 

assessed as it tracks through this network section. Other information such as flow rate data, 

maintenance records and customer complaints would be useful in determining the cause of 

flagged rules. The final multi-sensor validation stage would be challenging to fully automate 

as comparing data quality rules across connected sensors is somewhat subjective. However, it 

could be automated to the point that any flagged data quality rule would come with details on 

whether similar issues are seen in known connected sensors, enabling operators to make 

quick decisions. The additional value from linking sensors spatiotemporally has been 

demonstrated and has implications for sensor deployment strategies, with connected 

monitoring locations providing greater potential for network insights. However, the 

connectivity between locations cannot always be inferred from schematics and can often be 

unexpected. Therefore, a practical approach to obtaining a spatiotemporally connected and 

performance assured sensor network within a DWDS is by applying this framework and 

redeploying until desired connectivity is achieved. 

4.6 Conclusions 

• This work presents and demonstrates an effective multi-sensor data quality 

assessment framework that combines an automated single sensor rules-based data 

quality assessment and spatiotemporal cross-correlation facilitating data quality 

assurance for turbidity and chlorine sensors deployed within DWDS.  

• The framework worked for different hardware configurations across three extensive 

real-world DWDS water quality datasets and was demonstrated to work both on 

historic data and near real-time. 

• The rules-based approach developed detected and quantified the presence of 

anomalous features allowing sensor performance to be evaluated and possible causes 

to be proposed. The nature of the rules allows rapid and simple modification, but with 

standardised settings found (via sensitivity studies) and used here across three large 

disparate datasets. 

• Cross-correlation has been shown to work effectively on chlorine data, supporting 

data quality assessment and understanding of system connectivity, including transit 

time between sensors. 
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• By applying this multi-sensor data quality assessment framework water utilities can 

extract added value from water quality sensors and provide high confidence data for 

further automated or manual analysis, helping bridge the gap between data and 

actionable information. 
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Chapter 5: Algorithms to Mimic Human Interpretation of 

Turbidity Events from Drinking Water Distribution 

Systems 

Reproduced from Gleeson K, Husband S, Gaffney J, Boxall J. Algorithms to Mimic Human 

Interpretation of Turbidity Events from Drinking Water Distribution Systems. Submitted to 

IWA Journal of Hydroinformatics June 2023. Accepted September 2023. 
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Chapter 5 has completed peer-review for publication as a journal paper in IWA Journal of 

Hydroinformatics. The contribution of the authors are the following: 

1. Killian Gleeson is the PhD candidate and first author of this chapter. Killian 

developed and led the labelling exercise, wrote the code for the automated algorithm, 

and wrote the first draft of the chapter. 

2. Dr. Stewart Husband and Prof. Joby Boxall are Killian’s academic supervisors, and 

Dr. John Gaffney is Killian’s industrial supervisor, and all three are co-authors of 

this chapter. All three provided critical feedback and input into the thinking behind 

the labelling exercise and interpretation of the results.  

5.1 Abstract 

Deriving insight from the increasing volume of water quality time series data from drinking 

water distribution systems is complex and is usually situation and individual specific. This 

research used crowd-sourcing exercises involving groups of domain experts to identify 

features of interest within turbidity time series data from operational systems. The resulting 

labels provide insight and a novel benchmark against which algorithmic approaches to mimic 

the human interpretation could be evaluated. Reflection on the results of the labelling 

exercises resulted in the proposal of a turbidity event scale consisting of advisory <2 NTU, 

alert 2< NTU <4 and alarm >4 NTU levels to inform utility response. Automation, for scale 

up, was designed to enable event detection within these categories, with the <2NTU category 

being the most challenging. A time-based averaging approach, based on data at the same time 

of day, was found to be most effective for identifying these advisory events. Simple flat-line 
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event detection was sufficient to identify higher-level alert and alarm events. The automation 

of event detection and categorisation presented here provides the opportunity to gain 

actionable insight to safeguard drinking water quality from ageing infrastructure. 

 

Figure 5.1. Chapter 5 graphical abstract. 

5.2 Introduction 

Continuous water quality monitoring within drinking water distribution systems (DWDS) 

enables network events to be captured and understood at a level of spatial and temporal detail 

that regulatory periodic discrete sampling cannot achieve. Causes of post-treatment DWDS 

water quality events range from hydraulic-induced mobilisation of pipe wall material 

(Husband et al. 2008), infrastructure failures allowing contaminant ingress (LeChevallier et 

al. 2003), to bulk water transformation such as excessive chlorine decay leaving no residual 

protection against contamination (Speight et al. 2019). A primary source of water quality-

related customer contacts is discoloured water (DWI 2022) with turbidity sensors, using 

optics to measure the light scattering of water, considered a proxy measurement (Boxall and 

Saul 2005). Turbidity has also been shown to provide network specific correlation with iron 

and manganese (Cook et al. 2016), so also providing some insight into these parameters. 

Time series turbidity data taken from within DWDS is therefore of particular interest to 

operators who wish to understand and hence reduce the likelihood of discolouration events 

and customer contacts. Utilities are increasingly deploying turbidity sensors within DWDS, 

with the resulting datasets currently relying on manual interpretation that is reactive, 

subjective, situation specific and time consuming. 
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Data visualisation and interpretation is a powerful human skill due to the brains ability to 

subconsciously process visual information in as little as 13 milliseconds (Potter et al. 2014), 

significantly faster than text or numbers. An expert analyst can quickly identify and label 

periods of data of interest from interpreting graphical representations, yet the subjective 

nature limits the ability to cross compare. The sheer volume of data now being collected, 

along with the 24/7 nature of DWDS, makes reliance on such subjective manual assessment 

unviable, particularly as human brains can only accurately and quickly comprehend up to 

four variables at once (Halford et al. 2005). There is therefore a need to better understand the 

human process and to develop computing algorithms that can automate aspects of the 

interpretation and analysis of turbidity data to rapidly provide actionable information for 

operational decisions. The IWA’s recent series of white papers on digital transformation 

(IWA 2022) stresses the need to move to more proactive infrastructure management and 

analysis of DWDS. Higher frequency turbidity time series data has the potential to enable this 

and improve our understanding of discolouration processes that will aid sustainable and safe 

delivery of high quality drinking water. 

5.2.1 Background 

Detection of interesting, undesired, or anomalous events in datasets is a widely studied and 

varied topic. The most common form is in detecting rare or unusual data points, often termed 

outliers or anomalies, by seeking deviations from assumed or modelled normality (Aggarwal 

2016). Successful examples are found in network hacking, credit card fraud, and medical 

diagnostics (Aggarwal 2016). A review of anomaly detection techniques by Chandola et al. 

(2009) identified the nature of the available data and the type of event detection required as 

two key factors that dictate what methods are suitable. The availability of labelled data, an 

agreed designation where one or more labels identify properties, characteristics or 

classifications, opens an array of supervised machine learning approaches. These include 

support vector machines (SVM) and artificial neural networks (ANN) that can be more 

effective than unsupervised techniques as they use knowledge of known previous examples 

(Aggarwal 2016). Another important factor is the number of variables in a dataset, with 

significant research being done to detect anomalies in applications where high-dimensional 

datasets are the norm such as financial records and online interactions (Thudumu et al. 2020). 

When the data is in a time series, the temporal context of each dataset requires consideration, 

and detection methods rely either on a statistical or forecasted expected value, from which the 
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real values are compared and some sort of outlier score is determined (Gupta et al. 2014; 

Blázquez-García et al. 2020). The field of time series forecasting is of direct importance here, 

with ARIMA (autoregressive integrated moving average) and exponential smoothing two of 

the most popular approaches (Hyndman and Athanasopoulos 2021). Important considerations 

are the quantity of data used to determine a forecast and the forecast horizon. ARIMA models 

utilise the autocorrelations in a time series in order to make forecasts (Hillmer and Tiao 

1982), while exponential smoothing gives greater importance to more recent data and has 

been adapted to account for trend and seasonality (Blázquez-García et al. 2020). Seasonality 

in time series data can refer to patterns occurring on a repeated periodic basis, such as yearly, 

monthly, weekly, or daily. Seasonality is relevant to DWDS time series due to the strong 

links to seasonal weather and human behaviour patterns. SARIMA (seasonal ARIMA) is a 

modification of ARIMA that is capable of accounting for seasonality while VAR (vector 

autoregression) and ARIMAX (X representing exogenous variables) models are adaptations 

that can consider additional variables. The ETS (error, trend, seasonal) framework describes 

nine exponential smoothing variations, based on how the error, trend and seasonal 

components are calculated and combined (Hyndman and Athanasopoulos 2021). Recent 

advances in time series forecasting include the use of neural networks, with LSTM (long 

short-term memory) particularly popular for supervised multi-variate time series forecasting 

(Hochreiter and Schmidhuber 1997), and Prophet, which can be applied automatically and 

considers holiday effects (Taylor and Letham 2018). 

Research on detecting events in DWDS has been dominated by leakage detection methods, 

most commonly looking for unusual patterns in acoustic or pressure sensor data (El-Zahab 

and Zayed 2019). Detection of water quality events within DWDS has not attracted as much 

attention, but research has been done to detect intentional contamination of DWDS by the US 

Environmental Protection Agency (EPA), who produced an open source event detection 

software package called CANARY, which consists of various different statistical algorithms 

to detect outlier values based on rolling window statistics, from which an event probability is 

calculated for each window using a Binomial Event Discriminator (BED) (McKenna et al. 

2007). The use of rolling windows is a common way to account for the temporal context in 

time series. CANARY has been applied to DWDS data in the UK, where it has shown 

promise in detecting multi-parameter events (S. Mounce et al. 2012). The difficulty of linking 

detected events to confirmed real world actions is highlighted by this research, where only 

28% of detected events could be linked either to customer contacts or hydraulic disturbances. 
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Labelled data in DWDS are uncommon and the process of linking data to information from 

network operations or customer interactions is time-consuming. Additionally, deciding what 

constitutes a water quality event is not clear cut, meaning any labels cannot be considered 

ground truth. Crowd-sourced labels are commonly used in machine learning and research has 

been done to understand how to deal with inevitable human error (Ustalov et al. 2021) with 

strategies that include multiple labellers per example. However, the labels used are generally 

definitive, such as whether a picture contains a cat or a dog, and little research has been done 

to understand how labels can be combined in cases where the question posed is highly 

subjective. 

When developing methods for analysing events in turbidity time series, it is important to first 

understand the nature of turbidity data and the desired events to detect and study. This is not a 

trivial challenge. Depending on turbidity event definition, these may occur frequently or as 

unique incidents and are linked to network and sensor installation location. In the UK, 

legislation dictates that the water at customers taps should not exceed 4 NTU, nor 1 NTU 

exiting treatment works (DWI 2018). Therefore, network turbidity sensors recording values 

more than 1 NTU are evidence of in-transit deterioration, and this may represent actionable 

information. In reality, turbidity levels leaving treatment works are generally much lower 

than 1 NTU, with less than 0.01 % of regulatory turbidity samples exiting treatment works 

exceeding 1 NTU in 2021 (DWI 2022). Therefore, even turbidity events occurring below 1 

NTU may relate to variations in discolouration risk and also be worthy of identification and 

study. Yet analysis of DWDS turbidity time series data has tended to focus on reacting to 

larger events, meaning the information at lower turbidity levels has remained unused. 

Computing and modern analysis techniques however offer the potential to rapidly analyse 

lower-level turbidity data but require specific instructions which are currently not well 

understood.  

The aim of this research was to explore and to improve understanding of what constitutes an 

event worthy of further consideration in turbidity time series data and then to develop and 

assess automated computing algorithms that can rapidly review and identify such events, 

mimicking human judgements and intuitive extrapolation to inform both reactive and 

proactive utility responses. 
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5.3 Method 

5.3.1 Methodology 

The difficulty and subjectivity of linking turbidity data with real-world evidence of water 

quality deterioration led to a crowd-sourcing approach being taken that involved a time series 

labelling exercise, with domain experts being tasked to label what they considered to be 

events of interest within turbidity time series examples. This approach takes advantage of 

human brain power, which computer algorithms can only approximate when given specific 

instructions. To overcome the problem of bias and subjectivity, the same time series 

examples were shown to different groups at different meetings, with each of the resulting 

Boolean labelled time series combined and averaged. This averaging of results for each 

turbidity datapoint returned an associated ‘label average’ score, between 0 and 1. This value 

could then be used as a benchmark to evaluate the suitability of algorithmic approaches such 

as flat-line detection and the calculation of event score time series of similar form to the 

averaged labels. The labelled data would also inform whether a single approach can handle 

different event types or whether a combination of approaches is more suitable. 

5.3.2 Event Labelling Exercise 

An interactive labelling exercise was compiled using the open-source browser-based time 

series labelling tool Trainset (Geocene 2020), to enable users to label six turbidity time series 

examples. The examples were selected after reviewing approximately 100 turbidity sensors 

across 4 different UK DWDS, which combine to a rough total of 150 years’ worth of 

turbidity time series data. As this research is interested in both reactive and proactive aspects 

of turbidity events, six turbidity examples were selected to represent a range of different 

event types and magnitudes that were observed in the wider datasets. Each turbidity example 

had been quality assured according to the procedures set out in Chapter 4. Different durations 

were used to represent realistic but manageable sensor deployment time frames, ranging from 

2 to 10 weeks. Care was taken to ensure the participants were not aware of the reasoning 

behind the examples. Six time-series of 16 to 75 days in duration was considered to be a safe 

limit to ensure the human experts maintained a high level of focus and attention to detail. 

Additionally, limiting this exercise to just examples meant it took roughly 10 minutes to 

compete, which was considered a realistic expectation of participants. A screenshot of the 

event labelling software with example number 4 is shown in Figure 5.2 where the pink 
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highlighted data is an example of what user-labelled data looks like. Example 4 is unique out 

of the six time series turbidity datasets in that it was artificially constructed (by splicing and 

combining data) to represent some different theoretical types of turbidity event; (1) a 

hydraulic-induced material mobilisation event, (2) a single point event, (3) a baseline-change 

event, and (4) an increase in diurnal turbidity event. These event types are marked in Figure 

5.2, where event (5) is a combination of the first four. The other examples are all unedited 

turbidity time series from different UK DWDS (displayed in Figure 5.4). To ensure 

consistency between data from multiple sources and reporting intervals, all examples were 

resampled to a 15-minute sampling interval. 

 

Figure 5.2. Screenshot of turbidity example 4 in event labelling tool, with the theoretical event types 

highlighted. 

The labelling exercise was run across multiple sessions with anonymity retained and 

participant consent required to confirm they understood what they were taking part in before 

they could proceed to the labelling interface. Upon completing the labelling exercise, users 

were directed to an upload page on a dedicated webpage, which had an upload button that 

anonymously uploaded the labelled data to a dedicated server folder. For the labelling 

sessions of the exercise, users were simply given the instruction to ‘label events’ with the 

following provided as an event definition: 

“An event is described as a noteworthy period of data to be flagged for further 

consideration” 

5.3.3 Event Score Calculation 

Each algorithmic approach involved first making a forecast (other than flat-line), which is 

then subtracted from the turbidity data to obtain a residual time series. The next step was to 
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transform the residual into an event score time series, which could be compared to the 

averaged-out labels. This transformation was achieved using a sigmoid function. To compare 

different time series forecasting methods, the sigmoid function was optimised to find the 

lowest error against the labels, for each residual calculated. Each approach involved 

adjustable parameters, which were investigated in a sensitivity analysis with the goal of 

determining the combination that most closely captured the information gained from the 

labelled datasets. 

5.3.3.1 Forecasting Methods 

The different methods used to make a forecast, from which a residual was calculated, are 

listed in Table 5.1. All approaches were employed for sliding windows of 24, 48 and 72 

hours, as well as expanding windows for forecast horizons of single point and between 2-72 

hours ahead. CANARY was an exception as it only produced next step forecasts and does not 

include expanding windows. However, the remaining approaches all share window and 

forecast horizon parameters, with all method-specific adjustable parameters listed in Table 

5.1. Averaging methods were based on using data within the specified window, with different 

quantile levels examined, as well as mean values. The time-based average method 

represented a deviation from the typical sliding window approach. Instead of using a window 

directly preceding each datapoint, this method looks at previous data at the same time of day, 

accounting for the diurnal patterns often seen in DWDS data that is heavily linked to human 

behaviour. New adjustable parameters were introduced here, the size of window to include 

each day (e.g. for a datapoint at 8:30 am, a 2 hour window would mean any data between 

7:30 am and 9:30 am would be included) and the averaging method used. The averaging and 

time-based averaging approaches were developed in Python using the Pandas (McKinney 

2010) library. 

ARIMA has three input parameters: the lag order (p), the degree of differencing (d), and the 

order of moving average (q) [16]. These parameters make up the order, often shown in the 

form: (p, d, q). SARIMA also has seasonal ordering parameters P, D, Q, and m, where m is 

the seasonal period. Wherever the seasonal period was a possible option, 96 represent the 

diurnal patterns that turbidity time series can exhibit as this is how many samples were in a 

day (at 15-minute sampling rates). Exponential smoothing methods were explored using the 

ETS framework that looked at the impacts of different error, trend, and seasonal component 

calculations. Each component can be either additive or multiplicative. An exponential 



72 

 

weighted mean (EWM) approach was also included, which requires the decay to be specified, 

either in terms of centre of mass, span, half-life, or as a smoothing factor. Other methods 

investigated were Prophet and CANARY. Prophet was run using both its automatic 

functionality, and for different growth methods and seasonality modes. The ARIMA, 

SARIMA, ETS, and Prophet approaches were developed using the machine learning for time 

series interface library sktime (Loning et al. 2019). The CANARY software was run and 

included in this analysis, using the linear prediction correction filter (LPCF) method and 

BED. The alternative multi-variate nearest neighbour (MVNN) method is not applicable to 

this univariate problem. LPCF uses the MATLAB filter and lpc functions to estimate the next 

value based on weighted filter applied to a window of normalised data proceeding each 

datapoint (Murray and Haxton 2010). The user needs to specify window size and the 

threshold, in standard deviations, above which is considered an outlier. Window sizes 

between 1 and 72 hours were included in the sensitivity analysis while standard deviation 

thresholds were looked at between 0.5 and 1.5. Parameters event timeout, the number of 

timesteps after an event is found before alarm is silenced automatically, and event window 

save, a parameter related to plotting identified events, were not adjusted as this research was 

more interested in the residual calculated. Table 5.1 lists the adjusted parameters for each 

forecasting approach, aside from the window and forecast horizons. 

Table 5.1. Forecasting methods and associated adjusted parameters. 

 

Approach Variants (number of 

adjusted parameters) 

Adjusted Parameters 

Averaging Mean (0), median (0), 

quantiles (1) 

quantile value 

Time-based 

Averaging 

Mean (1), median (1), 

quantiles (2) 

Window size (hours), averaging method, quantile value 

ARIMA-based ARIMA (3) 

SARIMA (6) 

p, d, q (ARIMA) 

p, d, q, P, D, Q (SARIMA) 

Exponential 

Smoothing 

ETS (4) 

EWM (1) 

Error, trend, seasonal, damped trend (ETS) 

Alpha (EWM) 

Prophet Auto and with settings 

(3) 

Growth method, growth cap (if method is logistic), 

seasonality mode 

CANARY CANARY LPCF (1) Outlier threshold 
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5.3.3.2 Event Score and Comparison to Labels 

After residuals were calculated for each of the forecast methods, the sigmoid function was 

used to transform the residuals into event scores. The sigmoid function maps inputs to 

outputs between 0 and 1 using the following Equation (1). 

𝒚 =  
𝟏

(𝟏 + 𝒆−𝒄 ∗ (𝒙−𝒃))
      ( 1 ) 

Where, x = input data, b = sigmoid centre point, c = sigmoidal width. The two sigmoid 

parameters were optimised to minimise the error against the labelled data using SciPy’s 

optimisation function (Virtanen et al. 2020). The optimisation was done with all examples 

and using just 3-6, so without examples 1 and 2. Examples 1 and 2 contain significant large-

scale events exceeding 4 NTU and were excluded from one optimisation to investigate what 

approaches work best for lower-level turbidity events, in this case with all data below 2 NTU. 

RMSE (root mean squared error) was used to evaluate each approach. The root mean squared 

error (RMSE) is a commonly used forecasting metric, and is represented by Equation (2): 

𝑹𝑴𝑺𝑬 =  √
∑ (𝒙𝒋 − 𝒚𝒋)𝟐𝒏

𝒋=𝟏

𝒏
     ( 2 ) 

The RMSE is known for being sensitive to outliers or large errors (Chai and Draxler 2014). 

As all these values are between 0 and 1, the largest possible error is when the labels are 1 and 

the event detection system is 0 (or vice versa). For this research, it is desirable to punish these 

outcomes, so the RMSE is a suitable performance metric. To include more forecasting 

methods, windows, and horizons, the first 3 days of each example was omitted when 

calculating the RMSE. Methods such as ETS require two full cycles of data to account for 

seasonality. Other approaches such as the time-based averaging require at least 1 day of data, 

while some methods worked best for forecast horizons of 24-48 hours. This also handles the 

‘cold start’ problem many forecasting methods have, where it is very difficult to make 

predictions without any prior data. 

For the CANARY LPCF, the BED approach was used in addition to the sigmoidal approach 

already outlined. Since BED requires a Boolean input, this could not be used for other 

residuals without adding an additional outlier threshold step, which risks losing complexity 

and adds an unnecessary additional input. BED uses probability theory to estimate event 

probability for each datapoint, based on the number of outliers present within a specified 

window. BED takes two input parameters, window size and outlier probability. Outlier 
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probability is a probability threshold above which events are counted. Since this research is 

only interested in the probability score, the probability threshold is not needed. The 

CANARY manual recommends using BED windows between 4 and 18 timesteps (between 1 

and 4.5 hours for 15-minute data) so this was the range examined in the sensitivity analysis. 

5.4 Results 

5.4.1 Labelled Results 

The turbidity time series labelling exercise was run four times during different academic and 

industry events, with a total of 48 participants returning complete labelled data. Session 1 

took place during an online meeting by a university research group who focus on DWDS. 

Session 2 took place during a water utility-academia event, focusing on discolouration in 

DWDS, with 12 UK utilities represented. Session 3 was run independently by a water 

utility’s network modelling team. The final session was run during a separate water utility-

supply chain-academic (industry dominated) event which focuses specifically on water 

quality within DWDS, with 16 different water utilities and at least 8 supply chain companies 

present. Aside from session 3, these exercises were run during academic and industry 

meetings that focussed on discolouration and water quality issues in distribution systems, 

meaning the participants were not selected specifically for the purpose of participating in this 

exercise. The labelling exercise sessions are summarised in Table 5.2. Figure 5.3 shows 

boxplots of the total percentage labelled data points from each session, illustrating the variety 

in responses within and across sessions. Session 3 stands out as having the lowest amount of 

labelled data. This session was run externally, without the authors of this research in 

attendance. A stricter definition of what constitutes an event was used, with attendees 

focussing on significant events, potentially of regulatory concern. This highlights the 

challenges in defining what constitutes an event of interest, or with respect to this research, 

what information is required to inform what decisions from the data and the impact of 

differing instructions and perspectives. The session 3 results were included in the subsequent 

analysis as the perspectives of session 3 participants were considered equally valid. This 

enabled the inclusion of a wide range of different expert opinion. 

Table 5.2. Event Labelling Sessions. 

Session Event Valid Labelled Datasets 
1 University Research Group 8 

2 Water Utility-Academia Event 9 
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3 UK Water Utility 12 

4 Water Utility-Supply Chain-Academia Event 19 

 

Figure 5.3. Boxplot of total percentage labelled data across all six example datasets per session. 

Figure 5.4 plots each turbidity time series example along with the labelling results, averaged 

out for each datapoint. The value of each data-point indicates the fraction of participants that 

deemed it to be noteworthy. These event score time series provide a useful way to interpret 

the labelling results and a benchmark to evaluate algorithmic approaches against. One of the 

challenges of human analysis is inherent bias towards higher turbidity events. In these time-

series, examples 3-6 had little data above 2 NTU, meaning that the lower-level events were 

more easily visualised than in examples 1 and 2. Figure 5.5 is a scatter plot showing the 

average absolute turbidity values for each averaged out label, divided into those from 

examples 1 and 2 with significant higher turbidity events, and those from examples 3-6. This 

illustrates the impact of bias on the presence of higher turbidity events and how the human 

participants then interpreted the lower-level turbidity data present in the same dataset. In 

order to examine automated analysis methods that would work well at analysis of lower-level 

turbidity events, the data from examples 3-6 were treated separately. To distinguish the low-

level events, a threshold of 2 NTU was identified and analysis of events below this are 

termed ‘advisory’. At the same time events exceeding the regulatory value at customer taps 

of 4 NTU, and therefore typically requiring immediate attention, are considered ‘alarm’. 

Between these levels, events are considered ‘alert’, representing significant deterioration 

compared to the maximum permitted turbidity of 1 NTU leaving a treatment works. This 

turbidity event scale naming convention and the boundaries are summarised in Table 5.3. 



76 

 

 

Figure 5.4. Six turbidity time series examples, in plots (a) to (f) respectively, along with 

corresponding average label results (the x-axis and NTU y-axis ranges are scaled for each dataset). 
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Figure 5.5. Mean absolute turbidity value for each average label value; for Examples 1 & 2 (blue 

squares) and Examples 3-6 (purple stars). 

Table 5.3. Turbidity Event Scale. 

Event Type Turbidity Limits 

Advisory < 2 NTU 

Alert 2 < NTU < 4 

Alarm >4 NTU 

 

5.4.2 Event Analysis Results 

Using the event scaling outlined in Table 5.3, this research explored whether a single 

algorithm could deliver all three levels, or whether combinations were required. Such as the 

use of simple flat-line approaches to identify and separate alert and alarm events for reactive 

response, and tune more sensitive algorithms with the ability to accurately identify lower-

level events that could inform proactive measures. Methods that output event score time 

series between 0 and 1, like that of the averaged-out labels, were therefore developed and 

tuned for all 6 examples (all 3 event categories), and to advisory events only, examples 3-6. 
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5.4.2.1 Flatlines 

Flat-line algorithms to detect alert and alarm events are considered separately here as they do 

not require the process of prediction and residual calculation. These flatline thresholds are 

shown applied to Example 1 in Figure 5.6 below. This simple approach was effective at 

identifying both alarm and alert events. Attempts to use a flat line approach for identification 

of advisory events was very poor. Unlike alert and alarm events, applying a flat-line at lower 

turbidity levels would make detection strongly dependent on background turbidity levels. For 

example, applying a 0.5 NTU flat-line would result in 1 advisory event in Example 3 and 39 

in Example 5, due to Example 5 having higher background turbidity. Therefore, analysis of 

advisory events required consideration of background turbidity which the calculation of 

residual values achieved, prior to conversion to event scores. 

 

Figure 5.6. Flatline thresholds differentiating Alert (2-4 NTU) and Alarm (>4 NTU) events in 

Example 1. 

5.4.2.2 Calculating Event Scores 

Figure 5.7 illustrates the application of the ARIMA algorithm as an example of the approach 

adopted. The top plot shows an expanding window ARIMA forecast for Example 1, while the 

bottom plot shows an expanding time-based averaging forecast for Example 3. Figure 5.8 

illustrates how the obtained residuals were then transformed into an event score time series. 

A sigmoid function was used to understand and optimise the relationship between the 

residual values and the labelled data. The RHS plots show the outputs of the sigmoid function 

compared to the labels when averaged, demonstrating how the obtained human interpretation 

can be mimicked using this sigmoidal function. 
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Figure 5.7. Example 1 with expanding ARIMA forecast values (a) and Example 3 with expanding 

time-based average forecast values (b). 

 

Figure 5.8. Optimised sigmoid function for ARIMA tuned on all events and time-based (tb) average 

method tuned on advisory events (a), with corresponding outputs compared to Example 1 and 3 

labels, (b) and (c) respectively. 
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5.4.2.2.1 Forecasting Methods 

Each approach (other than flat-lines) included in this research had its calculated residual 

optimised to minimise errors against the averaged-out labels, hence the forecasting methods 

can be compared to each other using the optimised error values. The solution with the lowest 

RMSE for both ‘all events’ and for ‘advisory only events’, for averaging and time-based 

averaging approaches, is shown in Table 5.4. An expanding window had better results than 

any sliding window approach, while forecast horizons of 12 and 24 hours were best for 

averaging, for ‘all events’ and ‘advisory only events’ respectively. For time-based averaging, 

forecast horizons can only be in multiples of days, with 1 and 3 days found to work well for 

‘all events’ and ‘advisory only events’, respectively. Daily window sizes of 6 and 3 hours 

were found to work better than exact time-based values, showing that including data before 

and after each timestamp was useful. 

The optimal parameters for ARIMA and SARIMA are displayed in Table 5.5. An expanding-

type window in combination with 24-hour forecast horizon worked the best. For ARIMA the 

most useful order was (1,0,0) which represents a first-order autoregressive model without any 

differencing or moving averaging. SARIMA was found to the most time-consuming 

approach, meaning not all possible combinations were completed. Of those that were, the best 

approach had an order of (1,0,0)x(0,0,0) meaning no seasonality terms were employed, 

suggesting the (1,0,0) order ARIMA was adequate. The optimal parameters for the 

exponential smoothing approaches are listed in Table 5.6. Using a half-life of 14-days 

worked well for EWM, while the optimal solutions found using ETS both involved no trend 

or seasonal components, meaning simple exponential smoothing was found to work best. The 

optimal parameters for Prophet are shown in Table 5.7. For Prophet the same residual was 

found to be the best solution for all events and for only advisory events. Even the sigmoid 

function parameters are like each other. For LPCF, parameters are shown in Table 5.8 for 

solutions using both the optimised sigmoid approach and CANARY’s BED function. 

CANARY does not allow expanding windows, nor does it include forecast horizons other 

than single point. The optimised sigmoid parameters have noticeable different parameters to 

other methods due to the larger magnitudes seen in CANARY LPCF residual time series. 

When using BED, the best solution for all event levels and advisory event levels were 

identical. 
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Table 5.4. Optimal parameters found for averaging and time-based averaging. 

 

 

Averaging Time-based averaging 

Tuned on all 

events 

Tuned on 

advisory only 

events 

Tuned on all 

events 

Tuned on 

advisory only 

events 

Window expanding expanding expanding expanding 

Forecast 

Horizon 

12-hour 24-hour 1 day 3 day 

Other 

parameters 

averaging method = 

mean 

quantile=0.8 daily window size = 

6-hour, averaging 

method = median 

daily window size = 

3-hour, averaging 

method=mean 

Sigmoid 

Parameters 

b = 0.51, c = 4.47 b = 0.24, c = 7.72 b = 0.59, c = 4.04 b = 0.23, c = 8.98 

Table 5.5. Optimal parameters found for ARIMA and SARIMA. 

 

 

ARIMA SARIMA 

Tuned on all 

events 

Tuned on 

advisory only 

events 

Tuned on all 

events 

Tuned on 

advisory only 

events 

Window expanding expanding expanding expanding 

Forecast 

Horizon 

24-hour 24-hour 24-hour 24-hour 

Other 

parameters 

order = (1,0,0) order = (1,0,0) order = (1,0,0) x 

(0,0,0) 

order = (1,0,0) x 

(0,0,0) 

Sigmoid 

Parameters 

b = 0.51, c = 4.50 b = 0.32, c = 6.55 b = 0.51, c = 4.49 b = 0.31, c = 6.57 

Table 5.6. Optimal parameters found for EWM and ETS. 

 

 

EWM ETS 

Tuned on all 

events 

Tuned on 

advisory only 

events 

Tuned on all 

events 

Tuned on advisory 

only events 

Window expanding expanding 24-hour 24-hour 

Forecast 

Horizon 

24-hour 24-hour 12-hour 48-hour 

Other 

parameters 

half-life = 14 days half-life = 14 days error=additive, 

trend=None, 

damped=False, 

seasonal=None  

error=multiplicative, 

trend=None, 

damped=False, 

seasonal=None 

Sigmoid 
Parameters 

b = 0.52, c = 4.42 b = 0.34, c = 5.98 b = 0.63, c = 3.89 b = 0.41, c = 5.25 
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Table 5.7. Optimal parameters found for Prophet. 

 

 

Prophet 

Tuned on all events Tuned on advisory only events 

Window expanding expanding 

Forecast 

Horizon 

24-hour 24-hour 

Other 

parameters 

growth=logistic, growth cap=0.5, daily 

seasonality=False, seasonality 

mode=additive  

growth=logistic, growth cap=0.5, daily 

seasonality=False, seasonality mode=additive 

Sigmoid 

Parameters 

b = 0.55, c = 4.17 b = 0.48, c = 4.42 

Table 5.8. Optimal parameters for LPCF using sigmoid function and BED. 

 

 

LPCF LPCF + BED 

Tuned on all 

events 

Tuned on 

advisory only 

events 

Best for all 

events 

Best for 

advisory only 

events 

Window 48-hour 9-hour 72-hour 72-hour 

Forecast Horizon N/A N/A N/A N/A 

Other parameters outlier threshold = 

0.5 

outlier threshold = 

1.0 

outlier threshold = 

1.5 

outlier threshold 

= 1.5 

Sigmoid (or BED) 

Parameters 

b = 6.41, c = 0.36 b = 11.30, c = 0.19 BED window = 4 BED window = 

4 

 

5.4.2.2.2 Comparison to Labels 

Figure 5.9 plots the lowest RMSE found for each of the forecasting methods investigated. 

The methods were tuned for lowest RMSE and assessed both for all event levels (using all 6 

examples) and for advisory events only (using examples 3-6). The residuals from 

CANARY’s LPCF algorithm were passed through the same sigmoidal function, as well as 

using CANARY’s in-built BED function (though this was not tuned in the same way as the 

sigmoid approach). An expanding ARIMA approach with a (1,0,0) order and 24-hour 

forecast horizon resulted in the lowest RMSE of 0.1137 across all examples. The second-best 

approach across all examples was the simple averaging (RMSE of 0.1140) though there were 

ten different ARIMA combinations that resulted in an overall RMSE of 0.1140 or less, 

including a (1,0,0) order at a 48-hour horizon, (0,0,0) order, which represents white noise, 

with shorter 6 and 12-hour horizons, and orders (0,0,q) with q=1,2,3 for forecast horizons of 

6 and 12-hours. This suggests ARIMA has strong applicability to this research and that 
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including autoregressive or moving average terms can be useful for calculating the residual 

and subsequent event score time series. The time-based averaging approach worked the best 

for advisory events with a RMSE of 0.1095, but this approach did not work effectively at 

generalising across all event types and performed worse than the averaging approach for all 

examples. Figure 5.10 shows this approach applied to data from example 2, before and after a 

larger alarm type event, and compared to the averaged-out labels in example 2, with the 

turbidity data clipped to exclude the larger 6 NTU event. The averaged-out label, shown in 

the context of this NTU y-axis scale, did not have any score above 0.2 outside of this larger 

alarm event. By contrast the time-based average approach, tuned on advisory data, is not 

biased by the presence of the alarm event, and returned event scores of increasing magnitude 

in the days leading up to the alarm event, with a value of 0.7 seen about half a day before the 

alarm event occurred. This demonstrates the promise of this approach in being part of a 

proactive management system. 

 

Figure 5.9. Lowest RMSE for each type of forecasting methods, divided into tuning for all event 

types (darker shades) and advisory only events (lighter shades) and evaluated on all event types (a) 

and advisory events (b). Note that the y-axis is clipped from 0.1 for visual interpretation. 
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Figure 5.10. Example 2 turbidity data (clipped exclude the alarm event on day 11) and averaged-

out labels versus sigmoid output using time-based averaging method, optimised for advisory events. 

 

5.5 Discussion 

This research presents an evaluation of approaches to analyse and understand events in 

DWDS turbidity time series data and uses a crowd-sourced labelled dataset as a benchmark. 

This evaluation process presents an alternative approach to overcome the difficulty of linking 

turbidity data with confirmed real-world events. With six turbidity examples and 48 

participants in total, but covering a wide range of companies/organisations, conclusions 

should be considered with this relatively small sample size in mind. The number of examples 

included was limited by how long these sessions could be run, while obtaining more 

participants would be challenging without reducing the level of domain expertise. Following 

reflection on the results of the four labelling exercises, a three-level turbidity event scale was 

defined as advisory, alert and alarm (Table 5.3). The presence of alert and alarm turbidity 

events in examples 1 and 2 impacted labellers interpretation of advisory events. Such 

advisory events were easier to interpret in examples 3-6, with participants considering many 

noteworthy. As highlighted in the background section, even smaller turbidity events with 

responses < 1 NTU can suggest in-network deterioration and may provide valuable precursor 

information about levels of discolouration risk within DWDS. This research identified and 

was subsequently able to focus on proactive discolouration approaches as well as reactive 

measures by differentiating through consideration of alert and alarm events. Flatline alert and 

alarms at 2 and 4 NTU are reliant on the turbidity sensor accuracy and overall data quality. 

Lower flatline approaches would be too dependent on sensor calibration accuracy and 
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background turbidity. The residual calculations performed in this research are however 

agnostic to turbidity baseline values, instead looking for increases compared to recent data. 

Therefore, these approaches are not reliant on sensor calibration accuracy. However, a prior 

data quality assessment is required, particularly to remove sensor errors such as drift that may 

occur in the data which, if left, could interfere with the residual calculations. This was 

performed on the examples in this research using a set of data quality assessment rules 

previously developed in Chapter 4. 

The labelling and evaluation process to mimic human interpretation is something that could 

be repeated for different parameters, or for turbidity with additional contextual information, 

such as flow rate data or customer contacts. Additionally, it could be run for specific teams or 

companies, with the aim to develop a solution that best matches their requirements and 

collective intuition. This highlights the need to clearly understand what information or insight 

is required prior to developing automation techniques, and the need to match such techniques 

to the data and insight sought. The results show that many residual calculation approaches, 

using both statistical averaging and time series forecasting, can be used in combination with a 

sigmoid function to produce an event score time series. Method selection may therefore come 

down to decisions about computational power, processing time and number of adjustable 

parameters. The event score time series output can form an event detection system or can be 

used to understand network conditions or performance. This understanding could then be 

applied to compare performance across networks or allow temporal analysis to detect 

changing performance if mobile monitors are deployed on a shorter term but repeating basis. 

5.5.1 Human Interpretation of Turbidity Events 

Participants were asked to highlight “noteworthy periods of data to be flagged for further 

consideration”. The exercise did not provide any additional contextual information, such as 

sensor location or other supporting information such as flow rate data or connected sensors 

also measuring turbidity or other water quality parameters. Such information is important 

when further analysing turbidity events in DWDS but were outside of the scope of this 

specific research for identifying data of interest for such further interpretation. The 

experience of visualising each example, one by one, within the trainset application told a 

story and may have influenced the participants interpretation and understanding. However, 

this is unavoidable with any visualisation of complex data, but by averaging across multiple 

participants it is hoped this effect was limited. The results from the labelling exercises 
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demonstrate a variety in how domain experts interpret turbidity events. This highlights the 

complexity of the question of what a turbidity event even is; something that is often 

incorrectly considered as a black and white problem. Additionally, the responses show that 

context is everything when it comes to human interpretation. Something is only noteworthy if 

it stands out in the context in which it is presented. Analysis of how participants interpreted 

examples 1-2, compared to examples 3-6, as shown in the scatter plot in Figure 5.5, 

highlights how the presence of larger events impacts interpretation of lower-level data. 

Larger events seen in examples 1 and 2 led them to ignore the lower-level events also 

occurring in these examples which are less visible due to the y-axis scale, yet these are 

similar in magnitude to those seen in examples 3-6 that most participants acknowledged as 

events. This demonstrates that human interpretation is inherently subjective. By contrast, a 

computer will follow instructions precisely and repeatedly. It also highlights that when 

presented with these lower-level turbidity events unbiased by larger events, participants 

tended to consider them noteworthy. 

Even when participants provided consistent labelled responses, there is an assumed capability 

that cannot be proven that a participant working in this domain is sufficiently skilled. Though 

all labellers are actively working in positions where they deal with and understand turbidity 

and discolouration, high-frequency turbidity time series data like the examples presented is 

relatively newly available. This means even domain experts may not necessarily be very 

experienced in interpreting such data. Similarly, it is not possible to determine whether 

participants were influenced by external opinions or factors. Some difficulties were 

encountered during the labelling exercises, with some participants only labelling one 

example, or leaving just one unlabelled. Due to the anonymity of the responses (required to 

meet ethics standards), it was not possible to question participants giving invalid responses. 

Therefore, such responses were omitted from this research. In total 48 verified labelled 

responses were included. This included responses from session 3 that consisted of some 

unlabelled examples, learned in a post labelling debrief. Session 3 was run externally, and the 

participants were given a slightly different event definition, where an event was considered 

anything requiring immediate action, so over 4 NTU or at least 2 customer contacts. This 

explains why there were significantly lower levels of labelled data in this session and 

demonstrates how easily even domain experts are influenced when given specific instruction. 
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The examples included in the labelling exercise were selected to include different types and 

magnitudes of turbidity events. However, it is not possible to include all possible scenarios 

with limits also required to make the labelling exercise practical for participants. The 

examples were checked to be clear of sensor errors, though in reality differentiating sensor 

errors from genuine events can be difficult. Example 4 was the only example to have been 

artificially concatenated, to understand how different theoretical event types may be 

interpreted. Looking at the corresponding averaged-out labels (Figure 5.4 (d)), the first event, 

representing a hydraulic-induced mobilisation type event, had the highest event score of 0.68, 

with the other three event types, the single point event, the baseline change event, and the 

changing diurnal pattern event, not exceeding a 0.3 event score. The final event in example 4 

is a combination of these four events and the resulting event score shows an increase in 

interpreted noteworthiness due to this combination, with the start of this combined event 

exceeding 0.4. Ultimately it was decided that focusing on events at different scales was more 

useful for this research, though future research could focus more on categorising different 

event types. 

5.5.2 Event Score Calculation 

The approaches used to analyse events in turbidity in this research were performed with the 

understanding that turbidity events are not necessarily rare, rendering many outlier or 

anomaly detection methods developed in other fields unsuitable. Time series forecasting 

methods were explored, with the aim to obtain residual values that enable noteworthy periods 

of interest to be sufficiently emphasised for subsequent conversion to event score time series 

with values between 0 and 1, comparable to the averaged-out labels. Calculating event score 

time series that matched the averaged-out labels was not trivial, in particular finding a 

solution that generalised across the different examples. The optimisation and sensitivity 

analysis allowed for each method, and associated input parameters, to be compared in terms 

of their suitability for this task. This research did not focus on the most accurate forecasting 

approach, but instead investigated what approach best enables periods of noteworthy data to 

be highlighted. For this reason, averaging approaches worked effectively at ignoring periods 

of increased turbidity and in doing so these periods were revealed in the residuals. Some 

interesting outcomes about window type and forecast horizons that are useful for analysing 

turbidity events were uncovered. Expanding window types worked best across multiple 

methods, meaning more data tended to be beneficial in the time scales examined in this 
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research. Short forecast horizons run into problems during an event where the forecasts start 

to account for the elevated turbidity. For this research, a forecast that effectively ignores 

increases is beneficial with a 24-hour horizon achieving this. It has the added benefit of 

accounting for any seasonality present, in this case seasonality referring to repeating daily 

trends. As turbidity can contain diurnal trends, typically associated to hydraulic demand 

patterns, several methods that can account for these were included. The ETS and SARIMA 

methods both required at least two full cycles of data to include seasonality effects. For this 

reason, errors were calculated excluding the first 3 days. This meant more methods could be 

included in the comparison and omits potentially spurious forecasts at the very start of the 

time series, a problem often referred to as the ‘cold start’ problem. Due to the length of the 

examples included, between 15 and 75 days, seasonality effects over longer periods such as 

seasons or annually were not considered. 

Modifying expanding average approaches to consider data at the same time of day improved 

performance, but only when looking at advisory events with no improvement seen across all 

examples. Advisory events are subtler by nature and more likely to be confused with diurnal 

fluctuations, which can vary by network and location. The time-based approach accounts for 

this factor, and matches with human interpretation that repeated diurnal fluctuations, such as 

those present in examples 3 and 5, are not noteworthy and that it is changes in patterns that 

should be the focus. ARIMA approaches resulted in the best overall performance against all 6 

examples. SARIMA was found to be extremely slow when provided with a seasonality period 

of 96, meaning not all combinations could be explored but suggesting it is unsuited for this 

research. The exponential smoothing approaches within the ETS framework did not perform 

as well as other methods, perhaps due to putting too much weight on recent data, though 

EWM performed better on both advisory and across all events. Future research could include 

additional parameters to be used as exogenous variables to improve turbidity event analysis. 

The CANARY LPCF and BED output was more binary than the averaged labels were, with 

some complexity lost due to the additional step of determining whether each datapoint is an 

outlier, before counting the outliers to determine event probability. Therefore, the BED 

output was not well suited to this research. By instead applying a sigmoidal fuzzy logic 

membership directly to the residuals, the complexity of the labels averaged out could be 

better approximated and a better solution was found. This reinforces how well-suited the 

sigmoidal approach is to this research due to its ability to transform residual time series into 

output that matches the complexity and fuzziness found in the averages labels. 
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5.5.3 Proactive versus Reactive Events 

Supporting the approach to mimic human interpretation of turbidity events using event score 

calculations, this research also examined flatline detection methods at different turbidity 

limits. Any event exceeding 4 NTU is exceeding regulatory limits for end-users, meaning 

these warrant the highest level of response, regardless of human judgement. Therefore, these 

events fall naturally into being categorised as alarm events. Alert events are a step lower, but 

represent significant deterioration compared to the 1 NTU limit at treatments works exit. For 

the purposes of this research, and to create a convenient division between the first two 

examples and the final four turbidity datasets used, a limit of 2 NTU was selected, though 

other values such as 1 NTU could be selected. A system that is only reactive does not prevent 

events from occurring and as drinking water is required to be below 1 NTU when leaving a 

treatment works, even low-level turbidity events are evidence of deteriorating water quality 

during transit.  Such low-level advisory events do not come close to breaching regulatory 

limits and, as such, are generally ignored. However, capturing these events digitally enables 

whole networks and multiple sensors to be analysed automatically, meaning extra 

information can be used to improve strategic management of these assets. 

The next step for this research is therefore incorporation into an automated event analysis 

system consisting of reactive alert and alarm event detection as well as novel proactive 

advisory alarms based on calculated event score time series. One approach to converting the 

event score time series into proactive advisory alarms is to simply take a threshold and report 

any exceedances. This in effect would be similar to applying a flatline threshold on the 

residual time series, though instead it would be applied to the more easily understandable 

event score with threshold values between 0 and 1. The similarity between these two 

approaches is further demonstrated and applied to example 6 in Figure 5.11, which shows 

how a residual-flatline threshold looking for any residuals > 0.2 NTU results in a similar 

outcome to a threshold of 0.5 applied to the event score time series. Note the flatline is 

applied to the residual, not to the turbidity data. This shows that practical application of this 

research may not necessarily require the sigmoidal function, though its use was essential in 

determining the approach that best approximated the gained insight from the labelling 

sessions. This research provides a platform from which such a system could be built, but the 

specific details of how this could be used to issue advisory alerts that aide strategic 

management require further understanding of what is desired. 
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Figure 5.11. Advisory event detection on Example 6 using a 0.2 NTU limit applied to the residual, 

and a 0.5 threshold using the sigmoid output (a), with equivalent average labels and sigmoid output 

(b). 

5.6 Conclusions 

This research shows how complex and time-consuming human interpretation of turbidity 

time series data from drinking water distribution systems can be mimicked in real-time by 

computing algorithms. Automating such interpretation provides a rapid and more extensive 

capability to understand network performance, allowing for focussed strategic and 

operational decisions to manage in-network discolouration. The crowd-sourced labelling 

exercises undertaken represents a novel approach that addresses the difficulty in obtaining 

confirmed real-world events, while also highlighting the need to fully understand what is 

wanted from the data before developing analytic methods. These exercises informed a 

turbidity event scale that considers reactive alarm (>4 NTU) and alert (>2 NTU) events, 

alongside proactive advisory (<2 NTU) events. For alert and alarm events a flatline approach 

is considered best, assuming quality assured data is available. A time-based averaging 

approach was found to work best at identifying advisory events. These approaches require 

little computational power and could be applied in real-time. 
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Chapter 6: Extracting Actionable Information from 

Water Quality Time Series Data: From Single-Parameter 

Single-Sensor to Multi-Parameter Multi-Sensor 

6.1 Introduction 

This chapter explores how actionable information can be extracted from DWDS water quality 

time series datasets. While different types of actionable information may be desirable for 

WSP, this chapter and research focuses particularly on what can be learned from turbidity 

and chlorine sensor data. This is both due to these being the most commonly measured 

parameters in the datasets made available, and their direct importance to achieving the 

ultimate aim of DWDS: enabling the safe passage of drinking water to end users. It should be 

noted that information such as distances between sensors and pipe sizes were not generally 

made available but are provided in the cases where they are known. However, the purpose of 

this research is to explore data-driven analytics and the desire is to not rely on the availability 

of additional supporting network information. As identified in Section 2.2.3, the three main 

causes of water quality deterioration within DWDS are due to interactions with pipe surfaces, 

bulk water transformation, and infrastructure failures. Turbidity sensors are proxy 

discolouration sensors, meaning they are uniquely well-suited to help capture and understand 

discolouration events, the number one water quality related issue in the UK. Discolouration is 

often caused by hydraulic-induced pipe-wall material mobilisation, but could also result from 

ingress following infrastructure failure or from contamination at upstream WTW or service 

reservoirs. Where used as a residual disinfectant, chlorine is relied upon to provide lasting 

protection throughout the DWDS, meaning any changes to chlorine concentration levels 

indicate changes in bulk water transformation, potentially posing increased threat of 

contamination. 

The aims of this chapter are to show how the methods developed in Chapters 4 and 5 can be 

applied to real-world examples, explore how they can be integrated with other analytical 

approaches, and examine the impact additional parameters and sensors have on the level of 

insight that can be derived. To achieve this, the first two examples (Sections 6.2 and 6.3) will 

be presented in the following sequential order, building from single parameter single sensor 

(SPSS) analysis, to then combining multiple locations measuring the same parameter (single 
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parameter multiple sensor – SPMS), combining different parameters at the same location 

(multiple parameter single sensor – MPSS), to eventually demonstrate the additional value 

from having multiple parameters measured at multiple different locations (multi parameter 

multi-sensor – MPMS). Table 6.1 presents analytical possibilities that will be examined at 

each of these stages, with the intention to highlight the presumed increase in insight when 

moving from SPSS to MPMS. 

Table 6.1. Analysis possibilities moving from SPSS to MPMS. 

SPSS SPMS MPSS MPMS 

Data quality assessment 

(framework stage 1) 

Turbidity event analysis 

(proactive precursors and 

reactive events) 

Drift correction 

Low or high chlorine 

event detection 

Data quality assessment 

(entire framework is 

parameter dependant) 

Network connectivity 

(parameter dependant) 

Local or global event 

differentiation 

Chlorine decay rates 

Data quality assessment 

(framework stage 1, 

other parameters may 

help confirm/rule out 

errors) 

Material flux (turbidity 

and flow rate) 

Event classification 

Unsupervised anomaly 

detection 

Data quality rules (entire 

framework) 

Network connectivity 

Material flux (higher 

accuracy and 

confidence) 

Event classification 

(higher confidence) 

Event tracking 

Both of the ‘SPSS to MPMS’ examples feature discolouration events detected by more than 

one multi-parameter sensor, but both are first reviewed with an analysis of what can be 

learned with only a single turbidity sensor. Example 1 (Section 6.2) will then move to MPSS 

to demonstrate the additional value from having more parameters available, before the 

example is fully analysed as a MPMS case. Example 2 (Section 6.3) will move from SPSS to 

SPMS to examine how additional turbidity sensors can improve understanding, before again 

being treated as a MPMS case. Five further case studies are then featured, this time starting 

with all available data, to demonstrate a variety of situations in which actionable information 

was derived from MPMS DWDS water quality time series. Example 3 (Section 6.4) again 

examines discolouration, this time focusing on an end of network location at which 

maintaining a disinfection residual was a challenge. For Example 4 (Section 6.5), turbidity is 

compared at six locations along a single 70 km long mains in order to investigate how 
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discolouration can change along a network section, this time without chlorine being available 

and only inlet flow rate. A different MPMS example is presented in Example 5 (Section 6.6), 

using dimensionality reduction and unsupervised anomaly detection to explore how 

information could be automatically derived from higher-dimension datasets. Example 6 

(Section 6.7) returns to discolouration, though this time analysing a situation in which a step 

increase in flow rate led to increased daily turbidity, though never exceeding 2 NTU, at 

multiple connected sensor locations. The final Example 7 (Section 6.8) does not feature high-

frequency DWDS data, instead focusing on weekly regulatory samples at service reservoirs, 

in order to highlight how improved insights could be gained through increased high-

frequency online monitoring. A summary of the insights gained from each example is then 

provided in Section 6.9. 

6.2 Example 1 – Building from SPSS to MPSS to MPMS 

6.2.1 SPSS 

The work in Chapter 4 highlighted that the first step when analysing any water quality time 

series is to perform a data quality assessment. Figure 6.1 is a plot of a turbidity time series 

over 2 years in duration, with the data quality rules developed in Chapter 4 applied. As 

specified in Table 6.1, only stage 1 of the developed data quality assessment framework can 

be applied when analysing a SPSS. The data quality rules detected a number of errors and 

potential errors. Four different extended periods of elevated turbidity are detected. The first 

of which occurs at the very start and lasts for several weeks, suggesting issues following the 

initial installation that are likely not representative of the DWDS water quality. The following 

3, occurring in April 2020, April 2021 and May 2021 require further inspection, as these 

could be real network events. Other data quality issues identified include several periods of 

flatlining data, which was determined to have been caused by the sensor measurement 

resolution not being high enough. Up until May 2021, the resolution was set to 0.08 NTU, but 

a data quality review highlighted a number of data quality issues to the WSP using the 

approaches from Chapter 4. One of the outcomes of this data quality review was the 

resolution was changed to 0.01 NTU. Three periods of drift are also identified, and several 

single point outliers.  
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Figure 6.1. Data quality rules applied to over 2 years of turbidity time series. 

As the interest here is in analysing potential discolouration incidents, the first of the three 

potential identified events is investigated. As this occurs within a period of detected drift, it is 

advisable to perform some drift correction before any analysis. This is performed using the 

asymmetric least squares approach previously used in Chapter 4 and the drift corrected data is 

plotted in Figure 6.2. The drift corrected data was then analysed using the event scale method 

developed in Chapter 5, with the alarm event detected on the 5th April identified and 

displayed in Figure 6.3(a), along with the advisory event score time series shown in Figure 

6.3(b). This analysis shows that a potential precursor event was seen 10 days before the alarm 

event on the 27th March which resulted in an advisory score of 1.00, with another seen 3 days 

prior on the 2nd April with a peak advisory score of 0.77. These potentially could have been 

indicators of increased discolouration risk at this location, which does seem to continue into 

May with multiple advisory events seen again. That no alert or alarm event followed in this 

instance may be down to the lack of a triggering event, such as a hydraulic change. However, 

it is difficult to make conclusions with any degree of confidence with data from only one 

turbidity time series. 
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Figure 6.2. Turbidity time series containing identified event, with drift corrected version shown. 

 

Figure 6.3. Turbidity event scale applied to example, with alert ( >2 NTU)and alarm ( >4 NTU) 

event identified in the turbidity time series (a), and an advisory time series shown in (b). 

A closer inspection of the turbidity data during the alarm event is shown in Figure 6.4. There 

appear to be two events, the first being a short spike with the turbidity rising from 0.24 to 

4.16 NTU in just 1 hour, with the peak coming at 13:15. However, it does not return to 

normal levels, with a larger second event with a slower rise peaking at 6.16 NTU at 19:30, 

before sharply declining to below 1 NTU at 22:00. With this event starting around lunchtime 

and is finished by the evening, this indicates it is at a time of high demand. However, with 

just a single turbidity sensor, it is difficult to confidently rule out a sensing error as the cause 

of this event or to make any assertions about the underlying causes or the extent of the 

network impacted by this (apparent) increased discolouration.  
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Figure 6.4. Close-up of alarm (> 4 NTU) turbidity event. 

6.2.2 MPSS 

In this example four additional parameters were monitored within the same sensor: free 

chlorine, temperature, pH, and pressure, flow rate data was also available from a meter 

installed within this part of the network. The data quality rules developed for turbidity and 

chlorine were therefore applied to these parameters, with the results shown in Figure 6.5 (a) 

and (b). Flatline issues are seen in both parameters. The chlorine data shows relatively low 

resolution of 0.02 mg/l up until May 2021, accounting for the majority of the flatline 

detection in this data. After May 2021 it increases to detect changes less than 0.001 mg/l. The 

chlorine parameter was measuring zero for the first few weeks, supporting the idea that the 

sensor was not properly installed, while it also shares the roughly 3 month period with 

missing data towards the end of 2021, meaning this was a sensor-wide issue. Reviewing the 

other three parameters from this sensor in Figure 6.5 (c), (d), and (e) confirms that this sensor 

was not functioning during these months. The pressure is also seen to be zero for the first few 

weeks, confirming the sensor was not connected to the pressurised supply. By viewing all 6 

available parameters before, during and after the alarm event (Figure 6.6), it can be observed 

that a drop in chlorine from 0.74 to 0.61 ppm occurred just before the turbidity alarm event, 

around the same time as the 0.77 turbidity advisory event, suggesting changes in bulk water 

characteristics. There is also a drop in pH from 8.0 to 7.6 between the 18th March and 11th 

April. Reviewing the hydraulic parameters, the alarm event on the 5th April occurred 

alongside a pressure drop of around 4 m (from 28 m to 24 m) and a peak daily flow rate up to 

68.4 m3/h, exceeding the previous peak daily flow rate of 64 m3/h on 31st March. This 

pressure drop and relative higher peak flow rate suggests this event was likely caused by a 

change in hydraulics resulting in a mobilisation of pipe-wall material. 
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Figure 6.5. Data quality rules applied to turbidity (a) and chlorine (b) time series, with temperature 

(c), pH (d), pressure (e), and flow (f). 
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Figure 6.6. Turbidity (a), chlorine (b), temperature (c), pH (d), pressure (e), and flow (f) before and 

after event. 

A closer inspection of the timings involved is shown in Figure 6.7, which shows an initial 

spike in turbidity occurs simultaneously to the flow rate increase, with the pressure drop 

occurring shortly after. Material flux, introduced in Background Section 2.4.3.2, was used to 

estimate total material mobilised during this event. Material flux was calculated by 
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multiplying flow rate by turbidity, as shown in Figure 6.7 where the total material was 

estimated to be 1380 NTU.m3, calculated as the area under the material flux curve. As 

indicated in this figure, the baseline turbidity was subtracted in order to only estimate the 

excess material movement during this event. 

 

Figure 6.7. Turbidity time series during alarm event (a), with pressure (b) and  flow time series (c), 

and calculated material flux (d), where total material is labelled within the highlighted area. 

6.2.3 SPMS 

Ten other multi-parameter water quality sensors were deployed across the same DWDS. Any 

other sensors installed at hydraulically connected locations can be used to enhance analysis of 

water quality at the location in question. Therefore, cross-correlation was performed to 

determine if any hydraulically connected locations were available. As the event in question 

occurred in April 2020 but very little in-network data was collected prior to this, a period of 4 

months was used for the cross-correlation, running from April to the end of July 2020. Before 

this could be done a data quality assessment was required for the whole dataset during this 

period, in order to ensure no erroneous data interferes with the correlation calculations. 
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Figure 6.8 is a bar plot displaying the results of the data quality rules applied to each of the 11 

chlorine sensors, where the ‘ref’ column on the left hand side refers to the multi-parameter 

reference sensor that has been featured thus far. Of the ten other chlorine sensors, several had 

performance issues during this four month window, such as missing data, periods of flatlining 

data, and drift. Cross-correlation was then performed between each of the eleven sensors, 

following the method set out in the second stage of the data quality assessment framework in 

Chapter 4, with the median correlation coefficients shown in Figure 6.9. This bar plot shows 

that the sensor at location 6 was the only one found to have a significant cross-correlation, 

with a median value of 0.84. The cross-correlation between these time series is shown in 

more detail in Figure 6.10, with the majority of the resulting sliding correlation coefficients 

seen to be above 0.7. The offset values were used to estimate transit time between these 

locations. Figure 6.10(c) shows that the offset varied between -3.5 and -4 hours, with a 

median of -3.5 hours, for the time period where the PCC remained above 0.7. Therefore, it 

can be estimated that location 6 is approximately 3.5 hours upstream of the reference sensor. 

 

Figure 6.8. Data quality rules applied to 11 chlorine time series, with ‘ref’ referring to the chlorine 

sensor at the location being investigated. 
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Figure 6.9. Median correlation coefficients between reference chlorine data and 10 network 

deployed chlorine sensors. 

 

Figure 6.10. Chlorine time series at reference and location 6 (a), sliding cross-correlation PCC (b) 

and sliding offset (c). 

6.2.4 MPMS 

With a connected location identified and a transit time estimated, the other data / parameters 

at these locations can now be used for comparison within this context. A simplified network 

schematic is shown in Figure 6.11 with both locations included. Both turbidity time series are 

plotted around the time of the event in Figure 6.12. As an alarm event is also seen in the 

upstream sensor at location 6 (which was installed at the service reservoir outlet), this 
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supporting evidence confirms this event to be a real network alarm event and not a sensor 

error or an event originating solely from between the 2 sensors. The event starts with an 

initial spike, seen at both locations, followed by a gradual increase of turbidity spread out 

over 6 hours at location 6 and 12 hours downstream at the reference sensor. The simultaneous 

initial spike response indicates a sudden mobilising of material local to each sensor location. 

The turbidity peaks occur during what appears to be a second wave at 15:45 in location 6 and 

19:30 in the reference, meaning an offset of 3 hours 45 mins is observed. Note that the 15 

minute sampling intervals dictates that both this and the cross-correlation-derived transit 

times must therefore be in multiples of 15 minutes. This delay falls in line with the transit 

time derived by cross-correlation and indicates that this second wave relates to material 

upstream of sensor 6. There is also a second spike visible in the reference around 3 hours 15 

minutes after the initial spike, suggesting the material initially mobilised locally to location 6 

had reached the reference at this time. Interpretation of the turbidity data alone would suggest 

an increase in severity between location 6 and the reference when viewing the area under the 

curves. Comparison of the turbidity data using the event scale approach, plotted in Figure 

6.13, shows that high advisory scores are seen in location 6, as well as the reference. Both 

locations also see multiple high advisory scores during May and an alarm event is again seen 

at location 6, indicating continued material movement in this network section. 

 

Figure 6.11. Simplified schematic showing reference location (green R) and upstream location 6 

(blue L6), with both downstream of a service reservoir and separated by some offshoots. 
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Figure 6.12. Turbidity time series at both locations during event on 5th April, with the times of each 

peak labelled. 

Consideration of the hydraulic data at each location could provide more context regarding 

this event. It was previously shown in Figure 6.7 that this event occurred alongside an 

increased flow rate peak and was shortly followed by a pressure drop at the reference 

location. The flow rate and pressure time series are plotted alongside the turbidity time series 

from both locations in Figure 6.14. Interestingly, no pressure drop is seen at the upstream 

location 6 and the flow rate at this location during this event is not as high as recent daily 

peaks. This is not what would have been expected if this event was caused by a flow rate 

increase in this network section and suggests the main source of this event is upstream of 

both these locations.  

Viewing the other available parameters, temperature, pH, and chlorine, at each location 

(Figure 6.15) shows that the same chlorine and pH drops observed in the reference are also 

seen in location 6, supporting evidence of the connectivity between these sites and the 

observed change in bulk water characteristics potentially linked to the increased 

discolouration.  
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Figure 6.13. Turbidity event scale applied to the reference, with alert and alarm events shown in 

(a), and advisory event score in (b), and location 6, with alert and alarm events shown in (c), and 

advisory event score in (d). 

 

Figure 6.14. Turbidity (a), flow (b), and pressure (c) at both locations in lead up to April 5th event. 
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Figure 6.15. Temperature (a), pH (b), and chlorine (c) at both locations, where the alarm event is 

indicated by the dotted red line. 

The large second turbidity wave represents a major source of concern with this event, due to 

its duration and appearance at two locations. Therefore, material flux was employed in order 

to quantify the total material passing each location during this wave and better understand 

this discolouration incident. The identified initial spikes and its recurrence at the reference 

therefore needed to be omitted in order to only focus on the material movement during this 

second wave. Material flux calculations were done, as illustrated in Figure 6.16, again with 

the baseline turbidity subtracted in order to estimate the excess material caused by this event. 

An overall reduction of around 10% between location 6 and the reference (from 1305 to 1163 

NTU.m3) is calculated, as shown in Figure 6.16(c). This could be expected of an upstream 

sourced event as some material would be expected to be lost on the 3.5 hour journey between 

these locations. Therefore, this analysis shows that the primary  material source of this event 

is upstream of location 6 and this can inform prioritising of maintenance. This is of value to 

the WSP as 4 customer contacts were made for discoloured water on the 5th April in the 

supplied region, between 14:49 and 20:37, indicating the significant impact of this event. 
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Figure 6.16. Secondary Turbidity event responses at each location with turbidity (a), flow (b), and 

net material flux (c). 

6.3 Example 2 – Building from SPSS to SPMS to MPMS 

6.3.1 SPSS 

Figure 6.17 shows a turbidity time series with the rules from stage 1 of the data quality 

assessment framework applied. In this case, the turbidity sensor has been monitoring for 

about 3 years. This sensor belongs to the same overall dataset as the two featured in Example 

1, and both the initial period of elevated turbidity in the first few weeks, and the flatlining 

issues seen in the first year, again due to the low turbidity resolution, are repeated. This 

sensor was also seen to have bimodal noise issues, also seen in location 6 in Example 1. Both 

of these issues were identified as part of this research and were largely addressed, as 

evidenced by the improvements seen from May 2021 onwards. Though using information 

from other sensors in this dataset could be said to be SPMS, this section focusses on how 

events can be analysed. Four different extended periods of elevated turbidity are detected: 

April 2020, October 2021, June 2022 and July 2022. The first identified event is investigated.  
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Figure 6.17. Data quality rules applied to turbidity time series. 

Some drift was detected but since this started after the April event, no drift correction was 

applied. Figure 6.18 shows that the April 12th event was an alarm event, and Figure 6.18(b) 

shows that the preceding weeks had consistently high advisory scores. Though this sensor is 

impacted by bimodal noise issues, it is seen to reduce after the alarm event, with the median 

peak daily advisory score being 0.82 in the weeks leading up to the event and falling to 0.50 

in the month following. This drop indicates a reduction in material movement post event. A 

closer inspection of the turbidity data during the alarm event is shown in Figure 6.19. The 

turbidity is seen to rise from 0.32 to a peak of 11.36 NTU between 22:15 on the 11th April 

and 00:15 on the 12th April. Turbidity levels remained above 8 NTU for another 6 hours, 

before they started to reduce, going below 0.5 NTU at 11:45. Without the flow rate data it is 

not possible to estimate the total material involved, but the sharp rise and steady decline is 

typical of hydraulically mobilised discolouration events (Background Section 2.2.3). That the 

majority of this event occurred during the night may mean lower customer demands were 

involved, unless in the case of a hydraulic event such as a burst pipe. Occurring during the 

night may also result in fewer customer observations although it did continue well into the 

morning when the demands  typically peak. The shape and profile of this data suggests a real 

event, but any conclusions made without supporting information would be speculative. 
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Figure 6.18. Turbidity event scale applied to example turbidity, with alert and alarm events 

identified (a), and the advisory score time series (b). 

 

Figure 6.19. Close-up of alarm turbidity event. 

6.3.2 SPMS 

Moving from SPSS to SPMS explores how multiple turbidity sensors may improve 

understanding of network behaviour. As stated in Chapter 4, unlike chlorine, turbidity time 

series are generally not well suited to cross-correlation. This makes the process of 

determining which sensor locations are relevant less straightforward. One approach is to 

simply check if events are detected at other locations around the same time. The first step was 

to review the turbidity data quality. Figure 6.20 is a bar chart showing the data quality rules 

flagged for each of the 11 turbidity sensors from March to the end of June 2020, with the 

reference location on the LHS. Some recognised issues are shown including drift, flatlining, 

missing data and extended high values. To examine which of these sensors may be of use to 

analysing the reference alarm event, the data quality at the time of the event is reviewed in 
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Figure 6.21. From this figure, it appears that up to 4 locations have potentially been affected: 

locations 2, 5, 7 and 10, in Figure 6.21(b), (e), (g) and (j), respectively. However, location 5 

is just a single data point, and has been flagged as a single point outlier, while location 10 

seems to be already extremely elevated. By viewing the data quality at location 10 on a wider 

timeframe, shown in Figure 6.22, it appears that this turbidity sensor was measuring elevated 

levels up until the end of April, indicating that the sensor was malfunctioning. Therefore, this 

leaves just locations 2 and 5 for closer inspection, both of which contain alarm events 

exceeding 4 NTU. 

 

Figure 6.20. Data quality rules applied to 11 turbidity sensors. 
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Figure 6.21. Flagged data quality rules in 10 turbidity sensors from 10th to 13th April. 
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Figure 6.22. Data quality rules applied to turbidity data at location 10 from March to June. 

Figure 6.23 is a plot showing the turbidity at locations 2 and 7, compared to the reference 

turbidity data, during the detected alarm event. The reference alarm event has an almost 

identical and simultaneous initial rise to that seen in location 2, indicating that this a genuine 

network event  and not local to one location. This suggest the cause is likely to be 

hydraulically induced with flow rate increases impacting both monitored sections. The event 

at location 2 is much shorter in duration, with turbidity seen to return to normal levels by 

3am, approximately 4 hours after the peak at 23:15. The event at location 7 occurs towards 

the tail end of the reference event, with its peak about 10 hours later than the reference peak. 

More information would be needed to determine if these are linked.  

 

Figure 6.23. Turbidity time series at reference and locations 2 and 7 during alarm event, with the 

times of each peak labelled. 

Assuming all three are hydraulically connected, each turbidity time series is analysed using 

the event scale in Figure 6.24. No other alert or alarm events are seen in this period, but 

viewing the peak daily advisory scores shows that location 2 was also seeing high levels of 
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advisory scores before this event, which reduced in the month following. This was similar, 

though not as extreme as was seen in the reference location, which was influenced by the 

bimodal noise sensor errors. This provides confidence that location 2 is linked, and indicates 

that this network section of network had  elevated material movement prior to this alarm 

event. The peak daily advisory scores at location 7 are also slightly higher prior to this event 

than in the week following (aside from a couple of peaks). Of note is that all three locations 

measured some increased turbidity towards the end of May, resulting in high advisory scores 

of 0.97 at the reference location and 0.84 at location 2, with a 0.51 score at location 7. This 

alignment again suggests these locations may all be linked but further information would be 

need to confirm, particularly for location 7. 

 

Figure 6.24. Turbidity time series at reference and locations 2 and 7, with alarm event marked (a) 

and daily peak advisory scores at each location (b). 

After attempting to manually interpret sensor connectivity with turbidity data, the chlorine 

data from the same locations was used for cross-correlation, as this has been proven to be an 

effective method in Chapter 4 and the first example in Section 6.2. The first step involved 

performing a data quality assessment on the available chlorine data. As the event featured in 

this example occurred a week later than that featured in the first example, the same period 

between April and July 2020 was used to examine connectivity, with the data quality results 

shown in Figure 6.25 mirroring those previously shown in Figure 6.8,  although with a 
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different reference sensor. Cross-correlation was subsequently applied to understand the 

relationships between the reference chlorine sensor and the remaining 10. This was done on a 

sliding windowed basis, using 4-week long windows and calculated every day, with the 

median PCC shown in a bar chart in Figure 6.26. This bar chart shows two highlighted 

locations, 2 and 7, as having median PCC values of 0.89 and 0.93, respectively, exceeding 

the significance threshold of 0.7. This supports the two locations already identified as 

hydraulically connected, with no other locations demonstrating having significant 

connectivity.  

 

Figure 6.25. Data quality rules applied to 11 chlorine time series, with ‘ref’ referring to the 

chlorine at the location in question. 

 

Figure 6.26. Median correlation coefficients between reference chlorine data and 10 other chlorine 

sensors. 
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The sliding cross-correlation results are shown along with the chlorine time series in Figure 

6.27. The middle plot showing the sliding correlation coefficient results for both pairs, with 

the relationship between the reference and location 2 being strongly correlated apart from a 

period that was impacted by a sudden shift in the reference chlorine concentration on the 19th 

May. The median offset between these locations, using only results where the PCC was 

above 0.7, was found to be -3 hours and 45 minutes, meaning location 2 is determined to be 

upstream of the reference location. The cross-correlation between the reference and location 

7 was found to be consistently highly correlated, with a median offset calculated as 4 hours 

45 minutes, meaning location 7 was estimated to be downstream of the reference location. 

That this did not see the drop in correlation seen between the reference and location 2 is due 

to location 7 also seeing a chlorine drop on the 19th May. It is likely that both of these sensors 

were serviced as part of required regular maintenance that included recalibration on this day 

which can cause sudden changes in baseline values. This demonstrates a potential method to 

identify servicing without access to company operational records and also highlights a 

challenge for analysis. In this case using enough windows can overcome step changes like 

this, as well as using the median values, which is less impacted by dips in correlation like that 

seen between the reference and location 2.  

 

Figure 6.27. Chlorine time series at reference and locations 2 and 7 (a), sliding cross-correlation 

PCC’s (b) and sliding offsets (c). 
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6.3.3 MPMS 

After reviewing relevant schematics, the three connected locations are shown in a simplified 

schematic in Figure 6.28. All three locations are installed on offshoots to a trunk main 

downstream of a service reservoir. Reviewing the estimated transit times with the timings 

seen during the alarm event seen in Figure 6.23, the event starts at the same time in the 

reference and location 2, despite location 2 being upstream. This indicates that there was 

network-wide material movement, which continues at the reference for longer due to it being 

further downstream. That the event takes roughly 10 hours to reach location 7 is likely  a 

result of lower night-time flow rates, with the cross-correlation-derived transit time of 4.75 

hours an average daily value. Figure 6.30 plots the turbidity at each of the three locations 

along with the upstream mains flow rate, along with the flow rate and pressure at each water 

quality sensor location. This plot shows a clear spike in mains flow occurring at the time of 

the alarm event, supporting a hydraulic cause mobilising material. The flow rates at each 

location appear in line with recent trends, aside from at the reference location which sees a 

slight peak. However, a larger peak is visible towards the end of March. The daily peak flow 

rates at the upstream mains sensor is plotted from 2018 to the end of 2020 in Figure 6.29, 

showing that the flow peak of 696 m3/hr seen just before midnight on the 12th April was the 

largest in this main since February 2018, and significantly higher than the median peak daily 

flow rate of 484 m3/hr during this period. This supports the idea that this event is driven by 

upstream pipe-wall material mobilisation, as such pipe-wall material has been shown to be 

conditioned by daily flow regimes and hence material mobilised may have been accumulating 

for over 2 years. 

 

Figure 6.28. Simplified schematic showing reference location (purple R) and upstream location 2 

(green L2) and downstream location 7 (yellow L7), with all installed on different offshoots 

downstream of a service reservoir. 
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Figure 6.29. Mains peak daily flow from 2018 to 2020. 

 

 

Figure 6.30. Turbidity at the three locations (a), upstream mains flow (b), flow at the three 

locations (c), and pressure at the three locations (d) in lead up to alarm event. 

Reviewing temperature, pH and chlorine, plotted in Figure 6.31, a drop in chlorine and 

increase in pH is seen at all three locations in the days following this discolouration event, 

indicating changes in bulk water properties. Material flux calculations, illustrated in Figure 
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6.32, show that the reference location had more than double the material moving past location 

7, and over ten times that of location 2. This suggests that the greatest risk posed by this event 

is related to regions downstream of the reference location. This alarm event had a notable 

effect on downstream customers, with over 130 discolouration contacts seen within 3 days, as 

shown in Figure 6.33, where (c) plots the daily discolouration contacts. Figure 6.34 separates 

the discolouration contacts into those related to each water quality sensor location, with 31 

contacts found to be associated with customers downstream of the reference locations, 

compared to 2 and 8 found downstream of locations 2 and 7, respectively. This confirms the 

material flux analysis, that the network section where the reference sensor was installed 

represented the greatest risk. This event was featured in a DWI Chief Inspector’s report for 

drinking water, with an event risk index (ERI) score of 0.91, the 5th highest of the year. The 

cause of this event was concluded to be high demand from local industry, supporting the 

findings from this analysis.  

 

Figure 6.31. Temperature (a), pH (b), and chlorine (c) at all three locations, where the alarm event 

is indicated by the dotted red line. 
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Figure 6.32. Turbidity event at all three locations with the net turbidity in (a), flow (b), and net 

material flux (c). 

 

Figure 6.33. Mains flow (a), turbidity at the three locations (b), and network daily discolouration 

contacts (c). 



119 

 

 

Figure 6.34. Turbidity during alarm event at three locations (a), material flux (b), and accumulated 

discolouration contacts per location and all (pink line and RHS y-axis) (c). 

 

6.4 Example 3 - MPMS Discolouration and low chlorine at end of network 

This example uses data from four inline multi-parameter water quality sensors, labelled A, B, 

C, and D connected in series with D the downstream location as shown in the simplified 

schematic in Figure 6.35. The location at D was towards the end of this network section, 

allowing for water quality changes to be examined. This section reviews the data at these 

locations, focusing on periods of low chlorine and increased turbidity seen in 2020 and 2021, 

(the latter no longer having a sensor installed at location A). The data quality rules are 

applied to the turbidity and chlorine data in 2020, with results shown in Figure 6.36. This 

shows that many of these sensors were experiencing issues during this year, with drift and 

flatlining very common. The sensor at location A has large amounts of missing data, due to it 

being removed from this location in August. The chlorine levels at C and D are both flagged 

as having long periods of low values (below 0.15 mg/l). A cross-correlation was done to 

understand the transit times between these locations, using data between May and July, with 

the median coefficients displayed in the heatmap in Figure 6.37 showing that only location D 
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did not have significant correlations with the other 3 locations. Location D was seen to have 

very low chlorine levels, which make it less well-suited for cross-correlation, as the signal is 

very flat. Transit times, using the median offset when PCC is above 0.7, was found to be 3.5 

hours from A to B, 19 hours from B to C, and 23 hours from A to C.  

 

Figure 6.35. Simplified schematic showing sensor locations A, B, C and D and significant take-

offs. 

 

Figure 6.36. Data quality rules applied to turbidity and chlorine at locations A, B, C and D from 

February to December 2020. 
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Figure 6.37. Cross correlation heatmap between locations A, B, C and D, with median offsets 

shown for pairs with peak PCC above 0.7. 

Figure 6.38 plots the turbidity (after drift correction) and chlorine time series at each of these 

four locations during May and June 2020, during which multiple turbidity events are visible 

and the chlorine at location D is seen to drop from a peak of 0.44 to under 0.15 mg/l in about 

4 days, after which a steady decline is seen until it reaches 0 mg/l. That the chlorine is seen to 

remain at this low level for several weeks means this network section and anything 

downstream may have been without protection against contamination. A site visit on the 15th 

June confirmed the chlorine levels to be close to zero using a handheld chlorine meter. The 

turbidity events seen during this period are analysed using the event scale approach, with 3 

unique alarm events found at location D, compared to just one at locations A and C and none 

at B. Location D also had 11 unique alert events, compared to 2 at C and none at A or B. This 

is evidence that water quality is increasingly deteriorating as it travels downstream this 

network section. These events are shown in Figure 6.39, with (b) plotting the rolling daily 

peak advisory score at each location. This bottom plot shows that the daily peak advisory 

score at D was close to maximum from 24th May until the 3rd June, reflecting an increase in 

turbidity events of all sizes at this location. Therefore, the turbidity events precede the drop in 

chlorine at D, which didn’t begin until the 28th May. Such an increase in turbidity, caused by 

elevated particles in the bulk flow, are likely to increase chlorine interactions and hence 

contribute to this chlorine decay. The advisory scores at the three upstream locations are also 

elevated during this period, in particular at location A. 

Review of flow rate and pressure, plotted in Figure 6.38 (e) and (f), shows elevated flow rates 

during the turbidity event period at location A. That the chlorine decay observed in D did not 

coincide with a drop in pressure indicates the sensor remained connected to the network, i.e. 
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sample line not blocked. Reviewing the flow rate peaks, all locations (aside from D which did 

not have flow rate data) are seen to have elevated daily peaks towards the end of May, 

suggesting that an increased demand during this period led to mobilisation of material layers 

and this is most evident in the turbidity response observed at D. Analysis of temperature, pH, 

and chlorine show that the pH at location D was very noisy during the chlorine drop, 

indicating changes in bulk water characteristics. The temperature at location C is elevated 

during this period, reaching the maximum sensor setting of 20 °C, and a slight increase is 

seen at the other locations. Increased temperature can influence both chemical reactions 

within the bulk water, including increasing the rate of chlorine decay which may have been a 

factor here. Additionally water temperature increases are typically related to increased air 

temperature, as was highlighted in Background Section 2.2.3 (especially in surface water 

sourced sites such as this example) that can result in increases in drinking water demand. 

Peak daily temperatures are shown alongside peak daily flow rates in Figure 6.40, with peak 

daily air temperature also plotted, downloaded via the open-source Python weather library 

Meteostat (Lamprecht 2023). This figure indicates a period of high temperatures were seen in 

this area in the final week of May which corresponded to this period of chlorine decreasing 

and multiple turbidity events.  
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Figure 6.38. Turbidity (a), chlorine (b), temperature (c), pH (d), pressure (c)and flow (f) at 

locations A, B, C, and D. 
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Figure 6.39. Turbidity at locations A, B, C and D, with alert and alarm events marked (a), and 

rolling daily peak advisory scores for the same four locations (b). 

 

Figure 6.40.Peak daily temperature at locations A, B, C, D and air (a), and peak daily flow at A, B 

and C (b). 
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Figure 6.41 is a plot of all six parameters at locations B, C, and D from April to June 2021 

(the following year, with the sensor at location A no longer available). The plot shows 

another reduction in chlorine residuals that appear anti-correlated to the increasing water 

temperatures. The pH levels at locations D are above 9 until the middle of May, before a 

period of noise preceded a drop below 8. This period features two alarm turbidity events seen 

at both B and C on April 25th and June 7th, as shown in Figure 6.43, with two additional alarm 

events found at location C. No alert or alarm events were detected at location D this time. 

The two alarm events seen at both B and C are associated with increased flow rate, indicating 

hydraulic causes, with the second occurring during a period of elevated water temperature 

mostly likely increasing consumer demand. 
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Figure 6.41. Turbidity (a) and chlorine (b) at locations B, C and D, and flow at locations A, B and 

C (c) for April, May and June 2021. 



127 

 

 

Figure 6.42. Turbidity at location B (a) and C (b) with alarm and alert events marked, and rolling 

daily peak advisory scores at the same locations (c). 

Analysis of the two alarm events seen at both B and C (April 25th and June 7th) using material 

flux is shown in Figure 6.43 and Figure 6.44, respectively. Both events see significantly more 

material passing location B compared to C, indicating that upstream of B is the source of 

material mobilisation. The event on April 25th (Figure 6.43) only sees a turbidity increase at 

C around 11 hours after the initial increase at B at 15:00. The following day with the 

increased daily morning demand sees a second wave of material moving past B, and later C. 

That the majority of the 1127 NTU.m3 of material passing C occurred the following day 

indicates that this is when the material just upstream of B reached C. This occurs roughly 16 

hours later, which is approximately in line with the estimated average transit time of 19 

hours. Analysis of event on the 7th June using material flux (Figure 6.44) shows that 

significantly more material moved past location B compared to C (3254 versus 966 NTU.m3). 

That approximately three times the amount of discolouration material passed B compared to 

C is not possible to understand from just the turbidity data. This is the case for both events, 

with around 3-4 times as much material passing B compared to C. This informs that the take-

offs between B and C are where much of the discolouration material is ending up, 

highlighting the value in analysing material flux where flow rate is available and the ability to 

determine source and destination of material. It appears both locations see the same first 
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wave of material on 7th June, meaning a hydraulically induced mobilisation occurred 

throughout this network section yet it did not impact the section towards the end of this 

network at D. That the increased flow rate the next morning (8th June) only seemed to 

initially mobilise material around location B suggests that some of the upstream material 

mobilised the previous day had accumulated over night upstream of location B, but not 

between B and C. This material is then seen at location C around 12 hours later, a much 

shorter transit time than the 19 hours average previously estimated but this can be explained 

but the significantly sustained higher flow rate than normal  (Fig 6.45b). 15 customer contacts 

were associated with this event, indicating the impact on customers and hence the value in 

determining the cause and material source to facilitate preventative measures to mitigate 

future recurrence. 

 

Figure 6.43. Turbidity (a), flow (b), and material flux (c) at locations B and C, with total material 

estimated in (c) for the alarm event on April 25th and 26th 2021. 
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Figure 6.44. Turbidity (a), flow (b), and material flux (c) at locations B and C, with total material 

estimated in (c). 

 

6.5 Example 4 - MPMS Turbidity event in a single long main 

This example looks at six inline turbidity sensors on a single 70 km cast iron main with the 

only take-off between the 3rd and 4th monitors, illustrated as a schematic in Figure 6.45. The 

absence of chlorine data precludes analytical cross-correlation confirmation of connectivity 

or the calculation of transit times and in this case the connectivity was confirmed by the 

WSP. The lack of flow rate data beyond the take-off prevents precise analysis of material 

movement for all monitors, but flow rate data from close to the first sensor location enables 

some initial analysis. Figure 6.46 plots all six turbidity time series for the second half of 2021 

(July to December) and multiple turbidity events are visible. As mentioned in Background 

Section 2.3.4, previous work has shown that the daily standard deviation is an effective 

metric for assessing discolouration risk in continuously deployed turbidity sensors (Cook et 

al. 2016) and Figure 6.47 is a bar plot comparing the daily median standard deviations at each 
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location. This is observed to approximately increase from locations 1-6, apart from location 3 

being slightly lower than 2. Distance information provided by the WSP is displayed in the 

schematic Figure 6.45, with locations 2 and 3 the closest pair at just 3.8 km apart. The more 

disperse final three locations saw more pronounced diurnal turbidity patterns. Analysis using 

the event scale approach is presented in Figure 6.48, with location 6 having the most alert and 

alarm events, as well as the highest median peak advisory score. In general, the number of 

advisory, alert and alarm events are seen to increase from 1-6, indicating decreasing water 

quality and higher discolouration risk with distance travelled down this main.  

 

Figure 6.45. Simplified schematic show locations 1-6 in a single straight mains. 

 

Figure 6.46. Turbidity time series from July to end of September for locations 1 (a), 2 (b), 3 (c), 

4(d), 5 (e), and 6 (f). 
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Figure 6.47. Median daily standard deviation for locations 1-6. 

 

Figure 6.48. Median peak daily advisory score (LHS y-axis and yellow bars) and number of alert 

and alarm events (orange and red bars, respectively and RHS y-axis) 

Figure 6.49 plots the mains flow rate at location 1, along with the turbidity data during a 

week in which flow rates were seen to increase on the 16th August from 135 to 290 m3/hr 

before dropping below 100 m3/hr about 2 hours later. This pattern was repeated every few 

hours for next few days. A clear turbidity response is seen from this first flow rate increase, 

and then reduces back to background levels within 2-3 days (supporting the conditioning 

concept covered in Background Section 2.2.4). Locations 5 and 6 appear to have two waves 

of turbidity events, with their second coming on the 18th and 19th of August, respectively. 

Visual assessment of event peaks at the locations provides approximate transit times, with the 

difference from location 2-3 found to be 5.5 hours, then 9 hours from 3-4, followed by two 16 

hour gaps from 4-5 and finally from 5-6. That it took 5.5 hours for the event to travel from 2-

3, despite these only being 3.8 km apart is explained by 3.5 hours of that time consisting of 

low flow rates. Using this manual tracking assessment, it appears that the first flow rate 
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increase has mobilised material at two different sections of this network. The first 

mobilisation is first seen as a single point at location 1, before moving through locations 2,3, 

and 4 in sequence, and reaching locations 5 and 6 in the following days, as illustrated in 

Figure 6.50 (a). As flow rates beyond the take-off were unavailable, the mains flow rate from 

near location 1 was used to estimate material fluxes. This will lead to overestimates for the 

downstream sensors (4,5 and 6), but is still useful to support analysis of discolouration 

material movement.  

The second event is seen at locations 5 and 6 and shown in Figure 6.51 (a). This follows the 

initial flow rate increase, indicating the hydraulic impact mobilised some material located 

towards the end of this main. The total material mobilised during both of these events are 

shown in a bar plot in Figure 6.52, which suggests the second wave mobilised more material 

and that the section of this main close to locations 5 and 6 had a higher level of material 

mobilised. This analysis supports the earlier findings that more material is available for 

mobilisation downstream, meaning this section has a higher discolouration risk. 

 

Figure 6.49. Upstream mains flow (a) and turbidity time series at each location (b)  between 15th 

and 23rd August. 
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Figure 6.50. Turbidity (a), flow (b) and material flux (c) during event first wave at each location 1-

6. 

 

Figure 6.51. Turbidity (a), flow (b) and material flux (c) during event second wave at locations 5 

and 6. 
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Figure 6.52. Total material passing locations 2-6 during the event first and second waves. 

 

6.6 Example 5 – MPMS Dimensionality reduction and anomaly detection 

This section explores how higher-dimensional water quality data can open up more 

possibilities for unsupervised anomaly detection. As highlighted in Background Section 

2.4.5.1, reducing a datasets dimensions using an approach such as PCA can improve results 

in subsequent event detection.  In this example PCA is applied to reduce the dimensions of 

two eight-parameter water quality sensors dimensionality and subsequently examine 

unsupervised anomaly detection approaches that were discussed in Background Section 

2.4.5.1, such as isolation forest, elliptic envelope, local outlier factor and one-class support 

vector machines (OCSVM). Before these approaches, data quality assessment was performed 

and cross-correlation was used to find two connected locations, with location H around 2 

hours 15 minutes upstream of location I. Both multi-parameter sensors were installed along a 

trunk mains. The two principal components are shown, with retained variance of 16% for H 

and 23% for I, in scatter plots in Figure 6.53, along with boundaries automatically calculated 

by unsupervised anomaly detection methods isolation forest, elliptic envelope, local outlier 

factor and one-class support vector machines (OCSVM). This process enables visual 

comparison of how each anomaly detection algorithm performs at splitting these datasets into 

normal and abnormal data. Of the four approaches reviewed, visual inspection suggests that 

OCSVM does a good job of capturing the majority of the data. Therefore, OCSVM was 

employed to detect anomalies at each of these sensor locations.  
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Figure 6.54 plots each of the eight water quality parameters at both locations, along with each 

principal component as a time series. The anomalies detected by OCSVM are included in 

each subplot. This approach identified two turbidity events at location H. The first coincides 

with a drop in ORP and, as shown in Figure 6.55, on closer inspection this event is also seen 

at location I, with the timings agreeing with the estimated transit time. The second turbidity 

event, shown in Figure 6.56, is also seen to a lesser degree at location I, though no other 

parameters are seen to change. As these were both below 2 NTU, these events would not 

have been flagged as alert or alarm events using the turbidity event scale but would have 

resulted in high advisory scores. However, this approach can detect events in the other 

parameters and a chlorine and ORP drop was detected at location I (Figure 6.57) but nothing 

is seen at the upstream location H. Finally, a cluster of anomalies are detected between 15th 

and 20th August at location I, shown in Figure 6.58. This cluster starts with a drop in pressure, 

ORP and pH, along with a step increase in turbidity from 0.3 to 0.47 NTU. A second larger 

drop in ORP is seen the next day and five days later another similar pressure drop occurs 

alongside a second step increase in turbidity, this time up to 0.7 NTU. That both events 

detected in H are also seen at downstream I and the timings are consistent confirms that the 

source of these events are upstream of H. The cluster of events at I that are not seen at H 

however indicates these are localised between H and I. These examples demonstrate the 

promise for PCA and OCSVM to detect different kinds of events in high-dimensional water 

quality time series. 

 

Figure 6.53. Scatter plots of two principal components for location H (a) and I (b), with boundary 

lines shown for unsupervised anomaly detection methods isolation forest, elliptic envelope, local 

outlier factor and one-class SVM.  
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Figure 6.54. Two connected eight-parameter water quality time series from March to October s 

with turbidity (a), chlorine (b), temperature (c), pH (d), pressure (f), flow (g), conductivity (h), ORP 

(i) and two principal components in (e) and (j) respectively. 
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Figure 6.55. Detected anomaly at Location H shown at both locations for turbidity (a) and ORP 

(b). 

 

Figure 6.56. Detected anomaly at location H shown in both locations for turbidity. 
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Figure 6.57. Detected anomaly at Location I shown at both locations for turbidity (a) and ORP (b). 

 

Figure 6.58. Multiple detected anomalies at location I, plotted on parameters turbidity (a), pH (b), 

pressure (c) and ORP (d) with location H also plotted. 
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6.7 Example 6 - MPMS Increase in daily turbidity profile 

This example features five connected multi-parameter water quality sensors, all installed on 

offshoots to a main running downstream of a service reservoir, as shown in a simplified 

schematic in Figure 6.59. Locations X, Y and Z are the same as used in the second ‘build’ 

example in 6.3 (where X = Location 2, Y = Location 7, and Z = Reference), with two 

additional sensors later installed in this region. These sensors measured increased turbidity 

responses following a step increase in upstream mains flow rate in August 2021, Figure 6.60. 

The step increase seen towards the end of this plot attains the highest flow rates since the 

March 2020 spike that caused the alarm event featured in 6.3. These increased hydraulic 

forces cause a change in turbidity profile, with increased turbidity seen on a strong diurnal 

pattern at multiple locations throughout August, as seen in Figure 6.61. Unlike previous 

examples, this does not feature alert or alarm events, with turbidity remaining below 2 NTU 

throughout. The peak daily advisory score, shown in the bottom plot of Figure 6.61, was very 

high for all these locations at the beginning of August before reducing once the algorithm 

started accounting for this seemingly normalised daily fluctuations. The initial peak of this 

event did not occur simultaneously in X and Y, like previously for the reference and location 

2 in example 6.3, instead it is only seen initially at location X, which reached just under 1 

NTU at the same time as the main peak flow rate on 1st August. A larger event peaking at 1.4 

NTU is then seen almost occurring identically at locations V and Y. Analysis of the transit 

times between these locations confirm that water would be expected to reach these locations 

at similar moments and previous analysis has shown the average transit time from X to Y to 

be 3 hours 45 mins. The delay in reaching the location Z is also expected. Location W with a 

very different water quality time series profile meant a transit time could not be determined 

and suggested only partial connectivity. The delays roughly in line with estimated transit 

times suggests the source of this event is upstream and propagating down the network. 
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Figure 6.59. Simplified schematic showing sensors V, W, X, Y and Z (line lengths are not 

representative of distances). 

 

Figure 6.60. Mains peak daily flow from 2019 to 2021. 



141 

 

 

Figure 6.61. Turbidity at five locations for the first three days of August (a) and throughout August 

(b). The bottom plot shows the peak daily advisory scores at each location in August (c). 

Material flux was calculated at each location to quantify material movement for the month of 

August, with net daily material throughout August plotted in Figure 6.62 along with a bar 

chart showing the total material moving past each location throughout this month. The flux 

seen in the first couple of days shows that most material is travelling down the supply 

offshoots related to V and Y. This suggests that the mains section downstream of X has had 

additional material mobilised. These locations continue to have the highest diurnal material 

movement, with Y having the highest total material, as shown in the bar chart in Figure 

6.62(b). Just over 1000 NTU.m3 of discolouration material passes location Y during this 

month. This is slightly higher than the total material estimated during the alarm event in 6.3 

but it is spread out over a month, with the highest in a single day just 168 NTU.m3. That 

location Y, previously the Reference location in Example 2 (Section 6.3), was again seen to 

have the largest material response indicates there is a continued discolouration risk at this 

location.  
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Figure 6.62. Net daily material (a) and total material passing each location (b) in August 2021. 

 

6.8 Example 7 - MPMS Coliform failures in service reservoirs 

The aim of this last example is to demonstrate again how analysis of multiparameter data 

from DWDS can yield deeper insight. Although this example differs from previous examples 

in that it uses discrete sampling data, the dataset is large, taken from 329 service reservoirs 

across a period of over 4 years,. The dataset analysed includes a weekly metric termed the log 

water quality risk score (Log WQRS), which is a proprietary metric used by the WSP and is 

calculated from flow cytometry data. Log WQRS is designed to determine the risk of 

bacteriological failure and focuses on the high nucleic acid (HNA) portion of cell 

populations. In general, any sample with a Log WQRS under 6 is considered clean and free 

of bacteriological risk, while those above 9 are more likely to be bacteriological failures. 

Figure 6.63 plots the average weekly Log WQRS against total chlorine, water temperature, 

and total coliforms across 300 service reservoirs for over 4 years. Total chlorine is used here 

due to some of the sites being in chloraminated systems. This plot shows a clear seasonality 

and inverse relationship between the Log WQRS and total chlorine, and a positive correlation 
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with water temperature. Additionally, it appears that most detected coliforms occur during the 

summer months. 

 

Figure 6.63. Average weekly Log WQRS (a), total chlorine (b), temperature (c) and total coliforms 

(d) across over 300 service reservoirs for over 4 years. 

Figure 6.64 (a) is a scatter plot of the total chlorine versus temperature for all samples, with 

those samples returning a Log WQRS above 9 highlighted, as well as samples with at least 

one coliform detected. This shows a majority of the samples with high Log WQRS occurred 

at low chlorine levels and the same can be said for coliform failures. This again shows that 

low disinfection levels may be a contributing factor to increased risk of bacteriological 

failures. Figure 6.64 (b) is a histogram of the Log WQRS for each of the 49 samples that 

were coliform failures. As expected the distribution is skewed towards higher Log WQRS, 

though some failures also occurred with lower Log WQRS. Coliform failures not detected in 

bulk water by flow cytometry potentially indicate an ingress related contamination event. 

Two of these failures with lower Log WQRS are explored in Figure 6.65 and Figure 6.66, 

alongside the Log WQRS, chlorine, water and daily max air temperature, and max daily 

rainfall. The first example shows the weekly samples from a single service reservoir for 2.5 
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years, with a sudden detection of 9 coliforms seen on the 25th July 2022. This coliform failure 

occurred despite reasonable disinfection levels, though it was during a period of hot weather 

with a peak air temperature of 30.7 °C seen in the days before and after some heavy rainfall, 

suggesting conditions may have been well-suited for contamination via ingress. That another 

coliform is detected at this site at the start of November suggests the issues were ongoing. 

The second example shows chlorine dropping from 0.47 to below 0.1 mg/l in the weeks 

leading up to a coliform count of 5 on the 14th September, which also coincided with a high 

rainfall event, suggesting ingress and insufficient disinfection as potential contributing 

factors.   

 

Figure 6.64. Scatter plot of total chlorine versus temperature, where blue circles represent all 

samples, orange squares are samples with a WQRS above 9 and black stars are samples with 

coliform failures (a), and a histogram showing the distribution of WQRS for samples with coliform 

failures (b). 
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Figure 6.65. Log WQRS (a), free chlorine (b), water and air temperature (c), rainfall (d), and total 

coliforms (e) at a single service reservoir for over 2 years. 

 

Figure 6.66. Log WQRS (a), free chlorine (b), water and air temperature (c), rainfall (d), and total 

coliforms (e) at a single service reservoir for over 2 years. 
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6.9 Summary 

This chapter has demonstrated how information can be derived from MPMS water quality 

datasets taken from DWDS that can be used to inform operations. The methods developed in 

Chapters 4 and 5 have been shown to work together effectively alongside other approaches to 

unlock insights from the time series datasets. The first two examples moved from SPSS to 

MPMS, highlighting how additional sensors and parameters increase the insight gained when 

compared to relying on single time series data. Additionally, this increase was seen to behave 

in a non-linear fashion or multiplicative fashion. Table 6.2 provides a summary of the 7 

examples covered in this chapter, with the analysis methods applied listed alongside the 

specific insights gained for each example. 
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Table 6.2. Summary of examples presented. 

Example Parameters Analytic Techniques Insight Gained 

Example 1 – 

Building from 

SPSS to MPSS to 
MPMS (Section 

6.2) 

Turbidity  

chlorine 

flow rate 

pressure 

temperature 

pH 

Data quality assessment 

Turbidity drift detection and 

correction 

Cross-correlation 

Material flux 

Daily peak flow rate 

Turbidity Event scale 

The majority of material identified from upstream source highlighted by material flux 

assessment. This would not be possible to confirm with SPSS / MPSS alone at the reference 

location. 

Advisory events were seen at both locations in the days prior to the event suggesting this could 

act as a pre-cursor warning with a reduction post-event indicating likely benefits from 

maintenance. 

Example 2 – 

Building from 

SPSS to SPMS to 
MPMS (Section 

6.3) 

Turbidity 

chlorine 

flow rate 

pressure 

temperature 

pH 

upstream flow rate 

discolouration 

contacts. 

Data quality assessment 

Cross-correlation 

Daily peak flow rate 

Material flux 

Turbidity Event scale 

Contacts Analysis 

Source of event was identified as increased flow through mains mobilising material seen at 

three sensors installed on offshoots. Flux estimates show most material traversing the 

Reference location, which also received  the most discolouration contacts Event scale advisory 

scores also suggested the Reference location poses the greatest risk. 

Example 3 - 

MPMS 

Discolouration 

and low chlorine 

at end of network 

(Section 6.4) 

Turbidity,  

flow rate,  

chlorine 

Data quality assessment 

Turbidity Event scale 

Material Flux 

Daily peak flow rate 

Contacts analysis 

Shows how water quality can deteriorate during network transit and this may be linked to 

where chlorine residual is not maintained. Event scale analysis shows more alert and alarm 

events at D (end of network) in 2020, and shows advisory analysis can be used in upstream 

locations to infer risk further downstream.  

Example 4 - 

MPMS Turbidity 

event in a single 

long main 

(Section 6.5) 

Turbidity, 

mains flow rate 

Median daily standard 

deviation, 

Turbidity Event Scale 

Material flux (using only 

available mains flow rate) 

Analysis of long term turbidity shows increased diurnal fluctuations further down this 

network, indicating greater material movement and  increased mobilisation risks. This 

increasing risk is supported by increased numbers of alert and alarm events, and advisory 

scores. The hydraulic induced turbidity event analysed showed significant material 

mobilisation towards the end of this network section, again highlighting the increased 

downstream risk. 
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Example Parameters Analytic Techniques Insight Gained 

Example 5 – 

MPMS 

Dimensionality 

reduction and 

anomaly 

detection (Section 

6.6) 

Turbidity 

pH 

conductivity 

chlorine 

temperature 

ORP 

flow rate 

pressure 

Dimensionality reduction 

(PCA), 

Unsupervised anomaly 

detection (IF, EE, LOF, 

OCSVM) 

Demonstrates how automatic anomaly detection can work in higher dimensional water quality 

sensors, with OCSVM shown to provide a good fit to the 2 principal components obtained 

from PCA dimensionality reduction. Several anomalies are detected, including a turbidity 

event with an ORP drop in both locations and a step increase in turbidity along with a step 

drop in pH and a drop in pressure, indicating the potential value for an automated approach. 

Example 6 - 

MPMS Increase 

in daily turbidity 

profile (Section 

6.7) 

Turbidity 

flow rate 

chlorine 

Drift correction, 

Material flux, 

Longer term material 

quantification, 

Daily peak flow rate 

This event involved a step increase in daily peak mains flow, leading to daily mobilisation of 

material, seen at multiple locations. The total material mobilised is similar to that previously 

seen in Example 2, though as spread out over a month has lower turbidity responses with 

reduced risk to customers. Location Y was found to have the highest daily and overall material 

flux, indicating this location remains at risk of discolouration. 

Example 7 - 

MPMS Coliform 

failures in service 

reservoirs 

(Section 6.8) 

Log WQRS 

(derived from flow 

cytometry) 

Chlorine 

temperature (air and 

water) 

rainfall 

total coliforms 

Plotted as time series 

(averaged across all SR sites), 

Scatter plot and histogram to 

examine link between 

coliforms and flow cytometry 

 

This example deviates from previous ones in that it does not include high-frequency water 

quality data, instead analyses weekly regulatory samples at service reservoirs. The seasonality 

of flow cytometry, chlorine and temperature are clearly seen and an inverse relationship 

between chlorine concentration and Log WQRS. Most coliform failures also had a high Log 

WQRS, with two exceptions examined and found to be potentially related to ingress with high 

air temperatures and rainfall preceding. 
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Chapter 7: Discussion 

This research investigates how continuously monitored water quality time series data from 

DWDS can be transformed into actionable information to support network operations. The 

focus was on developing methods for assessing sensor data quality, investigating how water 

quality events can be detected and understood, and exploring how multiple water quality 

parameters and sensor locations in combination can impact the overall level of insight 

derived. The work started with a review of the relevant literature to identify current 

techniques and knowledge gaps. To facilitate assessment, continuous time series and 

sampling datasets were then obtained from five supporting WSPs. A particular focus on 

discolouration events was driven by discolouration being the most pervasive water quality 

issue in DWDS, along with turbidity being the most commonly measured parameter in the 

datasets provided. However, the methods developed to analyse turbidity time series data also 

have applicability to other parameters. This research included development of novel 

contamination event analytics driven by domain expert interpretation of water quality time 

series, before applying developed algorithms to real events seen in multiple connected sensor 

locations. This represents a major advance from the common but unrealistic practice of 

artificially inserting events on top of measured data (Murray and Haxton 2010; Perelman et 

al. 2012; Li et al. 2019; Muharemi et al. 2019). This discussion reflects on the contributions 

made in respect to the identified knowledge gaps and provides recommendations regarding 

directions for future research to build on the contributions made in this thesis. 

7.1 Multiplicative Value of Multiple Parameters and Multiple Sensors 

The step increase in value with having multiple connected sensors was demonstrated first in 

Chapter 4, where connectivity derived from cross-correlation is used to improve the data 

quality assessment of each individual sensor and parameter. The increased confidence in the 

data quality impacts the confidence with which any subsequent analytics can be done. This is 

clearly seen later in Chapter 6 (best reviewed via the summary Table 6.2), where suspected 

water quality events in the first two examples (Sections 6.2 and 6.3) were confirmed to be 

real events, as opposed to local events or sensing errors, through comparison with connected 

sensors. This logic is applicable to parameters other than turbidity, where a sudden 

unexpected change or event, could indicate either a sensing error or a network event. The 

same point can be made for having multiple parameters measured at a single location, and 
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there are some particular combinations of parameters that can be combined to increase 

insight, such as flow rate and turbidity to determine material flux. However, it was only with 

the availability of both multiple parameters and multiple sensors that a multiplicative jump, 

not only in confidence but in obtainable insight regarding the root-cause of a contamination 

event, was seen as observed in the first two examples in Chapter 6 (Sections 6.2 and 6.3). The 

term multiplicative in this context refers to the observation that the increased value is greater 

than simply adding together the individual value from each single sensor and parameter. 

However, such a multiplicative increase is only seen when moving from single parameter 

single sensor to multiple parameter multiple sensor analytics and such a trend would not be 

expected to continue with the addition of more and more sensors and parameters. For 

example, a multiplicative increase in value may not necessarily be observed when moving 

from 10 connected sensors to 11. 

Example 1 (Section 6.2) is a clear demonstration in the transformative power of having a 

confirmed connected location and both locations having flow rate data. The MPSS analysis 

strongly suggested this event was caused by increased flow rates. However, the addition of a 

second sensor location, which was determined to be connected through cross-correlation 

performed on the entire dataset, was seen to transform understanding of this event. Through 

analysis of the material flux at each location, the larger second wave of material was seen to 

decrease by around 10% to the downstream location. This precise analysis was only possible 

due to the calculation of an average transit time between these locations, proving the value of 

cross-correlation. The result suggests the material involved is travelling through the network 

from an upstream source, possibly from an upstream service reservoir or supplying WTWs, 

while the additional material local to each location is relatively minor. This is counter to the 

consideration of a hydraulic induced event localised to the downstream location as may have 

been concluded without the additional upstream location. Though it would be very 

challenging to automate this kind of precise analysis, it would not be difficult to 

automatically check known-connected sensor locations for a corresponding event, following 

a detection. Example 2 (Section 6.3) used material flux and analysis of peak daily flow rates 

to confirm that this was a network-wide event caused by mains flow rate increases, while the 

fact that the sensor location with the highest total discolouration material also had the most 

associated contacts validates this as a measure of downstream discolouration risk. Analysis of 

the shape of a turbidity event can also provide information regarding the dominant 

accumulation process. For example, a gradual increase in line with increasing flow might 
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suggest cohesive layers are the dominant mechanism, whereas a sharper event that does not 

continue to rise with increasing flow rate may indicate sedimentation-driven accumulation 

(Boxall et al. 2023). 

Turbidity and flow at multiple connected locations was also used to confirm alarm events in 

Example 3 (Section 6.4) were related to upstream hydraulics, while Example 4 (Section 6.5) 

demonstrated how only having turbidity at multiple locations can limit accurate tracking of 

an event. Though in this single straight mains example connectivity could be assumed, the 

lack of transit time meant visual assessment was relied upon. Example 3 also demonstrated 

that discolouration may be more likely to occur, with or without a flow rate increase, with 

higher temperatures often seen in the summer time. It has been previously shown that higher 

air temperatures correlate with increased discolouration contacts (van Summeren et al. 2015). 

Increased water temperatures increase chlorine decay rates, which can be an issue in further 

downstream locations such as location D in this example. Therefore, in this example the root-

cause is shown to be a flow rate increase, but both weather and a poorly maintained residual 

disinfection are likely contributing factors. The link between hot weather and increased 

demand is clearly shown in Figure 6.40, and suggests weather forecasts and associated 

parameters could play a bigger role in discolouration mitigation.  

These examples demonstrate that the increase in value and insight obtainable does not 

increase linearly from SPSS to MPMS analysis, but instead a multiplicative increase is seen. 

An extreme case looking at eight-parameter sensors was included in Example 5 (Section 6.6), 

where dimensionality reduction and unsupervised anomaly detection was shown to be an 

effective way to identify unusual events in any parameter, showing the value in having high 

dimension water quality time series. When it comes to analysing a contamination event in a 

DWDS, knowing what sensors are hydraulically connected and the approximate transit times 

involved is transformative in its power. This does place significant importance on gaining an 

understanding of the hydraulic connectivity between sensor locations. The data quality 

assessment framework proved the suitability of chlorine time series for cross-correlation 

analysis, which can provide this kind of vital spatiotemporal information. Turbidity time 

series were not found to be well-suited, though other parameters could be investigated for 

their suitability. The importance of having cross-comparable sensor locations has 

implications for deployment strategies that will be further discussed in this section. 
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7.2 From Reactive to Proactive Management of Network Contamination 

Events 

7.2.1 Reactive Management 

If it is accepted that contamination events will occur and that knowledge of these may not 

arise until it’s too late, developing methods to effectively detect and analyse these events 

becomes vital. The ability to take effective action following a detected discolouration event is 

dependent on how quickly the event is detected and the time before the discoloured water 

reaches customers. An alarm event (using the event scale developed in Chapter 5), seen at 

two or more connected locations and therefore of high confidence, requires immediate action. 

However, the lead time required for utilities to actually perform mitigating actions that can 

halt discoloured water already on route to customers is likely greater than would be available. 

Therefore, in these cases perhaps the best action is simply to warn potentially impacted 

customers. The earlier this is done, the better the impression on customers. This is where 

edge computing of the turbidity event scale could function to rapidly enable such alerts and 

warnings to be sent out. Relying on waiting for the data to be uploaded to a central server 

before analysis currently means many such events will reach customers before the data is 

even available. As well as a rapid warning, such events should be analysed for root-cause 

using the techniques demonstrated in this thesis. The above approach would equally be 

applicable for detected alert events.  

The two examples in Chapter 6 demonstrated how the data quality framework developed in 

Chapter 4 can function alongside the turbidity event scale developed in Chapter 5 to semi-

automatically detect alert and alarm events in connected sensors, with connectivity 

determined using the cross-correlation method outlined in Stage of 2 of the data quality 

assessment framework in Chapter 4. Any period of data that is flagged for exceeding 1.5 

NTU for an extended period of time (6 hours was selected, as outlined in Table 4.3), 

subsequently requires cross-validation against other connected turbidity sensors (as per Stage 

2 and 3 of the data quality assessment framework). These examples both featured alarm 

events that were found to occur in connected sensor locations, therefore being confirmed as 

real network events. That Example 2 had over 130 reported customer contacts provides  

direct confirmation that this was a real discolouration event impacting customers. This 

research has shown the capabilities for online water quality monitoring to detect and confirm 
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DWDS contamination events, which represents a clear improvement on reliance on 

subjective customer contact information. However, estimating only total material mobilised 

during an event still does not provide a full picture of overall risk posed, which should also 

account for the number of downstream customers likely to be impacted. For example, 

Example 2 resulted in over 130 contacts with a total of 940 NTU.m3 discolouration material 

passing the reference location and a peak turbidity of 11.36 NTU, while only 15 contacts 

were seen as a result of the April 2021 alarm event featured in Example 3 despite a similar 

turbidity peak and a total of 5714 NTU.m3 discolouration material passing location B. The 

difference in impact on customers, despite the latter example having more discolouration 

material mobilised, is likely down to number of customers impacted, highlighting the 

importance to account for number of impacted customers when determining the appropriate 

response to a detected discolouration event. 

7.2.2 Proactive Management 

Though improved discolouration detection, root-cause determination and estimation of 

downstream risk represents a major improvement over the status quo, these remain reactive in 

nature. Though they inform about network risk regions, it is desirable to move towards more 

proactive discolouration management approaches that don’t require a historical record of 

discolouration events and can be applied without context to any time series. Therefore, the 

potentially transformative contribution of this work to managing discolouration is related to 

precursor information, with the advisory score approach showing promise for flagging low 

level increases in turbidity that would previously have been ignored. The event detection 

approach investigated in Chapter 5 involved calculating a residual by subtracting forecast 

values from actual values, instead of previous work that sought to predict turbidity (Meyers et 

al. 2017; Kazemi et al. 2018). The approaches compared in this chapter focused on classical 

time series forecasting, which has been shown to often outperform machine learning 

approaches, are well-suited to univariate problems and are less computationally demanding 

(Makridakis et al. 2018). This makes such approaches more applicable in real-time and even 

well-suited for edge computing, whereby high advisory events could be detected remotely by 

a small computer alongside the remotely installed sensor. Such a setup could provide real-

time warnings, as opposed to waiting for the data to be uploaded to a server before any 

analysis and/or event detection can be done. The time-based averaging advisory score 

approach developed was applied to the data preceding the confirmed real networks events in 
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Chapter 6, to investigate the potential of this method for precursor indications. As this 

algorithm was developed to output an event score time series, matching that of the averaged 

labels from the labelling exercise, some additional analysis was required to simplify the 

resulting time series into a useful single metric. 

Example 4 showed that the number of alert and alarm events broadly was seen to increase 

through this single straight network section, as well as the median peak daily advisory score. 

Using the highest daily advisory score is an obvious way to simplify the advisory score time 

series, and reporting the median value of that provides information on the average level for a 

given day. Example 1 simply included a plot (Figure 6.13) showing the advisory score time 

series, which included some high advisory scores in the days leading up to the featured alarm 

event. Example 2 instead plotted the daily peak advisory scores for the three featured 

locations (Figure 6.24), which had the effect making the plot easier to visualise. This plot 

clearly shows increased advisory scores at all three locations before the alarm event on 12th 

April. The visible drop seen in the weeks following the event demonstrates that some of that 

risk had reduced due to the alarm event likely mobilising much of the accumulated material. 

A similar approach is used for the Example 3 (Figure 6.39) with the vast majority of alarm 

events seen at end-of-network location D, which also had the highest peak daily advisory 

score even a week before the first alarm event. These examples demonstrate that the event 

scale is an effective approach for estimating discolouration risk levels using single turbidity 

time series. However, as with data quality assessment and event detection, estimation of 

discolouration risk is also more powerful and informative when it can be compared to other 

connected locations.  

This proactive approach assumed that sudden small increases in material mobilisation are 

indicative of larger mobilisation risks. This requires further work to fully validate. However, 

it does align well with the theory that discolouration material accumulates in cohesive layers 

(Husband et al. 2008), with sudden small mobilisations exposing deeper layers of material 

with the  potential to be mobilised. Unlike previous research into detecting turbidity events 

that also required flow as an input (Meyers et al. 2017; Kazemi et al. 2018), the turbidity 

event scale was designed to be applicable to individual turbidity time series without requiring 

flow. It was applied in four of the examples from Chapter 6 (in all four cases at least one 

alarm event >4 NTU was detected). Example 6 (Section 6.7) was unique among the 

discolouration examples featured, in that the turbidity never exceeded 2 NTU, meaning the 
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five sensors all experienced only advisory events following a step increase in mains 

hydraulics that lasted several weeks. It is not known how this system would have reacted with 

an additional step increase in flow beyond that sustained for this period. Clearly there are 

significant levels of material present in this system and it is possible that a higher flow during 

this period would have mobilised further material. This would again be supported by the 

cohesive layers theory, whereby weaker layers of material being mobilised exposes deeper 

layers to be mobilised by a further increase in flow rate. This suggests that these high 

advisory scores are not necessarily invalidated by the lack of a subsequent alert or alarm, as 

the required flow increase did not occur. How to deal with advisory events is a more 

complicated matter than alert or alarm events. It has been shown that high advisory scores 

often precede alert and alarm events. However, Example 6 had high advisory scores without 

any alert or alarm event coming within the time frame investigated. Therefore, actions to take 

where high advisories are detected could range from carefully avoiding and managing any 

further flow rate increases, as much as is possible, to planned network interventions such as 

flow conditioning to safely reduce the amount of accumulated discolouration material. 

7.3 Practical Considerations 

Optimal use of deployed water quality sensors depends on the overall monitoring goal. This 

could range from investigating discolouration in a network section with perceived issues to 

more targeted deployment looking at a particular asset such as a service reservoir. The goal of 

water quality monitoring influences choice of parameter, number of sensors, installation 

locations, deployment time period and sampling frequency. The ultimate aim is to collect the 

dataset best suited to the desired insight, meaning the entire life cycle of raw data to 

actionable information should be considered before a deployment strategy is devised, 

including how the sensor will be prepared, installed, and maintained and how the data will be 

monitored, analysed, and what actions will be taken in response. With this in mind, there are 

huge benefits from accurate reporting of network events, such as maintenance and 

deterioration events. Collecting such data in a format easily inputted into analytics would 

save time and enhance analysis of deployed sensors and can add vital contextual information 

to supplement the time series datasets. This section briefly reviews considerations specific to 

taking good quality data, before discussing the merits of different sensor deployment 

strategies. 
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7.3.1 Data Quality 

Data quality was defined as “how well suited data is for its intended purpose” in Section 2.4.2 

and was identified as a significant challenge with water quality sensors continuously 

deployed in DWDS. Remotely deployed water quality sensors can foul or deteriorate, 

resulting in spurious measurements. Though this is inevitable, good practice both before and 

during deployment can minimise these occurrences and increase the value of the measured 

data. Pre-deployment calibration and validation enables potential issues to be learned about 

and remedied, while the data quality assessment framework developed in Chapter 4 provides 

a path to monitoring the performance of deployed sensors. This framework addresses the 

widely understood problem often referred to as DRIP (data rich information poor), and 

decreases the requirements of manual time-consuming data quality assessment that is often 

necessary before any analytics are possible (as outlined in Background Section 2.4.2). When 

a sensor issue is detected and confirmed, through its omission of data detected in other 

connected sensors, the sensor in question requires attention. Therefore, in order to investigate 

the sensor as quickly as possible, operators need to have maintenance technicians ready at 

relatively short notice. In many cases, the sensor may need to be either partially or 

completely replaced, meaning spare sensors and parts such as membrane/electrolytes for 

chlorine sensors should be kept at hand. In reality, the thoroughness of any maintenance plan 

depends on what level of accuracy is desired. If the sensors are deployed purely for large 

abnormal event detection, accuracy of lower-level baseline values will be of less importance. 

If there is interest in lower-level accuracy, then calibration and maintenance processes are 

more important. In this situation, the accuracy of any calibration reference sensor is essential, 

as well as having sensor performance checks in place while deployed. Even if ignoring sensor 

faults, any remotely deployed sensor relies on a battery, which will require replacement at 

some point. The sensor maintenance requirements are also influenced by overall deployment 

strategy, particularly the planned deployment duration, as longer or permanent deployments 

come with an inevitability about the sensor failing at some point if maintenance is not 

undertaken. 

7.3.2 Deployment Strategies 

There are a variety of different circumstances under which it may be desirable to deploy 

continuous water quality monitoring across DWDS. The examples included in this thesis 
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have entirely resulted from continuous long-term water quality monitoring projects, where 

each sensor largely remained at single locations for extended periods generally of several 

months to over a year. However, water quality monitoring may be desirable in response to a 

particular network change or intervention, such as during flushing activities, or at a specific 

location of deemed importance, such as a service reservoir. It may also be desirable to deploy 

water quality monitoring in a ‘lift and shift’ manner, where the same number of sensors are 

deployed for shorter periods of time, before being moved to another location. Such an 

approach would enable more network to be covered, while also ensuring the sensors 

themselves can be inspected regularly, such as prior to redeployment. Besides sensor 

deployment length, sampling frequency and spatial density and resolution are important parts 

of a deployment strategy. 

Example 7 (Section 6.8) featuring regulatory weekly samples at service reservoirs, revealed 

that low chlorine levels correlate to samples with higher risk of containing potential 

pathogens. Figure 6.66 features a service reservoir that was found to have a coliform failure, 

despite a low Log WQRS suggesting nothing was apparent in flow cytometry measurements. 

This failure came alongside a rainfall event, following a drop in chlorine during a heatwave. 

It is easy to see how high-frequency monitoring of disinfection levels could have helped this 

issue be detected sooner, and with more clarity if a sudden drop is seen. When such targeted 

high-frequency monitoring of service reservoirs are desired, it is vital to monitor not only at 

the reservoir outlet, but also the inlet, as has been demonstrated by Doronina et al. (2020).  

When it comes to sampling frequency, there has traditionally been a straightforward trade-off 

between battery life and how frequently a sensor samples (although the frequency of data 

upload is considered a bigger contributing factor to battery life). The industry standard, 

inherited from hydraulic measurements, is to measure water quality at 15 minute intervals. 

However, the clear benefits of measuring at a higher frequency, such as 1 minute intervals, 

have been reported (Gaffney and Boult 2012) and are particularly relevant to measuring 

shorter discolouration events. Such higher-frequency sampling could easily be achieved with 

shorter term deployment strategies, where the batteries could be replaced without any missing 

data. 

The question of how many sensors are required and at what spatial density is more complex 

than the question of temporal frequency. This research has shown the transformative effect of 

having multiple comparable sensor locations, so focusing deployment in a specific network 
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section, deemed to be of risk of discolouration, is recommended. These are complex networks 

and a single deployed sensor only provides a small window into what is happening. Multiple 

sensors installed at comparable locations can result in a much more complete picture. 

However, there is no clear rule for how far apart sensors can be installed while remaining 

comparable. The low chlorine discolouration case in Example 3 showed that sensors installed 

23 hours apart can still be comparable. The main criteria for this to work is that there is 

nothing interrupting flow between the locations, such as a service reservoir, and that the 

residual chlorine levels are sufficient and not flat. This will not be possible to know with any 

certainty before deployment. Therefore, an iterative approach is recommended, where 

operators test out different deployment configurations. Such an approach may be desirable 

anyway, in order to move these instruments to different network regions. With time, 

knowledge could be built up of what locations work well together. Of course there are 

practical considerations with deciding where to install these sensors, and operators will be 

limited by the difficulty of accessing much of the buried networks.  

7.4 Future Research 

7.4.1 From Source to Tap 

The completion of this project opens up possibilities for several future research directions 

that could expand and build upon the findings and insights presented in this thesis. The first 

step would be to validate the novel methods developed in this project. To achieve this, a 

collaborative monitoring scheme alongside a WSP would be required as their access to 

details on network events would be invaluable in linking analytical outcomes to real-world 

incidents. Such a project would facilitate a continued examination of different sensor 

deployment strategies with chlorine or turbidity likely to be of key WSP interest. After such 

first steps are completed and the developed approaches are validated, a next step would be to 

develop a more complete source-to-tap understanding. This could be achieved by including 

data from catchments, the surrounding environment, WTW, DWDS (including service 

reservoirs) and customer taps. Considering turbidity, this would lead to a more 

comprehensive and detailed estimation of discolouration material source and destination. The 

event scale developed in this research could be expanded into a discolouration event 

categorisation and risk estimation system. Further research into proactive discolouration 

prevention could also explore the use of demand forecasting to supplement water quality 

analytics, as increased demand often leads to the type of material mobilisation that has been 
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heavily featured in this work. Such a source-to-tap digital monitoring scheme would also 

provide the kind of resilience required of drinking water systems in order to meet changing 

demands and aging infrastructure. The effects of climate change will be felt on both the 

supply and demand sides of drinking water systems, with increasing urban populations due to 

climate migrants and increased water shortages in certain areas. These effects are already 

being felt, with the practice of mixing water sources becoming more commonplace in the UK 

due to shortages in some areas, despite the effects on water quality not being well understood. 

That the DWDS assets themselves are ageing makes them more vulnerable to the increased 

strain they are set to come under. Enhanced system-wide monitoring offers the potential to 

help safeguard these vital assets against the uncertainties ahead. 

7.4.2 Health Risk of Contamination Events 

Integrating data all the way to customer taps would allow for water quality deterioration 

events and their health impacts to be better understood, as well as enable more detailed 

examination of the impact of different disinfection strategies. This could be achieved by 

supplementing the continuously monitored data with microbial grab samples looking for 

specific contaminants. The problem of intermittent grab samples being unlikely to take 

measurements during what are unpredictable water quality discolouration events could be 

addressed by measuring alternative parameters, such as flow cytometry alongside turbidity, 

flow and chlorine at multiple locations. Under such a setup, discrete flow cytometry 

measurements could aid detection of a discolouration event. Such a command could be issued 

using edge computing to process the event scale approach developed in this research. This 

process would enable the generation of a labelled dataset linking real discolouration events to 

their health risks, a dataset that could be exploited through machine learning algorithms in 

order to determine the key contributors to damaging discolouration events, and also could 

investigate what conditions lead to pathogens entering the water system. The results would 

allow for real-time alerts to be issued based on an estimation of health-risk associated with a 

given discolouration event. Additionally, the impact of different types of discolouration 

events could be investigated, for example if there is a difference in the health impact of an 

ingress-related discolouration event compared to a pipe-wall mobilisation one. Monitoring at 

customer properties would allow for domestic discolouration to be examined, including what 

kind of region and type of property is most at risk, and could tie back into research estimating 
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health risks of a DWDS discolouration event by accounting for distance traversed and 

residual chlorine.  

7.4.3 Role of Artificial Intelligence 

The future role of artificial intelligence, including in DWDS, is difficult to predict. Recent 

advancements in generative large language models (LLMs) are rapidly enhancing their ability 

to perform various tasks, and leading many industries to investigate increased adoption of 

artificial intelligence. Notably, research has shown how quickly LLMs are rapidly improving 

at general purpose tasks (Eloundou et al. 2023). This progress paves the way for accelerated 

digitalisation in many industries, including water, driven by increased LLM-powered 

software and automation. A future of integrated source-tap data sources promises to create a 

holistic digital picture capable of describing the state of a particular drinking water system. 

This research has shown a glimpse of how increased parameters can open up more automated 

analytical approaches (such as dimensionality reduction and unsupervised anomaly 

detection), while also demonstrating how high-frequency data can supplement and improve 

upon regulatory sampling. With more data integration these possibilities will increase. 

Different types of data could also be integrated, such as image data from satellites and site 

inspections, to video and audio data from customers, with multimodal artificial intelligence 

showing great promise for combining different data types together (Ngiam et al. 2011). A 

more concrete system-wide estimation of discolouration risk could be generated, building on 

top of the turbidity event scale developed in this research. Graph neural networks, a form of 

deep-learning that can capture complex dependencies between nodes and has outperformed 

other methods at predicting urban traffic flows (Peng et al. 2020), represents a promising 

research avenue that would incorporate the spatiotemporal relationships between different 

sensing locations and could perform both node and system wide analyses. The increasing role 

of artificial intelligence will be relevant for the management of these assets, and promises to 

deliver the digitalisation of water systems, but its success will be dependent on the 

availability and quality of relevant datasets. 
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Chapter 8: Conclusions 

Through investigation of large continuous DWDS water quality datasets from multiple UK 

water utilities, this thesis has developed and applied innovative analytical routines to 

understand sensor capabilities and network performance. By demonstrating how datasets 

from remote sensor networks can be combined and analysed to understand and crucially track 

water quality changes within these complex networks, this work establishes the value of 

sensors in providing actionable information to support operational management and that the 

value increases multiplicatively as analysis moves from a single parameter single sensor to 

multiple parameters and multiple sensors.  

The key research contributions are detailed in Chapters 4-6. The development of a data 

quality assessment framework, described in Chapter 4, provides a vital first step into realising 

the potential of continuous in-network water quality monitoring. Chapter 5 focused on 

arguably the most ubiquitous drinking water quality issue – discolouration, and developed 

algorithms to mimic a novel crowd-sourced set of labelled turbidity time series examples. 

Particularly unique was the focus on analysing often-ignored lower-level turbidity data to 

estimate risk of discolouration. Chapter 6 applied the methods developed in the previous 

chapters, alongside other techniques, on confirmed real-world examples. The insights gained 

from each example are best reviewed using Table 6.2. The use of confirmed real-world 

examples makes this work unique as previous research has been reliant on inserting artificial 

events into background water quality data. Overall, the research demonstrates how depth of 

insight increases multiplicatively with more parameters and sensors available.  

The main contributions of this work are: 

1. The data quality assessment framework developed provides novel tools necessary to 

assess sensor performance and flag erroneous data before further analysis. 

2. Cross-correlation is demonstrated to be an effective method for determining network 

connectivity and estimate transit times between sensor installation locations with 

chlorine time series found to be well-suited. 

3. Domain expert interpretation of events within turbidity time series was captured and 

understood through the use of an innovative crowd-sourced labelling. The results led 

to important insights about the importance of analysing often-ignored low-level 
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turbidity data, and were used to analytically compare different event detection 

algorithms. 

4. A turbidity event scale that detects advisory (<2 NTU), alert (2-4 NTU) and alarm (>4 

NTU) events enables improved proactive and reactive management of discolouration 

within DWDS. 

5. A time-based averaging approach is shown to be effective for analysing low-level 

turbidity data, as demonstrated by approximating the domain expert interpretation, 

and was shown to outperform more complex approaches using ARIMA and 

exponential smoothing. 

6. Turbidity, chlorine, and flow were found to be highly informative  parameters for 

understanding water quality in DWDS, with temperature, pH, conductivity, pressure 

and ORP also found to be useful. 

7. With turbidity, chlorine and flow available at multiple connected locations, 

discolouration events can be accurately tracked throughout network sections, enabling 

information to be derived about both the source and destination of the discolouration 

material. 

The major overarching outcome that the level of insight obtainable increases multiplicatively 

with multiple parameters and sensors will help inform intelligent deployment and analysis of 

water quality sensor networks in order to improve understanding and management of DWDS 

assets. The data quality assessment framework will improve the quality of data taken, thereby 

increasing the value of the sensors deployed. Determining connectivity between sensor 

locations is significant in helping to move away from single sensor analytics to higher 

confidence analysis of entire network sections. Significant advances have been made with 

regards to utilising DWDS turbidity time series to manage discolouration. By moving away 

from only focusing on reacting to customer contacts or large turbidity events to a more 

proactive digitalised approach, discolouration risk in network sections can be estimated and 

larger events can be prevented. Additionally, the requirement of network analysts to manually 

investigate water quality datasets will be reduced, enabling them to work in other areas while 

further increasing the value of deployed sensors. Ultimately, the contributions made in this 

research facilitate a move towards an improved digitalised approach to managing these vital 

assets and inform the kind of monitoring that will be required to address future challenges to 

safeguard delivery of high quality drinking water. 
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Appendix 1 – Sensor Specifications 

Table A: ATI MetriNet specifications per parameter. 
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Table B: Intellitect Water Intellisonde specifications per parameter. 
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Table C: Salamander Hydraclam specifications per parameter. 
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