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Abstract 
The concept of in-materia computing uses the natural complexity of material systems to 

perform computational operations naturally as part of the system’s inherent response to input 

stimuli. However, to implement a material system for computation effectively, the physical 

response of the system must be understood and exploited under a suitable computational 

framework. This thesis explores the application of arrays of interconnected magnetic 

nanorings for computation under the framework of reservoir computing. By using a 

combination of experimental and simulation techniques, the work presented here aims to 

explore and understand the response of the nanoring arrays, exploit their interesting dynamic 

properties for computation, and expand upon the computational power achievable with the 

system. 

Firstly, the implementation of a phenomenological model of the nanoring arrays is described, 

then validated against a range of experimental data covering the static, dynamic, and 

microstate response of the nanoring arrays with good agreement. This model then serves as 

a testbed for establishing a suitable paradigm for computing with the nanorings and exploring 

the computational properties of different regimes of response, ending with a proof-of-concept 

demonstration of reservoir computing with the nanorings on a benchmark spoken digit 

recognition task.  

Next, the findings made in simulation are used to inform the development of an experimental 

demonstration of computation. This involved the creation of experimental apparatus to apply 

stimuli to the nanorings via rotating magnetic fields, and to measure the evolving anisotropic 

magnetoresistance of the device. Interesting dynamic properties of the system’s resistance 

response are identified and paired with specific reservoir architectures that leverages them to 

provide different computational properties, evidenced by state-of-the art performances in a 

range of standard tasks. Finally, the changes in physical behaviour due to manipulations of the 

array’s lattice structure are explored at the microstate level as well as their macroscale 

response. Computational properties of the different arrangements are evaluated, and lack of 

microstate resolution in the readout mechanism is attributed to the subtlety of the 

differences. However, the additional computational power available when different 

arrangements are combined shows promising scalability for devices of the nanoring arrays. 
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1-Introduction  
The rapid growth of the fields of machine learning and artificial intelligence in the last decade has 

brought astounding developments in capabilities. However, there are also significant concerns over 

the energy usage for training these models. While many of the tasks that these models perform 

resemble those performed by the brain, such as speech and language processing1, vision2, and pattern 

recognition3, there is a huge disparity in the efficiency of these models compared to the brain. For 

example, in a famous exhibition of man-versus-machine in 2016 where Google DeepMind’s AlphaGo 

became the first machine to defeat a world champion player in the game of Go, there was a huge 

mismatch in the computational power available to each competitor; AlphaGo is capable of 30 trillion 

computations per second, requiring 170kW of power4, while the brain of the machine’s opponent, Mr. 

Lee Sedol, required just 20 W of power5, and even beat the machine in one of the five matches. 

In typical machine learning approaches, the neurons and synapses are represented numerically in 

silico, with large matrices storing the activities in neurons, as well as weights of the synaptic 

connections between them6. While vectorisation of mathematical operations provides rapid 

evaluation, with further acceleration through use of graphical processing units (GPUs) or tensor 

processing units (TPUs) designed to perform rapid tensor operations7, the growth in computation 

required by modern models has outpaced the development of hardware, shown in figure 1. It is clear 

that a paradigm shift is also required in machine learning hardware to match the demands of novel 

machine learning techniques. 

 

Figure 1- Graph comparing the relative capabilities of computing hardware (black) to the relative computational 
demands of machine learning (red), normalised against values from 1994. Taken from8. 

One critical factor in this efficiency mismatch owes to the difference in the types of computational 

operation performed by the brain compared to conventional computers. Away from the realm of 

binary abstraction, the brain operates in a distributed, highly parallelised manner; the high degree of 

interconnectivity and inherent structures of the brain providing specialised roles in transforming 

sensory data5. This is the opposite of how computation is performed in silico, with an exact, procedural 

approach towards processing information, with discrete components for computation and memory. 

Figure 2 shows the drastic difference between biological systems both in terms of power usage as well 

as distance between memory and processing units. This creates the so-called "von-Neumann 

bottleneck”; the computational overhead associated with the need for shuttling data between these 

discrete components9. 
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Figure 2- Comparison between the power usage/memory processor distance for state-of-the-art machine 
learning implementations on CPU/GPU hardware and biological systems. Adapted from9 

By taking inspiration from the brain, the field of neuromorphic engineering attempts to replicate the 

functionality of brains by designing hardware that operates in functionally similar ways10. At the heart 

of this process was the same conventional computing components but operating in an analogue 

fashion, replicating the sensory processes that occur in biology to create machines that can respond 

to pressure11, sound12, and light13 using with great success. However, these approaches were generally 

limited to sensing of data rather than processing it, only encapsulating part of the brain’s functionality. 

Unconventional or In-Materia computing aims to build on the field of neuromorphic engineering using 

unconventional material platforms, where the dynamic properties of the material substrate are chosen 

for their synergy with the dynamic nature of signal processing tasks14. In these approaches, the 

nonlinear and hysteretic properties of the material substrate are used to perform memory and 

computation operations in tandem, functionally akin to how the brain processes information. 

Additionally, by responding to continuous input stimuli directly, material systems can be exploited to 

perform computation without the need for analogue-to-digital conversion, allowing more direct 

interfacing between the computational platform and the environment in which it operates. 

Many different types of material system have been proposed for computational purposes, including 

memristors, micro-electromechanical systems (MEMS)15, analogue electronics16, optical systems17, 

and spintronic platforms18. Each of these systems come with their own inherent strengths and 

weaknesses: memristors are easy to miniaturise and interconnect, though suffer from degradation 

over many usage cycles, MEMS systems can be similarly integrated with standard electronics, but are 

prone to damage from mechanical stress and adverse environments19. Analogue electronics offer low 

power consumption and can be constructed from common off-the-shelf components20. Optical 

systems offer high data throughput but are often relatively large due to the need for optical-fibre delay 

loops to induce complex transient behaviours21. Spintronic platforms, such as the interconnected 

nanoring arrays studied here, are promising due to the possible non-volatility of their magnetic state22, 

ability to provide low power input and readout by driving via spin-torque effects, and simple 

measurement via magnetoresistance effects23. 

Each of these families of device have seen recent proof-of-concept deployments in relatively simplistic 

computational settings, often under the paradigm of ‘Reservoir Computing’, RC. In RC’s initial 

algorithmic implementation of echo state networks (ESNs)24, the network consists of three distinct 

layers: an input layer, a reservoir layer, and a readout layer, shown in figure 3. The input layer passes 

information to an untrained, randomly connected recurrent neural network, termed a reservoir. This 
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reservoir provides temporal transformations of data via its recurrent connections and the leakage rate 

of nodes in the network, with nonlinearity provided by the nodes’ activation function. This is used to 

provide a higher-dimensional representation of data which enables the linear readout layer of the 

reservoir states to make regression/classification decisions with increased accuracy than would be 

achievable on the unprocessed input data.  

RC is especially harmonious with computation with physical systems because the requirements for the 

reservoir layer are easily met by a physical dynamical system. A recurrent neural network is 

mathematically a dynamical system, and the specific transformation is not critical, only that the 

transformation is suitably nonlinear and has timescales matching that of the task25. Contrary to 

standard neural networks, reservoirs are tuned not by training the connectivity, but by selecting 

initialisation parameters which scale the magnitudes of input weights and internal weights, as well as 

how long each node in the system retains information. Analogies to this can be easily achieved in 

physical systems by controlling the input scaling and duration of each input to the system. Secondly, 

the availability of time-multiplexing procedures to generate virtual networks of interconnected nodes 

from a single dynamical system means that proof-of-concept demonstrations of computation can be 

achieved with any system that exhibits nonlinearity and hysteresis, can be stimulated with a 

controllable input signal, and has some state variable that depends upon the input and can be 

measured reliably. 

 

 

Figure 3- Schematic diagram of an Echo State Network, showing input, reservoir, and output layers. A recurrent 
connection loop is shown by the red arrows. 

While initial demonstrations of computation with an arbitrary material may be relatively simple, for 

the proposed system to form a plausible candidate for future computing applications, additional 

criteria must be met. For example, initial exploratory demonstrations of unconventional computing 

showed the ability to recognise patterns from the interference patterns generated when water waves 

produced by controllable paddles interact on the surface a bucket of water26. Clearly, buckets of water 

will not form the next generation of machine learning architectures, suggesting that a more pertinent 

question than can a material system perform computation is should a material system be used for 

computation? The impact of a physical implementation of RC often hinges upon two key evaluations 

of a proposed system: Firstly, is there a route to achieving a system in which both input and output can 

be addressed in a device-tractable manner, allowing physical demonstrations to be achieved outside 
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of simulations. Secondly, does the substrate itself offer computationally interesting properties that can 

be exploited, such as non-volatility of state, controllability of timescales of response, or 

reconfigurability of regimes of operation that can be accessed post-manufacture. 

The physical system explored in this thesis consists of an array of interconnected magnetic nanorings27. 

The arrays have sizes on the order of 100 micrometres, and proven routes to manufacture via electron 

beam lithography and the lift-off method. The continuous nature of the arrays mean that the system 

state can be easily evaluated via electrical transport measurements. The system has been shown to 

exhibit complex, emergent behaviours when driven by rotating magnetic fields due to interactions 

between the individual rings, with a non-volatile spatially distributed state-space determined by the 

domain structure of the nanorings.  Hence, this system represents an exciting candidate for reservoir 

computing as it meets both of the criteria outlined above. 

 

Figure 4- X-ray photoelectron emission microscopy images of nanoring networks after successive applications of 
a rotating magnetic field. Colour contrast represents magnetisation direction. 

The objective of this thesis is to outline a pipeline from exploration of the physical processes of 

nanoring arrays to an experimental demonstration of how these systems can be used for computation, 

and how these computational capabilities can be evaluated and expanded. Each of the four main 

research chapters in this thesis addresses a specific research question, which each represent a key 

stage in the progression of the overall design process. 

The first question that was explored was: How can the physical processes that occur in the nanoring 

network be represented so that the response of the system can be described effectively in a model? 

This is critical for developing an understanding of how the nanoring arrays respond to magnetic fields, 

10 m

10 m10 m

10 m
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as well as providing a means for exploring the rings in simulation. The standard micromagnetic 

approaches used for simulating the response of magnetic materials are entirely unsuitable for the 

relatively large scale of the entire network, as well as the relatively long durations of response which 

require simulating. It is clear that a new methodology for modelling such a system was required. The 

agent-based model  

The second research question was how can the dynamic response of the ring arrays be exploited in 

order to implement reservoir computing, and what computational properties can the system exhibit? 

To answer this, the model that was constructed to answer research question 1 was then used to 

explore potential paradigms for encoding information to the system, as well as which physical 

properties of the system would be useful as readout variables for RC. It was also critical to establish 

which regimes of device response were suited to which type of tasks, and the use of the model allowed 

extensive exploration into the different computational properties that are available to the nanoring 

arrays, serving as a proof-of-concept for computation with the nanoring arrays. 

The third research question focussed on how can the proof-of-concept demonstration in simulation be 

actualised for experimental demonstrations of computation in the laboratory. This is critical for 

demonstrating the viability of magnetic nanoring arrays as a potential platform for unconventional 

computing, as it shows that the findings provided by the model can be extended to a real-world setting. 

It is also key to demonstrate that this is achievable with an input and measurement apparatus that has 

realistic routes to be engineered into a device that would be suitable for implementations outside of 

the laboratory.  

The final research question was how can the magnetic system be engineered to expand upon the 

computational properties that were achieved in the initial demonstration. This is an important 

development as it is key that these systems must show scalability if they are to be implemented as a 

novel computation platform. To do this, an understanding of how the response of a nanoring array can 

be manipulated to provide different transformations of input, as well as a mechanism for exploiting 

these different transformations in tandem, must be developed. 
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1.1 – Thesis Outline 
Chapter 2 contains an outline of the basic theory of magnetism, as well as more detailed information 

on phenomena used to drive the dynamic magnetic nanoring system and measure its response. 

Additionally, the fundamental machine learning principles used in the thesis are described, including 

the theory of constructing, training, and performing inference with artificial neural networks and 

reservoir computers.  

Chapter 3 presents a literature review. This begins by outlining behaviours observed in magnetic 

nanowire systems, acting as a basis for understanding the nanorings studied here, before outlining 

existing literature on the single nanorings, small nanoring networks, and finally large arrays. Then 

advancements in reservoir computing paradigms are explored, focussing on those which would aid in 

the implementation of hardware RC. Finally, a survey of the current state of research into in-materia 

computing is presented, assessing the relative strengths and weaknesses of existing proposals, and 

highlighting gaps in current understanding that can be expanded upon.  

Chapter 4 outlines the experimental techniques employed in this thesis. It will describe both the 

physical principles of different approaches, as well as the specific procedures that were performed 

here. The chapter will cover device manufacture, measurement of magnetic state via electrical 

transport measurements, as well as specialist techniques for characterisation performed at external 

facilities, such as X-ray photoelectron emission microscopy and polarised neutron reflectometry.  

The main research results of the thesis will be presented as four publication-format chapters, each 

covering a different phase of the deployment of the nanoring system for computation.  

Chapter 5 presents an article that describes the construction and validation of an agent-based model 

of the emergent behaviour in interconnected nanoring arrays. The software models the outcomes of 

stochastic pinning events, domain wall-domain wall interactions, and phenomenological nucleation 

and annihilation of domain walls. The model is then validated against a range of experimental data on 

the equilibrium response of the arrays, the dynamic timescales associated with a change in input, and 

the types of microstates formed under a range of applied fields. 

Chapter 6 uses the model described above to demonstrate the feasibility of reservoir computing with 

the nanorings in simulation. These utilise a simple encoding/decoding paradigm, where input data is 

used to modulate the magnitude of a rotating magnetic field, and data is read out from the average 

properties of the arrays magnetic state (net magnetisation components, number of domain walls in 

the system). The simulations explore the range of computational properties that are available in the 

system, characterising these using task-agnostic metrics that evaluate the ability of the system to 

separate, generalise, and remember arbitrary inputs to the system. It is then shown how these metrics 

are correlated to performance in a spoken digit recognition task, thus demonstrating the how 

evaluating performance in metric space can expediate the process of hyper-parameter tuning. 

Chapter 7 focuses on experimental demonstrations of computation in real devices. Firstly, anisotropic 

magnetoresistance response of the nanoring arrays is presented, and the basic physics underlying 

these explained. Next, the range of computational properties that can be extracted from the devices 

by exploiting three different reservoir architectures are explored. Each of these architectures are 

designed to exploit a specific dynamic property of the system’s response and these allow performance 

matching or improving upon the state-of-the-art in for spintronic devices in three distinct tasks to be 

demonstrated. 

Chapter 8 explores how the lattice arrangement (Kagome, trigonal, and square lattices) of the nanoring 

arrays influences their magnetic behaviour, and how these changes in behaviour affect their 
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computational capabilities. It is shown that behaviours are markedly different at the microstates level, 

that this difference manifest less strongly in some the global electrical measurements of the nanoring 

arrays. The computational properties of each of the lattice arrangements is then evaluated, with the 

results showing that although they show broadly similar metrics individually these can be expanded 

upon by combining the lattices together. 

Chapter 9 presents the conclusions to the thesis, summarising the key findings presented in each of 

the research chapters, their impact, and the follow-on work that its conclusions led to. It also features 

a reflection upon potential studies for future work, the critical next steps in the development of the 

devices, and an evaluation of the credibility of the system as a potential computing platform. 
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2 - Theory 

2.0 - Outline 
Due to the interdisciplinary nature of the work, this thesis draws from concepts based both in materials 

science and computer science. The following chapter will focus on outlining the theoretical 

frameworks behind key concepts in both magnetism and machine learning and will consist of separate 

sections addressing each of these topics respectively in relatively phenomenological terms to provide 

accessible background information for readers of either discipline.  

In the first section, we will consider the atomic origins of magnetism and the different types of 

magnetic material, before delving deeper into the energy contributions that dictate the magnetisation 

state of ferromagnetic materials, as well as the formation of domains and domain walls. Next, the 

dynamics of magnetic moment vectors in response to applied fields will be described using the 

framework of the Landau-Lifshitz-Gilbert equation. Finally, the mechanisms that lead to changes in 

electrical resistance associated with changing magnetic state will be defined for both anisotropic 

magnetoresistance (AMR) as well as giant magnetoresistance (GMR), demonstrating how magnetic 

states can be measured electrically. 

The second section will take a didactic approach to introducing the topics of artificial neural networks, 

supervised learning, and reservoir computing. The process of error backpropagation will be 

introduced, describing how we can train feedforward networks under the supervised learning 

paradigm. Next, the concept of recurrence and time-dependent networks will be introduced, as well 

as the adaptations to learning rules that must be applied to train these networks with algorithms such 

as backpropagation through time. Finally, the machine learning paradigms of reservoir computing (RC) 

framework will be introduced, explaining how they differ in terms of training and structure from 

standard recurrent neural networks (RNNs), and the archetypal reservoir architecture of echo state 

networks (ESNS) will be outlined in detail. 

2.1 – Magnetism 
The magnetic properties of a material arise from the collective interaction of magnetic moments of 

the individual atoms that constitute the material, with the electronic configuration of the atoms 

determining the net moment of the atom. The magnetic behaviour a material system depends not 

only upon the presence of net magnetic moments from its atoms, but also their ordering. This section 

will introduce the origins of magnetic moments and how to determine the filling of electronic orbitals 

(and hence net moment) for atoms, before exploring the different types of magnetic material.  

Ferromagnetism will then be explored in detail, outlining the key interactions that underpin the 

behaviours observed in the magnetic nanorings studied in this thesis.  

2.1.1 – Atomic Magnetic Moments 
Fundamentally, the magnetic moments of individual atoms originate from the electrons within that 

atom. In classical mechanics, the generation of magnetic fields is associated with the movement of 

charged particles. Analogously, the quantum mechanical description of magnetic moments arises from 

the angular momentum terms associated with each charged electron. The angular momenta of 

electrons can be considered as two separate contributions: the ‘spin’ and ‘orbital’ angular momentum 

terms, labelled 𝑠𝑖  and 𝑙𝑖 for the spin and orbital momenta contributions of a single electron i 

respectively. 
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The spin angular momentum is an intrinsic, quantised property of the electron itself. Each electron has 

a spin angular momentum equivalent to ±ħ/2, where ħ denotes the reduced Planck’s constant. These 

positive/negative momenta are commonly referred to as ‘spin-up’ and ‘spin-down’ respectively. Via 

the Pauli exclusion principle, a pair of electrons occupying any orbital in the electronic band structure 

must have opposite spin states, which cancel one another. Hence, only systems with unfilled orbitals 

may have a net contribution of spin angular momentum.1 

The orbital angular momentum contribution is not an intrinsic property of the electron but depends 

upon the motion of an electron around the nucleus of the atom. Quantum mechanically, the 

movement of an electron is described by its wavefunction which describes relative probabilities of an 

electron occupying a particular state, with the orbital angular momentum given by the rotational 

motion associated with the wavefunction. The orbital angular momentum is determined by the 

azimuthal quantum number, l, which takes integer values, determined by the sub-shell the electron 

occupies. Only atoms with unfilled shells have zero net orbital angular momentum.1 

In atoms/molecules with multiple electrons, the calculation of the total angular momentum depends 

upon the degree of spin-orbit coupling. For lighter atoms, electrons’ spins interact amongst 

themselves, and the total spin angular momentum S is given by the sum of each electron’s spin (2.1): 

(2.1)   𝑺 =  ∑ 𝑠𝑖 𝑖  

Similarly, for light atoms the overall orbital angular momentum vector L of an atom is the sum of 

individual contributions by each electron (2.2): 

(2.2)  𝑳 =  ∑ 𝑙𝑖  𝑖  

The total angular momentum, J, is then given by the sum of S and L (2.3): 

(2.3)   𝑱 = 𝑺 + 𝑳 

However, for larger atoms, there is significant spin-orbit coupling and hence interactions between the 

spin and orbital contributions must be considered. Here, the total angular momentum for each 

electron, 𝑗𝑖, is determined first, and then J is taken as the sum of all individual contributions (2.4): 

(2.4)     𝑱 =  ∑ 𝑗𝑖 = 𝑖 ∑ (𝑠𝑖 + 𝑙𝑖) 𝑖  

 

The magnetic moment, µ, of an atom is directly proportional to the total angular momentum vector, 

J, of the atom, and the gyromagnetic ratio of the system, γ, which has dependencies upon relativistic 

effects, but is largely governed by the charge and mass of the system: it is directly proportional to 

charge, and inversely proportional to the mass (2.5): 

(2.5)    𝝁 = −𝛾𝑱 =
𝑔𝜇𝐵

ħ
𝑱 

          where 𝜇𝐵 denotes the Bohr magneton, and 𝑔 the Landé g-factor.  

Since J determines the magnetic moment of a system, and J depends upon the electronic structure of 

the system, the rules which govern the filling of electronic orbitals are critical to understanding the 

magnetic properties of a system.1 
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2.1.2- Hund’s Rules 
The electronic structure of a system is ordered such that the overall energy of the system is minimised, 

whilst ensuring that the Pauli exclusion principle is preserved. Hund’s rules provide an overview of 

principles which determine the electronic structure of a system’s ground state, and are as follows:  

1. The spin angular momentum of the system S is to be maximised, which in turn minimises the 

Coulombic repulsion by increasing average distance between electrons, reducing the shielding 

they provide to one another and hence yielding a lower energy state. To maximise spin angular 

momentum, orbitals within a shell are first occupied with parallel spins.2 

2. The orbital angular momentum L is to be maximised, which again minimises Coulombic 

repulsion. This can be understood classically as electrons orbiting in the same direction will 

meet less frequently than electrons orbiting opposite to one another. To maximise orbital 

angular momentum, electrons will first occupy orbitals with the same sign of l.2 

3. In the case of systems with less than half-full shells, the arrangement with the lowest allowed 

J value will be energetically favourable. If a shell is less than half full, the lowest value J can 

take is |𝑳 − 𝑺|. For more than half filled shell, the reverse is true and J is maximised, with 

maximum 𝑱 = |𝑳 + 𝑺|.  

While Hund’s rules provide a good basis for determining the electronic structure of light elements, 

they assume that spin-orbit coupling is weaker than the coupling between individual orbital angular 

momenta and individual spins. Since the relationship between the magnitude of spin-orbit coupling 

and the atomic number of the atom is quartic, spin-orbit contributions are negligible for lighter atoms, 

but become critical for heavier atoms, acting contrary to the underlying assumption of Hund’s rules. 

2.1.3- Types of Magnetism 
All materials- even those with no net magnetic moments- interact with magnetic fields in one way or 

another. This section will outline the different types of magnetic materials and a phenomenological 

description of how their magnetic properties arise. The differences in magnetic behaviours between 

the different forms of magnetism can be easily described via the magnitude and sign of their 

susceptibility response, which describes how the material is magnetised in the presence of external 

fields, shown in figure 1. 
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Figure 1- Characteristic magnetisation M vs applied field H responses for the different type of magnetic 
materials. The susceptibility, χ, is given by the gradient of each line.  

2.1.3.1- Diamagnetism 
While materials with full electron shells don’t exhibit any net magnetic moments in isolation, the 

change in orbital motion that occurs under the influence of an external magnetic field can induce a 

moment in the material. While this effect occurs in all materials, it is such a weak interaction that only 

materials with no intrinsic net magnetic moments (those with full valence shells) are referred to as 

diamagnetic. The phenomenon can be interpreted classically via Lenz’s law; the orbital motion of 

electrons in the atoms induces currents in the presence of an applied field, producing a force in 

opposition to the applied field. The magnitude of this force varies linearly with applied field, producing 

a tiny, negative magnetic susceptibility χ3, shown in figure 1.  

2.1.3.2- Paramagnetism 
Paramagnetism occurs in materials with unpaired electrons, and hence net magnetic moments. Here, 

moments are so weakly coupled to one another that they become practically independent, and the 

presence of thermal energy causes fluctuations in the material which leads to random alignment of 

magnetic moments. In the presence of external fields, interactions between the magnetic moments 

and the field leads to a biasing of alignment along the direction of the applied field, as shown in figure 

2, leading to a small positive susceptibility (see figure 1).4 
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Figure 2- (a) Schematic diagram of magnetic moments in a paramagnetic material with no external field applied, 
with thermal fluctuations leading to random moment direction (black arrows). (b) The same material under an 
external magnetic field, H, in the direction of the grey arrow. Although moments do not completely align, a 
biasing in their direction can be observed. Taken from4. 

2.1.3.3- Ferromagnetism 
Whilst also possessing positive susceptibility, ferromagnetic materials differ from paramagnetic 

materials in that they are able to retain net magnetic moments in the material even in absence of 

external fields. This arises from the presence of short-range coupling via the exchange interaction, 

which favours parallel alignment of local magnetic moments in ferromagnetic materials. This coupling 

is able to overcome the disordering presence of thermal energy, but to a finite extent. At temperatures 

beyond the Curie temperature, 𝑇𝐶, of a ferromagnetic material, the thermal fluctuations once again 

overpower the coupling between moments, and the material becomes paramagnetic.5 

The magnetic behaviours of ferromagnetic materials are often characterised by what is known as a 

hysteresis loop, which explores how magnetisation changes with respect to externally applied fields 

and is shown in figure 3. Under strong enough external fields, the magnetic moments become aligned, 

with any further increase in field causing little change to the magnetisation of the material. This point 

is called saturation magnetisation, 𝑀𝑠. With the external field removed, exchange coupling means that 

some net magnetisation is maintained, called the remenant magnetisation, 𝑀𝑟. If the applied field is 

reversed, the magnetisation reduces once again, and the point at which net magnetisation becomes 

zero is termed the coercive field of the material, 𝐻𝑐. Increasing this negative field further begins to 

magnetise the material in the opposite direction, until the material once again becomes saturated. The 

resulting plot of magnetisation with respect to applied field when taken to saturation in both directions 

is called the major hysteresis loop, and loops that don’t result in saturation are termed minor loops. 

The concept of ferromagnetic domains is crucial to describing remenant magnetisation and will be 

discussed in section 2.1.5. 
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Figure 3- Diagram of typical magnetic hysteresis loop. Solid blue line reflects a major hysteresis loop, with arrows 
showing direction of magnetisation loop as field is swept. Dotted line reflects a typical minor hysteresis loop. 
Critical magnetic properties that can be determined from the loop, such as coercive field, saturation 
magnetisation, and remenant magnetisation, Hc, Ms, and Mr respectively, are labelled. 

2.1.3.4- Antiferromagnetism 
Antiferromagnetic materials exhibit exchange coupling like ferromagnetic materials, however 

antiparallel alignment is preferred instead, shown in figure 4. In these materials, external magnetic 

fields will deflect the antiparallel magnetic moments of the individual atoms away from one another, 

again producing positive magnetic susceptibility, but the material is unable to retain magnetisation 

when the field is removed. Analogously to the Curie temperature of ferromagnetic materials, the Néel 

temperature of antiferromagnetic materials is the point at which the material becomes paramagnetic, 

reducing the magnetic susceptibility of the material, though remaining positive.6 

 

Figure 4- Typical spin structure of an antiferromagnetic material, with alternating spin up (red arrows) and spin 
down (blue arrows) of equal magnitude. The moments cancel one another out leading to no net magnetisation 
in absence of external fields. 

2.1.3.5- Ferrimagnetism 
Ferrimagnetism can be seen as somewhat of an intermediate between ferromagnetism and 

antiferromagnetism and arises from the combination of heterogenous magnetic elements within the 

lattice structure of a material. Like ferromagnetic materials, ferrimagnetic materials possess a net 

magnetisation in the absence of applied fields, whilst the local arrangement of magnetic moments is 

antiparallel as with antiferromagnets. The resulting magnetic moment arises from a disparity between 
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the magnitudes of the oppositely oriented moments within the lattice, shown in figure 5. This leads to 

magnetisation in the direction of the stronger moment within the lattice. 7 

 

Figure 5- Typical lattice structure of spins in a ferrimagnetic material. Although similar ordering between spin up 
(red arrows) and spin down (blue arrows) elements occur, due to the increased magnitude of the spin up spins, 
there is a net magnetic moment in system. 

2.1.4- Energy Contributions in Ferromagnetic Materials. 
As alluded to earlier, there are many contributing energetic factors which determine the magnetisation 

state of a ferromagnetic material. These contributions depend upon the underlying crystal structure 

of the material, the magnitude of stray fields generated by locally ordered magnetisation, interactions 

with external fields, and quantum-mechanical interactions between neighbouring spins, amongst 

other factors5. These contributions will be described in turn in this section.  

2.1.4.1- Magnetostatic Energy  
Magnetostatic energy describes the potential energy that is stored in the stray field generated by a 

material with macroscopic net magnetisation. Here, the magnetic field forms a closed loop from the 

end of the locally ordered region to the beginning, as shown in figure 6. It can be seen in the figure 

that the stray field acts opposite to the magnetised region, acting to reverse the magnetisation, and 

hence is termed the demagnetisation field. The demagnetisation field, and hence the magnetostatic 

energy contributions, is proportional to the magnetisation of the material. The formation of domains 

(explained more extensively in section 2.1.5) aims to provide flux closure and minimise magnetostatic 

energy.5 

 

Figure 6- Demagnetisation field (black dotted lines) closing flux from the uniformly magnetised material (black 
arrow) and attempting to cause reversal. 

The shape of the magnetic material also plays a key role in determining the magnetostatic energy of 

the material, termed shape anisotropy, which aims to minimise the formation demagnetising fields 

both internally and at the edge of the sample. This leads preferential alignment along spatial axes for 

samples that are not perfectly spherical, typically preferring axial directions with higher aspect ratios. 

For example, in the magnetic nanorings studied in this thesis, the large disparity between the thickness 
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of the nanostructures compared to the track widths (~10 nm compared to  ~400 nm) means that the 

magnetisation lies in plane, and the narrow circular structure means that the magnetisation in the 

plane tends to follow the circumference of the ring.  

2.1.4.2- Magnetocrystalline Anisotropy Energy 
Due to the underlying spatial arrangement of atoms within the lattice of a crystalline magnetic 

material, materials have a tendency for preferential magnetisation along certain crystallographic 

directions. The directions which face the least resistance to magnetisation are termed the ‘easy’ axes. 

The specific directions of the easy axes depend upon the lattice arrangement of the material itself, 

with different axes expected for body-centred cubic (BCC), face-centred cubic (FCC), and hexagonal 

close-packed (HCP) lattice arrangements. The consequence of this preferential alignment is that it 

requires more external field to be able to saturate the material along directions other than the easy 

axis, with the energy difference per unit volume of magnetised material aligned both along and away 

from the easy axis termed the magnetocrystalline anisotropy energy.8  

For materials with cubic crystal structures, the crystalline anisotropy energy density of the crystal can 

be described via equation (2.6): 

(2.6)   𝜀𝐶 = 𝐾1(𝑐𝑜𝑠
2𝛼 𝑐𝑜𝑠2𝛽 + 𝑐𝑜𝑠2𝛼 𝑐𝑜𝑠2𝛾 + 𝑐𝑜𝑠2𝛽 𝑐𝑜𝑠2𝛾) + 𝐾2(𝑐𝑜𝑠

2𝛼 𝑐𝑜𝑠2𝛽 𝑐𝑜𝑠2𝛾) 

 where 𝐾1 and 𝐾2 describe the 1
st and 2nd order anisotropy constants, and 𝛼, 𝛽, and 𝛾 represent 

the angles between the magnetisation and the easy crystallographic axes running along the cubic 

edges of the crystal structures for BCC, or along the cube diagonals in FCC. Figure 7 shows the easy, 

intermediate, and hard magnetocrystalline axes for a BCC material. 

 

Figure 7- Magnetocrystalline anisotropy axes for a body centred cubic material. Atoms are shown by blue spheres, 
and their moments by black arrows. The easy axes (green arrow) lie along the edges of the cube structure, the 
intermediate axes (yellow arrow) between atoms on a face, and the hard axis (red arrow) between corners of the 
cube and the central atom. 
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For crystal structures with uniaxial symmetry (e.g., hexagonal close packed), there is only one easy axis 

and hence a simpler calculation of anisotropy energy density shown in equation 2.7: 

(2.7)    𝜀𝑢 = 𝐾𝑢(𝑠𝑖𝑛2𝛼) 

 where 𝐾𝑢 represents the uniaxial anisotropy constant. 

2.1.4.3- Magnetostrictive Energy 
When a material is magnetised, the magnetisation exerts a stress which strains the material via a 

process called magnetostriction. Whether this stress is compressive or tensile depends upon the 

material, and hence materials are deemed to have positive or negative magnetostriction depending 

upon whether the material elongates or constricts respectively. In multidomain magnetic materials, 

the change in magnetisation between the domains leads to stresses at different directions, shown in 

figure 8, and the elastic potential energy associated with these competing stresses is termed 

magnetostrictive energy.9 

 

Figure 8- Domain structure of a ferromagnet with positive magnetostriction. The true domain wall position (solid 
black lines) is shown as a compromise between the attempts of adjacent domains attempting to elongate along 
their magnetisation direction, with the ‘ideal’ position of the elongated domains shown by the dotted lines. Taken 
from9. 

2.1.4.4- Zeeman Energy 
The energetic state of a magnetic material depends not only upon the internal magnetisation of the 

material itself, but also the energy that is stored when a magnetic material interacts with an external 

field. This torque 𝜏 between magnetic moments in the material and an external field 𝐻 is dependent 

upon the angle between the external field and magnetisation of the material 𝜃, shown in equation 

(2.8), and the energy stored in the material, called the Zeeman energy, 𝐸Zeeman, is calculated via 

equation (2.9): 

(2.8)     𝜏 = 𝜇0𝐻𝑚 sin𝜃 

(2.9)     𝐸Zeeman = −𝜇0 ∫𝑴 ∙ 𝑯 𝑑𝑉 
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where   is the magnetisation vector of the material, H is the applied field vector, V is the volume of 

the material, and 𝜇0 is the vacuum magnetic permeability.
5 

2.1.4.5- Exchange Energy 
The exchange interaction is the quantum mechanical effect that is responsible for ferromagnetic or 

antiferromagnetic ordering of neighbouring spins in a material. It arises as a consequence of exchange 

symmetry between the wave functions electrons in the magnetic material, which forces either 

symmetric or antisymmetric spins when electrons are exchanged. Although other types of exchange 

exist, only Heisenberg exchange will be described here as it provides the simplest explanation for 

(anti)ferromagnetic alignment of spins in common magnetic materials. Here, direct exchange is 

considered between electrons which occupy overlapping orbitals, with the energy density 

contribution, 𝜀ex for a pair of spins, 𝑆̂𝑖 and 𝑆̂𝑗 given via equation (2.10): 

(2.10)     𝜀ex = −2𝐽ex ∑ 𝑆̂𝑖 ∙ 𝑆̂𝑗𝑖𝑗  

where 𝐽ex  denotes the exchange constant, which quantifies the strength of the exchange interaction. 

The sign of 𝐽ex  determines whether it is energetically favourable for either parallel or anti-parallel 

alignment of spins, with a positive 𝐽ex  favouring parallel (ferromagnetic) alignment, and a negative 𝐽ex  

favouring antiparallel (antiferromagnetic) alignment of spins.5  

In micromagnetics, the energetic contribution of the exchange interaction approximated over a 

continuum is given by evaluating the exchange energy from the divergence between the magnetisation 

direction vectors and an exchange constant 𝐴𝑒𝑥, as per equation (2.11): 

(2.11)    𝐸𝑒𝑥 = ∫ 𝐴𝑒𝑥[(∇𝑚⃗⃗ 𝑥)
2 + (∇𝑚⃗⃗ 𝑦)

2 + (∇𝑚⃗⃗ 𝑧)
2]𝑑𝑉

 

𝑉
 

A method for predicting the sign of the exchange constant 𝐽ex , was outlined by Slater in 1930
10 by 

calculating the ratio between interatomic distance of the material and the radius of the 3d orbital, 

shown in figure 9. This is useful for predicting Heisenberg exchange, which considers the Coulombic 

repulsion of a pair of electrons obeying the Pauli exclusion principle. As the ratio of interatomic 

distance to 3d radius decreases, the wavefunctions increasingly overlap, which favours antiparallel, 

antiferromagnetic alignment. As the degree of overlap is reduced, parallel alignment becomes 

favourable due to decreased repulsion between the electrons, and hence ferromagnetic ordering is 

observed. While this is useful for predicting change in ordering of 3d transition metals, it neglects more 

complex interactions that arise from different overlapping orbitals11. 
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Figure 9- Predicted values of exchange constant J for different metals calculated from the ratio of atomic 
separation to 3d orbital diameter. Materials with values above zero on the curve suggest ferromagnetic 
alignment, while those below will exhibit antiferromagnetic alignment. Taken from12. 

2.1.5- Domains and Domain Walls 
The magnetic microstates that magnetic materials tend to form are a consequence of the interplay 

between each of the competing energy terms listed in the previous section. One such example of the 

compromise between magnetostatic energy and exchange energy in a ferromagnetically ordered 

material arises in the formation of domains. The underlying domain structure of the nanomagnetic 

ring arrays studied in this thesis is critical to understanding both the system’s response to external 

magnetic fields, as well as the anisotropic magnetoresistance response of the devices. This section will 

explore the formation of domains and domain walls in more detail. 

2.1.5.1- Formation of Magnetic Domains 
In order to reduce the potential energy stored in the demagnetisation field, magnetic materials tend 

to partition into sub-regions of locally uniform magnetisation which reduce magnetostatic energy via 

flux closure. These sub-regions are known as magnetic domains. At the interface between domains, 

moments locally rotate, forming domain walls. Here, the misalignment of local moments increases the 

exchange energy of the material, hence domain walls exist with finite width as a compromise between 

exchange, magnetostatic, and anisotropic energies. 

While the competition between exchange and magnetostatic energies are the key driver behind 

domain formation, the size and shape of domains/domain walls are in part determined by the 

contributions of magnetocrystalline anisotropy energy and magnetostrictive energy. For example, in 

materials with a bcc lattice arrangement, the easy anisotropy axes lie perpendicular from one another, 

which leads to a tendency for domain walls to form along these perpendicular axes with domains 

separated by a 90° domain wall, with the domain walls providing flux closure known as closure 

domains9.  The process of partitioning from a single domain state to a multidomain state to minimise 

total energy contributions is shown in figure 10. 
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Figure 10- Process of reducing stray fields, and hence magnetostatic energy, of (a) a single ferromagnetic domain 
via flux closure as it is partitioned into (b) two domains, then (c) four domains. Taken from9. 

While this arrangement of domains provides a favourable compromise for each of magnetostatic, 

exchange, and anisotropic energy terms, the formation of the triangular domains creates a 

competition between the magnetostrictive contributions between each domain, with each domain 

either contracting or elongating along the magnetisation axis of the domain, depending upon whether 

the material has positive or negative magnetostriction. Since the magnetostrictive energy is 

proportional to the volume of closure domains, this creates a tendency for minimising the closure 

domains.9 

2.1.5.2- Domain Walls 
Similar to domains, the size, shape, and mode of rotation of domain walls are determined by 

competing energy contributions, namely between anisotropic and exchange energy terms in bulk 

materials.9 Here, the magnetic moments in domain walls rotate along the plane of the domain wall, 

termed a Bloch wall, shown in figure 11. While exchange interactions favour small angular rotations 

between moments and large domain walls, the magnetocrystalline anisotropy favours alignment along 

the easy axes, and hence sharp transitions between the axes. This leads to larger domain walls in 

materials with higher exchange stiffness, and smaller domain walls in materials with strong 

magnetocrystalline anisotropy. 

 

Figure 11- A Bloch wall in a bulk magnetic material, with the local magnetic moments (black arrows) rotating 
about the plane of the domain wall. 

In thin films, the considerable shape anisotropy that confines the magnetisation in plane inhibits the 

rotation of moments along the domain wall axis, as this would lead to some moments in the domain 

wall pointing out of plane, which is magnetostatically unfavourable.9 Instead, the moments rotate in 

the plane of the film magnetisation, shown in figure 12, and are called Néel walls. 
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Figure 12- A Néel wall in a magnetic thin-film, showing rotation of magnetic moments (black arrows) in the plane 
of the magnetic film. 

2.1.5.3- Interactions of Domains with External Fields 
When a magnetic field is applied to a ferromagnetic material it is favourable for magnetic moments to 

rotate towards the field to reduce the system’s Zeeman energy.5 This creates a driving force for 

domains aligned with the field to grow, causing DWs to move in response to the field. This movement 

is initially reversible, with the original demagnetised domain structure reforming upon relaxation of 

the field.  Figure 13 shows this process of domain wall growth, before hysteretic processes lead to DW 

annihilation as the material reaches saturation magnetisation. 

 

 

Figure 13- Schematic diagram of domain growth as a sample is magnetised towards saturation. Initially, domains 
along the direction of the external field grow whilst surrounding domains shrink, until saturation is reached, and 
the material is uniformly magnetised along the external field direction. Taken from9. 

As the domains continue to grow, DWs encounter energy barriers from material defects or geometrical 

changes that restrict the propagation of DWs, causing them to pin if the energy barriers are sufficiently 

large. This pinning behaviour is easily observed in bulk materials in the form of Barkhausen noise. The 

pinning and depinning causes sudden, small changes in magnetisation (Figure 14 inset) as the DWs 

hop between pinning sites. In nanowire devices such as the rings studied here, the reduction of the 

system to a very small number of domains (almost always either 1 or 2 domains per ring) means this 

pinning/depinning behaviour leads to DW movement that resembles ballistic jumps as the DW hops 

between pinning sites. 
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Figure 14- Magnetisation of a ferromagnetic material B versus applied field magnetic field H. Inset shows local 
magnification of magnetisation curve, showing erratic increase in magnetisation with respect to field due to the 
ballistic movement of DWs and subsequent domain growth as DWs overcome energy barriers with increasing 
applied field. Taken from9. 

2.1.6- Landau-Lifschitz-Gilbert Description of Magnetisation Dynamics 
The most commonly used framework employed to describe the dynamic response of magnetic 

moments was proposed by Landau and Lifschitz13, which describes the precessional motion of 

magnetisation about an external magnetic field. This description involves a semi-classical approach 

with phenomenological quantum-mechanical considerations and serves as the foundation for 

micromagnetic approaches for modelling magnetic materials. The Landau-Lifschitz equation models 

the decay of this precessional motion over time when damping is considered, describing how the 

moment dynamically tends towards an equilibrium position when aligned with the externally applied 

field, shown in equation (2.12): 

(2.12)       
𝑑𝑴

𝑑𝑡
=  𝛾(𝑴 × 𝑯eff) + 

𝜆

𝑀𝑠
2 𝑴 × (𝑴 × 𝑯eff) 

where   and H represent the magnetic moment and external field vectors respectively, γ represents 

the gyromagnetic ratio of the material, Ms the saturation magnetisation of the material, and λ 

represents the damping frequency. This formulation was later adapted by Gilbert by modifying the 

damping term to include a dimensionless damping parameter α, with the resulting equation commonly 

known as the Landau-Lifschitz-Gilbert equation14 (2.13): 

(2.13)    
𝑑𝑴

𝑑𝑡
=  𝛾(𝑴 × 𝑯eff) + 

𝛼

𝑀𝑠
(𝑴 ×

𝑑𝑴

𝑑𝑡
) 

The damping terms in both of these equations govern how fast the system tends towards equilibrium 

in response to a change in magnetic field, with greater damping leading to shorter relaxation times. 

When considered in tandem with the effective field from the different energetic contributions, this 

equation is the basis of micromagnetic models, discussed in detail in chapter 4 section 6. 

2.1.7- Ferromagnetic Resonance 
Ferromagnetic resonance (FMR) is a phenomenon that arises from the precessional motion of 

magnetic moments about an external field when irradiated with microwave radiation. Here, the 

amount of energy dissipated by the precessing magnetic moments depends strongly upon the 

frequency of the applied field, with a sharp increase in dissipation when resonance occurs between 

the microwaves and the precessing magnetic moments. The resonant frequency is typically on the 
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order of 1 GHz – 40 GHz15, with the specific frequency dependent upon the material’s gyromagnetic 

ratio, anisotropy, as well as the size, shape, and orientation of the domains in the material. This allows 

FMR to be used as a tool for quantifying the magnetic state of a material, as specific magnetic 

structures can be tied to a given resonant frequency, with dissipation proportional to structure 

population, and has recently been employed for neuromorphic computing applications16. 

2.1.8- Magnetoresistance Effects 
The influence of magnetisation on the electrical resistance of a material provides a means for simple 

measurements which depend upon the magnetic state of a system. These resistance changes arise 

from different physical effects, and the magnitude of resistance changes spans orders of magnitude 

from around 5% for anisotropic magnetoresistance (AMR) in permalloy17, to upwards of 1000% for 

tunnel magnetoresistance (TMR) in CoFeB/MgO multilayers at cryogenic temperatures18. A 

phenomenological description of each of these effects will be described here. 

2.1.8.1- Anisotropic Magnetoresistance 
AMR is the weakest of the magnetoresistance effects in ferromagnetic materials and was first observed 

by Lord Kelvin in the 1850s19, though the determination of its physical origin was described much later 

by Kondo in the 1960s20. It arises from spin-orbit coupling effects, where conduction electrons are 

scattered by the unquenched orbital angular momentum of 3d electrons in the ferromagnetic material, 

with maximum scattering (and hence highest resistance) occurring when the magnetisation of the 

material is parallel to the direction of electric current21. 

2.1.8.2- Giant Magnetoresistance 
Giant magnetoresistance (GMR) occurs between layers of magnetic materials separated by a thin 

conductive spacer layer and can be understood via interlayer exchange coupling and spin-dependent 

transport21. In these multilayers, the thickness of the spacer layer determines the interlayer exchange 

coupling, with coupling alternating between ferromagnetic and antiferromagnetic alignment as spacer 

thickness is varied. Spin-dependent transport leads to the variation in resistance between antiparallel 

and parallel alignment of the ferromagnetic layers. Conduction electrons are spin-polarised by the 

magnetisation of the first layer. In the second layer, conduction electrons are more strongly scattered 

when their magnetic moments are anti-parallel to the magnetic moments of the magnetised material. 

This leads to low resistivity for parallel alignment, and high resistivity for anti-parallel alignment of the 

two layers, since the electrons are able to maintain their spin polarisation across finite length scales 

when transitioning between the layers, given by the spin diffusion length of the material.  

In devices, the GMR effect can be utilised to measure the relative magnetisation of the material along 

a given axis via a spin valve.22 Here, an antiferromagnet is used to pin one of the ferromagnetic layers 

in a given direction by increasing its coercivity, termed the ‘pinned’ layer. The angle between the 

magnetisation of the pinned layer and the measured ‘free’ (magnetically soft) layer leads to variation 

in resistivity across the layers via GMR. 

2.1.8.3- Tunnel Magnetoresistance 
TMR multilayers resemble those of GMR, but instead of a metallic spacer an insulator is used instead, 

forming a magnetic tunnel junction (MTJ). When a bias voltage is applied across the multilayer, 

electrons preferentially tunnel towards the positive electrode, with probability dependent upon the 

alignment between the ferromagnetic layers. This is again dependent upon the density of states at the 

Fermi level, with more electrons able to tunnel for parallel alignment as with GMR.18 
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2.2- Machine Learning and Artificial Neural Networks 
The following section will take a didactic approach to introduce fundamental concepts in machine 

learning, starting with the biological inspiration behind artificial neural networks, the concept of linear 

separability of data, and methods for training networks under the supervised learning framework. The 

concept of recurrence will be introduced, and then the archetypal reservoir computing architecture of 

echo state networks will be defined in detail.  

2.2.1 - What is an Artificial Neural Network? 
An artificial neural network is an abstract model designed to mimic some of the form and function of 

the biological brain. It features an interconnected network of nodes, joined by weighted connections, 

resembling the neurons and synapses of brains respectively, and as such, the biological nomenclature 

is often used equivalently for describing artificial neural networks. Figure 15 displays schematic 

diagrams of biological and artificial neural networks. Nodes in the network provide nonlinearity 

between inputs and the activation of the neuron via their activation function. The weighted 

connections scale interactions between the nodes, and the weights are adapted according to the 

learning rule of the network.  

Neural networks typically find use in processing or modelling complex data and offer advantages over 

typical algorithmic approaches to such problems where the input tends to be inconsistent or noisy, 

such as for image or speech recognition tasks, or if the system to be modelled is highly nonlinear or 

seemingly chaotic, such as individual medical diagnostics or financial market prediction. Neural 

networks are trained to find patterns and can often be used to find valuable information hidden in 

large, generally poorly understood data23. 

2.2.2 - Supervised Learning in Neural Networks 
The most common form of training a neural network, and the method employed in this thesis, comes 

in the form of supervised learning. Supervised learning utilises a teacher signal which provides a target 

for the output of the neural network for a given input. For classification tasks, this is commonly 

achieved via ‘one-hot’ encoding, where each of the N target classes are represented by N output 

nodes, where the target output is 1 for the node corresponding to the correct class, and 0 elsewhere. 

To perform classification, a ‘winner-takes-all’ approach is employed, where the predicted class is 

Figure 21- Left, Simplified diagram of connections in the brain, Right, a typical artificial neural network 

Figure 15- Left: Simplified diagram showing connections between neurons (black circles) in the brain. Arrows 
denote flow of electric current along synapses (lines). Right: Schematic of a typical artificial neural network. 
Black circles represent input nodes, white circles hidden nodes, and arrows show weighted connections, showing 
the direction that activation values are passed onwards. Taken from20. 



33 
 

determined by the output node with the highest activation. For regression tasks, the target signal is 

given by the desired output, with the network tasked to match output activation with the target signal.  

The network is then trained to minimise the error between the target signal and the network output, 

with error defined via a loss function. For example, the means squared error (MSE) function, equation 

(2.14): 

(2.14)     𝐸 =
1

2𝑁
∑ (𝑦𝑖 −𝑁

𝑖  𝑎𝑖)
2 

where 𝑦𝑖  represents the target output activation on node i, and 𝑎𝑖  represents the model’s 

activation on node i, for each of N output nodes. There are many different loss functions available, 

with each having varying suitability and efficiency for training a network depending on the task. For 

example, the binary cross entropy loss function is especially effective for classification tasks, as it 

strongly penalises incorrect classification24, or the Connectionist Temporal Classification function, 

which is designed for use in continuous time series analysis where outputs do not necessarily align 

with inputs, such as online speech processing25. 

The most common method for minimising an error is gradient descent23. Gradient descent uses an 

iterative process in order to find minima in complex functions by making small changes to the weighted 

connections between nodes. To minimise the MSE loss, E, we make a series of small changes to weights 

in the network in the direction that reduces E. To ensure this change is in the right direction for every 

weight, we need to find the gradient of the error with respect to each parameter. 

2.2.3 - Backpropagation 
Following on from the error calculated by a loss function, the backpropagation algorithm provides a 

method for minimising this error. A simple summary of key parts of the backpropagation algorithm for 

a typical network serves as an ideal way to understand both how and why the algorithm works. The 

original derivation from Rumelhart et al.’s 1986 paper can be found at26. Building upon the notation 

established earlier for the MSE function, we will train a network of nodes, 𝑥𝑖
𝑛, where n and i represent 

layer and node index, respectively. Nodes are joined by weights, where weight 𝑤𝑖𝑗
𝑘  joins node j in layer 

k-1 to node i in layer k. For simplicity, nodes in this network are linear, and the network is feedforward. 

A schematic of the network labelled with this notation is shown in figure 16.  
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Figure 16- Simple network showing nodes (circles) and weights (arrows) in different network layers, illustrating 
the direction activation is passed through connections. Connectivity is only shown in the first 2 nodes of each 
layer for simplicity. 

To find the direction with which to make small changes, we need to calculate how the error changes 

with respect to a change in a given weight, then make a small change, ∆𝑤, to the old weight (equation 

2.15): 

 

(2.15)     ∆𝑤𝑖𝑗
𝑘 = −𝛼 ∗

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑛  

where 𝛼 is the learning rate of the algorithm. However, the partial derivative, 
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑛, is difficult 

to calculate a priori. Instead, we apply the chain rule to pass derivatives back through the network as 

a series of more simple calculations. 

Starting at the output layer, we take the derivative of the error function with respect to the activation 

on nodes in the output layer for each input datapoint 𝜇. Here we combine the difference between 

target and activation for a given node, denoted as 𝑒𝑖. In online training, the error is calculated for each 

input pattern  , as is presented in (16). Alternatively, summing over either all of the patterns or 

subgroups of all patterns allows for batch and minibatch training respectively, shown in (17). On-line 

training is often better for avoiding local minima but offers slower convergence than batch methods23. 

(2.16)       
𝜕𝐸

𝜕𝑒𝑖(𝜇)
= 𝑒𝑖(𝜇) = 𝑦𝑖(𝜇) − 𝑎𝑖(𝜇) 

(2.17)    
𝜕𝐸

𝜕𝑒𝑖
= ∑𝑒𝑖(𝜇)

𝜇

= ∑(𝑦𝑖(𝜇) − 𝑎𝑖(𝜇)

𝜇

) 
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Applying the chain rule, we can establish the dependence of output node errors on connections to 

those nodes in the previous layer, as shown in (2.18) and (2.19). Here, the updates for on-line training 

are used. 

(2.18)     
𝜕𝐸

𝜕𝑥𝑖
𝑛(𝜇)

=
𝜕𝐸

𝜕𝑒𝑗(𝜇)
∗

𝜕𝑒𝑗(𝜇)

𝜕𝑥𝑖
𝑛(𝜇)

 

(2.19)       
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑛 =

𝜕𝐸

𝜕𝑥𝑖
𝑛(𝜇)

∗
𝜕𝑥𝑖

𝑛(𝜇)

𝜕𝑤𝑖𝑗
𝑛  

For the connections in the hidden layers, there exist pathways to all nodes in the output layer, and 

hence changing weights in the hidden layer effects all of the output nodes. To account for this, errors 

on hidden nodes are summed across nodes ahead of them in the network, shown in equations (2.20-

2.22): 

(2.20)       
𝜕𝐸

𝜕𝑤𝑗𝑙
𝑛−1 =

𝜕𝐸

𝜕𝑥𝑗
𝑛−1 ∗

𝜕𝑥𝑗
𝑛−1

𝜕𝑤𝑗𝑙
𝑛−1 

(2.21)      
𝜕𝐸

𝜕𝑥𝑗
𝑛−1 = −∑𝑒𝑖

𝑖

∗
𝜕𝑥𝑖

𝑛

𝜕𝑥𝑗
𝑛−1 

(2.22)          𝑥𝑖
𝑛 = ∑𝑥𝑗

𝑛−1

𝑗

∗ 𝑤𝑖𝑗
𝑛  

As each calculation of local gradient at a weight relies on the gradient of the connections ahead of it, 

we summarise these local gradients using the ‘delta rule’. Equations (2.23) and (2.24) show how local 

error dependence, 𝛿𝑗
𝑘−1, can be calculated simply from the local gradient of the nodes ahead of it, and 

this tells how to make small changes to minimise error (for batch training, also sum over   in both 

equations). The process propagates this error, 𝛿, backwards through the layers, giving the name to the 

algorithm: Backpropagation. 

(2.23)      𝛿𝑗
𝑘−1 = ∑𝛿𝑗

𝑘𝑥𝑙
𝑘−2

𝑖

 

(2.24)     ∆𝑤𝑗𝑙
𝑘−1 = −𝛼 ∗ 𝛿𝑗

𝑘−1𝑥𝑙
𝑘−2 

This process is iterative, where training will continue to make small changes until a given number of 

iterations are completed or some convergence criterion for the error is met. 

2.2.4 - Recurrence 
In recurrent neural networks (RNNs), feedback is added by including weights which connect backwards 

through the network. Here, future activations depend upon previous states, contrary to the static 

nature of feedforward neural networks. The recurrent connections can be seen as loops in the 

network, shown schematically in figure 17a. RNNs find use in areas such as control of systems, speech 

recognition, or time series prediction, where the dynamic nature of the network synergises with the 

dynamic dependencies of the task27. Lukoševičius28 notes that RNNs are able to sustain activity through 

recurrent pathways even in absence of input; mathematically this renders RNNs as dynamical systems, 

as opposed to feedforward networks which behave as functions. 

One of the biggest problems with RNNs, and the main factor in their limited use, is the difficulty 

associated with their training29. The time dependence adds an extra level of complexity to finding the 

gradient of the error with respect to a change in weights, increasing the computational expense. The 
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most common training method for RNNs is backpropagation through time (BPTT), shown schematically 

in figure 1727. The BPTT algorithm is exact mathematically, but inefficient and lacks biological 

plausibility, hence the emergence of bioinspired alternatives available to improve upon the 

algorithm30. Conceptually, BPTT works by unravelling the dependencies through time, generating an 

equivalent feedforward network by accounting for recurrent connections with an additional hidden 

layer representing the activities in the previous time step.  

 

Figure 17- A. Schematic of a recurrent neural network. Arrows denote flow of activity between nodes. B. 
'Unfolding' of a recurrent neural network in time via the BPTT process, showing reconnection of recurrent 
connections to nodes in future or past network states. U(n) represents input data point n, x(t) the reservoir state 
at time t, and y(n) represents the target for data point n27.  

From the schematic, it is clear to see the increased computational expense that adding recurrent 

connections adds to the training of a neural network, as network size is vastly increased. In order to 

relieve this computational expense, some alternative methods have been proposed in order to gain 

the computational advantage that adding a time dependence to the modelled system brings, whilst 

mitigating the computational cost of more difficult training methods that time dependence often 

brings. This is the motivation behind reservoir computing which will be discussed in depth in section 

2.2.6. 

2.2.5 - Linear Separability 
Classification tasks rely upon the fact that a neural network is able to provide transformations on input 

data so that a linear classifier can effectively separate each class. For a given dataset with N features 

and a binary label, if the dataset is plotted in N dimensional space, the data is said to be linearly 

separable if a hyperplane can be drawn through the dataset, separating the two classes by their 

features. Figure 18 shows a dataset with 3 features, plotted in 3d space. The data is not linearly 

separable due to the misclassification of two points. 
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Figure 5- A 3-dimensional dataset showing linear separability between the two classes by a hyperplane. The class of the 
datapoints are represented by red and blue colour of circles [9]. 

While this this dataset can be classified rather effectively with a simple linear classifier, other datasets 

may prove more problematic to separate with a linear hyperplane. For example, consider the 2D data 

in figure 19. The classes shown in the toy dataset have definite class dependent structure, though 

cannot be separated linearly by their original features shown in (a). In order to remediate this, a 

nonlinear transformation of the features is required. This projects the data into different space where 

it may be more easily separated. Here, with a simple nonlinear function of 𝑓𝑖 = 𝑓2
𝑖
 on each feature i, 

the dataset is transformed to the representation shown in (b), which can now be separated by a linear 

divider.  

 

Figure 6- (A) Scatterplot of raw features for two classes, showing linear inseparability. (B) Nonlinear transform where each 
feature's transformed value is the square of the raw feature. This projection of the original data is now linearly separable. 

Another geometric property of the transform provided by a neural network that improves classification 

accuracy is the increased dimensionality inherent to the network’s representation. While the benefits 

of high-dimensional representations for data analysis remains an active area of research in 

mathematics31–33, and mathematical analyses of the separation capacity of classifiers versus the 
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number of dimensions exists in the form of Vapnik-Chervonenkis (VC) dimension34,35, the basic 

intuition behind the power of dimensionality can be described phenomenologically: A decision 

boundary (hyperplane) in N-dimensional space has itself dimensions (N-1), hence for larger N the 

decision boundary has more degrees of freedom with which to separate the data. However, with 

increasingly complex models, the tendency to overfit to noise within the training data becomes more 

likely.  

2.2.6- Introduction to Reservoir Computing  
Reservoir computing (RC) is a machine learning paradigm which exploits both the aforementioned 

properties of nonlinearity and high dimensionality in order to provide enhanced representations of 

input data to perform machine learning tasks. Unlike support vector machines, the complex 

transformation provided by the reservoir is time dependent, acting as a temporal kernel rather than a 

static one29. The simplest way for describing RC for both in-silico and in-materia applications is by 

considering the three distinct layers that constitute an RC platform: An input layer or mask, a reservoir 

layer, and an output or readout layer, shown schematically in figure 20. 

The input layer provides weighted connections of input data to nodes within the reservoir. These 

weights are fixed and typically randomly sampled from various distributions, dependent upon the type 

of reservoir used and the nature of the data. In architectures that use multiplexing techniques to 

generate network complexity, this input layer is commonly referred to as a ‘mask’ (details on popular 

multiplexing techniques are outlined in the Literature Review, section 3.4). 

The reservoir layer is where all of the time-dependent nonlinear processes in the reservoir occur and 

is the key to providing computationally useful representations of input data for the readout to exploit. 

In algorithmic implementations, the reservoir consists of a network of nodes with sparse, random 

connections. This maintains activity in the reservoir over time via the closed loops in connectivity 

between the nodes, as well as the time-dependent properties of the nodes themselves, with their 

activation functions (typically sigmoidal) providing nonlinearity. Since a recurrent network is itself a 

dynamical system, in-materia applications of RC substitute this reservoir layer with a physical 

dynamical system, where nonlinear physical processes occur, and the hysteresis of the system acts as 

a pathway to memory.  

The readout layer is the only part of the network that is trained, and typically consists of a single linear 

layer. Since changes in the readout weights have no effect on the response of the reservoir layer, there 

is no need to unravel dependencies through time as is the case with recurrent neural networks. This 

becomes equivalent to the backpropagation decorrelation algorithm for recurrent neural networks, 

where only the final feedforward connections in the network are considered. Additionally, in the case 

where there is only a single linear output layer, a closed-form ordinary least squares solution exists 

between weighted outputs and target signals, described section 2.2.8. 

The concept of reservoir computing was formulated to try and harness some of the computational 

power shown by recurrent neural networks for processing time dependent data, while mitigating the 

high complexity of training these recurrent networks. The method for achieving this reduction in 

training cost is the defining characteristic that connects different types of reservoir architectures; the 

decoupling of time-dependent dynamic processes which occur in the ‘reservoir’ from a time invariant 

‘readout’ which is trained28 
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Figure 7- Schematic of reservoir architecture. Data is inputted via blue connections from input layer into nodes in the 
reservoir layer. Green connections show how these activations are passed between nodes within the reservoir. Dotted red 
lines show connections between output nodes in the reservoir system, on which activity will be periodically measured to 
produce reservoir state as the system evolves36. 

2.2.7- Echo State Networks 
The first RC frameworks arose independently from one another in the early 2000s, consisting of echo 

state networks (ESNs), and liquid state machines (LSMs), with their inception coming from the fields 

of machine learning and computational neuroscience respectively, though drawing from the same 

underlying principles of fixed random connectivity and simple linear readout. The leaky-integrator 

neurons that are typical to ESNs bear far more dynamical similarity to nanomagnetic systems than the 

biologically inspired spiking neurons of LSMs, and as such LSMs will not be explored in depth here. 

In ESNs, each of the three layers introduced in section 2.2.7 has its own associated weights, denoted 

here as Win, Wres, and Wout for the input, reservoir, and output weights respectively. Win is a fixed, dense 

random matrix that connects all input dimensions to all reservoir nodes. Wres is a fixed, sparse random 

matrix that defines the internal connectivity of the ESN, resembling an Erdos-Renyi graph structure 

where each node has a fixed probability for a non-zero weighted connection to another node in the 

network defined by some sparsity parameter. Wout is a dense matrix which connects each reservoir 

node to each output node, and the weights are trained in order to minimise the error between network 

output and some teacher signal. 

Echo state networks exhibit what is called the ‘echo state property’, which can be phenomenologically 

described as a diminishing dependence of reservoir state upon any initial conditions. This means that 

any information provided to the system asymptotically fades from the system’s state as new 

information is provided. Thus, ESNs are said to possess ‘fading memory’. In order to ensure this 

property occurs, and that the reservoir state avoids chaotic regimes, the magnitude of weights in Wres 

must be normalised with respect to its spectral radius, defined by the largest eigenvalue of the weight 

matrix. Empirically speaking, the echo state property is maintained for any input providing the spectral 

radius of Wres < 129. 

The update rule for the activities on each node in a reservoir consisting of leaky integrator neurons 

with a tanh activation function are given by the following iterative equation (2.25): 

(2.25)      𝒙(𝑡 + 1) = (1 − 𝛼)𝒙(𝑡) +  𝛼 𝑡𝑎𝑛ℎ(𝛾𝑾in𝒔(𝑡 + 1) + 𝜌𝑾res𝒙(𝑡)) 
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  where 𝒙(𝑡) represents the reservoir state at time t, 𝒔(𝑡) represents the input signal at time t, 

for a given set of network hyperparameters representing the leak rate of the leaky integrator neurons, 

input scaling, and spectral radius, represented by 𝛼, 𝛾, and 𝜌 respectively.  

The update rule and the role each hyperparameter has on network dynamics can be understood by 

breaking the equation into three parts. Firstly, the (1 − 𝛼)𝒙(𝑡) term describes how much activity from 

the previous timestep is retained in each of the neurons and is controlled by the leak rate of the 

neurons. Higher leak rate means less activity is retained from timestep-to-timestep, and generally 

leads to shorter-term memory. The 𝛾𝑾in𝒔(𝑡 + 1) term describes how the strongly activity depends 

upon the input signal alone and is controlled by the input scaling parameter, with large 𝛾 leading to 

large dependence upon the current input. Finally, the 𝜌𝑾res𝒙(𝑡) term dictates how much the 

activations depend upon the ESNs internal connectivity, with larger 𝜌 leading to a greater dependence. 

The performance of ESNs in a given task is strongly dependent upon the ability to effectively match 

the dynamic properties of the network via its hyperparameters to the demands of the task. 

2.2.8 – Training Reservoir Computers 
For a linear readout, a simple relationship between target outputs and feature vectors extracted from 

reservoir state, 𝑥𝑛, and a target vector, 𝑦𝑛, can be achieved through regression, outlined in
28 and 

described here.   

By stacking the reservoir state vectors and target vectors for each sequence of a training data set into 

matrices 𝑿 and 𝒀 respectively, a closed-form ordinary-least-squares solution exists for finding the 

weights. Supposing that a weight matrix, 𝑾𝑜𝑢𝑡, exists which connects reservoir state matrix 𝑿 to target 

matrix 𝒀, this connection can be summarised by equation 2.26: 

(2.26)     𝑾𝑜𝑢𝑡𝑿 =  𝒀 

The weight matrix can be calculated directly by post-multiplying either side of the equation by the 

inverse of  𝑿. To avoid issues with singular matrices, pseudoinverses such as the Moore-Penrose 

pseudoinverse (MPP) are often used instead (equation 27). 

(2.27)     𝑾𝑜𝑢𝑡 =  𝒀 𝑿+ 

 where 𝑿+ represents the MPP of 𝑿.  

To reduce the size of the matrix which requires inverting, and hence the computational demands, the 

normal equations solution using the transpose of the matrices is often taken instead. This also opens 

up the availability to include a regularisation parameter which helps reduce any problems with 

multicollinearity of solutions28 (equation 2.28):  

(2.28)     𝑾𝑜𝑢𝑡 = (𝒀𝑿𝑇) ∗ (𝑿𝑿𝑇 + 𝜆𝑰)+ 

 where 𝜆 represents the ridge or Tikhonov regularisation parameter, and 𝑰 the identity matrix, 

which regularises along the diagonal ‘ridge’ of the weight matrix, serving as the namesake of the 

algorithm. 

This batch training method forms the most popular method of training RC networks, thanks to its 

simplicity and ability to form a fully trained weight matrix in a single step. However, there are many 

other training methods available, depending on the requirements of the task, with any standard 

machine learning techniques for feedforward networks applicable to the readout. For tasks requiring 

online adaptation of parameters, such as adaptive channel equalisation, more familiar machine 

learning algorithms have been used, such as stochastic gradient descent or recursive least squares37. 
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Additionally, taking reservoir transformations as an analogy to a temporal kernel, techniques suitable 

for support vector machines have been applied to reservoir training38. 
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3 – Literature Review 
3.1- Introduction 
The field of in materio computation has seen rapid development within the magnetics community, 

with a plethora of magnetic RC architectures proposed in both simulation and in experiments. To 

develop functional RC platforms on novel substrates, a cross-disciplinary approach must be taken to 

enable a harmonious interplay between understanding the physical response of the substrate, 

engineering of devices and measurement platforms, and application of appropriate machine learning 

paradigms.  To address this, the following chapter will explore the literature for these key aspects in 

turn. 

The first section is focussed upon the physics that governs the response of the nanoring arrays, 

exploring domain walls (DWs) at the nanoscale. DW dynamics in response to input will be introduced 

in more detail, focussing on the theory behind stochastic processes governing DW propagation. Next, 

techniques employed for manipulating DWs will be explored, as well as developments in methods used 

for reading the magnetic state of nanostructures. Finally, there will be a deeper exploration into the 

magnetic nanorings that have been explored in this thesis, both in terms of the behaviour and 

responses of individual nanorings, as well as the changes to response that occur when many rings are 

connected to form large arrays. 

The next section will focus on RC, building upon the archetypal network configurations introduced in 

the previous chapter, as well as more recent iterations that have been proposed for both physical as 

well as algorithmic implementations of RC. The applications of RC will be explored, detailing the areas 

of machine learning where RC is able to represent state-of-the-art performance despite its relatively 

low computational cost. Methods for evaluating the computational properties of an RC platform in 

different regimes will be introduced, allowing the range of performance to be assessed in a more 

general manner than simply reporting accuracies in benchmark tasks. Finally, we will explore novel 

learning rules and methods for evolving RC platforms which have been designed to maximise the 

computational capability that can be extracted from a platform and make them more robust against 

well-documented shortcomings of RC such as catastrophic forgetting. 

The final section will draw on the concepts outlined in the first two sections, covering the current state 

of in materia computing in both magnetic and non-magnetic platforms, forming a critical evaluation 

of the strengths and weaknesses of different proposed systems, as well as highlighting important 

developments on specific platforms that can be applied to in materia computing platforms more 

generally. This will provide important context for where the developments highlighted in later chapters 

sit within the field. 

3.2 – Domain Walls at the Nanoscale 

3.2.1- Domain Walls in Magnetic Nanowires 
In planar nanowires made from soft magnetic materials such as Permalloy (Py), the low magneto-

crystalline anisotropy means that the magnetic ground states of geometries are determined 

predominately by a balancing between magnetostatic and exchange interactions. The minimisation of 

magnetostatic energy confines the spins to the plane of the nanowire, and results in an in-plane 

rotation of magnetic moments between domains (Néel DWs). The high aspect ratio and resulting high 

shape anisotropy means magnetisation in domains follows the wires’ longitudinal direction, leading to 
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a 180-degree rotation of magnetisation at DWs. Two types of DW arise depending on whether 

magnetisation is converging (head-to-head, H2H, converging magnetisation) or diverging (tail-to-tail, 

T2T, diverging magnetisation) at the DW, shown in figure 1.  

 

Figure 1- Schematic diagrams of Head-to-Head (left) and Tail-to-Tail (right) domain wall structure. Arrows show 

direction of magnetic moments within domains. 

As well as direction of magnetisation, DWs also exist in two distinct classes depending upon the shape 

of the DW1–3, forming either vortex or transverse DWs. Generally, vortex DWs result in reduced 

magnetostatic energy, as they are formed of closed loops of magnetic flux and are more commonly 

found in thicker, wider nanowires2,4. Conversely, transverse DWs reduce exchange energy, and are 

typical in thinner nanowires3. Figure 2 shows these DW structures in two different nanoring 

geometries. 

 

Figure 2- Upper: micromagnetic simulation of local magnetic moment configuration (shown by black arrows) for 

a vortex domain wall (left) and a transverse domain wall (right). Lower: X-Ray Photoemission electron microscopy 

images [X-PEEM] of both vortex (left) and transverse (right) domain wall structures. Axis of magnetic sensitivity 

is shown by arrow labelled σ, with moments pointing along this direction coloured white, and moments anti-

parallel coloured black5.  

 

3.2.2- Domain Wall Motion in Nanowires 
In nanowire devices, the isolated DWs within the constrained geometry can be probed with a high 

degree of precision, establishing a more detailed understanding of DW movement and how it changes 

with applied field. In figure 3, Beach et al. showed that DWs propagate in three distinct regimes in 

nanowire devices depending on the strength of the applied field. They expressed these regimes with 

respect to the changing DW mobility parameter,  , which is equal to the gradient of the mean velocity 

plot shown below6. These three regimes are useful to reference when discussing the varying degrees 

of stochasticity of DW pinning events, as they each feature different structure and dynamics important 

to understanding their motion and associated stochasticity, which is addressed in the next section. 
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Figure 3- Average DW velocity versus driving field strength, showing initial linear regime of high mobility, 

subsequent decrease in velocity due to onset of Walker breakdown, before reduced linear mobility of turbulent 

DWs. Datapoints reflect experimental measurements, with associated error bars6. 

3.2.3 - Stochasticity in DW Pinning 
Experimentally, DWs almost always experience some degree of stochasticity during pinning/depinning 

events in nanowires. This stochasticity has two main sources: the dependence of interactions between 

DWs and pinning sites upon DW structure, as well as thermal activation. The former will be discussed 

in detail first. Coupled with finite edge roughness in real nanowire devices, stochasticity is further 

enhanced, meaning that for finite temperature devices, the role of this stochasticity is often huge7. 

However, through engineering of the materials as well as careful application of driving stimuli, the 

effects of this stochasticity can be reduced. 

3.2.3.1 - Stochasticity due to Dynamic DW Structure 
At lower driving fields, the motion of DWs is generally well defined, with velocity scaling linearly with 

applied field. The mobility parameter  , which describes the change in velocity with respect to applied 

field, in this regime is large and constant6,8,9. DW structure remains consistent as it propagates, 

meaning DWs arrive at pinning locations with similar structures across repeated events. Using the 

phenomenological Gilbert damping parameter, α, DW mobility can be defined in this regime via 

equation (3.1): 

(3.1)    𝜇 =
𝛾∆

𝛼
 

where γ is the gyromagnetic ratio, and ∆ is the DW width. Through extensive control over DW 

injection and propagation, the associated stochasticity with DW pinning/depinning can be reduced to 

effectively zero in nanowires thanks to consistency of DW magnetisation state, demonstrated 

experimentally by Munoz et al.10. 

As driving fields increase, the configuration of DWs becomes oscillatory in nature beyond a 

characteristic field strength known as the Walker breakdown field11. Beyond this point, the mobility 

parameter,  , becomes negative and varies with applied field. In this regime, the width, velocity, and 

structure of DWs all become transient, leading to highly stochastic pinning events as the DW interacts 

with pinning sites in a distribution of magnetisation states11. Hence, probabilistic pinning/depinning 

events occur according to this distribution, with individual outcomes for a single DW impossible to 

predict deterministically in this regime7,8. 
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The onset of Walker breakdown can be offset via a variety of methods. Broomhall et al. demonstrated 

that it is possible to extend the viscous driving regime of permalloy nanowires by doping with heavy 

rare-earth metals such as terbium12. This was achieved by increasing the Gilbert damping constant of 

the material, since the field at which Walker breakdown occurs at is inversely proportional to the 

damping constant.13 Figure 4 shows the result of this delayed onset of walker breakdown via increased 

damping. 

 

Figure 4- (a) comparison of domain wall velocity versus applied field strength for undoped permalloy (black line) 
versus permalloy doped with 5% terbium (red line). (b) domain wall position with respect to time for the doped 
sample driven at 35 Oe (red), and the undoped sample at 50 Oe (black). Taken from12. 

Additionally, the application of transverse applied field components has also been shown to reduce 

the onset of Walker breakdown by Glathe et al.14. This is due to the broadening of the domain wall 

width with applied field, which reduces the effects of edge roughness and acts to stabilise the domain 

wall structure. Due to the presence of considerable transverse fields in the rotating magnetic field 

schemes used to drive the nanoring arrays in this thesis, as well as the relatively low driving fields used, 

Walker breakdown will be largely suppressed. 

Beyond this regime, the DW velocity profile once again becomes linear with applied field, but with a 

mobility an order of magnitude lower than the low field regime, due to turbulent DW structure6,11,15. 

According to Beach et al., this large decrease comes as the periodic torques become balanced, leaving 

only the damping torque term to drive the DW forward6. The characteristic equation for mobility 

changes in this regime is given by equation (3.2), which highlights the dependence of the reduction in 

mobility on the damping parameter; materials with low damping characteristics have a greater 

reduction to mobility. 

(3.2)    𝜇 =
𝛾∆

(𝛼+𝛼−1)
 

3.2.3.2 - Stochasticity due to Thermal Activation 
Another source of stochasticity in magnetic systems comes from thermal activation. Thermal 

fluctuations in any material with above absolute zero temperature cause individual magnetic moments 



49 
 

to flip, exciting spin waves and reducing magnetic order, aiding switching16. These random 

perturbations of spin structure act as a source of stochasticity in domain wall pinning17, with the 

thermal energy of the atoms in the system being probabilistic in nature. Mathematically, the frequency 

that these perturbations lead to switching agrees with Arrhenius-Néel models18, where the 

characteristic timescale of a thermal activation event occurring is exponentially dependent upon 

temperature, as shown by equation (3.3) 

(3.3)   𝜏 = 𝜏0𝑒
∆𝐸

𝑘𝐵𝑇 

  where τ is the characteristic timescale of reversal, 𝜏0is the reciprocal of the attempt frequency 

of the material, ∆E is the associated energy barrier, kB is the Boltzmann constant, and T is 

temperature19. Wuth et al. demonstrated this temperature dependence for depinning events in 

nanowires20. This characteristic timescale can be tied to the probability a pinning event is expected to 

occur, P, over a given duration of time, t, shown in equation (3.4): 

(3.4)   𝑃 = 1 − 𝑒−
t

𝜏 

Building upon this theory of thermal activation, the Néel-Brown model develops a field dependence 

to the probability of switching21. This considers the effect that applied magnetic fields have on the 

energy barrier associated with DW pinning in Arrhenius-Néel models, ∆E, through equation (3.5): 

(3.5)    𝐸(𝐻) = 𝐸0 (1 −
𝐻

𝐻𝑠𝑤
0 )

∝
 

where E0 represents the energy barrier at zero field, H is the strength of the applied field, 𝐻𝑠𝑤
0  

is the switching field of the particle at zero kelvin, and α is an exponent describing the process of 

magnetic switching, usually around 1.5 for a single domain particle with uniaxial anisotropy21. 

Wernsdorfer et al. confirmed this relationship experimentally in22. Thermal activation will likely be the 

key source of stochasticity in the ring arrays studied here, as the transverse components of the applied 

cyclic driving fields increases the stability of propagating DWs and inhibits the onset of Walker 

breakdown, discussed in more detail in later sections. 

3.2.4- Driving Domain Walls in Nanodevices 
While electromagnets can provide a simple pathway to controllable driving of DWs in ferromagnetic 

materials, the relative size and power consumption of the electromagnets compared to proposed 

functional nanostructures means they are not the ideal candidate for DW-based devices. Alternatively, 

there are three commonly used methods for nanodevices that either provide magnetic field locally to 

the patterned nanostructures, or that use interactions between the magnetic moments of a material 

and electrical currents to produce spin-transfer torques. These torques can be generated via spin-

polarising in pure charge currents, or via pure spin currents resulting from spin-hall effects. The 

mechanisms and applications of each of these methods will be briefly outlined in this section. 

3.2.4.1- Oersted fields from local current striplines 
While external electromagnets can easily generate magnetic fields required to provide stimulus to 

magnetic devices, only a tiny proportion of the energy stored in the generated magnetic fields goes on 

to cause a useful perturbation in the system. This poses a huge efficiency problem for proposed 

computational devices that use external electromagnets to provide input, since the magnets will 

consume energy at orders of magnitude higher than the computational platform itself. One possible 
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method for mitigating this using local current striplines to provide Oersted fields directly to the device. 

By minimising the distance between the electric current and the magnetic nanodevice, the amount of 

energy lost to generating fields away from where they are useful is minimised. 

 

Previous work has shown that these local Oersted fields are capable of both generating and 

annihilating DWs in patterned nanowires23, whilst requiring currents on the order of sub-milliamps. It 

has also been shown that these current striplines are able to reliably control magnetisation switching 

and domain wall propagation24. While these methods are promising for low-power modulation of the 

system, they are usually used to provide short-lived pulses of strong magnetic field rather than a 

continuously modulated driving field. At the current densities required to provide continuous fields on 

the order of 50 Oe, Joule heating would likely cause the current-carrying nanowires to become 

damaged. 

 

3.2.4.2- Spin-transfer torques via spin-polarised charge currents. 
The spin-transfer effect was theoretically predicted in 1996 by Berger25 and Slonczewski26, with huge 

promise for the application of spintronic devices. The effect arises from the transferring of momentum 

from a spin-polarised charge current to a non-orthogonal magnetic moment. Grollier et al. explain the 

process by which spin-transfer effects can be used to manipulate domain walls27: In magnetic 

nanowires with in-plane magnetisation, magnetic moments in the domains align pointing along the 

length of the nanowire. When charge currents are passed through the nanowires, s-d interactions lead 

to spin polarisation in the current. Since the size of DWs in nanowire geometries (on the order of wire 

width, generally 10s to 100s of nanometres) is significantly larger than the spin-diffusion length 

(around 4nm for Py at room temperature) or the coherence length (~1 or 2 nm), the change in direction 

of the magnetic moments presented by the DW is gradual enough for the conducting electrons to 

adiabatically follow the rotating moments in the DW. This imparts a transfer of momentum as the 

current traverses the DW, causing the rotation of moments in the DW. With sufficiently large currents, 

this rotation is enough to lead to DW propagation. 

 

 
Figure 6 -Schematic diagram showing the resulting spin-transfer torques (red arrows) that arise across a domain 
wall (region between dotted lines) due to the spin polarisation that occurs when a charge current (denoted e -) 
flows through a nanowire with aligned magnetic moments (shown by M1). Taken from27. 

Whilst a viable route for manipulating DWs in nanowires, driving the ring array system with spin-

transfer torques would still require large amplitude, short duration pulses of electric current to achieve 

the required current densities for DW propagation. Additionally, the continuously connected nature of 
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the nanoring system would pose difficulty when attempting to address subsections of an array 

individually, which could limit the use of spin-transfer torques to global input. 

 

3.2.4.3- Spin-orbit torques via pure spin currents generated in a heavy-metal underlayer 
An alternative method for utilising the spin-transfer effect to manipulate DWs in nanodevices involves 

the generation of pure spin currents generated via the spin-Hall effect when current is passed through 

a heavy metal28.  Here, spin-orbit interactions lead to spin-dependent scattering of conducting 

electrons, meaning spin-up and spin-down electrons are scattered in opposing directions, generating 

a pure spin current orthogonal to the flow of conduction electrons, and is shown in figure 7. 

 

 
Figure 7- Spin dependent scattering of a charge current (black arrow) passed through a heavy metal underlayer, 
which causes accumulation of spin-up electrons at the interface of the heavy metal and the ferromagnet here. 
The preferential motion of the spin-up and spin-down electrons in opposite directions creates an effective spin 
current in the direction of the blue dotted arrow. 

  

The relative efficiency of converting a charge-current to a pure spin-current for a given material, as 

well as the direction in which spin-up/spin-down electrons are deflected, depend upon the magnitude 

and sign of a dimensionless parameter known as the spin-Hall angle, where experimentally measured 

and theoretically determined values often have large discrepancies29. Experimentally determined spin-

Hall angles often determine which heavy-metal underlayers are used, with platinum being the most 

frequent choice due to its large spin-Hall angle (ranging typically between 0.01 to 0.2030) and high 

conductivity. 

 

In nanodevices, multilayers of ferromagnetic material deposited upon heavy-metal underlayers have 

been employed to utilise spin-orbit torques to cause DW propagation or magnetic reversal. This has 

seen implementations of DW-based logic31, racetrack memory32, and magnetic random-access 

memory33, which use spin-orbit torques to electrically encode information into magnetic media at 

energies significantly lower than those of spin-transfer torques. However, since the direction of the 

spin current is oriented out-of-plane with respect to the magnetic material, the driving torques applied 

to domain walls are very weak for in-plane domain walls, and hence are primarily used to drive out-

of-plane Néel walls34. In order to transfer sufficient torques, the spins of an in-plane material must be 

canted slightly out-of-plane via strong magnetic fields.  
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3.3 – Magnetic Nanorings 
The system explored in this thesis consists of arrays of overlapping permalloy nanorings. In essence, 

an individual nanoring behaves like a nanowire looped back upon itself, providing a means of flux 

closure. The following section will explore the ground state and state space of individual magnetic 

nanorings, the transitions between these states, as well as their response to rotating magnetic fields. 

Next, the interactions that occur between connected rings will be examined, highlighting the changes 

in response that occur due to these interactions, before finally examining the emergent response of 

large arrays of interconnected nanorings arising from many interacting elements. 

3.3.1 - Single Magnetic Nanorings 
In thin-film nanostructures made of soft magnetic materials such as permalloy, magnetisation states 

are primarily controlled by the magnetostatic energy, and hence are strongly dependent on the shape 

of the nanostructure. The nanorings explored here resemble high aspect-ratio wires looped upon 

themselves, with the relatively narrow track widths leading to a significant shape anisotropy and a 

strong tendency for circumferential alignment of magnetic moments5. The ground state of the system 

is a closed loop around the ring circumference, forming a single magnetic domain (figure 8). This is an 

energy minimum as there are no poles from DWs (and hence no magnetostatic contributions) and is 

named the ‘vortex’ state. Vortex states have twofold chirality depending on the direction of 

magnetisation, leading to distinct clockwise and anticlockwise vortices. 

 

Figure 8- Schematic diagram of a "vortex" ring configuration. Arrow shows direction of magnetisation35. 

As well as the vortex state, there also exist metastable, multidomain states (figure 9). The most 

frequent of these is the ‘onion’ state5,35. The onion state forms when a sufficiently strong magnetic 

field causes ferromagnetic alignment in the ring and is then relaxed, forming a pair of DWs along the 

direction of magnetic saturation. The ‘twisted’ state arises when a DW is driven around the system 

until it comes into proximity with a second DW in the ring and interacts at a fixed length with behaviour 

like a 360° DW5,36.  

 

Figure 9- Schematics of "onion" ring (left) and "twisted" ring (right) configurations. Arrows show magnetisation 

direction, lines across width of ring represent domain walls35. 

Under the application of a linear field sweep on an isolated nanoring, the transition between onion 

and vortex states can be observed as they mediate the switching of magnetic alignment. These 

transitions are inferred from characteristic hysteresis loops, illustrated in figure 10. The way in which 

these changes occur is generally controlled by the geometry of the ring, strength of applied field, and 
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degree of edge roughness36. Micromagnetic simulations of field-driven motion in the absence of 

pinning suggest that for onion state rings there exists two mechanisms by which the DWs propagate 

around the ring: coherent rotation of the DWs around the ring, or the forming of an intermediate 

vortex state36.  

The mechanisms, shown in figure 10, depend on the movement the DW pair: if they move in the same 

direction, they collide and annihilate, forming the intermediate vortex state; if they move in opposite 

directions, there is uniform rotation of the onion state as magnetisation direction reverses. The 

interchangeability between onion and vortex state is key to the dynamics of the arrays studied in this 

report. 

 

 

Figure 10- Micromagnetically obtained hysteresis loops for reversal mechanisms. Vortex formation, (a), has step-

like behaviour in magnetization as domain configuration changes, whereas (b) has less abrupt changes with 

constant DW configuration. Inset figures show domain wall state at various stages of the hysteresis loops as well 

as direction of DW movement36. 

A study by Negoita et al. explored how DWs move when driven by an in-plane rotating magnetic field. 

Under a rotating driving field, DWs are expected to rotate along with the field to maintain minimum 

Zeeman energy. However, it was observed that DW pinning due to edge roughness causes the DWs to 

lag behind the driving field37. According to the schematic shown in figure 11, lag angle is defined as 

the polar angle from the ring’s centre between DW location and the location of the energy minima. It 

was found that, as a result of increasing the transverse component of applied field, the DWs would 

depin with either sufficient applied field or large enough lag angle, with a sinusoidal relationship tying 

the parameters together, shown in (3.6)37.   

(3.6)    𝜃𝑙𝑎𝑔 = 𝑠𝑖𝑛 (𝐻𝑎𝑝𝑝) 
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Figure 11- a) Geometrical definition of lag angle for ring structures b) Micromagnetically calculated Zeeman 

energy versus lag angle, and c) Components of applied field and DW structure an applied field rotates37. 

The cyclic field also influences the stochasticity of propagation in the ring systems due to the presence 

of transverse components of applied field. A study by Glathe et al. looked at the effect of these 

transverse fields on DW propagation in permalloy nanostrips and found that the applied transverse 

fields delayed onset of Walker breakdown, suppressing it completely with sufficiently strong transverse 

fields38. These findings suggest the presence of considerable transverse components in the rotating 

driving field applied to the ring system will likely mean Walker breakdown is less significant, as the 

onset of breakdown is delayed. Additionally, the reduction in driving component that occurs as DWs 

depin and lag angle reduces means Walker breakdown is also less likely to occur. 

3.3.2 - Connected Nanorings 
A key area for this thesis is defining how nanorings interact with adjacent rings in the connected arrays. 

Junctions where the rings overlap will have different magnetic characteristics to the rest of the ring: 

the local change in geometry creates a defect-like energy barrier for DW propagation. The increased 

area of magnetic material at the junction causes changes to DW structure upon entering a junction, 

with the additional material acting similarly to an ‘anti-notch’, disrupting local magnetic order39,40. In 

multi-ring systems, the junctions are critical to the mechanisms behind DW annihilation and 

nucleation, as they act as the primary pinning sites and cause differential movement of DWs about the 

rings41. 

The geometry of connections has significant influence on their behaviour42. For continuous 

connections with no separation of material, strong exchange coupling is present between the rings. 

For spatially separated rings, magnetostatic coupling acts across the separation. The strength of 

coupling is dependent upon distance of separation, with stronger coupling the closer the rings are 

located. Ren et al. measured MOKE hysteresis loops on four arrangements of interacting nanorings in 

response to linear field sweeps, shown in Figure 12, with the geometry of the arrangements shown in 

the micrographs above.  
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Figure 12- Upper Image - Scanning electron microscopy (SEM) micrographs of pairs of interacting nanorings: Top 

Left - Overlapping, Bottom Left - Connected, Top Right - Separated, Bottom Right – Isolated42. Lower Image(a) 

MOKE hysteresis loops for the four connectivity arrangements for 0 angle. The derivative plot below highlights 

local minima representing switching for the ‘overlapping’ ring pairs b) Micromagnetically simulated hysteresis 

loops of the same arrangements, with images of simulated DW arrangements of overlapping (left) and connected 

(right) ring pairs in the inset, (c) MOKE hysteresis loops for the four bi-ring configurations for 90 angle42. 

Important features to note here include the limited difference between the ‘closely spaced’ and 

‘isolated’ ring pairs, and the significant difference between the ‘connected’ and ‘overlapping’ ring 

pairs. This highlights the much greater influence of exchange coupling over magnetostatic coupling on 

the switching process, as well as the different reversal mechanics observed between the two 

magnetically contacted ring pairs. The derivative plot highlights a clear 3-step reversal process for 

overlapping rings, showing a difference in reversal mechanism that is dependent on the degree of 

overlap between rings42, though the study does not allude to critical values where this change occurs. 
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The differences in the 0- and 90-degree plots would be expected to be of less importance to the 

response of square arrays of interconnected rings as there will be fourfold symmetry in a uniform 

square lattice, removing differences between 0 and 90 directions. Understanding of these reversal 

processes will be key to engineering the array dynamics, as it could allow the energy barriers to be 

manipulated between rings, changing the nature of device response, and the relative favourability of 

different states. 

The number of connections between rings also affects expected magnetisation state within nanorings. 

Rose et al. showed that with increasing connections, the stability of the vortex state decreases41, 

highlighting the influence the number of connections has on the reversal properties of individual rings, 

which will be important to consider for rings on the perimeter of the interconnected ring arrays. Other 

critical conclusions of the work of Rose et al. includes the finding that propagating DWs in one ring are 

able to cause movement of DWs in adjacent rings, and that there is a reduction in switching field and 

coercivity as connectivity between rings increases41. This is highlighted by the hysteresis loops shown 

in figure 13.  

However, it is important to also understand how magnetic frustration may affect the rings’ switching 

behaviour, where geometry is a key component in resolving locally frustrated rings. Frustration arises 

when changes in magnetisation cause regions of opposite polarity sit opposite to one another, forcing 

creation of a DW along the change in magnetic direction, shown in figure 14. In the triad structure 

studied here and the square structures in the arrays discussed later, there are different pathways 

available to form closed magnetic loops across rings, which in turn leads to greater degrees of freedom 

with which to alleviate frustration in square arrays, reducing the number of expected frustrated states.  

 

 

Figure 13- MOKE hysteresis loops for single ring (solid line), bi-ring structure (dotted line), and tri-ring structure 

(dashed line)41. 
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Figure 14- X-PEEM images of connected nanoring chains, black highlighted domain walls are formed due to local 

frustration. Red and blue colour denotes direction of magnetic alignment, shown by blue and red arrows. 

To understand the nature of DW annihilation and nucleation mechanisms in connected bi-rings under 

rotating fields, Dawidek conducted micromagnetic simulations at zero Kelvin of connected ring pairs 

driven by rotating fields with different field strengths and initial conditions43, shown in figure 15. The 

first case featured a fully populated pair of connected rings and a lower, 50 Oe driving field. The second 

simulation featured DWs in one ring only, and a higher, 80 Oe driving field. As shown by figure 15a, for 

rings driven by fields below a critical value, the magnetic field is insufficient to drive the DWs beyond 

the potential barrier of the junction without assistance from thermal effects, so remain pinned. The 

other DWs in the pair have no junctions to pass, so continue to propagate with the rotating field until 

they reach the pinned DWs and annihilate to form vortex states in both rings. 
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Figure 15- Micromagnetic simulations of connected bi-ring systems of 4 m diameter, 400nm track width, 20nm 

thickness and 50% overlap.   A) Annihilation mechanism driven by a field of 50 Oe, B) Repopulation mechanism, 

driven by a field of 80 Oe. Colour on rings demonstrates magnetisation direction (see colour wheel), white arrows 

show direction of applied field43. 

The second simulation has DWs present in one ring only, and a driving field high enough to overcome 

the energy barrier of the junction (figure 15b). This means the DW passes the junction. As it passes, it 

causes magnetic reversal across the junction, causing frustration to occur between the populated ring 

and the empty ring. The frustration is immediately alleviated by the formation of a pair of DWs in the 

empty ring, which go on to follow the field as in the populated ring. This shows a mechanism for 

nucleating DWs in the system, relying on the movement of DWs in adjacent rings. 

The micromagnetic simulations here neglect the effect of thermal noise, and as such are deterministic 

in nature. In systems at room temperature, the transition between pinning and propagating regimes is 

not absolute about a critical value, but rather a probabilistic process thanks to thermal activation, 

discussed earlier in sections 2.3 and 2.4.1. The consequences of the stochasticity associated with 

thermal activation will be addressed in the following section.  
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3.3.3 - Arrays of Connected Nanorings 
As connectivity plays such a key part in the response of individual rings, it is important to consider 

some of the differences in behaviour expected from a large network of interconnected ring as opposed 

to isolated groups of 2 or 3 nanorings. Across large arrays, consistent global phenomena were 

observed43, arising as a consequence of the individual stochastic interactions as well as the local 

influence a ring has over its neighbours.  

These stochastic events meant that different percentages of the DWs are expected to depin with every 

rotation depending on the strength of the applied field. This leads to mechanisms for DW loss or gain 

depending on differential DW motion, with different domain states expected from ring to ring. The 

rates of DW loss and gain varies with applied field strength, leading to well-defined global states 

emerging as a statistical phenomenon across the entire array. This leads to expected levels for array 

magnetisation and normalised populations of each ring state as the ring arrays are driven to 

equilibrium, depending upon the magnitude of applied field. 

Dawidek et al. explored the magnetisation characteristics of ultra-large samples of interconnected ring 

arrays over a 2cm2 wafer after the application of 50 successive rotations of magnetic fields, shown in 

figure 1643, measured using polarised neutron reflectometry (PNR). At lower fields, the system 

struggled to deviate from the saturated state. At higher fields, the DWs always had sufficient driving 

force to overcome the energy barriers and follow the rotation of the magnetic field, returning to their 

initial conditions after the final rotation. The large drop in magnetisation at intermediate fields arises 

as individual stochastic events lead to a large distribution of magnetic states over the array. This 

resulted in a disordered magnetic texture across the array, leading to zero net magnetisation without 

forming exclusively vortex states (shown in later X-PEEM images). This complex nonlinear 

transformation is advantageous for machine learning applications, discussed later.  

 

Figure 16- Array magnetisation state after 50 rotations of magnetic fields of varying strength. Blue triangles 

represent results from 100 rotations, red squares from 25 rotations43. 
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Dawidek also conducted a similar experiment, where the array was driven over a series of varying 

applied field strengths without reinitialisation by a saturation pulse, shown below in figure 17. The 

differences in response between applications of the same field implies dynamic behaviour beyond a 

simple transition between well-established equilibrium positions, with the response at a given field 

being dependent upon the previous state off the array43. This hysteretic behaviour could prove useful 

as a source of memory in a computing system based on the arrays, with the state at a given time 

depending upon both the current input as well as past inputs to the system. 

 

 

Figure 17- Magnetisation of ring arrays after 50 rotations of magnetic fields of varying strength with no 

saturation pulse between field sequences. Red arrows show the order in which measurements were taken.43 

In the same work, X-PEEM imaging is used to provide greater insight to the magnetisation state after 

the application of cyclic fields (figure 18). This allows observation of the magnetic state of individual 

rings within the array. While the images are not identical, there exists regions of consistent behaviour, 

where rings of similar magnetisation tend to group together. This causes patterns to form within the 

images and demonstrates the influence of local magnetic structure on the ensemble response. This 

consistent complex structure on a global scale highlights an ‘emergent’ response of the arrays, with 

complexity arising because of many individual interactions43.  
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Figure 18- X-PEEM images of ring array samples following: Column 1; 30 rotations of specified field, Column 2; 

30 rotations with +1.5Oe offset, Column 3; 30 rotations of original field. Red and blue colour denotes magnetic 

alignment with the provided arrows43. 

Agent based models (ABMs) are especially useful for exploring such a system where a set of well-

defined agent rules can be established and defined phenomenologically. In ABMs, the complex 

behaviour ‘emerges’ because of these rules rather than being programmed in directly. The simplicity 

of agent-based models is critical, allowing a functional model of these large array systems to be built, 

as it can give rapid insight to the array dynamics where traditional micromagnetic modelling 

techniques would be unfeasible due to the scale of both time of evolution and array geometry. ABMs 

will be described in detail in the ‘Methods’ chapter. 

3.4- Reservoir Computing 
Building upon the theoretical frameworks for RC and their archetypal implementations of echo state 

networks introduced in the previous chapter, the following section will explore novel reservoir 

topologies, methods for characterising the performance of RC platforms, and novel learning rules 

designed to maximise reservoir performance and mitigate their shortcomings. 

3.4.1 – Reservoirs with Ordered Connectivity 
While ESNs and LSMs are generally randomly initialised, alternative reservoir paradigms with ordered 

connectivity have been proposed. These reservoir structures aim to maintain the computational 

properties of randomly connected ESNs, though with connectivity between the nodes which follow 

predetermined rules. This simplification of the connectivity is useful for physical proposals of reservoir 
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computing, since it limits device-to-device variability and provides synaptic connections that are much 

more feasible for hardware realisation. 

One early example of ordered ESNs are the feed-forward ESNs (FF-ESN) proposed by Cernansky and 

Makula44. In these networks, nodes can be visualised in a linear chain, with connections only occurring 

in the ‘down’ direction of the chain (figure 19). Whilst this removes recurrent connection ‘loops’, there 

is still time-dependence in the reservoir nodes as information cascades downwards through the chain 

over time. To compare the performance of the FF-ESN with standard ESNs, the authors performed 

stability evaluation by training the FF-ESN to generate a periodic attractor45 (in this case, a series of 

inputs correlated to the melody of ‘The House of The Rising Sun’), with similar performance to 

standard ESNs. Comparisons were furthered using Mackey-Glass time series prediction, where the FF-

ESNs outperformed standard ESNs.  

The dynamics of the FF-ESNs are somewhat simpler due to the lack of looped recurrent connections, 

meaning that current activity can be described exactly as a function over a finite number of past inputs, 

dependent upon the connectivity. This differs from ESNs where there are infinitesimal contributions 

from all previous inputs. This opens interesting questions about the echo-state property, since the FF-

ESNs exhibit strong computational performance without technically meeting the echo-state criteria. 

 

Figure 19- Schematic diagram showing the connectivity between nodes in the feed-forward ESN. Nodes are 
shown by circles and connections shown with arrows. Left diagram shows static connections, while the right 
diagram shows how inputs to the first node propagate through the array over several timesteps. Taken from44. 

Following the feedforward ESNs, other simple topologies such as the delay-line reservoir and its 

variants were introduced by Rodan and Tino46. Here, the connectivity of each node in the ‘forward’ 

direction is defined unidirectionally, forming a single chain of connected neurons with all weights of 

equal value. Figure 20 shows three different variations on this topology depending on the nature of 

feedback, consisting of the simple delay-line reservoir (20a), the delay-line with feedback (20b), and 

the simple cyclic reservoir (SCR, 20c). It can be observed that the delay line reservoir is a restricted 

case of the FF-ESN, where each node only connects to its adjacent forward neighbour. 

In all cases, the input weights are binary and randomly sampled. For the standard case delay-line and 

SCR, the connections between neurons are in a single direction visualised orthogonally to the flow of 

input to output. This generates memory as each node receives information of the previous timestep 

from the previous node in the chain, increasing in delay along the chain with respect to the current 

input (the cyclic reservoir is identical to the simple delay-line though with an additional connection 
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linking the final node in the chain to the first). The delay-line with feedback operates similarly, though 

with an additional backwards connection accompanying the forward connections, with a smaller fixed 

weight.  

 

Figure 20- Network topology schematics showing connectivity between dynamical neurons for (a) delay-line 

reservoir, (b) delay-line reservoir with feedback, and (c) simple cyclic reservoir. Taken from46. 

To assess whether computational performance was maintained in these simple topologies compared 

to standard randomly generated ESNs, the authors performed a series of standard benchmark tests 

and evaluated the memory capacity (introduced in detail later in section 3.4.4) of the different 

configurations, as well as for standard ESNs, while controlling for network size. The simple topologies 

performed competitively, with the cyclic reservoir especially able to match standard ESN performance 

in almost all cases. This is a significant finding for the implementation of in materio reservoir platforms 

such as the ring system studied here, as ordered topologies of identical connectivity between discrete 

units is far simpler to implement in hardware than the random varied connectivity typical to standard 

ESNs.   

3.4.2- Single Dynamical Node Reservoir 
While the variants of the delay-line reservoir drastically reduced the network complexity of ESNs, they 

still require distinct dynamical nodes with synaptic connections. Another architecture, the single 

dynamical node reservoir (SDN) proposed by Appeltant et al.47 (figure 21) reduces this complexity even 

further. This reservoir consists of ‘virtual’ nodes, generated from observing the state of a dynamic 

system as it evolves under input. Due to the temporal dependencies of the underlying dynamic system, 

the state of a virtual node at a given time depends not only on the current input, but also the state of 

the previous virtual node, hence this reservoir structure resembles the loop-like structure of the simple 

cyclic reservoir. To introduce longer-term dependencies to the state of the reservoir, delayed feedback 

is often included to connect each virtual node to itself in the past, adding a fraction of its previous 

state to the current input, which mimics leaky-integrator behaviour for each virtual node.  

Inputs are provided to each of the virtual nodes through a time multiplexing procedure: a fixed mask 

modulates the inputs in a similar manner to the input weights in standard RC, with the masked inputs 

being fed to the dynamical node sequentially via a single input channel. This can also be extended to 

provide multiple input dimensions to a single multiplexed signal by altering the dimensions of the 

mask, providing a series of linear combinations of the multiple input dimensions over the duration of 

the sequential input. 
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Figure 21- (a) Standard reservoir computing configuration. (b) Implementation of 'virtual node' cyclic delay line 

reservoir with a single dynamical node. (c) Schematic diagram showing combination of a time-discretised input 

signal u(k) to a continuous signal of steady state changes I(t) before combination with a fixed mask to produce a 

time-multiplexed signal J(t). Taken from47. 

Like with the delay-line reservoirs, the authors performed benchmark tasks and achieved competitive 

accuracies with SDN, highlighting that the simplifications made to the network topology did not result 

in a significant loss of performance. This development vastly improved the feasibility of physical 

dynamical systems for RC, as it removed the need for synaptic connections altogether; only methods 

for inputting data via a scalable stimulus and measuring an evolving physical property are required to 

realise a computationally useful RC platform. This led to implementations of single dynamical node 

reservoirs in both magnetic48 and non-magnetic49 oscillators, which will be explored in more detail in 

later sections.   

3.4.3- Rotating Neurons Reservoir 
Another recent implementation inspired by the initial cyclic reservoir aimed at providing simpler 

hardware implementation is the rotating neurons reservoir (RNR) introduced by Liang et al.50 This 

configuration features distinct nodes like the original implementation of  SCR, and similar binary input 

weights. The crucial difference is the implementation of the loop structure: instead of having explicit 

connections between the neurons that form a loop, the input and output connections synchronously 

‘rotate’ (figure 22), meaning the readout of state for each input/output weight pair occurs on the 

adjacent node in each successive timestep. With the leaky-integrator neurons used in the RNR 

implementation, this becomes analogous to the SCR, since the current state readout will be dependent 
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on the input to the prior node in the ‘loop’ at the previous timestep via the leaking of past information, 

rather than directly receiving an input from time the previous timestep from a direct synaptic 

connection. 

 

Figure 22- Schematic diagrams of the rotating neurons reservoir. Upper shows a visualisation of the rotating input 
and output connections (blue and purple respectively) connected to the dynamic neurons. Lower shows how the 
connections change for a three node network over three timesteps. 

Again, performance was verified to the standard topologies using a combination of metrics and 

benchmark tests. Here, parameters on the dynamic nodes used in the RNR system were matched to 

the standard SCR case, and near identical performance obtained. While this implementation requires 

the use of multiplexer circuit components to create the ‘rotating’ effect, they are far simpler than the 

external delay lines used in the SDN case. Since data is no longer multiplexed in time, there are also 

gains in throughput compared to the SDN case (though still limited by the rate of the multiplexers). 

However, distinct nodes need to be manufactured and measured independently, leading to device-

dependant variance in whether the RNR or SDN method has the simplest implementation when 

considering hardware realisations. 

3.4.4- Characterising Reservoir Performance 
While performance in task-based environments provide direct evidence of computation performed by 

a reservoir computing platform, they do little to inform on the range of computational properties a 

system can achieve, nor describe their computing power in general terms. As a result, various metrics 

have been proposed to statistically evaluate the computational power a reservoir transformation 
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provides based on arbitrary inputs, attempting to measure reservoir capability without the 

dependence on task-based data. 

Kernel rank (KR) and generalisation rank (GR) are two common complimentary metrics which measure 

the ability of an RC platform to separate and generalise information respectively, introduced by Busing 

et al.51 Both metrics are generated from measuring the end state of a reservoir evolving under many 

input streams consisting of uniformly distributed random data between 0 and 1. Singular value 

decomposition is used to estimate the rank of the resulting state matrices, giving an idea of the number 

of linearly uncorrelated sequences in the output. Where the two metrics differ is in the correlation 

between input sequences: In KR, the input sequences are entirely uncorrelated, whereas in GR, the 

final 3 input data are fixed for every sequence. Conceptually, KR measures the degree of nonlinearity 

between measured node states for uncorrelated inputs, while GR measures the reservoir’s ability to 

converge to similar states from different past trajectories. 

While these metrics represent an effective method for measuring phase transitions between regimes 

of reservoir operation, they are sensitive to a range of parameters that are rather arbitrarily defined 

across the field. For example, the output of both metrics is bounded by the number of nodes in a 

system, and some small threshold is chosen to determine which singular values constitute matrix rank, 

which can drastically skew results- especially in physical systems where experimental noise contributes 

to the high output matrix ranks. 

Another commonly employed metric for reservoir computers is linear memory capacity (MC)52. This 

metric directly assesses the reservoir’s ability to reconstruct delayed inputs to the system from the 

system’s current state. The system is provided with uncorrelated inputs randomly sampled from a 

uniform distribution, and reservoir state is measured as the system evolves. A simple linear readout is 

then trained to reconstruct the inputs over a range of delays, and memory capacity evaluated via the 

following equation (3.7): 

(3.7)     𝑀𝐶 = ∑ 𝑀𝐶𝑘 = ∑
𝑐𝑜𝑣2(𝑢𝑖−𝑘,𝑦𝑘)

𝜎2(𝑢𝑖)𝜎
2(𝑦𝑘)

𝑁
𝑘=1

𝑁
𝑘=1  

 

 where 𝑢𝑖 represents the input at time i, 𝑢𝑖−𝑘 represents the true input at delay k, and 𝑦𝑘  

represents the reconstruction of input at delay k. While linear MC evaluates the reservoir’s ability to 

reconstruct exact reconstructions of past inputs, often tasks require a nonlinear representation of past 

inputs instead. To evaluate this, the linear MC metric has been extended to include quadratic MC, cubic 

MC, et cetera, by simply raising the delayed input to the desired power. 

Another approach used to evaluate the processing power of a dynamical system is the information 

processing capacity (IPC), introduced by Dambre et al. in 201253. Functionally, this metric can be 

described as the total number of linearly independent output functions a system can generate from 

its input stimuli. It draws upon similar mathematical concepts to the memory capacity measurements 

described above but combines the different polynomial terms to give a more complete description of 

the memory of a system. This approach looks at many different nonlinear combinations of past inputs, 

and estimates each the capacity for each component 𝐶𝑚 via equation (3.8) 

(3.8)        𝐶𝑚 = 1 −
𝑚𝑖𝑛𝑤𝑖

 𝑀𝑆𝐸[𝛾𝐼𝑃𝐶,𝑘
𝑚  ,𝛾𝑅𝐶,𝑘]

𝑚𝑒𝑎𝑛(𝛾𝐼𝑃𝐶
𝑚 )

2  
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 where 𝑚𝑖𝑛𝑤𝑖
 𝑀𝑆𝐸[𝛾𝐼𝑃𝐶,𝑘

𝑚  , 𝛾𝑅𝐶,𝑘] represents the minimum mean-squared error when 

reproducing the information process 𝛾𝐼𝑃𝐶,𝑘
𝑚  from the true inputs and the reservoir’s prediction 𝛾𝑅𝐶,𝑘. 

As the combination of past timesteps becomes increasingly nonlinear, the capacity of each component 

tends towards 0. Therefore, the generation of new components can be reasonably stopped once the 

calculated capacities tend towards zero. The total IPC is then calculated via summing over all 

components (equation 3.9): 

(3.9)     𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝑚

𝑀−1

𝑚=1

 

 

Recently, more novel metrics have been proposed by Love et al.54 in ‘nonlinearity’ and ‘complexity’ 

measures. Like MC, these metrics are constructed by measuring the system state as it evolves under 

randomly generated inputs from a uniform distribution. The nonlinearity metric is measured by using 

a Volterra series55 (can be roughly thought of as the dynamical system analogue for the relationship 

between a function and a Taylor series) to approximate the transformation the reservoir provides, and 

evaluated by calculating the R2 correlation coefficient between the true signal and a truncated Volterra 

series consisting of only linear terms. The complexity measure is almost identical the KR metric 

proposed earlier in terms of evaluation, though instead of measuring the end state of all nodes after 

various time sequences, the evolving state of nodes over input of length equal to the number of nodes 

is used to produce matrix M with which rank is estimated.  

While these novel metrics have yet to see widespread implementation in the community, both can be 

calculated using the same signal as used for MC, allowing rapid evaluation of different computational 

properties for physical systems where the rate of data throughput is a limitation. However, the set of 

metrics still lacks a method of evaluating the ability of the reservoir to generalise information. 

Nevertheless, they are useful in drawing a more comprehensive map of reservoir performance and the 

range of computationally distinct regimes of operation a reservoir platform can achieve. 

One tool that has been designed to optimise the characterisation of reservoir computers is CHARC56. 

This platform utilises genetic algorithms to explore the state space of a reservoir computer with 

respect to parameters that control the input scaling or the parameters of a reservoir’s 

design/response. Where this platform gains its power is in its novelty search function- the objective 

that the genetic algorithm ‘optimises’ is separation between the space each initialisation occupies in 

metric space. This enables the algorithm to push the boundaries of the transforms a reservoir can 

achieve and can help to evaluate computational range of a reservoir computing platform. While the 

initial paper only explores over KR, GR, and MC, the software is suitable for expansion to cover other 

metrics. However, to employ CHARC as a useful search tool, models of an underlying dynamic system 

must be parallelisable and quick to evaluate. 

3.4.5- ‘SpaRCe’ Algorithm for Sparse Reservoir Computing 

While the simplicity of training offered by ridge regression is often an attractive property of RC, novel 

learning rules have been developed to increase the performance of RC platforms, and to mitigate 

shortcomings such as catastrophic forgetting57,58. One such example is the SpaRCe algorithm59, a bio-

inspired technique that uses learnable thresholds on output nodes to suppress certain outputs and 

induce sparse representations of information, shown in figure 23.  
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The algorithm can be described via the competition of two opposing update rules for the threshold: 

the first update rule promotes activity in neurons that are contributing to correct classification, while 

the second inhibits activity in correlated neurons. This approach rewards correct classification whilst 

reducing redundant activations and leads to fewer nodes being active in response to a given input at 

the output level. This specialisation of output nodes was shown to be beneficial for two standard tests 

prone to the effects of catastrophic forgetting: learning classes of information sequentially and learning 

distinct fixed permutations on data sequentially. The sparsity induced by the algorithm allows 

specialised nodes to learn the sequentially provided information, reducing the interference caused by 

learning this information sequentially, as correct classification is independent of many of the output 

nodes. 

One of the key benefits of this approach is that it can mimic the effectiveness of the inclusion of an 

additional hidden layer in the readout with significantly fewer parameters: the number of additional 

learnable parameters is equal to the number of nodes for SpaRCe, meaning it scales linearly with 

reservoir size. On the other hand, an additional hidden layer’s trainable parameters scales 

quadratically, requiring more computational cost for equal performance gains. Additionally, the 

increased stability of learned representations might prove useful in hardware, where the algorithm 

can suppress the contributions of noisy state readouts that have limited contribution towards correct 

classification. 

 

Figure 23- Schematic diagram of the thresholds, showing one-to-one connectivity between raw reservoir state 

vector 𝑉~and X, connected by learnable thresholds 𝜃𝑖. Taken from59 
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3.4.6- Hierarchical Reservoir Computers 
One common difficulty when designing/optimising reservoir computers is matching the timescale of 

dynamics of the reservoir to those of the task. This becomes increasingly difficult when the task being 

solved evolves with dynamics of multiple timescales. One possible method for building a model with 

multiple distinct reservoirs initialised with different hyperparameters to create subsystems that evolve 

with different dynamic characteristics. In the work of Manneschi et al.60, the authors compared how 

hierarchical ESNs (where the output of one ESN feeds directly into the input of a second ESN) to parallel 

ESNs (where input is passed directly to two unconnected ESNs). It was found that the hierarchical 

reservoirs outperformed the parallel reservoirs, and that the ideal reservoir configuration was a quickly 

responding (short timescale) reservoir to receive the input initially and provide a higher dimensional 

representation, followed by a slowly responding (long timescale) reservoir which acts as a secondary 

nonlinear filter on the first representation and provided long-term memory.  

Additionally, an online learning mechanism is proposed which allows the initialisation parameters to 

be automatically optimised for a given task instead of selected from a grid search. Since learning the 

initialisation parameters had a direct influence over the temporal parameters of the ESNs, training 

must also occur with respect to time, as with RNNs. Rather than use the hugely computationally 

demanding backpropagation through time (BPTT) algorithm, the authors opt for an approximation – 

e-prop61 – which shows good performance in optimising the network while mitigating computational 

cost.  

The ability to optimise the leakage rate for connected reservoirs to improve performance improves 

their suitability for applications by non-experts, as usually the parameter selection process largely 

determines the performance of an ESN, requiring knowledge of both the natural timescales of the task 

at hand, as well as how to achieve similar timescales within the ESNs. However, for physical reservoirs, 

the timescales of the underlying system may not be as easily controlled as in ESNs, especially in cases 

where the system evolves with fixed dynamics post-manufacture. An analogue suitable for online 

learning of timescales in physical systems may be achieved through controlling the input rate of input 

stimuli, though this has not been demonstrated in literature thus far. 

3.4.7- Reservoir Computing with Heterogeneous Neurons 
An alternative approach that has been proposed for achieving a more diverse range of timescales 

within a reservoir system is through the employment of heterogeneous neurons in the reservoir layer. 

Instead of having a globally defined leakage parameter for the network, Tanaka et al. proposed a 

reservoir architecture where each node had its own distinct leakage parameter62. In their work, they 

show that the range of timescales achieved at the reservoir’s output are significantly expanded 

through this distribution of leak rate, and that this considerably improved performance in the case of 

chaotic time series prediction tasks which evolve with a mixture of short and long-term dynamic 

timescales. 

 

This approach may be more viable for physical reservoir computers, as it would be possible to produce 

heterogeneous nodes via manipulations of, for example, device geometries or material parameters. 

This would enable the engineering of a more dynamically complex reservoir system, though would 

also require synaptic connections between the heterogeneous nodes that resemble the standard ESN 

model. One interesting study may be to combine this approach with the revolving neurons reservoir 
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approach by designing the distinct dynamical nodes to have different properties, mitigating the need 

for multiple synaptic connections but maintaining the diversity of network dynamics. 

 

3.5- Physical Reservoir Computing 
The field of reservoir computing with physical substrates has grown rapidly over recent years. Whilst 

this thesis will cover the applications of a specific magnetic system for RC, many of the foundational 

works were performed on non-magnetic substrates and contain many useful advances that are 

applicable to material computation more generally. The following section will introduce the 

foundational works in material computation, before reviewing the current state of the art for magnetic 

systems and critically evaluating the proposed systems’ relative strengths and weaknesses. 

3.5.1- The Liquid Brain 
The first demonstration of RC with a physical substrate occurred even before the phrase ‘Reservoir 

Computing’ was coined to describe computation using a linear readout on an untrained dynamic 

system. In their 2003 paper, ‘Pattern Recognition in a Bucket’63, Fernando and Sojakka used the 

inherent interactive dynamics of propagating water waves as a basis for nonlinear computation, 

perhaps taking the name of Wolfgang Maass’ ‘liquid state machine’ a little too literally. While buckets 

of water, shown in figure 24, may not be replacing CMOS circuits in devices any time soon, the 

conclusions of this paper are profound: the complexity of dynamical systems can offer higher-

dimensional representations of data with similar effectiveness to algorithmic RC, with the physical 

relationships that govern the system’s response providing continuous complex transformations of data 

inherently. 

 
Figure 24- Experimental setup of ‘the liquid brain’, showing paddles used for input stimuli as well as the camera 
above used as ‘readout’. Taken from63. 
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The authors explain that the key underlying properties behind the water waves’ ability to perform 

computational operations is their ability to provide a complex, higher-dimensional representation of 

input via the interactions that are intrinsic to the physical substrate. They assess these properties in 

their system by evaluating the neuronal complexity of the medium, showing that even with many 

closely spaced inputs, the system remains highly complex- though not chaotic. 

 

3.5.2- Analogue Electronic RC 
At the heart of all implementations of physical RC is analogue transformations of input signals provided 

by a complex physical system. One method for achieving these complex physical systems is to use well-

understood electronic building blocks such as resistors, capacitors, and diodes to implement complex, 

transient circuit responses. Soriano et al. explored a range of different electronic hardware 

implementations in order to evaluate the role nonlinearity, noise, and connectivity played on the 

information processing capability of their RC platforms64. They found that a single oscillator with delay-

based dynamics by itself lacked the properties required to handle complex time signals. However, 

through use of time-multiplexing approaches and delayed feedback of the system’s state, the 

computational power of the system was drastically improved. This is important for the application of 

a whole range of physical RC systems, since relatively simplistic dynamical systems can be expanded 

to provide useful computational platforms with appropriate external RC architectures. An example of 

how a Mackey-Glass oscillator can be implemented in analogue electronic components is shown in 

figure 25. 

 

 
Figure 25- Circuit diagram of the analogue electronic components used to implement the Mackey-Glass delayed 
differential equations as the basis of a dynamical node. Taken from65. 

 

Other works in the area used multiple similar delay-coupled oscillators to produce structures 

resembling deep neural networks66 showing improved computational performance on complex 

nonlinear problems, or chaotic circuit components67 to provide additional dynamic complexity to the 

underlying system in order to solve complex tasks. These findings show that two contrasting 

approaches have typically been used to provide computational functionality with electronic devices: 

either using complex system dynamics or complex network structure to expand the functionality of 

the physical systems. 
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3.5.3- Memristive RC 
The memristor is a long theoretically proposed68 and relatively recently implemented69 circuit 

component whose electrical resistance varies dependent upon the past inputs provided to it. Typically, 

memristors consist of either an oxide layer(s) or a polymer sandwiched between electrode terminals. 

Figure 26a-c shows a schematic diagram of a memristor, the manufactured device, and the relative 

percentage of constituent elements versus position for the manufactured device.  

 
Figure 26-(a) Schematic overview of a memristor stack. (b) SEM micrograph of the manufactured device. (c) 
Elemental distribution profile taken from energy-dispersive spectroscope. Taken from.70 

 

Under the influence of an electrical field, there is a physical change in the material due to the migration 

of ions within the material which causes a change in resistance, hence making the current resistance 

dependent upon the previous inputs to the system. This is a promising building block for reservoir 

computers due to the temporally complex transformations offered by each individual memristor71. 

Whilst memristors have often been used to create ordered networks resembling the functionality of 

ESNs72–75, memristor crossbar arrays are useful for vector-matrix multiplication, allowing them to be 

implemented as all-analogue readouts for RC systems, with the variable resistance providing a 
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tuneable parameter for training50. While memristors form computationally useful, variation-tolerant76 

RC platforms, their potential for use in devices is currently held back by their reliability, scalability, and 

limited lifespan of operation77. 

 

3.5.4- Optoelectronic RC 
Another family of devices that have promising properties for reservoir computing are optoelectronic 

components. These devices make use of the nonlinear properties of standard circuit components, the 

interference interactions that occur between light waves, and easily implementable delayed feedback 

methods made possible through use of fibre-optic spools and beam splitters. These properties mean 

optoelectronic platforms are especially harmonious with the single dynamical node paradigm47 

introduced earlier, providing a simple path to realisation of physical RC using optical systems. A 

schematic diagram for an optoelectronic system is shown in figure 27. 

 

Figure 27- Schematic diagram of an implementation of optoelectronic reservoir computing using standard off-
the-shelf electronic components. Taken from49. 

Reservoir computing using optoelectronics was outlined as part of numerical studies as early as 2008, 

with Vandoorne et al. showing the similarity between tanh activation functions and the power output 

of semiconductor optical amplifiers as input power becomes saturated78. The proposed networks 

consist of distinct dynamical nodes with nonlinear activation, connected in an ordered ‘waterfall’ 

structure reminiscent of the FF-ESNs described earlier44.  

However, the relatively high power required to saturate these amplifiers to produce nonlinearity 

meant this method was not preferred for the first implementations of optoelectronic RC79. Instead, a 

linear network was constructed using simple waveguides, splitters, and combiners to emulate the role 

synapses in accumulating input activations from prior nodes and propagating activity forwards as in 

standard neural networks. Whilst seemingly lacking the critical RC property of nonlinearity, this is 

mitigated by using a nonlinear photodetector, with readout proportional to the square of the activity. 
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The system performed competitively for spoken digit classification, though extensive study into the 

effects of removing nonlinearity from the internal reservoir processes were not conducted.  

Another hardware implementation of optoelectronic RC came from Paquot et al.49, featuring 

nonlinearity from a simple Mach-Zehnder interferometer80 (which modulates amplitude according to 

the phase of light waves) coupled with an optical delay line to provide a fading memory of past states, 

realising the single dynamical node paradigm with delayed feedback as in47. Several tasks are 

performed, including distinguishing between sine and square waves, spoken digit recognition using 

the TI-46 database, nonlinear channel equalisation, and nonlinear auto-regressive moving average 

(NARMA) series reconstruction. This demonstrates a broad range of computational capability, but 

solely in a task-based environment. As one of the earliest high-profile implementations of physical RC 

with device-feasible hardware (i.e., not a bucket of water). Their work has since set a precedent for 

both the implementation methods of physical computing platforms under the SDN paradigm, as well 

as a precedent for the specific tasks used for demonstrating computation in material systems. 

 

3.6- Magnetic RC 
The interfacing of magnetic systems with conventional electronics for computing purposes has been 

long established due to computationally useful properties offered by magnetic devices: the inherent 

non-volatility of magnetic domain structures provides pathways for memory storage, and transfer-

torques/magnetoresistance effects provide avenues for data writing and reading respectively. These 

properties meant that most existing implementations of magnetic devices for computation have 

focussed on data storage, with information encoded as a binary in the spin degree of freedom in 

technologies such as the magnetic hard disk drive (HDD), and magnetic random-access memory 

(MRAM). 

While these technologies exploit the inherent memory effects present in magnetic materials, another 

ubiquitous property of magnetic materials, nonlinearity, is not leveraged in the data storage examples. 

However, the emerging field of magnetic reservoir computing utilises both properties in tandem. 

Nanomagnetic/spintronic platforms exploit a plethora of phenomena, ranging from transient dynamics 

and the interference behaviours present in interacting spin-wave systems, to complex metamaterial 

systems with spatially distributed responses such as skyrmion textures and artificial spin ices.   

In their recent perspective on magnetic reservoir computing81, Allwood et al. introduce a taxonomy 

for classifying magnetic RC platforms across two categories which are critical to their application as 

computing platforms: the input/output dimensionality (IOD) of their reservoir representations (1D- 

single scalar output for each input, or ND- an N-dimensional expansion for each input), as well as the 

timescales of their dynamical responses (DR) (LLG- dynamics on the order of 10s to 100s of 

nanoseconds resulting from relaxing precessional behaviours governed by the LLG equation, T- 

dynamics governed by thermal processes, ranging from seconds to milliseconds, and D- driven 

processes where the timescales of evolution match those of the driving stimulus). This provides a basis 

for evaluating proposed RC systems both in terms of their current and potential implementations, as 

well as for establishing what types of computing capabilities may be achievable for a given platform. 

The following sections will utilise an adaptation of this taxonomy to facilitate the comparison of 

proposed nanomagnetic RC platforms. The same axes of IOD and DR will be used, though the 

subcategories for IOD are adapted slightly to make the differences between different implementations 
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more apparent. Instead of a single value distinguishing between single and multiple dimensionalities 

for both input and output together, here we instead consider this for both the input and the output of 

the reservoir, giving rise to three classes: SISO (single in, single out), SIMO (single in, multiple out), 

MIMO (multiple in, multiple out). 

3.6.1- Spin-Torque Nano-Oscillators 
Seminal work on the implementation of nanomagnetic platforms for RC revolved around spin-torque 

nano-oscillators (STNOs)48. The underlying system at the heart of these demonstrations is a magnetic 

tunnel junction (MTJ), consisting of two thin ferromagnetic layers, separated by a thin insulating 

barrier. The two ferromagnetic layers are designed to exhibit different properties: a ‘free’ layer in which 

magnetisation is free to change direction, and a ‘fixed’ layer, where magnetisation is locked in a given 

direction via interactions with an adjacent antiferromagnetic layer. 

When DC electrical currents are provided to the multilayer, spin-torque effects cause the 

magnetisation of the free layer to precess. These precessions can be measured via the tunnel 

magnetoresistance (TMR) effect, causing changes in the electrical resistance across the MTJ which 

varies nonlinearly with the magnitude of the DC input current. This nonlinear variation coupled with 

short-term history-dependent behaviours arising due to damped precessional motion meets the broad 

RC criteria of nonlinearity and fading memory. This has allowed implementation of STNOs as reservoir 

computers using simple inputs of amplitude modulated DC currents, and readouts using power diodes 

to give a scalar output from the oscillating resistance. The single input/output dimension, as well as 

dynamics governed by LLG processes, means STNOs have a reservoir categorisation of IOD-SISO and 

DR-LLG. Figure 28 shows an overview of the STNO, with details on its response to input. 

 

Figure 28- (a) Overview of a spin-torque nano-oscillator. (b) Oscillator voltage when driven continuously with a 
DC current. (c) amplitude of oscillator voltage at steady state when driven with DC current of varying amplitude. 
(d) Schematic for inputting data to the STNO and reading out via a power diode. (e) Dynamic response when 
oscillator is stepped between different continuous DC levels. Taken from48. 
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The first implementation of this system for RC used the SDN reservoir paradigm without external delay 

lines to perform effective spoken digit recognition48, and later studies by the same group showed the 

enhanced temporal properties gained via inclusion of delayed feedback82, allowing performance of 

temporal pattern recognition. Other groups have also used numerical simulations to evaluate memory 

capacity and parity-check capability for binary inputs83, and later with physical devices84 without 

external feedback. Both studies show memory capacities of 2<MC<3 for systems without delayed 

feedback, highlighting the limited memory capacity offered by a single oscillator. 

Other RC configurations of STNOs have been proposed, including reservoirs consisting of arrays of 

interconnected STNOs85. Here, the network is analogous to ESNs constructed from leaky-integrator 

neurons, with similar changes to memory compared to ESNs observed when varying both network 

size, as well as the input-rate with respect to an oscillator with a fixed timescale of decay- a property 

analogous to the leak-rate of standard ESNs. 

At a device level, STNOs boast a range of attractive properties, including proven scalability down to 10s 

of nms per oscillator, low power consumption on the order of 1 uW per oscillator, and perhaps most 

significantly their ease of interfacing with existing electronics offered by all-electrical input/output 

paradigms and large signals created via TMR effects. Additionally, multiple STNOs can be connected to 

one another to form larger networks, creating IOD-MIMO reservoirs, expanding their computational 

capability. However, since the internal dynamic processes are determined by relaxation of precessing 

spins, only dynamic timescales faster than these processes are achievable. This does not cause 

problems for processing of data that has already been gathered, though renders direct processing of 

data from real-time sensory inputs impossible when intrinsic timescales are longer than those of the 

STNO. 

3.6.2- Other Magnetic Nano-Oscillators 
Following the success of STNOs, other magnetic oscillators have been proposed for RC applications. In 

the numerical studies of Ababei et al.86, a single DW is locally confined by the energy barriers presented 

by a pair of anti-notches. The DW is then driven by a sinusoidally varying magnetic field at 500 MHz 

(DR-LLG), causing oscillations in the DW’s position. Reservoir output is taken as the scalar DW position 

(IOD-SISO). Under low driving fields, the DW motion is harmonic within a single energy minimum of 

the double-well energy potential. As driving field increases, the DW gains enough energy to overcome 

the small energy barrier between the two wells and motion tends to bifurcate, inducing chaotic 

dynamics. As field increases further, motion once again becomes harmonic, though over the entire 

range of the potential landscape. The energy landscape, as well as a schematic of the oscillator, are 

shown in figure 29. 
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Figure 28 – Schematic diagram of the domain wall oscillator, with magnetisation shown by the colour wheel. 
Graph shows the pinning energy of the oscillator with respect to domain wall position. Taken from.86 

The authors evaluated computational performance under a range of driving conditions spanning all 

three regimes for both temporal and non-temporal classification problems. Whilst performance 

centred in the chaotic regime produced generally poor results, it was shown that the optimal 

performing regions were located near the transitions between the regimes. This alludes that the highly 

nonlinear response generated by the change between regimes is promising for RC applications. The 

authors also demonstrated both handwritten and spoken digit recognition classification, with 

performance exceeding that of a linear control network, highlighting the role of the reservoir in 

improving classification accuracy. 

Whilst the DW oscillator system simulated the effects of applied fields, similar behaviours could be 

driven using spin-torques or spin-orbit torques, improving device viability and reducing energy cost. 

However, the readout of position would remain challenging due to the high frequency of oscillation, 

though similar approaches to that of the STNOs may be taken via inclusion of spin-valve stacks to utilise 

TMR effects, giving resistance readouts proportional to the DW position used in this study. The 

geometric dependence of the energy landscape opens up a high degree of tunability through control 

of the size and separation of the anti-notches. This would allow different dynamics to be engineered 

into different oscillators, which can then be tailored for given tasks or used simply in parallel to produce 

a richer representation of input information. 

Other similar demonstrations have been made using geometrically confined skyrmions (a topologically 

protected magnetic soliton), driven via spin-Hall interactions between the skyrmion and current 

pulses87. Image recognition was performed on a binarised version of the MNIST database. However, in 
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this study, the representation of the handwritten digits into 196 different binary time signals of length 

4 is atypical within literature and a control network was not established to evaluate the role of the 

reservoir. 

Another proposed nano-oscillator system for neuromorphic computing is the spin-Hall nano-oscillator 

(SHNO)88. This system features nano-constrictions in a thin-film multilayer consisting of a 

ferromagnetic layer on top of a heavy-metal underlayer, which uses spin-Hall effects to generate pure 

spin currents into the ferromagnetic layer. The constrictions result in large charge densities at the 

location of the constriction, producing subsequent spin currents which cause magnetic moments in 

the ferromagnetic layer to steadily precess. Arrays featuring multiple adjacent SHNOs have been 

shown to exhibit mutual synchronisation, increasing the complexity of the system response. While the 

authors demonstrate and expand upon the computationally useful properties exhibited by the arrays, 

thus far there have been no demonstrations of computation with SHNOs in a task-based environment. 

3.6.3- Spin-Wave Based Magnetic RC 
Like the early ‘computation in a bucket’ proposals featuring the interactions between propagating 

water waves, a spintronic analogue utilising spin waves have been proposed. Spin waves are phase-

coherent, collective excitations of magnetic moments, which are generated through resonance-like 

effects when magnetic materials are driven at microwave frequencies (DR-LLG). When propagating 

spin waves collide, they interact similarly to water waves, with constructive/destructive interference 

patterns depending on the relative phase of the colliding waves. 

In their 2018 study, Nakane et al.89 propose devices consisting of Yttrium Iron Garnet (YIG) films acting 

as a medium for spin-wave propagation chosen for their low Gilbert damping (α = 0.001 in89), and a 

magneto-electric coupling layer to allow generation and measurement of said spin waves, shown in 

figure 30. Both input and readout connections are distributed randomly in the film, with a spatially 

distributed response in the film due to the interference interactions (IOD-MIMO). The authors applied 

the simulated system to perform estimation of the length of input time signals, however the role of 

the reservoir is difficult to estimate due to lack of comparisons with alternative systems. 
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Figure 30- Schematic diagram of the spin-wave reservoir computing platform introduced in89, showing input 
electrodes in red, with readout electrodes in grey, providing spatially dependent readout. 

Similar proposals by Papp et al.90 again use YIG films for RC, however with different mechanisms for 

creating inputs and interference. Here, input is instead provided as a uniform linear wavefront 

generated by an RF waveguide, and the resulting spin-waves are scattered using a randomly initialised 

‘checkerboard’ pattern of magnetic nanodots with perpendicular magnetic anisotropy (PMA). 

Depending on whether the PMA dots have magnetisation pointing into or out of the plane of the 

checkerboard, the dispersion of the propagating spin waves is locally altered, leading to complex 

interference patterns on the other side of the scatterer where multiple readout antennas are located 

(IOD-SIMO). Depending upon the strength of input excitations, the degree of nonlinearity of the 

reservoir system can be controlled. 

To evaluate the computational properties of the different system configurations, task-independent 

metrics of KR and GR are used, with notably different performance across driving conditions. This 

highlights the tunability of the system to produce a range of reservoir computers with different 

computational properties on a single sample. The authors then go further, using genetic algorithms to 

evolve the checkerboard configuration to maximise KR. Under the limitation of nanodots with a single 

magnetisation strength in a binary orientation, the evolutionary algorithm can only make minor 

improvements to KR compared to the random structure. However, when the input field scaling (a 

continuous parameter) is trained, a significant improvement is observed. This is attributed to the 

increased degrees of freedom offered by continuous parameter space and may extend to other 

magnetic platforms; high degrees of continuous tunability likely makes for more versatile 

computational properties than restricted binary implementations. 

3.6.4- Artificial Spin Ices 
Artificial spin ices (ASIs) are magnetic metamaterials consisting of large networks of interacting 

nanoislands arranged in regular lattices91. Each nanoisland is of sufficiently small size and high aspect 

ratio that shape anisotropy leads to the formation of single domain states. Dipolar interactions 
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between islands at each vertex lead to varying degrees of energetic favourability for given orderings 

of converging or diverging spins, which in turn leads to complex emergent behaviours in ASIs when the 

systems are driven via thermal annealing or with external magnetic fields. 

Due to the spatially distributed nonlinear responses arising from these local dipole interactions, and 

history-dependent behaviours as the system passes through low or high energy states, ASIs have 

natural pathways for forming spatially distributed RC platforms with high dimensionality. Additionally, 

the driven nature of their dynamics (DR-D) allows for operation at a wide range of timescales that are 

unachievable for the previously introduced systems. The high degree of geometric tunability available 

to ASIs (size, pitch, angle of islands, alternative lattices etc.) is also very promising for RC applications. 

Jensen et al.92 have used simulations to model the behaviour of ASIs in regular square grids in response 

to applied magnetic fields (IOD-SIMO). In their work, they show that the ASI occupies a broad range of 

unique states depending upon the sequence of binary inputs applied to the system, which is also highly 

dependent upon the magnitude of the applied field strength and frequency. 

They extend this work to perform reservoir computing with the ASI system with similar input encoding 

for ‘pinwheel’ geometries93 (square arrangement with islands rotated 45 degrees about their centre). 

To evaluate computational properties of the ASIs, task independent metrics in KR and GR are calculated 

over a range of driving and coupling parameters, showing tuneable computational behaviour. The 

authors also explored the effects of output granularity by averaging over increasingly larger areas of 

the array. Given the emergent behaviours of ASI systems, this output granularity is key since local 

emergent ordering occurs over various length scales. As output granularity increases (i.e., more 

magnets in each average), the generalisation rank of the reservoir computer decreases (better 

generalisation), with an associated but lesser reduction in kernel rank. This represents tuneable control 

over both the separation and generalisation properties of the ASI reservoir. This tunability is likely 

transferrable to the magnetic ring array systems, where similar emergent behaviours will lead to more 

general aggregate responses over longer length scales. 

More recently, physical realisations of RC with ASIs have been performed using artificial spin-vortex 

ices (ASVIs, spin ices where vortex core configurations, as well as bistable macrospin states, are 

available for the islands)94, shown in figure 31. The arrays consist of alternating rows of low and high 

aspect ratio islands, which favour macrospin and vortex states respectively. The system is initialised 

into an all-macrospin state, and the array exhibits ratchet-like behaviour when successively driven with 

linear magnetic field pulses as the wider bars tend towards vortices. The relative rates of vortex-to-

macrospin or macrospin-to-vortex transitions depend upon the applied field strength. 
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Figure 31- (a) SEM micrograph of artificial spin-vortex ice. (b) Energetic favourability of the macrospin and 
vortex states of a bar as width and length is varied. Black dot shows selection of thicker bar width in ASVI. 

The RC paradigm applied to this system involves encoding data within the strength of the applied field 

pulses, and then evaluate the reservoir state via a process the authors refer to as ‘spin-wave 

fingerprinting’. This readout technique uses the derivative of spin-wave dispersion with respect to 

perturbation field (dP/dH) across a frequency spectrum, with the spin structure of islands in the array 

giving rise to spin-wave modes with different resonant frequencies. By evaluating the magnitude of 

dP/dH across a range of frequency bins, an experimentally viable method for producing an IOD-SIMO 

reservoir can be constructed. This method addresses common limitation that electrical discontinuity 

of ASI presents when establishing an experimental readout and is extensible to other nanomagnetic 

platforms where system state results in varying spin-wave modes in the frequency domain. Similar 

approaches would likely be useful for the ring arrays, as the different domain configurations expected 

in each ring will each have distinct spin-wave modes, leading to a method for measuring relative 

populations of each configuration. 

Using this paradigm, the authors demonstrate computational functionality by performing signal 

processing tasks, namely nonlinear signal transformation and Mackey-Glass series future prediction. 

The nonlinearity within the high-dimensional transform provided by the ASVI is showcased by the large 

decrease in mean-squared error provided by the reservoir compared to the control input. The 

performance of Mackey-Glass prediction up to 10 steps into the future initially seems to suggest long-

term memory in the system. However, the plots provided in supplementary material, showing an 

oscillating error profile, alludes to this being a local minimum in accuracy generated by a nonlinear 

transform of the current input (the Mackey-Glass system is semi-periodic) rather than memory of past 

inputs and learning of the underlying dynamics. It is therefore difficult to assess the extent of the 

system’s memory without more direct measures such as linear memory capacity. 
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4- Experimental Techniques 
This chapter will cover the range of experimental techniques that were applied in the realisation of 

this thesis. It will cover both the specific processes employed for each technique, as well as a brief 

overview of the physical principles that enable each technique. It will begin by covering each of the 

stages of device fabrication. Next, the process for performing electrical transport measurements of 

the ring arrays will be described.  

 

4.1- Device Fabrication 
The devices discussed in this thesis were fabricated using electron-beam lithography and lift-off 
processing, with metallisation via thermal evaporation. Figure 1 shows a schematic diagram of the 
basic fabrication procedure for a single lithography and metallisation step. Initially an atomically flat 
silicon substrate is coated with a polymer resist via spin coating. Patterning is then performed by locally 
exposing a polymer to radiation in the form of light or on electron beams. This exposure modifies the 
resist such that its solubility in a mild, selective developer solvent is modified, thus allowing only the 
regions of the substrate that are to be metallised to be uncovered. The substrate is metallised across 
the entire surface e.g., via physical vapour deposition, before a more aggressive solvent removes the 
remaining polymer, leaving behind only the patterned structures. The following section of this chapter 
will outline each phase of this process in more detail. 

 

 
Figure 1- The manufacturing process for the nanoring devices. Left to right: first, an electron beam (yellow) is 
scanned over the polymer resist (black) above the silicon substrate (purple), a weak solvent (pale blue) then 
etches away the irradiated area (dark grey). Permalloy (light grey) is then metallised onto the surface of the 
sample, before the remaining resist is removed with a stronger solvent, leaving the patterned nanostructures 
behind.  

 

4.1.1- Patterning Nanostructures. 
The nanostructures considered in this thesis were grown on silicon wafers with a (100) crystallographic 
orientation and a thermally oxidised surface to facilitate electric transport measurements. The wafers 
were spin-coated with CSAR-62 resist to generate a thin (on the order of 100s of nanometres), 
homogenous layer of polymer. Prior to patterning, the resist undergoes a soft baking for three minutes 
at 180 ℃ to solidify the polymer and evaporate any solvent.  
 
Patterning was achieved via electron beam lithography using a RAITH Voyager system, with typical 
beam dosages of  100 𝜇𝐶/𝑐𝑚2 and beam voltages of 50 𝑘𝑉, which is scanned across the polymer 
according to the pattern geometry. This technique allows resolution of nanostructure features on the 
order of 10s of nanometres, though typical track widths for the rings exceeded ~200 nm in this work. 
For the positive resist used here, the patterning process causes chemical changes to the irradiated 
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material, breaking apart polymer chains and improving solubility. The patterned structure was then 
developed by heating to 23 ℃, and submerged in a xylene bath for 30 seconds, with light manual 
agitation of the solvent.  

 

4.1.2- Metallisation via Thermal Evaporation 
The next phase of device fabrication was the metallisation. This involved the controlled deposition of 
a homogenous metal surface upon the silicon substrate in a ultra-high vacuum environment. Here, the 
chosen metallisation technique was physical vapour deposition via thermal evaporation, which 
involved resistive heating of a tungsten wire basket crucible coated in aluminium oxide, which 
contained the deposition material in powder form. The combination of high crucible temperatures and 
low base pressures (here, below 10-6 mBar) caused the metal to evaporate, and the anaerobic 
environment prevented oxidation of the deposited film. The high vacuum also provided a long mean 
free path for the vapour, ensuring atom arrives at the substrate with uniform direction and energy, 
allowing for good compatibility with the lift-off process by minimising side-wall covering of the resist. 
To lift off the unwanted metal surface deposited on top of the remaining resist, organic solvent 
Microposit Remover 1165 was used. Typically, immersion in the solvent was sufficient for lift-off, 
though an ultrasound sonicator was used in cases where excess resist remained.  
 
The nanostructures in this thesis were deposited in a Wordentec thermal evaporator with a base 
pressure ~10-7 mbar. Films were typically grown at pressures <5 x 10-5 mbar, and rates of 0.4 – 1.4 Å/s. 
A quartz micro-balance was used to measure deposition rates, allowing accurate measurement of the 
created film thicknesses, here between 10-20 nm of Permalloy. A secondary metallisation of ~3 nm of 
Aluminium was applied to provide a thin capping layer to the nanostructures, reducing the effects of 
oxidisation in altering the magnetic properties of the resulting devices. 

 

4.1.3- Electrically Contacted Samples 
For samples where electrical transport measurements were intended, the lithography and subsequent 
metallisation procedures were repeated, allowing patterning and deposition of electrical contacts on 
top of the ring structures. Here, reference markers were made in first lithography stage so that the 
second stage of lithography could be aligned. 
 
Typically, a layer configuration of Ti (20 nm)/Au (200nm) was used, with the Ti layer acting as an 
adhesion layer for the Au.  The resulting structure is shown in figure 2a. Electrical connections were 
then made between the contact pads (sample in a pseudo-4-point contact arrangement) joined a 
standard 20-pin leaded chip carrier (LCC) via wire bonding (Figure 2(b)). The 20 pins meant up to nine 
samples per wafer could be measured via connection to a pair of mutual ground pads. 
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Figure 2- (A) Scanning electron micrograph of electrically contacted ring arrays, showing electrical gold contacts 
patterned upon the nanoring array. (B) Photograph showing wire-bonded connections (circled in blue) between 
the electrical contact pads of the device and the terminals on the chip-carrier. 

4.2- Anisotropic Magnetoresistance Measurements of Ring Devices 
Magnetoresistance measurements of the electrically contacted ring devices were performed using a 
custom-built electrical transport measurement system. A quadrupole electromagnet allowed the 
application of arbitrary, rotating magnetic fields to drive the nanoring arrays. The changes in resistance 
via anisotropic magnetoresistance were then measured using a lock-in amplifier. Figure 3 shows a 
schematic diagram of the complete rig, with signal paths for (blue) the driving field, (purple) 
measurement of the driving field, and (red) measurement of device AMR shown. 

 

 
Figure 3- Schematic overview of electrical transport measurement rig. Follows signals that control electromagnet 
coils (blue), measurement of applied field (purple), and measurement of AMR signal (red). 

4.2.1- Generating Rotating Magnetic Fields 
Magnetisation dynamics in the nanorings were driven by rotating magnetic fields generated by two 
pairs of custom-built air-core electromagnets, shown in figure 3. The electromagnets driven by Kepco 
BOP 36-6D power supply units, which were run in constant current mode so that the magnetic fields 
applied were not affect by resistance changes in coils due to joule heating. The coils were mounted in 
a custom-built holder in a pseudo-Helmholtz arrangement to minimise the non-uniformity of the fields 
generated over the sample (Figure 3).  
 
The current delivered to the coils were controlled by voltage outputs from a National Instruments DAQ 
card and were calibrated against the control voltages using a Hall probe situated above the mounted 
sample. To induce a rotating magnetic field, the two electromagnet pairs were driven with sinusoidal 
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inputs of equal magnitude with a 90° phase offset between the pairs. Due to the inductive load of the 
coils and the need to step quickly between arbitrary input magnitudes for machine learning tasks, the 
electromagnets were limited to operating speeds of around 100 Hz. 

 
 

 
Figure 4- Photograph of the four electromagnet coils (outer) surrounding the nanoring device (centre). 

 

4.2.2- Electrical Transport Measurements 
In these measurements, sinusoidal current waves on the order of 40-50 kHz with amplitudes of ~1 mA 
were generated using a Keithley 6221 current source. Current was injected into the nanoring arrays, 
and potential difference over the device was measured via Au contact pads in a pseudo four-point 
arrangement, shown in Figure 2A/B. Due to the relatively small magnitude of the AMR effect (typically 
on the order of 5% for Permalloy1), coupled with the fact that that diversity of states presented by the 
rings only explored a faction of this maximum signal range, lock-in amplification was used to extract 
AMR signal signals from the rings.  
 
This technique relies on the principle of orthogonality between sinusoidal functions, allowing signals 
that occur at frequencies or phases different to the reference signal to be attenuated to zero as signals 
are integrated over time. In practice, this detection is achieved by multiplying the reference signal and 
the input signal together, which means any signals that oscillate at the same frequency as the reference 
signal (the AMR-modulated reference signal) are maintained, while oscillations occurring at different 
frequencies (noise) are attenuated. A low-pass filter is used to remove the high-frequency modulation 
imparted by the carrier signal and ‘integrate’ the signal over time, which returns a DC signal 
proportional to the resistance of the device. The attenuation of noise is proportional to the time-
constant of the low-pass filter, or mathematically speaking, the duration at which the sinusoids are 
integrated. In experiments, this leads to a trade-off between noise attenuation and responsivity of the 
lock-in, with longer integration windows (longer time-constants) leading to less noise but slower 
response of the DC output level (transforming the underlying signal which is amplified when the DC 
level changes).  
 
For the rig used in this thesis, the reference signal is generated by the lock-in amplifier, which uses a 
step-edge clock generated from the trigger of the current source to match the reference signal 
frequency to that of the current source. The time constant of the low pass filter was set at either 1 or 
3  s, providing a rapid response time while enabling integration of many oscillations of the kHz signal. 
The lock-in used a sensitivity of 1 mV, and an internal operational amplifier was used to amplify the 
resulting signal output by the lock-in by a factor of 100. The resulting voltage signal was logged by the 
analogue input capability of the NI DAQ card. 
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4.3- X-ray Photoelectron Emission Microscopy 
X-ray photoelectron emission microscopy (X-PEEM) is a powerful technique that allows contrast 
images of magnetisation states of to be acquired magnetic materials by monitoring the relative 
intensities of photoelectrons emitted from the surface of a magnetic material when illuminated with 
x-rays of opposite polarisations. Figure 5 shows a schematic diagram of a typical X-PEEM measurement. 
These measurements rely on several physical effects and experimental techniques, such as the 
photoelectric effect, x-ray absorption spectra (XAS) and x-ray circular magnetic dichroism (XMCD), 
which will be outlined in more detail here. Typically, synchrotron radiation is required to generate x-
rays of sufficient brilliance and monochromaticity to perform magnetic contrast imaging, restricting X-
PEEM experiments to major facilities. The measurements presented in this thesis were performed at 
beamline I06 at the Diamond Light Source and the CIRCE beamline at the ALBA synchrotron. The first 
sections will outline the physics behind X-PEEM, with a detailed experimental overview provided at 
the end. 

 

 
Figure 5- Schematic diagram of an X-ray photoelectron emission microscope, showing beam path and focussing 
lenses. 

 

4.3.1- Photoelectric Effect 
The photoelectric effect is a quantum mechanical process by which electrons of discrete energy levels 
become delocalised from matter after absorption of photons with energies exceeding the work 
function of the electrons. A schematic diagram of the emission of photoelectrons is shown in figure 6. 
Since this is a quantum effect, specific energy levels can be targeted by controlling the wavelength of 
incident light, which opens a range of possibilities for experiments, such as element-specific 
composition mapping, or the targeting of specific electrons which exhibit differential absorption 
depending upon magnetisation and polarisation of the light, enabling the X-PEEM measurements 
described later. 
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Figure 6- Schematic diagram showing long wavelength photons (orange), with photon energies below the work 
function of electrons occupying the metal surface, hence no photoelectrons emitted. Short wavelength, high 
energy photons (blue) with sufficient energy to delocalise electrons, resulting in photoemission. 

4.3.2- X-ray Absorption Spectroscopy 

XAS is a common technique used for determining the electron structure of a material by measuring 
the relative absorption of photons when the material is illuminated with monochromatic light of 
tuneable wavelengths. Here, the photon energy is gradually scanned, and the relative absorption of 
incident light is measured. This allows determination of the electron structure of the material by 
identifying a series of ‘edges’ associated with increased absorption of x-rays with energies 
corresponding to the discrete energy levels of electrons. In the context of X-PEEM imaging, XAS is used 
to identify the specific photon energies required to emit photoelectrons from energy levels which give 
rise to the underlying magnetic properties of the material. 

 
Figure 7- A typical x-ray absorption spectra for the L-3 edge of iron, showing a resonant peak at around 706 eV. 
Taken from2. 

 

4.3.3- X-ray Magnetic Circular Dichroism 

In magneto-optics, XMCD refers to the difference in relative absorption of incident circularly polarised 
x-rays depending upon the magnetisation of the illuminated material. This phenomenon is critical to 
X-PEEM imaging as it allows contrast images to be drawn from the differential absorption of X-rays. In 
the case of the Permalloy structures studied here, X-PEEM experiments tend to use the L-3 edge of 
iron, identified via XAS. Despite Py being compositionally mostly nickel, the iron edge is chosen as it 
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provides a bigger contrast in photoemission via XMCD than nickel, and subsequently leads to bigger 
signals from which create contrast images. 
 

4.3.4- Experimental Procedure  

The process for creating magnetic contrast images via X-PEEM was similar at both Diamond and ALBA 
and both rely upon all of the phenomena detailed above. Firstly, an XAS spectrum of the material was 
generated by varying x-ray photon energy around the targeted edge using a monochromator, which 
allows calibration between the quoted energy level of the monochromator and the targeted edge at 
the point of maximum absorption. Next, a normalisation image was taken on the substrate away from 
the magnetic material as a control to improve image quality via flat-field correction (compensating for 
spatial variations in sensitivity of the detector), and illumination correction (correcting for non-
uniformity of the illuminating beam).  
 
To generate the contrast images, a series of four photoemission electron microscopy measurements 
were taken, which measured the relative intensities of emitted electrons both on and off resonance at 
the energy level of the chosen edge for x-rays with both clockwise and anticlockwise polarisation. The 
measurements at resonance allows determination of XMCD across the image via the difference in 
intensity, and the measurements off resonance give a background level with which to normalise the 
signal, generating a larger relative contrast. In the resulting image, magnetic contrast was generated 
along the axis of the incident electron beam, with magnetisation along the direction of the x-rays 
leading to the largest difference in intensity, and the sign of the difference when subtracting 
anticlockwise intensity from clockwise intensity determining whether magnetisation is aligned parallel 
or anti-parallel. Example images generated via X-PEEM at both Diamond and Alba are shown in Figure 
8. 
 
For the application of in-situ rotating magnetic fields, a specialist sample holder designed at ALBA3 was 
used, which allowed generation of in plane fields via two pairs of orthogonal pole pieces. The applied 
fields were calibrated against the current provided to the electromagnets via a hall probe and a 
micropositioner, ensuring field was measured directly above the sample due to the large variation 
expected with the pole pieces in close proximity to one another. This also meant that any samples used 
for microscopy must occupy an area on the wafer under 1 mm to minimise the inhomogeneity of the 
field. 
 
Due to the presence of remenant magnetisation in the iron pole pieces, an additional calibration was 
added to the experimental procedure which aimed to minimise the contribution of remanence to the 
applied field sequences. First, the pole pieces were demagnetised via rotating fields of decaying 
magnitude. The position of an identifiable feature of the ring arrays (usually the intersection between 
a corner ring and an adjacent edge ring) was established, and pixel locations recorded. Next, the field 
required to saturate a given array was found via gradual ramping of the applied fields, imaging between 
applications, and determining saturation via observation of a uniformly magnetised array. Finally, a 
compensatory field was determined via trial-and-error searching to find the required field to restore 
the calibration feature to its original location, hence removing the additional deflection of 
photoelectrons caused by remanent fields in the pole pieces. 
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Figure 8- X-PEEM micrographs taken from Diamond (upper) and ALBA (lower) synchrotrons, showing a range of 
fields-of-view to demonstrate range of magnetisation resolution available. Colour bars show magnetisation 
direction. 

 

4.4- Polarised Neutron Reflectometry 
Polarised neutron reflectometry (PNR) is a characterisation technique that allows the absolute 
magnetisation per atom of magnetic materials to be determined in magnetic thin films. To generate 
the neutron beam, typically a spallation source at a specialist nuclear facility is used. The results used 
in this thesis were generated at ISIS muon and neutron source in the UK.  The spallation source collides 
high energy protons with a heavy target material (usually mercury or tungsten), leading to a cascade 
of nuclear reactions that generate neutrons with a broad energy distribution. These neutrons are then 
moderated with water to lower their energies and are collimated and polarised to produce a beam. A 
schematic diagram of the beam path is shown in figure 9. 
 

 
Figure 9- Schematic diagram showing the beam path of neutrons in a polarised neutron reflectometry 
experiment. Neutrons are generated by a spallation source, which are then collimated into a beam. The beam is 
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then polarised before focussing again prior to irradiating the sample. An analyser measures the polarisation of 
the reflected beam, and a detector measures the deflection angle. 

 
The sample is held in the presence of an external magnetic field then irradiated with the neutrons 
polarised either parallel or antiparallel to the field, and the reflectivity of the neutron beam is 
measured as a function of the angle of reflection. Due to interactions between the neutrons and the 
magnetic moments of the material, the intensity and polarisation of the reflected neutrons vary with 
the magnetisation of the material. To determine magnetisation, measurements are taken for both 
parallel and anti-parallel alignment of the neutron polarisation and the magnetic field, and the spin-
flipped and non-spin-flip components for a given spin state are summed, providing sensitivity to 
magnetisation along the polarisation direction. 
 
To extract the magnetisation-dependent scattering from the measurement, models from the GenX4 
software package were employed, with the resulting fit from this process shown in figure 10, which 
plots neutron beam intensity as a function of the scattering vector of the beam. To fit the model, 
scattering contributions from the silicon wafer away from the magnetic material, as well as the 
exposed silicon in between the ring structures must be considered. Due to the large in-plane 
coherence length of silicon (~100μm) relative to the individual nanorings (2/4 μm), contributions from 
the rings themselves and the silicon between the rings were summed coherently in the model, and 
the contributions from the wafer away from the sample were summed incoherently. While the 
nanorings themselves were individually too small to resolve, PNR enabled the measurement of entire 
arrays. However, as the rings are sensitive to small magnetic fields, the external field was limited to 
around 18 Oe, which resulted in very small signals. To counteract this, the ring structures were 
patterned over an area on the order of a few centimetres squared, allowing effective measurement 
without perturbing the magnetic state of the sample. To initialise the ring arrays, a large in-plane field 
pulse of 1.9 kOe was applied, saturating the rings into the ‘onion’ state. The magnitude of this field 
was then reduced to the desired strength 𝐻app between 20-150 Oe, and the sample itself was rotated 

for N revolutions, generating rotating fields in the reference frame of the sample. Sample 
magnetisation was then determined from the spin-asymmetry between the reflectivity profiles of 
opposite neutron polarisations.  

 
 

 
Figure 10- Plot of spin-up (black) and spin-down (red) neutron beam intensities as a function of neutron 
wavelength. The spin asymmetry, calculated from the separation between the two components, is used to 
determine the magnetisation of the sample. Taken from5. 
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4.5- Micromagnetic Modelling 
Micromagnetic modelling provides huge utility in simulating the magnetic response of nanoscale 

magnetic systems, and often serves as a basis for providing a detailed prediction of magnetisation 

dynamics observed experimentally, or as an explorative tool for designing and optimising magnetic 

devices. The models provide less detail than atomistic models that simulate the response of single 

spins but offer a vast speedup in simulation times (especially with recent GPU acceleration) and 

volume of material that can be simulated, whilst providing adequate detail to simulate nanoscale 

magnetic structures such as domain walls or skyrmions. Micromagnetic models are a general-purpose 

simulation platform due to the ability to arbitrarily define the geometry of magnetic material as well 

as parameters such as exchange stiffness, saturation magnetisation, and damping constant to reflect a 

broad range of material properties. The work in this thesis uses is the MuMax36 software package, 

which employs a finite-difference approach to solving interactions between cells. The specific 

considerations of MuMax3 will be described in detail. 

 

The fundamental principle behind micromagnetic methods is a classical continuum approximation of 

magnetisation energies, which is then minimised.  Here, energy contributions from external field, 

anisotropy, exchange, and magnetostatics are calculated via the following equations (4.1-4.4), 

respectively: 

 

(4.1)   𝐸𝐻 = −∫ 𝐻⃗⃗ 𝑒𝑥𝑡𝑀⃗⃗ 𝑑𝑉
 

𝑉
 

(4.2)   𝐸𝑎𝑛𝑖 = −∫ 𝐾𝑎𝑛𝑖(𝑚⃗⃗ 𝑒 )
2𝑑𝑉

 

𝑉
 

(4.3)   𝐸𝑒𝑥 = ∫ 𝐴𝑒𝑥[(∇𝑚⃗⃗ 𝑥)
2 + (∇𝑚⃗⃗ 𝑦)

2 + (∇𝑚⃗⃗ 𝑧)
2]𝑑𝑉

 

𝑉
 

(4.4)   𝐸𝑑𝑒𝑚𝑎𝑔 = −∫ 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔(𝑟 )𝑀⃗⃗ (𝑟 )𝑑𝑉
 

𝑉
 

 where 𝐻⃗⃗ 𝑒𝑥𝑡 represents the external field vector, 𝑀⃗⃗  is the magnetisation vector, 𝐾𝑎𝑛𝑖 is the 

anisotropy constant, 𝑚⃗⃗  is a unit direction vector of magnetisation, 𝑒  a unit vector describing anisotropy 

direction, 𝐴𝑒𝑥 is the exchange constant, and 𝐻⃗⃗ 𝑑𝑒𝑚𝑎𝑔 the demagnetisation field. 

 

Numerical micromagnetic simulations involve approximating the spin structure of the underlying 

material into cells of uniform magnetisation, solving the above equations, and modelling the 

interactions between each cell and all other cells in the simulation. When defining the size of each of 

the cells within the mesh, a trade-off occurs between simulation times and level of detail encapsulated 

by the model, with smaller cell sizes providing greater resolution but increased computational 

overheads. One useful parameter for determining appropriate sizes of cells in the mesh is the exchange 

length, l𝑒𝑥, which describes a characteristic at which exchange interactions dominate over 

magnetostatic interactions, and hence the mesh size should be selected to be smaller than l𝑒𝑥. For 3d 

ferromagnetic materials, this is usually on the order of a few nanometres, and can be calculated via 

equation 4.5: 

(4.5)   𝑙𝑒𝑥 = √
𝐴

𝑀𝑠
2
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To determine the dynamic magnetisation response of the cells, MuMax3 calculates the rate of change 

of reduced magnetisation with respect to time, giving a torque which has three contributions 

consisting of Landau-Lifshitz torque, Zhang-Li spin-transfer torque, and Slonczewski spin-transfer 

torque. While the spin-transfer torque terms allow determination of the magnetisation dynamics 

induced by interaction with electrical currents, the simulations performed in this thesis involved only 

fields, and as such only the Landau-Lifshitz torque will be elaborated upon.  

 

The explicit form of the Landau-Lifshitz torque, τLL, employed within MuMax3 is defined in equation 

(4.6): 

(4.6)   τLL⃗⃗⃗⃗⃗⃗ =  γLL

1

1 + α2
(𝐦⃗⃗⃗  × 𝐁⃗⃗ eff + 𝛼 (𝐦⃗⃗⃗  × (𝐦⃗⃗⃗  × 𝐁⃗⃗ eff))) 

 

 where γLL describes the gyromagnetic ratio of the material, 𝛼 the Gilbert damping parameter, 

𝐦⃗⃗⃗  the reduced magnetisation vector, and 𝐁⃗⃗ eff the effective magnetic field acting upon the cell. The 

effective magnetic field considers a series of contributions, including the externally applied field, the 

magnetostatic field, the Heisenberg exchange field, the Dzyaloshinskii-Moriya exchange field, the 

magneto-crystalline anisotropy field, and the thermal field. Since the modelling performed in this 

thesis focussed solely on determination of ground states and zero-kelvin switching fields (chapters 5 

and 7), thermal contributions were omitted. The equation is calculated iteratively for all cells. Here, an 

artificially large damping parameter of 1 was employed to provide a simplified model of the dynamic 

evolution of magnetisation, effectively removing Gilbert damping contributions and allowing the 

energy minimisation processes to occur over the order of 10ns. The effects of temperature were also 

ignored by performing simulations at zero Kelvin, removing thermal field contributions, and giving 

deterministic results. An example output showing the magnetisation of a single ring in the ‘onion’ state 

is shown in figure 11. 
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Figure 11- MuMax3 magnetisation output of a single nanoring in the 'onion' state. Colour wheel shows encoding 
of magnetisation direction to colour. 

4.6- Agent-Based Modelling 
While micromagnetic models form the standard practice for modelling magnetic systems, the size of 

the networks of ring arrays studied here, plus the many-second timescale of simulation makes 

micromagnetic approaches practically impossible. Instead, an agent-based approach was taken. 

Agent-based modelling is a simulation technique that focusses upon the interactions between sets of 

individual ‘agents’ which often have distributed properties that describe their interactions with both 

other agents as well as the simulation environment stochastically. This approach differs from more 

standard equation-based approaches7 as they focus upon the emergent behaviours that arise from 

stochastic interactions between individuals and enable complex system-wide phenomena that cannot 

be described by the actions of individuals alone. Agent-based models (ABMs) have seen applications 

in a wide range of different fields, including biology8,9, ecology10, epidemiology11, and social science12. 

The ABM framework synergises well with the nanoring arrays as the response of the system can be 

described by the action of and interaction between domain walls in the system (the agents), which 

have inherently stochastic outcomes due to the presence of thermal effects in the system. The 

framework enables the distributed parameters that occur in real magnetic devices via manufacturing 

imperfections to be represented by instantiating the environmental parameters of the junctions by 

randomly sampling the properties that describe their magnetic interactions from a distribution.  

By representing the nanoring array as a discretised system of agents interacting with a fixed 

environment, the processes that determine the magnetic state of the array can be vastly simplified, 

enabling simulation of much larger volumes of magnetic material evolving over much longer time 

durations than would be accessible via micromagnetic techniques. Additionally, this approach 

encapsulates how the outcome of each stochastic interaction influences the future evolution of the 

system, encapsulating the response as part of a Markov process, resembling the nature of evolution 

of the domain structure observed experimentally. The production of the model will be presented in 

detail in chapter 5. 
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5- “RingSim- An Agent-based Approach for 

Modelling Mesoscopic Magnetic Nanowire 

Networks” 
5.0- Preamble 
This chapter presents the implementation and validation of RingSim- a bespoke simulation platform 

designed to model the response of magnetic nanoring networks in response to rotating magnetic 

fields. This work follows on from the contributions of previous PhD/Masters students of the group who 

had extensively studied the physics of both single nanorings and nanoring arrays.  

Attempts to model the system previously were limited simple numerical models that describe array-

wide properties in terms of depinning probability and a balancing of rate equations that describe 

steady state populations. However, these numerical models neglect the complex, spatially distributed 

behaviours that had been observed in the past. Furthermore, by only considering equilibrium 

conditions and steady state populations, the dynamic properties that make the system interesting for 

reservoir computing are neglected.  

While micromagnetic models had been used previously to resolve the fine-grain details of interactions 

between a single ring and its neighbours, it is a practical impossibility to extend the model to cover 

larger arrays where emergent behaviours arising from these interactions occur. This is compounded by 

the fact that rotational magnetic field inputs that had been provided to the system occur at 10s of Hz, 

meaning signals of many seconds would be required to encode any meaningful information to the 

arrays for reservoir computing purposes.  

It was clear that a different approach to modelling the system was required. Agent-based models are 

especially suited to describing systems with emergent behaviours, as they focus on the actions and 

interactions between many individuals, and thus were selected as a promising candidate for simulating 

the nanoring arrays. Since the interactions of domain walls with both external fields and each other 

dictate the response of the system, it was proposed that the system could be reduced to simply 

modelling the domain walls and their interactions, then calculating the magnetisation state of the array 

from the position of the domain walls. 

In the model, the stochastic depinning events observed previously were modelled via an Arrhenius-

Néel law. The associated energy barriers, as well as how they are modulated by external fields, were 

calculated via a phenomenological approximation of Sharrock’s law. This allowed the model to tie 

realistic inputs to the expected probabilities of reversal for a given domain wall. The interactions 

between domain walls in the model were programmed to reproduce behaviours that had been 

observed in previous experiments. This allowed the emergent behaviours observed experimentally to 

arise from a few simple rules within RingSim. 

The model was tuned to replicate steady-state experimental results, and then validated against both 

measurements of the systems dynamics as well as with observations of the microstates the ring arrays 

tend to form. Realising a faithful model of the ring arrays’ complex response was a vital first step that 

unlocked the ability to explore how the system could be used as a basis for reservoir computing. Author 

contributions are listed at the end of the article. 
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Abstract 

We describe ‘RingSim’, a phenomenological agent-based model that allows 

numerical simulation of magnetic nanowire networks with dimensions as large as 

hundreds of micrometres over time scales as long as seconds, which are a practical 

impossibility for general-purpose micromagnetic simulation tools. In RingSim, domain 

walls are instanced as mobile agents which respond to magnetic field and uses simple 

phenomenological rules to describe their stochastic interactions with pinning sites 

and other domain walls. We first present a detailed description of the model and its 

algorithmic implementation when simulating the behaviours of arrays of 

interconnected ring-shaped nanowires, which have previously been proposed as 

hardware platforms for unconventional computing applications. The model is then 

validated against a series of experimental measurements of an array’s static and 

dynamic responses to rotating magnetic fields, and its field-dependent magnetic state 

populations. The results from RingSim agree well with those of experimental studies, 

demonstrating that agent-based modelling is a a powerful tool for the exploring 

mesoscale magnetic devices over time and length scales that are inaccessible to more 

conventional simulation techniques. 

Introduction 

The creation of models of system behaviour is critical to the development of emerging 

technologies, since they allow for rapid evaluation of device behaviour without the need for 

manufacturing samples or performing experimental measurements. For devices based around 

magnetic materials, the processes that underpin the device’s response to external inputs often 

have well-defined physical descriptions. Examples such as spin-torque nano-oscillators [1, 2], 

domain wall oscillators [3, 4], and super-paramagnetic ensembles [5] have one-dimensional 

numerical descriptions that allow the state of the magnetic substrate to be approximated to 

predict device performance quickly with low computation cost. 

For devices without well-defined dynamical equations, or when more detail on the underlying 

magnetic state of the system is required, the typical approach is to use general-purpose 

micromagnetic simulation packages such as MuMax3 [6] or OOMMF [7]. These platforms 
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approximate the spin structure of the magnetic materials into cells on the order of a few 

nanometres in size and model the evolution of spins in the presence of external driving fields or 

spin-torques via the Landau-Lifschitz-Gilbert equation [8, 9]. While these simulation packages 

provide a high level of detail on the magnetic response of a device, they are associated with a 

high computational overhead. For example, in simulations of a Skyrmion confined in a nanodisk 

of 80nm diameter, 1nm thickness, using a mesh size of 1nm3, simulating 50ms of dynamic 

response takes on the order of 40 minutes [10], a simulation duration 48,000 times longer than 

the physical processes being simulated, even despite the vast acceleration of these simulations 

possible with modern hardware [11]. 

While signal durations on the order of seconds are not appropriate for magnetic systems with fast 

dynamics such as spin-torque nano-oscillators, other systems with dynamics governed by thermal 

processes, such as the nanowire network presented here, have much slower timescales of 

response. In order to excite interesting dynamics in these systems, the systems must be driven 

with input stimuli that evolve over similar timescales. When coupled with the relatively larger 

size of these systems, simulation with micromagnetic approaches becomes practically impossible. 

The complexity of responses exhibited in devices of large networks of interacting magnetic 

elements such as artificial spin-ice systems [12–15], or arrays of interconnected magnetic 

nanorings [16], present increased difficulty in describing the system’s evolution, with each 

containing hundreds, thousands, or even millions of nanometre/micrometre-scale magnetic 

elements. These systems exhibit emergent behaviours, where interactions between elements in 

the system lead to global behaviours that cannot be described by the action of individual 

elements alone. While these complex dynamics provide technical difficulty for simulation, they 

exhibit interesting computational properties, with the dynamics exploited for neuromorphic 

computing purposes [17–19]. With the computational constraints of general-purpose simulation 

packages mentioned earlier, it is clear that alternative approaches for modelling such a system 

must be taken. 

Agent-based models describe the evolution of complex, multi-element systems in terms of the 

interactions between individual agents, as well as external environmental parameters [20]. The 

agents are often instanced into the model with distributed parameters, and commonly feature 

stochastic behaviours. Interactions are programmed in phenomenologically, with the outcomes 

of interactions determined by a set of predefined rules that aim to encapsulate the behaviours of 

the system being simulated. These types of models are especially harmonious with systems that 

exhibit emergent behaviours and have been used extensively in modelling complex dynamic 

systems such as flocking birds [21], or even structures within the brain [22, 23]. 

In this paper, we introduce an agent-based model, RingSim, which allows rapid simulation of 

networks of up to thousands of interconnected magnetic nanorings for signal durations on the 

order of seconds. The response of the model is governed by the outcome of stochastic pinning 

events and subsequent propagation of domain walls. The local pinning sites that occur at 

junctions where the rings intersect are programmed as interaction sites, with domain walls 

instanced as agents that interact with both neighbouring domain walls as well as external driving 

fields. By fitting model parameters describing ring junction properties, as well as the degree of 

influence of domain wall-domain wall interactions, we show how the model provides excellent 

agreement between simulated responses and experimental data. Not only is the model capable 

of encapsulating the system’s global response to external inputs both statically and dynamically, 

but also provides information on the microstate of each ring, visually showing similar local 
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agglomeration of domains and relative populations of individual ring states as observed 

experimentally. 

 agnetic Nanoring Array Dynamics 

RingSim describes the response of interconnected magnetic nanoring arrays (Figure 1a), 

experimentally detailed in previous works [16, 18, 24]. Conceptually, the response of the system 

can be described via the transitions between metastable domain configuration for each of the 

rings, mediated by stochastic pinning events. Figure 1b shows the three basic ring configurations: 

(i) a ’vortex’ ring containing a single domain and no domain walls, (ii) an ’onion’ ring containing 

two equally sized domains and a pair of domain walls at opposite ends of the ring, and (iii) a 

’three-quarter’ ring, featuring two differently sized domains, with domain walls situated at angles 

of 90 degrees from one another. 

The interconnected nature of the ring arrays leads to local pinning sites at the junctions 

between neighbouring rings. The change in geometry presented by the junction creates an 

energy barrier, similar to an ’anti-notch’ [25, 26], which tends to locally pin itinerant domain walls. 

When driven with sufficiently high amplitude rotating fields, the domain walls are able to 

overcome this energy barrier, and coherently propagate with the rotating field, shown in Figure 

1c(i). Under smaller driving fields, domain walls can become locally pinned at these junctions, 

with a finite probability of depinning via thermal activation. This stochastic process leads to 

decoupled propagation of domain walls within the rings depending upon the outcomes of pinning 

events, which may lead to domain wall collision and subsequent annihilation, changing the ring 

from an onion/three-quarter state to a vortex state, shown in Figure 1c(ii). 
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Figure 1: A- Scanning electron micrograph showing a 25x25 magnetic nanoring array. B- Schematic diagrams 

showing the three metastable domain states in an individual ring: (i)- Vortex configuration, (ii)- Onion 

configuration, and (iii)- Three-Quarter configuration. Arrows show direction of magnetisation, and lines 

normal to the circumference of the rings reflect the position of domain walls. C- Schematics showing the 

outcomes of different stochastic propagation events: (i)-Coherent propagation of domain walls with 

sufficiently strong magnetic fields, (ii)-Stochastic propagation of domain walls within a ring, with the upper 

domain wall becoming locally pinned before being annihilated by the propagating lower domain wall, and 

(iii)-The renucleation process when an itinerant domain wall causes local magnetic reversal, injecting a pair 

of domain walls into an adjacent ring. Arrows show magnetisation direction, with lines reflecting domain 

walls. Dotted arrows included to show propagation direction of domain walls, and large blue arrows 

represent the progression of time. 
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Domain walls may be reintroduced into the system when propagating domain walls lead to 

magnetic reversal across a junction, resulting in magnetic frustration between the two 

neighbouring rings. To alleviate this frustration, a pair of domain walls are nucleated in the ring 

adjacent to the propagating domain wall, shown in Figure 1c(iii). Between these mechanisms for 

annihilation and renucleation, a dynamic equilibrium is created between the rate of domain wall 

loss and gain, depending upon the relative probabilities for domain walls to propagate beyond a 

junction for a given applied field. 

For very low or very high applied fields, the deterministic pinning/propagation respectively leads 

to few collisions, and hence the array exists as mainly onion or three quarter rings. For 

intermediate applied fields, the stochastic movement of domain walls leaves the array in a 

mixture of states from all three configurations depending upon the relative rates of collision and 

renucleation. Since the domain state of each ring is determined by the outcomes of the pinning 

events, the array behaviour can be approximated via simulation of these events. To achieve this, 

we use empirically verified relationships to calculate expected probabilities of domain walls in 

the system propagating beyond pinning sites, described in detail in the next section. 

 odelling Stochastic Pinning Events 

In magnetic materials, thermal energy introduces stochastic domain wall motion via the random 

fluctuation of individual magnetic moments which assist reversal processes. This results in a finite 

expected timescale for a reversal event to occur, depending upon the size of the associated 

energy barrier and the temperature of the system. Empirically, the Arrhenius-Néel relationship 

calculates the characteristic timescale of reversal via equation (5.1): 

(5.1)   𝜏𝑟 = 𝜏0

∆𝐸
𝑘𝐵𝑇

 

where τr represents the expected reversal timescale, τ0 the attempt frequency associated with 

the material (here taken to be ≈ 1GHz for Ni80Fe20 [27]), ∆E the magnitude of the effective energy 

barrier, kB the Boltzmann constant, and T the temperature of the system. This relationship has 

been experimentally verified for the reversal of single magnetic domains, with excellent 

agreement [28]. 

As well as the temperature of the system, external magnetic fields also influence the outcome of 

pinning events by modulating the magnitude of the effective energy barrier. Previous work has 

shown that this modulation is dependent upon the component of applied field acting transverse 

to the domain wall axis, with the domain walls having lowest Zeeman energy when aligned with 

the field vector [29, 30]. The rotating magnetic fields used to drive the ring arrays means that this 

transverse component, Htransverse is dependent upon the magnitude of the applied field, Happlied, 

and the sine of the angle between the applied field and the domain wall, θlag, shown 

schematically in Figure 2a and described mathematically via (5.2): 

(5.2)  𝐻𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 = 𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑 ∗ 𝑠𝑖𝑛(𝜃𝑙𝑎𝑔) 

The relationship between the transverse field, the magnitude of the modulated energy barrier, 

∆E, and the initial energy barrier, E0, is given via the phenomenological Sharrock equation [31]: 
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(5.3)     𝐸 = 𝐸0 (1 −
𝐻transverse

𝐻sw0
)
𝛼

 

 where Hsw
0 represents the zero-Kelvin switching field of the magnetic element, and α is a geomet- 

rical constant, (here taken to be 3/2 [32]). 

It has been observed in previous works that the presence of either one or two domain walls across 

a junction leads to a difference in domain wall structure [16], each with different energetic 

properties, and hence different depinning behaviours. Here, these interactions across rings have 

been modelled as a linear scaling of the energy barrier in the single domain wall case, shown in 

equations (5.4) & (5.5), and described in more detail in section 5. 

 

Figure 2: A- Schematic diagram showing the calculation of Htransverse from an applied field Happlied and the 

angular lag between the domain wall location and the direction of applied field, θlag. B- Schematic diagram 

representing the cardinal X and Y axes directions, as well as the corresponding junction indices at each of 

the intersections between the rings for Nsegment = 16.  

 

(5.4)     𝐻2DW
0 = 𝑘 ∗ 𝐻1DW

0  

(5.5)     𝐸2DW
0 = 𝑘 ∗ 𝐸1DW

0  

where H
1
0
DW and H

2
0
DW represent the switching fields for one and two domain wall cases 

respectively, E10DW and E20DW the equivalents for initial energy barriers, and k a fixed scaling 

parameter, the fitting of which is discussed in section 5. 

In order to approximate the varying Htransverse (and consequently E0) as the applied field rotates, 

the field is simply discretised into a series of angular steps, each held for a duration of  

seconds, where Nsteps represents the number of discrete steps the full rotation is split up into, and 
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f represents the rotational frequency of the applied field. This allows the approximated reversal 

probability Pdepin for a given step to be calculated from equations (5.1 – 5.5) via equation (5.6): 

(5.6)   𝑃depin = 1 − 𝑒
−

𝑡step

𝜏𝑟  

Phenomenological  odelling of  agnetic Nanoring Arrays 

Phenomenological descriptions of domain walls and their interactions allowed a simple method 

for programming the complex experimentally observed behaviours of collision, nucleation, and 

interaction. Parameters of the model are grouped via the properties they represent; array, ring, 

junction, and initialisation parameters have labels A, R, J, and N respectively. 

The rings within the model are represented by vectors of length Nsegment, where each entry to the 

vector represents a ring segment of arc length 2π/Nsegment radians. The index of each of the entries 

to this vectors represents position within the ring, rotating clockwise from the positive x direction, 

shown in Figure 2b. Here, a value of 16 for Nsegment was selected to provide a good trade-off 

between approximating a smooth rotation of field and matching the fourfold symmetry of the 

array, whilst keeping the number of simulation steps low. 

The domain state of the nanoring array is expressed as an array of vectors ADW of dimensions 

[Nsegment× (Nr)2], where Nr represents the number of rings in each row of the square array. Domain 

walls are instanced into the array by labelling an index in each ring vector with either a +1 or a -

1, reflecting head-to-head and tail-to-tail domain walls respectively. Since many of the key 

behaviours of the ring array are determined by the points of interconnectivity between the rings 

in the array and the interactions that arise at them, three separate vectors of length 2Nr(Nr − 1) 

are created which record the of every junction in the network: JDW, which tracks the number of 

domain walls occupying each junction, JE, which reflects the magnitude of the energy barrier E0 
presented by each junction, and JH, which reflects the zero-kelvin switching field  for each 

junction, as described in the previous section. 

The state of the simulated nanoring array is initialised by instancing a head-to-head domain wall 

in every ring in ADW at index 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡/4 , and a tail-to-tail domain wall in every index 

3 × 𝑁𝑠𝑒𝑔𝑚𝑒𝑛𝑡/4 , corresponding to the positive/negative y direction respectively, and 

emulating the saturated state in the positive y direction. The magnetisation state of the array is 

then generated from the position and variety of all domain walls in the system. Firstly, an 

additional array, Adir, of identical shape to ADW is generated, which is used to keep track of the 

direction of magnetisation in each segment of the rings. Each index of Adir records whether the 

magnetisation runs clockwise (+1) or anticlockwise (-1) over each segment, and is marked zero in 

the locations of domain walls. From this direction matrix, the magnetisation is calculated in terms 

of components in the x and y axes (Mx and My respectively) via: 

(5.7)   𝑀𝑥 = ∑ ∑ 𝑠𝑖𝑛 (
2𝜋𝑠

𝑁segment
)𝐴𝑑𝑖𝑟

𝑖,𝑠𝑁segment

𝑠=1
𝑁𝑟

2

𝑖=1  

(5.8)   𝑀𝑦 = ∑ ∑ 𝑐𝑜𝑠 (
2𝜋𝑠

𝑁segment
)𝐴𝑑𝑖𝑟

𝑖,𝑠𝑁segment

𝑠=1
𝑁𝑟

2

𝑖=1  

This gives the magnetisation of the array in arbitrary units, which is then normalised against the 

magnetisation in the saturated state, determined as the value of My in the initialised array. 
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Figure 3a shows a high-level overview of the how domain state of the model evolves: Firstly, the 

external applied field is moved by a fixed angular step. The relative probabilities of all domain 

walls in the system depinning are then calculated via equations (5.1) to (5.6), before comparison 

with random variable drawn from a uniform distribution between 0 and 1 to determine which 

domain walls are free to propagate. The domain walls then propagate towards their respective 

energy minima parallel/anti-parallel to the field vector, with interactions programmed 

phenomenologically before finalising their positions and restarting the process. These processes 

will be discussed in detail next. 

Figure 3b shows a flowchart for the process of calculating depinning probabilities. In RingSim, two 

sources of domain wall pinning are considered. Firstly, the effects of edge roughness are included 

by imposing a threshold field, below which domain wall propagation does not occur [33]. It has 

been experimentally observed that under low applied fields, very few domain walls depin even 

after many cycles[16]. Additionally, the domain walls that do depin seem to consistently do so 

after repeated cycles, suggesting that the threshold field for propagation is a distributed 

parameter across different rings due to manufacturing inconsistencies. To recreate this behaviour, 

a vector representing the edge roughness threshold field for each ring, RER, is created by sampling 

from a normal distribution with a fixed mean and standard deviation to resemble the expected 

variance in properties via manufacturing imperfections in experimental samples. The exact mean 

and variance were determined via correlation with experiments and discussed in more detail in 

section 5. This acts as a hard threshold by setting depinning probability to zero if Htransverse (via 

equation (5.2)) is below the value of RER
i for a given ring i. 

The second source of pinning comes from the energy barrier associated with the junctions 

between rings. Domain walls occupying the same junction are considered as coupled in RingSim, 

with the calculation of reversal probabilities occurring only once with coupled outcomes for both 

domain walls. The number of domain walls at each junction is given by the entry in JDW for a 

particular junction. Each junction has its own energy barrier and switching field, stored in the 

vectors JE and JH, which are scaled for domain wall-domain wall interactions via equations (5.4) 

&(5.5) if two domain walls occupy the junction. Next, the effects of the external field are 

accounted for by scaling the energy barrier via equation (5.3), giving the magnitude of the 

effective energy barrier ∆E. As the depinning process is thermally activated, the expected 

transition time for reversal can be determined via equation (5.1) for a given temperature of the 

system. The rotational frequency of the applied field is then used to give an expected probability 

of reversal for a given angular step, described via equation (5.6). 

Figure 3c shows a flow chart for stochastic depinning of the domain walls in the model. A random 

number sampled from a uniform distribution between zero and one, x, is generated for each 

junction, and is compared to Pdepin, with the domain walls occupying any junction where Pdepin > x 

deemed free to propagate. The process for domain wall propagation is outlined in figure 3d. Here, 

all depinned domain walls propagate along their shortest route to their respective energy 

minima. Firstly, the magnetisation states of any propagating domain walls that occupied a 

junction are compared with the adjacent rings. If the subsequent propagation leads to magnetic 

frustration across the junction, then the nucleation process occurs. This begins by initialising a 

pair of domain walls, one head-to-head and one tail-to-tail, at the junction in the adjacent ring. 

One of these domain walls moves to the applicable energy minimum that occupies one of the 

quarter sections adjacent to the junction. The other domain wall is then flagged for an additional 

depinning check at the junction between where it was initialised and its energy minimum. In the 
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case where both minima lie at the junctions 90 degrees to the initialisation junctions, the domain 

walls propagate to their respective minima where they remain until the next field step. 

 

 

Figure 3: A- Overview of the key steps the taken in the modelling procedure. B-Process for determining the 

probabilities P for each of the domain walls to propagate within the model. C-Process for deciding the 

stochastic outcomes of pinning events based on previously calculated probability P. D- Process for 

determining the next state of the array from the outcome of depinning events, and any collisions or 

additional junctions that may be passed on the domain wall’s path to the energy minimum. 

For domain wall propagation in a given ring, the domain walls propagate towards their energy 

minimum until they meet one of three outcomes: if they collide with another domain wall before 

reaching their respective minimum, the domain walls annihilate, and leave the ring in a vortex 

state, with the chirality depending upon the itinerant domain wall. If the domain wall reaches 
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another junction before its energy minimum, then the domain wall is flagged for an additional 

depinning check at that junction since it may become locally pinned again. Finally, if the domain 

wall reaches its energy minimum, it remains there until the next field step. 

The process of pinning checks and subsequent propagation then reoccurs, before finalising 

domain wall positions for the field step. Junctions are then checked for the number of domain 

walls occupying them, and the JDW vector is updated accordingly. The magnetisation state of the 

array is then calculated from the final positions and returned in terms of normalised Mx and My 

components, and all state matrices are updated. The field then moves another angular 

increment, and the process starts over. 

Fitting  odel Parameters 

In order to tie the predictions of RingSim to real-world devices and their responses to external 

fields and temperatures, a series of experimental and modelling techniques were used in order 

to assert many of the model parameters, with the remaining free parameters iteratively tuned by 

fitting the model’s magnetisation output to experimentally gathered data. Firstly, the values of τ0 
and α were taken from literature, as an attempt frequency of 1 GHz for Permalloy [27], and an 

alpha value of 3/2 [32]. 

Micromagnetic simulations using the MuMax3 [6] software package were performed on a pair of 

overlapping half-rings, representing a single junction, but extending to ring properties via 

symmetry. The dimensions of the simulated rings reflected the geometry of the manufactured 

devices which were later used for further characterisation, with nominal diameters of 4µm, track 

widths of 400 nm, thicknesses of 10 nm, and with each ring overlapping 50% of its track width 

with its neighbour. Material parameters of the system were set to reflect Ni80Fe20 in line with the 

manufactured devices (Ms = 860 kA/m, Aex = 13 pJ/m, αG = 1, an artificially large damping 

parameter to speed up simulation). The simulations were used to establish the effects of domain 

wall-domain wall interactions on the switching field of the junction in absence of thermal effects. 

The simulations, shown in Figures 4A/B were initialised with a single domain/two domains 

occupying the junction respectively, and field is ramped in 1 Oe increments every 8 nanoseconds. 

The domain walls were deemed to depin at the field when they became fully delocalised from 

the junction, and the strength of the applied field recorded, with depinning fields of 79 Oe and 

64 Oe for the one and two domain wall cases respectively. While these results reflect the zero-

kelvin switching field for an idealised material, imperfections from the manufacturing process 

(lower true saturation magnetisation, imperfect geometry, presence of grains etc.) mean these 

values will not be numerically identical to those of a manufactured device. However, these values 

were used to be indicative of the ratio between the two processes, and hence used to determine 

the value of k in equation (5.4). The effects on the energy barrier are assumed to be equivalent, 

giving a k value of 0.81 for equations (5.4) and (5.5). 

The remaining free parameters of RER, E0, and Hsw
0 were fit to magnetoresistance (AMR) 

measurements of the nanorings. As introduced in previous works [18], the AMR response of the 

nanoring array has two distinct responses to rotating fields, one at the same frequency of the 

rotating field (1f response) and another at twice the field frequency (2f response). The 1f 

response occurs due to susceptibility effects, with elastic stretching and contraction of the 

domain walls in the system in response to the rotating field, with MuMax3 simulations of this 
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effect shown in Figure 4c. The 2f signal depends upon the propagation of domain walls as they 

move between junction sites where pinned domain walls sit either orthogonal or parallel to the 

current density, shown in Figure 4d. 

Figure 5a shows the relative magnitudes of the Fourier components of the AMR response of the 

1f and 2f frequency components across a range of applied fields over 30 rotations. Two key 

features of this response were used to fit model parameters. Firstly, the end of the linear regime 

of the 1f response reflects the onset of domain wall motion, as the change from linear increase 

is due to the addition of incomplete propagation of domain walls around the rings. This allows 

determination of the RER at 20.5 Oe. Secondly, the magnitude of the 2f signal reflects the number 

of domain walls propagating in the 

 

Figure 4: A/B- Domain wall reversal processes for one and two domain wall cases respectively, produced 

using MuMax3. Black arrows show direction of domains, white arrows reflect increasing of the applied 

field. CMumax simulations of domain wall structure across a junction during applications of 20 Oe rotating 

field in π/2 radian steps, showing the expansion and contraction of the domain wall via magnetic 

susceptibility. DMuMax simulations of domain state with domains pinned in orientations parallel to current 

density (left) and orthogonal to current density (right). Black arrows reflect flow of current density. Colour 

wheel reflects direction of magnetisation in all plots, with local direction shown by grey triangles on the 

colour wheel. 
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system. This is proportional to the amplitude of the magnetisation response of the array in the 

absence of susceptibility effects, which is given by Mx and My in RingSim. This equivalence allows 

tuning of the remaining free parameters of E0 and H0 by comparing the amplitude of the 

magnetisation output in RingSim to the experimental 2f data for the same applied fields, and 

selecting E0 and H0 values which provide the same response. 

The experimental procedure used to generate the 2f data (30 rotations of applied fields between 

25-30 Oe) were repeated in RingSim, for simulations initialised with a range of E0 and H0 values. 

Figures 5b and 5c show the magnitude of the magnetisation response over a few example E0 and 

H0 pairs compared with the device’s 2f response, and the mean-squared error between the 

simulated magnetisation and the experimental response across all E0 and H0 pairs respectively. It 

can be observed that a region of E0 and H0 pairs are able to fit the experimental data well, reflected 

by the region of low mean-squared error in Figure 5c. 

Since temperature also modulates the relative depinning probabilities which determine the 

number of propagating domain walls, the AMR response of the experimental system over a range 

of applied temperatures must also be determined to find the specific E0 and H0 pair that describes 

the system best. The temperature of the system was controlled by mounting the device on a 

Peltier cell, with temperature measured via a pyrometer positioned above the device. From these 

measurements, a linear shift in the point of maximum gradient of the 2f response was observed 

and shown in Figure 5d. Similar to the previous fitting process, these experiments were repeated 

within RingSim, and the gradient of this linear shift calculated across a range of E0 and H0 pairs 

and compared to the experimentally gathered data. Crucially, the change in thermal gradient 

shown in figure 5e is different when compared to the 2f fit shown in figure 5c. This allowed 

determination of which of E0 and H0 pairs satisfied the response of the experimental system best 

across all temperatures via generation of a fitting metric from the combined errors between the 

field dependent and the temperature dependent measurements, shown in figure 5f. An optimal 

E0 and H0 pair was chosen which reconciles both experiments, here determined to be H0 = 55 Oe 

and E0 = 2.625 × 10−19 J. 
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Figure 5: A- Normalised magnitudes of Fourier components corresponding to the clock frequency (1f) and 

twice the clock frequency (2f) over 30 rotations of varying magnetic field. B- Example fits of RingSim 

magnetisation output to the 2f transition in experimental device. The four coloured lines reflect different 

E0/H0 pairs, shown in the map in C. C- Colourmap of mean-squared error between model’s reproduction of 

magnetisation and experimentally gathered response via AMR for all explored E0/H0 values. D-Plot of 

extracted transition fields by varying the temperature of the magnetic ring array. Transition field 

determined from the point of maximum gradient in the 2f response, with linear fit used to extract the 

change in transition field with temperature shown. E-Colourmap showing gradient of transition field with 

respect to temperature, shown for all E0/H0 pairs. F- Combined fitting metric made by combining difference 

in gradient of transition field between simulated system and experimental system and the mean-squared 

error between the simulated 2f transition and experimental data. 

Validating the  odel 

The previous section outlined a procedure for fitting model parameters to the equilibrium 

response of the dynamic system of magnetic nanorings. However, the ring arrays are known to 

exhibit dynamic responses to input, as well as different populations of the three domain states 

(Figure 1B) with respect to driving field [16]. To confirm the model encapsulates these behaviours, 

the model’s predictions need to be validated against additional experimental data that measure 

the dynamic timescales of the system’s response, as well as the populations of domain states 

observed experimentally. 
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Figure 6: A- Measured voltage signal from experimental measurement of the ring devices under 10 

rotations of 28 Oe applied field. B- Simulated magnetisation response via RingSim for 10 rotations of 28 Oe 

applied field. C- Outline of the procedure for measuring dynamic timescales. First, the envelope of the 

underlying signal is generated by marking the maximum magnetisation over a rotation of applied field, 

shown by the orange markers. Then, an exponential fit is generated to replicate the envelope of the 

magnetisation/AMR signal, shown in green. D- Comparison of the resulting decay timescales for 

experimentally gathered data (blue), and the simulated magnetisation output (orange). Timescale is 

presented with respect to number of rotations rather than in time. 

 

To establish the dynamic behaviours of the physical system, further AMR measurements were 

performed to determine the rate at which the ring array reaches equilibrium response from a 

saturated state over a range of applied fields. In order to measure these dynamic timescales τd, 

the envelope of the AMR was calculated over successive rotations, and an exponential function 

of the form 𝑋(𝑡) = 𝑋0 − 𝑎𝑒− 𝑡

𝜏𝑑
+ 𝑐 was fitted to the resulting decay curve. This was compared 

to a similar exponential fit to the envelope of the magnetisation signal generated by RingSim. 

Figure 6a/b shows comparisons between the AMR response of the physical device at 29 Oe (the 

longest decay timescale) and the equivalent magnetisation response generated by RingSim. 

Although the RingSim magnetisation response lacks the period-doubling effect seen in the AMR 

response, functionally the signals are very similar in terms of decay time and steady-state level. 

Figure 6c shows the generated exponential fits for an example wave, while Figure 6d shows the 

comparison between the fitted τd parameters across these fields for both simulated and 

experimental data. There is excellent agreement between the two at lower and intermediate 

fields, showing that RingSim effectively simulates the regions of highly stochastic propagation 

well. However, there are longer timescales observed 30-32 Oe in experiments than in simulation, 

with the simulation predicting the equilibrium amplitude is reached instantaneously. This 

suggests that RingSim underestimates the field at which uniform propagation occurs. 

In order to determine the microstates formed by the ring array in response to various applied 

fields, magnetic contrast micrographs were generated using X-ray photo-emission electron 
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microscopy (X-PEEM) on subsections of the nanoring array. To validate these behaviours in 

RingSim, a visualisation tool was developed which emulates the magnetic contrast observed in X-

PEEM according to the values of My in each segment of all of the rings in the simulated system. 

Figure 7a shows a comparison between data generated via X-PEEM and RingSim’s visualisation 

tool after 30 rotations of a range of applied fields. Similar grouping of larger domains locally 

reflects a similar tendency for the domain wall-domain wall interactions in both the physical 

device and within RingSim to lead to local regions of magnetic order. However, there seems to be 

increased disorder at lower fields for the outputs generated with RingSim. 

From the position and location of domain walls shown in images such as in figure 7a (and at other 

fields not presented in the figure), it is possible to determine the relative proportions of vortex, 

onion, and three-quarter rings over the subsection of the array after 30 rotations of field over a 

range of magnitudes. The application of field was similarly repeated within RingSim, and the 

relative populations of each ring state counted. Figures 7b and 7c show the variation of these 

populations for simulated 25x25 ring arrays and experimentally gathered data on a sub-sample 

of the 25x25 array respectively. While there is some variance between the relative populations 

observed in experiments and simulated by RingSim, the general trends are similar given 

significantly fewer rings sampled in the experimental data. 

One possible source of the differences between the X-PEEM measurements and RingSim model 

is that the sample used for X-PEEM is different to the sample used for fitting the model. Although 

the nominal dimensions of the arrays’ designs were the same, they were manufactured in 

different lithography and deposition runs, which could lead to some slight variation in ring 

width/thickness, accounting for the slight shifts in field. Additionally, remanence in the iron cores 

of the electromagnets used to generate the applied fields in the experimental data may have led 

to slightly asymmetrical field rotations, which could explain a biasing in the formation of vortex 

states in the experimental data which is not seen in the model. In combination with the previous 

results, we believe this shows good agreement between the microstates formed in experiments 

and simulated via RingSim, validating that the simulation of depinning processes that RingSim is 

based upon provide a good description of the overall processes that dictate the response of the 

magnetic nanoring arrays. 
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Figure 7: A- Comparison of magnetisation state between ring structures generated via RingSim (upper) and 

experimentally gathered data via X-PEEM imaging (lower) for applied fields between 18 and 32 Oe. In both 

cases, colour reflects magnetisation direction along the vertical axis, reflected in the colour bar on the right. 

State count of the three different ring domain configurations (onion, vortex, and three-quarter) with 

respect to the magnitude of the simulated rotating field. Generated over a 25x25 array, normalised against 

ring number. D-State count of ring domain configurations with respect to the magnitude of current 

provided to driving electromagnet [34]. Generated over subsection of 25x25 ring array containing 40-50 

nanorings, normalised against ring number for a given image. 

Conclusions 

In this paper, we have outlined a methodology for modelling extended nanowire networks. With 

a combination of numerical models for calculating reversal probabilities and directly programmed 

phenomenological behaviour, RingSim was able to emulate many of the behaviours observed in 

real nanoring devices. 

The resulting model provides excellent agreement with experimentally gathered data, not only in 

the equilibrium response of the system, but also with the dynamic timescales associated with 

reaching equilibrium as well as the typical domain microstates that are formed across different 

driving fields. RingSim is able to model relatively large areas of magnetic materials with modest 

computational overheads, allowing predictions to be made for device-level responses that would 

be practically impossible to achieve with general-purpose micromagnetic simulators. To draw a 

rough comparison, RingSim is able to simulate the response of a 25-by-25 array of nanorings at 
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speeds of 1.4 rotations per second on an Intel i7 processor, allowing rapid evaluation of device 

response to arbitrary field inputs. 

While the exact formulation and phenomenology featured within RingSim is specific to the system 

of interconnected magnetic nanorings, we believe that the general methodology of reducing the 

simulated magnetic processes to the modelling key agents within the system, and programming 

interactions phenomenologically, can be applied to many other similar systems, such as 

connected artificial spin-ice networks, domain wall logic networks, etc. Simulation tools such as 

RingSim can provide the opportunity to perform rapid exploration of device properties for 

applications such as neuromorphic computing, especially for systems with large parameter 

spaces to explore that would be infeasible to measure experimentally. 
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6- “Quantifying the computational capability of a 

nanomagnetic reservoir computing platform with 

emergent magnetisation dynamics”. 
 

6.0- Preamble 
Following on from the previous chapter which outlined the development of the phenomenological 

model of the nanoring arrays, this chapter uses the model as a basis for exploring the application of 

nanoring arrays for reservoir computing. The objective of this study was to explore the range of 

dynamic responses exhibited by the nanoring arrays and determine the range of computational 

properties that were available.  

In order to implement the nanoring arrays as a reservoir computing platform, a paradigm was required 

for encoding information into the array, as well as extracting meaningful state information from the 

array. Since the arrays respond strongly to rotating magnetic fields, input was directly encoded into 

the magnitude of the applied rotating field. To read out information that was dependent upon the 

magnetic state of the system, the RingSim variables of domain wall population and the components of 

magnetisation of the array along and normal to the saturation direction were chosen. To cover the full 

range of transformations available to the ring arrays, and to ensure that the applied fields were 

operating in a range that excited dynamic behaviours in the ring arrays, inputs were scaled simple 

linear transform using a pair of input scaling parameters, 𝐻𝐶  and 𝐻𝑅, which defined the central field 

for zero input, and the total range the input spanned in Oe respectively. 

In order to leverage the system as a reservoir computer, a standard approach introduced by Appeltant 

et al. in their 2011 paper ‘Information processing with a single dynamical node’ was employed. This 

approach combines the input data at each timestep with a fixed input mask to multiplex inputs over 

time, with output of each ‘virtual’ node taken measured after each masked input. Due to the intrinsic 

dynamics of the ring array, the response of each virtual node depends not only on the current input, 

but also the state of the system at the end of the last input. This emulates synaptic connections 

between each virtual node, resembling a network with fixed connectivity determined by the dynamic 

properties of the ring arrays. 

To establish the computational properties of each transformation for each of the three state readout 

variables, task independent metrics of kernel rank, generalisation rank, and memory capacity were 

employed. These metrics provide a good evaluation of the two most important properties of a 

reservoir computer: nonlinearity and memory. Since they require the processing of significantly less 

data than most machine learning tasks, they are a useful tool for rapidly evaluating useful regimes of 

operation and can be used to expedite the parameter selection procedure. 

To evidence that the rings are useful in task-based environments, and that the task-independent 

metrics were indeed good predictors of task performance, a standard benchmark task of spoken digit 

recognition was performed. When taking each readout variable alone, task performance was modest, 

demonstrating a useful but perhaps somewhat simplistic transformation was achieved via each of the 

state properties. When combining these outputs however, the reservoir performed significantly better, 

showcasing the increased computational capacity of the reservoir when a more sophisticated 

evaluation of magnetic state was made. Finally, it was shown that by taking heuristic measurements 

of ‘good’ reservoir performance from the measurements in metric space, the regions of best 
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performance could be isolated from the metrics, which is a useful tool for expediting the input scaling 

parameter search for tasks when data throughput is a limiting factor. 

In this work, my personal contributions were the development of the model, design of the reservoir 

framework, the implementation and simulation of all metric and task-based analysis, and the drafting 

of the article. This paper was published in IOP Nanotechnology on 07/09/2022 and can be found online 

at doi.org/10.1088/1361-6528/ac87b5. 

 

  



126 
 

Quantifying the Computational Capability of a Nanomagnetic Reservoir 
Computing Platform with Emergent Magnetisation Dynamics 

I T Vidamour1, M O A Ellis2, D Griffin3, G Venkat1, C Swindells1, R W S Dawidek1, T J Broomhall1, 
NJ Steinke4, J F K Cooper4, F Maccherozzi5, S S Dhesi5, S Stepney3, E Vasilaki2,6, D A Allwood1, 
T J Hayward1 

 
1- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom 
2- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, United Kingdom 
3- Department of Computer Science, University of York, York YO10 5GH, United Kingdom 
4- ISIS Neutron and Muon Source, Rutherford Appleton Lab, Didcot, OX11 0QX, United Kingdom 
5- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom 
6- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zürich, Switzerland 

 

Abstract 

Devices based on arrays of interconnected magnetic nano-rings with emergent 
magnetization dynamics have recently been proposed for use in reservoir computing 
applications, but for them to be computationally useful it must be possible to optimise 
their dynamical responses. Here, we use a phenomenological model to demonstrate that 
such reservoirs can be optimised for classification tasks by tuning hyperparameters that 
control the scaling and input-rate of data into the system using rotating magnetic fields. 
We use task-independent metrics to assess the rings’ computational capabilities at each 
set of these hyperparameters and show how these metrics correlate directly to 
performance in spoken and written digit recognition tasks. We then show that these 
metrics, and performance in tasks, can be further improved by expanding the reservoir’s 
output to include multiple, concurrent measures of the ring arrays’ magnetic states. 

 

Introduction 

Neuromorphic devices use inherent material properties to perform brain-like computational 
operations in materio. This allows for improvements in efficiency over standard artificial neural 
networks as neural architectures are directly emulated in hardware, rather than simulated using 
conventional computers [1].  

Reservoir computing (RC) is a machine learning paradigm that is well-suited to in materio 
implementations. In RC, a fixed dynamical system (the reservoir) transforms input signals into higher 
dimensional representations, facilitating classification in cases where input data is linearly 
inseparable. In the archetypal Echo State Networks (ESNs) [2], the reservoir takes the form of a 
recurrent neural network (RNN) initialised with a sparse, random connectivity matrix. A linear readout 
layer provides output from the weighted sum of activity across nodes within the reservoir [3]. ESNs 
address the well-known difficulties of training RNNs, and recent models have improved both their 
applicability to classification tasks and their robustness against catastrophic forgetting [4].  

While ESNs are typically simulated on conventional computers, recent studies have shown that 
computational ability is preserved if the RNNs are replaced by physical systems [5]–[12] with the 
correct properties: nonlinearity between input and output, and ‘fading’ memory of past inputs. With 
typical hardware implementations of reservoir computing there is no separation between the 
components used for computation and those used for memory, mitigating the von-Neumann 
bottleneck associated with discrete memory and computation units. This offers potential benefits in 
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terms of reduced latency, increased computational power per unit area, and improved energy 
efficiency of the system.  

Different classes of physical systems have been proposed for RC, each with their own advantages and 
technological challenges [13]. For example, optoelectronic systems [6], [14] utilise the nonlinear 
properties of off-the-shelf intensity modulation components coupled with fibre optic spools as delay 
lines to create reservoirs that can perform computational tasks with performance that rivals the state-
of-the-art [14]. However, these suffer from substantial challenges to minimisation due to the size of 
optical delay lines. Molecular platforms use molecules such as proteins [15] and enzymes[16] as the 
computational building blocks for RC. These offer advantages in terms of the complexity of the 
reservoir and the feasibility of miniaturisation, though throughput is often slow and interfacing with 
standard electrical components is challenging. Memristors have also been proposed for RC [17], [18], 
as well as other forms of computation [19]. Memristors use short-term memory effects created from 
their variable resistance over time and are a particularly promising implementation of RC due to their 
suitability for interfacing with standard electronics as well as the ease of miniaturisation.  

Nanomagnetic platforms are also well-suited to creating hardware-based reservoirs, offering many 
desirable properties including non-volatility, which provides a natural path to memory, and inherent 
non-linearity in their dynamics. Furthermore, methods for electrical reading [20], [21] and writing [22], 
[23] data are well-established from both the development of commercial magnetic random access 
memory (MRAM) [24], as well as research into more novel nanomagnetic logic [25]–[27] and memory 
[28], [29] devices. A wide range of nanomagnetic systems have been proposed for use as reservoirs 
including spin-torque oscillators (STOs) [12], super-paramagnetic arrays [10], skyrmion textures [30], 
single domain walls [11], artificial spin-ices [8], and garnet films [9]. While other nano-scale magnetic 
systems, such as spin-hall nano-oscillators (SHNOs) [31], and DW based spin-memristors [32] have 
been used for other neuromorphic computing implementations, they also show the nonlinear, time-
dependent responses necessary for potential RC implementation. 

Recently, we have proposed arrays of interconnected magnetic nano-rings as candidate platforms for 
nanomagnetic RC (Figure 1(a)) [33]. The arrays, which are lithographically patterned from thin films, 
consist of planar, ring-shaped nanowires of the soft magnetic material Ni80Fe20 with typical ring 
diameters <5 µm, linewidths <500 nm and film thicknesses <40 nm.  For these dimensions the 
magnetic ground state of the rings in the array are “vortex” states (Figure 1(a)), where the local 
magnetization vector rotates in a closed loop around the rings’ circumferences. However, they can 
also support meta-stable, bi-domain “onion” states where magnetic domains with anti-parallel 
circulation are separated by a pairs of magnetic domain walls (DWs) (Figure 1(b)).  

The soft magnetic properties of the nanowires means that the DWs are highly mobile and propagate 
through the nanowires like rigid quasi-particles when subjected to applied magnetic fields [17]. 
Specifically, in-plane rotating fields can drive the DWs pairs to coherently and continuously rotate 
around the ring circumferences [34] (Figure 1(c)).  While in isolated rings DW motion is relatively 
unimpeded, in interconnected ring arrays junctions between the rings act as pinning sites that present 
localised energy barriers against DW propagation. The interaction of the DWs with such pinning sites 
are highly stochastic [28], [29] such that when DWs encounter junctions during their rotation around 
the ring they have a finite probability of becoming pinned temporarily in place, with pinning becoming 
less likely as the rotating field amplitude is increased. These pinning events lead to field-dependent 
stochastic interactions between pinned and propagating DWs at the rings’ junctions which can cause 
both loss of DW pairs from the array (i.e., increasing in the number of vortex states) or gain of DW 
pairs (i.e., decreasing in the number of vortex states).  
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Figure 1- (a) Schematic diagram of a 'vortex' state. The blue arrows represent the local magnetisation direction 
(b) An 'onion' state, featuring two domains (separated by a head-to-head domain wall (upper red circle), and a 
tail-to-tail domain wall (lower red circle). (c) Coherent rotation of domain walls as the applied magnetic field 
direction (black arrows) rotates through 360°. 

Collectively, these effects result in the ring arrays’ magnetisation states exhibiting emergent responses 
to rotating magnetic fields, where the simple interactions of DWs at the junctions between rings 
results in complex collective behaviour of the arrays as a whole [33]. In our previous work we have 
shown that these emergent dynamics result in both a highly non-linear response of an arrays’ 
magnetisation states to the rotating field amplitude, and fading memory of previous magnetisation 
states, thus meeting the two primary criteria for a dynamical system to be used for RC [33]. The ring 
arrays have a proven manufacturing route using electron-beam lithography and the lift-off method, 
as demonstrated in the previous experimental studies on the system[33]. The transformations 
provided by the rings’ response can be varied by controlling how input data scales the applied field 
and its input rate. This offers the possibility of tuning their responses for different computational tasks. 
Furthermore, it is well established that the magnetisation states of magnetic nanorings can be 
characterised electrically using either anisotropic magnetoresistance measurements [21], [37], or by 
giant magnetoresistance if the rings are patterned from multilayer films with spin valve properties 
[38], [39], providing a potential readout mechanism for the ring arrays and making them highly 
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suitable for device integration. Together, these properties suggest interconnected rings have great 
potential for in-materio reservoir computing. 

In a previous work we used a phenomenological model of a ring array’s dynamics to demonstrate that 
these systems could be used as reservoirs [33]. This was achieved by treating an array as a single 
dynamical node into which time-multiplexed data [5] was input via the amplitude of a rotating applied 
magnetic field. Our simulations demonstrated that the ring arrays could successfully perform 
benchmark classification tasks such as spoken digit recognition. However, quantification of 
performance in any given task does not represent a comprehensive evaluation of the computational 
capabilities of a reservoir. 

Assessing the computational capabilities is challenging. In general, different devices will provide 
different reservoir transformations, with different dynamical regimes of a given device offering further 
flexibility. To overcome this, task-independent metrics of Kernel Rank (KR), Generalisation Rank (GR) 
[40], [41], and Linear Memory Capacity (MC) [42] can be employed. These allow empirical 
measurement of the reservoir’s ability to separate, generalise, and remember input respectively. 
These metrics provide an insight to the properties of a given reservoir configuration along three 
different computational axes, calculated directly from the transformations the dynamical system 
provides. The findings of these metrics can be utilised to provide a more informed starting point when 
optimising these systems to perform machine learning tasks, based on the assumed demands of a 
given task (e.g., high KR where data is linearly inseparable, high MC for regression tasks with long-
term temporal dependencies).  

In this paper, we use task-independent metrics to assess the computational capabilities of a modelled 
interconnected magnetic nanoring array. We show how controlling the scaling and input-rate of data 
allows these metrics to be tuned, and how their variation correlates to performance in a pair of 
benchmark classification tasks (spoken and handwritten digit recognition). We then demonstrate how 
expanding the reservoir’s output to include multiple, concurrent measures of the array’s magnetic 
state further improves upon these reservoir metrics and performance in classification tasks. 
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Figure 2: (a) Scanning Electron Micrograph of a typical nanoring array which has been modelled. (b) Schematics 
illustrating the DW annihilation process. The upper domain wall stays pinned whilst the lower domain wall 
moves, leaving the ring in the following states: (i) ‘onion’ state, (ii) ‘3/4’state (iii) DW collision, and (iv) formation 
of a ‘vortex’ state. (c) Equilibrium magnetisation of the array as a function of applied field as measured by 
polarised neutron reflectometry (PNR, red symbols) [33] and simulated equilibrium magnetisation given by the 
fitted model (black line). (d) Magnetisation images generated by the model and by X-ray photoelectron emission 
microscopy (X-PEEM) after 10 rotations of 50 Oe applied field. Red/Blue colour denotes magnetisation along the 
axes given by the colour bar. The modelled image includes a blurred region to aid visual comparisons.  

 

Methodology 

Simulating Magnetic Nanoring Arrays 

The system modelled consisted of a 25 x 25 square array (Figure 2(a)) of 4 µm diameter, 400 nm line 
width Ni80Fe20 rings, with thickness t = 20 nm. This system was experimentally characterised in [33], 
where we also created and validated a phenomenological model of its behaviour. Here, we used this 
model, RingSim, to simulate the response of a ring system to streams of data encoded using the 
amplitude of a rotating magnetic field, with the simulated magnetic states of the array acting as 
output.  

In RingSim, rings existed as either ‘onion’ states, containing two DWs or ‘vortex’ states containing no 
DWs. DWs were instanced into RingSim as agents which attempted to follow the rotating field to 
minimise Zeeman energy [43]. DWs within RingSim existed as pairs, with one DW instanced as a ‘Head-
to-Head’ DW (H2H, converging magnetisation), and the other as a ‘Tail-to-Tail’ DW (T2T, diverging 
magnetisation). When a uniform magnetic field was applied to a ring, the minimum Zeeman energy 
positions for H2H DWs and T2T DWs were located at opposite sides of the ring, and rotated with the 
direction of the applied field. For example, for the coordinate system shown in Figure 1(c), magnetic 
field applied (black arrows) in the positive y direction would have energy minima at the top of each 
ring for H2H DWs, and the bottom for T2T DWs. Differential movement of DWs as a result of stochastic 
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pinning events (Figure 2(b.i)) led to the formation of ‘3/4’ states (i.e. onion states with one DW 
displaced by 90°, Figure 2(b.ii)), or collapse of the ring into a vortex state upon DW collision and 
annihilation (Figure 2(b.iii/iv)).  

Junctions between rings created anti-notch-like energy barriers against DW propagation [44], [45]. 
The size of these energy barriers was modulated by the tangential component of applied field in 
accordance with Sharrock’s equation [35], [46]:  

(6.1)                                                                      ∆𝐸 = 𝐸0 (1 −
𝐻𝑑𝑟𝑖𝑣𝑒

𝐻0
)
𝛼

  

 where ∆𝐸 represented the field-modulated energy barrier, 𝐸0 is the magnitude of the 
unmodulated energy barrier, 𝐻𝑑𝑟𝑖𝑣𝑒 is the component of applied field acting tangentially to the ring 
at the DW’s position,  𝐻0 is the zero-temperature depinning field, and 𝛼 is a geometrical exponent 
that controls the variation of the energy barrier with applied field. 𝐸0 also depended on whether a 
DW was present in the neighbouring ring on the other side of the junction; where this was the case 
reducing the energy barrier was reduced by a factor 0.75. 

The expected timescale of thermally activated reversal, 𝑡𝑟, was calculated from ∆𝐸 barrier using the 
Arrhenius-Néel law, [47]: 

(6.2)                                                                             𝑡𝑟 = 𝑡0𝑒
∆𝐸

𝑘𝐵𝑇 

 where 𝑡0 represented the inverse of the attempt frequency (~ 1 GHz for Ni80Fe20 [35]), 𝑘𝐵 
represented the Boltzmann constant, and T was the temperature (taken to be fixed at 293 K).  

The rotating magnetic field was modelled as series of discrete steps of π/8 radians. At each step, the 
field was held for a duration of 𝑡𝐻 = 1 (16 ∗ 𝑓)⁄  seconds, where f was the frequency of rotation, taken 
here to be 5 Hz, resembling the order of the rotational frequencies used in our characterisation 
experiments. For each of these field steps, the probability, P of a DW depinning from by the energy 
barrier was calculated using: 

(6.3)                                                                           𝑃 = 1 − 𝑒−𝑡𝐻/𝑡𝑟 

The stochastic nature of DW pinning was modelled by comparing random floating points to pinning 
probability P. If the generated random floating point exceeded P, then the DW was considered free to 
propagate via the shortest path to either the appropriate Zeeman energy minima, or an intermediate 
junction. Interactions between DWs were introduced phenomenologically: If a H2H/T2T DW collided 
with T2T/H2H DW in the same ring, both DWs were annihilated, leaving the ring in an onion state; If 
a DW passed a junction where a no DW was present in the neighbouring ring it nucleates a H2H and 
T2T DW pair into that ring.  

RingSim was defined by 4 free parameters:  𝐻0, 𝐸0, 𝛼, and ∆𝐻0 . The first three parameters were 
defined in the previous equations, and the final parameter, ∆𝐻0 represented the standard deviation 
of a gaussian distribution of 𝐻0 across the junctions of the array and was included to approximate the 
variation in junction properties arising from material or lithographic defects. In this study, these 
parameters were fitted to the results of polarised neutron reflectivity (PNR) measurements of the 
array shown in Figure 2(a), where the array’s net magnetisation along the y-axis was measured as a 
function of rotating field amplitude. The PNR measurements were taken following 50 rotations at each 
applied field amplitude, with saturation and relaxation of the array occurring before each 
measurement [33]. The data thus represented a dynamic equilibrium magnetisation state of the array 
at each applied field amplitude. 

Figure 2(c) presents PNR data, along with the fit produced by RingSim (𝐻0 = 14.25 𝑚𝑇, 𝐸0 = 1.05𝑒𝑉,
𝛼 = 1.1, ∆𝐻0 = 1.25𝑚𝑇). The model fitted the data well, with agreement being particularly strong 
in the region Hdrive = 35 - 70 Oe, where the system exhibited an emergent response. Furthermore, 
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images generated from RingSim in this regime of behaviour showed good qualitative agreement with 
X-ray photo-electron emission microscopy images (X-PEEM), (Figure 2(d)), with both showing 
extended magnetic domains forming over similar length scales in the array. Further details of the 
validation of RingSim against experimental results can be found in [33]. 

 

Figure 3: (a) The ESN approach to RC, showing the layered structure of the model: a fixed reservoir layer is 
provided with time-varying input via weighted connections. A linear output layer then provides a weighted sum 
of activities from nodes within the reservoir layer. (b) Our approach, where the ring array acts as a single 
dynamical node, into which time-multiplexed data is input using a rotating magnetic field, and output is extracted 
by measuring magnetic properties of the array at the end of each time-multiplexed input.  

Simulating Reservoir Computing with Ring Arrays 

RC involves the transformation of discrete-time input signals, 𝑢(𝑡), to reservoir states, 𝑥(𝑡) (Figure 
3(a)). The reservoir configuration employed here follows the paradigm of a single dynamical node, as 
introduced by Appeltant et al. [5] (Figure 3(b)). Here, the network was constructed of ‘virtual’ nodes, 
created by observing a physical property of a dynamic system as it responds to time-multiplexed input. 
This approach has been used in a wide range of physical reservoirs due to its ease of implementation 
[5], [6], [10]–[12].  
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Figure 4- (a) Outline of the masking procedure for data representing an utterance of the digit ‘zero’, showing 
filtered input signal s (top, different colours represent different input dimensions d), which is combined with 
binary input mask M (middle), to form masked input signal u (bottom, masked signals shown for 𝜏=50/51). (b) 
Example signals for the three state readout variables, DWP (top), Mx (middle), and My (bottom) when driven with 
u50 (blue) and u51 (orange) of a spoken digit ‘zero’. 

Figure 4 outlines the reservoir computing procedure. The raw input signal 𝒔𝜏,𝑑 (Figure 4(a.i)) is first 
combined with a randomly generated mask matrix 𝑴𝑑,𝜃 (Figure 4(a.ii) to create a time-multiplexed 

input matrix, 𝒖𝜏,𝜃, (Figure 4(a.iii)) via equation (6.4), 

(6.4)                                                                 𝒖𝜏,𝜃 = 𝒔𝜏,𝑑 ∗ 𝑴𝑑,𝜃  

where 𝑑 = number of dimensions of the input signal, τ = the number of time-steps of the input 
signal, and 𝜃 = the number of virtual nodes. Fifty virtual nodes were chosen here to provide adequate 
dimensionality expansion while keeping simulation durations short. Matrix 𝒖𝜏,𝜃 was then flattened by 

concatenating row by row, producing a 1D input signal 𝑢𝑛 of length  𝜏 ∗ 𝜃. For 𝑑 > 1, 𝑴𝑑,𝜃  was filled 
with random binary digits (figure 4(a.ii)). Here, the virtual nodes provide different linear combinations 
of input dimensions over time, allowing the reservoir to provide a non-linear representation of these 
inputs via the system’s intrinsic nonlinearity. For single-dimensional inputs, a mask of random floating 
points was used instead to excite different responses in the reservoir over time. 

For an input datum 𝑖 from 𝑢𝑛, the applied field amplitude 𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑖  was given by: 

(6.5)                                                        𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑
𝑖 = 𝐻𝑐𝑒𝑛𝑡𝑟𝑒 + 𝐻𝑟𝑎𝑛𝑔𝑒 ∗ 𝑢𝑖 

where 𝐻𝑐𝑒𝑛𝑡𝑟𝑒 and 𝐻𝑟𝑎𝑛𝑔𝑒 represented the offset and scaling of the rotating field sequence.  

Each input was applied for a given number of quarter-rotations of field, where 𝑁𝑞 denoted the number 
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of quarter-rotations (with quarter-rotations chosen to reflect the fourfold rotational symmetry of the 
array). Here, values of 𝑁𝑞 were chosen such that 𝑁𝑞 was smaller than the number of quarter rotations 

required to reach an equilibrium state. This connected the states of the virtual nodes to one another 
by maintaining the reservoir in transience [5], [12]. 

Three variables correlated to the magnetic state of the array were logged at the end of each input, 
the number of DWs currently in the system, normalised to the number found at saturation (Domain 
Wall Population, DWP, Figure 4(b.i)); and the array’s net magnetisation components in the x and y 
directions, 𝑀𝑥 and 𝑀𝑦, Figure 4(b.ii/b.iii)). These were concatenated, producing a reservoir state 

vector 𝑥3𝑛  which was three times the length of  𝑢𝑛. We note that while these output variables were 
chosen as they were easily available in RingSim, they are all potentially accessible in electronic 
measurements of real devices.  For example, values representative of 𝑀𝑥 and 𝑀𝑦 could be measured 

in spin valve stacks exhibiting GMR multilayers with appropriately aligned pinned layers [20], [38], 
[39], while a proxy for DWP could be obtained through anisotropic magnetoresistance (AMR) 
measurements [21], [48], [49].  

The output from the reservoir, 𝒀𝜔,𝑛, was constructed by combining the reservoir state matrix, 𝑿𝜃,𝑛, 

with output weights, 𝑾𝑜𝑢𝑡
𝜔,𝜃, where 𝜔 reflects the number of output nodes, and 𝑛 reflects the 

number of input patterns used to construct reservoir state matrix X. Output weights were calculated 
using an ordinary-least-squares method with Tikhonov regularisation, commonly referred to as ‘Ridge 
Regression’ and described by the following equation: 

(6.6)                                                          𝑾𝑜𝑢𝑡 = 𝒀𝑿𝑇 ∗ (𝑿𝑿𝑇 + 𝛾2𝑰)† 

 where 𝛾2 represented the regularisation parameter, 𝑰 the identity matrix, and † the Moore-
Penrose pseudo-inverse operation. Regularisation was performed by selecting the 𝛾2 with highest 
average classification accuracy on the training set, evaluated across multiple shuffles of the training 
data.  

 

Task-Independent Metrics 

We estimated the computational properties of the reservoirs using task independent metrics: KR, GR 
[40], [41], and MC [42]. Both KR and GR rely on estimations of the number of non-linearly related 
output patterns are that generated when a system is provided with input sequences with distinct 
characteristics. The differences between input characteristics were designed to assess how the 
reservoir responds to distinct input patterns compared to nominally similar patterns. Hence, KR 
estimated a reservoir’s ability to map distinct inputs to different reservoir states, while GR estimated 
the ability to generalise noisy versions of the same input to similar reservoir states. Generally, higher 
KR scores mean a better ability to separate data, while lower GR scores reflect a better ability to 
generalise data. The ability of the reservoir to separate input data effectively (High KR) whilst not being 
overly sensitive to small changes in initial conditions (Low GR) is what makes them effective as 
classifiers, though the exact ratio of KR to GR for optimal performance is dependent upon the given 
task [41]. 

To measure both KR and GR, N x 1-dimensional input signals of length M were generated from 
independent and identically distributed (i.i.d.) floating points uniformly distributed between ±1 and 
applied to the reservoirs. Here, N = 200 and M = 10. For KR, the sequences were unique and 
uncorrelated from one another; in GR, the sequences were uncorrelated except for the final three 
inputs, which were identical for each sequence. Hence, the output states from KR show the reservoir’s 
ability to map each unique input pattern to non-linearly related output states, and the output states 
from GR demonstrate both the system’s ability to converge to similar output states from random 
starting points, as well as the system’s overall robustness to noise.  
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Before the sequences were applied to the reservoir, they were combined with a fixed mask of random 
floating points as described earlier for the case where input dimensionality, d = 1, thus producing N 
input signals of length M x θ. These were then scaled into rotating field sequences using Equation 5.  
The reservoir was reinitialised with a strong pulse of magnetic field, saturating the system, and 
forming onion states uniformly aligned along +y prior each sequence being inputted. The final 
reservoir states following each sequence were generated by taking measurements of DWP, 
𝑀𝑥  and 𝑀𝑦 across all θ virtual nodes, thus generating an output matrix 𝑶𝑁,3𝜃. KR and GR were defined 

as the ranks of these matrices, and thus represented the number of linearly independent responses 
produced at the reservoir’s output when driven with input signals with the characteristics described 
above. In addition to generating KR and GR for matrices 𝑶𝑁,3𝜃 containing all three state variables, 

ranks were also generated for 𝑶𝑁,𝜃 matrices for each of DWP, 𝑀𝑥  and 𝑀𝑦 alone, in order to highlight 

the effect on computation of evaluating additional reservoir properties for each input datum.  

 

The ranks of O were estimated using singular value decomposition, calculated as the number of 
singular values above an arbitrary small noise threshold, here 0.1. To alleviate biasing higher metric 
scores to regions of operation where the readout state variables are numerically higher, all output 
matrices O were normalised against the maximum value in O prior to singular value decomposition to 
provide fair rank estimation between field profiles. 

To evaluate the ring array’s memory capacity, it was driven with an i.i.d. input 𝑢𝑖, where i denoted 
each input datum before masking. Here, i=550, but the outputs from the first 50 inputs were discarded 
to wash out any initial conditions from the reservoir’s response. We then trained 𝑾𝑜𝑢𝑡

𝜔,𝜃 to recover 
past inputs 𝑢𝑖−𝑘 for each delay k as output 𝑦𝑘, with a 250:250 train/ test split. MC was evaluated from 
the covariance between the delayed inputs 𝑢𝑖−𝑘 and the trained reconstruction of input 𝑦𝑘  for 
summed across all nodes 𝜃 for each delay via the following formula: 

(6.7)                                                          𝑀𝐶 = ∑
𝑐𝑜𝑣2(𝑢𝑖−𝑘,𝑦𝑘)

𝜎2(𝑢𝑖)𝜎
2(𝑦𝑘)

𝜃
𝑘=1  

MC provided a basic insight into the memory properties of the reservoir, with MC approximating the 
number of time-steps in the past over which the network could reliably recall previous inputs.  

Heatmaps were generated showing metric values (KR, GR, MC) for a range of driving field parameters 
𝐻𝑐𝑒𝑛𝑡𝑟𝑒, 𝐻𝑟𝑎𝑛𝑔𝑒, and 𝑁𝑞. In these heatmaps, and the subsequent performance heatmaps for the digit 

recognition tasks, the scaling parameters were instead expressed as the mean field applied, as well as 
the standard deviation of the field sequence for a given set of input parameters. This is done to 
account for the reduction in effective range caused by the masking process, as well as the non-uniform 
distribution of the task data, allowing more effective correlation between the metrics and the task 
performance. 

Digit Recognition Tasks 

A pair of benchmark classification tasks were chosen to assess reservoir performance: spoken digit 
recognition (NIST TI-46 database, [50]) and handwritten digit recognition (MNIST, [51]). Both consisted 
of a total of 500 utterances/images of the digits 0 – 9. For TI-46, each of five female speakers provided 
ten utterances of each digit. Inputs were created using a Mel-Frequency Cepstral filter [52] to produce 
responses in 13 frequency bands across 50 ms windows, generating a raw input signal s with d=13 and 
τ equal to the number of windows generated by a given utterance. For MNIST, 50 images of each digit 
were taken randomly from the ‘training’ set of the database. The [28x28] pixel images were 
considered as signals where d=τ=28, and multiplexing was performed column-by-column. For both 
tasks, the array was initialised to contain uniform ‘onion’ states aligned along +y prior to each input 
sequence.  
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Performance was assessed across multiple 80:20 splits of training and testing data for each digit. The 
500 datapoints were split into train/test groups randomly, and performance was averaged over 100 
different shuffles of the data. For training/testing, the output for every τ in each signal was labelled 
according to the digit they represent using one-hot encoding, generating state matrix 𝑿𝜃,𝑚 and target 
matrix 𝒀𝜔,𝑚 where m was the total number of time-steps across all utterances.  

To classify unseen data, the activation for each of the ω=10 outputs was calculated as the cumulative 
sum across all time-steps τ, meaning that the classification algorithm could handle inputs of different 
number of timesteps. Classification was performed using a winner-takes-all approach based on the 
output with the highest activation. We assessed performance for output vectors consisting of each of 
the three state variables independently, as well as for all three simultaneously. 

Results and Discussion 

Task Independent Metrics 

Figure 5 presents heatmaps for KR, GR and MC created by of varying 𝐻𝑐𝑒𝑛𝑡𝑟𝑒 and 𝐻𝑟𝑎𝑛𝑔𝑒 values for 

each of the three state variable measurements. Data are presented for a fixed input rate of 𝑁𝑞 = 2, 

which exhibited best overall performance in the tasks, while heatmaps for input rates 
𝑁𝑞 = 1 and 𝑁𝑞 = 4 can be found in the supplementary material (Figures S1 and S2). Each metric was 

bounded by number of nodes, here 50, as the maximum rank of output matrices is limited to the 
smallest dimension of 𝑶𝑁,𝜃, and MC is similarly bounded as the maximum covariance for a given delay 
is 1, summed across all nodes 𝜃. The three input rates show broadly the same behaviour, with some 
shifting peak values towards higher mean fields and ranges for the fastest input rate of 𝑁𝑞 = 1 since 

higher fields perturbed the system more significantly when each input was applied for more rotations. 



137 
 

 

Figure 5- Empirically-measured reservoir metrics Kernel Rank (KR), Generalisation Rank (GR), and Memory 
Capacity (MC) for an input rate of Nq = 2, or a half rotation of field per input, for each of the output parameters 
of Domain Wall Population, X Magnetisation, and Y Magnetisation taken independently. Black/blue stars 
represent peak performance in spoken/handwritten digit recognition for each reservoir state variable, while 
metric scores are reflected according to the colour bars on the right. 

A wide distribution of different reservoir properties were observed in the heatmaps. The 
configurations most suitable for reservoir computing were clustered around mean field = 50-70 Oe, 
with KR reaching its maximum value and MC > 1, indicating the presence of both nonlinearity and 
memory in the reservoirs’ responses.  

Useful reservoirs were not expected in the ‘hotspots’ of relatively high GR, as in those regions the 
reservoirs could not map similar input sequences to similar output states. These regions likely 
corresponded to dynamical regimes where the inherent stochastic noise of the system was large and 
obscured the underlying signal, preventing effective generalisation. For all three state variables, there 
was a wide region of high KR. This represented regimes where the reservoirs’ dynamics were suitably 
non-linear due to a combination of the ring array responding non-linearly to rotating field amplitude 
(Figure 2(c)) and the connections between virtual nodes produced by the system being maintained 
transience. Effective reservoir computers were likely to be found in regions where KR > GR as these 
reflected the system operating in a complex yet ordered state. When optimising task performance, 
this criterion allows a reduction of the search space without discarding useful reservoir configurations. 
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All reservoir configurations exhibited low MC, with a maximum MC = 2. This feature can be explained 
by the time-multiplexed approach to RC used: consecutive timesteps of the input data were separated 
by the entire sequence of virtual nodes and so the memory of the system was able to connect virtual 
nodes together, though struggled to connect inputs from more than one timestep in the past. In other 
time-multiplexed networks with a single dynamical node, a delay line is often included to provide 
feedback of output from previous timesteps [5], [10], [53], and would likely augment the memory 
characteristics of the ring array reservoirs similarly. However, this is beyond the scope of this paper, 
as the goal was to characterise the computational properties of the dynamical system itself, without 
aid of peripheral feedback methods. As memory is critical to reservoir computation, a decision 
criterion for restricting the hyperparameter space search as part of task optimisation can be drawn 
where MC > 1.25 in order to eliminate reservoirs without effective memory. 

There were noticeable differences between the metric maps for DWP and 𝑀𝑥 /𝑀𝑦, with the 

directional magnetisation components having higher KR/GR values in general. One possible reason for 
this discrepancy related to the relative complexity of each state variable, since the DWP measure was 
indifferent to the direction and size of domains in rings, while the magnetisation components were 
sensitive to these additional factors, and hence exhibited a richer dependence on the system’s state. 
Additionally peak values of MC and KR were maintained at higher input standard deviations for 
𝑀𝑥  /𝑀𝑦. This arose from differences between the expected equilibrium values of DWP and 

magnetisation for a given field; DWP saturated to maximum values at lower applied fields than 
magnetisation as the rings form ‘3/4’ configurations (thus maximising DWP) at lower fields than they 
formed uniformly aligned onion states (thus maximising magnetisation).  

There were also differences between the metric maps for 𝑀𝑥 and 𝑀𝑦 which can be seen most clearly 

for 𝑁𝑞 = 2 (Figure 5) and 𝑁𝑞 = 4 (Figure S2) where the regions with high KR and GR extended over 

larger proportions of the maps for 𝑀𝑥 than 𝑀𝑦. We suspect these differences occurred because 

readouts were always performed when the field was aligned along the y-axis for even values of 𝑁𝑞, 

meaning the system was less significantly perturbed in x. Smaller perturbations meant a smaller signal-
to-noise ratio for the state variable compared to the inherent noise of the system, and hence higher 
values of KR and GR, especially when the mean field and standard deviation were lower. 𝑀𝑥 also 
produced a lower peak value in MC than 𝑀𝑦. Similarly, this is likely due to 𝑀𝑥 having small magnitude, 

and hence hindering reconstruction with worse noise properties, when operating in the regime where 
the system seems to show the biggest dependence on past input (Mean Field > 60 Oe, evidenced by 
peak MC scores for other two variables). 

The differing metric distributions for each of the state variables suggested that they provided different 
data transformations, and thus could be combined to create an enhanced reservoir. This was 
demonstrated through production of reservoir metric heatmaps for output vectors containing all 
three state variables together, as shown in Figure 6.  

 

Figure 6- Three-output-variable metric maps for (a) KR, (b) GR and (c) MC for an input rate of Nq = 2. Black/Blue 
stars represent the highest performing configurations in the spoken/handwritten digit recognition tasks 
respectively. 
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The three-output-variable metric maps showed substantial improvements over those for the 
individual variables. Both KR and GR increased, highlighting the additional nonlinear mappings 
provided by using the three state measurements concurrently. However, not all the additional nodes 
contributed additional nonlinearity. As noted previously, the upper bound for KR and GR was equal to 
the number of nodes/weights in the virtual network, i.e. 150 when using all three output variables. 
Both KR and GR peaked below this maximum value, with maximum ranks of 121 and 117 respectively, 
illustrating the diminishing returns of adding additional virtual nodes. The maximum MC of the system 
did not increase. This was likely due to the three state variables having similar rates of change with 
respect to changing inputs.  

 

Figure 7- Test accuracy for TI-46, 100 utterances by five different speakers, 80:20 training: testing split. Quoted 
accuracies are for 100 different shuffles of training/test data. Four maps represent which outputs constituted the 
features used for classification: (a) DWP output (b) Mx (c) My (d) combined outputs. Blacks line = performance 
without reservoir transformation, where 𝜃 = 50. Red line = baseline performance for input data generated from 
a mask with 𝜃 = 150. 
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Figure 8- Task performance for 100 different shuffles of training/testing data of the MNIST task. Blue stars and 
percentages represent peak classification accuracies for each configuration. Black line represents control 
performance generated by skipping reservoir transformation, where 𝜃 = 50. 

Digit Recognition Tasks 

Figure 7 presents maps of TI-46 performance for each of the output variables, as well for all three 
combined. Peak accuracies were 89.5%, 91.7%, and 91.9% for the DWP, 𝑀𝑥 and 𝑀𝑦 outputs 

respectively and increased to 97.7% for the three properties combined. As a control, performance 
tests were performed where the output weights were trained directly on the masked input data, 
meaning all the pre-processing steps were included, but the reservoir’s transformation was skipped. 
Control measurements were created for the three-output-variable case by generating masked inputs 
with 𝜃 = 150 to ensure parity in trainable parameters. The 50 and 150 virtual node control setups 
achieved average accuracies of 75.8% and 77.2% respectively. Thus, all the output configurations 
substantially outperformed the control. Reservoir configurations which outperformed the control 
data are bounded on the heatmaps by black and red lines, showing 50 and 150 node controls 
respectively.  

Peak accuracies were competitive with proposed architectures with similar pre-processing (94.8% 
with 500 training samples and 50 virtual nodes on a superparamagnetic array [10], 99.8% with 900 
training samples and 400 virtual nodes on a spin-torque nano-oscillator [54]). While the STNOs and 
superparamagnetic systems can respond to stimuli on nano-second timescales, these speeds are a 
requirement for these systems. The response of the ring system is more closely tied to the number of 
rotations rather than the frequency of input, with faster frequencies increasing the required field for 
a given amplitude of oscillation increasing with input rate. This is shown in figure S5 where the field 
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requirement increases for similar perturbations in the system’s net magnetisation for 5 compared to 
500 Hz. The tuneability of driving frequency of the ring system, coupled with the non-volatility of the 
system’s response, means the ring system is suitable for a wide range of input, broadening its range 
of potential applications where real-world sensory data is involved. 

The sequential MNIST handwritten digit recognition task was performed similarly, with both individual 
state variables, as well as the three outputs combined (Figure 8). Again, each state variable provided 
considerable improvement over the control configuration, with scores of 77.7%, 78.1%, and 78.6% for 
the DWP, 𝑀𝑥  and 𝑀𝑦 outputs respectively, compared to a control accuracy of 61.2%. Performance in 

this task rivalled an ESN with slightly fewer nodes (100 nodes, 79.43% accuracy [55]). In both tasks, 
𝑀𝑦 slightly outperformed the other two output measures, owing to its greater expressivity than DWP, 

and improved signal-to-noise properties compared to 𝑀𝑥, properties which are reflected in the metric 
maps where 𝑀𝑦 exhibited a higher KR than DWP, and a lower GR than 𝑀𝑥. 

While both tasks showed an improvement in performance when the concurrent state variables were 
combined, the MNIST task showed a smaller increase in performance compared to the TI-46 task, 
rising to a peak accuracy of 81.2%. The task independent metrics can explain the discrepancy between 
the improvement provided to the two tasks; metric evaluation showed a gain in the KR and the GR of 
the system with combined outputs, but no change to the system’s MC. The sequential MNIST task 
requires effective correlations to be drawn over long separations for successful classification (e.g., the 
left-most, ‘earlier’ columns for the digit ‘3’ are crucial to avoid confusion with an ‘8’), which require 
longer memory capacities than were provided by the ring array. Adding the additional readouts did 
not improve memory capacity, hence there was a limited improvement to performance. 

Strong correlations were observed between the reservoir metric maps and task performance maps. 
The regions of highest performance in both digit recognition task (indicated by symbols on the metric 
plots in Figures 5 and 6) were found at points that had high KR scores but avoided areas with high GR. 
MC was also strongly correlated to performance, with the highest performing reservoirs all having a 
memory capacity above 1.5. This indicated the importance of having both memory and nonlinearity 
in the system to provide useful transformations for classification. Practically, a hyperparameter search 
to optimise these reservoirs for a task could be confined within the decision boundaries outlined in 
the task-independent metrics section: KR – GR > 10, and MC > 1.25. This would reduce the parameter 
space of the original search considerably whilst still capturing the peak performance in both tasks. 
Decision boundaries overlayed on task performance heatmaps are shown in Figure 9. 
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Figure 9- Decision boundaries of KR – GR > 10 (blue) and MC > 1.25 (green) overlayed on performance heatmaps 
for the MNIST task (left) and TI-46 task (right), showing peak performance is captured for both tasks by these 
decision boundaries. 

In conclusion, we have shown that reservoirs based on interconnected magnetic nano-rings arrays can 
achieve a broad range of signal transformations, and explored the suitability of these for reservoir 
computing by calculating task independent metrics KR, GR, and MC. We then showed how the range 
of available metrics could be expanded by taking multiple concurrent measurements of the system’s 
magnetic state. Finally, we demonstrated that these metrics correlated to performance in 
classification tasks and highlighted the substantial increase in performance that using the additional 
measurements of system state brought. These ring arrays are particularly interesting as RC candidates 
due to the non-volatility of the system’s state when stimulus is removed, as well as the large scale of 
geometrical manipulation that is possible in order to tune the system’s dynamic response. The 
continuous nature of the ring structure is useful as it allows for easy measurement of the system’s 
state via electrical transport measurements. By employing two-stage lithographic techniques typical 
for magnetic nanostructure devices, non-magnetic electrical contacts can be superimposed upon the 
ring structures, allowing injection of current to the ring arrays for simple transport measurements via 
anisotropic magnetoresistance without altering the magnetic response of the array. Additionally, 
patterning the ring arrays into a multilayer with pseudo-spin-valve properties will enable a readout 
via giant magnetoresistance effects, which will significantly improve the magnitude of electrical signals 
resulting from state changes compared to anisotropic magnetoresistance. While the current state 
readout variables of domain wall population and magnetisation aren’t directly accessible electrically, 
the resistance changes in the array due to magnetoresistance effects will be correlated to the 
magnetic state of the array and should provide sufficient richness for experimental emulation of the 
input/output paradigm demonstrated here in simulation. However, the current input mechanism 
limits inputs to a single dimension and creates large temporal separation between inputs, hindering 
the memory of the system. Since the magnetisation dynamics of the ring ensembles are spatially 
distributed, they are naturally well-suited to spatially multiplexed approaches where local data inputs 
are used to address discrete regions of the array as physical, rather than virtual, nodes. This should 
allow substantial enhancement of the arrays’ memory characteristics. Our work represents an 
important step towards realising RC in magnetic ensembles with emergent magnetisation dynamics. 
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Supplementary  aterial 

Further Metric Plots 

 

 

Figure S1 - Empirically measured reservoir metrics for an input rate of Nqrot = 1. Rows reflect kernel rank, 
generalisation rank, and memory capacity respectively. Columns reflect results produced for domain wall 
population, x magnetisation, and y magnetisation taken as output respectively. 
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Figure S2 - Empirically measured reservoir metrics for an input rate of Nqrot = 4. Rows reflect kernel rank, 
generalisation rank, and memory capacity respectively. Columns reflect results produced for domain wall 
population, x magnetisation, and y magnetisation taken as output respectively. 
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Further 3-Variable TI-46 Heatmaps

 

Figure S3- 3-State-variable output accuracy heatmap for TI-46 task. 𝑁𝑞 = 1 

 

 

 

Figure S4- 3-State-variable output accuracy heatmap for TI-46 task. 𝑁𝑞 = 4 
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Figure S5- Plots showing simulated Y Magnetisation after 50 rotations of varying applied field for systems driven 
with drive frequencies of 5Hz (blue), and 500 Hz (orange). 
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7- ‘Reconfigurable Reservoir Computing with a 

Magnetic Metamaterial’ 
7.0- Preamble 
The objective of this chapter was to take what we had learned from the simulations of the ring arrays 

and develop a comprehensive computational platform that could be reconfigured to solve a wide range 

of tasks on a single device. This required the development of an experimental rig that could input 

arbitrary field sequences to the ring arrays and provide a device tractable way of reading out 

information of the magnetic state of the array (i.e., no beamlines or large optical setups!). 

To apply the rotating magnetic fields to stimulate the array, I designed a set of custom-built air coil 

electromagnets, allowing applications of arbitrary rotating fields to the nanoring arrays. In order to 

have full controllability over applying long field sequences and measuring device response, a codebase 

for interfacing with experimental equipment was designed. While I had created a rudimentary method 

for both controlling the electromagnets and logging measurement data within LabView, a postdoc 

within the group, Charles Swindells, provided a complete overhaul of this framework into an easily 

accessible and general set of python scripts which were then used for all future experiments. 

Charles and I then worked extensively to optimise the measurement of anisotropic magnetoresistance 

of the ring arrays as fields were applied. Once a reliable method for measuring the devices was 

established, I undertook an exploration into the physical origins of characteristic features that were 

observed in the magnetoresistance response of the devices, using both experimental measurements 

and micromagnetic simulations, which were described in the article. From this exploration, a number 

of computationally interesting dynamical properties were identified.  

Firstly, that there were two key frequency components of the AMR signal, each with a distinct 

nonlinear relationship with respect to applied field. The components arose from different mechanisms 

of magnetic response: the deformation of pinned domain walls in the system via susceptibility effects, 

and the propagation of domain walls around the rings. This was interesting for computation as it led 

to drastically different shapes in the resistance oscillations observed with respect to applied field. This 

meant that by taking fixed samples of the resistance level across a rotation, each sample had a distinct 

nonlinear response to the applied field, providing a means of providing nonlinearity and 

dimensionality expansion with the ring arrays. This led to the generation of a simplistic but novel 

method for reservoir computing with continuous-time oscillating responses; by recording the 

oscillation over time and having each time step represent a reservoir state readout. 

The second interesting property was the observation of drastically different settling times in response 

to a step change in input depending on the magnitude of the input. This meant that the ring arrays 

had a range of different timescales of response that could be exploited under the common reservoir 

paradigm of networks constructed from a single dynamical node, as introduced in the previous 

chapter. 

Finally, the ring arrays exhibited non-volatility of magnetic state when fields below a threshold value 

were applied. This was useful in generating memory behaviours, since it allowed storage of past inputs 

in the magnetic state of the array until another input that exceeds this threshold was provided. 

However, to exploit this, a network architecture consisting of distinct real nodes was required, as under 

the previous two architectures, new information would always wash out the state of the single node. 

To achieve this, the framework of the rotating neurons reservoir was employed. This allowed the 
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construction of a network of multiple nodes without having to directly provide connections between 

each of the nodes; instead a rotating pair of input/output connections emulate the interconnectivity. 

This provided a solution to the problem of low memory with the previously employed single-node 

arrangements. 

In order to demonstrate the broad range of computational properties that could be achieved by 

changing the reservoir architecture around the dynamic system, metric space assessment was again 

performed and corroborated via performance of benchmark tasks with drastically different 

computational requirements. This showcased the increased flexibility offered when the choice of 

reservoir architecture synergised well with both the dynamic properties of the reservoir, as well as the 

demands of the task. This study marked a significant development for the thesis: the demonstration 

of a working device that provided flexible computational properties. 

Specific details on author contributions can be found at the end of the article. This paper published in 

Communications Physics on 26/08/2023 and can be found online at https://doi.org/10.1038/s42005-

023-01352-4. 
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Abstract 
In-materia reservoir computing (RC) leverages the intrinsic physical responses of functional materials 
to perform complex computational tasks. Magnetic metamaterials are exciting candidates for RC due 
to their huge state space, nonlinear emergent dynamics, and non-volatile memory. However, to be 
suitable for a broad range of tasks, the material system is required to exhibit a broad range of 
properties, and isolating these behaviours experimentally can often prove difficult. By using an 
electrically accessible device consisting of an array of interconnected magnetic nanorings- a system 
shown to exhibit complex emergent dynamics- here we show how reconfiguring the reservoir 
architecture allows exploitation of different aspects the system’s dynamical behaviours. This is 
evidenced through state-of-the-art performance in diverse benchmark tasks with very different 
computational requirements, highlighting the additional computational configurability that can be 
obtained by altering the input/output architecture around the material system.  

 
Introduction 
In-materia computation, where the responses of material systems are exploited to perform 
computational operations, offers a potential alternative to conventional CMOS computing. Here, like 
in biological neurons, data processing operations are performed intrinsically via the physics governing 
the system’s response to inputs. This offers potential improvements in both latency and power 
efficiency, as dynamical complexity and memory are inherent properties of the substrate. This removes 
the need to shuttle data between discrete memory and computational units, which can cost up to 100 
times the energy of the computation itself when discrete memory units are located off-chip1. 
 
Reservoir Computing (RC)2,3 is a bio-inspired computational paradigm which is especially harmonious 
with in-materia computation. In RC, a time-dependent ‘reservoir’ layer (typically a recurrent neural 
network, RNN) provides complex nonlinear representations of input data, and a time-invariant readout 
layer provides a weighted output of the evolving state of the reservoir. Only the readout layer is 
trained, alleviating the training difficulties associated with standard RNNs since temporal 
dependencies of the reservoir layer are decoupled from the simple linear output4.  
 
As the response of the RNN is mathematically analogous to that of a dynamic system, it can be 
substituted with a real-world dynamic system with appropriate properties, namely nonlinearity 
between input and output, and a dependence on previous state that asymptotically diminishes over 
time, termed a ‘fading memory’. This has led to a plethora of proposed implementations, with 
platforms including optoelectronic5–7, molecular8, mechanical9–11, biological12,13, memristive14–16, and 
magnetic17–23 systems.  
 
Nanomagnetic platforms are of particular interest for RC due to their inherent hysteretic behaviours 
and nonlinearity of system dynamics, satisfying the two broad criteria necessary for RC. Many 
magnetic systems have been proposed as reservoirs and come with their own strengths and 
weaknesses. Spin-torque nano-oscillators17,24,25 offer high data-throughput and passive 
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synchronization, and can be characterised using simple electrical measurements. The all-electric 
nature of the input/output to these oscillators has allowed for small artificial neural networks (<10 
nodes) to be demonstrated experimentally26,27, and larger networks have been simulated for RC with 
binary inputs28,29. However, the intrinsic dynamics of single oscillators are relatively simple (though 
they can be augmented via external delayed feedback30,31) and have durations on the order of 
nanoseconds, limiting their suitability to processing applications where sensory data arrives with 
characteristic timescales on the order of seconds- far beyond the intrinsic decay times of these 
systems. Magnetic metamaterials (materials which are engineered to exhibit complex physical 
responses beyond their underlying material properties) such as artificial spin-ice systems19,20,32 and 
skyrmion textures33, represent an exciting subcategory for magnetic RC, boasting complex, spatially 
distributed responses. However, interfacing with these materials is challenging, since spin-ices are 
electrically discontinuous and skyrmion textures require sub-100K temperatures, inhibiting device-
tractable measurement approaches.  
 
While there have been many recent, important developments showcasing device-specific RC 
performance in a range of physical systems, many more general questions remain, such as how 
different RC architectures can be used to extract different computational properties, and how these 
architectures can best synergise with the underlying system dynamics. Frequently, the ‘single 
dynamical node’ paradigm34 is employed with little attention to its role in the computation or to the 
alternative computational properties that could be extracted with different reservoir architectures. 
This leaves some of the broader potential of nanomagnetic RC as reconfigurable computational 
platforms untapped.  
 
In this paper, we experimentally demonstrate a pipeline from characterization of device physics, to 
reservoir design, to state-of-the-art performance in several, diverse computational tasks with a single 
magnetic device consisting of an array of interconnected magnetic nanorings35. The nanoring system 
boasts a combination of highly complex system response and simple electrical readout: strong coupling 
between individual ring elements produces complex ‘emergent’ dynamics (where large-scale 
responses arise from the collective effects of simple interactions between elements, rather than the 
properties of the elements themselves), while the continuous nature of the patterned nanostructure 
facilitates electrical transport measurements. Additionally, non-volatile domain configurations formed 
in response to input provides a natural means of generating system memory at driving fields an order 
of magnitude smaller than spin-ice systems36. To harness these emergent behaviours, we employ the 
device in three distinct reservoir architectures that each leverage different aspects of its dynamical 
properties. We then demonstrate how this provides flexible computational functionality by performing 
benchmark tasks with contrasting computational requirements on a single device, achieving state-of-
the-art accuracies. This highlights the reconfigurability achievable in in materio platforms via careful 
choice of the accompanying RC architecture. 
 
 

Results 
I- Response of Nanoring Arrays 
The devices studied here consist of arrays of 10nm thick Ni80Fe20 (Permalloy, Py) nanorings, patterned 
into a square lattice with each ring having nominal diameters of 4μm and track widths of 400nm, each 
overlapping with its nearest neighbours across 50% of their track widths35,36. The arrays were 
fabricated by electron beam lithography with lift-off processing and metallised via thermal 
evaporation. Ti/Au electrical contacts were then added via additional lithography and deposition steps, 
allowing measurements of the device’s anisotropic magnetoresistance (AMR). Despite typical AMR 
ratios of 3-4% for Py37, shape anisotropy in the rings means that magnetisation typically runs parallel 
to the applied currents. This meant only the domain walls which present local changes in 
magnetisation direction can be detected via AMR, leading to an effective AMR ratio of 0.2% for the 
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device, with the signal quality improved via lock-in amplification techniques (see Methods- Electrical 
transport measurements). The samples have saturation magnetisation 𝜇0𝑀𝑠 of 0.969 ± 0.006 T, 
determined via broadband ferromagnetic resonance measurements (see supplementary note 4, and 
supplementary figure S6). Figure 1a shows a scanning electron microscope image of the device.  
 
In previous studies35,36, we have shown that interconnected nanoring arrays exhibit emergent 
magnetization dynamics under rotating in-plane magnetic fields. At the microstate, each ring exists in 
one of three metastable configurations, defined by the number and position of domain walls (DWs) it 
possesses, with configurations for ‘vortex’ (zero DWs), ‘onion’ (two DWs, 180º separation), and ‘three-
quarter’ (two DWs, 90º separation) shown in figure 1b. To initialise the ring arrays, a strong pulse of 
magnetic field and subsequent relaxation leads to a uniform state of aligned onion rings, with DWs 
pointing along the direction of the saturation pulse. Under high driving fields, the DWs can coherently 
propagate with the applied field, maintaining onion configuration. However, under lower driving fields, 
stochastic pinning events cause differential movement of DWs within a ring (onion to three-quarter 
transition), potentially leading to DW annihilation (three-quarter to vortex transition) when itinerant 
DWs in the same ring collide. DWs can be restored in rings via the propagation of a DW in neighbouring 
ring, with the magnetic reversal across the junction between the two rings leading to injection of a 
pair of DWs in the empty ring (vortex to onion/three-quarter transition). Schematics for these 
processes are shown supplementary figure 2g, 2h. Whilst these behaviours are stochastic at the local 
scale, interactions between many rings lead to a well-defined global emergent response, providing a 
complex yet repeatable dynamic state evolution (Figure 1c-1e).  
 
To evaluate the evolving magnetic states of the arrays for computation, AMR measurements 
performed via the electrical contacts shown in Figure 1a. This gives a single global readout for each 
array, which varies over a given input rotation. Initially, the device’s response as a function of rotating 
field amplitude was surveyed to determine the characteristics of the responses and identify 
computationally useful features (Figure 1f). Fourier analysis of the AMR response led to observation 
of two distinct signals with frequencies that match (1f signal) as well as double (2f signal) the frequency 
of the rotating magnetic field, with the relative magnitude of the two signals with respect to driving 
field amplitude shown in Figure 1f(i) (see Supplementary note 1 for further Fourier analysis). Physically, 
these processes can be separated into elastic deformation of the rings’ domain structures due to 
susceptibility effects (1f, dominant at lower fields), and irreversible DW propagation between pinning 
sites in the rings (2f, dominant at higher fields). Further details of these mechanisms can be found in 
the supplementary note 2. The dynamic nature of the system’s response was evaluated by measuring 
the number of rotations that were required for the AMR signal to reach dynamic equilibrium (<2% 
amplitude variance between cycles) from saturation, with the measured timescales and the underlying 
signals shown in figures 1f(ii), and 1f(iii) – 1f(vi) respectively. The onset of DW motion can also be 
observed at a ~22 Oe, marked by the nonlinear increase of 1f signal in figure 1F(i), as well as the start 
of varying time-signals between cycles in figure 1f(iii) – 1f(vi). 
 
  



157 
 

Figure 1: Overview of static and dynamic responses of nanoring arrays 

 

Figure 1a- Scanning electron microscope image showing a nanomagnetic ring array and electrical contacts. 1b- 
Schematics of available ring domain states, showing (i) Onion, (ii) Three-quarter, and (iii) Vortex. 1c- Varying state 
population of an array as driving field is increased, taken by counting populations of X-Ray photoemission 
electron microscopy images (X-PEEM) images after 30 rotations of applied field. 1d- Population of mobile, 
pinned, and vortex state rings over 25 successive cycles of 27 Oe rotating applied field, inferred from time-varying 
AMR signals. 1e- X-PEEM images of ring arrays when driven with 30 field rotations of amplitude 21.8, 26.3, 30.6, 
and 32.8 Oe of applied field. Magnetic contrast is given by the direction arrows on the colour bar, crosses in the 
top right corner rings denote (blue) onion, (green) vortex, and (red) three-quarter ring configurations. 1f(i)- 
Fourier components of AMR signal of arrays driven with 10 rotations of magnetic field at various applied fields. 
Blue datapoints show Fourier component at the driving field frequency (1f), while orange datapoints show 
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component at double the driving field frequency (2f). (ii)- Number of rotations of field required for the system 
to reach an equilibrium response (<2% peak-to-peak deviation between cycles) from saturation for a range of 
applied fields. (iii)-(vi) - Measured lock-in voltage of the array when driven with 10 field rotations of amplitude 
(iii) 20 Oe, (iv) 25 Oe, (v) 32 Oe, and (vi) 35 Oe from saturation. 

 
From these measurements, three computationally promising properties can be identified. Firstly, the 
distinct variation of the AMR frequency components with respect to field provides crucial nonlinearity. 
Secondly, the dependence of the device’s response on its past states, as evidenced by the range of 
timescales observed in the AMR signals, allows information to be connected across time in manner 
reminiscent of the echo-state property of echo state networks (ESNs). Finally, the presence of a 
threshold field below which no irreversible DW motion occurs shows a non-volatility of system state, 
providing pathways to longer-term storage of information.  
 
The key demonstration of this paper is how these physical behaviours of the nanoring devices can be 
harnessed in different ways to create RCs with different computational properties, and thus tackle 
problems with different computational requirements. We achieve this by incorporating the device into 
three distinct reservoir architectures: an approach which takes advantage of the time-continuous 
oscillations of the nanoring array (signal sub-sample reservoir), the ‘single dynamical node’ 
architecture introduced by Appeltant et al.34, and the recently proposed ‘rotating neurons reservoir’ 
of Liang et al.38, yet to be deployed outside of analogue electronic RC. These architectures are 
presented schematically in Figure 2 and described in their respective Methods sections. In the 
following, we will explain how each of these architectures allows different computational properties 
to be emphasised and then exploited to perform challenging computational tasks. For further details 
on the methods employed for the machine learning tasks, see Supplementary note 5. 
 

II- Signal Sub-sample Reservoir 
One foundational task for RC platforms is nonlinear signal transformation20,32,39–41. In this problem, the 
system is provided with input of a given periodic response and is tasked with transforming the input 
signal into a different target signal. To perform this task, the reservoir should provide a higher-
dimensional, nonlinear representation of the input signal so that the transformation between the 
input and the target can be computed via a simple linear readout.  
 
To meet these computational demands, we designed a simple reservoir input/output architecture that 
directly exploited the non-linear variation of the 1f/2f frequency signals (Figure 3a). Here, each input 
datum scaled the field amplitude for a single rotation, and the resulting AMR response was sampled 
at 32 times per input, expanding input dimensionality 32-fold. The two frequency components have 
different nonlinear variations with respect to input magnitude, meaning that the relative magnitude 
of the continuous signal at fixed sample points will have nonlinear variation with respect to each other, 
providing dimensionality expansion of the input data. This offers a very simple method for providing 
increased nonlinearity in physical systems with continuous signals, obtained by leveraging a phase 
transition in system response.  
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Figure 2-  Schematic diagrams of each reservoir architecture 

 

Figure 2- Schematic diagram showing three different reservoir architectures (a-c), with differing methods for 
providing input data (red circles) into reservoir nodes (blue circles) and reading reservoir state as output (green 
circles). a- Signal sub-sample architecture, showing a singular input datum fed into the ring arrays, with multiple 
state readouts taken from the single node. b- Single dynamical node architecture, where multiple input 
dimensions are time-multiplexed (black rectangle), before being fed into a single node. ‘Virtual nodes’ (pale blue 
circles), are generated from the dynamical node as input varies over time, generating outputs for each virtual 
node. c- Revolving neurons architecture, where the weighted connections between input-to-reservoir and 
reservoir-to-output change consecutively with each input timestep 𝜏. 

Figure 3b-3d shows the resulting signal reconstruction when the ring array system was tasked with 
transforming sinusoidal input to ReLU(sin(x)) (rectified linear unit), square wave, sawtooth waveforms. 
To evidence the impact of the metamaterial on computation, a control experiment was performed by 
recording the voltage of one of the driving electromagnets as the measured reservoir state instead of 
the resistance of the nanoring array. This provided equal dimensionality expansion as the nanoring 
array transformation, but without the nonlinearities contributed by the nanoring system. However, 
these measurements do contain any hardware-based nonlinearities in the electromagnets such as 
slew-rate between inputs and inductive effects, accounting for any nonlinearities provided by the 
experimental equipment. The ring array network outperformed the control network in all cases, 
offering up to a 55-fold reduction in MSE (4.6x10−4 compared to 2.5x10−2) when replicating the ReLU 
function. The rings also perform favourably compared to proposed spin-ice platforms, with lower 
errors for Sawtooth (1.406 x10−2  vs 1.919x10−2) and Square (6.605 x10−3 vs 2.429 x10−2) waves20. 
The different reconstruction tasks are performed optimally at very different ranges of applied field 
(Figure 3e), highlighting how the ring array's dynamics can be further tuned to for better performance 
in a range of similar problems even when held within a consistent reservoir architecture. The 
accuracies for all transformations for both the ring array and control network, as well as the ratio 
between them, are shown in the figure 3f. 
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Figure 3- Performance of signal transformation task 

 

Figure 3a- Schematic diagram showing scaling of input data ui to applied field Happ, application of field rotations 
as components of field in x and y, Hx and Hy respectively, followed by sampling of resulting anisotropic 
magnetoresistance (AMR) signals to produce features, combined via a weighted sum to produce output. 3b-f: 
optimal reconstructions obtained from the Ring Array (blue) as well as the control measurements of 
electromagnet voltage (orange) compared to the desired target signal (green), for (b) rectified linear unit(sin(x)), 
(c) square wave, (d) saw wave. 3e- Input scaling parameters corresponding to reservoir configurations with 
minimum error for the signal reconstruction task, overlayed on relative 1f (blue dotted line) and 2f (orange 
dotted line) signal magnitudes over a range of applied fields. Bar width demonstrates applied field range (Hr), 
with central field (Hc) marked by the solid line. 3f- Comparison of mean-squared error between target signal and 
reconstructions drawn from the measured Ring Array voltages, as well as a control measurement taken from 
voltage measurements of the driving electromagnets. 

 

III- Single Dynamical Node Reservoir 
Another key application for RC is the classification of time varying signals such as spoken digits, a task 
which has been previously used to benchmark a variety of RC platforms17,21,25,34. While input data for 
the previous task was 1-dimensional, input data for speech recognition tasks are typically multi-
dimensional. Furthermore, non-linear interactions between these input dimensions in the reservoir 
are essential to successful classification. Here, we consider classification of the spoken digits 0-9 from 
the TI-46 database (see Supplementary Note 5- Spoken Digit Recognition Task for details). The input 
data was 13-dimensional, consisting of the results of applying Mel-frequency cepstral filters42 to each 
utterance. The data is linearly inseparable, with classification accuracy being limited to around 75%25 
if input data is passed directly to a linear readout layer. The role of the reservoir is to provide a non-
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linear mapping of input data into higher dimensional reservoir space, thus allowing the linear readout 
layer to establish hyperplanes which can classify the data accurately. 
 
Tackling this problem requires a reservoir architecture that expresses the non-linearity of the device’s 
AMR response, can accommodate multiple input dimensions, and allows nonlinear combinations of 
these input dimensions, properties that cannot be provided by the signal sub-sample architecture. To 
satisfy these requirements we adopted the single dynamical node approach (Figure 4a) initially 
proposed by Appeltant et. al.34 and detailed in the Methods section. Multidimensional input data was 
fed sequentially into the device, creating a reservoir constructed of ‘virtual’ nodes that convolves 
inputs temporally via the ring array’s transient dynamics. Thus, this approach leveraged both the non-
linear response of the device’s AMR signal to input (via the activation of the virtual nodes), and its 
transient nature (which allowed interaction between virtual nodes).  
 
As shown in the previous task application, our device exhibited a broad range of responses that were 
potentially useful for computation.  Searches over parameter space can be performed for simple tasks 
such as signal transformation, however for more data-intensive tasks, this process is inefficient. 
Previous studies have shown that task-agnostic metrics, which can be found via statistical analysis of 
small random datasets36,43, can speed up parameter selection by identifying promising regions of 
parameters space. Using metrics of kernel rank (KR, the ability of the reservoir to separate different 
input classes) and generalization rank (GR, and the ability of the reservoir to generalise inputs of the 
same class), we evaluated the computational properties of the device’s transformations for a range of 
scalar parameters controlling the scaling (Hr) and offset (Hc) of inputs (see supplementary note 3). As 
the spoken digit recognition task required improving the linear separability of input data, KR was 
chosen to be the key identifier of promising performance, with a comparatively lower GR also needed 
to generalise between the different speakers.  
 
To highlight the single dynamical node approach’s better suitability to the spoken digit recognition 
task, metric maps were also drawn similarly for the other reservoir architectures (Supplementary 
figure S4). While the revolving neurons reservoir showed good separation properties (high KR), and 
the signal sub-sample reservoir good generalisation properties (low GR), only the single dynamical 
node architecture exhibited a balance of the two, showing better suitability for classification tasks. This 
is likely due to the rotating neuron reservoir’s increased dependency upon past states reducing its 
ability to generalise, and the relatively smaller dimensionality of the signal sub-sampling reservoir 
leading to poorer ability to separate information. Conversely, the single dynamical node approach both 
provides good dimensionality expansion, as well as having decreased dependence on past states via 
the increased separation of inputs over time provided by the time multiplexing procedure. 
 
Figure 4b shows the error rates versus training samples for spoken digit recognition, obtained using 
both a ‘promising’ (Hc = 29 Oe, Hr = 10 Oe, KR = 76) and arbitrarily chosen reservoir configurations 
(e.g., Hc = 21 Oe, Scaling, Hr = 7.5 Oe, KR = 52). 100-fold cross-validation was performed to evaluate 
general performance and find a suitable regularization parameter, selected for best performance on 
the training set to prevent overfitting. Again, a reservoir constructed from the voltage signals across 
the driving coils was used as a control, effectively skipping the reservoir transformation whilst including 
the same pre-processing steps. A significant reduction of word-error-rate is observed moving from 
‘control’ to ‘arbitrary’ to the ‘promising’ case, with error-rates of 24.8%, 10.4%, and 4.6% respectively. 
This demonstrates not only the effectiveness of the reservoir’s transformations in improving the linear 
separability of the data, but also the utility of evaluating metric scores to expedite system parameter 
selection.  
 
One method for further improving performance commonly employed in conventional RC settings is 
the use of bespoke learning rules instead of standard regression-based training methods. Here, the 
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SpaRCe44 algorithm was used, which was developed for use on ESNs though thus far has not been 
applied to physical systems, and its online nature synergises well with life-long learning paradigms 
especially useful for system-level device applications45. The algorithm aims to suppress confounding 
information and induce sparse output representations. Here, these properties help to mitigate the 
effects of experimental noise and remove redundant virtual node outputs. With SpaRCe, the accuracy 
was improved to 99.8%, as shown in Figure 4c. The ring arrays matched state-of-the-art performance 
compared to other magnetic architectures, even with fewer (50) virtual nodes used in the time-
multiplexing procedure (STNOs with 400 virtual nodes, 99.8%17, simulations of superparamagnetic 
arrays with 50 virtual nodes, 95.7%21), and improved upon the performance achieved in simulations 
of the ring system (97.7%36).  
 
 
Figure 4- Performance of spoken digit recognition task 

 

Figure 4a- Process showing time multiplexing procedure, taking raw inputs, combining them with a fixed mask 
to produce masked input (each of N virtual nodes has an input of duration θ, totalling to a duration of 𝜏 = 𝑁𝜃 
per unmasked input), then inputting those inputs to the reservoir and measuring evolving reservoir state. 4b- 
Error rate versus number of sequences used for training for ‘promising’ (𝐻𝑐  / 𝐻𝑟  = 29±10 Oe, (red)) and ‘arbitrary’ 
(𝐻𝑐  / 𝐻𝑟  = 21±7.5 Oe, (blue)) reservoir parameters, and control measurements taken from voltage readings of 
the input electromagnets for the ‘promising’ case (black). The shaded regions show the standard deviation of 
performance over the 100-fold cross-validation. 4c- Error rate vs training iteration comparison between online 
learning methods using the SpaRCe algorithm (black) and standard online learning (blue) for a system driven 
with 𝐻𝑐  and 𝐻𝑟  values of 29±10 Oe. The shaded region shows minimum and maximum accuracies over 10-fold 
cross-validation. Red line shows accuracy achieved with ridge regression. 

IV- Revolving Neurons Reservoir 

In addition to data classification tasks, RC is also highly applicable to time series prediction problems. 
To be successful in these tasks, RC platforms often require fading memory of past inputs to correctly 
predict future trajectories, in addition to the non-linear properties that were exploited in the previous 
two tasks. The memory of a reservoir can characterised by evaluating the linear memory capacity46 
(MC), which measures the ability to reconstruct past inputs from the current reservoir state over 
increasing delays. Typically, nanomagnetic RC platforms exhibit low MC without the inclusion of 
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delayed feedback due to the short timescale of intrinsic dynamic behaviors23. Additionally, reservoirs 
constructed under the single dynamical node paradigm struggle to recall previous input datapoints 
due to the long temporal separations between each input created by the time-multiplexing procedure. 
For example, the prior architectures presented here exhibited peak MC < 3, meaning they could only 
reliably recall the previous two inputs (see supplementary figure S5). 

To utilise the system’s non-volatile properties and create a architecture better suited to time series 
prediction tasks, the recently proposed ‘rotating neurons reservoir’38 (RNR, see Methods) 
configuration was employed. Here, the system was constructed from 50 distinct dynamical nodes, with 
inputs to each node modulated by a fixed, rotating input (output) mask which multiplied input 
(reservoir state) values by ±1 (weight value), shifting the input/output connections to each node by 
one position every timestep (Figures 2c, 5a).  

The memory effects exhibited in this configuration emerge from the ratchet-like nature of the device’s 
non-volatile response: small inputs cause reversable perturbations while larger inputs cause non-
volatile changes to underlying domain structure. In the RNR configuration, this means the system’s 
evolution is dependent upon the sign of the input at a given time, determined by the mask. For 
negative mask values, the low applied field strengths leave the rings’ domain structures unchanged 
through multiple timesteps until a positive input is applied to the system, where the higher applied 
fields cause DW propagation which is then measured as a change in the system’s resistance. This allows 
inference of the previous inputs applied to the system from the current states of the dynamical nodes, 
increasing MC. This architecture hence synergises well systems where activity decays slowly in the 
absence of large inputs. 

Figure 5b shows the MCs calculated from the ring array system using the RNR approach. A peak MC of 
around 11.5 was found at 𝐻𝑐 = 21 Oe and 𝐻𝑟 = 10 Oe, showing that the device’s non-volatile properties 
were being harnessed to provide much greater memory of past inputs than the other approaches, and 
thus extending applicability to problems with longer-term temporal dependencies. The region of 
maximum MC here is correlated to the central field at which DW motion starts to occur (Figure 1f(ii)). 
This corroborates the reasoning that the movement of DWs into different non-volatile configurations 
at fields above this value is where the system is ‘storing’ its memory of past states. 

While MC can quantify the extent of linear memory (direct reconstruction of past inputs) in the system, 
real-world regression problems often require nonlinear memory (nonlinear representations of past 
inputs) for accurate prediction. To demonstrate the extent of nonlinear memory available to the 
system, we trained the system to reproduce a nonlinear auto-regressive moving average (NARMA-N) 
of input signals with varying degrees of autocorrelation (NARMA-5 and NARMA-10). For this problem, 
a system with perfect linear memory of equal degree to the autocorrelation (i.e., a shift-register of 
length N) can only achieve normalised means squared errors (NMSE) of around 0.434. To improve upon 
this, a system needs to store nonlinear representations of past inputs. Figure 5c, 5d presents heatmaps 
of NMSE achieved over a range of field scaling parameters for NARMA-5 (5c), and NARMA-10 (5d), as 
well as examples of the reconstructed signals (5e, 5f). Regions where the ring array system 
outperforms the shift register in the NARMA-5 and NARMA-10 tasks are shown by the grey lines in 
Figure 5c, 5d, achieving peak NMSEs of 0.265 and 0.359 respectively. The combination of MC and 
performance of NARMA-N demonstrated that the system had been effectively reconfigured into a 
configuration with both linear and nonlinear memory without the aid of external delayed feedback 
lines that have typically been used in other demonstrations.   
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Figure 5- Performance of linear and nonlinear memory tasks. 

 

Figure 5a- Schematic diagram for simplified revolver setup consisting of three nodes, showing how input (red 
arrows) and output (green arrows) change with each timestep τ with respect to fixed dynamical nodes (blue 
circles). 5b- Memory Capacity (MC) over a range of field scaling parameters under the rotating neurons reservoir 
construction. 5c/d - Performance heatmaps for the (c) nonlinear autoregressive moving average (NARMA) -5 and 
(d) NARMA-10 system approximation task. Regions inside the grey line show configurations outperforming the 
score of a shift register with equal degree to the NARMA problem. 5e/f – NARMA signal reconstruction for 
optimally performing ring array reservoirs (blue, Normalised mean squared error (NMSE) = 0.265) compared to 
ground truth (orange, NMSE = 0.359) for (e) NARMA-5 and (f) NARMA-10. 

 

Conclusion 
In this paper we have demonstrated how a range of different RC architectures allow exploitation of 
different underlying dynamic properties in a complex magnetic system. This reconfigurability allowed 
the platform to achieve state-of-the art performance in three diverse tasks with differing 
computational requirements. To summarise the key correlations between underlying dynamics and 
suitable reservoir architectures, we found that the signal subsampling architecture synergises with 
phase transitions in the system’s response to provide nonlinear mappings of input, the single 
dynamical node paradigm synergises with transient responses to connect different input dimensions 
across time, and the rotating neurons reservoir scheme synergises well with regimes where reservoir 
state changes slowly with small/zero inputs, allowing information from past inputs to be sustained 
over time via the rotating input mask.  
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The synergy between these dynamic properties is also directly correlated to the type of task that the 
resulting reservoir is suitable for solving: the dimensionality expansion and nonlinear dynamics 
provided by the signal subsampling architecture allows for effective 1D signal processing, the temporal 
mixing of input dimensions in the single dynamical node architecture enables classification on 
multivariate data, and the slow dynamics modulated by the rotating input mask in the rotating neurons 
reservoir architecture allows for effective performance in memory based tasks. Aside from the 
architecture choice, the selection of suitable scaling parameters for the input data is also critical to 
performance. To address this, we used task-independent metrics to provide a more holistic mapping 
of the computational properties of the reservoir across a range of scaling parameters and 
demonstrated the additional performance attainable via selecting promising parameters from the 
resulting metric maps for both classification-based tasks (KR/GR) and memory-based tasks (MC), with 
additional comparisons between each of the architectures’ scores in these metrics. 
 
We believe that the range of dynamical regimes offered by the system, combined with the ability to 
address each of these properties separately and extract distinct computational properties via 
controlling the external reservoir architecture, makes the ring system a candidate for reservoir 
computing with complex dynamic substrates. Additionally, the effectiveness of synergising the 
reservoir architecture with the dynamic properties of the underlying system makes for an effective 
methodology for extracting a broad range of computational capability for other similar devices. The 
ring devices are not without their limitations however, with the current device being driven external 
rotating magnetic fields, which provides both a limitation on the throughput on data input to the 
system (on the order of 100s of Hz), and power wastage in generating the magnetic fields over areas 
orders of magnitude larger than the nanoring array itself. Additionally, the current electrical readout 
provides a single scalar readout on the entire system state at a given point in time, which is sub-optimal 
for extracting complex state information on a system which exhibits spatially distributed responses like 
the ring system here. The feasibility of the ring system as a complex RC device that would be applicable 
to real-world settings hinges upon the ability to respond to electrical inputs such as spin-orbit torque 
driven DW motion, as well as expanding upon the readout mechanism to provide spatially resolved 
measurement of magnetic state.  
 
To expand the computational capabilities of the ring arrays, the complex behaviours outlined here 
should operate concurrently as part of a larger system. The changes in magnetic responses offered via 
geometric changes to the system could enable multiple devices to operate in different regimes of 
dynamics and emphasise different computational properties under a single input field. Other magnetic 
metamaterial platforms have been shown to be useful in ‘deep’ reservoir networks with distributed 
reservoir properties32, which the ring system would also likely benefit from. We believe that this work 
marks a significant step forward towards the realisation of metamaterial systems as computational 
platforms that are device-compatible, and that the rich playground of computationally useful dynamics 
they offer makes the ring system a promising candidate for physics-based neuromorphic computation 
platforms.  
 

 ethods 

Device Fabrication 
The ring array devices were fabricated using two-stage electron-beam lithography, with layouts 
patterned using a RAITH Voyager system. Wafers of Si (001) with a thermally oxidized surface were 
spin-coated with a positive resist. The ring structures were metallized to thicknesses of 10nm via 
thermal evaporation of Ni80Fe20 powder using a custom-built (Wordentec Ltd) evaporator with typical 
base pressures of below 10-7 mBar. The initial resist went through lift-off, leaving the ring structures 
before re-application of the resist and further electron-beam lithography. Electrical contacts were 
metallized in two stages of thermal evaporation, first with 20nm titanium to form a seed layer, before 
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growth of 200nm of gold. Electrical connections were provided between the device and a chip carrier 
through bonding of gold wire between contact pads on the device and the chip carrier.  
 
Electrical Transport Measurements of Ring Arrays 
Currents of 1.4mA were provided to the arrays as a 43117 Hz sine wave into the patterned contacts 
(Figure 1a) on the device using a Keithley 6221 current source. Resistance changes via AMR effects 
were measured using a Stanford Research SR830 lock-in amplifier. A National Instruments NI DAQ card 
was used to log the output voltage of the lock-in amplifier 64 times per rotation of applied field, and 
the data were then saved on a personal computer. The rotating magnetic fields were generated using 
two pairs of custom-built air-coil electromagnets in a pseudo-Helmholtz arrangement. The 
electromagnets were driven by a pair of Kepco BOP 36-6D power supplies and were controlled via 
voltage signals generated using a computer and the analogue output functionality of the NI card. A 
rotating field frequency of 37 Hz was chosen as a compromise between data throughput and signal 
fidelity. 
 
Reservoir Computing 
In RC, the fixed reservoir layer provides a transformation of discrete-time input signals 𝑢(𝑡), to 
reservoir states, 𝑥(𝑡), according to the internal dynamics of the reservoir layer. The readout layer 
(here, a single-layer linear perceptron) provides a weighted sum of the reservoir states as output, 𝑦(𝑡). 
The transformation provided by the reservoir layer results in a higher-dimensional mapping of the 
input signals. This aids the output layer in classifying the input signals by allowing selection of 
hyperplanes in higher-dimensional space to correctly classify data that was previously linearly 
inseparable.  
 
In this work, the RNN that constitutes the reservoir layer of the typical echo state network (ESN) was 
replaced with the magnetic nanoring device. The reservoir transformation was provided by the 
physical processes that govern the array’s magnetic response to field, as well as the changes to 
electrical resistance that consequently occur. Methods for inputting and extracting data are outlined 
for each reservoir configuration: 
 
Signal Subsample Reservoir 
Input sequences 𝑢𝜏 are transformed to give an applied field sequence via a pair of scalar parameters 
𝐻𝑐 and 𝐻𝑟, shown in the following equation, which represent the zero-input field offset and the field 
scaling factor respectively: 
 

(7.1)    𝐻𝑖𝑛𝑝𝑢𝑡 = 𝐻𝑐 + 𝐻𝑟 ∗ 𝑢𝜏 

 
Each input was applied for a single rotation of magnetic field. The reservoir states were then extracted 
by sampling the lock-in voltage signal 32 times per rotation, producing a 32-node output. 
 
Single Dynamical Node Reservoir 
This approach uses ‘virtual’ nodes34, where the reservoir states are generated from observing the state 
of the nanoring array as it evolves under time-multiplexed input. The generation of the time-
multiplexed sequence of applied field magnitudes, 𝐻𝑖𝑛𝑝𝑢𝑡, (a vector of length 𝜃 ∗ 𝜏, where θ 

represents the desired number of virtual nodes, and τ the number of discrete-time windows the initial 
input sequence contains) was accomplished by combining the d-dimensional input vector for each 
timestep in 𝑢𝜏𝑑 with a fixed input mask matrix, 𝑀𝑑,𝜃, and flattened into a 1D sequence by 
concatenating timestep-by-timestep via: 
 

(7.2)    𝐻𝑖𝑛𝑝𝑢𝑡 = 𝐻𝑐 + 𝐻𝑟 ∑ 𝑢𝑘,𝑑 ∗ 𝑀𝑑,𝜃
𝜏
𝑘=1  
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 where 𝑀𝑑,𝜃 consisted of randomly generated 0’s and 1’s. The field sequence was then input 

to the system by rotating the field at magnitudes specified by 𝐻𝑖𝑛𝑝𝑢𝑡 for a given number of quarter-

rotations per input datum. 
 
The resulting voltage signals provided by the lock-in amplifier underwent some simple processing 
steps: Firstly, a high-pass filter with a low cut-off frequency of 3Hz was used to centre the signals about 
zero and remove any low-frequency noise in the system. Band-pass filters were used to extract the 1f 
and 2f components separately. The pass-windows for each of these filters were centred about the 
input frequency and twice the input frequency, with band widths of 25% of the centre frequency to 
capture the damped dynamics of the oscillatory system. The outputs of the high-pass, and each of the 
band-pass filters, were sampled twice per input, forming a complete reservoir state vector six times 
the length of 𝐻𝑖𝑛𝑝𝑢𝑡.  

 
Rotating Neurons Reservoir 
This technique employs a shifting input/output mask38, functionally analogous to rotating the input 
and output weights synchronously while keeping the dynamical neurons fixed. The procedure for this 

‘rotation’ can be described as follows: Consider a system of 𝜃 dynamical nodes 𝜂𝑖, where i denotes the 
index of each node. An input signal 𝑢𝜏,𝑑 is combined with mask 𝑀𝑑,𝜃, to produce input dimensions 

𝑠𝜏𝜃. The input to node 𝜂
𝑖 at timestep t, 𝑠̃𝑡,𝑖, is given via 

 
(7.3)    𝑠̃𝑡,𝑖 = 𝑠𝑡,(𝑖+𝑡)%𝜃 

 

where ‘%’ represents the modulo operation. The resulting output matrix, 𝑋̃𝜏𝜃, is generated by 
vertically concatenating the output of vectors all 𝜃 nodes as they evolve, and is ‘unraveled’ similarly to 
form reservoir state matrix 𝑋 via: 

 

(7.4)    𝑋𝑡,𝑖 = 𝑋̃𝑡,(𝑖−𝑡)%𝜃 

 
Additional information on each of the machine learning tasks, details of training methods employed, 
and any data processing steps taken can be found in Supplementary Methods - Machine Learning 
Tasks. 
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Supplementary Note 1- Fourier Analysis of AMR Signals 

 

Figure S1- Fast-Fourier transformation of AMR signals over 20 rotations of applied rotating 
fields of magnitude (top left to bottom right) 20, 25, 30, and 35 Oe at 37Hz, with peaks at 37 
Hz (1f) and 74 Hz (2f). 

 
 
Supplementary Note 2- Anisotropic magnetoresistance response of ring arrays. 
The anisotropic magnetoresistance (AMR) effects observed in Py provide a simple measure of 
state space via resistance changes over time. In the ring system, shape anisotropy forces 
magnetic moments to follow the track of the nanorings, resulting in a small angle between 
current density and magnetic moments inside of domains. However, DWs in the system 
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provide a discontinuity of local magnetization direction, where moments are aligned 
perpendicular to the flow of current, meaning reduced resistance is observed due to the 
presence of DWs. Hence, the measured resistance across the array depends upon the 
number, size, and positions of DWs in the system. 
 
Figure S1 shows the Fourier components of the AMR response for various applied fields. 
Major peaks can be observed at the clock frequency (1f) and twice the clock frequency (2f). 
Figure S2A shows the 1f and 2f Fourier components of the AMR response when saturated and 
then driven by successive rotations of different magnetic field strengths, while Figure S2B 
shows the number of rotations required for the system to reach dynamic equilibrium from 
saturation over a range of applied fields. Using the correlation between DW 
pinning/propagation and the 1f and 2f Fourier components (Figure S2A), we can infer DW 
dynamics in different regimes of response (Figure S2C-F). At low driving fields (20 Oe, Figure 
S2C), there is a 1f signal due to elastic stretching and contracting of pinned DWs, with no 
irreversible change to the magnetic state. At 25 Oe (Figure S2D), DWs propagation occurs 
stochastically, leading to a superposition of the frequency components, dominated by the 1f 
signal. The onset of vortex formation causes oscillation magnitude to diminish as the number 
of DWs tends towards equilibrium levels. At fields of 30 Oe (Figure S2E), DWs propagation 
increases, leading to a 2f dominated signal, again decreasing over time due to vortex 
formation. At higher driving fields (35 Oe, Figure S2F), all DWs in the system coherently follow 
the rotating field, with no transient behaviours as no vortices are formed. The transitions 
between these regimes can be corroborated by the state population vs applied field data 
shown in Figure 1D. The transient behaviours rely on vortex formation, with no transience in 
the purely pinned/propagating regimes (Figure S2B). 
 
Micromagnetic simulations of permalloy nanorings were performed using MuMax31 with 
material parameters:  saturation magnetization = 860 kA/m and exchange stiffness = 13 pJ/m. 
An artificially large damping parameter of 1 was used to reduce simulation times. provide 
insight into how the magnetization (and hence resistance) state of a simplified ring geometry 
evolves under the propagating DW (Figure 2G), and the pinned DW (Figure S2H) regimes. 
Figure S2G shows different angles between current flow (white arrows) and magnetic 
moments (black arrows) depending on the junction location, leading to high and low 
resistance states. When DWs coherently follow the rotating field, they propagate through the 
four junctions, leading to a pair of resistance minima/maxima, generating a resistance signal 
of twice the clock frequency. When the DWs remain pinned (Figure 2H), the applied field 
causes deformation of the DW and the surrounding domains, with expansion/contraction 
when the applied field lies parallel/antiparallel to the direction of the magnetization of the 
DW respectively. This leads to oscillations matching the frequency of the rotating field for 
pinned DWs.  
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Figure S2A- Fourier components of systems driven with 10 rotations of magnetic field at 
various applied fields. Blue datapoints show Fourier component at the driving field frequency 
(1f), while orange datapoints show component at double the driving field frequency (2f). S2B- 
Number of rotations of field required for the system to reach an equilibrium response (<2% 
peak-to-peak deviation between cycles) from saturation for a range of applied fields. S2C-F - 
Measured lock-in voltage of the array when driven with 10 field rotations of amplitude (C) 20 
Oe, (D) 25 Oe, (E) 32 Oe, and (F) 35 Oe from saturation. S2G- Mumax3 simulations1 showing 
angle between magnetization direction (black triangles) compared to direction of current flow 
(white arrows) for systems initialized with a pulse of magnetization along the flow of current 
direction (left) and perpendicular to the current direction (right). S2H- Mumax3 simulations 
showing the deformation of DWs under the influence of external fields of 25 Oe in the direction 
shown by the black arrows. 
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Supplementary Note 3- Metric Space Assessment 
The specific transformation provided by the nanoring system is dependent upon the scaling 
and input rate of data. Consequently, this affects computational capability as each 
transformation will have varying degrees of nonlinearity and different timescales of 
dependence on past input. Previous work has shown that these changes in capability can be 
quantified in task-independent metric space, and metric scores were a good predictor of task 
performance2. These metrics provide a rough evaluation of reservoir performance along 
contrasting computational axes: KR measures the reservoir’s ability to represent distinct input 
patterns in different reservoir states, while GR measures ability to generalize similar input 
patterns to similar reservoir states. A simple heuristic of computational quality, CQ, can be 
constructed by subtracting GR from KR, with ‘ideal’ configurations having a larger CQ due to 
high KR (good separation properties) and low GR (good generalization properties)9. By 
changing the duration each input is applied for, the degree of ‘mixing’ across virtual nodes 
can be controlled, with shorter input durations leading to greater mixing and reduced 
sensitivity to a single input. Figure S3 shows calculated metrics for a range of field scaling 
parameters 𝐻𝑐 and 𝐻𝑟.  
   
Since the spoken digit recognition task requires good separation properties from the 
reservoir, the ‘promising’ parameters (red cross) were chosen for their high KR. The ‘arbitrary’ 
parameters (blue star) were chosen for their similar CQ properties, though low KR compared 
to the ‘promising’ parameters. As well as the single dynamical node reservoir, the metric 
assessment with respect to input parameters was also performed on the signal sub-sample 
and rotating neurons reservoir, which showed good separation and generalisation capability 
respectively, but poor separation between the two resulting in a low CQ for these reservoir 
configurations. 
 
 

 

Figure S3- Evaluated KR (a), GR (b), and CQ (c) metric scores for a range of field scaling 
parameters. ‘Promising’ and ‘Arbitrary’ field scaling parameters are indicated by red crosses 
and blue stars respectively. 
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Figure S4- Metric heatmaps over a range of field scalings, for the revolving neurons reservoir 
(KR- A, GR- B) and the signal sub-sample reservoir (KR- C, GR- B) architectures. 

 

Figure S5- Comparison of linear memory capacity between the three reservoir 
configurations, (A) signal sub-sample reservoir, (B) Single dynamical node reservoir, and (C) 
rotating neurons reservoir. 

 
Supplementary Note 4- Calculation of Saturation Magnetisation 
Saturation magnetisation was calculated from broadband ferromagnetic resonance data of 
the fundamental mode.  From best fits of the peak absorption as a function of external 
magnetic field and applied microwave frequency to the Kittel curve, 𝜇0𝑀𝑠 was determined to 
be 0.969 ± 0.006 T, representing slightly Nickel-rich Py. 
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Figure S6- (A)- Peak microwave absorption of nanoring devices across various applied 
frequencies and fields. (B)- Fit of fundamental mode, giving a 𝜇0𝑀𝑠 of 0.969 ± 0.006 T. 

 

Supplementary Note 5- Supplementary Methods - Machine Learning Tasks 
Offline Training 
The weights associated with the readout layer, 𝑊𝑜𝑢𝑡, for the reservoir configurations 
described here were trained offline using an ordinary-least-squares method with Tikhonov 
regularization, commonly referred to as ‘ridge regression’3,4. The process is described by 
equation: 
 

S.E. (7.1.1)    𝑊𝑜𝑢𝑡 = 𝑌𝑋𝑇 ∗ (𝑋𝑋𝑇 + 𝜆𝐼)† 

 
 where 𝑋 represents a matrix created from the reservoir states produced from the 
training data, 𝑌 represents the target labels associated with the training data, 𝜆 represents 
the regularization parameter, 𝐼 the identity matrix, and † the Moore-Penrose pseudo-inverse 
operation.  
 
Online Training 
The output weights 𝑊𝑜𝑢𝑡 were optimised via gradient descent to minimize the sigmoid cross 
entropy loss function for both the standard readout and as well as the SpaRCe algorithm, 
given by 

S.E. (7.1.2)    𝐸 = − { ∑ 𝑦̃𝑗 𝑙𝑜𝑔  (𝜎(𝑦𝑗))  + (1 − 𝑦̃𝑗)𝑙𝑜𝑔 (1 − 𝜎(𝑦𝑗))
 
𝑗  } 

 where 𝑦̃𝑗 is the desired output for class j.  

 
SpaRCe 

While simple linear regression techniques like ridge regression can be used to analytically find 
the weights that provide the least-squares difference between training data and target labels, 
more advanced learning rules are able to converge to different sets of output weights which 
provide a more robust classification platform. One such learning rule that has been 
demonstrated to be effective for RC is SpaRCe5 - a bio-inspired algorithm that utilizes 
learnable thresholds on output neurons to introduce sparse representations of data and 
promote more specialized features. SpaRCe has been shown to improve classification 



179 
 

accuracy in common benchmark tasks, as well as alleviating the problem of catastrophic 
forgetting associated with online learning of sequential tasks/classes6,7. It is an on-line 
algorithm, which is likely more suited to real-world implementations of RC where the system 
learns continuously as new data is presented, rather than through storing many input 
patterns before changing parameters.  

 
The output weights used for the SpaRCe algorithm were also trained in an online manner 
using the sigmoid cross-entropy loss function outlined earlier. Additionally, a learnable 

threshold, 𝜃𝑘, was applied to each output neuron k. The output for each thresholded 
node, 𝑥̂𝑘, is given from its activity, 𝑥𝑘, via 
 

S.E. (7.1.3)    𝑥̂𝑘 = 𝑠𝑖𝑔𝑛(𝑥𝑘) 𝑅𝑒𝐿𝑈{|𝑥𝑘| − 𝜃𝑘} 

 

S.E. (7.1.4)    𝜃𝑘 = 𝑃𝑛(|𝑥𝑘|) + 𝜃𝑘 

 
 where ReLU represents the rectified linear unit, and 𝑃𝑛(|𝑥𝑘|) is defined as the 
percentile n of the activity of neuron k across the inputs, computed across the training data. 
The choice of n provides an initial sparsity level for the thresholds. 𝑃𝑛(|𝑥𝑘|) remains constant 
throughout training since node output 𝑥𝑘  with respect to input is constant for RC.  
 
It is possible to show how adaptation of the thresholds 𝜃𝑘 through gradient descent is 
characterized by two terms: the first is decreasing the thresholds of neurons that are correctly 
contributing to the classification process; the second is increasing the threshold of nodes that 
are correlated and thus carry redundant information. We refer to the original publication4 for 
more details. Hyperparameters of starting percentile and learning rate were selected by 
choosing the best performance on the training data set, with reported accuracies given by 10-
fold cross validation. 
 
Signal Transformation Task 
The raw input signals for the signal transformation task were generated from equation 𝑠(𝑡) =

𝑠𝑖𝑛 𝑠𝑖𝑛 (
𝜋

20
𝑡)  where t represents the discrete timestep associated with each input. Target 

signals were generated using similar time discretization. For each discrete point, a single 
rotation of magnetic field was applied, and 32 samples were taken as reservoir states from 
the lock-in voltage signal. A control measurement was taken by similarly measuring the 
voltage across one of the electromagnets to exclude the nonlinear transformation provided 
by the nanoring arrays. Both the nanoring array reservoir and the control ‘reservoir’ readouts 
were trained using ridge regression. The system was saturated and then driven for 51 full sine 
waves, with a range of field scaling parameters 𝐻𝑐 and 𝐻𝑟 values explored, with the first sine 
wave discarded to wash-out the dependence of the reservoir on the initial saturated state. 
Training states consisted of the measurements produced from the first 45 sine waves, and 
the associated training labels were defined by the target signal being reproduced. Reported 
test accuracies were generated by evaluating the mean-squared error between the target 
signal and a signal produced by multiplying the trained readout weights and the measured 
states over the remaining five sine waves, with the accuracy for the highest performing 𝐻𝑐 
and 𝐻𝑟 pair recorded.  
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Assessing Computational Capability of Arrays 
KR and GR are calculated by assessing the number of linearly independent output sequences 
present at the output when driven with input signals of given characteristics. The raw input 
matrix for each metric consisted of 100 sequences of 10 randomly sampled floating points 
from a uniform distribution between ±1. For KR, all the sequences and points within them are 
completely uncorrelated, whilst for GR the final 3 floating points in every sequence were 
identical to those of the first sequence. These input sequences were then combined with a 
fixed mask consisting of 50 random floating points, again sampled from a uniform distribution 
between ±1. Hence, each point in the raw input sequence was linearly correlated to each 
other via the fixed mask. 
 
The signals were input to the reservoirs for a range of 𝐻𝑐 and 𝐻𝑟 values, for input rates of half 
a rotation and one full rotation per input, saturating between sequences. The AMR signals for 
the final 50 masked inputs (corresponding to the final unmasked input) of each sequence 
were logged. The AMR signals were passed through a high-pass filter, before being normalized 
against the maximum value of the signal. Features were extracted from the signals by 
sampling four times per complete rotation, meaning 200 features for a full rotation per input, 
100 features for half a rotation. Output matrices were then constructed from the extracted 
features for each of the 100 sequences. Singular value decomposition was performed on the 
output matrices, and the rank of the matrices estimated by counting the number of singular 
values above an arbitrary small threshold value of 0.1.  
 
 
Spoken Digit Recognition Task 
Input signals were created by combining filtered audio signals with a fixed mask according to 
the single dynamical node paradigm. Details of how filtered signals were generated from raw 
audio data can be found in the supplementary material. Before each input sequence was 
applied, the system was saturated with a strong (~150 Oe) pulse of field. The system was then 
driven with applied fields scaled about various 𝐻𝑐 and 𝐻𝑟 pairs. Each input was applied for 
either a half-rotation or full rotation of applied field. Features were extracted according to 
the method described in the single dynamical node paradigm. To avoid biasing towards 
certain speakers or digits in the training procedure, k ‘training’ samples were chosen for each 
digit for each speaker at random, with performance assessed for various values of k. From the 
selected training samples, reservoir state matrix 𝑋 and target matrix 𝑌 were constructed by 
concatenating vertically, producing matrices of dimensions [300, L] and [10, L] respectively, 
where L represents the total number of timesteps 𝜏 across all the training samples. These 
matrices were then used to calculate output weights 𝑊𝑜𝑢𝑡 via ridge regression as described 
earlier. To classify the remaining ‘test’ digits, the trained output weights were multiplied with 
the reservoir states for each timestep, producing an output activation for each node for every 
timestep. Classification was performed using a winner-takes-all approach by selecting the 
node with the highest average activation across all timesteps, with correct classification 
occurring if the node with the highest activation matched the digit being spoken. Quoted 
performances were generated using 100-fold cross validation by repeating the random 
training/testing sampling process 100 times, with the regularization hyperparameter λ 
selected according to highest average performance over the repetitions to avoid overfitting.  
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Linear Memory Capacity 
To calculate the system’s MC, an input consisting of 2500 random floating points uniformly 
distributed between 0 and 1 was used to drive the system for a range of 𝐻𝑐 and 𝐻𝑟 values, 
with inputs masked according to the RNR paradigm. The AMR signal over the duration of input 
was logged, and samples corresponding to the first 200 inputs were discarded as a ‘wash out’ 
of initial system conditions. Features were sampled from the AMR signal twice per node per 
input. The resulting 100x2300 feature matrix was split into training and testing data by 
separating at the data corresponding to the 1800th input. A target signal was generated for 
each input, consisting of the current input, plus the 50 inputs that came previously. The 
system was then trained to reproduce the delayed input signal from the 100 reservoir 
features. MC was estimated using the following equation: 
 

S.E. (7.1.5)    𝑀𝐶 = ∑ 𝑀𝐶𝑘
50
𝑘=1 = ∑

𝑐𝑜𝑣2(𝑢𝑖−𝑘,𝑦𝑘)

𝜎2(𝑢𝑖)𝜎
2(𝑦𝑘)

50
𝑘=1  

 
 where 𝑢𝑖  is the raw input sequence, 𝑢𝑖−𝑘 is the raw input sequence at delay k, and 𝑦𝑘 
is the reservoir’s reconstruction of the input sequence at delay k. Small uncorrelated MCk 
values below 0.2 were excluded from the sum to negate any random correlations between 
the reconstructed signal and the actual target.  
 
 
NARMA Prediction 
The objective of this task is to predict the output of a nonlinear autoregressive moving 
average 𝑦𝑖 of randomly generated inputs 𝑢𝑖, drawn from a uniform distribution between 0 
and 0.5, with correlations of different orders N. The target sequence is generated from the 
following iterative equation: 
 

S. E. (7.1.6)    𝑦𝑖 = 𝑦𝑖−1 ∗ (0.3 + 0.05 ∗ ∑ 𝑦𝑖−𝑘

𝑁

𝑘=1

) + 1.5 ∗ 𝑢𝑖−1 ∗ 𝑢𝑖−𝑁 + 0.1 

 
These tasks were performed under the rotating neurons reservoir paradigm, with four 
measurements taken of the evolving AMR signal for each of the 50 dynamic neurons, 
producing a reservoir state vector of length 200 for each timestep. The system was driven 
with 𝑢𝑖  of length 1500, with the first 100 timesteps discarded as a ‘wash-out’ of initial 
conditions. The system’s output is calculated for each timestep by combining the reservoir 
state vector with weight vector 𝑊𝑜𝑢𝑡, trained with ridge regression over 1200 data points. 
Quoted accuracies were given by calculating the normalised mean squared error (NMSE) of 
the reconstructed signal 𝑦̃𝑖 over the remaining 200 unseen data points, where: 
 

S. E. (7.1.7)    𝑁𝑀𝑆𝐸 =  
∑ (|𝑦𝑖 − 𝑦̃𝑖|)

2200
𝑖  

200 ∗ 𝜎2(𝑦)
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Pre-Processing of Spoken Digit Recognition Data 
The speech data was taken from a subsample of the TI-46 database8, where each of five 
female speakers provided ten utterances of each digit. Audio features were extracted from 
the raw-audio waves using a Mel-Frequency Cepstral filter9 which produced a discrete-time 
power response in 13 frequency bands across 50 ms windows. This produced an unmasked 
signal of length [13, τ], where τ is equal to the number of windows generated by a given 
utterance. These signals were time-multiplexed using the masking procedure described 
previously and a mask of size [13, 50], producing a 1D input vector of length 50 ∗ 𝜏. The 
number of virtual nodes was kept at 50 as a compromise between providing a thorough mix 
of input dimensions, while keeping the number of datapoints low. The process was repeated 
for each of the 500 raw input signals, which were then normalized against the maximum value 
from the resulting pre-processed dataset. 
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8- “Tuning reservoir computing performance - 

modifying physical device response and reservoir 

architecture.” 
8.0- Preamble 
With a working experimental demonstrator of the nanoring devices as a reservoir computing platform, 

we then focussed upon how we could expand the computational capabilities of the nanoring arrays by 

engineering the nanoring arrays to provide different responses. Some obvious choices for 

manipulating the behaviour of the arrays were to change the track widths of rings, the degree of 

overlap between neighbouring rings, and the lattice arrangement of the array. While work is ongoing 

both at the University of Sheffield and with external collaborators with explorations of the former two 

array manipulations, the final article of this thesis focusses on changes to the lattice arrangement. 

This work was primarily a joint effort between a postdoc in the group, Guru Venkat, and I. The work 

covers the exploration of three different lattice arrangements; the standard square lattice that had 

been used thus far in the thesis, a trigonal arrangement where each ring attaches to six other rings, 

and a Kagome arrangement where each ring attaches to three other rings. The first part of the paper, 

led by Guru, focussed on exploring the physical response of the different lattice arrangements. 

Firstly, the types of different microstates that were formed under different applied fields were explored 

via X-PEEM imaging of the different lattice arrangements. While it was obvious that the different 

arrangements would form different specific microstates depending upon the availability of more/fewer 

pinning locations than the square arrays, they each showed markedly different responses with respect 

to applied field. This seemed promising for extracting different behaviours from the arrays. 

However, when the microscopic array response was measured via AMR, the different lattice 

arrangements appeared broadly similar. While the specific fields at which each array became 

dynamically active differed slightly, the three arrangements showed both similar shaped equilibrium 

responses as well as similar ranges of timescales of settling. It was clear that the global measurement 

technique as blurring together most of the differences that were observed at the microstate. 

The second part of the study, led by me, focussed upon evaluating the computational differences 

between the three arrays, again using task independent metrics to measure the nonlinearity and 

memory available to the three arrangements. As the previous paper highlighted, the choice of 

reservoir architecture is critical when assessing the complete range of computational properties a 

system can exhibit, and hence each of the three lattices were explored under each of the three 

computational architectures outlined previously. 

Whilst the choice of architecture appeared to be the primary factor leading to different computational 

properties, there were some differences observed between the different lattices. These differences 

were mainly in the specific fields at which the different lattice arrangements had optimal properties, 

due to the differences in when each array became dynamically active as observed earlier. The single 

dynamical node architecture also shown some significant differences, with the computational quality 

observed inversely correlated to each lattice’s tendency to form vortices. This is likely due to the fact 

domain walls play such a key role in the AMR signal. 

Finally, the paper shows how despite the lattices having broadly similar peak metric scores, the 

difference in the regime of operation for each of the lattices at a given field is a functional property 
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that can be exploited to improve computational capability. This was achieved by combining the outputs 

of each lattice for the same input sequence, with the different nonlinearities provided by each lattice 

leading to improved computational quality.  

This was an important finding as it shows promise for the scalability of the ring array devices- by 

expanding the computational capabilities by exploiting the different nonlinearities generated via 

geometrical manipulation of the arrays. Additionally, it also importantly highlighted that global readout 

methods like AMR tend to obfuscate the differences between each system, suggesting that additional 

computational power, or a more diverse range of computational properties, may be attained by having 

a microstate dependent readout. This conclusion is similar to the expansion in performance that was 

observed in chapter 6, where concatenating the different state readouts from RingSim led to largely 

improved performance. 

In terms of personal contributions to the paper, I took part in the X-PEEM measurements of the 

different devices, performed some of the AMR measurements (the data was then analysed by Guru), 

and performed all implementations of the computational metrics. The paper was co-drafted by Guru 

and I. 

 

 

  



186 
 

Tuning reservoir computing performance modifying physical 

device response and reservoir architecture 

G. Venkat1, I. T. Vidamour1,2, C. Swindells1, P. W. Fry3,  . C. 

Rosamond4,  . Foerster5,  . A. Nin˜o5, A. Bischoff6, R. 

Allenspach6, D. Griffin7, S. Stepney7, D. A. Allwood1, E. Vasilaki2, T. J. Hayward1 

1 Department of Materials Science and Engineering, University of Sheffield, S1 3JD,UK 

2 Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK 

3 Nanoscience and Technology Centre, University of Sheffield, Sheffield, S3 7HQ, UK 

4 School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK 

5 ALBA Synchrotron Light Facility, 08290, Cerdanyola del Valles, Spain 

6 IBM Research-Zurich, 8803 Rüschlikon, Switzerland 

7 Department of Computer Science, University of York, YO10 5GH, UK 

 

Abstract.  

Physical reservoir computing (RC) is an attractive machine learning technique that is ideal for 

processing of time dependent data series. It is also uniquely well-aligned to in-materio computing 

realisations that allow the inherent memory and non-linear responses of functional materials to be 

directly exploited for computation. We have recently shown that square arrays of interconnected 

magnetic nanorings are attractive candidates for in-materio reservoir computing, and experimentally 

demonstrated their strong performance in a range of benchmark tasks. Here, we extend these studies 

to other lattice arrangements of rings, including trigonal and Kagome grids, to explore how these affect 

both the magnetic behaviours of the arrays, and their computational properties. We show that while 

lattice geometry substantially affects the microstate behaviour of the arrays, these differences 

manifest less profoundly when averaging magnetic behaviour across the arrays. Consequently the 

computational properties (as measured using task agnostic metrics) of devices with a single electrical 

readout are found to be only subtly different, with the approach used to time-multiplex data into and 

out of the arrays having a stronger effect on properties than the lattice geometry. However, we also 

find that hybrid reservoirs that combine the outputs from arrays with different lattice geometries show 

enhanced computational properties compared to any single array. 

Introduction.  

Neuromorphic computing is being actively pursued for artificial intelligence and machine learning 

applications and investment in it is projected to grow significantly in the coming decade [1]. However, 

the cost associated with training large neural networks for such applications can be significant and this 

has led to investigation into unconventional computing approaches with lower energy footprints. 

Reservoir computing [2–4] (RC) is a computing paradigm which uses the dynamics of a recurrent neural 

network (RNN) or another dynamical system (algorithmic or physical), often referred to as the 

reservoir, to transform input data to a higher dimensional space where it may be classified more easily. 

It has attracted interest in recent years mainly because the internal weights of the RNN are fixed and 

hence do not need to be trained, creating substantial energy savings when compared to a conventional 

RNN [5]. Significantly, the ‘black-box’ nature of the reservoir means that the RNN can be replaced any 

dynamical system that has (a) a non-linear response to stimuli, (b) a state space rich enough to allow 

input data to be expanded into higher dimensional space where classification becomes easier and (c) 

an asymptotic washing out of system states with stimuli (typically referred to as ‘fading memory’). This 

has led to a wide variety of different implementations of in materio RC using e.g., photonic [6], 

mechanical [7] and memristive [8,9] systems. 
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In materio RC offers potential advantages of increased computational efficiency in temporal tasks 

compared to other static in-materio computing paradigms which resemble standard neural networks, 

with the material acting simply as a nonlinear activation function and can even compete in 

performance with in-silica computing approaches [10]. Benchmark tasks demonstrated using RC 

approaches include signal transformation, speech and image recognition and time series prediction 

[11]. Reservoirs need to have different computational properties to be effective in different tasks. For 

example, tasks such as signal transformation and spoken digit recognition primarily utilise the non-

linear transform provided by the reservoir, while the well-known NARMA-10 task requires the reservoir 

to provide both non-linearity and memory of past inputs [11]. 

There are mainly two ways to tune an in materio reservoir’s properties: Firstly, intrinsic dynamics of 

the reservoir can be changed e.g., by making changes to the physical system used, or by replacing it 

with another system altogether. For example, it has been reported that magnetic nanodots [12] and 

artificial spin ice [13,14] systems exhibit different computational properties when their lattice 

arrangements are varied. Alternatively, the reservoir architecture (i.e. the way data is interfaced with 

the reservoir) can be changed, for example by using different time-multiplexing approaches [11]. 

However, the relative effectiveness of these two tuning approaches have yet to be explicitly compared 

for a given type of physical system. 

We have recently shown that magnetic domain wall (MDW) dynamics in interconnected arrays of 

Ni80Fe20 (Permalloy) magnetic nanorings (NRAs) of can be exploited for reservoir computing [11,15,16]. 

In these studies, information was encoded in the amplitude of rotating applied magnetic fields, which 

then drove emergent DW interactions within the arrays. We have shown that the magnetic response 

of the arrays exhibited both the non-linearity and fading memory required for a useful reservoir, and 

demonstrated state-of-the-art performance for several benchmark tasks, including signal 

transformation, spoken digit recognition and time series prediction. 

In this paper we explore how variations in the lattice arrangement of NRAs change both their physical 

behaviours, and their resulting computational properties when used as reservoirs. We study these 

alongside three different time-multiplexed RC architecture [11] to understand how the effects of 

changing the physical form of the reservoirs compare to those produced by change the way we 

interface data with them. 

We consider three different NRA lattices with different numbers of nearest neighbours (NN) for each 

ring: (a) square (with NN = 4), (b) trigonal (with NN = 6) and (c) Kagome (with NN = 3). X-ray photo-

emission electron microscopy (X-PEEM) imaging of the arrays’ microstates show that the different 

lattices both exhibit different characteristic configurations of MDWs and differing evolution of these 

with applied stimulus strength, thus showing the strong influence of the number and position of NN 

rings on NRA behaviour. We then use anisotropic magnetoresistance measurements (AMR) to probe 

the global responses of each NRA lattice arrangement and use these with the three reservoir 

architectures to evaluate task agnostic metrics that express their computational properties. We 

observe that the time-multiplexing approach has a more profound influence on computational 

properties than the type of NRA lattice used, suggesting that our global readout mechanism does not 

allow differences in the rich microstate behaviours of the arrays to be fully captured. However, 

reservoirs constructed using the combined outputs of NRAs with different lattice arrangements do 

show superior performance in metric space to any reservoir constructed from a single NRA, indicating 

the utility of combining the dynamics of multiple material reservoirs for improved computation. 
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 ethodology.  

All measurements were performed on 25 × 25 NRAs. Each NRA had rings of diameter 4µm and ring 

widths of 300 − 400nm. The overlap between rings was 150 − 200nm. Fig. 1 (a)-(c) shows scanning 

electron microscopy (SEM) images of the arrays square, trigonal and Kagome lattices respectively. 

NRAs were patterned using electron beam lithography with lift-off processing. After electron beam 

exposure and development 10nm of Ni80Fe20 was thermally (AMR measurements) or electron beam 

(XPEEM measurements) evaporated (at a baked out base pressure of < 10−7 mbar) before lift-off. The 

samples used for AMR measurements were patterned on thermally oxidised silicon substrates, and 

underwent a second stage of lithography and metallisation to pattern Ti(20nm)/Au(100nm) electrical 

contacts at the edges of the NRAs (Fig. 5 (b)). The samples for X-PEEM measurements were patterned 

on silicon substrates with native oxide layers and had an additional ∼ 2nm Aluminium capping layer to 

avoid charging of the samples during X-PEEM imaging. 

 

Figure 1. SEM images of ring arrays with (a) square, (b) trigonal and (c) Kagome lattice 

arrangements. 
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AMR measurements were performed using a custom-built electric transport measurement rig. A 

sinusoidal probe current of 1 mA was provided to the NRA contacts at a frequency of 43117 Hz using 

a Keithley 6221 current source. Resistance changes due to AMR effects [17,18] were measured using a 

Stanford Research Model SR830 lock-in amplifier. 

Rotating magnetic fields were generated using two pairs of air-coil electromagnets in Helmholtz-like 

configurations. The electromagnets were driven by a pair of Kepco BOP 36-6D power supplies and were 

controlled via voltage signals supplied via a National Instruments acquisition card. 

 

Figure 2. (a) The Hx and Hy components of the field profile that was applied to the sample and 

(b) the measured AMR signal for the first 10 rotations. (c) The Fourier transform of the signal 

with the f1 and f2 components marked. 

AMR characterisation of the NRAs was performed as follows: The magnetisation of the NRAs were 

initially saturated (not shown in Fig. 2) and brought to remanance which created MDWs in the ring. 

Subsequently 30 cycles of a rotating magnetic field at a frequency of 19 Hz, which were created by 

applying 90◦ phase shifted waveforms to the x and y axis electromagnet coils (Fig. 2 (a)), were applied 

and the AMR signal was recorded (Fig. 2 (b)). The FFT of the last 10 cycles of the AMR signal was then 

obtained and the amplitudes of the f1 = 19 Hz (input field frequency) and f2 = 38Hz (2× input field 

frequency) components (marked in Fig. 2 (c)) were extracted. This was repeated for different field 

amplitudes. The f1 and f2 frequencies correspond to MDW contortion due to susceptibility effects and 

irreversible DW propagation transitions respectively and are prominent in the measured AMR 

response [11]. 
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X-ray photo-emission electron microscopy (X-PEEM) was performed at the CIRCE beamline at the ALBA 

synchrotron. Magnetic domains images were obtained by averaging a series of X-ray absorption (XAS) 

images on and off the Fe-L3 resonance and with left and right X-ray circular polarization in order to 

generate contrast by X-ray magnetic circular dichroism (XMCD). Samples were mounted on cartridges 

with a quadrupole magnet [19], which was used to generate in-plane rotating magnetic field at a 

frequency of 1 Hz. In the X-PEEM measurements, the rings were first all driven into saturation and then 

30 cycles of rotating fields of different amplitudes were applied with images being taken after rotation. 

Microstate populations were extracted from these images by counting the magnetic states using 

Python custom image processing libraries [20]. Confidence intervals for the state populations were 

calculated by measuring standard deviations of the counts of each state over multiple runs of the 

measurements. The net magnetisation of the array was calculated by finding the weighted sum of the 

signed magnetisation components along the PEEM sensitivity direction for the relative population of 

different magnetic states. 

In order to give a broader description of the range of computational behaviours available to a given 

reservoir, rather than simply performance in a given task, here we employ task independent metrics 

to characterise the different lattice arrangement’s computational properties. These metrics used here, 

kernel rank (KR), generalisation rank (GR) [21,22] , and linear memory capacity (MC) [23] evaluate the 

computational properties of a reservoir along three different axes using randomly generated data, and 

have been shown to be good predictors of task performance [22]. For full details on the 

implementation of each of the metrics, see Supplementary Note 1. 

The metrics of KR and GR are evaluated similarly but measure opposite properties. Both evaluate the 

number of linearly independent output states when driven with uncorrelated (KR)/ correlated inputs 

(GR). This measures the reservoir’s ability to separate distinct input sequences (KR), as well as 

generalise similar inputs (GR). Both metrics are bounded by the number of output nodes the reservoir 

has. A system with good separation properties will have a high KR, while a system with good 

generalisation properties will have a low GR. While the exact balance between ability to separate and 

generalise will vary from task to task, a basic heuristic, computing quality (CQ) [24] was constructed by 

calculating the difference between KR and GR. 

Another important property of reservoir computers is their dependence upon past information. To 

measure this, MC evaluates how well the reservoir is able to reconstruct past inputs from its current 

reservoir state with a linear output layer. To do this, the readout layer of the reservoir is trained to 

reproduce delayed states over an input signal, then evaluated on an unseen test set. Again, MC is 

bounded by the number of nodes in the network. 

To explore the full range of dynamic regimes of the NRA, and hence measure the different 

computational properties of each regime, the input data was scaled to cover different ranges of the 

NRA’s response. Input data uτ was encoded into the amplitude of the global rotating field at a frequency 

of 37Hz. The encoding was linear and of the form Hrot = Hc + Hr ×uτ, where Hc is the centre field and Hr 

is field range of the transformation. 

Previous work has shown that the full range of computational properties available to a given material 

cannot be accessed under a single reservoir architecture, since different architectures are able to 

better able to exploit given dynamic properties of a system’s response for computational advantage 

[11]. Hence, it is important to test a range of different architectures in order to explore the full range 

of computational behaviours a given system can exhibit. Here we explore three reservoir architectures: 

the signal sub-sample reservoir (SSR), the single dynamical node reservoir (SDN), and the rotating 

neurons reservoir (RNR). The following section will provide a phenomenological overview of each of 
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the reservoir architectures. For details on implementation, and a schematic diagram of each of the 

architectures, see supplementary note 2. 

The SSR architecture harnesses the oscillatory dynamics of the NRAs. Due to the different nonlinear 

relationships between field and the 1f/2f frequency components in the AMR signal, the shape of the 

AMR trace for a given rotation changes drastically according to field strength. When taking the 

amplitude of signal at fixed points within the rotation as output, both nonlinearity and dimensionality 

expansion is provided. 

The SDN architecture, introduced by Appeltant et al. [25] utilises the transient behaviours of the 

dynamic system to transform input data. The network consists of a single node multiplexed in time, 

generating ’virtual’ nodes. A fixed random mask provides different linear combinations of input 

dimensions to each virtual node, which are are connected to one another sequentially via the 

dependence of current system state on its past states. Again, both nonlinearity and dimensionality 

expansion are provided, plus the ability for the multiple dimensions of input data to interact with each 

other across time to form a richer representation. 

Introduced by Liang et al. [26], the RNR architecture employs multiple dynamical nodes unconnected 

from one another. Instead, the input and output connections to each node synchronously rotate, which 

changes the input/output weights associated with each node over time. Considering the time series of 

a given output dimension, the output will have contributions from different nodes over time, emulating 

connections between nodes. By distributing information across the many real nodes, coupled with 

each node’s inherent non-volatile response described in [11], information can stay in the system for 

long periods of time, generating effective memory. 

Results and discussion.  

Microstate Characterisation 

We begin by studying the differences between the microstates formed in NRAs with the different 

lattice arrangements (Fig. 3). As MDWs in the NRAs tend to pin in the junctions between rings, and 

these junction points differ in number and position between the three lattice-types, we defined a 

sub-set of states for each lattice-type which are described in the table in (Fig. 3). Here, we refer to 

three different types of domain microstate: the ’onion’ microstate which reflects a pair of domain 

walls at opposite ends of the ring, and hence maximum net magnetisation in the direction of the 

domain walls, a ’fractional’ microstate which represents a shifted variant of the onion state (with the 

fraction denoting the relative size of the larger domain in the ring), and the ’vortex’ microstate with 

no domain walls and flux closure within the ring. 
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Figure 3. The X-PEEM responses for the (A) square, (B) trigonal and (C) Kagome lattice 

arrangements for as the rotating field amplitude was increased ((i)-(iv)). The table specified 

types of magnetic states seen in the different arrays along with schematics as well as 

representative images. 

Fig. 3 (a) presents example microstates observed in the square lattice as a function of rotating field 

amplitude. At Hrot = 20Oe the field was too weak to depin MDWs from the junctions within which they 

were initialised, and hence all rings were in bi-domain states (‘onion’ states [27]), with net 

magnetisation aligned along the direction of initial saturation (Fig. 3(a)(i)). At Hrot = 24Oe the field 

became strong enough to cause occasional MDW movement in some rings, thus forming ‘3/4’ states 

with individual MDWs rotated by 90◦ from their initial position (Fig. 3(a)(ii)). As the field was increased 

to Hrot = 29Oe stochastic MDW depinning events increased in frequency, leading to MDW pairs colliding 

and annihilating to form flux-closed ‘vortex’ states (Fig. 3(a)(iii)). The ground state of a square-lattice 

NRA is a checker-board pattern of ‘vortex’ states with alternating circulation direction, but this is not 

typically reached due to the re-nucleation of MDWs pairs into ‘vortex’ states by activity in neighbouring 

rings. Full details of these emergent effects can be found in our previous work [15]. At higher fields still 

(Hrot = 29−31Oe) large numbers of MDWs were active, meaning that MDW re-nucleation events 

dominated over annihilation events, and the array progressively repopulated with MDWs. By Hrot = 31 
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Oe, this re-population was complete and the NRA was saturated with ‘onion’ states, which rotated 

coherently with the applied field (Fig.3(a)(iv)). 

 

 

Figure 4. The magnetic state populations for the (a) square, (b) trigonal and (c) Kagome lattice 

NRAs as Hrot is varied. The magnetic states are schematically shown in Fig. 3. (d) The variation 

of the net magnetisation along the saturation direction with Hrot for the three lattice 

arrangements. 

Field-dependent state populations for the square lattice are shown in Fig. 4 (a). A strongly non-linear 

variation of the these was observed in the region of emergent dynamics, resulting in a plurality of 

MDW states, being observed at intermediate applied fields (Hrot = 24 − 31Oe). The decrease in ‘onion’ 

states (between Hrot = 20 − 24Oe) was accompanied by an increase in ‘3/4’ states. The ‘3/4’ states then 

gave way to a majority of ‘vortex’ states, the population of which continued to increase until they 

peaked at Hrot = 29Oe. Further increases in field resulted in a relatively sharp repopulation with ’onion’ 

states. These behaviours were reflected in the variation of the NRAs net magnetisation with field (Fig. 

4 (d)) which was significantly reduced in the emergent regime due to the large population of ‘3/4’ and 

‘vortex’ states. 

The trigonal NRA exhibited significant differences in behaviour to the square array. This was to be 

expected as the increased number of nearest neighbour rings in these arrays (NN = 6) meant that the 

MDW motion was inhibited by a greater number of pinning sites, and the formation of interlocking 

vortex states in triads of adjacent rings was inherently be frustrated [28]. Following saturation the rings 



194 
 

adopted configurations, which were broadly identical to the bidomain ‘onion’ states observed in the 

square array (Figs 3(b)(i)). As the applied field increased beyond the onset of MDW depinning (Hrot = 

24−27Oe), new microstates were formed by MDWs moving either one (‘5/6’) or two (‘4/6’) junctions 

around the rings. Notably, many less ‘vortex’ states were formed than in the square lattice, reflecting 

the inherent geometric frustration of the lattice (Figs. 3(b)(ii)&(iii)). At higher fields still (Hrot = 32Oe) 

the array was repopulated with ‘onion’ states in a similar manner to square lattice (Fig. 3(a)(iv)). Field-

dependent state populations again showed strongly non-linear trends, with a progressive evolution 

from majority ‘onion’ to ‘5/6’, then ‘4/6’ to ‘vortex’ as MDW depinning became more likely before an 

eventual re-saturation with ‘onion’ microstates when the field was strong enough to reliably overcome 

pinning at all junctions (Fig. 4 (b)). The variation in net magnetisation was broadly similar to that 

observed in the square lattice, with a dip occurring at intermediate fields, but with dramatically 

reduced magnitude due to the comparatively low ‘vortex’ population in the trigonal array. 

The Kagome NRA exhibited the simplest microstate behaviour of the three lattices studied. Following 

the saturation, rings adopted ‘4/6’ states (Fig. 3(c)(i)). These differed from the ‘onion’ state 

configurations observed post-saturation in the other lattices, as the lower symmetry of the Kagome 

lattice meant no two junction sites were directly opposite each other. As the applied field increased 

(Hrot = 22 − 27Oe) almost all rings progressively fell into interlocking ‘vortex’ states, thus reaching the 

magnetic ground state of the array (Fig. 3(c)(ii) & (iii)). This was enabled by the lower number of pinning 

sites in the Kagome lattice, which made it easier for MDW pairs to meet, and annihilate with each 

other. Notably, a much higher applied field (Hrot = 47Oe) was required to fully populate the array with 

‘onion’ states than in the other two geometries (Fig. 3(c)(iv)). This was because the square and trigonal 

lattices always contained a residual population of MDWs that could assist with MDW repopulation, 

while these had to be nucleated from the ground state in the Kagome lattice. Plots of field-dependent 

microstate populations confirmed that the Kagome array showed the largest population of ‘vortex’ 

states of all three lattice geometries (Fig. 4(c)). This was also reflected in the array’s net magnetisation, 

which reached lower values at intermediate fields than either of the other lattices (Fig. 4(d)). 

Collectively, the analysis of microstates showed that the different lattices differed substantially in both 

the microstates they formed, and the way the populations of these varied with applied fields. Such 

differences would be expected to result in differences in computational behaviour were they able to 

be accessed by a tractable readout mechanism. However, the net magnetisation data presented in Fig. 

4(d) showed that when the average properties of the arrays were considered these differences became 

less profound. There, all three lattices showed a broadly similar non-linear trends, differing only in the 

magnitude and field scaling of their responses.  
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Figure 5. The (a) f1 and (c) f2 AMR responses as a function of Hrot show the different transitions 

in MDW dynamics in the NRAs. (b) An SEM micrograph of the trigonal NRA showing the Au 

contacts used for the AMR measurements. (d) The time scales of settling for the different 

NRAs extracted from the AMR measurements. 

Having explored the detailed microstate behaviour of the arrays we now explore the responses that 

are accessible via magnetoresistance measurements and are therefore device tractable. 

Macroscopic Characterisation 

The macroscopic electric responses of the NRAs were obtained using Au contacts on either side of the 

NRA (shown in the SEM micrograph in Fig. 5 (b)) are shown in Figs. 5 (a) and (c). Using the procedure 

described in Sec. 2, the f1 = 19Hz and f2 = 38Hz components were monitored as a function of Hrot. As 

mentioned before, the f1 component contains features of the distortion the MDWs undergo as a 

rotating magnetic field is applied and the f2 response denotes the irreversible transitions when MDWs 

overcome the energy barrier at ring junctions and propagate [11]. All the different lattice arrangements 

show peaks in the f1 response. Similarly, the f2 responses for all the lattice arrangements start with a 

slow increase in amplitude and shows a large transition at higher field amplitudes which corresponds 

to when all the MDWs in the array overcome the energy barriers at junctions and start propagating 

with the rotating field. 

The square and Kagome lattices show a prominent peak in the f1 response (marked by P2) at Hrot ≈ 25Oe 

and a harmonic of this peak is seen in the f2 response. This marks the field at which some of the MDWs 

depin from junctions stochastically (after maximum distortion) and start propagating [11]. For the 

trigonal lattice, this peak happens at Hrot ≈ 20Oe (marked by P1) suggesting a lower energy barrier for 

the trigonal lattice that the MDWs have to overcome to start propagation. The sharp transition in the 
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f2 response occurs at the Hrot ≈ 29Oe (marked by P3) for the square and trigonal lattices and the f1 
responses at P3 show a large peak for the trigonal lattice and a small peak for the square. This transition 

for the Kagome lattice happens at a higher field of Hrot ≈ 32Oe (marked by P4 with a similar small peak 

in the f1 response) and is a consequence of the higher field required to repopulate the array with MDWs 

from the interlocking ‘vortex’ states as described above. The field regime between the 1st and 2nd peaks 

in the f1 response is when a variety of the different microstates shown in the PEEM images are 

stochastically formed. The square and Kagome arrays show a decrease in the f2 response in this field 

regime due to the formation of ‘vortex’ states and this is not seen in the f2 response of the trigonal 

lattice due to the reduced number of vortex states formed. We thus see that these results broadly 

correlate with the magnetisation variation of the arrays of different lattice arrangements (shown in Fig. 

4 (d)). However, the features of the microstates seen in the magnetisation variation of Fig. 4 (d) do not 

manifest in the macroscopic ensemble AMR response of these arrays. 

In addition to the non-linearity of its transfer function, the transient nature of a reservoir’s dynamics 

is key to its computational properties [4]. To understand this, we also studied the time scales over 

which the NRAs’ AMR signals settled at select field points in their emergent regimes. In these 

measurements, the magnetisation of the array was again initially saturated and relaxed, creating 

MDWs at remanence. Then 50 cycles of a rotating field were applied on the array and the AMR signal 

simultaneously recorded. The time constants (τ) were obtained by fitting an exponential dependence 

of the form  to the envelope of the AMR signal. Note that above and below these 

field values, the time constants could not be extracted. This was because at lower fields, the change in 

AMR signal was not appreciable and at higher fields, the signal settled into high amplitude oscillations 

(corresponding to propagating MDWs) by one field rotation. It was observed from Fig. 5 (c) that all the 

lattice arrangements exhibit a similar range of maximum and minimum settling times. 

Collectively the analysis of the AMR responses of the arrays shows that, while the different lattices 

show differences in their microstate behaviours, the global AMR measurements are insufficiently rich 

to capture these differences, and all three lattices show broadly similar behaviours. 
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Figure 6. Comparison of peak computational quality (CQ) scores between each lattice 

arrangement for each of the the single subsample reservoir (SSR), single dynamical node 

(SDN), and rotating neurons reservoir (RNR) architectures. 

Computational Evaluation 

Here, we quantify the computational properties of the NRAs in each of the three lattice 

arrangements according to the metrics and architectures defined in 2. Fig. 6 plots the peak CQ metric 

score for each of the three lattice arrangements for each of the three reservoir architectures. It can be 

observed that architectural choice is the dominant factor in general, with smaller variance between 

the lattice arrangements. CQ here is correlated with the number of states available for each ring within 

the three lattices: trigonal has the highest number of available states, and the highest metric score, 

while Kagome lattices have the fewest available states and the lowest metric scores, tying the greater 

computational complexity offered by the square and trigonal arrays to the greater microstate 

complexity available to these arrays. However, there remains significant differences between the 

lattices under the SDN architecture, especially with the relatively poor performance of the Kagome 

lattice. This is likely due to increased tendency of Kagome lattices to form vortex states compared to 

the other arrays, since the lack of mobile domain walls with increased vortex states leads to a 

suppression the dynamic behaviours which the SDN architecture relies upon [11]. 
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Figure 7. The computational quality metric maps as a function of the centre field (Hc) and 

field range (Hr) for the SSR (a-c), SDN (d-f) and RNR (g-i) RC architectures for the different 

lattice arrangements. The stars mark the positions of maximum CQ. 

Fig. 7 shows the calculated CQ for each of the nine lattice and architecture combinations with respect 

to input scaling parameters. The colour maps for the trigonal array show a very different shape 

compared to the square and Kagome arrays, which can be correlated to the difference in the f1 and f2 
responses in Fig. 5 (a/c): The region of poor CQ for trigonal arrays aligns with a region of the two 

responses where the behaviour is broadly linear (20 < Hc < 26 Oe), offering poor computational 

properties compared to the highly nonlinear responses of both Kagome and square arrays. 
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Figure 8. Peak memory capacity (MC) metric maps for the nine architecture/lattice 

arrangement pairs. 

Memory is another computational property of reservoirs, as it determines the timescale at which the 

reservoir responds to input, and for how long information stays in the reservoir. This is useful for 

performing time-series analysis tasks more effectively, where it is critical to match the timescales of 

the reservoir to the timescales of the task [29] . Fig. 8 shows the highest linear MC obtained lattice and 

architecture combinations. Each of the lattice arrangements achieved broadly similar MC values within 

the same architecture, with the RNR providing the highest degree of memory and the square and 

trigonal arrays performing slightly better than the Kagome lattice in this architecture. This is due to the 

ability of the RNR architecture to store information across the distinct real nodes, whereas the 

single/virtual nodes in the SSR and SDN will have information washed out of the node as more inputs 

are provided. 

Fig. 9 shows a heatmap of MC with respect to field scaling parameters for the nine lattice/reservoir 

pairs. For the RNR architecture, all three lattice arrangements show best performance for Hc values 

centred about the point at which the array starts to become dynamically active. This correlated with 

observations from our previous study where we showed that peak memory was obtained when input 

fields periodically traversed the field at which DWs became dynamically active, thus allowing 

information to be retained over multiple field cycles [11]. This further evidences that MC is strongly 

coupled to the ability to store information within the network, as well as the ability to exploit the non-

volatile properties exhibited by all lattice arrangements. 



200 
 

 

 

Figure 9. The memory capacity metric maps as a function of the centre field (Hc) and field 

range (Hr) for the SSR (a-c), SDN (d-f) and RNR (g-i) RC architectures for the different lattice 

arrangements. 

Combining Lattice Outputs 

Whilst the lattice arrangements showed slight differences in terms of maximum scores achieved in 

metrics, they often showed considerable differences in the input scaling parameters at which these 

areas of peak performance were reached, implying different behaviours in different lattices at a given 

applied field. This enabled multiple behaviours to be captured at a given field by combining the 

different lattices’ responses. To show the difference in computational properties resulting from the 

combination of the lattice arrangements, the metric calculations were repeated with the output for 

each lattice concatenated together to form a single reservoir state matrix with three times as many 

outputs per input. 
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Figure 10. Comparison between peak performances of the combined networks (red) and the 

highest performing single network (green) for both computational quality (CQ) and memory 

capacity (MC). 

Fig. 10 shows the resulting peak CQ and MC values compared to the best performing single 

lattice/architecture pair for the three reservoir architectures. It can be observed that there is a 

considerable increase in the CQ for all three reservoir architectures compared to the best performing 

single case for a given architecture. This is due to the different nonlinear representations provided by 

each lattice, providing better ability to separate/generalise data via these different nonlinearities. 

When considering MC, the combined reservoirs performed similarly in terms of peak score. For the 

SSR and SDN cases, this is likely tied to the inability to store information beyond 2 inputs in any of the 

lattices in a single node/single time multiplexed node configuration. There is slight improvement for 

the RNR, likely due to the presence of varied timescales for the three lattices, shown in figure 5(d). 

Fig. 11 shows the metric heatmaps of the combined reservoir. There is a broadening of the suitable 

regions of operation compared to the single lattices due to the different ranges of activity of each 

lattice arrangement, ensuring at least one is operating in a dynamically interesting regime for a broader 

range of input scaling parameters. This highlights the potential scalability of the NRAs in terms of 

expanding computational capability, as improved CQ is obtained when combining the different 

nonlinear relationships between input and output provided by each of the different lattice 

arrangements. Combining the outputs also provides a means of exploiting the different timescales of 

response from the three lattice arrangements highlighted in Fig. 5 (d). This behaviour is functionally 

similar to the unconnected hierarchical ESNs presented in [30], which showed improvement in solving 

tasks on data with multiple timescales of autocorrelation. 
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Figure 11. The memory capacity metric maps as a function of the centre field (Hc) and field 

range (Hr) for the SSR (a-c), SDN (d-f) and RNR (g-i) RC architectures for the different lattice 

arrangements. 

Conclusions.  

In conclusion, we have explored the magnetic responses and computational properties of ring arrays 

with different lattice arrangements. XPEEM measurements showed a wide variety of microscopic 

magnetic states for the different lattices. We extracted the state populations for the different lattices, 

and they showed significantly different variation in the evolution of states. We also measured the 

macroscopic AMR electrical response of the different lattice NRAs and observed there were differences 
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in the fields at which given responses occur. However, these differences were manifested less strongly 

in the array-averaged AMR responses. 

When the computational capabilities of the arrays were measured via their AMR responses, similar 

computational metric scores were observed within a given reservoir architecture, highlighting the role 

of array-wide measurements in obscuring the different microstate behaviours. In spite of this, the 

ability to exploit different dynamical regimes between the lattices at a given field allowed improved 

computational performance when the different lattices were combined. 

Collectively, our measurements show that although the different lattice arrangements have 

considerably different microstate responses, global 1D measurements of array state such as AMR 

provide limited differences in computational behaviour. In order to exploit the microstate differences 

observed between the lattice arrangements, a measurement technique which is microstate-sensitive 

(such as ferromagnetic resonance, [31]) should be employed. Additionally, we anticipate that if such 

arrays are driven by local stimuli (using current carrying microstrip lines or spin-orbit torque), we could 

make use of the high spatial inhomogeneity of NRA states in these lattice arrangements for improved 

computational capability. 

Acknowledgments.  

We acknowledge funding from the Horizon 2020 FET-Open SpinEngine (Agreement no 861618) and 

the EPSRC MARCH project EP/V006339/1. 

References.  

[1] Insights S 2023 Global Neuromorphic Computing market Size https:// 

www.sphericalinsights.com/reports/neuromorphic-computing-market accessed: 202306-13 

[2] Jaeger H 2001 Bonn, Germany: German National Research Center for Information Technology GMD 

Technical Report 148 13 

[3] Lukoˇseviˇcius M, Jaeger H and Schrauwen B 2012 KI-Ku¨nstliche Intelligenz 26 365–371 

[4] Allwood D A et al. 2023 Applied Physics Letters 122 040501 

[5] Tanaka G, Yamane T, H´eroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D and Hirose A 2019 

Neural Networks 115 100–123 ISSN 0893-6080 URL https:// 

www.sciencedirect.com/science/article/pii/S0893608019300784 

[6] Paquot Y et al. 2012 Scientific reports 2 287 

[7] Dion G et al. 2021 Reservoir Computing: Theory, Physical Implementations, and Applications 191–217 

[8] Mehonic A et al. 2020 Advanced Intelligent Systems 2 2000085 

[9] Kulkarni M S and Teuscher C 2012 Memristor-based reservoir computing Proceedings of the 2012 IEEE/ACM 

International Symposium on Nanoscale Architectures pp 226–232 

[10] Dale M, Stepney S, Miller J F and Trefzer M 2017 Reservoir computing in materio: An evaluation of 

configuration through evolution 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 

(Institute of Electrical and Electronics Engineers Inc.) ISBN 978-1-5090-4240-1 

[11] Vidamour I, Swindells C, Venkat G, Manneschi L, Fry P, Welbourne A, Rowan-Robinson R, Backes 

D, Maccherozzi F, Dhesi S et al. 2023 Communications Physics 6 230 

[12] Wang C, Adeyeye A and Singh N 2006 Nanotechnology 17 1629 

[13] Skjærvø S H, Marrows C H, Stamps R L and Heyderman L J 2020 Nature Reviews Physics 2 

13–28 

[14] Le´on A 2013 Current Applied Physics 13 2014–2018 

[15] Dawidek R W et al. 2021 Advanced Functional Materials 31 2008389 

[16] Vidamour I T et al. 2022 Nanotechnology 33 485203 



204 
 

[17] Bordignon G et al. 2007 IEEE Transactions on Magnetics 43 2881–2883 

[18] Ross C et al. 2006 Journal of Applied physics 99 08S501 

[19] Foerster M et al. 2016 Ultramicroscopy 171 63–69 

[20] Venkat G et al. 2021 Peem-data-analysis https://gitlab.com/spintronic-computing-group/ data-

analysis/peem-data-analysis 

[21] Bu¨sing L, Schrauwen B and Legenstein R 2010 Neural Computation 22 1272–1311 ISSN 0899-7667 

publisher: MIT Press 

[22] Dale M et al. 2019 Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 

ISSN 14712946 

[23] Jaeger H 2002 Short term memory in echo state networks Tech. rep. publication Title: GMD Report 152 

[24] Jensen J H and Tufte G 2020 Reservoir Computing in Artificial Spin Ice (MIT Press) pp 376–383 

URL https://direct.mit.edu/isal/proceedings-abstract/isal2020/32/376/98434 

[25] Appeltant L, Soriano M C, Van Der Sande G, Danckaert J, Massar S, Dambre J, Schrauwen B, Mirasso C R and 

Fischer I 2011 Nature Communications 2 ISSN 20411723 URL www.nature.com/ naturecommunications 

[26] Liang X, Zhong Y, Tang J, Liu Z, Yao P, Sun K, Zhang Q, Gao B, Heidari H, Qian H and Wu H 

2022 Nature Communications 13 1549 ISSN 2041-1723 number: 1 Publisher: Nature Publishing 

Group URL https://www.nature.com/articles/s41467-022-29260-1 

[27] Negoita M, Hayward T J and Allwood D A 2012 Applied Physics Letters 100 ISSN 00036951 

[28] Rose V et al. 2006 Physical Review B 73 094442 

[29] Lukoˇseviˇcius M and Jaeger H 2009 Computer Science Review 3 127–149 ISSN 15740137 

[30] Manneschi L et al. 2021 Frontiers in Applied Mathematics and Statistics 6 ISSN 2297-4687 

[31] Gartside J C, Stenning K D, Vanstone A, Holder H H, Arroo D M, Dion T, Caravelli F, Kurebayashi H and Branford 

W R 2022 Nature Nanotechnology 17 460–469 ISSN 1748-3395 

URL https://doi.org/10.1038/s41565-022-01091-7 

 

  



205 
 

Tuning reservoir computing performance modifying physical 

device response and reservoir architecture 

Supplementary  aterial 

Calculating  etrics 

The computational metrics of KR and GR were evaluated similarly though they describe opposite 

properties. For KR, the system was driven by M sequences of length N independent and identically 

distributed (i.i.d.) random inputs sampled from a uniform distribution between zero and one, where 

M = the number of output nodes Nnodes in the network, and N > the number of inputs required to 

wash out initial conditions of the reservoir. The input sequences for GR were generated similarly, 

though the final three entries to each input sequence were identical to the first sequence. Each 

sequence was transformed sequentially, with the reservoir being reinitialised to the saturated state 

between sequences. 

The nonlinear dynamics of the system provided a transformation of these input signals and an 

output matrix X of dimensions [M × Nnodes] was taken from the node activities after the final input. 

Singular value decomposition was then performed on the output matrix X, and number of the 

resulting singular values above a threshold value (typically ≈ 0.1) was used to estimate the rank of 

matrix X, giving the degree of nonlinearity between each node’s representation of different inputs. 

For KR, a high ability to provide nonlinear representations was reflected by a high KR value, while for 

GR, a high rank reflects a high sensitivity to past inputs and an inability to converge to linearly related 

states. A classification heuristic, computing quality (CQ) [1], was constructed by calculating the 

difference between KR and GR. All three metrics were bounded by the smallest dimension of M or 

Nnodes. 

For MC, a similar i.i.d. input vector si of length L was used (here L = 2000), again sampled from a 

uniform distribution between zero and one. The input vector was converted into appropriate driving 

fields (using the linear encoding described above) and the resulting reservoir states are gathered 

after every input, forming an output matrix X of dimensions [L×Nnodes]. The memory capacity of the 

system was calculated by training a linear readout layer to reconstruct a target signal Y, consisting of 

the previous Nnodes inputs to the reservoir at each time-step. After discarding an initial washout 

period, matrices X and Y were split into a training and testing dataset, with the former being used to 

optimise the weights of the linear readout layer, and the latter being used for evaluation of 

performance. The value of MC is given via: 

(8.1) 

   

where cov() denotes the covariance of two sequences and 𝑌̃𝑡−𝑘is the prediction of the linear 

readout for delay k. MC is hence bounded by the number of nodes in the system. 

Implementation of reservoir architectures 

Signal sub-sample reservoir. 
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In this paradigm, each datum i in a 1D discrete input signal si is used to scale the magnitude of a 

single rotation of magnetic field, and the AMR signal is logged over the rotation. Features are 

extracting by taking a fixed number N (N = 32 here) samples per input, creating a feature vector of 

length N. These features are then used to generate reservoir states matrix Xi,N by taking 

concatenating these feature vectors for each timestep i. 

Single dynamical node reservoir. 

This approach was introduced by Appeltant et al. [2] and involves the time-multiplexing of input 

signals si,d via a fixed input mask Md,N consisting of randomly sampled numbers from a uniform 

distribution between -1 and 1, where d = number of input dimensions, and N = the number of 

desired virtual nodes in the resulting reservoir. At each timestep, the reservoir input 𝑠̃𝑖,𝑁  is given by 

𝑠̃𝑖,𝑁= si,d × Md,N. Each entry of 𝑠̃𝑖,𝑁is then used to scale the magnitude of rotating field for a single 

rotation per input. Reservoir state matrix Xi,N is generated by taking the peak-to-peak amplitude of 

the resulting AMR signal for each input in 𝑠̃𝑖,𝑁. 

Rotating neurons reservoir 

This approach was introduced by Liang et al. [3], where the reservoir consists of multiple dynamical 

nodes, and inputs si,d are scaled via a rotating input mask Md,N similarly to the SDN reservoir (again, N 

= 50), except mask values are instead randomly sampled from binary values of -1 or 1. At each 

timestep, the input mask ’rotates’ by shifting each row upwards by one position, changing 

connection between each mask value and node by one position every timestep. The output weights 

undergo the opposite transformation, ensuring that correlation between input mask and output 

weight is maintained. This process is analogous to keeping the input/output values fixed, and 

changing which node receives the input is measured for output at each timestep. 
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9- Conclusions and Future Work. 
This thesis has described the investigation and application of arrays of interconnected permalloy 

nanorings as a reservoir computing platform. Through both simulations and experiments, a deep 

understanding has been developed in how the nanoring systems respond to input stimuli of rotating 

magnetic fields, and how the observed dynamics can be best exploited under the framework of 

reservoir computing. Key developments include a simulation platform for probing the response of the 

nanoring arrays, methodologies that can expedite the process of determining optimal dynamical 

regimes for computation, an experimental setup for measuring the magnetoresistance response of 

the nanorings, and demonstrations of computation in both simulation and hardware. The findings of 

this work will serve as the foundation for future exploration into the development of the nanoring 

arrays as a potential computing platform. The key findings of each of the research chapters presented 

here, as well as both the currently occurring and the potential future studies that follow the work 

presented in this thesis. 

Chapter 5 presented the design and validation of RingSim, a bespoke simulator for modelling the state 

of nanoring networks when driven by rotating magnetic fields. It was shown that the complex 

response of the arrays can be represented by modelling the outcome of stochastic pinning events, 

with phenomenological consideration of the interactions between domain walls in the system. 

RingSim showed good agreement with a range of experimental data, representing the equilibrium 

responses, the dynamic responses, as well as the microstate responses of the ring arrays.  

In order to refine the model further, a more complete analysis into the distributed properties of the 

nanoring arrays that arises from the manufacturing procedure would be useful, as the inclusion of 

distributed properties in RingSim were simply fit to best approximate experimental data. Alternatively, 

a thorough investigation into the consistency of the fabrication procedure, as well as the 

consequences it has on the energetic landscape of the junctions within the array, would provide a 

more concrete description of the variance observed experimentally and implemented in RingSim.  

At present, the formulation of RingSim only covers the square lattice arrangement. Since the physical 

processes that dictate the responses of the arrays will translate to both the trigonal and Kagome lattice 

arrangements (and even more arbitrary, aperiodic tessellations), it is likely that an extension of 

RingSim will serve as a good approximator of these arrangements also. Indeed, the generalisation of 

RingSim is being actively pursued, and is in the stage of validation, with collaborators in the University 

of York. 

Finally, it would also be useful to extend the outputs of RingSim to resemble the experimental 

measurements used for computation, at present AMR but potentially with other readouts in the 

future. This would mean RingSim would be a more direct predictor of device behaviour, as it would be 

able to produce similar responses as those measured experimentally, rather than as simply proxies of 

properties like magnetisation, as is currently available. With collaborators from the University of 

Ghent, RingSim is currently being coupled with additional software that would enable the AMR state 

of the array to be calculated from the position of domain walls within RingSim. This work has used 

MuMax3 simulations of the AMR response of each of the possible configurations a single ring can 

exhibit, then translating this into a resistor network of the entire array that matches the output of 

RingSim to produce realistic AMR signals. This work is again in the validation stage. 
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Chapter 6 focussed upon the initial investigations into quantifying the computational capabilities of 

the nanoring arrays in simulations, with some demonstrations of task performance in a standard 

benchmark task of spoken digit recognition. The key outcomes of this chapter were the development 

of a paradigm for computing with the nanoring arrays, the identification of ideal regimes for 

computation from the array’s response, and a methodology for speeding up the parameter selection 

process for a given task via the rapid evaluation of task-independent metrics. It was also observed 

here that with increased information on the magnetic state of the array, the computational capability 

of the array in a task-based environment was expanded significantly. This suggests that a potential 

method for expanding the computational power of the nanorings is to extract more information on 

the complex magnetic state of the system. 

A potential extension of this work would be to investigate different readouts of the system state, or 

different initialisations of the array itself. Since RingSim is a good approximator of system behaviour, 

and the energetic properties of specific junctions can be arbitrarily defined, the potential 

computational benefits that could be obtained from, for example, arrays with distributed properties 

could be explored without the need for manufacture. Additionally, the granularity of readout could 

be explored, since arbitrary subsections of the arrays can be defined and measured, which would 

guide the implementation of locally addressable readouts of system state. 

While systematic explorations of these questions would provide useful insight into how the arrays 

change with respect to varying parameters, a more ‘black box’ approach could be taken. In 

collaboration with the University of York, there is intention to couple the RingSim platform to CHARC- 

an evolutionary algorithm which is able to manipulate initialisation properties of a given system in 

order to maximise the range of computational properties available. This could lead to generation of 

creative structures in simulation, which could then be reproduced in experiments. Any potential 

differences between the simulation prediction and the experimental realisation could then also be 

used to refine the models in order to form a closed-loop optimisation process. 

Chapter 7 presented an experimental demonstration of the nanoring arrays as a computational 

platform. To achieve this, an experimental rig for driving and measuring the arrays was created and 

optimised. This allowed for easy generation of driving fields according to the arbitrary input signals of 

a given task, the readout of system state via AMR measurements and conversion of measurements 

into features for machine learning, and the training of resulting networks to be performed. It was 

found that through synergising the demands of a task with both the input/output paradigm to the ring 

arrays and the dynamic properties of the array’s response, the system could be reconfigured into 

different computational platforms capable of solving a wide range of machine learning tasks. This was 

crucial as it demonstrated that the different aspects of the ring array’s complex emergent response 

could be leveraged in a controllable manner, demonstrating the nanoring array’s capabilities as a 

flexible computing platform. 

The elephant in the room when considering the nanoring arrays as a supposed low-power computing 

platform is the power demand of the electromagnets used to drive the system. Part of this inefficiency 

comes from the large area of the generated fields compared to the size of the arrays themselves. The 

field requirements to stimulate the arrays (10s of Oe) is relatively modest, and so it is not inconceivable 

that the electromagnets could be engineered to be much smaller in size and in close proximity to the 

ring arrays, which would significantly reduce their energy demands. 

However, a more elegant solution could be to used spin-currents to drive the system. The complete 

removal for the need of external magnetic fields is definitely desirable for future all-electrical 

implementations of the system. Work is ongoing into the possibility of using the spin-currents 
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generated from a platinum underlayer with nanoring arrays patterned on top of the platinum. Since 

the nanorings have in-plane magnetisation, these implementations would require the inclusion of 

strong magnetic fields acting perpendicular to the plane of the rings in order to cant magnetic 

moments out of plane, and greatly increase the efficiency of spin-transfer. However, the contact 

between the underlayer and the nanorings would cause most of the measurement currents applied 

for AMR to be shunted through the low resistance platinum, reducing the already low percentage 

difference of resistance states in the AMR measurements. 

Chapter 8 explored one of the possible methods for manipulating the array geometry in order to get 

different responses out of the system: changing the degree of interconnectivity between the 

nanorings. First, the study focussed on exploring the microstate differences observed between the 

three different lattice arrangements: square, trigonal and Kagome. The three arrangements had 

drastic different relationships between their respective domain states and applied field strength, 

suggesting that the lattice arrangements had functionally different responses to field. However, when 

they were measured via AMR, the three lattice arrangements showed a lot of similarities. This 

translated to similarities in computational performance when AMR was used as readout. This 

suggested that a more sophisticated, microstate sensitive readout would be required to exploit the 

differences between the lattices for computation. In spite of this, the shifts in field strengths at which 

the different arrangements became dynamically active meant that for a given applied field, each 

arrangement would have a different nonlinear transformation of the input. This led to improved 

computational properties when the different outputs were combined.  

As mentioned in the preamble to chapter 8, there are currently two separate ongoing studies into 

other geometrical manipulations to the ring arrays: changes to the track width, which is being explored 

at the University of Sheffield, and also an investigation into the change in overlap of the junctions 

between the rings, being conducted at IBM Zurich. These studies will help inform on the extent to 

which the response of the ring arrays can be controlled and modified and will help engineer more 

sophisticated devices with distributed responses across larger arrays. This will likely boost the 

computational capabilities of said devices compared to the regular arrays studied thus far, evidencing 

the potential scalability of the ring arrays as more powerful computing platforms. 

One of the key takeaway points of this chapter, which corroborates the findings presented in chapter 

6, is that single readouts lead to reduced computational capabilities. Ideally, as many meaningful 

properties of the system state (provided they are not linearly related to one another) should be taken. 

This increases the dimensionality expansion provided by the reservoir as well as the degree of 

nonlinearity of the transformation, useful properties for both regression and classification-based 

tasks. One method for having a higher-resolution readout of system microstates that has been 

exploited for artificial spin-ices is spectral fingerprinting via ferromagnetic resonance measurements. 

These measurements provide a huge dimensionality of output in frequency space. It is expected that 

the ring arrays will benefit greatly from a similar readout, since there is huge diversity of states in the 

array which would be detected by spectral fingerprinting. This is actively being pursued at Sheffield 

currently. 

Other potential avenues for further work using the nanoring arrays include moving away from the 

reservoir computing paradigm. Although for certain tasks reservoir computers represent the state of 

the art, these are often limited to temporal signal processing tasks with short term dependencies. 

Outside of these tasks, reservoirs are somewhat limited in terms of performance, and reservoir 

computers suffer diminishing returns in performance when simply increasing network size due to the 

random connectivity. Instead of having random networks constructed via architectural tricks to exploit 

the dynamic properties of a given material system, a potential paradigm shift could come from 
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constructing standard neural networks from dynamical nodes. Here, the underlying time-dependent 

properties and complex transformations provided by the material systems would still be at the heart 

of computation, but the networks could be tuned to the specific dynamic requirements of the task via 

the weighted connections between the nodes, rather than via informed selection of initialisation 

parameters as is the case with reservoir computing. 

The big obstacle to the implementation of this approach is that almost all standard machine learning 

techniques used to train neural networks require explicit knowledge of the gradient of the error with 

respect to a change in weights and to current/past inputs. For systems like the nanorings where there 

are no analytical equations that describe their evolution, there is no method for calculating these 

gradients, hence alternative approaches must be taken. In the field of machine learning, there are two 

obvious data-driven candidates for approximating the gradient instead: using equation discovery 

approaches to find a set of differential equations that describe the system or model the system using 

neural networks that emulate the device’s response. Alternatively, approaches such as cascade 

learning could be deployed, in which a multilayer network is built by finding solutions layer by layer, 

training at every step in a similar manner to reservoir computing. This would circumvent the need for 

gradients and offer some computational advantages compared to standard RC, but will eventually face 

similar diminishing returns with increasing network size. 

As a whole, the rings exhibit many desirable properties that make them interesting as a computational 

platform: their driven dynamics can be effectively matched to a wide range of timescales of input data, 

their non-volatility is very useful for more passive forms of computation in cases where data arrives 

sporadically, the continuous nature of the lattice structure facilitates electrical measurement of the 

system, and the broad range of geometrical manipulations available to the system means that their 

response can be tuned and expanded to produce a range of transformations. However, at present 

there are engineering constraints that will limit their possible future applicability. The main concerns 

at present are the generation of driving stimuli for the arrays without magnetic fields, the relatively 

poor signal to noise ratio at present with AMR measurements despite the use of lock-in amplification, 

and lack of ability to locally excite and locally measure the ring arrays to take advantage of their 

spatially distributed response.  

While it may not be likely that we have nanoring-based computing chips in our smartphones in the 

near future, I believe that the exploration into physics-based computation, both with spintronic 

platforms as well as with other families of device, will prove useful in solving certain computational 

problems in a passive low-power manner. If the properties of a given device are especially suited for 

a task, or if their response to input allows both direct sensing and computation, physical substrates 

can conceivably find a role in, for example, signal processing, edge computation or smart sensing.  

 


