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Abstract

This thesis investigates the challenges of producing spatial audio for immersive

media and the utilisation of machine learning to develop novel methods of spatial

audio production. Despite growing interest in immersive technology, there is

currently little academic literature that captures the perspectives of practitioners.

One of the aims of this thesis is to explore and identify the practices and challenges

associated with spatial audio production from the perspective of practitioners.

A qualitative study is first presented that identifies key features and challenges

associated with spatial audio production for immersive media including the time-

consuming nature of sound spatialisation, the lack of available spatial sound effects

libraries, and the integration of legacy stereo content into spatial productions.

These findings were then used to guide the subsequent research in this thesis.

A proof-of-concept system is presented that utilises visual object detection

to locate and classify objects within a simple 2D video. The system suggests

candidate sound effects files from the chosen repository and generates stereo

panning data for the detected objects. The results demonstrate that whilst

the use of computer vision algorithms to search sound effects repositories is

possible, more robust search methods are required. Furthermore, the results show

that whilst panning information can be accurately derived for individual frames

containing multiple objects, a more robust method for tracking objects across

frames is required. For scenes containing a single object panning data can be

accurately derived across multiple frames.

A novel method of upmixing from stereo to b-format is proposed, which uses

deep learning to predict time-frequency directional data which is subsequently

used to extract and remap time-frequency components into the target spherical

harmonics. Results show that whilst the system can learn a generalised mapping

for the time-frequency tiles related to the spectrum of the sound sources, it has

difficulty generalising to the ambient noise present within the scenes.



Contents

Abstract ii

Contents iii

Declaration of Authorship ix

Acknowledgements xi

List of Figures xv

List of Tables xxv

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Statement of Hypothesis and Novel Contributions . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Associated publications . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Associated Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Fundamentals of Sound and Audio Signals 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Basic Properties of Sound . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Sound Waves . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Properties of Sinusoidal Signals . . . . . . . . . . . . . . . 14

2.2.3 Sound Propagation . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.3 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Spatial Hearing and Auditory Perception . . . . . . . . . . . . . 21

2.4.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 The Auditory System . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Directional Localisation Cues . . . . . . . . . . . . . . . . 27

2.4.4 Head Related Transfer Function . . . . . . . . . . . . . . 33

2.4.5 Distance Perception . . . . . . . . . . . . . . . . . . . . . 35

2.5 Audio Digital Signal Processing . . . . . . . . . . . . . . . . . . . 40

2.5.1 Audio Sampling . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Impulse Response . . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.4 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.5 Time-frequency processing . . . . . . . . . . . . . . . . . . 50

2.6 Soundfield Recording, Encoding, & Reproduction for IME Production 53

2.6.1 The Soundfield . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.2 Basics of Soundfield Recording . . . . . . . . . . . . . . . 54

2.6.3 Channel-based Audio . . . . . . . . . . . . . . . . . . . . 57

2.6.4 Object-Based Audio . . . . . . . . . . . . . . . . . . . . . 61

2.6.5 Scene-based Audio . . . . . . . . . . . . . . . . . . . . . . 67

2.6.6 Impulse Response Measurements . . . . . . . . . . . . . . 75

2.6.7 Binaural-based Audio . . . . . . . . . . . . . . . . . . . . 76

2.7 Machine Learning for Audio Production . . . . . . . . . . . . . . 81

2.7.1 Digital Audio Effects . . . . . . . . . . . . . . . . . . . . . 81

2.7.2 Audio Synthesis . . . . . . . . . . . . . . . . . . . . . . . 85

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Sound Design for Immersive Media Experiences 91

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Defining Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Immersive Media Experiences . . . . . . . . . . . . . . . . . . . . 94

3.3.1 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . 96

iv



3.3.2 Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.3 Mixed Reality . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3.4 360◦ Media . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4 The Role of Sound in Immersive Experiences . . . . . . . . . . . 111

3.4.1 Inform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.4.2 Immerse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.5 Spatial Audio for Immersive Experiences . . . . . . . . . . . . . . 116

3.5.1 Traditional vs Immersive Media . . . . . . . . . . . . . . . 117

3.5.2 Use of Spatial Audio . . . . . . . . . . . . . . . . . . . . . 118

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4 Immersive Sound Design Practice 121

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.1 Recent Related Literature . . . . . . . . . . . . . . . . . . 122

4.2.2 Relevant Data Collection Methods . . . . . . . . . . . . . 125

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . 128

4.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3.4 Thematic analysis . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4.1 The XR Environment . . . . . . . . . . . . . . . . . . . . 132

4.4.2 Production Practicalities . . . . . . . . . . . . . . . . . . 136

4.4.3 End User Experience . . . . . . . . . . . . . . . . . . . . . 138

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.1 Distance Perception . . . . . . . . . . . . . . . . . . . . . 143

4.5.2 Multi-sensory aspects . . . . . . . . . . . . . . . . . . . . 144

4.5.3 Immersion factors . . . . . . . . . . . . . . . . . . . . . . 145

4.5.4 Tools and assets . . . . . . . . . . . . . . . . . . . . . . . 145

4.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 146

v



4.6.1 Automatic panning . . . . . . . . . . . . . . . . . . . . . . 146

4.6.2 Distance emulation . . . . . . . . . . . . . . . . . . . . . . 148

4.6.3 Upmixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Deriving Audio Metadata from a Visual Scene 155

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Visually Driven Sound Design . . . . . . . . . . . . . . . . . . . . 156

5.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.1 Google’s Object Detection API . . . . . . . . . . . . . . . 158

5.3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.3.3 Sound Effects Suggestions . . . . . . . . . . . . . . . . . . 161

5.3.4 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . 162

5.4 Test Material Specification . . . . . . . . . . . . . . . . . . . . . . 163

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5.1 Run time for data extraction . . . . . . . . . . . . . . . . 165

5.5.2 Spatial Positioning and trajectory tracking . . . . . . . . 165

5.5.3 Sound Effects Recommendations . . . . . . . . . . . . . . 169

5.6 A Review of Methods to Inform Future Work . . . . . . . . . . . 171

5.6.1 Object Detection and Classification . . . . . . . . . . . . 171

5.6.2 Multiple Object Tracking . . . . . . . . . . . . . . . . . . 176

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6 Predicting time-frequency spatial parameters for use in stereo

upmixing using a Residual U-Net 187

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.2 Relevant Background . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.2.1 Stereo Signal Model . . . . . . . . . . . . . . . . . . . . . 190

6.2.2 Direct-Diffuse Decomposition . . . . . . . . . . . . . . . . 191

6.2.3 Directional Estimation . . . . . . . . . . . . . . . . . . . . 193

6.2.4 Existing Tools . . . . . . . . . . . . . . . . . . . . . . . . 194

6.2.5 Limitations of current approaches . . . . . . . . . . . . . 194

vi



6.2.6 Machine Learning Approaches . . . . . . . . . . . . . . . 196

6.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.3.1 Existing Datasets . . . . . . . . . . . . . . . . . . . . . . . 198

6.3.2 Dataset Formats . . . . . . . . . . . . . . . . . . . . . . . 201

6.3.3 Sound Events . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3.4 Impulse Response Specification and Acquisition . . . . . . 203

6.3.5 Spherical Harmonic IR Encoding . . . . . . . . . . . . . . 203

6.3.6 Dataset Availability . . . . . . . . . . . . . . . . . . . . . 205

6.3.7 Sound Scene Synthesis . . . . . . . . . . . . . . . . . . . . 205

6.3.8 Target Feature Extraction using Directional Audio Coding

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.4 Input Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 211

6.4.2 Short-time log-magnitude spectrum . . . . . . . . . . . . 211

6.4.3 Generalised Cross-Correlation Phase Transform (GCC-

PHAT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.5.1 U-Net Baseline . . . . . . . . . . . . . . . . . . . . . . . . 214

6.5.2 Residual Connections . . . . . . . . . . . . . . . . . . . . 214

6.5.3 Multi-channel Residual-U-Net (MuCh-Res-U-Net) . . . . 216

6.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.6.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . 222

6.7 Example Upmixing pipeline . . . . . . . . . . . . . . . . . . . . . 224

6.7.1 Upmixing using Directional Audio Coding . . . . . . . . . 224

6.7.2 Upmixing to B-format . . . . . . . . . . . . . . . . . . . . 226

6.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 228

6.8.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 228

6.8.2 Evaluation of B-format upmix pipeline . . . . . . . . . . . 233

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

vii



7 Conclusions and Further Work 259

7.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

7.2 Contributions to the Field . . . . . . . . . . . . . . . . . . . . . . 261

7.3 Restatement of Hypothesis . . . . . . . . . . . . . . . . . . . . . 262

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

7.5 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

List of Acronyms 269

List of Symbols 275

A Appendix A Ethical Approval Documents 281

B Appendix B Survey/Interview Guide 293

C Appendix C Interview metadata 303

D Appendix D IR Dataset Supplementary Information 305

D.1 Measurement Apparatus . . . . . . . . . . . . . . . . . . . . . . . 305

D.2 Available Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

References 307

viii



Declaration of Authorship

I declare that this thesis is a presentation of original work and I am the sole author.

This work has not previously been presented for an award at the University of

York or any other University. The bibliography contains proper acknowledgement

of all sources.

In addition, I declare that parts of this research have been presented as conference

and journal publications during the course of the research degree. The related

publications are as follows:

• Chapter 4: Daniel Turner, Chris Pike, Chris Baume and Damian Murphy

(2022). “Spatial audio production for immersive media experiences: Per-

spectives on practice-led approaches to designing immersive audio content”.

In The Soundtrack 13:1, pp.73-94

• Chapter 5: Dan Turner, Chris Pike, and Damian Murphy (2020). “Content

Matching for Sound Generating Objects within a Visual Scene Using a

Computer Vision Approach”. In Proceedings of the 148th Audio Engineering

Society Convention.

ix



x



Acknowledgements

Whilst this thesis represents the culmination of 4.5 years of doctoral study, it

also represents the end of a 14 year journey since I first arrived at University,

guitar in hand, wondering what kind of career in music/music technology awaited

me. Well 14 years, two degrees, a PGCE, a stint as an FE lecturer, and a global

pandemic later, and I am now about to embark, much older, but still just as

excited, on the next stage of the adventure.

Although I may have typed all the words in this thesis, it would certainly not

have taken the form it has without several key individuals.

Thanks first and foremost must go to my supervisor, Prof. Damian Murphy,

whose guidance, endless enthusiasm, and ability to always see the positive has

been a never ending source of inspiration, especially at those times when my own

levels of enthusiasm were somewhat lacking.

Thanks must also go to both my industry supervisors at the BBC, Dr Chris

Pike, and Dr Chris Baume, for their contributions in helping shape this thesis

and always offering a fresh perspective. I am also grateful to everyone I met at

BBC R&D for their friendship, advice, and generally making me feel welcome. I

was privileged to have the work in this thesis supported by an EPSRC iCASE

doctoral studentship in parternship with BBC R&D. Without this support I

would not have been able to take this amazing opportunity to work towards a

PhD and for that I will forever be grateful.

Thanks must also go to Dr Bruce Wiggins and Dr Adam Hill of the University

of Derby, for reopening the door to the realms of science and engineering. I do

not think it an exaggeration to say that returning to Derby to undertake my

xi



MSc changed the course of my life.

I would like to thank everyone at the AudioLab for their friendship, particularly

Dr Kat Young who was my only office mate before the world decided we should

all work from home. Thanks goes to Andrew Chadwick for this assistance in

the collection of the IR dataset that was crucial to the latter parts of my work.

To Dr Tom McKenzie, and again Dr Kat Young, for allowing me to clog up our

group chat these last few weeks with constant thesis writing related questions.

It is very much appreciated. Particular thanks to Simon Durbridge, for going

through the mill with me and always being on hand for a friendly, insightful, and

reassuring chat. We did it!

Finally, Sophie, for feeding me, keeping me hydrated, and making sure I left

the house every so often during what felt like a never ending write up period.

This is just as much your achievement as it is mine. I could not have done it

without you. Lets go climb some mountains.

A special mention must also go to Prof. Chonkous, for always listening to me

complain and never asking too many questions.

xii



This thesis is dedicated to John Burden, my Granddad. I’m sorry you never got

to see me finish it.



xiv



List of Figures

2.1 The mass-spring model of sound propagation, adapted from [26]. 11

2.2 The mass-spring model showing propagation of a single sound

pulse through a medium, adapted from [26] . . . . . . . . . . . . 13

2.3 The mass-spring model showing propagation of sinusoid through a

medium together with its transverse visualisation [from [26]]. . . 13

2.4 Two sinusoids with different values of A, f , Φ and with t ∈ [0, 1] 15

2.5 Illustration of the inverse square law and how sound intensity I, is

inversely proportional to source distance . . . . . . . . . . . . . . 17

2.6 Cartesian and Spherical Coordinate Systems . . . . . . . . . . . . 19

2.7 Head-related coordinate system, taken from [36] . . . . . . . . . . 21

2.8 The anatomy of the human auditory system. . . . . . . . . . . . 23

2.9 ISO 266 equal loudness curves illustrating how the sensitivity of

the human hearing system varies as a function of frequency . . . 25

2.10 Comparison between Bark, ERB, Mel, and linear frequency scales.

Units have been normalised. . . . . . . . . . . . . . . . . . . . . . 27

2.11 Illustration of a simple head model with a source location at 45◦.

Model highlights additional path length and shadowing introduced

by the head for off axis sounds at the contralateral ear. Adapted

from [55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xv



2.12 Relative phase shift for a 500 Hz sinusoid delayed by 0.5 ms

and 2.5 ms. Dotted line indicates that although each delay time

represents a phase shift of 90◦ and 450◦ respectively, the auditory

system would interpret both as 90◦ as humans are unable to detect

absolute phase shift. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 Relative phase shift for a 1 kHz sinusoid delayed by 0.5 ms. Dashed

line indicates a 180◦ phase shift, compare this to the 90◦ phase

shift for 500 Hz given the same time delay illustrates that phase

shift varies with frequency. . . . . . . . . . . . . . . . . . . . . . 30

2.14 Illustration of the cone of confusion where sounds on the surface

of the cone have identical interaural differences and may result in

localisation errors without additional cues. Adapted from [37]. . 32

2.15 Spectral variations vary with elevation angle for 2 different subjects

extracted from the SADIE II Database [72] with source azimuth

angle of left 45 ◦and changing elevation. Top: Subject H3. Bottom:

Subject H4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.16 HRTF magnitude responses for the left and right ears captured

for sources at directions 0◦ (top), 45◦ (middle), and 90◦ (bottom).

Derived from data captured from a subject measurement from the

SADIE II Database [72]. . . . . . . . . . . . . . . . . . . . . . . . 34

2.17 Illustration of a 1Hz sinusoid digitally sampled at 30 Hz . . . . . 42

2.18 Time and frequency-domain representations of the Unit Impulse 42

2.19 The Resulting output (h[n]∗ g[n]) of the two convolution of signals

h[n] and g[n] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.20 Fourier synthesis of a square wave, showing the first four par-

tials, the resulting waveform from their summation, the waveform

resulting from 25 partials, and a idealised square wave. . . . . . . 48

2.21 Sinusoidal signal with three frequency components at 500 Hz,

1000 Hz, and 2000 Hz represented in both a) Time-domain b)

Frequency-domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xvi



2.22 Overlap-Add example for a Hamming window with a length of

33 and a hopsize of 16. (a) shows the results of a non-COLA

window resulting in discontinuities at the edge of each overlap-add.

Whilst (b) shows the COLA solved for a window with odd length

M. Generated from code adapted from [110]. . . . . . . . . . . . 53

2.23 Basic model of a soundfield based on two point sources, S1 and

S2, and one receiver. . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.24 Four common microphone directional pickup patterns. Red denotes

positive polarity and blue denotes negative polarity. . . . . . . . 56

2.25 Diagrams of common stereo microphone techniques a) Spaced pair

b) XY coincident pair c) Near coincident pairs such as O.R.T.F

and N.O.S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.26 B-format spherical harmonics termed W, X, Y, Z. Red denotes

positive polarity and blue denotes negative polarity. . . . . . . . 68

2.27 Soundfield SPS200 1st order microphone [159] . . . . . . . . . . 71

2.28 Spherical harmonics up to 4th order following Y σ
nm . . . . . . . . 72

3.1 Wellingborough train station as depicted on the Pokémon Go app. 98

3.2 Illustration of the map presented during Ghost Walk to guide users

(yellow icon) to different points of interest (ghost icons). Taken

from [274] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3 (a) The HTC VIVE Focus 3 Headset. Image taken from [292]. (b)

Pulsar gloves as part of the vico tracking system used for Flood.

Image taken from [293] . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4 Two views of the same scene from Flood, taken from [282]. (a)

shows the view of the real-world with participants sat in front of

an object with stick like objects protruding out of it; (b) shows the

same scene from the virtual world and as can be seen, the stick like

objects present in (a) are mapped to their virtual counterparts. 103

3.5 Simplified representation of Reality-Virtuality Continuum taken

from [303] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xvii



3.6 A frame taken from [308], showing a digital avatar crossing from

the virtual world into the real-world. . . . . . . . . . . . . . . . . 107

3.7 (a) and (b) depict the same Pokémon Go experience but with the

device having been moved farther back in (b). This illustrates that

in AR objects do not always have capability to keep scale with

their environment but instead just have a fixed sized relative to

device screen size. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.8 The Varjo-XR3 MR headset used in Interchange. Taken from [301].109

3.9 Post-production workflow for a 360◦ film. Adapted from [314] . 110

3.10 A frame taken from BBC 360 Click [312] where the user has

orientated themselves to face the ground. This is an example of

how within 360 Media, users often lack a physical representation

within the space as all that can be seen in this scenario is the base

of the camera stand. . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Flow chart illustrating order of operations and flow of data within

the proposed methodology . . . . . . . . . . . . . . . . . . . . . . 159

5.2 IoU can be calculated by dividing the area of intersection (the

area covered by the overlap of the two boxes) by the area of union

(total area covered by the two boxes). Within this work it is used

as a continuity check on objects within the visual scene taking

advantage of the similar locations an object will occupy within the

current and previous frame. . . . . . . . . . . . . . . . . . . . . . 161

5.3 Single frame taken from a test video with the preceding trajectory

of the detected object overlaid. . . . . . . . . . . . . . . . . . . . 163

5.4 A single video frame extracted from example Video 1, and used

as input for the object detection system to generate candidate

audio file recommendations. The location of the detected obkect

is indicated by the green bounding box and is assigned the class

label of ‘person’. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

xviii



5.5 Image from a single video frame of Video 2 used to derive panning

information for two moving objects with a 2D visual scene. The

example video is of two people crossing the field of view from left

to right approximately 1.5m apart. . . . . . . . . . . . . . . . . . 165

5.6 Horizontal panning data plotted over time as derived from example

Video 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.7 Output of Google Object Detection API, showing correct classi-

fication of ‘giraffe’ (centre) and ‘zebra’ (right), whilst incorrectly

assigning the class label of ‘cow’ to an antelope (left). . . . . . . 171

6.1 Spaced pair capturing sources from locations 45◦ 135◦ 315◦ and

225◦. This illustrates the frontally biased nature of traditional

stereo upmixing systems as the direct components for sources at

45◦ and 135◦ would both be reproduced out of the front left speaker

and direct components for sources at 315◦ and 22◦5 both replayed

out of position 315◦ . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2 Microphone configurations set up for IR capture and positoned

using laser level meters. . . . . . . . . . . . . . . . . . . . . . . . 204

6.3 Log magnitude spectra extracted from a stereo scene synthesised

using the methodology outlined in Section 6.3.7 . . . . . . . . . . 207

6.4 Log magnitude spectra extracted from a B-format scene synthesised

using the methodology outlined in Section 6.3.7 . . . . . . . . . . 207

6.5 Original U-net architecture taken from [220]. Blue boxes corre-

spond to a multi-channel feature map. The number of channels is

denoted on top of the box. The x-y size is provided at the lower

left edge of the box. White boxes represent copied feature maps.

The arrows denote the different operations. . . . . . . . . . . . . 215

6.6 Loss surfaces for a ResNet-56 without skip connections (left) and

with skip connections (right). Visualisation taken from [577] . . . 216

6.7 Regular convolutional block used in U-Net (right) and Residual

unit used in Res-U-Net (left) . . . . . . . . . . . . . . . . . . . . 217

xix



6.8 Proposed MuCh-Res-U-Net architecture . . . . . . . . . . . . . . 218

6.9 Encoder and decoder blocks for MuCh-Res-U-Net. . . . . . . . . 219

6.10 Block diagrams showing a) generic time-frequency parametric

stereo upmix processor and b) A stereo upmix processor with the

panning estimation block replaced by the proposed MuCh-Res-U-

Net that predicts direct/diffuse parameters for 360◦ space . . . . 225

6.11 Block diagram of proposed stereo to B-format upmixer utilising

directional parameters predicted by MuCh-Res-U-Net . . . . . . 226

6.12 Validation loss curves for baseline mode, best performing model,

and a model that is representative of overfitting. The measured loss

Baseline and MuCh-Res-U-Net-Best continue to decrease slowly

over time while the MuCh-Res-U-Net begins to overfit at around

epoch 35 as evidenced by the increase in its loss value. The sharp

peaks in the loss curves coincide with the learning rates warm

restart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.13 Ground-truth and predicted time-frequency azimuth parameter

values for the a) baseline U-Net and b) MuCh-Res-U-Net-Best.

Each row is a randomly selected example from the test set, with

the left hand column containing the ground truth data and the

right hand column containing the output from the model. . . . . 232

6.14 Ground-truth and predicted time-frequency elevation parameter

values for the a) baseline U-Net and b) MuCh-Res-U-Net-Best. . 233

6.15 Ground-truth and predicted time-frequency diffuseness parameter

values for the a) baseline U-Net and b) MuCh-Res-U-Net-Best. . 234

6.16 Ground-truth and predicted time-frequency azimuth parameter

values for MuCh-Res-U-Net-overfit taken from the validation set.

Note how when the model overfits it begins to predict similar to

noise like spectra in the ambient portion of the training example. 235

xx



6.17 Upmixed W channel (Top) original W channel (bottom). Perceiv-

able different in spectra may be a consequence of the microphone,

recording equipment, and any subsequent processing that went

into capturing and encoding the shown signals. . . . . . . . . . . 236

6.18 Upmixed X channel (Top) original X channel (bottom). Perceivable

different in spectra may be a consequence of the microphone,

recording equipment, and any subsequent processing that went

into capturing and encoding the shown signals similar to that

observed in figure 6.17 . . . . . . . . . . . . . . . . . . . . . . . . 237

6.19 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of the (a) upmixed B-format signals and (b)

ground truth B-format signals. Stereo input source is a 3s pink

burst spatialised to θ = ϕ = 0◦ using IRs from the AB omni 40 set.238

6.20 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of the (a) upmixed B-format signals and (b)

ground truth B-format signals. Stereo input source is a 3s pink

burst spatialised to θ = 45◦, ϕ = 0◦ using IRs from the AB omni 40

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.21 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of (a) and (c) the upmixed B-format signals and

(b) and (d) the ground truth B-format signals. Stereo input source

is a 3s pink burst spatialised to (a), (b) θ = −135◦, ϕ = 0◦, and

(c), (d) θ = 135◦, ϕ = 0◦, using IRs from the AB omni 40 set. . . 241

6.22 Predicted DOA estimates resulting from the time-sampled intensity

vectors of the (a) upmixed B-format signals and (b) ground-truth

B-format signals. Stereo input source is a 3s pink burst spatialised

to θ = 180◦, ϕ = 0◦ using IRs from the AB omni 40 set. . . . . . 242

xxi



6.23 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of (a) and (c) the upmixed B-format signals and

(b) and (d) the ground truth B-format signals. Stereo input source

is a 3s pink burst spatialised to (a), (b) θ = 90◦, ϕ = 0◦, and (c),

(d) θ = −90◦, ϕ = 0◦, using IRs from the AB omni 40 set. . . . . 243

6.24 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of (a) and (c) the upmixed B-format signals and

(b) and (d) the ground truth B-format signals. Stereo input source

is a 3s pink burst spatialised to (a), (b) θ = 0◦, ϕ = 90◦, and (c),

(d) θ = 0◦, ϕ = −90◦, using IRs from the AB omni 40 set. . . . . 244

6.25 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of (a) and (c) the upmixed B-format signals and

(b) and (d) the ground truth B-format signals. Stereo input source

is a 3s pink burst spatialised to (a), (b) θ = 0◦, ϕ = 45◦, and (c),

(d) θ = 0◦, ϕ = −45◦, using IRs from the AB omni 40 set. . . . . 245

6.26 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of (a) and (c) the upmixed B-format signals and

(b) and (d) the ground truth B-format signals. Stereo input source

is a 3s pink burst spatialised to (a), (b) θ = 45◦, ϕ = 65◦, and (c),

(d) θ = 45◦, ϕ = −65◦, using IRs from the AB omni 40 set. . . . 246

6.27 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of (a) and (c) the upmixed B-format signals and

(b) and (d) the ground truth B-format signals. Stereo input source

is a 3s pink burst spatialised to (a), (b) θ = 18◦, ϕ = 18◦, and (c),

(d) θ = 18◦, ϕ = −18◦, using IRs from the AB omni 40 set. . . . 247

6.28 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of the upmixed B-format signals resulting from

a stereo input source containing a 3s pink burst spatialised to

θ = 45◦, ϕ = −65◦, using IRs from the (a) Coincident, (b) NOS,

(c) Blumlein, and (d) AB cardioid 40 set. . . . . . . . . . . . . . 250

xxii



6.29 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of the upmixed B-format signals resulting from

a stereo input source containing a 3s pink burst spatialised to

θ = 90◦, ϕ = 0◦, using IRs from the (a) Coincident, (b) NOS, (c)

Blumlein, and (d) AB cardioid 40 set. . . . . . . . . . . . . . . . 251

6.30 Directional grid of DOA estimates resulting from the time-sampled

intensity vectors of the upmixed B-format signals resulting from

a stereo input source containing a 3s pink burst spatialised to

θ = 135◦, ϕ = 0◦, using IRs from the (a) Coincident, (b) NOS,

(c) Blumlein, and (d) AB cardioid 40 set. . . . . . . . . . . . . . 252

xxiii



xxiv



List of Tables

2.1 Approximate sound pressure levels and pressure levels of common

sounds at specified distances, taken from [32]. . . . . . . . . . . . 16

3.1 Taxonomy for elements/dimensions of an immersive experience.

The level for the corresponding element and indicates its range

of depth. The levels associated with the Immersive Technology

element (in bold) can be considered the broad categories of IMEs.

The table is adapted from [254]. . . . . . . . . . . . . . . . . . . . 95

3.2 Selection of VR headsets and associated specifications. All spec-

ifications and costs correct at time of writing. Prices may vary

depending on retailer. *price from Amazon. . . . . . . . . . . . . 105

3.3 Selection of MR headsets and associated specifications. All spec-

ifications and costs correct at time of writing. Prices may vary

depending on retailer. *price from Amazon. . . . . . . . . . . . 105

4.1 A example question phrased as an opened-ended, closed-ended,

and leading question . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 Themes and subthemes generated from inductive thematic analysis

of interview and survey data. . . . . . . . . . . . . . . . . . . . . 132

xxv



5.1 Examples of the metadata format associated with the BBC’s sound

effect archive. Available metadata fields consist of a description,

duration in seconds, category, CD number, CD Name, and track

number. As shown, there is inconsistency within the archive as

not all audio files will contain information within the category,

CD Number, and CD name fields. . . . . . . . . . . . . . . . . . 162

5.2 Selection of candidate audio file recommendations generated from

Fig. 5.4. Each file was defined by the system as being a potential

candidate if the metadata field ‘description’ contained an exact

match for the detected objects class name, in this case ‘person’. . 170

5.3 Publicly available annotated MOT datasets. . . . . . . . . . . . . 173

5.4 Publicly available annotated MOT datasets. . . . . . . . . . . . . 175

5.5 Details of current SOTA MOT algorithms. . . . . . . . . . . . . 181

5.6 Publicly available annotated MOT datasets. . . . . . . . . . . . . 182

6.1 Comparison of DCASE SELD datasets. Taken from [531]. . . . . 199

6.2 Details of IR sets captured including configuration, spacing, capsule

angle, and microphone used. . . . . . . . . . . . . . . . . . . . . . 205

6.3 Details of hyperparameter sweeps including parameters and defined

search range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.4 MSE results for the test set. Results are given for both individual

parameter loss and total loss. Total loss is calculated as the sum

of parameter losses. Loss θ and ϕ was calculated in radians but

have been converted into degrees for clarity. Results show across

all parameters MuCh-Res-U-Net achieved the lowest loss value. . 230

6.5 Hyperparameters for the models shown in Figure 6.12 . . . . . . 231

6.6 Results for audio loss metrics comparing upmixed B-format to

original B-format. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

6.7 DOA errors derived from DOA historgram estimates for upmixed

B-format signals when compared to ground truth B-format signals.238

C.1 Interview Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 304

1



D.1 Details of IR sets captured including configuration, spacing, capsule

angle, and microphone used. . . . . . . . . . . . . . . . . . . . . . 306

2



Chapter 1

Introduction

1.1 Motivation

The last decade has seen a significant increase in the production and availability

of both industrial and consumer grade Extended Reality (XR) technologies to

facilitate immersive experiences such as Virtual Reality (VR), Augmented Reality

(AR), Mixed Reality (MR), and 360◦ videos. These technologies facilitate a wide

variety of experiences including, training simulators [1], multi-channel music

mixes/soundscape recordings [2], 360◦ video, and videogame-like first person

experiences [3]. This has been accompanied by an increase in the production of

3D spatial audio that, alongside the visuals, aims to deliver to the user a sense

of being present within a virtual environment [4]. As such, both the subjective

quality and objective accuracy with which IMEs are able to generate the target

environments impacts their ability to deliver experiences that are perceived

to be realistic or, at the very least, plausible. Spatial, tactile, and auditory

accuracy can all be considered as more important for some experiences than

other. Within an entertainment context, an IME utilising 3D spatial audio with

a high subjective quality and high spatial accuracy may result in increased user

uptake and a greater amount of commercial success compared to that with a lower

perceptual quality and spatial accuracy. Within a training context, the quality of

IME production can, arguably, have a farther-reaching impact. XR technologies
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can be used to simulate unusual or potentially dangerous situations whilst also

supplementing and improving current real-world training regimes. Examples

of this may include surgical training [5], safety critical manufacturing [6], and

military training [7]. Therefore, the congruencey between the audiovisual stimuli

provided by the XR experience and that delivered by the real-world experience

may impact the quality of training outcomes and therefore the length of training

that is required.

Although sound design for traditional linear media has well documented

practices, workflows, and tools [8, 9], spatial audio production, especially within

the context of immersive media, can still be considered a relatively new area

of practice with less established methods. There is also a current lack of litera-

ture addressing the challenges associated with audio production for immersive

experiences from the perspective of those working in the industry. By gaining

an understanding of the workflows being developed and the challenges faced by

practitioners it would allow for research interventions to be targeted and potential

impact maximised.

By their very nature, experiences utilising 360◦ environments are often more

complex and may require many more sound cues or sound generating objects

to provide not only a requisite level of plausibility but also to fill the additional

visual and auditory space. Due to the environment the user is placed within

extending to 360◦, spatial audio and sound spatialisation plays an important role

in creating an engaging and immersive environment by facilitating the positioning

of audio sources around the space. The associated sound design often takes

advantage of listener expectation to reinforce a sense of immersion [10], such as

sounds appearing from specific directions e.g. footsteps from below, and birds

from above. Given the extra complexity involved, the design of soundscapes

utilising spatial audio can be seen as a more labour intensive task increasing the

workload of the sound design teams.

Additionally, there has been recent increased interest, and progress, in the

application of machine learning to audio signal processing tasks such as sound

scene classification [11–13], sound event detection and localisation [14–16], audio
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effects/production [17–19], and audio synthesis [20–22]. Whilst there has been

progress in the development of production pipelines to facilitate the capture

of 6-degrees-of-freedom (6DOF) audiovisual content [23], and audio-visual re-

production of real environments [24], there is little in the literature related to

applying these techniques within a sound design context for experiences which may

utilise virtual representations of existing, augmented, or completely synthesised

environments.

As such, the aim of the work presented in this thesis is to identify the

challenges in producing spatial audio for immersive media experiences (IMEs)

from the perspective of practitioners working in the field, and to investigate

where machine learning might be used to develop novel methods of spatial audio

production.

1.2 Statement of Hypothesis and Novel Contributions

The hypothesis that forms the motivation for the work presented in this thesis is

as follows:

Machine Learning approaches can be used to assist in addressing

challenges associated with the sound spatialisation pipeline for IMEs.

Details of the work that has been undertaken to investigate this hypothesis

are covered in the rest of the thesis as outlined in this introductory chapter.

The research conducted as part of this thesis has produced the following novel

contributions:

• A qualitative study exploring the defining features of immersive media

experiences as a new experience format and which identifies the challenges

associated with its production from the perspective of practitioners.

• An investigation into the use of computer vision to derive audio metadata

for source position and to search large scale sound effects repositories.
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• An IR dataset for locations on a 50-point Lebedev quadrature captured

for 9 stereo configurations, up to fourth-order spherical harmonics, and 32

captures from a rigid spherical microphone.

• The estimation of 360◦ spatial parameters from a stereo signal using a deep

learning approach.

• Two approaches to stereo upmix pipelines that utilise predicted spatial

parameters to enable the remapping of components in a 360◦ space.

1.3 Thesis Outline

The thesis is structured as follows. Chapter 2 introduces the fundamentals of

acoustics, digital signal processing and sound field capture which will enable

the reader to engage with the material in subsequent chapters. The chapter

begins with a description of the physical properties of sound waves and how they

propagate through space. This is followed by an overview of the human auditory

system and specifically how humans decode localisation cues from the pressure

signals received at each ear. The chapter goes on to cover the fundamentals of

digital audio signal processing with respect to how sound can be represented

and manipulated in the digital domain. This includes an introduction to time,

frequency, and time-frequency processing methods, such as convolution, the fast

Fourier transform, and the short time Fourier transform that be used for both

the analysis and processing of digital audio signals. The chapter concludes by

introducing a simple definition and model of a sound field and details a summary

of sound field recording and encoding techniques. Particular attention is paid to

the importance of spatial sampling resolution and the explores the advantages of

encoding to the spherical harmonic domain.

Chapter 3 details the relevant background relating to sound design as applied

to immersive media experiences. First, the term immersion is defined within the

context of this thesis and is followed an explanation of what therefore consti-

tutes an immersive experience and by extension an immersive media experience.
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Different types of immersive media experiences are then defined and discussed

taking note of the differences between common categories such as AR, VR, MR,

and 360◦ media as well as detailing the roles sound can play within an immersive

media experience, particularly how sound can be used to not only immerse the

user, but also to help guide them through the experience. The chapter concludes

by exploring spatial audio within the context of immersive media experiences and

how the use of spatial audio differs between immersive and traditional media.

Chapter 4 presents a qualitative investigation into the challenges associated

with spatial audio production for immersive media experiences (IMEs), from

the perspective of those practitioners creating this content. The motivation for

the work presented in this chapter is to ascertain how practitioners working

within immersive/spatial audio approach immersive media sound design and

what challenges are faced that differ from those encountered when designing

sound for traditional media. The data collection method and participant selection

criteria are detailed as well as an explanation on the use of thematic analysis

to interrogate the collected data. The generated themes form the basis of a

discussion that draws together common topics that emerge across the themes,

and consider both the defining features of IMEs, along with what are perceived

to be the main challenges by the participants. From the analysis and discussion

of the interview data, several areas of potential research are highlighted and

discussed.

Chapter 5 builds on some of the conclusions from Cchapter 4 and details

the investigation, development and evaluation of an early stage methodology for

deriving audio metadata from objects within a 2D visual scene and using this

to facilitate automatic stereo panning and candidate sound effects suggestion.

The chapter begins by providing some background on using computer vision to

affect audio outcomes. This is followed by a detailed description of the system

architecture including the computer vision backend, inter-frame continuity check,

object trajectory and panning data derivation, and finally candidate sound effects

suggestion using the BBC Sounds Effects archive [25] as the target repository.

The performance of the system is assessed and the results discussed, including
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limitations and recommendations for further optimisations.

Chapter 6 continues the investigation into machine learning approaches to

sound spatialisation, whilst seeking to address another of the challenges high-

lighted in the results of Chapter 4, specifically, the challenges surrounding the

perceived lack of spatial audio sound effects libraries and the integration of

legacy stereo content into projects requiring spatial audio. The chapter presents

the development of a novel deep learning approach for the prediction of time-

frequency spatial parameters from stereo signals, which can then be integrated

into a number of different stereo upmix pipelines to facilitate the remapping of

frequency components to a 360◦ space. A novel dataset of IRs is presented which

was used to synthesise stereo and First-order Ambisonic sound scenes with which

to train the network. The optimisation and evaluation pipeline are described

along with details of the baseline, and a description of the proposed architecture

is presented. The performance of the model is evaluated and discussed. Finally,

two example upmix pipelines are described, within which the proposed model

can be integrated, and the potential improvements over current approaches are

presented.

This thesis concludes with Chapter 7 providing a summary of the key findings

of the work presented and their contribution to the field. The hypothesis is

restated along with whether the objectives of the thesis have been met. Areas

of future work that have been highlighted throughout the thesis are brought

together and considered in more detail and finally, this thesis and its findings are

considered within the wider research context and its implications discussed.

1.4 Associated publications

Parts of the work detailed in this thesis have been presented in the following

publications:

• Chapter 4: Daniel Turner, Chris Pike, Chris Baume and Damian Murphy

(2022). “Spatial audio production for immersive media experiences: Per-

spectives on practice-led approaches to designing immersive audio content”.
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In The Soundtrack 13:1, pp. 73-94

• Chapter 5: Dan Turner, Chris Pike, and Damian Murphy (2020). “Content

Matching for Sound Generating Objects within a Visual Scene Using a

Computer Vision Approach”. In Proceedings of the 148th Audio Engineering

Society Convention.

1.5 Associated Datasets

Datasets that have been collected by the author for use within this thesis.

• Chapter 6 Dan Turner and Damian Murphy (2023) “Dataset of stereo

and multi-channel IRs for a 50-point Lebedev quadrature”. Available at:

10.5281/zenodo.7990195
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Chapter 2

Fundamentals of Sound and

Audio Signals

2.1 Introduction

As a significant portion of this thesis is concerned with the capture, manipulation,

and reproduction of sound fields and audio signals, it is first necessary to provide

details on some fundamental concepts pertaining to these areas. This chapter will

provide a foundation on the acoustic theory and signal processing that underpins

parts of this thesis and also provide the requisite knowledge base from which to

explore how machine learning can be applied to audio domain problems.

2.2 Basic Properties of Sound

2.2.1 Sound Waves

Figure 2.1: The mass-spring model of sound propagation, adapted from [26].

In its simplest form, a sound wave is the displacement of particles, in some

medium, from their mean position [27]. The displacement of particles from

their equilibrium causes local pressure fluctuations that travel outwards from
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the point-of-origin, resulting in areas of high (compression) and low (rarefaction)

pressure as molecules in one local area displace molecules in an adjacent area [26,

27]. Sound waves are longitudinal in nature with particle displacement associated

with the wave being parallel to the direction of wave propagation. Figure 2.1

illustrates air as a transmission medium using the ball-and-spring model detailed

in [26], where the balls represent the molecules of the medium, and the springs

represent the inter-molecule forces.

The speed at which the sound wave travels through a medium is dependent

on the density and stiffness of the medium and can be represented using the

following equation [26]:

c =

√
E

p
(2.1)

where c is the speed in meters per second (m · s−1), p is the density of the medium

(kg ·m−3), and E is the Young’s modulus (stiffness) of the medium (N ·m−2).

For gas, the equivalent to Young’s modulus (as gas does not have a Young’s

modulus) and medium density are derived using the following:

Egas = γP (2.2)

pgas =
PM

RT
(2.3)

Where γ is the adiabatic gas coefficient (1.4 for air), R is the gas constant

(8.31J · mol−1 · K−1), T is the absolute temperature (in K), and M is the

molecular mass of the gas (in kg ·mol−1). The speed of sound in a gas is then

given by [26]:

cgas =

√
γRT

M
(2.4)

Equation 2.4 shows that, apart from R andM , which are values specific to the

medium, the only factor to affect the speed of sound in gas is the temperature.

Estimating M for air at 2.89 x 10−2 kg ·mol−1 [28], the speed of sound in air

at 20◦C can be calculated as follows:

c =

√
γRT

M
=

√
1.4× 8.31× (20 + 273)

2.89× 10−2
=∼ 343.4 m · s−1 (2.5)
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Figure 2.2: The mass-spring model showing propagation of a single sound pulse through

a medium, adapted from [26]

Figure 2.3: The mass-spring model showing propagation of sinusoid through a medium

together with its transverse visualisation [from [26]].
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2.2.2 Properties of Sinusoidal Signals

The mass-spring model illustrated in Figure 2.2 considers the propagation of a

single pulse, however, many of the sounds we hear are periodic in nature. The

simplest example of a periodic signal is a sine wave, as it is a vibration at a single

frequency. Figure 2.3 shows an example of a sinusoidal signal as an extension of

the ball-and-spring model. A sine wave possesses four main properties, some of

which are interrelated:

• Wavelength λ (measured in m) is the distance taken to complete one full

oscillation, or the distance between points of compression and rarefaction

[29].

• Frequency f (measured in Hz) is defined as the number of oscillations per

second. Given a constant velocity (e.g. the speed of sound in air) there

is an inversely proportional relationship between signal wavelength and

frequency [26].

• Amplitude A, often short hand for peak amplitude, represents the maximum

change in pressure between points of compression and rarefaction to the

medium’s equilibrium. This should not be confused with instantaneous

amplitude, which can be defined as the value of x(t) at any time (t) [30].

• Phase Φ, which in this context represents the initial phase or phase offset

[30].

Given the properties outlined above, sine waves can therefore be defined by

the equation:

y(t) = A sin(2πft+Φ) (2.6)

It should also be noted that in the literature, 2πf will sometimes be substituted

for ω, representing frequency in radians as ω = 2πf . Figure 2.4 shows two sine

waves A sin(2πft+Φ), with different values of A, f , Φ, and both with t ∈ [0, 1].

The relationship between the speed of sound, frequency, and wavelength is

given by the following equation:

c = fλ (2.7)
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Figure 2.4: Two sinusoids with different values of A, f , Φ and with t ∈ [0, 1]

2.2.3 Sound Propagation

Alongside the properties of a sound wave it is also important to consider how a

sound wave propagates through a medium. In Section 2.2.1, it was established

that sound waves can be considered as a series of compressions and rarefactions

travelling through a given medium. This is possible due to both molecular

elasticity and the transfer of momentum from one local group of particles to

another [29]. The force required to cause the displacement of particles is the

pressure component of a wave and can be defined as the difference between the

instantaneous pressure and the static pressure at a given location (x, y, z) [27]

given by:

p(x, y, z) = p̂(x, y, z)− prest(x, y, z) (2.8)

where p is the resulting sound pressure, p̂ is the instantaneous sound pressure,

and prest is the static pressure.

Given the sensitivity of the human ear to sound pressure [26, 31], the overall

amplitude or loudness of a sound wave at a given point is measured as the ratio
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Sound sources dB SPL Pa

Human hearing threshold 0 2× Pa

Background in TV Studio 20 2× 10−4 Pa

Quiet library 40 2× 10−3 Pa

Conversational speech at 1m 60 2× 10−2 Pa

Busy road at 5m 80 0.2 Pa

Nightclub at 1m from loudspeaker 100 2 Pa

Threshold of discomfort 120 20 Pa

Jet aircraft at 50m 140 200 Pa

Table 2.1: Approximate sound pressure levels and pressure levels of common sounds at

specified distances, taken from [32].

of the actual sound pressure p and the threshold of human hearing po (a pressure

value of 2× 10−5 Pa [29]). This is quantified as the Sound Pressure Level (SPL),

in decibels (dB), on a logarithmic scale [26] and is described by the equation:

SPL = 20 log10

(
p

po

)
(2.9)

Table 2.1 presents some approximate SPLs of common sounds at specified

distances along with their sound pressure values. The relationship between

distance and a resulting change in SPL can be expressed by:

SPL2 = SPL1 + 20 log10

(
xyz1
xyz2

)
(2.10)

Where SPL1 is the SPL measurement at position xyz1 and SPL2 is the SPL

measurement at position xyz2. This equation shows that each doubling in distance

results in a drop of 6 dB while each halving of the distance results in an increase

of 6 dB.

The change in SPL relative to distance is mainly due to fact that sound,

in free-field conditions, propagates spherically in three dimensions and as it

does its power W , spreads out to cover an ever increasing area as illustrated in

Figure 2.5. A measurement that better demonstrates this effect is sound intensity
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Figure 2.5: Illustration of the inverse square law and how sound intensity I, is inversely

proportional to source distance

.

I, measured in watts per square meter (W·m−2), as it represents the energy

transmitted through a unit area per second and is itself a function of distance,

calculated from [26]:

I =
W

4πr2
(2.11)

Where I is intensity in W·m−2, W is the power of the source in watts, and r is

the distance from source (radius).

This equation demonstrates the inverse square relationship between source

distance and source intensity measured. Sound intensity, like sound pressure,

can also be expressed as a relative measure against the threshold for human

hearing, which for intensity is Io = 10−12 W·m−2 and can expressed as the Sound

Intensity Level (SIL) on a logarithmic scale as:

SIL = 10 log10

(
I

Io

)
(2.12)

It should be noted however that this assumes an infinitely small point source

exhibiting perfect omnidirectional radiation in a free-field. In reality, sources, no

matter how small, have some defined finite area, are rarely perfectly omnidirec-

tional, and real environments are never truly free-field i.e. even sources away
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from any rigid boundary (such as the ground) are subject to excess attenuation

through atmospheric absorption, which itself varies as a function of frequency and

humidity [33]. Given that true free-field environments are rare, sound waves will

therefore interact with environment in the form of reflections and diffractions.

2.3 Coordinate Systems

When discussing and working with three-dimensional sound it is important to

have clearly defined coordinate systems that can be used to quantify the position

of objects within a three-dimensional space relative to a point of origin, usually

the listener. There are two commonly used coordinate systems within the context

of spatial audio, each suited to a particular context and both transformable to

and from each other.

The Cartesian coordinate system (see Figure 2.6) represents three-dimensional

space as an ordered set of 3 orthogonal axes that intersect at the point of origin.

Positions within Cartesian space are defined according to their location on the x,

y, and z axes. This system is often used when viewing the space from an external

perspective to that of the listener or subject and is analogous to viewing the scene

in third person. The listener is often positioned at the origin facing along the

positive side of the x-axis, which represents front-back, with y representing the

inter-aural axis with positive coordinates to the left and z representing up-down

with positive coordinates up.

Unlike the Cartesian coordinate system, which can be used to represent both

two-dimensional and three-dimensional spaces, the spherical coordinate system

(also see Figure 2.6) specifically represents three-dimensional space where points

are positioned according to their azimuth angle θ, elevation angle ϕ, and distance

r of the object relative to the listener. Both azimuth and elevation are measured

with reference to a fixed point, usually the direction in front of the listener. In

this position, both azimuth and elevation will be 0◦. The elevation angle has a

value range of -90◦ ≤ ϕ ≤ 90◦ with positive above the horizontal plane and

negative below it. Azimuth angle value ranges have two conventions: angle values

18



2.3. COORDINATE SYSTEMS
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y (left)
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ϕ

Figure 2.6: Cartesian and Spherical Coordinate Systems

increase with counterclockwise rotation about the z − axis from 0◦ to 359◦, or

a range of -180◦ ≤ θ ≤ 180◦. The spherical coordinate system can be viewed

as a more listener-centric coordinate system, analagous to a first person view

of the scene, and is more intuitive for listeners orientating themselves within

an acoustic environment when compared to the Cartesian coordinate system

[34]. Spherical coordinate systems are often useful for systems utilising fixed

loudspeaker arrays as an easier way to describe the position of the loudspeakers

relative to the listener, where Cartesian coordinates are effective for providing an

initial reference frame for objects placed within an environment not necessarily

with respect to the user.

Cartesian coordinates can be derived from spherical coordinates using the

equations:

x = r cos(θ) cos(ϕ) (2.13)

y = r sin(θ) cos(ϕ) (2.14)

z = r sin(ϕ) (2.15)
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With spherical coordinates being derived from Cartesian coordinates as follows:

θ = arctan
y

z
(2.16)

ϕ = arctan
z√

x2 + y2
(2.17)

r =
√
x2 + y2 + z2 = ∥r∥ (2.18)

However, given that IMEs are often viewed from a user-centric perspective

and can also include multiple users simultaneously, they also require a coordinate

system that describes the relative position and movement of the users within an

environment. Additionally, IMEs need to also ensure that the location from which

the audiovisual content is viewed is congruent to the expectations of the user.

For example, unless an intentional part of the experience, it would be strange

for the audiovisual perspective provided to the user was one that had them at

ground level, as opposed to head height. For this purpose, it is common for audio

objects, and the position of the user, to be represented as allocentric Cartesian

coordinates [35], which can then be transformed into user-centric head-related

coordinates, shown in Figure 2.7. The visual content seen by the user and the

orientation of the spatial sound scene relative to the user can then be manipulated

utilising rotational movements around the head-related Cartesian axes by the user

looking up/down (pitch), left/right (yaw), or tilting their head side-to-side (roll).

The movement of the user within the environment is described by translation

movements such as moving backwards/forwards (surging), left/right (strafing), or

up/down (elevating). IMEs, therefore, often require the use of both allocentric-

centric and user-centric coordinate systems to describe the position of the objects

within an environment and the relative position and orientation of the user within

that environment.
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Figure 2.7: Head-related coordinate system, taken from [36]

2.4 Spatial Hearing and Auditory Perception

The human auditory system is remarkably adept at extracting and interpreting

complex information about the acoustic environment encoded within sound waves,

the physical mechanisms of which were discussed earlier in this chapter. The

auditory system processes and decodes information encoded within the changes

in sound pressure and allows us to perceive information about the environment,

detect objects and activities around us, orient ourselves within the environment,

and acoustically communicate with each other through speech or other methods

such as music.

This section provides a basic introduction to human auditory perception

including a description of the human hearing system, a review of spatial hearing

mechanisms, and a brief summary of auditory perception relating to frequency.

This section does not aim to be an exhaustive review of the research to date

on the human auditory system, but, rather provides the necessary background

information relevant to this thesis. For a more detailed and comprehensive

overview, see [34, 37–39] for spatial hearing and perception and [40, 41] for a

detailed review of auditory distance perception.
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2.4.1 Basic Concepts

While this is not a thesis on the philosophy of perception, it is useful for a moment

to consider the thought experiment of a tree falling in a forest, and whether,

without any hearing-enabled organisms present, it makes a sound. Blauert [37]

differentiates between mechanical vibrations that result in the pressure waves

discussed previously and what we perceive as a result of those pressure waves

interacting with our auditory system. The term sound event is used to describe

the former, while auditory event is used to describe what is perceived auditorily

(heard). As such, the hypothetical tree could be said to result in a sound event,

but not an auditory event. This is an important distinction as the information

associated with an auditory event is not always congruent to the sound event that

it results from. Localisation, by extension, is the process by which an auditory

event with a location in the auditory space is associated with a sound event in

the acoustic environment [34]. The localisation of a sound includes perception of

its direction, distance, and extent.

A reason why human (and many non-human animal) auditory systems are so

effective is because most possess two ears, one either side of the head, each acting

as a data collection point. Binaural hearing is defined as the process whereby the

differences in the signals arriving at the two ears are used to resolve the position

of a sound relative to the listener. Monaural hearing therefore refers to situations

where interaural differences are either not present, or ignored. Although the

literature shows localisation cues derived from interaural differences improve our

ability to localise sound (see [37, 38] for a detailed review), certain monaural

cues are also effective for resolving the positions of sounds. When listening to

sounds on headphones, they will often be perceived as originating from inside the

head, unless specific binaural processing or recording techniques have been used.

The term lateralisation is used to describe the localisation of auditory events

inside the head as the source has a perceived lateral position, but no associated

distance [42].
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Figure 2.8: The anatomy of the auditory system. Reproduced from [43].

2.4.2 The Auditory System

This subsection briefly discusses the basic elements of the human auditory system;

for a more complete review, see [34]. The ear consists of three main sections; the

outer ear, middle ear, and inner ear (see Figure 2.8.) The outer ear consists of

the pinna, the concha, the ear canal, with the eardrum as a separation point

between the outer and middle ear. The outer ear can be described as passive

in the sense that it does not itself react to sound or generate sound energy, but

instead carries sound waves to the eardrum and the middle ear. The pinna does

however affect the incoming sound waves at higher frequencies in a way that

assists us in the localisation of sound sources. This and other aspects of spatial

hearing are discussed in more detail in Section 2.4.3.

The ear canal (external auditory meatus), due to having one hard boundary

(the eardrum) and one bound-unbound boundary (the entrance to the ear canal),

acts as a quarter wavelength resonator, which results in a resonance at around

3-4 kHz [26].

The eardrum, or tympanic membrane, can be viewed as a signal converter

between the outer and middle ear that converts acoustic pressure into mechanical

vibrations, which are then passed to the middle ear.

The middle ear is a small air-filled cavity which transmits mechanical vibra-
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tions from the eardrum through the ossicles to the oval window. The ossicles are

three small bones: the malleus (hammer), incus (anvil), and stapes (stirrup) and

the oval window forms the boundary and transmission point between the middle

and inner ears. The function of the middle ear is to both transmit the vibrations

from the eardrum to the fluid which fills the cochlea and to protect the physical

hearing system from the effects of harmful levels of sound pressure. To transmit

the vibrations from the middle to inner ear, the ossicles act as a mechanical

impedance transformer which transforms a small pressure with larger velocity

acting on the eardrum to a high pressure with smaller velocity acting on the oval

window. Without this transform, only a minimal amount of the sound energy

would proceed from the middle to inner ear due to the much higher impedance

of the cochlea fluid relative to air. This process improves pressure transfer by a

factor of 30dB [26].

The inner ear consists of the cochlea and semicircular canals. The latter

assists in balance and plays no part in the auditory system. The cochlea acts as

another signal converter, taking the mechanical vibrations passed from the middle

ear and converting them to nerve impulses that are passed to, and processed,

by the brain. The cochlea is a coiled structure within which is the basilar

membrane. An early study by von Bekesy [44] showed that each point along the

basilar membrane resonates at a different frequency, with the area approaching

the apex responding to lower frequencies and the area approaching the base

responding to higher frequencies. As the cilia are stimulated, they trigger the

vestibulocochlear nerve which transmits frequency and temporal information

to the brain. This allows humans to perceive differences in timbre and pitch.

The range of human hearing is often quoted as being from 20 Hz to 20 kHz,

however, due to the structures of the outer and middle ear the sensitivity of

the hearing system varies with frequency. The 3-4 kHz resonance of the ear

canal results in a greater sensitivity to frequencies within this range. This also

happens to cover frequencies within the human vocal range that are important

for speech intelligibility. The frequency-dependent sensitivity of the auditory

system has been studied extensively [45–47], resulting in the widely recognised
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Figure 2.9: ISO 266 equal loudness curves illustrating how the sensitivity of the human

hearing system varies as a function of frequency

equal-loudness-curves as shown in Figure 2.9. These curves show the relative

SPLs required for tones at different frequencies to be perceived equally as loud

as a 1 kHz tone at a particular reference level. It is noted that there is a trough

around 3-4 kHz, confirming a heightened sensitivity to frequencies in that range.

Another effect of the physical structure of the human hearing system is

a limited ability to resolve spectral components which are close together in

frequency. As previously discussed, each point on the basilar membrane resonates

according to a specific frequency; however, when a signal causes a particular

point to resonate, it also causes an area either side of it to resonate. As such,

the basilar membrane will fail to resolve each individual frequency component

encoded within the signals presented to the ears for frequencies particularly close

together. This may result in some sounds being made inaudible by any other

sounds present in the signal; this phenomenon is known as spectral masking. The

frequency region where the cilia respond strongly to frequencies near their own

resonant frequency is known as the critical band [48]. The critical bandwidth,
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is then determined by the minimum difference in frequency required for two

sinusoids to be perceived as two separate and smooth tones. Fletcher proposed

that the frequency resolution of the ear could be modelled as a bank of bandpass

filters, referred to as critical-band filters. This led to the development of numerous

critical band scales used in the design of auditory filters. The Bark Scale, proposed

by Zwicker [49], is derived from listening tests in which a narrow-band noise

with a fixed centre frequency is referenced against band-limited noise whose SPL

and centre frequency are equal to the reference signal. The bandwidth is then

increased until its perceived loudness is greater than that of the reference signal.

The relationship with Barks (z) and frequency can be approximated from [50]:

z =

(
26.8

1 + 1.96
f

)
− 0.53 (2.19)

The Equivalent Rectangular Bandwidth scale (ERB) [51] is another critical

band scale. The ERB critical bands are estimated by measuring the detection

threshold of a sinusoid masked by notched noise. The ERB scale relationship to

frequency is given by:

RERB = 21.3 log10

(
1 +

f

228.7 Hz

)
(2.20)

whilst width of the critical band can be estimated as:

∆fERB = 24.7 + 0.108fc (2.21)

While both the Bark and ERB scales are based on loudness measurements,

other scales are measured using alternative metrics. Stevens [52] proposed the

Mel Scale (‘Mel’ being short for melody) based on the perception of pitch. The

scale was derived by listeners adjusting tones to a specified fraction of a reference

tone. For example, if 1 kHz was the reference tone, listeners may be asked to

increase a second tone until they perceive it to be half the pitch of the reference.

This relationship between frequency and mels is expressed by:

mel = 2595 log10

(
1 +

f

700

)
(2.22)

Figure 2.10 shows a comparison of the discussed scales using normalised

frequency. As discussed in later sections, perceptually motivated frequency scales

are widely used in audio signal processing and machine learning.
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Figure 2.10: Comparison between Bark, ERB, Mel, and linear frequency scales. Units

have been normalised.

2.4.3 Directional Localisation Cues

The localisation of an event is guided by a number of different localisation cues,

both binaural and monaural [37]. The effectiveness of different cues vary as

a function of frequency and direction. Localisation on the horizontal plane is

largely informed by the binaural cues that result from time and level differences

between the signals arriving at each ear [53]. These cues are referred to as the

interaural level difference (ILD), the interaural time difference (ITD), and the

interaural phase difference (IPD). It should be noted that whilst ITDs and IPDs

can be considered as two different cues, they are not independent of each other

as the frequency-dependent IPDs are a result of the frequency-independent ITDs.

To aid the illustration of ILDs and ITDs, consider Figure 2.11, which shows

a sound source located at an azimuth of θ = 45◦. First, consider that the path

between the source and the ipsilateral ear is shorter than that of the source to

the contralateral ear. The difference in path length between the source to each of

the ears introduces a time difference of arrival between the two ears which results
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Figure 2.11: Illustration of a simple head model with a source location at 45◦. Model

highlights additional path length and shadowing introduced by the head for off axis

sounds at the contralateral ear. Adapted from [55].

in the ITD. ITDs have been shown to contribute to the localisation of frequencies

up to around 1.5 kHz [37, 42, 54]; this is due to frequencies with a wavelength

greater than the diameter of the head diffracting around the head. Assuming a

perfectly spherical head and c = 343ms−1, the wavelength corresponding to the

head is as follows:

f =
c

0.175
= 1.96kHz (2.23)

with 0.175 m being the average diameter of the human head according to Kuhn

[54].

ITDs can range from 0 µs to approximately 600 - 700 µs [34] with humans

being capable of differentiating ITDs as small 10 µs [56, 57]. The maximum

ITD is dictated by the maximum path difference between the ipsilateral and

contralateral ears, which occurs at 90◦, and can be calculated as follows [26]:

ITD =
r(θ + sin(θ))

c
(2.24)

ITDmax =
0.0875× (π2 + sin(π2 ))

343 m · s−1
(2.25)

ITDmax = 6.56× 10−4s = 656 µs (2.26)
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While ITDs are predominately a function of angle of incidence (given the

assumption of a stable speed of sound and a static head size), IPD, though related,

also varies as a function of frequency. Alongside the ITD, the auditory system

also uses the IPD caused by the ITDs up to frequencies of around 1.6 kHz [37].

However, given that the phase change due to path length increases as a function

of frequency, it becomes less reliable once the phase difference between the two

ears is greater than 180◦. The relationship between phase shift, frequency, and

angle of incidence is given by:

IPD = 2πfr(θ + sin(θ)) (2.27)

IPDs greater than 180◦ become ambiguous as the ear-brain system struggles to

resolve which signal is leading and which is lagging [38]. The predominant reason

for this is that the human auditory system is not capable of detecting absolute

phase shift and instead compares the relative IPDs. Figure 2.12 illustrates this

using a 500 Hz sound wave as an example. Given a 500 Hz sine wave has a period

equal to 2 ms, a delay of 0.5 ms would result in a 90◦ phase shift. If the signal

was delayed by 2.5 ms that would equate to a 450◦ phase shift, however the

auditory system would still interpret this as a IPD of 90◦. To illustrate that IPD

also varies as a function of frequency, the same time delay of 0.5 ms applied to a

1 kHz sine wave would result in a phase shift of 180◦ (shown in Figure 2.13). ITD

cues are also able to be extracted from the delays between temporal envelopes of

signals and in some cases have been shown to be perceivable up to 3 kHz [58].

Considering again Figure 2.11, the path to the contralateral ear also has the

head as obstacle. At frequencies higher than approximately 800 Hz, the head

becomes an appreciable barrier as wavelengths at these higher frequencies become

smaller in relation to the head. Rather than diffracting around the head, as is the

case with lower frequencies, they are scattered and reflected by the head which

results in an acoustic shadowing effect. This causes the level at the ipsilateral

ear to be greater than that at the contralateral ear, resulting in ILDs. Therefore,

the ILD can be expressed as the difference in SPL between the two ears [59]:

ILD = 20 log

∣∣∣∣Pl(f)Pr(f)

∣∣∣∣ (2.28)
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Figure 2.12: Relative phase shift for a 500 Hz sinusoid delayed by 0.5 ms and 2.5 ms.

Dotted line indicates that although each delay time represents a phase shift of 90◦ and

450◦ respectively, the auditory system would interpret both as 90◦ as humans are unable

to detect absolute phase shift.
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Figure 2.13: Relative phase shift for a 1 kHz sinusoid delayed by 0.5 ms. Dashed line

indicates a 180◦ phase shift, compare this to the 90◦ phase shift for 500 Hz given the

same time delay illustrates that phase shift varies with frequency.
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Where Pl(f) and Pr(f) are the Fourier domain representation of the measured

sound pressure at the left and right ears respectively.

Since ILDs are present predominately for frequencies where the head is an

appreciable barrier to the sound wave, they are only reliable down to the point

where head size is equal to roughly 2
3 of frequency wavelength. Once the head is

equal to approximately to 1
3 of frequency wavelength, this acts much less usefully

as a method for resolving direction. For a head with a diameter of 17.5 cm and a

source at azimuth θ = 90◦ = π
2 , this equates to a minimum frequency of:

fmin(θ=π
2
) =

1

3

(
c

d

)
=

1

3
×
(
343 ms−1

0.175

)
= 653 Hz (2.29)

Therefore, ITDs are predominately utilised for localisation at lower frequencies,

while ILDs are utilised at higher frequencies. Within the crossover region of these

two cues, our ability to resolve horizontal direction is compromised due to the

frequencies being too high for reliable ITD cues and too low for reliable ILD

cues [26]. Although used as a directional localisation cue at higher frequencies,

Weiping et al. [60] measured Just Noticeable Differences (JND) of the ILD as

less than 3 dB with sinusoids at frequencies below 2 kHz for base ILD values of

close to 0. At higher frequencies and higher base ILDs, the JND is higher, with

values ranging from 3 dB to 7 dB. This suggests that at low frequencies ILD

cues are primarily used as an auditory distance cue given that the ILD is often

greater for nearby sources, especially those within 1 m of the listener.

Both time and level cues present a robust representation of the lateral position

of a sound source and, according to the Duplex Theory [53], are all that are

required for localisation. However, for each set of interaural difference cues there

exists a cone of confusion [61], illustrated in Figure 2.14, where for all points

on the surface of the cone the interaural cues are theoretically identical, though

this assumes a spherical head model and perfectly symmetrical ear positions.

Resolution of source direction in these regions is challenging as interaural cues

can be considered ambiguous. Common localisation errors resulting from the

cone of confusion are front-back and up-down errors where the sound is localised

on or near the surface of the cone, but at the wrong location [62, 63].
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Figure 2.14: Illustration of the cone of confusion where sounds on the surface of the

cone have identical interaural differences and may result in localisation errors without

additional cues. Adapted from [37].

To resolve the position of a sound source in these regions, spectral and

dynamic cues are utilised which are derived from angular dependent filtering

and head movement respectively. Spectral cues are a result of reflections from

the pinnae introducing delays that range from 100-300 µs [64], which act as

an angular dependent filter. Additionally, dynamic changes in head orientation

(head movement) alters both the interaural differences and spectral cues resulting

in a dynamic change to the interaural transfer function. A number of studies have

shown that utilisation of head movement results in a higher localisation accuracy

[62, 65–67] with similar results being observed for studies investigating headphone-

rendered spatial audio using head tracking [68–70]. Elevation localisation also

utilises the spectral cues introduced by pinnae, but also additionally uses the

effects of the shoulders and torso, which provide reflections from sources above

the horizontal plane and acoustic shadowing for sources below the horizontal
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Figure 2.15: Spectral variations vary with elevation angle for 2 different subjects extracted

from the SADIE II Database [72] with source azimuth angle of left 45 ◦and changing

elevation. Top: Subject H3. Bottom: Subject H4.

plane. Furthermore, it has been found that cues in specific frequency bands are

related to specific positions, with front-back cues located in the region of 8-16

kHz and up-down cues in the region of 5.7-11.3 kHz [39]. For broadband sounds,

cues are required in the 4-16 kHz range [71].

As spectral cues are largely determined by the shape of pinnae, which vary

between individuals, this results in variations in the spectral filtering unique to

each individual. Figure 2.15 shows the spectral variations for a source at azimuth

θ = 45◦ at varying elevations for two subjects from the SADIE II Database [72].

Particular attention is drawn to the spectral differences between sounds occurring

below the listener, compared to those originating from above the listener.

2.4.4 Head Related Transfer Function

The cumulative effects of the head, ears, and torso on a sound wave which results

in the acoustic cues used to resolve source position can collectively be represented

as time-domain head-related-impulse-responses (HRIRs) or the frequency domain

head-related-transfer-functions (HRTFs). For given source and listener positions,
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Figure 2.16: HRTF magnitude responses for the left and right ears captured for sources

at directions 0◦ (top), 45◦ (middle), and 90◦ (bottom). Derived from data captured from

a subject measurement from the SADIE II Database [72].

the HRTF represents the spectral and temporal features of the signals at each ear,

as well as the frequency-dependent ILDs and IPDs. As interaural and spectral

cues vary as a function of source angle, HRTFs also vary as a function of source

position relative to the listener. Figure 2.16 shows a set of HRTFs measured from

both ears for three directions. As shown, the HRTFs for both ears are broadly

similar to one another for a source at 0◦. However, as the source moves across

the horizontal plane spectral and level changes occur in both HRTFs. Most

notably a drop in level of higher frequencies at the contralateral ear is observed,

demonstrating the ILD cue described in section 2.4.3.

Two common methods of HRTF measurement are to either place specialist

microphones at the position of the ear drum [73], or to block the ear canal and

place a microphone at its entrance [72, 74]. A known signal can then be captured,

such as the impulse (or dirac delta) signal δ presented in Section 2.5. Both

methods are similar to those employed to capture the impulse response of an

environment, which is explored in greater detail in Section 2.6.6. The blocking

of the ear canal serves to reduce ear canal resonances and has also been shown

to reduce the magnitude variations in measurements between individuals. It
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should be noted, however, that the HRTF usually refers to the transfer function

of the physical auditory system in isolation without capturing the response of

the environment. For this reason HRTFs are normally measured in anechoic

conditions. When captured in non-anechoic conditions, they are usually referred

to as binaural room impulse responses (BRIRs) as they are a transfer function

that collectively encodes both the HRIRs and the room impulse response at a

given position [75].

2.4.5 Distance Perception

To completely localise a sound within a space, we not only need to resolve its

angular position but also the distance at which it is placed. In general, it has been

found that perceived distance tends to be overestimated for sources in peripersonal

space (within approximately 1m from the listener) and underestimated for sources

in extrapersonal space (farther than 1m from the listener) [41, 76, 77]. Auditory

distance judgements tend to be most accurate for sources approximately 1m

from the listener [41] and when close sources are positioned laterally relative to

the listener [40]. There are multiple cues available for perceiving the distance

between a listener and a source, each with varying reliability based upon the

distance and direction of the source, the properties of the environment, and

the sonic characteristics of the stimulus itself [40]. Kolarik et al. [40], presents

two categories of distance cues; absolute cues and relative cues. Absolute cues

provide adequate information for distance to be judged from a single presentation

of a sound, whereas relative cues allow sounds at different distances to be

discriminated.

Section 2.2.3 described the relationship between SIL in a free-field environment

being characterised by the inverse square law, where a doubling of source distance

results in a 6 dB level reduction. Given this relationship, where the level of a

source at a receiver decreases with increased distance and visa versa (assuming

consistent level at the source), the human auditory system uses overall level as a

relative distance cue [40, 76]. Absolute distance judgements based solely on level

are often unreliable given they may be influenced by variation in the level at the
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source [41]. It must also be noted that the rate of change of 6 dB per doubling

of distance is lessened in reverberant environments, with Zahorik [76] measuring

a rate of 4 dB/doubling in an auditorium environment. The radiation pattern

of the source and the relative position of the receiver may also effect the rate of

change.

A number of studies have also documented differences in the rate of change

of perceptual and physical distance when level is the primary cue. Studies by

Kearney et al. [77] and Cocran et al. [78] found that perceived distances to a

source increased at a lower rate than physical distance increases, while Simpson

and Stanton [79] found that sources closer than 1 m require less of a physical

change in distance in order for participants to register that the source was

moving towards them. This suggests that when level is the primary cue, inverse

square law, or the lesser proportional changes that take place in non-free-field

environments, may not exactly correlate with our perception of distance changes.

One of the reasons suggested for this is that our ability to discriminate relative

changes in distance is based on our ability to discriminate changes in sound

pressure. Depending on experimental conditions, the recorded thresholds for

changes in sound pressure equate to a relative change in distance of between 5%

to 25% of the reference distance. Miller [80] observed that, for broadband noise,

the smallest detectable change was approximately 0.4 dB and this was observed

to be the case 50% of the time for intensities greater than 30 dB above the

threshold for hearing. For sinewaves the threshold has been found to be higher

at between 1-2 dB and varies with frequency and level [81, 82]. However, results

directly measuring the perceptual the threshold for relative changes in distance

have often been found it to be much higher with observations of 13% [79], 20%

[83], and 25% [84] of the reference distance, although a study by Ashmead et al.

[85] found that changes in distance for a white noise burst to be approximately

6%.

Begault [86], however, argues that our perception of distance is better pre-

dicted by perceptual loudness than by objective intensity. Results showed that

when presented with four different level increases (3 dB, 6 dB, 9 dB, and 12
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dB) and asked to select the preferred level increase that for a given reference

corresponds to a halving of the perceived distance, 69% of participants chose

either a 12 dB or 9 dB increase when compared to a 6 dB increase. This aligns

with the generally accepted phenomena that a level increase of 10 dB equates

to a doubling of perceived loudness [39]. This concurs with observations that

perceptual distance increases at a lower rate than physical distance when the

level reduces according to inverse square law.

Whilst level/intensity can be effective as a relative cue, it is often unreliable

when making judgements relating to absolute distance. This is because the

level experienced at the ears is dependent not only on distance, but also on the

acoustic power and radiation pattern of the source. However, it is not usually

the case that a sole increase in level would be mistaken for a change in distance.

In many situations, multiple cues are often available from which we can derive

a distance estimate. Studies by Zahorik & Wightman [87] and Altmann et al.

[88] propose that the acoustic power of a sound source is estimated from the

reverberant sound energy and, as this remains approximately constant across

distance within indoors environments, loudness judgements for sound sources

with a fixed acoustic power remain consistent at variable distances. Altmann et

al. [88] showed that loudness consistency was generally observed in a room with

strong reverberation (RT60 = 1.03 s) but not in a room with weak reverberation

(RT60 = 0.14 s), although distance judgements were found to be similar across

both environments.

Alongside facilitating loudness judgements, reverberant energy also aids in

distance judgements in the form of the direct-to-reverberant energy ratio (DRR)

at the ears [40, 76, 89, 90], which decreases as a function of increasing distance.

Given a large enough room, reverberant energy is considered diffuse and as such

maintains constant energy irrespective of source location. In a small auditorium,

as used by Zahorik [89], it was observed that the level of the reverberant sound

reduced by around 1 dB for each doubling of source distance. The magnitude

of the reverberant energy is dependent on room dimensions, objects within the

room, and the absorption properties of the walls, floor, and ceiling.
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In contrast to level cues, DRR has been shown to act as an absolute distance

cue [91] utilising a frequency dependent, but direction independent, DRR-to-

distance mapping based on the DRR at the ipsilateral ear [92]. Distance judge-

ments have been found to be most accurate in situations where both level and

DRR cues are available [93, 94], which should be unsurprising given that most

natural environments will provide both of these cues and humans would have

evolved to use a combination of the two. Much like level change discrimination,

the ability to detect changes in DRR has also been shown to contribute to judge-

ments relating to changes in distance. Sensitivity to changes in DRR depend

on the reference DRR value [95] and has been shown to be highest around the

critical distance, which is the distance at which the direct and reverberant signals

have equal energy and where DRR = 0 dB [96]. Sensitivity to DRR changes

was observed to be lower for both high and low DRR values, which equates to

scenarios where sound sources are considerably closer to, or farther away, from

the listener. An investigation by Zahorik [89], however, found that sensitivity to

DRR changes were approximately equal across a range of positive DRR values,

with JND’s of 5-6 dB for values between 0 and 20 dB for stimuli consisting of

speech, noise, and frontally and laterally presented impulses. As Kolarik [40]

notes, this discrepancy may be attributed to differences in experimental procedure

and stimuli. In reverberant environments, the level and time of arrival of early

reflections can also provide information on a sources distance [59]. For example,

sources closer to the listener will result in a greater initial time delay between

the direct sound and the early reflections.

For sounds within 1m of the listener and for sounds farther than 15m from

the listener, spectral content can also be used to inform distance judgements

[40]. For sounds within approximately 1 m of the listener this is due to the

frequency and distance dependent diffraction of sound around the head. In a

study by Brungart [97], participants judged the distance of proximal sounds in

anechoic conditions for broadband (0.2 - 15 kHz), high-passed (3 - 15 kHz), or

low-passed (0.2 - 3 kHz) noise bursts. Results showed that accurate distance

judgements required spectral components below 3 kHz [97]. A similar study by
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Kopco and Shinn-Cunningham [92] obtained distance judgements for sounds

between 0.15 and 1.7 m using noise bursts that varied in centre frequency between

300 Hz and 5700 Hz and in bandwidth between 200 Hz and 5400 Hz. It was

found that as low frequency energy was removed from the stimuli the accuracy

of distance judgements decreased for both frontal and laterally presented sounds.

The variable bandwidth was shown not to affect the mean distance judgements.

The results also support those presented in [97], that judgements were relatively

accurate for stimuli containing energy at frequencies around 300 Hz and were

accurate for stimuli with energy only at 5700 Hz, supporting the conclusion that

it is the low-frequency cues provided by diffraction around the head that aid in

distance perception at close distances.

For sound sources farther than approximately 15 m from the listener, the

spectral content is predominately altered by air absorption with high-frequencies

undergoing greater attenuation than low-frequencies [33]. Sounds with decreased

high-frequency content relative to low-frequency content are often perceived as

being farther away [98]. A study by Butler [99], utilised recorded broadband,

low-pass, and high-pass noise in the ear canals of humans in an anechoic or

reverberant room. These were then used a stimuli and played back to participants

over headphones. For both anechoic and reverberant conditions the low-pass

filtered noises were consistently judged as being at a greater distance from the

participants. The broadband noise was perceived as being in the middle of the

range of perceived distances. However, a similar study by Little et al. [98] argued

that spectral differences in the stimuli used in [99] could not be produced by

physical changes in distance to a sound source and therefore lacked ecological

validity. Little utilised shaped broadband noises low-pass filtered at 5, 6, and

6.7 kHz, arguing that these spectral differences were more akin to those that

could be caused by changes in source distance. The results, however, did concur

with previous findings that decreases in high-frequency energy were associated

with greater perceived distances, but only after several trials, which suggests that

spectral content is a relative distance cue.

Related to, but often treated as distinct from, distance perception is the notion
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of externalisation. The term externalisation is commonly used with reference

headphone reproduction. When listening to sources in a real environment there

is almost always an inherent distance between the listener and the source, which

results in the source having a perceived distance and being perceived as external

to the listener [100]. However, listening via headphones confounds this since the

signals are being delivered directly to both ears at a very close proximity and

thus bypasses the filtering properties of the head and ears [100]. For traditional

amplitude panned stereo, this results in signals that contain the lateral cues

outlined in Section 2.4.3, but lack the spectral cues required to facilitate a

perception of distance, which in turn results in an in head listening experience

[101].

Externalisation, therefore, is often used to describe the ability of an audio

reproduction system (usually headphones) to deliver the cues necessary to deliver

the perception of distance and thus cause the sound to appear as if it is external to

the listener[101]. In this sense, externalisation can be considered as an extension

of distance perception, but within the context of audio reproduction systems

where distance cues are modelled through signal processing. Lastly, whereas

directional localisation cues can be viewed as a result of the effect our anatomy

has on incident sound waves, auditory distances cues, predominately, result from

the effect the environment has on the temporal and spectral characteristics of

the signals reaching the ears.

2.5 Audio Digital Signal Processing

2.5.1 Audio Sampling

Consider again the sinusoids represented by Equation 2.6 and illustrated in Figure

2.4. Both signals are said to be measured in continuous-time as the signal is

observable for any t ∈ R or the specific case of Figure 2.4, t ∈ [0, 1]. However, to

represent this signal digitally, the amplitude of the signal must be sampled at

regular intervals in time. This is due to the finite precision inherent in digital

systems. Once the signal has been sampled at a discrete set of N time points it
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is now represented by a discrete set of values and is referred to as a discrete-time

signal. Rewriting Equation 2.6 for a discrete-time signal gives us:

y[n] = A sin(2πfn+ ϕ) (2.30)

Instead of t for a continuous time value, we have n for the nth sample.

The conversion from a continuous-time signal to a discrete-time signal is

carried out by an analogue-to-digital converter (ADC). Conversely, discrete

digital signals can also be converted into continuous analogue signals by digital-

to-analogue converters (DAC). The analogue-to-digital conversion is usually done

through methods such as pulse-code modulation [102]. The number of samples

taken per second is determined by the sampling frequency (also referred to as the

sampling/sample rate), fs with the Nyquist theorem stating that to accurately

sample a frequency f , fs must be at least 2f . Therefore, fs ≥ 2fmax where fmax

is the highest frequency to be sampled. If a 1 Hz sinusoid is sampled at fs = 30

Hz the digital approximation would be that depicted in Figure 2.17. As seen,

rather than having continuous values in times the signal now consists of discrete

points of data at regular intervals in time. Each sample is converted into a binary

number which represents its amplitude and results in the sample being quantised

to the closest available value. The number of bits assigned to each sample, known

as bit depth, determines the precision at which the ADC can map the continuous

analogue level to discrete digital values with each bit nbits resulting in 2nbits

discrete amplitude values. Within the context of ADCs, the sampling frequency

determines precision in time, and bit depth determines precision with respect to

amplitude. For example, a system with 8 bits corresponds to 256 discrete values,

whereas 16 bits (the common bit-depth for music on Compact Disc) provides

65,536 discrete values.

2.5.2 Impulse Response

The unit impulse, or the Dirac delta function δ(t) (continuous time) or δ[n]

(discrete time) is a signal that theoretically contains energy at all frequencies
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Figure 2.17: Illustration of a 1Hz sinusoid digitally sampled at 30 Hz

when t or n = 0 and no energy at all other times. It can be represented as:

δ(n) ≜


1 n = 0

0 n ̸= 0

(2.31)

Figure 2.18a shows the discrete-time unit impulse and Figure 2.18b shows the

associated frequency-domain representation obtained through the FFT of δ(n).
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Figure 2.18: Time and frequency-domain representations of the Unit Impulse

A linear time invariant system can be represented by its response to δ[n]. The

time-domain representation is the impulse response h(t) or h[n] and the frequency-

domain representation is the transfer function H(ω) (continuous-frequency)

42



2.5. AUDIO DIGITAL SIGNAL PROCESSING

or H(k) (discrete frequency). Recall previously that the HRTF refers to the

frequency-domain representation and the HRIR the time-domain representa-

tion. For a static source and head position, the physical hearing system can be

considered a linear time invariant system.

The impulse response h(n) can be represented as [30]:

h(n) ≜ Ln{δ(·)} (2.32)

Where L is the linear-time invariant system at time n and δ(·) is unit impulse

occurring at time 0.

The generation of a unit impulse for the measurement of digital systems, such

as digital filters, is a trivial task. However, the generation of a unit impulse for the

measurement of audio systems and acoustic spaces, such as an indoor or outdoor

environments or audio reproduction systems, is not so straight forward. In

practice, it is not possible to reproduce a perfect unit impulse using conventional

methods. This is due to the restraints of loudspeaker technology in producing

instantaneous impulses with high enough power. Impulse-like sounds can be

generated using transient producing sources such as a starter pistol [103], balloon

pop, or hand claps, however, these are acknowledged to be less than ideal.

Common approaches which have greater precision and reproducibility are

methods that utilise a known excitation signal that is finite in length and is

known to contain the full spectrum of frequencies of interest. Early methods

included the maximum length sequence [104] and inverse repeat sequence [105],

which use pseudo-random noise as the excitation signal followed by a circular

cross-correlation to retrieve the impulse response. Both methods suffered from

distortion evenly spread throughout the IR resulting from the imperfect loud-

speaker reproduction. One solution was to lower the playback level, which in turn

increased the signal-to-noise ratio with respect to the excitation signal (signal)

and the artefacts caused by the imperfect loudspeaker reproduction (noise). This

may, however, cause a decrease in the signal-to-noise ratio with respect to the

excitation signal and the background noise present in the environment.

A more recent method proposed by Farina [106] suggests the use of an
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exponential sine sweep (ESS) as the excitation signal, which can be defined as:

ϑ(t) = sin

[
ω1× T

ln
(
ω2
ω1

) × (e t
T
×ln(ω2

ω1)
)
− 1

]
(2.33)

Where ω1 and ω2 are the start and end frequencies respectively in radians and T

is the duration of the sweep.

IRs are extracted through the convolution of the measured signal y(t) with

inverse filter for the ESS ϑ(t):

h(t) = y(t) ∗ iϑ(t) (2.34)

Doubling the duration of the sweep will increase the signal-to-noise ratio by

approximately 3 dB. Furthermore, once the “deconvolution” process has extracted

the IR any harmonic distortion artefacts present are grouped and appear prior to

the start of the “main” impulse in the form of smaller impulses. These are then

able to be removed by simple truncation of the signal. The ESS has been shown

to improve signal-to-noise ratio when compared to previous methods and perform

better in quieter environments [106, 107]. However, though longer sweeps result

in an improved signal-to-noise ratio, the risk of interference from other sound

sources present in the environment is increased.

2.5.3 Convolution

As the IR represents the response of a system to δ[n] system responses to any

input can be defined by the convolution of an input signal x[n] with the IR h[n]

given by [34]:

y[n] = x[n] ∗ h[n] + ζ[n] (2.35)

Where y[n] is the measured signal, x[n] is the input signal, ζ[n] is the noise

present in the system, and ∗ denoting the convolution operator, which can further

be defined for discrete time as the convolution sum:

y[n] =
n∑

m=0

h(m)x(n−m) (2.36)

Equation 2.36 also shows that the resulting output from a convolution operation

will be of length M +N − 1, where M is the length of the IR and N the length

of the input signal.
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Within the context of audio signal processing, convolution is often used to

impart the response of a given system (equalisation filter, room response, BRIR,

HRIR) onto a given input signal. Figure 2.19 shows an example convolution of two

signals. In this thesis it is extensively used in the synthesis of stereo and B-format

sound scenes, explained in greater detail in section 2.6. It is also important to

note that convolution in the time-domain is equivalent to multiplication in the

frequency-domain; as such, Equation 2.36 can be represented as the frequency-

domain operation:

Y (ωk) = H(ωk)X(ωk) (2.37)

where Y (ωk), H(ωk), and X(ωk) are discrete frequency domain representation

of y[n], h[n], and x[n] respectively.

2.5.4 Spectral Analysis

Until this point, sound has been discussed predominately as a function of time

and/or containing a single sinusoidal frequency component. In reality, most

naturally occurring sounds are far more complex than sinusoids. However, Fourier

proposed a theorem that any periodic signal f(t), no matter the complexity, can

be modelled as a combination of sinusoids of varying frequencies, amplitudes,

and phases. This is mathematically represented as [26]:

f(t) = a0 +

∞∑
n=1

an cos(nω0t) + bn sin(nω0t) (2.38)

Where a0 is the d.c. offset of the signal, an and bn are the level/amplitude of

the nth cosine and sine harmonics respectively, and ω0 is the angular frequency

(2πf0). The set of sinusoids that make up a periodic signal are called the Fourier

series with all harmonics being integer multiples of the fundamental frequency

ω0.

The use of Euler’s formula allows both the sine and cosine to be combined in

the form of a complex exponential:

ejθ = cos(θ) + j sin(θ) (2.39)

where θ is in radians.
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(c) h[n] ∗ g[n]

Figure 2.19: The Resulting output (h[n] ∗ g[n]) of the two convolution of signals h[n]

and g[n]
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This allows the re-expression of the Fourier series as a complex exponential

[26]:

f(t) =
∞∑

n=−∞
Cne

jnω0t (2.40)

where Cn are the complex coefficients that describe the two previous coefficients

a0 and b0. The absolute value of Cn, |Cn| represents the magnitude of the

nth frequency component while the angle, ∠Cn represents the phase of the nth

frequency component.

The summation of harmonic sinusoids to construct a signal is termed Fourier

synthesis. Providing the values for an and bn are known this can be used

to represent any periodic signal. However, to represent a signal completely

may require an infinite number of harmonics as suggested by Equation 2.38.

Furthermore, different signals will require different values of an and bn; for

instance the Fourier series coefficients for a square wave are defined as:

a0 = 0 (2.41)

an = 0 (2.42)

bn =


0, if n is even

4
nπ , if n is odd

(2.43)

Figure 2.20 shows the fundamental frequency f0 and the first three harmonics

of a square wave along with the result of the summation of these first four

components. This is compared with a square wave containing 50 harmonics

alongside an idealised version wave that would result from the summation of an

infinite number of additional harmonics. This demonstrates the effects of not

possessing enough coefficients to accurately model a given signal.

Alongside Fourier synthesis, which allows the creation of a waveform from

known Fourier coefficients, Fourier analysis allows for the measurement and

extraction of the individual frequency components, F (ω) of a given periodic

signal. In practice, not all signals are periodic, however aperiodic signals can be

treated as periodic signals with a finite length [108]:

F (ω) =

∫ T−1

t=0
f(t)e−jωtdt (2.44)
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(b) 3rd harmonic
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(c) 5th harmonic
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(d) 7th harmonic
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(e) Resultant Waveform from the first 4

partials of a square wave
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(f) Square wave resulting from 25 partials.
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(g) Idealised square wave

Figure 2.20: Fourier synthesis of a square wave, showing the first four partials, the

resulting waveform from their summation, the waveform resulting from 25 partials, and

a idealised square wave.

48



2.5. AUDIO DIGITAL SIGNAL PROCESSING

With the discrete Fourier analysis being represented as:

X[k] =

N−1∑
n=0

x[n]e
−j2πnk

N (2.45)

In the literature, it is more common to see Fourier analysis and Fourier

synthesis referred to respectively as the Fourier transform and inverse Fourier

transform [108]. The Fourier transform (analysis) takes a time-domain signal

as input and converts it to an equivalent spectral representation. The inverse

Fourier transform (synthesis) takes a spectrum and converts it into an equivalent

time-domain representation. Transforms from either domain and back again

should result in a lossless reconstruction of the original signal. The discrete form

is therefore known as the discrete Fourier transform (DFT), and is the more

commonly used form, as Fourier transforms are often performed on digital signals.

For N discrete time samples the DFT returns N equally spaced frequency

bins X[k] with bandwidths and centre frequencies determined by the sampling

frequency and length of the signal in samples. While x[n] represents the discrete

time-domain representation of a signal, X[k] represents the discrete frequency-

domain representation. The DFT is a lossless operation, meaning the original

time-domain representation of a signal is recoverable from the frequency-domain

representation using the inverse DFT (iDFT)[108]:

x(n) =
1

N

N−1∑
k=0

X[k]e
jkωn
N (2.46)

The DFT is, however, a computationally expensive operation requiring N2

individual computations. A more efficient method was devised to compute the

DFT, aptly named the fast Fourier transform (FFT) [109], requiring a total of

N log2N individual computations. Due to its increased efficiency, the FFT is

now almost always used to compute the DFT for signal processing applications.

Figure 2.21a shows a time-domain representation of a signal containing three

frequencies components f1 = 500 Hz, f2 = 1000 Hz, and f3 = 2000 Hz with

Figure 2.21b showing an approximation of the frequency spectrum obtained

from an FFT of the time-domain signal in Figure 2.21a. For the remainder of

this thesis the term FFT will be used to refer to the application of the Fourier
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transform to a time-domain representation of a signal, and iFFT to refer to the

inverse Fourier transform of a frequency-domain representation of a signal.
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(b) Frequency-domain

Figure 2.21: Sinusoidal signal with three frequency components at 500 Hz, 1000 Hz, and

2000 Hz represented in both a) Time-domain b) Frequency-domain.

2.5.5 Time-frequency processing

Unless the signal under analysis is either very simple, as with the previous

sinusoidal signal examples, or very short, it is likely to have some non-stationary

characteristics, such as spectral content, that varies over time. To facilitate a

more accurate frequency analysis it is often useful to view the signal as a function

of time and frequency. This is usually achieved through frame-based processing

where an input x(n) is divided into a number of much shorter frames with each

frame being processed separately. When using time-frequency analysis it is

assumed that the spectrum of a signal can be considered stationary if measured

over short enough intervals.

The time-frequency representation of a signal can be derived from an extension

to the FFT operation described in Section 2.5.4, and is referred to as the Short-

Time Fourier Transform (STFT) given by [110]:

Xm(ω) =

∞∑
n=−∞

x(n+mξ)w(n)e−jω(n+mξ) (2.47)

where x(n) is the input signal at sample n, w(n) is a window function of length

M , Xm(ω) is the FFT of the windowed data centred about time mξ, and ξ is the

hopsize, in samples, between successive FFTs. This form of the STFT utilises
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the Discrete Time Fourier Transform (DTFT) as its length N is permitted to

approach infinity. Given that the length N of an FFT dictates the frequency-

domain resolution, this results in the DTFT being a function of continuous

frequency as N approaches infinity. In reality, the window w(n) is always of finite

length and usually centered about time zero which results in a re-expression of

the DTFT as the DFT (in our case utilising the FFT):

Xm(ωk) =

N/2∑
n=−N/2

x(n+mξ)w(n)e−jω(n+mξ) (2.48)

where Xm(ωk) indicates the now discrete nature of frequency sampling within

the number of bins, k.

Assuming a fixed sampling rate, the length M of window w(n) defines the

resolution of the STFT in both frequency and time. This presents a compromise

between the two dimensions. A longer window length will result in greater

frequency resolution but at the expense of lower resolution in time, which may

cause transient or shorter term non-stationary events to go undetected. A shorter

window length will be more sensitive to temporal changes in the signal but less

detailed with respect to how those changes are represented in the spectrum with

each frequency bin ωk containing the approximated energy for a wider band of

frequencies. In practice, the window length is often selected through iterative

experimentation based on the signal under analysis and the dimension that is

most of interest. Typical window lengths in audio signal processing applications

vary between 1 ms and 100 ms [34].

A common use of the STFT is the generation of spectrograms, which represent

the intensity of the STFT magnitude. As spectrograms usually show the log-

magnitude intensity (dB) across time and frequency, and since SPL(dB) can be

approximated to perceived loudness as explored in Section 2.2, they can be said

to provide an approximate display for how the human auditory system would

perceive a given signal. This is assuming the choice of an appropriate window

length.

Another application of the STFT is to facilitate the linear and time-varying

processing of a given signal. In this scenario, once the frame x(n+mR) has been
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transformed into the frequency-domain giving Xm(ωk) the desired processing is

applied, which is represented as:

Ym(ωk) = Hm(ωk)Xm(ωk) (2.49)

with Hm(ωk) as the frequency response of the spectral processing to take place.

It should be noted that when applying spectral processing the FFT sizeN must

be greater than or equal to the M +L− 1 where L is the length of the processing

filter, to avoid time aliasing [110]. This is achieved through zero-padding the

time-domain signal which equates to interpolation in the frequency-domain where

each frequency bin is replaced by N/M bins. Additionally, due to the time and

frequency modifications introduced by the analysis windows, the frames must

overlap to ensure an accurate reconstruction of the desired output signal. A

commonly used method is Overlap-Add (OLA) processing. In simple terms it is a

sequence of FFTs which may be modified, inverse-transformed, and then summed

to create the reconstructed output signal. To ensure successful reconstruction of

the input signal or processed version of the input signal, the window w(n) must

have Constant Overlap-Add (COLA) at hopsize ξ defined as:

∞∑
m=−∞

w(n−mξ) = 1, ∀n ∈ Z (2.50)

whilst ensuring COLA is vital for processing that requires reconstruction of a

frame-processed audio signal, it is less important if using the STFT solely for

analysis or visualisation of a signal [110]. Figure 2.22 shows two examples of

overlap-add reconstruction using a standard Hamming window and highlights

the importance in checking whether a window meets COLA if using a window

defined in a library. Those that do not meet COLA will exhibit discontinuities in

each frame of the overlap add. For a review of windowing functions, see [110].

52



2.6. SOUNDFIELD RECORDING, ENCODING, & REPRODUCTION FOR
IME PRODUCTION

0 20 40 60 80 100
TIme (Samples)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Am

pl
itu

de

(a) Non-COLA

0 20 40 60 80 100
TIme (Samples)

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

(b) COLA

Figure 2.22: Overlap-Add example for a Hamming window with a length of 33 and a

hopsize of 16. (a) shows the results of a non-COLA window resulting in discontinuities

at the edge of each overlap-add. Whilst (b) shows the COLA solved for a window with

odd length M. Generated from code adapted from [110].

2.6 Soundfield Recording, Encoding, & Reproduction

for IME Production

IME productions utilise a range of different approaches to spatial sound recording,

representation, and reproduction to facilitate the creation of a desired acoustic

environment. These can broadly be categorised with respect to how they represent

soundfield data. Common categorisations are channel-based audio (CBA), scene-

based audio (SBA), object-based audio (OBA), and binaural-based audio (BBA)

[111–113].

2.6.1 The Soundfield

The term soundfield often refers to the sound waves present within a given space

[114, 115].The simplest of soundfields can be described by a single sinusoidal plane

wave, with frequency f , propagating through a free-field. Although sound sources

are often described as point sources radiating spherically, it is mathematically

simpler to assume waves are planar given sufficient distance from the source,

and in practise modelling and synthesis of soundfields is often done based on

planar waves. Given a single sinusoidal plane wave, sound pressure p measured
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in spherical space at point r can be defined as [116]:

p(k, r) = e−jkr (2.51)

where k = [k θk ϕk] is the wave vector, describing the wave’s direction of

propagation and k is the wave number in radians per meter. It should be noted

that the negative exponent as the measured direction of arrival of a wave is

considered to be opposite to its direction of travel.

The capture or encoding of a soundfield located in a physical space (as

opposed to a virtual or synthesised space) is usually undertaken using one

or more microphones. Given the many methods used to capture the various

properties of soundfields, both perceptual and physical, this thesis defines a

soundfield in the broadest sense as any bounded space where at least a single

airborne pressure wave is present. The difference between a soundfield consisting

of a single pressure wave and a complex real scene that is the superposition of

the aforementioned components is a matter of scale. With respect to soundfield

capture, encoding, and reproduction of a soundfield, this thesis again uses these

terms in the broadest sense. Therefore, the difference between a single pressure

measurement (and the reproduction of that signal over a single loudspeaker) and

multiple measurements using multiple microphones or multichannel microphones

(and the subsequent reproduction over multiple loudspeakers) is treated as a

difference in spatial resolution stemming from the spatial sampling density [117].

2.6.2 Basics of Soundfield Recording

The easiest method to capture information that can then be used to reproduce, at

least in part, a given soundfield, is through the use of one or more microphones.

Given the ubiquity of mobile phones it is a reasonable assumption that many

people have the means to record at least a low spatial resolution representation

of the soundfield they are present within. The minimum spatial resolution results

from the capture of a soundfield using a single microphone, as depicted in Figure

2.23. The signal that results from recording of a soundfield is a combination of

the sound incident on the microphone and the characteristics of the microphone
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S1S2

Figure 2.23: Basic model of a soundfield based on two point sources, S1 and S2, and one

receiver.

such as its frequency response and polar pattern. The polar pattern describes

the relative sensitivity of the microphone, and therefore its output level, to sound

at various angles of incidence. Figure 2.24 shows 2D representations of some

common polar patterns, with red representing reversed polarity. The combination

of an omnidirectional (Figure 2.24a) and a bidirectional (Figure 2.24b) polar

pattern can also be used to derive an infinite number of directional patterns that

scale between the two. The polar response curve can be derived from [118]:

r = |Γ + ϱ cos(θ)| (2.52)

where r is the radial distance from the origin of the polar plot and represents

relative output; Γ and ϱ are fractional coefficients of the pressure (omnidirectional)

and pressure gradient (bidirectional) polar patterns respectively with Γ + ϱ = 1,

and θ is the angle of incident sound relative to the principal axis of the microphone.

Consider again Figure 2.23, if an omnidirectional microphone was used to

capture the sound scene, and assuming sources S1 and S2 are equidistant from
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Figure 2.24: Four common microphone directional pickup patterns. Red denotes positive

polarity and blue denotes negative polarity.

the microphone, both would equally contribute to the resulting signal. However,

if a directional microphone was used pointing towards S1 then S1 would appear

more prominent in the recorded signal than S2 and visa versa. In the case of

bidirectional (Figure 2.24b) pickup patterns the sound located directly behind

the microphone would also contribute equally to the resulting signal, however,

the signal captured from the rear of the pickup pattern would be out of phase

with the signal captured from the front of the microphone. This suggests that

use of a single microphone results in the lowest spatial resolution capture of a

soundfield, since the approximate sound pressure at that point in space can be

encoded for sound waves from all directions (assuming an omnidirectional polar

pattern); however, there is no encoding of spatial information about the scene. It
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could be argued that using a directional polar pattern, for instance a cardioid

pattern, would encode some very limited spatial information given the directional

sensitivity of the microphone. This would not however be detailed enough to

build up an accurate representation of how the sound pressure incident on the

microphone varies over angle for a given scene. Furthermore, it only provides a

single channel for reproduction.

A higher spatial sampling density is required to obtain a soundfield recording

with a higher spatial resolution. This can be achieved by increasing the number of

discrete sampling points in space i.e. microphones, in appropriate configurations

within the space. A higher spatial resolution for reproduction is similarly achieved

by increasing the number of independent reproduction channels i.e. loudspeakers.

However, when using capture, processing, and rendering methods relating to

BBA, it is possible to reproduce spatial sound with a higher spatial resolution

without the need for additional reproduction channels.

2.6.3 Channel-based Audio

CBA methods can be considered as being loudspeaker-centric, where audio content

is either captured or processed such that it is represented by a number of signals,

each intended to be delivered to a specific loudspeaker within a pre-defined

arrangement, typically without the need for any further modification [113]. This

results in CBA being a relatively straight forward reproduction format as the

signals are already rendered for each loudspeaker. However, CBA requires that

the content be reproduced over the same loudspeaker configuration for which it

was created, meaning that a separate version must be generated for each specific

loudspeaker configuration. As such, a set of industry recommendations have been

established for common configurations such as 2.x, 5.x, and 7.x [119], where x

in this instance represents the number of low frequency effects (LFE) channels

and the number preceeding the decimal point represents the number of full range

loudspeaker channels. In cases where CBA is required to be reproduced over a

different configuration there are solutions, such as MPEG-H [120], which facilitate

upmix/downmixing between different configurations.
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CBA requires a minimum of two channels to encode spatial information.

The two-channel case is typically referred to as stereo, two-channel stereo, or

two-channel stereophony. Research into stereophonic sound started as early as

1881 [121], however, the development of modern approaches to two-channel stereo

are considered to have stemmed from the work of Blumlein in the 1930s [122].

By placing two or more microphones in a soundfield, a spatial representation can

be captured which encodes some of the time and level localisation cues discussed

in Section 2.4 as Inter-Channel Time Differences (ICTD) and Inter-Channel

Level Differences (ICLD) [123]. As such, CBA can be considered a perceptually

motivated approach to spatial sound as it aims to render perceptually relevant

cues as opposed to a physically accurate approximation of the soundfield [124].

Two-channel stereo is often used to create a frontal sound stage that exists

between the bounds of the two loudspeakers. There are a variety of different stereo

microphone techniques that utilise different combinations of space, microphone

orientation and polar pattern in order to influence the spatial attributes of the

recorded sound field. Stereo microphone techniques can broadly be classified into

three categories: coincident, near-coindicent, and spaced configurations. Several

common stereo microphone configurations are discussed, but for a more detailed

review see [123] and [125].

A spaced pair (Figure 2.25a) consists of two identical microphones with

matching polar patterns, commonly cardioid or omnidirectional. Although

cardioid polar patterns are much less sensitive to sources arriving from behind the

array, omnidirectional may be preferred as pressure microphones are not subject

to the proximity effect and therefore exhibit a more consistent low frequency

response over different distances. Both microphones are orientated towards

the direction of the intended sound scene, parallel to each other, and spaced

anywhere from 10 cm to up to several meters. Due to the small ICLD between

a closely spaced configuration, it can be considered to encode the spatial scene

using only ICTD, although once the spacing becomes 1 to 2 meters it will also

introduce greater ICLDs alongside enhancing the ICTDs. This results in a stereo

representation with enhanced width [123].
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Figure 2.25: Diagrams of common stereo microphone techniques a) Spaced pair b) XY

coincident pair c) Near coincident pairs such as O.R.T.F and N.O.S

Spaced pairs utilise both ICTD and ICLD to create a stereo image, both of

which are a function of the incident angles of the sound sources. The greater

the distance between the two microphones, the greater the possible range of

inter-channel difference values. However, in cases where the distance between

microphones is several meters, it may be beneficial to add a third microphone

in the middle of the configuration in order to ensure consistent coverage of the

sound scene.

Coincident configurations, such as the X/Y pair shown in Figure 2.25b, use a

pair of identical microphones with their respective capsules placed as close to one

another as possible, but without touching. The orientation of each microphone

will then be dependent upon the technique being used. The X/Y pair consists
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of two cardioid pattern microphones that are usually stacked one on top of

the other so they occupy the same region horizontally, with capsules orientated

between 90◦ to 135◦ away from each other [125]. The Blumlein pair utilises two

bidirectional microphones positioned so their pickup patterns are orthogonal to

one another on the horizontal plane. Due to the close proximity of the capsules,

coincident configurations are considered to encode the spatial scene using only

ICLDs. Additionally, the lack of appreciable time and phase differences between

the microphones also results in the both signals having good mono compatibility

when mixed down.

Near-coincident configurations (Figure 2.25c) combine both ICLD and ICTD

resulting in a stereo scene that has both stable localisation of sources and a sense

of space and depth. The lower ICTD when compared to spaced configurations

also make near-coincident recordings mono compatible. Similar to coincident

configurations, the microphones are orientated at an angle facing away from each

other, which varies depending on the configuration being used, but additionally

they are also spaced apart at distances that produce appreciable ICTDs. The

O.R.T.F cofiguration typically uses a distance of 17 cm between capsules at an

angle of 110◦, while the N.O.S configuration uses a distance of 30 cm and an

angle of 90◦.

CBA can also be synthesised through the manipulation of identical mono

signals that are sent to two or more loudspeakers. This process, known as panning,

alters the signals that drive the left and right loudspeakers in order to create

ICLD and ICTDs. This is commonly achieved through amplitude panning, which

refers to the manipulation of the relative amplitudes of the mono signals sent to

each loudspeaker [126]. By manipulating the signals that drive each loudspeaker,

sources can be made to appear as if they are positioned between the loudspeakers,

this is referred to as phantom imaging [126]. The sine law was an initial model

proposed by Bauer [127] which predicts phantom positions θs according to the

gains of each loudspeaker placed at ±θL:

sin(θs)

sin(θL)
=
GL −GR
GL +GR

(2.53)
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The tangent law was also developed around a similar time and is defined by [128]:

tan(θs)

tan(θL)
=
GL −GR
GL +GR

(2.54)

The key difference between the two is that the tangent law considers the propa-

gation path around the head [129], however the perceptual difference between

the models has been found to be negligible.

Given that the standardised positions for two-channel stereo +/- 30◦either

side of the central listening position [119], Wiggins [42] notes that the application

of pair-wise panning to a surround sound configuration would require a minimum

of six loudspeakers. In this case each pair of speakers can operate as a two-channel

subsystem within the larger array. However, pair-wise panning is still often used

for irregularly spaced configuration such as 5.1 and 7.1. In these cases, unstable

phantom imaging occurs when sources are panned between speaker pairs where

the separation angle is greater than 30◦ [42]. CBA consisting of a number of

discrete channels greater than two is often referred to as multi-channel audio or

multi-channel surround sound but still largely follows the same principles.

With respect to the spatial sampling density, stereo microphone techniques

result in the sound field pressure being sampled at two positions, which allows the

encoding of lateral directional information. The term lateral is used as opposed

to location because whilst it is possible to identify if a source is coming from the

left or the right, there is insufficient information to make an adequate judgement

on its elevation and whether it is in front or behind the recording array. There

are other approaches to channel-based multichannel recording which provide a

greater sampling density through the use of additional microphones, such as the

Surround Decca Tree [130], Williams Multi-Microphone Array (MMA) [131], and

ORTF-3D [132].

2.6.4 Object-Based Audio

OBA provides a greater flexibility than CBA as it allows an object-based repre-

sented scene to be used with varying loudspeaker configurations, without the need

for the original encoded material to be modified [112, 133]. When authoring OBA
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content, the scene is represented by multiple audio objects, with each comprising

of one or more audio signals and associated metadata. Examples of associated

metadata are the location of the object, the trajectory of an object, and the gain

level associated with the object. Some cinema mixing formats include object

metadata that allows dynamic reconfiguration of the object renderer to facilitate

the object only being rendered by certain loudspeakers or loudspeaker zones i.e

screen zone, sides zone [134].

As detailed in Section 2.3, the rendering of objects in specified locations

within a space requires the use of defined coordinate systems and a frame of

reference. Tsingo [35] highlights that for interactive rendering, such as those

found in many IMEs, the position of audio objects are usually represented as

allocentric Cartesian coordinates. For IMEs where a single perspective needs to

be rendered, which is often the case for first-person experiences, the coordinates of

the objects can be converted into user-centric spherical/head-related coordinates.

The reason for taking an allocentric first approach is that for experiences where

sound is reproduced in a real space, such as in cinemas, theatres, and exhibition

spaces, the position of audio objects can be described for every listening position

and any room size in a way that allows optimal reproduction for a range of room

sizes and shape. Spatialisation from a user-centric first approach can result in an

object being reproduced is an incorrect location due to different room dimensions.

Tsingo [35] presents an example of an object on a side wall within an elongated

room being reproduced on the back wall when reproduced in a smaller room.

There are a number of different object-based rendering algorithms that can

be used to render the position of audio objects according to their associated

location and trajectory metadata. The purpose of an audio rendering algorithm

is to decode the audio data associated with an audio object, according to the

location and/or trajectory metadata, to a set of loudspeakers such that the object

is perceived to be originating from that location. In contrast to CBA, where

the encoding and decoding of content are intrinsically linked as channel-based

content will be encoded directly to loudspeaker signals for the target loudspeaker

configuration, OBA separates the encoding and decoding process by encoding
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the spatial information on a per-object basis using coordinate data that is then

interpreted by the chosen rendering algorithm, which decodes the signal to the

appropriate loudspeakers.

Extending the amplitude panned principle, rendering methods such as vector

base amplitude panning (VBAP) [135] and distance-based amplitude panning

(DBAP) [136] allow for the use of known arbitrary 2D and 3D configurations.

VBAP utilises triplet-wise panning to render an audio object at the desired

location, with the speaker triplets being obtained via triangulation of the convex

hull of the loudspeaker array [137]. The position of an audio object p can be

described by a linear combination of three loudspeaker vectors as defined in [135]:

p = g1s1 + g2s2 + g3s3 (2.55)

where s1, s2, and s3 are loudspeaker vectors and where g1, g2 and g3 are gain

scaling factors. This can be expressed in matrix form as:

pT = gS123 (2.56)

where g = [g1 g2 g3] and S123 = [s1 s2 s3]
T . To solve for the gain vector, g, the

expression can be reformulated as:

g = pTS−1
123 = [p1 p2 p3]


s11 s12 s13

s21 s22 s23

s31 s32 s33


−1

(2.57)

with the gain vector requiring normalisation to ensure constant loudness

gsscaled =
gs√∑s
s=1gs2

(2.58)

Zotter and Frank [137] also highlight that gains in g should always remain positive

as to avoid in-head localisation and other artefacts.

However, as VBAP (and other directional vector based panning methods)

only use the direction of the audio object relative to the reference position (the

sweet spot), it is unable to effectively deal with object source locations not on

the surface of the unit sphere e.g. an object positioned or moving towards the
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centre of the space. In some cases this may result in the object appearing to

sharply go up and over the centre of the configuration [35].

Distance based panning methods, such as DBAP [136, 138], seek to address

this issue by calculating the loudspeaker gains based on the relative distance from

each loudspeaker Li to the virtual source p. This can be expressed as in [35]:

Gi(p) =
1

ϵ+ (||Li − p||)α (2.59)

where α is the distance exponent, usually assigned a value of 1 or 2, and ϵ

is a coefficient that controls how much an object can be rendered by a single

loudspeaker only.

This generally means all available loudspeakers are used to render the position

of an object, which leads to smoother object panning trajectories. The benefits of

this being that the number of loudspeakers is not restricted and the loudspeakers

may be placed in any configuration [138]. This lends itself to irregular configura-

tions, such as those required by concerts and outdoor events, where pre-defined

geometric configurations may not be suitable [136]. Additionally, deriving gains

from distance values rather than directional vectors means no assumptions are

made about the position of the listener [138], although if listener position is

known, further optimisations can be made through the addition of loudspeaker

signal delays to ensure the sound from each speaker will arrive at the listener at

the same time.

One potential disadvantage, however, of utilising all speakers for all objects

is that as the number of objects increase the leakage to all speakers can result

in the reproduction sounding less discrete. Furthermore, although Kostadinov,

Reiss and Mladenov [138] found that localisation performance between VBAP

and DBAP was comparable, they did not compare timbral quality. Given the

case where the listener position is not known, and loudspeaker signal delays are

not applied, coloration may occur due to the differences in time of arrival.

Wavefield Synthesis (WFS), as proposed by Berkhout [139], also lends itself

to OBA production as it itself is based on a sound object paradigm [140]. Given

the associated position of an audio object, a WFS rendering is able to calculate
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information for the direct sound, early reflections, and diffuse reverberation,

rendering the result to any given loudspeaker configuration. The initial object-

based mix itself does not require prior knowledge of any intended loudspeaker

configuration. However, unlike the previously detailed rendering algorithms, WFS

can be considered a physically motivated spatial audio technique [124] since it

aims to reproduce a physically accurate approximation of the target soundfield

rather than render only the perceptually relevant auditory cues such as ILDs and

ITDs. Additionally, it is also unlike most other spatial sound methodologies as it

is a volume solution, meaning that it aims to accurately recreate the soundfield

throughout the entire listening area, as opposed to just at a single listening

position (the sweet-spot).

WFS is based on a combination of Huygens’ Principle and Kirchhoff-Hemholtz

integral, which together state that a propagating wave front of a primary source

can be synthesised by an infinite number of secondary sources (loudspeakers) that

are placed on the primary source’s wave front of an enclosed volume (listening

area) [140]. The superposition of all the secondary source signals combine to

reproduce an accurate representation of the target wave front. Given the principle

aim is the reproduction the wave front rather than the source itself, WFS is

well suited to emulating distance with respect to sources appearing to originate

from both behind and in front of the loudspeaker array. Whilst outside the

scope of the thesis, the reader is referred to [140] for detail on the mathematical

underpinnings of WFS.

WFS theory is based on an infinite number of infinitely small secondary

sources, which is not possible given that all loudspeaker arrays will consist of a

finite number of spaced non-infinitely small loudspeakers. This is analogous to

the continuous to discrete transformation that occurs as part of time domain

sampling as described in Section 2.5.1. In this context the spacing of loudspeakers

results in a discrete spatial sampling and infers a spatial aliasing frequency, above

which the sound field will not accurately being reproduced. The following

equation, presented in [140], can be used to derive the spatial aliasing frequency

fA, assuming a plane wave:
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fA =
c

2∆s sin∆θwS
(2.60)

where ∆s is the distance between loudspeakers and ∆θwS is the angle between

the loudspeaker array and the wave front.

The spectral errors that result from spatial aliasing can cause a decrease in

the localisation accuracy of the rendered soundfield, which has led to a number of

attempts to reduce the problems caused by it. Wittek [141] proposed Optimized

Phantom Source Imaging (OPSI), which uses a combination of WFS at frequencies

f < fA and VBAP for frequencies f > fA. In cases where f > fA, only the

two loudspeakers closest to the source position are used with amplitude panning.

Although Wittek [141] showed that the coloration from the OPSI approach is less

than audible than for pure WFS, it does result in objects with dominant high

frequencies being perceived as between loudspeaker positions, along with the

distance and size of objects not being reproduced. Corteel et al [142] proposed

the use of diffusion filters to reduce comb-filtering effects and thus lessen the

coloration of the sound. There have also been numerous optimisation methods

where it is assumed that listeners only occupy a portion of the larger listening

area and thus optimise for that particular area [143–146].

OBA has become an integral part of cinematic sound, being incorporated

into systems such as Dolby Atmos, DTS:X, and Auro3D as well a significant

component of current codecs such as Dolby AC-4 [147] and MPEG-H [120], which

also allow the application of OBA to consumer devices [35] and vastly increases

the flexibility with which personalised content can be delivered [148]. However,

the increase in flexibility comes with an increase in complexity for both the

encoding and rendering of OBA content given that a scene will often consist of a

far greater number of objects that eventual loudspeaker signals. This results in

an amount of data required to be transmitted and processed that exceeds that of

simpler channel-based approaches.
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2.6.5 Scene-based Audio

Scene-based audio (SBA) shares similarities with both CBA and OBA and can be

viewed as the midpoint on a continuum with respect to how it represents a given

sound scene. CBA, at one end, representing a scene by target loudspeaker gains

and OBA, at the other end, representing a scene as a collection of individual

objects with associated metadata. SBA, however, is neither focused on individual

objects nor makes any assumptions about any loudspeaker configuration it

may eventually be decoded to. SBA instead, spatially encodes the scene into a

number of specified channels, which collectively describe the spatial characteristics

of the scene and can later be decoded to a chosen loudspeaker configuration.

The term SBA is often most associated with Ambisonics and Higher Order

Ambisonics (HOA), however can also encompass spatial audio coding methods

such as Directional Audio Coding (DirAC) [149–151]. The latter of which is

covered in more detail in Chapter 6.

Ambisonics was developed by Gerzon [152–154], Fellgett [155], and Craven

throughout the 1970s and is a scalable approach to sound field reproduction.

Unlike many traditional surround sound methods, Ambisonics does not require

prior knowledge of loudspeaker positions during the recording or encoding process.

Alongside research into the reproduction of Ambisonics, early research was also

conducted into appropriate microphone configurations which could be used to

capture and encode into Ambisonic format [156, 157].

Whereas traditional surround sound tends to encode directly into discrete

speaker feeds, Ambisonics provides a generic representation of the sound field that

can later be decoded according to the given loudspeaker arrangement. Ambisonics

is usually described as the decomposition of a sound field into spherical harmonics,

which are a set of orthogonal basis functions able to describe any function on the

surface of a sphere. Within the context of sound field capture and encoding, it is

more intuitive to think of spherical harmonics in a similar fashion to microphone

polar patterns that form part of a coincident recording array. When encoding

into Ambisonics, the sound field is decomposed into these orthogonal functions
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(polar patterns), and weighted combinations of these functions can produce an

equivalent order function pointing in any direction.

2.6.5.1

W

Y Z X

Figure 2.26: B-format spherical harmonics termed W, X, Y, Z. Red denotes positive

polarity and blue denotes negative polarity.

First Order Ambisonics (FOA) represents a sound field using four spherical

harmonic functions, hereafter referred to as channels (analogous to microphone

channels). These first four channels are collectively referred to as B-Format. The

W channel is an omnidirectional pressure signal that describes the 0th order

component of the sound field and X, Y, and Z are figure of eight patterns facing
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in the x, y, z Cartesian directions and collectively encode the three-dimensional

particle velocity. Figure 2.26 shows a graphical representation of the B-Format

channels. To encode a mono source s at a desired location, the mono signal can

be multiplied by the gains for each B-Format channel that correspond to a point

on a unit sphere. The B-Format gains can be derived as follows:

W =
1√
2

(2.61)

X = cos(θ) cos(ϕ) (2.62)

Y = sin(θ) cos(ϕ) (2.63)

Z = sin(ϕ) (2.64)

Another advantage of the Ambisonic format is the ease at which the sound

field can be rotated about all three axes, a technique utilised for dynamic binaural

rendering of Ambisonics to counter head movements and ensure a static absolute

source position. This is opposed to the source being head-locked and fixed to a

certain position e.g. always being 45◦ to the listener, irrelevant of the listener’s

head movement. Rotation about the Z-axis can be defined as [59]:

W ′ =W (2.65)

X ′ = X cos(θ) + Y sin(θ) (2.66)

Y ′ = Y cos(θ)−X sin(θ) (2.67)

Z ′ = Z (2.68)

Rotation about the X-axis (tilt) defined as:

W ′ =W (2.69)

X ′ = X ′ (2.70)

Y ′ = Y cos(θ)− Z sin(θ) (2.71)

Z ′ = Y sin(θ) + Z cos(θ) (2.72)
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And rotation about the Y-axis (tumble) as:

W ′ =W (2.73)

X ′ = X cos(θ)− Z sin(θ) (2.74)

Y ′ = Y ′ (2.75)

Z ′ = Z cos(θ) +X sin(θ) (2.76)

Gerzon and Craven [156–158] also developed a microphone for recording

Ambisonic signals. In this context, Equations 2.61 - 2.64 can be thought of as

simulating a B-Format microphone [42]. Gerzon and Craven proposed a FOA

microphone that consisted of four sub-cardioid microphone capsules mounted in

a tetrahedral array, as shown in the example in Figure 2.27. Though the capsules

are not coincident, they are equally non-coincident in each direction, simplifying

the process of correcting for a non-coincident array response. The output of the

tetrahedral array, known as A-format, are the four channels each captured by

their respective microphone capsule. The orientation of the capsules are usually

defined as left-front (LF), right-front (RF), left-back (LB), and right-back (RB).

The conversion from A-format to B-format is as follows [157]:

W = 0.5× (LF + LB +RF +RB) (2.77)

X = (LF +RF )− (LB +RB) (2.78)

Y = (LF + LB)− (RF +RB) (2.79)

Z = (LF +RB)− (LB +RF ) (2.80)

Though FOA allows for a full spherical representation and reproduction of a

sound field, it does so using a finite number of sampling points. Furthermore,

the wide main lobes of the first order directional patterns also contribute to poor

spatial accuracy and an amount of spatial blurring of point sources when decoded

over multiple loudspeakers [160]. The wide frontal lobes specifically result in any

single panned source being reproduced over a group of neighbouring loudspeakers.

This not only has an effect on source width but also results in comb filtering

when the paths between each loudspeaker and the listening position differ.
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Figure 2.27: Soundfield SPS200 1st order microphone [159]

2.6.5.2 Higher Order Ambisonics

It is also possible to decompose a sound field into a higher number of more

directional spherical harmonics alongside the signals already captured in the form

of B-format. Higher Order Ambisonics (HOA) refers to the use of higher order

spherical harmonics, and thus requires a greater number of channels. This results

in a higher spatial sampling density and offers greater accuracy in the reproduced

sound field and lends itself to more accurate localisation in both real and virtual

environments [69]. The spherical harmonics up to 4th order are shown in Figure

2.28.

Whilst Equations 2.77 to 2.80 show the specific equations for deriving the

weights (gains) for B-format, a more general definition for encoding a mono signal

s into Ambisonic format β for a given direction can be defined from [161]:

β = sY σ
mn(θ, ϕ) (2.81)

where Y σ
mn are the three dimensional full normalised (N3D) spherical harmonic

functions of order m and degree n further defined as:

Y σ
mn(θ, ϕ) = NmnPmn(sin(ϕ))×


cos(nθ), if σ = +1

sin(nθ), if σ = −1

(2.82)

where σ = ±1, Pmn(sin(ϕ)) are the associated Legendre functions [162], and Nmn

is the normalisation strategy for the amplitudes of different spherical harmonic
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Figure 2.28: Spherical harmonics up to 4th order following Y σ
nm

orders. The two most widely used normalisation strategies are three-dimensional

normalised (N3D) and Schmidt semi-normalised (SN3D):

NN3D
mn =

√
(2− δn,0)(2m + 1)

(m− n)!

4π(m+ n)!
(2.83)

NSN3D
mn =

√
(2− δn,0)

(m− n)!

4π(m+ n)!
(2.84)

where δ is the unit impulse function described in Section 2.5.2 and defined in

Equation 2.31.

Alphabetic channel ordering of Ambisonic channels only exists up to 3rd order

[163] and the number of channels exceeds the number of letters in the English
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alphabet for orders than higher than 4th order. Ambisonic channel numbering

(ACN) is now considered the standard method for labelling spherical harmonic

channels [164]. ACN can be calculated as:

ACN = m2 +m+ nσ (2.85)

The microphone used later in this work is the MH Acoustics Eigenmike

[165], which consists of 32 capsules in a near-uniform arrangement flush mounted

on a rigid sphere, and that can output spherical harmonics up to fourth-order.

However, unlike the simple directivity patterns associated with B-format, the

complex directivity of higher order spherical harmonics can not easily be related

to existing microphone polar patterns. Consequently, this require more advanced

processing methods to derive them from the given microphone signals. Higher

order microphones, such as the Eigenmike, utilise beamforming to approximate

the correct directivity patterns from an array of microphone capsules.

2.6.5.3 Decoding

Ambisonic decoding can be seen as the process of converting data stored in

Ambisonic format into a set of loudspeaker signals [160]. The conversion from

Ambisonic format to loudspeakers is achieved using a decoding matrix D, which

results in each loudspeaker signal being a weighted sum of each Ambisonic channel

dependent on the position of the loudspeakers [166]. A sampling decoder [42]

for an arbitrary number of loudspeakers can be derived by calculating virtual

microphone responses for each loudspeaker position θl and ϕl as:

gw =
1√
2

(2.86)

gx = cos(θl) cos(ϕl) (2.87)

gy = sin(θl) cos(ϕl) (2.88)

gz = sin(ϕl) (2.89)

The resulting signal that is then fed to the loudspeaker sl is given as [167]:

sl =
(2− d)gwW + d(gxX + gyY + gzZ)

2
(2.90)
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where d is the directivity factor of the virtual microphone response in the range

0 ≤ d ≤ 2 such that d = 0 results in an omnidirectional response pattern and

d = 2 results in a bidirectional response pattern [42]. As this method utilises

first order virtual microphone patterns, it is only suitable for simple frequency

independent decoding of B-format signals. Additionally, this assumes a regularly

spaced loudspeaker array, so when applied to irregular arrays, such as the ITU

5.0 array, localisation errors due to a non-uniform sound field are to be expected.

Furthermore, FOA can only accurately reconstruct the sound field for a very

small area at the centre of the array, known as the sweet spot.

Decoding through pseudo-inverse, or mode-matching, [160] is another common

method for deriving loudspeaker signals for an arbitrary number of loudspeaker

channels L for an arbitrary Ambisonic order with number of Ambisonic channels

K. A K ×L re-encoding matrix C is calculated by encoding the position of each

loudspeaker into spherical harmonic coefficients using equation 2.82 resulting in:

C =


Y 1
00(θ1, ϕ1) Y 1

00(θl, ϕl) . . . Y 1
00(θL, ϕL)

Y σ
mn(θ1, ϕ1) Y σ

mn(θl, ϕl) . . . Y σ
mn(θL, ϕL)

...
...

. . .
...

Y σ
Mn(θ1, ϕ1) Y σ

Mn(θl, ϕl) . . . Y σ
Mn(θL, ϕL)

 (2.91)

When multiplied by the given loudspeaker gains g this would yield the recon-

struction of the Ambisonic format signal β as:

β = Cg (2.92)

To derive the loudspeaker gains needed we need to rearrange for g which results

in:

g = C−1β (2.93)

Where C−1 is the inverse of C and known as the decoding matrix D. Usually, as

the number of Ambisonic channels is greater than the number of loudspeakers, C

is not a square matrix and it is not possible to obtain the true inverse so instead

the pseudo-inverse is obtained where:

D = pinv(C) = CT(LLT )−1 (2.94)
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This results in the signal of each speaker being calculated as:

sl =
K∑
k=1

βkDkl (2.95)

Both decoding methods detailed have been described as frequency-independent

and assume a regularly spaced loudspeaker array. Though outside the scope of

this thesis, the reader is directed to [72, 168] for a detailed review of decoding

methodologies and [42, 169, 170] for details on optimising for irregular arrays.

Additionally, using specialist microphones, such as the ones detailed in this

section, IRs can be captured using a similar methodology to that described in

Section 2.5.2 and encoded into the SH domain with the spatial resolution being

dependent upon the order of SH used. It is also important to note that for

many spatial IR techniques, the IRs must ideally be captured at each desired

source location using the same microphone array. When this is not possible, and

assuming the IRs are captured from a sufficient minimum number of positions, IRs

can be interpolated to synthesise any number of locations between two existing

IRs for a position in 2D space and three IRs for a position in 3D space [171, 172].

2.6.6 Impulse Response Measurements

The impulse response defined in section 2.5.2, while not a method of capturing a

given sound scene, can be used as a method of encoding the acoustic characteristics

of a given space with varying degrees of spatial resolution depending on the

microphone array used to capture the IR. A convolution operation, as described

in section 2.5.3, can then be utilised in order to impart the acoustic properties of

a given space onto a recording that is preferably anechoic.

Capturing an IR with a single microphone enables reproduction of an acoustic

space but without the inclusion of any spatial information. This results in

the same level of spatial resolution as recording a sound scene with a single

microphone. Utilising multichannel recording techniques further allows the

capture of directional information in the form of the direction of arrival of the

direct sound, as well as the early reflections. IR captured through the use of

multichannel recording techniques are often referred to spatial impulse responses
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[59, 173] as they not only encode the acoustic characteristics of a space, but also

the spatial characteristics such as direction of arrival for direct sound and early

reflections. When spatial IRs are convolved with an anechoic source, and then

reproduced using an appropriate loudspeaker or headphone configuration, they

will exhibit the spatial characteristics of the captured space. Applications of

spatial IRs include auralization of existing spaces [174], soundscape measurement,

modelling, and evaluation [55], and architectural acoustic design [175].

2.6.7 Binaural-based Audio

Binaural-based audio (BBA) refers to a variety of techniques which provide a

spatial audio experience over two channels. These two-channels aim to control

the sound pressure at the two ear drums and thus reproduce the interaural and

spectral cues, detailed in Section 2.4, of the target sound scene [176]. Binaural

can be considered a perceptually motivated technique, one that is most commonly

reproduced over headphones, although loudspeaker reproduction is possible

utilising cross-talk cancellation [177, 178]. Comprehensive reviews of binaural

technology are presented by Pike [75] and Rafaely et al. [179].

Interest and research in headphone-based binaural dates back to the 19th

Century [179] but has seen a surge in popularity in recent decades given the

increased availability of personal headphones and even more recently due to

the applicability of the format to IME experiences. The cues required for BBA

can either be recorded from human listeners, using the methods briefly outlined

in Section 2.4.4, captured from dummy head microphones and head and torso

simulators (HATS), or synthesised using signal processing methods. Binaural

recordings require that microphones are placed at the ears of a dummy head,

HATS or a human listener, which then capture the sound pressure at the ears at

the given location. However, as Pike [75] highlights, the limitation of binaural,

and all other types of spatial recording, is that it is only able to capture naturally

occurring scenes. This introduces complexities for IMEs where the desired sound

scenes do not, and in some cases cannot, exist. Rafaely et al. [179], also highlight

two additional issues that stem from the HRTF being embedded into the recording
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itself. Firstly, as head position is captured during the recording process, head-

tracking is generally not possible and secondly, individualised HRTFs cannot be

used as the recorded signal already has the HRTF of the associated device/person

from which the recording was captured. There are methods for binaural cue

adaption, but these have been reported to lack in accuracy and flexibility [180].

Binaural synthesis, also referred to as binaural rendering, is the processing

of an audio signal with the aim of simulating the binaural cues required for

the original signal to appear at the desired spatial location. Binaural synthesis

requires knowledge of the acoustic transfer path between the source and each

of the two ear drums, which can be characterised by their impulse responses,

referred to as the HRIR and HRTF in the frequency domain. When using direct

convolution, as detailed in Section 2.5.3, each source position requires a pair of

HRIRs/HRTFs, one for each ear, and when convolved with an anechoic source

results in the superposition of the relevant interaural and spectral cues for the

given source position. In a free-field environment the HRTF can be seen as

representing the anechoic transfer function from a source to the listener’s ear

drums [75] for a given position and will typically result in a HRIR of around 512

samples in length at a sampling rate of 44.1 kHz [124], which equates to around

12 ms. Depending on the environment within which the HRIRs are captured,

there may be some room reflections also captured, but ideally a HRIR should

represent solely the effect the morphology of the listener has on the wave fronts

impinging on the ears.

A measured HRTF will usually require equalisation to remove the transfer

functions of the measurement loudspeaker and microphones [176]. The type of

equalisation required will depend on the intended use of the HRTFs. For analysis

only, a simple inverse filter can be derived for the free-field transfer function of the

loudspeaker and measurement microphones [181]. For rendering over headphones,

the headphone-to-ear transfer function must also be corrected for [182–184].

Given that a pair of HRIRs are required for each desired location and that

the spatial resolution of human hearing can be as low as 1◦ in azimuth and 4◦

in elevation [161], it would require a large number of measurements to be able
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to synthesise sounds from all possible directions. It can, therefore, be a time

consuming task to collect a dataset of HRIRs with a high spatial resolution. One

method to reduce the time taken is the overlapped swept sine technique [185],

where multiple overlapping sweeps are played through multiple loudspeakers at

once, with an offset equal to the reverberation time of the environment.

If measurements are undertaken in an environment other than an anechoic

one, there will likely be some influence from the measurement environment in

the form of reflections, whether it be from the room itself or the measurement

equipment (such as any additional loudspeakers). In many cases this can be

unwanted and although it is often possible extract the pure HRIR by truncating

the measured signal at a time that would exclude all but the direct sound [74] this

will, however, change the accuracy of the low frequency reproduction. However,

given the limited low frequency reproduction capabilities of most loudspeakers

used for HRIR measurement, low frequencies are often modelled to compensate

for this [74, 186], and as such it may not cause any noticeable perceptual issues.

In circumstances where the measured HRIR also contains the Room Impulse

Response (RIR) (which contains the early reflections and reverberation), these

two components collectively are known the Binaural Room Impulse Response

(BRIR) [59, 75, 161] and can be used to binaurally render a signal in a given

location in the given environment.

As detailed in Section 2.4.4, each person has a unique set of HRTFs and it

has often been shown that using ones own HRTFs offers a range of improvements

to the listening experience when compared to using non-individualised HRTFs.

Some of the improvements include greater externalisation, better localisation and

timbral accuracy, and a generally more natural and believable binaural experi-

ence [63, 73, 187]. However, for mass-market consumer applications of binaural

technology, the wide-spread use of personalised measurements is impractical as

the measurement of HRTFs are often time consuming and requires specialist

equipment. This has lead to a lot of research investigating whether individu-

alised HRTFs are needed, what is the subjective/objective difference (if any) of

experiences using individualised and non-individualised HRTFs, and devising
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means of individualising the technology, but without requiring the capture of the

individual’s HRTF through traditional methods.

Whilst there are significant differences between the HRTFs of different indi-

viduals, there are certain interaural differences that are much more consistent

over the population. ITDs and ILDs from non-individualised HRTFs still pro-

vide relatively robust horizontal localisation cues given that the differences in

head size and ear spacing of different individuals is relatively small [188]. The

greater differences in spectral cues, however, give rise to higher rates of front-back

confusions and up-down confusions [189]. However, a later study by Begault

[190], showed little benefit of individualised HRTFs on localisation, front-back

reversals, or externalisation. The results did, however, show that the introduction

of head-tracking gave lower azimuth errors due to the ability of the listeners to

utilise the dynamic localisation cues described in Section 2.4.3. It has been shown

frequently across multiple studies that head-tracking reduces front-back reversals

[190], aids distance localisation [68] and improves externalisation [100].

Binaural rendering can also be used in conjunction with other spatial sound

methodologies, such as VBAP and Ambisonics. The binaural rendering of

Ambisonics was first proposed by McKeag and McGrath [191], with Jot et al.

[166] labelling the methodology as the virtual loudspeaker approach. Further

developments to the binaural rendering of Ambisonics have been proposed by

Noisternig [70], McKenzie[161], and Armstrong [192] amongst others. The interest

and advancement in the area of headphone-reproduced Ambisonics has progressed

significantly in recent years as new applications have emerged, such as the use

of binaural technology in headphone-based media such as video games, virtual

reality (VR), augmented reality, and mixed reality, all of which are discussed in

detail in Chapter 3.

One of the reasons for the popularity of binaural Ambisonic rendering is the

ease with which a spherical harmonic scene can be rotated about all 3 axes, as

demonstrated by the rotation matrices presented by Equations 2.65 - 2.76, which

is useful for head-tracking [168]. Additionally, as noted by Wenzel and Foster

[193], binaural Ambisonic rendering also negates the need for HRTF interpolation,
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which can be computationally expensive. Binaural rendering using the virtual

loudspeaker method also reduces the number of convolutions required to render

the scene. Standard binaural rendering requires each individual source to be

convolved with a HRTF pair, however, rendering binaural Ambisonics using

virtual loudspeaker reduces the number of convolutions to twice the number of

virtual loudspeakers used in the decoding process. The binaural rendering of

Ambisonics signals using the virtual loudspeaker approach can be mathematically

expressed as follows:

B =

L∑
l=1

Hl ∗ sl (2.96)

where B denotes the binaural signals and sl denotes the loudspeaker signals

as calculated in Equation 2.95. The same process would be followed to render

binaural VBAP signals as it is simply the convolution of HRTFs with chosen

loudspeaker signals and is not domain specific to Ambisonics.

It is possible to reduce the number of required convolutions further by moving

the convolution into the spherical harmonic domain as proposed by Avni et al.

[194]. By encoding the HRTFs into the spherical harmonic domain the number

of convolutions required is now equal to the number of Ambisonic channels

as opposed to the number of loudspeakers, and as generally the number of

loudspeakers will be greater than the number of Ambisonic channels this reduces

the number of convolutions required and therefore lessens the computational

complexity. This method differs from the virtual loudspeaker method in that the

HRTFs are first encoded into the spherical harmonic domain using a transposed

decoding matrix. The resulting spherical harmonic components are then convolved

with the corresponding Ambisonic channels and summed to get the resulting

binaural signal. This can be expressed as in [192]:

K∑
k=1

(( L∑
l=1

Yk(v⃗l)hl

)
∗ βk

)
(2.97)

for each binaural channel where K is the number of Ambisonic channels, L is the

number of loudspeakers, Yk(v⃗l) is the decoding matrix coefficient representative
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of the Ambisonic channel, k, for the loudspeaker l, hl is the HRTF measured

from the position of loudspeaker l, and β are the Ambisonic input channels.

2.7 Machine Learning for Audio Production

The application of ML within the context of audio production often relates

to two problem spaces. One is the application of intelligent adaptive signal

processing algorithms based on analysis of the input signal and the use of a

set of input/output mapping functions learnt from the training data and the

second is the synthesis of music, speech, or sound effects to be used as content.

Whilst both adaptive digital audio processing and audio synthesis have both long

been areas of interest, the use of ML, and specifically neural networks, has seen

rapid advancement during the last decade, particularly in the last half decade.

This is largely due to an increase in the availability of the software tools and

computational resources (such as Graphical Processor Units (GPUs)) to make

the optimisation of ML systems tractable, along with, and equally as important,

the quantity and quality of suitable training data with which to optimise such

systems. Whilst this section focuses on the application of ML to audio production

tasks, the reader is directed is to [195] for an in-depth theoretical review of Deep

Learning and [196] for a more hands-on approach to understanding and training

different neural network architectures.

2.7.1 Digital Audio Effects

Digital audio effects (DAFx), as defined by Verfaille [197], “are boxes or software

tools with input audio signals or sounds that are modified according to some sound

control parameters and provide output signals or sounds”. Wilmering et al [198],

provide a somewhat more focused definition of digital audio effects, one which is

adopted in this thesis, where DAFx are viewed from the perspective of an audio

engineer and refer to those processes commonly used in a music/post-production

studio. Furthermore, the use of ML applied to DAFx can broadly be categorised

as either parameter estimation or end-to-end transformation [199].
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Using ML algorithms, such as neural networks, as parameter estimators

involves using the networks to predict a set of parameters for the chosen audio

processor or group of audio processors. In 2000, Reed [200], proposed a system

for automatic frequency equalisation (EQ) using a Nearest Neighbour based

approach that allowed a user to choose from 3 settings corresponding to a high

frequency boost, a low frequency boost, and a flattening of frequency response.

Frequency band parameter data for each condition was collected from participants

and then used to train a Nearest Neighbour pattern matcher. Results showed

that the Nearest Neighbour approach performed better than simply taking the

linear average of the user provided parameter values.

Kolasinski [201], later proposed a framework for automatic level mixing based

on representing the distance between a mix and a target mix as the Euclidean

distance between the respective Spectral Histograms. A genetic optimisation

algorithm was then used to approximate the required gain coefficients. Jillings

and Stables [202] also utilised a genetic optimisation algorithm to predict suitable

gain coefficients to balance a mix based on optimising for minimal auditory

masking of tracks. They used the Masked-Unmasked Ratio (MUR), presented

in [203], as the metric for the cost function as listening tests showed a strong

correlation between a high subjective rating and a lower mean amount of masking.

To ensure the training was not biased by differences in the relative levels of the

mixes within the training set, each mix was normalised to 70 dBSPL (RMS).

Results showed that whilst this method can be used to successfully create a

balance mix, there were instances where the genetic algorithm would apply large

reductions (between -47.27 dB - -53.05 dB) to a single track, resulting in the

complete masking of those tracks within the mix. This was a result of the genetic

algorithm exploiting a shortcoming in the definition of the masking metric such

that whilst the MUR of the track that is heavily reduced would be increased,

the MUR of the remaining tracks decrease, thus resulting in a better overall

score. An improved cost function was then proposed which utilised MUR of the

track with the most amount of masking applied, which penalises the heavy level

reduction of a single track.
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Other work has utilised estimated fader values as target data to train a linear

dynamical system, which estimates the required gain coefficients for each track

using a set of both spectral and time-domain acoustic features extracted from

the input audio as input into the model [204, 205].

Chourdakis et al. [206], used a Convolutional Neural Network (CNN) as part

of an investigation into modelling expert’s decisions when assigning narrative

importance of objects in an OBA radio drama. The aim of the study was to

automate the assignment of narrative importance values to objects within object-

based mixes, which then allows the user to attenuate parts of a mix by using a

simple complexity parameter. These narrative importance values are traditionally

assigned by mixing engineers. The CNN utilised was VGGish [207], a CNN

trained to classify 632 classes found in AudioSet [208]. Transfer learning [195]

was then used to leverage the prior learning contained within VGGish, with the

final two layers being retrained to classify sounds as either speech, music, or

sound effects. The class label determines the importance value assigned to the

object and this is then used as input into a decision model, which is derived from

data collected from audio production professionals and determines the amount of

gain applied to a particular object.

ML has also been used to automate the parameter selection for artificial

reverb algorithms. In [18], the application of specific reverb parameter values

based on input audio features is approached as a classification task. The system

is trained using audio features and desired IR characteristics as input, with the

target output being reverb algorithm parameters. Benito and Reiss [209] used

hinge-loss Markov random fields (HL-MRFs) with a set of Probabilistic Soft Logic

(PSL) rules based on best practices as recommended by experts. The rules were

then weighted based on the associated level of confidence derived from existing

literature. This can be seen as a combination of a Knowledge-based system, as

the PSL rules are based on gathered expert knowledge, and ML, as MRFs allow

for the defining of probabilities based on logical relationships.

Sheng and Fazekas [210] proposed a Siamese DNN for learning a feature

embedding from which Dynamic Range Compressor (DRC) control parameters can
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be estimated given an unprocessed (uncompressed) input signal and a processed

(compressed) reference signal. For the training phase the reference signal is the

processed version of the unprocessed signal. For inference, an arbitrary DRC

processed signal can be used. The study investigated the prediction of attack

time, release time, ratio, and threshold. A Siamese neural network structure

consists of two identical sub-networks and can be suitable when a model needs

more than one input or branch and when all inputs are from the same domain

[211]. This proposed system employed a CNN structure with one branch receiving

the unprocessed audio, and the other receiving the processed reference. The

subsequent feature embedding is formed by the difference between the outputs of

the two branches. Once the feature embedding has been trained, the embedding

is then used as the input feature vector to train a random forest regression model

[196] to predict the final parameter values. As noted by Ramirez [212], parameter

estimations tend to lack wider generalisation as they are often based on fixed

audio processing architectures.

End-to-end methods, however, describe systems where raw audio is both the

input and output of the system and is predicated on the idea that the complete

mapping from input to output signal can be represented within the latent space

of the network used [199]. Long-Short-Term-Memory (LSTMs) were investigated

in both [213] and [214] to model static configurations of tube amplifiers. In [213],

a real-time emulator is proposed that utilises a LSTM with a CNN added to the

input, the addition of the CNN enables a reduction in the length of the required

LSTM, whilst maintaining the accuracy of the model. The model proposed

by Zhang [214], instead utilises LSTMs with many layers but a small hidden

size in each layer, although this did result in audible differences being reported

between the resulting model and the target device. A feedforward variant of

WaveNet [21], was presented in [215], which unlike the models proposed by [213,

214], allowed the model to be conditioned with user control settings enabling the

model to represent various control setting configurations. Damskägg [215] notes,

that in cases where a static configuration is modelled, a separate model must be

estimated for each different control configuration. This work was then built upon
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in [216] to include a number of different popular audio distortion pedals and

valve amplifiers. Results showed that larger models are required when emulating

amplifiers with a higher amount of distortion.

A time-domain approach to arbitrary EQ matching is proposed in [217], which

utilises an encoder-decoder CNN configuration and maps the waveform into the

latent space via time-domain convolutions. The latent space is then modified

by a DNN consisting of fully-connected dense layers before being upsampled

by the decoder. This general architectures requires no knowledge of the filter

banks, frequency bands, or filter types of the target signal and therefore makes it

suitable for matching to arbitrary frequency responses. This work was expanded

in [218] and applied to the modelling of distortion effects in order to develop a

general purpose end-to-end DNN that can be used to model numerous non-linear

effects.

Hawley [219], proposed an end-to-end method of modelling non-linear ef-

fects with longer temporal dependencies, such as DRCs. The architecture is a

combination of U-Net [220] and Time-Frequency [221] net, and utilises input-

output measurements in conjunction with conditioning the network on given

input-output pair parameter values. The desired mapping function from unpro-

cessed to processed is therefore learnt/optimised for without any explicit internal

compressor/effect model. This methodology can be considered as effect-agnostic

and has the potential to be applied to a number of other non-linear effects.

2.7.2 Audio Synthesis

Much like the application of ML to DAFx, audio synthesis using machine learning

is still a relatively new area of study, one that has seen rapid progress during the

last 5-10 years from within both academia and industry. Within the context of

audio production for IMEs, audio synthesis can be applied to speech synthesis

[222, 223], sound effect synthesis [224, 225], and musical sound synthesis [222,

226].

WaveNet, presented in [21] and based on the prior work in [227, 228], is a

fully autoregressive model for generating raw audio, where each predicted sample
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is conditioned on (influenced by) all previous samples. It is a fully convolutional

network that leverages dilated convolutions [229] to allow a much larger receptive

field than would be possible with non-diluted convolutions given the same number

of parameters. This allows WaveNet to capture and model longer-term temporal

dependencies within audio signals. SampleRNN, proposed in [230], is another

end-to-end time-domain audio synthesis model, but one that utilises RNNs to

model temporal dependency. It utilises a hierarchy of modules, each operating

at different temporal resolutions. Lower modules operate at a higher temporal

resolution, with the lowest module processing individual samples and higher

modules operating over longer timescales and thus at a lower temporal resolution.

Even when utilising methods such as RNNs and dilated convolutions, long-

term dependencies can be difficult to model in the time domain. Vasquez

and Lewis [222] address this in their proposed MelNet, which models 2D time-

frequency domain representations, such as spectrograms, rather than 1D time-

domain waveforms. This results in a temporal axis in the time-frequency domain

which can be much more compact than that of raw waveforms, meaning that

dependencies that span tens of thousands of timesteps in the time domain only

span hundreds in the time-frequency domain [222]. Results showed that MelNet

could be applied to a variety of end-to-end audio generation tasks including

unconditional speech generation, music generation, and text-to-speech synthesis.

Generative adversarial networks (GANs) [231], have been used to model

both waveform [224] and spectral representations [226]. Donahue, McAuley,

and Puckette [224], proposed WaveGan as a model which utilised GANs for

the unsupervised synthesis of raw-audio waveforms. It was based on the deep

convolutional GAN (DCGAN) [232], but modified to have a flattened architecture

to operate in one dimension, thus making it suitable for time-domain audio

synthesis. Given that the output of DCGAN is a 64x64 pixel image, which

equates to 4096 samples when flattened, an additional layer was added to the

model resulting in an output length of 16384 samples, which equates to 1.024

seconds at the 16 kHz sampling rate used in the study . The conditioning of

WaveGan architectures on class labels was then investigated in [233], which built
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upon previous work in conditioning GANs for image synthesis [234]. Although

it was noted by the authors of [233], that the synthesised audio resulting from

a model conditioned on speech did contain a noticeable amount of unwanted

noise. A conditional WaveGan was also used by Barahona and Pauletto [225], to

synthesis knocking sound effects with emotional intention. Results showed that

for persons without sound design experience the model was close to synthesising

samples that were indistinguishable from their recorded counterpart. However,

those with sound design experience could easily identify the synthesised samples

from the recorded samples. Emotional intent of both the recorded and synthesised

samples were, on average, correctly identified, although both those with and

without sound design experience confused fear with anger. This highlights that,

even with distinguishable discrepancies between the recorded and synthesised

samples, emotional characteristics are successfully encoded within the latent

space of the model.

In the previous two years, diffusion models have surpassed GANs to become

the state-of-the-art in generative modelling. They are now applied to a range of

generative modelling tasks including multi-model generation e.g. text-to-image,

text-to-video, and text-to-audio, natural language generation, and audio waveform

generation and processing [235]. A key aspect of all diffusion approaches is the

progressive addition of random noise to the data, after which the noise is then

iteratively removed to generate new data samples. Whilst it is outside the scope

of this thesis to outline in detail the mechanisms involved in diffusion based

models, those interested are referred to [235], which provides a detailed review of

their methods and applications.

There are a number of recent diffusion approaches to the task of text-to-audio

generation, which includes both text-to-speech and text-to-nonspeech sounds.

Popov et al. [236] proposed Grad-TTS, a diffusion model for text-to-speech

generation, whereby noise predicted by the encoder is gradually transformed and

aligned with the text input on which it was conditioned. This was improved upon

in Grad-TTS2 [237], by the addition of a speaker-dependent phoneme classifier

providing an adaptive text-to-speech system. Text-to-nonspeech sounds hav been
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cited a more challenging problem, as unlike text-to-speech there is not necessarily

a direct correspondence between the written text and the resulting sound [238].

Diffsound, presented in [238], is a non-autoregressive decoder which transfers

features extracted from a text encoder directly to a mel-spectrgram. A vocoder

is then used to transform the generated mel-spectrogram into a waveform. Ad-

ditionally, Diffsound predicts all the mel-spectrogram tokens in a single step

and then refines the predicted tokens over subsequent steps. Results showed

improved generation results when compared to autoregressive decoders as well

as an increase in generation speed. Haohe et al. [239], proposed AudioLDM,

a text-to-audio system that learns continuous audio representations through

contrastive language-audio pretraining (CLAP) latents [240]. Pre-training with

CLAP enabled AudioLDM to train with audio embeddings, whilst text embedding

could be used to condition the model during inference. Similar to Diffsound,

AudioLDM generates mel-spectrograms and then employs a vocoder, in this case

HiFi-GAN [241], to generate audio samples from the reconstructed spectrogram.

Results show good performance in the generated text conditioned sound effects,

speech, and music. The use of text conditioning also enables text-guided audio

manipulations, such as style transfer.

2.8 Summary

This chapter has provided a foundation in areas relating to sound and audio

signals, on which the rest of this thesis is based. This includes the physical

properties of sound waves, their propagation through space, and their perception

via the human auditory system. It was discussed how sound is represented in the

digital domain as discrete measurements and how, through the use of the FFT

and STFT, a signal can be transformed into the frequency-domain and time-

frequency-domain, respectively, for analysis and/or processing. This chapter then

presented a simple definition of what constitutes a soundfield alongside a brief

summary of the basic mechanisms of soundfield recording and encoding, with a

focus on the main representation formats used for IME production. This chapter
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then concluded with a brief overview of the applications of ML with respect to

audio production with a focus on DAFx and audio synthesis. Whilst this chapter

focuses on the technical aspects of sound and digital audio, the next chapter will

introduce sound and sound design within the context of IMEs including providing

a definition for what, within the context of this thesis, constitutes immersion and

by extension an immersive media experience, the different types of IMEs, and

how spatial audio can be utilised within them.
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Chapter 3

Sound Design for Immersive

Media Experiences

3.1 Introduction

As this thesis is interested in developing new methods to assist in the sound design

for IMEs, it is necessary to provide an introduction to how sound is designed

and utilised within IMEs complementing the technical introduction to sound

and audio signals given in the previous chapter. The term immersion will be

defined within the context of this thesis. By extension, it will also explain what

constitutes an IME and will provide an introduction to how sound design and

the utilisation of spatial audio is approached for IMEs, as well as briefly outlining

the main types of IMEs that are commonly encountered.

3.2 Defining Immersion

The term immersive is often used vaguely and interchangeably with related

terms such as realism, naturalness, involvement, absorption, and presence [242,

243]. This inconsistency within the terminology can cause confusion, both for

consumers and for those undertaking research in the area [244]. This can be

further complicated when taking into account the multi-sensory nature of many

IMEs.
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Although there is, as yet, no standard definition of immersion, current lit-

erature supports the idea that immersion is a multi-faceted concept. A recent

study by Eaton and Lee [245] identifies two overarching categories of immersion;

passive immersion and active immersion. Passive immersion is defined as being

related to a feeling of presence or being in an environment [245], and encompasses

previously defined notions of sensory immersion [246] and perceptual immersion

[247]. Both of which requires the user’s perceptual systems to be submersed in

the environment, but have no prerequisite for the user to play an active role

in the experience. Examples of such experiences would be non-interactive VR,

music, and soundscape recordings utilising 360◦ video and/or audio systems.

The intent of these 360◦ audio-visual systems is to provide such perceptual and

sensory submersion through surround sound (if audio only), or multi-sensory

audio-visual stimuli. McMahan [248] describes this as constraining the user’s

perception to the presented stimulus and as such blocks out the external world.

Active immersion relates to immersive media with an interactive (task-based)

element [245], for instance video games, where the user needs to make choices or

be constantly attentive due to the task at hand [249].

Another cause of immersion pertinent when discussing IMEs is the narrative

presented to the user, in which they may or may not have direct involvement,

and results in an attention shift towards the story and away from the physical

environment [250]. This is related to the concept of imaginative immersion [246]

where users relate to or are emotionally invested in the characters and events

within the experience itself. This dimension of immersion, though defined within

the context of video games, can also be associated with the immersion experienced

when reading an engaging novel or listening to a radio drama.

Other forms of immersion related to the narrative are that of temporal

immersion: focused attention on an unfolding story [250], where the user is

interested in, or in a state of anticipation for, what comes next, and emotional

immersion: where an attachment is formed with the characters in the story

[251]. Immersive content will often combine or aim to elicit several dimensions of

immersion; for instance the binaural version of the Doctor Who episode ‘Knock
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Knock’ [252] combines aspects of perceptual, narrative, and emotional immersion.

The binaural audio serves to elicit perceptual immersion by providing a spatial

sound scene, whilst traditional storytelling devices aim to provide both narrative

and emotional immersion, i.e. cliffhangers to create tension and anticipation, and

character development.

Contrary to those who regard immersion as a cognitive phenomenon, there

are those who regard immersion as being an intrinsic, objective property of a

system. In other words, the more advanced the system is at replicating the

relevant perceptual stimuli, the more immersive it is considered to be. Slater

[253] argues that the term immersion should be reserved, “to stand simply for

what the system delivers”, and does not see immersion as a subjective experience.

Rucella [254], also suggests a distinction between immersion, which is related

to the ability of a system to produce sensory stimuli and can be quantified by

the number and types of stimuli, and presence, argued as the cognitive result

of the immersive capability of a system which is difficult to quantify. However,

this idea has been rejected by others in favour of regarding immersion as a

psychological or cognitive experience that can be caused by both technological

and non-technological processes [244, 246, 250, 251].

Given the many definitions of immersion, some of which overlap and some

of which conflict, it is important to have a clear definition of immersion within

the context of this thesis. For the purposes of this research, it was deemed

appropriate to use a definition which is broad in scope but also captures the

multidimensional nature of immersion. The following definition, as defined by

Agrawal et al. [244], is therefore adopted:

Immersion is a phenomenon experienced by an individual when they

are in a state of deep mental involvement in which their cognitive

processes (with or without sensory stimulation) cause a shift in their

attentional state such that one may experience disassociation from

the awareness of the physical world.

With respect to potential technological innovation, it is important to identify
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the spatial audio technologies used to target the elicitation of perceptual and

sensory immersion and, as such, focus on IMEs that utilise these and related

XR technologies. Within a broader exploration of sound design practice it is

also interesting to understand how creators of IMEs utilise and target the other

dimensions of immersion. Using this definition allows both areas of interest within

the scope of the investigation to be considered. Though not a requirement, many

immersive media experiences utilise technologies such as 360◦ audio and video

which provides a subjective sense of being surrounded and the multi-sensory

stimulation associated with previously discussed forms of immersion [246][247].

The rise in popularity of this content has resulted in companies such as the BBC,

Facebook, and Google, releasing tools [255–257] and producing content for IMEs.

However, a question could be asked as to whether the current tools cater to the

needs, and wants, of content creators within the wider sector.

3.3 Immersive Media Experiences

Immersive experiences are therefore experiences which should aim and succeed in

eliciting a state of immersion through either sensory (auditory or visual stimuli)

or cognitive (investment in characters/narrative) processes. As this thesis focuses

on developing novel machine learning applications for the sound design process,

it is the technology-driven immersive experiences that are most relevant to this

research. That is not to say that aspects of narrative and user involvement are

not important, but that those techniques are often used in conjunction with and

augmented by a variety of emerging technologies. This thesis therefore uses the

term Immersive Media Experiences (IMEs) to refer to immersive experiences that

are delivered or facilitated by technology. It should be noted that in much of the

recent literature the term immersive experience is often used synonymously for

experiences that utilise, at least in part, technology to facilitate immersion.

IMEs are often delivered via Extended Reality (XR) technologies, a term

that encompasses Virtual Reality (VR), Augmented Reality (AR), Mixed Reality

(MR) and associated technologies [258], and includes training simulators [1],
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Level 0 1 2 3 4

Interactivity Passive Participatory Physicalized Problem Solving Interpersonal

Embodiment Detached Watcher First-person POV Movement Human2Human Interaction

Co-Participation Single-Player One-on-One Secondary Perspective Group MMO

Story No Story Setting Pre-Created Choose Your Own Interactive Story

Dynamics Pre-determined Choice Multi-Thread Free Will Convo Reality

Gamification Ungamified Instruction Reinforcement External Process Reward System

Immersive Tech None AR 360 Media VR XR

Meta Control No Meta Control Journey Character World Builder World Master

Didactic Capacity Elemental Explicit Implicit Recall Synthesis

Table 3.1: Taxonomy for elements/dimensions of an immersive experience. The level for

the corresponding element and indicates its range of depth. The levels associated with

the Immersive Technology element (in bold) can be considered the broad categories of

IMEs. The table is adapted from [254].

multi-channel music mixes/soundscape recordings [2], 360◦ video, and video

games utilising VR and/or spatial audio [3]. Ruscella [254] offers a taxonomy

of immersive experience design (reproduced in Table 3.1), which details nine

dimensions of immersive experiences, each of which has five elements scored

from (0-4) to indicate the level of immersion the authors feel is equated with

that particular element. The overall score of the experience is then determined

by the summation of its element scores. As can be seen from Table 3.1, the

elements within the dimension referred to as immersive technology outline what

might be considered as the broad categories of IMEs. However, the assertion

by Ruscella [254], that XR activities mix virtual components into a real-world

environment, could be argued to be more accurate when used to describe Mixed

Reality (MR) experiences, given that XR is often used as a collective term to

collectively describe AR, VR, and MR. Therefore, this thesis suggests and the

main categories of IMEs are Augmented Reality, Virtual Reality, Mixed Reality,

and 360◦ Media. Although this thesis is concerned with the production of audio

for IMEs, as opposed to the complete XR technology pipeline, a brief overview

of each type of experience is now provided for completeness alongside selected

examples to provide context to the reader who may be unfamiliar with these

types of experiences.

95



CHAPTER 3. SOUND DESIGN FOR IMMERSIVE MEDIA EXPERIENCES

3.3.1 Augmented Reality

The term AR often refers to systems which superimpose digital assets over a

real-world view [259], but those digital assets not necessarily interacting with

physical objects within that space. The term was reportedly first used in relation

to a project at Boeing which superimposed information on the visual field to

aid workers laying aircraft cables [260]. In recent years, AR has been applied to

both the entertainment and education of consumers, alongside industrial training

applications. One of the most well known AR applications of recent years has

been Pokémon Go [261], which is a location-based AR games where users can

battle, capture, and train virtual Pokémon that superimposed onto the user’s

world and viewed through a mobile device, such as a smart phone.

As XR technology has developed, varying definitions have been given for what

constitutes an AR system. A widely accepted description of AR, which we will

map onto Pokémon Go experience, is that given by Azuma [259], who proposes

that for a system to be considered AR it must possess three characteristics; it must

combine the real and virtual, be interactive in real time, and registered in three

dimensions. Related to Azuma’s first characteristic, Drascic and Milgram [262]

focus on the visual domain defining an AR system as one that displays an image

which is predominately the real environment, but is enhanced or augmented with

digital assets. More recently, descriptions of AR have made specific references to

the devices through which such experiences are deployed, most notably smart

and wearable devices such as smartphones and smart glasses [263]. It could be

suggested that these more recent descriptions, at least in part, are a result of the

ubiquity of smartphones capable of delivering AR experiences such as Pokémon

Go, whereas in previous years more expensive and larger Head-Mounted-Displays

(HMD) would have been needed. Doerner et al. [264] offers a general definition of

AR, which encompasses not only the augmentation of visual perception but also

the broader perceptual perspective of AR which can include the augmentation of

any sensory experience:

Augmented Reality (AR) refers to the immediate and seamless percep-
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tion of the real environment enriched by virtual content in real-time,

the latter resembling reality to the largest extent possible regarding its

characteristics, appearance, and behaviour, so that (if desired) sensory

impressions from reality and virtuality may become indistinguishable

(for any senses). [264, p. 19]

As the majority of AR is now experienced through lightweight portable devices,

they are not required to be tied or even associated to a specific location, which

has in turn given rise to a variety of different AR applications. A non-exhaustive

range of applications include augmented retail experiences where users are able

to view digital representations of items on themselves [265], furniture in their

home [266], through to appearance modification by way of facial augmentation

[267], and practical applications such as superimposing signs and directional

information to aid user navigation [268]. Pokémon Go [261], takes advantage

of this portability and utilises the GPS functionality of many mobile devices to

create a location-based experience where digital assets can be anchored to, and

persist in, physical locations. This also allows the world map to be based on the

geographical location of the user, as shown in Figure 3.1, which depicts the world

map of a user located at Wellingborough train station, London, UK. Using the

location data from the user’s device, digital assets associated with given location

can be overlaid at the appropriate positions relative to the user’s device. Whilst

Pokémon Go uses geolocation to create a worldwide AR experience, it can also

be used to create multiple location-specific experiences, such as StoryTrails which

has developed site-specific AR experiences for 15 locations across the UK [269].

Although AR is usually associated with the augmentation of visual content,

AR-audio has also long been an area interest and aims to augment the real

auditory environment with virtual audio objects [270]. Darkfield Radio [271], an

application developed by DARKFIELD [272], delivers AR experiences with 360◦

immersive audio to at-home audiences through their smart phones and a set of

headphones. One such experience, Visitors [273], instructs two participants to

sit opposite each other in a living room with each participant receiving their own

audio track. There are also location-based AR-audio experiences, such as Ghost
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Figure 3.1: Wellingborough train station as depicted on the Pokémon Go app.
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Figure 3.2: Illustration of the map presented during Ghost Walk to guide users (yellow

icon) to different points of interest (ghost icons). Taken from [274]

Walk [274], which is a GPS facilitated audio experience through the Broadgate

and Finsbury Circus areas of London, UK. Users can walk around the area,

guided by the map shown in Figure 3.2, with different pieces of audio content

fading in and out depending on the location of the user.

Whilst a large proportion of AR experiences are targeted for mobile devices,

such as smart phones, there is a history of technology companies developing other

devices to facilitate AR. Most of these fall into the category of Smart Glasses,

being designed to present visual and/or auditory information alongside what

the user already sees/hears. Bose Frames [275], were Bluetooth enabled audio

sunglasses that could be paired with a user’s smartphone to deliver AR audio

experiences. Consequences [276], was a location-based narrative delivered through

Bose Frames, where the audience is able to move freely around the physical

environment and interact with other performers. The audio was delivered entirely

though the Bose Frames and enabled the audience to choose their path through

the choose-your-own-adventure-style narratives. Whilst Bose discontinued the

Bose Frames and its associated AR projects, other companies have continued
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to develop within the this particular area. Meta have released the Ray-Ban |
Meta [277], a collaboration with sunglasses manufacturer Ray-Ban, which do not

include any visual AR, but do provide audio through open-ear speakers, similar

to that in the Bose Frames, alongside additionally functionality to capture and

stream images and video to linked Meta social media accounts. Maverick Smart

Glasses by Everysight [278], offer a set of glasses that come with either a tinted or

clear coated visor on which apps and information can be projected, however does

not offer any audio functionality. Google presented a demo of AR glasses being

used to provide real-time speech-to-text language translation [279], which builds

on their use of AR translation within their Google Lens application [280], which

itself serves to provide visual input into their search engine. AR glasses, however,

should not be confused with MR headsets, examples of which are detailed in

Section 3.3.3, which are often bulkier and designed to deliver higher fidelity

experiences, as opposed to simply displaying additional information.

3.3.2 Virtual Reality

In contrast to AR, VR aims to replace the user’s sensory perceptions of the

real world with that of a wholly computer-generated virtual world [281], which

will often target multiple modalities including visual, auditory, and, occasionally,

haptic. To block user perception of the real world, VR experiences are delivered

by HMDs equipped with a stereoscopic display (one screen for each eye) with

spatial audio being delivered through headphones or loudspeakers built into

the headset. VR experiences can also afford a greater degree of agency within

the environment alongside a higher level of interaction between the user and

the environment; this is achieved through 3D tracking. The extent to which

the user is tracked within the virtual environment is dependent on the specific

hardware that makes up the VR system. Flood by Megaverse [282], is a multi-user

location-based VR interactive theatre experience that utilises a Vicon tracking

system [283]. This not only enables the tracking of users within the performance

area but also enables motion capture of the participants’ limbs, which can then

be mapped to avatars in the virtual world. Figure 3.3b, shows an example of the
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types of body trackers used in such experiences. As all VR experiences require

the use of a HMD, head movements of the user are used to facilitate the tracking

of their orientation and position within the environment. This enables what

Doerner [264] refers to as “viewer-dependent image generation” and operates on

both visual and auditory stimuli by rotating both the visual and auditory scene

scene to counter the head movement of the user. The aim of movement tracking

in VR, whether it be solely head-tracking, or full-body-tracking, is to take the

movement of the user within the physical space and map them to corresponding

movements in the virtual space [284]. At the time of writing, Flood utilised

the HTC Vive Focus 3 headset [285], shown in Figure 3.3a, which supports a

performance area up to a recommend maximum of 10m X 10m and includes

hand tracking functionality. Although multi-user experiences, such as Flood, may

employ a dedicated tracking system, many headsets come with built in standalone

tracking functionality, often referred to as inside-out tracking [286]. This type of

tracking utilises sensors or cameras are mounted on the device itself, which look

outward into the environment to track the position of the user. Systems, such

as those provided by Vicon, are often referred to as outside-in tracking, as the

sensors or cameras are placed in static locations around the performance area

and they track markers, such as the Vicon pulsar markers [283], that are placed

on the objects to be tracked.

Many HMDs now support hand tracking [287–291] as this allows the user to

interact with the environment in a way that is more intuitive and natural when

compared to traditional computer-human interfaces such as games controllers,

and mice and keyboards. In the case of Flood it also allows for physical contact

between participants. Due to the additional hardware and set up required, VR

experiences are less portable than AR experiences and are normally experienced

within a defined play area at a specific location.

In addition to tracking users within the play area, the same hardware can be

used to track objects within the physical world and map them to objects within

the virtual world. Figure 3.4, shows a split-screen view of Flood, where trackers

have been placed on light-weight physical props and mapped to virtual objects.
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(a) (b)

Figure 3.3: (a) The HTC VIVE Focus 3 Headset. Image taken from [292]. (b) Pulsar

gloves as part of the vico tracking system used for Flood. Image taken from [293]

This aims to reduce the friction between the physical and virtual body of the

user by not only providing the user with visual feedback when they use their

hands to manipulate virtual objects but also by integrating haptic feedback from

the physical counterpart of the virtual object. This serves to further align the

user’s physical self with their virtual self by increasing the number of sensory

pathways integrated into the the virtual world.

Whilst Flood can be considered a commercial location-based experienced,

there are also experiences designed as at-home experiences, which tend to require

less equipment, a smaller play area, and are able to run on cheaper, lower

specification hardware. At the time of writing, HMDs such as the HTC Vive

Cosmos [288] and the Meta Quest2 [287] are marketed as at-home VR headsets.

The differences between commercial and at-home experiences and devices are

usually scale, with respect to the the parts of the user that are able to be tracked,

and the processing capabilities of the devices, and the required size of the play

area. Table 3.2, presents a selection of at-home and commercial devices specifically

marketed for VR, as well some of their key specification and features. The target
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(a) View of Flood from the real-world

(b) VR view of image (a)

Figure 3.4: Two views of the same scene from Flood, taken from [282]. (a) shows the

view of the real-world with participants sat in front of an object with stick like objects

protruding out of it; (b) shows the same scene from the virtual world and as can be seen,

the stick like objects present in (a) are mapped to their virtual counterparts.

market indicates whether the device is for consumer at home use, productivity

where it may be used at home or in an office/workplace setting, professional,

where the device would be used for commercial location based experiences, such as

Flood. As VR headsets are often sold with the option to purchase additional extra
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hardware, standardisation of prices are not straightforward. The prices listed are

the cost of the standard headset with a set of controllers (if required), and any

additional hardware required to provide 6DOF tracking with an environment.

In the case of the Varjo-Aero [294], controllers and tracking hardware must be

bought separately from a different vendor.

Given that VR require users to purchase additional hardware, such as the

headsets, the barrier for entry is higher than that of AR. There are also, at the

time of writing, a greater number of consumer level headsets catering to VR

than there are wearable AR devices given that most AR can be deployed on a

smart phone, which at present, have a greater reach in terms of audience. As

briefly mentioned, there is however a divide between at-home VR devices and

commercial/industrial VR devices.

3.3.3 Mixed Reality

Mixed Reality (MR), like immersion, is another term where a lack of consistency

in its use is observed within both academic and professional literature [302].

Whilst MR shares similarities with AR, MR often refers to the combination of

real and virtual content. Milgram et al. [303] proposed MR as a continuum,

illustrated in Figure 3.5, that spans from reality to virtuality, whereby the

amount of reality present decreases whilst the amount of virtuality increases.

More recently, Rokhsaritalemi [304] describes MR as the merging of real and

virtual worlds that results in real-world objects interacting with virtual objects.

They continue to propose three features important to any MR system; combining

the real-world object and the virtual object; real-time interaction; and mapping

between the virtual object and the real object to create interactions between

them. Flavian [302] also argues that MR should no longer be considered as a

broad part of the continuum that includes AR, but should instead be regarded

as a specific point on the continuum: this point Flavian [302] refers to as Pure

Mixed Reality, but will be referred to as MR for the purpose of this thesis.

The key difference between MR and AR is the extent to which virtual objects

are integrated and interact with the real components of the environment. Taking
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Mixed Reality 
(MR)

Real 
Environment

Augmented 
Reality (AR)

Augmented 
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Virtual 
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Reality-Virtuality (RV) 
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Figure 3.5: Simplified representation of Reality-Virtuality Continuum taken from [303]

the previous AR example of Pokémon Go, the virtual objects are superimposed

onto the real world, but there is a lack of any interaction between the two, MR

aims to merge virtual content into the real world such that both virtual and real

content interact in real-time and appear to share the same space [302].

Interchange by Prox & Reverie [305], is a self-described advanced prototype

for a multi-functional, physically anchored, MR portal system and was created

as part of the 5G futures programme run as a partnership between XR Stories

[306] and Warner Media [307]. It allows users to cross from the real world into a

virtual world using a digital arch, which is anchored over a physical structure, as a

doorway between the two. This allows the user to not only pass between the two,

but also allows virtual objects and avatars to travel between the real and virtual

world. Consider Figure 3.6, which shows a frame taken from an Interchange

demonstration [308] where a digital avatar has crossed through the archway into

the real world. Compare this to Figure 3.7, where Figure 3.7a and Figure 3.7b

depict the same Pokémon Go experience but with the device having been moved

farther back in Figure 3.7b. Note how in Figure 3.7 the digital objects look as

though a digital image has simply been overlaid onto an image of the real world,

with a size that does not keep scale with its surroundings as the device is moved

closer to or farther away from where the object appears to be positioned. It

instead keeps a fixed size relative to the size of the screen. Interchange, arguably,

depicts an object more convincingly appearing to share the same space as the
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Figure 3.6: A frame taken from [308], showing a digital avatar crossing from the virtual

world into the real-world.

real components of the scene with respect to positioning and scale within the

real environment. Subsequently, MR systems will often require more advanced

hardware and software to facilitate the integration of the real and virtual objects

in a way that results in not only the user being able to interact with both sets of

objects, but both sets of objects being able to interact with each other. Collins

[309] refers to this as visual coherence which is a key component of MR.

MR systems also make use of HMDs, which at first may appear similar in

appearance to those used within VR experiences. However, MR system HMDs

require additional functionality which allows the real world to be displayed to

the user. Table 3.3, presents a summary of currently available MR headsets

and a selection of relevant specifications for comparison. At the time of writing,

Interchange utilised the Varjo-XR3 [301], shown in Figure 3.8, which is, at the time

of writing, marketed as an industrial MR device and utilises video-passthrough

to achieve an MR scene, which captures the real world using headset mounted

cameras. Virtual assets are then superimposed directly onto the image presented

to the user with LiDAR ensuring correct depth of field for the passthrough image.
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(a) (b)

Figure 3.7: (a) and (b) depict the same Pokémon Go experience but with the device

having been moved farther back in (b). This illustrates that in AR objects do not always

have capability to keep scale with their environment but instead just have a fixed sized

relative to device screen size.

It is worth nothing that any MR headset that uses video-passthrough is also

capable of delivering full VR experiences. As shown in Table 3.3, other MR

headsets that utilise video-passthrough include the Meta Quest3 [297], the Meta

Quest Pro [289], the Varjo-XR4 [300] (which is the successor to the previously

mentioned XR-3), Pico 4 [296], and HTC Vive XR Elite [298]. As can be seen from

Table 3.3. Whilst products from Varjo are specifically aimed at the industrial

use case, those from Meta, HTC, and Pico are, currently, marketed as either

entertainment or productivity devices. Other headsets, such as the Microsoft

Hololens [299], utilise optical seethrough MR, where, similar to the AR glasses

discussed in Section 3.3.1, the assets are projected onto the lenses.
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Figure 3.8: The Varjo-XR3 MR headset used in Interchange. Taken from [301].

3.3.4 360◦ Media

Whilst AR, VR, and MR can be considered 360◦ experiences, the term 360◦

Media is used to refer to those experiences that lack the interactivity or freedom

of movement of the previous categories, but still provide content which surrounds

the user. Ruscella [254] describes 360◦ media as immersive videos which surround

the user in a photo-realistic environment and typically offers three degrees of

freedom. A typical example of 360◦ media would be cinematic VR, which Mateer

[310], describes as a type of IME where the user is able look around the virtual

world in 360◦ and which is usually accompanied by spatialised audio. These

experiences are usually presented through either a HMD, such as the ones detailed

in Tables 3.2 and 3.3, a smart phone/tablet, which then behaves as a window into

the virtual world, or a web portal, such as YouTube [311], which would require

the user to click and drag around the screen to change their orientation. A good

example of 360◦ Media is BBC’s Click 360 episode [312], which was the first TV

episode filmed entirely in 360◦ and allows the user to explore the view around

them in a variety of locations. Alongside 360◦ video, multi-channel/spatial audio

content, such as that detailed in section 2.6, is also included in this category as

it aims to provide the auditory equivalent of “photo-realism” to the user. Many

360◦ videos are often captured using traditional filming methods except with

cameras containing two or more lenses, resulting in a 360◦ field of view. Once

the video is captured each image captured by the different lenses within the
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Figure 3.9: Post-production workflow for a 360◦ film. Adapted from [314]

camera then need to be integrated into a single surround video, through a process

referred to as stitching [313], to generate the 360◦ image. Figure 3.9 shows a

generic post-production workflow for a typical 360◦ film. The process shares

many similarities to that of traditional film production, but with the addition

of spatially recorded sound and the output from 360◦ cameras. Some of the

challenges associated with this are explored in Chapter 4.

From this perspective, 360◦ Media can be considered closer to traditional

linear media than to the interactive experiences afforded by AR, VR, or MR as

scenes are captured, edited together, and the result is then simply replayed to

the user in a predetermined order. As such, the user does not have a physical

representation within the experience. This is exemplified by Figure 3.10, which

shows a frame taken from the BBC’s Click 360 [312] with the user orientating

their view towards the ground. All that can be seen is the base of what appears

to be the camera stand.According to Ruscella’s taxonomy [254], this would result

in the experience not being able to surpass a score of 1 on the interactivity

dimension. Additionally, as the majority of 360◦ and/or spatial audio experiences

are passive in nature, most would score 0 within the interactivity dimension. The

exception to this would be interactive films such as Afterlife [315], where the user
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has a limited participatory role when choosing between a set of pre-determined

options, each with pre-determined outcomes. By observing again Ruscella’s

proposed taxonomy in Table 3.1, experiences within this category would score

poorly across all dimensions of IME design apart from immersive technology,

where 360◦ Media scores higher than AR. It should be noted, however, that this

is due to the taxonomy subscribing to the notion that immersion is an objective

measure of the ability of a system to produce sensory and multi-sensory stimuli

surrounding a listener. Given the definition of immersion used in this thesis as

defined in section 3.2, it could be argued that, provided sufficient production

quality, AR could be more likely to elicit a state of immersion given the greater

degree of interactivity afforded to the user, particularly if these augmented visuals

are accompanied by augmented and/or spatial audio.

Figure 3.10: A frame taken from BBC 360 Click [312] where the user has orientated

themselves to face the ground. This is an example of how within 360 Media, users often

lack a physical representation within the space as all that can be seen in this scenario is

the base of the camera stand.

3.4 The Role of Sound in Immersive Experiences

As experiences under the IME umbrella can be both linear and non-linear in

nature, the role and approach to the use of sound and sound design takes from

practices associated with both traditional linear media e.g. film, TV, and radio

and non-linear/interactive media e.g. video games. Both types of media have
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been written about extensively [8, 9, 316, 317] and will be explored in this section

within the context of IMEs. Sinclair [316] proposes that the multi-faceted use

of sound can be described by three main roles: to inform, to entertain, and

to immerse. However, as the role of entertainment has arguable overlap with

the role to inform and to immerse it will not be considered in isolation but in

conjunction with the other two roles. Whilst these terms were used to describe

the use of sound for video game and VR environments, they are, as will become

apparent, appropriate umbrella terms with which to explore the role of sound

within both linear and non-linear IMEs.

3.4.1 Inform

Sound has an important role within various forms of media, providing information

about both the narrative [9] and the user’s surroundings [316]. Murray [9] explains

that sound provides direct narrative through dialogue and exposition, as well

as subliminal narrative through the use of music and sound effects to guide

and influence the user’s emotional response. Sound, therefore, can be used to

communicate factual or emotional context [318] which may not be obvious from

the visual scene alone. This is used to great effect in factual programming, such

as the previously mentioned BBC Click 360, where, without the accompanying

dialogue (both onset and overdubbed), much of the on screen action in isolation

would not provide an adequate amount of information for the average audience

member to fully understand what is taking place. Additionally, the emotion

elicited by a scene can be changed by manipulation of the soundscape associated

with it. Popp and Murphy [319], describe how their audio-driven VR experience

Planet Xerilia manipulates oscillatory sounds of two large rotating objects and

their associated distance attenuation curves to create a wave-like gesture of

sound, which moves across the user from both the left and the right resulting in

a reported sensation of tension and dissonance.

Sound can also convey information about the environment the user is located

within and be used much in the same way as humans use sound to perceive and

make judgements about their physical environment. Acoustic modelling can be
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used to create an approximation of how sound behaves in the space, given its

geometry and other environmental attributes such as room size, surface materials,

and other objects [317]. In an experience where users have agency, the acoustics

of the space may provide information that can be used to guide the user through

the experience, something that does not have to factored in when designing

sound for linear experiences. For example, the level and spectral content of a

sound would change dependant on user location relative to the object within

the environment. In the case of a sound-producing object being located in a

different room to the user, both the direct and reflected sound would have no

direct path to the listener and the spectral content would often be modified by

the materials of the surfaces between the object and the listener. In this example,

a reduction in higher frequencies compared to that of lower frequencies would

usually result. Alternatively, if a sound-producing object was located behind

a structure in the same area as the user, with the structure obstructing the

user’s line of sight, there may be a higher proportion of reflected energy reaching

the user when compared to direct energy. Information on the distance from a

sound-producing object to the user can also be constructed by manipulating the

cues described in section 2.4. This information may then be used to aid the user

in either finding or avoiding specific sound-producing objects. A study by Grohn

and Lokki [320] found improvements in the ability of the user to locate objects

within a environment when both auditory and visual cues are present, compared

to either cue in isolation. Results showed participants utilised audio cues first to

pinpoint the rough location of the target before proceeding to use visual cues to

identify the exact location. It was also found that users were able to navigate

through an environment by the sole use of auditory waypoints [321]. The use

of sound for guiding the user is an implicit way of educating the user about the

game or interaction mechanics of the experience [317].

Given that many IMEs provide 360◦ environments and the field of view of

the user often covers between 90◦ - 120◦ at any given time [316], audio is also

important for providing information about the unseen portion of the environment

and can again be used by the user to build up knowledge of the environment and
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assist them to navigate through it. In traditional linear media, the attention of the

user is dictated by the camera position chosen by content creators; in non-linear

interactive experiences, such as IMEs, however, sound is used to influence and

inform the user’s choices, without making choices on their behalf [317]. Spatial

audio can play a vital role in guiding the user in a specific direction within an

experience through the spatialisation of sound whilst also providing a greater

sense of space, with the sound scene not being limited to the field of view of the

user or the lateral plane.

Sound also serves to provide feedback to users in what Sinclair [316] refers

to as the Chime vs Buzzer principle, which provides feedback to whether a user

action was successful or not. This principle stems from the chime sound being

interpreted as positive feedback and the buzzer sound interpreted as negative

feedback. This is utilised prominently in many television gameshows, where a

chime has historically indicated a correct answer, whilst a buzzer indicated an

incorrect answer. In situations where users are required to interact with objects,

a sound may be triggered when the user successfully makes contact or interacts

with an object, i.e. the sound of a key entering a keyhole, with an alternate

sound indicating non-completion.

It should also be noted that sound, or lack thereof, can also be used to distract

or limit the amount of information available to the user, which can be used for

narrative effect. As stated by Zdanowicz [317], it is not uncommon for horror

experiences to place sounds typically associated with a threat in areas where no

such threat is present in order to heighten the user’s state of alertness. Likewise,

an unseen danger may be placed in an area with a lack of indicating sound to

catch the user off-guard.

3.4.2 Immerse

Some of the ways in which sound can contribute to a state of immersion is by in-

fluencing a user physiologically, psychologically, cognitively and/or behaviourally

[322–324]. Psychologically, sounds can trigger a range of emotions, something

which Roscar [325] refers to as mood induction. This is differentiated from the
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communication of emotional meaning as it involves the changing of user emotions

instead of simply conveying emotional information. This differentiation is based

on the premise that one can receive information relating to happy/sad/anxious

situations without necessarily feeling those emotions themselves [325]. While

mood induction was originally defined within the context of music, it can also be

applied to the use of non-musical sound if an emotion can be elicited from the

user. This contributes to emotional investment in the experience, which Grau

[326] refers to as emotional involvement. This in turn increases the likelihood of

eliciting a state of immersion, as defined in section 3.2.

The ability to create a plausible sound scene which matches and enhances

the visual content not only provides the wealth of information detailed in section

3.4.1 but also plays a significant role in immersing the user within the experience.

The previously mentioned use of sound spatialisation and acoustic modelling can

facilitate user development of a mental model of the environment by providing

a detailed sound scene with a variety of sounds to accompany and complement

different aspects of the environment. A scene based inside an inner-city flat may

contain common home sounds; for instance the background noise of a television,

a refrigerator hum or central heating. Contrastingly, the wider location of a flat

located within an inner-city environment might be facilitated by the inclusion of

constant external low-level traffic noise and the occasional police siren. Even if

these objects are never present within the field of view of the user they help to

build up a more detailed mental model of the environment the user is present

within. Summers [327] argues that VR environments are created more in the

audio space than in the visual space, since audio represents the entire space

rather than the portion that exists within the field of view of the user.

Sound can also contribute to the consistency amongst various elements of the

environment [316], ensuring congruency between the visual and auditory content.

In the example of the inner-city flat the sound of the exterior environment would

be expected to differ dependent on whether the windows were open or closed.

Small details such as these may not be noticed by the user if executed correctly,

but have the potential to break immersion if overlooked. This is largely due to the
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behaviour of the environment not being consistent with user expectation, even if

these expectations are subliminal. Though consistency is important in eliciting

and maintaining a state of immersion, auditory repetition has the potential to

break it [328]. For instance, repetitive events like footsteps or an object being

repeatedly struck should result in a slight variation of the auditory event that

is triggered by, and associated with, these sounds. As exact repetition is not a

natural occurrence and the user may become hyper-aware of the artificial nature

of the experience instead of focusing on the experience itself [329]. A study by

Vachon [328] identified footsteps as the most problematic repetitive sound, as

they occur frequently within a short interval.

3.5 Spatial Audio for Immersive Experiences

Over the last decade, spatial audio has become increasingly used within a variety

of IMEs including VR, AR, video games, audio only experiences, installations,

and 360◦ video [330–335], although the use of spatialised sound has been a topic

of interest since the 1930s [336]. It is also important to note that the approaches

to the design of spatial sound will often be dependent on the type of IME it is

being designed for. For example, 360◦ video and VR share certain similarities

where both offer a 360◦ field of view. This similarity presents some of the same

challenges with respect to sound design, but ultimately very different experiences

with respect to interactivity and agency are by offered by both. 360◦ video

extends a linear screen-based experience to one where the screen surrounds the

user, and as a result, the user can turn their head and experience 360◦ content,

but often with very little agency within the experience. Contrastingly, VR allows

the user to move freely within, and interact with, the environment, this enables

different visual and auditory perspectives as well as often granting the user greater

agency and usually a more involved role in the narrative.
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3.5.1 Traditional vs Immersive Media

Spatial audio has long been used in broadcast and film; however, as most events

take place on a single screen in front of the viewer with this type of media,

sound mixing strategies typically use a frontally-biased approach to sound design.

As such, traditional loudspeaker configurations like 5.1 and 7.1 have a higher

concentration of loudspeaker channels towards the front to ensure accurate spatial

imaging at the screen, whilst rear channels are typically reserved for sounds which

provide general ambience as well as any supporting sound effects [337]. This

introduces a conceptually defined “front” and “back” to the sound scene which

typically results in any dialogue and character-focused sound effects being panned

to the centre channel, with secondary sound effects - for instance, other objects

within the visual field of view - being panned left and right, and ambient effects

panned to the rear [337–339]. As noted by Lopez et. al. [340] the character-

focused sound effects and dialogue are often placed in the centre channel to

ensure good auditory localisation at the screen and rely on the ventriloquist effect

[341] for audiences to perceive the location of the sound as being the position

of the associated character. While advances in cinematic spatial audio, such

as Dolby Atmos [342], allow for a much higher channel count, the nature of

screen-based linear media means there is still a focus on frontally-biased sound

design. However, systems such as Dolby Atmos aim, through the use of object

based rendering and higher channel counts, to create a more complete sound

scene around the listener by enabling more accurate placement of sound objects,

particularly at the sides, above, and to the rear. In many IMEs the user is often

able to view an environment that extends 360◦ around them, so unlike traditional

single screen media, there is no clearly defined front and back since the user

controls their orientation within the environment. It is worth noting that while

many screen-based IMEs such as those using headsets, mobile devices, and some

non-VR video games may use a 5.1, 7.1, etc. channel configuration, the audio is

often adaptive to the position of the user. In a situation where the user rotates

clockwise, the sound scene would rotate anti-clockwise to match the rotation of
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the visual scene, using equations 2.65 from Chapter 2 in the case of Ambisonic

audio. Sounds in front of the user as a result are always reproduced at the

‘front’ of the loudspeaker configuration, thereby taking advantage of the stable

auditory image associated with the higher spatial density of loudspeaker channels.

Subsequently, one of the key differences between the use of spatialised sound in

traditional and immersive media is not the loudspeaker channel configuration

but the facility for the audio to complement the 360◦ visual environment in a

way that supports and is congruent to the user’s agency within the environment;

this allows the user to experience the environment from different perspectives

without bias in any direction.

3.5.2 Use of Spatial Audio

In many cases the aim of using spatial audio is to deliver an auditory experience to

the user that replicates or approximates a real-world auditory experience, which

when combined with a visual environment results in a more plausible experience

overall [343]. Although many IMEs aim to create a plausible environment capable

of being explored and viewed from any number of different perspectives, there

is usually still an overarching narrative or points of interest that the content

creators have pre-determined the user to interact with. However, the agency

afforded to the user does introduce a degree of unpredictability to the user

experience, which may result in the user missing points of interest or elements of

the narrative [331], unless adequately guided through the experience. Nielsen

[344] identified three dimensions of cues with which to guide users in VR; these

can also be applied to IMEs in general. The first dimension describes to what

extent cues are explicit or implicit, the second describes the extent to which the

freedom of the user is limited and the third describes whether cues are diegetic

or non-diegetic. As noted by Bala [331] although these dimensions were not

defined with audio elements in mind, there are existing examples of such cues

being used in the context of audio cue design. Gödde et. al. [345] suggests that

spatial audio is effective for guiding user attention, while mono sound sources

can cause the user to search for the sound source. Additionally, they propose
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sound as being especially effective when used in conjunction with visual cues,

a notion that is generally supported by the literature [320, 346, 347]. A study

by Bala [331] showed mixed results for using spatial audio (diegetic effects and

music) to orientate users within 360◦ videos. They observed that spatialised

diegetic cues associated with specific objects, in this case an elephant trumpeting,

did not introduce significant benefits in directing attention as users would look

around to find the origin of the sound irrespective of whether the sound itself was

spatialised. In some cases users would also incorrectly identify a diegetic sound

as being spatialised when associated with an object within the scene, a result

which can be explained by the previously mentioned ventriloquist effect [341].

In some instances, a combination of spatial and non-spatial sound, such as

head-locked stereo, which will remain in a fixed position relative to the user, is

used to create environmental ambience, as not all sound needs to be spatialised

[327, 333]. When designing the environmental soundscape for Barking Irons,

a location-based VR experience designed in Unity with audio being modelled

and rendered using Wwise and Two Big Ears (a company that subsequently was

bought my Facebook/Meta [348]), Summer [327] explains that certain individual

environmental sounds, such as animals, vehicles (in this case a train), and

tumbleweed would be spatialised using Two Big Ears, whereas other sounds, such

as wind, would be implemented using a looped head-locked stereo track. Although

an explicit reason for this decision is not presented beyond personal choice, it may

be as a result of certain sounds, such as wind and rain, not necessarily having

a defined position in a real listening situation as these types of environmental

sounds often envelope a listener. Therefore, having those sounds as stereo mixed

in with other environment sounds which are spatialised as point-like sources

creates a plausible soundscape. Non-diegetic music is also usually rendered as

non-spatialised stereo to provide a sense of separation from the diegetic sounds

[333]. Additionally, some spatialised sounds may also be head-locked, to ensure

the user does not miss key auditory points of interest [349].
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3.6 Summary

This chapter has provided an introduction to relevant areas relating to sound

design as applied to IMEs. This includes defining the term immersion within the

context of this thesis, and therefore what constitutes an immersive experience

and by extension an IME. Different types of IMEs were defined and discussed

including the differences between common categories such as AR, VR, MR, and

360◦ media and the role that sound can play within IMEs and how it can be used

to not only assist in immersing the user, but also for driving the narrative and

guiding the user through the experience. The chapter was concluded by exploring

spatial audio within the context of IMEs including how spatial audio differs in

its use between traditional and immersive media and how it can be utilised to

support the narrative and provide a congruent experience to the user given the

addition of agency often afforded within IMEs. The next chapter presents the

first piece of original research in this thesis, a qualitative investigation into the

defining features and associated challenges of spatial audio production for IMEs

from the perspective of sound design practitioners working in the field.
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Chapter 4

Immersive Sound Design

Practice

4.1 Introduction

In order to aid the development of useful technology and methods for immersive

audio production it is important to first ascertain areas of the production process

that would most benefit from such interventions. This will assist in reducing

the scope of the research and identify areas where the research may have the

most impact. To achieve this, a thorough understanding of the problem space,

alongside the processes and challenges involved in creating audio content for

immersive media experiences is required.

Designing sound to be interactive and/or immersive is not new, and is

well established within video game sound design practice [248, 350] with many

approaches being potentially suitable for adoption within non-video game IMEs.

Sound design for traditional linear media also has well documented practices and

workflows [8, 351]. The process of immersive sound design for IMEs utilising

spatial audio can, however, still be considered a relatively new area of practice

with less well defined methods, and requiring a new, and still emerging, set of

skills and tools. Hence, at present, little has been formally documented in the

literature with respect to the new challenges introduced by this new type of
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content create, the tools used to create it, and what those creating the experiences

see as the defining features that differentiate it from traditional media. Due to

this, the question is raised of whether the technology and tools being developed

align with the needs of content creators.

This chapter presents a qualitative study that was undertaken to gain an

understanding of how practitioners working in the field have responded to this new

form of content with respect to their working practices and what they perceive

as being the challenges in producing immersive audio content. It further looks to

explore how current machine learning technologies could be used in an assistive

capacity to address some of these challenges.

This study was approved by the University of York’s Physical Sciences Ethics

Committee (ref: Turner190919) and is available in Appendix A.

4.2 Background

4.2.1 Recent Related Literature

Within the context of non-interactive linear media, Baume [352], presented a study

that aimed to both investigate how radio programmes were created and identify

opportunities where technological intervention may improve existing processes

and workflows. Data was gathered through both ethnographic observations and

interviews that were conducted between observation periods. Three varied case

studies were examined with observations ranging from half a day to four days. The

study found that production teams often relied strongly on scripts and transcripts

of audio content and often preferred working with paper. Improvements to existing

workflows and tools were suggested that link audio to text, highlight repetitive

audio segments, compare takes, and speaker classification and segmentation i.e

identify where in the text different people are speaking. Later work by Baume

[353], addressed some of the previous studies findings through the development of

PaperClip, a digital pen interface for editing speech recordings directly on paper.

Ward et al. [354], investigated the perceptions of production teams with

respect to personalisable object based media and its integration into their current
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workflows. The results were then used to develop a framework for creating

production tools and workflows for new media experiences, which was then

evaluated through comparison with case studies which covered three end-to-end

productions. The authors concluded that iterative development processes and

close collaboration with production teams leads to the development of tools that

offer both the key functionality and simplistic and intuitive interfaces required

by practitioners. Furthermore, the collaborative process allows the development

of tools that suppose storytelling and production. Conclusions drawn from the

survey results suggested that, most importantly, new media formats, such as

personalisable media or other IMEs, must ideally benefit both the creative process

of the producer and the end-user experience.

To further understand how personalised experiences were being created,

Cieciura, Glancy, and Jackson [355], present, what they define as, an ethnographic

study of six case studies produced by BBC R&D and examined through interviews

with the content producers. Analysis of the data was conducted reference to pre-

defined areas of interest including, collection and use of metadata, how metadata

models were created to facilitate personalisation, and the use of production tools.

Results from the interview suggested that production of personalised media, when

compared to linear media, involved many additional tasks which resulted in a

substantial increase in workload and additional responsibilities. Development

of metadata models were highlights as being particularly time consuming as

experience required the development of a bespoke model. Additional challenges

were encountered during the post-production phase which were attributed to a

lack of consistent vocabulary, lack of specialised tools, or tools which did not

easily integrate into existing workflows. They suggest the development of cross-

compatible metadata models and an overarching technical framework which would

remove the need for practitioners to develop their own bespoke systems, unless

that is what is desired. Additionally, they suggest the use of AI to automate

procedural tasks such as metadata creation.

As part of a wider body of work that explored a number of topics centred

around collaborative 360◦ video production for social change, Báıa Reis [356],
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conducted 21 epistolary (asynchronous) interviews between May 11th and August

23rd 2020. The results from the interview data analysis were not presented in

isolation but as part of project’s wider conclusions, which highlighted several

challenges that may also be present in other types of IMEs. These include

placement of microphones when filming 360◦ video, camera position i.e placing it

at either standing or sitting height, directing the participants attention within

the space, which was discussed in Section 3.4.1, and It was also noted that only

two out of 21 interviewees made reference to audio or sound when discussing

immersive media, one of which was a professional sound engineer and the other

an immersive filmmaker. It is worth nothing that full biographical profiles were

made available for the interviewees, this has the potential to bias results as

interviewees may be more guarded about their responses given that they are able

to be attributed back to them. The main output of the work is a framework for

collaborative 360 video production.

A technical review of virtual museum, heritage, and tourism experiences is

presented in [357], with a particular focus on the challenges associated with

realistic asset creation. The authors highlight some of the key challenges by

presenting two contrasting examples of object digitisation, one for a very large

object, which cannot be moved, and a small but more detailed object and then

offer a review of current methods and challenges associated with very large asset

creation i.e the digitisation of buildings or historic sites, including the use of

aerial 3D mapping.

Candusso [358], through the use of an online survey, explored audience

perceptions and awareness of current and emerging cinema technologies, with a

focus on 3D imagery and spatial sound. The aim was to provide an insight into

whether audiences make decisions based on a particular cinema or a particular

technology. It also served to try and ascertain the literacy of an audience with

respect to film sound formats and 3D technologies. 201 participants responded

to the survey, although the author acknowledges that as 80% of respondents

were from Australia and, at that time, Australia only had two immersive sound

installations, this did limit the number of participants who had experienced
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the formats of interest. As such, the results may not be generalisable to an

international audience. Results showed that the majority of respondents (71.4%)

would select a cinema based on convenience rather than the technical capabilities,

although over half of respondents (54.1%) said they would prioritise sound quality

over visual quality. Overall conclusions were, that for a largely Australian

audience, good quality sound is not a particularly high priority for cinema

audiences.

In [359], Candusso takes a practice-based approach to investigating alternative

approaches to traditional cinematic mixing practices and methodologies. By

creating alternative mixes in both traditional cinematic formats, such as 5.1, and

spatial sound formats, such as binaural and FOA, Candusso demonstrated that

techniques such as binaural afford a more homogeneous sound scene through its

facilitation of distance when compared to traditional methods where the sound

has a fixed minimum distance matching that of the reproduction array’s position.

It was however noted that accurate spatial position of sound in 3D space is time

consuming, especially dynamic sound that requires trajectory data.

4.2.2 Relevant Data Collection Methods

Qualitative research methods refer to non-statistical and non-numerical methods

of data collection and analysis [360] and are often used when looking to collect

data that can be considered non-quantifiable, such as the history and experiences

of the people, societies, and cultures. This work in this chapter aims to explore the

experiences of those immersive sound design practitioners producing content for

IMEs. Stepney [361], presents six different methods of qualitative data collection:

surveys, interviews, observations, focus groups, document research, and archival

research.

Observations involve the data collector directly observing participants and

allows them to collect data that relates to what the participants actually do,

as opposed to what they may report they do. Within the context of workplace

studies, Luff et al [362] note that, due to some of the performed activities

becoming procedural or ’second nature’, there can often be a difference between
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what participants believe they do and what they actually do. They also criticise

interviews and questionnaire methods on the basis that the researcher may not

know in advance the right questions to ask to elicit the desired information [362].

When undertaking observations, the observer can either participant in the activity

or scene being observed (participant observation) or be present purely as an

observer (non-participant) [363]. One of the clear challenges with observational

studies is ensuring adequate access and that the presence of the observer is not

perceived as intrusive. Additionally, participants may, knowingly or unknowingly,

deviate from their natural behaviour due to the knowledge that they are being

observed, a phenomena known as the Hawthorne effect [364]. It should also be

noted that observations can be used in both single and group participant settings

and, as noted by Ranny et al. [365], may occur both in-person and remotely.

Data collected from observations may consist of field notes, photographs, audio

and video recordings.

Focus groups are similar to observations, in that they involve the observation

of group interaction, but occur in a more controlled setting where, as highlighted

by Stepney [361], they are effectively researcher-led conversations amongst a small

group of participants. Although the data collected encompasses both individual

and group responses, group dynamics may result in a biased dataset due to

relative suppression of minority viewpoints or potential hesitancy in discussing

certainly topics openly [366].

Surveys focus on an individual participant within the wider group being

studied and involve the distribution of a set of structured questions to participants

[361]. Braun and Clarke [367], note that one of the benefits of surveys is that

they allow the respondent more time to formulate answers and space to express

themselves using their own language and ideas, and thus may result in the

generation of detailed written evidence relating to the research questions. As

surveys are often self-administered without the researcher present they often

lack the opportunity for additional input from the researcher and excludes the

potential for follow up or probing questions. This may cause interesting and

relevant themes to be missed if not identified during the survey design stage.
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Interviews also focus on an individual participant but afford greater flexibility

with respect to data exploration, when compared to surveys, due to the interaction

between interviewer and interviewee. A semi-structured approach is commonly

employed, with the researcher utilising a pre-defined interview guide that outlines

the main questions to be asked or themes to be covered. Using a guide provides the

researcher the flexibility to ask follow-up questions and probe the participant for

more detail where appropriate [365]. The conversational nature of semi-structured

interviews [365], also allows the researcher to explore interesting themes that

arise during the discussion that may not have been pre-defined on the interview

guide, but the guide can then serve as a sign post to allow the researcher to

maintain the flow of the interview once the discussion around the unplanned topic

has concluded. Although interviews are usually done with both interviewer and

interviewee present, epistolary methods, such as those used in [356], do not require

the interviewer and respondent to be co-present in time. This may be beneficial

with respect to the difficulty that can sometimes occur when arranging suitable

times for observations or interviews. Additionally, it allows the respondent time

to consider the questions and formulate responses, similar to that afforded by

surveys, but still provides opportunity for communication and rapport building

between the respondent and the interviewer [368]. When responses are given via

written text it also removes the need for transcription [368].

Ranney [365], offers guidance when formulating questions to be asked during

interview or focus group based studies as to optimise the quality of the data

collected. Opened-ended questions are recommended as they encourage the

participant to provide a more detailed answer, whereas closed-ended question,

ones that can be answered by yes/no, does not encourage the participant to

provide detail and may then requiring the researcher to ask follow up questions.

Leading questions, which are questions phrased in a way that implies a given

answer may result in false or inaccurate statements and therefore bias the results.

Table 4.1 provides an example of a single interview question phrased as open-

ended, closed-ended, and leading.
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Question type Question

Closed-ended Can ML tools help IME production?

Opened-ended Tell me what you think the potential use of ML within IME production?

Leading questions Tell me how ML tools would help IME production?

Table 4.1: A example question phrased as an opened-ended, closed-ended, and leading

question

4.3 Methods

4.3.1 Research Questions

This chapter addresses the following question:

• What are the challenges associated with IME production and how, if at all,

could ML be used to address any of the identified challenges that relate to

the production of spatial audio for IMEs.

4.3.2 Data Collection

Originally, it had been planned for the study to be a mixture of observational

case studies, similar to that used by Baume [369], and face-to-face and/video call

interviews dependent on the participant’s location and availability. However, due

to the COVID-19 pandemic and the restrictions put in place, all data collection

was undertaken through interviews and an online survey. The interviews were

all conducted by the author via either Zoom, a video conferencing application,

or telephone ,with participants taking part either from their home or workspace.

This presented some challenges in the form of audio quality and issues arising

from internet reliability.

Data were collected between the months of February to September 2020.

The online survey contained a combination of multiple choice and open-ended

questions. Closed-ended questions were avoided, outside of collecting basic

demographic information, in order to avoid yes/no answers and encourage the

participants to include as much detail as they saw fit. The interviews followed

a semi-structured format using the survey questions as a guide, this ensured
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each interview followed a similar structure and that the same general topics were

covered with each participant [370]. Additionally, the use of a guide also afforded

the flexibility to depart from the guide as needed to follow interesting lines of

discussion and, as mentioned in Section 4.2.2, acts as method of signposting for

the interviewer to ensure the interview can return to the pre-defined topics when

appropriate. During the design of the survey/interview guide, care was taken

to ensure only a single question was being asked at any given time, as the use

of double barrel questions (two questions contained within a single statement)

can potentially confuse participants and will often result in only one of the two

questions being answered [371]. Interviews ranged in length between 25 minutes

to 1 hour 19 minutes and were captured either using Zoom’s built-in recording

functionality, or via a Zoom H4n audio recorder on the side of the author. At the

start of each interview prior to beginning recording the interviewer reexplained

the structure and format of the session, roughly how long it could be expected

to last, and reconfirmed that the participants consented to audio and video

being recorded. Participants were also asked if they had any questions prior

to the interview starting and after it concluded. Throughout the interview the

interviewer often used clarificatory questions or requests for additional details as

a way of prompting a more in-depth discussion around the topic being addressed

[355]. As the interviews were being recorded, limited notes were taken and instead

the author noted interesting points that were felt warranted further exploration.

The dual data collection method was used to increase the likelihood of

responses, as research has shown questionnaires often suffer from low response

rates [372]. This was of particular relevance given the selective approach in

choosing participants as discussed in Section 4.3.3.

All interview recordings were transcribed using the NVIVO qualitative analysis

software [373], while the online survey was created and administered through

Qualtrics [374]. Transcripts were reviewed by the author for accuracy and

revised where necessary. Written consent to create and use recordings, analyse

pseudonymised transcripts, and publish the subsequent results was obtained from

each participant.
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The interviewed guide is contained within Appendix B. The raw interview

data is stored according to the terms of the ethical approval and in line with the

University’s research data policy.

4.3.3 Participants

As it was desired to interview those with professional experience in producing IME

who would have insight into current industry practices, potential participants were

identified through nonprobabilistic, purposive sampling techniques. Participants

were required to be working professionally within the industry and have experience

working on productions requiring immersive audio. Participants were recruited

via targeted emails utilising contacts from within the BBC R&D’s audio team

and the University of York’s AudioLab. The selection criteria for candidate

participants was broad in nature as to allow for the inclusion of a broad range of

experiences within the IME sector. Candidate participants were required to be

active in either IME production that utilised immersive audio or R&D with a

focus on immersive audio. This could include sectors such as radio, film & TV,

broadcast, music/sound recording, experience design, higher education, video

games, and technology/product R&D. Candidate participants also either had

to have expertise in audio production/audio engineering or have experience in

managing productions that heavily utilised immersive audio. Those undertaking

taught programmes of study (students) were not eligible unless they were also

working professionally, however those undertaking post-graduate research would

be considered depending on their portfolio of work and area of research.

26 people were approached and of those 26, 11 were either employed by audio

productions or freelancers specialising in immersive audio production, 9 were

employed by national broadcasters in roles relating so radio, sound recording,

technology R&D, content R&D, 3 were employed in games industry, and 2 were

managers for international technology product companies, and 1 for a private

research organisation. All those approached were given information that briefly

outlined the purpose of the research study and included the name and contact

information of the author. Participants were also given the option of either
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completing the online questionnaire or taking part in a semi-structured interview.

Of the 26 approached, 5 of these were interviewed and 2 completed an online

survey. Although it is acknowledged that the number of participants is low,

the experience in industry for those interviewed ranged from 2.5 - 27 years

with the median being 10 years. Of those who accessed the survey, 2 had 5+

years experience, and 1 had 3-5 years experience. Participants included award

winning sound recordists/audio producers specialising in immersive audio, an

audio director for a AAA video game development studio, experienced R&D

engineers, and a senior games audio programmer. This resulted in a small, but

highly experienced, pool of participants from which to collect data. Participants

came from a variety of sectors within the industry which included video games,

broadcast, streaming media, and installations, with some participants operating

within multiple sectors.

4.3.4 Thematic analysis

Inductive thematic analysis was performed based on the methodologies and

procedures presented in [375] and [376]. An inductive approach, also referred

to as a bottom up approach, codes the data without trying to fit a pre-existing

framework or a pre-determined set of codes and/or themes. This is seen as

a data-driven approach to analysis. A code book was created in NVIVO and

Microsoft Excel where all identified codes could be added and any new codes

could be cross-checked against the rest of the data. The Analysis followed five

stages: initial reading of transcripts; identify text segments related to research

objectives; identification and definition of themes/subthemes; reduce overlap and

redundancy amongst themes/subthemes; and interpretation of themes in relation

to original research questions.

4.4 Themes

Three broad themes, each containing a number of subthemes (shown in Table 4.2),

were generated through the analysis of the coded data: The Virtual Environment,
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Production Practicalities, and End User Experience. These themes reflect the

current literature concerned with what constitutes a state of immersion and the

psychological and physiological factors that can elicit a state of immersion [247,

250, 251, 377] but are drawn from the perspective of those creating the content,

and sit within the context of professional practise.

Themes Subthemes

The XR Environment

Localisation

Capturing/simulating reality

Multi-sensory

Timbre

Spatial aspects of experience

Production Practicalities

Availability of resources

Automatic processing

Sound quality

Tool functionality

Working with non-experts

End User Experience

Interactivity

Cognition

Levels of immersion

Novelty

Table 4.2: Themes and subthemes generated from inductive thematic analysis of interview

and survey data.

4.4.1 The XR Environment

An area highlighted across all interviews as being an intrinsic, yet challenging,

feature of IMEs, was the creation of the XR environment and the ability to have

it replicate the sensory signals the user would experience were they physically in

that environment.

There was a consensus that one part of simulating a real environment required
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the auditory scene dynamically reacting to a change in the user’s orientation, as

would happen in the real world:

which again, is all down to trying to model reality and create some-

thing, whereas, [...] if I’m turning around, instead of the sound field

staying still, [...] the sound field moves with my head and it doesn’t

lock itself to your head. [Participant 1]

Participant 2 noted that what is considered desirable in IMEs might be at

odds with what is generally desired within traditional media content,e.g. room

ambience captured as part of a recording.

In 360 you might actually really want something to sound like it’s

off mic because then it’s capturing more of the room that the sound

source is in and actually closer to what the real thing sounds like.

[Participant 2]

The ability to emulate distance between the user and an object was associated

with creating a sense of presence for the user by enabling the externalisation

of the content. This was seen as particularly relevant when using headphone

rendering, as this method lacks the natural distance between the user and source

inherent in loudspeaker systems.

...distance to me is a big thing, externalisation, and this seems to me

like they are [...] the two main things for me to create the sense of

presence in space....[Participant 4]

externalisation is a big one, [...] if you’re delivering via headphones

[...]. ‘cause having access to a lot of speakers in an array is much more

tricky, so assuming it’s headphone delivered, having things sound like

they’re outside of you and not inside your head, is the hallmark of

good immersive audio, because in the real world, that’s what sound

sounds like. [Participant 2]
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Participant 4 noted that when simulating distance within a synthesised

environment, the processing required would be dependent on how the object had

been recorded and edited, particularly with reference to its loudness. Standards

for distance processing are noted as being difficult to establish.

If an object is one metre away in a virtual world, it doesn’t mean it

actually sounds one metre away because it depends [...] how loud it

is going into the spatialiser and how you edited it. [Participant 4]

For some, this has led to a perceptually driven approach to distance emulation

using plausible approximations that make subjective sense to the the content

creators, even if the parameter settings used are not objectively accurate.

[...] you basically use your own approximations, arbitrary figures that

initially make sense, but then you tweak it to trick your brain. OK,

that sounds believable. OK, that works for me. Even if [...] the

figures [on the screen are] not correct. [Participant 3]

It was noted by some that the technology presently available for emulating

distance is simply not yet of the desired standard.

I think this is where everything is falling short, where we actually

can say, oh, this guy is three meters away and I feel it. So distance

modelling is quite a hard thing to do. [Participant 5]

Although importance is placed upon both being able to place objects accu-

rately within a scene, and faithfully recreating the tonal characteristics of an

environment, participants felt compromises must be made with respect to these

features depending on the aim of the audio at that particular instance. This was

because the tools being used to enable finer control of object placement often did

so at the expense of introducing greater tonal coloration.

two things that I’m always looking for, precision or timbre. [...] when

I need localisation, maybe I give up a little bit on the, on the sound
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quality of it, I know that timbre might not be there. But when I want

everything to sound really nice and smooth maybe I give up of a bit

of the localisation. [Participant 4]

Non-spatial aspects of realism were also noted as being important within

interactive media, with Participant 1 noting the perceived realism of characters.

This may involve greater efforts to have their behaviour, such as in game dialogue,

less repetitive by giving them a wider range of possible responses. This can result

in many lines of dialogue across all in-game characters.

something [...] that we bump up against and it (sic) indirectly to do

with immersion in as much, I suppose it’s more to do with kind of

being believable and not repetitive, is editing and organising dialogue

lines as we have more characters. They say more things to try and

give the illusion that these are real characters. [Participant 1]

Though all the participants were audio professionals, with none undertaking

professional visual production work, all expressed the importance of multi-sensory

stimuli as a key feature in immersive media.

It’s [...] including all their attention in many senses as technically

possible. [Participant 1]

It also considered that a combination of visual and auditory signal processing

can together provide a greater sense of depth and distance to an environment.

The importance of visual quality should also not be understated as it is a key

aspect of many immersive experiences.

[...] the video is stereo so you’ve got [...] a sense of depth of vision

and having that additional stuff audio wise enhances what you see.

[Participant 2]

Responses from all participants focused on the goal of creating an approxima-

tion of reality when creating IMEs. This raises the question of what it means or
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what are the requirements for an audio object to sound real. Although this, and

related, terms were used by participants throughout the interviews, no definition

was established as to what they considered constituted a real world experience.

It could be argued that everything is a real world experience as, even within an

IME, our ears and eyes are responding to physical stimuli. One interpretation

could be that content creators do not wish it to be apparent that the scene/object

is being generated by some form of loudspeaker, rather than the physical object

which it aims to represent. This would then account for the desire to simulate

the real world timbre/frequency response of a sound and avoid any artefacts that

could cause the user to focus on the device producing the sound rather than

the sound itself. Absolute accuracy, however, appears to not be required as it

was acknowledged that often a compromise is needed between accurate auditory

localisation and the tonal accuracy of the associated environment.

4.4.2 Production Practicalities

There were many frustrations and challenges associated with the production

of IMEs spanning all aspects of the production process. This usually centred

around the view that current processes were lacking, hindering content creators

in delivering experiences as easily as they might if IMEs were more commonplace

and the tools and processes more developed.

Some participants noted the lack of available material in spatial formats

(such as Ambisonic B-format), which meant they often had to record their own

material.

There’s not a lot of Ambisonic source material around. A lot of the

stuff we’ve used, we’ve recorded ourselves. [Participant 1]

When unable to access spatial material for the specific environment they

were looking to create, some resorted to layering stereo ambiences of the target

location with a spatial ambience of a similar environment to help give the scene

cohesion.
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If I’ve got the ambience in stereo from a London street, then I can

put it in the background, some random street ambience [in Ambisonic

format] just to fill up the space. [Participant 4]

While in some cases they resorted to just using spatialised stereo material.

A lot of the time it’s actually constructing stuff out of stereo and

then spatialising it ourselves. [Participant 1]

Some participants commented that common methods for spatialising objects

and rendering spatial soundscenes are still quite difficult to work with and can not

always deliver the desired results, specifically when rendering over headphones.

In fact, for probably all of them [VR users], it’s going to be on

headphones. So I feel like VR brought kind of binaural into focus

and trying to get binaural sounding good, which is I think the big

challenge. [Participant 1]

Working with non-experts also poses challenges. Clients commissioning IME

content often lack the language to clearly articulate their feedback and may not

have the skills to pinpoint what is causing any perceived issues.

Clients are a challenge. They are able to say, I don’t like this. I don’t

know what’s happening, but, if it’s wrong, it’s wrong. [Participant 5]

There can also be conflicting assumptions in regards to the aesthetic goals

in IME production when collaborating with production teams accustomed to

creating traditional content. Some concepts of sound quality may differ between

collaborators, for example, the desired ratio of direct and reverberant sound on a

dialogue track.

a lot of people talk about things sounding off mic, as sort of bad

sounding TV mixes. In 360 you might actually really want something

to sound like it’s off mic because then it’s capturing more of the room

that the sound source is in and actually closer to what the real thing

sounds like. [Participant 2]
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When dealing with immersive content that has both 360◦ video and spatial

audio, placement of the microphone in relation to the camera is also of impor-

tance when maintaining the correct perspective between the visual and auditory

material.

I have been given audio recorded fairly close to a camera, but just in

the wrong place, and it all sounds completely wrong. [Participant 2]

With these immersive experiences still not yet being widespread within the

industry, and game audio workflows already having established platforms and

tools, there can be hesitancy in adopting new technologies that require new

practices and tools

not everybody’s completely sold on Ambisonics. So people are still

quite attached to a world that they feel they’ve got control over.

[Participant 1]

Reliability was also felt to be a contributing factor in the adoption of new

technology proposed to assist with immersive workflows. As production timelines

are often strict, tools need to work first time and complete the task quicker than

the content creator would be able to do manually.

if something is not reliable. You can’t use it because the, the time

lines of production are so tight. [Participant 5]

4.4.3 End User Experience

Thoughts on end user experience seemed to be predominately two fold: Firstly,

aspects of the user experience directly delivered by the content, such as the

interactivity afforded to the user within the environment; and secondly, the

psychological aspects that occur within the user’s own cognitive processes, usually

as a result of the technological processes drawn out in previous themes. Although

these two groupings have the commonality of being generally technology driven,

they are not dependent on one another, since as noted by Participant 5 , immersion
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is not exclusive to content delivered via a specific medium and can in fact be

achieved without any technological intervention.

what we’re meaning is that we get people losing themselves inside

the experience and that can happen in any kind of medium, of books,

especially [...] which are [...] non technological. [Participant 5]

In terms of what separates traditional content from immersive content, it is

often considered that the user should have a level of participation within the

environment and/or narrative, as opposed to merely being an outside spectator.

the main differences for immersive experience: you’re creating a world

for the players to participate in. [Participant 1]

Allowing the user to participate in the narrative is often associated with

allowing them to make choices that affect the direction or flow of the story, and

this in turn gives them a sense of agency within the experience and causes the

user to become invested in the story they are now helping to shape:

it’s basically anything, [...]which enhances the player’s investment in

the experience and their sense of agency in the experience. [Participant

1]

Alongside participation, aspects of the narrative, such as its ability to compel

and engage, were seen to play an important part in a user’s potential to become

immersed in an experience, and was cited as something that should be considered

carefully during the production process.

a key feature, (is the) story, telling a convincing story. [Participant 5]

When experiencing traditional media content, the user may not have a

definitive position within the action. Camera angles change, and the sound scene

is not always constructed to be a realistic representation of each object’s location

in relation to the camera location or viewing perspective. This is especially the

case in audio reproduction formats that are horizontal only.
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A definite listening position is another big difference, with immersive

audio where in traditional stereo or, I guess even in surround really,

there isn’t a definite, you’re not in a very fixed position as the listener

[...] as a viewer, you can see things and you might hear footsteps just

there for effect, but they don’t have to be rendered in such a way that

is true to life. [Participant 2]

Not all immersive experiences require a first person perspective, both first

and third person perspective are common in video games with some allowing the

user to dynamically change between the two. Some participants felt this created

differing levels of immersion, depending on the perspective from which the user

was experiencing the world. The user still maintains a sense of agency and active

participation in the narrative, but with a third person perspective they can be

said to be taking control of a character within the world, rather than being the

character, as would be the case in a first person experience. This was viewed

more as an interactive cinematic experience.

I think it’s [the video game] a kind of more cinematic experience. I

think for we’re creating a real world. But I think we were creating a

real world in terms of a kind of movie that you can interact with. [...]

because you can see the character on screen. So obviously you are

not the character. So it doesn’t have that level of immersion. But

you can control the character. [Participant 1]

An experience being believable, as opposed to real, as noted in Section 4.4.1,

was also seen as an important part of being able to elicit a state of immersion from

users. This is interesting because believable does not always have to correlate

with creating something that is exactly true to life. There are certain situations

where aspects of the experience need to be overstated to have the desired impact

and compensate for the fact that the experience is not a complete sensory one.

They could be a little bit hyper-real. In as much as sometimes you

might want to slightly amp up the experience [...] the goal is still for
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people to believe that, you know, that gun that you’re picking up and

manipulating is a real gun, and it feels like a real gun. Sound does as

much as it can to make that thing feel like a real gun. [Participant 1]

In the real world, each naturally occurring sound is often unique, with even

repetitive sound events, such as gunfire, differing in small almost imperceptible

ways. The lack of these minute differences, as highlighted by Participant 1, is

something that a user could become sensitive to, resulting in the immersion

becoming broken.

one of the things which I think breaks the immersion for games...it’s

repetition, [...] in a game where you’re trying to simulate reality, any

kind of repetition people are very, very sensitive to. [Participant 1]

Participant 5 noted that another important factor, in addition to the tech-

niques employed by the content creator, is the user’s perception of the uniqueness

of the experience. This is something arguably outside the control of content

creators.

[the experience] needs to have a certain standard in order to convince

people that they are experiencing something unique and special.

[Participant 5]

Participant 5 also commented on the user’s preparedness for undertaking

an IME. The process and effect of taking the time to prepare oneself for an

immersive experience could be just as important as the techniques employed by

the content creator to elicit the state of immersion.

If you go to the cinema, you’re not just going to the cinema. You’re

not just sitting in the cinema and watching the film. [...] Making

the decision to go to the cinema, travelling for something that is

important to you and then going inside and buy a drink and some

popcorn and getting in the mood for this whole thing and to be

prepared [...] we’re going to take time for this and we’re going to
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turn off our phones and everything. We’re going to be fully there and

there’s nothing else that is distracting us... [...]how do we get to the

experience in order to be prepared to let ourselves go. [Participant 5]

The theme of End User experience encompasses both the cognitive aspect

of immersion and how the attributes of the user experience differ from that

of traditional media. Participant responses under this theme, relating to the

defining features of IMEs, often focused on aspects of the experience that could

be associated with the concept of involvement. In the literature involvement is

often framed as a psychological state necessary for cognitive immersion [246], but

within the interviews the term was arguably used as a synonym for participation

and/or agency. This was highlighted by participants making a point of describing

how the users should be able to interact with the experience and participate

or have agency within the narrative, this is particularly evident in video games

that are produced for VR as the user often embodies a main character central

to the narrative. This participation can result in the user entering a state of

involvement as described in the literature. Even within the IMEs where users

are more passive a state of affective involvement can occur which represents the

emotions resulting from the design and aesthetics of the experience itself [378].

The amount of agency a user would have varies greatly between experiences,

as do the differing perspectives the user could take of any unfolding narrative. Par-

ticipant examples demonstrating these varying combinations of user perspective

and user participation included the user having a first person view of a musical

concert but being passive as an audience member; having a third person view but

being in control of a character; being able to interact and make decisions within

the narrative, as is the case with many video games. Which of these examples

is more immersive will be dependent on the individual and their situation, and

goes beyond just the nature of the experience. The idea of user perspective could

also be interpreted as being related to the importance some place on users being

given a defined position within an experience, that would be true to life were

they physically present in the environment.
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4.5 Discussion

The XR Environment, Production Practicalities, and User Experience themes

emerge from the perspectives of those professional practitioners who are creating

the content, and also happen to closely reflect the current literature concerned

with what constitutes a state of immersion and the psychological and physiological

factors that can elicit a state of immersion [246, 247, 250, 251]. Though the

participants were all audio practitioners, it is interesting that much of the

interview data presents a holistic view of IME production, and while spatial

audio production plays a key role in defining this new form of content, it is

inextricably interconnected with other aspects of the experience such as user

interaction, quality of narrative, and visual content.

4.5.1 Distance Perception

There are various well established methods for placing audio objects around the

listener, however, placing sounds at a distance from the listener is a commonly

expressed area of difficulty, and is therefore related to the second research question.

When using headphone based audio systems a prerequisite to creating auditory

distance is the ability for the system to externalise the sound so it is perceived

as being located outside of the listener’s head, and this was seen as a defining

aspect of immersive content. If this prerequisite of externalisation is not achieved

then it is very difficult to create a sense of auditory distance comparable to a real

world experience. Head movement tracking, another technology highlighted as

being key to producing immersive content, has been shown to play a significant

role in providing externalisation due to facilitating the simulation of dynamic

spectral cue changes and can be effective even in the presence of degraded binaural

information [100]. A later study by Kearney [68] also concluded dynamic binaural

rendering assisted in distance estimation in VR, but only due to the reduction

of front-back reversals. Even with externalisation achieved it was still seen as a

challenge to simulate objects at specified distances, and often participants relied

more on their own subjective approximation of distance and less on whether the
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parameter values applied using auditory software reflected accurate values. A

possible reason is that our understanding of the mechanisms involved in auditory

distance perception are lacking when compared to azimuthal localisation, and the

reliability of distance cues can vary with stimuli, environment, and source distance

[40]. This introduces an added complexity for content creators to deal with. Some

of these cues, such as direct-to-reverberant energy ratio and the overall level of

a source, are signal attributes commonly manipulated via software in order to

imply an approximation of distance. Given the extra psychophysical complexity

involved in auditory distance perception, and the degree to which these estimates

vary in accuracy depending on the individual, stimuli, and the environment, it

is maybe not a surprise that as yet, a standardised way to effectively simulate

distance has not been found.

4.5.2 Multi-sensory aspects

The multi-sensory aspects of the experience were also deemed vital in order to

achieve immersion. Alongside the quality and accuracy of the audio reproduction

it was also felt that visual quality was an important factor, with techniques such

as stereoscopic video helping to reinforce a sense of distance when combined with

audio signal processing. The inclusion of multiple sensory stimuli better replicates

what would be experienced in the real world, assuming no sensory impairments,

further supporting the idea of perceptual/sensory immersion. It can also, given

the well documented ability of our visual system to influence auditory perception,

assist in achieving a greater quality of experience than current audio technology

alone can deliver. This raises the possibility that it may be harder to achieve the

same level of spatial plausibility with audio only content.

An important point to consider briefly is that, by their very nature, video

games are designed to be immersive. Interactivity is a base requirement for all

video games, but the ways in which video games have progressed in recent years,

including the rise in popularity of spatial audio and the increased computational

power of technology platforms that host them, means they are now often aiming

to offer a multifaceted experience of immersion. Many non-video game IMEs
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model the interactivity found in video games through involvement in the narrative,

or affording the participant some degree of agency within the environment.

4.5.3 Immersion factors

The ability for a user to become fully immersed within an IME was intrinsically

linked by participants to the quality of all aspects of the production, both

technological ( e.g ability to replicate accurate sensory information) and non-

technological (e.g. quality of narrative). It was also said that the experience

required a certain standard to convince the user they are experiencing something

unique and special, although the exact implied meaning of this statement is not

clear. The idea of being required to present something that the user finds unique

and special could suggest that the user’s perception of novelty, and their prior

experience with the medium, may have an impact on the level of immersion they

experience. For users inexperienced in IME environments there may be a greater

inclination to suspend disbelief and engage with the experience [379], and this

may cause them to be more likely to ignore/not notice quality issues that may

be apparent to those more experienced. If this is the case, it raises the question

of how long this “novelty effect” might last for, and once users become more

accustomed to the experiences will it become increasingly difficult to elicit the

same perceived quality of immersion?

4.5.4 Tools and assets

A lack of available or adequate resources and tools were seen as barriers to the

adoption of immersive audio within the wider industry. Though multi-channel

microphones are becoming more readily available, making in-house production

easier, there is still a lack of sound effects libraries containing spatial 360◦ audio

content when compared to mono and stereo content.

The adoption of new technology can often be a challenge as it requires

experimentation and adaption in order to be refined, but often due to the

tight production schedules and the inherent risk involved it can be difficult to

undertake that experimentation outside of a research and development context.
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All participants referred to a commonplace requirement to capture bespoke spatial

audio recordings as part of their work. This substantially increases the time taken

to complete tasks, such as creating atmospheric audio beds for a scene, due to

either the need to record a specific soundscape, or create an artificial soundscape

by layering existing mono/stereo material. In the context of video games, which

have high levels of interactivity, it can make production vastly more complicated

when trying to implement a format such as Ambisonics into workflows that have

been built around channel based audio. It was noted that practitioners are often

much more comfortable using tried and tested methods given the intense time

pressure involved in producing modern games. Those working within 360◦ video

and VR seemed to approach the requirement to create a bespoke project based

individual audio archive as part of the process when working in this area.

4.6 Recommendations

4.6.1 Automatic panning

Some of the challenges presented by immersive content production may be

addressed by the further development of current production tools and, in some

cases, the development of new tools and technologies. Ensuring spatial congruence

between visual and auditory objects has been highlighted as time consuming,

especially when the objects’ locations are not static within a scene. Some tools

to automate this process have already been commercially developed, (e.g. the

object tracker within the Facebook 360 Spatialiser plug-in [256], added which

as of the time of writing has now been discontinued), however, responses from

participants suggest general issues with reliability.

There are however a number of recent studies that look to automate the

detection and spatial positioning of audio objects within audio-visual scenes

using a variety of audio-visual signal processing methods. Izhar et al. [380]

proposed an object-based 3D audio-visual tracking system, which is able to

track an unknown and variable number of sources, and utilises iterated-corrector

probability hypothesis density filtering [381] to fuse 3D positional estimates
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from both audio and visual modalities. The proposed system utilises a audio-

visual sending array consisting of an 11-element light-field camera-array and

a 16-element microphone array. The 3D positional estimates from the visual

data are derived using a human pose detector, which assumes the positional

value of the detected nose joint in the position of the sound source. Positional

estimates from audio data are then obtained via the steered response power with

phase transforms of the acoustic signals at the 16-element microphone array. The

resulted showed that the audio information successfully compensated for missed

detections from visual-only tracking, increasing recall from 91% to 100%.

As part of the same wider project, a visually supervised speaker detection

and localisation system is presented in [382] that utilised an audio CNN trained

using a teacher-student paradigm [12]. The teacher network was an audio-visual

speaker detector with an additional face-tracker and the student network was

trained to regress the horizontal position of the speaker using signals from a

16-element microphone array that had been processed using a spatial beamformer.

This built on previous work presented in [383], which trained a vehicle tracking

using using stereo microphone array signals as input to a student network which

was trained to match the output of a visual vehicle tracking model and [384],

which employed binaural audio for semantic segmentation of 360◦ street views.

However, whilst there is indeed on-going research into methodologies which

could assist in the automatic positioning of audio objects within a visual scene,

many are reliant on input in the form of either 3D audio-visual data or multi-

channel audio. In many cases producers of IME content may have to produce

sound design for visual scenes which were not captured alongside multi-channel

audio. Additionally, to the authors knowledge, there are limited cases of such

algorithms being integrated into software packages compatible with commonly

used DAWs. The use of additional computer techniques could improve object

tracking within a scene, where associated on-set multi-channel audio has not

been captured, and, through the use of object classification, may be able to

candidate sound effects files from a chosen repository, reducing the time taken to

select appropriate sound effects. Chapter 5 details the design and evaluation of a
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potential proof-of-concept computer vision driven audio production tool.

4.6.2 Distance emulation

The desire to simulate auditory distance is not new. The manipulation of digital

audio signals to simulate the psychoacoustic cues for distance have well established

methods within audio production and signal processing [197]. In fact, all the

studies discussed in Section 2.4.5 used a variety of approaches with which to

simulate auditory distance that involve manipulation of one, or a combination,

of level, reverberant energy, and spectral content. However, participants felt

that While traditional audio production methods may be enough to approximate

the general perception of distance, the accurate simulation of distance with

standardised techniques is lacking in current tools. Within the context of distance

emulation via use of reverberation, Coleman et al. [385], highlights that although

there are current standards, such as the ITU ADM [113] and MPEG-H [120],

which contain parameters such as distance, spread, and diffuseness and may be

used to render a reverberant signal, and thus aid in the emulation of source

distance, they do not support the concept of a standardised reverberation object.

As a potential solution to this, Coleman et al. [385] proposed the Reverberant

Spatial Audio Object (RSAO) as a framework for standardising the synthesise of

reverberation inside an object renderer. The RSAO framework models an RIR as

a set of early reflections in combination with a late reverberation filter, with an

RSAO object being described according to a set of reverberation parameters that

may be estimated from measured RIRs. The parameters values can then be edited

to alter the listener’s perception of room size, source distance, and envelopment.

The RSAO framework was then extended in [386], to include parameterization of

B-format RIRs making it compatible with existing spatial reverb libraries.

There have been numerous studies investigating the modelling and synthesis of

distance-dependent HRTFs [387–394]. Methods proposed for distance-dependent

HRTF synthesis have included, the use of near-field binaural cues, such as ILDs

[387] and the application of an auditory parallax model for modelling near-field

effects [388, 389]. The Distance Variation Function (DVF), proposed by Kan
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[390], was applied as a filter to derive near-field HRTFs from far-field HRTFs.

The DVF was then modelled as a low-order filter for use in dynamic head-tracked

audio [393] with [392] combining it with an Image Source Model [322] to provide

additional DRR cues. It is of note that most HRTF approaches to distance

rendering focus on the near-field, as far-field HRTFs can be considered distance-

independent as in the far-field the perception of distance is much more tied to

cues such as level and DDR rather than the effects of the head, pinnae, and

torso. Alongside established spherical head models, such as those proposed in

[64], models have also been proposed which additionally include the effects of

the neck and shoulders [391]. Other methods proposed have manipulated the

inter-channel relationships between loudspeakers such as the inter-channel phase

difference [395] and inter-channel coherence [396].

In recent years, the application of ML to both auditory distance estimation

and auditory distance rendering has become an active area of research [397–399],

although estimating source distance has currently received greater attention than

distance emulation. Zhang [394], proposed a method which modelled HRTFs as

weighted combinations of spatial principal components [400] with a DNN trained

to predict the spatial principal component weights required for different distances.

Physics-informed NNs have been explored to reconstruct the early part of RIRs

[401], which is relevant to distance rendering as the early portion of RIRs often

contain information about room geometry and source position.

A CNN was proposed in [398], for the task of predicting the likelihood of

acoustic reflectors at specified distances and directions-of-arrival from stereo

IRs convolved with Gaussian white noise. Yiwere and Rhee [397], approached

sound distance estimation as a classification task, utilising a convolutional RNN

trained on log-mel spectrograms representations of speech signals which were

reproduced through a loudspeaker and captured by microphones positioned at

three different distances. Results showed high classification accuracy scores when

the model is trained and tested on the dataset collected by authors, however

failed to general well to unknown environments. The authors acknowledge that to

improve generalisability will require the use of a larger dataset containing a more
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diverse range of environments. The study does, however, provide evidence that

time-frequency spectral representations, in this instance log-mel spectrograms,

do contain distance dependent information. Additionally, IPDs have also been

shown to be effective for predicting both angular position and distance [402].

It is therefore not unreasonable to think that if a system is able to estimate

source distance given a set of inputs, with the system extracting features and

approximating the mapping function of signal features to source distance, then

this may be expanded to allow a system to take a specified distance as input,

alongside other environmental parameters, and apply the learnt signal features

relating to source distance to a given raw audio signal. The initial starting point

for developing such a model, in theory, would be similar to the end-to-end neural

audio effects detailed in Section 2.7.1.

Since a person’s ability to estimate distance becomes more accurate in situa-

tions where congruent visual and auditory stimuli are present [403], it poses the

question of whether applying both auditory and visual data would allow machine

learning algorithms to develop a more complex representation of the problem

space. If this is possible then there is the potential for them to be used to inform

cross-adaptive audio processing [17] within an audio visual context. An example

might be a sound producing object within a visual scene having its distance esti-

mated from associated visual information. Based on this prediction, parameters

for EQ, reverberation, and level are then set according to features mapped from

a prediction in the audio space corresponding to the distance estimated. This is

similar to SoundNet [12] that utilised the natural relationship between sound and

vision to learn acoustic representations from videos for the purpose of acoustic

scene classification. This kind of approach would be similar to that taken the by

models discussed in 2.7.1, which act as audio effect parameter estimations, but in

this instance parameters for multiple effects would be estimated simultaneously.

This provides two potential approaches when framing the problem of distance

emulation as an DAFx problem. NNs can either be used to estimate control

parameters for existing/novel digital audio effect structures, or it can be modelled

as an end-to-end problem, where the model predicts the mapping functions and
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applied it to the audio as a transform function.

4.6.3 Upmixing

It may also be of benefit to further explore the possibilities of upmixing mono/stereo

content to scene-based formats, such as B-format or HOA, as this would alleviate

some of the issues surrounding the lack of spatially recorded sound libraries and

also allow for legacy stereo content to be more easily integrated into spatial audio

productions. It should be noted that between the commencement of this study

and the writing of this thesis, there has been an increase in the available number

of spatially recorded sound libraries, particularly in B-format. The development

of more advanced upmixing algorithms would, however, still provide the benefit

of of enabling the use, and archiving, of legacy format into a playback agnostic

format.

Much of the current research into upmixing methods focuses on channel based

formats [404–406] and are based on decomposing the original signal into into its

primary-ambient components and then applying processing to generate additional

signals specific to the target loudspeaker configuration [407]. Latitnen proposed

methods for converting two-channel stereo [408] and 5.1 [409] audio recordings

into B-format, but as an intermediary signal for the purposes of reproduction

using Directional Audio Coding (DirAC) [149]. The signals were processed

using traditional upmixing techniques, explored in more detail in Chapter 6, to

increase coverage around the listening positioning, with the resulting channels

then rendered over a virtual loudspeaker array. These signals were then encoded

into B-format to allow for reproduction using directional audio coding (DirAC)

over the original loudspeaker configurations. However, it is not known whether

testing was carried out with respect to rendering the signals converted to B-format

over loudspeaker configurations with higher channel counts than the original

stereo or 5.1 content. Other methods proposed include the generation of 360

audio based on information extracted from 360 video [410] and a multi-model

approach to mono to binaural upmixing, which injects visual features maps

into the audio feature vector to enable joint audio-visual analysis. Features are
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extracted and encoded using a ResNet-18 [411], which are then transformed into

complex spectrogram masks through up-convolutions, which can then be applied

as binaural filters to original mono signals.

4.7 Summary

This chapter has presented an investigation into how individuals within the sound

design industry have responded to spatial audio production for IME content. A

thematic analysis of the data was presented which identified underlying patterns

and themes. The results were then discussed within the context of common topics

that emerged across the themes.

Immersive experiences aim to provide a user with a more intimate experience

than traditional media, often placing them either within narrative or allowing

them a more true to life perspective. Alongside the use of technologies utilised

to create these experiences, it was felt that the difference in end user experience

is what defined this type of content. Specifically, it enabled the user to feel

present in the XR environment through the presentation of sensory stimuli

comparable to that which would occur in a physical environment, with interactive

content providing the user with a further sense of agency and involvement

within the narrative. Though there is sometimes a difference in semantics,

clear associations can be drawn between what professional practitioners feel is

important in generating immersion, and the different dimensions of immersion as

explored in more academic literature.

Many of the challenges faced by immersive content producers are technological

in nature: results from the data analysis suggested that participants felt that the

available audio tools were unable to replicate complex psychoacoustic phenomena

such as distance, and those designed to assist in the spatialisation of audio

associated with objects in a visual scene can be unreliable. However, with

IMEs being new to many users there may be a novelty effect masking some of

the current inadequacies of the technology as highlighted by participants. The

question raised is how long such a potential novelty effect might be sustained and
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will immersive production tools and practices advance ahead of users’ awareness

of and desire for increased quality. There are also challenges associated with

working with non-experts, both in the context of clients commissioning IMEs

and other practitioners that are new to the area. While this kind of challenge

may fade as the medium becomes more established, education initiatives, like

those available through the BBC Academy [412], may not only help to alleviate

this, but may also assist the speed at which the wider industry adopts this new

form of content.

Spatial audio production for IME content might still be considered to be in

its infancy, having only in the last decade started to come into its potential with

the rise of affordable consumer level XR technology. This study has highlighted

challenges for some of those working in the field and their view on what defines

immersive content and demonstrates the value in collaboration with professional

practitioners in identifying directions for future research and tools/technology

development that satisfy the current needs.

Key challenges noted in this study were the time consuming nature of audio

panning, the lack of available spatial sound effects libraries, and the challenge

integrating legacy stereo content into spatial audio projects, and finally, the lack

of standardisation with respect to source distance emulation and the difficulties

in simulating distance using traditional audio production methods.

The rest of this thesis will document the research undertaken to address some

of the challenges highlighted within this chapter with Chapter 5 exploring a

prototype system created to streamline the process of positioning audio objects

within a scene.
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Chapter 5

Deriving Audio Metadata from

a Visual Scene

5.1 Introduction

The work presented in the previous chapter highlighted some of the challenges

associated with spatial audio production for IMEs including the time consuming

nature of audio object spatialisation, the difficulties associated with replicating

auditory source distance, and the lack of spatial sound libraries coupled with

the challenges related to integrating legacy stereo content into spatial audio

projects. The results from this study were invaluable in highlighting further areas

of potential research and in helping to steer subsequent research. The study

was also, to the author’s knowledge, the first published investigation into the

practice of spatial audio production for IMEs that focused on the perspectives

and insights of those practitioners working in the area.

Of the technical challenges highlighted in the previous chapter, it was decided

to focus on developing interventions that targeted the integration of legacy stereo

content into spatial audio productions, and the tracking of sound-generating

objects within a scene to assist with the spatialisation of audio objects . Of

the potential research areas outlined in the previous chapter, this challenge of

sound spatialisation was chosen as the first to be investigated as it was a common
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theme brought up by all those who were interviewed and it was an area that was

felt had the potential to be one of the most impactful. This chapter therefore

presents the development and evaluation of an early stage prototype system that

was used to conduct a feasibility study into whether computer vision algorithms,

such as those used for object detection, could be utilised to streamline aspects of

the immersive sound design process by facilitating the detection, spatial tracking,

and content matching of appropriate audio assets to sound generating objects

within a visual scene. For the purposes of this thesis this system will be referred

to as the content matching and tracking system.

As such, the scope of the study was limited to the use of existing and open

source computer vision tools. This study was undertaken using simple 2D scenes

from which the system derived stereo panning data was derived and suggested

candidate sound effects files from the BBC’s sound effects archive [25] were

identified.

5.2 Visually Driven Sound Design

Computer vision is an established area of machine learning, which focuses on

making sense of the information contained within digital images and videos.

These techniques are used within a variety of applications including autonomous

vehicles [413], surveillance [414], and estimation of HRTFs [415]. Cross-modal or

multi-modal, are also relevant given our desire to derive audio-centric data from

visual information. A machine learning model can be considered multi-modal if

it is designed to process information from multiple modalities [416, 417].

Within the field of sound design, there are some examples of how visual

features can be matched to audio files in a database or used to synthesise sounds

from this visual information [417, 418]. Owens et al. [418] trained a recurrent

neural network (RNN) to map visual features to audio features which were

then transformed into a waveform by either matching them to already existing

audio files in a database or by parametrically inverting the features. The sounds

synthesised were of people hitting and scratching different surfaces and objects
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with a drum stick. While this is still somewhat distant from complex soundscape

creation, this outlines a general approach that could be used in order to produce

other plausible sound objects. As acknowledged by the authors, the algorithm

performs a very rudimentary version of automatic Foley [418], a sound design

process where character driven sound effects are created live and added to films in

post-production to enhance realism (e.g. footsteps, rustling of clothes), which may

potentially be adapted to replicate a wider array of sound effects. Performance

of the model was measured via a psychophysical study using a two-alternative

forced choice test, where participants were required to distinguish between real

and machine-generated sounds. Results were mixed, with parametric generation

performing well for materials which were considered more noisy (e.g.leaves and

dirt), but performed poorly for harder surfaces such as metal and wood. It was

also found that matching the mapped audio features to existing audio files was

ineffective for textured sounds such as splashing water.

Object detection (localisation of objects within a given image) and object

classification (estimating which of a given class the object is most likely to belong

to) are two common computer vision tasks, with algorithms often having to deal

with evaluating multiple objects within a given image. It is systems such as these

that will be leveraged to investigate whether computer vision can be used to

derive useful metadata about potential sound producing objects within a visual

scene.

5.3 System Design

The results from Chapter 4 highlighted that sound spatialisation was considered

a challenge in immersive productions due to the labour intensive and procedural

nature of the task. One of the goals for this study is to address that challenge by

developing a method of automatic panning that utilises the information within a

visual scene to derive appropriate panning data for audio objects. The resulting

panning data can then be taken as a starting point or spatial template for the scene

and be fine-tuned by those working on the project. This section describes the
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design and implementation of the proposed content matching system, including

how the audio metadata generator and candidate sound effects file recommender

are integrated with an existing computer vision system.

5.3.1 Google’s Object Detection API

As discussed in Section 5.1, the scope of this study was limited to the use of

existing open source computer vision tools. Google’s Object Detection API [419],

was selected because it was free to use, came with a set of comprehensive tutorials

and was open source. These factors contributed to it being an ideal base system

for the development of the audio content matching and tracking system which

would be built on top of existing computer vision functionality. The API is

written in Tensorflow [420] and is designed to detect, locate, and classify content

from individual 2D images. When implemented as part of a loop, however, it can

be used to iterate over consecutive frames of a video [421].

There are a large collection of models within theirModel Zoo [422], a repository

of detection models pre-trained on various datasets, with options suitable for

a variety of memory, speed, and accuracy requirements. For details on the

performance of each model see [419]. The models are available with frozen weights

trained on the COCO dataset, which can be used for off-the-shelf detection, as

well as the facility to retrain the models for specific tasks utilising methods such

as transfer learning [423]. When used in this way, however, it does not posses any

tracking functionality or method of maintaining object identities or inter-frame

relationships. It treats every frame as an isolated standalone image.

The model used for this study was the Single Shot Detection (SSD) meta-

architecture, with the inception V2 feature extractor, chosen because it presented

a balance between speed, accuracy, and memory usage. This was used with the

available frozen weights and inference was run on a machine with an Intel Core

i5-600 CPU @ 3.20GHz with 8GB RAM.

The API provides a variety of data related to each frame including number of

detections, classes detected, detection scores (confidence), and object bounding

box coordinates. The content matching and tracking system first collates the
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Figure 5.1: Flow chart illustrating order of operations and flow of data within the

proposed methodology

data for each frame so it can be used to create the object dictionary. The object

dictionary contains a unique ID number for each detected object, class number

of the object detected, and the coordinates relating to the bounding box position

of each object. Following the collection of this data it is then used in several

processes outlined in the following sections. Fig 5.1 shows a block diagram of the

complete system.

5.3.2 Tracking

For the system to operate over successive images, as would be required when

applied to video data, it must be able to group the data for each detected object

that persists over multiple frames and create new object IDs if a detected object

is considered as being new to a scene. Video data will usually exhibit temporal

continuity and information from earlier frames, such as object location and object

class; this can often be used as context in order to improve predictions for the

current frame [424]. However, the original API was designed for detection on a
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single image and is unable to retain any of the context from information that may

have been extracted from previous images or frames. This lack of contextual or

temporal awareness as Liu and Zhu [424] refer to it, can have a negative impact

on performance when compared to models that do contain temporal awareness.

Whilst there is ongoing research to increase the accuracy of video object systems

(see [424] and [425]) this was deemed outside of the scope of this research given

the focus on deriving audio data from existing computer vision systems.

The content matching and tracking system uses a simple continuity check,

based on the Jaccard Index [426] of the bounding boxes generated by the API

across two frames, to attempt to minimise between frame misclassifications and

to accurately group object data across successive frames. The Jaccard Index, also

referred to as the Intersection over Union (IoU), is a statistic used to measure

the similarity between two sets of data and is defined as the intersection of the

datasets (Figure 5.2a) divided by the the union of the two datasets (Figure 5.2b)

as given in Eq 5.1.

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B| (5.1)

The Jaccard Index is also a commonly used metric for training and evaluating

object detection algorithms as it can be used to compare the similarity between

two arbitrary shapes and is scale invariant [427]. During training, the metric is

calculated from the ground truth bounding boxes and the predicted bounding

boxes. Accuracy is deemed sufficient if the resulting index value exceeds a user

specified value e.g > 0.5, with values ranging between 0 and 1. This is also

an appropriate metric to use as a simple interframe continuity check since it is

expected that an object’s position within the current frame will be similar to

that in the previous frame. If the resulting J(A,B) is greater than the threshold

value, the object is defined as being the same as that identified in the previous

frame, otherwise it is treated as a new object and a new entry is added to the

object dictionary. The implementation used within this work for deriving the

Jaccord Index from two bounding boxes can be found in [428].
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(a) Area of Intersection

(b) Area of Union

Figure 5.2: IoU can be calculated by dividing the area of intersection (the area covered

by the overlap of the two boxes) by the area of union (total area covered by the two

boxes). Within this work it is used as a continuity check on objects within the visual

scene taking advantage of the similar locations an object will occupy within the current

and previous frame.

5.3.3 Sound Effects Suggestions

Once the object dictionary has been compiled, it is used to generate a list of

suggested sound effects from the chosen repository of audio files, which in this case

is the BBC sound effects archive (BBCsfx) [25]. A list of candidate sound effects

files are compiled by comparing each unique object class detected to the metadata

tags from BBCsfx. BBCsfx is an open source repository that, at the time of the

study, was made up of 16,011 labelled audio files and has since been increased

to contain over 33,000 files. The archive is available to download as WAV files

and is subject to terms of use under the RemArc Licence [429], which permits

use for personal, educational, and research purposes. It was chosen because it

provides a large database of labelled audio files containing a variety of different

acoustic scenes and events, with tagging and metadata stored in an associated

.CSV file. Table 5.1 shows examples of the tagging and metadata format common
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to each audio file in the database. Tagging consists of the description of each

sound effect (as taken from the original CD the sound effect was sourced from)

and the category (e.g. Engines: Petrol, Engines: Diesel) to which it belongs. The

metadata associated with each audio file is the length of the audio file in seconds,

the name of the original CD containing the effect, and the track number. There

are some inconsistencies within the tagging conventions, such as some audio

files lacking an associated category and/or CD origin name. Any inconsistencies

within a database’s tagging convention may impact its effectiveness when used

as data for training and evaluating machine listening systems [430].

Description Duration (s) Category CD Number CD Name Track #

Two-stroke petrol engine

driving small elevator,

start, run, stop.

194 Engines: Petrol EC117D
Diesel and

Petrol Engines
4

Single-cylinder Petter

engine, start, run,

stop. (1 1/2 h.p.)

194 Engines:Diesel EC117D
Diesel and

Petrol Engines
1

Single hen 63 EC31A Chickens 1

Motorcycle Scrambling:

General atmosphere,

pre-1965 machines,

250-500cc

194

Motorcycle Scrambling

and

General Atmosphere

EC5M4 1

Table 5.1: Examples of the metadata format associated with the BBC’s sound effect

archive. Available metadata fields consist of a description, duration in seconds, category,

CD number, CD Name, and track number. As shown, there is inconsistency within the

archive as not all audio files will contain information within the category, CD Number,

and CD name fields.

5.3.4 Object Tracking

Object location data can also be used to derive the trajectory of objects over

the course of a video. This data can then be utilised to position and pan audio
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content. Object trajectory is derived by calculating the centre point of an object’s

bounding box as shown in Fig. 5.3. The data can then be transmitted to a

Digital Audio Workstation (DAW) via OSC [431] to populate automation data

for the desired parameter. In the case of stereo panning, the horizontal portion of

the trajectory data needs to be normalised to between 0 (hard left) and 1 (hard

right). Due to the temporal resolution available within the automation lanes of

the DAW used in this study, Cockos Reaper [432], resolution of location data was

reduced by a factor of two, resulting in 15 discrete points per second for a 30fps

video.

Figure 5.3: Single frame taken from a test video with the preceding trajectory of the

detected object overlaid.

5.4 Test Material Specification

Two test videos were created to allow for direct and controlled evaluation of simple

scenes containing single and multiple objects. An open source image containing

non-human animals was also sourced from the internet to assess the ability of the

system to recommend appropriate candidate audio files for non-human objects.

Both videos were recorded on an iPhone SE at 1080p 30 frames per second at a
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distance of 5m and have the following conditions:

• Video 1 − Single person walking from left to right of scene.

• Video 2 − Two people walking ∼1.5m apart from left to right of scene

Example frames from the two videos are shown in Fig. 5.4 and Fig. 5.5.

Figure 5.4: A single video frame extracted from example Video 1, and used as input

for the object detection system to generate candidate audio file recommendations. The

location of the detected obkect is indicated by the green bounding box and is assigned

the class label of ‘person’.
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Figure 5.5: Image from a single video frame of Video 2 used to derive panning information

for two moving objects with a 2D visual scene. The example video is of two people

crossing the field of view from left to right approximately 1.5m apart.

5.5 Results

5.5.1 Run time for data extraction

It took approximately 75 seconds to run detection and information extraction

on a 7.97s video @ 30 frames per second (fps). This roughly equates 0.32s per

frame but can be reduced to 65s (0.27s per frame) if the output of the detection

algorithm is not visualised. It should be noted that inference was run on the

CPU as a GPU was, at the time, not available. It is reasonable to assume that

runtime would have been several times faster had a GPU been utilised.

5.5.2 Spatial Positioning and trajectory tracking

5.5.2.1 Single Object

Fig. 5.3 shows a single frame taken from Video 1 where the trajectory of the

detected object has been plotted. The trajectory appears to accurately track

the object travelling across the field of view whilst also taking into account the

slight vertical movement of the centre point of the object’s bounding box. This
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vertical movement occurs due to the vertical movement of the human body whilst

walking [433]. Finally, it tracks the variation in the object’s speed which in this

case is indicated by the non-uniform distribution in the spatial proximity of the

data points.

Figure 5.6a shows horizontal panning data plotted over time in frames derived

from the positional data of the object as derived from Video 1 as shown by way

of example in Figure 5.3. The changes in the gradient of the data represents

the variation in the speed of the object as it crosses the field of view. It should

be noted that it is the distance moved by the centre of an object’s associated

bounding box between each frame that is being tracked, rather than the object

itself. For objects whose movement causes bounding boxes of varying sizes, such

as a human walking with their arms swinging, this may produce variable results.

Once the object exits the field of view, the panning value defaults to 0, which may

present problems for objects whose audio needs to remain active, even if no longer

visible. This, however, is an issue relating to the current 2D only implementation

and it would be fairly trivial to introduce an option to maintain an object’s last

known position once it has exited from the visual field of view. This is less of

an issue with 360◦audio/visual content as the field of view is dictated by the

direction a user is facing, therefore allowing objects outside the field of view to

be still be tracked as the video content extends beyond the limits of this region.

Figure 5.6b shows the horizontal trajectory data translated into panning

values within a Reaper stereo track automation lane. Upon visual inspection,

the reduction in data resolution explained in Section 5.3.4 does not seem to have

had an adverse effect on trajectory trends. The linear interpolation generated

by Reaper has little impact on the overall trend due to the size of the timesteps

but may have a perceptual impact for larger timesteps. The timestep is defined

as the length of time between each discrete data point of panning data and

is dependent on both the fps of the video and the granularity available with

the DAW processing the panning data. At the time of the study the minimum

timestep possible for Reaper’s panning data was 0.667s, which is equivalent

to 15 fps. A reduction in fps results in an increased timestep duration that
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may introduce greater spatial mismatches between the visual object and the

associated auditory material. The reported angular offset between visual and

auditory stimuli that would result in a perceptually noticeable misalignment

varies greatly within the literature. The ventriloquist effect, where a sound source

is spatially localised towards a visual stimulus, has been shown in several studies

to vary between 20◦ - 38◦ azimuth angle [341, 434, 435] in real environments. For

screen-based or virtual environments studies have reported offset ranges from 3◦

to 45◦ depending on experimental conditions. These are, however, the maximum

reported values rather than the JNDs which is the smallest offset at which the

location of visual and auditory stimuli can be differentiated. Results have also

shown that for speech signals even small audio-visual offsets can subconsciously

influence the spatial integration of sources [436].

5.5.2.2 Multiple Objects

Using the API to facilitate the tracking of multiple objects within a scene

introduces some additional complexities. If the API is presented with a scene

containing multiple objects, it will store and output the data for the detected

objects in descending order according to the associated confidence scores. This

results in the object data being outputted in a different order for each frame

depending on how the confidence scores change between frames. The object

data is processed and stored by the object dictionary according to the results

of the continuity check, detailed in Section 5.3.2, which uses information from

the current and previous frames. The use of inter-frame data introduces a

reliance that an object represented by data at current frame(obj index) is the

same object represented at previous frame(obj index). When this is not the

case, it causes the continuity check to compare positional data from different

objects, often causing erroneous results. In cases where the two sets of data being

compared are from objects with a large enough distance between them to cause the

continuity check to fail, this will cause the object at current frame(obj index)

to be defined as a new object and a new entry generated in the object dictionary.

This can cause trajectory data from what should be a single object to spread
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(a) Original data output from system. Note

the y axis has been flipped to match Reaper’s

and the data has been normalised to between

0 and 1 to match the values used by Reaper.

(b) Stereo panning data was derived by using every second

data point to account for the resolution available in Reaper’s

automation lanes.

Figure 5.6: Horizontal panning data plotted over time as derived from example Video 1.

across multiple entries within the object dictionary. In one instance, the changes

in confidence scores over the course of a video resulted in a total of 32 objects

being added to the object dictionary for a scene consisting of two unique objects.

Due to the object detector in this study being based on a single image detector,

overriding the ordering method to create a more consist output order on a frame-

by-frame basis is non-trivial. This introduces challenges for situations where

object detection alongside the ability to distinguish between pre-existing and

new objects over time is required. While outside the scope of this work, multiple

object trackers such as those described in [437] may provide a solution if an

appropriate open source system is identified.
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5.5.3 Sound Effects Recommendations

The system takes approximately 4s to compile a list of candidate sound effect

recommendations for Video 2, returning a total of 36 recommendations (a selection

of which are shown in Table 5.2), of which 6 were considered usable for the

given scene. Those deemed unsuitable were for reasons such as a different

environment/activity to the one in the example video e.g. a person exiting a car

and a person in an ice skating rink. The current search method takes the class

label as a string of characters and compares this to the tags in the metadata. If

an exact match is found, it will determine the associated audio file as being a

candidate sound effect.

A limitation of this method is the reliance on exact matching between the

tags in the repository’s metadata and the class labels of the detection system.

Due to this, the current search method is unable to recommend audio files which

may be suitable but whose tags use different, but related, terms, such as ‘man’,

‘woman’, ‘child’, or ‘human’ if detecting the class ‘person’. At the time of the

study, the tagging within the BBC archive was inconsistent (admittedly due to

the repository consisting of many decades worth of archived audio files) meaning

many potentially suitable sound effects go undetected using the current string

comparison method. To avoid the need for an exact match between metadata tags

and class labels, a word embedding model, such as Word2Vec [438] or GloVe [439],

could be used to evaluate the similarity between the class labels and metadata

tags and return the top-n most similar tags and the associated audio files.

There are also limitations that stem from the type of detection system used.

Google’s API is intended for object detection and is limited to the detection

of specific objects; it does not have the ability to predict actions or activities

taking place within a scene, such as the walking present in both test videos.

As such, the system did not retrieve the 1,484 sound effects containing the

term ‘footsteps’ which may have been suitable as candidate sound effects. The

interested reader is referred to [440], for a review of recent computer vision

based methods for human action recognition, which may go towards resolving
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Candidate Audio File Recommendations

Walking, 1 person in mud

Footsteps, one person walking in mud

Cars: 1.6 GL (Manual) 1982 model Ford Cortina. Interior, door opens, person exits, door closes

Ice Skating, one person circling close, others in the distance on indoor rink

Footsteps, one person walking in water

Table 5.2: Selection of candidate audio file recommendations generated from Fig. 5.4.

Each file was defined by the system as being a potential candidate if the metadata field

‘description’ contained an exact match for the detected objects class name, in this case

‘person’.

this challenge. Additionally, the system proposed in this chapter also lacks the

functionality of scene recognition systems to predict more generic scene elements

such as location (e.g. living room, beach, city centre) which may help to inform

recommendations for audio files relating to environmental/atmospheric sounds.

Scene recognition is considered a more challenging problem when compared to

other tasks such as object recognition [441], as it often involves the segmentation

of the given image into a variety of spatial layouts and not only requires the

detection of objects within the scene but also the semantic relations between the

detected objects. The inclusion of models, such as those reviewed by Xie et al.

[441], would go someway towards addressing this issue.

Figure 5.7 shows that erroneous results can also be produced according to

the accuracy of the object detection system in relation to the given scene. In this

instance, an animal which would be recognised as a type of antelope to the human

eye has been classified as a cow. In turn this has produced recommendations

unsuitable for the given scene. The system also failed to recommend several

audio files from the repository whose tags contained the word ‘zoo’, which may

have been appropriate for ambience. Again, this is due to lack of ability to infer

wider context from the scene.
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Figure 5.7: Output of Google Object Detection API, showing correct classification of

‘giraffe’ (centre) and ‘zebra’ (right), whilst incorrectly assigning the class label of ‘cow’

to an antelope (left).

5.6 A Review of Methods to Inform Future Work

The continuation of the work presented in this chapter would have required a more

extensive treatment and technical investigation of computer vision technologies.

As such, it was deemed outside the scope and aims of this thesis. However, in

order to provide both an insight into what may be required to develop the work

further and an assessment as to whether the current methods would deliver the

creative affordances the work in this chapter explored, a review of the current

state of the art computer vision technologies with respect to multiple object

tracking and object detection and classification is now presented.

5.6.1 Object Detection and Classification

Object detection and classification describes a task that combines both image

classification and image localisation, but for scenarios where the classification and
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localisation of multiple objects may be required [442]. According to Wu, Sahoo,

and Hoi [443], deep learning approaches can be broadly categorised as either

being one-stage detectors [444–450], or two-stage detectors [451–456]. Two-stage

detectors, such as R-CNN [451], Fast R-CNN [453], and Mask Scoring R-CNN

[456], separate the detection task into two stages. The first stage, proposal

generation, attempts to identify regions within the image (or frame if part of a

video sequence) which may potentially contain objects of interest. The second

stage, the classification stage, then uses a model that attempts to map the

proposals to a categorical class label and may additionally try to refine the

proposed regions [457]. One-stage detectors, such as the Yolo family of algorithms

[445, 448, 449], by contrast, consider all positions on the image as potential objects

and attempt to classify each region as either background or a target object [443].

Early deep learning approaches considered object detection as as multi-region

classification problem, with Sermanet et al. proposing Overfeat [444], a CNN

which modified a CNN classifier model to use the final fully connected layers to

output a grid of predictions for each region of the input, indicating the presence

of an object. You Only Look Once (YOLO) was then proposed in [445], which

approached object detection as a regression problem by spatially segmenting

the image into a fixed 7 x 7 grid. Each grid segment was then considered as a

proposal region to detect one of more objects. Each grid prediction consisted of,

a class label, the bounding box coordinates and size, and whether the location

contained an object or just background. Due to the unified architecture, as there

was no separate proposal stage, the base model could process images in real-time

at 45 fps. Although, it should be noted that the ability to process individual

frames at real time speed does not equate the algorithm to being that of a video

object detector, as will be discussed later. Some limitations of the original YOLO

model include, each grid segment being limited to the prediction of boxes and

a single class, which results in the model struggling with small objects, such as

flocks of birds, or large crowds if images are captured from a distance. Several

iterations of YOLO have been subsequently proposed which improve upon the

original design, including YOLOv2 [448], which utilised a convolutional model

172



5.6. A REVIEW OF METHODS TO INFORM FUTURE WORK

Dataset # images # train/val/test splits # classes

Pascal VOC2007 10,022 2,501/2,510/5,011 20

Pascal VOC2012 22,531 5,717/5,823/10,991 20

MSCOCO 163,957 118,287/5,000/40,670 80

Open Images 1.9M x 600

ImageNet 14M x 1,000

Wider face 32,203 (400k faces) 12,881/3,220/16,101 x

FDDB 2845 (5171 faces) x x

CityPersons 5,000 (35k people) x x

CIFAR-100 60,000 50,000/x/10,000 100

Table 5.3: Publicly available annotated MOT datasets.

that was pre-trained on higher resolution images from ImageNet, which enabled

it to captured finer detail. Additionally, it adopted the use of anchors proposed

in [446], which segmentation of feature maps at varying resolutions.

CNNs are often used as the backbone for neural network based object detectors

[458], and act as a feature extractor, which generates the feature maps that

will then be used for classification by the fully connected layers. Given the

computational resources required to train a SOTA feature extractor from scratch

it is common place to utilise a model that has been trained on large scale

image classification datasets [451] and, if required, it may be fine-tuned using a

smaller dataset more closely related to the target task [459]. For example, if a

production studio specialised in a specific format e.g. wild life documentaries, a

pre-trained classifier could be taken and fine-tuned on existing content to improve

its performance on the target content type.

There a number of common datasets available used for benchmarking difference

object detection tasks, for face detection, pedestrian detection, and generic object

detection. Table 5.3, provides an overview of the summary statistics for some of

these common benchmark datasets and although non-exhaustive, the datasets

detailed evidence that a large quantity of training data exists with which to train
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object detector algorithms on a variety of different object types. This is beneficial

as often within an audio production context there can be multiple different sound

producing objects within the screen that could belong to a large number of

different object classes. Having a large quantity of publicly available data may

also assist in the fine-tuning of models in situations where a content creator

may not have the required amount of target content to adequately fine-tune a

model. This could often be the case if they working on a project that is outside

of their normal format. Another important factor is how the object detection

algorithms perform under situations where the visual scene may potentially be

densely populated and consist of objects belonging a variety of object classes.

There a number of metrics commonly used to evaluate object detection systems.

Two commonly used metrics are precision and recall [196]. Recall measures

what proportion of objects were correctly detected and precision measures the

proportion of object detections which were correct out of the total number of

detections made. In other words, recall can be thought of as a measure of how

many true positives were identified out of the total number of possible true

positives, whereas precision measures the quality of the predictions, calculating

what proportion of positive predictions were true positives. These two metrics

can then be used to calculate the Average Precision (AP) for each class as follows:

AP =
∑

(Rn −Rn−1)Pn (5.2)

where Pn and Rn are precision and recall at the nth threshold.

To produce a metric to describe the performance on the complete dataset,

the mean is then taken to result in the mean Average Precision (mAP). As

part of a review into SOTA approaches to object detection, Wu et al. [443]

compiled a comprehensive list of model performance spanning the last decade.

Table 5.4 presents a selection of the best performing models from the last 6 years.

Whilst these may be accurate at the tome of writing, the speed of progress in the

areas will likely mean new SOTA scores are established by the time this thesis is

published.

As shown by the results, two stage models tend to yield better performance
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Model detector type Backbone Proposed Year mAP (%) Dataset

DCN+R+CNN two-stage ResNet-101 + ResNet-152 2018 84.0 VOC2007

DeepRegionLet two-stage ResNet-101 2018 83.3 VOC2007

RFBNet512 one-stage VGG16 2018 82.2 VOC2007

CentreNet one-stage ResNet101 2019 78.7 VOC2007

DeepRegionLet two-stage ResNet-101 2018 81.3 VOC2012

DCN+R+CNN two-stage ResNet-101 + ResNet-152 2018 81.2 VOC2012

TridentNet two-stage ResNet101-Deformable 2019 69.7 MSCOCO

CenterNet511 one-stage Hourglass-104 2019 64.5 MSCOCO

Table 5.4: Publicly available annotated MOT datasets.

results when compared to one-stage models, however the trade off for this is

that usually two-stage models are more computationally expensive because of

the separate stage for proposal generation. Scores are generally lower for the

MSCOCO dataset, which is indicative of it being a larger and more comprehensive

dataset with respect to both the number of images and the number of unique

classes. This also provides evidence that given the performance values and the

wide variety of datasets with which an object detection system may be trained

on, choosing any current SOTA model could be expected to yield good results for

object detection within an audio production context, providing that the algorithm

is capable of detecting the required classes. But given the varietry of objects

available within the datasets, it is not imagined this will present an issue. This

would especially be the case when combined with model fine-tuning in order to

improve performance on specific target content formats or object classes.

However, it should be noteds that video object detection is a more complex

problem when compared to image object detection, as it introduces a temporal

dimension to the information. As noted in Section 5.3.1, and highlighted by

[457], if an image object detection algorithm is applied directly to video data

without any modification, each frame is treated as standalone unrelated images.

Video object detection therefore therefore requires that object identities can be

maintained across frames, known as object tracking.
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5.6.2 Multiple Object Tracking

Multiple object tracking (MOT) typically has two additional requirements when

compared to single object tracking, firstly, the ability to determine the number of

objects present within the frame, and secondly, maintaining the identities of the

objects between continuous frames, a problem known as data association [437,

460, 461]. It was the latter of these two tasks that the proposed system failed to

achieve. Luo et al. [437], highlights that there are a number of challenges within

MOT which add complexities with respect to those two tasks, including, short

and long term occlusions, initialisation and termination of tracks, objects with

similar appearances, and interactions among multiple objects. Depending on the

how the MOT task is approached and the type of MOT methodology used will

dictate what solutions are employed to address those tasks and challenges.

Luo et al. [437], suggests that MOT algorithms can be categorised according

to three criteria, 1) initialisation method, 2) processing mode, and 3) type of

output. The categorisation by type of output refers to whether the tracking

process is considered stochastic or deterministic, which is largely determined by

the optimisation methods adopted. As this work is concerned with the novel

application of existing technologies to the problem of immersive audio production,

and not the development of new tracking methods, this criteria is considered

outside the scope of this review. The first criteria, the initialisation method, refers

to how the objects are initialised, with MOT approaches broadly be categorised

as either detection-based [462], or detection-free [463]. Detection-based tracking,

sometimes referred to as model-based tracking, utilises a pre-trained object-

detector applied to each frame to obtain a set of object hypotheses, which are

then linked to associated object trajectories [462, 464]. Detection-free tracking,

sometimes referred to as model-free tracking, in contrast, requires the objects of

interest to be manually annotated in the first frame but no requires no further

knowledge about the objects [463]. The objects annotated within the initial

frame are then tracked through subsequent frames. However, the due to the

requirement of manual initialisation, the number of detected objects is fixed and
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as such, new objects that may enter the scene will not be identified [437].

The tracking methodology proposed in Section 5.3.2 would be categorised

as detector-based, as it used a pre-trained object detector. There are some

disadvantages associated with using a detector-based tracking approach, namely

that the performance of the MOT algorithm is then largely defined by the

performance of the chosen object detector [437, 465]. This is with respect to

both the localisation accuracy and the specific object classes the object detector

is trained to detect. However, although detector-free tracking may enable perfect

initialisation, given that the objects of interest are initialised manually, which

additionally enables the tracking of any object, tracking is usually limited to the

fixed number of objects annotated in the initial frame. Furthermore, the manual

annotation required may increase the associated set up time. As such, given one

of the main affordances explored in this chapter was the streamlining of sound

design workflows, it is suggested that in most cases a detector-based tracking

system would be the preferred approach as it will reduce the required time to

initialise the object tracker. Additionally, detector-based tracking also has the

advantage of being able to automatically terminate the tracking of objects that

disappear and initialise the tracking of newly detected objects [464], which will

lend itself to the types of scenes encountered by sound designers where multiple

objects may appear, disappear and reappear at any given time.

Which respect to categorising MOT by processing mode, trackers are broadly

classified as either being online trackers [461, 466–469] or offline trackers [460,

470, 471]. Online tracking methods receive image data and associated detection

results for each frame sequentially [437], and determine updates to the object

trajectories, initialise new object tracks, and decide when to terminate object

tracks, based on information contained with the current and previous frames

[467]. It may also be referred to as sequential tracking [437]. The proposed

tracking method for the system presented in this chapter would be considered an

online tracker, as each frame is handled sequentially and the tracking algorithm

only has access to the current and previous frames.

Offline tracking methods, sometimes referred to as batch methods, use both
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past and future frames and thus have access to past and future detections [466].

Depending on memory restraints, offline trackers will either process the whole

sequence of frames as a single batch or process the sequence as multiple mini

batches. The benefit of offline tracking is that, theoretically, it is possible to

obtain an optimal solution given there is access to the whole sequence across

which objects are required to be tracked [437]. However, the offline nature means

it is unsuitable for any system that requires real-time operation or other scenarios

where future frames are not available. Therefore, given that in the context of

sound design for IMEs the visual content will be pre-recorded or pre-rendered,

both offline and online methods of tracking would be suitable for use within an

audio production setting. For a review of different methodologies for addressing

the challenge of data association in a MOT context, the reader is directed to

[437]

It is important to now review the performance and capabilities of the current

SOTA in MOT, as this will help to inform the necessary steps required in

developing a SOTA system for content matching and tracking within an audio

production context. Additionally, a review of the current SOTA will also provide

an assessment of how such a system would be expected to perform when applied

under the conditions typically encounter within an audio production setting.

The performance of MOT algorithms is generally divided into those used

to measure performance with respect to object detection, and those used to

measure performance with respect to object tracking [437]. Recall and precision

are common metrics for evaluating object detection [196]. Recall measures

what proportion of objects were correctly detected and precision measures the

proportion of object detections which were correct out of the total number of

detections made. In other words, recall can be thought of as a measure of how

many true positives were identified out of the total number of possible true

positives, whereas precision measures the quality of the predictions, calculating

what proportion of positive predictions were true positives.

For the evaluation object tracking, the CLEAR metrics are often used [472],

which include, Multiple Object Tracking Accuracy (MOTA) and Multiple Object
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Tracking Precision (MOTP). These are both derived by measuring the IoU of

the predicted bounding boxes and the associated ground truth bounding boxes.

MOTA takes into the account the number of missed detections, false positives,

and ID switches in the predicted output trajectory for a given ground-truth

trajectory. ID switches, as defined in [473], is a measure of the number of times

a tracked trajectory changes its matched ground-truth ID. This can occur either

when an object becomes associated with the trajectory of another object, or

when an object trajectory is fragmented through missed detections. MOTP

calculates a precision score by using the spatiotemporal overlap between the

reference trajectories and the predicted trajectories [472]. A study by Leal-Taixé

et al. [474], showed that the MOTA is the measure that best aligns with human

visual assessment, followed by Mostly Tracked, which is the ratio of ground-truth

trajectories that are covered by the predicted trajectories for at least 80% of their

respective life span [473]. Leal-Taixé et al. [474], also note that ID switches do

not have much impact on the human quality assessment, reflecting that human

observers place more importance on objects, in this case people, being detected

rather than tracked correctly. In our context, however, ID switching is a highly

important metric as it evaluates whether object associations are being correctly

determined across frames, which in turn will determine the accuracy of the

derived object trajectories and the subsequent audio panning data derived from

the object trajectories.

Table 5.5, details a selection of MOT algorithms that have been evaluated on

the MOT challenge datasets [475–477], which were chosen as they are one of the

most widely used set of MOT datasets and baselines. As can be seen from the

MOTA, MOTP, and ID switches scores, there has been a great deal of progress

in the performance of MOT systems over the last decade, even when taking

into account the increasing complexity of subsequent datasets. For example,

MOT20 contains three sequences where crowd density can reach values of 246

pedestrians per frame [477], yet MOTA scores for both the TransTrack [461] and

MOT correlation learning [478] are 64.5% and 65.2% respectively, whereas the

SOTA for earlier models, such as SORT [467], proposed in 2016 was 33.4%, with
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scenes much less densely populated. This increased complexity and object density

also explains why the absolute number of ID switches is higher for more recently

released datasets, but the percentage based scores are also generally higher. This

does, however, highlight that any system deriving audio object positional data

from MOT tracking systems, such as those detailed in Table 5.5, would require

a robust way to deal with missed detections and fragmented trajectory paths.

However, due to the available use of offline processing, fragmented trajectory

paths can be accounted for using a solution that utilises the information and

results from all frames within the tracking sequence, which may prove more

robust than online methods that can only utilise current and previous frames.

Table 5.6 details a non-exhaustive but varied selection of publicly available

MOT datasets. One thing that seems clear is that, at present, from both the target

objects of the MOT algorithms in Table 5.5, and the datasets detailed in Table

5.6, is that many of the MOT datasets and benchmarks are concerned with the

tracking of a single, specified, class of object. As a result, these existing methods

can perform poorly when presented with unseen objects [465, 483]. Whilst there

are recently presented datasets, such as the Track Any Object (TAO) dataset

presented in [484], there appears, to the authors knowledge, limited studies

currently using it as benchmark. Additionally, as noted by Fan et al. [485],

although TAO contains a diverse range of classes, not all instances of each target

class are annotated in a video sequence, potentially making it unreliable if a

prediction is required for each object for each frame. Also available are datasets

and benchmarks for adjacent tasks, such as ImageNet VID [486], for multiple

object detection within videos, these are not annotated with object trajectory

information and so would require new annotation and benchmarking. So, even

given some of the SOTA performance scores associated with the algorithms in

Table 5.5, their application within an audio production setting would be limited

due to their lack of ability to accurately track a range of different object classes.

There have been recent studies presented that investigate generic MOT

(GMOT), a MOT paradigm that requires no prior knowledge of the objects to be

tracked [465, 483]. However, as highlighted by Bai et al. [465], despite its broad
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applications, GMOT is still under researched when compared to MOT and there

is, at present, a lack of GMOT benchmarks and baselines. The baselines presented

in [465] were built upon publicly available trackers, with the best performing

model still vastly under performing that of traditional MOT algorithms with

scores of MOTA = 19.92% (±1.84%) and MOTP = 24.15% (±0.27%). These

scores are exceptionally low when compared to some of the results in Table 5.5,

where even the lowest scores from earlier methodologies are approximately MOTA

= 29% and MOTP = 65%, although it is acknowledged a true comparison is

difficult given that scores were obtained on different datasets. It should be noted,

however, that when ground truth detections were provided, the results in [465],

increased significantly, with the best performing model then achieving MOTA =

80.60%. The increase in performance when ground truth detections are provided

suggest that the challenge lies with the generic object detection portion of the

problem, especially relating to objects that are not seen during training. Tran et

al. [483], offered a solution to the problem of unseen object classes by introducing

text prompts through the use of Grounded language pre-training, which utilises

existing mappings for image-text pairs [491], and resulted in an improved MOTA

score on the GMOT baseline, when using the OC-SORT detector [492], of 62.76

percentage points. The utilises of text prompts to condition a GMOT algorithm

may prove beneficial in an audio production setting as it would provide the

flexibility to use the same algorithm for a range of different objects and scenarios,

without the need for retraining.

There also exists a growing interest in multi-class multi-object tracking

(MCMOT), where multi-class object classification is undertaken as part of the

tracking process. However, as noted by Jo et al. [493], many tracking datasets

are annotated for human only tracking, or in some cases human and vehicle

[487], although many will contain other unlabelled objects within the scenes.

A multi-class multi-object tracker presented in [494], had to provide separate

evaluations for the tracking and detection components, utilising ImageNet VID to

assess its detection performance and MOT15 to assess its tracking performance.

For detection on ImageNet VID the model achieved a mean average precision
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of 74.5% over 30 object classes and MOTA = 62.4% on the MOT16 benchmark.

Although this provides indicative performance for both components, it is not ideal

as there is a lack of evidence provided for how the system would perform when

having to track multiple classes, especially when faced with additional challenges

like ID switching, missed detections, and miss-classification of objects. Within

the context of an audio production setting, a MOT that is able only able to track

a single class of object will have limited application given the variety of sound

producing objects that are present in most productions. Given that, further

progress may be required to integrate the SOTA object detections algorithms

outlined in Section 5.6.1, with the tracking methodologies of the models outlined

in Table 5.5, before the kind of system explored in this chapter can be fully

realised. GMOT has the potential to afford a greater flexibility than traditional

object-specific trackers as it would allow the user to specify on a case-by-case

basis which types of objects require tracking and additionally provide varying

levels of specificity depending on what the scenario requires. Not only would this

provide more flexibility to content creators, but it may also alleviate the issue of

surplus information generation, as it would limit the amount of objects that are

detected and subsequently tracked.

In conclusion, although MOT and object detection and classification have all

seen great improvements in the SOTA in recent years, creating a unified system

that encompasses and performs highly in all three tasks is still an open problem.

Especially within the context of MCMOT or GMOT. Largely, it appears, that

one of the main barriers to progress stems from a lack of suitable annotated

datasets where a single dataset could be used as a unified benchmark. The

greatest challenge for further developing a system such as the one presented in

this chapter is within the capability to track multiple objects of multiple class

types across complex visual scenes.
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5.7 Summary

This chapter detailed the investigation and development of an early stage method-

ology for deriving audio metadata for objects within a simple visual scene. The

Google Object Detection API was described as the object detection system used

for this pilot study and how it can be adapted to provide basic object detection for

video content and the data used to compile an object dictionary from which audio

metadata can be derived. Following this, the Jaccard Index, calculated from the

object’s bounding box data from the current and previous frame, was suggested

as a simple method for checking inter-frame object continuity. Additionally, it

was suggested as a method for deriving trajectory data from the location data

of an object over successive frames. This resulting trajectory data can then be

transformed into panning values and transmitted into a DAW, such as Reaper, via

OSC. A simple method for suggesting sound effects from the BBCsfx library using

string comparison between class labels and audio file metadata was described

along with the limitations of this method and how more complex but robust

solutions exists through the use of word embedding models.

Results were then presented for each component of the content matching and

tracking system. The recommendation of relevant and appropriate candidate

sound effects files was limited due to the use of string comparison to identify meta-

data tags that matches the class labels of predicted objects in the scene. Potential

candidate audio files can also be missed due to inconsistent or incomplete tags

within the chosen sound effects repository and/or the class labels used by chosen

object detector. The results provide evidence that the output from computer

vision algorithms can be used to search arbitrary sound effects repositories to

return a selection of potential candidate audio files. Recommendations were then

given for alternative and more robust search methods, such as the use of word

embedding models. Additionally, combining multiple computer vision algorithms,

such as object detection, scene detection, and action detection, was suggested as

a way to potentially provide a more complete representation of the visual scene

which can then be used to suggest both sound effects and ambience files.
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In this study, the best performance with respect to spatial position and

trajectory tracking was for scenes containing a single object. Whilst correct

panning information could be derived for discrete frames containing multiple

objects, sensitivity to the differences in the outputted order of object data

resulted in the simple continuity check being insufficient to maintain continuity

over successive frames for scenes containing multiple objects. The results suggest

that there is potential to use object detection algorithms to facilitate audio object

positioning and dynamic panning. Computer vision algorithms that are able

to maintain object identities over successive frames, however, would provide a

more robust system from which to derive object trajectory data that can then be

transformed into audio panning data.

Overall, the results of this study indicate that utilising computer vision

algorithms to search large-scale, labelled, audio repositories and derive both

static and dynamic audio panning data is a valid approach. Potential areas for

further investigation would be the use of computer vision algorithms with the

ability to provide a more complete representation of the scene, which persists

across frames, with review by Jiao et al. [457] presented a comparison of 31 video

detection and tracking algorithms which may address the issue of inter-frame

continuity. Given the progress and availability of object tracking algorithms

designed for 360 video [495, 496] this would also facilitate taking the current

approach and extending it for 3D space. However, the availability of open source

code to facilitate building upon such video specific systems still appears sparse

when compared to traditional single image detection algorithms.
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Chapter 6

Predicting time-frequency

spatial parameters for use in

stereo upmixing using a

Residual U-Net

6.1 Introduction

The previous chapter proposed and tested a proof of concept methodology for

automatic panning and candidate sound effects suggestion developed using visual

object detection. This was in response to some of the findings outlined in Chapter

4. Although the results demonstrate the potential for computer vision to track the

trajectory of objects and generate appropriate panning data, further improvement

would require a more extensive investigation and utilisation of computer vision

techniques. This was, however, deemed to be outside the scope of this thesis.

The work in this chapter addresses additional challenges outlined in Chapter

4 relating to both the integration of stereo content within spatial productions

and the perceived lack of spatial sound effects libraries. A Multi-Channel U-Net

with Residual connections (MuCh-Res-U-Net) is presented, which was trained

on a novel dataset of stereo and parametric time-frequency spatial audio data
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to predict 360◦ time-frequency spatial parameters from a stereo input signal.

The predicted parametric features can then be applied to a number of different

spatial audio encoding methodologies to then upmix stereo content to a 3D

representation for both reproduction and storage.

This chapter also presents a dataset of IRs in stereo and Ambisonic format

collected to facilitate the training of the propose model. It contains IR for all

positions on a 50-point Lebedev quadrature in 9 stereo configurations, 32 capsules

from the Eigenmike, and up to 4th order Ambisonics derived from the Eigenmike

capsules. Details are given on its collection, availability and use within this thesis.

Finally, this chapter proposes two example stereo upmixing pipelines. The

first demonstrates how the predicted spatial parameters can be used as part

of parametric audio coding and upmixing methods, such as those proposed in

[149] and [497], to upmix stereo signals to arbitrary known multi-loudspeaker

configurations. However, unlike traditional stereo upmixing approaches, where

the repositioning of direct signal components is limited to the frontal section of a

channel-based loudspeaker array, and often only on the horizontal plane [405, 406,

497–501], the directional parameters predicted by the proposed MuCh-Res-U-net

will cover 360◦, enabling repositioning to any point on a sphere. The second

example uses the time-frequency directional features to extract and remap signal

components to target spherical harmonic components to facilitate the generation

of a full spherical representation of the upmixed sound field.

6.2 Relevant Background

Given the amount of two-channel stereo content that exists when compared

to multi-channel content, it may sometimes be desirable to convert or upmix

two-channel (low-order) stereo content into a format with a higher order spatial

representation [406, 497, 498]. Many of the upmix algorithms in the literature

provide channel-based upmixing as they aim to generate additional signals to

directly drive additional loudspeakers in a known configuration [405, 406, 498–

506], such as 5.1, or by using methods such as (VBAP) [135] to upmix to arbitrary
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2D or 3D configurations [499]. Within this context, upmix algorithms can be

more simply defined as generating a higher number of output channels from

a smaller number of input channels. It is often the case with IMEs that the

number of desired audio channels outnumber that of the programme material.

For instance, the programme material may consist of a stereo recording where

the target system is a 5.1 configuration that requires five full-range signals and

one band-limited low frequency signal. Additionally, it is worth noting that even

binaurally rendered Ambisonic audio is commonly first rendered to a virtual

multi-channel loudspeaker array before being rendered to binaural [69, 75, 161].

Upmixing can be classified into one of two types. The first is upmixing as

decoding, where an algorithm upmixes or decodes multi-channel content that has

been previously encoded [507]. For instance, Dolby Pro-Logic encoding/decoding

can encode 4-channel, 5-channel, and 7-channel surround sound into a two-channel

matrix encoded signal that can itself be decoded to retrieve an approximation

of the original multi-channel signals [508]. These algorithms are effective as the

encoded input signal often contains signal cues such as relative channel phase,

which can be used to aid the upmix process. The second, blind upmixing, is

where additional channels are generated based solely on analysis of the input

signal. As the vast majority of stereo content has not been downmixed from

existing multi-channel content, it is the latter type of upmixing algorithm that is

of interest in the context of this thesis.

Early upmix algorithms, such as those proposed by Gerzon [509], Dressler [510,

511], Irwan [512, 513], and Usher [514], upmixed (decoded) and/or dowmixed

(encoded) using matrix and/or linear filtering operations in the time domain.

Passive matrix decoders such as those proposed by Gerzon [509], are signal-

independent and require optimisation for different loudspeaker configurations.

The signals for the surround loudspeakers are often derived by taking the left,

SL, and right, Sr channels and calculating the difference SL − SR. However,

the difference signals can often still contain direct signal components, especially

for those sources panned hard left or right, which may cause distortions to the

stereo image. Active matrix decoders, such as those proposed in [510–513],
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introduce a steering algorithm to maintain more stable sound source positions

compared to passive decoders. The wide-band analysis used, however, is not able

to sufficiently differentiate and separate temporally overlapping dominant sources,

which, again, can introduce spatial distortions. More recent approaches tend to

favour processing in the time-frequency domain [497, 498, 500, 506, 515–520],

where frequency components are extracted and remapped from the original signal

to the target channel configuration [500, 506] and it is these methods which are

of particular interest in this thesis.

Avendano and Jot proposed two classes within which upmix algorithms could

be classified [498]:

• Multi-channel converters, which derive additional channels (e.g. for a centre

loudspeaker) with the aim of increasing the listening area while preserving

the stereo image.

• Ambience generation, which aim to extract and/or synthesise the ambient

component of a recording to be reproduced by the surround channels.

As noted by Kraft [497], most upmix algorithms use a combination of both

approaches: the input signal is first analysed and decomposed into its direct

and diffuse components, with diffuse component usually being decorrelated and

sent to the surround (rear and overhead) loudspeakers. The direct component

is processed using the multi-channel converter approach to create the required

number of output channels to drive all frontal loudspeakers.

6.2.1 Stereo Signal Model

Many stereo upmixing methods decompose a stereo signal into direct signal

components and diffuse signal components, the details of which are explored in

Section 6.2.2. However, firstly, a signal model is defined similar to that found in

the literature [497, 500]:

xi(t) =

N∑
j=1

s̄j(t) ∗ d⃗ij(t) +
N∑
j=1

s̄j(t) ∗ dψij(t) + ni(t) (6.1)
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where xi are the channel signals that result from the summation of the weighted

summation of sources s̄j convolved with the direct signal component d⃗ij and the

weighted summation of sources convolved with the diffuse signal component dψij

and where ni are background noise signals contributing to the ambience. d⃗ij(t)

and dψij(t) are also components of a room/system impulse response such that:

hij(t) = d⃗ij(t) + dψij(t) (6.2)

which simplifies equation 6.1 to be identical to Equation 2.35 such that:

xi(t) =

N∑
j=1

s̄j(t) ∗ d⃗ij(t) +
N∑
j=1

s̄j(t) ∗ dψij(t) + ni(t) (6.3)

xi(t) =
N∑
j=1

s̄j(t) ∗ hij(t) + ni(t) (6.4)

are equivalent.

6.2.2 Direct-Diffuse Decomposition

A common approach for many recent upmix systems is to transform the signal

into a time-frequency representation through techniques such as the STFT.

The time-frequency signal is then decomposed into its estimated direct and

diffuse components [407, 498, 500, 505, 517], sometimes also referred to as the

primary and ambient components respectively, enabling more effective separation

of temporally overlapping sources. Direct components are defined as those

signal components which are highly correlated with existing channels and diffuse

components are those signal components which have low correlation with the

existing channels [521]. For a detailed review of existing direct and ambient

decomposition methods see [411]. It is also generally assumed that only a single

dominant source is active within each time-frequency tile and that the direct

signal power is greater than the ambient signal power [149, 411, 497]. Within the

context of the signal model defined in equation 6.1 this can be defined as in [497]:

|Su(m,ω)| ≫
∑
∀̸=u

|S̄i(m,ω)| (6.5)
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where Su is a single dominant source for the time-frequency tile centred at time

instant m and in frequency band ω and where S̄i is all other sources present.

Several approaches have been proposed for direct-diffuse decomposition of

stereo signals. Goodwin and Jot [506] proposed the use of Principle Compo-

nent Analysis (PCA) where the primary (direct) component for each channel

is estimated as the projection of the channel signal onto the principal vector

derived from the largest eigenvalue, while the ambient components are assumed

to be the residuals showing low correlation. Vickers [522] proposed a similar

geometric decomposition utilised for center channel extraction. Goodwin and Jot

[506] note, however, that if the primary component does not have substantially

more energy than the ambient component, an amount of the ambient component

can remain present in the principal PCA component. This can cause erroneous

directional analysis of the direct components and suboptimal rendering of the

diffuse components. While decomposition through traditional PCA approaches

utilise intensity differences between the channels, it does not take advantage of

any time differences that may be present between the signals. He [411] proposed a

PCA based approach that analyses the time difference between the two channels

to aid in the decomposition. Ibrahim and Allam [523] also propose the use of

a weighting factor to estimate the presence of the dominant primary source to

improve the accuracy of ambient source separation.

Avendano [498, 500, 505] proposed a spectral method which calculates the

short-time coherence using cross-correlation and auto-correlation of the two stereo

channels to derive estimates of time-frequency panning and ambience indexes.

These indexes are then used to derive a time-frequency mask to extract the

direct and diffuse components. Faller [517] also proposed a similar time-frequency

approach but utilised a least-squares estimate to extract the direct and diffuse

components by minimising the error between the extracted signal and a stereo

signal model. A method based on subband mid-side decomposition was used

by Kraft [404] to estimate azimuth directions which were then used to separate

direct and diffuse signal components.
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6.2.3 Directional Estimation

For stereo signals, directional estimates for direct components are often based

on estimated panning coefficients α̂, which are derived from channel and inter-

channel comparisons such as cross-correlations and auto-correlations [497]. The

estimated panning coefficients are then used to calculate an estimated panning

index Ψ̂ which indicates the position of a signal component between the limits of

the stereo field; for instance, Ψ̂ = 0 would signify a centre panned source, Ψ̂ = -1

would signify a source panned hard left, and Ψ̂ = 1 would signify a source panned

hard right. An approximated source angle is then estimated using the obtained

panning index [497, 498, 517–519]. Kraft [497] conducted a comparison of the

panning estimation approaches in [498, 517–519], which found that once the

different approaches were unified under a common notation scheme the panning

coefficient estimates could be simplified to:

α̂ =
α̂R
α̂L

=

√
r0RR
r0LL

(6.6)

and the positional index is then simplified to:

Ψ̂ =
α̂− 1

α̂+ 1
=

√
r0RR −

√
r0LL√

r0RR +
√
r0LL

(6.7)

where r0XX is the power of the respective channel averaged over time-frames. In

[404] Kraft further simplifies this as:

Ψ̂ =
α̂− 1

α̂+ 1
=

|XR| − |XL|
|XL|+ |XR|

(6.8)

where XL and XR are the STFT magnitude spectrum of the left and right

channels respectively. The reader is directed to Appendix A in [497] for the full

comparisons and derivations.

As the panning index is estimated based on the panning law of sines [127], it

represents an approximate lateral position of a source between two loudspeakers

based on the inter-channel amplitude differences. From this index an estimated

source angle can be approximated using the angular position of the loudspeakers.

The relationship between Ψ̂ and estimated source angle θ̂ has been shown to be
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generally linear for typical two-channel stereo configurations of -45◦ ≤ θ0 ≤ −30◦

and be calculated as in [497]:

θ̂ = |θ0|Ψ̂ (6.9)

with source angle being approximated using:

θ̂ = arcsin(− sin(θ0)Ψ̂) (6.10)

The panning coefficients and positional indexes can then be used to remap the

components to the new target array using the chosen panning method.

6.2.4 Existing Tools

At the time of writing, there are a limited selection of plug-ins offering stereo to

Ambisonic upmixing available from companies such as, Blue Ripple [524], Nugen

[525], and Penteo [526] with Cardew [527] having released a freely available

plugin designed for horizontal only upmixing of existing stereophonic music

recordings. However, only Cardew provides in depth details on the algorithms

used, whilst the other plug-ins operate as “black boxes”, which is understandable

given they are commercial products. Blue ripple does, however, state that their

upmixing algorithm is designed for use with material that has been mixed using

conventional panning methods and is more akin to presenting the stereo material

as a stage that can be moved around the spatial scene, with an option spread the

left and right channels to varying degrees over the whole 3D space. It appears,

at present, there are no algorithms that enable the synthesis of B-format signals

from a stereo recording, that would be comparable to those generated had a

multi-channel or spherical microphone array been used to capture the original

source material.

6.2.5 Limitations of current approaches

There are, however, some limitations to the current approaches for stereo up-

mixing, particularly around the directional estimation of components. Firstly,

many of the algorithms in the literature are developed and tested using synthetic
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stereo material consisting of individually recorded sources positioned within the

mix using amplitude panning [411, 497, 498], or where live recordings have been

used these are normally using coincident microphones pairs, which again encode

the scene using predominately inter-channel amplitude differences and though

not explicitly stated, the sources of interest would most likely have been placed

in front of the microphone array. In this context we define the front as being

the direction the capsules are facing, and within the context of a bidirectional

polar patter it is the direction of positive polarity. In some cases, information

about how the material was captured is not provided [521]. As detailed in Section

2.6.6, stereo signals traditionally only account for a source’s lateral position,

providing insufficient information for traditional methods to discern its elevation

or whether it is positioned in front or behind the array. It is the practice of

stereo signals being replayed over frontally placed loudspeakers that introduces

a conceptual front and back. Conceptually, this seems reasonable, as although

a stereo signal can be viewed as a lateral representation of a sound field, it is

reasonable to assume that the microphone array would be pointed towards the

sources of interest, and when reproduced, the listener would be orientated towards

the reproduction system, thus creating a frontal representation of a given sound

field.

Upmixers aim to enhance this representation by generating ambience around

the listener that seeks to simulate the reflections and reverberation of the recorded

or synthesised environment [503]. They in effect create a frontally focused sound

field with additional surrounding ambience, which is generally adequate for

traditional screen based media where the action will be coming from the front

and therefore the attention of the audience will be directed towards the front.

This approach, however, introduces challenges for stereo signals recorded in

real environments as sources may be located at varying positions on both the

median and horizontal planes. Consider the example presented in Figure 6.1,

which shows a spaced stereo pair with 4 loudspeakers positioned at azimuth,

θ = [45◦, 135◦, 225◦, 315◦]. A sound is played from each speaker sequentially,

starting with the speaker at 45◦ and continuing in an anti-clockwise direction.
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Applying traditional methods of panning estimation would yield near identical

values for the sources at 45◦ and 135◦ as well as identical values for those

positioned at 225◦ and 315◦. The identical value pairs are a result of traditional

stereo localisation estimation methods being limited to lateral position, usually

based on either TDOA between the two microphone signals or the inter-channel

amplitude difference. This is a similar principle to that explored in Section 2.4.3,

where it is possible for each set of inter-signal differences, when based purely on

time and level difference, to exist for multiple locations.

Subsequently, were these signals to be upmixed using systems such as those

proposed in [404, 405, 498, 518] and reproduced over a 5.1 configuration the

perception of source movement around the array would not be congruent with

that observed during the recording. Instead, the direct components of the two

source positions at 45◦ and 135◦ would be reproduced at the front left of the

array and the two sources at 225◦ and 315◦ reproduced at the front right, while

each time the surround speakers would predominately contain the decorrelated

diffuse component.

The aim of this work is to develop a deep learning approach where, given

appropriate input features containing time, amplitude, and phase information,

a NN can be trained to approximate a mapping function that predicts spatial

features for a 360◦ space from the information contained within and derived from

a stereo signal. These spatial features can then be used to facilitate upmixing

methods that move away from frontally biased systems to ones that aim to

reproduce a sound field that approximates the spatial characteristics that would

have been present at the time of recording.

6.2.6 Machine Learning Approaches

A number of machine learning approaches to upmxing have been presented in

recent years, although they have predominately focused on channel-based methods.

Ibrahim and Allam [521] approach the task of direct-diffuse composition as a

classification problem, training a feed forward NN to classify each complex valued

time-frequency tile as either direct and diffuse. When used as part of an upmixing
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45o

135o 225o

315o

Figure 6.1: Spaced pair capturing sources from locations 45◦ 135◦ 315◦ and 225◦. This

illustrates the frontally biased nature of traditional stereo upmixing systems as the direct

components for sources at 45◦ and 135◦ would both be reproduced out of the front left

speaker and direct components for sources at 315◦ and 22◦5 both replayed out of position

315◦

system to upmix from stereo to a quad array, 10 out of the 11 listeners preferred

the NN method above traditional methods such as those proposed in [506] and

[498], as well as achieving the highest signal to distortion ratio which was tested

on each of the extracted direct and ambient components. Park et. al. [405]

proposed a deep neural network (DNN) to upmix from stereo to 5.1 within the

MPEG-H 3D framework [120]. A DNN was trained using log-spectral magnitudes

of quadrature mirror filter subbands to predict the center and surround channels

from the input stereo signals. The input signals are then mapped in the subband

space to the center and surround channels where they are transformed back

into audio signals via quadrature mirror filter synthesis. The approach is based

on the assumption that the center channel is some combination of the left and

right channels and the surround channels are derived as some amount of the

difference between two channels. The method proposed in [406] uses two DNNs

where one is trained to perform direct-diffuse decomposition and the other then
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renders the diffuse component. Both networks are trained to jointly minimise the

Mean Squared Eerror (MSE) between the magnitude spectra of the original and

the upmixed/decoded five channel signal as well as minimising the loss for the

ICLD. The network predicts spectral weights which are then multiplied with each

frequency bin in the stereo signal and acts as a mask to separate the direct and

diffuse components. In all cases, the current methods are concerned with deriving

signals to directly drive additional loudspeakers for use within channel-based

upmixing.

6.3 Dataset

6.3.1 Existing Datasets

An investigation into ML driven upmixing of stereo signals requires a dataset

that contains the relevant input-output pairs with which to train and evaluate

the model. In the case of this thesis, a dataset containing equivalent stereo and

Ambisonic signals was desired. Such a dataset would facilitate the training of a

model to approximate the mapping function from a given stereo scene to the 360◦

time-frequency spatial parameters for that scene, with the target time-frequency

spatial parameters being derived from the Ambisonic signals.

Given the increase in both the interest in ML applied to audio signal processing

and the use spatial audio within IMEs, there are a number of existing open source

spatial audio datasets that are available. For instance, a number of spatial audio

datasets have been used and released as part of the Detection and Classification of

Acoustic Scenes and Events (DCASE) challenges [430]. The first DCASE challenge

used a dataset consisting of 24 recordings of individual sounds, alongside 14 ≈1-

minute scripted sequences [430]. The recordings were captured in an Ambisonic

format, although only the stereo mix downs were publicly released. More recent

DCASE challenges, specifically the sound event localisation and event detection

(SELD) task, have utilised datasets consisting of synthesised scenes in both FOA

and four-channel tetrahedral array format [14, 528, 529], whilst the 2022 challenge

introduced a dataset containing recordings of real scenes [530]. A comparison
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DCASE2019 DCASE2020 DCASE2021

# rooms 5 13 13

# spatial RIRs/positions 504 discrete positions
≈200 spatial trajectories

(continuously captured SRIRs)

≈200 spatial trajectories

(continuously captured SRIRs)

Source-to-receiver distances 1m-2m 1m-5m 1m-5m

Spatial ambient noise 30dB SNR 6-30dB SNR 6-30dB SNR

Moving sources No Yes Yes

Non-target interfering events No Yes Yes

# polyphony/overlapping events ≤2 ≤2 ≤3 (+ ≤1 interf. event)

% same-class overlapping events low low high

# target classes 11 14 12

# event samples 220 ≈700
≈500 (target events)

≈400 (interferer events)

Table 6.1: Comparison of DCASE SELD datasets. Taken from [531].

of the DCASE datasets is shown in Table 6.1. Each of the datasets has been

rigorously produced encompassing different environments, a variety of different

sound events, varying levels of background noise and polyphony, and a high

spatial sampling density. The DCASE datasets therefore provide ideal data for

many tasks associated with machine listening and spatial audio processing, two

such examples being SELD and multi-channel source separation.

Green and Murphy presented Eigenscape [532], a dataset of soundscape

recordings consisting of 64 x 10 minute recordings evenly distributed over 8

classes of soundscape and available up to 4th order Ambisonics. This results in

80 minutes of audio data for each class and a total dataset length of just under

11 hours. Eigenscape has been predominately used to investigate auditory scene

classification and has shown to be a suitable dataset for training both classical

ML algorithms, such as Gaussian Mixture Models [115], and DNNs, such as

CNNs [533], using both FOA and HOA signals. FOA data has also been collected

from YouTube to train a self-supervised audiovisual model for aligning spatial

video and audio clips extracted from different viewing angles [410]. As part of the

Learning 3D Audio Sources 2021 (L3DAS21) Challenge [534], two datasets were

released for both 3D speech enhancement and 3D SELD. The datasets consisted

of FOA recordings that were synthesised by convolving monophonic sources with

IRs taken at 252 positions (168 on a fixed point grid and 84 from positions within
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a 3D uniform random distribution) within a large office room [534].

There are also a number of datasets consisting of spatial IRs, which one can

then use to synthesize scenes through the convolution of the IRs with monophonic

and anechoic source material. The IRs used as part of the dataset synthesis in [14]

were also released seperately as part of the TAU Spatial Room Impulse Response

Database (TAU-SRIR DB) [535] and consist of IRs captured in 9 different rooms

with SRIRs being extracted from noise recordings of sources moving slowly across

specified trajectories at intervals of ≈1◦ from the microphone. This does mean

that the exact SRIR directions differ slightly with each room, however, this

increases the ease with which moving sources can be emulated. Lübeck, Arend,

and Pörschmann presented a high-resolution SRIR dataset in [536], which was

captured using VariSphear [537], an automated single-microphone measurement

system. The Varisphear systems comes with a spherical microphone array

extension, which is a rigid spherical baffle that houses the measurement mic

and rotates about its axis to sample the sphere using a given grid configuration.

This facilitates the capture of high resolution spherical microphone array IRs,

whilst using only a single microphone. IRs were captured for 2702 sampling

positions using a 44 point Lebedev grid spherical microphone array configuration

[538]. BRIRs were also captured using a Neumann KU100 dummy head for 360

directions along a horizontal circle in 1◦ steps. Furthermore, given that the IRs

captured are equivalent to those captured using spherical microphone arrays,

Ambisonic signals may also be derived through additional processing.

It is suggested by Cobos et al. [539], that one of the limiting factors in

developing deep learning derived spatial audio methods is the lack of sufficiently

large multichannel audio datasets that would adequately facilitate the training of

DNNs. It is clear from this non-exhaustive review that there exists, at present,

a selection of spatial audio datasets available that are both of high quality and

open source that might contribute towards this challenge. The ones detailed in

this section contain both real and synthesized scenes, as well as spatial IRs, from

which one could synthesize new scenes. All the datasets discussed in this section,

however, lack the property of containing equivalent stereo and Ambisonic data.
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The only dataset that the author was able to find, possessing both spatial and

stereo data, has been presented by Gao and Grauman in [540], and contained both

binaural and stereo recordings captured simultaneously by mounting a GoPro

HERO6 Black [541], which records stereo, on top of a 3Dio binaural microphone

[542]. At the time of writing, and to the author’s knowledge, there are currently

no open source datasets that feature recorded or synthesised sound scenes in both

Ambisonic and stereo formats, where the stereo signals have not been derived

from the Ambisonic signals. Whilst coincident stereo signals can be derived from

Ambisonic recordings, and there is ample evidence of this derivation being used in

studies requiring both Ambisonic and stereo signals [534, 543, 544], the resulting

signals would differ from those captured with real stereo microphone techniques

(detailed in Section 2.6.3) in that the two Ambisonically derived signals would be

in theory, perfectly coincident, something which is physically impossible given

real microphone arrays as it would require them to occupy exactly the same

location in physical space. It was therefore decided to synthesise a novel dataset of

equivalent stereo and Ambisonic sound scenes. Additionally, given the complexity

of the intended task, it would be beneficial for initial algorithm development

to be conducted with simple spatial scenes whose attributes, such as number

of objects, polyphony, and level of background noise could be controlled and

quantified, similar to the datasets presented in [14, 528–530]. This level of control

over the training data would then enable further testing and development on

more complex scenes as appropriate. From this portion of the work two distinct

datasets are produced; the stereo and Ambisonic IRs and the sound scenes which

are synthesised using the IRs and an ambient recording. The target features and

input features are then derived from the resulting sound scenes.

6.3.2 Dataset Formats

The IR dataset consists of two-channel stereo IRs for 9 stereo configurations, the

32 channels captured from an Eigenmike, and spherical harmonic components up

to 4th order derived from the Eigenmike signals using the Eigenunits plugin [165].

Details of the microphone configurations are shown in Table 6.2. The stereo IRs
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encode spatial information differently depending on the stereo configuration used.

All stereo pairs will contain, to some degree, time of arrival differences due to the

spacing between capsules. This holds true even for coincident techniques such

as XY and Blumlein since the capsules are physically unable to occupy exactly

the same point in space. There will also be ICLD due to the physical space

between capsules, the angle of incidence between the source and the two capsules

when using directional pickup patterns, and the angle and distance between the

two capsules. The Blumlein pair will also encode the directional of arrival with

phase information/differences due to the bi-directional pickup pattern of each

microphone.

The naming convention for the IR is:

• {Mic config} IR {loudspeakerNumber} azi {position} el {position}.wav

with the scene naming convention being:

• fold{num} {Mic config} mix {mix num}.wav

6.3.3 Sound Events

Sound event samples used were from the NIGENS General Sounds Events

Database [545], as also used in [14]. The Database contains 714 sound sam-

ples distributed across 14 classes of, alarm, barking dog, burning fire, crash,

crying baby, female and male scream, female and male speech, footsteps, knocking

on door, piano, ringing phone, and running engine. It contains an additional 303

samples within the general class which are any sounds that do not fit into the

previously mentioned 14 classes, giving a total of 1017 audio files. The samples

vary in length between 1s and 5 minutes with most being sampled at 44.1 kHz and

32-bit precision. The dataset was originally curated for use within computational

auditory scene analysis tasks, such as sound event detection and classification.

As such, it 8 pre-defined splits which divides up the dataset into 8 folds of equal

size.

The dataset consists of sounds compiled from other open source libraries.

Speech samples are taken from the GRID [546] copora, scream samples from
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freesound.org [547], general samples were taken from both freesound.org and

StockMusic, with all other classes being attained from StockMusic. For further

details on the recordings and the database the reader is referred to [545].

6.3.4 Impulse Response Specification and Acquisition

The dataset was captured using the mh Acoustics Eigenmike em32 [165], a

spherical microphone array with 32 captures arranged on a rigid sphere and

capable of up to fourth-order Ambisonic capture, and the selection of microphones

listed in Table 6.2 were used to capture a variety of stereo configurations including

spaced, coincident, and near-coincident. All IRs were measured using 10 second

exponential sine sweep following the method proposed in [106]. Genelec 8040A’s

captured all positions at 0◦ 90◦ and -90◦ elevation whilst all other positions

were captured using 8030Bs. All sweeps were played back at a peak A-weighted

amplitude of approximately 80 dB. The Eigenmike IRs were recording using the

proprietary Firewire interface while the stereo configurations were recorded using

a Presonus DigiMax DP88 microphone pre-amplifier. All microphone arrays were

aligned in the centre of the loudspeaker using laser level meters, with spaced and

coincident pairs then having their distance and orientation with respect to each

other set using a stereo microphone bar. All IRs were captured and extracted at

24-bit resolution and 48 kHz sampling rate. For IR capture the heavy theatre

curtains were drawn around the rig to limit interference from reflections. Due to

the location of the measurement rig there was a risk of interference from noise

sources in and outside of the building, therefore sweep recordings were repeated

if necessary. IRs were generated through the ‘deconvolution’ of the measured

sweeps with the inverse of the original sweep, as proposed in [106]. Figure 6.2

shows an example set up for IR capture with a spaced pair, a Blumlein pair, and

an Eigenmike.

6.3.5 Spherical Harmonic IR Encoding

The raw IRs from the Eigenmike were also converted into spherical harmonics up

to fourth-order using the EigenUnits® software tool described in [548]. Although
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(a) Spaced pair (b) Eigenmic

(c) Blumlein pair

Figure 6.2: Microphone configurations set up for IR capture and positoned using laser

level meters.
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Set Name Array Configuration
Microphone/s

used

Microphone

Directivity Pattern
Spacing Orientation angle

AB Omni 30 AB Pair AKG C414 XLS Omnidirectional 30 cm Parallel

AB Omni 40 AB Pair AKG C414 XLS Omnidirectional 40 cm Parallel

AB Cardioid 30 AB Pair AKG C414 XLS Cardioid 30 cm Parallel

AB Cardioid 40 AB Pair AKG C414 XLS Cardioid 40 cm Parallel

Blumlein Blumlein AKG C414 XLS Bidirectional Coincident 90◦

DIN DIN Rode NT5 Cardioid 20 cm near coincident 90◦

NOS NOS Rode NT5 Cardioid 30 cm near coincident 110◦ near coincident

ORTF ORTF Rode NT5 Cardioid 17cm near coincident 90◦

Eigen SPH Rigid Spherical Baffle Eigenmike
up to 4th Order

Spherical Harmonics
8.4cm diameter spherical array

Eigen raw Rigid Spherical Baffle Eigenmike omnidirectional 8.4cm diameter spherical array

Coincident XY Rode NT4 Cardioid Coincident 90◦

Table 6.2: Details of IR sets captured including configuration, spacing, capsule angle,

and microphone used.

the spatial aliasing frequency for the Eigenmike is stated as approximate 9 kHz

in the official documentation, analysis by McKenzie [549] found spatial aliasing

occurs above approximate 5.1 kHz. Due to the physical limitations of the array

configurations 2nd-4th order components are also by default highpass filtered

with cut-off frequencies set to 400 Hz, 1 kHz, and 1.8 kHz respectively. The

spherical harmonic IRs follow the ACN and SN3D conventions detailed in Section

2.6.5; referred to collectively as the AmbiX format.

6.3.6 Dataset Availability

The dataset of IRs is available under a Creative Commons license downloadable

as .wav files. The dataset contains the IRs for 9 stereo configurations, raw capsule

records from the Eigenmike and the encoded spherical harmonic conversions

[550].

6.3.7 Sound Scene Synthesis

Sound scene synthesis follows a similar procedure proposed in [14], but is adapted

to generate scenes in both Ambisonic and stereo format and is explained here for

completeness. The procedure is the same for both Ambisonic and stereo scene

synthesis. The sampling rate of the synthesised scenes is user defined and in this
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instance was set to 44.1 kHz. As discussed in Section 6.3.3, the NIGENS database

provides 8 pre-determined splits, splits 1-6 were for the creation of the training

set, split 7 for the validation set, and split 8 for the test set. This ensures none

of the sound samples used to validate or test the model are used during training,

which reduces the possibility of data leakage across the training and evaluation.

The training strategy is discussed in detail in Section 6.6. The onset of each sound

event within the scenes were randomly distributed but adhered to the specified

level of polyphony which could range between one to five. All sound events

locations are static and were spatialised by convolution with the respective IRs

for their randomly assigned DoA from the available 50 positions with IRs being

resampled if required. Overlapping sound events have a user defined minimum

angular distance between them. Finally, a random portion of the two-minute

ambient recording was selected and added to the synthesised sound scene at a

specified signal-to-noise ratio, in this case 30dB. All scenes generated were 7

seconds in length and a total of 6000 unique scenes were generated. This resulted

in a dataset comprising of 11 hours and 36 minutes of sound material. Figures

6.3 and 6.4 show the log-magnitude spectrograms of a scene synthesised for the

training set in both stereo and Ambisonic format respectively.

6.3.8 Target Feature Extraction using Directional Audio Coding

Analysis

The desired target features are a diffuseness index and a direction of arrival for

each time-frequency component in spherical coordinates, azimuth θ and elevation

ϕ, in radians. These are common features often used in traditional upmixing

systems to extract, reposition, and render the direct and diffuse components of

a given signal. As the aim of the network is to predict these features within

a 360◦ space, target features were extracted from the synthesised Ambisonic

scenes using Directional Audio Coding (DirAC) analysis [149]. Developed from

an existing method for impulse response reproduction [173], DirAC was devel-

oped as a flexible, perceptually motivated method of parametric spatial sound

representation, reproduction, and transmission [551] that could be used to re-
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Figure 6.3: Log magnitude spectra extracted from a stereo scene synthesised using the

methodology outlined in Section 6.3.7

Figure 6.4: Log magnitude spectra extracted from a B-format scene synthesised using

the methodology outlined in Section 6.3.7
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produce 2D and 3D sound fields using arbitrary audio reproduction methods

[150]. Applications of DirAC include improved spatial reproduction of B-format

signals using time-frequency parametric direct and diffuse rendering [149, 150],

enabling reduced data rate transmission for telecommunication systems by only

transmitting the omnidirectional pressure component (W channel) along with

the necessary spatial metadata for reconstruction [151], and the development of

parametric spatial audio effects based on the manipulation of parameters derived

from DirAC analysis [551, 552]. Spatial features derived from DirAC analysis

have also been used to successfully train sound scene classifiers [11, 532].

The design of DirAC is based on a number of assumptions about the interaction

between a sound field and human spatial sound perception, for a full review

see [149]. The most relevant to this work is the assumption that at any one

time instant humans can only decode single cues within each critical frequency

band from the summed signals received from the ear canals, an assumption

supported by evidence presented in [553]. Simply put, this means that for each

time-frequency tile there will be a single perceptually dominant cue for each

parameter. These parameters are the DOA of the incident sound energy and

the diffuseness/inter-aural coherence index and will determine how a listener

perceives the spatial impression of the given sound field. As such, DirAC analysis

derives a single parameter value for each time-frequency tile for each parameter.

For parameter derivation, the B-format signals were first transformed into

the time-frequency domain using the STFT method as detailed in Section 2.5.5.

The STFT was calculated using a non-symmetric Hann window with a length of

1024 and a hopsize of 512. This corresponds to a window length of duration 23

ms at a sampling frequency of 44.1 kHz with 11.5 ms between successive frames.

The non-symmetric nature of the window ensured COLA compliance as also

detailed in section 2.5.5. It is important to ensure that window length is sufficient

in length for correct low-frequency analysis but also that it is able adequately

capture sound events that are very short or transient in nature.

Directional analysis utilising B-format signals is performed as per [149] and

[551], using an energetic analysis of the sound field based on the STFT domain
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representations of the sound pressure P (m,ωk) and particle velocity U⃗(m.ωk) at

the recording position, where m, ωk are time and frequency indices respectively.

The W channel signal is regarded as proportional to the sound pressure, while the

three orthogonal pressure gradient signals X, Y, and Z capture signal properties

considered to be proportional to sound velocity. This gives the relationship [551]:

P (m,ωk) =W (m,ωk) (6.11)

U⃗(m,ωk) = − 1√
2Z0

X⃗ ′(m,ωk) (6.12)

where X⃗ ′(m,ωk) = [X(m,ωk), Y (m,ωk), Z(m,ωk)]
T is the vector of B-format

pressure gradient signals and Z0 is the characteristic impedance of air. The

3-dimensional instantaneous intensity vector is an estimate of the direction of the

net flow of energy and is calculated for each frame m and frequency bin ωk as:

I⃗(m,ωk) = ℜ{E{P ∗(m,ωk)U⃗(m,ωk)}} (6.13)

where ∗ represents the complex conjugate of a complex number and E{·} is a

short time averaging operation which for an un-averaged intensity vector I⃗raw

can be expressed as:

E{I⃗(m,ωk)} = εI⃗raw(m,ωk) + (1− ε)E{I⃗raw(m− 1, ωk)} (6.14)

where ε ∈ [0, 1] is the time-constant in seconds of the exponentially decaying

estimation window:

T =
1

εfs
(6.15)

where fs is the STFT sampling frequency.

As the intensity vector is said to point in the direction of the net flow of

energy, the direction of incidence is defined to be the opposite direction of the

intensity vector and points towards the source [149]. This can simply be defined

as:

D⃗(m,ωk) = − I⃗(m,ωk)

||I⃗(m,ωk)||
(6.16)

The resulting matrix D⃗ contains time-averaged directional of arrival (DOA)

estimates for each time-frequency tile. The desired azimuth and elevation angles
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in radians can be derived from this as follows [115]:

θ = arctan

(
I3
I1

)
(6.17)

ϕ = arccos

(
I2

||I⃗||

)
(6.18)

where I1, I2, and I3 are the first-order channel matrices contained within I⃗.

The diffuseness index is estimated in the STFT domain as [517]:

ψ(m,ωk) = 1−
√
2||ℜ{E{P ∗(m,ωk)U⃗(m,ωk)}}||

|E{P ∗(m,ωk)}|2 + ||E{U⃗(m,ωk)}||2
(6.19)

where a value of ψ = 0 indicates the net flow of energy from a given time-

frequency tile corresponds to the total energy within that time-frequency tile. A

value of ψ = 1 indicates there is no net transfer of acoustic energy within that

time-frequency tile and thus indicates a completely diffuse sound field.

Lastly, the short-time averaged energy vector can be derived as in [554]:

E⃗(m,ωk) = |E{P ∗(m,ωk)}|2 + ||E{U⃗(m,ωk)}||2 (6.20)

Initially, features were derived from sound scenes sampled at 44.1 kHz, which,

with the previously detailed STFT parameters, yielded a frequency resolution

of approximately 43 Hz and a temporal resolution of 23 ms and resulted in a

matrix of size 604 x 513 x 4 for a single training example. Due to memory

constraints it was decided to derive features from sound scenes resampled to

22.05 Hz. Keeping the same window length to maintain the absolute number of

frequency bins resulted in a matrix of size 303 x 513 x 4. The window length is

now of duration 46 ms with the start of each successive window being separated

by 23ms. The frequency resolution is now approximately 21.5 Hz with a lowest

detectable frequency of approximately 100 Hz.

6.4 Input Features

The selection of appropriate input features is an important consideration when

designing any neural network (NN) system. NNs are often referred to as universal
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function approximators, this does mean, however, that assuming an appropriate

network architecture, there must also exist some mathematical function capable

of deriving the desired target from the information available within the input

features. If the input features are ill-conditioned for the chosen problem and

do not contain the requisite information, then the network will be unable to

approximate the desired mapping function. As the aim of the network is to

predict multiple target features it is important that the selected input features

contain appropriate information that can be applied to the prediction of each

target feature.

6.4.1 Pre-processing

Prior to feature extraction the raw audio signals are normalised to zero-mean

and unit-variance such that:

XstereoNorm =
Xstereo −mean(Xstereo)

std(Xstereo)
(6.21)

The channel signals must be normalised as a stereo pair to maintain their inter-

channel relationship. This normalisation method centers the data around zero

which has been shown to be beneficial for training NNs [555]. For networks

that utilise multiple types of input features, which may be quite different with

respect to numeric scale, normalisation ensures that all features are within a

similar numeric range and that the values are not too large when compared to the

networks initial weight values. Input features with large and/or heterogeneous

values can potentially cause large gradient updates which can at best slow down

convergence or at worst prevent convergence and cause the network to become

unstable [196].

6.4.2 Short-time log-magnitude spectrum

Each of the stereo channels are transformed into a time-frequency representation

using the STFT with identical parameters to those used during the target feature

extraction explained in Section 6.3.8. A logarithmic function is then applied
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to retrieve the log-magnitude spectrum and this is typically done as another

form of normalisation. Once the log-magnitude spectrum has been obtained,

zero-mean unit-variance normalisation can again be applied. This process can be

represented mathematically by the following:

SLdB(m,ωk) = 20 log10

(
SL(m,ωk)

ref

)
(6.22)

SRdB(m,ωk) = 20 log10

(
sR(m,ωk)

ref

)
(6.23)

where SL(m,ωk) and SR(m,ωk) are time-frequency domain representations of the

left and right stereo channels, while the respective time-frequency log-magnitude

representations are SLdB(m,ωk) and SRdB(m,ωk). For the TorchAudio imple-

mentation used within this work, ref= 1.0 [556].

6.4.3 Generalised Cross-Correlation Phase Transform (GCC-

PHAT)

Although this work does not focus on predictions relating to discrete sound

events, and therefore it is not classed as a sound event localisation and detection

(SELD) problem, the aim of the network predicting the dominant direction of

arrival for each time-frequency tile can be seen as a related task. For this reason,

the Generalised Cross-correlation with phase transform (GCC-PHAT) [557] was

chosen as one of the input features as it is widely used for estimating time

difference of arrival (TDOA) and is commonly used for SELD based machine

listening tasks [558]. However, tasks that utilise stereo signals often focus only

on the detection of frontal objects [558, 559], while tasks interested in locating

objects within a 3D space often utilise multi-channel microphone arrays and

derive the GCC-PHAT for each pair of microphones within the given array [14–16].

The intuition for this experimental work is that given an appropriate dataset

combined with an appropriate model, the network may be able to recognise and

utilise complex patterns within the stereo data to map to parameters in a 360◦

space.

The GCC-PHAT is calculated by first transforming the channels into the

frequency domain and combining them through a generalised cross-correlation as
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defined in [560]:

ΨG[ωk] = X∗
1 [ωk]X2[ωk] (6.24)

where Xn is the frequency domain representation of the given channel. The phase

transform (PHAT) is then applied such that the magnitudes are normalised and

any effects due to amplitude are eliminated:

ΨP [ωk] =
ΨG[ωk]

|ΨG[ωk]|
(6.25)

The iFFT is then applied which results in a histogram-like representation and is

obtained by:

ψP [ωk] = F−1

{
ΨG[ωk]

|ΨG[ωk]|

}
(6.26)

where F−1 is the iFFT and which results in the feature that will be used as input

into the proposed network. The delay between the signals can be estimated by

reading the histogram such that:

τ = arg max ψP [n] (6.27)

It should be noted that when being used within machine learning applications it

is common for the GCC-PHAT to be captured for each timeframe resulting in a

2D feature map.

6.5 Architecture

The Multi-channel Residual-U-Net (MuCh-Res-U-Net) proposed in this thesis

combines the multi-channel U-Net approach detailed in [561] with a similar

Residual-U-Net backbone to that used in [562] and [563]. Originally developed

for image segmentation tasks [220] the U-Net architecture has been found to

be effective when applied to a number of audio related tasks including source

separation [561, 564–568], musical score following [569], voice conversion and

cloning [570, 571], denoising [572, 573], and audio synthesis [410, 574]. An

additional reason for choice of a U-Net style architecture is that it lends itself

to tasks where the input and output data are of similar dimensions due to the

symmetry of the encoder and decoder paths. For the purposes of this study an
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original U-Net architecture is chosen as the baseline with which the performance

of the proposed MuCh-Res-U-Net will be compared against.

6.5.1 U-Net Baseline

The original U-Net architecture proposed by Ronneberger, Fischer, and Brox

[220] , is used in this work as a baseline with which to compare the proposed

MuCh-Res-U-Net. The original U-Net, as shown in Figure 6.5, consists of an

encoding path and a decoding path with skip connections that are passed from

the encoding layer to the corresponding decoding layer. The encoding path is

similar to traditional convolutional neural networks (CNN) where the resolution

of the feature maps decrease through consecutive layers while the number of

feature maps/number of filters increases. The encoding path in the original

U-Net network consists of convolutional blocks that contain two successive 3 x 3

convolutions followed by a ReLU activation function and a max pooling layer.

The original U-net utilises 4 such blocks. The decoding path then upsamples

the resulting feature maps using 2 x 2 up-convolutions, typically referred to as

transposed convolutions within common deep learning frameworks such as Pytorch

[575]. Each transposed convolution is followed by two 3 x 3 convolutional layers

and a ReLU activation. The final stage includes an additional 1 x 1 convolutional

layer to map to the desired number of output channels. The intuition behind the

use of skip connections between the encoder-decoder pathways is that it allows

the decoder blocks to recover and utilise spatial information that may be lost

during the downsampling process. The baseline will also use the original number

of features map for each layer which correspond to [64, 128, 256, 512]

6.5.2 Residual Connections

The Residual U-Net adopts the residual connections introduced within the ResNet

architecture[576]. Residual connections have been shown to improve the training

of deeper NNs by mitigating the vanishing gradient problem which is caused

by small derivatives being multiplied together during back propagation and can

result in increasingly small gradients for earlier network layers. Li [577] also
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Figure 6.5: Original U-net architecture taken from [220]. Blue boxes correspond to a

multi-channel feature map. The number of channels is denoted on top of the box. The

x-y size is provided at the lower left edge of the box. White boxes represent copied

feature maps. The arrows denote the different operations.

demonstrates that the loss landscape, and by extension the ease and stability with

which a network can be trained, changes with the inclusion of skip connections

as shown in Figure 6.6. Residual connections reduce this issue by taking the

feature map from one layer and element-wise adding it to a deeper layer in the

network. Not only does this serve to preserve the information from earlier feature

maps, it also changes the function that the layer has to approximate. Rather

than being required to approximate the mapping function H(x), it instead has to

approximate the residual function H(x)− x. The complete block can therefore

be formulated as in [578]:

yl = F(x, {Wi}) + I(x) (6.28)

xl+1 = f(yl) (6.29)
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Figure 6.6: Loss surfaces for a ResNet-56 without skip connections (left) and with skip

connections (right). Visualisation taken from [577]

where xl and xl+1 are the input and output of the residual unit respectively,

F(·) is the residual function, f(·) is the activation function, and where I(·) is
the identity mapping function where generally I(·) = xl. This assumes that the

optimal desired function is closer to an identity mapping than to a zero mapping

[576]. Figure 6.7 shows the structural difference between a regular convolutional

block and one with a residual connection. Additionally, the derivative of a sum

operation, such as the identity mapping, is 1.0, and this allows the gradient to

flow back through that operation unaffected which again helps to mitigate the

vanishing gradient problem inherent in deep networks.

6.5.3 Multi-channel Residual-U-Net (MuCh-Res-U-Net)

The proposed MuCh-Res-U-net is an encoder-decoder DNN that utilises the

advantages of both the U-net and residual NN architectures. The skip connections

between the encoder and decoder pathways allows for information to propagate

from the encoding layers to the decoding layers. This serves to preserve and

propagate localised features that may otherwise be lost due to the dimensionality

reduction of the deeper encoding layers. The residual connections within the

encoder and decoder blocks facilitate two main advantages; firstly, they reframe

the modelling problem to one of modelling the residual between the input and

targets, as opposed to the complete transform from input to target [563]. Secondly,
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Figure 6.7: Regular convolutional block used in U-Net (right) and Residual unit used in

Res-U-Net (left)

they allow gradients to be backpropagated unimpeded to earlier initial layers due

to the nature of derivatives of summation operations. This mitigates the vanishing

gradient problem previously mentioned which causes gradients to approach zero

for earlier layers due to sequential multiplications of small numbers.

This thesis utilises a 9-level Res-U-Net architecture, as shown in figure

6.8, with a multi-channel output to predict time-frequency parametric spatial

features equivilant to those resulting from the DirAC analysis of B-format signals.

As shown in Figure 6.8, the network comprises three main stages: encoding,

bottleneck, and decoding. The encoding pathway encodes the input features into a

high number of low dimensional representations. The bottleneck serves to connect

the encoding and decoding pathways and has an internal structure identical to

the encoder blocks, the decoding pathway then decodes and extracts the target

features with the final convolutional layer extracting the required number of

output feature maps. All stages utilise residual connections, convolutional blocks,

and identity mapping. Each convolution block contains a batch normalisation
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Figure 6.8: Proposed MuCh-Res-U-Net architecture
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layer, a Leaky ReLU activation layer and a convolutional layer. As the model is

convolutional it can process input sequences of arbitrary length [563], only being

limited by the amount of available compute resources. Apart from the first block,

two convolutional blocks are stacked sequentially as can be seen in Figure 6.9.

Batch Norm

Downsample 
Convolution

Batch Norm

Convolution

Leaky ReLU

Leaky ReLU

Identity
Mapping/Addition

(a) Encoder Block

Concatenate 

Batch Norm

Leaky ReLU

Convolution

Batch Norm

Leaky ReLU

Convolution

Identity
Mapping/Addition

Upsampling

(b) Decoder Block

Figure 6.9: Encoder and decoder blocks for MuCh-Res-U-Net.

At the feature extraction stage, prior to the time-frequency transform, there

is a noise injection layer which randomly adds Gaussian noise to the time-domain

signals based on a given probability. Noise injection has been shown as an

effective regularisation method as it serves as a type of data augmentation to

prevent the network overfitting through continuous sampling of the noise inherent

in smaller datasets [579, 580]. The amount of noise added is scaled according

to each example in order to achieve a SNR of 20 dB, a value reached through

iterative testing.

The encoding path consists of 4 encoding blocks, each of which has a dropout

layer prior to the input into the block. Dropout is another simple regularization
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method designed to prevent overfitting where neurons and their connections are

effectively deactivated for that training step [581]. The neurons selected to be

dropped are chosen at random according to a user defined probability between 0

and 1; for example, a value of 0.25 would mean each neuron has a 25% chance of

being dropped. This serves to reduce the co-adaption of neurons. As a different

set of neurons are dropped each time, this can be viewed as a form of architecture

augmentation and results in the network being trained from a sample of reduced

or thinnned networks [581]. Whereas the original U-net used a maxpooling for

dimensionality reduction, the proposed network uses a convolutional layer with a

stride of 2 at the start of each encoding block, which results in a downsampling

of the feature maps by a factor of 2. The identity mapping is achieved through

the use of a convolutional layer with a kernel size of 1 and serves to broadcast the

input to the correct number of channels at the block output. The input signal is

then summed with the output of the final convolution layer in the block.

The decoding path also comprises 4 blocks, the structure of which is shown

in Figure 6.9b. Each block first upsamples the feature maps by a factor of 2

followed by a concatenation with the skip connection from the corresponding

encoding block. The rest of the decoding block structure is then identical to that

of the encoding block. After the last decoding block a convolutional layer with

a kernel size of 1 x 1 is then used to approximate the final mapping from the

multi-channel feature maps to the target features. The output layer consists of

either 2 feature maps if predicting time-frequency azimuth and elevation values

or 3 feature maps if also predicting the time-frequency diffuseness index.

Whilst it is common for many networks based on convolutional blocks to

have fewer filters in early blocks, typical starting values being 32 and 64 [220,

561, 572], in this instance it was found through initial experimentation that the

network under investigation began to converge earlier and more stably with fewer

layers, but containing a higher number of filters.

Although both the original U-net [220] and Resnet [576] architectures utilise

a ReLU activation function, the MuCh-Res-U-Net instead uses the Leaky ReLU

activation. Due to the ReLU function being zero when x < 0 problems can
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arise similar to that of the vanishing gradient issue. The dying ReLU problem

[582] refers to a situation where ReLU neurons become inactive and only output

zero for any input, this could be caused, for instance, by a large negative valued

bias. This in turn causes the derivative with respect to that neuron to also

be constantly zero, effectively stopping the flow of gradients back through that

neuron which results in the weights not being updated and causing it to become

stuck in a local minima [583]. Even in situations where the ReLU does not remain

inactive indefinitely, training can be slowed as during optimisation the gradient

is 0 whenever the unit is not active, and thus will not have its weights adjusted

by the optimiser [584].

6.6 Training

6.6.1 Dataset

The proposed MuCh-Res-U-Net was trained on the AB Omni 40 set, detailed

in Table 6.2. The choice to train the network on a single stereo configuration

was made in order to limit the complexity of the problem space for this initial

investigation. The intuition is that the required mapping function for a single

stereo configuration is going to be mathematically simpler to approximate than

a mapping function that is sufficient to account for multiple stereo configurations

that each possess varying time-frequency characteristics including, directional

response, frequency response, and inter-channel differences resulting from the

spaced distance and degree of coincidence. The AB Omni 40 set was chosen

based on the results of an initial set of experiments conducted on 60 training

examples to ascertain which stereo configuration had the potential to converge

the fastest. It is acknowledged that 60 examples is too small a dataset on which

to base any definitive conclusions of training potential, however, as the work

was practically limited by available compute power it was decided this would

be adequate in deciding on a configuration with which to conduct this initial

investigation. Additionally, the omnidirectional signals allow for either channel

to be taken as an approximation for the omnidirectional pressure component
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which will simplify the upmixing pipelines as detailed in Section 6.7. The 40 cm

separation allows the network to take advantage of both TDOA information and

some degree of inter-channel level differences, whilst the distance from either

microphone to the furthest loudspeaker is not enough to cause a substantial drop

in magnitude compared to that of a source coming from the closest loudspeaker.

For example, the closest loudspeaker will be approximately 1.3m away from a

given microphone and the furthest would then be approximately 1.7m. Using

Equation 2.9 this can be calculated to result in an approximate maximum SPL

difference of 3dB. 6000 x 7 second samples were synthesised at 22.05 kHz for

training, validation, and testing. Reduced bandwidth audio was used to reduce

the computational cost. The dataset of synthesised scenes was split into folds

according to the NIGENS split the sound events originated from. This resulted

in 4500 examples for training, 750 for validation, and 750 for final testing which

yields a percentage split of 75% training, and 12.5% for each of the validation

and test sets.

6.6.2 Experimental Set-up

The input feature vector was of shape 303 x 513 x 3 corresponding to 303 time

frames, 513 frequency bins, and 3 features maps for the GCC-PHAT and the

STFT of each stereo channel. As there exists a large number of adjustable

hyperparameters it is often not possible to conduct an exhaustive search of the

the complete n-dimensional hyperparameter space. Therefore, a hyperparameter

search was conducted using a grid search approach facilitated by the Weights and

Biases library [585]. The list of hyperparameters explored can be found in Table

6.3. The maximum number of epochs for each tuning run was 100, although

some runs were terminated early if they were seen to be overfitting or if the

model became unstable and produced NaN values for at least 3+ epochs. The

final selection of hyperparameters were based on the validation performance of

the model. It is important, however, to note that while weight updates were

not directly effected by the validation loss, basing design choices on validation

performance will introduce some inherent data leakage in the training process,
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Parameter Range Step size Final selection

Learning Rate (η) 0.0001 to 1 ηnew = 2ηold 8 x 10−4

Warmup Steps [1, 100, 1000, 10000, 15000] N/A 1000

Dropout [0, 0.5] N/A 0.0

Noise injection probability [0, 0.5] N/A 0.5

Zero-mean Unit-var norm [True, False] N/A True

log transform [True, False] N/A True

No. of Conv. layers 3,4 N/A 4

No. of filters

[128, 256, 512, 1024]

[64, 128, 256, 512]

[128, 256, 512]

N/A [128, 256, 512, 1024]

Table 6.3: Details of hyperparameter sweeps including parameters and defined search

range.

hence the need to reserve a final completely unseen test set. The selected model

had 154.8 million parameters.

A learning rate schedule was adopted that consisted of a linear warm-up

over 1000 steps to a maximum learning rate of η = 8 × 10−4. The learning

rate remained static for 2 × warm-up steps before following a scheme of Cosine

Annealing with warm restarts [586] with 10 epochs for the initial restart with the

number of epochs between subsequent restarts increasing each time by a factor

of 2. Defined in [587] as:

ηt = ηmin +
1

2
(ηmax − ηmin

(
1 + cos

(
Tcur
Ti

)
π

)
(6.30)

where ηt is the learning rate for current step, ηmax is the maximum learning rate,

ηmin is the minimum learning rate, Tcur is the number of epochs since the last

restart, and Ti is the number of epochs between two restarts.

Training and validation loss were recorded after each epoch for both total

loss and individual feature loss. An adaptive gradient clipping method proposed

in [588] was used which sets a clipping threshold based on the history of gradient

norms observed the training run. This helps to minimise the risk of exploding

gradients caused by the often non-smooth nature of NN loss landscapes [589] and
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allows for an appropriate selection of the clipping threshold parameter without

having to include it in a hyperparameter search. It was set to clip to the 10th

percentile of the derived threshold as this would help to ensure any outliers would

not have a disproportionate impact the clipping threshold. This work uses the

Mean Squared Error (MSE) between the estimated time-frequency parameter

values and the ground truth parameter values as the loss function and can be

defined as:

loss(ŷi, yi) =
I∑
i=0

1

K

K∑
k=0

(ŷik − yik)
2 (6.31)

where ŷik is the prediction for the kth time-frequency tile in the ith target feature

map. The losses from each feature are summed to get the final loss.

The model was trained on a single Nvidia RTX 3090 [590] using mini-batch

gradient descent with a batch size of 6 and optimised using Adam with decoupled

weight decay regularisation [587]. To increase the effective batch size and negate

some of the issues associated with small batch sizes, such as larger inter-batch

variance, gradient accumulation [591] was utilised to create an effective batch

size of 45. The final model configuration was trained for 100 epochs with model

checkpointing each time the validation loss reached a new minimum.

6.7 Example Upmixing pipeline

6.7.1 Upmixing using Directional Audio Coding

Figure 6.10a shows a generic time-frequency parametric stereo upmix processor.

The main differentiation between such stereo upmixers and other spatial time-

frequency parametric processors, such as DirAC [149], is usually the number

of accepted input channels and whether the panning estimation is done on a

lateral or 360◦ basis. This in turn determines the behaviour of the decorrelation

and repanning block. As previously mentioned, parametric stereo upmixers such

as those proposed in [497–500, 503], are usually limited to lateral positional

estimates on the horizontal plane with direct components assumed to be coming

from the front. Replacing the panning estimation block with the proposed
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(b) Stereo upmix processing with panning estimation block

replaced by proposed MuCh-Res-U-Net

Figure 6.10: Block diagrams showing a) generic time-frequency parametric stereo upmix

processor and b) A stereo upmix processor with the panning estimation block replaced

by the proposed MuCh-Res-U-Net that predicts direct/diffuse parameters for 360◦ space

MuCh-Res-U-Net, as shown in Figure 6.10b, would allow for the directional

and diffuseness parameters be predicted for 360◦ space. Many upmix processors

are designed and tested using synthetic stereo material, where placement in the

stereo field is determined solely by inter-channel amplitude differences. This may

introduce challenges when using traditional directional estimation methods to

upmix stereo signals recorded using spaced configurations due to the addition

of TDOA between the two stereo signals and the comparatively small ICLD.

If the same time-frequency tile from each signal is repositioned to the same
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location the phase differences caused by the TDOA may potentially lead to comb

filtering artefacts during playback. In these situations it may be beneficial to

instead derive a mono downmix from the original stereo signals prior to the time-

frequency analysis as shown in Figure 6.11. For this work, the mono downmix

is approximated by simply processing only one of the two stereo channels. This

assumes that the inter-channel amplitude differences should be negligible for most

standard spaced stereo pairs and therefore each signal would have a very similar

magnitude spectrum if the TDOA were removed. As discussed in Section 6.3.8, an

omnidirectional signal can approximated for the sound field pressure component,

which can then be used, given adequate spatial metadata, to reconstruct a spatial

sound field using parametric time-frequency spatial audio system such as DirAC

[151].

6.7.2 Upmixing to B-format

Time-frequency
analysis

Directional
parameter

Predictions via 
MuCh-Res-U-Net

Time-frequency
synthesis

Spherical harmonic
channels 

Time-frequency 
feature extraction

Signal 

Meta-data

L

R

Mono Downmix

Time-frequency
synthesis

Spherical harmonic
encoding

Stereo Input

Figure 6.11: Block diagram of proposed stereo to B-format upmixer utilising directional

parameters predicted by MuCh-Res-U-Net
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The proposed MuCh-Res-U-Net can also be applied as part of a scene-based

upmixing pipeline whereby the predicted time-frequency directional parameters

can be used to extract and remap frequency components into target spherical

harmonic components. Although the pipeline itself is relatively simple, as shown

in Figure 6.11, it allows the frequency components to be mapped in 3D space

in such a way that the resulting spatial representation could be comparable to

that which would have resulted had the scene been captured with a suitable

microphone array, given an accurate enough model.

An example is now presented of a pipeline to upmix a stereo scene captured

with a spaced stereo pair to first order spherical harmonic components, which

will be referred to by their B-format channel labelling. First, a mono signal

must be derived to represent the W channel which, as detailed in Section 2.6.5.1,

is an omnidirectional pressure signal. Due to the low inter-channel amplitude

differences, the mono signal can be approximated using one of the two stereo

signals such that:

W ≃ SL∥SR (6.32)

where SL and SR are the left and right stereo channels respectively. The W

channel is then transformed into the time-frequency domain using the process

detailed in Equation 2.48 which for brevity will be represented as:

W (m,ωk) = ST FT {W} (6.33)

Directional features are then predicted by the network and these are used to

extract and weight the frequency components according to the target spherical

harmonic coefficients [160]:

βσmi(m,ωk) =W (m,ωk)Y
σ
mi(θ̂(m,ωk), ϕ̂(m,ωk)) (6.34)

Where:

• βσmi(m,ωk) is the time-frequency representation of the Ambisonic channel

representing the spherical harmonic Y σ
mi,
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• W (m,ωk) is the time-frequency representation of the W channel from which

the frequency components are being extracted and remapped. This approach

is similar to that proposed in [151] where DirAC for telecommunications

only transmits the metadata and W channel, discarding the other B-format

channels after DirAC analysis.

• θ̂(m,ωk) and ϕ̂(m,ωk) are the predicted time-frequency directional param-

eters for azimuth and elevation respectively.

Lastly, the resulting time-frequency Ambisonic channels can then be returned

into the time-domain expressed as:

βσmi = ST FT −1{βσmi(m,ωk)} (6.35)

where ST FT −1{·} is the inverse STFT.

6.8 Results and Discussion

6.8.1 Neural Network

Table 6.4 shows the performance on the test set with respect to the MSE loss

while Table 6.5 shows the hyperparameters of each model. Figure 6.12 shows

the validation loss for each model over epochs. The baseline model (black line)

takes longer before it starts to noticeably optimise and once it does it begins to

converge much slower than the MuCh-Res-U-Net models and also settles into

a local minima with a higher loss value. The loss for MuCh-Res-U-Net-Best

appears to be continuing to reduce, albeit it at a very slow rate, indicating that

an increase in training time or further model/training optimisation may continue

to yield improvements in the model’s accuracy. The slight increases in the loss

observed around epochs 30 and 59 coincide with the learning rate warm restart.

Whilst MuCh-Res-U-Net-overfit followed the same optimisation rent for the first

approximately 30 epochs, it began to overfit due to lack of regularisation, and

specifically we can see from Figure 6.13 that it began fitting to the background

noise of the training set. Most networks will begin to overfit at some stage
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Figure 6.12: Validation loss curves for baseline mode, best performing model, and a

model that is representative of overfitting. The measured loss Baseline and MuCh-Res-

U-Net-Best continue to decrease slowly over time while the MuCh-Res-U-Net begins

to overfit at around epoch 35 as evidenced by the increase in its loss value. The sharp

peaks in the loss curves coincide with the learning rates warm restart.

without regularisation, however, one potential cause for the overfitting in this

instance is due to how the ambient noise for each training sample was synthesised.

As discussed in Section 6.3.7, a 2 minute long recording was made to capture the

ambient noise of the measurement space, but given that there are 4500 training

samples in total, each 7 seconds in length, the same sections of that background

noise will be present in many of the training samples. The repeated sampling of

the noise makes it more likely for the network to start to converge on a mapping

function for the specific noise distribution present within the training set.

The MSE, whilst a common loss function for regression tasks, is measured in

squared units and does not provide an intuitive loss value with respect to “how

far away” the predictions are from the ground truth in the units of interest. With

respect to the directional parameters, the MSE is providing an error value in
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Model
RMSE

Total azimuth (θ◦) Elevation (ϕ◦) Diffusness (ψ)

Baseline U-Net 1.75 95.11 31.51 0.034

MuCh-Res-U-Net-Overfit 1.74 94.19 30.88 0.176

MuCh-Res-U-Net-Best 1.72 92.82 30.37 0.170

Table 6.4: MSE results for the test set. Results are given for both individual parameter

loss and total loss. Total loss is calculated as the sum of parameter losses. Loss θ and ϕ

was calculated in radians but have been converted into degrees for clarity. Results show

across all parameters MuCh-Res-U-Net achieved the lowest loss value.

radians squared. Taking the root of the MSE, which results in the Root Mean

Square Error (RMSE), provides a loss value in the units of interest. Upon initial

examination, the model appears to be performing poorly as the RMSE indicates

an error value of 92.8◦ for azimuth predictions and 31.5◦ for elevation predictions.

However, it should be noted that these values are derived from 155,439 equally

weighted time-frequency tiles that represent the entire time-frequency spectrum,

and as such may not be appropriate given the complex inter-tile relationships that

exist within sound spectra. Additionally, the importance of accuracy with respect

to different parts of the time-frequency spectrum will vary depending on the

sources contained within them. It would arguably be more important to correctly

predict directional values for time-frequency tiles relating to sound sources than it

would be for the parts of the spectrum only containing diffuse background noise.

Consequently, the MSE may not be the best placed loss function to optimise

for the intended mapping function given that all time-frequency tiles contribute

equally to final loss value. From an analysis perspective it also fails to provide a

comprehensive insight into the model’s performance across the time-frequency

spectrum.

Figure 6.13 shows predicted and ground truth azimuth values for 3 randomly

selected examples from the test set for the baseline and MuCh-Res-U-Net-Best

models. The ground truth values are those derived directly from B-format signals

using DirAC analysis whilst the predicted values are from the models using stereo
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Parameter Baseline MuCh-Res-U-Net-OverFit MuCh-Res-U-Net-Best

Learning rate 0.0008 0.0008 0.0008

Warmup Steps 1000 1000 1000

Dropout 0.0 0.0 0.0

Noise injection probability 0.0 0.0 0.5

Zero-mean Unit-var norm True True False

Log transform True True True

No. of Conv. layers 4 4 4

No. of filters [64, 128, 256, 512] [128, 256, 512, 1024] [128, 256, 512, 1024]

Table 6.5: Hyperparameters for the models shown in Figure 6.12

signals as input. Although the MSE values in Table 6.4 would give the impression

that the model is performing poorly, as can be seen from visualising the data

the model is in fact beginning to generalise relatively well to the parameters as

they relate to the part of the time-frequency spectrum occupied by the source

within the scene. The noise injection utilised by MuCh-Res-U-Net-Best, which

randomly applies Gaussian noise to 50% of input samples, succeeds in regularizing

the model, although, the model fails to improve substantially in the remaining

≈60 epochs. This could indicate that there is a greater challenge in optimising

the network to approximate a general mapping for the parts of the spectrum

where the frequency content can be considered random or diffuse noise, which in

this case is related to the ambient background noise of the training example. A

similar trend can be seen for both elevation and diffuseness predictions as shown

in Figures 6.14 and 6.15.

When the model was allowed to overfit an interesting effect is observed on

the predictions made on the validation set. Figure 6.16 shows prediction and

ground truth data for MuCh-Res-U-Net-Overfit after training for 100 epochs.

As the model begins to fit to the noise in the training data it starts predicting

similar noise like spectra in the ambient portion of the validation set examples,

as expected. This causes an increase in validation loss as the noise component

predicted is not aligned with the noise component present in the validation set.

However, given the nature of diffuse background noise it is unimportant in this
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(a) Baseline (b) MuCh-Res-U-Net-Best

Figure 6.13: Ground-truth and predicted time-frequency azimuth parameter values for

the a) baseline U-Net and b) MuCh-Res-U-Net-Best. Each row is a randomly selected

example from the test set, with the left hand column containing the ground truth data

and the right hand column containing the output from the model.

context as to whether the predicted directional parameters for the frequency

components related to the noise are closely aligned with that of the ground truth,

as long they are still sufficiently diffuse in nature. Although the predictions from

the model are objectively getting further away from the ground truth, the portion

relating to the direct sound source are still generalised well, and the diffuse

distribution of directional parameter values relating to the ambient component

of the training example could, in fact, be desirable. It is also worth noting that

the time-frequency tiles occupied by the ambient background noise tend to also

have higher diffuse index values as shown in Figure 6.15 and will therefore likely

contain much less directional energy. However due to the limitations of the

DirAC analysis used to derive the target features, all time-frequency tiles will

be allocated a given direction even if there is little directional energy contained

within it.
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(a) Baseline (b) MuCh-Res-U-Net-Best

Figure 6.14: Ground-truth and predicted time-frequency elevation parameter values for

the a) baseline U-Net and b) MuCh-Res-U-Net-Best.

6.8.2 Evaluation of B-format upmix pipeline

Several stereo sound scenes were upmixed into B-format using the pipeline

detailed in Section 6.7.2 to provide some preliminary evaluation. Figures 6.17 and

6.18 show the spectrogram of the original B-format channels and the upmixed

B-format from stereo signals using the method proposed in Section 6.7.2. Given

these two signals were captured with two different microphones, in slightly

different locations within the measurement rig, and that the W channel channel

derived from the Eigenmike has already gone through a filtering process, there

are differences between the the spectra as expected. A consequence of this is

that many of the perceptually driven metrics, such as those presented in [592],

which base the comparison on how similar the predicted signal is to the ground

truth will likely score this system poorly.

To illustrate, Table 6.6 shows scores given to two scenes that have been

upmixed from stereo to B-format and an unrelated upmixed and B-format scene
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(a) Baseline (b) MuCh-Res-U-Net-Best

Figure 6.15: Ground-truth and predicted time-frequency diffuseness parameter values

for the a) baseline U-Net and b) MuCh-Res-U-Net-Best.

for comparison, all of which use original B-format signals as the reference, these

include the Aggregate STFT [593] loss, the multi-resolution STFT loss [594], and

a perceptually motivated NN model trained on JNDs scores [595].

Model
Loss

Aggregate STFT Multi-resolution STFT ML JNDs

Fold4 mix 003 2.01 2.12 2.22

Fold6 mix 265 2.01 2.13 2.73

Unrelated scenes 3.94 4.0 3.10

Table 6.6: Results for audio loss metrics comparing upmixed B-format to original B-

format.

As expected, none score particularly highly, however the upmixed scenes do

score better with their original counterpart than unrelated scenes. What this

234



6.8. RESULTS AND DISCUSSION

Figure 6.16: Ground-truth and predicted time-frequency azimuth parameter values for

MuCh-Res-U-Net-overfit taken from the validation set. Note how when the model overfits

it begins to predict similar to noise like spectra in the ambient portion of the training

example.

establishes is that similarity metrics, although useful as perceptually motivated

loss functions, may not be the most appropriate type of metric for assessing this

particular class of upmix algorithm as there will always be inherent differences that

stem from the microphones, recording equipment, and any processing required

used to capture and encode the respective input and ‘target’ signals. In this

instance, evaluations based on preference scores, such as mean opinion scores,

may be more appropriate.

As the perceptual metrics used earlier in this section are primarily intended

to be used as perceptual loss function for training neural networks, as opposed

to perceptually evaluating spatial scenes, additional evaluation of the pipeline

was performed to quantify the spatial accuracy of the upmixed signals, when

compared to known ground truth signals. The IRs used to synthesise the training

data were also used to spatialise a 3s pink noise burst, followed by 0.5s of silence,
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Figure 6.17: Upmixed W channel (Top) original W channel (bottom). Perceivable

different in spectra may be a consequence of the microphone, recording equipment, and

any subsequent processing that went into capturing and encoding the shown signals.

at all sampled locations on the horizontal and all elevation locations directly

frontal to the receiver, which due to the Lebedev sampling scheme were located

at azimuth positions 0◦, 18◦, or 45◦. The directional performance of the upmix

algorithm is evaluated based on the spherical distance, as defined in [15], between

the DOA estimations (DOA-Est) for the upmixed B-format signals and the

ground-truth B-format signal and will be referred to as the Total DOA error. It

can be calculated as follows:

∆DOA3D = arccos(sin(ϕ̂) sin(ϕ) + cos(ϕ̂) cos(ϕ) cos(|θ − θ̂|)) (6.36)

where ∆DOA3D is the Total DOA error as spherical distance in degrees ◦ and θ̂, ϕ̂

are the DOA-Est from the upmixed B-format signals and θ, ϕ are the DOA-Est

for the ground-truth B-format signals.

When referring to the DOA error for a single direction, either θ or ϕ, the 2D

angular distance used, as defined in [596]:

∆DOA2Dθ = |θ − θ̂| (6.37)
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Figure 6.18: Upmixed X channel (Top) original X channel (bottom). Perceivable different

in spectra may be a consequence of the microphone, recording equipment, and any

subsequent processing that went into capturing and encoding the shown signals similar

to that observed in figure 6.17

where ∆DOA2Dθ is error in the azimuthal direction and where error in the

elevation direction, ∆DOA2Dϕ, is calculated by :

∆DOA2Dϕ = |ϕ− ϕ̂| (6.38)

The DOA-Est are derived from the unsmoothed intensity vector, as defined

in Section 6.3.8, using the MATLAB library presented in [597]. The acoustic

intensity measurements are sampled across time using a window length of 100

samples with an overlap of 50% and are used to compute histograms of their

estimated DOAs, weighted by the magnitude of the vectors. DOA-Est are made

on a vector of spherical grid points with a resolution of 5◦. The grid locations

associated with the greatest number of DOA estimates are assumed to represent

the directions of the dominant sound sources and are determined based on Von-

Mises peak-finding, presented in [598], which facilitates DOA estimates for a

specified number of sources over the length of the given signal. Table 6.7 details

the DOA error for all examples given in this section.

Figure 6.19 shows the the DOA-Est histograms for a pink noise burst spa-

tialised to θ = ϕ = 0◦ for both the upmixed and ground truth B-format signals.
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Ground truth location (◦)

θ, ϕ

Ground-truth DOA-Est (◦)

θ, ϕ

Predicted DOA-Est (◦)

θ, ϕ

DOA error θ (◦)

∆DOA2Dθ

DOA error ϕ (◦)

∆DOA2Dϕ

Total DOA error (◦)

∆DOA3D

0,0 0,-5 20,5 20 5 22.34

45,0 45,-10 70,5 25 15 29.07

90,0 95,-5 80,0 15 5 15.79

135,0 140,-5 25,-10 115 5 113.55

180,0 -175,0 -25,-5 150 5 149.62

-135,0 -135,0 -90.-5 45 5 45.22

-90,0 -90,0 -90,0 0 0 0.00

-45,0 -40,-10 -110,-5 70 5 69.47

0,90 0,90 -40,70 40 20 20.00

45,65 40,60 95,40 55 20 39.07

0,45 5,35 20,45 15 10 15.19

18,18 20,10 110,15 90 5 87.42

18,-18 15,-25 105,-25 90 0 79.71

0,-45 -5,-45 10,-40 15 5 12.11

45,-65 45,-70 85,-55 40 15 23.07

0,-90 0,-90 -15,-65 15 25 25.00

Table 6.7: DOA errors derived from DOA historgram estimates for upmixed B-format

signals when compared to ground truth B-format signals.
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(a) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(b) DOA estimates for ground-truth B-format

signals

Figure 6.19: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of the (a) upmixed B-format signals and (b) ground truth B-format signals.

Stereo input source is a 3s pink burst spatialised to θ = ϕ = 0◦ using IRs from the

AB omni 40 set.
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(a) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(b) DOA estimates for ground-truth B-format

signals

Figure 6.20: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of the (a) upmixed B-format signals and (b) ground truth B-format signals.

Stereo input source is a 3s pink burst spatialised to θ = 45◦, ϕ = 0◦ using IRs from the

AB omni 40 set.

As well as a Total DOA error of 22.34◦, there is also evidence of greater fluctu-

ations and variability in the DOAs estimated for the upmixed B-format signal.

This infers that there exists some spatial instability between time frames within

the predicted directional parameters, where the predicted values cause DOA

estimates to fluctuate between time-frames to a greater extent than is present

in the ground truth data. Figure 6.20 shows the results for a pink noise burst

spatialised at θ = 45◦, ϕ = 0◦, which resulted in a DOA error of 29.07◦. There

is also similar evidence of spatial instability with respect to the spatialisation

derived from the predicted parameters. However, in this instance the instability

seems to be much more localised to the horizontal plane within ±20◦ elevation

with the DOA-Est having a higher concentration around the dominant peak,

which suggests a more stable spatial image.

Figure 6.21 shows the DOA-Est for a pink noise burst at θ = ±135◦, ϕ = 0◦.

Although these positions are symmetric about the median plane, there are clear

differences between the results for each. For θ = −135◦, shown in Figure 6.21a,

the DOA error is 45◦ and the predicted parameters have been unable to produce
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an upmix where the source is positioned to the rear of the receiver but instead

positioned it at the extent capable of traditional stereo directional estimates.

The source appears, however, to be spatially stable, as evidenced by the high

concentration of DOA-Est within a smaller number of grid locations. However,

a source position of θ = 135◦, shown in Figure 6.21c, not only results in a

higher DOA error of 113.5◦, but additionally, results in greater fluctuations in

DOA-Est that span across the entire frontal region, which may be indicative

of spatial artefacts. Also of note is the high secondary peak at θ = −85◦, ϕ =

−10◦ indicating that the source may be perceived as fluctuating between those

two positions, which was confirmed by informal listening. For these positions,

symmetric about the median plane, the predicted spatial parameters have failed

to result in any DOA-Est to the rear of the receiver, which means the network

was unable, in this instance, to predict directional parameters that result in the

sources being remapped to the rear by the upmix process.

For a pink noise burst spatialised at θ =180◦, ϕ = 0◦, Figure 6.22 shows the

predicted parameters appear to cause a front/back reversal in the upmix process,

which causes the upmixed source to again be placed frontal to the listener with

the DOA-Est being concentrated around θ = −25◦. It should be noted that this

does not mean that the model is incapable of predicting parameters in the range

of 90◦ < θ < −90◦ Instead, it cannot do so with enough consistency over the

time-frequency tiles containing the spectral content of the source as to ensure

enough of the spectral energy of the source is remapped to the correct positions

in order for the source to be perceived as coming from that position.

For pink noise bursts spatialised on the horizontal, the best performance, as

shown in Figure 6.23, appears to be for sources positioned at ±90◦ with DOA

errors of 15.79◦ and 0.0◦, for +90◦ and −90◦ respectively. There also appears to

be much less variability in the DOA-Est than for the other evaluated positions,

which is again evidenced by the concentration of DOA-Est within fewer grid

locations. This could be due to the inter-channel differences for the stereo signal,

and thus also for the extracted features from the stereo signal, being greatest at

±90◦ and enabling the network to more easily approximate the mapping function
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(a) DOA estimates for upmixed B-format signal
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(b) DOA estimates for ground-truth B-format

signals
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(c) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(d) DOA estimates for ground-truth B-format

signals

Figure 6.21: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of (a) and (c) the upmixed B-format signals and (b) and (d) the ground truth

B-format signals. Stereo input source is a 3s pink burst spatialised to (a), (b) θ = −135◦,

ϕ = 0◦, and (c), (d) θ = 135◦, ϕ = 0◦, using IRs from the AB omni 40 set.
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Intensity DoA Prediction, x: estimated
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(a) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(b) DOA estimates for ground-truth B-format

signals

Figure 6.22: Predicted DOA estimates resulting from the time-sampled intensity vectors

of the (a) upmixed B-format signals and (b) ground-truth B-format signals. Stereo input

source is a 3s pink burst spatialised to θ = 180◦, ϕ = 0◦ using IRs from the AB omni 40

set.

for these positions.

Figures 6.24 show the DOA-Est for sources located at elevation values of ±90◦,

which equates to directly above and below the receiver. Whilst the predicted

parameters are able to facilitate the upmix algorithm in positioning sources at

both positive and negative elevations their position is underestimated in both

the above and below cases. The Total DOA error is 20◦ and 25◦ for elevations of

+90◦ and −90◦ respectively. It is worth noting that for elevation values for ±90◦,

azimuth error does not impact the Total DOA error, as those elevation values

represent the points on the sampled sphere where all azimuth values converge.

A consequence of this is that if the DOA-Est of a source has a elevation value

of ϕ = ±90◦ it is perceived to be coming from all azimuth directions. This

can be seen in Figure 6.24 and is evidenced by the high DOA-Est count across

all azimuth angles, indicated by the yellow band at the top and bottom of the

grids for positions of ϕ = 90◦ and ϕ = −90◦ respectively. The results shown in

Figures 6.25, 6.26, 6.27, confirms the pattern of underestimation with respect to

elevation position, which is greatest for positions greater/less than ±65◦. The
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(a) DOA estimates for upmixed B-format signal
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(c) DOA estimates for upmixed B-format signal
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(d) DOA estimates for ground-truth B-format

signals

Figure 6.23: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of (a) and (c) the upmixed B-format signals and (b) and (d) the ground truth

B-format signals. Stereo input source is a 3s pink burst spatialised to (a), (b) θ = 90◦,

ϕ = 0◦, and (c), (d) θ = −90◦, ϕ = 0◦, using IRs from the AB omni 40 set.

Total DOA error for the sources positioned at θ = 0◦, ϕ = ±45 (Figure 6.25) is

19.08◦ and 12.11◦ for +90◦ and −90◦ respectively. Whilst source positions of

θ = 45◦, ϕ = ±65 resulted in Total DOA errors of 39.07◦ and 23.07 for ϕ = 65◦

and ϕ = −65◦, respectively, and source positions of θ = 18◦, ϕ = ±18 yielded

Total DOA errors of 87.42◦ and 79.71◦ for ϕ = 18◦ and ϕ = −18◦, respectively.

It should also be highlighted that, as shown in Table 6.7, a large contributor to

the error values for the elevated source positions are due to larger errors in the
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(a) DOA estimates for upmixed B-format signal
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(c) DOA estimates for upmixed B-format signal
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(d) DOA estimates for ground-truth B-format

signals

Figure 6.24: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of (a) and (c) the upmixed B-format signals and (b) and (d) the ground truth

B-format signals. Stereo input source is a 3s pink burst spatialised to (a), (b) θ = 0◦,

ϕ = 90◦, and (c), (d) θ = 0◦, ϕ = −90◦, using IRs from the AB omni 40 set.
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(c) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(d) DOA estimates for ground-truth B-format

signals

Figure 6.25: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of (a) and (c) the upmixed B-format signals and (b) and (d) the ground truth

B-format signals. Stereo input source is a 3s pink burst spatialised to (a), (b) θ = 0◦,

ϕ = 45◦, and (c), (d) θ = 0◦, ϕ = −45◦, using IRs from the AB omni 40 set.
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(a) DOA estimates for upmixed B-format signal
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(c) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(d) DOA estimates for ground-truth B-format

signals

Figure 6.26: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of (a) and (c) the upmixed B-format signals and (b) and (d) the ground truth

B-format signals. Stereo input source is a 3s pink burst spatialised to (a), (b) θ = 45◦,

ϕ = 65◦, and (c), (d) θ = 45◦, ϕ = −65◦, using IRs from the AB omni 40 set.
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(a) DOA estimates for upmixed B-format signal
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(c) DOA estimates for upmixed B-format signal

Intensity DoA Ground Truth, x: estimated
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(d) DOA estimates for ground-truth B-format

signals

Figure 6.27: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of (a) and (c) the upmixed B-format signals and (b) and (d) the ground truth

B-format signals. Stereo input source is a 3s pink burst spatialised to (a), (b) θ = 18◦,

ϕ = 18◦, and (c), (d) θ = 18◦, ϕ = −18◦, using IRs from the AB omni 40 set.
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azimuthal direction, with the results for elevation direction in isolation being

within 25◦ of the DOA-Est resulting from the ground truth. In some cases, the

DOA-Est for elevation appear closer to the truer intended source direction than

those derived from the ground truth B-format signals. However, this could be due

to the directional positions being explicitly specified during the upmix process

and those time-frequency tiles being encoded as point sources. Additionally,

the DOA-Est derived from the ground-truth signals may be influenced by small

positional differences with respect to the intended and actual relative source and

receiver positions at the IR capture stage, which would then have an impact on

the positional encoding of sources using those IRs.

From these preliminary results it appears that whilst the model has begun to

learn a mapping function for lateral position, it has not been able to approximate

the required mapping function for sources to the rear of the receiver. It does,

however, perform better than the RMSE loss values detailed in Table 6.4 would

suggest. There are two possible reasons that could be hypothesised as to why

the network has failed to learn a front/rear source mapping. Firstly, is that the

input features do not contain the required information to adequately differentiate

between front and rear source positions and different, or additional, input features

are required. Secondly, is that a more suitable training strategy is required with

respect to optimisation of the loss function, which would both investigate whether

the model being better optimised results in more accurate estimations of frontal

azimuth positions and whether better optimisation would result in the model

learning a more accurate mapping function to differentiate between front and

rear source positions. The results also suggest that the model has began to learn

an approximate mapping function for source elevation, which results in upmixed

sources being correctly positioned at either positive or negative elevation values,

although results show larger error values for source positions directly above or

below the receiver and exhibits, in some cases, spatial instability evidenced by

large variability in DOA estimates.

To get an indication of the model’s performance on unseen microphone

configurations and the effect this would have on source position in a subsequent
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upmix, pink noise was spatialised using IRs from the other stereo configurations

listed in Table 6.2 and then upmixed to B-format. Figures 6.28, 6.29, and 6.30

show the DOA-Est for a sources at θ = 45◦, ϕ = −65◦, and θ = 90◦, ϕ = 0◦, and

θ = 135◦, ϕ = 0◦, respectively, upmixed from Coincident, NOS, Blumlein, and

AB cardioid 40 configurations. Ground truth DOA estimates can be found for the

respective source locations in Figures 6.26d, 6.23b, and 6.21d. Results show that

those configurations containing appreciable ICTDs between microphone signals,

such as spaced and near-coincident configurations, produce lower Total DOA

error rates and appear to result in the remapping of sources in the elevation plane,

which results in a Total DOA error comparable to that of the examples using the

configuration on which the model was trained. This suggests that the current

model has approximated a mapping function that relies more on temporal features

than on features related to level in order to differentiate different elevation values

as well as lateral positions.
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(a) Coincident
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(b) NOS
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(c) Blumlein

Intensity DoA Prediction, x: estimated
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(d) AB cardioid 40

Figure 6.28: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of the upmixed B-format signals resulting from a stereo input source containing

a 3s pink burst spatialised to θ = 45◦, ϕ = −65◦, using IRs from the (a) Coincident, (b)

NOS, (c) Blumlein, and (d) AB cardioid 40 set.
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(a) Coincident
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(b) NOS
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(c) Blumlein

Intensity DoA Prediction, x: estimated
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(d) AB cardioid 40

Figure 6.29: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of the upmixed B-format signals resulting from a stereo input source containing

a 3s pink burst spatialised to θ = 90◦, ϕ = 0◦, using IRs from the (a) Coincident, (b)

NOS, (c) Blumlein, and (d) AB cardioid 40 set.
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(b) NOS
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(c) Blumlein

Intensity DoA Prediction, x: estimated
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(d) AB Cardioid 40

Figure 6.30: Directional grid of DOA estimates resulting from the time-sampled intensity

vectors of the upmixed B-format signals resulting from a stereo input source containing

a 3s pink burst spatialised to θ = 135◦, ϕ = 0◦, using IRs from the (a) Coincident, (b)

NOS, (c) Blumlein, and (d) AB cardioid 40 set.
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6.9 Summary

This chapter detailed the development, investigation, and evaluation of a DNN

trained to predict directional and diffuseness parameters for 360◦ space, using

input feature vectors extracted from stereo signals. Relevant background was

presented with respect to traditional methods of stereo upmixing with a specific

focus on methods for directional estimations of signal components and direct-

diffuse signal decomposition. Limitations of current methods were discussed

including the reliance on amplitude panned material and how this could present

challenges when applying current systems to stereo scenes recorded with spaced

pairs. Additionally, it was highlighted that the lateral nature of current stereo

directional estimation methods may result in erroneous spatial representations

for sources not positioned in front of the recording array and an example was

given to illustrate this.

A novel dataset of IRs was then presented that contained IRs for all loud-

speakers arranged according to a 50-point Lebedev quadrature sampled sphere

in both Ambisonic and stereo format. The IRs were 9 stereo configurations

covering spaced, coincident, and near coincident methods, as well as spherical

harmonic components up to 4th order, and 32 channels from the Eigenmike,

a rigid sphere spherical microphone array. These were convolved with sound

events from the NIGENs audio dataset to create equivalent stereo and Ambisonic

scenes that could be used as training data for a NN. A description of DirAC

was then presented which detailed the process of target feature extraction from

the synthesised B-format signals using DirAC analysis to derive time-frequency

directional and diffuseness parameters. Following on from this, the chosen input

features were discussed along with details of the feature extraction pipeline.

The architecture for the proposed network, referred to as MuCh-Res-U-Net,

was presented along with relevant background on key aspects of the architecture

including its use of a U-Net backbone along with residual connections within

both the encoding and decoding blocks. The original U-Net architecture was

also presented as the baseline for this study. Details of the training methodology
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and experimental set up were then given, including the rationale for only using a

single stereo configuration in order to first develop the system within a simplified

problem space. The method for hyperparameter selection was discussed as well as

the optimizer, learning rate schedule, and loss function that was used for network

optimisation.

Results were then presented based on the performance of the model on the

validation and test sets. Whilst the results provide evidence that the general

architecture and optimisation strategy has the potential to perform the chosen

prediction task, several shortcomings and challenges were highlighted. The

optimisation strategy did result in a reduction in the loss function, however

the resulting MSE value was still high in relation to the task. Despite this,

when visualising the data it became apparent that the network was able to

generalise and predict the directional and diffuseness parameters relating to

the time-frequency tiles associated with the sound source present in the scene.

However, it generalised poorly with respect to predicting the parameters for

time-frequency tiles associated with the ambient background noise. Since the

ambient background noise occupied a large proportion of the spectrum, this

would go some way to explaining the high loss value as each time-frequency

tile is treated as an individual regression and is equally weighted within the

loss function. It is suggested that a perceptually motivated audio domain loss

function, such as those presented in [592], may perform better given the domain

specificity of the task.

Observing the predictions of a model that was allowed to overfit, it was

noted that although the overfitting caused the validation loss to increase, this

was largely due to the predicted parameter values for the ambient portion of

the spectrum diverging from zero and appearing to be randomly distributed in

such a way that the predicted values for each time-frequency tile was further

away than their ground truth. However, given the nature of the ambient and/or

diffuse background noise it does not necessarily matter whether the predicted

directional parameters associated with the ambient portion of the spectrum are

closely aligned with the ground truth, and the reasons for this are two fold.
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Firstly, the time-frequency tiles associated with the background noise are likely

to be associated with higher diffuseness indexes and will therefore contain less

directional energy. A limitation of the DirAC analysis results in all time-frequency

tiles being allocated a given direction even if the directional energy contained them

would be imperceptible to the human hearing system. The information within

the time-frequency tiles associated with higher diffuseness indexes would also

have a greater proportion of their signal rendered according to the chosen diffuse

rendering method and less by the chosen direct component rendering method,

meaning that correct predictions for those time-frequency tiles are less important

and would ideally contribute less to the loss function. It therefore suggested

that future work may include the investigation of a spectral loss function that

is inversely weighted by the ground truth diffuseness index. Secondly, given a

suitably diffuse distribution it is unlikely to cause any perceptual distortions

with respect to the overall spatial image as long as the predictions for the time-

frequency tiles associated with the sound sources are accurate, as humans are

generally unable to differentiate between two sets of random noise assuming both

sets are taken from the same distribution. It may also be possible to set user

defined thresholds where any time-frequency tiles associated with a diffuseness

index above the threshold is dropped from the directional parameter prediction

and directional reproduction. Although, listening tests were outside the scope of

this initial investigation it is acknowledged that they would be needed to verify

the perceptual quality of the system and any subsequent optimisation.

Lastly, two time-frequency stereo upmixing pipelines were proposed that

utilised the predicted directional and diffuseness parameters to facilitate novel

methods of stereo upmixing. The novelty is in the ability for the system to predict

directional parameters around a 360◦ space in both the horizontal and median

planes, compared to traditional stereo upmixers where the spatial remapping

of directional components is limited to the horizontal plane and generally to

loudspeakers within the frontal portion of the array. The first upmix pipeline

was based on time-frequency parametric spatial audio systems, using the DirAC

pipeline as an illustrative example. The directional and diffuseness estimation
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stage is replaced with our proposed network which can predict the metadata used

to facilitate direct-diffuse decomposition and time-frequency directional compo-

nent extraction and remapping. This being suitable for application to arbitrary

2D and 3D loudspeaker arrays. The second method utilises the predicted time-

frequency directional parameters to extract and weight frequency components to

target spherical harmonic components using a single omnidirectional signal from

a spaced pair for spatial reconstruction. This allows for existing stereo material

to be upmixed and stored in B-format in a way that approximates the spatial

characteristics that would have been present at the time of recording.

Preliminary benchmark evaluations were conducted for the B-format upmix

pipeline using the Total DOA error between the upmixed B-format signals and the

ground truth B-format signals using pink noise spatialised with the IR dataset

that was also used to synthesise the training data. It was found that while

the predicted directional parameters could not successfully facilitate the spatial

remapping of time-frequency components such that objects were evaluated as

being placed to the rear of the spatial scene, they were able to map to both positive

and negative elevation values. These results provide evidence that there exists

information within stereo signals that can be used to derive height information.

Results also showed that there was greater variability in DOA estimates for

azimuthal values when compared to those for elevation values. When presented

with sources encoded into stereo configurations unseen during model optimisation,

those configurations containing appreciable ICTDs between microphone signals,

such as spaced and near-coincident configurations, tended to produce lower Total

DOA error rates and, in the single example examined, were still able remapped

the source to an elevation value which resulted in a Total DOA error comparable

to that of the examples using the configuration on which the model was trained.

This suggests that the current model has approximated a mapping function that

relies more on temporal features than on features related to level in order to

differentiate different elevation values as well as lateral positions. Both methods

aim to improve upon the current stereo upmix methods which typically create a

frontally focused sound field with additional surrounding ambience. The next
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chapter is the final chapter of this thesis, the work from previous chapters will

be consolidated and summarised along with highlighting the contributions of this

thesis to the broader field.
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Chapter 7

Conclusions and Further Work

This thesis presented a body of work with the overarching goal of investigating

the challenges associated with spatial audio production for IMEs and developing

novel methods of spatial audio production that may assist in the design of spatial

soundscapes. This final chapter will summarise the work presented in previous

chapters, drawing together key findings and observations. Following this, the

hypothesis proposed in Chapter 1 will be revisited and evaluated based on the

work presented. Finally, areas of future work will be discussed and how they

might build upon the progress made by the the work within this thesis.

7.1 Thesis Summary

Chapter 2 began by introducing the fundamentals of sound and audio signal

processing. This included an overview of how sound propagates through space and

a selection of sound field encoding and reproduction methods relevant to the work

presented in later chapters. An introduction was then provided of digital audio

signal processing methods that underpin much of the technical work in this thesis,

with a particular focus given to time-frequency analysis and processing. Chapter

3 defined immersion within the context of this thesis and what is considered as

an IME. Additionally, it provided an overview of the common categories of IME

and the role and contributions of spatial audio to the experience of the user.

Chapter 4 presented an investigation into sound design approaches for IMEs,
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focusing on the perspectives of practitioners working in the field. The methods

of data collection were described in addition to an explanation of the thematic

analysis framework used to interrogate the data. The generated themes were

then explored and followed by a discussion framed around common topics that

emerged across the themes. The analysis highlighted several areas of potential

research which were then subsequently discussed with a view to informing future

work both within this thesis and the wider research community.

Chapter 5 built on some of the conclusions from Chapter 4 and presented

the investigation, development, and evaluation of an early stage methodology for

deriving audio metadata from objects within a 2D scene and then used this to

facilitate automatic panning and candidate sound effect suggestions. A description

of the system architecture was given and included details on the computer

vision algorithm used, the inter-frame continuity check, and object trajectory

and panning derivation, concluding with a proof of concept methodology for

candidate sound effects suggestion using the BBC Sound Effects archive [25]

as the target repository. The obtained results indicated that, for scenes with

more than one sound object, a more robust method of ensuring inter-frame

continuity is required to maintain consistent positional tracking of objects over

subsequent frames if accurate panning data is to be derived. In principle, it

was also confirmed that using object classification is a viable method to search

through sound effects repositories in order to suggest candidate sound effects

files. Given recent advances in language models, the simplistic search method

used as a proof of concept could easily be improved upon and several options for

this were proposed.

Chapter 6 continued the investigation into machine learning approaches

to sound spatialisation, with the aim of addressing another of the challenges

highlighted in the results of Chapter 4. Specifically, it addressed both the

perceived lack of available spatial sound effects archives and the integration

of stereo content within immersive media projects utilising spatial audio. In

contrast to Chapter 5, which aimed to derive directional information for specific

objects, the work in this chapter adopted a parametric time-frequency approach
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to facilitate the development of a novel methodology to stereo upmixing using

a neural network to predict 3D parametric features, specifically time-frequency

spherical coordinates, and a diffuseness index for each time-frequency tile. A

novel dataset of stereo, spherical harmonic, and multi-channel IRs was presented

as well as a description of the recording equipment, available microphone array

formats, and sound scene synthesis. Target features were extracted from the

first-order Ambisonic scenes using DirAC analysis and the input features were

derived from the equivalent stereo scenes. The optimisation and evaluation

pipeline was described along with details of the architecture for both the baseline

model and the proposed MuCh-Res-Unet, which utilised multi-channel output

and residual connections.

The performance of the model was evaluated and, whilst it performed well on

the time-frequency tiles relating to the sound source present in the scene, it was

unable to generalise in relation to the time-frequency tiles relating to the ambient

background noise. Limitations in the DirAC analysis method used for feature

extraction were discussed and potential improvements to the data processing

and model optimisation strategy were suggested. Finally, two example upmix

pipelines were presented, where the proposed model could be used to facilitate

stereo upmixing to arbitrary loudspeaker configurations using a DirAC-style

pipeline, or, using only the directional parameters, could be used to extract and

weight frequency components against target spherical harmonic components to

affect a stereo to B-format upmix algorithm.

7.2 Contributions to the Field

The novel contributions to the fields of sound design for IMEs and machine

learning approaches to sound spatialisation are as follows:

• Chapter 4 presented the first study to investigate the defining features of

IMEs as a new experience format and the challenges associated with its

production from the perspective of sound design practitioners working in

the field.
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• The results from Chapter 5 evidenced the creative affordances that a

computer vision based system could provide by deriving sound object

metadata to both spatially position objects using stereo panning and search

large scale sound effects repositories to recommend candidate sound effects

audio files for identified sound sources within a single frame

• The dataset of IRs presented in Chapter 6 is the first to contain spatial IRs

for all loudspeakers arranged according to a 50-point Lebedev quadrature

sampled sphere in both Ambisonic and stereo format.. Ambisonic data

is available up to 4th Order and stereo data is provided for 9 common

configurations of two microphones.. This presents the first dataset suitable

for synthesising training data for machine learning approaches to stereo

upmix algorithms that focus on source locations sampled across a sphere

at a fixed distance and where the stereo signals have not been derived from

existing Ambisonic material. The dataset is available at [550].

• Chapter 6 presented evidence that it is possible to predict 360◦ spatial

parameters from a stereo signal using a machine learning approach trained

on an appropriate dataset, in this particular case based on Ambisonic and

stereo IRs obtained from a 50-point Lebedev quadrature sampled sphere of

loudspeakers.

• Chapter 6 further presented evidence that the predicted spatial parameters

can be used to facilitate a stereo to B-format upmix approach that does

not require direct/diffuse signal decomposition and where individual time-

frequency components can be spatially remapped from a two-channel stereo

representation to positions on a 360◦ sphere in the spherical harmonic

domain.

7.3 Restatement of Hypothesis

The hypothesis originally stated in Chapter 1, which has informed the work

presented in this thesis, is now restated as follows:
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Machine Learning approaches can be used to assist in addressing

challenges associated with the sound spatialisation pipline for IMEs.

The research presented in Chapters 4. 5, and 6 supports the given hypothesis

as these chapters ascertain specific challenges faced by practitioners, and then

through the collection of an appropriate dataset and development of machine

learning approaches present assistive methods for sound spatialisation. Chapter

4 identified key features of IMEs and challenges present within the context of

designing spatial audio, from the perspective of those practitioners working

within the field. It also highlighted key areas where research could have a positive

impact on existing workflows and practices. These included, amongst others,

the automatic spatialisation of objects based on their position in a visual scene,

the lack of freely available sound effects libraries, and the integration of existing

stereo content with spatial audio projects. The results from this investigation

went on to inform the work done in Chapters 5 and 6 which showed how machine

learning could be leveraged to aid in the spatialisation of audio content. Chapter

4 presented an early-stage methodology which showed in principle that sound can

be spatialised based on the data derived from existing computer vision algorithms,

although further work was needed to ensure continuity between subsequent video

frames for scenes containing multiple objects. Further development of this

approach was decided to be outside the scope of this thesis as much of it, at the

time, was a computer vision optimisation problem. Chapter 6 then presented a

neural network approach to time-frequency parameter predication that has the

potential to be integrated into a number of different pipelines to facilitate an

approach to stereo upmixing that moves away from a frontally-bias reproduction.

Two upmix pipelins are then presented that allow scenes to be upmixed for

reproduction and storage without the frontally-biased representation associated

with existing stereo upmixers.

The confirmation of the original hypothesis demonstrates the value of this

thesis to the wider field. The findings from the various experiments and studies

that make up this thesis have suggested potential ways in which this research may
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be continued and/or inform other work in the future. A number of suggestions

for future research will be outlined in the following section.

7.4 Future Work

Whilst the results from Chapter 4 provide valuable insight into the how profes-

sional practitioners view and approach sound design for immersive media, it is

acknowledged that although all participants were highly experienced, the small

sample size limits the generalisability of the findings to the wider industry. The

work carried out in this chapter could therefore be extended in two obvious ways.

Firstly, a larger study could be carried out to see if the results remain consistent.

This work was conducted in 2020 and given the speed of progress in this area a

follow up study would no doubt be useful in ascertaining how practice in this

area has evolved and developed, especially given the recent advances in both

generative machine learning models and the audio capabilities of game engine

technology. Secondly, an ethnographic-style study could be conducted similar to

that in [369], which investigated radio production practice. This would enable

the collection of firsthand data on current working practices and would not rely

on participants having to take time out of their schedule to participate. This was

the original plan when first desgining the study however a change of approach

was required due to the COVID-19 pandemic and the associated restrictions put

in place. Observational studies can also mitigate some of the issues associated

with self reporting. Luff et al. [362] suggests there is often a difference between

what participants report they do and what they actually do. This difference is

due to some activities being performed on such a regular basis that they become

second nature and may not be at the forefront of a participant’s thoughts when

asked about the subject. Similarly, practices deemed not important by the partic-

ipant can also be recorded during observation allowing for a more informed and

complete representation of current working practices. Given the speed at which

the application of machine learning to areas of creative practice is developing, it

may be beneficial to conduct a study specifically focused how practitioners view
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the current machine learning trend, how it affects their practice, and how they

view this quickly developing set of automated methods.

Given that the methodology presented in Chapter 5 for automatic panning

and candidate sound effects files served as a proof of concept, there are several

ways this could be continued and built upon. The poor performance on scenes

containing multiple objects was caused by a difficulty in maintaining continuity

between frames. This difficulty resulted from using an adapted object detection

system, originally intended for use on single image, to instead process sequential

video frames. It is proposed that utilising more recent object detection systems

that have been developed specifically for video data may mitigate the need for

a custom continuity check enabling the tracking and panning data derivation

for multiple objects. This could also be integrated with systems that estimate

the distance of objects within scenes and applied alongside an intelligent audio

mixing system whereby the predicted distance of an object is then used as input

into appropriate signal processing to simulate the predicted source distance. The

candidate sound effects suggestion based on the classification of objects within

the scene performed relatively poorly, often failing to identify sound effects files

when the tags were not an exact patch for the predicted objects label. This was

caused by the search method being based on string companion between the label

of the predicted object and the tags associated with sound effects file within

the repository. It is proposed that given the recent rise in the use of language

models, particularly transformer-based Large Language Models (LLMs), such as

GPTs [599], that one could investigate the possibility of fine-tuning a LLM on a

dataset of sound effects labels enabling the retrieval of sound effects that have

related, but not necessarily identical, tags to that of the classification labels of

the detected objects. Finally, given that the proof-of-concept was investigated

using 2D scenes to generate stereo panning data, the next logical step would be

to investigate the use of computer vision systems designed for object detection

within 360◦ video to generate panning data compatible with spatial/surround

sound panners.

Given the number of variables inherent in neural network design and opti-
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misation it would be difficult to try and provide an exhaustive review of how

the research in Chapter 6 could be built upon, so instead some areas which are

considered to potentially have the most impact are suggested. One continuation

of the work would be to increase the spatial resolution of the IR dataset. Whilst

the dataset is comprehensive with respect to the array configurations contained

within in, the spatial density is relatively sparse, sampling only 50 locations over

the entire sphere. In addition to the increase in discretely sampled positions, it

could also include dynamically moving sources for all configurations. One of the

main limiting factors in its use as training data for upmixing is that all the sources

positions are static, something which rarely occurs in natural sound scenes. It

would, however, be possible to simulate moving sources by interpolating between

IRs over a specified period of time.

Given the performance with respect to predicted time-frequency tiles relating

to the sound source within the scene, the next step would be to see how the

system performs with scenes containing overlapping sources. Appropriate training

examples can be generated using the existing sound synthesis framework described

in Chapter 6 and if necessary the system can be fine-tuned or a new model trained.

With respect to the optimisation of the model, all predicted parameters were

given equal weighting when calculating the final loss, since it is established

that humans possess more acute azimuth localisation compared to elevation.

Developing a weighting strategy may be beneficial in designing a perceptually

informed optimisation strategy. Similarly, the use of a perceptually motivated

or audio specific loss function such as those presented in [592] may improve

performance when compared to the results obtained using the MSE.

Given that time-frequency tiles with smaller magnitudes and/or higher diffuse-

ness indexes will have less energy reproduced through direct component rendering,

an optimisation method could be explored to perceptually weight different regions

of the spectrum with respect to their contribution to the directional parameter

loss. This would be beneficial as the accuracy of the directional parameters

becomes less significant for those time-frequency tiles whose directional repro-

duction may have limited perceptual impact on the spatial impression of the
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scene. This is particularly relevant for areas of the spectrum occupied by diffuse

background noise. One such method would be to weight the time-frequency tile

contribution to the loss based on a perceptual measure of their loudness, such as

SPL dBA. Another potential method would be to weight them according to their

diffuseness index, which in effect would create a mask similar to methods used

for direct-diffuse decomposition [149, 497, 498, 500, 505]. These methods could

also be combined with an attention mechanism that where the model may learn

to distinguish which areas of the feature map are most relevant for the given

target feature.

The model was trained using data synthesised from a single stereo config-

uration, further investigation would be to assess its performance on unseen

configurations, such as those included in the presented IR dataset. An additional

model could also be trained on data containing examples from multiple stereo

configurations and the performance between the two compared to see what the

impact including additional configurations might be on the ability of the model

to generalise.

With a baseline model developed and evaluated, an important area of further

work would be to objectively and perceptually evaluate the results of the model

when integrated into upmix pipelines, such as those suggested in Chapter 6 Section

6.7. This could take the form of listening tests comparing the reproduction of the

original B-format signals with those of the upmixed B-format signals. Likewise,

comparisons between upmixed and original signals could be evaluated through

metrics such as those proposed in [592] which include signal-to-noise ratio and

error-to-signal ratio amongst others. These metrics may also be suitable to

replace the MSE as the loss function.

Lastly, given that spatial parameters such as those predicted by the proposed

model have proven effective input features for auditory scene classification models

[115], it would be interesting to investigate how results obtained using spatial

parameters predicted from a stereo signal compare to those results from study

which use parameters derived directly from B-format signals.
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7.5 Closing Remarks

The research presented in this thesis has investigated the application of machine

learning to spatial audio production for IMEs, with the aim of directly addressing

some of the challenges faced by sound design practioners working in the industry.

The initial qualitative work identified key challenges and highlighted multiple

areas where research could have a tangible positive impact on current workflows

and practices. Those related to the area of sound spatialisation were then explored

and novel methods developed for the generation of object panning data, and

for stereo scene upmixing that address some limitations with current stereo

upmixers, such as frontal-biased representations which may cause inaccurate

spatial reproduction with respect to the spatial characteristics of the original

captured scene. It is also acknowledged that the methods developed in this

thesis do not solve the problems they address in their entirety, however, they

do offer progress that can continue to be built upon. It is hoped that the

research presented in this thesis will go to inform further work in the field, as

the production of high quality, realistic, spatial audio can contribute to a more

immersive and engaging experience. Storytelling is one of the great human

traditions and sound has, and arguably always will, play an important role in

that.
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List of Acronyms

∆s Distance between loudspeakers

∆fERB ERB critical bandwidth

2D two-dimensional

3D three-dimensional

3DOF Three-Degrees-Of-Freedom

5G Fith generation technology standard for cellular networks

6DOF Six-Degrees-Of-Freedom

ACN Ambisonic Channel Numbering

ADC Analogue to Digital Converter

AE Autoencoders

API Application Programming Interface

AR Augmented Reality

AudioLDM Audio Latent Diffusion Model

BBA Binarual-based Audio

BRIR Binaural Room Impulse Response

BBC British Broadcasting Corporation

BBCsfx British Broadcasting Corporation Sound Effects Archive

BRIR binaural room impulse response

CBA Channel-based Audio

CD Compact Disc

CLAP Contrastive Language-Audio Pretraining

CNN Convolutional Neural Network

COCO Common Objects in COntext (dataset)
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COLA Constant Overlap Add

CPU Computer Processing Unit

CSV Comma-separated Values

DAC Digital to Analogue Converter

DAFx Digital Audio Effects

DAW Digital Audio Workstation

dB Decibel

DBAP Distance-based Amplitude Panning

DCASE Detection and Classification of Acoustic Scenes and

Events

DCGAN Deep Convolutional GAN

DFT Discrete Fourier Transform

DIN Deutsches Institut für Normung

DirAC Directional Audio Coding

DNN Deep Neural Network

DOA Direction of Arrival

DoF degrees of freedom

DRC Dynamic Range Compressor

DRR Direct-to-reverberant-ratio

DTFT Discrete Time Fourier Transform

EBU European Broadcasting Union

ERB Equivalent Rectangular Bandwidth

ESS Exponential Sine Sweep

EQ frequency Equalisation

FFT Fast Fourier Transform

fps Frames Per Second

FOA First-order Ambisonics

GANs Generative Adversarial Networks

GPS Global Positioning System

GPU Graphics Processing Unit

GCC-PHAT Generalises Cross-Correlation Phase Transform
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GPT Generative Pre-trained Transformer

HATS head and torso simulator

HL-MRFs Hinge-Loss Markov Random Fields

HMD Head Mounted Display

HOA Higher Order Ambisonics

HRIR Head-related Impulse Response

HRTF Head-related Transfer Function

HTC High Tech Computer Corporation

ICLD Inter-channel Level Difference

ICTD Inter-channel Time Difference

iDFT inverse Discrete Fourier Transform

iFFT inverse Fast Fourier Transform

ILD Interaural Level Difference

IME Immersive Media Experience

IoU Intersection Over Union

IPD Interaural Phase Difference

IR Impulse Response

ITD Interaural Time Difference

ITDmax Maximum ITD

ITU International Telecommunications Union

JND Just Noticeable Differences

KEMAR Knowles Electronic Manikin for Acoustic Research

L3DAS21 Learning 3D Audio Sources 2021

LB Left-Back

LF Left-Front

LFE Low Frequency Effects

LLM Large Language Model

LSTM Long-Short-Term-Memory

MMA Multichannel Microphone Array

MPEG Moving Picture Experts Group

MSE Mean Square Error
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LIST OF ACRONYMS

MR Mixed Reality

MuCh-Res-UNet Multichannel Residual UNet

Masked-Unmasked Ratio MUR

N3D Three-dimensional Full Normalised

NaN Not a Number

N/A Not Applicable

NIGENS Neural Information processing group GENeral sounds

(database)

NN Neural Network

NOS Nederlandse Omroep Stichting

OBA Object-based Audio

OLA Overlap Add

OPSI Optimized Phantom Source Imaging

ORTF Office de Radiodiffusion Télévision Française

OSC Open Sound Control

PCA Principle Component Analysis

PHAT Phase Transform

PSL Probabilistic Soft Logic

RAM Random Access Memory

RB Right-Back

RF Right-Front

ReLU Rectified Linear Unit

ResNet Residual Net

RIR room impulse response

RMS Root Mean Square

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RT60 Reverb Time 60 (the time taken for reverb energy to

decay by 60 dB)

SADIE Spatial Audio Domestic Interactive Entertainment

(database)
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SBA Scene-based Audio

SELD Sound Event Localisation and Detection

SSD Single Shot Detection

STFT Short Time Fourier transform

SN3D Schmidt Semi-normalised

SIL Sound Intensity Level

SPL Sound Pressure Level

SRIR Spatial Room Impulse Response

TAU-SRIR DB TAmpere University Spatial Room Impulse Response

DataBase

TDOA Time Difference of Arrival

TV television

UK United Kingdom

VAE Variational Autoencoders

VBAP Vector Base Amplitude Panning

VR Virtual Reality

WAV Waveform Audio File Format

WFS Wave Field Synthesis

XR Extended Reality
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List of Symbols

α̂ Estimated panning coefficient

α Distance exponent

β Ambisonic format signal

∆s Distance between loudspeakers (m)

∆θwS Angle between the WFS loudspeaker array and the wave

front to be reproduced (◦)

∆ Amount of change in a value

δ(t) dirac delta impulse

δ[n] Kronecker delta function

ϵ Control coefficient DBAP speaker leakage

ε time-constant for E{·}
ηmax Maximum learning rate

ηmin Minimum learning rate

ηt Learning rate for timestep t

η Learning rate

Γϱ Omnidirectional and bidirectional polar pattern coeffi-

cients)

γ Adiabatic gas coefficient

λ Wavelength (m)

ω Frequency in radians/second

Φ Starting phase of a sinusoidal wave

ϕ̂ Estimated\predicted elevation angle (◦)

ϕl Elevation angle of loudspeaker (◦)
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ϕ Elevation angle (◦)

ΨG Generalised cross-correlation

ΨP Frequency domain generalised cross-correlation Phase

Transform

Ψ̂ Estimated panning index

ψP F−1{ΨP}
ψ(m,ωk) Time-frequency diffuseness index

ρ Density of the medium (kg · m−3

θ̂ Estimated\predicted azimuth angle (◦)

θs Azimuth angle of loudspeaker s (◦)

θ0 Azimuth angle of 0 ◦

θ Azimuth angle (◦)

ϑ Exponential sine sweep

iϑ Inverse filter for exponential sine sweep

ξ Hop size for block based processing

ζ Noise present in a system

A Measure of amplitude of a sinusoidal wave

an Amplitude of nth sine harmonic

a0 DC offset

B Binaural signals

bn Amplitude of nth cosine harmonic

C Ambisonic re-encoding matrix

cgas Speed of sound in gas (m · s−1)

c Speed of Sound (m · s−1)

D Ambisonic decoder matrix. Equivalent to C−1

D⃗ Time-averaged time-frequency direction of arrival matrix

d⃗ Direct signal component

dψ Diffuse signal component

d Virtual microphone directivity factor for calculating Am-

bisonic loudspeaker signals

E⃗(m,ωk) Time-frequency short-time averaged energy vector
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E{·} Short-time averaging operation

Egas Gas equivalent Young’s Modulus

E Young’s Modulus (N · m−2)

F Fast Fourier transform

F−1 Inverse Fast Fourier Transform

fmax Maximum valid frequency (Hz)

fmin Minimum valid frequency (Hz)

fA Spatial aliasing frequency (Hz)

fn nth frequency component

fs Sampling frequency (Hz)

f Frequency (Hz)

GL, GR Left and Right loudspeaker gains

Gi Gain of the ith loudspeaker

gs Gain of loudspeaker s

H(x) Neural Network input -¿ output mapping function

h Impulse response of a given system

Hl HRTF pair for a given loudspeaker position

H Transfer function of a given system

I Sound Intensity (W · m−2

I⃗raw unsmoothed intensity vector

I⃗ Smoothed intensity vector

I1, I2, I3 FOA time-frequency intensity channel matrices containd

with I⃗

Io Reference sound intensity value of 10−12 W· m−2

J(A,B) Jaccard Index of datasets A and B

k wave vector

k Wave number in radians

L A linear-time invariant system

L Filter length (samples)

m mth time block of a signal

M Blocksize (samples)
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NN3D
mn N3D Normalisation strategy for amplitudes of spherical

harmonics

NSN3D
mn SN3D Normalisation strategy for amplitudes of spherical

harmonics

R Gas Constant

r Radial distance (m)

M Molecular mass of the gas (kg · mol−1)

Pl Fourier domain representation of measured sound pres-

sure at the left ear

Pr Fourier domain representation of measured sound pres-

sure at the right ear

Pmn Legendre function

P (m,ωk) STFT domain representation of p

p Position of audio object as described by a linear combi-

nation of loudspeaker vectors and gain scaling factors

p Pressure; sound pressure (Pa)

prest Static sound pressure (Pa)

po Reference sound pressure value of 20 µ Pa

p̂ Instantaneous sound pressure (Pa)

ℜ Real component of complex data

ST FT Short-Time-Fourier-Transform

ST FT −1 Inverse Short-Time-Fourier-Transform

S Matrix of loudspeaker vectors

SL, SR(m,ωk) Time-frequency representation of left and right stereo

channels

sn Positional vector for nth loudspeaker

S̄i Fourier representation of s̄

s̄j jth Sound source

TK Absolute temperature (Kelvin)

T Total time length

t Time point in continuous time
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U⃗(m.ωk) STFT domain representation of particle velocity

X⃗ ′(m,ωk) STFT domain representation of the vector of B-format

pressure gradient signals

x Time domain representation

X Frequency domain representation

xyz Position in Cartesian space

Yk(v⃗l) Decoding coefficient for Ambisonic channel k and loud-

speaker l

Y σ
mn spherical harmonics of order m and degree n

ŷ Neural network prediction

ȳ Ground truth

Z0 Characteristic impedance of air

z Frequency (Barks)

∗ Convolution operator
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design for immersive environments, such as those experienced within virtual reality 
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currently used by professional sound designers working in the field to contribute to the 
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becoming much more commonplace. Many of these experiences can be recreated simply 
using a set of headphones and a user’s mobile phone. Designing the sound for these 
experiences adds additional work for the sound designer over and above that of standard 
stereo content. In order to build tools to assist in this task a detailed understanding is 
required of the working practices, workflows, and current tools used by professional 
sound designers who produce audio for these kinds of immersive experiences. This will 
allow the outcome of the research to be applied in industry contexts and will also allow 
any outputs to be tested against current practices. 
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Brief outline of project/activity (250 words max) 

Study design (if relevant – e.g. randomised control trial; laboratory-based)

If the study involves participants, how many will be recruited?
15+

If applicable, what is the statistical power of the study, i.e. what is the justification for the 
number of participants needed?

Information will be gathered via a variety of methods including online questionnaire, 
semi-structured interviews, and observations. This will allow for maximum reach with 
respect to maximising the number of available participants and will be unrestricted in 
terms of geographical location. 

Semi-structured interviews will use the online questionnaire content as a starting point 
but will allow for prompted expansion and clarification to responses where appropriate. 
These will be conducted either in person or via skype calls. These will be captured via 
audio recordings. 

Observations will take place at the participant’s place of work and detailed field notes 
will be taken including type of project being worked on, software environment used, 
tools used and tasks undertaken/approaches used. This may also be combined with short 
ad-hoc interview style questions if appropriate for clarification of noted observations i.e. 
give reason for using a particular method for completing a specific task.  These 
observations will also be captured via video or audio recordings. 
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SECTION 4 RECRUITMENT OF PARTICIPANTS

How will the participants be recruited?

What are the inclusion/exclusion criteria?

YES NO XWill participants be paid reimbursement of 
expenses?

YES NO XWill participants be paid?

If yes, please obtain signed agreement

YES NO XWill any of the participants be students? 

SECTION 5 DATA STORAGE AND TRANSMISSION

If the research will involve storing personal data, including sensitive data, on any of the 
following please indicate so and provide further details (answers only required if personal 
data is to be stored).

Manual files Consent forms (only 
name/participant number on form)

University computers Name, participant number, and voice 
and video recording

Home or other personal computers Indirect access to above through 
secure Google Drive 

Laptop computers, tablets Indirect access to above through 
secure Google Drive

Website Password protected Qualtrics survey

Participants will be recruited through email call, utilising contacts with BBC R&D and 
within the AudioLab.  

Calls will also be posted on industry specific social media such as Facebook and 
LinkedIn

Aged 18+ 
Undertake professional sound design work i.e payment for commercial productions
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Please explain the measures in place to ensure data confidentiality, including whether 
encryption or other methods of anonymisation will be used.

The only place that the participants name will be displayed alongside their ID number 
and any categorisation data (e.g. age/gender) is on the consent form. This will be kept in 
a locked environment and kept confidential by the investigator (Daniel Turner). 

Voice recordings will be collected on a secured password protected device and then 
deleted off the device once transferred to a university managed password protected 
google drive. 

Please detail who will have access to the data generated by the study.

It is intended to publish the data and therefore anonymised data and responses will be 
openly accessible. Any personal data regarding participants will only be accessible by the 
investigators. 

Please detail who will have control of and act as custodian for, data generated by the study.

Daniel Turner 

Please explain where, and by whom, data will be analysed.

The data will be analysed by Daniel Turner at the AudioLab Genesis 6 University of 
York 

Please give details of data storage arrangements, including where data will be stored, how 
long for, and in what form.

All data will be kept electronically on Daniel Turner’s university managed Google drive 
under password protection. Hard copies of content forms will be scanned and 
electronically stored on the same Google Drive, physical copies will then be destroyed. 

Processed and analysed data will be kept in a suitable form for publication and presented 
in thesis, publications and related works. Raw capture data will be reviewed at the of the 
PhD and will either be moved to secure department network drive or destroyed. 
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SECTION 6 CONSENT

YES X NOIs written consent to be obtained? 

If yes, please attach a copy of the information for participants
https://york.qualtrics.com/jfe/form/SV_eyzNfRdAr0krlOZ
If no, please justify

Will any of the participants be from one of the following vulnerable groups?

Children under 18 YES NO X

People with learning difficulties YES NO X

People who are unconscious or severely ill YES NO X

People with mental illness YES NO X

NHS patients YES NO X

Other vulnerable groups (if ‘yes’, please give details) YES NO X

If so, what special arrangements have been made for getting consent?

SECTION 7 DETAILS OF INTERVENTIONS

Indicate whether the study involves procedures which:

Involve taking bodily samples YES NO X

Are physically invasive YES NO X

Are designed to be challenging/disturbing (physically or psychologically) YES NO X

If so, please list those procedures to which participants will be exposed:

List any potential hazards:
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List any discomfort or distress:

What steps will be taken to safeguard 

(i) the confidentiality of information

(ii) the specimens themselves?

What particular ethical problems or considerations are raised by the proposed study?

What do you anticipate will be the output from the study? Tick those that apply:

Peer-reviewed publications X
Non-peer-reviewed publications
Reports for sponsor
Confidential reports
Presentation at meetings X
Press releases
Student project X

YES NO XIs there a secrecy clause to the research? 
If yes, please give details below

None directly 
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SECTION 8 SIGNATURES

The information in this form is accurate to best of my knowledge and belief and I take full responsibility 
for it.

I agree to advise of any adverse or unexpected events that may occur during this project, to seek approval 
for any significant protocol amendments and to provide interim and final reports. I also agree to advise the 
Ethics Committee if the study is withdrawn or not completed.

Signature of Investigator(s):

D.Turner……………………………………………………

Date: 20/08/19……………………………………………………

Responsibilities of the Principal Researcher following approval
 If changes to procedures are proposed, please notify the Ethics Committee
 Report promptly any adverse events involving risk to participants
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AI driven methods for Immersive Sound Design - Consent Form

Thank you for showing interest in contributing to our study! We are interested in
understanding how artificial intelligence technologies may be used to assist sound
designers in the creation of immersive soundscapes. In order to do this we require an
understanding of the workflows, processes, tools, and challenges encountered by
producers of immersive content.

During the interview you will be asked to answer a series of questions about your
experience creating and engaging with immersive content. The interview will be
recorded and later transcribed. Please be assured that your responses will be kept
completely confidential and anonymised.

The interview should take you around 30 minutes (maximum) to complete. Your
participation in this research is voluntary. You have the right to withdraw at any point
during the study prior to publication, for any reason, and without any prejudice. If you
would like to contact the Principal Investigator in the study to discuss this research,
please e-mail Dan Turner at djt530@york.ac.uk.

By signing below, you acknowledge that your participation in the study is voluntary, you
are 18 years of age or older, and that you are aware that you may choose to terminate
your participation in the study at any time and for any reason.

Interviewee Name………………..
Interviewee Signature………………. Date……………...
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AI driven Approaches to soundscape
design for immersive environments

Q2 Welcome to the research study!   We are interested in understanding how artificial
intelligence technologies may be used to assist sound designers in the creation of immersive
soundscapes. In order to do this we require an understanding of the workflows, processes, tool,
and challenges encountered by producers of immersive content. You will be asked to answer a
series of questions about your experience creating and engaging with immersive content.
Please be assured that your responses will be kept completely confidential.

The study should take you around 20 minutes to complete. Your participation in this research is
voluntary. You have the right to withdraw at any point during the study prior to publication, for
any reason, and without any prejudice. If you would like to contact the Principal Investigator in
the study to discuss this research, please e-mail Dan Turner at djt530@york.ac.uk.

By clicking the button below, you acknowledge that your participation in the study is voluntary,
you are 18 years of age or older, and that you are aware that you may choose to terminate your
participation in the study at any time and for any reason.

Please note that this survey will be best displayed on a laptop or desktop computer. Some
features may be less compatible for use on a mobile device.  

o I consent, begin the study (1)

o I do not consent, I do not wish to participate (2)

End of Block: Informed Consent

Start of Block: Block 2

Q3 What is your current job title?

________________________________________________________________

Page 1 of 8
294



Q4 How long have you been working professionally in the industry. Professionally in this
instance means being paid for your services.

o <1year (1)

o 1-3 years (2)

o 3-5 years (3)

o 5+ years (4)

Q5 What type of media do you produce content for (tick all that apply)

▢ Television Programmes (1)

▢ Radio (2)

▢ Streaming media i.e Youtube (3)

▢ Advertisement/marketing (4)

▢ Film (6)

▢ Immersive Experiences (7)

▢ Other (5)

Display This Question:

If What type of media do you produce content for (tick all that apply) = Other

Q25 If other, please specify

________________________________________________________________
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Q6 What are the main programme formats or genres that you produce content for?

________________________________________________________________

Q8 On a day to day basis, do you work predominately with?

o Sound (e.g sound design, audio editing etc) (1)

o Visuals (e.g video editing, colour grading etc) (2)

o Equal mix of both (3)

Q9 Please define what the term "Immersive content" means to you?

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

Q10 Please give a brief explanation as to what you would define as key features of "immersive
content".

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________
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Q26 For the rest of the this survey we use the following definition for immersion. 

"Immersion is a phenomenon experienced by an individual when they are in a state of deep
mental involvement in which their cognitive processes (with or without sensory stimulation)
cause a shift in their attentional state such that one may experience disassociation from the
awareness of the physical world." (I will put in reference).

As such, immersive content is content designed to elicit a state of immersion. We are
specifically interested in the technologies used in order to cause the subjective sense of being
surrounded or experiencing multisensory stimulation that may then lead to a state of immersion.
Examples of such technologies are binaural audio and 360° video

Q11 Do you currently or have you in the past worked on producing immersive content

o Yes (1)

o No (2)

End of Block: Block 2

Start of Block: Sound Design

Q21 Briefly describe some typical previous projects you have worked on. 

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

Page 4 of 8
297



________________________________________________________________

Q19 During the post-production phase are there any specific tasks that would benefit from
semi-automation when working with audio content? 

Semi-automation in this context could mean assistance with labour intensive tasks in order to
enable greater focus on creativity. 

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

End of Block: Sound Design

Start of Block: Immersive

Q12 How long have you been working on immersive productions? 

o <1 year (1)

o 1-3 years (2)

o 3-5 years (3)

o 5+ years (4)

Q13 Briefly describe any immersive content you have been involved in producing.

________________________________________________________________

________________________________________________________________

________________________________________________________________
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________________________________________________________________

________________________________________________________________

Q14 What are the key differences, if any, between producing audio for immersive content
compared to non-immersive content?

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

Q15 What challenges, if any, do you face in creating audio for immersive content? Specifically
with reference to how these might differ from non-immersive content.

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

Q16 During the post-production phase are there any specific tasks that would benefit from
semi-automation when working with immersive audio content? 

Semi-automation in this context could mean assistance with labour intensive tasks in order to
enable greater focus on creativity. 

________________________________________________________________

________________________________________________________________

________________________________________________________________
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________________________________________________________________

________________________________________________________________

End of Block: Immersive

Start of Block: Tools

Q17 What is your main editing environment 

o Pro Tools (1)

o Adobe Suite (2)

o Cockos Reaper (3)

o Apple Logic Pro (4)

o Cubase/Nuendo (5)

o Unity (7)

oOther (6)

Display This Question:

If What is your main editing environment = Other

Q18 If other please specify

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________
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Q20 Please list some of your most used plugins and a brief definition of their function 

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

End of Block: Tools

Start of Block: Observation

Q23 Alongside this survey we are also interested in conducting observations and documenting
the working practices of professional sound designers at their place of work. This is something
that has received little official research attention and would greatly help steer the direction of this
project. If you are interested in participating indicate below and you will be contacted with more
details. 

o Yes (4)

o No (5)

Display This Question:

If Alongside this survey we are also interested in conducting observations and documenting the
worki... = Yes

Q24 Please enter an email address below and you will be contacted about taking part in the
observation portion of the study

________________________________________________________________

End of Block: Observation
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Participant No. Recording Method Duration (HH:MM:SS) Date

1 Zoom built-in recording functionality 00:25:52 19/02/2020

2 Telephone call & Zoom h4n audio recorder 00:36:58 minutes 05/03/2020

3 Zoom built-in recording functionality 00:39:42 16/04/2020

4 Zoom built-in recording functionality 00:33:25 20/04/2020

5 Zoom built-in recording functionality 01:19:10 04/09/2020

Table C.1: Interview Metadata
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Appendix D IR Dataset

Supplementary Information

D.1 Measurement Apparatus

Measurements were carried out in the University of York AudioLab’s listening

room in York, UK. A 3D array of 50 full-range Genelec loudspeakers positioned

on a sphere sampled using a 50-point Lebedev quadrature sphere with a radius

of 1.5m was used to reproduce the exponential sine sweeps for all configurations.

Loudspeaker type identified as outlined below:

• Top: 8040A

• Ring 5 upper: 8030A

• Ring 4 upper: 8030A

• Ring 3 upper: 8030A

• Ring 2 upper: 8030A

• Horizonral Ring: 8040A

• Ring 2 lower: 8030A

• Ring 3 lower: 8030A
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• Ring 4 lower: 8030A

• Ring 5 lower: 8030A

• Bottom: 8040A

The loudspeaker sound pressure levels were aligned at the centre of the array

to 83dBA @ 1kHz measured on a Tenma SPL meter. The loudspeaker driving

signals were calibrated for magnitude using an Earthworks M30.

D.2 Available Data

IRs are available for all 50 positions for all configurations listed in Table D.

IRs are available as 24-bit PCM .wav files at 48kHz sampling rate using the

following naming convention: ‘[mic array] IR [location number] azi [azimith in

degrees] el [elevation in degrees].wav‘

Set Name Array Configuration
Microphone/s

used

Microphone

Directivity Pattern
Spacing Orientation angle

AB Omni 30 AB Pair AKG C414 XLS Omnidirectional 30 cm Parallel

AB Omni 40 AB Pair AKG C414 XLS Omnidirectional 40 cm Parallel

AB Cardioid 30 AB Pair AKG C414 XLS Cardioid 30 cm Parallel

AB Cardioid 40 AB Pair AKG C414 XLS Cardioid 40 cm Parallel

Blumlein Blumlein AKG C414 XLS Bidirectional Coincident 90◦

DIN DIN Rode NT5 Cardioid 20 cm near coincident 90◦

NOS NOS Rode NT5 Cardioid 30 cm near coincident 110◦ near coincident

ORTF ORTF Rode NT5 Cardioid 17cm near coincident 90◦

Eigen SPH Rigid Spherical Baffle Eigenmike
up to 4th Order

Spherical Harmonics
8.4cm diameter spherical array

Eigen raw Rigid Spherical Baffle Eigenmike omnidirectional 8.4cm diameter spherical array

Coincident XY Rode NT4 Cardioid Coincident 90◦

Table D.1: Details of IR sets captured including configuration, spacing, capsule angle,

and microphone used.
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“Arousing the sound: A field study on the emotional impact on children

of arousing sound design and 3d audio spatialization in an audio story,”

342

http://www.jstage.jst.go.jp/article/jpa/23/6/23_6_337/_article
http://www.jstage.jst.go.jp/article/jpa/23/6/23_6_337/_article
https://doi.org/10.1109/SIVE.2017.7938144
https://doi.org/10.1145/2677758.2677782
https://doi.org/10.1145/2677758.2677782
https://doi.org/10.1145/3290605.3300925


REFERENCES

Frontiers in Psychology, vol. 11, May 2020, issn: 16641078. doi: 10.3389/

fpsyg.2020.00737.

[333] M. Gospodarek, A. Genovese, D. Dembeck, C. Brenner, A. Roginska,

and K. Perlin, “Sound design and reproduction techniques for co-located

narrative vr experiences,” in 147th Audio Engineering Society Convention,

Audio Engineering Society, 2019.
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[474] L. Leal-Taixé, A. Milan, K. Schindler, D. Cremers, I. D. Reid, and S. Roth,

“Tracking the trackers: An analysis of the state of the art in multiple object

tracking,” CoRR, vol. abs/1704.02781, 2017. arXiv: 1704.02781. [Online].

Available: http://arxiv.org/abs/1704.02781.
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[572] E. Moliner and V. Välimäki, “A two-stage u-net for high-fidelity denoising

of historical recordings,” in ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, vol. 2022-May,

Institute of Electrical and Electronics Engineers Inc., 2022, pp. 841–845,

isbn: 9781665405409. doi: 10.1109/ICASSP43922.2022.9746977.

[573] M. R. Saddler, A. Francl, J. Feather, K. Qian, Y. Zhang, and J. H.

McDermott, Speech denoising with auditory models, 2021. arXiv: 2011.

10706 [eess.AS].

[574] X. Xu, H. Zhou, Z. Liu, B. Dai, X. Wang, and D. Lin, “Visually informed

binaural audio generation without binaural audios,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2021, pp. 15 485–15 494.

[575] A. Paszke et al., “Pytorch: An imperative style, high-performance deep

learning library,” in 33rd Conference on Neural Information Processing

Systems (NeurlISP), Dec. 2019. [Online]. Available: http://arxiv.org/

abs/1912.01703.

[576] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[577] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the

loss landscape of neural nets,” in 32nd Conference on Neural Information

Processing Systems (NeurlIPS 2018), 2018. [Online]. Available: https:

//github.com/tomgoldstein/loss-landscape.

372

https://doi.org/10.21437/Interspeech.2020-1443
https://doi.org/10.21437/Interspeech.2020-1443
https://doi.org/10.1109/ICASSP43922.2022.9746049
https://doi.org/10.1109/ICASSP43922.2022.9746049
https://doi.org/10.1109/ICASSP43922.2022.9746977
https://arxiv.org/abs/2011.10706
https://arxiv.org/abs/2011.10706
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://github.com/tomgoldstein/loss-landscape
https://github.com/tomgoldstein/loss-landscape


REFERENCES

[578] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-net

and its variants for medical image segmentation: A review of theory

and applications,” IEEE Access, vol. 9, pp. 82 031–82 057, 2021. doi:

10.1109/ACCESS.2021.3086020.

[579] G. Kim, D. K. Han, and H. Ko, “Specmix : A mixed sample data aug-

mentation method for training with time-frequency domain features,” in

Proceedings of the Annual Conference of the International Speech Com-

munication Association, INTERSPEECH, vol. 1, International Speech

Communication Association, 2021, pp. 6–10, isbn: 9781713836902. doi:

10.21437/Interspeech.2021-103.

[580] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation

for speech recognition,” in Proc. Interspeech 2015, 2015, pp. 3586–3589.

doi: 10.21437/Interspeech.2015-711.

[581] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout:

A simple way to prevent neural networks from overfitting,” 2014, pp. 1929–

1958.

[582] L. Lu, Y. YeonjongSu, and G. Em Karniadakis, “Dying relu and initial-

ization: Theory and numerical examples,” Communications in Computa-

tional Physics, vol. 28, no. 5, pp. 1671–1706, 2020, issn: 1991-7120. doi:

https://doi.org/10.4208/cicp.OA-2020-0165. [Online]. Available:

http://global-sci.org/intro/article_detail/cicp/18393.html.

[583] L. Nanni, S. Brahnam, M. Paci, and S. Ghidoni, “Comparison of different

convolutional neural network activation functions and methods for building

ensembles for small to midsize medical data sets,” Sensors, vol. 22, 16

Aug. 2022, issn: 14248220. doi: 10.3390/s22166129.

[584] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve

neural network acoustic models,” 2013.

[585] L. Biewald, Experiment tracking with weights and biases, Software available

from wandb.com, 2020. [Online]. Available: https://www.wandb.com/.

373

https://doi.org/10.1109/ACCESS.2021.3086020
https://doi.org/10.21437/Interspeech.2021-103
https://doi.org/10.21437/Interspeech.2015-711
https://doi.org/https://doi.org/10.4208/cicp.OA-2020-0165
http://global-sci.org/intro/article_detail/cicp/18393.html
https://doi.org/10.3390/s22166129
https://www.wandb.com/


REFERENCES

[586] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm

restarts,” in 5th International Conference on Learning Representations

(ICLR), Apr. 2017. [Online]. Available: http://arxiv.org/abs/1608.

03983.

[587] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”

in International Conference on Learning Representations, 2019. [Online].

Available: https://openreview.net/forum?id=Bkg6RiCqY7.

[588] P. Seetharaman, G. Wichern, B. Pardo, and J. L. Roux, “Autoclip :

Adaptive gradient clipping for source separation networks,” in 2020 IEEE

INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIG-

NAL PROCESSING, IEEE, 2020, isbn: 9781728166629.

[589] J. Zhang, T. He, S. Sra, and A. Jadbabaie, “Why gradient clipping

accelerates training: A theoretical justification for adaptivity,” in 8th

International Conference on Learning Representations (ICLR), May 2020.

[Online]. Available: http://arxiv.org/abs/1905.11881.

[590] NVIDIA, Geforce rtx 3090 family, 2023. [Online]. Available: https://www.

nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3090-

3090ti/.

[591] T. Wolf, Training neural nets on larger batches: Practical tips for 1-

gpu multi-gpu & distributed setups, 2018. [Online]. Available: https :

//medium.com/huggingface/training-larger-batches-practical-

tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255.

[592] C. J. Steinmetz and J. D. Reiss, “Auraloss: Audio focused loss func-

tions in PyTorch,” in Digital Music Research Network One-day Workshop

(DMRN+15), 2020.

[593] S. Arık, H. Jun, and G. Diamos, “Fast spectrogram inversion using multi-

head convolutional neural networks,” IEEE Signal Processing Letters,

vol. 26, no. 1, pp. 94–98, 2019. doi: 10.1109/LSP.2018.2880284.

374

http://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/1905.11881
https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://www.nvidia.com/en-gb/geforce/graphics-cards/30-series/rtx-3090-3090ti/
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
https://doi.org/10.1109/LSP.2018.2880284


REFERENCES

[594] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast waveform

generation model based on generative adversarial networks with multi-

resolution spectrogram,” in ICASSP, Oct. 2020. [Online]. Available: http:

//arxiv.org/abs/1910.11480.

[595] P. Manocha, A. Finkelstein, R. Zhang, N. J. Bryan, G. J. Mysore, and Z.

Jin, “A differentiable perceptual audio metric learned from just noticeable

differences,” in Proceedings of the Annual Conference of the International

Speech Communication Association, INTERSPEECH, vol. 2020-October,

International Speech Communication Association, 2020, pp. 2852–2856.

doi: 10.21437/Interspeech.2020-1191.

[596] S. Hughes and G. Kearney, “Moving virtual source perception in 2d

space,” Proc. of Audio Engineering Society Conference on Audio for

Virtual and Augmented Reality, pp. 1–9, 2016. [Online]. Available: http:

//www.aes.org/e-lib/browse.cfm?elib=18492.

[597] A. Politis, Spherical array processing, https://github.com/polarch/

Spherical-Array-Processing, 2021.

[598] S. Tervo, “Direction estimation based on sound intensity vectors,” in 2009

17th European Signal Processing Conference, 2009, pp. 700–704.

[599] OpenAI, “Gpt-4 technical report,” 2023.

375

http://arxiv.org/abs/1910.11480
http://arxiv.org/abs/1910.11480
https://doi.org/10.21437/Interspeech.2020-1191
http://www.aes.org/e-lib/browse.cfm?elib=18492
http://www.aes.org/e-lib/browse.cfm?elib=18492
https://github.com/polarch/Spherical-Array-Processing
https://github.com/polarch/Spherical-Array-Processing

	Abstract
	Contents
	Declaration of Authorship
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Statement of Hypothesis and Novel Contributions
	Thesis Outline
	Associated publications
	Associated Datasets

	Fundamentals of Sound and Audio Signals
	Introduction
	Basic Properties of Sound
	Sound Waves
	Properties of Sinusoidal Signals
	Sound Propagation

	Coordinate Systems
	Spatial Hearing and Auditory Perception
	Basic Concepts
	The Auditory System
	Directional Localisation Cues
	Head Related Transfer Function
	Distance Perception

	Audio Digital Signal Processing
	Audio Sampling
	Impulse Response
	Convolution
	Spectral Analysis
	Time-frequency processing

	Sound field Recording, Encoding, & Reproduction for IME Production
	The Soundfields
	Basics of SoundfieldSound field Recording
	Channel-based Audio
	Object-Based Audio
	Scene-based AudioAmbisonics
	Impulse Response Measurements 
	Binaural-based Audio

	Machine Learning for Audio Production
	Digital Audio Effects
	Audio Synthesis

	Summary

	Sound Design for Immersive Media Experiences
	Introduction
	Defining Immersion
	Immersive Media Experiences
	Augmented Reality
	Virtual Reality
	Mixed Reality
	360° Media

	The Role of Sound in Immersive Experiences
	Inform
	Immerse

	Spatial Audio for Immersive Experiences
	Traditional vs Immersive Media
	Use of Spatial Audio

	Summary

	Immersive Sound Design Practice
	Introduction
	Background
	Recent Related Literature
	Relevant Data Collection Methods

	Methods
	Research Questions
	Data Collection
	Participants
	Thematic analysis

	Themes
	The XR Environment
	Production Practicalities
	End User Experience

	Discussion
	Distance Perception
	Multi-sensory aspects
	Immersion factors
	Tools and assets

	Recommendations
	Automatic panning
	Distance emulation
	Upmixing

	Summary

	Deriving Audio MetadData from a Visual Scene
	Introduction
	Visually Driven Sound Design
	System Design
	Google's Object Detection API
	TrackingContinuity Between Frames
	Sound Effects Suggestions
	Object Tracking

	Test Material Specification
	Results
	Run time for data extraction
	Spatial Positioning and trajectory tracking
	Sound Effects Recommendations

	A Review of Methods to Inform Future Work
	Object Detection and Classification
	Multiple Object Tracking

	Summary

	Predicting time-frequency spatial parameters for use in stereo upmixing using a Residual U-Net
	Introduction
	Relevant Background
	Stereo Signal Model
	Direct-Diffuse Decomposition
	Directional Estimation
	Existing Tools
	Limitations of current approaches
	Machine Learning Approaches

	Dataset
	Existing Datasets
	Dataset Formats
	Sound Events
	Impulse Response Specification and Acquisition
	Spherical Harmonic IR Encoding
	Dataset Availability
	Sound Scene Synthesis
	Target Feature Extraction using Directional Audio Coding Analysis 

	Input Features
	Pre-processing
	Short-time log-magnitude spectrum
	Generalised Cross-Correlation Phase Transform (GCC-PHAT)

	Architecture
	U-Net Baseline
	Residual Connections
	Multi-channel Residual-U-Net (MuCh-Res-U-Net)

	Training
	Dataset
	Experimental Set-up

	Example Upmixing pipeline
	Upmixing using Directional Audio Coding
	Upmixing to B-format

	Results and Discussion
	Neural Network
	Evaluation of B-format upmix pipeline

	Summary

	Conclusions and Further Work
	Thesis Summary
	Contributions to the Field
	Restatement of Hypothesis
	Future Work
	Closing Remarks

	List of Acronyms
	List of Symbols
	Appendix A Ethical Approval Documents
	Appendix B Survey/Interview Guide
	Appendix C Interview metadata
	Appendix D IR Dataset Supplementary Information
	Measurement Apparatus
	Available Data

	References

