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Abstract

Electrical impedance spectroscopy (EIS) is a method used to study the frequency

dependence of the dielectric properties of colloidal suspensions by applying an

alternating electric field. When an alternating electric field is applied, a dipole moment

can be induced on a charged-particle due to the relative motion between the particles

and their electric double layer. The macroscopic display of induced dipole moment is

usually represented by the impedance parameters, including the impedance real part,

imaginary part, phase angle and the relaxation frequency. These quantities are related

to the size, shape and surface of the dispersed particles, the nature of the dispersed

medium, and also the concentration of the particles.

This thesis describes a fundamental study of the EIS method applied to colloidal

particles. The relationship between the impedance parameters and the properties of

particle suspensions is investigated. The study reveals the effects of particle size,

particle concentration and ionic concentration dependence on the detected impedance

parameters. Based on the study, new methods, including modelling, signal process,

test set-up and data analysis, for characterisation of particles in suspensions are

developed through the experimental approach and theoretical analysis. The methods

are verified with silica suspensions and applied to crystallisation processes. The on-

line measured electrical impedance spectra associated with L-glutamic acid nucleation-

growth processes and a polymorphic transformation are analysed. It is demonstrated

that the methods can be applied for on-line monitoring of the particle size and

polymorphs in crystallisation processes. Electrical impedance tomography based on

EIS measurement conducted with different materials, including non-conductive plastic

bar, banana, and silica suspensions are studied. The responses of electric polarisation

of colloidal particles on tomographic images can be observed. However, the difference

in particle size cannot be observed in the tomographic images possibly due to the

limits of the imaging resolution from an 8-electrode sensor and the signal quality

affected by the limits of the common mode voltage rejection ratio of the instrument.
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K* complex conductivity

kB Bolzmann constant

Ke conductivity of the electrolyte

KL conductivity of the medium solution

Kp conductivity of the particle

Ks surface conductivity

ni number of ions of type i per unit volume

ni
0 bulk concentration of ions of type i

R gas constant

R resistance

R0 resistance at 0 ˚C 

RT resistance at temperature

s supersaturation

′ real part of complex conductivity

″ imaginary part of complex conductivity

T temperature

u velocity of the dispersed particle

V volume of suspension
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Chapter 1

Introduction

1.1 Background

The particles in a colloidal suspension usually carry electrical charges. The layer of

charges at the particle surface and the layer of the diffuse cloud of ions in the

surrounding solution can be approximately modelled as an electrical double layer. At

the presence of an electric field, some electrokinetic phenomena occur, such as

electrophoresis, electro-osmosis, dielectric dispersion, colloid vibration potential, and

electrokinetic sonic amplitude.

Electrical impedance spectroscopy (EIS) is a method used to study the frequency

dependence of the dielectric permittivity and the electric impedance of colloidal

suspensions by applying an alternating electric field. When an alternating electric field

is applied, a dipole moment can be induced on a charged particle due to the relative

motion between the particles and their electric double layer. The frequency

dependence of the induced dipole moment is referred to as a law of dispersion (Dukhin

and Shilov, 1980), which is usually described by the impedance real part, imaginary

part, phase angle and characteristic relaxation frequency of the measurement. These

quantities are related to the size, shape and surface area of the dispersed particles,

the nature of the dispersed medium, and also the concentration of particles. By

studying the relationship between the dispersion properties of colloidal suspensions

and the characterisation of particles (including the particle size, concentration and ionic

concentration), a new method may be developed for characterising the particles in

suspensions and further be applied in the on-line monitoring of the crystallisation

processes.

Crystals formed in crystallisation processes exhibit behaviour similar to charged
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particles in colloids when subjected to an alternating electric field. Electrical impedance

spectra observed during crystallisation processes manifest changes of impedance,

phase angle and relaxation frequency. These characteristic changes may relate to the

crystal size and/or polymorphic transformation during the crystallisation. However, the

systemically study on this topic is lacking. Therefore, the study on the method of EIS

for on-line monitoring crystallisation processes and other industrial processes are

potentially very helpful.

Conventional process tomography (e.g. electrical resistance or impedance tomography)

has demonstrated its capability for monitoring the particle concentration distribution and

super-saturation distribution during temperature-controlled batch crystallisation.

However, the current techniques based on signal attenuation in the time domain are

seriously challenged in resolving the on-line spatial distribution of particle

characteristics, e.g. the spatial distribution of the particle size distribution or the spatial

distribution of polymorphic transformation in crystallisation processes. The method of

electrical impedance tomography spectroscopy (EITS) may provide a capability for on-

line analysis of particle characteristics.

1.2 Objective of My Research

The research studies the electrical impedance responses when applying an alternating

electrical field to a colloidal particle suspension in both experimental and theoretical

aspects. The electrical impedance spectra, including the impedance real part,

imaginary part, phase angle and relaxation frequency are measured using the

impedance analyzer, with development of a data analysis method. The effects of

particle size, as well as the particle concentration and ionic concentration are

investigated. In addition, the electrical impedance parameters, including the impedance

real part, imaginary part, phase angle and relaxation frequency in the L-glutamic acid

crystallisation processes are studied in order to probe the application of electrical

impedance spectra for on-line monitoring of particle size. The overall aim of the project
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is to provide physical chemistry fundamentals for developing electrical impedance

spectroscopy, further, a new spectra-tomography (imaging) technique, for on-line

measurement of particle characteristics and monitoring of particle size and polymorphic

transformations in crystallisation processes. The objectives are listed below:

(1) To investigate the effects of particle size, particle concentration and ionic

concentration on the electrical impedance spectra of silica suspensions.

(2) To develop a theoretical or empirical model to analyse the results obtained and

establish relationships between particle size and electrical impedance parameters

based on the “static” particle suspensions.

(3) To develop electrical impedance spectroscopy-based method for on-line

measurement of crystals’ size and/or polymorphs in the crystallisation processes

through an experimental approach and theoretical analysis.

(4) To investigate the feasibility of the electrical impedance tomography spectroscopy

(EITS) technique for imaging the characteristics of particles in a two-dimensional

domain.

1.3 Organization of the Thesis

The main chapters of this PhD thesis are structured as follows:

Chapter 1 A brief introduction to my research is given and the objectives of the PhD

study are highlighted. The organization of the thesis is outlined.

Chapter 2 This chapter reviews the background of colloidal science as relevant to

this study, the electrokinetics of colloids, electrical impedance spectroscopy and the

electrical impedance tomography technique. The review also includes the existing

particle sizing methods and the fundamentals of crystallisation processes.

Chapter 3 The experimental devices, materials and methodology are described in

this chapter. The design and schematic of four-electrode sensors for EIS measurement

in colloidal suspensions and crystallisation processes are described. The devices for

crystallisation experiments and electrical impedance tomography spectroscopy
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measurement are introduced.

Chapter 4 In this chapter, the EIS experimental results on colloidal particle

suspensions are presented. The effects of particle size, particle concentration and ionic

concentration are investigated through the electrical impedance spectra and permittivity

spectra. The results are analysed and discussed based on the established theories. A

new semi-empirical theory is established to explain the relationship between the

particle size and the relative changes of phase angle.

Chapter 5 The on-line EIS experimental results on crystallisation processes are

presented in this chapter. The changing of the impedance real part, imaginary part and

phase angle as functions of crystal size, crystal concentration and ionic concentration

are discussed. The polymorphs of L-glutamic acid during the crystallisation process are

studied experimentally using the on-line EIS technique and off-line optical microscopic

method. The changes of impedance parameters in the polymorphic transformation are

discussed.

Chapter 6 In this chapter, electrical impedance tomography based on EIS

measurement conducted in the phantom with different materials, including non-

conductive plastic bar, banana and the silica suspensions are presented. The response

of electric polarisation of colloidal particles on tomographic images and the observation

of particle size effect from tomographic images are discussed.

Chapter 7 Conclusions and future work: the final chapter summaries the whole thesis,

including the major findings and problems encountered. Finally, work which could be

carried out in the future is recommended.
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Chapter 2

Electrokinetics of Colloids, Electrical Impedance

Spectroscopy, Particle Sizing Methods and the

Crystallisation Process

2.1 Introduction

This chapter covers a relevant, fundamental and essential literature review for

electrokinetic phenomena of colloidal particles, electrical impedance spectroscopy,

electrical impedance tomography, particle sizing methods and the theory of the

crystallisation processes. The first part includes the foundations of colloidal science

and the electrokinetics of colloidal particles in an external electric field. Existing

research on the dielectric properties of colloidal particles in an oscillating electric field

using electrical impedance spectra or permittivity spectra, for both theoretical and

experimental aspects, is reviewed. In the second part, the basic principles of electrical

impedance spectroscopy (EIS) and electrical impedance tomography (EIT) techniques

are reviewed as potential techniques for particle characterisation. Later, the current

status of particle sizing methods in both off-line and on-line techniques is reviewed,

including the principles of measurement and their advantages and disadvantages for

laboratory and industrial applications. Finally, the fundamentals of crystallisation are

reviewed for the application of the EIS technique in crystallisation processes.

Summary: This chapter reviews the physical foundations of the research,

commences a review on electrokinetics of colloidal particles and continues by

introducing electrical impedance spectroscopy and tomography techniques. The

existing particle sizing methods for both off-line and on-line measurement are

reviewed in the latter part. Finally, the background of the crystallisation process is

introduced.
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2.2 Electrokinetic Properties of Colloidal Particles

2.2.1 Colloidal Particle and Electrical Double Layer

A colloidal system is a two-phase system in which one phase is dispersed in a

continuous phase. The particles of the dispersed phase may be of any shape and the

size may vary from 1 nm to 10 μm (Cosgrove, 2005). A typical and important part of 

colloidal particles is their electrical double layer. Considering a colloidal particle in an

electrolyte solution, the surface of the particle may become charged (for example, due

to the dissociation of the surface groups). The charges created are balanced by the

presence of ions of opposite sign absorbed on the particle surface and a layer of

counter charges can be formed. Thus, an electric double layer exists around each

particle. The double layer surrounding the particle exists as two parts: an inner region

(Stern layer) where the ions are strongly bound and an outer region (diffuse layer)

where they are less firmly associated. This diffuse layer (or the layer of counter charges

carried by ions) has a notional boundary known as the slipping plane within which the

particle acts as a single entity. The electrostatic potential difference between the Stern

layer and the diffuse layer is known as the Zeta potential. Figure 2.1 shows a

schematic diagram of the electric double layer and zeta potential.
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Figure 2.1: Schematic diagram of the electric
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the dielectric displacement,  is the permittivity of the dispersed medium and  is

the volume density of the charge.

Equation (2.1) can be rewritten as:

r








0

2graddiv  (2.2)

where, 2 is the Laplace operator, 0 is the dielectric permittivity of a vacuum

)mVCormF1085.8( 11112
0

 and r is the relative permittivity of the dispersed

medium.

The local concentration of each type of ion in the double layer region can be expressed

by the Boltzmann equation:

0 exp( / ) i i i Bn n z e k T (2.3)

where, ni is the number of ions of type i per unit volume, iz is the valency of ion i, and

ni
0 is the bulk concentration of ions of type i.

The volume density of charge ρ is given by:


i

ii ezn (2.4)

From equations (2.2-2.4), the complete Poisson-Boltzmann equation can be obtained:

)(exp
1 0

0

2

Tk

ez
ezn

B

i

i

ii
r







  (2.5)

The solution of Equation (2.5) is:

tanh( / 4 ) tanh( / 4 )exp( )B d Bze k T ze k T x    (2.6)

where, ψd is the potential at the Stern plane, iz is the valency of ion i, κ is called the

Debye-Hückel parameter with dimensions of (length)-1, and its inversion, κ-1 is called

the Debye length, or double layer thickness:
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2/1
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


 (2.7)

If we consider a symmetric electrolyte, zzzzi   and 00 nni  . The surface

charge density in the diffuse layer σd relates to the stern potential ψd:

Tk

zezen

B

d
d

2
sinh

4 0 


  (2.8)

The differential capacitance of the diffuse layer, Cd, is given by (Dukhin and Goetz,

2002):

)
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cosh(0
Tk
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d

d
C

B

d
m

d

d
d










 (2.9)

(2) Double layer around a spherical particle

In the Gouy-Chapman model, a parameter, Debye length κ-1 is introduced which is

usually used to characterize the thickness of the double layer. Concerning the double

layer around a sphere particle, there is an additional geometric parameter involved, the

radius of particle, a. The combination of the Debye length and the radius of the particle,

a, produces a dimensionless parameter, κa, which plays an important role in the

colloidal system. When κa >>1, which means the thickness of the double layer is much

smaller than the radius of the particle, that is “thin double layer”. When κa <<1, which

means the thickness of the double layer is much larger than the radius of the particle,

that is the “thick double layer”.

The Poisson-Boltzmann equation in the Gouy-Chapman model remains valid for the

double layer around a spherical particle, but the Laplace operator for the case of

spherical symmetry has a different form (Hunter, 2001):






)(
)

d
(

d

d1
graddiv 2

2

r

r

ψ
r

rr
 (2.10)

Using the Debye-Hückel approximation (assuming ψ to be very small), we get the
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solution:

)](exp[)/( arrad   (2.11)

where r is the distance from the particle centre.

The relationship between diffuse charge and the stern potential is then:

)
1

1(0
a

dmd


  (2.12)

2.2.2 Colloidal Particles under an Electric Field

The electrokinetic phenomenon is one of the most common topics with regard to the

behaviour of charged particle suspensions in an electric field, which has been studied

extensively. An Electrokinetic phenomenon is the phenomena associated with the

movement of charged particles through a continuous medium, or with the movement of

a continuous medium over a charged surface (Hunter, 2001). The family of

electrokinetic phenomena includes: electrophoresis, electro-osmosis, diffusiphoresis,

capillary osmosis, sedimentation potential, streaming potential, colloid vibration current

and electric sonic amplitude (Delgado et al., 2007).

Electrophoresis is the motion of charged colloidal particles, relative to a fluid under the

influence of an external electric field. In contrast in the electro-osmosis process, the

particles remain stationary but the ions in the adjoining fluid move under the external

electric field. This phenomenon usually happens in a capillary or a porous medium

(Delgado et al., 2007). In this research project, the focus is mainly on particles’ moving

under an electric field, therefore only the electrophoresis process is studied.

(1) Electrophoresis under a static electric field

Before considering the behaviour of particles in colloids in an alternating electric field,

the discussion is started from the simple case: charged particles under static electric

field. When a static electric field is applied to a colloidal suspension, both particles and

counter-ions can move in opposite directions due to the difference in sign of the charge

http://en.wikipedia.org/wiki/Dispersed_particles
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carried. An analysis of the forces shows that the charged particles experience four

different forces (Bier, 1967). Firstly, the static electric field exerts an electrostatic,

Coulomb, force (Felectric) on the particles due to their surface charges. The second force,

Ffriction, is the Stokes friction, which affects all bodies moving in viscous fluids with low

Reynolds number. The two remaining forces are caused by the presence of the

counter-ions in the electrical double layer. The electric field exerts a force on the ions in

the double layer. Since these ions are at some distance from the particle surface, they

transfer part of the force to the particle through viscous stress. This force is called the

electrophoretic retardation force, Fretardation. The last force is caused by the detachment

of the particle from its surface ionic atmosphere. The particle moves away from the

centre of its ionic atmosphere. The centre of the ionic atmosphere lags behind the

centre of the particle. The Coulomb force between the particle and the ions tends to

return them to the “proper” place, and is called the electrophoretic relaxation force,

Frelaxation. Figure 2.2 is a schematic diagram which shows the forces on a charged

particle (positive charged) under a static electrical field.

Figure 2.2: Forces on a charged particle (positively charged) under a static electrical

field (http://lcp.elis.ugent.be/research/electrophoresis)

The electrophoretic velocity of particles in the presence of a static electrical field is

linearly related to the strength of electric field with the form (Hunter, 2001):

http://en.wikipedia.org/wiki/Electrostatic
http://en.wikipedia.org/wiki/Coulomb_force
http://lcp.elis.ugent.be/research/electrophoresis


12

u E (2.13)

where, u is the velocity of the dispersed particle, μ is the electrophoretic mobility of the 

particle, and E is the strength of the applied field.

Electrophoretic mobility is an important parameter in colloid science, from which the

zeta potential can be calculated. The earliest solution for μ was given by Smoluchowski

(Wall, 2010) for the thin double layer case (κa >> 1).

0r  


 (2.14)

where η is the dynamic viscosity of the dispersion medium, and ξ is the zeta potential. 

Smoluchowski’s theory is very powerful because it is valid for dispersed particles of

arbitrary shape and concentration (Hunter, 2001). However, it has limitations as it does

not include the Debye length κ-1, which is important for electrophoresis. Hückel (Wall,

2010) solved μ for the opposite extreme condition of a very thick double layer (κa << 1).

The mobility formula is:






3

2 0r (2.15)

Approximate solutions have been obtained for the case where the double layer

thickness is small or large compared with the particle radius. However, most of the

colloidal systems in practice have κa values which lie outside the regimes where the

approximate analytic formulas are valid. In order to obtain results of more practical

significance, Henry calculated the mobility of a spherical particle with an arbitrary

double layer thickness on the assumption that the charge density is unaffected by the

applied field (Henry, 1931). The resulting formula for the electrophoretic mobility is:

)(
3

2
1

0 afr 



  (2.16)

where f1(κa) is a monotonically varying function which increases from 1.0 at κa = 0 to

1.5 at κa = ∞.  

Later on, O’Brien (O'Brien and White, 1978) developed a computer program with the
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governing differential equations to calculate the electrophoretic mobility for arbitrary κa

values.

(2) Electrophoresis in an alternating electric field

Under a periodical alternating electric field, the charged particles in suspension display

oscillatory movement. In the paper which was published in Science in 1965 (Sher and

Schwan, 1965), the oscillatory migration of charged particles under a low frequency

electric field was observed in photographs and the electrophoretic mobility was

measured. The experiment was carried out with a frequency range of 1-10 Hz, electric

field strength of 340 volt/cm and a particle size of 1 μm. A photograph of the particle’s 

oscillatory migration is shown in Figure 2.3. At low frequencies, the electrophoretic

mobility of colloidal particles is the same as the static mobility because the particle

movement can follow the change of electric field. However, at high frequencies, the

particle movement cannot follow the change of electric field and a relaxation process

occurs.

Figure 2.3: Electrophoresis patterns of polystyrene spheres (the oscillatory migration

was recorded as a sine wave by moving the microscope) (Sher and Schwan, 1965)

The behaviour of charged colloidal particles in an alternating electric field has been

studied theoretically over the past thirty years (Delacey and White, 1981, Babchin et al.,
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1989, Sawatzky and Babchin, 1993, Fixman, 1983, Mangelsdorf and White, 1992,

O'Brien, 1988). It becomes more attractive since the electroacoustic phenomenon was

predicted by Debye in 1933 (Debye, 1933). DeLacey and White (Delacey and White,

1981) developed a numerical scheme by solving the governing equations which

included Poisson’s equation, charge density distribution, Navier-Stokes equations,

force balance equation and the continuity equation.

These governing equations which are to describe the system at time t are shown below:







r

42  (2.17)





N
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jj trenztr

1

),(),( (2.18)

  pu2 (2.19)

0u (2.20)

0ln)(  jjjj nkTezuv  (2.21)
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n
vn j

jj



 )( j = 1, 2, ……, N (2.22)

where, ),( tr is the electrical potential, ),( trn j is the number density of the jth ionic

species, ),( trv j is the drift velocities of the ionic species, ),( tru is the velocity of liquid,

λj is the drag coefficient, εr is the dielectric constant of electrolyte medium, r is the

position vector from the centre of the particles and ),( trp is the pressure of the liquid

at every position r in the system.

Equation (2.17) is Poisson’s equation which gives the relationship between the

electrostatic potential )(r and charge density. Equation (2.18) shows the charge

density. Equations (2.19) and (2.20) are the Navier-Stokes equations for the fluid flow

around the particles. Equation (2.21) represents the force balance on an ion. Equation
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(2.22) is the continuity equation expressing the conservation of the number of each ion

type in the system.

Under the applied field tieE  , the particle velocity teU  is proportional to E:

t i tU e E e   (2.23)

The boundary conditions are:

Eu
r

 



||

0|
plane
slipping u

Combining the above mobility equation with the governing equations and applying

suitable boundary conditions, the electrophoretic mobility can finally be calculated

using a perturbation scheme.

2.2.3 Dielectric Dispersion

In physics, dielectric dispersion is the dependence of the permittivity of a dielectric

material on the frequency of an applied electric field. Considering the charged particles

and their double layer under an alternating electric field, both particle and ions will be

set in motion by the field, with the particle and counterions moving in opposite

directions. As a result, the double layer distorts in an alternating fashion giving rise to

an electric field which, at large distances from the particle, has the same form as that of

an alternating electric dipole (O'Brien, 1982). The polarisation of the electric double

layer reverses periodically but there is a phase lag between changes in polarisation

and changes in electrical field. This phenomenon can be monitored by electrical

impedance spectroscopy (sometimes called dielectric spectroscopy) and the complex

conductivity, impedance, and permittivity is related to many quantities: particle size and

shape, particle concentration, electrolyte properties (ionic concentration, ionic species),

zeta potential, and so forth.

Two mechanisms are responsible to the dielectric dispersion of colloidal suspension.
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The dispersion which occurs in MHz range is called the Maxwell-Wagner-O’Konski

mechanism (MWO). It is caused by the different permittivities and conductivities of the

particle and the surrounding medium (Dudley et al., 2003). At lower frequencies (Hz-

MHz), the dispersion is caused by the polarisation of the counter ions in the diffuse

double layer (DDL). This mechanism is called low frequency dielectric dispersion

(LFDD) or α dispersion.  

Some details of the α dispersion and MWO dispersion are discussed in the following 

paragraphs.

(1) α dispersion 

There are two models used to explain α dispersion: the surface diffusion model (SDM) 

and the volume diffusion model (VDM). In the surface diffusion model (SDM), it is

assumed that under the action of an external electric field, counter-ions in the double

layer move only along the particle surface without exchanging with the bulk electrolyte

ions (Schwarz, 1962, Schurr, 1964). Therefore, the relaxation time depends on the path

length for movement of the counter-ions swarm (particle size, a) and the diffusion

coefficient of counter-ions, D:

2

2
L

a

D
  (2.24)

where, a is the particle size, D is the diffusion coefficient and a thin double layer

thickness is assumed.

The SDM model showed a coincidence between theory and the experimental results

presented by Schwan (Schwan et al., 1962). However, since it uses a simple and

restricted assumption, the SDM model is not likely to be met in practice. In real colloidal

systems, the counter-ions in the diffuse double layer do not bind with the particles

tightly, and thus the exchange of ions with the bulk electrolyte cannot be fully neglected.

Based on this consideration, another mechanism, volume diffusion model (VDM) was

proposed (Delgado et al., 1998, Lyklema et al., 1986). In VDM, the polarisation of the

electric double layer is accompanied by a gradient of ionic concentration around the

particle surface.



17

The formation of the ionic concentration gradient can be understood easily from the

schematic in Figure 2.4, where a negatively charged spherical particle is under an

electric field pointing in the direction from left to right. The counter-ions in the double

layer move from the left to the right hand side of the particle (the outer boundary of the

double layer) and this provokes a tangential electromigration flux of counterions Jes
+.

The normal counterion flux, Jen
+, leaving the boundary towards the right is much

weaker than the flux of Jes
+ since there is no excess of counter-ions in the bulk

electrolyte solution (Grosse and Delgado, 2010). Therefore, the concentration of

counter-ions on the right hand side of the particle starts to increase. As for co-ions, they

move from the neutral electrolyte to the right hand side of the particle (the outer

boundary of the double layer) and provoke a normal electromigration flux of Jen
-, which

is comparable to the normal electromigration flux of counterion, Jen
+. Since the

concentration of co-ions in the electrical double layer is much lower than that in the

bulk electrolyte solution, the co-ions concentration on the right hand side of particle

also increases. Therefore, an accumulation of both counter-ions and co-ions is formed

on the right hand side of the particle and a similar process produces a depletion of both

counter-ions and co-ions on the left hand side of the particle. An increment of both the

counter-ion and co-ion concentrations means the electrolyte concentration increases at

the right hand side of the particle. This phenomenon is called “concentration

polarisation”. The concentration gradient of the electrolyte, in turn, provokes a

tangential diffusion flux Jds
+ along the particle surface and two normal diffusion fluxes,

Jdn
+, Jdn

- enter into the bulk electrolyte solution. Such diffusion is a slow process and the

diffusion currents need a finite time to be established, as a consequence, under the

action of the external electric field, the suspension shows a dispersion which is called α 

relaxation.
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Figure 2.4: Schematic of the generation of the electrolyte concentration gradient

responsible for α dispersion for a negatively charged particle  

Compared with SDM, VDM is apparently closer to the real situation. The difference

between these two mechanisms is that they use different theoretical hypotheses to

describe the behaviour of the counter-ions in and outside of the electric double layer.

VDM can be broadened to any value of double layer thickness, and Equation (2.24)

can be revised to:

1 2

L

eff

( )

2

a

D





 (2.25)
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



(2.26)

where, a is the particle radius, κ-1 is the Debye length, Deff is the effective coefficient of

diffusion, D+, D- are the diffusion coefficients of positive and negative ions, respectively,

z+, z- are the valence of the ions, 0
in is the background electrolyte concentration, εr is

the relative permittivity of electrolyte medium, k is the Boltzmann constant, and T is

temperature .

Based on the derivation of the SDM model, relaxation frequency is independent of the

particle concentration ; however, it has been proved incorrect through experiments by

some researchers (He and Zhao, 2005, Barchini and Saville, 1995). The dependence
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of relaxation frequency of α dispersion on the particle concentration is a complicated 

problem that is not yet fully understood. One of the possible explanations is the VDM

mechanism, which can take the electrolyte concentration gradients of neighbouring

particles into consideration. In concentrated suspensions, one particle is probably close

to another particle and the double layer polarisation might be affected by changing the

characteristic length of the volume diffusion mechanism (Delgado et al., 1998). For a

dilute suspension, the characteristic length is the particle size. However, it becomes

particle concentration dependent in concentrated suspensions (Delgado et al., 2007).

(2) MWO dispersion

The Maxwell-Wagner (MW) dispersion is due to the distribution of ionic charges near

the interface between the particle and the electrolyte solution, which have different

conductivities and electric permittivities. O’Konski (O'Konski, 1960) generalized the MW

dispersion theory by including a surface conductivity in the particles, λ, which is 

assumed to be due to the excess concentration of ions very close to the surface of the

charged particle. The resulting theory is called the Maxwell-Wagner-O’Konski (MWO)

dispersion. The Maxwell-Wagner-O’Konski relaxation frequency is showed by Equation

(2.27) (Delgado et al., 2007):

rsrsrp

Lp

MWO

MWO

KK








])2()1[(

)2()1(1

0 


 (2.27)

where, Kp and εrp are the conductivity and relative permittivity of the particles,

respectively. KL and εrs are the conductivity and relative permittivity of the medium

solution, respectively,  is the particle volume fraction, and ε0 is the permittivity of free

space.

For low volume fractions and low permittivity of the particles, the relaxation time is

given by Equation (2.28):

22

1


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D
MWO  (2.28)
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τMWO is a measure of the time required for charges in the electrolyte solution to recover

their equilibrium distribution after ceasing an external perturbation.

2.2.4 Dielectric Properties and Theoretical Modelling

Dielectric properties of colloidal suspensions, including impedance, complex

conductivity, permittivity, relaxation frequency and phase angle, can be measured by

electrical impedance spectroscopy. The changing of these dielectric properties with

frequency of the applied electric field are all related to the characterisation of colloidal

suspensions. Much related research has been done in studying the dielectric properties

of colloidal particles by theoretical and experimental methods. However, the focus on

particle size effect is quite limited. In this section, the theoretical analysis on dielectric

properties of colloidal particle will be reviewed.

(1) Debye theory

The classical dielectric relaxation model is the Debye model and the complex

permittivity can be given by the following equations (Cole and Cole, 1941):

*
0( ) /(1 )H L H i        (2.29)

' 2
0( ) /[1 ( ) ]H L H        (2.30)

" 2
0 0( ) /[1 ( ) ]L H       (2.31)

where, εH, εL, and ε* are the high and low frequency limiting permittivity, and complex

permittivity respectively, ω is the frequency, τ0 is the single relaxation time, and ε’ and ε”

are the real and imaginary permittivities.

Although the simplest way of fitting the dielectric properties is use of the Debye model,

it is not suitable for many systems, particularly colloidal suspensions since they do not

follow the pattern predicted by this simple model (Asami, 2002).
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(2) Cole-Cole model

The Cole-Cole model is an empirical generalization of the Debye theory. It seems to

agree reasonably well with the experimental data (Carrique et al., 1995). The complex

permittivity for the Cole-Cole model is given by the following equations (Sauer et al.,

1990):

* 1
0( ) /[1 ( ) ]H L H i          (2.32)

1
' 0

2(1 ) 1
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   
 
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 

 
 

 
(2.33)

1
" 0

2(1 ) 1
0 0

( )( ) cos( / 2)

1 ( ) 2( ) sin( / 2)
L H



 

   


  



 




 
(2.34)

where, εH, εL, and ε* are the high and low frequency limiting permittivity and complex

permittivity respectively, ω is the frequency, τ0 is the relaxation time, α is an constant 

(0< α <1).  

The Cole-Cole model cannot directly relate the permittivity or relaxation frequency to

the particle size. However, the experimental data can be fitted using the Cole-Cole

model and the values of permittivity and relaxation frequency can be calculated.

Several authors (Grosse and Foster, 1987, Lim and Franses, 1986) have studied the

size dependence of relaxation frequency ωc, using this method. The results showed

that ωc is inversely proportional to the square of the particle radius, which is consistent

with Equation (2.24) for α dispersion. Although the Cole-Cole model is a relatively 

simple model, it does not show any effects of double layer thickness and zeta potential

on dielectric properties. Therefore, a more integrated model is necessary to reproduce

the theoretical prediction of dielectric response.

(3) Classic electrokinetic model

The first numerical calculation for the dielectric response using the classic

electrokinetic model has been given by Delacey and White (Delacey and White, 1981).

In this model, the response of the particle and the surrounding electrolyte to an

alternating electric field is obtained by solving the governing equations, which are
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already shown in Section 2.2.2, part (2). By applying suitable boundary conditions and

solving the governing equations, the electrophoretic mobility of spherical particles can

be obtained. However, Delacey and White just indicated the calculation method but did

not provide the numerical results for the mobility. In their work, a numerical scheme for

getting the complex conductivity and permittivity response based on the governing

equations is developed.

For an imposed electrical field, tieEE 
0 , and the current passing through the

suspension, tieII 
0 , the complex conductivity of the suspension can be defined

by a linear relation: * 0

0

I
K

E
 .

Formally, K* can be written as:

* "( ) '( )
( ) ( )

4 4

i
K K

   
 

 
   (2.35)

The increments of conductivity and permittivity by adding particles in a medium solution

are given by:

2( ) ( ) ( )K K K        (2.36)

2
rs'( ) '( ) ( )           (2.37)

2"( ) "( ) ( )         (2.38)

where, K  is the conductivity of the electrolyte medium, εrs is the permittivity of the

electrolyte medium,  is the particle volume fraction. The tiny contribution from the

second and higher order of  can be ignored, and only the lowest order term is

considered.

Substituting Equations (2.36) – (2.38) into Equation (2.35), we obtain:
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(2.39)

Therefore, the increment of conductivity can be expressed by:
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The derivation of * ( )K  has to involve the perturbation scheme for the governing

equations. The solving procedure will not be given in detail here, but a final expression

is given:
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where, a is the particle radius, C0 is the dipole coefficient of the particle, )(0 RC is the

real part of the dipole coefficient, )(0 IC is the imaginary part of dipole coefficient.

In their paper, DeLacey and White showed the numerical results of dielectric

increments changing with frequency. The dependences of conductivity and permittivity

increments on zeta potential, double layer thickness and ionic species are described.

DeLacey’s theory is applicable for all values of zeta potential, double layer thickness

and for general values of ionic valences. However, the authors omitted the acceleration

term m

u

t





in the Navier-Stokes equation and approximated the sum of the forces

on the colloidal particle to zero. This approximation was made because the

acceleration term is very small compared with the viscous term at frequencies below

104 Hz, and therefore can be neglected. However, this approximation is not suitable for

the cases with high frequency ω >> 104 Hz, and should be modified by adding the

acceleration term in the Navier-Stokes equation (Delacey and White, 1981).

In Mangelsdorf and White’s paper (Mangelsdorf and White, 1997), they modified the

theory developed by DeLacey and White by adding the acceleration term in both the
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Navier-Stocks equation and the force balance equation. This calculation was called the

“full” calculation (F), which extended DeLacey’s theory to a high frequency range.

Mangelsdorf and White compared the real and imaginary parts of the dipole coefficient

C0 obtained from different calculations, which included the De Lacey and White’s

theory (D), the “full” calculation (F), the Hinch’s theory (H) (Hinch et al., 1984), and the

O’Brien’ theory (O) (O'Brien, 1986).

The O’Brien’ theory was derived for a dilute suspension of spherical particles with thin

double layer (κa >> 1) at high frequency range (f >> D/a2) where D is the ion diffusion

coefficient and a is the particle radius. It was derived using the approximate procedure

of Delacey’s theory, and an analytical expression for C0 is given:
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Here, )2/exp( Tkez Bi >>1
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where, the subscript i refers to the counter-ion of highest charge, εrp is the relative

permittivity of the particles, εrs is the relative permittivity of the medium solution, z is the

valence of ions, n∞ is the number density of ions in bulk electrolyte concentration, ηs is

the viscosity of medium solution, λi is the drag coefficient, κi is the Debye-Hückel

parameter, a is the particle radius, ξ is the zeta potential, and kB is the Boltzmann

constant.

Hinch et al. (Hinch et al., 1984) derived the dipole coefficient of the spherical particles
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in dilute suspension with κa >>1 at low frequencies ( D2  ).

From the above equations, we find that the dipole coefficients C0 are functions of ξ and 

κa if the physical properties of the electrolyte and ion species are constant. Some

researchers (O'Brien, 1982, Mangelsdorf and White, 1997, Rosen and Saville, 1991,

Saville, 1994, Grosse and Tirado, 2001) have studied the variations of complex

conductivity, permittivity and dipole coefficient with ξ and κa from both numerical

solution and experiments. The results can be explained qualitatively by the charges in

the double layer. From basic double layer theory, the parameters ξ and κa are related

to the surface charge density of a spherical particle by a semi-empirical equation

(Hunter, 2001):
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where, σξ is the surface charge density at slipping plane, ξ is zeta potential, k is

Boltzmann constant, κ is Debye-Hückel parameter, T is temperature, and a is the

particle radius.

Therefore, the dipole coefficient and complex conductivity are also closely connected

with surface charge density of particles. If we keep ξ and κ constant, the surface

charge density will increase with decreasing particle radius a, and the dipole coefficient

(real part and imaginary part) will also change with a. Although the approximate

analytical solution of dipole coefficient provides an easy way to calculate the complex

conductivity and impedance, it cannot be applied over a wide range since some

assumptions are involved in the derivation (Mangelsdorf and White, 1997, O'Brien,

1986).

The comparison of the dipole coefficient C0 obtained from different calculations, which

include the De Lacey’s theory (D) (Delacey and White, 1981), the “full” calculation (F)

(Mangelsdorf and White, 1997), Hinch’s theory (H) (Hinch et al., 1984), and O’Brien’

theory (O) (O'Brien, 1986), shows that the inertial term in the Navier-Stokes equation
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has almost no significant effect on the dipole coefficient up to 106 Hz. Under the

conditions of κa =1 and κa =10, O’Brien’s theory and Hinch’s theory show a big

discrepancy with De Lacey’s theory and “full” calculation. However, they perform much

better in the case of κa =50 through the frequency range 1Hz to 107 Hz (Mangelsdorf

and White, 1997).

2.2.5 Effect of Particle Size on Dielectric Properties

The effect of particle size on dielectric properties has been studied experimentally by

some researchers (Arroyo et al., 1999, Kijlstra et al., 1993, Lim and Franses, 1986,

Sauer et al., 1990). Arroyo et al. compared the dielectric properties of two polystyrene

suspensions with small (23 nm) and large (530 nm) particles. The small particles

showed a large relaxation frequency, which is consistent with the relationship between

the relaxation frequency and particle size for α relaxation. Kijlstra et al. discussed the

low-frequency dielectric response of dilute aqueous hematite and silica sols. The

results show that for silica sols, the dielectric increments (permittivity and conductivity)

were hardly affected by the value of κa. In contrast with silica, the dielectric increments

of hematite sols increase with κa. Furthermore, for both sols, the dielectric increments

increase with increasing surface charge density. The relaxation frequency, is roughly,

inversely proportional to the square of particle radius, as the α dispersion theory 

predicts. However, the study on particle size effect did not concern the κa values in

different suspensions, or propose a mathematical treatment in the data analysis. In Lim

and Franses’s study, the complex permittivity and conductivity were studied in polymer

particle dispersions with four different particle sizes. The experimental results show that

the relaxation frequency is proportional to (a+κ-1)n, where n ≈ 1.5, which is slightly 

different from the α dispersion theory. The main issue concerning the outcome of this 

experiment is that the authors used different particle materials, particle concentrations,

and κa values, which might have caused inconsistent fitting of the results. A similar

problem occurs in Sauer’s study; the values of particle concentration and κa values

were not fixed or included in data treatment when they studied the size effect on
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relaxation frequency.

The theoretical studies on particle size effect are also very limited. A numerical study

which discussed the effect of size polydispersity of colloidal suspensions on their

dielectric properties was published by Carrique et al., (Carrique et al., 1998). They

provided a theoretical prediction on the relationship between particle size distribution

and dielectric properties. The simulation results show that there is no difference in the

dielectric increments obtained from a monodisperse suspension and a polydisperse

suspension which have the same volume-averaged mean radius. Carrique et al.,

(Carrique et al., 2008) studied the dielectric response of a concentrated colloidal

suspension in a salt-free medium by simulation. The results show that both α and 

MWO relaxation frequencies move to the high frequency side with decreasing particle

size under the conditions of fixed volume fraction and particle charge density.

Based on the literature review, the studies of particle size effect on dielectric properties

mainly focus on the permittivity and conductivity, obtained from the permittivity spectra.

Relevant studies based on electrical impedance spectroscopy are very limited. The

particle size range which was studied is narrow (usually 3-4 different sizes). The effects

of other parameters (for example, particle concentration, double layer thickness, ionic

concentration) were not fully considered or treated in experiments or data analysis.

Therefore, in our project, a more careful and thorough experimental study which

particularly focuses on the particle size effect was carried out.

2.2.6 Effect of Particle Shape on Dielectric Properties

In the previous discussion, the dielectric properties of colloidal suspensions are all

based on the assumption of ideal spherical particles. However, the shapes of particles

in practice may include long cylinder, ellipsoid, oblate spheroid, rod, and so on. The

electrical potential outside of the particles and the induced dipole moment are affected

by the particle shape or the surface geometry of particles. Asami (Asami, 2002) studied
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and reviewed the complex dielectric constant of colloidal suspensions with different

shapes (ellipsoid, sphere, cylinder, and lamellar) in an AC field. Some of the results are

listed below:

For spheres (Lx = Ly = Lz = 1/3):
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For cylinders (Lx = Ly = 1/2), whose longitudinal direction is perpendicular to the

direction of the electric field, E:
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For ellipsoids whose surface is expressed as:
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where, Rx, Ry, Rz are the semi-axes along the x-, y-, z-axes, respectively.

The complex dielectric constant of ellipsoid orientation at random is:
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When the k-axis of ellipsoids are parallel to the electric field, E:
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where, Lk is the depolarisation factor along the k-axis, which is determined by the semi-

axes along the x-, y-, z- directions, *
a is the complex permittivity of the disperse

medium, *
p is the complex permittivity of the particles, and  is the particle volume

fraction.

The particle shape effect on dielectric polarisation was studied by Sihvola (Sihvola,

2007). The polarisation of particles with different shapes (sphere, spheroids, ellipsoids,
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regular polyhedra, circular cylinder, semisphere, and double sphere) was studied

theoretically. Although some theoretical analyses of the particle shape effects have

been done, evidence of experimental research has not been found. Therefore, it is

important to study the particle shape effects on dielectric properties in colloidal system,

and furthermore, to study the shape of crystals in the crystallisation process.

2.3 Electrical Impedance Spectroscopy

2.3.1 Introduction

Spectroscopic techniques are favourable methods used for microscopic measurement

of many chemical systems. The different types of spectroscopy can be classified

according to the type of energy, including:

Electromagnetic radiation: microwave, infrared, visible, ultraviolet, x-ray, and gamma

spectroscopy.

Electrons and neutrons (de Broglie wavelength)

Ultrasonic wave

Alternating electrical field

Various spectroscopic techniques have been applied to study the colloidal interface,

and crystallisation of colloids such as Fourier transformation infra-red (FTIR)

spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy,

ultra-violet (UV) spectroscopy, impedance spectroscopy and ultrasonic spectroscopy.

In this section, the discussion will focus on electrical impedance spectroscopy and its

applications.

2.3.2 Electrical impedance spectroscopy

Electrical impedance spectroscopy is sometimes called “Dielectric Spectroscopy” when

the polarisation effect, as a result of an electric field, is expressed in terms of
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frequency-dependent complex permittivity and conductivity rather than impedance.

Electrical impedance spectroscopy (EIS) is a powerful technique to investigate the

electrokinetic properties of materials and their interfaces (Macdonald, 1987). The

Experimental impedance spectroscopy data can be analysed using a suitable physical

model (for example, the equivalent circuit model) to explain the physical or chemical

processes in the material/interface. The EIS measurement can be achieved by

applying an alternating voltage to the system and measuring the AC current response.

If a sinusoidal potential ( ) sin ( )mV t V t excitation, involving a single

frequency  2/f , is applied to a material, the response to this potential is an AC

current signal ( ) sin ( )mI t I t   . Here, θ is the phase difference between the voltage

and the current, which is zero for purely resistive behaviour. The conventional

impedance is defined as ( ) ( ) / ( )Z V t I t  . The magnitude or modulus of the impedance

is )(/|)(|  mm IVZ  , and the phase angle is θ. Usually, the complex impedance can 

be written by its real part and imaginary part:

"' jZZZ  (2.56)

Where, 1j   , Z’ is the impedance real part and Z” is the impedance imaginary part,

showing as equations:

)cos(||)Re( ' ZZZ  (2.57)

)sin(||)Im( " ZZZ  (2.58)

)/(tan '"1 ZZ (2.59)

2/12"2' ])()[(|| ZZZ  . (2.60)

Impedance Z can also be expressed in terms of resistance (R) and reactance (X)

components as jXRZ  .

There are four closely related functions in impedance spectroscopy. These are most
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conveniently expressed as (Hodge et al., 1976):

Complex impedance: "')( 1 jZZYZ   (2.61)

Complex admittance: "')( 1 jYYZY   (2.62)

Complex permittivity: "')( 1  jM   (2.63)

Complex modulus: "')( 1 jMMM   (2.64)

Table 2.1 shows the relationship between the four basic functions (Macdonald, 1987).

Table 2.1: Relations between the four basic immittance functions

M Z Y ε 

M M μcZ μcY
-1 ε-1

Z μc
-1M Z Y-1 μc

-1 ε-1

Y μcM
-1 Z -1 Y μc ε  

ε M-1 μc
-1 Z-1 μc

-1 Y ε 

Here, c cj C  , and lAC cc /0 .

2.3.3 Electrical Circuit Elements

Electrical impedance spectroscopy (EIS) data is commonly analysed by fitting it to an

equivalent electrical circuit model. Most of the circuit elements in the model are

common electrical elements such as resistors, capacitors, and inductors. To be

meaningful, the elements in the model should have a basis in the physical

electrochemistry of the system. As an example, most models contain a resistor that

models the resistance of a cell’s solution. Knowledge of the impedance of the standard

circuit components is therefore very useful. We will start to look at the electrical

impedance of the simplest circuit elements: pure resistor, capacitor and inductor.

(1) Pure resistor

For a pure resistor of magnitude R, the electrical impedance response shows a real
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part RZR 
' , an imaginary part 0" RZ and the phase angle 0R for all frequencies.

This is shown on a plot of the real and imaginary part as a point on the real axis (Figure

2.5), which is sometimes called the Cole-Cole plot (Cole and Cole, 1941).

Z’

-
Z

”
Figure 2.5: Cole-Cole plot of pure resistor

(2) Pure capacitor

For a pure capacitor of magnitude C, the electrical impedance response shows a real

part 0' CZ , an imaginary part
C

ZC


1"  , and the phase angle  90C . As the

frequency increases the magnitude of the impedance decreases (shown in Figure 2.6).

Z’

-
Z

”

frequency

Figure 2.6: Cole-Cole plot of pure capacitor

(3) Pure inductor

For a pure inductor of magnitude L, the electrical impedance response shows a real

part 0' LZ , an imaginary part LZL " , and the phase angle  90L . As the

frequency increases the magnitude of the impedance increases (shown in Figure 2.7).
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Figure 2.7: Cole-Cole plot of pure inductor

One of the most attractive aspects of electrical impedance spectroscopy as a tool for

investigating the electrical properties of materials and systems is the direct connection

between the behaviour of a real system and that of the idealised circuit model. Next,

we will define and discuss the analogies between equivalent circuit elements and the

physical electrochemistry of systems.

(1) Electrolyte resistance

Solution resistance is often a significant factor in the impedance of an electrochemical

cell. The resistance of an ionic solution depends on the ionic concentration, type of ions,

temperature and the geometry of the area in which the current is carried. The

conductivity of the solution, k, is more commonly used in electrolyte resistance

calculations. Its relationship with solution resistance is:

RA

l
k

A

l
kR  (2.65)

The major problem in calculating solution resistance concerns the determination of

current flow path (l) and the geometry of electrolyte that carries the current (A). In the

study of electrical impedance spectroscopy, the electrolyte resistance is usually

obtained by fitting a model to experimental EIS data.

(2) Double layer capacitance

As an electrode in a colloidal suspension system, the electric double layer exists at two

interfaces. One is the interface between charged particles and the surrounding ion

solution and another is the interface between the electrode and its surrounding
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electrolyte. The electrical double layer at the interface can be treated as a capacitor in

the equivalent circuit model (Wang, 2005).

(3) Charge transfer resistance at the electrode-electrolyte interface

If an electrochemical reaction occurs at the electrode surface, there should be a current

passing through the electrode-electrolyte interface. We call this the Faradic current.

The charge transfer reaction:

RneO  (2.66)

The charge transfer resistance is (Canagaratna, 1980):

0nFi

RT
Rct  (2.67)

where, R is the gas constant, T is the temperature, n is the number of electrons

involved in the reaction, F is the Faraday’s constant, and i0 is the exchange current

density.

(4) Diffusion and Warburg impedance

For a case that an electrochemical reaction occurs at the electrode surface, the

concentration of reactant or product on the surface of the electrode is different from the

one in the bulk solution. Therefore, the diffusion process must be considered in the

analysis of electrical impedance spectra. Diffusion can create impedance known as

Warburg impedance. Warburg impedance can be used to model semi-infinite linear

diffusion that is unrestricted diffusion to a large planar electrode. The equation for the

Warburg impedance, Zw, of an infinite diffusion path along the electrode is (Doi, 1990):

1/ 2( ) (1 )w wZ j    (2.68)

σw is the Warburg coefficient defined as:

2 2 * *

1 1
( )

2
w

O O R R

RT

n F A C D C D
   (2.69)
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where, ω is the frequency, DO is the diffusion coefficient of the oxidant, DR is the

diffusion coefficient of the reductant, C* is the bulk concentration of the diffusing

species, A is the surface area of the electrode, F is the Faraday constant and n is the

number of electrons transferred.

(5) Constant phase element

For an ideally polarised electrode, the impedance Z consists of a capacitance (Cd) in

series with the solution resistance. The corresponding complex plane plot should

exhibit a straight vertical line intersecting the Z’-axis at Z′ = RΩ. However, on a real

electrode/electrolyte interface with contamination and surface roughness, the complex

impedance plot shows a straight line intersecting the Z′-axis at (RΩ, 0) at an angle

smaller than 90°. It means that the electrode impedance consists of resistance RΩ in

series with a complex impedance Zc with the special property that its phase angle is

independent of frequency. This phenomenon is called the “constant phase angle”. The

impedance of a constant phase element has the form (Zoltowski, 1998):

CPE ( )Z A j   (2.70)

When this equation describes a capacitor, the constant A = 1/C (the inverse of the

capacitance) and the exponent α = 1. For a constant phase element, the exponent α is 

less than 1. For α = 0, it is a reciprocal of resistance, and for α = -1, it is an inductance. 

The “double layer capacitor” on real cells often behaves like a CPE instead of a

capacitor.

2.3.4 Electrode System

The electrode system which is used in electrical impedance spectroscopy

measurement usually includes three different forms: 2-electrode, 3-electrode and 4-

electrode systems.

(1) Two electrode system

The most basic form of cell comprises two electrodes immersed in an electrolyte
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(Figure 2.8). Application of a potential across the electrodes causes a current to flow

through the cell. These two electrodes are known as the working electrode (WE) and

secondary (or counter) electrode (SE). In electrochemical impedance measurements, a

exciting potential is applied between the electrodes, and a current response to this

potential is also measured from the two electrodes to obtain the impedance response.

This type of arrangement is used for the investigation of electrolyte properties, such as

conductivity, when the dominant parameter is the electrolyte resistance. The two

electrode cell is common and easy to use; however the problem of the electrode

polarisation (electrode-electrolyte interface effects) usually significantly influences the

measurements.

Figure 2.8: Two-terminal electrochemical cell

(2) Three electrode system

If there is a reaction at the working electrode, we may need to determine the

relationship between the current on the one hand and the voltage that is required to

drive this reaction on the other hand. For this case a third electrode, we call it the

reference electrode, is required. The current can flow between the working electrode

and counter electrode, while the potential of the working electrode is measured against

the reference electrode. This set-up can be used in basic research to investigate the

kinetics and mechanism of the electrode reaction occurring on the working electrode

surface. Figure 2.9 shows the schematic diagram of the three electrode system.

WE SE

RE

Figure 2.9: Three-terminal electrochemical cell
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(3) Four electrode system

Finally, a four-terminal cell can be used to provide an analysis of processes occurring

within the electrolyte (Figure 2.10). The purpose of the working and counter electrodes

is only to enable the current flow. Two sensor electrodes are used to measure the

voltage drop in the solution. The four electrode system can decrease the electrode

polarisation effect because the electrode functions are separated, and no current

passes through the two sensor electrodes (Mazzeo and Flewitt, 2007). The effect of

electrode polarisation results from the formation of an electrical double layer on

electrode surfaces due to the accumulation of charges (Feldman et al., 2001). The

associated capacitance and complex impedance created due to the electrode

polarisation influence the measurement of electrical impedance. Therefore, it is

necessary to decrease the effect using a four electrode system.

Figure 2.10: Four-terminal electrochemical cell

2.3.5 Applications of Impedance Spectroscopy

Impedance spectroscopy has a wide range of applications. It can be used to

characterize the micro-structure of materials, to study solid state devices, the

electrochemical reactions and the corrosion process of materials. In colloidal science,

impedance spectroscopy is usually used to study the dielectric properties and the

kinetic aspects of electrochemistry. The research on the dielectric properties of colloidal

suspensions has been reviewed in detail in section 2.2.

In biological science, electrical impedance spectroscopy shows a valuable application

for in-situ biomass characterisation in cell-culture manufacturing processes and

fermentation (Hauttmann and Muller, 2001). A suspension of cells usually can be
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regarded as being composed of three separate parts: the conducting cytoplasm, the

outer plasma membrane and the aqueous and ionic suspension medium. When an

electric field is applied to the cell suspension, the positive and negative ions move in

opposite directions and accumulate at the plasma membranes. This results in the

development of a charge separation or polarisation at the poles of the cells, which can

be treated as a spherical capacitor. By measuring the capacitance of the suspension

using electrical impedance spectroscopy, the biomass or cell concentration can be

estimated (Carvell and Dowd, 2006).

Impedance spectroscopy can also be used in the study of crystallisation and

solidification processes. The solidification of a ceramic-suspension was studied using

complex impedance spectroscopy (Novak et al., 2001). A sharp increase in the high-

frequency resistance of the ceramic suspension was observed for the time interval

where the solidification of the suspension occurred. The high-frequency resistance is a

function of temperature and the ceramic concentration. It was proved that impedance

spectroscopy is a useful tool for monitoring the solidification process. The in-situ

impedance measurement was carried out on the melting and crystallisation of solid-

state polymer electrolytes (Marzantowicz et al., 2006). The ionic conductivity, dielectric

constant, and the electric polarisation of both the pure PEO and PEO-LiTFSI polymer

electrolyte were studied during the crystallisation process. The changes of the electrical

properties, which depend on the semicrystalline structure of the polymer, were studied

in the heating and cooling process.

2.4 Electrical Impedance Tomography

2.4.1 Introduction

Electrical impedance tomography (EIT) is one of the process tomography techniques to

provide an on-line non-invasive imaging measurement. EIT has shown promise in both

biomedical (Brown and Seagar, 1987) and industrial applications, including brain
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imaging (Holder, 1992, Boone et al., 1994), pulmonary investigation (Metherall et al.,

1996, Brown et al., 1994, Harris et al., 1987), breast cancer screening (Zou and Guo,

2003, Kim et al., 2007), and flow measurement (Wang et al., 2002). The impedance

values, which include the real part, imaginary part, amplitude and phase angle

components can be used for imaging respectively to provide more information about

the test system than the imaging based on the impedance real part, viz. the resistance

(Gersing and Osypka, 1994, Glickman et al., 2002). The application of phase angle

imaging on three objects, including non-conductive plastic rod, metallic rod and banana,

has been demonstrated by researchers at the University of Leeds (Schlaberg et al.,

2008). The phase angle images for non-conductive plastic rod and metallic rod are

invisible with only a noise feature; however, in the test with a banana, the object

appears in phase image.

The imaging based on the resistance is called electrical resistance tomography (ERT),

which is often used to provide the conductivity distribution (Xu et al., 2007). With EIT

measurements, the images of impedance real part, impedance imaginary part, phase

angle, and magnitude can be obtained. However, in the process industries, it is not

common to use the imaginary part or phase angle due to the dominant change in

conductivity in most applications or complication in the use of other impedance

information. Most of the applications of EIT in the process industries rely on the

conductivity difference between two phases in fluids to obtain the concentration profiles

and characterisation of the fluid dynamics (Holden et al., 1998, Wang et al., 2000).

2.4.2 Measurement Procedure

The measurement strategy of EIS is basically similar to that of EIT, based on a four-

electrode system, except the data acquisition and image reconstruction process is

required in EIT. A typical EIT sensor consists of a set of electrodes (could be 8, 16, 32,

or 64) evenly mounted around the circular vessel which contains the samples being

measured. In EIT, the adjacent electrode pair strategy (Seagar et al., 1987) is

commonly used in data sensing strategy. The exciting currents (alternating current) are
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applied to one pair of electrodes and the resulting voltages are measured sequentially

or synchronously on other adjacent electrode pairs. Figure 2.11 shows the schematic of

this adjacent data sensing strategy for a 16-electrode system. Current is applied to a

pair of electrodes, e.g. electrode 1 and 2, meanwhile the voltages are measured on

another adjacent electrode pair, e.g. between 3 and 4, 4 and 5, up to 15 and 16. Then

the excitation current is moved on to electrodes 2 and 3, and the same set of voltage is

measured on the rest of the electrodes. After all the electrodes are excited and

voltages are measured, one frame of cross-sectional image can be reconstructed to

represent the electrical impedance distribution. The mutual impedance which includes

the impedance real part, imaginary part, phase angle and amplitude can be calculated

from the voltages divided by the currents.

Apart from the adjacent strategy, there are another two strategies, called the opposite

strategy (Dickin and Wang, 1996) and the adaptive strategy (Cook et al., 1994), based

on the positions of current injection and voltage measurement. Comparing these

strategies, the adjacent strategy requires minimal hardware to implement and image

reconstruction can be performed relatively quickly with minimal computer resources

(Dickin and Wang, 1996).

Figure 2.11: The schematic of adjacent data sensing strategy

(http://www.bem.fi/book/26/26.htm)

For the adjacent strategy, based on the reciprocity theorem, the total number of unique

measurements is N(N-1)/2 for a N electrodes system (Wang et al., 1995, Szczepanik

http://www.bem.fi/book/26/26avi/2601avi.htm
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and Rucki, 2007). Ignoring those measurements involved with the working electrodes

in the adjacent strategy, the number of unique measurements becomes N(N-3)/2

Therefore, for an 8-electrode system, the total number of unique measurements is 20,

and for a 16-electrode system, the total number of unique measurement is 104. Figure

2.12 shows an example of the measurement data for one frame image in an 8-

electrode system.

Figure 2.12: Measurement data for one frame image in an 8-electrode system

EIT measurement in most process applications is based on the relative changes of the

samples, which means a reference should be taken at the beginning. For example, a

vessel is filled with a homogeneous solution (for example, tap water or distilled water),

which is called the reference. The voltage values (Vr) measured from different electrode

pairs for the reference solution are recorded and saved. Next, a second phase or

material is added into the reference solution, and the measured voltage values (Vm)

taken from different electrode pairs are recorded as well. The relative voltage change is

determined by Equation (2.71):

-
voltage relative change = m r

r

V V

V
(2.71)

Figure 2.13 shows the typical profiles of measured voltages, reference voltages, and

relative voltage changes, respectively in an 8-electrode system. The number on the x-

axis means the number of the series of measurement. It can be found that the large

relative voltage differences are observed mainly on the bottom parts of U-shaped Vm
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and Vr curves, which are the voltages measured between the two electrodes opposite

to the position of the exciting electrodes (for example, the voltages between 5 and 6

electrodes when the exciting current is applied to 1 and 2 electrodes in an 8-electrode

system). The large-relative changes mean the small Vm and Vr, play more important

roles in precise image reconstruction although technically, measuring small voltages

accurately is much more difficult than measuring large voltages.

Figure 2.13: The typical profiles of measured voltages, reference voltages, and relative

voltage changes, respectively in an 8-electrode system

2.4.3 Common Mode Voltage

In EIT measurements, the common mode voltage effect and stray capacitance are the

major sources of instrumentation error. The voltage measurement in an EIT system

usually uses differential voltage measurement, which could result in a reduction in

voltage signals compared with the single-ended voltages. However, in practice, the

precision of differential voltage measurement is affected by the measurement error due

to non-zero common mode amplifier gain (Murphy and Rolfe, 1988, McEwan et al.,

2007).
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Figure 2.14: A differential amplifier and its inputs and outputs

As shown in Figure 2.14, the differential amplifier has differential gain AD and common-

mode gain Ac. If the instrumentation amplifier is ideal, Ac is zero and the out-put voltage

Vm is only related to the differential voltage VD and differential gain AD. The output

voltage, Vm, can be calculated using Equation (2.72):

m D DV A V (2.72)

However, a real amplifier has non-zero Ac, and could respond to both VD and VC,

therefore, Vm is given by:

1 2
m D D C C D 1 2 C( ) ( )

2

V V
V A V A V A V V A


     (2.73)

where, Vc is common mode voltage (CMV), V1 and V2 are voltages between individual

electrodes and the ground, respectively.

The common-mode rejection ratio (CMRR) is given by:

D
10

C

CMRR 20log | |
A

A
 (2.74)

In order to minimize the effect of common mode voltage, it is preferable that CMRR is

as large as possible. For a real instrumentation amplifier, CMRR is usually large under

DC conditions, and drops with increasing frequency. Typical CMRR values are in the

range of 100 -120 dB under DC and decreased to 60 dB at 1MHz (Holder, 2005).

Since it is difficult to reject the effect of common mode voltage, particularly at higher

frequencies, a voltage feedback system is usually used in EIT measurement to

decrease CMV (Rosell and Riu, 1992). The common mode feedback (CMFB) can be

applied to an extra electrode, or the current source (Rosell and Riu, 1992). Although
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CMFB can decrease the common mode voltage, it also brings a limitation, which

comes from the phase delay of the feedback circuit. The phase delay will cause a

phase error in the demodulation and possible feedback oscillation at high frequencies

(Wang et al., 1993).

2.4.4 Imaging Reconstruction

EIT imaging, which reflects the electrical impedance distribution in a phantom, is

achieved by a process of image reconstruction. There are two types of algorithms for

data reconstruction, qualitative algorithms and quantitative algorithms. The qualitative

algorithm depicts a change in voltage relative to initially acquired reference data, and

the image reconstruction is fast for providing on-line measurement. The qualitative

algorithm utilizes a back projection algorithm, as a typical example, which can be

performed by multiplying a pre-calculated sensitivity map (matrix) to a relative voltage

change (vector) to reconstruct images (Dickin and Wang, 1996). This algorithm is

simple and fast but not accurate enough.

For accurately reconstructing images, a quantitative algorithm, an iterative Newton-

Raphson-based algorithm, was developed which is accurate but relatively slow (Yorkey

et al., 1987). The reconstruction process starts from an estimation of a set of initial

voltage values (in practice, it is usually the reference data) to solve the forward problem.

The forward problem can be solved using a finite-element-method-based solver and

the initial conductivity distribution values to obtain a set of calculated voltages. Then the

calculated voltages are compared with the measured voltages from the data acquisition

system. The least-squares error between the two sets of voltages is calculated and

compared to a pre-defined error. If it is larger than the pre-defined error criterion, the

initial voltage values are modified according to the optimization rules, and then fed into

the forward solver for the next iteration, until the error criterion is met.

Figure 2.15 shows a reconstructed image of a plastic rod in tap water using an 8-

electrode system and a back-projection algorithm. The coloured bar denotes the value
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of conductivity, which changes from low to high with a colour change from blue to red.

The blue area in Figure 2.17 presents the existence of a non-conductive material in the

tap water.

Figure 2.15: Reconstructed image (impedance real part) of a plastic rod in tap water

using an 8-electrode system

2.5 Particle Sizing Methods

Many different techniques have been used for determining particle size/particle size

distribution over a wide range of applications both in research and industrial fields. The

major classes of particle sizing methods have been reviewed and are shown in the list

given below:

(1) Microscopy

(2) Sieving

(3) Sedimentation analyses

(4) Counting techniques

(5) Light scattering/diffraction methods

(6) Chromatography techniques

(7) Other techniques
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Each of these is based on a different principle of measurement and is applicable only

to a specific range of particle sizes. The details of each technique in the above list are

discussed, including several sub-classes given in the subsequent paragraph. The

advantages and disadvantages of different particle sizing methods are also reviewed.

2.5.1 Microscopy

Microscopy is often used to measure the particle size and shape as an absolute

method because the individual particles can be observed and measured directly. As an

off-line measurement, the sample preparation before microscopy measurement should

be considered carefully in order to get good results. The most popular microscopy

methods include optical microscopy, scanning electron microscopy (SEM) and

transmission electron microscopy (TEM).

1) Optical microscopy

Optical microscopy can measure particles with a size range from about 0.8 μm to 150 

μm (Allen, 1990). Satisfactory sampling in optical microscopy can be achieved by 

preparing a slide containing a uniformly dispersed sample. The imaging produced may

be viewed directly by eye or by normal light-sensitive/digital cameras to generate an

image. The captured images are usually suitable for counting and sizing to obtain the

particle size distribution.

2) Scanning electron microscopy (SEM)

A scanning electron microscope is a type of electron microscope that scans a sample

with a high-energy beam (5-50 keV) (Allen, 1990) of electrons in a series of parallel

tracks. The electrons interact with atoms at or near the surface of the sample to

produce secondary electrons, back-scattered electrons, light and transmitted electrons.

These signals can be detected and then a 2-dimensional image can be displayed on a

screen. The signals which are commonly used for imaging include secondary electrons

and backscattered electrons. The secondary electrons are most valuable for showing

the surface topography and backscattered electrons can be used to obtain the material
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contrast (Klang et al., 2012). For conventional measurement using SEM, the samples

need to be electrically conductive. Therefore, for non-conductive samples, a layer of

metal (usually gold) must be coated on the surface of the sample. The applicable size

range of SEM is wide, from the order of nanometre to millimetre (Abbireddy and

Clayton, 2009).

3) Transmission electron microscopy (TEM)

The operating principle of TEM is that a beam of electrons is transmitted through an

ultra-thin sample and interacts with the sample as it passes through. Imaging can be

obtained by utilizing the information contained in the electron waves coming from the

sample (Liu, 2005). TEM can provide a significantly higher resolution than an optical

microscope since the imaging relies on the electron beam. The applicable range of size

for TEM measurement is usually from 1 nm to 5 μm (Abbireddy and Clayton, 2009), 

which is very useful for nano-particle sizing in scientific fields.

Advantages:

Suitable for a relatively broad range of sizes (optical microscopy is suitable for

relatively large particle sizes and TEM is suitable for nano-particles)

Images are high quality and detailed.

TEM can provide information on element and compound structure.

SEM can provide the topographical imaging.

Disadvantages:

SEM and TEM are expensive methods.

Samples must be prepared before the measurement, and the potential effect from

sample preparation might be involved.

SEM and TEM are not suitable for an on-line measurement due to their current form

of sample preparation and hardware involving the electron beam and vacuum

chamber.
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2.5.2 Sieving

As one of the most simple and inexpensive methods, sieving is usually used for particle

sizing in powder materials. The particle size is effectively defined by the size of the hole

through which a particle can just pass (Abbireddy and Clayton, 2009). A variety of sieve

apertures are currently in use and they can be classified as coarse (4-100 mm),

medium (0.2-4 mm) and fine (less than 0.2 mm) (Allen, 1990). In the practical

applications, a sieve is usually used for coarse materials (for example sand), and not

suitable for nano-particles. Although the sieving method is simple and cheap, it is time

consuming and influenced easily by the particle shape, humidity and the human

operation (Nathierdufour et al., 1993).

Advantages:

simple and inexpensive

Disadvantages:

Time consuming

Only suitable for relatively large particles

Influenced easily by the particle shape, humidity and human operation

Not suitable for developing on-line measurement.

2.5.3 Sedimentation

As a traditional technique, sedimentation determines the particle size distribution by

measuring the time required for the particles to settle a known distance in a fluid. The

principle is based on Stokes’ law, which assumes the particle shape to be spherical and

flow to be laminar (Allen, 1990). When a terminal velocity is reached, it is assumed that

the drag force and the buoyancy force on the particle are exactly balanced by the

gravitational force. Therefore, the drag force at the time that particles reach the terminal

velocity can be presented as:
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3
d p f

4
( )

3
F a g    (2.75)

where, Fd is the drag force acting on the particle, a is the particle radius, g is the

gravitational acceleration, p is the density of the particle, and f is the density of the

fluid.

It is also known that the drag force of particles in a size range of micrometres can be

approximated as being proportional to the particle’s velocity, which is expressed by

(Allen, 1990):

d s6F a  (2.76)

where, η is the viscosity of the liquid and s is the particle terminal velocity.

Combining Equations (2.75) and (2.76), the relationship between particle radius and

terminal velocity can be obtained:

2

s p f

2
( )

9
sa

g  


  (2.77)

The particle size as shown in Equation (2.77) is called the Stokes radius. The principle

of using the sedimentation method is reliant on the relationship between particle

terminal velocity and particle size. By measuring the particle velocity in sedimentation,

particle size can be obtained. In practise, the particle velocity is usually determined by

measuring the change of concentration with time at a known depth, and the plot of

particle concentration against Stokes radius gives the particle size distribution (Allen,

1992). The sedimentation techniques can be classified into incremental and cumulative

methods according to the measurement principle, the homogeneous and line start

methods according to the suspension type, and the gravitational and centrifugal types

according to the force field involved. More details about the sedimentation methods

have been reviewed by Allen (Allen, 1992).
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Due to the assumption used for derivation of Stokes’ law, the sedimentation method is

only suitable for spherical particles, for fluids with low Reynolds number (< 0.2), and

low particle concentration (volume concentration is lower than 2%) (Allen, 1990). The

reliable measurement range of the gravitational sedimentation method is believed to be

between 2 μm and 60 μm (Abbireddy and Clayton, 2009), although the suitable range 

is variable with the material types of particle and fluid. For very small particles (< 2 μm), 

the particle movement due to Brownian motion is comparable with, or even exceeds,

the movement caused by gravitation, therefore it is unsuitable to calculate the particle

size using Stokes’ equation in this situation. For very large particles (> 60 μm), 

turbulence is involved in the sedimentation and the assumption of laminar flow in

Stokes law is no longer valid. The measurement range of the centrifugal sedimentation

method is broader than the gravitational method (0.01-100 μm), since the effects of 

convection, diffusion, and Brownian motion can be reduced by speeding up the settling

process by centrifugal force (Provder, 1997).

Advantages:

Inexpensive and easy operation

Relatively good repeatability

Relatively broad test range

Disadvantages:

Relatively long test time

Not accurate for high particle concentration and non-spherical particles

Not suitable under turbulent conditions

Not suitable for developing on-line measurement

2.5.4 Counting technique

In the counting technique, the interaction of one particle and an external field is utilised
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for size measurement. Based on the different external fields, there are two categories:

the Coulter counter and Optical counter (Allen, 1997).

1) Coulter counter

The Coulter counter is also called the electrical sensing zone method. For this method,

the particles are suspended in an electrolyte and forced to pass through a small orifice,

which is located between two electrodes by applying an electrical field. The changes in

electrical resistivity when particles pass through the orifice can produce a pulse, which

is approximately proportional to the volume of the particle. After measuring a large

number of particles which have passed through the orifice, the particle size distribution

can be obtained. The size range of this method is about 0.4-1200 μm (Abbireddy and 

Clayton, 2009).

2) Optical particle counter

The principle of the optical counter method is similar with the Coulter counter, except

the external field is changed to the optical beam. The amplitude of light scattered or

blocked by a single particle is a function of particle size, therefore, particle size

distribution can be determined by measuring the light intensity after being scattered or

blocked (Barth and Sun, 1985). The measurement range of the optical counter method

is broad but could be varied due to different ways of detection. Generally, the size

range is from 0.5 μm to > 300 μm.   

Advantages:

Simple in concept and easy to calibrate with known size standard sample.

Relatively broad test range.

The optical particle counter method can be developed to an on-line method easily.

Disadvantages:

For the Coulter counter method, the particles must be dispersed in an electrolyte

and must be of a non-conductive material.

For the Optical counter method, the accuracy of measurement is affected by the
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particle shape significantly.

 Not suitable for nano-particles (<1 μm) 

2.5.5 Light scattering/diffraction methods

Light scattering/diffraction methods are very popular particle sizing methods and

include several categories based on the principle of measurement. The major

categories have dynamic light scattering, laser diffraction, focused beam reflectance

measurement (FBRM), and time of flight (Marshall et al., 1991). The laser diffraction

method is based on the proportional relationship between the intensity and angle of

forward diffraction of a laser beam and the particle size. As the particle size decreases,

the scattering angle of the laser beam increases logarithmically, and the scattering

intensity decreases. By measuring the angular distribution of the intensity of the

scattered laser beam using a detector, the particle size distribution can be obtained

(Ma et al., 2000).

The dynamic light scattering method measures the time dependent fluctuations of

scattering light intensity, which is caused by the Brownian motion of the particles in the

suspension. Based on the Stokes-Einstein theory of Brownian motion, the particle size

can be related to the diffusion coefficient by Equation (Brar and Verma):

6
Bk T

D
a

 (2.78)

where, D is the diffusion coefficient, kB is Boltzmann’s constant, T is temperature, η is 

viscosity, and a is particle radius.

The analysis of the intensity fluctuations can provide the diffusion coefficient of particles

and therefore give the particle radius based on Equation (2.78).

The focused beam reflectance measurement and time of flight technique are usually

used as an on-line sizing method and will be discussed in the next section (2.6) in

detail.

Advantages:
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Fast and precise analysis.

Simple, no sample preparation need

Small volume of samples are required

Size range could extend to 1 nm as the smallest size for the dynamic light scattering

method (Zetasizer Nano user manual, Malvern)

Disadvantages (Eshel et al., 2004):

Relatively expensive instrumentation

The accuracy of measurement is affected by the particle shape (non-spherical

particle)

Not suitable for high concentration samples (< 5% weight concentration for 10 nm-

100 nm particles, <1% weight concentration for > 100 nm particles) (Zetasizer Nano

User Manual, Malvern)

2.5.6 Chromatography techniques

Chromatography techniques include two main categories: hydrodynamic

chromatography (HDC) and field flow fractionation (FFF). The hydrodynamic

chromatography method is based on the separation of particles in suspensions by

passing through packed columns or a capillary column. The measurement range of

hydrodynamic chromatography is 20 nm to <1μm for packed column and 0.7-50 μm for 

capillary (HDC) (Barth and Sun, 1985). Field flow fractionation is a kind of one phase

chromatography. The basic principle is the separation of particles with a solvent stream

which enters a thin channel (Provder, 1997) under the effect of the field.

Advantages:

Relatively wide measurement size range (variable in different methods).

Results are independent of particle density for chromatography techniques

Disadvantages:
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Particle deposition in packed columns

Complex mathematics is involved to derive the absolute particle size distribution.

Not suitable for developing on-line measurement.

Not suitable for high concentration samples (< 5% weight concentration for 10 nm-

100 nm particles, <1% weight concentration for > 100 nm particles) (Zetasizer Nano

User Manual, Malvern)

2.5.7 Electroacoustic Technique

The electroacoustic phenomenon, which was first predicted by Debye in 1933, results

from coupling between acoustic and electric fields (Dukhin and Goetz, 2002). The

electroacoustic effect is the generation of electric fields by acoustic wave or the

generation of acoustic waves by the application of an alternating electric field (O'Brien

et al., 1990). The former is known as the colloidal vibration potential (CVP) and the

latter is known as the electrosonic amplitude (ESA). The technique of electroacoustics

can produce information about the electrical properties of colloids. In principle, it can be

used for particle sizing (Dukhin and Goetz, 2002).

In the case of an electric field as the driving force, the generated electrosonic amplitude

(ESA) can be expressed by:

( ) ( , ) ( )E
T s

m

ESA F Z Z A
 

 



  (2.79)

where, E is the dynamic electrophoretic mobility of colloidal particle, m is the density

of medium, Φ is the volume fraction of particles, Δ is the density difference between

the particle and the medium, F(ZT,Zs) is a function of the acoustic impedances of the

transducer and the suspension, A (ω) is an instrument constant found by calibration.

For the case of the acoustic wave being the driving force, the generated colloid

vibration potential (CVP) can be described by:
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where,  is the density difference between the particle and the medium, E is the

dynamic electrophoretic mobility of charged particle, Φ is the volume fraction of 

particles, m is the density of medium, K* is the complex conductivity of suspension, P

is the pressure caused by the acoustic wave and P denotes the gradient of pressure.

The dynamic mobility E can be determined by Equations (2.79) and (2.80) from

electroacoustic measurement and from the dynamic mobility, the particle size and zeta

potential can be determined (O'Brien et al., 1995).

Advantages:

Can work for samples with high particle concentration (1-40 volume percent)

(www.colloidal-dynamics.com/docs/CD_products_for_emulsions.pdf)

Can measure particle size distribution and zeta potential simultaneously from a

single set of data

Disadvantages:

Only suitable for charged particles

The desired particle size distribution can only be deduced from measured

electroacoustic spectrum for a limited range of conductivity and some restrictive

assumptions about the nature of the double layer.

The uncertainties in the model and theory make it impossible to obtain any more

detailed information than a simple lognormal approximation to the actual PSD.

2.5.8 Other techniques

There are some other kinds of particle sizing methods which are not included in the

above categories, for example, ultrasonic attenuation spectroscopy, small-angle X-ray

scattering, and differential electrical mobility. Ultrasonic attenuation spectroscopy has
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received increasing attention due to its wide application range of particle size (10 nm-1

mm), high concentration (up to 50% vol) and development of the on-line sizing

technique (Mougin et al., 2003). As one of the common on-line sizing techniques,

ultrasonic attenuation spectroscopy will be further reviewed in section 2.6.2. The small-

angle X-ray scattering (SAXS) method is essentially based on the same physical

principle of laser diffraction, but using a shorter radiation wavelength. SAXS can

provide precise size measurement for nano-particles (McKenzie et al., 2010). However,

the instrumentation is relatively expensive compared with other techniques and the

operation must be carried out more carefully as a high radiation source is involved. The

differential electrical mobility method can separate the charged particles according to

their electrical mobility which is related to their particle size. The instrumentation

measures the number concentration of particles in several size channels (Peters et al.,

1993). This method is usually used for on-line size measurement for aerosols.

2.6 On-line Particle Sizing Methods

With increasing requirements for on-line controlling of particle size during industrial

processing, the study and development of on-line particle sizing methods has become

more valuable. The current on-line particle sizing methods are not sufficient and are

limited to specific conditions based on their principles. In this section, the state of the

art of the typical on-line particle sizing methods is reviewed.

2.6.1 Optical based methods

Optical sensing is still the most widely used on-line particle sizing method. The

common optical methods based on-line sizing methods include laser diffraction (Abbas

et al., 2002), focused beam reflectance measurement (FBRM) (Scholl et al., 2006,

Abbas et al., 2002), optical counter (light blockage or scattering) (Allen, 1990), time of

flight (Weiss et al., 1997) and the digital imaging method (De Anda et al., 2005). The
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basic principle of the optical methods is based on the interactions between individual

particles and laser/light beams. The measuring system usually consists of a light

emitting source and a light detection assembly. The principles of these on-line

measurement techniques are summarised as follows:

(1) Laser diffraction

The laser beam scattered by the particles is collected and measured over a range of

solid angles in the forward direction of the incident beam. The scattering angle and

intensity are functions of the particle size. The schematic diagram of the laser

diffraction technique is showed in Figure 2.16.

Figure 2.16: Schematic diagram of the laser diffraction technique (Abbas et al., 2002)

(2) Focused beam reflectance measurement (FBRM)

The focused laser beam rapidly scans across particles and the time period of back-

scattering is recorded. The back-scattering time is multiplied by the scan speed of the

laser beam to produce a distance from one edge of the particle to the other, which is

called a chord length. As the distance measured by FBRM is the chord length, which is

easily affected by the particle shape and the position of the particle passing through the

laser beam, the accuracy of the FBRM technique is limited, especially for non-spherical

particles (Dowding et al., 2001). The measurement does not give a true particle size

distribution as the laser beam is unlikely to cut right across the centre of particle, but a
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distribution of the chord lengths. The method also tends to give an oversized result

when used in measuring transparent particles (for example, emulsion droplets).

However, as one of the major advantages, the FBRM technique can operate with very

high concentrations of particles (40 % by volume) (Allen, 1997). It is a real on-line

technique since there is no need for dilution or sampling and therefore the errors

caused by dilution or sampling can be avoided. A schematic diagram of the focused

beam reflectance technique is shown in Figure 2.17.

Figure 2.17: Schematic diagram of the focused beam reflectance technique (Abbas et

al., 2002)

(3) Optical counter

The measurement methods of the optical counter can be based on light scattering, light

obscuration and direct imaging. When the particles pass through the beam, the amount

of light which is cut off, or scattered by particles can be measured and produce pulses

on the photodiode. The height of the pulse is proportional to the projected area of

particles which is related to particle size.

(4) Time of flight

This technique is usually used for aerosols. The particle size can be measured as

follows: particles in an air stream enter into a sensing zone through a fine nozzle via an

accelerating flow field. Particles can be accelerated in the air flow field according to the
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particle size, with smaller particles being accelerated more rapidly than larger particles.

Two parallel laser beams are used to detect the position of particles in the sensing

zone as the laser beams are scattered when particles pass through the beams. The

two laser beams are fixed and therefore, the time of particles passing through can be

measured and recorded. The aerodynamic time of flight is a function of particle size,

density and shape (Cheng et al., 1993).

(5) Digital imaging method

With developments in computer and digital techniques, the digital imaging method has

become increasingly popular used for on-line particle size measurement. A typical

system includes a light source, a CCD (charge coupled device) camera, and a PC with

video digitizer and software. The particle size and shape can be measured from the

digital image obtained by the instrument (Barrett and Glennon, 2002). The digital

imaging method provides the ability to see particles as they naturally exist in a

crystallizer, vessel or pipeline, but the visualisation is easily affected by the particle

concentration and the condition of stir or flow rate.

2.6.2 Non-optical based methods

The commercialised non-optical based on-line particle sizing methods are fewer than

the optical based methods. Two popular methods are reviewed here, ultrasonic

attenuation spectroscopy and the differential electrical mobility method.

(1) Ultrasonic attenuation spectroscopy

Ultrasonic attenuation spectroscopy is one of the few commercialised non-optical

methods. The principle of the technique is based on the attenuation of an ultrasonic

wave passing through a particle suspension. The mechanisms of attenuation include

intrinsic absorption, thermal coupling of phases, visco-inertial coupling of phase, and

elastic scattering, which are all related to the particle size, concentration, the spacing of

the transmitter and receiver, and other physical parameters (viscosity, the velocity of
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sound in water, particle density etc.) (Shukla et al., 2010). By using a range of

frequencies, a series of relationships between particle size and attenuation can be

obtained to generate the particle size distribution. Figure 2.21 shows a schematic

diagram of the ultrasonic attenuation spectroscopy technique used in the crystallisation

process.

Figure 2.18: Schematic diagram of the ultrasonic attenuation spectroscopy technique

(Mougin et al., 2003)

(2) Differential electrical mobility method

As mentioned in section 2.5.7, the principle of the differential electrical mobility method

is based on the electrical mobility which is related to the particle size when the particles

pass through an electrical field. The electrical mobility can be related to particle size by:

p
3

neC

a



 (2.81)

where, μp is electrical mobility, n is the number of charges on the particle, e is the

elementary charge, C is a correction parameter, η is gas velocity, a is particle size.

Size calibration is necessary for this method and the particle size can be calculated

from the electrical mobility distribution (Ehara et al., 2000).

Table 2.2 summarises the typical on-line particle sizing techniques, including the

applied size range, principle, the main advantages and disadvantages, and the

manufacturer/developer.
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From the Table 2.2, it can be seen that the current commercial on-line particle sizing

methods have their particular application field and suitable size range. Most of the

optical based techniques are inherently unsuitable for examining the dense

crystal/solution slurries (for example, in the batch crystallisation process). As these

optical particle sizing methods cannot work at representatively high solid concentration

levels, a difficult and time-consuming sampling step is therefore needed for the dilution

of the solid/liquid suspension, a process which can, in turn, lead to significant

modification of the particle size distribution. The non-optical based methods, except

ultrasonic attenuation spectroscopy, are usually suitable for aerosols not liquid

solutions. The ultrasonic attenuation spectroscopy method can be used in the dense

liquid suspensions, however, the measurement is easily affected by the bubbles and

the calculation of size distribution needs some parameters whose on-line values are

difficult to obtain.
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Table 2.2: Summary of the typical on-line particle sizing techniques

Model Principle Size range Manufacture/Develop

er

Advantages Disadvantages

Insitec Laser diffraction  0.1-2500 μm Malvern 

(http://www.malvern.co

m/)

First principle based

technique

Wide measuring range

Fast, reproducible, and

high resolution

Not suitable for high

particle concentration

suspensions

Sampling or dilution from

the main stream or batch

solution causes error

Mytos &

Twister

Laser diffraction

with twister sampler

0.25-3500 μm Sympatec 

(http://www.sympatec.c

om/EN/LaserDiffraction

/HELOS.html）

Safir Laser diffraction with

a sample reservoir

0.1- 875 μm Sympatec 

http://www.sympatec.c

om/EN/LaserDiffraction

_Process/SAFIR.html

Lasentec Focused beam

reflectance

measurement

(FBRM)

0.5 -2000 μm Mettler Toledo 

(http://uk.mt.com/gb/en

/home/products/L1_Aut

ochemProducts/L2_Par

ticleSystemCharacteriz

ation/FBRM.html)

Without the need for

sampling or dilution

Suitable for high particle

concentration (40 % by

volume)

Not accurate for the non-

spherical particles

Only get the distribution of

chord length, not the true

particle size

Not suitable for

transparent particles

(emulsion droplets)

Hiac PM4000

liquid particle

counter

Optical particle

counter

4, 6, 14, and

21 μm size 

channels

Pacific Scientific

(http://www.particle.co

m/hiac-liquid-particle-

 Simple affordable and

easy for maintenance

 High temperature and

Only provide 4 size

channels

Only suitable for the liquid

http://www.particle.com/hiac-liquid-particle-counters/hiac-pm4000
http://www.particle.com/hiac-liquid-particle-counters/hiac-pm4000
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counters/hiac-pm4000) pressure capabilities for

harsh environments

system

MET ONE

series air

particle counter

Optical particle

counter

0.5 to 10.0

μm 

Or 4 size

channels

Pacific Scientific

(http://www.particle.co

m/met-one-air-particle-

counters/remote/met-

one-6000p)

Offers accurate and

reliable continuous

particle monitoring

Only suitable for the

gas/solid system

Unable to detect nano-

particles (< 0.5μm) 

Condensation

particle counter

Optical particle

counter

10 nm -5 μm TSI Inc. 

(http://www.tsi.com/Co

ndensation-Particle-

Counters/)

Can measure nano-

particles down to 10 nm

Only suitable for aerosols

Do not provide direct

information on the original

size (small particles are

condensed for optical

detection)

Aerodynamic

particle sizer

Spectrometer

Time of flight 0.5 -20 μm TSI Inc. 

(http://www.tsi.com/)

Double-crest optics

produce high-quality

measurement

Maximum particle

concentration: 1000

particles/cm3

Need diluter for high

concentration samples

Only suitable for airborne

solids and nonvolatile

liquids

Particle vision

and

measurement

(PVM)

Digital image

analysis

2μm to 1mm Mettler Toledo 

(http://us.mt.com/us/en/

home/products/L1_Aut

ochemProducts/L2_Par

ticleSystemCharacteriz

Provide real time

imaging without

sampling process

Operate at full process

concentration

Probe based tool, the

clogging of probe may

occur and cause error

http://www.particle.com/hiac-liquid-particle-counters/hiac-pm4000
http://www.tsi.com/
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ation/PVM.html) Can observe not only

the particle size but also

particle shape

Digital video

microscopy

Digital imaging

analysis

140 μm to 

16mm

(dependent

on the lens

employed)

GlaxoSmithKline  Can measure particle

size and shape at the

same time

 No sampling process

involved

 CCD camera detects via a

small window at the wall of

the reactor, therefore only

small portion of the sample

can be measured

 Suitable for big particles

Ultrasonic

extinction

(OPUS)

Ultrasonic

attenuation

spectroscopy

10 nm – 3mm Sympatec

(http://www.sympatec.c

om/EN/UltrasonicExtin

ction/UltrasonicExtincti

on.html)

 Suitable for high

concentration particles

(up to 70% vol)

 Non-absolute technique

and requires an extended

set of parameters for the

exact evaluation of size

distribution.

 The presence of small gas

bubbles can cause strong

scatter ultrasound and

bring errors for the

measurement

Scanning

mobility

particle sizer

spectrometer

Electrical mobility

technique and optical

particle counter

10 nm to

1,000 nm

(up to 167

size

channels)

TSI Inc.

(http://www.tsi.com/Sca

nning-Mobility-Particle-

Sizer-Spectrometer-

3034/)

Can measure nano-

particles down to 10 nm

Only suitable for aerosols

Differential

mobility

Electrical mobility

technique

10 to 1000

nm or 2 to

TSI Inc.

(http://www.tsi.com/Diff

Can measure nano-

particles

Only suitable for aerosols
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analyzer 150 nm

(depends on

the model)

erential-Mobility-

Analyzers/)
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2.7 Theory of the Crystallisation Process

2.7.1 Crystal Nucleation and Growth

Crystallisation is the process of formation of solid crystals from a homogeneous

solution. It is also a chemical solid-liquid separation technique in industry and can be

thought to include precipitation or reactive crystallisation. Crystallisation is one of the

most important industrial processes in the pharmaceuticals, biotechnology, mineral

processing and other chemical engineering industries.

The crystallisation process consists of two major events, nucleation and crystal growth

(Muller, 2004). Nucleation is the step where the solute molecules dispersed in the

solvent start to gather into clusters, on the nanometer scale, that need to reach a

critical size in order to become stable nuclei. Such critical size is dictated by the

operating conditions, such as temperature and supersaturation. Supersaturation is a

prerequisite for all crystallisation processes to occur. The definition of supersaturation is

given by the concentration difference (Myerson, 2001):

*s c c  (2.82)

or a ratio of concentrations:

*

c
s

c
 (2.83)

where, s is the supersaturation, c is the actual concentration of solute and c* is the

solute concentration in the saturated state.

Supersaturation is an important parameter in crystallisation. The nucleation and growth

is driven by the existing supersaturation in the solution. When the solubility of a solution

is exceeded and it is supersaturated, the molecules start to associate and form

aggregates.

The crystal nucleation mechanism can be classified into two types: homogeneous

nucleation and heterogeneous nucleation. Homogeneous nucleation generally occurs

with much more difficulty in the interior of a uniform substance. From the viewpoint of

thermodynamics, the driving force for nucleation is from the difference of the Gibbs free

energy between the liquid and solid at a certain temperature T. Gibbs free energy is the

maximum amount of non-expansion work which can be extracted from a closed system.
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The dependence of Gibbs free energies of the liquid and solid on temperature T is

shown in Figure 2.19 (Porter and Easterling, 1992).

Figure 2.19: The dependence of free energies of liquid and solid on temperature T (Tm

is the melting point, GS is free energy of solid, and GL is free energy of liquid)

From Figure 2.19 we can see that when T < Tm, the free energy of the solid is smaller

than that of the liquid, which means the solid state should be more stable than the

liquid state. Therefore, materials prefer to stay in solid state during decreasing of the

temperature. The difference in free energy between solid and liquid states at

temperature T is the driving force for nucleation. For a spherical solid with radius a, the

driving force for nucleation is (Myerson, 2001):


     

3
24

4
3

v SL

a
G G a (2.84)

where, SLV GGG  , γSL is the solid/liquid interfacial tension and a is the particle

radius. The first term in the equation shows the negative contribution to free energy

and the driving force for nucleation, but the second term shows the positive contribution

to free energy due to the formation of new solid/liquid interface. Figure 2.20 shows the

free energy change associated with homogeneous nucleation of a sphere of radius a.
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Figure 2.20: The free energy change associated with homogeneous nucleation of a

sphere of radius r (Porter and Easterling, 1992).

In the case of heterogeneous nucleation, the nuclei can form at preferential sites such

as mould wall, impurities, and catalysts. By so doing, the energy barrier/driving force to

nucleation can be substantially reduced. Compared with homogeneous nucleation,

heterogeneous nucleation quite frequently and easily occurs in the practical

crystallisation process due to its low energy barrier. Figure 2.21 shows the energy

barrier/driving force for homogeneous and heterogeneous nucleation.

Figure 2.21: The energy barrier/driving force for homogeneous and heterogeneous

nucleation (Porter and Easterling, 1992).

The crystal growth is the subsequent growth of the nuclei that succeed in achieving the

critical cluster size. After crystal nucleation, the second stage, growth, rapidly ensues.

Crystal growth spreads outwards from the nucleating site. In this faster process, the

elements which form the motif add to the growing crystal in a prearranged system, the

crystal lattice. For crystal growth, the liquid/solid interface plays an important role. The

http://en.wikipedia.org/wiki/Structural_motif
http://en.wikipedia.org/wiki/Crystal_lattice
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crystal growth mechanism based on the existence of an adsorbed layer of solute atoms

or molecules on a crystal face was first suggested by Volmer (Muller, 2004). This is

depicted in Figure 2.22. The growing crystal surface is not simply a flat layer but also

made up of steps, kinks, surface-adsorbed growth units, edge vacancies and surface

vacancies. The general mechanism of molecule integration on the crystal face is

adsorption on the surface followed by its diffusion along the surface to a step or kink for

incorporation (Myerson, 2001). This growth model is called two-dimensional theory,

which describes a layer-by-layer fashion of crystal growth. The two-dimensional theory

provides a manner of crystal growth; however, it is unreasonable for growth at

moderate to low supersaturation (Muller, 2004). The spiral growth proposed by Frank

provides a way for crystal growth under moderate to low supersaturation. If a screw

dislocation has been formed on the crystal surface, the face can grow perpetually up a

spiral staircase and develop a growth spiral (Figure 2.23). Here, we will not discuss the

crystal growth mechanisms in depth as it is not the main focus of this project.

After the initial period of growth, the volume fraction of the solid phase approaches the

equilibrium one, and the particle coarsening starts to occur. The larger particles grow at

the expense of the smaller ones in an effort to reduce the surface energy of the system.

This process is called Ostwald ripening (Myerson, 2001). Consequently, the volume

fraction of the solid phase remains essentially constant but the crystal size becomes

non-uniform. Both large crystals and small crystals exist in the solution and form a

broad particle size distribution.

Figure 2.22: Surface structure of growing crystal a) flat surfaces, b) steps, c) kinks

(Myerson, 2001)
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.

Figure 2.23: Development of a growth spiral starting from a screw dislocation (Muller,

2004).

2.7.2 Crystallisation of L-Glutamic Acid

L-Glutamic acid (LGA) is widely used in the pharmaceutical industry; hence it is a good,

representative material in developing an understanding of crystallisation processes and

polymorphic transitions. L-Glutamic acid has the formula C5H9NO4. The molecule has

two carboxylic groups (-COOH) and an amino acid group (-NH2), which is shown in

Figure 2.24.

Figure 2.24: The chemical structure of LGA

(http://en.wikipedia.org/wiki/L-Glutamic_Acid)

As amino acids have both the active groups of an amine and a carboxylic acid they can

be considered as both acid and base. At a certain pH known as the isoelectric point,

the amine group has a positive charge (is protonated) and the acid group has a

negative charge (is deprotonated). The whole molecule carries no net electric charge,

which is known as a zwitterion. The isoelectric point of LGA is 3.22. As LGA contains

two carboxylic groups and one amino acid group, the amino group can be protonated

and one or both of the carboxylic groups can be ionized at certain pH values. The

dissociation of LGA is determined by its pKa value, which is known as the acidity

constant or the acid-ionization constant. The three pKa values of LGA and the

equilibrium reaction are shown below:

http://en.wikipedia.org/wiki/L-Glutamic_Acid
http://en.wikipedia.org/wiki/Isoelectric_point
http://en.wikipedia.org/wiki/Protonation
http://en.wikipedia.org/wiki/Deprotonation
http://en.wikipedia.org/wiki/Zwitterion
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Figure 2.25: Dissociation equations of L-glutamic acid (Neuberger, 1936)

L-glutamic acid (LGA) has two known polymorphs of a metastable α form (prismatic) 

and a stable β form (needle-like shape) (Figure 2.26). In this work, L-glutamic acid was 

chosen for study because it is a relatively well-studied compound that has two

polymorphs with contrasting morphologies, the rather compact prismatic shape and the

elongated needle-like crystals. Generally the α-form is preferred for industrial purposes 

because its crystal habit is advantageous for handling (Kitamura, 1989). However, it is

difficult to obtain pure α-form LGA in the crystallisation process because the α-form is a 

metastable form which can easily transform to stable β-form.  

Figure 2.26: The two polymorphic forms of LGA: (a) α-form (prismatic); (b) β-form 

(needle-like platelets) (Hammond et al., 2004).

Many researchers have studied the crystallisation of L-glutamic acid and its

polymorphism. When cooling crystallisation is carried out in a stirred vessel, generally
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first the metastable α form is produced and subsequently transformed to the stable β 

form, according to Ostwald’s rule of stages (Kitamura, 1989, Garti and Zour, 1997,

Ferrari and Davey, 2004, Ono et al., 2004). Without agitation and for low

supersaturation the stable β form can be observed to form directly (Kitamura, 1989). 

Some researchers also found that the transformation rate of α form to β form increased 

with crystallisation temperature (Kitamura, 1989, Ono et al., 2004).

Kitamura (Kitamura, 2002) studied the controlling factor of polymorphism in the L-

glutamic acid crystallisation process. He found that the supersatuation effect was

hardly observed, and the supersaturation ratio hardly had any effect on the

crystallisation ratio of LGA polymorphs at each temperature. However, on the other

hand, the intensive effect of temperature was observed, i.e. the nucleation rate of α 

form relatively decreases with an increase in temperature at constant supersaturation

ratio.

2.7.3 On-line Monitoring of the Crystallisation Process

High value-added speciality chemicals, such as pharmaceuticals are often

manufactured in batch crystallisation processes. The non-linearity of process variables

during batch crystallisation requires on-line techniques to measure these variables. The

control of crystal-size distribution (CSD) and polymorphs of products in particular are

important because these two properties have significant effects on downstream

operations such as filtration, drying, transport, and storage. Various types of on-line

monitoring techniques for CSD and polymorphs measurement are reviewed.

(1) On-line measurement of crystal size

The current commercially available methods mainly rely on optical techniques, such as

laser diffraction, focused beam reflectance measurement (FBRM), multiple light

scattering, and digital video microscope. These techniques were already reviewed in

section 2.2. Except for the FBRM technique, other optical techniques are inherently

unsuitable for examining the dense crystal/solution slurries produced in the batch

crystallisation process. The FBRM technique, as reviewed in section 2.2, is not

accurate for the non-spherical particles and can only get the distribution of chord length,

not the true particle size due to its measurement principle.

There are some other on-line sizing methods for batch crystallisation of L-glutamic acid.
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Ultrasonic spectroscopy for particle-size measurement was investigated during the

batch crystallisation of L-glutamic acid (Mougin et al., 2002). It can be used for high

particle concentration, but the accuracy is limited due to a pump assisted ultrasonic

spectrometer cell and the requirement of an extended set of physical properties of LGA

crystals and aqueous solution. Jacques et al. (Jacques et al., 2005) developed a new

tomographic technique, based on synchrotron X-ray diffraction, to study the crystallite

size/shape characteristics in a stirred reactor. This technique is expensive and requires

levels of high safety to be followed. The current state of on-line sizing methods in the

crystallisation process shows an attractive prospect for development of new techniques

and encourages further development in both experimental and theoretical aspects.

(2) In-situ monitoring of polymorphs

Different offline analytical techniques have been used to characterize the polymorphs

obtained during crystallisation, such as x-ray diffraction (XRD), scanning electron

micrographs (SEM), solid-state NMR and thermal analysis (Threlfall, 1995). Up to now,

three techniques have been applied for in-situ monitoring of polymorphs during

crystallisation: X-ray diffraction (Dharmayat et al., 2008), Raman spectroscopy (Scholl

et al., 2006), and particle vision and measurement (PVM) (De Anda et al., 2005). An in-

situ X-ray diffraction technique combines a powder X-ray diffraction and a flow-through

cell to provide analysis of the polymorphic phase during the crystallisation process. The

requirement for instrumentation is a little high, and the measurement might be easily

affected due to the sample pumping process. In the LGA crystallisation process, the in-

situ Raman spectroscopy technique can be used to detect the α phase and β phase 

utilizing their characteristic peaks at 1004 cm-1and 941 cm-1 respectively. The PVM

technique can detect the polymorphs of crystals by observing the crystal shapes

directly. This method is straightforward, but not suitable for dense suspensions.

All of the current on-line techniques for particle sizing or polymorphs monitoring can

only give 2-D images or the measurement of uniform suspension. The 3-D imaging

based on tomography techniques for detection of spatial distribution of size or

polymorphs might be promising in the future work. In addition, the limitation of optical

techniques due to the opaque nature of suspensions in the crystallisation process

requires development of a new non-optical based particle characteristic technique.
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2.8 Summary

The important and basic foundations concerning colloids, electric double layers and

electrokinetics of colloidal particles in an electric field have been reviewed in this

chapter. The motivation to review the background is to provide the physical foundations

of the behaviour of charged particles in an external electric field. These underpin study

of the relationship between the characterisation of particles and their inherent

electrokinetic properties as utilized in this research. Electrical impedance spectroscopy

(EIS) is a well-known method for characterizing electrokinetic properties of materials

and their interfaces. Characterisation of charged particles in colloids (including particle

size and concentration) using EIS is a new technique which relies on the presence of

an electrical double layer associated with the charged particles and their surface areas.

In the presence of a periodic, alternating electric-field, the charged particles in a

suspension can show an oscillatory movement or vibration due to the polarisation of

the electrical double layer. The measured impedance parameters (the real part,

imaginary part, phase angle and relaxation frequency) are related to the particle size,

polymorph, particle concentration and the electrochemical and hydrodynamic

properties of the dispersed medium. Tomography imaging by utilizing the impedance

phase angle has been demonstrated by researchers at the University of Leeds.

However, the theoretical analysis was not provided to explain the phase angle image

which appears in a banana phantom. The latter part of this chapter reviewed current

particle sizing methods including both off-line and on-line methods.

Based on the literature review, the current on-line particle sizing methods are limited

and cannot fully satisfy the requirements for industrial processes. Therefore, seeking a

new on-line particle sizing method is desirable from both an academic and industrial

perspective. It is realized that EIS and EIT techniques share the same basic

measurement principles. Therefore, the study of particles in suspensions using

electrical impedance spectroscopy could provide the foundation for developing an EIS-

based on-line sizing method and it could be further developed into an electrical

impedance tomography spectroscopy (EITS) technique and then measure and image

particle assemblies with different particle size or other particle characteristics in two or

even three spatial dimensions. From the literature review, up to now, the

characterisation of particle distributions (particle size and concentration) in colloids by

tomography imaging method, utilizing the imaginary impedance or phase angle, has

not been studied either in experimental or theoretical aspects. No research has been

carried out studying the crystallisation processes using the on-line electrical impedance
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spectroscopy method. Therefore, it is valuable to study the relationship between crystal

size or morphology and electrical impedance spectra. The study can provide important

knowledge for the application of EIS and EIT techniques for particle characterisation in

crystallisation processes.



Chapter 3

Experimental Devices and Materials
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Summary: This chapter describes the experimental devices and materials used

for electrical impedance spectroscopy (EIS) and electrical impedance tomography

spectroscopy (EITS) measurements in colloidal suspensions and crystallisation

processes. The methodologies for designing of experimental set-up, including

vessel, electrode sensor, data acquisition system, cooling and heating system

and methodology are provided in detail.
76

.1 Introduction

his chapter introduces all devices and materials involved in the experimental work.

he methodologies for designing of devices and choosing materials are described in

etail. The first part of the experiments is EIS measurement of colloidal particle

uspensions. The objective is to understand the relationship between the particle size

nd electrical dispersion properties (e.g. impedance, complex permittivity and

elaxation frequency), as well as the effects of particle concentration and ionic

oncentration under off-line and static conditions for developing an EIS based particle

haracterisation method. The major devices in this part include an impedance analyzer,

vessel with a four-electrode sensor and co-axial cables. The materials used in this

art are aqueous silica suspensions of different particle sizes and concentrations.

he second part of the experiments is on-line EIS measurement in crystallisation

rocesses. The purpose of the experiments is to apply the electrical impedance

pectroscopy method into on-line particle characterisation in crystallisation processes

nd study the relationship between impedance parameters (impedance real part,

maginary part, phase angle, and relaxation frequency) and the time evolution of crystal

ize distribution and concentration. The major devices in this part include an

mpedance analyzer, a 4-electrode sensor, jacket-vessel, cooling and heating circulator,

agnetic stirrer, turbidity and temperature sensors, a data acquisition system and

ocused beam reflectance measurement (FBRM) sensor and device. The material

tudied in the crystallisation processes is L-glutamic acid.



77

The third part of experiments is EIT measurement of different materials to investigate

the feasibility of obtaining tomography imaging based on data from electrical

impedance spectra. The major devices include an impedance analyzer, an 8-electrode

sensor, a cylinder shaped vessel, and a Perspex chamber, which served as a housing

for colloidal particles and water. The materials used in the experiments include non-

conductive polymer, banana and silica suspensions.

3.2 Materials

From the literature review, it is understood that the particle size measurement using

EIS basically relies on the electric double layer on the surface of charged particles.

Therefore, colloidal particle suspensions with different particle sizes were chosen for

these experiments. The commercial silica colloidal suspensions with different particle

sizes (at least 5 different sizes) were selected for the experiment since they can be

obtained easily. The aqueous silica suspensions of different particle sizes, which were

supplied by Fuso Chemical Co., Ltd. Japan, were used in the experiments. However,

there is a problem in using commercial samples as supplied because of the presence

of unknown ionic species and lack of a precise particle concentration in suspensions.

Therefore, the commercial samples need to be pre-treated to remove the unknown

ionic species before carrying out experiments. A convenient method for the pre-

treatment is described below:

The original samples were firstly de-ionized using mixed bed ion exchange resin (Bio-

red), and then diluted to different weight concentrations (10.0 wt%, 5.0 wt%, 1.0 wt%,

0.5 wt%) using de-ionized water without adding additional electrolyte. In order to study

the effect of ionic concentration, different amounts of KCl solution were added to the

suspensions. The particle size, zeta potential, pH value and conductivity value of pre-

treated samples were characterised using the ZetaSizer (nano series, Malvern)

instrument, a pH meter (Eutech Instruments pH 300) and conductivity meter (Jenway

470).

The material used to investigate a typical crystallisation process is L-glutamic acid

(LGA). From the literature review, it is known that L-glutamic acid has been extensively

studied for its crystallisation behaviour and the two polymorphic forms (α form and β 

form) can be obtained easily by cooling crystallisation. Hence, L-glutamic acid should

be ideal for EIS measurement in crystallisation processes.
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The materials used in EIT measurement include a non-conductive polymer rod (the

handle of a screwdriver), banana and silica suspensions. As a type of biological

material, banana may show more significant capacitance properties than the non-

conductive polymer rod, which might be reflected in EIT imaging. The silica

suspensions used in EIT measurements are from the same batch as those

suspensions used in EIS measurement.

3.3 Devices for Colloidal Suspensions

The devices which are used to measure electrical impedance spectroscopy in silica

suspensions include an impedance analyzer (Figure 3.1) and a vessel with a four-

electrode sensor (Figures 3.2 and 3.3). The purpose of using a four-electrode sensor is

to decrease the effects of electrode polarisation at the electrode-electrolyte interface on

the measurements. The four-electrode sensor designed includes two plate electrodes

and two needle electrodes, which are all made of stainless steel. The two plate

electrodes are designed in a square shape with dimensions of 40 mm * 40 mm, and the

distance between two electrodes is 30 mm. Two needle electrodes are put in the

middle of the two plate electrodes. The diameter of the needle is 0.337 mm and the

distance between the two needle electrodes is 10 mm. Comparing the size of the two

needle electrodes, the two plate electrodes are much bigger in surface area, therefore

it can be assumed that the electric field is parallel and uniform between the two plates

and the interference of the two needle electrodes to the field can be ignored.

In EIS measurement, two plate electrodes are used to apply the excitation voltage and

two needle electrodes are used to measure the impedance via the voltage drop

between the two electrodes and the current through the sample. The whole vessel is

made of Perspex (Poly methyl methacrylate) and has an internal dimension of 40 mm

(length) * 30 mm (width) * 40 mm (height) in order to fit the 4-electrode sensor. A base

was designed to fix the vessel and four BNC male connectors were mounted on the

base, which can be used to connect the sensor to the impedance analyzer with coaxial

cables. The schematic drawing and photograph of the vessel and four-electrode sensor

are shown in Figures 3.2 and 3.3.
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Figure 3.1: Photograph of the impedance analyzer (Solartron 1260 Impedance/Gain-

Phase Analyzer)

Figure 3.2: Schematic of the four-electrode vessel
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Figure 3.3: Photograph of the vessel with the four-electrode sensor

3.4 Devices for Crystallisaion

The experimental set-up is designed for on-line measurement of electrical impedance

spectra during cyrstallisation processes. The devices employed in our experimental

set-up include:

(1) Electrical impedance analyzer (Solartron 1260 Impedance/Gain-Phase Analyzer)

(2) Four-electrode sensor

(3) Glass jacketed vessel

(4) Refrigerated and heating circulator

(5) Magnetic stirrer and a magnetic Teflon covered stir bar

(6) Temperature and turbidity sensors

(7) Data acquisition system

(8) Focused beam reflectance measurement (FBRM) device

3.4.1 Electrode sensor

The proposed electrode system in crystallisation experiments is also a four-electrode

sensor, but is different from the one used in the experiments for colloidal suspensions.

Because the vessel employed in crystallisation is a cylinder with a 3 litre capacity, the

electrode sensor was designed to have two big hemispherically shaped electrodes and

two needle electrodes, which have to fit into the vessel (Ma.T, 2007). Figure 3.4 shows

BNC
connector

Needle
electrodes

Plate
electrodes
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a photograph of the electrode sensor employed in the crystallisation experiments.

Figure 3.4: Photograph of the four-electrode sensor for crystallisation experiments.

3.4.2 Vessel and circulator

The glass jacketed vessel used in the crystallisation experiments has a cylindrical in

shape and has a 3 litre capacity. The mixing of solution in the vessel can be controlled

using a magnetic stirrer and the temperature inside the vessel can be controlled by use

of a Julabo refrigerated and heating circulator (F32-HE). Figures 3.5 and 3.6 show the

photographs of the jacketed vessel, magnetic stirrer and refrigerated and heating

circulator, respectively.

Figure 3.5: Glass jacketed vessel and magnetic stirrer
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Figure 3.6: Julabo refrigerated and heating circulator (F32-HE)

3.4.3 Temperature and turbidity sensor

1) Temperature sensor

A resistance temperature detector (RTD) is usually used during the crystallisation

process due to its excellent stability over long periods of time and accurate readings.

The principle of operation is to correlate the resistance of a metal with temperature by a

positive temperature coefficient. The hotter the metal becomes, the larger the value of

the electrical resistance. A PT100 temperature probe (also called a platinum resistance

thermometer) was chosen in the experiments. The PT100 type has a resistance of 100

ohms at 0 ˚C and 138.5 ohms at 100 ˚C. The relationship between temperature and 

resistance is approximately linear and follows the equation (3.1):

2 3
0 [1 T ( 100) ]TR R A T B C T T          (3.1)

where RT is the resistance at temperature T, R0 is the resistance at 0 ˚C, and  

A = 3.9083e-3

B = -5.775e-7

C = -4.183e-12 (below 0 ˚C), or C = 0 (above 0 ˚C) 

Since the crystallisation experiments were always carried out above 0 ˚C, and the 
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coefficient B is much smaller than A, Equation (3.1) can be reduced to:

T 100 0.3908TR   (3.2)

2) Turbidity sensor

A turbidity sensor measures suspended solids in water, typically by measuring the

amount of light transmitted through the water. The probe used in our experiments was

manufactured “in-house”. The components of the turbidity sensor include the probe and

transmittance box. The probe is made of two optical fibres, a screw mirror, and a

stainless steel shaft. As the working principles, a red laser light is sent along one of the

optical fibres via a transmittance box. The light is reflected by the screw mirror, and

sent back to the transmittance box by another optical fibre. The transmittance box can

be used to convert the light intensity to a voltage recorded by a data acquisition system.

Under an ideal situation, in clear water, 100% of the laser light can be sent back to the

transmittance box via the screw mirror. In the solution containing solid particles, some

of the red light is scattered by the particles, hence the light intensity sent back to the

transmittance box is less than 100%. Figure 3.7 shows a photograph of the turbidity

probe and transmittance box.

Figure 3.7: Turbidity probe and transmittance box
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3.4.4 Data acquisition system

The data acquisition (DAQ) system plays an important role in collecting temperature

and turbidity data on-line during the experiment. Usually the DAQ system can collect all

of the signals that measure the real physical conditions and convert them into digital

numeric signals which can be recorded by the PC. The DAQ system which was used in

the experiments consisted of three parts:

(1) Signal conditioning circuit (SCC) models, which can accept the sensors’ input

signals and transfer the signals to the DAQ device.

(2) A signal conditioning circuit (SCC) carrier usually uses together with SCC models

to transfer signals to data acquisition (DAQ) devices.

(3) Data acquisition (DAQ) device, which converts analogue signals to digital signals.

In this research, the SCC system (from National instruments) included a portable,

shielded SC-2345 carrier and two SCC modules, which were SCC-RTD01 resistance

temperature detector (RTD) and SCC-FT01 feedthrough module.

3.4.4.1 SCC modules

(1) SCC-RTD01 Module

The SCC-RTD01 is a dual-channel module that accepted 2, 3, or 4-wire platinum RTDs.

The temperature sensor used in this project was a PT-100 temperature probe, which is

suitable for the SCC-RTD01 module. Because the measured data from the DAQ

system are voltages, they have to be converted to temperature data by performing the

following steps to use the standard equations for the PT100 temperature sensor. Based

on Ohm’s law, the resistance at temperature T can be calculated from the excitation

current and measured voltage. The exciting current of the SCC-RTD01 module is 1 mA,

therefore, the temperature reading can be obtained by Equation (3.3):

1 1
( 100) ( 100)

0.3908 0.3908 0.001
T

V
T R

mA
    (3.3)

Since SCC-RTD01 has a fixed gain of 25 for amplifying the signal, the RTD voltage can

be calculated by Equation (3.4):
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25
ESERIES

RTD

V
V  (3.4)

where,

VRTD is the SCC-RTD01 model input voltage.

VESERIES is the reading voltage from DAQ device.

25 is the Gain of the SCC-RTD01 module.

Equation (3.3) can be rearranged as:

1 25T = ( 100)
0.3908 0.001

ESERIESV

mA
  (3.5)

According to the equation (3.5), the temperature of the solution during the

crystallisation process can be calculated from the measured voltage data VESERIES.

(2) SCC-FT01 Feedthrough Module

SCC-FT01 is a feedthrough module can be plugged into a single-stage analogue input

SCC socket on the SCC carrier. Since the turbidity data obtained from transmittance

are voltages already, they can be transferred to the DAQ device directly, and no

conversion should be involved here.

3.4.4.2 Signal conditioning circuit (SCC) carrier

The SCC carrier used in our DAQ system is the SC-2345 carrier from National

Instruments. The SC-2345 carrier included 20 SCC sockets, labelled J1 to J20.

Sockets J1 to J8 can be used for the single-stage analogue input conditioning. Sockets

J9 to J16 were used for either digital I/O modules or dual-stage analogue input

conditioning. The power supply for the SC-2345 carrier was SCC-PWR01, 5 VDC from

the DAQ device. Figure 3.8 shows the socket layouts on the SC-2345 carrier. At the

bottom-right hand side, there is a screw terminal block, which could be used to connect

the SC-2345 carrier to the analogue-to-digital converter by wiring.

The SCC-RTD01 is plugged into the J2 socket (an AI socket, ACH 1/9) on the SC-2345

carrier for single-stage input conditioning. The connection between the PT100 probe
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and the SCC-RTD01 module is a 4-wire connection, which is shown in the diagram

(Figure 3.9).

The SCC-FT01 was plugged into socket J4 (an AI socket, ACH 3/11) on the SC-2345

carrier for single-stage input conditioning. The connection between the turbidity probe

and the SCC-FT01 module was a 2-wire connection, with the green wire connecting to

pin 6, and the white wire connecting to pin 4.

The bottom view of the SCC modules is the same for both SCC-RTD01 and SCC-FT01

(Figure 3.10). For our DAQ device, only two pins were used and the pin numbers, with

associated signals, are listed in Table 3.1.

Figure 3.8: Diagram of socket layouts on SC-2345 carrier.

Figure 3.9: SCC-RTD01 single channel wiring diagram (RTD input manual, NI)
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Figure 3.10: Bottom view of the SCC module

Table 3.1: The pin numbers and associated signals on the socket of the SCC-2345

carrier

Pin Number on SCC module J1-J8: single analog input

1 AI (x) to DAQ device

6 AI GND

3.4.4.3 DAQ device

1. Analogue-to-digital converter

The analogue-to-digital converter selected for the experiments is a PMD-1208LS

personal measurement device from Measurement Computing. Figures 3.11 and 3.12

show the pin numbers and associated signals on the PMD-1208LS. The pin numbers 1

and 3 on the PMD-1208LS were connected to pin numbers 1 and 6 on the J2 socket of

SC-2345 carrier separately via the screw terminal block to provide the data acquisition

for the PT100 temperature sensor. Similarly, the pin numbers 4 and 6 on the PMD-

1208LS were connected to pin numbers 1 and 6 on the J4 socket of the SC-2345

carrier separately via the screw terminal block to provide the data acquisition for the

turbidity sensor. Pin numbers 9 and 30 on the PMD-1208LS were connected to the

GND and + 5V on the power module of the SC-2345 carrier to provide the power

supply for the SC-2345 carrier.
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Figure 3.11: PMD-1208LS screw terminal pin numbers

Figure 3.12: The pin numbers and associated signals on the PMD-1208LS

2. Software

The TracerDAQ software is used to record data from the temperature and turbidity

sensors. The working window is shown in Figure 3.13. It can be seen that two lanes

are included to record the temperature and turbidity data at the same time. The

recorded data are shown as voltages and they could be analysed directly for the

turbidity results, but have to be converted to temperature data using Equation (3.5) for

the temperature results.
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Figure 3.13: Diagram of the TracerDAQ software working window

3.4.5 Focused Beam Reflectance Measurement

A focused beam reflectance measurement (FBRM) device was used to detect changes

in both particle size and particle counts on-line by measuring the chord length

distribution during crystallisation processes. The advantages and disadvantages of this

technique have been reviewed in Chapter 2. Although FBRM is not accurate for non-

spherical particles, it provides a reference for on-line changing of particle size in our

experiments. Figure 3.14 shows pictures of a Lasentec S400 FBRM probe and

controller (Mettler Toledo).

Figure 3.14 Lasentec S400 FBRM probe and controller
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3.5 Devices for EIT Measurement

The devices for EIT measurement based on electrical impedance spectroscopy include

an impedance analyzer (Figure 3.1), a cylinder shaped vessel with an 8-electrode

sensor (Figure 3.15), and Perspex chamber (Figure 3.16). The vessel shown in Figure

3.15 actually has a 16-electrode sensor; however, only 8 electrodes were used in

experiments. Because the EIT measurement based on electrical impedance

spectroscopy is very time consuming, due to the manual operation, using an 8-

electrode sensor can decrease the number of measurements (20 times for an 8-

electrode sensor but 104 times for a16-electrode sensor). Therefore, the strategy for

the 8-electrode sensor is to use electrode 1, leave its adjacent electrode 2 unused and

then use electrode 3, leave electrode 4 unused, and so on (as shown in Figure 3.15).

The Perspex chamber is a hollow square with a hole on top for adding the testing silica

suspension. The dimensions of the Perspex chamber are a height of 125 mm, length of

20 mm, width of 62 mm and the aperture on top is 10 mm in diameter. Cling film is

glued on both sides of the chamber to hold the silica suspension to prevent leakage. In

order to measure tomography imaging of silica suspensions (water as reference), one

or two chambers were put into the cylindrical vessel and fixed by clamps. Figure 3.17

shows pictures of the experimental set-up of chambers in the cylindrical vessel.

Figure 3.15: Cylindrical vessel with an 8-electrode sensor
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Figure 3.16: Perspex chamber as a housing for silica suspension

Figure 3.17: One and two chambers in the cylindrical vessel

3.6 Methodology

The EIS measurement in colloidal suspensions was carried out by applying an

alternating excitation current (20 mA), which can be achieved by setting the voltage

generator to 1 volt (since 50 ohm resistance involved in the circuit of generator output),

with a frequency spectrum from 1 Hz to 32 MHz to the two plate-electrodes and taking

the EIS response from the two needle electrodes. The electrical impedance spectra

were obtained using a Solartron 1260 Impedance/Gain-Phase Analyzer, with “smart”
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software.

The EIS measurement in crystallisation processes was carried out by applying an

alternating excitation current (20 mA) with a frequency spectrum from 1 Hz to 20 MHz

to the two hemispherically shaped electrodes and taking the EIS response from the two

needle electrodes. The electrical impedance spectra were recorded using the same

software and impedance analyzer as those used for measuring the silica suspension.

The crystallisation processes were achieved using a simple cooling method without

involving any chemical reaction. The experiments were carried out using a glass

jacketed-vessel, Julabo thermostated bath, data acquisition system, impedance

analyzer (Solartron 1260), four-electrode sensor and data processing software. The

electrical impedance spectra were recorded automatically by PC during the nucleation

and growth processes. The time required for testing EIS from 1Hz to 20 MHz is about

2.5 minutes and there was no pause between the 2 loops. The solution temperature

was recorded at the start point of every loop. Vessel stirring was provided using a

magnetic stirrer rotating at a constant speed of 400 rpm. The temperature and turbidity

were measured by using a PT100 temperature sensor and turbidity sensor, respectively.

Signals were logged onto a computer via the data acquisition system. FBRM

measurement was started at the same time as the EIS measurement and the data

were recorded by FBRM control interface software. The whole experimental set-up is

depicted in Figure 3.18.

Figure 3.18: Experimental setup for on-line measurement of EIS during crystallisation

PC
Magnetic stirrer

Temperature and

turbidity probes

Temperature
control bath

Data acquisition system

Impedance analyzer
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The general methodology of electrical impedance tomography (EIT) based on

spectroscopic measurement is realised through applying an exciting current onto one

pair of electrodes within an 8-electrode sensor and measuring the resulting voltages

sequentially on other adjacent electrode pairs. Figure 3.19 shows a schematic of this

adjacent data sensing strategy for an 8-electrode system. Current is applied to a pair of

electrodes, e.g. electrode 1 and 2 through the impedance analyzer, meanwhile the

voltages are measured on other adjacent electrode pairs, e.g. between 3 and 4, 4 and

5, up to 7 and 8. Then the excitation current is moved on to electrodes 2 and 3, and the

same sets of voltages are acquired on the rest of the electrodes. The EIS

measurement is exactly the same as the measurement in colloidal suspensions (20 mA

excitation current with a frequency spectrum from 1 Hz to 32 MHz). After all the

electrodes were excited and voltages measured, the total number of electrical

impedance spectra, 20, can be completed. Then 20 electrical impedance data at a

fixed frequency can be used for imaging reconstruction based on the back projection

algorithm. The reconstructed cross-sectional image represents the electrical

impedance distribution in a phantom.

Figure 3.19: The schematic of adjacent data sensing strategy for an 8-electrode sensor

3.7 Summary

All devices and materials used in the experiments are described in this chapter. The

four-electrode sensor plays a very important part in electrical impedance spectroscopy

measurement, therefore the two four-electrode sensors used in the colloidal

suspensions and crystallisation experiments are described individually. The instruments
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for on-line monitoring of the crystallisation process are introduced, and the data

acquisition system for on-line measurement of temperature and turbidity data is

described in detail. Finally, the experimental devices and methodology of electrical

impedance tomography spectroscopy (EITS) measurement method is briefly described.



Chapter 4

Development of the Electrical Impedance Spectroscopy

Method for Characterising Particles in Silica

Suspensions
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Summary: The experimental approach and data analysis for developing an

electrical impedance spectroscopy method for particle characterisation are

reported in this chapter. The physical properties of the silica suspensions,

including particle size distribution (PSD), zeta potential and pH values are

reported at the beginning of the chapter. The relationship between particle size

and dielectric properties (including impedance, phase angle and relaxation

frequency) are investigated and analysed. In addition, the effects of particle

concentration and ionic concentration on electrical impedance spectra are

analysed.
95

.1 Introduction

his chapter reports the experimental results from electrical impedance spectroscopy

easurements on silica suspensions. The main aim is to develop a method of EIS and

erify its capability for characterising colloidal particles in suspensions. Due to the lack

f a valid theoretical model for the complex relationship between particle properties and

lectrical impedance spectroscopy, it was proposed to study the matter using an

xperimental approach by measuring the electrical impedance spectra of the silica

uspensions under an alternating electrical field and analysing the effects of the particle

ize, particle concentration and ionic concentration, in relation to the electrical

mpedance spectra and permittivity spectra. The relationship between particle size and

ielectric properties, including impedance, phase angle and relaxation frequency, are

stablished based on the experimental results and the theoretical model. The outcome

f the study provides a fundamental understanding of the capability of EIS for process

pplication, typically, the crystallisation processes to be specifically addressed in the

ext chapter.
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4.2 Physical properties of silica suspensions

4.2.1 Particle size distribution

Since the original silica samples underwent a pre-treatment process before EIS

measurement, the specifications provided by the vender were not reliable. Therefore,

the particle size distributions (PSD) of all pre-treated samples were measured for the

use in the following analysis. The ZetaSizer Nano Series (Nano-ZS) from Malvern

Instruments was used for PSD measurement. The concept of measurement is based

on dynamic light scattering, which was introduced in Chapter 2, section 2.5.5. In PSD

curves, the x-axis shows the distribution of particle size, while the y-axis shows the

relative intensity of the scattered light. The PSD curves typically show up as a large

peak at one particular size indicating the primary particle size. In the case of

polydispersity, a secondary or third peak may be observed, indicating that the sample

contained two or three dominating particle sizes.

The recorded PSD curves are shown below in Figures 4.1-4.4 for the four particle

concentrations (10.0 wt%, 5.0 wt%, 1.0 wt%, and 0.5 wt%) and five suspensions with

different particle sizes (12, 35, 70, 90, 220 nm), respectively. The sizes shown in

brackets were provided by the manufacturer. It can be seen that for the silica

suspensions with high concentrations (10.0 wt% and 5.0 wt%), the samples with

particles in 12, 35 and 70 nm sizes show more than one peak in PSD profiles, which

indicates that aggregation has occurred in these samples. The aggregation might be

caused by the dilution and de-ionization treatments in the sample preparation. For the

silica suspension with a 70 nm size, only one peak is observed in the size distribution

for low concentration samples (1.0 wt% and 0.5 wt%), which may indicate that the

effect of aggregation decreases with decreasing the particle concentration. However,

for silica suspensions with 12 and 35 nm particle sizes, two peaks are observed in the

distribution even at low concentrations (1.0 wt% and 0.5 wt%). The particle sizes

measured using the ZetaSizer instrument are different from the sizes of the original

samples specified by the manufacturer, which may be due to the pre-treatment process

to all of the silica samples. Therefore, a summary of the particle sizes for all of the silica

samples studied in this research is shown in Table 4.1. In order to make clear sense of

the particle size measured by the ZetaSizer and the size provided by the manufacturer,

a notation of Xa is used to show the measured particle size. Here, X shows the particle

size measured using the ZetaSizer, and superscript, a, shows the particle size provided

by the manufacturer.
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Figure 4.1: Particle size distribution of 10.0 wt % silica suspensions
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Figure 4.2: Particle size distribution of 5.0 wt % silica suspensions
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Figure 4.3: Particle size distribution of 1.0 wt % silica suspensions
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Figure 4.4: Particle size distribution of 0.5 wt % silica suspensions
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Table 4.1: Summary of the particle sizes for all silica samples

Concentration

(wt %)

Primary particle

size from vender

(nm)

Primary size

measured by

ZetaSizer (nm)

Secondary size

measured by

ZetaSizer (nm)

10.0 12 18.17 458.7

5.0 12 13.54 78.82

1.0 12 7.53 58.77

0.5 12 7.53 43.82

10.0 35 190.1 3.615

5.0 35 91.28 6.50

1.0 35 58.77 10.1

0.5 35 68.06 15.69

10.0 70 270.4 44.48

5.0 70 190.1 37.84

1.0 70 164.2 N.A.

0.5 70 148.1 N.A.

10.0 90 220.2 N.A.

5.0 90 199.7 N.A.

1.0 90 180.9 N.A.

0.5 90 178.7 N.A.

10.0 220 467.9 N.A.

5.0 220 384.6 N.A.

1.0 220 378.0 N.A.

0.5 220 425.8 N.A.
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4.2.2 Zeta potential and pH value

Table 4.2 gives a summary of zeta potentials, ξ, at different values of pH for all of the 

silica suspensions. It can be seen that the zeta potentials show negative values for all

of the samples indicating negative charge sited on the silica particles. The main trend

of zeta potentials shows that ξ increases with increasing pH value. This result is similar 

to the one shown in the literature (Gun'ko et al., 2001, Metin et al., 2011). In the

literature, it is observed that the iso-electric point of silica suspensions is around pH 2.5

and the absolute value of zeta potential is smaller than 40 mV for solutions with pH < 7.

As the silica suspensions were de-ionized before measurement, the pH values of the

samples are all smaller than 7 and the absolute values of zeta potential for most of the

samples are smaller than 30 mV (|ξ| < 30 mV). As mentioned in the operating manual 

of the ZetaSizer instrument, colloidal suspensions with zeta potentials less positive

than 30 mV or less negative than 30 mV are unstable because the zeta potential is not

strong enough to repel the particles from each other if there is no other form of

stabilization, such as stabilization through the addition of surfactant. Aggregation and

sedimentation usually occur in unstable colloidal suspensions. This phenomenon has

been demonstrated by the PSD measurement. A very popular method, which is used to

increase the absolute of zeta potential, is to adjust the pH value of suspensions to

alkaline range by adding alkali (for example, NaOH). However, this might have two

undesirable effects for EIS measurement. The first is a possible shifting of the

relaxation frequency to the high frequency range, even exceeding the measurement

range of the instrumentation due to the increase in ionic concentration. The second is

that the particle size effect on EIS might become insignificant in the suspensions with a

high background ionic concentration, which is unfavourable for studying the particle

size effect. The details about the ionic concentration effect will be discussed in section

4.5. Hence, considering the disadvantages, the pH values of silica samples were not

adjusted in the experiments.
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Table 4.2: Summary of zeta potentials for the silica samples at 25 ˚C 

Concentration

(wt %)

Particle size (nm)

(from vender)

Zeta potential

(mV)
pH value

10.0 12 -5.0 4.58

10.0 35 -17.2 5.75

10.0 70 -16.6 6.61

10.0 90 -24.1 6.84

10.0 220 -1.1 6.60

5.0 12 -10.1 4.73

5.0 35 -22.1 5.96

5.0 70 -30.0 6.43

5.0 90 -29.9 6.65

5.0 220 -38.4 6.72

1.0 12 -18.0 5.03

1.0 35 -20.0 6.14

1.0 70 -29.1 6.34

1.0 90 -25.6 6.32

1.0 220 -35.4 6.30

0.5 12 -21.8 5.59

0.5 35 -24.6 6.01

0.5 70 -19.4 6.15

0.5 90 -46.6 6.25

0.5 220 -32.7 6.45

4.3 Calibration of cell constant

The impedance-related functions include admittance Y, modulus M, and dielectric

permittivity ε. The relations between the four impedance-related functions have been 

shown in Chapter 2, Table 2.1. The calculation of modulus and dielectric permittivity

needs a constant Cc, which is called the cell constant. The expression of the cell

constant is shown in Equation (4.1):

c

l
C

A
 (4.1)



102

where, l is the separation distance between the two needle electrodes, and A is the

area of the parallel plate electrodes.

Although the shape and size of the measurement vessel was known, the accurate

value of the cell constant should be calculated via a calibration process. The calibration

process is usually carried out using a standard electrolyte solution (KCl), which has a

known conductivity value. In the experiment, a standard electrolyte solution (KCl), with

conductivity of 82 μs/cm at 25 ˚C, was used to calibrate the four-electrode system and 

obtain the cell constant. The calculation is described as follows:

The expressions of Impedance Z* and admittance Y* have been shown in the Chapter 2,

Equations (2.56) and (2.62).

The complex conductivity is related to admittance and impedance by:

* *

*

1
c cK C Y C

Z
    (4.2)

where, Cc is the cell constant, the unit of Z* is ohm, the unit of Y* is S (ohm-1), and the

unit of K* is S/m.

The cell constant can be calculated by measuring the impedance of the standard KCl

solution (here, the standard KCl has conductivity of 82 μs/cm): 

*
*

*

( )
( ) 0.0082 /

Y ( )
c

K
C Z S m





   (4.3)

For the calibration, the conductivity should be measured under a static state, therefore,

the calibration was carried out within the low frequency range (<10 Hz). The cell

constant obtained by the calibration process is 8.66 m-1.

4.4 Particle size effect

In this section, the particle-size effect on the electrical impedance spectra and

permittivity spectra is investigated in the silica suspensions with different particle sizes

and particle concentrations. The particle concentrations which were studied include

10.0 wt%, 5.0 wt%, 1.0 wt%, and 0.5 wt% and five different particle sizes: 12 nm, 35



103

nm, 70 nm, 90 nm, 220 nm (size from the manufacturer), were used in the experiments.

In order to minimize the influence from ionic species, all of the samples were pre-

treated to remove the ions in the solution before the measurement.

4.4.1 Impedance spectra

The electrical impedance spectra for the silica suspensions with different

concentrations (10.0 wt%, 5.0 wt%, 1.0 wt%, 0.5 wt%) and various values of particle

size (12 nm, 35 nm, 70 nm, 90 nm, 220 nm) are shown in Figures 4.5-4.8. Five arcs

can be observed in Figures 4.5 (a) - 4.8(a), which shows the dielectric response of the

suspensions under the external electric field. If the arc is assumed to be a regular

semicircle, then a parallel RC equivalent circuit (R is resistance and C is capacitance)

can be used as a static model to simulate the EIS results. The analysis is qualitative

since the assumption of a semicircle is idealised.

The impedance of parallel RC circuit can be expressed by:

2

2

2 )(1)(11

1

RC

CR
j

RC

R

RCj

R

Y
Z





 






 (4.4)

The impedance real part (Z’), imaginary part (Z”) and phase angle (θ) can be 

expressed by:

2
'( )

1 ( )

R
Z

RC






(4.5)

2

2
"( )

1 ( )

R C
Z

RC





 


(4.6)

"( )
tan

'( )

Z
RC

Z


 


   (4.7)

where, R is the resistance, C is the capacitance, ω is the frequency, Z' is the

impedance real part, Z" is the impedance imaginary part, and θ is the phase angle.

The impedance imaginary part is a function of frequency. If the derivative of Z'' is equal

to zero, a minimum of Z'' at a certain frequency can be obtained:
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2 2

2 2

" [1 ( ) ]
0

[1 ( ) ]

dZ R C RC

d RC



 


 


(4.8)

The frequency where "( )Z  reaches a minimum is called the relaxation frequency and

has the expression:

relaxation

1

RC
  (4.9)

The peak position on the plot of impedance imaginary part shows the relaxation

frequency.

Figures 4.5 (b) - 4.8 (b) show that the impedance real parts at frequencies lower than

10 kHz increase with increasing particle size. However, at the higher frequency (for

example, 1 MHz), the impedance real parts do not show a significant difference from

the samples with different particle size.

From Figures 4.5 (c)-4.8 (c), it can be seen that the relaxation begins at the frequency

range of 10 kHz-1MHz since several peaks can be observed in the plot of impedance

imaginary parts, which is the characteristic of relaxation as explained by Equation (4.9).

The relaxation frequencies of silica suspensions with different particle size, obtained

from the peak positions, shift to lower frequency range with increasing particle size. By

comparing the impedance imaginary-part plots in Figures 4.5 (c)-4.8 (c), it can be seen

that in the low concentration silica suspensions (1.0 wt% and 0.5 wt%), the change of

relaxation frequency becomes insignificant and irregular with increasing particle size.

The possible reason is that with decreasing particle concentration, the electrical signal

caused by the polarisation of the double layer under the external excitation is getting

weak. Therefore, it becomes more difficult to distinguish the change in signal caused by

changing of the particle size from the combination of exciting electrical signal and the

detecting signal. As an important parameter, the relaxation frequency will be studied

further in the permittivity curves in section 4.3.2.

Figures 4.5 (d)-4.8 (d) show the phase angles for a fixed particle concentration (for

example, 10.0 wt%), but with different particle size as a function of frequency. The

particle size effect on the phase angle can be observed clearly in the suspensions with

high particle concentration (10.0 wt% and 5.0 wt%). However, in the silica suspensions

with low particle concentrations (1.0 wt% and 0.5 wt%), the change in phase angle as a

function of particle size becomes insignificant, e.g. the variation is much smaller than in
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the silica suspensions with high concentrations. Because the measured impedance

signal is the total signal from all of the particles, adding the exciting electrical signal, the

lower the particle concentration the smaller the electrical signal caused by the

polarisation of double layers around the particles in the suspensions. It is not clear

whether the origin of the small variation in phase angle is from the properties of

charged particles or the intrinsic precision of the measurement as it is difficult to detect

and separate the small signal using the hardware currently available. Since the

physical meaning of phase angle cannot be directly related to the particle size, the

tangent function of the phase angle tan(θ), is used. The detailed analysis based on the 

relative changes in tan(θ) is shown in the next section 4.3.2.  
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Figure 4.5: Impedance spectra for silica suspensions (10.0 wt %) with different particle

size (18.712 nm, 190.135 nm, 270.470 nm, 220.290 nm, 467.9220 nm); (a) cole-cole plot of

impedance; (b) impedance real part vs. frequency; (c) impedance imaginary part vs.

frequency; (d) phase angle vs. frequency plots.
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Figure 4.6: Impedance spectra for silica suspensions (5.0 wt %) of different particle

size (13.5412 nm, 91.2835 nm, 190.170 nm, 199.790 nm, 384.6220 nm); (a) Cole-Cole plot

of impedance; (b) impedance real part vs. frequency; (c) impedance imaginary part vs.

frequency; (d) phase angle vs. frequency plots
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Figure 4.7: Impedance spectra for silica suspensions (1.0 wt %) of different particle

size (7.5312 nm, 58.7735 nm, 164.270 nm, 180.990 nm, 378.0220 nm); (a) Cole-Cole plot of

impedance; (b) impedance real part vs. frequency; (c) impedance imaginary part vs.

frequency; (d) phase angle vs. frequency plots
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Figure 4.8: Impedance spectra for silica suspensions (0.5 wt %) of different particle

size (7.5312 nm, 68.0635 nm, 148.170 nm, 178.790 nm, 425.8220 nm); (a) Cole-Cole plot of

impedance; (b) impedance real part vs. frequency; (c) impedance imaginary part vs.

frequency; (d) phase angle vs. frequency plots

4.4.2 Relative Changes of Phase angle

The study of relative changes in tan(θ) uses the same principle as for electrical 

impedance tomography (EIT) measurement, which has been introduced in Chapter 2,

section 2.4.2. To calculate the relative changes in tan(θ), a reference should be 

appointed. In this study, the de-ionized water was chosen as the reference, because

the ionic concentrations in the silica suspensions were very low (after pre-treatment

using ion exchange resin). The effect from ionic concentration could be decreased if

both the reference and measurement samples have low ionic concentrations.

As discussed in section 4.3.1, the impedance spectra can be simulated by an

equivalent circuit shown in Figure 4.9.
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Figure 4.9: Parallel RC equivalent circuit (R is resistance and C is capacitance)

Here, C and R can be calculated by fitting the experimental results into Equations (4.5)

and (4.6).

The relative changes in tan(θ) can be expressed by:                                                                                                  

, 1 1 1 1 1 1tan tan tan

tan tan

j j j j j j j j j j j j

j j j j j j

R C R C R C R C

R C R C

    

  
         
   (4.10)

where, de-ionized water is treated as reference j, particle suspensions are treated as

measured system j+1.

Let λ denote the relative changes in tan(θ),  

, 1tan

tan

j j

j







 (4.11)

From Equation (4.10), it can be found that the relative changes in tan(θ) are frequency 

independent, which could simplify the calculation in the following analysis. However,

this case only occurs when the parallel RC equivalent circuit model is used. In some

other cases, for example, the EIT phantom, the parallel RC equivalent circuit model

might not be suitable and therefore, λ is a function of frequency. The relative changes 

in tan(θ) in EIT measurements will be discussed further in Chapter 6. 

The next step is to find out the relationship between λ and the particle size. In a 

colloidal suspension, the presence of an electric field E


causes the charges in the

double layer to be slightly polarised, inducing a local electric dipole moment, which can

be expressed by the electrical polarisation density:

R C

http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Electric_dipole_moment
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where, eP


is the electric polarisation density, d


is the electric dipole moment, V is the

volume of suspension, Φ is the particle volume fraction and a is the particle radius.

The electric displacement for a field-dependent polarisation phenomena is defined by:

0 0 0 0 0(1 )r e e eD E E E E E E P               
       

(4.13)

where, D


is the electric displacement, E


is the electric field,  is the permittivity of

the material, 0 is the permittivity of free space, e is the electric susceptibility, r = 1 +

e is the relative permittivity, eP


is the electrical polarisation density due to the

presence of E


, and defined as:

EP ee


 0 (4.14)

The electrical dipole moment of a spherical particle in a colloid under an external

electric field has been derived by Dukhin et al. (Dukhin and Shilov, 1980):

3
0 e

1 3 Rel
( )

2 2 1 Rel
pd d d a E    



   
(4.15)

s

e

K
Rel=

K a
(4.16)

where, d


is the electric dipole moment, Ks is the surface conductivity, Ke is the

conductivity of the electrolyte, a is the radius of the particle, E is the applied electric

field, εe is the permittivity of electrolyte, od


is the dipole moment which is independent

of Ks and caused by the distinction between the dielectric constants of the materials of

the particle and medium, and pd


is the charge component of the dipole moment.

Therefore, the electrical polarisation density can be expressed by:
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Combining Equations (4.17) and (4.14), gives:

e e
0

3 3 21 3 Rel
( )

4 2 2 1 Rel 4 2( )
s e

e

e s

K K a

K a K

 
 

 


   

 
(4.18)

The surface conductivity Ks is a function of surface charge σs (Jimenez et al., 2007):

s

B

e
K = s s

D
A

k T
  (4.19)

where, e is the charge of an electron, kB is the Boltzmann constant, T is temperature,

and D is the diffusion coefficient of ions. A is a constant since the above parameters are

all constant.

For a parallel RC equivalent circuit, tan(θ) can be expressed by: 

tan( )
C

RC
G


     (4.20)

where, G is the admittance.

Based on the definition of capacitance and admittance, we have:

k
d

A
C er )1(00  

(4.21)

kG  (4.22)

where, k is the cell constant and σ is the conductivity of suspension. 

Therefore, tan(θ) can be related to the value of e0 by:

0 0 0(1 )
tan e ekC

G k

    


  


       (4.23)

As shown in the Equations (4.18) and (4.19), e0 is related to the particle size and

surface charge in the case that the particle volume fraction remains constant. The

surface charge is a function of particle size as well, because the surface areas of the
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particles increase with decreasing particle size if the volume fraction remains constant.

Therefore, from Equation (4.23) it can be deduced that tan(θ) is a function of particle 

size. However, it is difficult to obtain the exact expression for tan(θ) and particle size, 

because the surface conductivity in Equation (4.18) is difficult to measure

experimentally and the exact relationship between the surface charge and particle size

is not available. Therefore, a qualitative analysis is carried out based on the

experimental results. A semi-empirical relationship between the relative changes in

tan(θ) and the particle size is developed based on the discussion.  

Tables 4.3-4.6 show the values of λ changing with the particle size in the silica 

suspensions of different concentrations. In these tables, the particle diameters are the

measured results using the ZetaSizer. The relationships between λ and the particle size 

in the silica suspensions with different particle concentrations are shown in Figure 4.10.

Based on the results, a linear, proportional relationship between λ and the particle 

diameter is proposed and the linear fitting results are shown in Figure 4.10 as well.

It can be found that in the silica suspensions with relatively high particle concentrations

(10.0 wt% and 5.0 wt%), λ is approximately proportional to the particle size by showing  

good linear fitting results. However, in the silica suspensions with relatively low particle

concentrations (1.0 wt% and 0.5 wt%), the linear fitting results are not as good as those

in the suspensions with high concentrations. One of the possible reasons is the small

variations in phase angles as shown in Figures 4.7 (d) and 4.8 (d), because the

calculation of λ relies on the values of phase angles. The possible reasons for the small 

variations in phase angles which occur in the low concentration suspensions have

been analysed in section 4.3.1. Another possible reason is that the assumption of

parallel RC equivalent circuit model is not accurate for describing the real situation of

the silica particles under an external electric field. A more suitable and accurate model

needs to be considered in order to get a better fitting result.

Table 4.3: The relative changes in tan(θ) in 10.0 wt% silica suspensions with different 

particle sizes

Particle diameter (nm) Particle concentration λ

467.9(220) 10.0 wt% 0.806

220.2(90) 10.0 wt% 0.853

270.4(70) 10.0 wt% 0.848

190.1(35) 10.0 wt% 0.881

18.17(12) 10.0 wt% 0.939
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Table 4.4: The relative changes in tan(θ) in 5.0 wt% silica suspensions with different 

particle sizes

Particle diameter (nm) Particle concentration λ

384.6(220) 5.0 wt% 0.725

199.7(90) 5.0 wt% 0.785

190.1(70) 5.0 wt% 0.761

91.28(35) 5.0 wt% 0.802

13.54(12) 5.0 wt% 0.897

Table 4.5: The relative changes in tan(θ) in 1.0 wt% silica suspensions with different 

particle sizes

Particle diameter (nm) Particle concentration λ

378.0(220) 1.0 wt% 0.587

180.9(90) 1.0 wt% 0.612

164.2(70) 1.0 wt% 0.5495

58.77(35) 1.0 wt% 0.5187

7.53(12) 1.0 wt% 0.694

Table 4.6: The relative changes in tan(θ) in 0.5 wt% silica suspensions with different 

particle sizes

Particle diameter (nm) Particle concentration λ

425.8(220) 0.5 wt% 0.324

178.7(90) 0.5 wt% 0.641

148.1(70) 0.5 wt% 0.641

69.06(35) 0.5 wt% 0.420

7.53(12) 0.5 wt% 0.544
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Figure 4.10: The plots of relative changes in tan(θ) vs. particle size in the silica 

suspensions with different particle concentrations (a) 10.0 wt%, (b) 5.0 wt%, (c) 1.0

wt% and (d) 0.5 wt%
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4.4.3 α dispersion and MWO dispersion 

As reviewed in Chapter 2, section 2.2.3, the two relaxation mechanisms, α dispersion 

and MWO dispersion might be observed at the frequency range in our experiments.

From the plot of the impedance imaginary part in Figures 4.11 (c) – 4.14 (c), these two

relaxation mechanisms cannot be distinguished since only one peak can be observed

across the whole measured frequency range (shown in section 4.3.1). The possible

reason is that the two peaks showing α and MWO dispersions are merged together and 

cannot be separated in the plot of impedance imaginary part. Since the different

dielectric functions (impedance, permittivity, and admittance) could show the relaxation

peaks at different frequencies (Gerhardt, 1994), some relaxation peaks which couldn’t

be observed in the impedance curves might be observed in the permittivity curves.

Therefore, in order to get the information about the two dispersions, the permittivity

curves were plotted. The complex conductivity and permittivity can be converted from

the impedance data by the relationships which are shown below:

The impedance Z* and complex conductivity K* can be expressed as below:

( ) ( ) ( )* ' "Z Z iZ    (2.61)

)()()( "'*  iK  (4.24)

where, Z' and Z" are the real and imaginary parts of the impedance, ′ and ″ are the 

real and imaginary parts of the complex conductivity.

The relationship between the impedance and complex conductivity is given by:

)(
)(

*

*




Z

C
K C (4.25)

Here, Cc is called the cell constant. The cell constant can be calculated via calibration

using a standard electrolyte solution. The value of the cell constant is 8.66 for the

vessel used in our experiments.

The general presentation of the complex conductivity is given by:

)()0()( **  iK  (4.26)
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Considering charged particles in motion, the complex permittivity can be expressed as:

* * ' ''
0 0( ) ( ) ( )r r ri             (4.27)

* '' '
0 0( ) ( 0) ( ) ( )r rK i            (4.28)

Comparing Equations (4.24) and (4.28), we can immediately get,
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 
 
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
 (4.29)
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 



 
 (4.30)

where, ε0 is the absolute permittivity of the vacuum.

According to Equation (4.30), the imaginary part of permittivity can be calculated from

the measured impedance data. Figure 4.11–Figure 4.14 show the imaginary part of the

complex permittivity for the silica suspensions with different concentrations (10.0 wt%,

5.0 wt%, 1.0 wt%, 0.5 wt%) and various values of particle size. In order to clearly

observe the α dispersion and MWO dispersion, which usually occur in the kHz to MHz 

range, permittivity curves show the data from 1 kHz to 32 MHz. It is easy to identify two

different groups of relaxation peaks from these figures. The peaks between 10 kHz to

100 kHz are due to the α dispersion, which is associated with the polarisation of the 

double layer and presents the time taken for the transport of ions at the diffuse double

layer over distances of the order of the particle radius. It can be found that all of the

silica suspensions exhibit negative values of ε” at the α relaxation peaks. This 

phenomenon is contrary to many simulations and experimental results shown in the

literature (Kijlstra et al., 1993, Lim and Franses, 1986, Sauer et al., 1990). However, a

recent journal paper (Bradshaw-Hajek et al., 2010) presented a similar result by using

simulation. It showed that for the systems where κa > 1 and |ξ| > 25.7 mV, negative ε”

values can be observed at the α relaxation frequency range. The reason for this 

phenomenon was explained as the colloidal suspensions are treated as a conductive

(or part conductive) medium in the simulation therefore the constraint of positive ε” for a

dielectric medium no longer holds (Bradshaw-Hajek et al., 2010). In our experiments,

the conditions of κa > 1 and |ξ| > 25.7 mV are satisfied for some of the samples, but the 

negative values of ε” exist in all of the samples. The possible reasons include not only
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the one mentioned by Bradshaw-Hajek but also the possible systematic error in the

calculation, because in the calculation of ε” using the equation (4.30), the conductivity

values at the lowest frequency (ω = 1 Hz) were used as the DC conductivity (ω=0).  
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Figure 4.11: The imaginary part of complex permittivity spectra for silica suspensions

(10.0 wt %) with different particle size (18.712 nm, 190.135 nm, 270.470 nm, 220.290 nm,

467.9220 nm)
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Figure 4.12: The imaginary part of complex permittivity spectra for silica suspensions

(5.0 wt %) with different particle size (13.5412 nm, 91.2835 nm, 190.170 nm, 199.790 nm,

384.6220 nm)
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Figure 4.13: The imaginary part of complex permittivity spectra for silica suspensions

(1.0 wt %) with different particle size (7.5312 nm, 58.7735 nm, 164.270 nm, 180.990 nm,

378.0220 nm)
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Figure 4.14: The imaginary part of complex permittivity spectra for silica suspensions

(0.5 wt %) with different particle size (7.5312 nm, 68.0635 nm, 148.170 nm, 178.790 nm,

425.8220 nm)
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For dilute suspensions, the frequency at which α relaxation occurs can be estimated 

via an equation derived from the model established by Delacey and White (Delacey

and White, 1981):

1 2

2

( )

D

a


 



(4.31)

where, a is the particle radius, κ-1 is the double layer thickness and D is the diffusion

coefficient of ions.

Here, the definition of a dilute suspension is not explicit in the literature. However, in a

review paper (Grosse and Delgado, 2010), the authors state that a volume fraction of

1% should be treated as a concentrated suspension since the particle concentration

dependence of α relaxation frequency loses linearity when the particle volume fraction 

is larger than 1%. The relationship between the particle concentration and α relaxation 

frequency will be discussed in section 4.4.

The value of κ-1 can be calculated from the ionic concentration by Equation (4.32)

(Hunter, 2001):

1 0
22

r B

A

k T

N e I

 
   (4.32)

where I is the ionic strength of the electrolyte (mole/m3), ε0 is the permittivity of free

space, εr is the dielectric constant of solvent (78.5 for water), kB is the Boltzmann

constant, T is the absolute temperature, NA is the Avogadro number, and e is the

elementary charge.

For a symmetric monovalent electrolyte,

1 0
2

02
r RT

F C

 
   (4.33)

where, R is the gas constant, F is the Faraday constant, and C0 is the molar

concentration of the electrolyte (mole/litre).

At room temperature (25 ˚C), the Debye length can be expressed by: 

http://en.wikipedia.org/wiki/Ionic_strength
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Vacuum_permittivity
http://en.wikipedia.org/wiki/Relative_static_permittivity
http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Boltzmann_constant
http://en.wikipedia.org/wiki/Avogadro_number
http://en.wikipedia.org/wiki/Elementary_charge
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1

0

0.304

C
   (nm) (4.34)

In the experiment, it is difficult to measure the exact values of the ionic concentration in

silica suspensions. However, the approximate values of ionic concentration could be

estimated from the concentration of H+ and OH- ions, which could be calculated from

pH values, although the neglect of other kinds of ions may make the calculation not

accurate enough. The relationship between relaxation frequency ωα and particle size in

10.0 wt% and 5.0 wt% silica suspensions is shown in two figures (Figures 4.15 and

4.16), respectively. For both of the figures, the particle radii, a, are all obtained from the

particle sizes measured using the ZetaSizer, which have been shown in section 4.2.1,

Table 4.1. The linear fitting results are shown in Figures 4.15 and 4.16 by the red line. It

can be seen that the relaxation frequency ωα is proportional to the particle size as in

the relationship shown in Equation (4.31). The experimental results are coincident with

the results shown by other researchers (Schwan et al., 1962, Carrique et al., 1998,

Kijlstra et al., 1993, Sauer et al., 1990). For silica suspensions with low concentrations

(1.0 wt% and 0.5 wt%), the particle size effect on the relaxation frequency ωα is not

prominent (shown in Figures 4.13 and 4.14) and hence it will not be discussed further

using Equation (4.31).
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Figure 4.15: The relaxation frequency ωα is plotted against particle size and is

proportional to 1/(a+κ-1)2 for 10.0 wt% silica suspensions of different particle size

(18.712 nm, 190.135 nm, 270.470 nm, 220.290 nm, 467.9220 nm)
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Figure 4.16: The relaxation frequency ωα is plotted against particle size and is

proportional to 1/(a+κ-1)2 for 5.0 wt% silica suspensions of different particle size

(13.5412 nm, 91.2835 nm, 190.170 nm, 199.790 nm, 384.6220 nm)

The MWO dispersion occurs at higher frequency. There are two groups of peaks which

can be found in the MHz range. One is around 8 MHz and another one around 20 MHz.

It is believed that the groups of peaks around 8 MHz represent the Maxwell-Wagner

relaxation because it has been proved experimentally by some researchers that MWO

relaxation occurs at around several MHz (Zhao and He, 2006, Blum et al., 1995,

Ballario et al., 1976). The group of peaks around 20 MHz are probably caused by the

effect of parasitic inductance which can be seen from the small arcs with Z”>0 at the

high frequency range (around 20 MHz) in Figure 4.5 (a). The high frequency inductive

behaviour is usually caused by the physical inductance of the cables, wires, and

instrumentation (He et al., 2011). This phenomenon causes a deviation in EIS

measurement, and the EIS data obtained above 20 MHz will not be used in the

discussion. The Maxwell-Wagner-O’Konski relaxation occurs when the two contacting

phases, the particle and medium solution, have different conductivities and electric

permittivities. The expression for the relaxation frequency of the MWO dispersion is

shown in Equation (4.35) (Delgado et al., 2007) :

0

2 ( )

[(2 ) ( )]

m p m p

MWO

m p m p

k k k k


     

  


  
(4.35)
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where, kp is the conductivity of the particle, km is the conductivity of the medium, εp is

the permittivity of the particle, εm is the permittivity of the medium, and  is the particle

volume fraction.

Here, the particle conductivity kp should be modified to include the contribution of

surface conduction (O'Konski, 1960), kσ, and given to a expression for kp:

2
p pb

k
k k

a



  (4.36)

As the above relaxation frequency ωMWO is derived based on the assumption of a thin

double layer, Equations (4.35) and (4.36) are accurate for thin double layer

suspensions. For thick double layer suspensions, the surface conduction is not well

defined. In the experiments conducted in the study, the ionic concentration of silica

suspensions is low, which causes a thick double layer (comparable with the particle

size). Therefore, it is difficult to calculate the relaxation frequency of WMO dispersion

accurately, but quantitatively, ωMWO should be related to the particle concentration and

particle size. The experimental results for the relaxation frequency of MWO dispersion

are shown in Figure 4.17 – Figure 4.20. It can be seen that for the samples with highest

concentration, 10.0 wt%, ωMWO does not change with changing particle size. With

decreasing particle concentration, ωMWO becomes particle size dependent and moves

to a lower frequency range with increasing particle size.
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Figure 4.17: ωMWO for silica suspensions (10.0 wt %) with different particle size (18.712

nm, 190.135 nm, 270.470 nm, 220.290 nm, 467.9220 nm)
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Figure 4.18: ωMWO for silica suspensions (5.0 wt %) with different particle size (13.5412

nm, 91.2835 nm, 190.170 nm, 199.790 nm, 384.6220 nm)
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Figure 4.19: ωMWO for silica suspensions (1.0 wt %) with different particle size (7.5312

nm, 58.7735 nm, 164.270 nm, 180.990 nm, 378.0220 nm)
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Figure 4.20: ωMWO for silica suspensions (0.5 wt %) with different particle size (7.5312

nm, 68.0635 nm, 148.170 nm, 178.790 nm, 425.8220 nm)



131

4.5 Particle concentration effect

In this section, the particle concentration effects on electrical impedance spectra and

permittivity spectra are studied. The effects could be mainly represented by the

impedance real-part, the phase angle, and the relaxation frequency of the α dispersion. 

Figure 4.21 shows the impedance real part as a function of frequency in silica

suspensions with fixed particle size (220 nm) but different concentrations (10.0 wt%,

5.0 wt%, 1.0 wt%, 0.5 wt%). Here, the particle size of 220 nm is the size of original

sample and provided by the specification from the vendor. The silica suspensions (220

nm) with different concentrations were prepared, using the same original samples, by

dilution. The particle sizes measured using the ZetaSizer for suspensions with different

concentrations are not exactly same as shown in Table 4.1. In the discussion of particle

concentration effect, the difference in the particle size is neglected. Figure 4.21

indicates that the impedance real parts decrease with increasing particle concentration.

This result is contrary to the usual understanding which is indicated by the decrease of

conduction (or increase of impedance real part) after adding non-conducting particles

to the suspensions. However, the result does not only show the pure particle

concentration effect, because it might be affected by the ionic concentrations in the

background solutions. In order to analyse the effect from the ionic concentrations, the

silica suspensions were filtered using a syringe filter and the particles were removed

from the suspensions.
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Figure 4.21: Impedance real part vs. frequency for silica suspensions (220 nm) with

different particle concentrations (10.0 wt%, 5.0 wt%, 1.0 wt%, 0.5 wt%)
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Both the conductivities of silica suspensions and the background solutions without

particles inside were measured using a conductivity meter. Then the result was put into

the Maxwell-Wagner equation (MW) to inversely calculate the conductivity of

suspensions in order to compare the calculated results with the measured results. The

MW equation can be used to calculate the conductivity of a mixed phase and

expressed by (McLachlan and Sauti, 2007):

1 2 1 2
1

1 2 1 2

2 2 ( )

2 ( )
m

    
 

    

  


  
(4.37)

where, the subscripts 1, 2 and m denote the continuous phase, the disperse phase and

the mixed phase respectively;  is the volume fraction of the dispersed phase.

For the silica suspensions, the continuous phase is the background solution; the

dispersed phase is the SiO2 particles. The conductivity of particles (non-conductive

material) is assumed to be 0. The conductivity of the continuous phase, σ1, can be

measured by a conductivity meter. Therefore, σm can be calculated using the MW

equation. The calculated values of conductivity for a mixed phase (suspensions), σm-

calculate, are shown in the table 4.7, and compared with the values (σm-measure) measured

by a conductivity meter.

From Table 4.7, it can be seen that for the suspensions with different particle

concentrations, σm-measure are all smaller than those calculated using the MW equation.

The possible reasons arise from the parameters used in the calculation, σ2 and  .

Firstly, σ2 is assumed to be zero in this case, which is an extreme assumption. In the

real situation, σ2 should be larger than 0, although it is still very small. Secondly, the

particle volume fraction had to be calculated using an estimated particle density since

the particle density was not provided by the manufacturer and the measurement is

difficult. Therefore, a particle density of 2.0 g/cm3 from the literature (Rosen and Saville,

1991) is used in the calculation. This value might be an over-estimate or under-

estimate and thus cause the particle volume fraction to be higher or lower than the real

values.

Based on the above discussion, the analysis of particle concentration effect on the

impedance real part must take into consideration the conductivities of background

solutions. σ1 can be measured experimentally or calculated using the MW equation if

the separation of particles and background solution is difficult for the case of small

particles (<100 nm).
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Table 4.7: The calculation results of conductivities (at 25 ˚C) of the silica suspensions 

(220 nm) with different particle concentrations using the MW equation

Particle

concentration

Particle volume

fraction Φ 
σ1 (μs/cm) 

σm-measure

(μs/cm) 

σm-calculate

(μs/cm) 

10.0 wt% 4.76 % 20.70 13.01 19.26

5.0 wt% 2.38 % 13.22 10.65 12.75

1.0 wt% 0.476 % 7.457 7.061 7.40

0.5 wt% 0.238 % 5.375 4.30 5.356

The particle concentration not only influences the impedance real part but also affects

the relaxation frequency of the α dispersion. The literature review article reveals claims 

of proof by both simulations and experiments that the α relaxation frequencies increase 

with increasing particle concentrations (or particle volume fraction) (Delgado et al.,

1998, Carrique et al., 2003). For non-dilute suspensions, with increasing particle

concentration, the distance between two particles becomes smaller, and the electrical

double layers may partially overlap, especially in the case of low ionic concentration

(the case in our experiments). The increase of relaxation frequency ωα with increasing

particle concentration (or volume fraction) can be explained by the decrease in the

diffusion length due to the presence of neighbouring particles. The theoretical approach

for this phenomenon is based on a so-called cell model, in which a single particle

(spherical, with radius a), is immersed in a concentric shell of electrolyte solution with

external radius b, such that the particle volume fraction can be obtained from:

3( )
a

b
  (4.38)

The diffusion length, LD, is defined as the length scale over which ionic diffusion takes

place around the particle. For the two extreme cases, very dilute suspension and very

concentrated suspension, the LD is equal to a and b-a, respectively (b is half the

average distance between the centres of neighbouring particles).

From the discussion in section 4.3.3, the relaxation frequency ωα is proportional to

diffusion length, therefore, for a very dilute suspension with thin double layer:

2a

D
 (4.39)
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For a very concentrated suspension with thin double layer:

2)( ab

D


 (4.40)

For the common case, the diffusion length can be expressed by (Delgado et al., 2007):

1/ 2 1/ 2

2 2 1/3 2

1 1 1
( ) (1 )

( ) ( 1)
DL a

a b a 
 


   

 
(4.41)

Therefore, the relaxation frequency ωα for non-diluted suspension is:

, , 1/3 2

1
(1 )

( 1)
c a d 

 
 


(4.42)

where, ωα,d is the relaxation frequency for very dilute suspensions, and ωα,c denotes

the relaxation frequency for non-dilute suspensions.

The experimental result of the dependence of ωα,c on particle concentration for silica

suspensions with fixed particle size is shown in Figure 4.22. The line in the figure is just

for the connection between two points without any other meaning. It can be seen that

ωα increases with increasing particle weight concentrations in the five series of samples

with varying particle size, which follow the trend indicated by Equation (4.42). The

increment of ωα,c is much larger in the samples with the smallest particle size (12 nm),

which means the particle concentration effect on the relaxation frequency might be

stronger for the smaller particles.
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Figure 4.22: The dependence of ωα on particle concentration for silica suspensions

with different particle size (12 nm, 35 nm, 70 nm, 90 nm, 220 nm)

The effect of particle concentration on the impedance phase angle is analysed by the

relative changes in tan(θ) as discussed in section 4.3.2 and the result is shown in 

Figure 4.23. The line in the figure is just for the connection between two points without

any other meaning and the particle sizes shown in the figure are from the vender. For

all the samples, with increasing particle concentration, an increment in λ can be 

observed. As discussed in section 4.3.2, λ reflects the electrical polarisation density 

caused by the polarisation of the double layer. With increasing particle concentration,

the electrical polarisation density increases as shown in Equation (4.18). Therefore, the

values of λ increase with increasing particle concentrations.  
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Figure 4.23: The relationship between the relative changes in tan(θ) and the particle 

concentration for silica suspensions.

4.6 Ionic concentration effects

In this section, the ionic concentration effects on electrical impedance spectra and

permittivity spectra are analysed. The analysis is achieved by comparing the electrical

impedance spectra and permittivity spectra of the silica suspensions with and without

an electrolyte addition of 1.67 mM KCl. Figure 4.24 shows the electrical impedance

spectra in 12 nm, 5.0 wt% silica suspensions without adding extra electrolyte and with

1.67 mM KCl electrolyte. It can be seen that the impedance real part decreases

significantly with increasing ionic concentration, which can be understood very straight

forwardly, since the suspension becomes more conductive after adding electrolyte.

Figure 4.24 (c) shows that the relaxation frequency increases significantly with

increasing the ionic concentration, which will be discussed further in the later part of

this section on permittivity spectra. The phase angle results show a significant shift to a

higher frequency range for the silica suspension with 1.67 mM KCl, compared with the

silica suspension without added electrolyte.
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Figure 4.24: Impedance spectra for silica suspensions (12 nm, 5.0 wt %) without

adding extra electrolyte and with 1.67 mM KCl electrolyte; (a) Cole-Cole plot of

impedance; (b) impedance real part vs. frequency; (c) impedance imaginary part vs.

frequency; (d) phase angle vs. frequency plots
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Figure 4.25 shows the imaginary part of permittivity spectra of 12 nm, 5.0 wt% silica

suspensions without addition of extra electrolyte and with 1.67 mM KCl electrolyte. It

can be found that the relaxation frequencies, ωα of silica suspensions increase after

addition of electrolyte (KCl). This phenomenon could be explained by Equations (4.31)

and (4.33). From Equation (4.33), the electrical double layer thickness κ-1 is related to

the ionic concentration and decreases with increasing ionic concentration. By adding

the electrolyte in the suspension, the double layer thickness decreases significantly

and causes a high relaxation frequency of the α dispersion as shown in Equation (4.31).  
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Figure 4.25: The imaginary part of complex permittivity spectra for silica suspensions

(12 nm, 5.0 wt %) without adding extra electrolyte and with 1.67 mM KCl electrolyte

In addition, the ionic concentration effect is studied in a series of suspensions which

have the same particle concentration (5.0 wt% or 10.0 wt%) but different particle size.

The results are shown in Figure 4.26 and Figure 4.27. It can be seen that after adding

electrolyte (KCl) to the suspensions, the relaxation frequencies, ωα remain almost

constant for samples with different particle size, which means that the particle size

effect becomes insignificant. This result has not been reported by any other

researchers. To understand the possible reasons, the influence of ionic concentration

on the zeta potential might be considered. From the literature, it is known that in

colloidal systems increasing ionic concentration tends to reduce the absolute values of

zeta potential at a constant pH value (Hunter, 1981, Delgado et al., 1986, Saka and

Guler, 2006). The lower ІξІ means that relative to the bulk electrolyte concentration 

there are fewer ions in the double layer in high electrolyte concentration solutions.
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Therefore, the electrical dipole moment caused by the electrical double layer becomes

small. This relationship between the dipole strength C0 and zeta potential ξ has been 

proved by simulation (Mangelsdorf and White, 1997). For a symmetrical electrolyte, the

dipole strength can be expressed by Equations (4.43) and (4.44):

0

0
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(2 ) (1 )
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where, K∞ is the static bulk electrolyte conductivity, εr is the permittivity of the particle, λ 

is the non-dimensional double layer conductivity parameter, which can be given by:
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where, z is the charge of type i ion, Di is the drag coefficient of ion, η0 is the viscosity of

the medium, T is the temperature.

Since the dipole strength is weak, the polarisation of a electrical double layer becomes

weak, and hence, it might cause the particle size effect on the relaxation frequency to

become tiny. The results on ionic-concentration effect suggest that it is better to study

the particle size effect under high absolute values of zeta potential (ІξІ). However, in 

order to get a high ІξІ, acid or alkali must be added into the suspension, which causes 

the ionic concentration to be increased at the same time. As discussed above, with the

higher ionic concentration, the relaxation frequency moves to higher frequency range,

which brings difficulties to the measurement using the current hardware (the frequency

limit is 32 MHz for the Solartron 1260 impedance analyser). Besides, to adjust the pH

values in the suspensions with different particle size, it is difficult to keep the ionic

concentration constant at the same time in the experimental operation. Considering

these aspects, the suspensions with very low ionic concentration were studied in these

experiments.
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Figure 4.26: The imaginary part of complex permittivity spectra for silica suspensions

(5.0 wt%) with 1.67 mM KCl electrolyte and different particle size (12 nm, 35 nm, 70 nm,

90 nm, 220 nm)
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Figure 4.27: The imaginary part of complex permittivity spectra for silica suspensions

(10.0 wt%) with 1.67 mM KCl electrolyte and different particle size (12 nm, 70nm)
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4.7 Summary

In summary, this chapter presents the experimental results on the electrical impedance

spectra and permittivity spectra of the silica suspensions. The effects of particle size,

particle concentration and ionic concentration on the impedance, relaxation frequency,

and phase angles are analysed and discussed in detail. The α relaxation frequencies 

shown in the permittivity spectra are a function of particle size changing inversely with

the square of particle size and double layer thickness for the silica suspensions with

relatively high concentrations (10.0 wt% and 5.0 wt%). However, the size effect

becomes indistinct for the samples with low concentrations (1.0 wt% and 0.5 wt%).

Another important parameter which could reflect the particle size effect is the

impedance phase angle, θ. The relative changes in tan(θ) show a linear proportional 

relationship with the particle size. This linear proportional relationship works well for

experimental results in the silica suspensions with relatively high concentrations (10.0

wt% and 5.0 wt%), but not so well for the silica suspensions with relatively low

concentrations (1.0 wt% and 0.5 wt%) .

The particle concentration effect can be reflected by the impedance real part by

considering the conductivities of background solutions. Besides, with increasing

particle concentration, the α relaxation occurs at a higher frequency range, which can 

be explained by the decrease of the diffusion length in the presence of neighbouring

particles. The relative changes in tan(θ) reflect the electrical polarisation density 

caused by the polarisation of the double layers, and increase with increasing particle

concentrations.

Finally, the ionic concentration effect studied in KCl solution shows that a high ionic

concentration is unfavourable for detecting the particle size effect within the

suspensions with low absolute value of zeta potential. A good method to overcome the

problem is to get a high ІξІ by adjusting the pH value and measuring the electrical 

impedance spectra at a high frequency range (> 10 MHz) using a suitable impedance

analyzer.



Chapter 5

On-line Characterisation of Crystallisation Processes

with Electrical Impedance Spectroscopy
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Summary: The method of on-line characterisation of colloids with electrical

impedance spectroscopy for the crystallisation process is demonstrated in this

chapter. On-line measured electrical impedance spectra associated with L-

glutamic acid (LGA) nucleation-growth processes are presented and analysed.

The information content of the electrical impedance, phase angle and relaxation

frequencies of the crystal suspensions during the crystallisation process are

assessed. Polymorphism of LGA in crystallisation is studied by the on-line

impedance measurement and the off-line optical microscopic method.
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.1 Introduction

rystallisation processes are common unit operations in the pharmaceutical and

pecial fine-chemicals industries. On-line monitoring or even controlling of the crystal

ize and shape during crystallisation process is important because the size and shape

f crystals have significant effects on downstream operations such as filtration, drying,

ransport and storage. The on-line analytical techniques for crystal sizing have been

eviewed in Chapter 2. As a comparatively new technique, the electrical impedance

pectroscopy (EIS) method is proposed to on-line measure the particle size relying on

he presence of an electrical double layer associated with the charged particle surface.

ne of the advantages of the EIS method is that it can be applied in high concentration

uspensions since the electrical signal is stronger from high concentration suspensions

omparing optical methods. Another valuable advantage is that the EIS method has a

otential to be developed to an electrical impedance tomography spectroscopy (EITS)

echnique and hence to measure the particle size distribution in two or even three

patial dimensions with a high temporal resolution, so called dynamic imaging of

article size distribution.

owever, challenges in the study of the crystallisation process exist because

rystallisation is a dynamic process, in which several factors (including the
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concentration of the solid LGA phase, the concentration of solute, temperature and

crystal size) change simultaneously with time. The first challenge is that it is difficult to

extract the information of crystal size from the measured impedance data since it

always accompanies with the effects from other factors. Therefore, a series of

experiments was designed to study the effects of relevant factors on the impedance

spectra by changing one factor and fixing other factors constant. The experimental

details are described in section 5.2. The second challenge is that the solid LGA

concentration and solute concentration cannot be measured on-line due to the

limitation of the instruments in the study. Therefore, only the qualitative analysis was

targeted in the study. The third challenge is that the EIS measurement over a wide

range of frequencies (1Hz to 32MHz) takes about 2.5 minutes using the available EIS

facility. Within that time, the properties of crystal suspension change very quickly. Thus,

some errors are expected in the EIS measurement. In order to decrease the time

consumed by scanning the process with a wide range of frequencies, an impedance

measurement using a fixed frequency was chosen to study the changing of impedance

parameters (real part, imaginary part and phase angle) with time in the crystallisation

process. Unfortunately, the impedance measurement at a fixed frequency cannot

provide the information of the relaxation frequency. This difficulty might be solved by

the improvement of hardware in the future, which will be further discussed in Chapter 7.

This chapter reports the results of on-line electrical impedance spectroscopy

measurement during L-glutamic acid crystallisation processes. The aim is to study the

feasibility, applicability and challenges in the use of the proposed method on

characterising the crystal size and morphology, as well as to analyse the effects of

different factors, including temperature, solid concentration and ionic concentration, on

electrical impedance spectra.

5.2 Methodology

The basic strategy of the crystallisation experiments has been described in Chapter 3,

section 3.5. In this section, the details of crystallisation experiments are presented

according to different purposes.

Since the growth of crystal size during the crystallisation process is not the only factor

which may cause the change of electrical impedance spectra, it is necessary to study



145

the effects from other factors separately (including the temperature, solid LGA

concentration and solute concentration) by changing one factor and keeping other

factors constant. Firstly, in order to study the contribution of solid LGA phase to the

change in impedance parameters (real part, imaginary part, phase angle and relaxation

frequency), experiments with a series of known LGA solid concentrations were carried

out. A saturated LGA solution made with a concentration of 7.2 g/L at room temperature

(20 °C) was prepared. By adding different amounts of solid LGA, solutions with different

concentrations of solid LGA (0 g/L, 2.94 g/L, 5.88 g/L, 8.82 g/L, 11.76 g/L, 14.7 g/L)

were obtained and then the electrical impedance spectra of these solutions at a

constant temperature (20 °C) were measured. Secondly, in order to study the solute

concentration effect on impedance parameters, the under-saturated LGA solutions with

different concentrations (1.916 g/L, 3.833 g/L, 5.749 g/L, 7.664 g/L, 9.580 g/L) were

prepared and the electrical impedance spectra of these solutions at a constant

temperature (20°C) were studied. Thirdly, the effect of temperature was studied in two

different processes: crystallisation and non-crystallisation. The study on the non-

crystallisation process was carried out using an LGA solution with a concentration of

5.0 g/L. By cooling the LGA solution from 60 °C to 10 °C at the rate of 0.68 °C/min, the

effect of temperature on EIS was investigated in the absence of phase separation since

in that temperature range, the solution remains under-saturated and no crystallisation

occurs. The study of the crystallisation process was carried out using a saturated LGA

solution with a concentration of 21.9 g/L at 60 °C. Similarly, by cooling the LGA solution

from 60 °C to 10 °C at the same rate (0.68 °C/min), the effect of temperature on EIS

can be studied.

After finishing the study on the different factors, the crystallisation process was

monitored on-line using EIS and the changes of electrical impedance parameters with

the crystal size were studied. The experiment was carried out using 21.9 g/L LGA

solution (Sigma-Aldrich Chemicals). The crystallisation was firstly achieved by cooling

the LGA solution from 60 °C to 10 °C at a rate of 0.68 °C/min and the impedance

spectra at different temperatures were measured. Then the experiment was carried out

by cooling the LGA solution from 60 °C to 10 °C at a rate of 0.40 °C/min and the

changing of impedance parameters at a fixed frequency (1 MHz) were recorded. The

crystal morphologies at the early stage and late stage of crystallisation were observed

off-line by the optical microscope. The crystal sizes were measured on-line by using

focused beam reflectance measurement (FBRM). Temperature and turbidity profiles

were recorded on-line using temperature and turbidity sensors.
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The above crystallisation processes produce single α form of L-glutamic acid. In order 

to study the polymorphism of LGA and minimise the temperature effect, two

experiments were designed. In the first experiment, a crystallisation process, which can

produce a single α form with prismatic shape, was carried out by heating the LGA 

solution with a initial concentration of 21.9 g/L to 70 °C and then cooled down to 30 °C

by a rate of 0.97 °C/min. Then the temperature was kept at 30 °C and crystallisation

occurred after an induction time. In the second experiment, a crystallisation process,

which can form two crystal morphologies (α form and β form) and involve a 

polymorphic transformation process, was carried out by heating the LGA solution with

an initial concentration of 48 g/L to 80 °C and then cooled down to 60 °C by a rate of

0.91 °C/min. The temperature was kept at 60 °C during the whole process of

crystallisation. The stirring was kept constant with 400 rpm in these two experiments.

The morphologies of crystals were measured off-line using the optical microscope at

the different stage of crystallisation. The electrical impedance parameters (Z’, Z” and θ) 

were measured on-line at 1 MHz to study the effect of polymorphs. A flow chart given

by Figure 5.1 summarizes the experimental procedure.

Figure 5.1: Flow chart of the experimental procedure

To investigate factors possibly causing the changes of impedance spectra

Solid LGA
concentration

Solute
concentration

Temperature Crystal size

On-line EIS during the
crystallisation process: the changes

of impedance parameters with
crystal size (maybe combined with

other factors)

Polymorphism in crystallisation at a
constant temperature

Crystal
morphology
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5.3 Effect of Solid LGA Concentration

The electrical impedance spectra from different concentrations of solid LGA phase in a

saturated solution at 20 °C are shown in Figure 5.2. The complex impedance plot

reverses the order of the data with respect to frequency so that the low frequency data

are at the right of Figure 5.2 (a) and frequency increases towards the left of the plot.

Two features can be observed in the complex impedance plot: several small arcs at

about 1 Hz – 1000 Hz and larger arcs at higher frequency ranges. The reason for the

small arc is probably due to the electrode polarisation (Dudley et al., 2003) effect at the

electrode/solution interface. Although the electrode polarisation effect can be

decreased significantly by using a four-electrode sensor, it might not be fully eliminated

(Stoneman et al., 2007). The big arc is the characteristic of dielectric dispersion in the

crystal suspension, which reflects the polarisation of charged crystals under the applied

electric field. If the small arc is neglected and the big arc is assumed a regular

semicircle, then a parallel RC equivalent circuit can be used as a static model to

simulate the EIS results. The analysis is qualitative since the assumption of a

semicircle is idealised.

The impedance of parallel RC circuit can be expressed by Equation (4.4), which has

been given in the Chapter 4, section 4.3.1:
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where, R is the resistance, C is the capacitance, and ω is the frequency.

The impedance imaginary part is a function of frequency:
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As analysed in Chapter 4, section 4.3.1, the impedance imaginary part reaches a

minimum value at the relaxation frequency, which can be expressed by Equation (4.9):

RC
relaxation

1
 (4.9)

The relaxation frequency can be obtained from the peak position in Figure 5.2 (c).

From Figure 5.2 (b), it can be seen that in the high frequency range (300 kHz-20 MHz),



148

the impedance real parts do not show significant change with increasing the

concentration of the solid LGA phase. However, in the low frequency range (1 Hz-100

kHz), the impedance real parts decrease a small amount (less than 20 ohm) with

addition of the solid LGA phase. The small change is probably caused by a slight

modification of the ionic concentration in the suspensions since the increase of solid

LGA concentration might affect the dissociation of L-glutamic acid in aqueous solution.

From Figure 5.2 (c), it can be seen that the relaxation frequencies do not change with

increasing the concentration of solid LGA phase. Similarly, the impedance imaginary

parts showed no significant change with increasing amounts of the solid LGA phase.

Figure 5.2 (d) shows that with increasing concentration of the solid LGA phase, the

impedance phase angle maintains almost a constant value. Therefore, it can be

concluded that there is no significant effect of solid LGA phase on ωrelaxation, values of Z”

and phase angle (θ) over the frequency range investigated.

Since the impedance imaginary part and phase angle show peaks at a high frequency

range (>100 kHz), the impedance parameters (Z’, Z” and θ) are further analysed at the 

fixed frequency (1 MHz) to understand the effect from solid phase concentration. Table

5.1 shows the data of the impedance real part, imaginary part, and phase angle at 1

MHz from crystal suspensions with different solid phase concentrations. The results

demonstrate that at 1 MHz, the impedance parameters have no significant change with

increasing solid phase concentration.
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Figure 5.2: (a) complex impedance plot; (b) impedance real part vs. frequency; (c)

impedance imaginary part vs. frequency; (d) impedance phase angle vs. frequency

plots in the saturated LGA solutions with different concentration of solid LGA phase

Table 5.1: the impedance data at 1 MHz in crystal suspensions with different solid

phase concentration

Crystal

concentration

(g/L)

Impedance real

part (ohm)

Impedance

imaginary part

(ohm)

Phase angle

(degree)

0 95.014 -165.603 -60.155

2.94 96.743 -159.446 -61.453

5.88 97.903 -169.719 -60.021

8.82 96.074 -166.446 -60.006

11.76 96.999 -165.209 -59.582

14.70 97.423 -166.180 -59.619
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5.4 Effect of Solute Concentration

The effect of solute concentration is studied with an under-saturated LGA solution at

20 °C. The electrical impedance spectra for different solute concentrations in under-

saturated solutions at 20 °C are shown in Figure 5.3. The Cole-Cole plot (Figure 5.3 (a))

is similar to the one in Figure 5.2 (a). From Figure 5.3 (b), it can be seen that at the

frequency range from 1Hz-100 kHz, the impedance real parts decrease with increasing

LGA solute concentration. Since all of the tested solutions are under-saturated, no

crystal particles are present and the effect is due to the change in ionic concentration.

Higher ionic concentrations in the solution cause higher conductivity or lower

impedance real part. Figure 5.3 (c) shows the solute concentration effect on impedance

imaginary part. It can be seen that the relaxation frequencies decrease a small amount

with decreasing ionic concentrations. The relaxation might be explained by the kinetic

polarisation model, in which a hydration shell of water molecules forms around a solute

ion, and the water molecules tend to reorient in order to face the opposite charge of ion

in the centre (Wei et al., 1992). In addition, at the low frequency range (<100 kHz), the

values of the impedance imaginary part, Z”, manifest no significant changes with

decreasing solute concentration. However, at the higher frequency range (>100 kHz),

the absolute values of Z” increase with decreasing ionic concentration. Figure 5.3 (d)

shows that with increasing solute concentration, the absolute values of phase angle do

not change significantly.

In a way similar to the case presented in section 5.3, the impedance parameters (Z’, Z”,

and θ) are further analysed at a fixed frequency (1 MHz). Table 5.2 shows the data of 

the impedance real part, imaginary part, and phase angle at 1MHz in solutions with

different solute concentrations. The results show that the impedance imaginary part

and phase angle decrease with decreasing solute concentration. However, with

decreasing solute concentration, the impedance real part increases firstly and then

decreases showing a maximum value at a solute concentration of 4 g/L.
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Table 5.2 the impedance data at 1 MHz in unsaturated LGA solutions with different

solute concentration

LGA Solute

concentration

(g/L)

Impedance real

part (ohm)

Impedance

imaginary part

(ohm)

Phase angle

(degree)

2.67 97.324 -201.846 -64.258

3.33 74.949 -165.039 -65.576

4.00 102.796 -185.841 -61.051

4.67 84.135 -160.458 -62.330

5.33 88.854 -160.013 -60.957

6.00 91.428 -156.287 -59.672

5.5 Effect of Temperature

The temperature effect on the relaxation frequency was studied in aqueous LGA

solutions under the conditions of crystallisation and non-crystallisation. The results are

shown in Figure 5.4. In the temperature interval from 50.0 °C to 25.6 °C, the relaxation

frequency decreases a large amount when the nucleation and growth are occurring in

the solution compared with the case where there is no nucleation and growth. It has

been demonstrated that the change of the relaxation frequency is essentially

independent to the solid phase concentration; therefore the decrease of ωrelaxation may

be mainly attributable to the change of crystal sizes and partially attributable to the

change of ionic concentration that occurs in the LGA crystallisation process.

The temperature effect on the impedance real part and imaginary part was studied and

the results are presented in Figure 5.5 (the change of Z’ and Z” during LGA (21.9 g/litre)

crystallisation process) and Figure 5.6 (the change of Z’ and Z” without crystallisation

(5.0 g/litre LGA solution)). Comparing these two figures, it can be seen that the

impedance imaginary part decreases with temperature with an approximately linear

relationship in the non-crystallising LGA solution. However, in the crystallising LGA

solution, the impedance imaginary part does not show a linear relationship with

temperature. The impedance imaginary part decreases more rapidly at temperatures

below the start-point of the nucleation. The change of slope in Z” is probably due to two

effects, the decreasing solute concentration and the increasing crystal size because the

solid concentration effect on Z” is very small and the temperature gradients are almost
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the same in the two cases. In both Figures 5.5 and 5.6, the impedance real parts (Z’)

increase with decreasing temperature, but the variation of Z’ is much smaller than the

variation of Z”.

1 10 100 1k 10k 100k 1M 10M 100M

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Z
"

Im
p

e
d

a
n
c
e

im
a
g

in
a
ry

p
a

rt
(o

h
m

)

Frequency (Hz)

49.5 degree C
40.5 degree C
32.7 degree C
25.6 degree C

(a) during crystallisation process

1 10 100 1k 10k 100k 1M 10M

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

Im
p

e
d

a
n

c
e

im
a

g
in

a
ry

p
a

rt
(H

z)

Frequency (Hz)

50.0 degree C)
40.5 degree C)
32.7 degree C)
25.6 degree C)

(b) without crystallisation process

Figure 5.4: impedance imaginary part vs. frequency plot of LGA solution (a) during the

crystallisation process; (b) without the crystallisation process at 50.0 °C, 40.5 °C,

32.7 °C, and 25.6 °C



156

40

50

60

70

80

90

Z
'(

o
h
m

)

Z'
Z"
Turbidity

Z
"

(o
h
m

)

Cooling process

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

T
ra

n
sm

itta
n
ce

(V
o

lt)

5 10 15 20 25 30 35 40 45 50 55 60

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

Temperature (degree C)

Figure 5.5: Change of impedance (Z’ and Z”) at frequency 1259 kHz and turbidity with

temperature during LGA crystallisation

10 15 20 25 30 35 40 45 50 55

170

180

190

200

210

Z
'(

o
h

m
)

Z'
Z"
turbidity

Temperature (degree C)

Z
"

(o
h

m
)

Cooling process

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

T
ra

n
sm

itta
n

ce
(V

)

-220

-200

-180

-160

-140

-120

-100

Figure 5.6: Change of impedance (Z’ and Z”) at frequency 631 KHz and turbidity with

temperature without the crystallisation process



157

5.6 On-line EIS during Crystallisation Processes

5.6.1 Electrical Impedance Spectra

Figure 5.7 shows the temperature and turbidity profiles associated with the LGA

crystallisation during a cooling process. It can be determined from Figure 5.7 that the

nucleation started at about 30 °C and the crystallisation was almost completed at 10 °C.

The cooling rate from 50 °C to 10 °C can be calculated using the temperature profile by

linear fitting of the temperature values from a time of 1500 seconds to 5000 seconds.

The fitting result is shown in Figure 5.8, and the calculated cooling rate is 0.68 °C/min.

The crystal morphology was observed during the crystallisation process using the off-

line optical microscope measurements. From the microscopic pictures (Figures 5.9 and

5.10), it can be seen that only the α-form exists during the whole crystallisation process. 

At the late stage of crystallisation, aggregation occurs, it can be observed that several

prismatic shape crystals bind together and form a large particle with an irregular shape.

0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

Temperature
Transmittance

Time (seconds)

T
e

m
p
e

ra
tu

re
(d

e
g
re

e
C

)

0

20

40

60

80

100

T
u

rb
id

ity
(%

)

Figure 5.7: Temperature and turbidity profiles



158

0 1000 2000 3000 4000 5000 6000

0

10

20

30

40

50

60

70

Temperature
Linear Fit of B

Time (seconds)

T
e

m
p
e

ra
tu

re
(d

e
g
re

e
C

)

Equation y = a +

Adj. R-Sq 0.9962

Value Standard

B Interce 66.25 0.12541

B Slope -0.01 3.70224E-

Figure 5.8: Linear fitting result for temperature profile

Figure 5.9: Crystal morphology at the early stage of crystallisation
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Figure 5.10: Crystal morphology at the late stage of crystallisation (around 10 °C)

The electrical impedance spectra of an LGA solution (21.9 g/L) during the cooling

process were recorded on-line. Figure 5.11 shows the electrical impedance spectra of

the LGA solutions at 50.7 °C, 40.0 °C, 29.5 °C and 19.5 °C, respectively. The

temperatures recorded are the temperatures at the start-point of the EIS scan. The

measurement of electrical impedance spectra from 1 Hz to 20 MHz takes around 2.5

minutes, and the temperature of the LGA solutions change during the elapsed time.

However, since it is difficult to obtain the average temperature during a spectrum

measurement, the temperature at the start-point is used to indicate the solution

temperature associated with a particular spectrum.

Figure 5.11 (a) shows a typical complex impedance plot which is similar to Figure 5.2

(a). It is apparent that with decreasing temperature the impedance real part (Z’)

increases and the impedance imaginary part (Z”) decreases. In the temperature

interval from 29.5 °C to 19.5 °C (the range over which crystallisation occurred), the

changes in Z’ and Z” become more significant. In Figure 5.11 (b), it can be seen that

the increase in the real part of impedance with decreasing temperature becomes larger

when nucleation and growth are occurring in the temperature interval from 29.5 °C to

19.5 °C. In this temperature range, the nucleation and growth of crystals occurs very

quickly, therefore, the increasing solid phase concentration and decreasing ionic

concentration occur spontaneously. As discussed in sections 5.3 and 5.4, impedance

real parts are related to the solid phase concentration and solute LGA concentration. In

addition, it has been demonstrated in section 4.3.1 that the impedance real parts

increase with increasing particle size at a plateau range of frequencies (f <100 kHz).
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Thus, the significant increase of impedance real parts during the crystallisation process

(29.5 °C -19.5 °C) might be caused by three factors, including the solid phase

concentration, solute LGA concentration and the crystal size.

From Figure 5.11 (c), it can be seen that the relaxation frequency (ωrelaxation) decreases

with decreasing temperature. However, in the temperature interval from 29.5°C to

19.5°C (the range over which crystallisation occurred); the decrease in relaxation

frequency becomes much more significant than the one in the temperature intervals

from 50.7°C to 40.0°C and from 40.0°C to 29.5°C, respectively. Since the effect of solid

phase concentration is very small and therefore can be ignored, the significant

decrease of relaxation frequency during crystallisation might be caused by the

combination of effects from crystal size and ionic concentration. From the results

shown in section 5.4, the changes of ionic concentration show a relatively large effect

on the values of the impedance imaginary part but a small effect on the relaxation

frequencies. The dependence of ωrelaxation on the crystal size is similar to the case in

silica suspensions, which can be explained in terms of the polarisation of the counter

ions in the diffuse double layer (DDL) associated with the crystalline particles.

As illustrated in Figure 5.11 (d), the absolute values of phase angle increases with

decreasing temperature. The phase angle is related to the electrical polarisation of the

double layer around the crystals. As discussed in Chapter 4, section 4.4.2, the relative

change of phase angle is a function of particle size. However, in a crystallisation

process, the temperature, solid phase concentration, and solute concentration all

change with time, therefore, the quantitative analysis using the theoretical model

shown in section 4.4.2 is unrealistic. Based on the analysis in sections 5.3 and 5.4, the

change of phase angle is mainly caused by the changes of temperature and crystal

size.

In order to establish the variation in relaxation frequencies during nucleation and

growth, the relaxation frequencies were measured and recorded throughout the

temperature interval from 17.5 to 52.0°C. Figure 5.12 shows how the relaxation

frequencies change with temperature and the corresponding changes in turbidity. It can

be seen that the relaxation frequency does not change significantly at the higher

temperatures (41°C - 52°C) i.e. above the onset temperature for crystallisation.

However, it can be noticed that the decrease in the relaxation frequency becomes more

rapid below 41°C. As shown in Figure 5.8, the temperature gradient is almost constant

between temperature ranges of 50-10 °C. Thus, the rapid change in ωrelaxation from
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41 °C is linked to crystal nucleation and growth in solution. Because the turbidity

sensor shows the starting-point of crystallisation is about 30 °C, it is proposed that the

EIS measurement may have higher sensitivity for the detection of the starting-point of

nucleation than a turbidimetric approach. It is possible, since there is a time lag in

detection of the start of nucleation due to the sensitivity of the optical turbidity probe

while the crystals grow to a detectable size (De Anda et al., 2005). Since the solid

phase concentration makes no significant contribution to the decrease in ωrelaxation and

the temperature gradient is constant, the change in ωrelaxation may reflect an increase in

crystal size if the small effect from ionic concentration could be excluded. In Figure 5.12,

the relaxation frequency does not change significantly at the higher temperatures (41–

52 °C), but decreases rapidly below 41 °C. An almost constant rate of decrease in the

relaxation frequency of about - 41.7 kHz/°C was observed in the temperature range

from 41 °C to 17 °C, which is evidence of the relaxation frequency being related to the

crystal size.
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Figure 5.11: (a) complex impedance plot; (b) impedance real part vs. frequency; (c)

impedance imaginary part vs. frequency; (d) impedance phase angle vs. frequency

plots of LGA solution during crystallisation process at 50.7 °C, 40.0 °C, 29.5 °C, and

19.5 °C
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5.6.2 Electrical Impedance Parameters Changing with Time

In order to decrease the time consumed by measuring the electrical impedance spectra

with a wide range of frequencies, an impedance measurement using a fixed frequency

was used to study the changes of impedance parameters (real part, imaginary part and

phase angle) with time in the crystallisation process. In this section, the electrical

impedance parameters measured at 1MHz during a crystallisation process are

analysed.

The temperature and turbidity profiles in the crystallisation process are shown in Figure

5.13. The cooling rate can be calculated by linear fitting of the temperature profile from

0-7500 seconds. The fitting result is shown in Figure 5.14, and the calculated cooling

rate is 0.40 °C/min. From the turbidity profile, it can be seen that the starting-point of

crystallisation is at about 33 °C. The crystal morphology was observed from the

microscopic pictures (Figures 5.15 and 5.16). It can be seen that only the α form exists 

during the whole crystallisation process. At the late stage of crystallisation, aggregation

occurs similar with the case shown in section 5.6.1.
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Figure 5.13: Temperature and turbidity profiles during crystallisation with a medium

cooling rate
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Figure 5.15: crystal morphology at the early stage of crystallisation with a cooling rate

of 0.40 °C/min
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Figure 5.16: crystal morphology at the late stage of crystallisation with a cooling rate of

0.40 °C/min

Figure 5.17 shows the profiles of turbidity and FBRM chord length distributions during

the crystallisation with a cooling rate of 0.40 °C/min. It can be seen that both turbidity

and FBRM measurements give the same starting-point of crystallisation. At the early

stage of crystallisation, the particle counts increases with time. At the late stage of

crystallisation, the particle counts of 1-5 μm,10-23 μm and 100-251 μm remain almost 

constant, but the particle counts of 29-86 μm kept increasing. The chord length 

distributions at different stages of crystallisation (at 3800, 4500, 5500, 3000, 7435

seconds) are measured by FBRM and the results are shown in Figure 5.18. It can be

seen from Figure 5.18 that from 3800 to 5500 seconds, the primary crystal size

increases significantly. After 5500 seconds, the crystal size distribution shows no

significant change although the number percentage still increases.

Figure 5.19 shows the change of impedance real part (Z’), imaginary part (Z”) and

phase angle (θ) at the frequency of 1MHz during the crystallisation with a cooling rate 

of 0.40 °C/min. From Figure 5.19, it can be found that the tendencies of Z” and θ are 

very similar, i.e. decrease slowly with decreasing temperature before nucleation, but

the rate of decrease becomes faster after crystallisation starts. The impedance real part

(Z’) increases with decreasing temperature before nucleation, but the rate of increase

becomes faster at the middle stage of the crystallisation (4500-5500 seconds). Z’

reaches its greatest value at around 5500 seconds and decreases at the late stage of

crystallisaton (5500-7435 seconds).

Here, the crystallisation is analysed in three stages: (1) the early stage (3800-4500
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seconds); (2) the middle stage (4500-5500 seconds); (3) the late stage (5500-7435

seconds). The changing rates of Z’, Z” and θ at the different stages are calculated 

using the linear fitting method and the results are shown in Table 5.3. EIS results in

Figure 5.19 can be understood in conjunction with the chord length distribution

analyses in Figure 5.18 and may be interpreted as follows:

 In stage (1), both particle sizes and particle counts increase with time. The

nucleation and growth occurs in the early stage of crystallisation, similar to the

phenomenon described in the literature (Mougin et al., 2003). EIS results in Table

5.3 show that the absolute values of the changing rates in Z’, Z” and θ increase 

after nucleation occurs. The change in the rate of decrease of Z” and θ could be 

due to the decrease of solute concentration and increase of particle size, since the

increase of solid concentration has almost no effect on impedance parameters (Z’,

Z” and θ) and the temperature gradient is constant.  

 In stage (2), both particle sizes and particle counts increase continuously with time.

The chord length distribution at 4500 and 5500 seconds show that the number of

counts at channel of 29-86 μm is comparatively more than the other channels, 

which means growth of crystals is dominant at this stage accompanied by low

nucleation. EIS results in Table 5.3 show that the absolute values of the changing

rates in Z” and θ are significantly greater (roughly increase 2 times) compared with 

stage (1). This observation can probably be interpreted as due to the fast rate of

decrease of solute concentration and increasing of particle size at this stage. In

this stage, the rate of change in Z’ becomes smaller compared with stage (1) and

Z’ reaches a maximum value at the end of this stage. It is believed that the main

reason for this result is the decrease of solute concentration since the temperature

gradient remains constant during this stage.

 In stage (3), only the number counts at channel of 29-86 μm continuously 

increased with time, which means that the crystal might grow continuously by

consuming the small crystals (< 29 μm). The EIS results show that Z” and θ 

continuously decrease with time but the absolute values of changing rate in Z” and

θ become smaller than those in stage (2). The impedance real part starts to 

decrease at this stage, which might be explained by the decrease of solute

concentration. From the discussion in sections 5.3 and 5.4, the change of solid

concentration shows no significant effect on impedance real part at high frequency

(1 MHz). However, with decreasing solute concentration, the impedance real part
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increases first and then decreases. In addition, from the discussion in Chapter 4,

the particle size effect on impedance real part is insignificant at high frequency

(such as 1 MHz). Therefore, the changing of Z’ in the crystallisation process is

mainly related to the decrease of solute concentration.
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(θ) at frequency 1 MHz with time during LGA crystallisation with a cooling rate of 

0.40 °C/min

Table 5.3: The changing rates of impedance parameters at the different stages in

crystallisation process

Changing rates of

impedance parameters

dZ’/dt

(ohm/second)

dZ”/dt

(ohm/second)

dθ/dt

(degree/second)

Before nucleation

(0-3800 seconds)
0.01827 -0.03113 -0.0051

Stage (1)

(3800-4500 seconds)
0.02693 -0.07177 -0.0102

Stage (2)

(4500-5500 seconds)
0.01707 -0.14185 -0.02043

Stage (3)

(5500-7435 seconds)
-0.01079 -0.06279 -0.00925
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5.7 Polymorphism in Crystallisation Processes

Polymorphism occurs in crystallisation processes when a molecule is able to pack in

different ways and give rise to two or more crystal structures. Since the crystal

morphology often represents a critically important property not only to the end-use

functional properties, but also to downstream processing and handling of the product,

there has been a growing interest in monitoring and controlling the crystal polymorphs

during crystallisation processes, particularly in the pharmaceutical and fine chemical

industries. The use of electrical impedance spectroscopy for studying crystal

polymorphs on-line is novel. In this section, the crystallisation processes existing a

single α form of L-glutamic acid and polymorphic transformation between the α form 

and β form are studied and compared using on-line EIS measurement. In order to 

eliminate the temperature effect, it was designed to carry out the crystallisation process

at a constant temperature. In the experiments, the LGA solution was cooled down to a

certain temperature (for example 30 °C) and holding constant temperature through the

process. During the cooling phase, no nucleation could occur; hence the crystallisation

process that follows after an induction time can be considered to be isothermal. The

relationship between the polymorphic transformation and the impedance parameters

(Z’, Z” and θ) is discussed.  

5.7.1 Crystallisation with a Single α Form 

Figure 5.20 shows the temperature and turbidity profiles during crystallisation at a

constant temperature of 30 °C. The cooling rate from 65 °C to 30 °C is 0.97 °C/min.

From the changing of turbidity profile, it can be seen that crystallisation started at 30 ˚C 

after an induction time (about 6 minutes). The crystal morphology at the early stage

and late stage was observed from the microscopic pictures shown in Figures 5.21 and

5.22. It can be seen that only α form exists during the whole crystallisation process.  

The changes of impedance real part (Z’), imaginary part (Z”) and phase angle (θ) at a 

frequency of 1MHz during the crystallisation at 30 °C are shown in figure 5.23. It can be

seen that during the cooling stage (0-2000 seconds), crystallisation does not occur and

thus, the changes in impedance real part, imaginary part and phase angle are only

caused by the temperature changing. After 2500 seconds, the nucleation starts at a

constant temperature (30 °C). During this stage (2500-6600 seconds), the changes of

impedance parameters are temperature independent. Similar to the analysis in section



171

5.6.2, the changes of Z’, Z” and θ with time can be separated into three stages. At the 

early stage (2600-3000 seconds), the rates of change are relatively small shown by the

flat curves. During the medium stage (3000-5000 seconds), the rates of change

become larger than those at the early stage. At the late stage (5000-6600 seconds),

the rate of change decrease again. The relationship between the changes of

impedance parameters and the crystal size with other factors has been discussed in

section 5.6.2. In this section, the focus is on the crystal morphology; therefore, the

results obtained in the crystallisation process with a single form (α) will be compared 

with the results obtained in a polymorphic transformation process in the next section.
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Figure 5.20: Temperature and turbidity profiles for crystallisation at a constant

temperature of 30 °C



172

Figure 5.21: crystal morphology at the early stage of crystallisation at a constant

temperature of 30 °C

Figure 5.22: crystal morphology at the late stage of crystallisation at a constant

temperature of 30 °C
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(θ) at frequency 1 MHz with time during LGA crystallisation at a constant temperature 

of 30 °C

5.7.2 Polymorphic Transformation

Figure 5.24 shows the temperature and turbidity profiles for the crystallisation at a

constant temperature of 60 °C. The cooling rate from 80 °C to 60 °C is 0.91 °C/min.

From the turbidity profile, it can be seen that the crystallisation started at 60 ˚C after a 

very short induction time. The crystal shape was observed off-line by the optical

microscope and the microscopic pictures at different stages of crystallisation are shown

in Figure 5.25. From Figure 5.25, the polymorphic transformation process between the

α form and β form can be observed directly. It can be seen that at the beginning of 

crystallisation (1600 seconds), both the α form and β form exist but the α form is 

dominant. With increasing time, the amount of β form increases. After 4000 seconds, 

the α form decreases significantly, and the β form becomes dominant. Then the 

crystals of β form continuously grow with the dissolution of α form. Finally, at the time of 

7000 seconds, the crystals of α form can no longer be observed. 

The changes of the impedance real part (Z’), imaginary part (Z”) and phase angle (θ) at 

1MHz during the crystallisation at 60 °C are shown in figure 5.26. It can be seen that

during the period from 1600 seconds to 4000 seconds, the impedance real part shows

an approximate plateau. Similarly, the impedance imaginary part and phase angle

show an approximate plateau at the early stage of crystallisation (1600-3300 seconds).
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In order to compare the crystallisation process involving a polymorphic transformation

and the one only exhibiting a single α form, the changes of impedance parameters are 

compared in the two different cases, respectively. The results are shown in Figure 5.27-

5.29. In these figures, the starting-point of the nucleation is set to be 0 in the time scale

for the two different cases. Since the temperature of crystallisation is different in the two

cases, it has no meaning to compare the absolute values of the impedance parameters

due to the effect of the temperature. The reason that different temperatures were used

in the two cases is mainly due to the difficulties in obtaining the single α form and 

polymorphic transformation process at the same temperature in our experiments.

Therefore, the effect of crystal polymorphs is studied by comparing the changing rates

of impedance parameters in the two cases.

From Figure 5.27, it can be seen that the rate of change in the impedance real part is

much smaller during the polymorphic transformation process than the crystallisation

process with a single α form. After the β form becomes dominant in the solution (at the 

2400 seconds in Figure 5.27), the increasing rate of impedance real part becomes

larger with the growth of β form crystals. Similarly, from Figures 5.28 and 5.29, it can be 

seen that the rates of change in the impedance imaginary part and phase angle are

much smaller during the polymorphic transformation process than those with a single α 

form. The decreasing rates of Z” and θ become larger after the β form becomes 

dominant in the solution. Therefore, it might be supposed that the small rate of change

of impedance parameters is a feature of polymorphic transformation. This phenomenon

might be related to the solute concentration which remain almost constant during a

polymorphic transformation process (Scholl et al., 2006). Although the transformation of

α form to β form can be monitored on-line by the changing of electrical impedance 

parameters, it is still difficult to determine the crystal morphology at a certain time from

the current EIS results. A potential solution by a model-based separation is proposed in

the future work.
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(c) at 3300 seconds (d) at 4000 seconds

(e) at 4500 seconds (f) at 5400 seconds

(f) at 6300 seconds (g) at 7000 seconds

Figure 5.25: crystal morphology at different stage of polymorphic transformation
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Figure 5.26: Change of impedance real part (Z’), imaginary part (Z”) and phase angle

(θ) at frequency 1 MHz with time during LGA crystallisation at 60 °C 
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5.8 Summary

In summary, the on-line electrical impedance spectra during L-glutamic acid

crystallisation processes are studied in this chapter. The effects of solid concentration,

solute concentration, and temperature were studied first. The solid concentration has

no significant effect on all of the impedance parameters (Z’, Z”, θ and ωrelaxation) at high

frequency (1 MHz). However, the solute concentration has a significant effect on Z’ Z”

and θ at 1 MHz. The relaxation frequency is influenced by three factors at the same 

time during the crystallisation process, including solute concentration, temperature and

crystal size. If crystallisation can be carried out under a constant temperature or a

constant temperature gradient, the effect of temperature can be neglected. The effects

from the solute concentration and crystal size are two factors changing simultaneously

which are very difficult to separate using EIS experiments. The study of EIS during the

crystallisation processes shows that the relaxation frequency decreases significantly

after the start-point of crystallisation due to the combination of effects from crystal size

and ionic concentration. In addition, the changing of relaxation frequencies with

temperature and the corresponding changes in turbidity are studied. A dramatic shift in

relaxation frequency can be observed when the temperature is lower than 41 °C, which

is higher than the start-point of nucleation shown by the turbidity measurement.

Therefore, it is proposed that the relaxation frequency extends the observable range of

starting-point of nucleation beyond that accessible by turbidity measurement.

The results in the study of polymorphism during the crystallisation process show that

the polymorphic transformation can be monitored on-line using the changing rates of

impedance parameters. Slow rates of change in the impedance parameters (Z’, Z” and

θ) can be observed during the transformation of α form to β form. This phenomenon is 

supposed to be a feature of polymorphic transformation process because in the

crystallisation with single α form, the rates of change in impedance parameters are 

much larger than those in the polymorphic transformation process. However, due to the

specific crystallisation conditions and dynamic changes in the LGA crystallisation

process, it is not possible to determine the crystal morphology at a certain time from

the impedance parameters.



Chapter 6

Electrical Impedance Tomography Spectroscopy
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Summary: Electrical impedance tomography based on EIS measurement

conducted using different materials, including non-conductive plastic bar, banana,

and silica suspensions are reported in this chapter. The responses of electric

polarisation of colloidal particles on tomographic images and the observation of

particle size effect from tomographic images are studied and discussed.
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.1 Introduction

he electrical impedance tomography (EIT) technique shares the same basic

easurement principle with the electrical impedance spectroscopy. Both of them use

he four electrodes system to provide an exciting current to two electrodes and

easure the voltage difference between the other two electrodes. Electrical impedance

pectroscopy cannot provide an “image” of the sample but can give impedance

arameters over a wide range of frequencies. Electrical impedance tomography utilizes

set of electrodes (could be 8, 16, 32, or 64) to measure the impedance of samples

rom different electrodes pairs and then obtain the images by data acquisition and

econstruction process. The current form of EIT technique may provide images at

everal fixed frequencies (Brown, 2003); however, electrical impedance tomography

ased on EIS measurement or namely, electrical impedance tomography spectroscopy

EITS) can produce imaging over a wide range of frequencies, using this principle

Yerworth et al., 2003).

n this chapter, the experimental results on tomographic imaging based on EIS

easurement using a sensor of 8 electrodes are reported. The measurement strategy,

ffect of common mode voltage, EIT results on different materials, including non-

onductive polymer bar, banana and silica suspensions are discussed and analysed.
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6.2 Methodology

The methodology of electrical impedance tomography based on spectroscopy

measurement has been described in Chapter 3, section 3.6. EIS measurement can

directly give the data of the impedance real part, imaginary part, phase angle and

magnitude of the impedance across the measurement electrodes. EIS measurements

corresponding to frequency spectra from DC to 20 MHz were acquired from a sensor of

eight electrodes fitted with a vessel (refer to previous chapter) using the Solartron 1260

impedance analyzer. The data (for example, impedance real part) at a specific

sampling frequency can be sorted out from spectra responding data and arranged in

tabular form as shown in Table 6.1. Then, images were reconstructed based on these

data using the back projection algorithm embedded in P2000 software (ITS, System

2000 version 7.0 user’s manual).

Table 6.1: The data of impedance real part for tap water at a sampled frequency (80

kHz)

Voltage measurement pairs

C
u

rr
e
n

t
in

je
c
ti

o
n

p
a
ir

s

Impedance

real part

(ohm)

02-03 03-04 04-05 05-06 06-07 07-08

08-01 80.9492 44.8483 39.8293 44.7582 79.6553

01-02 80.1088 44.7399 39.8187 44.5037 79.5785

02-03 80.4046 44.8568 39.5477 44.5118

03-04 79.2120 44.0059 39.2464

04-05 78.3294 43.9771

05-06 78.5740

The sensitivity theorem has been widely used for image reconstruction in conventional

electrical impedance tomography, particularly the single-step method based on the

sensitivity coefficient back projection (SBP) method (Wang, 2002). The SBP method

uses a normalized transpose matrix of the sensitivity matrix as a weighting matrix and

the SBP algorithm can be expressed by (Wang, 2002):

0 0

[ ] [ ] [ ]i iV
s

V




 

 (6.1)

where, i is the pixel number, σ0 and i are the reference conductivity and
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conductivity change at pixel i, V0 and iV refer to the reference voltage and the

voltage change at pixel i, [ ]s is the sensitivity matrix.

In Equation (6.1), V0 and iV are the values measured by the instrumentation. The

matrix,
0

[ ]
j




, can be calculated using Equation (6.1). The conductivity at every pixel

can be calculated by:

0

0

(1 )i
i


 




  (6.2)

where, σ0 is the measured conductivity for homogeneous distribution at the time of

taking reference.

For the measurement of EITS, the impedance real part, imaginary part, phase angle

and magnitude at a specific frequency can be obtained from the impedance spectra.

The tomographic images of the impedance real part, imaginary part, phase angle and

magnitude can be reconstructed with the same algorithm used in the conventional EIT.

In this chapter, three experiments using different materials are discussed. The first

experiment studied the images of non-conductive plastic bar (the handle of screwdriver)

in tap water at low (1000 Hz) and high (1 MHz) frequencies. The conductivity of tap

water is 346 μs/cm. The second experiment studied the images of banana in tap water 

at low and high frequencies. The third experiment studied the images of silica

suspensions in water. In this part, images of one silica suspension in water were

studied first, followed by the two silica suspensions of different particle size. In order to

eliminate the possible effects of ionic conductivity on the impedance imaginary part and

phase angle, care was taken in the preparation of the disperse phase and reference.

The details of preparation are shown as follows:

(1) one silica suspension in water:

Disperse phase: an original silica suspension (220 nm, 23.5 wt%) with a conductivity of

68.4 μs/cm. The conductivity of suspension in this case is same with the conductivity of 

silica suspension in the case which has been shown and discussed in section 4.6,

Figure 4.24.

Reference: water including a sample chamber filled with the same water. The

conductivity of the water was adjusted to 69.3 μs/cm using KCl solution (2 mol/l).  

(2) two silica suspensions in water:

Disperse phase: two silica suspensions were adjusted to the same concentration, 19.5
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wt%. One suspension comprised 35 nm particles and the conductivity was adjusted to

204.4 μs/cm using KCl solution (1 mol/l). Another suspension comprised 220 nm 

particles and the conductivity was adjusted to 205.8 μs/cm using KCl solution (1 mol/l). 

Reference: water including two chambers filled with the same water. The conductivity

of the water was adjusted to 204 μs/cm using KCl solution (2 mol/l).  

6.3 EITS Measurement using an 8-electrode Sensor

6.3.1 Common Mode Voltage Rejection Ratio (CMMR)

Since the measurement principle of EIT is based on the relative changing of the

boundary voltages, a reference must be taken at the beginning of the measurement.

Tap water is commonly used as the reference in laboratory research, therefore a series

of electrical impedance spectra of tap water were measured using an 8-electrode

sensor. Figure 6.1 shows the electrical impedance spectra (1 Hz-32 MHz) of tap water

measured at different electrode pairs (electrode pairs 1 and 2 are fixed for current

exciting). It can be seen that the electrical impedance spectra measured at different

electrode pairs show significant inconsistencies at their phase angles. This result is

unexpected since the phase angles of impedance spectra obtained from different

electrode pairs were expected to be similar to the phantom of tap water without

disperse phase (particle) inside.
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Figure 6.1: Electrical impedance spectra of tap water measured at different electrode

pairs (electrode pairs 1 and 2 are used for current exciting over 1Hz-32MHz
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The possible reasons for the results shown in Figure 6.1 could come from the

electrode-electrolyte effects (surface property, shape, size et al.) or the common mode

voltages along with differential voltage measurements, which may cause the most

problematic imaging error with EIT reconstruction. In order to find out what caused the

main effect, a mock sensor using eight resistors, which were connected in a ring, was

carried out. Although the circuit including eight resistors cannot present the real

situation of the phantom with 8-electrodes, it may provide an approximate analysis with

a simple measurement and calculation. Eight resistors with individual resistance of

1000 ohm were connected in a ring (shown in Figure 6.2). The exciting current (20 mA)

through the impedance analyzer is then applied to resistor 1. Electrical impedance

spectra (1Hz-32MHz) are measured at resistors 3, 4, 5, 6, and 7, respectively, and

shown in Figure 6.3.

Figure 6.2: The schematic of eight resistors connected in a ring

R1

R7

R8

R2

R3

R4

R5

R6
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Figure 6.3: Electrical impedance spectra measured on resistors 3, 4, 5, 6 and 7,

respectively (1Hz-32MHz)

If the exciting current is applied to resistor 1 and the voltage drop is measured at

resistor 3, the measurement circuit will be shown in Figure 6.4. Since R1 to R8 have

the same resistance (1000 ohm), the current (I1) passing through R1 and the current (I2)

passing through R2 – R8 have the relationship:

21 7II  (6.3)

A02.07 2221  IIII (6.4)

A0025.02 I (6.5)

Therefore, the voltage measured at R3 can be calculated by:

V5.210000025.0323  RIVR (6.6)

At low frequency (for example, 1 Hz), the impedance real part measured at R3 can be

calculated by:

 125
02.0

5.2
' 3

excitingA

V
Z R (6.7)

This result is very close to the experimental data. Under ideal conditions, the
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impedance real part measured on the other resistors (R4, R5, R6, R7) should be the

same as R3. However, the experimental results shown in Figure 6.3 present different

values of Z’ on different resistors. Since there is no effect from electrode-electrolyte

interfaces, it is believed that the measurement errors in Figure 6.3 arise from the

common mode voltage effect on the spectroscopy analyser. The impedance spectra

measured from the different resistors show similar measurement errors to the one

obtained from the phantom with 8 electrodes (Figure 6.1). Therefore, the main reason

for the inconsistent impedance on different electrode pairs should be caused by the

limits of the common mode voltage rejection ratio (CMMR) of the impedance

spectroscopy analyser.

Figure 6.4 Electrical circuit of impedance measurement in the 8 resistors system

6.3.2 Method for Reducing Common Mode Voltage Effect

A method is proposed for reducing the common mode voltage effect. The method is

based on the reciprocal theorem for a two ports, four terminals system and called the

reciprocal measurement method (RMM). The details of the strategy are described as

follows:

In this method, the measurement strategy of EIS using an 8-electrode sensor is

different from the traditional EIT measurement. In traditional EIT measurement, the

exciting current is applied to electrodes 1 and 2 as shown in Figure 3.18. Voltages are

measured sequentially (clockwise) on other adjacent electrode pairs (from electrode 3

to 8). For an 8-electrodes sensor, the total number of measurements is five, including

the measurements between electrodes 3 and 4, electrodes 4 and 5, electrodes 5 and 6,

electrodes 6 and 7, electrodes 7 and 8, respectively. In order to reduce the common

mode voltage effect, the voltage measurement is firstly carried out on the adjacent
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electrode pairs 3 and 4, 4 and 5, 5 and 6, in a clockwise direction. Then voltage is

measured on the adjacent electrode pairs 7 and 8, 6 and 7, in the counter-clockwise

direction. It is easy to achieve the reciprocal measurement since in our experiment,

electrical impedance spectra on the different electrode pairs are measured manually.

EIS results of tap water obtained by this method are shown in Figure 6.5. It can be

found that the impedance spectra on electrode pairs 4 and 5, 5 and 6, 6 and 7 are

almost consistent, but they are significantly different from those measured on electrode

pairs 3 and 4, 7 and 8. It is proved that the common mode voltage effect can be

reduced to a certain extent by the RMM, but cannot be removed completely.

Figure 6.6 compares two reconstructed impedance real part images of non-conductive

polymer bar in tap water obtained at 79.4 kHz by the traditional method and the RMM.

The exact same material and devices were used in the measurement and the second

phase (non-conductive plastic bar) was fixed at exactly the same position (centre of the

phantom). It can be verified by Figure 6.6 that tomographic imaging can be obtained

successfully from EITS measurement and the data reconstruction process. In addition,

it can be found that the position of the second phase is different in two images. In the

image measured using the RMM, the second phase locates at the centre of phantom,

but in the image measured using the traditional method, the second phase moves to

the edge. The possible reason is due to the common mode voltage effect as

investigated, which was significantly reduced by using the reciprocal measurement

method.

In order to prove the influence of the RMM, an experiment using a commercial ERT

system (ITS P2000 system) was carried out to measure a tomographic image of non-

conductive plastic bar in tap water and the result is shown in Figure 6.7. In the

experiment using the commercial ERT system, the operating frequency and exciting

voltage are 76.8 kHz and 15 mA, respectively, which are all similar to those used in the

EITS measurement (79.4 kHz and 20 mA). In addition, the image obtained using a

commercial ERT system is impedance real part image. Therefore, Figures 6.6 and 6.7

are comparable. It can be observed easily that the image obtained from the commercial

ERT system is similar to the one measured by the RMM. Therefore, the effect of RMM

on reducing common mode voltage can be proved. In the following section, the images

are all obtained using the RMM if no further illustration is given.
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Figure 6.5: Electrical impedance spectra of tap water measured at different electrode

pairs (electrode pair 1 and 2 is fixed for current exciting) using the RMM

(a) (b)

Figure 6.6: Reconstructed impedance real part images of non-conductive plastic bar in

tap water obtained at 79.4 kHz by (a) traditional method; (b) RMM
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Figure 6.7: Tomographic image of non-conductive plastic bar in tap water obtained at

76.8 kHz using P2000 ERT system

6.3.3 Images at Low and High Frequency

In this section, images based on EIS measurements at low (1000 Hz) and high

frequency (1 MHz) are reported and discussed. The disperse phase was a non-

conductive plastic bar and the continuous phase is tap water, which is also called the

reference. As it is known, the highest frequency, at which the commercial ERT system

(ITS P2000 system) can work, is 76.8 kHz. However, EIS measurement can be carried

out from 1 Hz to 32 MHz. Thus, it becomes possible to obtain images at frequencies

higher than 76.8 kHz using the EIS-based tomography imaging technique. In addition,

EIS measurement could provide the values of the impedance real part, imaginary part,

phase angle and magnitude. Therefore, it is easy to obtain the relative changes based

on these values and obtain images of the real part, imaginary part, phase angle and

magnitude, respectively. Figures 6.8 and 6.9 show the reconstructed images of a non-

conductive plastic bar (disperse phase) in tap water (continuous phase) obtained at

1000 Hz and 1 MHz, respectively. It can be seen that at both 1000 Hz and 1 MHz, the

impedance real part image and magnitude image of the disperse phase can be

observed clearly. The blue colour shows that the conductivity of the disperse phase is

lower than the continuous phase. The major difference shown in Figures 6.8 (b) and

6.9 (b) is that the impedance imaginary part image of the disperse phase can only be

observed at high frequency (1 MHz). A possible reason is that the relative change of

the imaginary part at high frequency becomes large, which has been shown by the

electrical impedance spectra in Figure 6.10. It can be seen from Figure 6.10 that the

relative change of the impedance imaginary part between disperse phase (non-

conductive plastic bar with relative dielectric constant ≈ 1.6-2.0) and mixture phase (tap 
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water plus non-conductive plastic bar) is very small at low frequency (for example,

1000 Hz), but is large at high frequency (for example, 1 MHz). The large relative

change at 1 MHz presents an imaginary part image for the disperse phase in tap water.

In Figure 6.9 (c), a red strip area is reconstructed in the phase angle image, which

relates to the change of phase angle at high frequencies although the shape does not

reflect the shape of the object. It is assumed this may be caused by the effect

introduced by either the common voltage or the reciprocal measurement method

(RMM).

(a) real part image (b) imaginary part image

(c) phase angle (tan (θ)) image             (d) magnitude part image  

Figure 6.8: Reconstructed images of non-conductive plastic bar in tap water obtained

at 1000 Hz (a) real part image, (b) imaginary part image, (c) phase angle (tan (θ)) 

image, and (d) magnitude part image
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(a) real part image (b) imaginary part image

(c) phase angle (tan(θ)) image               (d) magnitude part image 

Figure 6.9: Reconstructed images of non-conductive plastic bar in tap water obtained

at 1 MHz (a) real part image, (b) imaginary part image, (c) phase angle (tan (θ)) image, 

and (d) magnitude part image
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Figure 6.10 electrical impedance spectra of continuous phase (tap water) and mixing

phase, measured at electrode pair of 5 and 6 (exciting current was applied to electrode

pair of 1 and 2)

6.3.4 Images of Banana in Tap Water

In this section, images of a banana in tap water based on EITS measurements at low

(1000 Hz) and high frequencies (79.4 kHz) are reported and discussed. Figures 6.11

and 6.12 show the reconstructed images of the banana in tap water obtained at 1000

Hz and 79.4 kHz, respectively. It can be found that at both 1000 Hz and 79.4 kHz, the

impedance real part image and magnitude image of banana can be observed clearly.

The blue colour shows low conductivity and the red colour shows high conductivity.

Here, an interesting phenomenon is observed for the real part images. The conductivity

of the banana at 1000 Hz is lower than the conductivity of tap water; however, at 79.4

kHz it is higher than that of tap water. This phenomenon is probably due to the intrinsic

properties of the natural banana skin or caused by the EIS-based tomographic image

measurement method. In order to find out the reason another experiment, in which the

real part image of the banana in tap water was measured at 1200 Hz and 76.8 kHz

using P2000 ERT system, was carried out and the results are shown in Figure 6.13. By

comparing Figure 6.13 with Figures 6.11 (a) and 6.12 (a), it can be seen that the

phenomenon exists, whichever method is used. Therefore, the change on conductivity

is caused by the intrinsic property of a banana skin. As a biological material, banana

has a higher dielectric constant (≈ 68) (Sipahioglu and Barringer, 2003) than non-
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conductive plastic (for example, polycarbonate plastic ≈ 1.6-2.0). The impedance real 

part can be shown by the Equation below:

2)(1
'

RC

R
Z


 (6.8)

At low frequency (ω→ 0), 'Z R . The impedance real part is mainly determined by the

resistance of materials. However, at high frequency (ω→ ∞), Z’ is related to 

capacitance C as well. A higher dielectric constant causes a significant capacitance and

therefore a small Z’. The results shown in Figures 6.11 and 6.12 can be explained by

the above discussion qualitatively.

At high frequency (Figure 6.12), banana shows phase angle and imaginary part images,

which do not occur at low frequency. In this section, all of the phase angle images are

obtained from the values of tan(θ). As discussed in Chapter 4, section 4.3.2, tan(θ) is 

related to the electrical polarisation density, eP


by equations:

0 0 0(1 )
tan e ekC

G k

    


  


       (4.23)

EP ee


 0 (4.14)

Under an external alternating electrical field, banana showed an electric polarisation on

the walls of the cell, which is similar to the electric double layer around a colloidal

particle. The electric polarisation can be presented by both the imaginary part and

phase angle, tan(θ). Therefore, the images in Figure 6.12 (b) and (c) reflect the electric 

polarisation of the banana at relatively high frequency (79.4 kHz).
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(a) real part image (b) imaginary part image

   (c) phase angle (tan(θ)) image               (d) magnitude part image 

Figure 6.11: Reconstructed images of the banana in tap water obtained at 1000 Hz (a)

real part image, (b) imaginary part image, (c) phase angle (tan (θ)) image, and (d) 

magnitude part image
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(a) real part image (b) imaginary part image

     (c) phase angle (tan (θ)) image              (d) magnitude part image 

Figure 6.12: Reconstructed images of banana in tap water obtained at 79.4 kHz (a) real

part image, (b) imaginary part image, (c) phase angle (tan (θ)) image, and (d) 

magnitude part image
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(a) at 1200 Hz (b) at 76.8 kHz

Figure 6.13: Tomographic image of banana in tap water obtained at (a) 1200 Hz and (b)

76.8 kHz using the P2000 ERT system

6.3.5 Images of Silica Suspensions

In this section, images of silica suspensions in water based on EIS measurement are

reported and discussed. The methodology and materials have been described in detail

in section 6.2. The results are shown in Figures 6.14, 6.15 and 6.16. Firstly, the images

of silica suspension (220 nm, 23.5 wt%) in water are discussed. Figures 6.14 and 6.15

show the reconstructed images of silica suspension (220 nm, 23.5 wt%) in water

obtained at 1000 Hz and 79.4 kHz, respectively. From Figure 6.14, no significant effect

of colloidal suspension can be observed in all of the images at low frequency. From

Figure 6.15 (b) and (c), the effect of silica suspension can be observed clearly in the

imaginary part and phase angle images with a yellow or green coloured strip existing in

the middle of the phantom. No obvious effect of silica suspension can be observed in

the images of impedance real part and magnitude (Figure 6.15 (a) and (d)).

Similar to the discussion in the case of banana in section 6.3.4, the imaginary part

image and phase angle image represent the electric polarisation of double layers on

the surface of colloidal particles. Since the conductivity of the silica suspension is

adjusted to the same value as the conductivity of water, no contribution from

conductivity is involved in the images of the imaginary part and phase angle. The only

contribution is from the electric polarisation of colloidal particles. As discussed in

Chapter 4, section 4.3.2, the electric polarisation of colloidal particles relates to the
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particle size. Therefore, in the secondary part of the experiments, the images of two

silica suspensions of different particle size are studied.

Figure 6.16 shows the reconstructed images of two silica suspensions (220 nm and 35

nm) with the same concentration and conductivity of water obtained at 316 kHz.

Because the conductivities of two silica suspensions are adjusted to the same value as

the conductivity of water, the relative changes of impedance parameters are very small.

In order to get images of good quality, the frequency of 316 kHz was chosen to get

large relative changes. From Figure 6.16 (b) and (c), the effect of silica suspensions

can be observed by a yellow or green colour strip existing in the middle of the phantom.

However, the difference due to the particle size cannot be observed. The possible

reasons are complicated. One of the possible reasons is that the relative changes

caused by different particle size are so small that they cannot be distinguished in the

reconstructed pictures. Another possible reason is the common mode voltage effect,

which cannot be fully eliminated in the hardware and operation and therefore cause

systemic error in the tomographic measurements.
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(a) real part image (b) imaginary part image

   (c) phase angle (tan (θ)) image              (d) magnitude part image 

Figure 6.14: Reconstructed images of silica suspension (220 nm, 23.5 wt%) in water

obtained at 1000 Hz (a) real part image, (b) imaginary part image, (c) phase angle (tan

(θ)) image, and (d) magnitude part image 
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(a) real part image (b) imaginary part image

   (c) phase angle (tan (θ)) image              (d) magnitude part image 

Figure 6.15: Reconstructed images of silica suspension (220 nm, 23.5 wt%) in water

obtained at 79.4 kHz (a) real part image, (b) imaginary part image, (c) phase angle (tan

(θ)) image, and (d) magnitude part image 
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(a) real part image (b) imaginary part image

        (c) phase angle (tan (θ)) image              (d) magnitude part image 

Figure 6.16: Reconstructed images of two silica suspensions (220 nm and 35 nm, 19.5

wt%) in water obtained at 316 kHz (a) real part image, (b) imaginary part image, (c)

phase angle (tan (θ)) image, and (d) magnitude part image 
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6.4 Summary

The electrical impedance tomography imaging based on EIS measurement has been

verified experimentally. The common mode voltage effect exists in the EIS

measurement from electrode pairs at different locations. The reciprocal measurement

method is proposed to reduce the common mode voltage effect, which works well for

the imaging of most impedance parameters except the imaging of phase angle at

1MHz in the experiments. The imaginary part and phase angle images of banana in tap

water can be observed clearly, which reflects the electric polarisation of banana at

relatively high frequency (79.4 kHz). The feasibility of applying the electrical impedance

tomography technique for particle characterisation has been studied by measuring the

images of silica suspensions in water. At the frequency of 79.4 kHz, the imaginary part

and phase angle images of silica suspension can be observed and show the

characterisation of the electrically polarised double layer on the particle surface.

However, the particle size effect cannot be observed experimentally from EITS

measurement. The phase angle image of particle suspensions with different particle

size shows an abnormal strip pattern. The possible reasons for this result could be the

common mode voltage effect on the measurement and the limits of the imaging

resolution from an 8-electrode EITS sensor. The further work will be discussed in the

final chapter of the thesis.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

This PhD thesis describes the study of electrical impedance spectroscopy and

tomography on particles in suspensions and during crystallisation processes. The

research in this thesis was carried out in three parts, the investigation of EIS responses

from the silica suspensions, the application of the method for on-line characterisation of

crystallisation processes and the development of the electrical impedance tomography

spectroscopy (EITS) method for the verification of EITS with different materials.

Overall new methods for characterising colloidal particles based on electrical

impedance spectroscopy have been developed and verified. The EIS testing vessel,

and on-line sensor, including a four-electrode impedance cell and a non-destructive

inserting device, have been designed and applied in obtaining the electrical impedance

spectra in silica suspensions and during crystallisation. The experimental devices for

on-line monitoring of crystallisation processes and electrical impedance tomography

spectroscopy (EITS) measurement have also been designed and reported in detail.

In the investigation of EIS responses from the silica suspensions, the effects of the

particle size, particle concentration and ionic concentration on the electrical impedance

parameters, including the impedance real part, imaginary part, phase angle (θ) and 

relaxation frequency have been studied experimentally. A semi-empirical theoretical

model has been established to explain the relationship between the relative changes in

tan(θ) and the particle size. A linear proportional relationship between the particle size 

and the relative changes in tan(θ) has been observed at the particle concentrations of 

10.0 wt% and 5.0 wt%. However, this relationship becomes insignificant at particle

concentrations of 1.0 wt% and 0.5 wt%. The relaxation frequency as a function of

particle size based on the existing theoretical model has been demonstrated by the

results of experiments with colloidal silica suspensions. In addition, effects of the

particle concentration and ionic concentration on the electrical impedance spectra have

been studied. The results indicate that the electrical impedance parameters including

the impedance real part, imaginary part, relaxation frequency and phase angle all

represent the influences from the particle and ionic concentrations. Therefore, for the

samples with different particle concentrations and ionic concentrations, the separation
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of particle size effect from other effects is very challenging if it is only dependent on the

impedance data. However, the theoretical model based on the parallel RC equivalent

circuit provides a method based on the relative changes in tan(θ) to approach the 

separation of variables utilising the particle volume fraction and conductivity of

background solution in the derivation. The model has been successfully used to

analyse some experimental results, but it does not work very well for all data. Further

development on the theoretical model is necessary.

On-line characterisation of crystallisation processes with electrical impedance

spectroscopy method has been demonstrated through a series of experiments. The

electrical impedance spectra associated with L-glutamic acid (LGA) nucleation-growth

processes is detected on-line as a function of particle size, concentration and ionic

concentration. The relaxation frequency decreases significantly after the start-point of

crystallisation due to a combination of effects from crystal size and ionic concentration.

The decrease in the relaxation frequency becomes more rapid below 41°C, which is

above the starting-point of nucleation as shown by turbidity measurement. Therefore, it

is proposed that the relaxation frequency extends the observable range of the starting-

point of nucleation beyond what is accessible by turbidity measurement. The results in

the study of polymorphism during crystallisation processes show that the polymorphic

transformation can be monitored on-line by observing the rates of change in

impedance parameters. Slow rates of change in the impedance parameters (Z’, Z” and

θ) can be observed during the transformation of α form to β form. This phenomenon is 

believed, as a result of this investigation, to be a feature of polymorphic transformation

processes because in the crystallisation with single α form, the rates of change in 

impedance parameters are much larger than those in the polymorphic transformation

process. However, due to the specific crystallisation conditions and dynamic changes

in the LGA crystallisation process, it is not able to determine the crystal morphology at

a certain time from the impedance parameters.

The electrical impedance tomography imaging based on EITS measurement has been

verified experimentally. A reciprocal measurement method is proposed to reduce the

common mode voltage effect, which works well for the imaging of most impedance

parameters, except the imaging of phase angle at 1MHz in the experiments. The

feasibility of applying the electrical impedance tomography spectroscopy technique for

particle characterisation has been studied by measuring the images of silica

suspensions in water. At a frequency of 79.4 kHz, the imaginary part and phase angle

images of silica suspension can be observed and show the characterisation of electric
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polarised double layer on the particle surface. However, the particle size effect cannot

be observed experimentally from the EITS measurement. The possible reasons have

been analysed, which may be due to the limitations of the imaging resolution from an 8-

electrode EITS sensor and the common mode voltage rejection ratio of the instruments.

7.2 Future work

The future work could involve both experiments and theoretical modelling, as

suggested below:

(1) For the verification of the proposed EIS method, it is suggested that other kinds of

materials, for example, titanium dioxide and zinc oxide should be tested and then

compared with the results from the silica dioxide tests. The comparison across the

different materials allows for a better verification of the method.

(2) Further study on the theoretical model should be carried out in order to establish

an algorithm for separating these multi-variables and deriving a solo relationship

between the particle size and the electrical impedance parameters. An equivalent

circuit model of the RC network (R is the resistor and C is the capacitor) could be

designed for simulating a 2-dimensional (2D) or 3-dimensional (3D) particle

suspensions. The relative change in tan(θ) can be calculated based on this 2D/3D 

model, although the equivalent circuit involves a more complicated calculation than

that of the simple model with two large parallel electrode plates and an assumption

of parallel electric field between the two plates. In addition, the further development

on the theoretical model could be helpful to resolve the complex problem in

crystallisation processes by separating the variables.

(3) The on-line EIS measurement conducted on the crystallisation processes in this

study usually took 2-3 minutes to complete the data collection over the whole

frequency range (1Hz-32MHz). As is known, accompanying the nucleation and

growth of crystals, the crystal size, concentration, and ionic concentration all

change with time. The speed of data acquisition does not satisfy the crystallisation

process. Therefore, it is suggested to obtain a fast data collection speed for the on-

line EIS measurement. It could be approached by a fast spectral sensing method,

which uses a linear frequency modulated “chirp” excitation signal, and “wavelet”

extraction of spectral data from the detected response. The method can offer
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benefits of fast spectral sensing over a wide frequency range within several milli-

seconds. Some preliminary studies have been done at the University of Leeds, but

the application of this technique in the on-line monitoring of crystallisation

processes needs to be studied further.

(4) In the experiments on crystallisation processes, the solid concentration and solute

concentration were not measured due to the lack of requisite instrumentation. In

the future work, if the instrumentation were available, it is suggested to measure

the solid concentration and solute concentration on-line using ATR-FTIR

spectroscopy and Raman spectroscopy, respectively. The profiles of solid

concentration and solute concentration make the quantitative analysis possible

relying on a suitable theoretical model. Besides, the off-line microscope

measurement during the phase transformation process can be improved by

Raman spectroscopy, which can measure the solid concentrations of the α phase 

and β phase on-line.  

(5) Both of the case studies included in this work are centred upon the proposal of a

mathematical model of the electrical properties of the material, and the verification

of the model through a systematic experiment process. The verification

experiments have been designed to eliminate all process variables during

crystallisation processes except each specific measured. In design studies for

implementation the aim may be to identify which process variables will have major

influence on electrical spectroscopy measurements, and which are less sensitive.

To reveal this form of data it would be useful to process the multivariate data using

an appropriate statistical technique, for example principal component analysis.

This would be expected to reveal which process variables are highly correlated

and which are not, forming a useful dataset for application studies.

(6) The instrumentation can be improved to decrease the effect of common mode

voltage in the electrical impedance tomography imaging measurement. A

transformer or a voltage buffer from an operational amplifier with a high common

mode voltage rejection ratio could be designed to isolate the common mode

voltage and decrease the effect of common mode voltage.

(7) It is also suggested that the 8-electrode sensor could be updated to a 16-electrode

sensor in order to get a good resolution for the imaging of the distribution of

dielectric properties of colloids. The current EITS measurement operates manually
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using the electrical impedance analyzer, which is really time consuming. In order to

get fast and automatic data acquisition, the hardware needs to be improved. The

fast spectral sensing method which has been described in point (3), is now under

further construction at the University of Leeds, which should be a good choice for

applying the proposed method for imaging the spatial and temporal distribution of

particle characteristics in process applications.
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