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Chapter 1 

All theses need a grand depart, 
So this is a convenient start. 

A story four years in the making, 
It has been a battle, there is no mistaking. 

 
From trains in tunnels to vibrations in rocks, 

This thesis covers a number of scientific stocks. 
Written on pages, leaf over leaf, 

I hope your seat is comfy, this isn’t that brief. 
 

Chapter 2 
A thorough review is presented here, 

Completed largely in the formative year. 
Studies which have provided inspiration, 
To build this work on a solid foundation. 

 
Chapter 3 

A review of anisotropic material, 
A vein of work, almost arterial. 

From stress and geological creation, 
This provides a background for my studies fixation. 

 
Chapter 4 

One-dimensional jointed rocks, 
Made of repeated joints and blocks. 

Impulsive sources, they were subject, 
With attempts to see any resonance effect. 

 
Actions of springs and superposition, 

Give the transmitted waveform through coalition. 
Presented with formulae which are analytical, 

These are, to my thesis, hyper-critical. 
 

Chapter 5 
Further models with added complexity, 

Are seen as a scientific necessity. 
To verify the mechanisms presence, 

Encapsulates this chapter in its essence. 
 

Chapter 6 
An extra dimension is introduced, 

To see if the effects can be reproduced. 
Models containing a cavity, 

Give this chapter a realistic gravity. 
 

Chapter 7 
A jointed rocks frequency response, 

Is shown to be a metamaterial in nuance. 
Matching experimental results shows validity, 

Of the resonance’s physical applicability. 
 

Chapter 8 
Viewing the model from the side, 

A moving load is applied. 
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Transfer functions provide the evidence, 
Of frequencies which have precedence. 

 
Chapter 9 

This concludes this projects scope, 
With the findings which are kinda dope. 

From a beginning with numerical models, 
The outcomes finally viewed from realistic goggles. 

 
Spring and superposition resonance occurs, 
Giving the frequencies a material prefers. 

These are found in various situations, 
And discussed for different applications. 

 
I hope this summary was illuminating, 

A novel way of a study communicating. 
I thank you for your perusal, 

And I hope it has your approval. 
 
 
 

Harry Holmes 
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Abstract 

This research studies the role of joints within rock masses on the transmission of stress waves. 

The motivation for this comes from vibrations generated by high speed trains running in 

tunnels, excavated in jointed rock masses. This will allow industrial partners to better 

understand how vibrations from high speed rail can impact receptors located close to a railway 

line. Based on this mitigation measures can be engineered to reduce their impact in the design 

phase of new railway lines or buildings close to railway lines.  

The combined discrete element – finite difference code in the software UDEC and the finite 

difference code in the software WAVE2D are used throughout this research to study jointed 

materials. Both software’s are modelled with explicitly jointed models as well as equivalent 

continuum models in order to understand how their effect on the transmission of stress waves 

through 1D and 2D models.  

In particular resonance effects in parallel jointed rocks subject to stress waves are investigated. 

This is undertaken using transfer functions, derived from signals generated by numerical 

modelling. Resonance is important for a range of engineering situations as it identifies the 

frequency of waves which are favourably transmitted through a material. The different 

numerical codes used are shown to be able to model jointed rock masses in similar ways 

showing two distinct resonance mechanisms, spring resonance and superposition resonance. 

Spring resonance implies that jointed materials oscillate like masses between springs, with 

joints acting as springs and blocks acting like masses. This occurs are relatively low frequency 

and is unrelated to the wave speed of a material. The superposition resonance shows that 

constructive interference can occur between reflected waves within jointed bounded blocks. 

This effect operates at higher frequencies that the spring resonance effects, typically allowing 

the two effects to be distinct within transfer functions.  

Equations are developed which can accurately predict the two resonance mechanisms 

identified in jointed materials. Using increasingly complex models, including 2D models and 

moving loads, the continuity of the resonance mechanisms are proved, showing that the 

resonance mechanisms first identified in highly simplified 1D models are not a consequence of 

the modelling assumptions. This indicates that the spring resonance effect will prevail in 

complex rock masses under a range of geological settings. The effects of the spring resonance 

mechanism operating within a range of realistic jointed rock masses are appraised in the 

context of vibrations from railway tunnels. It is shown that vibrations generated from train 
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excitations are likely to be transmitted through all jointed rock masses, while sources from the 

track are less likely.  

The similarity of the spring resonance mechanism to the resonance characteristics of periodic 

metamaterials is appraised. It is shown that jointed materials can operate as a band-pass or 

low-pass filter, depending on the number of joints within the material. Evidence is presented 

showing that periodic metamaterials exhibit spring resonance with results from a laboratory 

scale frequency sweep test on a periodic metamaterial are shown to feature high transmission 

zones occurring at the predicted spring resonant frequency for that material.  

The outcomes of this work, especially the resonance mechanisms and associated analytical 

equations, can be used in industry to inform scoping studies as to the vibrations which will be 

preferentially transmitted from vibrational sources embedded in jointed rock masses. This is 

not limited to vibrations from high speed rail but it also applicable to vibrations from any 

manmade or natural source. With knowledge of the resonant frequencies of a rock mass, prior 

to operation of new vibrational source or construction of a new building which could be 

subject to vibrations, designs can be modified to limit the impact of such preferentially 

transmitted frequencies.  

 

“Vibrate joints and blocks, 
Equations for resonance 

Applied to fast trains” 
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1. Introduction 
 

“All theses need a grand depart, 
So this is a convenient start. 

A story four years in the making, 
It has been a battle, there is no mistaking. 

 
From trains in tunnels to vibrations in rocks, 

This thesis covers a number of scientific stocks. 
Written on pages, leaf over leaf, 

I hope your seat is comfy, this isn’t that brief.” 
 
 

 
© Army of Cats 2023  
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1.1. Problem Statement  

Railways present a popular fix to many societal problems, promising to reduce congestion on 

roads and provide an environmentally friendly form of transport. They have even been used as 

a convenient vehicle for the UK government’s attempts to level up the North of England with 

HS2, although this is rapidly becoming a less extensive construction than its initial promise 

(Meighan, 2022). Despite the uncertain state of high speed rail in the UK, its study is of 

relevance to countries across the globe. One particularly important aspect of new railway lines 

is the generation of ground vibrations, which can have negative impacts on people and 

structures near an active railway line.  

This thesis investigates the transmission of vibrations through jointed rock masses, a ground 

material which is often neglected in such studies. The work presented considers jointed rock 

masses using discontinuum and equivalent continuum models. This has been undertaken with 

the extensive use of numerical modelling, although attempts were made to run a physical 

experiment to verify the findings. The findings indicate that resonance mechanisms within 

jointed rock masses can lead to high transmission of certain frequencies, while others are 

significantly reduced. The resonance mechanisms are presented in the form of explicit 

analytical Equations, with physical analogies given to enhance their understanding.  

 
"And now, Harry, let us step out into the night and pursue that flighty temptress, 

adventure." – Albus Dumbledore 
(Rowling, 2005, pg. 62) 

 

1.2. Purpose of this Research 

The global drive to cut carbon emissions has created the need to develop environmentally 

friendly forms of transport. Moving large numbers of people or goods at the same time is 

recognised as a less energy intensive means of transit, than doing the same work using 

personal transport. Light urban railways, like the London Underground, have successfully 

transported people across relatively short distances and higher speed surface lines have 

covered significant cross-country distances since the Victorian era (Atkinson et al., 2020). The 

increased speed of movement of people and goods since the advent of the railway has allowed 

significant social and economic benefits to areas linked by these transport arteries (Wynn, 

2004). The significance of railways at the time of their construction was in part due to their 

speed. However, as the safety, speed and reliability of personal transport, such as cars, has 

improved the pull of railways has waned. In the United Kingdom, this culminated in the closure 

of numerous railway lines in the 1960s, commonly known as the Beeching cuts after the 
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influential report written by Dr Richard Beeching for the UK Government (Patmore, 1965). 

Future improvements in transport infrastructure therefore need to compete with the ease of 

use and cost of personal transport, while also improving on it, such as by being more 

environmentally friendly. Although there are numerous advantages of railway lines, they can 

also negatively impact communities which these lines run through. The work presented here 

investigates potential side effects of an increased usage of high speed rail, namely ground 

vibrations. 

High speed rail provides a mass transport option which, assuming effective management, can 

have a low environmental footprint potentially fulfilling the transport needs of large numbers 

of people (Hanson et al., 2012). The speeds at which high speed rail operates at makes it 

impractical for small urban lines, with the main advantages seen when covering vast distances. 

In order to create a maximum return on investment it is necessary to have significant and 

varied draws for commuters at either end of the line, with easy to reach stations. Therefore, 

the most practical siting for a high speed railway station is close to the centre of an urban area, 

with the other end of the line in the centre of an equally significant urban area (Calder, 2023). 

Trains, especially those travelling at high speed, require flat and straight track alignments to 

allow efficient movement as well as assuring passenger comfort. Therefore, the need to 

penetrate already congested urban environments and to overcome topographical constraints 

require efficient engineering solutions. A common engineering solution to both constraints are 

tunnels, which this thesis will consider.  

Before a tunnel is constructed, planners and designers need to answer a variety of questions 

about the proposed excavation, including:  

 How deep should the tunnel be? 

 How long should the tunnel be? 

 How steep can the tunnel approach ramps be? 

 Does the geology constrain the construction techniques that can be used? Does it 

dictate what support is appropriate? 

 Should a single large bore tunnel or double twin bore tunnels be used? Should these 

be side by side or piggy backed? 

 Will the tunnel operation or construction have impacts on buildings and residents 

nearby? 

Despite robust planning there are some effects of tunnel excavation which cannot be 

eliminated. Tunnel construction can cause settlement at the ground surface as the ground 
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surrounding the tunnel relaxes into the newly created void. This surface settlement is 

dependent on the depth of the tunnel, the method of construction and the properties of the 

ground surrounding the tunnel. A deep tunnel will have a reduced surface expression of 

ground relaxation around the tunnel as the ground above the tunnel will increase in volume by 

a process known as bulking. Changing the tunnel construction method or sequence by using 

short advance lengths in NATM or by using EPB Shield boring machines will reduce surface 

settlement, although this will not eliminate the problem. Ground conditions such as a very stiff 

layer of soil or rock overlying the tunnel will effectively cause a beam to be formed, reducing 

settlement (Brady and Brown, 2006). In high permeability ground the settlement would be 

expected to occur quite quickly, whereas in low permeability soils the settlement may be 

ongoing for some time (Craig, 2004). This can cause damage to buildings constructed close to 

the tunnel, which was observed with the Shanghai Metro (Shen et al., 2014). All the above 

stated problems are a consequence of tunnel construction, which can the thought of as a static 

problem. This static loading case has been well studied in literature and modelling of such 

scenarios is routinely carried out during the design of new tunnels and is not of concern in this 

thesis. This thesis considers the dynamic effects of the train running in the tunnel and how 

these dynamic effects could impact upon buildings and residents.  

As trains run along a track the train wheel interacts with the rails, causing vibrations. These are 

transmitted to the track and surrounding structure, through a propagation pathway, such as 

soil or rock, and can reach a receptor, such as a building, which causes the receptor to vibrate 

(Figure 1-1). These vibrations can create ground-borne noise, where elements of a receptor 

vibrate which causes the displacement of air, transforming the vibrations of the structure into 

vibrations in the air, or noise. This typically occurs between the excitation frequencies of 16 to 

250 Hz (Connolly et al., 2015).  Vibrations can also cause a mechanical nuisance, whereby 

objects or persons upon which a vibration is incident can also vibrate. This occurs at lower 

frequencies of 1 to 80 Hz (Andersen and Jones, 2006). Both forms of vibration, ground-borne 

noise and vibration, can cause annoyance to residents. From a human perspective ground-

borne noise is likely to be felt before ground-borne vibrations, as lower amplitudes of the 

former are required for human perception (Kurzweil, 1979). Ground-borne vibrations do not 

just cause a subjective degree of annoyance, they can also cause sensitive scientific or medical 

equipment to malfunction rendering a building unsuitable for its intended purpose, such as 

could be the case with recording studios or concert venues. Sporting venues could also be 

impacted. If a railway line is located close to a snooker hall a delicately poised ball could be 

caused to fall into a pocket through unseen forces, possibly affecting the outcome of a match 
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which could have consequences for a player’s future. Vibrations can also have economic 

consequences of a more profound and far-reaching effect than niche sporting prize money. 

Nuisance vibrations can affect real estate values surrounding the line, increasing the number 

of stake holders who have a vested interest in new railway lines (Connolly et al., 2016).  

 

Figure 1-1 Ground borne vibration and structure borne noise from a train in a tunnel with typical resonant 
frequencies. From Holmes et al. (2023a) Figure 1 

The structure which ground vibrations interact with can cause vibrations to be amplified or 

attenuated. Heavy structures, such as masonry buildings, or buildings on piled foundations are 

less sensitive to ground borne vibrations than lightweight buildings or those on slab 

foundations (Kurzweil, 1979). Modern construction practices, allowing wider span buildings, 

have been found to have an amplifying effect on ground vibrations (Connolly et al., 2015).  

The vibrations induced by movement of the train along a track are a type of seismic wave. 

Seismic waves are usually associated with earthquakes and the term is derived from the Greek 

word “seien”, meaning “to shake”. The origin of the shaking is not confined to natural sources; 

therefore, the shaking can also have anthropogenic origins. The vibrations from the track 

transfers energy into the surrounding ground as stress waves. The designation of these 

vibrations as stress waves is clear when it is considered that the tunnel does not lose mass 

when it vibrates, indicating that only energy, or stress, is transmitted to the surroundings. 

These stress waves are dampened through material and geometrical damping, which 

logarithmically reduce the amplitude of waves with increasing distance from the source (Gupta 

et al., 2009). Material damping is the reduction in the amplitude of vibrations over each cycle, 
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or wavelength, of the vibrations. Given the same distance a high frequency wave reduces in 

amplitude more than a low frequency wave as more cycles of the high frequency wave will 

occur over the same distance, due to the associated lower wavelength. Geometrical damping 

is where energy becomes spread out over distance. On a two dimensional (2D) flat surface, at 

the source of the vibration, if there is a single unit of energy, and assuming the wave is not 

constrained at all, the wave will spread with a circular wave front. Therefore, at 1m from the 

source the same unit of energy will spread over a wave front equal to 2πr, where r is the radius 

of the circular wave front, which is 1 m in this case. Therefore, at each point in the ground the 

wave front will have 1/2πr of a unit of energy. The combined effect of these damping 

mechanisms means that at large distances from the source the effect of ground vibrations is of 

no consequence, meaning that the problem of train vibrations is a function of the proximity to 

the source. For a three dimensional (3D) scenario the wave front spreads as the surface of a 

sphere, with the energy density decaying proportional to 1/r2.  

Although this thesis will consider high speed railway vibrations, the sources of the vibrations 

are the same for lower speed lines. With railways being almost ubiquitous throughout the 

world railway vibrations are a widely known problem. In order to control them, standards have 

been created throughout the world which dictate what acceptable levels of vibration are for 

different situations. Although this does provide a useful means of determining whether 

vibrations are of an acceptable level, different countries use different methods for determining 

what threshold levels should be, which hinders cross comparison of standards. The most 

common assessment methods include velocity decibels (VdB) from the US, vibration dose 

value (VDV) from the UK, peak particle velocity (PPV) and human exposure standard from 

Germany (Connolly et al., 2016).  

Much previous research into vibrations from railway tunnels has been conducted in soft 

ground tunnelling conditions, with little research into hard rock tunnelling conditions. Hard 

rock masses often contains joints, which equally have received little interest from rail vibration 

studies. Generalised studies have been conducted into how jointed rock masses affect 

vibrations. Despite these generalised studies, there exists a niche which studies transfer 

functions through rocks, which can be used to determine the relative transmission of a wide 

range of frequencies.  

1.3. Scope of Thesis 

This work attempts to study how stress waves are transmitted through jointed rock masses. 

Numerical modelling is used throughout the work presented here. The methods used are the 
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finite difference method (FDM) and the combined discrete element – finite difference method 

(DEM-FDM). These methods have been used previously for modelling stress wave transmission 

through jointed materials and are considered to be of use in this study. A range of different 

sources are used, including planar and nonplanar sources, and moving loads.  

A range of data analysis techniques are used through the thesis, although much of the analysis 

is undertaken using transfer functions. These decompose a time series signal into its frequency 

components and compare the response of a model to a reference frequency spectrum, with 

the difference indicated by the transfer function. These are often displayed as transmission 

coefficients, which show the relative difference between a recorded and reference waveform 

as a fraction. However, insertion losses, which are given in decibels (dB) are also used where 

appropriate. In terms of transmission coefficient, an unaltered signal has the value of one, with 

a signal of half the strength a value of 0.5 and a signal of twice the strength a value of two.  

1.4. Significance  

The research presented in this study is relevant not just to applications of train vibrations from 

tunnels excavated in jointed rock masses, but also to the wider rock engineering community. 

The resonance mechanisms found in this study and the analytical Equations used to predict 

them are easily applicable to a wide array of rock engineering problems which involve 

vibrations, such as machine foundations, blasting from quarrying and other forms of transport.  

1.5. Aims and Objectives 

This thesis aims to investigate the role which the material in a vibration sources is excited 

within affects the transmission of induced stress waves. The effect of the ground on stress 

waves can have consequences for receptors which could lead to preferential transmittance of 

certain frequencies. High transmittance of non-desirable frequencies could lead to 

unacceptable levels of vibration in buildings located nearby to a railway line. While this may 

not lead to structural damage it could render the building unsuitable for its intended purpose. 

Being able to accurately characterise the ground will allow these vibrations to be predicted at 

the design phase, allowing suitable and targeted mitigation measures to be installed. This will 

reduce the impact on receptors as well as potentially reducing the costs of such measures as 

the problematic frequencies will become evident.     

This thesis will answer the aims, detailed above, through the following objectives: 

 How does a jointed rock mass affect vibrations which are transmitted through it? 

 Can joints and blocks within a rock mass cause resonances to develop? 
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 Can a jointed material be treated as an equivalent medium? 

 Will jointed rock masses pose any particular issues for trains running through a tunnel 

excavated within them? 

The work presented here is limited to only considering the response of the ground, specifically 

jointed rock masses, and does not consider the response of structures or the ground-building 

interaction.  

1.6. Thesis Outline 

The work in this thesis is split into 9 Chapters, including the introduction and conclusion 
Chapters. The chapters follow a logical progression adding more complexity to the modelling 
scenarios in each subsequent Chapter.  
 
Chapter 1: Introduction  

This Chapter presents a general overview of the motivation behind the work undertaken in this 
thesis. The thesis aims and objectives are outlined and the structure of the proceeding 
Chapters is introduced.  
 
Chapter 2: Literature Review  

This Chapter provides a general overview of train vibrations, providing context about why it is 
considered that vibrations from trains in jointed materials are a worthwhile niche to be 
explored.  
 
Chapter 3: Anisotropic Materials  

This is an additional literature review Chapter, focussing entirely on anisotropic materials, of 
which jointed rock masses are one. This investigates their formation and consequences for 
vibrations which are transmitted through them. 
  
Chapter 4: One Dimensional Rock Masses  

One dimensional (1D) models are introduced which can be used to investigate rock mass 
resonance. A thorough model development section is undertaken for the DEM-FDM method, 
analysing continuum models and investigating the effect of different setups and waveforms. 
Following this transfer functions are introduced and used to investigate the transmission of 
stress waves through a jointed material. Finally, the jointed rock mass resonance mechanisms 
of spring and superposition resonance are isolated and analytical functions are introduced 
which can be used to predict the frequency of the resonances. 
 
Chapter 5: Verification of One Dimensional Rock Mass Resonance Effects  

The analytical functions for jointed rock mass resonance are verified in this Chapter. This is 
achieved by breaking some of the modelling assumptions used in the previous Chapter. An 
FDM is introduced which is shown to perform similarly to the DEM-FDM model in Chapter 4. 
Equivalent material models are introduced and analysed to determine how well they perform 
in comparison to discretely jointed models. A physical experiment and modelling methodology 
to determine whether the resonances exist in reality is introduced and solved numerically to 
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show its potential. Finally, the models used in this study are compared to the outcomes of 
previous studies to understand why different conclusions were reached previously.  
 
Chapter 6: Resonance in Two Dimensional Rock Masses   

The previous 1D models are extended to 2D with nonplanar waves used as the source. These 
are solved in a time domain FDM model. A modified approach to calculating transfer functions 
is introduced. Models containing unlined cavities are introduced. The jointed rock mass 
resonance mechanisms are shown to occur in all 2D models being analysed.  
 
Chapter 7: Jointed Rocks as Metamaterials  

Jointed rock masses are compared to periodic metamaterials. Both materials are shown to 
have frequency related responses, although it is determined that jointed rock masses are 
natural periodic materials, while metamaterials are artificial periodic materials. However, the 
resonance mechanisms identified in jointed rock masses are shown to occur in periodic 
metamaterials, with results presented from a published physical experiment. Finally, a 
conceptual wave barrier is introduced which employs the resonance characteristic of jointed 
materials to reduce vibrations.  
 
Chapter 8: Moving Loads  

Results from moving load sources within jointed materials are presented. The response of 
jointed materials and equivalent transversely isotropic continua are compared. The angle of 
joints and the plane of isotropy are varied indicating that the load direction, in relation to the 
dip of joints, do affect the amplitude of stress waves in jointed materials. Finally, transfer 
functions are generated showing that the jointed rock mass resonance mechanisms persist 
when a moving load source is used.  
 
Chapter 9: Conclusions 

This Chapter put the findings from this thesis into context, suggests potential areas of further 
research, as well as indicating the limitations in the research presented in the previous 
Chapters.  
 

"I’m going to keep going until I succeed—or I die. Don’t think I don’t know how this might 
end. I’ve known it for years." – Harry Potter 

(Rowling, 2007, pg. 568) 
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2 Literature Review of Underground Railway Vibrations  

 
“A thorough review is presented here, 

Completed largely in the formative year. 
Studies which have provided inspiration, 
To build this work on a solid foundation.” 

 

 

© Army of Cats 2023  
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2.1 The Source 

 
"When in doubt, go to the library." – Ron Weasley 

(Rowling, 1998, pg. 283) 
 

All vibrations from train passage originate at the wheel-rail interface. There are numerous 

different sources of vibration, which are given in Figure 2-1 with the range of frequencies 

associated with them. The sources of vibration can be decomposed into quasi-static loading 

and dynamic excitation (Milne et al., 2017). Quasi-static vibrations are most significant for low 

frequency vibrations, while dynamic excitation causes higher frequency vibrations. 

 

Figure 2-1: Typical frequency range of excitation from high speed rail lines. From Connolly et al. (2015) Figure 5 

Quasi-static loading is derived from the weight of the train transferred to the track through 

each wheel (Milne et al., 2017). Quasi-static loading varies from zero to a maximum, 

underneath the train axle, and back to zero every time a wheel axle moves over a point. This 

gives the basic stress propagation pattern from the transit of a train and is of a constant 

magnitude, given by the axle weight (Chua et al., 1992). The amplitude of the quasi-static 

loading therefore stays constant, regardless of the speed of the train.  

As the quasi-static loading is induced underneath train axles, for a point on the rail considered 

in the time domain, rail deflections are related to the spacing of axles and bogies on the train 

carriage (Milne et al., 2017). Milne et al. (2017) shows that the composition of the vehicle 
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affects the dominant frequency of the vibration. Some trains are composed of a standard car 

that gives a repeated sequence of high amplitudes at regular frequencies relating to the axel 

spacing. Vehicles composed of different cars have a noisier vibration spectrum. The Euro-Star 

for example has a combination of power car, end car and articulated car, each with a different 

vehicle length, bogey spacing and axles spacing, giving a noisy and complex vibration 

spectrum. 

Dynamic excitation occurs due to random imperfections such as unevenness of the rail or from 

impact excitation from wheel flats or joints in the rail (Gupta et al., 2009). Dynamic excitation 

is related to wheel and rail roughness which alters the ground reaction by virtue of the un-

sprung mass of the train riding over these irregularities (Chua et al., 1992). Therefore, two 

trains with the same quasi-static loading of the ground will not experience the same dynamic 

excitation if their suspension systems differ. A train with no suspension will have its whole 

weight subject to excitation from a rough surface. Conversely, a train with effective suspension 

will reduce the affective weight experienced by dynamic excitation forces, therefore reducing 

the amplitude of the dynamic excitation. The poorer the state that the rail and train wheels are 

in, the rougher each of these surfaces is, so the effect of the dynamic excitation will increase.  

 
“Poor Thomas was going faster than he had ever gone before. He was out of breath and 

his wheels hurt him, but he had to go on. ‘I shall never be the same again,’ he thought 

sadly. ‘My wheels will be quite worn out.’” – Thomas the Tank Engine 

(Awdry, 1993, pg. 16) 

 

2.2 The Transmission Pathway 

Figure 1-1 shows the full transmission pathway for vibrations from tunnels. Vibrations can be 

modified at any stage through the transmission pathway, from the source at the train-wheel 

interface, at the tunnel-ground interface or in the ground, to the receptor at the structure-

ground interface or in the structure itself. The goal of modifications is to reduce the effect of 

the vibrations on the receptor. Modifications in the transmission pathway or at the receptor 

are called passive mitigation strategies and are typically less effective than modifications to the 

vibration source, known as active mitigation strategies (Connolly et al., 2016). Passive 

mitigation strategies include resilient couplings between the ground and structure to dampen 

vibrations; moving furnishing away from the centre of floors to reduce the effect of 

amplification from wide spans; and wave barriers in the transmission pathway (Connolly et al., 

2016).  
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Active mitigation strategies can include: resilient wheels, which have been found to reduce 

vibration frequencies between 40 and 250 Hz (Kurzweil, 1979); improving the wheel or rail 

conditions, which can lead to reductions of 10 to 20 dB between very poor and good 

conditions; introducing floating slab tracks or ballast which can substantially reduce vibration 

levels, especially at high frequencies (Connolly et al., 2016); more effective train suspension, 

although this is only effective at suppressing low frequency vibrations (Gupta et al., 2009). The 

mitigation strategies listed do not always have the intended effect. For instance, the use of 

floating slab track can lead to an amplification at frequencies synonymous with the resonant 

frequency of the resilient fasteners in the floating slab (Hussein and Hunt, 2009).  

2.3 Predicting Underground Railway Vibrations  

Predicting vibrations from underground railways is an issue in the construction of new lines 

and new buildings near existing lines. Before substantial changes are made to existing rail 

tracks or new tracks and structures close to tracks are constructed, it is important to 

investigate the potential vibration levels at sensitive locations. These are known in industry as 

environmental impact assessments and involve a multi-step process; including an initial 

scoping study, followed by more in depth analysis.  

Scoping models are used to predict vibration levels across large sections of track in order to 

identify the areas which are likely to be affected by elevated vibration levels (Connolly et al., 

2014). Scoping models typically use an empirical approach by taking observations from existing 

railways and using these to inform the possible vibration levels at new sites (Kurzweil, 1979). 

Using empirical models for engineering design is common practice, with the empirical Q 

system for tunnelling (Barton et al., 1981) and empirical models for deep excavations from 

Long (2001) and Holmes et al. (2019). In rail engineering, Hood et al. (1996) introduce an 

empirical model for the assessment of ground vibrations from the Channel Tunnel Rail Link 

(CTRL), the UK’s first high speed rail line (HS1). These methods can give accurate results, 

although it does have severe limitations if the new setting is not the same as the original 

setting from which the model is developed. Due to the advent of modern computing power, it 

is possible to generate empirical models generated from artificial data. This is more accurately 

referred to as a semi-empirical approach. This approach is adopted by Connolly et al. (2014) in 

the development of ScopeRail. ScopeRail is a scoping model that uses a machine learning 

approach, adopting a neural network to analyse a large database of vibration predictions 

generated using a three-dimensional finite element model. It is capable of quickly predicting 

ground vibration levels and can more accurately predict potential problem areas, compared to 

previous empirical approaches.  
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2.4 Railway Vibration Modelling  

Once initial scoping studies have been carried out, models that are more specific are 

generated to predict vibration levels for a site. These can be conducted either numerically or 

physically. Physical models induce representative vibrations on the as-built structure from 

which a physical transfer function for the vibration pathway can be determined. This provides 

a highly accurate result, although they are sometimes impractical to carry out (Connolly et al., 

2016). Numerical modelling encompasses a range of computer-based modelling techniques to 

simulate vibrations from a tunnel, including numerical and analytical methods. Finite Element 

Modelling (FEM) is a numerical modelling method commonly used to study railway vibrations, 

allowing accurate predictions of railway vibrations. This is computationally expensive; so, 

techniques have been developed to reduce the computational cost of these simulations. More 

advanced models combine different numerical modelling techniques, such as: FEM with 

Boundary Element Modelling (BEM), where FEM is used for the tunnel and BEM is used for the 

soil (Gupta et al., 2009); and FEM with Perfectly Matched Layers (PML) (Ruiz et al., 2019). 

These methods reduce the computational costs of the model but still require longer run times 

and computing power than analytical methods, where the system performance is described 

using mathematical Equations. An example of the analytical method is the Pipe-in-Pipe (PiP) 

method, developed by Forrest & Hunt (2006a), which can generate a vibration spectrum for a 

circular tunnel on even a modest home computer in less than a minute. This is a significant 

advantage over the expensive numerical methods whose run times can be on the order of 10’s 

of hours to days. However, there are still advantages of using FEM and combined FEM-BEM or 

FEM/PML models. These models can simulate a wider range of tunnel geometry or ground 

layering, providing accurate results in a range of complex situations.  

Modern numerical modelling software allows for modelling tunnels with or without 

considering the out of plane dimension of the tunnel. In a static analysis it is usually reasonable 

to model a tunnel which is invariant in the out of plane dimension in two dimensions (2D). 

However, when a tunnel is subject to a moving load the 2D approach is less suitable. To 

investigate the differences in the dimensions used in modelling Yang et al. (2017) conduct a 

comparative study into 2D and two and a half dimensions (2.5D) finite / infinite element 

approaches to modelling long underground tunnels subject to moving train loads in an 

isotropic half space. A 2.5D approach is the same as a three-dimensional (3D) approach, when 

the tunnel is invariant or periodic in the out of plane direction, allowing for computationally 

efficient solutions to be used. This approach assumes that the train induced response at two 

locations along the tunnel are identical except for a time shift (Ba et al., 2019). A single 2D 
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cross-section is analysed which is extrapolated into 3D using numerical techniques. These 

models can be used with either dry or saturated materials. For a dry model, Ba et al. (2019) 

find that a 2D model gives a greater soil response than a 2.5D model, unless the speed of the 

train is assumed to be infinite and running on a smooth track, where the two solutions 

converge. Therefore, the 2D approach can be considered as the limit of a 2.5D response for a 

train of an infinite speed. The results of any 2D analysis are therefore of limited quantitative 

value.  

The following sections represent a review of the recent history of railway tunnel modelling as 

well as what can be considered the “state of the art”. The review is split into different domains 

of vibration prediction by the designation of the ground and the number of tunnels present in 

the analysis.  

2.5 Modelling Vibrations in Circular Tunnels 

2.5.1 Single Circular Tunnel – Full Space 

Forrest & Hunt (2006a) presented a major step in the prediction of vibrations from 

underground railways with the development of the PiP model, a fully 3D analytical model 

computed in the frequency domain to study vibrations in the ground generated by the passage 

of trains in tunnels with a circular cross section, in an isotropic soil of infinite extent. The PiP 

model uses a full space so cannot accurately predict displacements at receptors on the surface, 

as there is no free surface present which would allow surface waves to form. The presence of 

the free surface is unlikely to affect the near field tunnel response allowing the model to 

provide information on how different configurations of tunnel support and track composition 

affect the propagation of waves into the ground. In the model, it was assumed that the only 

body forces acting on the tunnel are due to gravity, which is a reasonable assumption in the 

soft ground tunnelling conditions for which this model was developed. These body forces are 

ignored, with the force component in the governing Equations set to zero, as they are not 

required for the calculation of vibrations about an equilibrium position.  

Forrest & Hunt (2006a) showed that radial displacements from an unbounded tunnel, assumed 

to be an infinitely long thin-walled cylinder, reaches a peak when standing waves can develop 

within the cylindrical cross section of the tunnel. Figure 2-2 a shows these peaks for an 

unbounded tunnel, with n representing the mode number of each peak. When the thin-walled 

tunnel is modelled inside an isotropic full space (Figure 2-2 b) the pattern shown in Figure 2-2 a 

for the tunnel invert is lost, instead giving a smooth line which decreases with increasing 

frequency. This loss of resonance is due to radiation damping of the infinite soil surrounding 
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the tunnel. At points away from the tunnel invert, troughs in the displacement pattern are 

observed separated by a constant value frequency to c/2L, where c is the soil wave velocity 

and L is the distance from the tunnel invert. These represent points of interference between P 

and S-waves in the soil body.  

 

Figure 2-2: (a) Radial driving-point response (at invert) for an infinitely long, free thin-walled cylinder (radius 3.125 m 
and shell thickness 0.25 m). Resonant peaks are marked with mode numbers (n). – Shell theory, --- Continuum 

theory, -.-. FE periodic structure approach, …. free Euler beam (Forrest & Hunt (2006a), Figure 6). (b) Radial driving-
point response at invert for an infinitely long thin-walled cylinder embedded in a full space (radius 3.0 m and shell 

thickness 0.25 m) (Forrest & Hunt (2006a), Figure 9). 

Forrest & Hunt (2006b) extended the PiP model to account for a floating slab track, finding 

that resilient bearings do not reduce vibrations as much as simple theories predict. The softest 

slab bearings were found to reduce vibrations by only 6 dB and at some positions around a 

tunnel, floating slab tracks have been found to increase vibrations at high frequencies.  

In a state of the art review into the effect of seismic loading from earthquakes Tsinidis et al. 

(2020) shows that earthquakes have the potential to allow residual forces to develop in 

tunnels, which indicates that multiple earthquakes may exacerbate such problems through 

time. Viewing this from the context of train vibrations, if vibrations are capable of inducing 

residual forces in tunnels, even if they are minor, the frequency which a train tunnel is subject 

to vibrations could lead to long term issues in the liner.  

2.5.2 Single Circular Tunnel – Half Space 

Hussein et al. (2014) presents an updated version of the PiP model which extends the previous 

isotropic homogenous full space approach to an isotropic multi layered half space, 

incorporating boundaries within the soil as well as a free surface. Despite the added 

complexities in the model, it was still solved using a fully analytical approach. The near field 

tunnel displacements are calculated for a tunnel inside a full space, as the near field response 

of the tunnel-soil interaction is assumed not to be affected by layer interfaces or the free 

surface. This technique is synonymous with the method used for the full space PiP method. 

Soil displacements in the multi layered half space are calculated using Green’s functions using 

the direct stiffness method.  

(a)         (b) 
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In order to verify the method, Hussein et al. (2014) use several different modelling cases to 

compare results against a FEM-BEM model. Both methods give the same predicted vibrations 

for an isotropic full space, while in an isotropic half space there is found to be up to +/-10dB 

difference in the displacement at low overburden depth and frequency, which reduces to 

almost unity when the overburden depth and / or the frequency increases.  

Figure 2-3 shows the results for a layered half space for the FEM-BEM method and extended 

PiP method against the insertion gains comparing the two results. This shows that when the 

layer boundary is above the tunnel (at an elevation of -10 m) the two methods give 

comparable results; however, when the layer boundary is within the tunnel (at an elevation of 

-20 m) the two results show substantially different results. This second case disobeys the 

assumption that the tunnel response is not affected by soil layers, as that cannot be the case 

when the tunnel bisects a layer interface. This highlights a flaw in the method, with complex 

ground profiles not being suitable for the analytical PiP model. When a multi-layered half 

space is modelled using the extended PiP method and compared with FEM-BEM results, both 

give comparable ground responses (M.F.M. Hussein et al., 2014).  

 

Figure 2-3: Comparison of FE-BE model (column 1) against extended PiP (column 2) and insertion gains (column 3). 
Red = -ve, Blue =+ve, white=0. Modified from Hussein et al. (2014) Figure 17 

The soil layers modelled by Hussein et al. (2014) are horizontal; however, it is common for soil 

layers to be inclined following geological process. This is investigated by Jones et al. (2012) for 

a dry two layer system with a variable interface inclination angle and relative velocity of the 
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two layers. It is found that these changes lead to differences in the velocity of vibrations at 

different locations. If the upper layer has a velocity greater than the lower layer, the amplitude 

of vibrations are greater at the down dip side (Figure 2-4). If the converse situation is modelled 

the opposite occurs. This is because the waves refract at the inclined layer interface. The 

response agrees with the theoretical response predicted by the law of refraction for a wave 

passing through two layers of different seismic velocities at a non-normal angle of incidence.   

 

Figure 2-4: rms velocity along a surface with a 5 m layer inclined at various angles (solid line, 1o; dashed line, 3o; 
dash-dotted line, 5o). (a) C-upper layer > C-lower layer, (b) C-upper layer < C-lower layer. Modified from Jones et al. 

(2012) Figure 15 

Yuan et al. (2017) presented a semi analytical solution for vibrations due to a moving point 

load in a tunnel embedded in an isotropic half space. This model shows a similar accuracy to 

that of Hussein et al. (2014) for deep tunnels, but also gives a comparable solution to the FEM-

BEM method for shallow tunnels. Therefore, this form of semi analytical method would be 

more suitable than that of Hussein et al. (2014) if a tunnel is within two tunnel diameters of 

the ground surface.  

Yuan et al. (2017) determine the critical velocity for tunnels by applying different velocities to 

moving loads in the tunnel. It is found that the critical velocity of the ground is equal to the 

Rayleigh wave velocity for shallow tunnels. Critical velocity is defined as when the speed of the 

train is equal to the speed of the slowest seismic wave in the soil, typically the Rayleigh wave 

speed. When a train approaches the critical velocity the amplitudes of vibrations dramatically 

increase. This is because a feature, equivalent to a mach cone in front of a super-sonic plane, 

develops in front of the train causing a resonant effect to occur (Kece et al., 2019). This is a 

major problem for tracks founded on soft underlying geology, which have low Rayleigh wave 

velocity. Such effects have been found at Stilton Fen, United Kingdom, where even a modest 

train speed causes unsatisfactory vibration amplitudes (Connolly & Forde, 2015). Tunnels 
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excavated in rocks are likely to have a wave velocity sufficiently large to effectively remove this 

issue, with seismic velocities of rocks often being over 1000 m/s (Bandis et al., 1983). 

2.5.3 Single Circular Tunnel – Saturated Full Space 

The previously described models all consider a tunnel embedded in dry soil, whereas there is 

likely to be water within the soil. Zeng et al. (2014) and Di et al. (2016) apply the PiP method to 

model a poroelastic full space. Di et al. (2016) use Biot’s saturated porous medium to simulate 

the soil and allow for the presence of a grouted layer, a common construction technique when 

tunnelling in saturated ground, by adding an additional shell around the shell which represents 

the tunnel. It is found that neglecting pore water pressures could lead to erroneous 

predictions of shear and normal dynamic stresses.  

In order to investigate the effect of this water on vibration transmission, Yuan et al. (2015) use 

a theoretical study of a tunnel buried in a 2D full space composed of saturated poroelastic soil 

subject to a moving point load. His allows the critical velocity and the dynamic characteristics 

of the system to be investigated. The model used in the study was conducted longitudinally to 

the tunnel, with the tunnel and track modelled as a single Euler-Bernoulli beam. The method 

of modelling a Euler-Bernoulli beam for a tunnel with an internal dynamic load is also adopted 

by Metrikine & Vrouwenvelder (2000) and Koziol et al. (2008); however, these studies only 

model dry cases. This method is only valid for very low frequency vibrations, as a large 

wavelength is required in the ground for the tunnel not to significantly interfere with the 

wave. This low frequency cut off is higher for smaller tunnels and stiffer ground, although it 

cannot capture the entire response of the system. Equally, propagation of waves out of the 

plane of the model are not modelled, further diverging the model results from reality. Despite 

this, results can be inferred with Yuan et al. (2015) finding that the critical velocity of the 

tunnel system studied was equal to 0.7 times the S-wave velocity of the surrounding medium. 

The peak response of the system is found to reduce with an increase in permeability. A higher 

permeability is also found to slightly lower the critical velocity of the system.  

Yuan et al. (2016) used a semi-analytical method to investigate the effect of a harmonic point 

load in a tunnel embedded in a saturated poroelastic full space on pore pressure, 

displacements and stresses surrounding a tunnel. The sensitivity of these metrics were 

compared to different loading frequencies and soil permeability. This study extends the earlier 

work of Yuan et al. (2015) to 3 dimensions. A full space is adopted as surface waves are not 

likely to influence the near tunnel response of a deeply buried tunnel. Therefore, the results of 
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this study are likely to only be correct for deeply buried tunnels. The tunnel is assumed to have 

an impermeable liner, which was fully bonded to the surrounding soil.  

Figure 2-5 shows the free field response to a point load applied at tunnel invert for radial 

displacement, circumferential displacement, and pore pressure for a deep tunnel. All plots in 

Figure 2-5 show a symmetrical pattern about the tunnel centreline, as the models are 

symmetrical about this point.  

 

Figure 2-5: The response amplitude in the free field for a loading frequency of 10 Hz. (a) solid radial displacement; 
(b) solid circumferential displacement; (c) pore pressure. From Yuan et al. (2016), Figure 8. 

Figure 2-6 shows how the distribution of pore pressure changes with a change in the loading 

frequency. At 10 Hz, shown by the left hand plot in Figure 2-6, the increase in pore pressure is 

in the invert and side walls, while at 80 Hz, shown by the right hand plot, the increases occur 

all around the tunnel, including the tunnel crown. Therefore, as the excitation frequency 

increases the influence of pore pressure on the tunnel lining is likely to increase.  
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Figure 2-6: Pore Pressure surrounding the tunnel. Left hand plot loading frequency of 10 Hz. Right hand plot loading 
frequency of 80 Hz. Modified from Yuan et al. (2016) Figures 12 and 13 

Radial stresses around a tunnel are also found to be affected by the loading frequency. Figure 

2-7 shows the effect of a low load frequency (10 Hz) and a high load frequency (80 Hz) on 

radial stresses. At low frequencies, the maximum stresses radiate downwards and outwards 

from the tunnel invert and walls, with only a small amount of stress radiated upwards. At 

higher frequencies, the stresses can radiate outwards at more locations around the tunnel due 

to interaction between the shorter wavelength waves and the tunnel lining.  

 

Figure 2-7: Radial stress surrounding the tunnel. Left hand plot loading frequency of 10 Hz. Right hand plot loading 
frequency of 80 Hz. Modified from Yuan et al. (2016) Figures 14 and 15 

2.5.4 Single Circular Tunnel – Saturated Half Space 

Zhou et al. (2017) introduced an efficient method for calculating the vibration from a 

poroelastic half space in 3D, by modifying the PiP method. This method considers the effect of 

the ground surface, so is more likely to represent a real-world scenario when the tunnel is not 

deeply buried, compared to Yuan et al. (2016) who considered a full space. Similar to other 
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approaches, the tunnel / soil interaction is modelled in an initial step by assuming that the 

near field response of the soil is not affected by the free surface.  

Zhou et al. (2017) found that surface displacements are greatest at low excitation frequencies 

but reduce as the frequency increases (Figure 2-8). The reduction occurs in an undulating 

fashion with peaks and troughs at regular intervals related to the interference between P and 

S-waves. The permeability of the soil changes the spacing of these peaks and troughs by 

changing the P-wave speed, with the S-wave speed being largely unaffected by increased 

permeability, and therefore water content. A highly permeable soil will have closer spaced 

peaks than a less permeable soil, as this is manifested as a slower P-wave velocity. The 

reduction of the magnitude of displacement with a higher frequency is due to increased 

material damping. Figure 2-8 also shows that a single phase, dry, soil has a higher 

displacement than the two-phase saturated soils modelled. This is particularly evident at 

higher frequencies leading to over prediction of surface displacements if ground water is not 

considered.  

 

Figure 2-8: Displacement magnitude of soil surface above a tunnel at 10 m depth. (a) 0 m offset; (b) 20 m offset. 
From Zhou et al. (2017) Figure 6 

Yuan et al. (2018) develop a model for vibrations from a tunnel within a layered half space 

using a semi-analytical solution under the influence of hydraulic boundary conditions at 

scattering surfaces. The layering of the model comes from a variable thickness dry soil layer on 

top of a saturated poroelastic half space, which also allows for a moving ground water table. 

This situation of having a moving ground water table can give uncertainties in vibrations of up 

to 20dB.  

Yuan et al. (2018) investigate the influence of different boundary conditions at the fluid 

boundaries in a model; the tunnel-soil boundary and the soil-soil boundary between the 

saturated soil and dry soil. When encountered in a real soil body, neither of these boundaries 

are fully permeable or fully impermeable, but both end member cases have been studied to 

determine the effect that these common modelling assumptions have on vibration levels and 
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therefore modelling uncertainty. It is found that a fully impermeable soil-soil boundary gives 

20 dB greater vibrations than a fully permeable boundary. Regarding the tunnel-soil boundary, 

at low frequencies the response of both boundary types is the same with differences found at 

frequencies over approximately 40 Hz. At this frequency, the impermeable boundary shows 

vibrations approximately 5 dB greater than the permeable boundary. However, the effect of 

the boundaries depends on the orientation of the displacement being measured, with a 

greater effect for vertical and longitudinal displacement than transverse displacement. 

Interference was present in the frequency-displacement domain but occurring at different 

frequencies depending on the boundary type, indicating that some degree of phase change 

occurs due to the different hydraulic boundary conditions.  

The tunnel-soil boundary is found to cause changes in pore pressure, with a sealed boundary 

giving greater pore pressures at frequencies higher than 20 Hz (Yuan et al., 2018). Below this 

frequency, the wavelength is too large to be affected by the tunnel.  

Yuan et al. (2018) found that changing the depth to the water table changes the response of 

the ground to vibrations in the transverse and vertical directions. It is found that a deeper 

ground water level causes greater soil displacement in both directions studied. The 

interference pattern also alters, increasing the lateral distance between the maximum points 

of interference. However, the displacement in the far field is not affected by the ground water 

level. The difference between fully saturated ground and dry ground is found to be up to 20 dB 

(Yuan et al., 2018). 

2.6 Modelling Vibrations in Twin Circular Tunnels 

The effect of a neighbouring tunnel is often neglected in vibration prediction studies. Twin 

tunnels are common in urban environments, allowing separate bores for inbound and 

outbound trains. Twin tunnels can be studied in both a static setting and dynamic setting with 

incident seismic waves; however, the interaction between internally dynamically loaded twin 

tunnels typically receives less attention. Sheng et al. (2005) use a wavenumber FEM-BEM 

model to compare surface vibrations of a single double-track tunnel and a pair of single-track 

tunnels. It is found that the single double-track tunnel produces greater surface vibration 

levels than twin single track tunnels.  

2.6.1 Twin Circular Tunnels – Full Space 

Kuo et al. (2011) assess the effect of a twin tunnel on the propagation of ground borne noise 

form railway tunnels embedded in a homogenous elastic full space. It is assumed that there is 

a dynamic load in only one tunnel at a time. This model adopts the techniques applied in the 
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Pipe-in-Pipe model, developed by Forrest & Hunt (2006a), for a twin tunnel model and 

therefore represents a fully 3D analytical model, therefore being a more efficient method than 

that employed by Sheng et al. (2005). The vibrations response of the two-cavity system is 

calculated from the super position of two single cavity displacement fields (Figure 2-9).  

 

Figure 2-9: Tractions (Q1 and Q2) are the sum of two single cavity systems with traction vectors acting on a single 
cavity (F1 F2) and the traction vectors induced by the neighbouring cavity (G1 G2). From Kuo et al. (2011) Figure 5 

Kuo et al. (2011) investigate the effect of tunnel position and support thickness in twin tunnels. 

The effects of each of these are found to be frequency dependent, with higher frequencies 

interacting more with the secondary tunnel due to a shorter wavelength, when compared to 

low frequency waves. Both increases and decreases in vibration amplitude are observed, 

depending on the location of the measurement point. Greatest increases are found on the free 

field side of the second tunnel.  

He et al. (2018) developed an innovative approach to modelling a 3D full space containing twin 

tunnels by splitting the full space along a vertical line between the two tunnels creating two 

half spaces. With each half space therefore containing a single tunnel. Wave transformations 

were used to satisfy the boundary conditions between the half space and the tunnel. It was 

found that if the separation between neighbouring tunnels is less than three times the tunnel 

diameter the interaction between the tunnels can cause insertion gains on the order of 20 dB 

at the ground surface with a greater difference observed at higher frequencies, supporting the 

conclusions of earlier work.  

2.6.2 Twin Circular Tunnels – Half Space 

Hamad et al. (2015) investigate the dynamic interaction of twin tunnels in a homogenous half 

space using two different models: a fully coupled model where two cavities are modelled in 

the half space and a superposition model where two single tunnel models are superimposed 

giving the ground response of a twin tunnel model. The composition of both models is 

otherwise the same, with the tunnel modelled using the cylindrical thin shell theory and the 

half space soil simulated using the boundary element method. The model is assumed to be 
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invariant in the out of plane direction allowing a 2.5D approach to be adopted. Insertion gains 

of up to +/-10 dB in the transverse direction, +/-20 dB in the longitudinal direction and +/- 10 

dB in the vertical direction could be found when a second tunnel is modelled. Additionally, it is 

shown that the more computationally efficient superposition method gives comparable results 

to the fully coupled method, with negligible errors of less than 0.5 dB, suggesting that the 

analytical method of Kuo et al. (2011) also gives a high degree of accuracy.  

He et al. (2019) improve on previous work by developing a 2.5D semi-analytical twin tunnel 

model with a multi layered half space (Figure 2-10). An entirely new modelling approach is 

needed from He et al. (2018) as the coupled half spaces used previously will not allow for 

internal layering or a free surface. The second tunnel, layer boundaries and free surface 

created in this model provide multiple scattering surfaces giving significant difference in 

ground vibrations, when compared to a single tunnel model. The solution for the dynamic 

interaction between twin tunnels is obtained by means of the compatibility of displacements 

and equilibrium of stresses at the tunnel-soil interfaces.  

 

Figure 2-10: Model of a multi-layered half space with twin tunnels embedded in a single isotropic layer. From He et 
al. (2019) Figure 1 

He et al. (2019) investigate the scenarios where a single tunnel contains a dynamic source, like 

previous studies, as well as the scenario where both tunnels contain a dynamic source. The 

results for the single tunnel case are similar to those of other researchers, with increased 

surface displacements being observed on the free field side of the second tunnel with these 

displacements also being frequency dependent. When a train is running in the second tunnel it 

is found that surface displacements reduce on the free field side of the second tunnel, 

although there are greater displacements between the twin tunnels (Figure 2-11).  



26 
 

 

Figure 2-11: Vertical displacements on the ground surface by (a) line load applied to right hand tunnel, (b) line loads 
applied to both tunnels, (c) Insertion Gains comparing a and b. From He et al. (2019) Figure 11 

He et al. (2019) find that the stiffness of the soil layers effects the surface displacements from 

dynamic loading of the tunnels. This is investigated using a three-layer model, where the 

tunnels are embedded wholly in the central layer. The stiffness of the soil above and 

surrounding the tunnel has a significant impact on the dynamic interaction of the twin tunnels, 

while the soil below the tunnel has a minor impact on the dynamic interaction.  

Yuan, Boström, Cai, et al. (2019a) present a solution for calculating the effect of a neighbouring 

tunnel on vibrations using an analytical approach. The solution uses a novel way of accounting 

for the multiple scattering effects of the two tunnels, in an otherwise simple model of elastic 

hollow cylinders within a full space with two cavities. Although it is less advanced 

geometrically than the multi-layered approach used by He et al. (2019) it should be more 

computationally efficient for modelling similar situations. The method of Yuan, Boström, Cai, 

et al. (2019a) also allows for arbitrary angles between the two tunnels. It is found that the 

separation angle has little effect on the vertical displacement of the dynamically loaded tunnel 

invert but can induce large differences at locations away from this. Results for piggy-backed 

tunnels are given using the PiP method by Clot et al. (2016), although this study does not give 

results for arbitrary angles and is modelled as a full space. The results for side-by-side tunnels 

from Yuan, Boström, Cai, et al. (2019a) are contemporary with the previously described 

research, finding that the location of measurement and the excitation frequency dictate the 

differences between a single tunnel model and a twin tunnel model.  

2.6.3 Twin Circular Tunnels – Saturated  

Yuan, Boström, Cai, et al. (2019b) develop an analytical wave function method for calculating 

vibrations from two tunnels embedded in a saturated poroelastic full space. The wave field in 

the full space was assessed using the principles of superposition. Due to the presence of water 
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in the model it is necessary to adopt hydraulic boundary conditions for the tunnel-soil 

interface, where an impermeable boundary is assumed. It is found that the soil permeability 

has no effect on the tunnel inverts vertical displacement; however, an increase in the 

permeability and excitation frequency causes a decrease in displacement magnitudes for 

transverse movement. Directly above the tunnels in the model it is found that an increase in 

soil permeability leads to a decrease in displacement, both vertically and transversely, at high 

frequencies. Pore pressure is found to increase at the tunnel invert in low permeability soils 

with a low excitation frequency, while only high excitation frequencies cause a difference in 

pore pressure for different permeabilities at points further away from the tunnel. 

Yuan, Boström, & Cai (2019) extend the work of Yuan, Boström, Cai, et al. (2019b) by 

developing a semi-analytical solution for twin tunnels embedded in a saturated poroelastic 

half space. It is found that the half space model predicted up to 20dB greater displacements 

than the full space model, when measured at the same equivalent ground surface elevation.  

2.7 Modelling Jointing and Discontinuities  

Tunnels are not only excavated through materials that can be considered as a continuum. 

Tunnels excavated through rocks will be affected by the presence of joints in the rock mass. 

Such situations are studied by Eitzenberger (2012) and Eitzenberger et al. (2011) who use the 

coupled discrete element-finite difference method in the Universal Discrete Element Code 

(UDEC) to assess how joints in a rock mass affect transmission in 2D models solved in the time-

domain. Eitzenberger et al. (2011) models a square, unsupported tunnel to determine the 

effect of a changing overburden and the presence and properties of single horizontal 

discontinuities on the peak particle velocity (PPV) at a horizontal free surface. It is found that 

as the overburden increases the PPV reduces, with the maximum vertical PPV found directly 

above the tunnel and maximum horizontal PPV at two to three tunnel widths from the centre 

of the tunnel. When a joint is modelled above the tunnel floor the PPV at the free surface 

decreases, while if the joint is modelled below the tunnel floor the PPV increases. It is also 

found that when a joints stiffness is high, vibrations from the tunnel are not affected by the 

presence of the joint, while low stiffness joints exacerbate the effects found when the joint 

location is changed. Eitzenberger (2012) built upon this work by modelling further cases to 

assess the effect of tunnels. Using a horseshoe shaped tunnel with a flat invert, the effects of 

the discontinuity position, dip angle, joint spacing and the number of sets of discontinuities are 

assessed. It is found that inclined joints give local maxima and minima in different places to 

horizontal joints, with energy transmitted along intact blocks. It is also found that when the 

joint spacing is small (5m) the model performs equivalently to an isotropic continuum model. 
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When two sets of dipping discontinuities, which run perpendicular to one another, are 

modelled it is found that the model performs similarly to the isotropic continuum as well. This 

is taken as meaning that as the joint spacing decreases or the number of joint sets increases 

the model will behave more like a continuum. A final model assesses how the effect of large, 

disturbed zones, like faults, and weakened surface zones, like a weathered rock mass, affect 

PPV at a free surface. It is found that when a faulted zone is modelled energy can become 

trapped in this zone, increasing the PPV where the zone daylights the surface. When a 

weakened horizontal layer is modelled, a low material stiffness and a high thickness increases 

the PPV at the free surface. In Eitzenberger (2012) and Eitzenberger et al. (2011) the tunnel is 

dynamically loaded using a velocity history comprising of a sine wave of a single frequency. 

The frequency modelled is 100 Hz in Eitzenberger et al. (2011) and 125Hz in Eitzenberger 

(2012). These cannot be considered as realistic train loading, so the study does lose some 

relevance to the field from this. However, as a first of its kind analysis of the dynamic 

interaction of train tunnels in jointed rock masses it does have some scientific merit. Avci et al. 

(2020) also study vibrations from trains in tunnels embedded in rock using a 2D plane strain 

finite element model. This study only considers the rock to be a very stiff continuum rather 

than a discontinuum, and arguably could be considered to not capture the inherent 

heterogeneity of a realistic rock mass. Other more generalised studies of vibrations in jointed 

rock masses are conducted by Pyrak-Nolte et al. (1990), Cai & Zhao (2000) and Zhao et al. 

(2006), among others. These studies are conducted using physical and numerical models, with 

generalised analytical Equations derived for a range of situations. There is considerable scope 

to study the role of joints and realistic rock masses in vibrations from train tunnels, building on 

the early work which is highlighted above. A more detailed overview of stress wave 

transmission through jointed rock masses is given in Chapter 3.  

2.8 Further Influences on Tunnel Vibrations 

The single tunnel studies already discussed cover a wide range of cases including full spaces, 

half spaces and saturated ground. However, there are numerous different scenarios possible in 

tunnelling which can influence ground vibrations.  

Jones & Hunt (2011) include the presence of voids at the tunnel-soil interface. Other models 

discussed assume a perfectly bonded tunnel-soil interface; however, in reality this is seldom 

the case. A semi-analytical model is used which is based upon the PiP method. Voids are 

incorporated by uncoupling nodes along the tunnel-soil interface, which itself is within a fully 

3D isotropic full space. This approach is to determine how voids affect transmission of energy 

into the soil, so modelling a full space is an appropriate simplification. The effect of the void is 
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related to the size of the void and the excitation frequency, which gives different wavelengths. 

When a void has a comparable size to that of the wavelength of an incident wave, the void 

affects transmission, while if the void is considerably smaller than the wavelength there is 

negligible effect. Examples given in this study are that a 2 m long void will not affect a 25 m 

wavelength wave while it will affect a 13 m wavelength wave. Therefore, higher excitation 

frequencies tend to be affected more by voids with uncertainties of up to +/-5 dB in the near 

field (i.e. directly surrounding the tunnel). The changes in vibration levels are brought about by 

transmission of vibrations being supressed around a void, with energy concentrated outside of 

this, giving minimum areas of transmission in the void and maximum areas of transmission 

outside of the void.  

Another hitherto unconsidered cause of possible error in ground vibration predictions from 

single underground railways is the effect of the excavation damage zone. During tunnel 

excavation the ground surrounding the tunnel relaxes, causing large strains to develop in the 

soil which reduces the strength of the remaining material. This is a well-known phenomenon in 

tunnelling and is referred to as the excavation damage zone (EDZ) (Brady and Brown, 2006). 

Ruiz et al. (2019) includes the effects of an EDZ in a railway vibration model by modelling the 

tunnel in two connected pieces of software. Initially the commercial FEM software Plaxis is 

used to model the reduction in stiffness due to the tunnel excavation. From this, the reduced 

ground stiffness is output and input as the ground stiffness in a railway vibration model. The 

railway vibration model is run with both disturbed and undisturbed parameters in order to 

assess the effect a disturbed zone had on the transmission of vibrations from the tunnel. It is 

found that the disturbance increases the transmission of high frequency waves directly above 

the tunnel, but with minor change at low frequencies. Troughs in the transfer function caused 

by interference of P and S-waves are moved to lower frequencies as the disturbance increases. 

The changes in vibration amplitude and the movement of the interference pattern in transfer 

functions reduce as the lateral distance increases. This is because at large lateral distances the 

transfer function is dictated by the original soil properties, while at small distances much of the 

ground in the wave transmission pathway is disturbed, so the disturbed properties dictate the 

response of the transfer function.  

The previously described case studies only consider tunnels of a circular cross section. While 

this may be the case for bored tunnels, it is less likely to be an efficient construction profile for 

tunnels constructed using other approaches. The need to drive machinery into a tunnel will 

necessitate a flat invert in these situations, giving rise to other shapes such as horseshoes. 

Gupta et al. (2009) investigates this with the use of a coupled FEM-BEM model with tunnels of 
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a circular, horseshoe and square cross section of equivalent area. It is found that the tunnel 

shape does not have a large effect on the vibrations of the ground in the far field, provided an 

equivalent circular cross section is modelled, as shown by Figure 2-12. However, close to the 

tunnel the geometry of the tunnel should be considered, as a square tunnel behaves 

differently to a circular / ovoid tunnel in this area.  

 

Figure 2-12: Effect of different tunnel shapes of an equivalent size at points in the free field. A) free surface, 0 m 
offset; b) free surface, 16 m offset; c) free surface, 64 m offset; d) 4 m below free surface, 0 m offset; e) 4 m below 

free surface, 16 m offset; f) 4 m below free surface, 64 m offset. Free surface 24 m above tunnel invert. Circular 
tunnel has a radius of 4.56 m and a 0.7 m thick liner. Circular tunnel (solid line), ovoid tunnel (dashed line), square 

tunnel (dash-dotted line). From Gupta et al. (2009) Figure 31 

2.9 Tunnel Vibrations in Anisotropic Conditions 

There has been a small body of research which tries to examine the effect of anisotropic 

ground conditions on railway vibrations, most of which has been conducted in soft ground 

conditions (Rieckh et al., 2012; Ai and Ren, 2016; Gao et al., 2018; Ba et al., 2019). Anisotropy 

in the ground is an aspect of the seismic response of tunnels which Tsinidis et al. (2020) 

identified as being an unexplored. This study does not concern vibrations from within the 

tunnel, such as trains, but looks into the effect of earthquakes and other external seismic 

loadings. Despite this difference in scenario, the same factors are likely to be important in the 

response of tunnels regardless of the source of the vibration.   

Rieckh et al. (2012) presents a study of vibrations from an underground railway in a layered 

anisotropic half space using a 3D BEM model. The model contains a transversely isotropic layer 

using the boundary element method in 3D. The model is set up with three layers, two of which 

are isotropic and the upper layer being transversely isotropic, which is directly below the free 

surface. The tunnel is embedded in all layers, with the invert and tunnel walls in the isotropic 

layers and the crown in the transversely isotropic layer. The results for this show that on the 
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ground surface directly above the tunnel an increase in the Eh:Ev ratio increases displacement, 

while at a lateral offset of 5m the opposite is true. The results are not discussed in any depth 

and no mechanisms are proposed for the observed effects. Studies considering truly anisotropic 

ground conditions, where the entire model is anisotropic, are limited to embankment lines and 

have studied both dry (Lu et al., 2006) and saturated mediums (Zhan et al., 2014; Gao et al., 

2018) as well as multi layered ground (Ba et al., 2019).  

Gao et al. (2018) investigates the effects of saturated anisotropic material properties on 

ground vibrations and excess pore pressure, excited by a moving train load on an 

embankment. This is not in a tunnel, so the quantitative results are unlikely to be directly 

applicable to the subject of this thesis; however, the qualitative results will highlight possible 

effects from underground tunnels due to soil anisotropy. The soil in this study is modelled as 

transversely isotropic with anisotropic ratio’s (Eh:Ev) of between 0.7 and 1.15. It is found that 

there is an increase in the peak vertical displacement of up to 1.5mm when the Eh:Ev ratio 

increases from minimum to maximum across the studied range. This displacement effect is 

thought to be caused by the increase in Eh having a confining effect on the soil body. Excess 

pore pressure is found to increase below the track, when Eh:Ev increased from 0.7 to 1.15.   

Ba et al. (2019) studies an embankment railway on a multi layered transversely isotropic half 

space using an efficient semi-analytical approach adopting Green’s functions to model wave 

propagation in the soil. This study models Eh:Ev ratios of between 0.5 and 2.0. Similar to Gao et 

al. (2018), it is found that the Eh:Ev ratio causes the vertical displacement of a point near a 

railway track to increase when Eh>Ev and to reduce when Eh<Ev (Figure 2-13). The distance to 

the measurement point, shown by x/B in Figure 2-13, and the load speed, shown by c*, affect 

the vertical displacement response for different values of Eh:Ev. These studies show that an 

anisotropic material has a significant impact on ground vibrations from moving train loads, so 

the same is likely to be true for trains running in tunnels.  
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Figure 2-13: Effect of changing the TI (Transversely Isotropic) ratio on ground vertical displacement response for a 
homogenous transversely isotropic material. w0 = vertical displacement of measurement point. From Ba et al. (2019) 

Figure 4 

Additional considerations of tunnelling in anisotropic ground is the effect of strain softening 

during excavation. Zymnis et al. (2013) found that excavating a tunnel in transversely isotropic 

soil causes a greater degree of strain to develop perpendicular to the plane of isotropy. Ruiz et 

al. (2019) studies the effects of the excavation damage zone on future railway vibrations in an 

isotropic soil. Combining the approach of Ruiz et al. (2019) with an anisotropic soil model could 

lead to a greater degree of softening of the surrounding ground, which may amplify the effects 

of the excavation damage zone.  

2.10 Possible Research Areas 

As can be seen from the literature review and summarised in Table 2-1 (see below), there has 

been considerable research into tunnels in a variety of settings and ground conditions. This 

work is conducted solely in soils with isotropic material parameters. The above discussion also 

shows that anisotropic ground can cause a meaningful change in the response of the ground 

under excitation from a moving train load. With such little research conducted into train 

vibrations in anisotropic ground conditions there is a considerable scope for future research in 

the area.  
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There are many other avenues for research into tunnels in anisotropic ground conditions. 

These include analyses which consider:  

 Full space and half space; 

 Homogenous and layered; 

 Wet and dry; 

 Single and Double Tunnels. 

Train vibrations in anisotropic ground conditions are an undeveloped vein of research. As such, 

there is scope to cover much of the work discussed in the literature review, which will be of 

scientific merit due to the new ground conditions being considered. 

Jointed rock masses can have anisotropic material properties and are not extensively studied 

in the context of rail vibrations. This is with the exception of Eitzenberger (2012) who did 

studies the transmission of train vibrations through jointed materials; however, these are 

never considered as anisotropic materials. Therefore, there remains considerable scope to 

investigate train vibrations in anisotropic jointed rock masses. Jointed rock masses are 

common in nature and often have tunnels bored through them. As such it is highly likely that 

rail vibrations will be transmitted through jointed rock masses. There are a number of aspects 

of the transmission of stress waves through jointed materials which can be investigated. These 

include the relative roles of joint and block properties and geometries, and the potential 

presence of resonance, an effect which is eluded to by Eitzenberger (2012), although it is not 

studied. Another aspect of jointed rock masses which merits investigation is the use of 

equivalent materials. Modelling using equivalent materials has the potential to alter the 

transmission of stress waves from a source, despite both materials being considered as being 

the same. Therefore, investigation into what conditions can be modelled as equivalent 

materials is a useful aspect which requires further research.  

 

“It is a capital mistake to theorize before you have all the evidence. It biases the 
judgment.” – Sherlock Holmes 

(Doyle, 2014, pg.21) 
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Table 2-1: Comparison of selected references showing their research area and how current state of the art research has progressed. Modelling assumptions are given in mutually 
exclusive pairs in the header. X shows that the model has applied a certain assumption. 

Reference Isotropic Anisotropic Full 
Space 

Half 
Space 

Homogenous Layered Dry Wet Single 
Track 

Double 
Track 

Tunnel Embankment Comments 

(Forrest and Hunt, 
2006a) x  x  x  x  x  x  

Initial presentation of PiP 
model. 

(Forrest and Hunt, 
2006b) x  x  x  x  x  x  

Extended the PiP model 
to include a floating slab 
track. 

(Jones and Hunt, 2011) 

x  x  x  x  x  x  

Assessed the effects of 
voids present at the 
tunnel-soil interface. 

(Yang et al., 2017) 
x   x x  x  x  x  

Comparison of 2D and 
2.5D FEM results. 

(Yuan et al., 2017) 

x   x x  x  x  x  

Similar to Hussein et al. 
(2014) but capable of 
modelling tunnels close to 
ground surface. 

(Ruiz et al., 2019) 

x   x x  x  x  x  

Assessing the effects of 
tunnel excavation 
damage on future 
vibrations.  

(M.F.M. Hussein et al., 
2014) x   x  x x  x  x  

Extending PiP to multi 
layered half space. 

(Yuan et al., 2015) 
x  x  x   x x  x  

Tunnel in full space with 
water in a 2D long 
section. 

(Yuan et al., 2016) 
x  x  x   x x  x  

Tunnel in full space with 
water in 3D. 

(Zhou et al., 2017) 
x   x x   x x  x  

Tunnel in half space with 
water in 3D. 
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(Yuan et al., 2018) 
x   x  x  x x  x  

Tunnel in a layered half 
space with water in 3D. 

(Kuo et al., 2011) 
x  x  x  x   x x  

Twin tunnels in full space 
using superposition. 

(He et al., 2018) 

x  x  x  x   x x  

Novel approach using two 
vertically joined half 
spaces for Twin tunnels in 
full space. 

(Yuan, Boström, Cai, et 
al., 2019a) x  x  x  x   x x  

Twin tunnels in half space 
with water. 

(Sheng et al., 2005) 

x   x x  x   x x  

Comparison of twin 
tunnel and equivalent 
double track single tunnel 
using FEM-BEM. 

(Hamad et al., 2015) 

x   x x  x   x x  

Comparing superposition 
and a fully coupled 
models of twin tunnels in 
homogeneous half space. 

(He et al., 2019) 
x   x  x x   x x  

Twin Tunnels in layered 
half space. 

(Yuan, Boström, Cai, et 
al., 2019b) x  x  x   x  x x  

Twin tunnels in full space 
with water. 

(Yuan, Boström and Cai, 
2019) x   x x   x  x x  

Twin tunnels in layered 
half space with water. 

(Gao et al., 2018) 
 x  x x   x x   x 

Embankment on a 
transversely isotropic half 
space. 

(Ba et al., 2019) 
 x  x  x x  x   x 

Embankment on layered 
anisotropic soil. 
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3 Anisotropy 

 

“A review of anisotropic material, 
A vein of work, almost arterial. 

From stress and geological creation, 
This provides a background for my studies fixation.” 

 

 
© Army of Cats 2023  
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3.1 Introduction 

The previous Chapter introduces the train vibration research in anisotropic materials, although 

it does not go into how anisotropic materials form. This Chapter focuses on what is meant by a 

material being anisotropic.  

3.2 What is Anisotropy  

Anisotropy is the term used to describe materials which have different properties in different 

directions. Isotropic materials, which have largely been the subject of train vibration studies, 

have the same stiffness in all directions. However, it is possible for natural materials to have 

different material properties depending on the direction in which they are measured.  

There are a range of different types of anisotropic materials. Three common types are 

transversely isotropic, orthotropic, and fully anisotropic materials (Schoenberg and Sayers, 

1995). Transversely isotropic materials have a plane of isotropy, where the material properties 

in a plane are the same, with the out of plane direction having different properties. These are 

characterised by having five different independent material properties. Orthotropic materials 

have different material properties in three perpendicular planes, which require nine 

independent material properties to define them. Anisotropic materials have different material 

properties in all directions, requiring 21 independent material properties.  

Anisotropy is the de facto condition of natural deposits in the real world (Barton and Quadros, 

2015). All stages in the deposition and deformation of natural deposits can lead to the 

development of anisotropy. Consequently, it is unlikely that tunnels will be excavated solely in 

isotropic materials. Considering this, and in the context of this thesis, it begs the question: why 

has so much research into underground railway vibrations been conducted in isotropic 

materials? Perhaps the degree of anisotropy is not typically significant, or it has negligible 

effect on the propagation of vibrations. The following sections will try to answer this question, 

starting with an overview of how geological processes can cause anisotropy, followed by a 

discussion of current research into vibrations in anisotropic conditions.  

3.3 Inherent Anisotropy 

Anisotropy can be created in a natural deposit through a wide variety of geological processes. 

Anisotropy related to the geological history of a deposit is referred to as inherent anisotropy.  

During sedimentary deposition, particles in a deposit may align due to the mode of deposition, 

with laminations and bedding forming due to changes in the sedimentation cycle. Figure 3-1 

shows bedding and laminations in Devonian aged varved thermally stratified lake sediments of 
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the Orcadian Basin  (Andrews et al., 2010), exposed at Spittal Quarry in Caithness, Scotland. 

The changing shades of the deposits represent seasonal changes in the mode of deposition. 

The yellowy-brown laminations are clastic sediments which are deposited when storms bring 

material eroded from the land surrounding the basin in the winter, the light creamy coloured 

laminations are carbonates precipitated from the water body during the warm summer and 

the dark grey bands are organic carbon deposits from the death of living things in the lake 

water. This produces couplets or triplets of laminae representing annual deposition. Bedding in 

this rock mass is highlighted in Figure 3-1a by the small benches formed. The bedding 

represents a weakness in the rock mass not seen in the regular fine laminations and has been 

exploited during quarry workings as preferential weaknesses to aid excavation. These beds 

form where the lake periodically dried out and represent a disconformity. Due to these regular 

parallel horizontal weaknesses the rock mass will behave as a transversely isotropic material, 

having a lower elastic stiffness in the vertical direction than in the more continuous horizontal 

direction. Equally, the intact blocks between bedding will also behave as a transversely 

isotropic material due to the stiffness variations in the small-scale laminations. In the case of 

the rocks in Figure 3-1 the plane of isotropy is horizontal, with the vertical direction having 

different material parameters due to the presence of the sedimentary layering. The degree of 

anisotropy can be represented by the ratio between the stiffness in the plane of isotropy to 

the stiffness in the perpendicular direction. The rock mass in Figure 3-1 a will have significantly 

different stiffnesses, showing a large degree of anisotropy, in comparison to Figure 3-1b, 

whose material properties in the vertical and horizontal direction will be different although not 

significantly different from each other. This is due to the presence of the discontinuities 

representing the bedding planes. This difference in stiffness is shown schematically using the 

tensors in Figure 3-1. The pattern of horizontally orientated sedimentary features as shown in 

Figure 3-1 b are typical of sedimentary basins, so transversely isotropic material properties can 

be expected in natural deposits.  
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Figure 3-1: Laminations in a varved sediment of the Orcadian Basin shown on a saw cut quarry face. a) larger scale 
bedding features; b) smaller scale laminations, with diagonal striations formed due to the cutting process. Tensor 

arrows show the relative stiffness of the material. Spittal Quarry, Caithness, Scotland 

It is not only deposition which can cause the persistent features which give rise to anisotropy. 

Metamorphism, the process by which a rock mass is modified by stress and / or temperature 

and can cause minerals to re-align to the local stress regime which the rock mass is subject to 

(Bucher and Grapes, 2011). This re-alignment is not dependent upon the orientation of 

anisotropy in the original material, the protolith. Slate is a common low-grade metamorphic 

rock with a well-developed foliated structure showing transversely isotropic behaviour, with 

the plane of isotropy aligned with the maximum principal stress during metamorphism.  

Anisotropy can also be observed in igneous rock, such as columnar jointed basalt (Figure 3-2). 

Columnar joints form when an igneous body cools and contracts forming a series of 

circumferential cracks around a central, commonly hexagonal, intact body (Phillips et al., 

2013). Although the intact body could be thought of as an isotropic material, it can itself show 

layering perpendicular to the columnar jointing (Figure 3-2 b). These features can be observed 

at many famous locations across the world including extensively on the isle of Staffa in the 

Hebrides.  

b) a) 
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Figure 3-2: Columnar jointing from Staffa. A) clear columnar jointing in Unit 2; b) horizontal striae in columns; c) top 
view of columns showing hexagonal pattern. From Phillips et al. (2013) Figure 5 

Anisotropy can develop in rock masses due to many other processes than those discussed 

above. One such process, which can lead to the development of jointing is the role of 

tectonics. Tectonic forces can cause changes in the stresses present within the earth’s crust 

which can lead to stresses which can exceed the strength of the host rock, which are released 

through shearing and the development of joints. Additional joints will introduce weaknesses in 

a rock mass, causing a change in the material properties of the rock.  

The above discussion briefly describes some causes of anisotropy which can be observed in 

natural deposits. This is by no means an exhaustive list, but it is hoped that it serves as an 

indication of the likely prevalence of anisotropic materials in nature created by the processes 

involved in their formation.  

3.4 Anisotropy from Geological Structures 

The previous section has described how geological processes can cause natural deposits to be 

anisotropic. In the case of laminations this is through the layering of different materials of 

different stiffnesses. Assuming each lamination behaves like a spring, the composite material 

can be thought of as several springs connected in series. A spring is an element with a single 

degree of freedom, so this analogy only applies in a single spatial dimension. The stiffness of a 

series of n springs (Em) is given by Equation 3-1 (Ma et al., 2013).     

 1

𝐸𝑚

= 
1

𝐸𝑖

𝑛

𝑖=1

 Equation 3-1 

Where Ei is the stiffness of each individual spring and n is the number of springs.  

a) b) c) 
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A rock mass with intact blocks separated by persistent joints can also be thought of as a series 

of connected springs. Although it may be clear how an intact body can behave like a spring, a 

joint acting as a spring, which is the absence of material, may not be so clear. A joint is defined 

as an interface between intact blocks. These interfaces allow movement in all spatial directions 

with the degree of sliding of blocks past each other dictated by the joints shear stiffness (ks) 

and squeezing of joints controlled by the joint normal stiffness (kn). These stiffness properties 

are related to the properties of the joint, such as infill material, roughness, joint separation, 

and degree of weathering (Bandis et al., 1983). Smooth joint walls lead to a low shear stiffness 

but can also cause the joints to be in contact in more places, leading to an increased joint 

normal stiffness. Weathering of joint walls will create an annulus of weakened material 

surrounding an intact block allowing blocks to effectively penetrate one another upon joint 

closure, leading to a reduced normal stiffness. A widely separated joint will allow more 

displacement than a joint with a smaller separation, meaning a narrow joint is likely to have a 

higher joint stiffness than a wide joint.  

Considering a single set of joints with a spacing of s, Equation 3-1 can be re-written as Equation 

3-2 (Itasca Consulting Group Inc., 2014). 

 1

𝐸
=

1

𝐸
+

1

𝑘𝑠
 Equation 3-2 

The parallel jointed rock mass in Figure 3-1 will therefore have a rock mass stiffness in the 

vertical direction equal to Em and in the horizontal plane of isotropy both directions will have a 

stiffness equal to Er, assuming there are no vertical joints present. The shear stiffness of a rock 

mass (Gm) can be calculated in a similar way from the intact rock shear stiffness (Gr) and joint 

shear stiffness using Equation 3-3 (Itasca Consulting Group Inc., 2014).  

 1

𝐺
=

1

𝐺
+

1

𝑘௦𝑠
 Equation 3-3 

 

The rock mass stiffness, given by Equation 3-2, can be used to determine the displacement of 

the rock mass from an applied stress using Equation 3-4.  

 
𝑢 =

𝐸

𝜎
 Equation 3-4 

Where u is displacement and σ is the applied stress.  

The displacement of the rock mass in Equation 3-4 occurs through displacement of the intact 

blocks and joints. However, as previously stated, the normal stiffness is influenced by the joint 
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separation. Therefore, joint stiffness is not a constant value, and instead changes as the 

applied stress changes. This effect is included in the Barton-Bandis non-linear joint model, 

where the joint stiffness is related to the stress applied on the joint (Bandis et al., 1983). The 

end members of this relationship are that at an infinitely large joint separation the joint 

stiffness tends to zero, and at an infinitely small joint separation the joint stiffness tends to 

infinity. An infinitely stiff joint will not have any effect on the stiffness of the rock mass, which 

can be seen by subbing the relevant values into Equation 3-2, meaning that in this end 

member case, the rock and rock mass have the same stiffness (Em=Er). Equation 3-5 shows how 

joint normal stiffness is calculated from the applied stress (σn), the maximum joint closure (Vm) 

and the initial joint stiffness (kni). The Δ symbol is not included in the original formulation of 

Equation 3-5 in Bandis et al. (1983); however, it is deemed a sensible addition as it implies that 

if σn is zero then kni equals kn which, logically, it should do. Therefore, Equation 3-5 gives the 

new kn when a joint is subject to a different stress than its original condition which has a joint 

normal stiffness of kni. Similar relationships were also derived for the joint shear stiffness by 

Bandis et al. (1983).  

 
𝑘 = 𝑘 1 −

∆𝜎

𝑉𝑘 + ∆𝜎
൨

ିଶ

 Equation 3-5 

 

3.5 Stress Induced Anisotropy 

The Barton-Bandis joint model shows that changing the stress applied to a rock can influence 

the joint stiffness. Equation 3-2 shows how changes in joint stiffness can influence rock mass 

stiffness, which can have implications for the properties of a rock in a non-hydrostatic stress 

field. Consider, for instance, a homogeneous isotropic sample of rock with a random 

distribution of identical micro cracks at random angles (Figure 3-3). Under hydrostatic 

compression, where σ1=σ2=σ3, all cracks in the sample will be closed equally and therefore the 

stiffness of the material will be the same in all directions. Now consider triaxial or uniaxial 

compression where σ1>σ2=σ3, where σ1 is orientated vertically in Figure 3-3. Cracks orientated 

perpendicular to σ1 will close more than those parallel to it. Therefore, the stiffness of the 

sample in its long axis will be greater than the short axis, giving the material transversely 

isotropic properties, despite being isotropic when subject to hydrostatic conditions. Equally, 

under true triaxial conditions, where σ1>σ2>σ3, the stiffness of the rock will be orthotropic. This 

anisotropy has been entirely created through the stress induced in the sample and will be lost 

if the stress is removed and the cracks can return to their original separation. Therefore, 
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anisotropy, or at the very least the degree of anisotropy, is not necessarily a permanent 

feature of a rock mass.  

  

Figure 3-3: Closure of micro-cracks in an axially loaded rock sample. Under uniaxial loading (orientated vertically) 
red cracks are closed, green cracks are not closed and black cracks are partially closed.   

3.6 Anisotropy in Natural Deposits 

The previous Chapter shows that it is possible for a railway on an embankment to show a 

marked difference between the amplitude of vibrations when the ground is modelled as 

isotropic compared to transversely isotropic material. The Eh:Ev ratios which created these 

differences in the studies varied between 0.5 and 2. Ba et al. (2019) stated that the typical 

range of Eh:Ev given in literature is between 0.55 and 4.0. However, while it is possible to have 

highly anisotropic soils in extreme cases, are anisotropic conditions the norm? The above 

discussion regarding the causes of anisotropy in natural deposits indicates that anisotropy is 

commonplace, but it does not indicate the degree of anisotropy which will be found. If Eh:Ev 

ratios are typically close to one with a small variance, the potential effect of typical anisotropic 

soils will be reduced and the motivation to study its effects will be negated. To answer this 

question, it is necessary to consider the properties of a real soil body in which numerous train 

lines and train tunnels have been constructed.  

London Clay is a stiff marine clay underlying the city of London and is the foundation for a 

considerable number of above ground and underground railway lines (Gasparre, 2005). 
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London Clay is regarded as being a transversely isotropic material, typically with a greater 

horizontal stiffness than vertical stiffness (Tan and Tan, 2003). Figure 3-2 shows the shear 

strength of London Clay in horizontal:horizontal (Ghh) and horizontal:vertical (Ghv) directions. 

This shows that the average ratio of Ghh:Ghv is approximately 2.0. While this is measured using 

shear strength, instead of Young’s Modulus as used in the study of Ba et al. (2019), these ratios 

will be equivalent to those used in the former study. Other studies have shown that the ratio 

can vary between less than one to greater than three (Tan and Tan, 2003), agreeing with the 

possible range of natural soil anisotropy previously stated. This shows that, for London Clay, 

the effects of soil anisotropy observed by Ba et al. (2019) is realistic. Therefore, considering the 

results of studies of surface embankments which have studied anisotropic material properties, 

it will be necessary to analyse vibrations in railway tunnels in comparable situation to reduce 

prediction uncertainties.  

 

Figure 3-4: Ghh vs Ghv data for London Clay. (Gasparre, 2005) 

3.7 Effect of Joints on Transmission of Stress Waves 

Stress waves propagating through a body are affected by differences in the seismic velocity of 

blocks and the presence of discontinuities. Propagation of stress waves through a continuous 

solid can be refracted and reflected at interfaces where two blocks of different seismic velocity 

are in contact, following Snell’s Law. Snell’s Law dictates that the degree of refraction and 

reflection is also dependent on the angle of incidence of the wave upon the interface. When 
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two blocks are in contact and their seismic velocity is the same, refraction and reflection can 

still occur if the two blocks are not perfectly bonded. If the blocks are perfectly bonded the 

interface is effectively not there and no refraction or reflection occurs. This will be the case in a 

homogenous jointed rock mass, where the rock mass is composed of blocks of the same 

properties separated by joints, such as those shown in Figure 3-5. In reality, joints will not be 

perfectly bonded due to roughness of the joint walls, infilling of the joint or weathered annulus 

in the blocks on either side of the joint (Bandis et al., 1983). Problems of stress wave 

propagation through joints have been widely studied in literature with analytical solutions 

being derived for a variety of situations, as well as more complex cases being investigated 

numerically (Pyrak-Nolte et al., 1990b; Pyrak-Nolte et al., 1990a; Cai and Zhao, 2000; Zhao et 

al., 2008; Deng et al., 2012; Varma et al., 2017; Fan et al., 2018). For single joints, it is found 

that the degree of reflection from a joint is related to the stiffness of the joint and the 

frequency of the incident wave. The degree of reflection increases as the stiffness of the joint 

reduces; with an extremely low stiffness joint reflecting all energy and an extremely high 

stiffness joint transmitting all energy. Incident waves of a high frequency will also show a 

greater degree of reflection than low frequency waves. Cai & Zhao (2000) found that when 

there are multiple parallel joints it is possible for a peak to occur in the transmission of waves 

through jointed materials. This only occurs at a limited range of ratios of joint spacing to 

wavelength, but it does indicate that there are many factors to consider between jointed rock 

masses and wave transmission. These factors are typically assumed to be brought about by the 

superposition of multiple reflections from joints.  
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Figure 3-5 Parallel jointed rock masses which will show transverse isotropy. a) Sub-vertical joints in slate-like grits, 
Aberystwyth, western Wales, with a sub-vertical plane of isotropy (Barton and Quadros, 2015); b) Horizontal joints in 
alternating siltstone and shale from Appalachian Plateau, Fingers Lakes, New York, with a vertical plane of isotropy 

(Germanovich and Astakhov, 2004); c) horizontal joints in Achanarras Limestone Member, Caithness Flagstone 
Group, Spittal Quarry, Caithness, Scotland. Joints within rock masses are highlighted by dashed lines 

Before more complex cases involving multiple reflections are studied it is necessary to 

introduce the empirical Equations for transmission and reflection given by Pyrak-Nolte et al. 

(1990b, 1990a). Equation 3-6 shows the transmission coefficient for normally incident stress 

waves through a single fracture. This can be applied to either Compressional or Shear waves (P 

or S-waves) by using the appropriate joint stiffness (shear stiffness for S-waves or normal 

stiffness for P-waves) and wave velocity in the seismic impedance term (S-wave velocity for S-

waves or P-wave velocity for P-waves). Equation 3-7 shows the reflection coefficient, with 

similar alterations for the different wave types. These Equations have a common parameter, 

the normalised joint stiffness, given by k/zω. Figure 3-6 shows the transmission and reflection 

coefficients plotted against the normalised joint stiffness. When the normalised joint stiffness 

is low the transmission coefficient approaches zero and the reflection coefficient approaches 

one. As the normalised joint stiffness increases the transmission coefficient tends to one and 

the reflection coefficient tends to zero. For two rocks with the same seismic impedance (z) the 

normalised joint stiffness increases with an increasing joint stiffness or a reduction in wave 

frequency. These models do a very good job of explaining the characterisics of stress wave 

trasmission through individual blocks. The empirical formulae for transmission and reflection 

from single fractures are replicated in numerical software by a number of researchers (Cai and 

Zhao, 2000; J Zhao et al., 2006; J. Zhao et al., 2006).  
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 Equation 3-7  

T1 and R1 are the transmission reflection coefficients, respectively, k is the joint specific 

stiffness, z is the seismic impedance of the blocks on either side of the joints (z=vρ, where v is 

the P or S-wave velocity) and ω is the angular frequency of the incident wave.                         

 

Figure 3-6 Transmission and reflection from a single joint plotted against normalised joint stiffness 

The transmission of stress waves through multiple joints is also investigated empirically by 

Pyrak-Nolte et al. (1990b). An approximation of the transmission is given by |TN|=|T1|N, where 

N is the number of fractures. This Equation will only ever be able to offer an approximation of 

the transmission coefficient as it ignores the effects of the superposition of multiple 

reflections, which are logically predicted to occur based on Equation 3-2. When the 

transmitted wave is contaminated by multiple wave reflections Zhao et al. (2006) shows that 

|TN|>|T1|N. 

Zhao et al. (2006) found that the transmission coefficient for multiple parallel fractures with a 

normally incident stress wave is governed by the non-dimensional fracture spacing (ξ=joint 
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spacing[s]/wavelength[λ]), the normalised joint stiffness and the number of fractures. It was 

found that when the fracture spacing is much smaller than the incident wavelength the 

behaviour of the rock mass could be explained by an equivalent medium method. This effect 

was also found by Schoenberg & Sayers (1995). For example, in a parallel jointed rock mass 

this would be equivalent to transversely isotropic continuum.  

Hildyard (2007) investigates the use of the finite difference method (FDM) to accurately model 

seismic waves through fractured rock masses surrounding cavities. This work uses the FDM 

software WAVE, developed by Hildyard et al. (1995). The laboratory experiments of Pyrak-

Nolte et al. (1990b) are replicated using WAVE. Fractures within the FDM models are simulated 

explicitly as displacement discontinuities. A good agreement is found between the numerical 

and physical models. This work is the first time a numerical model had been shown to 

accurately show the transmission of non-planar waves through multiple fractures. Of particular 

importance, this work shows that non-uniform stress within a model can lead to a variation in 

the stiffness across individual joints, generating a complex wave behaviour and inducing 

focusing of waves through joints.  

Parastatidis et al. (2017) also analyses wave propagation through parallel jointed rock masses 

using different material models, comparing them to experimental results. The different 

material models are: i) explicitly modelling fractures; ii) a homogenous transversely isotropic 

continuum, iii) localised transversely isotropic continuum. This work is also undertaken in the 

FDM code WAVE (Hildyard et al., 1995). It is found that the similarity between the physical and 

numerical results depends upon the direction of wave propagation; be that parallel to or 

perpendicular to the fractures. When waves propagate parallel to fractures it is found that the 

explicit modelling of fractures provides the best match, with a reasonable match for the 

localised transversely isotropic continuum and a poor match for the homogenous transversely 

isotropic continuum. When waves propagate perpendicular to fractures, none of the models 

were found to match the experimental results.  

Zhu et al. (2013) investigate the transmission of stress waves through more complex rock 

masses, using a parametric analysis to study the effects of joint stiffness, non-dimensional joint 

spacing, joint spacing ratio, joint intersection angle, incidence angle and the number of joint 

sets. It is found that, depending on the wave type, different parameters affect the wave 

transmission through the joints. It is found that, in 2D plane strain, when the number of joint 

sets is equal to or greater than four a rock mass can be considered to be isotropic. A similar 

study is also conducted by Eitzenberger (2012), but with a focus on the spatial differences 
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caused by differing joint angles, whereas Zhu et al. (2013) measure the PPV at an individual 

location in the model.  

Most studies consider transmission and reflection coefficients, but not resonance. Resonance 

is an important consideration in many engineering studies, not least railway engineering. 

Resonance in buildings and the track structure are well known to accentuate vibration 

problems (Connolly et al., 2016). Resonance effects are studied by Li et al. (2019) who use a 3D 

finite element program to study the resonance of different sized and shaped intact blocks 

using different excitation frequencies. Resonance is identified in the study which depends on 

the block properties. It is found that increasing the size of the block reduces the frequency of 

resonant peaks and increasing the peak frequency of the excitation increased the resonant 

frequency of the blocks. These high transmission are identified as being resonant frequencies, 

which seems to be the correct conclusion, but the reasons behind them are not well identified. 

The resonant frequencies vary in a systematic manner when the block size increases, which 

indicates that the resonance may be due to the superposition of the incident wave and a 

reflected wave from the edge of the modelled block. This superposition effect has been 

identified in rock and concrete blocks (Nakagawa, 1998) and is the subject of a standardised 

test (EN, 2004). Eitzenberger (2012) also identifies that there could be resonance mechanisms 

in jointed rock masses, although these are not investigated.  

Although looking at quite different phenomena, the work by Zhang et al. (2019) considers 

aspects of resonance. This study investigates rock burst conditions, which considers aspects of 

superposition of waves from a reflective surface. Field monitoring of rock bursts shows that 

peak ground motion at the surface of an excavation in fractured rock is amplified compared to 

the motion of solid rock. Although this study is applied to rock burst conditions, which typically 

will not be found in rail tunnels, the amplification of the vibrations at the tunnels free surface 

could have consequences for rail vibration in jointed rock tunnels. It was found that the 

amplification of seismic waves depends on the characteristics of the incident wave and the 

properties of the fractured rock. Zhang et al. (2019) found that fracture stiffness, fracture 

spacing, fracture number and wave frequency influence the amplification factor of stress 

waves.  

The above review shows that joints do not just have the potential to cut waves out, through a 

filtering effect, but also amplify waves, through the superposition of incident and reflected 

waves. These effects will have the potential to modify a vibration signal as the vibrations travel 

through a jointed rock mass and merit further study.  
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3.8 Conclusions 

This Chapter outlines a number of ways in which anisotropy can occur in natural deposits. This 

includes anisotropy from depositional processes, geological structures and that induced by 

stress. Finally, it is shown that some features which can cause anisotropy, namely joints, can 

also affect the transmission of stress waves through a material. Train vibrations in jointed 

materials have not been widely investigated, so will be an appropriate avenue of research for 

this thesis.  
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4. 1D Jointed Rock Masses 

 

“One-dimensional jointed rocks, 
Made of repeated joints and blocks. 

Impulsive sources, they were subject, 
With attempts to see any resonance effect. 

 
Actions of springs and superposition, 

Give the transmitted waveform through coalition. 
Presented with formulae which are analytical, 

These are, to my thesis, hyper-critical.” 
 

 

© Army of Cats 2023  
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4.1. Introduction 

As shown in Chapter 2, vibrations from tunnels propagate through a complex transmission 

pathway on their way to a receiver, such as a building (Figure 4-1). There are various 

interactions between the rails and its substructure, the substructure and the tunnel, the tunnel 

and the ground and the ground and the building. Many aspects of this transmission pathway 

have been studied previously, which are outlined in Chapter 2; however, the interactions 

between blocks within a jointed rock mass have not been extensively studied in the context of 

rail vibrations, with the exception of the work by Eitzenberger (2012). This Chapter presents an 

initial investigation into jointed rock mass propagation pathways.  

 

Figure 4-1 Ground vibrations from trains in jointed rock masses 

While it is possible to jump straight into modelling a complex model with a tunnel, joints, and a 

free surface, such an approach would lose the intricacies of the transmission of stress waves 

through each of the individual components of the model. Instead, a more methodical 

approach starting with very simple models and adding complexity is adopted in this research. 

The simplest model of a jointed rock mass is a one-dimensional (1D) slice (Figure 4-2). As the 

slice is 1D the different joint angles present in the two-dimensional (2D) projection in Figure 

4-2 are lost, with all the joints becoming parallel. This is a gross simplification of the problem 

but is a useful first step in analysing the jointed rock mass transmission pathway.  
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Figure 4-2 Projection of a 2D jointed rock mass onto a 1D slice showing how a relatively complex model can be 
simplified by reducing the number of spatial dimension 

The 1D projection of the transmission pathway can be projected onto Figure 4-1, radiating out 

from the tunnel towards a receptor, such as a residential building. This gives a direct 

transmission pathway which can be analysed. By recording the waveform before and after a 

joint, the effect of the joint can be determined. This is undertaken using transfer functions, 

which are described in Section 4.3. The transfer functions are generated in the frequency 

domain, giving the frequency response of the model.  

The work in this Chapter is undertaken using numerical models. The combined discrete 

element-finite difference method, solved in the time domain, is the numerical code chosen for 

this work. These models have been solved using the commercial software, UDEC (Itasca 

Consulting Group Inc., 2014). To isolate the effect of the joints on the transmission of stress 

waves, damping has been eliminated from the models. This is an approach adopted by 

previous studies into the effect of joints (Cai, 2000; Zhao et al., 2006) 

This Chapter is broken down into a short recap of the background of previous work which has 

been undertaken in modelling of jointed rock masses, followed by a brief introduction into 

different input waves and transfer functions, followed by the model development using an 

isotropic continuum and finally modelling of jointed rock masses. The Chapter concludes with 

the identification of two resonance mechanisms in jointed rock masses, spring resonance and 

superposition resonance.  

4.2. Background 

Chapters 2 and 3 outlined the current work involving transmission of stress waves through 

jointed rock masses. However, these studies have considered transmission and reflection 
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coefficients of rock masses and joints, as opposed to resonance (Pyrak-Nolte et al., 1990a; 

Pyrak-Nolte et al., 1990b; Cai and Zhao, 2000; J Zhao et al., 2006; Hildyard, 2007). When the 

transmission at a particular frequency is higher than surrounding frequencies, a resonant 

frequency for the rock mass is identified. Much previous work uses the explicit representation 

of joints within numerical models, such as Cai and Zhao (2000), Zhao et al. (2006) and Hildyard 

(2007), through the use of displacement discontinuities. This will therefore be the starting 

point for the research undertaken here. It could be argued that Cai and Zhao (2000) and Zhao 

et al. (2006) identified resonance in their models, but in terms of normalised joint spacing 

(ξ=s/λ). Resonance is an important consideration in many engineering studies, not least railway 

engineering. Resonance in buildings and the track structure are known to accentuate vibration 

problems (Yau, 2001; Hanson et al., 2012; Connolly et al., 2016). Resonance effects in rocks are 

explicitly studied by Li et al. (2019) who uses a 3D finite element model to study the resonance 

of different sized and shaped intact blocks using different excitation frequencies, with 

resonance depending on the block properties and dimensions. However, the reasons behind 

why such frequencies were resonant are not well defined in the study. The outcomes of the 

study by Li et al. (2019) and Zhao et al. (2006b)  appear to differ, with the former identifying 

superposition at much higher frequencies than the latter. Resonance from the superposition of 

reflected waves is identified by Nakagawa (1998), who gives analytical Equations for 

resonance, terming it acoustic resonance. Acoustic resonance in natural stone blocks is a 

reasonably well established effect, being the subject of a British national standard (British 

Standard Institution, 2004). In fact, the resonances identified by Li et al. (2019) could be 

related to the superposition effect identified by Nakagawa (1998). The resonant frequencies of 

Li et al. (2019) vary in a systematic manner when the block size increases, which indicates that 

the resonance may be due to the superposition of the incident wave and a reflected wave 

from the edge of the modelled block. A standing wave could develop with the incident and 

reflected waves, causing wave superposition and an increase in the transmission coefficient. 

There appear to be numerous effects occurring in regard to stress wave transmission through 

jointed rock masses that are found in literature, although up to this point full transfer 

functions have not been generally used in the analysis of jointed rock masses. This Chapter 

explores the effects that different jointed rock masses can have on a rock mass transfer 

function using the combined discrete element-finite difference method. Despite this numerical 

method being used previously (Cai and Zhao, 2000; J Zhao et al., 2006; Eitzenberger, 2012) the 

processing of the data using the full waveform with a transfer function provides a new lens in 

which to view rock mass transmission. Previous studies have studied the amplitude of the first 
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arrival, which could miss much of the frequency content of the transmitted wave. Analysing 

the full waveform allows a more accurate means of determining the frequencies of waves that 

will be transmitted to a receptor.  

4.2.1. Numerical Dispersion 

Numerical dispersion is a phenomena which causes the modelled wave speed for a given 

medium to deviate from the elastic wave speed, and is a known to occur with the finite 

difference method (Hildyard, 2001). The difference between the modelled wave speed and 

elastic wave speed is not constant, and is greater at higher frequencies, meaning that wave 

speed is a function of frequency (Parastatidis, 2019). Numerical dispersion should be 

minimised in numerical simulations to ensure that a model matches reality as closely as 

possible. Hildyard (2001) showed that numerical dispersion is related to the quality of the 

mesh in a numerical model. When the element size is 10 times the minimum wavelength 

numerical dispersion is reduce. This is an effect also recognised by Kuhlemeyer and Lysmer 

(1973) and holds true for 2nd order wave Equations. However, the element size can be reduced 

to 5 times the minimum wavelength for 4th order wave Equations, such as those implemented 

in the WAVE2D mesh (Hildyard et al., 1995). This makes WAVE2D a particularly useful software 

for modelling of dynamic situations. UDEC uses 2nd order Equations, and is used extensively in 

this Chapter (Itasca Consulting Group Inc., 2014). While it can model dynamic scenarios, 

numerical dispersion will occur at lower frequencies than an equivalent WAVE2D model.  

4.3. Transfer Functions 

Transfer functions are used in this Chapter to analyse the transmission of stress waves through 

jointed rock masses. These compare the wave form which is incident upon the joint and the 

wave form which is transmitted through the joint. The transfer functions used in this thesis are 

synonymous with frequency response functions. Equation 4-1 is used to generate a transfer 

function using an input waveform (uref) and a transmitted waveform (u). To generate a transfer 

function, time series are decomposed into their harmonic components (uref’ and u’) using a 

Discrete Fourier transform and the discrete frequencies in the signal and response are 

compared. If the amplitude of the signal and response at a given frequency are the same, the 

transfer function for that frequency is equal to one. If the response has an amplitude of half 

the source, the transfer function for that frequency is 0.5; and if the response has an 

amplitude twice the source, the transfer function for that frequency is two. As transfer 

functions show the relative difference in the amplitude of incident and transmitted waves, the 

exact frequency content of the source does not matter. Therefore, the transfer function 
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generated by a wide band impulse signal will be identical to the transfer function for a complex 

signal, such as railway vibrations.  

 
𝑇𝐶 =

𝑢′

𝑢′
 Equation 4-1 

   

An example of the procedure of generating a transfer function is shown in Figure 4-3. For an 

undamped 1D continuum model the waveform will not be modified as it is transmitted 

through the material. The time series of the source and response are plotted in Figure 4-3 a, 

which is a 500 Hz Gaussian wave. The transfer function for these two time series is plotted in 

Figure 4-3 b, which is shown to be equal to one at all frequencies.  

 

Figure 4-3 Example of a transfer function for an undamped, unjointed 1D model. a) time series of source and 
response, b) frequency content of source and response and transfer function. Modified from Holmes et al., (2023b) 

Figure 4 

4.4. Model Development  

The transfer function shown in Figure 4-3 b is a fundamental result for a 1D numerical model 

with no damping. This is because, a 1D continuum with no damping will not affect the 

transmission of any waves moving through it. However, if a model is not set up correctly waves 

propagating through it could be modified. Therefore, a 1D continuum model can be used as a 

base line to check whether a model is set up well. A model which is set up well will give 

accurate modelling results, which are necessary if meaningful results are to be derived from 
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them. Inaccuracies in the transmission of the stress waves could be related to numerical 

dispersion (Section 4.2.1). This section deals with optimising the model set up using continuum 

models, which will have a transfer function equal to one at all frequencies.  

As a numerical model is being used it is unlikely that the transfer function will be perfect for all 

possible frequencies; however, the quality of the transfer function will be influenced by the 

input wave properties and the model properties. A good quality model will have a transfer 

function equal to one across the frequency range of interest. As this work is being driven by 

the study of rail vibrations this will typically be up to a frequency of 250 Hz (Ouakka et al., 

2022); however, a wider range will be studied in this section for a more complete and accurate 

model and a better indication of how rock masses transmit stress waves. The effect of various 

wave and modelling factors will be assessed. Wave properties which could affect the transfer 

functions are wave type, wave frequency content and the time step of the input wave function 

(4.4.4). Modelling options which could affect the transfer functions are mesh type, element 

size (4.4.5), model height (4.4.6), type of input function and position of the input function 

(4.4.7). The effect of the mesh type will be assessed in each section (4.4.4 to 4.4.7).  

All models in the Model Development section of this Chapter have the same properties, giving 

a P-wave velocity of 3328 m/s, a S-wave velocity of 1922 m/s and a density of 2600 kg/m3. This 

represents a sandstone with a high stiffness, although the selection of this rock type is 

arbitrary, and it could have been conducted on any material properties desired. All models in 

this section have adopted the large strain assumption in the UDEC set up. Although the 

realistic excitations induced by train vibrations are small, the excitations induced in the models 

are relatively large. The large strain assumption is not expected to dramatically affect the 

response of the models in this work.  

4.4.1. Combined Discrete Element – Finite Difference Method 

This section provides a very brief overview of the combined discrete element-finite difference 

method. For a much more complete description of the method the reader is directed to the 

UDEC User Manual (Itasca Consulting Group Inc., 2014). The combined discrete element-finite 

difference method applies a finite difference mesh to discrete blocks. Joints between blocks 

operate as interfaces between discrete elements. The finite difference mesh allows the blocks 

themselves to be deformable; however, the discrete element method can be used with rigid 

bodies by eliminating the internal meshing. The discrete element and explicit finite difference 

methods are solved numerically using a time stepping algorithm. The size of the time step is 

limited based on the assumption that velocities and accelerations are constant within a time 
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step. This requires sufficiently small time steps that disturbances cannot be transmitted 

between two neighbouring nodal points, or discrete elements, within a single time step. In the 

DEM-FDM the time step is limited by the zone size and stiffness of the blocks and contacts. 

The vertices of the elements in the finite difference grid are grid points. The Equations of 

motion for each grid point is given by Equation 4-2. 

 
�̈� =

∫ 𝜎𝑛𝑑𝑠 + 𝐹

𝑚
+ 𝑔 

Equation 4-2 

Where b is the surface enclosing the mass (m) lumped at the grid point, nj is the unit normal to 

b, σij is the stress tensor, Fi is the resultant of all external forces applied to the grid point and gi 

is the gravitational acceleration.  

Grid point forces are the result of the external applied loads (Fi
l), contact forces (Fi

c) and 

internal stresses from the adjacent zones (Fi
z), given by Equation 4-3. 

 𝐹 = 𝐹
௭ + 𝐹

 + 𝐹
  Equation 4-3 

The internal stresses are calculated using Equation 4-4.  

 
𝐹

௭ = න 𝜎𝑛𝑑𝑏


 Equation 4-4 

All models used in this thesis do not have gravity applied; however, if it were used this would 

be incorporated into the solution using Equation 4-5.  

 𝐹


= 𝑔𝑚 Equation 4-5 

Where mg is the lumped mass at the grid point and gi is acceleration due to gravity.  

The velocity at the grid point is calculated at half time steps using Equation 4-6. 

 
𝑢ప̇

(௧ା
∆௧
ଶ

) = 𝑢ప̇
(௧ି

∆௧
ଶ

) +  𝐹
(௧) ∆𝑡

𝑚
 Equation 4-6 

Strains rates (ϵij) and rotations (θij) are related to nodal displacements using Equation 4-7 and 

Equation 4-8. 

 
𝜖̇ =

1

2
(�̇�, + �̇�,) Equation 4-7 

 
�̇� =

1

2
(�̇�, − �̇�,) Equation 4-8 

Where the comma in the nodal displacement subscript relates to the partial derivative.  
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4.4.2. Boundaries 

Boundaries are an important part of any numerical model. Incorrect boundary conditions have 

the potential to affect how a model performs and the results which it yields. The boundaries 

used by previous researchers have been adopted for the models used here. Two different 

boundaries are used in different places. These are absorbing boundaries at the ends of the 

model (orientated perpendicular to wave propagation) and symmetrical roller boundaries on 

the top and bottom of the model (orientated parallel to wave propagation). These have been 

used for similar 1D problems by Cai & Zhao (2000) and Zhao et al. (2006), among others.  

Absorbing Boundaries 

Absorbing boundaries are used to reduce reflections from model boundaries. Absorbing 

boundaries are known as quiet boundaries in UDEC (Itasca Consulting Group Inc., 2014). UDEC 

uses a viscous boundary, developed by Lysmer & Kuhlemeyer (1969) and applies dashpots for 

the normal and shear directions at the boundaries. These are not perfect and still generate 

some reflected waves from the boundary; however, for incident angles of greater than 30o 

they work well. Therefore, for the 1D models used here, whose incidence angles are expected 

to be 90o, they should work.  

The dashpots attached to the boundaries apply viscous normal and shear tractions given by 

Equation 4-9 and Equation 4-10. 

 𝑡 = −𝜌𝐶𝑣 Equation 4-9 

 𝑡௦ = −𝜌𝐶௦𝑣௦ Equation 4-10 

Where vn and vs are the normal and shear components of the velocity at the boundary, ρ is the 

mass density and Cp and Cs are the P and S-wave velocities.  

The tractions calculated by Equation 4-9 and Equation 4-10 are calculated and applied at every 

time step.  

Symmetrical Boundaries 

Symmetrical boundaries are implemented by applying a displacement constraint to a model 

boundary. In UDEC this is done by setting the velocity on the boundary to be zero in the 

vertical direction, which is opposite to the direction which the wave will be travelling. This has 

the effect of making the model effectively continuous in the vertical direction.  
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4.4.3. Mesh Type 

UDEC has two different types of finite difference mesh generation functions, giving what are 

known in the software as edge and quad meshes. The finite difference mesh used with the 

discrete element method allows blocks to deform. The edge mesh uses constant strain 

triangular elements, which eliminates hour glassing effects found with constant-strain finite 

difference quadrilateral meshes (Itasca Consulting Group Inc., 2014). Examples of different 

sized edge meshes are shown in Figure 4-4. The quad mesh command creates diagonally 

opposed triangular elements, shown by Figure 4-5, which allows for improved modelling of 

plastic flow. Figure 4-4 and Figure 4-5 show that the two different mesh models produce 

different meshes, even for the same ratio of minimum edge length and model height. The 

quad mesh model gives a more regular finite difference mesh, compared to the edge mesh. 

Each mesh type has situations which they are more suitable for. The edge mesh can mesh 

more complex shapes and the quad mesh models plastic flow more accurately, so each mesh 

type will be studied in the following sections.  
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a) 0.5 m element length

b) 0.8 m element length 

c) 1.0 m element length 

d) 1.5 m element length 

e) 2 m element length 

Figure 4-4 Different minimum element sizes generated using the edge mesh in a 1 m high and 5 m long model. Each 
intersection is a nodal point where Equations of motion are calculated 
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a) 0.5 m element length 

b) 0.8 m element length 

c) 1 m element length 

d) 1.5 m element length 

e) 2 m element length 

Figure 4-5 Different minimum element sizes generated using the quad mesh in a 1 m high and 5 m long model. Each 
intersection is a nodal point where Equations of motion are calculated 

4.4.4. Effect of Input wave type, time step and frequency 

This and the following sections (4.4.5 to 4.4.7) run through a sensitivity analysis to investigate 

how changes to the model set up and source input can affect how a model transmits waves. 

They are structured with an initial discussion of the aspect being investigated (i.e. wave type) 
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with the sensitivity analysis split into the two different mesh types which can be used in UDEC, 

the edge mesh and the quad mesh.   

Input Waves 

There are numerous factors which can influence the transmission of stress waves through a 

numerical model. While a transfer function can handle any arbitrary wave, the quality of the 

transfer function is reliant on the wave itself. If the wave being used does not have a sufficient 

amplitude of waves over the frequency of interest, then the transfer function at these 

frequencies will be poor. Before any modelling is undertaken, this section will look at the 

frequency content of common wave sources to determine which might be most suitable for 

analysis.  

In the time domain any input function will be composed of multiple different frequencies, but 

the exact function used to generate the input will dictate the relative amplitude of the 

frequency spectrum. Two simple functions are the Dirac delta function and the Heaviside 

function (Figure 4-6). The Dirac delta function is an impulse with an infinite force being applied 

for an infinitely short length of time, with the integral of the function equal to one. In Figure 

4-6 the amplitude of the Dirac Delta function is shown to be equal to one, as it is impractical to 

give an infinite amplitude in a graphical form. In the time domain this function is impossible as 

an infinitely small modelling time step would be required; therefore, this function cannot be 

used. The Heaviside function applies a unit force from modelling time step zero to the end of 

the model run giving an equal amplitude to all frequencies. This is theoretically possible in the 

time domain; however, in the software being used here, UDEC, this is hard to implement as 

modelling time step zero is required to have no forces applied. Therefore, the Heaviside 

function goes from zero to 1 over the first modelling time step, leading to a shock within the 

model, which could lead to modelling issues.  These two functions are consequently not used 

for modelling.  
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Figure 4-6 Impulse functions. a) Dirac Delta function, b) Heaviside function 

Other wave functions can be used, such as the Gaussian function, and its derivatives, and the 

band limited cosine function.  

Band Limited Cosine Function 

The Equation for the band limited cosine function is included in Equation 3-1. This is similar to 

a cosine function, except it avoids generating high frequency content which would occur if a 

normal cosine function were used. The amplitude of the function at time “t” is given by 

Equation 4-11. The time series and frequency spectrum of the band limited function are shown 

in Figure 4-7.   

 𝐴 = 1 − cos ൬2𝜋 ቀ
௧

்
ቁ൰  Equation 4-11 

Where A=amplitude of function, T=maximum time for signal (T=1/signal frequency), t=time from 

0 to T. 
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Figure 4-7 500Hz Band limited cosine function. a) Time series, b) Frequency spectrum 

Gaussian Function 

A Gaussian function is often used to define the probability density funciton of a normal 

distribution and is important in many areas of research. It can be calculated using Equation 4-12.  

 
𝐴 = 𝑒

ିସగమమቀ௧ି
ଵ
ቁ

మ

 Equation 4-12 

Where A=amplitude of function, t=time and f=signal frequency. 

The derivatives of the Gaussian function are smooth, with even order derivatives being even 

functions (symmetric about zero). The Gaussian function itself is a 0th order derivative. The odd 

order derivatives are odd functions, which are antisymmetric about zero. This is illustarted in 

Figure 4-8 a, with the frequency content of the waves shown in Figure 4-8 b. The second 

derivative of the Gaussian function is called a Ricker Wave and is often used as an approximation 

of an impulse function.  
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Figure 4-8 500Hz Gaussian functions. a) Time series, b) Frequency spectrum 

The following section models each input wave function given above to determine which is 

most suitable for determining transfer functions. The input wave time step is assessed. This is 

the time step used as the time history of the excitation in UDEC, rather than the time step 

used for the UDEC solver, (1E-4, 1E-5 and 1E-6 seconds). For clarity the wave time step will be 

referred to as wave interval. Two different wave frequencies (100 and 200 Hz) are modelled 

for each wave type.  

 

Figure 4-9 UDEC model used for sensitivity analysis 

Figure 4-9 shows the model which was used for the sensitivity analysis. All analyses are run in 

models meshed using the edge and quad commands, introduced in the Section 4.4.3. The 

model is a single solid block of 400 m length, with an excitation applied in the centre of the 

model, 200 m from either lateral boundary. All models used have a model height of 1 m and a 

minimum mesh size of 0.8 m.  The results of the sensitivity analysis are shown in Figure 4-10 
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and Figure 4-11, with the results discussed below. The results are processed using a transfer 

function, which shows the difference in the frequency content of the waveform at the source 

and at a response point 100 m from the source (Figure 4-9). This is achieved my decomposing 

each waveform into its frequency components using a Discrete Fourier Transform (DFT) and 

comparing the strength of each frequency (Equation 4-1). This procedure is illustrated in Figure 

4-3 for an idealised, undamped continuum model. A plane wave travelling through an 

undamped 1D continuum should not be modified as it is transmitted, giving a constant transfer 

function at an amplitude of 1 for all frequencies. However, if the model is not set up correctly 

the wave could be affected during transmission, diverging the amplitude of the transfer 

function from 1. This provides a useful test of the performance of 1D continuum models, which 

will be used to determine the optimum set up of a model for transmission of stress waves 

through a sensitivity analysis in the following sections of this Chapter.  

Edge Mesh Sensitivity Analysis 

This sub-section details the performance of different waveforms in models meshed using the 

edge mesh. The wave interval, wave type and wave frequency are investigated in turn.  

a) b)



68 
 

 

c) d)

e) f)

g) h)

Figure 4-10 Frequency Response Function for 100 and 200 Hz waves with wave intervals of 1E-4, 1E-5, 5E-6 and 1E-6 
seconds for Cosine (a-b), Gaussian (c-d), Gaussian first derivative (e-f) and Gaussian second derivative (g-h) waves 

for a 0.8 m element size edge mesh 

Effect of Wave Interval 

Figure 4-10 shows that reducing the wave interval, from 1E-4 to 1E-6 seconds, for the input 

function changes the frequency response function derived from the model. A smaller wave 
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interval will allow UDEC to input the wave functions more accurately to the model; however, it 

is not clear exactly what the wave interval should be. Figure 4-10 shows that the wave interval 

of 1E-4 seconds produces a frequency response function which is clearly different from the 

other functions, with more noise generated in the transfer function at high frequencies, 

indicating that this wave interval is too long. This indicates that a wave interval of 1E-5 seconds 

is the maximum wave interval allowable for the input function for this particular UDEC model, 

with a modelling time step of 5E-6 seconds. However, the error caused by a longer wave 

interval is minor. Despite this, it is advantageous for the wave interval to be no more than 

twice the modelling time step. However, there is no computational disadvantage of having a 

smaller wave interval, so a wave interval as small as practicably possible should be used. For 

the other modelling scenarios in this section a wave interval of 1E-6 seconds is used. 

Effect of Wave Type 

Figure 4-10 shows four different wave functions being used as an input function: a band 

limited cosine function (a-b), a Gaussian function (c-d), a first derivative of the Gaussian 

function (e-f) and a second derivative of the Gaussian function (g-h). Each of the frequency 

response functions show differences when compared, although there are also some key 

similarities.  

All four functions show a nearly constant response up to 100Hz, followed by an increase in the 

variability of the transfer function, centred around a value of just less than one. Figure 4-10 b, 

c, d, e, f, g, h show that there is then a reduction in the variability down to a variation around 

the amplitude of 0.99, which is followed by an increase in the variability in Figure 4-10 b, c, d, 

e, f, h. This shows that the model responds in similar ways when the model is excited by the 

same frequency of wave, even though different wave types are used. Differences are the low 

amplitude low frequency responses with the second derivative Gaussian function (Figure 4-10 

g, h); high and low responses at double the wave frequency and following multiples of the 

wave frequency with the cosine function (Figure 4-10 a, b) and high responses at 

approximately 1.5 times the wave frequency for the second derivative of the Gaussian function 

(Figure 4-10 g). The Gaussian and first derivative of the Gaussian function appear to be the 

most stable functions to use to generate the frequency response functions, based on Figure 

4-10.  
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Effect of Predominant Frequency 

The input functions in Figure 4-10 have been generated with two different wave frequencies: 

100Hz (a, c, e, g) and 200Hz (b, d, f, h). These are the central frequency of the waves, and a 

wide band source is generated, as shown by Figure 4-7 and Figure 4-8.  

There are similarities between the frequency response functions for the two wave frequencies 

used, with the only differences being at multiples of the wave frequency, as previously 

described. The frequency used for the input signal does not appear to influence the response 

of the model, with exceptions being made for the cosine and second derivative of the Gaussian 

function, which show variable responses related to multiples of the input wave frequency, as 

previously described.  

Quad Mesh Sensitivity Analysis 

This sub-section details the performance of different waveforms in models meshed using the 

quad mesh. Each input to the source has been investigated in turn.  

a) b)

c) d)
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e) f)

g) h)

Figure 4-11 Frequency Response Function for 100 and 200 Hz waves with wave intervals of 1E-4, 1E-5, 5E-6 and 1E-6 
seconds for Cosine (a-b), Gaussian (c-d), Gaussian first derivative (e-f) and Gaussian second derivative (g-h) waves 

for a 0.8 m element size quad mesh 

Effect of Wave Interval 

Figure 4-11 shows that reducing the wave interval, from 1E-4 to 1E-6 seconds, for the input 

function does not appreciably change the frequency response function derived from the 

model. At some points within the models, it is possible to discern the 1E-4 seconds wave 

interval; however, the 1E-5 seconds wave interval does not seem to show a significantly 

different response to the 1E-6 seconds wave interval. The models in Figure 4-11 have a 

modelling time step of 7.5E-6 seconds, so the 1E-5 seconds wave interval is not too dissimilar 

to the modelling time step, unlike in Figure 4-10. The minimum wave interval for these models 
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appears to be 1E-5 seconds; however, for the other modelling scenarios in this section a wave 

interval of 1E-6 seconds will be used. 

Effect of Wave Type 

Figure 4-11, as with Figure 4-10, shows four different wave functions being used as an input 

function: a band limited cosine function (a-b), a Gaussian function (c-d), a first derivative of the 

Gaussian function (e-f) and a second derivative of the Gaussian function (g-h).  

The general trend for all four functions is that the amplitude of the transfer function reduces 

as the frequency of the wave increases. This is divergent from the trends observed in Figure 

4-10, where the amplitude of the transfer functions reduced less as the frequency increased. 

For example, up to 400 Hz the Gaussian waves in Figure 4-10 c and d with the edge mesh has 

transfer function amplitudes confined between 0.94 and 1.02, while the same wave for the 

quad mesh in Figure 4-11 c and d has transfer function amplitudes between 1.0 and 0.9. The 

spread of values for the quad mesh appears to be greater than the edge mesh and the 

residuals, from the idealised transfer function amplitude of one, increase too.  

Between each of the quad mesh waves in Figure 4-11 the transfer functions compare similarly 

with those in Figure 4-10, with differences likely being caused by the differences in the input 

waves as described earlier in this section.  

Similarly, as found with Figure 4-10, the Gaussian, Gaussian first derivative and Gaussian 

second derivative input wave functions appear to give the best transfer functions for further 

use. This is due to the erratic nature of the band limited cosine function at multiples of the 

signal frequency observed in Figure 4-11 a and b.  

Effect of Predominant Frequency 

The input functions in Figure 4-11 have been generated with two different wave frequencies: 

100Hz (a, c, e, g) and 200Hz (b, d, f, h). The similarities and differences observed appear to be 

the same as those observed in Figure 4-10. This indicates that the model is modelling the 

waves in the same way, despite the different input wave functions and associated distribution 

of frequencies.  

Although the most suitable wave to use cannot be decided upon at this stage, the band limited 

cosine function does not perform well. Therefore, this wave type will not be used for further 

analysis.  
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4.4.5. Effect of Element Size 

Previous researchers have identified that the mesh size used in modelling is crucial in order to 

reduce the effects of numerical dispersion. Kuhlemeyer and Lysmer (1973) showed that an 

element size at least 10 times smaller than the minimum wavelength is required to prevent 

numerical dispersion. This has been corroborated by further studies (Hildyard, 2001). The 

models used in the previous section used a 0.8m mesh throughout and a P-wave velocity of 

3328 m/s. This means that it is unlikely that the models will be able to accurately model a 

wave with a frequency greater than 416 Hz. 

Another important consideration of the mesh size for a 1D model revolves around how a 

model, which is strictly speaking 2D, operates as a 1D model. Figure 4-4 and Figure 4-5 show 

the meshing of a 1m high model using elements of different sizes. In both Figures, when the 

mesh size is half of the model height the model shows a dense mesh. As the Equations of 

motion are calculated at every vertex these dense meshes with a small element size will allow 

a greater freedom of movement within the model. In contrast, when the element size is 

double the model height there is a much less dense mesh generated with less vertices within 

the model, giving the model a reduced ability to move in the vertical direction. This larger 

mesh size could potentially be considered more of a 1D scenario than the smaller mesh size, as 

when 1D is referred to it is the movement of waves along the long axis of the model which is of 

interest.  

Putting the above in a different way and considering an unlimited amount of computer power, 

as the time step is related to the element size, the modelling software does not really care if 

the model is 1 Å tall or 1 pc tall, both could be considered 1D or 2D using a suitable mesh size. 

The intuitive concept of a small (i.e. 1 Å) model being more like a 1D scenario than a very tall 

model (i.e. 1 pc) is more of a projection of how we would normally view the world, not in the 

way a computer models a situation.  

In the real world, which is limited by a finite amount of computing power, our models are 

limited in their maximum extents. However, to avoid dispersion a large element size is to be 

avoided; therefore, reducing the model height. For this reason, a 1 m model height is 

arbitrarily selected for use. It is not necessarily the optimum model height for a 1D analysis, or 

for the desired range of frequencies, but it is a useful and obvious starting point from which to 

explore the most suitable model height. This also conforms with the model height used by Cai 

& Zhao (2000), among others. 
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To explore the effects of the element size in a 1 m high model, with both the edge and quad 

meshing methods excited by the Gaussian wave and its derivatives, Figure 4-12 to Figure 4-17 

were generated. Each Figure for each mesh type is discussed in turn below. The load is applied 

to the end of the model in this section, as opposed to being applied in the centre of the model 

as in the previous Figures. This is necessary as it is not possible to apply an internal load where 

there are no nodal points, which can occur in the centre of the model when the element size is 

large. Therefore, for continuity of the input loading function all loads have been applied at the 

end of the model.  

Edge Mesh Sensitivity Analysis 

 

Figure 4-12 Frequency response functions for different edge mesh element sizes using a 100 Hz Gaussian wave in a 
model with a P-wave velocity of 3328 m/s with a load applied to the end of the model 

Figure 4-12 shows the Gaussian input wave, with a 100 Hz signal frequency, in a 1 m high 

model with edge mesh element sizes of 0.5, 0.8, 1 and 2 m. This shows that when the element 

size is equal to the model height the transfer function is approximately constant at a value of 1 

up to about 200 Hz. Reducing the element size gives a less accurate transfer function, even 

leading to amplification of the waves. This adds support to the concept of a 1D model 

previously discussed, as the smaller mesh size will give more mesh elements out of the plane 

of wave propagation. The 2 m element size is an interesting concept, as this appears to give 

the next best transfer function after the 1 m model up to 200 Hz. The same relative trends of 

the transfer functions are also observed when using the Gaussian 1st derivative and Gaussian 
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2nd derivative waves in Figure 4-13 and Figure 4-14, with some differences being caused by the 

exact input wave function.  

 

Figure 4-13 Frequency response functions for different edge mesh element sizes using a 100 Hz Gaussian first 
derivative wave in a model with a P-wave velocity of 3328 m/s with a load applied to the end of the model 
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Figure 4-14 Frequency response functions for different edge mesh element sizes using a 100 Hz Gaussian second 
derivative wave in a model with a P-wave velocity of 3328 m/s with a load applied to the end of the model 

Quad Mesh Sensitivity Analysis 

 

Figure 4-15 Frequency response functions for different quad mesh element sizes using a 100 Hz Gaussian wave in a 
model with a P-wave velocity of 3328 m/s with a load applied to the end of the model 
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Figure 4-15 shows the Gaussian input wave, with a 100 Hz signal frequency, in a 1 m high 

model with quad mesh element sizes of 0.5, 0.8, 1 and 2 m. The best transfer function is clearly 

derived from the 2 m element size, which is very close to one until about 250 Hz, from where it 

diverges. The other mesh sizes show no trend; however, when viewed in the context of Figure 

4-5, indications to what could be occurring can be found. When the element size is less than or 

equal to the model height additional modelling nodes can be fitted into the model. Therefore, 

making the model diverge from being 1D. This interplay of additional modelling nodes and a 

smaller element size, allowing a greater accuracy of the modelling of higher frequencies, is 

expected to have caused the irregular pattern of the data series in Figure 4-15. However, what 

is clear is that when the mesh size is greater than the model height, the accuracy of the 

transfer function is increased.  

The same trends observed in Figure 4-15 are also seen in Figure 4-16 and Figure 4-17, with 

exceptions for the usual differences seen in the wave inputs. When comparing Figure 4-11 

with the Figures in this section it is clear that the change in the position of the loading has 

altered the transfer functions. The end loading seen in this section appears to be a 

considerable improvement on the central loading in Figure 4-11. This will be explored further 

in Section 4.4.7.  

 

Figure 4-16 Frequency response functions for different quad mesh element sizes using a 100 Hz Gaussian first 
derivative wave in a model with a P-wave velocity of 3328 m/s with a load applied to the end of the model 
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Figure 4-17 Frequency response functions for different quad mesh element sizes using a 100 Hz Gaussian second 
derivative wave in a model with a P-wave velocity of 3328 m/s with a load applied to the end of the model 

4.4.6. Model Height 

In this section the effect of the model height will be assessed. In each model a wave interval of 

1E-6 seconds is used, and the mesh size is equal to the model height. End loading input 

functions are used, as modelled in the previous section. Both mesh types are assessed, 

although only a 100 Hz signal frequency Gaussian wave is modelled.  



79 
 

 

Edge Mesh Sensitivity Analysis 

 

Figure 4-18 Frequency response functions for different sized models with edge mesh element sizes equal to the 
model height with a Gaussian wave function 

Figure 4-18 shows how changing the model height, with an equal edge mesh element size, 

affects the transfer function. For example, a 1 m high model has a square mesh of 1 m x 1 m 

and a 2 m model has a square mesh of 2 m x 2 m. It is clear from the Figure that the 2 m model 

height / element size combination performs least well out of those modelled. This is to be 

expected as the large element size will not be able to model such a wide range of frequencies 

as the smaller element sizes. The 1 m element size appears to perform better than the 2 m 

element, but not as well as the 0.5 m element. When the 0.5 and 0.4 m elements are 

compared the 0.5 m element appears to be performing marginally better than the 0.4 m 

model height. The reasons behind this reversal in trend are not clear.  



80 
 

 

Quad Mesh Sensitivity Analysis 

 

Figure 4-19 Frequency response functions for different sized models with quad mesh element sizes equal to the 
model height with a Gaussian wave function 

Figure 4-19 shows how changing the model height, with an equal quad mesh element size, 

affects the transfer function. This is identical to the mesh set up as used in Figure 4-18, but 

with the quad mesh type. Unlike in Figure 4-18, the model height to quality of transfer 

function appears to be correlated. The 2 m model element size performs worst, based on its 

divergence form an amplitude of 1, and the 0.4 m model element size performs best. The 1 m 

and 0.5 m models fit between the upper and lower bounds of the 2 m and 0.4 m models.  

When Figure 4-18 and Figure 4-19 are compared it is clear that the quad mesh gives better 

transfer functions than the edge mesh, when the model is loaded at the end. The outcome of 

this sensitivity analysis, showing that a small model height / element size quad mesh performs 

well and the outcome of the previous section, which showed that an element size larger than 

the model height improves the transfer function, indicates that there could be further 

improvements made to the transfer functions. This would be done by having a small model 

height with a large element size and would be expected to have the effect of not only 

improving the transfer function over a wide range of frequencies but also preventing over 

prediction of the amplitude of transfer functions past a limiting frequency.  
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4.4.7. Effect of Input Type and Position 

The previous sections use both end loads and central loads as the input excitation. This section 

directly assess the effect of these changes by plotting the transfer functions beside each other. 

In addition to this a velocity input function is also modelled to determine the validity of using 

this as an input excitation to the model.  

A 100 Hz signal frequency Gaussian wave is used as the input wave function in this section. All 

models have a height of 1 m and an element size of 0.8 m, allowing both end loading and 

central loading functions to be used.  

Edge Mesh Sensitivity Analysis 

Figure 4-20 shows that the different input functions and locations give different transfer 

functions with the edge mesh. The worst performing input is a centrally applied velocity 

function, as this gives a transfer function which is extremely divergent from an amplitude of 

one. The end velocity function on the other hand performs the best out of all the models. The 

two loading positions perform differently, with the end load increasing in amplitude along a 

reasonably smooth curve and the central loading function reducing in amplitude with an 

oscillating wave form.  

 

Figure 4-20 Frequency response function for an end and centre loads and velocities with a 100 Hz Gaussian wave 
input function and a 0.8m edge mesh element size in a model with a P-wave velocity of 3328 m/s 
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Quad Mesh Sensitivity Analysis 

Figure 4-21 shows that the different input functions and locations give different transfer 

functions with the quad mesh. The trends found with the quad mesh seem to be similar with 

those found with the edge mesh in Figure 4-20. The worst performing function is a centrally 

applied velocity, and the best performing function is a velocity applied to the end of the 

model. The centrally applied load reduces in amplitude in an oscillatory fashion and the end 

load increases along a smooth curve. This supports the assumption that the inputs to the 

models are the same, with the differences in the transfer functions being caused by the mesh 

types themselves.  

 

Figure 4-21 Frequency response function for an end and centre loads and velocities with a 100 Hz Gaussian wave 
input function and a 0.8m quad mesh element size in a model with a P-wave velocity of 3328 m/s 

From this and the previous sections it is shown that the quad mesh can be used to give the 

smoothest transfer functions when combined with an end excitation.  

4.4.8. Outcome of Parametric analysis   

The parametric analysis presented can be used to determine the most appropriate 

combination of modelling setup options to be used to generate the most accurate transfer 

function possible from a 1D numerical model. The accurate transfer function is an outcome of 

a model which has limited numerical inaccuracies, such as numerical dispersion, which is 
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discussed in 4.2.1. The outcome suggests the requirements detailed in Table 4-1 are needed 

for an accurate transfer function.   

Table 4-1 Recommendations for optimum modelling of transfer functions using the finite difference method in UDEC 

Modelling Option Recommendation 

Wave type  Gaussian Wave 

Wave interval Equal to or less than the modelling time step   

Excitation End load or velocity function 

Element size As small a possible 

Mesh type Quad mesh 

Model height Less than the element size (this necessitates 

an end loading function) 

 

4.4.9. 1D Continuum Transfer Functions 

This section applies the findings of Table 4-1 to derive a transfer function for a continuum 

model. The recommendations in Table 4-1 consider both the input wave and the finite 

difference mesh. The input wave to be used in this section is a Gaussian wave and both 

velocity and loading functions are modelled to determine the best transfer functions from this. 

A short wave interval is used, such as the 1E-6 seconds wave interval used in previous sections; 

however, the critical wave interval is influenced by the modelling time step, which is 

influenced by the element size, so this is reviewed during modelling. The models shown in this 

section have a minimum modelling time step of 1.6E-6 seconds, so this requirement is met in 

all cases.  

The element size requirements given in Table 4-1 are less precise, requiring further sensitivity 

analysis. However, the quad mesh function is used, and the element size is greater than the 

model height to assure a more realistic 1D scenario, with only one finite difference mesh zone 

in the vertical direction. It is possible to generate non-square meshed regions using the quad 

mesh. This is done by specifying a different size in the vertical and horizontal directions. Up 

until this point, models have been run using meshes with the same vertical and horizontal 

element sizes.  
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The element size used will dictate the ability of the model to transmit waves, with a smaller 

element size allowing a higher wave frequency to be transmitted. Therefore, the smaller the 

element size the more accurate the transfer function will be over a greater range of 

frequencies.  

A model height of 0.2 m is used for the following transfer functions and a wave frequency of 

100 Hz is used as the source.  

Mesh Size  

Loading Function 

 

Figure 4-22 Transfer functions from 0 to 500 Hz with a 0.2 m model height and a changing horizontal element size 
using a loading input. Legend shows the horizontal and vertical element size (horizontal / vertical).  

Figure 4-22 shows the effect on a transfer function of changing the element size in a 1D 

numerical model. The vertical element size is the size generated in the model, instead of the 

size input into the numerical code. The vertical element is limited to the model height, which is 

0.2 m, with the mesh generator fitting the mesh into this limit. The actual value used for the 

input was 0.25 m. Figure 4-22 shows that the worst performing transfer function, defined as 

the transfer function which diverges most from one across the graphed range, has an element 

size of 0.75 m in the horizontal direction and 0.2 m in the vertical. This gives a ratio of 3.75:1 

for horizontal to vertical element size. The general trend with the graphed data in this Figure is 

that as the horizontal element size decreases the transfer function improves. However, when 
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interrogating the relationship of each of the data series in relation to each other there is a 

more complex relationship. For example, the best performing transfer function is when the 

horizontal element is 0.125 m, which gives a ratio of 0.625:1, but the smallest ratio of 0.5:1, 

from an element size of 0.1 m, performs quite poorly. The ratios of horizontal to vertical 

element size which perform well are 1:1, 2:1 and 2.5:1, along with 0.625:1 which has already 

been mentioned. This suggests that the ratio needs to be close to 1:1, although some variation 

is allowable.  

Velocity Function 

 

Figure 4-23 Transfer functions from 0 to 500 Hz with a 0.2 m model height and a changing horizontal element size 
using a velocity input. Legend shows the horizontal and vertical element size (horizontal / vertical).  

Figure 4-23 shows many similar trends to Figure 4-22 for a velocity source function. These 

include the 0.75 m element showing the greatest divergence from 1, followed by the 0.3 m, 

0.1 and 0.25 m elements. The best performing meshes are still 0.125 and 0.2 m, whereas the 

0.4 and 0.5 m meshes do not perform as well as in Figure 4-22.   

Vertical Mesh Size 

All the models used to generate Figure 4-22 and Figure 4-23 use a vertical element height of 

0.25 m. In a 0.2 m model, as used here, the model height will limit the vertical element size. 

Using a vertical element size greater than the model height ensures that a 1D modelling 

scenario is generated. To verify that this has no effect on the modelling results Figure 4-24 has 
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been generated. In this Figure the vertical mesh height has been changed from 0.25 to 1.0 m, 

in a model with a 0.2 m height, using a constant horizontal element size of 0.2 m. In both cases 

the transfer functions for each vertical element height superimpose. Therefore, providing the 

vertical element size is greater than the model height, changing the vertical element size does 

not affect the meshing of the model, and by association the transfer function.  

a) b)

Figure 4-24 Variation in vertical mesh height with load (a) and velocity (b) excitations functions 

Optimum Mesh Size 

The optimum mesh size, based on the results in Figure 4-22 and Figure 4-23, is 0.125 m 

horizontally and 0.25 m vertically.  

Optimum Wave Frequency for Optimum Mesh Size 

A final sensitivity analysis has been run, where the input wave frequency is varied. Previously it 

was found that there was not an effect of increasing the input wave frequency from 100 to 200 

Hz; however, in this section a greater range will be used.  

Loading Function 

Figure 4-25 shows how the transfer function varies for different signal frequencies of a 

Gaussian wave. This shows that both a high frequency (1000 Hz) and low frequency (100 Hz) 

give poor transfer functions. An optimum transfer function, over the 1000 Hz shown in the 

Figure, appears to be generated by a 400 or 500 Hz input wave. Over this range the error on 

the idealised transfer function of 1 is 0.01%. Whether this can be considered “good” depends 

on what the transfer function is to be used for; however, for the purpose of this study this has 

been considered to be reasonable.  
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Figure 4-25 Transfer functions for varying input wave signal frequency using a 0.125/0.2 m mesh size in a 0.2 m high 
model with a loading function 

Velocity Function 

Figure 4-26 shows the transfer functions for input wave signal frequencies from 100 to 1000 

Hz. Like in Figure 4-25, the low and high frequencies give poor transfer functions, with the best 

transfer functions being given by the 400 and 500 Hz signal frequency input waves. The 400 

and 500 Hz waves also represent an error of less than 0.01% up to 1000 Hz, the same as found 

with the loading function.  
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Figure 4-26 Transfer functions for varying input wave signal frequency using a 0.25/0.2 m mesh size in a 0.2 m high 
model with a velocity function 

The frequency content of the 400 and 500 Hz waves are not the same but the results are 

similar. Therefore, selecting one or the other is arbitrary. Consequently, the 500 Hz wave has 

been selected for use in future numerical models.  

4.4.10. Final Transfer Function for a 1D Continuum Model 

Based on the above sensitivity analysis the transfer functions in Figure 4-27 are generated for 

loading and velocity inputs. This is achieved using a Gaussian wave with a 500 Hz signal 

frequency in a model with a horizontal element size of 0.125 m and a vertical element size 

equal to the model height of 0.2 m. Figure 4-27 shows a range of frequencies from 0 to 2000 

Hz, which has been arbitrarily selected to show the accuracy of the transfer function over a 

large range of frequencies as opposed to the frequencies of interest in this thesis, which for 

train vibrations are typically up to 250 Hz (Ouakka et al., 2022).   
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Figure 4-27 Optimum P-wave transfer functions for a 1D continuum model with a P-wave velocity of 3328 m/s 

4.4.11. Transfer Functions for Other Rock Types 

To test that the basic modelling assumptions found in the previous section remain valid when 

the model properties change, other rock types are modelled. This is necessary as different rock 

types will have different velocities and will be transmitted differently through a model. The 

rock types modelled and their properties are shown in Table 4-2, which are taken from the 

UDEC database of properties (Itasca Consulting Group Inc., 2014). All models are excited with a 

500 Hz Gaussian wave end load function. The model setup is exactly as modelled in the 

previous section, so the “Original” data series shown in Figure 4-28 is the same as the “Load” 

series shown in Figure 4-27. “Original” refers to the hard sandstone properties used previously 

in Section 4.4.  
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Table 4-2 Properties and rock types modelled. Original is the rock used previously in this section 

Rock Type Density 

(kg/m3) 

Young’s 

Modulus 

(GPa) 

Bulk 

Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

S-Wave 

Velocity 

(m/s) 

P-Wave 

Velocity 

(m/s) 

Sandstone 

(Original)  
2.6E3 24.0 16.0 9.6 1922 3328 

Shale 2.6E3 11.1 8.8 4.3 1286 2365 

Siltstone 2.6E3 3.2 15.7 1.1 1286 2568 

Sandstone 2.6E3 19.2 26.8 7.0 1640 3727 

Limestone 2.6E3 28.4 22.6 11.0 2057 3786 

Basalt 2.6E3 34.9 32.3 13.2 2253 4381 

Marble 2.6E3 55.7 37.0 22.3 2929 5066 

Granite 2.6E3 73.7 44.0 30.2 3408 5693 

Quartzite 2.6E3 88.3 37.7 39.8 3913 5910 

 

Figure 4-28 shows the transfer functions for a range of rock types. The legend is shown with an 

ascending P-wave velocity from top to bottom. The quality of the transfer function up to 2000 

Hz improves as the P-wave velocity increases, with Quartzite showing the best transfer 

function and Shale the worst. This would be expected as the stiffer rocks, giving a higher P-

wave velocity, will increase the wavelength for any given frequency, which will allow the 

model to transmit a greater range of frequencies.  
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Figure 4-28 Transfer functions for other rock types modelled using a load function 

To test the transfer functions quality, the frequency for each rock type when the transfer 

function amplitude reaches 0.9999 is recorded. The amplitude of 0.9999 is arbitrarily selected 

and does not necessarily represent the limit of the applicability of the transfer functions. As 

the ability of a model to transmit frequencies relies on the ratio of the wavelength to the 

element size, it is expected that as the P-wave velocity increases the frequency will also 

increase. It is expected that the relationship between the P-wave velocity and the frequency is 

linear, as these are related through the classic Equation v=fλ; where v is velocity, f is frequency 

and λ the wavelength. Figure 4-29 shows the results from this exercise, plotted against the P-

wave velocity. This shows that there is a linear relationship between the 0.9999 cut off and the 

P-wave velocity with a high R-squared value, as expected. The R-squared value shows the 

coefficient of determination and can be used to show how data fits a bets fit equation (Holmes 

et al., 2019). When the same data is plotted against the S-wave velocity the R-squared value 

drops to 0.84, which for the data is considered low. This indicates that the waves being 

modelled are P-waves.  
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Figure 4-29 Frequency at which transfer function value drops below 0.9999 plotted against the P-wave velocity of 
the model. R2 value for best fit line is 0.9025 

The outcome of this section is that the modelling properties perform extremely well up to 

about 1000 Hz, which is much greater than the 0 to 250 Hz range of typical rail vibrations. 

However, the applicable range of frequencies which can be modelled is extended by using a 

stiffer material. 

4.4.12. Final Model 

The final model which has been determined through the preceding sensitivity analysis is 

included in Figure 4-30. This will be used as the basis for future modelling of jointed rock 

masses using the combined discrete element-finite difference method in UDEC. The models 

use the large strain assumption in the UDEC set up.  

 

Figure 4-30 UDEC Model showing finite difference mesh. Mesh fills entire model. Not to scale. From Holmes et al., 
(2023b) Figure 2 
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Table 4-3 Final model setup in UDEC 

Modelling Option Recommendation 

Wave type and frequency 5000 Hz Gaussian Wave  

Wave interval Equal to or less than the modelling time step   

Excitation End load  

Element size 0.125 m horizontally, 0.2 m vertically 

Mesh type Quad mesh 

Model height 0.2 m 

Boundaries  Lateral – Absorbing Boundaries 

Horizontal – Roller Boundaries 

 

4.5. Effect of Multiple Parallel Joints 

 
“Data! Data! Data! I can’t make bricks without clay.” – Sherlock Holmes 

(Doyle, 2014, pg. 274) 
 

4.5.1. Joint Spacing and Number of Joints 

Jointing in rock masses is common in nature. They can be found in a range of different rock 

types and formed in a range of different ways. These include bedding joints, formed through 

deposition of sedimentary rocks, to fractures in columnar basalt, formed through cooling of 

the molten material. Joints can form at a range of different angles; however, as shown in 

Figure 4-2, when projected into 1D, joints will always be parallel. This does not mean that 

studying a 1D projection only has theoretical relevance. Joints can form parallel to one another 

in reality, as shown by Figure 4-31. Multiple joints within a rock mass with the same 

orientation are known as joint sets.  
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Figure 4-31 Parallel jointed rock masses which will show transverse isotropy. a) sub-vertical joints in slate-like grits, 
Aberystwyth, western Wales, with a sub-vertical plane of isotropy (Barton & Quadros, 2015); b) Horizontal joints in 
alternating siltstone and shale from Appalachian Plateau, Fingers Lakes, New York, with a vertical plane of isotropy 
(Germanovich & Astakhov, 2004); c) sub-vertical joints in Pembroke Limestone Group, Whatley Quarry, Mendip Hill, 

Somerset, England with a sub-horizontal plane of isotropy (Photograph courtesy of M. Czerewko); d) vertical joints in 
slate, Twll Mawr Quarry, Dinorwig Slate Quarries, North Wales with a horizontal plane of isotropy (Photo courtesy of 

C. Prescott, chris-prescott.com). Joints within rock masses are highlighted by dashed lines 

This section considers a rock mass with a single set of joints, all separated by a constant 

spacing with a constant stiffness. Figure 4-32 shows the results for a rock mass with two 

parallel joints with a separation of 1, 2, 5 and 8 m. Three different rock types are modelled, 

which correspond with the properties given in Table 4-2. There is a clear structure developing 

in these transfer functions, with two peaks at low frequencies, followed by regular peaks at 

higher frequencies. The low frequency peaks appear to superimpose, regardless of the 

background rock mass, while the higher frequency peaks seem to increase their spacing as the 

background rock mass increases in stiffness. The first of the low frequency peaks is always at a 

frequency of 0 Hz. A 0 Hz wave is predicted to pass through a joint without being altered, as 

shown by the single joint transmission given by Equation 3-6 (Section 3.7). The low frequency 

peaks notably have transmission coefficients greater than one, with the higher stiffness rocks 

having a higher coefficient, while the troughs in-between the peaks have a transmission 

coefficient of less than one and a lower coefficient as the rock stiffness increases. Despite the 

transmission of these peaks being greater than one, this is over a very small range of 

frequencies and is not considered to be realistic. All peaks reduce their frequency spacing 

when the joint spacing increases.  
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a) b) 

c) d) 

Figure 4-32 Transmission coefficient for a simple multi jointed rock mass with Jn=2 with a specific stiffness of 0.5 
GPa/m separated by 1, 2, 5 and 8 m for three different rock types 

Figure 4-33 shows the transfer functions for a rock mass containing four parallel joints. Similar 

to Figure 4-32 there are a series of peaks at low frequency, although there are now 4 peaks. 

The higher frequency peaks appear to be in the same location as those in the two jointed 

models shown in Figure 4-32. There is a clear structure here, with the number of low 

frequency peaks being related to the number of joints, and the higher frequency peaks being 

related to the rock stiffness.  
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a) b) 

c) d) 

Figure 4-33 Transmission coefficient for a simple multi jointed rock mass with Jn=4 with a specific stiffness of 0.5 
GPa/m separated by 1, 2, 5 and 8 m for three different rock types 

Figure 4-34 shows the transfer functions for parallel jointed rock masses with 2, 3, 4 and 8 

joints. This shows that there is no obvious relationship between the number of joints and the 

frequency of the peaks, although the maximum high transmission frequency does appear to 

stabilise around 120 Hz when the number of joints increases.  
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Figure 4-34 Transfer functions for multiple jointed rocks, with 2,3,4 and 8 parallel joints. All models have the same 
rock type Original (Sandstone) and the same joint specific stiffness of 0.5 GPa/m and joint spacing of 1 m 

4.5.2. Joint Stiffness 

Figure 4-35 shows how changing the stiffness of the joint affects the transfer functions for a 

model with two joints with the background material modelled with different properties. The 

Figures include transfer functions for joints of stiffnesses of 0.5, 1 and 10 GPa/m. The two 

peaks are still visible when the joint stiffness increases. The position of the second peak 

appears at higher frequencies when the joint stiffness increases, with the first peak always at a 

frequency of 0 Hz. The amplitude of the second peak reduces when the joint stiffness 

increases.  
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a) b) 

 c)  

Figure 4-35 Transfer functions for multiple jointed rocks with Jn=2 at a range of joint specific stiffnesses for three 
different rock types 

4.5.3. Sensitivity to Joint Position relative to Excitation Position 

Figure 4-36 shows a sensitivity analysis of the relative position of the measurement point and 

joints, to the location of the excitation. This has been moved further away from the 

measurement point, with the joints also moved closer or further away from the excitation 

point. The cases shown in Figure 4-36 are not exhaustive, although they do show that the 

position and magnitude of the transfer function is not particularly sensitive to the relative 

positions of the joints, excitation, and measurement points. The cases used in Figure 4-36 are 

as follows: 

Case 1- Joints at 104 and 105 m, measured at 200 m;  

Case 2- Joints at 194 and 195 m, measured at 200 m;  

Case 3- Joints at 49 and 50 m, measured at 200 m;  

Case 4- Joints at 19 and 20 m, measured at 200 m;  



99 
 

 

Case 0- joints at 104 and 105 m, measured at 110 m (as used in previous Figures) 

 

Figure 4-36 Transfer functions for multiple jointed rocks with Jn=2 for different modelling conditions with an 
excitation at 0m 

4.6. Analytical Expressions for Resonance Mechanisms 

This section looks into the physical mechanisms behind the interactions observed in the 

previous Figures, and introduces Equations which can be used to predict the frequencies at 

which these interactions occur. The Figures in the previous section show a small number of the 

models analysed. Many further analyses were run, with the high transmission frequencies 

included in Appendix A. These high transmission frequencies represent resonant frequencies 

of the rock masses analysed. The database shown in Appendix A was analysed by attempting 

to normalise the resonant frequencies using properties of the rock masses. In doing so two 

different mechanisms were discovered operating in the jointed rock masses, one occurring at 

low frequencies and the second at relatively high frequency. The low frequency resonances 

occur through a mass between spring like mechanism and the high frequency resonances 

through a superposition like mechanism. The following sections describe these mechanisms 

and derive Equations for the prediction of the resonant frequencies of jointed rock masses.  

Readers from other engineering disciplines may have issue with using the term resonance for 

the phenomena highlighted in this thesis. Resonance typically causes cause amplification of a 

response; however, the amplitude of resonant frequencies in this work are shown as elevated 
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compared to surrounding frequencies, which have their amplitudes reduced. The resonances 

have their amplitude maintained, with a transmission coefficient equal to one. Some transfer 

functions in this work show amplifications; however, these are thought to be caused by 

numerical modelling errors rather than a realistic amplification. Despite this, there are still 

clear maxima and minima in all the transfer functions presented here, so these artificially 

raised amplitudes should not detract from the presence of the mechanisms. It is not 

uncommon for the same terms to have slightly different applications between different 

scientific disciplines. While the term resonance may not be suitable from a purely engineering 

perspective there is a precedent in geological literature for using it for such affects, as shown 

by Nakagawa (1998), Li et al. (2019) and British Standard Institution (2004). As such, the term 

resonance is considered to be well justified.  

4.6.1. Low Frequency Resonance – Spring Resonance 

The low frequency resonance shows complex trends, with the number of resonant frequencies 

increasing when the number of joints increases (Figure 4-34) and their frequency related to the 

properties of the blocks and joints (Figure 4-35). To explore the trends in the data it is 

beneficial to be able to link these to simple physical cases with closed form solutions. To do 

this, initially, the simplest jointing case of two parallel joints is explored.  

A model with two parallel joints is equivalent to a block between two springs, which are fixed 

at their ends (Figure 4-37). The block is created by the joints, with the joints operating like 

springs. The large blocks on either side of the joint generated block (Figure 4-30) operate to fix 

the springs (joints) in position. This is not strictly accurate as these end blocks can deform; 

however, for the purposes of a simple analogy this system suffices. In the 1D models used 

here, the mass can only move in a single plane. The block will oscillate at a frequency related 

to the stiffness of the springs and the mass of the block. Equation 4-13 gives the frequency of 

oscillation of a mass between two springs. 

 

Figure 4-37 A single degree of freedom mass (block) between two springs (joints) used as an analogy for a parallel 
jointed rock mass. From Holmes et al., (2023b) Figure 9 
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𝜔 = ඨ

2𝐾

𝑚
 Equation 4-13 

Where ω is the angular frequency of oscillation, m is the mass of the block and K the stiffness 

of the springs.  

Equation 4-13 can be used with different stiffnesses on either side of the block, in which case 

2K would become K1+K2, with K1 and K2 being the different spring stiffnesses. The m is given by 

the block density multiplied by the joint spacing (s) (m=sρ).  

To extend this analogy to more complex rock masses, additional blocks and springs can be 

added. When there are more blocks added, more resonant frequencies are generated, with 

the same number of resonant frequencies as the number of blocks. Previously it is highlighted 

that there is one less low frequency resonant peak than the number of joints, which is equal to 

the number of blocks in the model, not including the blocks in contact with the ends of the 

model. The ω of the resonant peaks are given by the eigenvalues (α) of Equation 4-14.  

 
𝐾𝑋 = 𝛼𝑀𝑋 

Equation 4-14 

 

Km is the stiffness matrix (Equation 4-15) and M the mass matrix (Equation 4-16) and X is a 

vector that satisfies Equation 4-14. 

 

𝐾 =

⎣
⎢
⎢
⎡
𝑘ଵ + 𝑘ଶ −𝑘ଶ ⋯ 0

−𝑘ଶ 𝑘ଶ + 𝑘ଷ ⋱ ⋮
⋮ ⋱ ⋱ 𝑘
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⎥
⎥
⎤

 

 

Equation 4-15 

 

𝑀 = ൦

𝑚ଵ 0 ⋯ 0
0 𝑚ଶ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝑚

൪ 

 

Equation 4-16 

 

Where mj is the jth block mass, kj is the jth spring stiffness.  

Equation 4-14 does not give the exact answer given by the numerical models, but the results 

are close, and the general trends are the same (i.e. increasing number of resonances as the 

number of joints increases). The difference suggests that the numerical models are not 

behaving like a rigid mass between two springs. The finite difference method, in its essence, 

attaches a number of springs in series, especially when modelled as a 1D material, as is the 

case here. There are springs for the intact material with one stiffness, attached to springs for 
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the joints of another stiffness, again attached to springs for the intact material, and so on. As 

the blocks are able to accommodate deformations, not just the joints, the deformation of the 

blocks could be changing the effective stiffness of the material. The stiffness for a jointed rock 

mass can be calculated as the static stiffness of a series of springs, using Equation 4-17 (Ma et 

al., 2013), which can be incorporated into Equation 4-14 to account for the deformability of 

the blocks.  

 
𝐾 =

1

1
𝐸

+
1

𝑘

 Equation 4-17 

 

Where Kc is the combined spring stiffness, Ei is the intact block Young’s Modulus and kn is the 

joint normal specific stiffness.  

Using Kc, calculated from Equation 4-14, as the spring stiffness (kj) in Equation 4-15, the 

predicted resonant frequency reduces, bringing it closer to the numerical modelling results, 

although they are still not exactly the same.  

A final Equation for the prediction of the low frequency resonant frequencies is given by 

Equation 4-18, and in terms of the ξ, by Equation 4-19. The term low frequency resonance is 

quite ambiguous, so this effect will be referred to as spring resonance.  

 
𝑓 =

1

2𝜋
ඥ𝛼 Equation 4-18 

   

 𝜉 =
𝑠

2𝜋𝐶
ඥ𝛼 Equation 4-19 

Where fn is the nth resonant frequency, αn is the nth eigenvalue for the system, and n is the 

peak number which has values from 1 to Jn-1.  

Spring resonance is applicable for all rock masses which show linear elastic joint behaviour, 

and is not limited to the range of properties shown in Appendix A or Table 4-2.  

4.6.2. High Frequency Resonance – Superposition Resonance 

The wavelengths of the high frequency resonance are closely related to the joint spacing. The 

relationships in terms of ξ are shown in Table 4-4. The peaks are numbered following on from 

the resonances generated through spring resonance, of which there are Jn-1 resonances. The 

frequency that gives these wavelengths can be calculated from Equation 4-20, with Equation 

4-21 giving the same Equation in terms of ξ. This Equation is the same form as the classical 

Equation which gives the frequencies which generate a standing wave on a string fixed at its 

ends, of length s, and has been found to give rock resonance by Nakagawa (1998). Using the 
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standing wave analogy, the string is the equivalent of a block, and the fixed ends are 

equivalent to the ends of the block, or joints. Multiple reflected waves, travelling in opposite 

directions can superimpose, amplifying the transmitted wave. Therefore, a wave of these 

wavelengths will have a greater transmission coefficient than a wave of a higher or lower 

frequency. The length of s has no physical limits, although in these numerical models it will be 

limited to a maximum of the size of the model and a minimum of 10 times the element size.  

Table 4-4 Wavelengths as a multiple of joint spacing for high frequency resonance in jointed rock masses 

Peak (n) ξ 

Jn 0.5 

Jn+1 1 

Jn+2 1.5 

Jn+3 2 

 

 
𝑓 =

(𝑛 − 𝐽𝑛)𝐶

2𝑠
 Equation 4-20 

   

 
𝜉 =

𝑛 − 𝐽𝑛

2
 

Equation 4-21 

 

Where n is the peak number, including all spring resonance peaks. 

Equation 4-20 does not give the exact resonant frequency and instead serves as a reasonable 

estimate. The reasons behind this are likely to be due to the deformation of the blocks during 

the analysis, therefore changing the size of the blocks and the frequencies which will form 

standing waves within them. This assumption is supported when viewing different block and 

joint stiffnesses. The stiffness of the blocks significantly affects the resonant frequency, as 

shown by Appendix A, with the extremely low stiffness blocks diverging significantly from the 

frequency predicted by Equation 4-20. The resonant frequency from modelling increases as 

the intact material stiffness decreases, giving a lower wavelength. A lower material stiffness 

will allow the block to deform more; therefore, allowing compression, reducing the size of the 

block. Increasing kn also increases the frequency, further reducing the wavelength. A stiffer 

joint will deform less; therefore, causing all deformation to be focussed on the block, further 

reducing the block size, and reducing the wavelength. These effects are only evident in 

extremely low stiffness materials with very high stiffness joints, which are not likely in reality. 

In most realistic rock masses, Equation 4-20 would be expected to give a reasonable 
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approximation of the resonant frequency. This effect will be referred to as superposition 

resonance.  

Theoretically, there are an unlimited number of superposition resonant frequencies. However, 

the high frequency resonance may not be visible for low stiffness joints. This is likely to be 

related to the effects shown by the single joint analytical Equations, shown by Equation 3-6 

and Equation 3-7 (Schoenberg, 1980; Pyrak-Nolte et al., 1990b). A combination of a very low 

stiffness joint and a high material stiffness will prevent energy from being transmitted. Despite 

this generating a large degree of reflection to allow the superposition, if energy cannot be 

transmitted through the joint, there will be no increase in transmission on the other side of the 

joints. Equation 3-6 shows that the degree of transmission also reduces as the frequency 

increases, so this implies that as the order of the superposition peak increases, which increases 

the frequency, its magnitude will decrease. Figure 4-38 shows the results of a model with a 

wide joint spacing, to generate a large number of superposition resonant frequencies within a 

confined frequency range. This clearly shows that as the frequency of the superposition 

resonant frequency increases, the amplitude of this peak reduces. The absolute amplitude of 

the resonances may be incorrect due to noise in the data, although the relative amplitude of 

the peaks reduces as the frequency increases.  

 

Figure 4-38 Resonance shown by a jointed rock with s=8m (Cp=3328 m/s, Cs=1922 m/s, ρ=2600 kg/m3, kn=1 GPa/m, 
Jn=2). Numerical Data from a 1D UDEC model, spring resonance and superposition resonance from Equations 4-18 

and 4-20, respectively 
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4.6.3. Application of Analytical Models 

The analytical Equations for spring and superposition resonance are given in terms of 

frequency and ξ in Equation 4-18 to Equation 4-21. These allow a more direct comparison with 

previous research into wave transmission through multi-jointed rock masses (Cai and Zhao, 

2000; Zhao et al., 2006), using the Equations in terms of ξ, and application of the results to 

other branches of engineering more easily, using the Equations in terms of frequency. For 

example, the results could be applied to vibration research, such as high speed rail, to 

determine whether a rock mass will preferentially transmit the frequencies generated by a 

vibrational source, a use particularly relevant to the work in this thesis. Results from such 

studies are typically given in terms of frequency, instead of ξ.  

To test the analytical solutions a series of arbitrary test cases are modelled with the resonant 

frequencies compared to those predicted by the analytical functions. These cases are run in 

the models shown in Figure 4-30. The properties of the verification cases are shown in Table 

4-5.  

Table 4-5 Test cases and their properties. Multiple values indicate different properties for subsequent joints  

 Ρ 

(kg/m3) 

Cp  

(m/s) 

Cs  

(m/s) 

Jn s  

(m) 

kn  

(GPa/m) 

Case 1 2600 3328 1922 3 4, 2 3 

Case 2 2600 3328 1922 2 2 0.5, 1 

Case 3 2600 2364 1286 2 4 0.8, 0.4 

 

 Case 1 contains three joints with the same stiffness, but with different joint spacing’s. 

The first and second joints are separated by 4 m and the second and third joints by 2 

m; 

 Case 2 contains two joints with different joint specific stiffnesses, where the first joint 

has a lower stiffness than the second; 

 Case 3 contains two joints with different stiffnesses, where the first joint has a higher 

stiffness than the second.  

Table 4-6 contains the results for Cases 1 to 3, solved in UDEC, and the analytical models. The 

transfer functions are shown in Figure 4-39 to Figure 4-41. Only the first two superposition 

resonant peaks are shown in Table 4-6. The analytical superposition resonant frequencies for 

Case 1 are calculated using both joint spacing’s, with the two lowest frequency peaks taken 

from this. The results in Table 4-6 seem to show a good agreement between the numerical and 
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analytical results. Cases 2 to 3 are diverse and different from the data set used to define the 

analytical models, so the agreement of the results supports the hypothesis that the analytical 

models are performing as expected. This also adds weight to the idea that the spring and 

superposition mechanisms are realistic.  

Table 4-6 Results of validation tests. U: UDEC, A: Analytical 

Case Spring Resonance Superposition Resonance 

Peak 1 Peak 2 Peak Jn Peak Jn+1 

 U  A U  A U  A U  A 

Case 1 77  91 156  175 442  416 840  832 

Case 2 75  84 n/a  n/a 839  832 1663  1664 

Case 3 45  52 n/a  n/a 303  296 595  591 

 

The results in this section show a good agreement between the numerically derived results 

and the analytical expressions in a more diverse and complex range of modelling scenarios, 

compared to those given in Appendix A from which the analytical models were derived. This 

shows a degree of robustness of the analytical expressions.  

 

Figure 4-39 Transfer Function for Case 1 
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Figure 4-40 Transfer Function for Case 2 

 

Figure 4-41 Transfer Function for Case 3 

4.7. Conclusions  

This Chapter has developed robust DEM-FDM models for studying jointed rock masses in 1D. 

This began with a model development section which outlined the important inputs to DEM-
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FDM models which could affect modelling results. These modelling inputs are systematically 

varied in an undamped continuum model, which the transfer function is known for, and the 

effect on the transfer functions are determined. From this an optimised 1D model is found. 

This 1D model is carried forward to look at multiple jointed rock masses.  

The multiple jointed rock masses are excited by a 500 Hz Gaussian function, which acts like an 

impulse, and the transfer functions from these are analysed. It is found that discrete high 

transmission zones are present in the transfer functions, which are hypothesised to be 

resonant frequencies for the rock mass being modelled. Evidence is presented to show that 

the resonances in the jointed rock mass are generated by two distinct mechanisms; spring 

resonance and super position resonance. Spring resonances are generated when the jointed 

rock mass behaves like masses between springs, with joints acting like springs and blocks 

acting like masses. Such systems have preferential frequencies of oscillation, which are 

equivalent to the resonances found in the numerical models in this Chapter. Superposition 

resonance is generated when waves, reflected from block edges, superimpose on one another. 

These resonances behave like standing waves on a string. Using classical mechanics analogues 

for the resonance mechanisms, analytical Equations are derived, which provide reasonable 

estimates for the resonance of a jointed material. This Chapter has gone some way to address 

the possible jointed rock mass resonances which are alluded to by Eitzenberger (2012). 

 
“Like all Holmes’s reasoning the thing seemed simplicity itself when it was once explained.” 

– Dr John Watson 
(Doyle, 2014, pg. 313)
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5. Verification of 1D Rock Mass Resonance Effects 

 

“Further models with added complexity,  
Are seen as a scientific necessity.  

To verify the mechanisms presence, 
Encapsulates this chapter in its essence.” 

 

 
© Army of Cats 2023  
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5.1. Introduction 

Chapter 4 considers 1D jointed rock masses and identifies two resonance mechanisms which 

operate within them. These resonance mechanisms cause certain frequencies to be 

transmitted to a greater degree through a rock mass, so their identification and further study 

is important for a range of different real world applications which generate vibrations within a 

jointed rock mass, such as trains (Chua et al., 1992) and machine foundations (Gazetas, 1983).  

The two resonance mechanisms identified are a mass between spring resonance (Section 

4.6.1), where blocks oscillate like masses between springs, and a superposition resonance 

(Section 4.6.2), where resonances occur at wavelengths that allow standing waves to develop 

within joint bounded blocks. These are identified using highly simplified 1D models, which are 

a poor representation of realistic rock masses. This Chapter aims to study these effects further 

and validate whether these resonance effects will occur in more complicated models.  

A range of different models are used in this Chapter to provide evidence of the presence of 

these resonance effects. These models are solved in the combined DEM-FDM, as used in 

Chapter 4, as well as the finite difference method (FDM). The FDM code used is called 

WAVE2D, developed by Hildyard et al. (1995), with the DEM-FDM code solved using UDEC 

(Itasca Consulting Group Inc., 2014). 

To begin with, this Chapter introduces WAVE2D and the key differences between itself and 

UDEC. A model development section is included, which is similar to the model development 

followed for UDEC in the Chapter 4, although less extensive. Following this, the verification 

models run in WAVE2D and UDEC are shown and discussed. This Chapter also introduces 

anisotropic material models, which can be implemented using WAVE2D. The outcome is that 

the resonance mechanisms identified in jointed rock masses occur in all the modelling 

scenarios in this Chapter.   

5.2. WAVE2D Model Description 

WAVE2D is a FDM code, which handles joints as special displacement discontinuity elements 

within a model (Hildyard et al., 1995). The finite difference mesh in WAVE2D uses the same 

Equations of motion as given in Chapter 4 for the UDEC mesh (Section 4.4.1). Unlike in UDEC, 

which models joints as interfaces between two blocks, joints in WAVE2D are implemented in 

the mesh as two infinitesimally thin planes, employing fictional stresses within the joint. The 

two surfaces of the joint have constant stresses, with non-continuous displacements. This 

allows the displacements on either side of the joint to be calculated using the joint and intact 

block stiffnesses. A detailed derivation of these Equations are given by Hildyard et al. (1995).  



111 
 

 

WAVE2D is specifically designed to undertake dynamic analyses so it is well set up for the 

models which will be run here. This includes the automatic generation of a regular square 

finite difference mesh and a 4th order numerical scheme. The regular square mesh allows the 

accurate transmission of stress waves as the element size is constant throughout the model. 

The 4th order numerical scheme provides a more accurate approximation of the finite 

difference integral equations than the 2nd order numerical scheme used by UDEC. This means 

that instead of the wavelength of the highest frequency wave being required to be ten times 

the element size, this can be reduced to five times the element size, resulting in a higher 

maximum frequency being accurately transmitted through the model (Hildyard, 2001). This 

increases the frequency which causes unacceptable levels of numerical dispersion, as detailed 

in Section 4.2.1. A regular square mesh is found to be the optimum mesh set up for UDEC 

(Section 4.4.12). Despite this, there are modelling setup options such as the position of the 

source and the size of the mesh which can affect the results. Therefore, a brief model 

development section is included.  

5.2.1. Position of Source 

It is not possible to apply a force to an external boundary in WAVE2D, unlike the source 

position used in UDEC. Instead, the source needs to be located within the model. To keep this 

similar to the model in UDEC, which applies the excitation to the end of the model, the source 

will be located close to the external boundary.  

5.2.2. Element Size 

The element size is a key factor dictating the frequency of waves which can be transmitted 

through a model. If the element size is too large in relation to the wavelength of the wave 

which is being transmitted, numerical dispersion can introduce issues, as discussed in 4.2.1. As 

discussed in Chapter 4, Hildyard (2001) showed that for a 4th order numerical scheme, like 

adopted in WAVE2D, the element size is required to be at least 5 times the minimum 

wavelength in order to minimise numerical dispersion. It has been decided that an element 

size of 0.08 m should be used throughout the 1D WAVE2D models in this Chapter. This will 

allow a higher frequency of wave to be transmitted than the UDEC models in Chapter 4, which 

has a solver with a 2nd order numerical scheme. However, this will not affect the transfer 

functions below this maximum transmitted frequency. Furthermore, the slight difference 

between the meshes used in the two numerical codes will indicate whether this has an effect 

on the frequency of resonances.  
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5.2.3. Model Height 

The model height is a parameter studied in Chapter 4 for the UDEC DEM-FDM models. This 

found that the model height does not have a dramatic effect on the results, so the smallest 

model size is used in order to reduce the computational costs. However, in WAVE2D it is not 

possible to implement symmetrical boundaries, like those used in UDEC to ensure that the 

model is effectively infinite in the short axis. Instead, plane wave boundaries are required. 

Therefore, a sensitivity analysis on the appropriate model height is required. A narrow model 

is set up with 80 grid points in the vertical direction and a wide model is set up with 2080 grid 

points in the vertical direction. Both models are 4800 grid points long, with a square finite 

difference mesh of 0.8 x 0.8 m. This sensitivity analysis is shown in Figure 5-1.  

 

Figure 5-1 Sensitivity analysis into the model height required in WAVE2D 

Figure 5-1 shows that the narrow WAVE2D model shows some instabilities, especially at 400 

and 800 Hz. This is not the case in the wide model, which shows a smoother transfer function 

through the range shown. Despite this there is an oscillation shown in the wide model’s 

transfer function. However, additional distinct peaks are not added to the transfer function, 

unlike in the narrow model. As a consequence, the wide WAVE2D model with 2080 grid points 

in the vertical direction appears to be a more suitable set up for future analyses.  
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5.2.4. WAVE2D Model 

The model which is to be used for the WAVE2D analyses is shown in Figure 5-2. A plane wave is 

excited at the left hand boundary of the model using a horizontal velocity function. Force 

functions, as used for the input in UDEC, are not possible in WAVE2D. Absorbing boundaries 

are modelled on the vertical model boundaries, with a plane wave boundary modelled along 

the horizontal model boundaries. No material damping is applied, which is also assumed in the 

UDEC models in Chapter 4.  

 

Figure 5-2 WAVE2D Model showing finite difference mesh. Mesh fills entire model. Not to scale. From Holmes et al. 
(2023a) Figure 7 

The WAVE2D model is excited by a modified Ricker wave which has a central frequency of 500 

Hz. This has a slightly different frequency content, when compared to the 500 Hz Gaussian 

wave used in UDEC, although the content of the waveforms is comparable. The time series and 

frequency spectrum of the UDEC and WAVE2D excitations are shown in Figure 5-3. 
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Figure 5-3 Input wave to UDEC and WAVE2D models. UDEC is a 500 Hz Gaussian wave and WAVE2D is a 500 Hz 
modified Ricker wave. a) time series of sources, b) frequency content of sources. From Holmes et al. (2023a) Figure 2 

5.2.5. Comparison to UDEC Results 

A series of simple models are set up to show how results from UDEC and WAVE2D compare to 

one another. The UDEC model is the model generated in Chapter 4, Figure 4-30. For now, the 

analytical prediction for the spring and superposition resonances, given by the Equations 4-18 

and 4-20, are ignored. A range of different properties are used for the analysis. These have 

been calculated by using the same P and S-wave velocities (Cp and Cs, respectively) for all 

models but changing the material density from 260 to 26000 kg/m3. This range is not intended 

to be representative of realistic materials, and instead show whether the resonance 

mechanisms can occur at extremes. Three different joint stiffnesses are used, from 1 to 10 

GPa/m. The properties used and the resonant frequencies shown in UDEC and WAVE2D are 

given in Table 5-1 and the transfer functions given in Figure 5-4 to Figure 5-6.  
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Table 5-1 Models used in sensitivity analysis in UDEC and WAVE with their resonant frequencies.  

ρ Cp Cs 
E. 

Mod 
kn s Jn 

Resonant Frequencies 

(Hz) 

(kg/m3) (m/s) (m/s) (GPa) (GPa/m) (m)  UDEC WAVE2D 

26000 3328 1922 240 1 2 2 28 - 32 - 

26000 3328 1922 240 4 2 2 56 835 61 830 

26000 3328 1922 240 10 2 2 87 841 96 843 

2600 3328 1922 24 1 2 2 87 840 96 845 

2600 3328 1922 24 4 2 2 162 867 187 877 

2600 3328 1922 24 10 2 2 235 914 250 932 

260 3328 1922 2.4 1 2 2 237 914 250 932 

260 3328 1922 2.4 4 2 2 342 1052 369 1082 

260 3328 1922 2.4 10 2 2 387 1144 425 1165 

 

The results in Figure 5-4 to Figure 5-6 and Table 5-1 show that WAVE2D and UDEC behave in a 

similar fashion. There is a slight difference in the exact frequency, which is shown as being 

resonant, although the resonant frequency is clear within the transfer functions. Therefore, it 

is evidence that WAVE2D and UDEC are both modelling the same problem in the same way, 

with similar resonance mechanisms occurring within the models.  
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Figure 5-4 High density (26000kg/m3) transfer functions from WAVE2D and UDEC for a material with a Cp of 3328 
m/s and Cs of 1922 m/s. a) kn=1 GPa/m, b) kn=4 GPa/m, c) kn=10 GPa/m. From Holmes et al., (2023b) Figure 5  

 

Figure 5-5 Medium density (2600kg/m3) transfer functions from WAVE2D and UDEC for a material with a Cp of 3328 
m/s and Cs of 1922 m/s. a) kn=1 GPa/m, b) kn=4 GPa/m, c) kn=10 GPa/m. From Holmes et al., (2023b) Figure 6 
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Figure 5-6 Low density (260kg/m3) transfer functions from WAVE2D and UDEC for a material with a Cp of 3328 m/s 
and Cs of 1922 m/s. a)  kn=1 GPa/m, b) kn=4 GPa/m, c) kn=10 GPa/m. From Holmes et al., (2023b) Figure 7 

5.3. Resonance Verification 

The verification of the resonance mechanisms is undertaken using diverse numerical models to 

determine whether the model set up can affect whether the resonances are generated. This 

verification focuses on the spring resonance mechanism, as superposition resonance is known 

to occur within natural blocks (Nakagawa, 1998). If the resonances do not occur, then it can be 

assumed that their presence is a modelling artefact. The verification is undertaken in four 

different sections. The first two (Sections 5.3.1 and 5.3.2) model discrete joints and generates 

new models which break some of the modelling assumptions used in the 1D models in Chapter 

4. The third (Section 5.3.3) uses equivalent material models to represent the jointed material 

and the fourth (Section 5.3.4) uses the 1D model from Chapter 4 using an alternative method, 

a frequency sweep, for exciting the model and generating a transfer function.  

5.3.1. Discrete Models 

This section concerns the discrete representation of joints in the jointed rock mass. The 

discrete representation of joints is used in all the models shown in Chapter 4. Similarly, the 

discrete models in this section are generated in the combined discrete element-finite 

difference method (DEM-FDM), in UDEC. The models are excited by the 500 Hz Gaussian wave 

shown in Figure 5-3.  
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Material damping is not applied to any model used, with linear elastic material properties 

applied to joints and intact blocks. The material properties used in this section are given in 

Table 5-2. The use of linear elastic properties is undoubtedly an assumption which requires 

testing; however, considering a common vibrational source, such as rail vibrations, strains 

within the rock mass will be low (Connolly et al., 2016). This will ensure that the response of 

the material is well approximated by elastic material properties. Even considering a non-linear 

joint stiffness model, such as the Barton-Bandis model (Bandis et al., 1983), a small portion of 

the stress-strain relationship for a joint will approximate a linear relationship.  

Table 5-2 Modelling material properties 

Joint Stiffness  1 GPa/m 

Joint Spacing 2 m 

Number of Joints 2 

Intact Material P-Wave Velocity 3328 m/s 

Intact Material S-Wave Velocity 1922 m/s 

Intact Material Density 2600 kg/m3 

 

“I confess that I have been blind as a mole, but it is better to learn wisdom late than never 
to learn it at all.” – Sherlock Holmes 

(Doyle, 2014, pg. 200) 
 

This section attempts to understand the spring resonance mechanism and determine the 

robustness of the effect to changing conditions in a numerical model. If the effect persists 

through using more complex numerical models than the 1D models already developed, then 

there is a greater certainty that the effect will occur in a physical rock mass. In order to do this, 

assumptions adopted by the previous Chapter are examined. The assumptions being tested 

are symmetrical boundary conditions and infinite joints. To achieve this, two new scenarios are 

modelled, solved in the DEM-FDM (Models 2 and 3). Model 1 is a 1D model, similar to the one 

used in Chapter 4. It is not identical, as during development of the work for the paper included 

in Appendix E it was found that a model with a greater number of modelling nodes orientated 

vertically gives a better approximation of the frequency predicted by the analytical functions 

given in Chapter 4 (Holmes et al., 2023a; Holmes et al., 2023b). Despite this difference to the 

original models used to develop the analytical functions, this model can be used as a baseline 

from which comparisons are made. The two new models are 1D models, one without 

symmetrical boundaries (Model 2) and the other with multiple blocks orientated perpendicular 

to the direction of wave propagation but with symmetrical boundaries (Model 3). Model 3 

could be considered not to be a 1D model due to the stack of blocks perpendicular to the 
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direction of wave propagation. Finite joints are to all intents guaranteed in nature, as joints 

cannot be continuous, even if they are highly persistent. Therefore, testing this assumption 

means the model will be more realistic. The blocky rock mass in Model 3 contains finite joints, 

but also tests whether the resonance mechanism occurs when an additional joint set is 

modelled, orientated perpendicular to the first joint set.  

Model 1 – DEM-FDM  

Model 1 is similar to the models used in Chapter 4, but with a 1 m out of plane dimension. An 

element size of 0.2 m vertically and 0.125 m horizontally is used, allowing more finite 

difference meshing zones to be generated in the vertical direction. This model is shown in 

Figure 5-7. Given this mesh set up and the properties given in Table 5-2 this model will be able 

to transmit frequencies up to 2662 Hz, based on the recommendations for the minimum 

wavelength to be at least ten times the element size for a 2nd order numerical scheme 

(Hildyard, 2001).   

 

Figure 5-7 DEM-FDM Model 1 (adapted from Holmes et al., (2023b)) showing finite difference mesh for finite joint 
verification case. Mesh fills entire model. Not to scale. From Holmes et al. (2023a) Figure 3 

Model 2 – DEM-FDM  

Model 2 is identical to Model 1 without symmetrical horizontal boundaries. These boundaries 

are now modelled as being free and can move in all directions in the 2D plane of modelling. 

Without symmetrical boundaries this model will not contain infinite joints, allowing the 

assumption of infinite joints to be tested. The model setup is shown in Figure 5-8.   

 

 



120 
 

 

 

Figure 5-8 DEM-FDM Model 2 with no symmetrical boundaries showing finite difference mesh for finite joint 
verification case. Mesh fills entire model. Not to scale. From Holmes et al. (2023a) Figure 4 

Model 3 – DEM-FDM  

Model 3 is a modified version of Model 1, with multiple blocks stacked on top of each other 

perpendicular to the direction of wave propagation. The vertical spacing of the joints is 1 m, so 

the model height is increased to 3 m. The blocks represent finite joints, despite symmetrical 

boundaries being modelled. This gives an additional test of the infinite joints assumption, also 

tested in Model 2. The model set up is shown in Figure 5-9. Horizontal and vertical joints have 

the same properties, as those shown in Table 5-2. The element size remains as 0.2 m vertically 

and 0.125 m horizontally, as used in Models 1 and 2, also allowing frequencies up to 2662 Hz 

to be transmitted.    

 

Figure 5-9 DEM-FDM Model 3 with multiple blocks showing finite difference mesh for finite joint verification case. 
Mesh fills entire model. Not to scale. From Holmes et al. (2023a) Figure 5 

Results for Discrete Models 

Figure 5-10 shows the results from Models 1 to 3, along with the analytical results, from the 

previous Chapter. This Figure shows that all of the models display comparable results, with 

maxima at similar frequencies to the resonance predicted by the analytical function (Equation 

4-18), at 96 Hz.  
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Figure 5-10 Transfer functions for Models 1 to 3 and the Analytical Function. From Holmes et al. (2023a) Figure 9 

Despite the similarities none of the models exactly match the results of the 1D, infinite jointed, 

Model 1. The finite jointed Model 2 and the blocky Model 3 have similar transfer functions to 

Model 1, with similar high frequency content as well as similar transmission coefficients at the 

resonant frequency and at 0 Hz. However, there are differences at the local minima in the 

transfer functions at approximately 50 Hz. Model 2 shows an undulating transfer function 

here, with a higher transmission coefficient than Model 1. Model 3 shows a smooth transfer 

function, but at a lower transmission coefficient when compared to Model 1. The differences 

observed in the transmission coefficients of Models 2 and 3 are due to the different modelling 

assumptions used, as all other inputs and the signal processing are identical. Despite these 

differences it is clear that the spring resonance mechanism can be observed in these models, 

due to the clarity of the high transmission peak at the predicted frequency.  

5.3.2. Boundary Types 

All models used up until now in this Chapter and Chapter 4 adopt absorbing boundaries at the 

ends of the DEM-FDM models. This assumption should be tested, to verify how it affects 

results. The models in this section use the 1D model from the previous Chapter but apply 

different boundary types to determine their effect on the transfer functions. The boundaries 

applied are absorbing boundaries, which acts as a base case, as well as free and fixed 

boundaries. Free boundaries are allowed to move, while fixed boundaries are prevented from 
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moving at all, with a zero velocity condition applied. Figure 5-11 shows the results of this 

sensitivity analysis, showing that the boundary type does not affect the amplitude of the 

transfer function or the frequency of the resonances. It should be noted that absorbing 

boundaries half the amplitude of vibrations which are transmitted into the model due to the 

way in which the boundary conditions are implemented in the code (Itasca Consulting Group 

Inc., 2014). Despite this, the transfer function does not change. 

 

Figure 5-11 Transfer functions for different boundary types 

5.3.3. Equivalent Material Models 

Equivalent materials are investigated to determine whether the resonance effects are 

preserved when the method of representing joints is changed. The modelling is undertaken 

using a 1D FDM model using WAVE2D (Hildyard et al., 1995), shown in Figure 5-2, which has 

also been used in Section 5.2.5. This model is equivalent to Model 1 from Figure 5-10, solved in 

a different software. Despite being solved in a different numerical code, the model still uses a 

discrete representation of fractures. Figure 5-4 to Figure 5-6 show that the FDM code shows 

the spring resonance mechanism, so this model provides a suitable baseline to determine 

whether the resonance occurs in the equivalent models. The exact same set up used for this 

FDM model in WAVE2D is used previously in this Chapter, with dimensions of 2080 x 4800 

elements. With the material properties given in Table 5-2 this model will be able to transmit 

frequencies up to 4160 Hz.  
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The models in this section follow the approach adopted by Parastatidis (2019), who models 

jointed materials using three different material models: a discrete representation of joints 

(DM), a localised equivalent medium (LEM) and a homogenous equivalent medium (HEM). 

Discrete joints are modelled using a special element representing joints (Hildyard et al., 1995), 

while the localised and homogenous equivalent mediums were modelled using equivalent 

transversely isotropic materials. The discrete representation of joints in the WAVE2D code is 

also used for the models in Section 5.2.5. The LEM applies an equivalent medium to the grid 

points which are represented by joints in the DM. The HEM on the other hand applies 

equivalent material properties to the entire model. To capture the effect of the joints, cracks 

per unit length (1/s) is used. This is calculated as the surface area of each joint divided by the 

volume of the equivalent material. The calculation of crack per unit length is shown in 

Equation 5-1, where A and B are the dimensions of the joint surface, C is the length of the 

equivalent material, N is the number of joints and s is the joint spacing. Finally, 1/s is used to 

modify the elastic properties of the medium using the method of Coates & Schoenberg (1995).  

 
1

𝑠
=

𝐴𝐵𝑁

𝐴𝐵𝐶
  Equation 5-1 

An additional material model using the HEM is also used in this section. This is the locally 

homogenous equivalent medium (LHEM). The LHEM only applies transversely isotropic 

material properties between the first and last joints. This will increase the 1/s of that medium, 

and therefore change the material properties used in this area, when compared to the HEM. 

These material models are illustrated in Figure 5-12. The LHEM is introduced as joints only fill a 

small portion of the model shown in Figure 5-2, while they populate the entire model used by 

Parastatidis (2019). Due to the size of the model the effect of the joints in the HEM is diluted 

across the entire model, while the effect of the joints in the LHEM is contained between the 

first and last joint, which can be thought of as the jointed region of the model.  
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Figure 5-12 Equivalent material models used in study. From Holmes et al. (2023a) Figure 8 

Results for Equivalent Material Models 

The model presented in Figure 5-2 is modelled with the different equivalent materials shown 

in Figure 5-12. The results for this are shown in Figure 5-13. There is an analogous profile to 

the transfer functions given by the DM and LEM models, with corresponding frequencies of 

local maxima. In the DM this occurs at 96 Hz, while in the LEM this occurs at 92 Hz. These occur 

at similar frequencies to the analytical prediction of the spring resonance, occurring at 96 Hz. 

The LHEM and HEM models show vastly different transfer functions to the DM model. The 

HEM model shows a transmission coefficient equal to one at all frequencies. This is to be 

expected using a 1D model with no damping, as there is no potential for the wave to be 

modified during transmission. Up to 30 Hz the LHEM model shows similar transmission 

coefficients to the DM and LEM models; however, past 30 Hz the profiles of the transfer 

functions are quite different. The LHEM has an oscillation in the transfer function with maxima 

located at an even spacing of 146 Hz. This oscillating transfer function is likely to be related to 

the superposition of waves within the weaker, and therefore slower, block of equivalent 

material within the model. This is equivalent to the superposition resonance mechanism 

observed in jointed materials. This reduced stiffness block will not oscillate under the spring 

resonance mechanism as no joints, analogous to springs, are modelled. 
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Figure 5-13 Transfer functions for equivalent material models. From Holmes et al. (2023a) Figure 11 

It is clear from Figure 5-13 that the results for the DM and LEM models show the spring 

resonance, occurring at very comparable frequencies. The minor differences in the frequency 

of the LEM and DM resonances are likely to be due to minor differences in the properties 

modelled in each of these models, possibly due to the calculation of the 1/s parameter 

(Equation 5-1). Despite these minor differences the spring resonance effect occurs in these 

models. The same cannot be said about the LHEM and the HEM models. This indicates that for 

the resonance effects to occur, fractures need to be modelled in their realistic locations; 

regardless of whether this is done using a discrete representation or an equivalent 

representation of the fracture properties. This doesn’t mean that the fracture position needs 

to be a certain distance from the source, as this was tested and found to not affect the 

response in Figure 4-36. Instead this refers to joints needing to be modelled explicitly rather 

than averaged over an area using continuum techniques. Figure 4-36 Transfer functions for 

multiple jointed rocks with Jn=2 for different modelling conditions with an excitation at 0m 

5.3.4. Frequency Sweep 

Numerical Frequency Sweep 

The previous verification analyses in this Chapter are conducted using numerical models and 

set ups which are only practical in numerical models. These includes geometrical constraints, 

such as exceptionally long models, and modelling assumptions, such as absorbing boundaries. 
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This section focuses on an analysis technique that can be adapted for use with a physical 

experiment.  

The models in Chapter 4 and this Chapter use the same process of generating a transfer 

function based on a full waveform. This requires reflections to be prevented from returning 

from the model boundaries to be recorded at the response point. Pollution of the signal by 

reflections may mask any effects which the joints within the model have on the transmitted 

wave form. To prevent reflections in the previous models, absorbing boundaries are used and 

boundaries are sighted at large distances from the area of interest, giving a significant time gap 

between the transmitted wave and the reflected wave from the boundary. This approach is 

consistent with the approach of other studies, such as Cai & Zhao (2000) and Zhao et al. 

(2006). While these boundary conditions are possible in numerical models, they are 

impractical for physical experiments.  

Models for physical experiments are often required to be relatively small in order to fit into 

experimental apparatus. The model in Figure 5-7 for instance is 400 m long, which would be 

impractical and expensive to produce. Smaller models will prevent reflections from being 

eliminated from the output, due to inevitable reflections from the ends of the sample. 

Therefore, a different analysis technique is required. Dynamic Mechanical Analysis (DMA) is 

often used for physical investigations of soft tissues (Menard and Menard, 2020); however, it 

has not previously been used for the investigation of jointed materials.  

DMA operates by exciting a sample with a harmonic load, recording the response at the other 

side of the sample (Figure 5-14). As the resonance mechanisms allow transmission of resonant 

frequencies and does not allow the transmission of non-resonant frequencies, the response of 

a resonant frequency should have a greater amplitude than the response of a non-resonant 

frequency.  
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Figure 5-14 Example of a DMA experiment set up 

A numerical frequency sweep experiment has been set up to test whether this approach to 

exciting the model, using harmonic waves, will show the resonance mechanisms identified. 

The model in Figure 5-7 is used, as it is known that this model works well for showing 

resonance using the transfer function approach and therefore should also work well for this 

scenario. Three joints are modelled, which have the properties shown in Table 5-2. 

The experimental set up is similar to that used by Zhao et al. (2006). Zhao et al. (2006) excited 

a model with a harmonic wave, adjusting the model to give a constant normalised joint 

stiffness, given as kn/zω (kn=joint stiffness, z=seismic impedance, ω=angular frequency). The 

numerical frequency sweep used in this section uses a harmonic wave as the input and records 

the PPV of the first arrival. However, the model is not changed when the frequency of the 

input wave changes, giving a changing normalised joint stiffness throughout the analysis.  

The frequency sweep of the model is conducted between 10 and 1000 Hz. The resolution of 

the frequency sweep is finer in the areas where resonance is predicted, given by the resonance 

Equations in Chapter 4 (Equations 4-18 and 4-20), and coarser outside of these areas. The 

model used here is expected to have spring resonances at 62 and 107 Hz, with superposition 

resonance at 832 Hz. The results of this experiment are shown in Figure 5-15. A transfer 

function is also given as a comparison, generated from the same model excited by a 500 Hz 

Gaussian wave using the conventional transfer function approach adopted in previous analyses 

(Section 4.3).   
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Figure 5-15 Resonance mechanism verification using a numerical frequency sweep and numerical transfer function. 
Resonance from analytical functions is also shown. (Jn = 3, s = 2m, kn = 1GPa/m, Cp = 3328m/s, Cs = 1922m/s, ρ = 

2600kg/m3). From Holmes et al. (2023b) Figure 11 

Figure 5-15 shows that the analytical resonance, numerical transfer function and numerical 

frequency sweep methods show the spring resonance effect at the same frequencies. These 

occur at the predicted frequencies of 62 and 107 Hz. The frequency sweep is targeted to find 

these resonances; however, the peak response of the frequency sweep is much greater than 

the surrounding frequencies, so this effect is unlikely to be an effect of the experiment set up.  

Superposition resonance is seen at approximately 845 Hz in the numerical frequency sweep 

data, which is slightly greater than the analytical frequency of 832 Hz but similar to the 

numerical transfer function frequency, seen at 836 and 845 Hz. The peak of this has a relatively 

low transmission coefficient, especially compared to the transmission coefficient of the non-

resonant frequencies; however, it is clearly a localised peak.  

There are clear differences with the response of the two numerical experiments. The 

transmission coefficients of the frequency sweep data are lower for the resonant frequencies, 

while they are greater for non-resonant frequencies. For the non-resonant frequencies 

between 200 and 800Hz, the transfer function data shows a transmission coefficient of close 

to zero, while the frequency sweep data shows a transmission coefficient of approximately 0.5. 

The difference here is due to the different techniques used to measure the response of the 

models. The transfer function sends a single pulse of excitation and records the full waveform 
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transmitted through the joints, while the frequency sweep method applies a constant 

harmonic excitation for the duration of the model run and records the PPV of the model. 

Despite the differences in the techniques used and the amplitude of the transmission 

coefficients, the presence of the resonant frequencies is clearly evident in the two different 

numerical experiments. This supports the hypothesis that the two resonance mechanisms of 

spring and superposition resonance, do exist in jointed rock masses.  

Physical Frequency Sweep 

With the success of the numerical frequency sweep shown above to highlight the spring and 

superposition resonance effects, attempts were made to run a physical experiment using the 

DMA apparatus located in the Faculty of Biological Sciences at the University of Leeds. The 

apparatus has a physical limit of 6 cm for a full sample and the equipment has a maximum 

loading frequency of 1 kHz. This gives a physical limit on the possible block size. In order for 

the sample to oscillate at a low enough frequency to be excited by the apparatus a relatively 

dense material is required. A sample was prepared consisting of three 2 cm tall blocks of 303-

stainless steel with a diameter of 2.54 cm (Figure 5-16). This material was chosen due to its 

high density and because it was readily available from on-site workshops, making it cheap to 

prepare. The spacing of joints within a material affects the frequency by which the block will 

oscillate, with a smaller block oscillating at a higher frequency. Attempts were made to test the 

sample using clean joints; however, due to the similarity between the stiffness of the sample 

and the material which the apparatus is composed of.  To reduce the stiffness of the sample 

and reduce the frequency of oscillation the joints which bound the central block were filled 

with a thin layer of rubber. This causes the sample to behave like a single 2 cm thick block 

bounded by rubber. The outer blocks will not oscillate at a low enough frequency to be 

recorded as the joint between the sample and the platen of the load cell has a much higher 

stiffness.  
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Figure 5-16 DMA apparatus in the Faculty of Biology with sample loaded 

In order to test whether this sample set up will work theoretically a numerical model is 

generated. The model used for the numerical frequency sweep experiment is modified to have 

the same dimensions and properties as the physical sample. The results of this are shown in 

Figure 5-17. A slightly different method of determining the transmission coefficient is used for 

the results in Figure 5-17. Here the maximum amplitude of the source function was compared 

with the maximum amplitude of the response. This is necessary because the model is relatively 

small, at only 6cm, and it would be impossible to totally eliminate any reflected waves within 

the model. This set up closely matches the setup of the physical model and allows both the 

theoretical response of the sample to be tested as well as showing whether the model set up 

will work to show resonance using such a technique.  
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Figure 5-17 Frequency sweep experiment for 2cm wide steel block with rubber filled joints 

Figure 5-17 shows that the sample has a resonant frequency of 560 Hz, identified by Equation 

4-18 and the experiment. This is within the range of excitations which can be generated by the 

DMA apparatus. Unfortunately, this experiment was never successfully run. The steel sample, 

even with rubber filled joints, has an extremely high stiffness which the load cell struggles to 

respond to. This causes the apparatus to indicate an error and shut down before results are 

given.  

5.4. Discussion 

The two jointed rock mass resonance mechanisms are identified in numerous different 

scenarios in this thesis. These are spring and superposition resonance. These mechanisms are 

shown to occur for materials with a wide range of different properties and joint spacing’s. 

Therefore, the analytical models in this study can be confidently applied to all jointed media; 

including natural jointed materials from the weakest of Sandstones through to the strongest of 

Granites, as well as synthetic jointed materials, such as metamaterials (Witarto et al., 2018; 

Huang et al., 2021), aligned metallic or mortar blocks (Pyrak-Nolte et al., 1990a; J. Zhao et al., 

2006) and masonry structures.  

While the superposition mechanism is described by Nakagawa (1998), the spring resonance 

mechanism has not previously been isolated, despite being based on the simple system of 

masses between springs. Superposition effects are a common theme in relation to the 
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transmission coefficient from jointed rock masses. Cai and Zhao (2000) and Zhao et al. (2006b, 

2008) identify an increased transmission zone occurring when the ξ (=s/λ) of the rock mass is 

very low, which is explained as a superposition effect of multiple reflected waves. Cai and Zhao 

(2000) found that the greatest transmission coefficient occurred with a ξ of 0.075, and an 

increased transmission zone between ξ of 0.05 and 0.3, with no increase in transmission at 0.5. 

Comparable results were found by Zhao et al. (2006b, 2008). The values of ξ found by these 

studies are much lower than what is expected to generate superposition resonance, which 

occurs at a value of 0.5. The previous studies give analytical Equations for the first arrivals of a 

sine wave which is transmitted through joints based on superposition of transmitted and 

reflected waves. These are found to perform well against numerical results. Therefore, while 

the values of ξ given in the previous studies are too low to be superposition effects based on 

Equation 4-18, it is considered that the mechanism proposed previously is still correct for first 

arrivals.  

Despite this, it is curious that this research found that values of ξ smaller than 0.5 tend to be 

associated with spring resonance as opposed to superposition resonance. The reason behind 

this is due to the way in which this thesis and previous studies approach the calculation of the 

transmission coefficient. Previous studies (Cai and Zhao, 2000; J Zhao et al., 2006) take the 

amplitude of the first arrival after the joint and divide this by the amplitude of the wave before 

the joint, with the rest of the transmitted waveform ignored. However, this study takes the full 

waveforms before and after the joint and calculates a transfer function from these, by 

decomposing these into their harmonic components using Discrete Fourier transforms (Section 

4.3). These represent two methods of characterising the transmission of stress waves through 

joints, being a first arrival method, as used in previous studies, and a full waveform method, as 

used in this thesis. While it can be considered that for a first arrival the superposition 

mechanism of Zhao et al. (2006b) is correct, any receptor will experience the full waveform. 

Therefore, for practical applications, Equations 4-18 and 4-20 are of value.  

To test that the models considered in the current study are simulating the same problem as 

Zhao et al. (2006b), a set of their results have been replicated in Figure 5-18. The results of Cai 

and Zhao (2000) and Zhao et al. (2006b) are normalised for joint stiffness, so cannot be directly 

compared to the results in this thesis. Therefore, a bespoke analysis is undertaken to replicate 

their results. Figure 5-18 shows the results from Zhao et al. (2006b) for a model with two joints 

with a normalised joint stiffness (kn/zω) of 0.494. A new model is generated to match this 

normalised joint stiffness and two sets of modelling results are collected. The first set modells 

a single period of a 40Hz sine wave, with the amplitude of the first arrival recorded. The 
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second set modelled a 500Hz Gaussian wave, with a transfer function generated based on the 

full waveform and the response at 40Hz recorded. The first arrival of data is synonymous with 

the approach of Zhao et al. (2006b) and the full waveform synonymous with the transfer 

function method in this study.  

The First Arrival data, shown in Figure 5-18, shows that the 1D models used in Chapter 4 agree 

with the results from Zhao et al. (2006b). However, when the full waveform is analysed to 

generate a transfer function and the response at 40 Hz is taken from this, shown by the Full 

Waveform data, the results of this thesis reveal something different to the Zhao et al. (2006b) 

study. The peak of the full waveform is at a different ξ and with a greater transmission 

coefficient than the peak of the first arrival data. There is a low transmission portion of the full 

waveform data series approaching a ξ of 0.4; however, it is at a lower transmission than the 

First Arrival data. The differences exhibited highlight that different mechanisms are occurring 

in the rock mass when a first arrival is considered in isolation and the full transmitted 

waveform is analysed. In the full waveform it is not just superposition, which is occurring, and 

such superposition only occurs at much higher frequencies. This implies that the spring 

resonance mechanism is not contained within the first arrival. The spring resonance requires 

the blocks to oscillate, with a period given by 1/f(n) from Equation 4-18, so it is unlikely that 

these resonance mechanisms will be realised in a first arrival.  
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Figure 5-18 Transmission coefficients for jointed rocks with Jn of 2, plotted against dimensionless joint spacing (ξ) 
with results from Zhao et al. (2006b) and from the current study generated using the first arrival and the full 

waveform. From Holmes et al. (2023b) Figure 12 

Figure 5-18 shows that the results of Zhao et al. (2006b) appear to be appropriate for first 

arrivals; although, as highlighted by the newly identified jointed rock mass excitation 

mechanism of spring resonance presented in this study, only studying first arrivals will miss the 

nuances of transmission of the full waveform. This could lead to a miss-identification of the 

frequencies of a wave that are preferentially transmitted through a jointed rock mass.  

It is clear from Figure 5-18 that any resonance effects in the full waveform method are not 

clear. This is brought about using the normalised joint stiffness. Instead of considering a range 

of frequencies from a single model with a constant joint spacing, each data point represents a 

new model with the same wave frequency and a different joint spacing. As a consequence, the 

clear resonant peaks identified in this study are not apparent. This is not to say that resonance 

cannot be shown in dimensionless terms. For instance, Figure 5-19 shows the resonance of a 

numerical model with 8 joints modelled in UDEC, along with the analytical resonances. This 

model does not have a constant normalised joint stiffness but represents a transfer function 

for a range of frequencies for the same rock mass.  



135 
 

 

 

Figure 5-19 Jointed rock resonance shown by a model with 8 joints (7 blocks) along with the analytical spring and 
superposition resonance, plotted against dimensionless joint spacing (ξ). Cp = 3328 m/s, Cs = 1922 m/s, ρ = 2600 

kg/m3, kn = 1GPa/m, s = 2m, Jn = 8. From Holmes et al. (2023b) Figure 13 

The apparent agreement of the models of Zhao et al. (2006b) and this study implies that if the 

full waveform were analysed then the resonance effects found here would be identified in the 

previous study as well. Zhao et al. (2006b) do not give clear time series for the full waveform; 

however, these are given by Cai and Zhao (2000) and are reproduced here in Figure 5-20. 

These are given in dimensionless terms for time, joint spacing and joint stiffness, so it is not 

possible to directly calculate the resonances from the full waveform. Despite this, there are 

clear oscillations occurring in the transmitted wave in the plots given. Figure 5-20 shows the 

initial wave in each of the plots followed by oscillations. These are most clearly shown by 

Figure 5-20 b and c, although they are evident in all of the plots. The dimensionless period of 

the oscillations seems to reduce as the relative joint spacing reduces, with the largest relative 

joint spacing in Figure 5-20 a, and the smallest in Figure 5-20 d. As the joint spacing reduces, 

assuming all other properties of the model are the same, resonance of the models will occur at 

a higher frequency. With two joints there will be a single spring resonance, although there will 

also be additional superposition resonant frequencies. The superposition resonance will be at 

a high frequency when the joint spacing is small, but this will reduce as the joint spacing 

increases. This will lead to the spring and superposition resonances overprinting on each other 

in the transmitted waveform, which is evident in the complex time series given in Figure 5-20 a 

for the largest joint spacing.  
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Figure 5-20 Transmitted waveforms from numerical model with two joints. X represents joint spacing relative to 
wavelength (λ) of incident sine wave. Modified from Cai and Zhao (2000) Figure 6 

5.5. Conclusion 

This Chapter has undertaken further investigations into the resonance effects observed in 

jointed rock masses in Chapter 4, with most work conducted into the spring resonance effect, 

which operates at relatively low frequencies. This low frequency resonance is most likely to 

occur within the frequency range of rail vibrations, so is of most relevance to this research.  

Verifications are undertaken in the combined DEM-FDM (as used in Chapter 4) as well as using 

the FDM. The modelling in this Chapter is split into four sections; an initial comparison of the 

two methods, discrete joints, and equivalent material models. The initial analysis was run to 

compare the two methods used in this Chapter, to show that the FDM can model the same 

problems as the DEM-FDM. Following this the DEM-FDM model from Chapter 4 is modified to 

change modelling assumptions used previously, including symmetrical, absorbing, and fixed 

boundaries as well as infinite joints. All models run show the spring resonance effect at the 

predicted frequency. Finally equivalent material models are used and compared to a discrete 

jointing representation. These are run to indicate whether continuum methods can be used to 

accurately model the response of a jointed rock mass. It is found that a localised equivalent 

medium gives a similar response to a model with discrete joints; however, a homogenous 

equivalent medium does not. This is because the homogenous equivalent medium averages 

out the effect of joints over a wide area, while for the spring and superposition resonance to 
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occur the joint needs to be modelled in position. A potential physical experiment is presented 

using the technique of dynamic mechanical analysis with a frequency sweep to excite a 

physical sample. Numerical simulations of this experiment are shown to have high 

transmissions at the resonant frequencies of a jointed material. However, it was not possible 

to run the experiment physically.  

The Chapter finishes by looking at why the resonance mechanisms have not previously been 

identified in literature. This is done by comparing the analyses in previous similar studies to the 

work conducted here. It is shown that the resonance mechanisms identified in this study are 

generated by analysing the full waveform, while previous studies only use data from first 

arrivals. An analysis is run which shows that the models in the current study can replicate 

previous researcher’s results, indicating that they are modelling the same problem. Evidence is 

finally presented showing that, if a full waveform were used to generate transfer functions in 

previous studies, the resonance mechanisms would have been identified. 
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6. Resonance in 2D Rock Masses  

 

“An extra dimension is introduced, 
To see if the effects can be reproduced.  

Models containing a cavity, 
Give this chapter a realistic gravity.” 

 

 
© Army of Cats 2023  
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6.1. Introduction 

This chapter discusses the modelling of vibrations in 2D jointed rock masses and adds an 

additional layer of complexity following on from the 1D work covered in Chapters 4 and 5. It 

aims to identify whether the trends observed in 1D occur in 2D models, as well as attempting 

to identify whether there are any additional effects generated in 2D models. In 2D it is possible 

to also model tunnels and cavities, making this Chapter much more applicable to real 

situations in which vibrations could be generated. The 2D models in this Chapter only consider 

non-moving point loads, with moving loads being the subject of Chapter 8.  

Much research has been undertaken looking into the effects of 2D and 3D models, which is 

reviewed in Chapter 2, so will not be revisited in detail here. In summary, a 2D model will not 

give a realistic magnitude to the vibrations from tunnels, so cannot be used to accurately 

predict vibration levels; however, 2D models can be used for the qualitative assessment of 

vibrations (Andersen and Jones, 2006). The use of 2D models in this section represents a gross 

simplification of the real-world problem but does provide a reasonable initial step in a poorly 

understood field, with regards to vibrations from tunnels in jointed rock masses. They are also 

be used as an additional verification, in addition to those presented in Chapter 5, for the 

presence of the 1D rock mass resonance mechanisms.   

The models in this section consider 2D plane strain rock masses, with a load applied at a point 

in the centre of the model. Transfer functions for the velocity response of the rock mass at 

points in the model are derived. These are used to highlight how changes to a model affect the 

transmission of stress waves in a rock mass. The changes which are made to models here 

include the addition of joints and a tunnel as well as changing the material model used. 

Therefore, this section examines not only the transmission of stress waves in jointed rock 

masses but also different ways of modelling equivalent rock masses, by using an equivalent 

continuum and a discontinuum. The use of equivalent materials follows on from similar work 

in Chapter 5.  

6.2. Methodology 

Models are created in the FDM and solved in the software WAVE2D, which is used in Chapter 

5. WAVE2D is used, as opposed to UDEC, as the solver is much more efficient for larger 2D 

models, such as those used in this chapter. In addition to this, due to the method used to 

generate the transfer functions in this Chapter the ability to manually define the modelling 

time step is advantageous. The modelling time step can be set manually I both WAVE2D and 

UDEC; however, this is much easier to do in WAVE2D.  
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There are some key differences between the previous 1D models and the 2D models 

presented in this Chapter, as all the previous models are physically 2D, despite representing a 

1D scenario. In order to ensure that the models in this Chapter are modelling a 2D scenario a 

non-plane wave is excited from a single node of the finite difference mesh in the centre of the 

model (Figure 6-1). This gives a wave front that spreads out in all directions. Even if there is no 

material damping in the model, the non-planar wave causes geometrical damping to occur. If 

the previous method for generating the transfer functions are used, by comparing the 

frequency response before the joints and after the joints (Section 4.3), the geometrical 

damping will influence the results. While geometrical damping is a natural consequence of the 

transmission of stress waves, it could obscure any frequency dependent transmission effects. 

To mitigate the effects of geometrical damping, the transfer functions are generated between 

a test model and a reference model, with the input signal being generated by the reference 

with the response at position xi,yi and the response from the test model also at position xi,yi. 

As both the input and response are taken at the same point, with identical loading inputs, the 

effects of geometrical damping is removed. This is illustrated in Figure 6-2. The model outputs 

(u[ref] and u) are equivalent to uref’ and u’ which are shown Equation 4-1, after they have been 

transformed into the frequency domain using a Discrete Fourier Transform, for the calculation 

of transmission coefficients. This is an identical process to the generation of insertion losses, 

typically used with the study of wave barriers (Ouakka et al., 2022). The technique of 

comparing a reference model and a test case has the flexibility to be able to assess the 

frequency response of the model to changing model inputs. For example, a continuum model 

can be used as the reference model and a continuum with a tunnel for the test model. If the 

velocity time-history is taken from both models at a point 10m above the source, the effect of 

adding a tunnel to the model at this point is determined. 
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Figure 6-1 2D FDM Model 4 showing finite difference mesh for finite joint verification case. Mesh fills entire model. 
Not to scale. Modified from Holmes et al. (2023a) Figure 6 

The model shown in Figure 6-1 uses a similar set up to the 1D FDM models used in Chapter 5 

but increases the small axis from the models in that Chapter to be equal to the long axis.  

 

Figure 6-2 Process of generating insertion loss transfer functions from two models giving u[ref] and u response of the 
models which are used with Equation 4-1 and the methodology outlined in Section 4.3. The example in this figure will 

show the effect of the diagonal featured aligned in the bottom left of the Test Model 

6.3. Verification of Numerical Models 

Due to a new 2D model being generated some verification work is undertaken to determine 

whether the models are behaving as expected. This is undertaken using simple numerical 
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models which approximate an isotropic full space. Much of the work in this Chapter is 

undertaken using the FDM; however, results from DEM-FDM models are also included. 

Verification is also undertaken using Green’s Functions for an isotropic full space.  

6.3.1. Green’s Functions for a Full Space 

Green’s functions, sometimes referred to as fundamental solutions, are partial differential 

Equations which give the response of a material to an applied load. Their derivation is beyond 

the scope of this thesis and is a distinct area of applied mathematics in its own right. The 

previously published Green’s Functions, given by Tadeu and Kausel (2000) and Dominguez 

(1993), are used here.   

Green’s Functions can be used for static and dynamic responses, although their formulation 

differs for these two cases. They are the used as the basis of the boundary element method 

(Crouch et al., 1983). The work in this section is not as in depth as the boundary element 

method and only requires a single point load in the centre of a full space, with the response 

recorded at various places within the full space. The Equations required for this are shown 

below, taken from Tadeu and Kausel (2000). 
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1

4𝑖𝜌𝜔ଶ
 Equation 6-4 

 𝑟 = ඥ𝑥ଶ + 𝑦ଶ Equation 6-5 

Where x,y are the coordinates of the measurement point, relative to the source; ω is the 

angular frequency of the source, ρ is the density of the material, H(2)
n is the Hankel function of 

the second kind, H1β is the Hankel function of the first kind, kn
β is the S-wave wavenumber, kn

α 

is the P-wave wavenumber, δyl is the direct delta function and i is √−1. A full explanation of 

the Green’s Functions are given in Appendix B.  

Equation 6-1 gives the response in the y-direction of a full space at a distance r from an 

impulse acting in direction l. Equation 6-2 to Equation 6-5 are auxiliary functions which are 

used with Equation 6-1.  

Tadeu and Kausel (2000) are not the only published Green’s Functions given in literature. 

Dominguez (1993) also provides Green’s Functions. These can be used to verify that the 

Green’s Functions of Tadeu and Kausel (2000) are working as intended, much like how Hussein 
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(2004) used the Green’s Functions of Dominguez (1993) to verify that the Pipe-in-Pipe model 

was working correctly. The results of this verifications are replicated for Dominguez (1993) in 

Figure 6-3. This Figure also shows the results for the same problem calculated using Equation 

6-1. The properties used for this verification are taken directly from Hussein (2004) and are 

included in Table 6-1.     

Table 6-1 Properties for verification of Green’s Functions 

Property Value 

Density 2000 kg/m3 

Complex P-Wave Velocity 94.983 + 1.085i m/s 

Complex S-Wave Velocity 50.79 + 1.522i m/s 

 

 

Figure 6-3 Results for Green's functions for displacement from Tadeu and Kausel (2000) and Dominguez (1993) for a 
response 7 m from an applied load 

Figure 6-3 shows that the Green’s Functions of Tadeu and Kausel (2000) are working as 

expected, so can be used in the verification of the numerical models in this Chapter.  

6.3.2. Homogenous Continuum 

The Green’s Functions which are discussed in the previous section are now used to verify that 

a homogenous isotropic WAVE2D model appropriately approximates a full space. In addition 

to this an equivalent UDEC model is used.  
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A continuum 2D plane strain model is generated in WAVE2D and UDEC with a vertical load 

applied at the centre of the model. The WAVE2D model used is equivalent to that shown in 

Figure 6-1, with the joints removed, with a similar UDEC model also used. These models are 

compared to the analytical response of an equivalent model, calculated using the closed form 

solutions for full space Green’s functions given by Tadeu and Kausel (2000), shown in Equation 

6-1.  

Green’s functions are a powerful tool for determining the response of elastic materials due to 

impulses; however, when evaluating these integrals at the source a singularity occurs. This is 

because of the fraction 1/r in Equation 6-1. As the value of r approaches zero the result of 

Equation 6-1 approaches infinity. The green’s function in Equation 6-1 can be used to 

determine the response of a full space any point, expect for at the origin. Therefore, transfer 

functions are recorded between points within the model. Responses for each model are 

recorded at 5, 15 and 25 m above the load. The transfer functions for the wave travelling 

between 5 and 15 m and 15 and 25 m are shown in Figure 6-4. This process is identical to the 

generation of transfer functions from numerical models, as outlined in Section 4.3, except 

without the need to use a Discrete Fourier transform, as the Green’s functions are already 

solved in the frequency domains. There are some minor differences in the numerical results 

from the analytical; however, the results appear broadly similar. This shows that the numerical 

models are performing as intended and can be used for further study into 2D rock masses.   
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Figure 6-4 Numerical modelling transfer functions for a line load in a 2D plane strain model compared against 
analytical transfer function. Measurement positions were 5, 15 and 25 m from the source, with transfer function 

calculated for 5-15 m and 15-25 m. The intact material in all models have a P-wave velocity of 3328 m/s 

6.3.3. Cavity in a Full Space 

This section attempts to verify whether WAVE2D is accurately modelling the dynamic response 

of an unfilled cavity in a full space by comparing the response of a WAVE2D model to that of 

an equivalent UDEC model. There is no closed form solution to the dynamic response of a 

cavity in full space. This requires a boundary element model using numerical integration 

techniques.  

WAVE2D and UDEC model cavities in different ways. Both models rely on fractures which trace 

the cavity shape to be generated during the model set up. It is possible to remove the material 

within the cavity in UDEC; however, in WAVE2D, material cannot be deleted from the model. 

Instead, a zero stiffness fracture is specified. This has the effect of causing the fractures which 

define the cavity to become free surfaces, with the material within the cavity not being 

affected by forces applied outside the cavity. The formulation of the cavities in the models is 

different, although both have the same effect of generating a free surface within the modelling 

domain.  
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Another difference in the way which WAVE2D and UDEC generate cavities is that in WAVE2D 

fractures are required to be aligned with the finite difference grid, which is generated prior to 

any fractures being specified. A square grid is used in WAVE2D, meaning that fractures have to 

be either horizontal or vertical. In UDEC fractures are generated before the finite difference 

mesh, meaning that fractures can be generated at any arbitrary angle. The mesh is then 

generated around these surfaces. Despite this, UDEC can still only approximate a curved 

surface, as the surface is still required to be discretised into line segments. If a square cavity is 

generated the models will be similar. However, the shape of a circular cavity in WAVE2D can 

be significantly different to that of a circular cavity in UDEC. Figure 6-5 shows the 

approximation of a circular cavity in WAVE2D and UDEC. These differences in modelling of the 

cavity raise the possibility that errors in the transmission of waves could arise due to the 

boundaries. 

 

 

Figure 6-5 Different approximations of a circular tunnel in UDEC and WAVE2D, compared to a realistic circle 

To test the validity of the cavity boundaries in WAVE2D results for a series of simple cases are 

compared with results from UDEC. The simplest case of a cavity in a continuum is a square 
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cavity. The transfer functions for this are calculated in the same way as those for the 

continuum (Figure 6-4) and are shown in Figure 6-6. This shows that there are some 

differences in the UDEC and WAVE2D results, although the results are similar.  

 

Figure 6-6 Numerical modelling transfer functions for a line load in a 2D plane strain model with a 2 m diameter 
square cavity. Measurement positions are 5, 15 and 25 m from the source, with transfer function calculated for 5-15 

m and 15-25 m. The intact material in all models have a P-wave velocity of 3328 m/s 

A more complex case, and the case which has motivated this validation, is the case of a circular 

cavity. The pseudo-circular cavity shown in Figure 6-5 has been modelled against a discretised 

circular cavity in UDEC. The transfer functions for this case are shown in Figure 6-7. These 

show that the models give a similar frequency response up to about 800Hz.  
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Figure 6-7 Numerical modelling transfer functions for a line load in a 2D plane strain model with a 1 m radius circular 
cavity. Measurement positions are 5, 15 and 25 m from the source, with transfer function calculated for 5-15 m and 

15-25 m. The intact material in all models have a P-wave velocity of 3328 m/s 

a) 

 

b) 

 
Figure 6-8 Y-velocity contours showing the wave excited from a circular cavity in WAVE2D. a) after 3E-3 s b) after 

9.99E-3 s. The intact material in all models have a P-wave velocity of 3328 m/s 

Figure 6-8 shows the y-velocity contours for a wave, excited at the invert of a circular cavity. 

This shows how the wave move out from the cavity, located in the centre of the model with a 

transmission shadow located directly above the cavity, especially evident in Figure 6-8 a. 

Figure 6-9 shows the comparison of a 2 m square cavity, also shown in Figure 6-6, and a 2 m 

diameter circular tunnel, also shown in Figure 6-7. The results here are shown for WAVE2D 



149 
 

 

only. This shows that a similar diameter square cavity is not a reasonable approximation of a 

circular cavity, especially at small distances from the cavity boundary. At greater distances, as 

shown by Figure 6-9 b, the responses of each model become more similar, as found by Jones 

et al. (2012). Despite this, the response also appears to be affected by the wave frequency. For 

small distances, shown by Figure 6-9 a the responses are similar up to about 200 Hz, while in 

the lower plot the responses are similar up to about 600 Hz.  

 

Figure 6-9 Square versus Circular cavity in WAVE2D. Numerical modelling transfer functions for a line load in a 2D 
plane strain model with a 2 m diameter square and circular cavity. Measurement positions are 5, 15 and 25m from 

the source, with transfer function calculated for 5-15 m and 15-25 m. The intact material in all models have a P-
wave velocity of 3328 m/s 

Figure 6-4, Figure 6-6 and Figure 6-7 show that WAVE2D and UDEC give similar responses. This 

shows that the use of the grid aligned circular cavity in WAVE2D does not significantly affect 

the response of the models and can be used for analysis of circular cavities without significant 

deviation from reality. Figure 6-9 shows that it may not be appropriate to model a circular 

tunnel by approximating it as a square tunnel, except for in the far field and / or for a limited 

range of frequencies. Although it has been stated that the circular cavity in UDEC and WAVE2D 

give similar responses up to about 800 Hz, it is likely that this is also related to the tunnel size 

and background material properties.  
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6.4. Verification of Resonance Mechanisms 

This section focuses on the verification of the 1D rock mass resonance mechanisms studied in 

the previous Chapters using a 2D numerical model. Following the verification of the validity of 

the numerical models in Figure 6-4, it is a reasonable next step to add joints into the model. A 

model with two joints is studied here, using the set up shown in Figure 6-1. This work serves as 

a further verification of the resonance mechanisms, as carried out in Chapter 5, as it is a test of 

the plane wave assumption. The results of the comparison of the 1D and 2D models are shown 

in Figure 6-10. The 1D model set up used here is shown in Figure 5-7. The transfer functions 

contain similar elements, with the high transmission at 0 Hz, followed by a high transmission 

that is at the spring resonance frequency. There is also another high transmission zone at the 

superposition resonant frequency, although this is a broader and lower peak, than that shown 

by the 1D model. This is likely to be due to additional internal refractions and reflections within 

the model. The low transmission zone between the spring and superposition resonances 

shows more variability in the 2D model. The reasons behind this are unclear; however, it could 

be caused by superposition of P and S-waves within the model. In previous analyses, only P-

waves are considered as only P-waves are generated by the plane wave source. However, in a 

2D model with a point source both P and S-waves are generated. Therefore, there is potential 

for these waves to superimpose, which can cause relative peaks and troughs in the transfer 

functions. These effects are studied in subsequent sections in this Chapter.  
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Figure 6-10 Comparison of transfer functions from a 1D model and a 2D model 

This verification of the spring resonance mechanism occurring in a 2D model has been quite 

brief; however, it is clear from Figure 6-10 that both the spring and superposition resonances 

occur in a 2D plane strain model excited with a non-planar wave. It is not deemed necessary to 

include further plots confirming the existence of the jointed rock mass resonance effects, as 

the results in Figure 6-10 closely match the frequencies predicted by Equations 4-18 and 4-20.  

6.5. 2D Transfer Functions 

This section studies how joints and cavities can affect the relative transmission coefficients of 

stress waves in a 2D plane strain model. This work is an extension of the results shown in 

Figure 6-10, with additional models used to study the resonances and interactions observed 

there. In addition to this, transfer functions are generated over a 1D surface within the models. 

The transfer functions are displayed as a surface plot in a frequency-offset domain, with the 

vertical dimension being the transmission coefficient.  

The model used is similar to that shown in Figure 6-1, but with a tunnel and additional points 

used for recording the models response. Figure 6-11 shows a schematic of the model and 

Table 6-2 gives the details of the models used in this section. The properties of the models are 

identical to those in Table 5-2. In all models, measurements are recorded at 1 m lateral 
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intervals. The height at which the response points are located are given in the Figures as 

distance above the point at which the load is applied. In models with a tunnel the load is 

applied at the tunnel invert.  

 

Figure 6-11 Schematic of model used for 2D transfer functions. Dashed lines represent features which are not 
included in all models. More joints can be modelled than are shown. 

For ease of conveying what the model inputs are, each model is given a six digit code referring 

to its properties. The first two digits relate to whether there is a tunnel (nt – no tunnel, tt – 

tunnel); the third and fourth to the number of joints (joint number followed by j, m refers to 

the model being entirely populated by joints, e refers to an equivalent medium); and the final 

two to the position and orientation of the joints (a or b for above or below loading, h or v for 

horizontal or vertical, or 00 if there are no joints, m refers to the model being entirely 

populated by joints, e refers to an equivalent medium).  
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Table 6-2 2D plane strain models used to derive transfer functions 

Tunnel (yes/no) Number of Joints 

(location/orientation) 

Descriptions (code) 

No 0 Continuum Model (nt0j00) 

Yes 0 Continuum with a tunnel (tt0j00) 

No 1 (above/horizontal) Single jointed model (nt1jah) 

Yes 1 (above/horizontal) Single joint with a tunnel (tt1jah) 

No 2 (above/horizontal) Twin jointed model (nt2jah) 

Yes 2 (above/horizontal) Twin jointed model with tunnel (tt2jah) 

No 1 (below/horizontal) Single jointed model (nt1jbh) 

Yes 1 (below/horizontal) Single joint with a tunnel (tt1jbh) 

No  2 (below/horizontal) Twin jointed model (nt2jbh) 

Yes 2 (below/horizontal) Twin jointed model with tunnel (tt2jbh) 

No Maximum 

(throughout/horizontal) 

Fully jointed model without tunnel 

(ntmjmh) 

Yes Maximum 

(throughout/horizontal) 

Fully jointed model with tunnel (ttmjmh) 

No 0 (equivalent transversely 

isotropic) 

Equivalent to ntmjmh – no tunnel (ntejeh) 

Yes 0 (equivalent transversely 

isotropic) 

Equivalent to ttmjmh – tunnel (ttejeh) 

 

6.5.1. Effect of a Tunnel 

The effect of a tunnel is investigated in this section. Table 6-3 shows the combination of 

models which show the effect of adding a tunnel to a model, with all tunnels having a radius of 

1 m. The tunnel is modelled as shown in Figure 6-5 for WAVE2D. Despite this only one of these 

cases will be considered, nt0j00 versus tt0j00. There is undoubtedly an effect of tunnel size on 

the transmission of stress waves, although this has already been well investigated by 

numerous authors and is discussed in Chapter 2, so is not investigated further here.  
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Table 6-3 Cases giving the effect of a tunnel 

Reference Case Test Case 

nt0j00 tt0j00 

nt1jah tt1jah 

nt2jah tt2jah 

nt1jbh tt1jbh 

nt2jbh tt2jbh 

 

Figure 6-12 shows nt0j00 versus tt0j00, giving the effect of adding a 1 m radius tunnel to a 

continuum. If the tunnel has no effect on the transmission of stress waves, then the transfer 

function will have a transmission coefficient of one at all frequencies. This is clearly not the 

case, so the tunnel is having some effect. There are clear interactions occurring with regular 

peaks in the transfer functions, which occur at different frequencies depending on the offset of 

the measurement point.  

 Y-Velocity X-Velocity 

10m 

a) 

  

b)  

 

20m 

c) 

  

d) 
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30m 

e) 

  

f) 

  

40m 

g) 

  

h) 

  
Figure 6-12 Effect of adding a tunnel to continuum mode (nt0j00 vs tt0j00). a) 10 m vertical response, b) 10 m 
horizontal response, c) 20 m vertical response, d) 20 m horizontal response, e) 30 m vertical response, f) 30 m 

horizontal response, g) 40 m vertical response, h) 40 m horizontal response. Black isocline indicates transmission 
coefficient = 1 

Figure 6-12 shows the distribution of velocity changes for different elevations above the load 

at 10 m intervals between 10 and 40 m. A clear pattern has developed with high y-velocities 

spreading out as the elevation above the tunnel increases, with low transmission coefficients 

directly above the tunnel. The low transmission zone directly above the tunnel has been found 

by previous studies and is referred to as a vibration shadow (Gupta et al., 2009). This shadow is 

also shown in Figure 6-8. This is formed as the tunnel itself prevents vibrations from being 

transmitted through it.  

The x-velocity transmission coefficients are always highest directly above the tunnel but, much 

like the y-velocity component of vibrations, also show a degree of spreading out as the 

elevation increases. If the edges of the area with a transmission coefficient of 1 are looked at 

for the x-velocities it is seen that this occurs at approximately the same offset as the maximum 

in the y-velocity transmission for the same elevation. These zones spread out at an angle of 

approximately 30 degrees.  
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There is a clear frequency dependent maximum occurring in both y and x-velocities. Despite an 

apparent similarity for the position of peaks along the frequency axis, between y and x-

velocities, upon further interrogation these positions do not appear to be in the same place. 

For instance, the 40 m elevation plots in Figure 6-12 g and h have ten peaks in the y-velocity 

plot and only nine in the x-velocity plot. The nine peaks for the y-velocity plot do not fit in 

between the ten peaks for the x-velocity plot either.  

The interactions shown in the x and y-velocities in Figure 6-12 appear to be closely related, due 

to the spatial similarity in the velocity responses, rising at an angle of 30 degrees from the 

tunnel invert, despite the differing number of peaks in the different directions. It is likely that 

similar processes bring about both interactions, with the tunnel acting to guide waves in 

different directions. In the models shown here, this shadow spreads out at an angle of 30 

degrees. Within 30 degrees from the vertical axis above the tunnel there will be low vertical 

vibrations, in relation to the continuum case. However, due to the method which these 

transfer functions are generated this does not mean that there are no vibrations here. As 

these transfer functions calculate the difference between a case with and without a tunnel, 

this shows a relative reduction between the two cases. Therefore, this does not mean there 

will be no vibrations, as the highest y-vibrations in the continuum case would be directly above 

the loading point, although they have been significantly reduced. The clear maxima, which are 

located in a narrow band around the 30 degree line, are likely to be the location where waves 

interact through superposition.  

Similar processes are likely to be occurring with the x-velocities; however, there is no vibration 

shadow. Directly above the tunnel there are greater transmission coefficients, showing that 

there are greater x-vibrations here than in the continuum case. Again, this does not imply high 

vibrations occurring in the tunnel case, as there are extremely low vibrations in the x-direction 

directly above the loading in the continuum case. For instance, Green’s Functions predict zero 

displacements at this position for a homogenous full space, as shown by Figure 6-13. 

Regardless of the potentially low vibrations, there is still an increase in x-vibrations in the y-

vibration shadow caused by the tunnel, although in absolute terms these are likely to be small.  
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Figure 6-13 Relative amplitude of x and y-displacements due to vertical point source within an isotropic full space. 
Absolute relative displacement for both x and y directions take from the maximum displacement in either direction 

Both the shadow and associated maxima in the y-vibrations and maxima in the x-vibrations are 

generated by the presence of the tunnel. The mechanism behind this is likely to be 

superposition of stress waves, caused by refraction around the tunnel surface.  

6.5.2. Effect of Joints 

The effects of joints are investigated in the same way as the effect of the tunnel, by comparing 

cases where a joint is added with an otherwise identical case without joints. The comparisons 

to do this are shown in Table 6-4.  
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Table 6-4 Cases to give the effect of joints 

Reference Case Test Case 

Joints Above Tunnel 

nt0j00 nt1jah 

nt0j00 nt2jah 

Joints Below Tunnel 

nt0j00 nt1jbh 

nt0j00 nt2jbh 

 

Figure 6-14 shows the effect on the transmission of stress waves of adding joints above the 

loading location in a model when there is no tunnel. Figure 6-14 a and b show the effect of 

adding a single joint to a continuum model. This gives a general decrease in the transmission, 

although there are clear effects of the P / S-wave interaction occurring with a similar form (30 

degree offset) to those found when a tunnel is added. Despite this, the clear peaks observed in 

Figure 6-12 are much less obvious here. This is likely to be because there is no tunnel. As the 

interaction effects are generated by the presence of the tunnel, these will not occur. However, 

they are still clear; therefore, the interactions here must be generated during the stress wave 

passage through the joints. It cannot merely be a consequence of the passage of waves 

through the continuum, otherwise the effect would not show up in the transfer function as it 

would be expected to be equal in both models. An incident stress wave on a joint will be partly 

transmitted and partly reflected. The transmitted wave will be refracted and, unless it is 

normally incident, will be transformed to some degree. This effect is well known and related to 

Snell’s Law.  

When there are two joints, shown by Figure 6-14 c and d, the 30 degree interaction effects are 

much less obvious. The 1D-interaction effects of the masses between springs, operating at 

96Hz, and superposition of waves, occurring at approximately 832 Hz, are still apparent, 

although the spring resonance effect is quite weak. The zero offset for Figure 6-14 c is identical 

to the transfer function shown in Figure 6-10. The two resonance mechanisms are shown by 

the black crosses in Figure 6-14 c and d. 

  



159 
 

 

 Y-Velocity X-Velocity 

1 

Joint 

a) 

  

b) 

  

2 

Joints 

c) 

  

d) 

  
Figure 6-14 Effect of adding joint to a model above the loading location (nt0j00 vs nt1jah, nt0j00 vs nt2jah). a) single 

joint vertical response, b) single joint horizontal response, c) twin joints vertical response, d) twin joints horizontal 
response. Isocline indicates transmission coefficient = 1. Black crosses indicate resonances.  

The similarity with the transfer functions in Figure 6-14 c and d shows that the spring 

resonance effect operates even when vibrations are not polarised to be acting normal to the 

plane of the joints. As the joints in the models used are horizontal, the y-vibrations are normal 

to this. This is the same orientation of vibrations and joints as was used in the Chapters 4 and 5 

which uses plane waves. However, in Figure 6-14 d the vibrations are horizontal as well as the 

fractures. With the vibration being in the opposite direction to the direction of travel of the 

wave, which is still vertical, the waves captured in Figure 6-14 d must be a S-wave. The peak 

transmission occurs at the same frequency in both Figure 6-14 c and d, and as the specific 

shear and normal stiffnesses of the joints is modelled as being the same, it suggests that the 

spring resonance effect also occurs with S-waves.  

Figure 6-15 shows how adding a joint below a loading location changes the transmission 

coefficient of a velocity response point above the loading location. This scenario has no joints 
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between the load and the measurement point. Figure 6-15 shows that the transmission 

coefficients are mostly equal to or greater than one. This increase in transmission is caused by 

reflection from the joint below the load, causing the stress waves to be transmitted upwards 

instead of down. Similar effects have previously been identified by Eitzenberger (2012) in 

jointed materials. There are interactions occurring with minima at regular intervals in the 

frequency spectrum. With the lack of any other surfaces in the model, these interactions are 

likely to be generated by the superposition of reflected P and S-waves. When there are two 

joints, as shown by Figure 6-15 c and d, there is little difference to the single joint case shown 

in Figure 6-15 a and b. The spring resonance is also evident, although as a minima. This 

suggests that the mass between spring effects of the joints is occurring but causing out of 

phase waves of the resonant frequency to be transmitted into the model, therefore cancelling 

out the vibrations in the model.  

 Y-Velocity X-Velocity 

1 

Joint 

a) 

 

b) 
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Joints 

c) 

 

d) 

 
Figure 6-15 Effect of adding joint to a model below the loading location (nt0j00 vs nt1jbh, nt0j00 vs nt2jbh). a) single 

joint vertical response, b) single joint horizontal response, c) twin joints vertical response, d) twin joints horizontal 
response. Isocline indicates transmission coefficient = 1. Black crosses indicate resonances. 
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6.5.3. Effect of Adding Joints and a Tunnel 

This section combines the two previous sections adding both joints and a tunnel to a model. It 

would be expected that these transfer functions would be a combination of the two 

interaction effects observed, with reflection and superposition of waves from the tunnel 

surface giving the periodic maxima and minima, as well as resonance effects when there are 

multiple joints. The various combinations of models discussed in this section are given in Table 

6-5.   

Table 6-5 Cases to give the effects of a tunnel and joints 

Reference Case Test Case 

Joints Above Tunnel 

nt0j00 tt1jah 

nt0j00 tt2jah 

Joints Below Tunnel 

nt0j00 tt1jbh 

nt0j00 tt2jbh 

 

Figure 6-16 shows the effect of adding a tunnel and joints to a continuum model. For the single 

joint case, the maxima in the y-vibrations at the 30 degree angle are clearly shown for a single 

joint (Figure 6-16 a). These occur at an offset of approximately 14 m for a recording at 20 m 

above the loading, as shown in the Figure. These are also present for the case with two joints, 

although only at the spring resonant frequency (Figure 6-16 c). Despite the maxima being 

present, they do not exceed the vibrations from the continuum case. This is in opposition to 

the findings of the tunnel in a continuum, where these areas showed greater levels of 

vibration. The reasons behind this are due to the addition of the joints. This shows that the 

spring resonance mechanism in the rock mass effectively cuts out waves with frequencies 

greater than the spring resonant frequency for the rock mass. This appears to be more 

effective than the single joint, as although it ideally acts as a low pass filter some energy is still 

transmitted at high frequencies. This allows the interaction effects which are observed at the 

30 degree offset in Figure 6-16 a. The spring resonant frequency is still visible in the x-

vibrations in Figure 6-16 d. The increase in x-vibrations above the tunnel are evident in Figure 

6-16 b, with a similar pattern to that observed for the addition of a tunnel in Figure 6-12.  
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Figure 6-16 Effect of adding a joint to a model above a tunnel / loading location (nt0j00 vs tt1jah, nt0j00 vs tt2jah). 

a) single joint vertical response, b) single joint horizontal response, c) twin joints vertical response, d) twin joints 
horizontal response. Isocline indicates transmission coefficient = 1. Black crosses indicate resonances. 

Figure 6-17 shows the effect of one and two joints below the tunnel. The x and y-vibration 

plots for the single and double joint cases look remarkably similar. The double joint case does 

show a weak effect of the spring resonance effect for the joints, but excluding this the 

interaction effects appear to be almost identical. This suggests that the first joint that is 

encountered does most of the reflecting work, with the effect of the second joint only being 

felt with the spring resonance. This is much like the case without a tunnel, as shown by Figure 

6-15, although there appears to be a bit of a vibration shadow caused by the tunnel. This effect 

is not as significant when compared to the shadow when the joints are only above the tunnel. 

A pattern has developed with high transmission zones in the y-vibrations occurring at an offset 

of 10 m, and high vibrations in the x-direction occurring at 10 m either side of the tunnel 

centre line. These occur at a more acute angle than the 30 degree angle found for a tunnel on 

its own. This shows that the vibrations excited at the base of the tunnel are transmitted 
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downwards and then reflected from the joint upwards. This will narrow the angular shadow 

cast by the tunnel, allowing high transmissions at smaller offset distances.  
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Figure 6-17 Effect of adding a joint to a model below a tunnel / loading location (nt0j00 vs tt1jbh, nt0j00 vs tt2jbh). 

a) single joint vertical response, b) single joint horizontal response, c) twin joints vertical response, d) twin joints 
horizontal response. Isocline indicates transmission coefficient = 1. Black crosses indicate resonances. 

This section has shown that joints beneath a tunnel will increase the transmission above the 

tunnel and joints above the tunnel will reduce transmission, effects which have already been 

observed by previous researchers. As shown in the previous section, when two joints are used 

the 1D resonance effects observed also operate in 2D models with a tunnel.  

6.5.4. Effect of Continuously Jointed Discontinua 

This section will consider the effect of continuously jointed materials on stress wave 

transmission. Here, continuously jointed materials refer to a model which has a large number 

of joints. To reduce the run time the entire model will not be populated with joints, and just 

the area of interest surrounding the loading and tunnel. A single horizontal joint set is used. 
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Horizontal joints are common in sedimentary rocks, such as bedding joints created during 

deposition.  

This section will compare different equivalent continuously jointed models. These will have a 

range of different joint spacing’s with the joint stiffness altered to give the same overall rock 

mass stiffness. As all these rock masses have the same equivalent stiffness it will be possible to 

compare them using a single equivalent continuum, which has transversely isotropic 

properties due to the single set of joints. Equivalent continua will be investigated in Section 

6.5.5. 

Figure 6-18 shows the effect of continuous jointing without a tunnel (Figure 6-18 a and b) and 

with a tunnel (Figure 6-18 c and d). Included in these plots are black crosses indicating the 

maximum spring resonant and the first superposition resonant frequencies. These Figures 

show that the spring resonance presents as a wide zone of high transmission in the y-vibration 

plots. The superposition resonance shows a clear zone of high transmission at the predicted 

frequency in the y-vibration plots. The x-vibrations also show the effect of the spring 

resonance, and the superposition resonance is also apparent, albeit this now shows a 

reduction in the transmission rather than an increase. For both y and x-vibrations there is a 

zone of localised high transmission either side of the predicted resonant frequency. When 

compared to Figure 6-16 and Figure 6-17, where there is continuous jointing, the transmission 

coefficients have increased. This could be thought of as being different from what would be 

expected. Adding more joints would be expected to cause more energy to be reflected and cut 

out, with the joints acting as low pass filters. This is especially the case if the Equation 

|TN|=|T1|N, introduced in Chapter 3, is correct. Instead, a spring resonance high transmission 

zone has developed, and the superposition resonance zone is much more distinct. The high 

transmissions at intermediate frequencies are harder to explain, although they do seem to be 

synonymous with the 30 degree effects identified in other models. When there is no tunnel 

the high transmission effects seem to develop at 30 degrees in the y-vibrations (Figure 6-18 a). 

When there is a tunnel, these effects are still visible but much less clear (Figure 6-18 c). These 

effects are outside the range for the spring resonance effect and not at the correct frequency 

for superposition, according to Equations 4-18 and 4-20. However, owing to the greater 

number of degrees of freedom in the 2D scenario, there will be a greater number of different 

transmission pathways allowing a greater range of frequencies to have constructive 

interference through superposition. Equally, as indicated in previous sections, the presence of 

S-waves will also generate other interactions with a model without a plane wave.  
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Figure 6-18 Effect of adding continuous jointing to a model (nt0j00 vs ntmjmh, tt0j00 vs ttmjmh). a) single joint 

vertical response, b) single joint horizontal response, c) twin joints vertical response, d) twin joints horizontal 
response. Isocline indicates transmission coefficient = 1. Black crosses indicate resonances. 

Figure 6-18 shows the difference between an isotropic medium and a jointed medium with the 

intact blocks having the same properties as the isotropic material. The joints modelled for 

Figure 6-18 in models ntmjmh and ttmjmh have a spacing of 2 m and a specific stiffness of 1 

GPa/m for both normal and shear stiffnesses, which have been used for all previous jointed 

models. Using Equation 3-2 the rock mass stiffness can be determined based on the intact 

block stiffness, joint stiffness and joint spacing. This shows that it is possible to derive the same 

rock mass stiffness from a combination of different properties of a discontinuous rock mass. 

Keeping Em and Er constant, the joint spacing can be changed and the joint stiffness altered to 

compensate, giving the same rock mass stiffness. The relationship is inverse, with a doubling of 

the joint spacing requiring a halving of the joint stiffness to give the same rock mass stiffness. 

Based on this, if the joints are at a spacing of 4 m a 0.5 GPa/m specific joint stiffness will be 

required (models ntmjmh4 and ttmjmh4) and if they are separated by 8 m a 0.25 GPa/m 

specific joint stiffness will be required (models ntmjmh8 and ttmjmh8). These equivalent cases, 
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compared to the original 2 m joint spacing used in Figure 6-18, are shown in Figure 6-19 and 

Figure 6-20. 

Figure 6-19 shows that the 4 m jointed model has higher vibrations at low frequencies, due to 

the lowering of the spring resonance maximum frequency. Both frequencies are shown by the 

left hand of the two dashed lines. Due to the lowering of the maximum spring resonant 

frequency, there is also a reduced transmission zone between the 4 m joint spacing resonance 

and the 2 m joint spacing resonance. There is a high transmission zone from the 2 m spring 

resonance up to the 2 m superposition resonance, shown at just over 800 Hz. The intermediate 

cross dashed line is the first 4 m superposition resonance, which is not distinct.  
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Figure 6-19 Effect of changing the joint spacing in a model with the same equivalent continuum stiffness (ntmjmh vs 

ntmjmh4, ttmjmh vs ttmjmh4). a) single joint vertical response, b) single joint horizontal response, c) twin joints 
vertical response, d) twin joints horizontal response. Isocline indicates transmission coefficient = 1. Black crosses 

indicate resonances. 

Figure 6-20 shows the 8 m joint spacing model. Similarly, with Figure 6-19 there is a high 

transmission zone at low frequencies, synonymous with the spring resonance. This is followed 

by a low transmission zone, which is followed by a further high transmission zone.  
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Figure 6-20 Effect of changing the joint spacing in a model with the same equivalent continuum stiffness (ntmjmh vs 

ntmjmh8, ttmjmh vs ttmjmh8). a) single joint vertical response, b) single joint horizontal response, c) twin joints 
vertical response, d) twin joints horizontal response. Isocline indicates transmission coefficient = 1. Black crosses 

indicate resonances. 

6.5.5. Effect of Equivalent Continua and Discontinua  

Section 6.5.4 shows how different equivalent discontinuum models give different results. 

These models show that the effects of the jointed rock resonance mechanisms prevail causing 

areas of high and low transmission within the models to change. This section studies 

equivalent continuum models and how their results differ from the discontinuum, which they 

are derived from. Modelling as a continuum is a desirable trait for models as they often require 

a lower amount of computing power than discontinuum models. The models used here adopt 

the HEM and DM material models, as shown in Figure 5-12. 

Figure 6-21 shows the transfer functions for the comparison of an equivalent continuum and 

discontinuum. This shows the effects of the spring and superposition resonances for horizontal 

and vertical vibrations. The spring resonance zone gives a higher transmission in the 

discontinuum model than the equivalent continuum for both vibration directions. The 
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superposition resonance is only clearly visible in the vertical vibration plots (y-velocity). This 

indicates, as found in Figure 5-13, that the HEM does not exhibit the spring or superposition 

resonance effects.  

 Y-Velocity X-Velocity 

No 

Tunnel 

a) 

 

b) 

 
Figure 6-21 Effect of modelling a discontinuum as an equivalent continuum (ntejeh vs ntmjmh). a) no tunnel vertical 

response, b) no tunnel horizontal response. Isocline indicates transmission coefficient = 1. Black crosses indicate 
resonances. 

6.6. Discussion 

Figure 6-22 shows high transmission coefficients at typical frequencies for train excitation, 

from car body and bogie bounce, and bogie, axel, and wheel passage, as well as track 

excitation, from wheel out of roundness, rail bending and wheel-ballast and rail / sleeper-

ballast resonance. These show that there are a range of different excitation mechanisms which 

can cause sources at the frequencies shown by the wide spring resonance zone. The 

consequence of this could be that, if an equivalent continuum were used in the vibration 

assessment of a new tunnel there could be significant errors introduced for these frequencies. 

This is because equivalent material models, such as the HEM material model, do not exhibit 

the rock mass resonances identified in this work, as shown by Figure 6-21. 
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Figure 6-22 Vertical transfer function directly above loading for equivalent continuum versus discontinuum model 
with no tunnel (ntejeh vs ntmjmh). Range of frequencies for train and track excitation from Connolly et al. (2014) 

The results shown above are a consequence of the rock mass being modelled as a 

discontinuum or an equivalent continuum. A different rock mass with different joint spacings 

and block and joint stiffnesses would generate different rock mass resonant frequencies. 

Despite this, at least some of the train excitations will always fall in the spring resonance zone 

as it occurs at low frequencies, which dominate a train vibration spectrum. The calculation of 

these resonances is simplified with the analytical models derived for 1D rock masses (Equation 

4-18). This exercise has been performed for a range of different rock masses to generate 

Figure 6-23. This shows the likely maximum resonant frequencies for a selection of common 

rock types. It is assumed that there are a large number of joints with an equal spacing and 

stiffness. Figure 6-23 shows different probabilities of vibrations being transmitted through a 

rock mass. The probabilities are determined qualitatively based on the likely maximum spring 

resonant frequency of a jointed rock mass with the properties in Table 6-6. All rock and joint 

properties in Table 6-6 are taken from Bandis et al. (1983) or based on the engineering 

judgement of the author. In Figure 6-23, the likely transmission zone represents the portion of 

the vibration spectrum which will be transmitted in a rock mass which has small blocks and 

strong joints. The possible transmission zone represents the cut off frequency of the spring 
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resonance high transmission zone for a rock mass with large blocks and weak joints. This 

represents a zone in which transmission could occur given the appropriate rock mass 

conditions, although it isn’t as likely to occur as the likely transmission zone. At higher 

frequencies rock mass conditions are unlikely to be met to allow the spring resonance effect to 

form a high transmission zone, therefore transmission is unlikely. Also plotted on this graph 

are the range of frequencies which are generated from track and train excitations given by 

Connolly et al. (2014).  

 

Figure 6-23 Spring resonance high transmission zones for different rock masses plotted with ranges of train and 
track excitation frequencies from Connolly et al. (2014). The coloured boxes refer to the cut off frequencies of the 
spring resonance mechanism for different rock mass conditions, resulting in different probabilities of transmission 

through a rock mass. From Holmes et al. (2023a) Figure 14 

Figure 6-23 shows that train excitations are likely to be transmitted without modification of 

the amplitude of vibrations due to the presence of joints, regardless of the rock mass and its 

conditions. However, the higher frequency vibrations generated by the track may not be 

transmitted. Slate, for instance, is likely to have a high transmittance zone which spans much 

of the range of frequencies which can be excited from a rail track, while Siltstone shows a 

much smaller range. This suggests that, depending on the geological conditions in which a rail 

tunnel is excavated, mitigation measures can be targeted at certain excitation sources to use 

resources most economically.  
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Table 6-6 Properties used for resonance ranges in Figure 6-23. All properties from Bandis et al. (1983), except joint 
spacing which were based on engineering judgement from BS EN ISO 14689 Part 1 

Rock Type Block 

Stiffness 

(GPa) 

Fresh Joint 

Stiffness 

(GPa/m) 

Weathered 

Joint 

Stiffness 

(GPa/m) 

Density 

(Mg/m3) 

Max. Joint 

Spacing 

(m) 

Min. Joint 

Spacing 

(m) 

Sandstone 24.0 34.9 8.8 2.41 6 0.06 

Siltstone 28.5 64.2 20.0 2.42 6 0.2 

Limestone 49.0 133.5 39.8 2.73 6 0.06 

Dolerite 78.0 75.3 24.7 2.90 0.2 0.006 

Slate 66.0 344.3 19.1 2.77 0.06 0.006 

 

6.7. Conclusions  

This Chapter builds upon the work in Chapters 4 and 5 to further investigate the jointed rock 

mass resonance mechanisms identified in this research.  

2D plane strain models are used throughout, which are verified using fundamental solutions. 

The fundamental solutions are analytical Equations which provide a way of checking that the 

models are behaving as expected. Following this, the response of WAVE2D and UDEC are 

compared for a square and circular cavity. This is a crucial step, as WAVE2D can only 

approximate a circular cavity, while UDEC can do this much more accurately. The models were 

found to be sufficiently similar for WAVE2D to be used for further analysis.  

WAVE2D is used to verify the presence of the rock mass resonance mechanisms in a 2D model, 

excited by a non-planar wave. The resonant frequency of the rock mass is found to match the 

predictions from the analytical Equations given in Chapter 4, for both spring and superposition 

resonance. When a large number of joints are modelled it is shown that a high transmission 

zone at low frequencies is generated. This occurs up to the highest spring resonance 

frequency, so the extent of the high transmission zone can be easily evaluated using the 

Equation 4-18 in Chapter 4.   

The 2D models used in this Chapter allow a tunnel to be modelled. When a tunnel is modelled 

it is found that a high transmission zone occurs at an offset of 30 degrees from the loading in 

the vertical direction, with a transmission shadow within this region. In the horizontal direction 

vibrations are shown to increase within this zone.  
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Finally, the rock mass resonance characteristics are put into the context of train vibrations. It is 

shown that the high transmission zone which can develop at low frequencies, due to spring 

resonance, is likely to encompass all excitations which are generated by trains for a range of 

common rock masses. Some track related excitation sources could fall outside this high 

transmission zone, although this is highly dependent upon the weathering condition of the 

rock mass. This indicates that, given a large number of joints, the presence of the spring 

resonance mechanism is not likely to lead to any significant reduction in vibrations from 

railways.  
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7. Jointed Rock Masses as Metamaterials 

 

“A jointed rocks frequency response, 
Is shown to be a metamaterial in nuance. 

Matching experimental results shows validity, 
Of the resonance’s physical applicability.” 

 

 
 

© Army of Cats 2023  
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7.1. Introduction 

This Chapter builds upon Chapters 4 to 6 and investigates the implications of their findings. 

The idea that jointed rock masses can be redefined as being a natural type of metamaterial is 

explored and their frequency characteristics viewed in this context. Applications of this type of 

metamaterial for the mitigation of vibrations from railway lines are appraised. This Chapter 

diverges somewhat from the approach adopted by the other chapters in this thesis, drawing 

together abstract concepts and presenting a thought experiment.  

 
“How often have I said to you that when you have eliminated the impossible, whatever 

remains, however improbable, must be the truth?” – Sherlock Holmes 
(Doyle, 2014, pg. 89) 

 

7.2. Recap of Rock Mass Resonances 

Chapters 4 to 6 have investigated the transmission of stress waves through jointed materials 

using numerical models. The key findings of these Chapters are summarised below. 

Jointed rock masses show two resonance mechanisms: 

1. Spring resonance - occurs at low frequencies; 

 An analytical Equation is given which can accurately predict resonant 

frequencies (Equation 4-18), 

 The blocks within the rock mass oscillate like masses between springs, with the 

springs being analogous with joints and the masses as the blocks, 

 There are an equal number of resonant frequencies as there are blocks, 

 Spring resonance reaches a maximum frequency for the given rock mass, so 

when there are a large number of blocks the resonances merge to give a high 

transmission zone at low frequencies, 

 This effect is shown to occur with both P and S-waves.  

2. Super position resonance - occurs at high frequencies; 

 An analytical Equation is given which can accurately predict resonant 

frequencies (Equation 4-20), 

 Waves reflected from joints can constructively interfere giving high 

transmission of these frequencies through joints,  

 Superposition resonance is related to the velocity of the block material and the 

joint spacing. 
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The rock mass resonance effects have been shown to occur in different numerical models with 

different assumptions. 

 Initial work was undertaken using the combined discrete element-finite 

difference method (DEM-FDM) with a second code using the finite difference 

method used to validate this, 

 The resonance effects are not affected by the type of excitation source used, 

 The resonance effects still occur when different boundary conditions are used, 

a blocky rock mass is modelled, and a non-planar wave is used. 

The work carried out into the transmission of stress waves through jointed rock masses shows 

that the resonance mechanisms observed in Chapter 4 appear to be quite robust to changes in 

numerical modelling set up, as illustrated in Chapters 5 and 6.  

7.3. Physical Verification 

While the superposition resonance mechanism is a well-known phenomenon in rock blocks 

(Nakagawa, 1998) there has been no physical evidence of the spring resonance effect 

presented before Holmes et al. (2023b). If the jointed materials previously considered are 

viewed as a succession of stiff material (the blocks) and weaker material (the joints), which is 

what the analogy of the spring resonance mechanism assumes, then these materials can be 

considered to be periodic metamaterials. If it were so desired, an artificial rock mass could be 

constructed to have a particular set of frequency related properties, which is a similar concept 

to those used for the design and manufacture of periodic metamaterials (Cummer et al., 2016; 

Witarto et al., 2018; Huang et al., 2021). In acoustics, the parallel jointed rock mass studied in 

Chapter 4 can be considered a 1D phononic crystal. Like a phononic crystal, a jointed rock mass 

can absorb or transmit different frequencies. The transmission of frequencies occurs in pass 

bands, which are coincident with the resonant frequencies of the rock mass, and absorption 

occurs in band gaps. This is illustrated in Figure 7-1 with the aid of a transfer function from a 

rock mass with a single block. With a small number of blocks, this will act as a band-pass filter 

prohibiting wave frequencies that do not fall within the pass bands. As the number of joints 

increases the rock mass will transition to an effectively low-pass filter as the resonances begin 

to overlap one another at low frequencies, as shown in Chapter 6. Defining jointed rock 

masses in such a way puts them in the context of current research into metamaterials, a 

current and fast evolving field of research. Hussein et al. (2014) investigated the mass between 

spring resonance shown by periodic metamaterials, showing these do exist in 1D lattices.  
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Figure 7-1 Pass bands in a rock mass with a single block with a width of 2 m. Pass band indicators are of an arbitrary 
width 

Examples can be found in studies relating to periodic metamaterials that show high 

transmission zones within frequency response functions, which are synonymous with the 

transfer functions presented in this thesis. Witarto et al. (2018) presented a simple periodic 

metamaterial and analysed its performance using a frequency sweep on a shake table (Figure 

7-2). This is equivalent to the attempted dynamic mechanical analysis experiment in Chapter 5. 

Later, Huang et al. (2021) modelled the same material using the finite-element method. The 

material being analysed was a concrete layer, sandwiched between polyurethane. A concrete 

cap is also present, as shown by Figure 7-2, which was surcharged with an equivalent structural 

loading. Due to the relative stiffness of the materials, the less stiff polyurethane acts like a 

joint, while the stiffer concrete acts like a block. The properties of the materials used in the 

test are shown in Table 7-1. Assuming that the top concrete block will not act as a block, due 

to the loading from the structural surcharge, the spring resonance of the single block system is 

8 Hz. Figure 7-3 shows the frequency response function from the studies of Witarto et al. 

(2018) and Huang et al. (2021), along with the spring resonance frequency generated using the 

analytical Equations from this thesis. This shows that the amplified frequencies found by the 

previous studies closely match the resonant frequency predicted by Equation 4-18 for spring 

resonance, giving convincing evidence that the resonance effect can be isolated in physical 

models, and that it is a realistic phenomenon.  
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Figure 7-2 Periodic metamaterial as used in the experiment of Witarto et al. (2018), Figure 5a 

Table 7-1 Material properties of the periodic metamaterial (Witarto et al., 2018) 

Material Property 

Concrete   

Density 2300 kg/m3 

Elastic Stiffness 31400 MPa 

Poisson’s Ratio 0.2 

Thickness 0.05 m 

  

Polyurethane  

Stiffness 0.1586 MPa 

 

Huang et al. (2021) and Witarto et al. (2018) show amplification of waves travelling through 

the metamaterial, which has a value of up to 4 if plotted as transmission coefficients, as used 

extensively in this study. The amplification of the 8 Hz waves is something which is not 

predicted by the spring resonance effect. This could be due to the low stiffness of the 

polyurethane layers, allowing greater displacement of the overlying concrete layers, than the 

displacement allowed in the shake table. Therefore, the upper blocks can displace more than 

the block attached to the shake table, giving the appearance of an amplification of the 

vibrations. Despite this, the clear match between the spring resonant frequency for the 

material and the peak transmission in the transfer functions shown in Figure 7-3 is compelling 

evidence of the presence of the spring resonance mechanism in a physical sample.  



178 
 

 

 

Figure 7-3 Frequency response function for single block metamaterial from the laboratory experiment (Witarto et al., 
2018) and corresponding numerical experiment of (Huang et al., 2021). Analytical spring resonance Equation 4-18. 

From (Holmes et al., 2023a) Figure 13 

The study of Witarto et al. (2018) serves as a useful verification of the presence of the spring 

resonance effect in a physical material. This suggests that, if it is set up successfully, the 

experiment outlined in Section 5.3.4 will show the spring resonance effect.  

7.4. Jointed Rock masses as Natural Metamaterials 

The previous section shows that the spring resonance mechanism found in jointed rock masses 

is evident in a periodic metamaterial. This suggests that the effect is likely to persist in other 

periodic metamaterials. The consequence of this is that jointed rock masses could be 

considered to be a periodic metamaterials themselves. This section appraises this concept, and 

determines whether defining jointed rock masses as periodic metamaterials is a reasonable 

and useful approach.  

Metamaterials are composite materials which exhibit properties not usually found in natural 

materials. The word itself is a composite the Greek and Latin terms. The first element “meta” is 

Greek and has the meaning “beyond”. The second element is the Latin “material”, meaning “a 

substance”. Therefore, metamaterials are materials which have properties beyond those of a 

normal material. Rock masses are one of the most common materials on earth, with much of 
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the earth being composed of them. Therefore, their inherent properties, which includes the 

spring resonance effect, are very normal. As far as the strict definition goes, rock masses are 

not metamaterials. However, definitions regularly change through time.  

As described above, metamaterials are composite materials. Therefore, they must be 

composed of more than one element. A very simple jointed rock mass is composed of blocks 

and joints. There are also other potential elements, such as mineralised veins and intrusions, 

but for simplicity these can be ignored. In these simple terms the two elements (blocks and 

joints) present a composite material (Figure 7-4). However, if any joint infilling is ignored, joints 

are merely where two blocks meet and are not really a thing in themselves. If a rock mass were 

deconstructed into its elements, there would be a pile of blocks and nothing else. The joints 

need the blocks to exist, otherwise there are no properties to define this element in the 

composite material. This is unlike the elements in the periodic metamaterial of Witarto et al. 

(2018). In this, there are concrete blocks and rubber blocks, each with their own clear 

properties, which exist without the presence of the other element. This again suggests that the 

rock mass is not really a metamaterial; however, when considered in terms of differing 

properties throughout the rock mass, the joints have different stiffnesses to the blocks, and 

therefore do show a composite of different properties.  
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Figure 7-4 Schematic comparing metamaterials and Jointed Rock Masses 

A periodic metamaterial is not merely composed of a repeatable sequence of different layers 

but these layers will also have repeating thickness and properties. While this can occur over 

small scales within jointed rock masses it is unlikely to persist over large distances, with the 

way a rock mass will have evolved over time. As such taking the concept of periodicity at face 

value a jointed rock mass is not a periodic material. However, if a rock mass is thought of more 

conceptually as a sequence of joint and blocks and ignoring the exact thickness of each layer 

and their properties the periodicity returns.  

Another desirable property of metamaterials is that they can be designed to give certain 

characteristics. The design element of metamaterials is possible because they are man-made. 

This is not the case for natural materials. Natural materials are a product of the geological 

settings in which they were created and modified through time.  

Based on the conventional view of metamaterials, jointed rock masses are not actually 

metamaterials in their truest form. Despite this, they do exhibit properties similar to 

metamaterials, namely the spring resonance effect as shown by Figure 7-3. However, this 

could be phrased differently to say that metamaterials exhibit properties similar to jointed 

rock masses. Therefore, it can be said that jointed rock masses are a class of periodic materials, 
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namely natural periodic materials. Periodic metamaterials are also a type of periodic material; 

however, these should be classed as synthetic periodic materials.  

7.5. Wave Barriers 

While it has been shown that jointed rock masses are not periodic metamaterials, the 

resonance effects are shown to occur in periodic metamaterials. Therefore, it is useful to think 

about what these materials can be used for, and how the resonance effects can be used to our 

advantage. Specifically, and on the theme of the work which has motivated this research, this 

section is concerned with the use of the periodic materials to suppress train vibrations.  

 

Figure 7-5 Train vibration mitigation measures 

Solutions to reduce vibrations are grouped into those near the source (i.e. under sleeper pads, 

ballast mats), at the receiver changing its dynamic behaviour (i.e. building base isolation) and 

those in the propagation pathway (i.e. trenches and barriers) (Castanheira-Pinto et al., 2018). 

These vibration reduction measures are shown in Figure 7-5. Periodic metamaterials can be 

used in any of these places; however, this section is focussed on the fill of wave barriers.  

Wave barriers introduce a geometry to the propagation pathway which can be with or without 

a material fill. These are placed between the source and receiver and act to deviate or dampen 

waves (Ouakka et al., 2022). Unfilled wave barriers do not allow any transmission through the 

barrier, acting as a zero stiffness discontinuity, instead diffracting waves around the barrier. 

The success of such barriers relies on their depth, which is limited due to the potential 
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instability of an unfilled void. Good results are obtained when the depth of the barrier is at 

least half the Rayleigh wavelength, with reductions of up to 12 dB being reported in some 

cases.  

Soft and stiff filled wave barriers are other alternatives to trenches. The designation of barriers 

as being soft or stiff is related to the stiffness of the fill material, in relation to the stiffness of 

the surrounding ground. Soft barriers can be filled with gas cushions, rubber chips, 

polystyrene, and water, among others. These act as a weakened discontinuity within the 

ground, allowing waves to be either dampened as they propagate through the low stiffness 

barrier or diffracted around them. Reductions depend on the type of barrier used and the 

frequency, with reductions of 3 to 12 dB expressed in literature. Stiff barriers work in a similar 

way to soft barriers, with waves diffracted around them and reflected off them. Steel or 

concrete piles, sheet piles and jet grouting have been used in the past for such structures. 

Insertion losses of 3 dB are quoted in literature. Heavy masses are another option, which are 

placed directly on the surface of the ground. These have been found to reduce transmission by 

up to 10 dB.  

Phononic crystal barriers, consisting of a periodic metamaterial, are a promising alternative to 

conventional wave barriers. Insertion losses of up to 18 dB have been shown in literature 

(Ouakka et al., 2022). Hussein et al. (2014) appraised phononic crystals, showing that when a 

layered material is subject to a vibrational source, they exhibit a response synonymous with 

the spring resonance effect. This superposition effect is also identified by Van Hoorickx et al. 

(2017) between twin wave barriers. Double wave barriers have been investigated by numerous 

researchers (Castanheira-Pinto et al., 2018; Albino et al., 2019). Albino et al. (2019) found that 

improvement is registered when a second buried wall is added to a wave barrier system, 

although resonances occurring between walls may decrease the efficiency for specific 

frequencies.  

Periodic barriers are proposed, which consist of a low stiffness core sandwiched between a 

stiffer material (Huang et al., 2021). A common material for these is polyurethane, for the low 

stiffness core, and concrete for the stiffer material.  

Cheng and Shi (2014), Krödel et al. (2015) and Dertimanis et al. (2016) propose other periodic 

barriers, which display locally resonant characteristics. These types of wave barriers are shown 

in Figure 7-6. These are termed phononic crystal barriers and are composed of a high density 

mass encased in a lower stiffness medium, such as rubber. This isolation of the high density 
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mass within the low stiffness medium allows the mass to oscillate and resonate like a mass 

between springs.  

 

Figure 7-6 Periodic metamaterials used in wave barriers. a) Krödel et al. (2015) Figure 1c, b) Cheng & Shi (2014) 
Figure 15b, c) Dertimanis et al. (2016) Figure 7 

The wave barriers proposed by Cheng and Shi (2014), Krödel et al. (2015) and Dertimanis et al. 

(2016) all adopt a standardised makeup of phononic crystal, with all the crystals in these 

barriers having the same geometry and properties. As such, all of the cells within the wave 

barrier will either have the same resonance characteristics if the cells are isolated from each 

other or will operate as a long series of masses and springs, like the jointed rock masses 

modelled in this thesis.  

7.5.1. Proposed Wave Barriers 

An alternative to the arrangement adopted in previous research is suggested, with the 

intention of improving the efficiency of the wave barrier. It is proposed that the standard 

crystal set up, shown in Figure 7-6, may not be optimal for vibration reduction. A series of 

coupled phononic cells would operate like a low pass filter, allowing much of the low 

frequency content to be transmitted, while the high frequency content is eliminated. A set of 

isolated cells, whose oscillations are decoupled from one another, will reduce the vibrations 

transmitted through the material, but will allow the resonant frequency of the cell to be 

transmitted unopposed. Cells can be engineered so that the transmitted frequency does not 
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correspond with a frequency that will significantly adversely affect a receiver. However, this 

may not be the most optimum set up. A more efficient wave barrier could be generated by 

using two different unit cells, with different resonant characteristics, isolated from one 

another and installed in series. The proposed cells and current consistent cells (standard cells) 

are illustrated in Figure 7-7. The resonant frequency of the cell will represent the pass band, 

while non-resonant frequencies will be the band gaps. If the unit cells are designed 

appropriately, it would be possible to have the pass band of one unit cell fall within the band 

gap of the other unit cell. Therefore, the energy which is passed through the first cell is 

eliminated by the second cell. All other frequencies will fall within band gaps and be 

significantly reduced during transmission.  

 

Figure 7-7 Proposed phononic cells for wave barriers and current consistent cells used in wave barriers. Each cell 
consists of a stiff block surrounded in a less stiff material (i.e. rubber) encases in a stiff cell 

7.5.2. Semi-Analytical Modelling of Wave Barriers 

To simply investigate the efficiency of the proposed phononic cell set up a semi-analytical 

approach is adopted. The semi-analytical approach takes the numerically derived transfer 

functions from models of each cell and multiplies these together. This approach is reasonable 

as transfer function represents the proportion of the frequency content of an incident wave 

which is transmitted through a medium. The transmission through each cell is given by their 

respective transfer functions. So, knowing the wave input to the first cell, the transmission 

through the barrier is calculated by multiplying these transfer functions together, as shown by 

Figure 7-8 and Equation 7-1. This is an idealised assumption of the transmission of vibrations 

through the barrier, ignoring any waves which may bypass the barrier and those which are 

transmitted directly though the stiff outer material of each cell.  

The theory behind this is that, assuming all waves entering the first cell are transmitted to the 

next one, with no extra energy being input from the environment, the transfer function for the 

first cell will give the energy which is transmitted to the second cell. If the input wave is 

known, then the wave which enters the second cell is given by the input wave multiplied by 



185 
 

 

the transfer function for the first cell. And therefore, the wave which is transmitted through 

the full system in the frequency domain is given by Equation 7-1.  

 

Figure 7-8 Transmission pathway for uncoupled cells 

 

 𝑓(𝑜𝑢𝑡) = (𝑡ଵ𝑡ଶ … . 𝑡)𝑓(𝑖𝑛) Equation 7-1 

 

Where ti is the transfer function, f(in) is the input wave in the frequency domain, f(out) is the 

output wave in the frequency domain.  

Equation 7-1 shows that the order in which the cells are placed in the barrier does not affect 

the transmission coefficient of the full system. It also shows that there can be an unlimited 

number of different cells in the barrier. Equation 7-1 works for the semi-analytical calculation 

of the proposed cells and the consistent cells.  

The process described in Figure 7-8 and Equation 7-1 is carried out in non-dimensional terms 

for two Cells “A” and “B”. These cells have arbitrary properties, although Cell A has a spring 

resonant frequency half that of Cell B. The proposed barrier is composed of Cell A followed by 

Cell B, while the consistent barrier is composed of two of Cell A. The transfer functions for 

these barriers are shown in Figure 7-9.   

Figure 7-9a shows the proposed wave barrier set up. There is a clear peak in the transmission 

at the resonant frequency of Cell A; however, this is significantly lower than the transmission 

of the single cell. There is also a minor peak at the resonant frequency of Cell B, although this 

is not visible on the linear scale shown in this Figure. With two cells, the peak in the 

transmission coefficient will coincide with the cell with the lowest resonant frequency. This is 

because the transmission coefficient between 0 Hz and the resonant frequency is always 

greater for this type of cell than the transmission coefficient greater than the resonant 

frequency. Therefore, the higher frequency resonant peak will be multiplied by a smaller 

number than the lower frequency resonant peak, giving a smaller overall resultant peak. Figure 

7-9b shows the transfer function for a wave barrier composed of a single geometry of cell. The 



186 
 

 

combined transmission coefficient at the resonant frequency is equal to that of the single cell, 

while the amplitude of all other frequencies are reduced.  

 

Figure 7-9 Example of transfer functions for two isolated cells installed in series. (a) Two cells of different geometries, 
(b) two cells of the same geometry 

Figure 7-10 shows the combined cells transfer functions from Figure 7-9. The “Proposed Cells” 

are the two different geometry cells in Figure 7-9a, and the “Consistent Cells” are the cells with 

the same geometry in Figure 7-9b. The x-axis scale on this Figure is given in dB as insertion 

losses, which are a common way of displaying the effect of proposed wave barriers 

(Castanheira-Pinto et al., 2018). Insertion losses indicate the reduction in amplitude of 

vibrations which would be expected if the wave barrier were installed between the source and 

a receiver. The greater the decibels the greater the vibration content which is removed by the 

barrier. Figure 7-10 indicates that both wave barrier setups have the potential to significantly 

reduce vibrations; however, reductions are greatest in the barrier with the consistently sized 

cells. This is with the exception of the resonant frequency of the cells in the consistent barrier, 

whose transmission is higher than in the proposed barrier.  
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Figure 7-10 Insertion Losses of different phononic cell arrangements in wave barriers 

It is clear from Figure 7-10 that the proposed cells in the barrier are not as effective as the 

consistent cells, as given by Cheng & Shi (2014), among others. It could be argued that because 

a sensitivity analysis is not conducted an optimum arrangement has not been found for the 

different cells to reduce the vibrations further. While this is undoubtedly true, one of the two 

cells used would have a lower resonant frequency than the other. It would then be more 

beneficial to use two of these lower resonant frequency cells in a consistent barrier than use 

two different cells in the proposed barrier arrangement. If the frequency spectrum of the 

source is known, the high transmission shown by the “Consistent Cells” could be designed to 

fit into this gap.  

7.6. Conclusions  

Chapter 7 attempts to use the findings of the previous Chapters work into resonance in jointed 

rock masses for the practical application of mitigating vibrations. To begin with, jointed rock 

masses are compared to periodic metamaterials. An example is presented from literature of a 

periodic metamaterial which is used in a physical experiment involving a frequency sweep on a 

vibration table. It is found that the frequency which exhibited a high transmission in the 

frequency response function from literature is at the same frequency as the spring resonance 

as predicted by the Equation 4-18. This not only shows physical verification of the spring 

resonance mechanism, but also indicates that jointed rock masses could be considered to be 
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periodic metamaterials. Subsequently the concept of rock masses being periodic 

metamaterials is investigated; however, it is determined that jointed rock masses are natural 

periodic materials, with periodic metamaterials being synthetic periodic materials.  

Finally, a concept wave barrier is proposed which takes the resonance mechanisms from 

periodic materials and applies them to vibration mitigation techniques. The concept barrier 

proposed consists of two cells of a different geometry which are combined in a wave barrier. 

The approach currently used consists of multiple cells of a single geometry. The proposed 

barrier arrangement of two different cells with different frequencies theoretically works well 

in reducing vibrations at all frequencies. This arrangement will also be able to remove the 

potentially high transmission at the resonant frequency of the cells. However, it is found that 

this arrangement is not as effective as using a single geometry of cell, all with identical transfer 

functions. Therefore, the proposed arrangement of using two different cells is not an 

improvement on the current approach of using consistent cells. 

While the insertion loss of the proposed barrier is greater than the consistent barrier at the 

resonant frequency of the cells, this is not replicated at other frequencies. Using a sufficiently 

robust scoping study of the potentially adverse vibration frequencies from a source, a barrier 

could be designed so that the resonant frequency of the barrier falls within a range of 

frequencies that are not generated to a significant degree by the source. This will eliminate the 

need to reduce the transmission of the resonant frequency, which the proposed barrier would 

achieve. 
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8. Moving Loads 

 
“Viewing the model from the side, 

A moving load is applied. 
Transfer functions provide the evidence, 
Of frequencies which have precedence.” 

 

 
© Army of Cats 2023  
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8.1. Introduction 

Chapters 4 to 7 concern non-moving point loads, which are a reasonable simplification, and in 

some scenarios can be considered to be realistic, such as machine foundations. The research 

presented up to this point has been useful as it has allowed the effect of vibrations on joints to 

be assessed without the complication of the load speed or direction. However, as this thesis is 

motivated by studies of train vibrations, moving loads are an essential further step. The 

outcome of the non-moving point load studies can be used as a basis for understanding the 

more complex reaction of such models.  

Moving loads are studied in the context of train vibration studies be previous researchers, with 

the literature covered in depth in Chapter 2, so will only be briefly recapped here. Moving 

loads can be modelled in 2D, 2.5D and 3D and various effects have been looked at, including 

the speed of the train (Yuan et al., 2017), pore water pressures (Di et al., 2016) and stiffness of 

the track (Forrest and Hunt, 2006b), to name a few. However, the effects of joints in moving 

load studies are investigated, which is a common them in train vibration studies. There are in 

fact no studies on the effects of joints on vibrations from moving loads published, even 

generalised ones which are not related to train vibrations, so this work reflects a new avenue 

of rock mechanics research.  

This Chapter will use 2D models to study the effect of joints with moving loads. This represents 

a sensible first step for studying moving loads in jointed materials. A 1D model can model a 

moving load moving along the model; however, it was shown in Section 4.5.3 that the location 

of a load in relation to the measurement point in a 1D model does not affect the transfer 

function which is produced. Therefore, movement of a load perpendicular to joints will not 

cause a different response. Therefore, a 2D model is the minimum number of dimensions 

which needs to be used. A 3D model will represent the response better than a 2D model, 

although this adds additional complexity which should be avoided at this early stage of an 

investigation.  

The literature review identifies a study by Yuan et al. (2015), who applies a moving load to a 

beam element in a 2D model. The train loading was approximated as a uniform moving point 

load traversing the beam element. Yuan et al. (2015) described the beam element as a tunnel, 

although there is no associated void modelled. This study presents a highly simplified 

approximation of the real-world problem, and its results are only of use qualitatively. Despite 

this, the approach adopted is applicable to the 2D models used in this Chapter. The results in 
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this Chapter are only likely to have qualitative significance; however, general trends in the data 

can be identified and used to assist the design of more complex investigations.  

The work in this section is undertaken using the two numerical codes which have been used 

throughout this project. Section 8.2 uses the combined discrete element-finite difference 

method, in UDEC, to assess the response of parallel jointed rock masses to a moving load. 

During this investigation, properties of joints are changed, including for the first time in this 

thesis the joint angle. Discrete jointed models and equivalent continuum models are studied. 

Section 8.3 uses the finite difference method, in WAVE2D. This uses the transfer function 

approach which has been extensively used in this research to determine the effect joints have 

on vibrations in the frequency domain. Specifically, this will attempt to determine whether the 

resonance mechanisms previously described prevail when the excitation comes from a moving 

load. 

8.2. UDEC Modelling 

This section aims to numerically investigate the role of jointing and transversely isotropic 

materials in the near and far field through the excitation of a rock mass, subject to a moving 

point load, using the combined DEM-FDM in UDEC (Itasca Consulting Group Inc., 2014). The 

moving point load is applied within a full space, with a horizontal loading path, after Yuan et al. 

(2015). Displacement histories are recorded in the centre of the loading path (the near field) 

and at 10 m above this (the far field). The near field is defined as the response close to the 

loading and the far field as the response away from the loading, which is a similar approach to 

that used by Jones & Hunt (2011). The actual position of the near and far field in this research 

are arbitrary and should not be confused with near and far field in seismology which have a 

specific meaning (Chen, 2021). The naming convention for near and far field in this research is 

a matter of convenience, and has a scale with engineering relevance. The far field results 

indicate the potential vibration levels reaching receptors, while near field results give 

indications as to the dynamic interaction of the tunnel and surrounding ground. The 10 m 

distance used in this study is used as it is half the length of the loading path (Figure 8-2) and is 

likely to give the most representative impression of how the response of a point in the rock 

mass is affected by the passage of the load towards and away from it. Displacements are 

recorded to allow direct comparisons with the results of Rieckh et al. (2012) and Ba et al. 

(2019). UDEC is suited to modelling blocky materials as it allows realistic deformations along 

the interface between blocks and has been widely used for studying dynamic interactions of 

jointed rock masses and stress waves, with modelling confirming the similarity between 

numerical and analytical results for simple cases (Cai and Zhao, 2000; Zhao et al., 2008; Deng 
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et al., 2012; Eitzenberger, 2012). A 2D plane strain model is used for the analysis with no free 

surface and a linear load travel path is modelled longitudinally in accordance with the concept 

adopted by Yuan et al. (2015). The results from the jointed rock mass are compared to 

equivalent transversely isotropic continua as well as an isotropic continuum. The isotropic 

continuum is not strictly equivalent to the other models analysed; however, it does represent 

a common assumption in railway vibration modelling. Therefore, its inclusion allows the 

effects of making this assumption to be assessed. The effects of joint properties are assessed 

and mechanisms for the displacement response of the models suggested.  

The models considered here are intended to analyse the relative effect of joints and 

transversely isotropic material properties when subject to a moving point load, instead of a 

realistic ground response. Therefore, instead of a beam, as modelled by Yuan et al. (2015), the 

path which the load traverses is modelled as a string of internal modelling nodes with no 

unique model properties. No void is modelled, as in the study of Yuan et al. (2015); however, 

the previous study referred to this path as a tunnel, so this is the terminology which will be 

used here.  The beam element in the study of Yuan et al. (2015) was used to simulate the 

increase in stiffness of the material due to the presence of a tunnel liner, so the omission of 

the beam element in this research can be thought of as an unsupported tunnel. Although the 

point load cannot be considered a realistic train loading, this study is an important 

contribution to the train vibration field as it considers how a rock mass will respond to the 

movement of a loading source relative to joints, like the movement of a train along a track. 

This movement will change the angle of incidence of waves from the load interacting with 

joints and could alter their transmission through the rock mass. 

Several models are created which allow the sensitivity of displacement to different modelling 

assumptions to be analysed. The methodology outlined below describes how the time domain, 

combined DEM-FDM model is created, the material properties used, and specifics related to 

the application of the load and initial modelling conditions.  

8.2.1. Model Setup 

Figure 8-1 shows a schematic of a tunnel in a 3D block. A load can travel along the long axis of 

the tunnel, which would appear to be either not moving, if the tunnel is viewed end on, or 

moving, if the tunnel is viewed along its long axis. In either of these perspectives the model will 

look 2D to an observer. As such, the modelling conducted in this section is undertaken in 2D 

plane strain. As the non-moving point load case is studied in the previous Chapters, the model 

used in this section analyses the long profile of a tunnel, with the short axis of the tunnel 
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running in the out of plane direction (Figure 8-1). This gives the tunnel the appearance of being 

a line within the model. Therefore, the tunnel can be represented by a horizontal line in the 

centre of the model. The horizontal loading path has no unique properties so this model 

simulates an unsupported tunnel based on the reasoning of a beam element representing a 

lined tunnel as set out by Yuan et al. (2015). For situations where loads are moving in a tunnel, 

like the movement of a train, the assumption that the load path is linear is a reasonable 

approximation of the 3D load, as it will only realistically move in a single dimension (i.e. left to 

right, backwards and forwards, up and down). However, the propagation of stress waves 

induced by the load in the ground will propagate in 3D, so this assumption will affect the 

ground response. Andersen & Jones (2006) found that a 2D model of a tunnel excited by train 

vibrations can give comparative qualitative results to a 3D model. Therefore, as only the 

qualitative trends of how joints affect wave propagation from a moving source are of interest, 

the assumption of 2D plane strain is a reasonable simplification.  

 

Figure 8-1 Block model showing modelling orientations 
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A time domain model is created in UDEC which is used for all analyses in this section by 

changing the presence, orientation and spacing of the joints and the model properties. The 

basic model is shown in Figure 8-2. Discontinuum analyses are conducted with joint angles of 

0o, 45o, 90o and 135o (Figure 8-3a). Joint angles are measured anti-clockwise from horizontal; 

therefore, a 0o joint is horizontal and a 90o joint is vertical. Symmetry dictates that the results 

for 180o joints will be identical to the 0o joint. Joints are only modelled in the centre of the 

model (Figure 8-2), with the region surrounding this modelled as a continuum. This allows the 

boundaries to be sufficiently far to reduce reflections from boundaries without unnecessarily 

increasing the model run times, which would occur if the entire modelling domain contained 

joints. The presence of the continuum surrounding the model will affect the results, although 

this is not expected to be significant. Equally, as the continuum region is used in all models the 

effect of this region will give a standard error in all the results, so should not affect any 

conclusions as only the qualitative results are of interest.  

Two different types of continuum analysis are run as unjointed comparisons: i) an isotropic 

model using the intact block properties used in the discontinuum analysis for the entire model; 

and ii) a transversely isotropic continuum using equivalent properties based on the 

discontinuum model, equivalent to the HEM used in Chapters 5 and 6. Continuum models have 

the same properties applied throughout the entire model. The isotropic continuum model 

represents a common assumption adopted in railway vibration analysis (Connolly et al., 2019), 

specifically that the ground has isotropic properties. Chapter 3 has shown that this is not the 

case in reality, so its inclusion here is important, despite not accurately giving the properties of 

a jointed rock mass. The transversely isotropic continuum represents a continuum with 

equivalent elastic properties in each direction to the discontinuum models, which more 

accurately represents a jointed rock mass.  

Absorbing boundary conditions are modelled in order to prevent reflections from the model 

boundaries. Absorbing boundaries prevent prominent reflections in history data, which are not 

recorded when absorbing boundaries are modelled. The absorbing boundaries are located 

100m horizontally and vertically from the centre of the loading path. The boundaries are sited 

at this distance to prevent them from interacting with the load in the centre of the model. 

There is likely to be some effect of the boundaries on the results from the model as this will 

always occur with a model which is not of infinite extent. However, as the boundaries are in 

the same position in all the models and only the relative results between the models are of 

interest, this should not affect the outcome. A graded mesh is modelled, with an element 

length of 0.2 m within 10 m of the loading location, doubling every 20 m away from this 
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(Figure 8-2). This increasing of the element length could affect modelling results; however, as 

this model is only intended to give indicative results, rather than fully realistic magnitudes of 

displacements, this will create a systematic error which will not affect the relative results. The 

mesh is generated using UDEC’s quad mesh command (Figure 8-3 b and d), which is consistent 

with the findings in Chapter 4 which showed that this meshing command gives more accurate 

results for dynamic modelling.  

No in-situ stresses or gravity are modelled, consistent with the approach used in previous 

Chapters. This is considered appropriate as only the interaction between the moving load and 

the model is of interest. In addition to this, the discontinuum analyses adopt a joint model 

where the joint stiffness properties do not change due to a change in stress.  

 

Figure 8-2 Right hand side of model used for analysis (not to scale). Model is symmetrical about centreline and is 
shown to reduce the size of the Figure with the model used for the analysis being a full space (see Figure 8-3). 

Crossed circles = measurement points, solid vertical arrows = loading locations, values in parentheses = mesh size, 
dashed box shows jointed region 
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Figure 8-3 a) Joint orientations; b) Quadrilateral mesh setup; c) Screenshot of model from UDEC, dotted box shows 
location of schematic in Figure 8-2, dashed box shows jointed region; d) Screenshot of model mesh from UDEC, 

dotted box shows location of schematic in Figure 8-2, dash-dotted box shows location of mesh setup in 8-3 b (box 
not to scale) 

A moving point load is modelled travelling from left to right in the model at 100 m/s along the 

line marked with solid vertical arrows in Figure 8-2, the “Loading Line”. The “Loading Line” is 

modelled as a construction line in the model. There is no inbuilt function in UDEC which can 

induce a moving load, so instead a FISH function is defined which allows the point of excitation 

to move along a linear path at a pre-defined speed through the model (Appendix C). A point 

load is approximated using a band-limited cosine pulse to avoid generating very high 

frequencies, as would be created if the load increased from zero to its maximum over a single 

time step. The amplitude of the function at time “t” is given by Equation 4-11 introduced in 

Chapter 4 (Figure 4-7). While Chapter 4 shows that this source waveform is not optimum for 

transfer functions, its simplicity is advantageous here for use with the moving point load FISH 

function. A peak load of 1 N is applied. The 1 N force is not related to any realistic train loading 

and the construction line does not behave like a realistic tunnel; however, for a comparative 

study such as this, this set up is sufficient to achieve useful results. A signal frequency of 500Hz 

is used with Equation 4-11 for the point load. The time-series of the variation of the loading is 

shown in Figure 8-4 a, with Figure 8-4 b showing the frequency spectrum of the waves 

generated. Figure 8-4 c shows the loading of three nodes spaced at 0.4 m intervals, showing 

that the force varies according to Equation 4-11 in all nodes. Figure 8-4 b shows that 
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frequencies of 0 to 1000 Hz are generated. These have a ratio of greater than 1:10 between 

the maximum mesh size and the minimum wavelength for a 1000 Hz wave, which is necessary 

to allow the model to accurately model the transmission of waves and reduce numerical 

dispersion for a 2nd order numerical scheme such as that used by UDEC. Figure 8-4 d shows the 

frequency spectrum of the stresses in a UDEC model induced due to the loading in Figure 8-4 

a. This shows that the displacement response has a similar distribution of frequencies as the 

input load, given by Figure 8-4 b, meaning that the model is seeing the correct distribution of 

frequencies.  

 

Figure 8-4 a) Time series of force input function at a single node; b) Frequency spectrum of force input function in 4 
a; c) Time series of force input function at nodes located at 0, 0.4 and 0.8 m; d) Frequency spectrum of UDEC stress 

response to loading in 4 a 

Vertical displacement histories are recorded at the same location in each model, which are 

indicated in Figure 8-2 with crosses within circles on the symmetry line. Near field 

displacements are recorded at the centre of the “Loading Line”, with the far field 

displacements being recorded 10 m above this. These monitoring points are located so that 

they record the load both moving towards and away from them. The maximum absolute 

displacement recorded at any time in the model at the measurement point is taken as the 

displacement. Where possible, joints are generated so that the measurement points are not 

placed on joints. This is because this section is concerned with the movement of blocks and 

not the opening and closing of joints, which may show a different displacement to that of the 
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intact blocks. All displacements therefore refer to the displacement of the block and any 

reference to joints in connection with the displacement are the displacement of the blocks 

between the joints. This is not to be confused with the opening and closing on the joints 

themselves, although in reality this will be connected.  

8.2.2. Model Properties 

The models used are linear elastic, preventing failure from occurring. In all the discontinuum 

models a single joint set is modelled; therefore, all discontinuum models behave as 

transversely isotropic materials. These are characterised as having two different stiffnesses, 

with the out of plane stiffness equal to the stiffness in one of the in-plane directions. Joints 

reduce the stiffness of the model normal to the joint plane; therefore, the plane of isotropy in 

the transversely isotropic material runs parallel to the joints (Figure 8-5). For the joint 

orientations given in Figure 8-3 a, the plane of isotropy is equal to the joint angle.  

 

Figure 8-5 Axes notation for transversely isotropic axes (xi, i=1,2,3) with relation to joints and modelling axes (x, y, z). 
Plane of isotropy in i=1,2 

The different coordinate directions are given by Figure 8-5. The plane of isotropy is in i=1,2. 

Transversely isotropic axes do not need to align with the model axes; however, the joint 

orientations rotate around the y-axis, so in all cases in this section y=x2.  

The difference in stiffness is brought about by the parallel jointing which acts to reduce the 

elastic stiffness perpendicular to the plane of isotropy (E3) and the cross shear modulus 

between plane of isotropy and anisotropic plane (G13), given by Equation 8-1 and Equation 8-2. 

These are identical to Equations 3-2 and 3-3, with terms altered to be related to the axes in 

Figure 8-5. 
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 Equation 8-2 

Where E3=stiffness perpendicular to plane of isotropy, E1=stiffness in plane of isotropy, s=joint 

spacing, kn=joint normal stiffness, ks=joint shear stiffness.  

A transversely isotropic model is characterised as having five independent elastic material 

constants which are calculated from the discontinuum properties using Equation 8-1 and 

Equation 8-2 (Itasca Consulting Group Inc., 2014). Further assumptions considered in the 

elastic constants are given by Equation 8-3 to Equation 8-6. 

 𝐸ଵ = 𝐸ଷ Equation 8-3 

 
𝑣ଵଷ = 𝑣ଷଵ

𝐸ଵ

𝐸ଷ
 Equation 8-4 

 𝑣ଵଶ = 𝑣ଶଵ Equation 8-5 

 𝑣ଵଷ = 𝑣ଶଷ Equation 8-6 

Where v13=Poisson’s ratio between x1 and x3, v12=Poisson’s ratio in plane of isotropy.  

All of the analyses are run as being elastic and do not assess failure of the rock mass. The intact 

blocks in the discontinuum models and the entire isotropic continuum model use the same 

properties, shown in Table 8-1. Table 8-2 gives the transversely isotropic continuum properties 

of the rock mass composed of the intact block and joint properties in Table 8-1, derived using 

Equation 8-1 and Equation 8-2. All models in this study are analysed as perfectly elastic, which 

is a reasonable assumption for the small degrees of strain which occur due to the loads applied 

in the model, and indeed realistic strains induced by railway vibrations (Connolly et al., 2014; 

Ruiz et al., 2019). The properties for the intact blocks are Basalt from UDEC’s inbuilt property 

database. These are chosen as they have a high stiffness which will give large wavelengths for 

even high frequency waves, allowing a less dense mesh to be modelled and still allowing 

accurate modelling of the possible waves generated in the model.  
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Table 8-1 Intact block and joint properties (unless stated on Figures) used in discontinuum and isotropic continuum 
models 

Property Value 

Block Elastic Stiffness – (E1) 34.9 GPa 

Block Shear Modulus – (G12) 13.2 GPa 

Poisson’s Ratio – (ν12) 0.320 

Block Density 2700 kg/m3 

Damping Factor 5% 

Joint spacing 2 m 

Joint normal stiffness (kn) 1 GPa/m 

Joint shear stiffness (ks) 1 GPa/m 
 

Table 8-2 Transversely isotropic continuum models 

Property Value 

Elastic Stiffness – (E1) 34.9 GPa 

Elastic Stiffness – (E3) 1.9 GPa 

Shear Modulus – (G13) 1.7 GPa 

Poisson’s Ratio – (ν12) 0.320 

Poisson’s Ratio – (ν13) 0.017 

Density – Block 2700 kg/m3 

Damping Factor 5% 
 

Material damping in all models is set to 5% and implemented using the local damping option in 

UDEC (Itasca Consulting Group Inc., 2014). Local damping provides a reasonable estimate of 

the damping of a dynamic problem and gives a shorter computation time than the more 

realistic Rayleigh damping. The systematic error, which this assumption will introduce, will not 

affect the comparison between the results. A 5% damping factor is modelled following the 

approach of Eitzenberger (2012). This is a different approach to those used in the previous 2D 

Chapters in this thesis. This is justified as in this case a transfer function is not being generated, 

and instead the distribution of the wave front is of concern.  

A parametric analysis is undertaken which alters individual properties of the joints in the 

discontinuum to study their effects on the displacement results. The models which are run are 

detailed in Table 8-3. All anisotropic models are run using both discontinuum and equivalent 

transversely isotropic continuum methods. This list is not a continuation of the case numbers 

in Section 4.6.3.  
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Table 8-3 Models analysed in study. Equivalent stiffness properties shows the combined effect of joints and intact 
block properties in the discontinuum analyses, with the intact block stiffness properties being shown in Table 8-1. 

Cont. = continuum; Discont. = discontinuum 

Case Model 
Type 

Material 
Type 

Joint/Plane of 
Isotropy Angles 

Joint 
Stiffness 

Joint 
Spacing 

Equivalent Stiffness 
Properties 

Figures 

E1 E2 E3 

1 Discont. Anisotropic 0,45,90,135,180o 1GPa/m 10m 34.9GPa 34.9GPa  7.8GPa 13-14 

2 Cont. Anisotropic 0,45,90,135,180o - - 34.9GPa 34.9GPa 7.8GPa 13-14 

3 Discont. Anisotropic 0,45,90,135,180o 1GPa/m 4m 34.9GPa 34.9GPa 3.6GPa 13-14 

4 Cont. Anisotropic 0,45,90,135,180o - - 34.9GPa 34.9GPa 3.6GPa 13-14 

5 Discont. Anisotropic 0,45,90,135,180o 1GPa/m 2m 34.9GPa 34.9GPa 1.9GPa 6-8,  

10-18  

6 Cont. Anisotropic 0,45,90,135,180o - - 34.9GPa 34.9GPa 1.9GPa 6-8,  

10-18 

7  Discont. Anisotropic 0,45,90,135,180o 0.5GPa/m 4m 34.9GPa 34.9GPa 1.9GPa 10-12 

8  Discont.  Anisotropic 0,45,90,135,180o 0.2GPa/m 10m 34.9GPa 34.9GPa 1.9GPa 10-12 

9  Discont. Anisotropic 0,45,90,135,180o 0.5GPa/m 2m 34.9GPa 34.9GPa 0.9GPa 16-18 

10 Cont. Anisotropic 0,45,90,135,180o - - 34.9GPa 34.9GPa 0.9GPa 16-18 

11 Discont. Anisotropic 0,45,90,135,180o 0.2GPa/m 2m 34.9GPa 34.9GPa 0.4GPa 16-18 

12 Cont. Anisotropic 0,45,90,135,180o - - 34.9GPa 34.9GPa 0.4GPa 16-18 

13 Cont. Isotropic - - - 34.9GPa 34.9GPa 34.9GPa 6-9 

14 Cont. Anisotropic 0,180o - - 1.9GPa 1.9GPa 34.9GPa 9 

 

8.2.3. Results 

This section presents the detailed results for all modelling scenarios given in Table 8-3. The 

analysis is split into: the comparison between different model types (Cases 5, 6, 13, 14); the 

comparison between different discontinuum and continuum models which have the same 

equivalent stiffness properties (Cases 5, 6, 7, 8); a parametric analysis of the effect of joint 

spacing on discontinuum displacement (Cases 1, 2, 3, 4, 5, 6); and a parametric analysis of the 

effect of joint stiffness on discontinuum displacement (Cases 5, 6, 9, 10, 11, 12).  

8.2.3.1. Comparison of Equivalent Anisotropic Models and an Isotropic 

Continuum Models 

The modelling results in this subsection describe how the different material models perform in 

relation to each other. The models include a discontinuum model and a transversely isotropic 

continuum model with the same equivalent stiffness, as well as an isotropic continuum model 

with the properties used in the intact blocks of the discontinuum model. Figure 8-6 shows the 

near field displacement results, recorded in the centre of the “Loading Line” (Figure 8-2). The 

key observations from Figure 8-6 are: 
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 The discontinuum has a greater displacement response than the continuum models; 
 The discontinuum has a minimum when joints are vertical (90o); 
 In the discontinuum the 135o model shows more displacement than the 45o model, with 

the horizontal (0/180o) model being at an intermediate value between these; 
 The transversely isotropic continuum is symmetrical about a vertical plane of isotropy 

(90o), which represents its maximum value, with minima when the plane of isotropy is 
horizontal (0/180o); 

 The isotropic continuum has a lower displacement than the transversely isotropic 
continuum model except when the plane of isotropy is horizontal (0/180o), where the 
isotropic continuum has a greater displacement.  

 

 

 

Figure 8-6 Near field vertical displacement of model due to moving point load modelled in a discontinuum (Case 5), 
equivalent transversely isotropic (TI) continuum (Case 6) and isotropic continuum (Case 13) models. Joint angle ≡ 

angle of plane of isotropy. Measured at a vertical offset of 0 m from “Loading Line” 

Figure 8-7 shows the far field displacement results, recorded 10 m above the “Loading Line” 

(Figure 8-2). The key observations from Figure 8-7 are: 

 The discontinuum has a greater displacement response than the continuum models, like 
in the near field; 

 The discontinuum has a maximum when joints are vertical (90o), unlike in the near field; 
 In the discontinuum the 135o model shows more displacement than the 45o model, like 

in the near field; 
 The discontinuum has a minimum when joints are horizontal (0/180o), unlike in the near 

field; 
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 The transversely isotropic continuum is symmetrical about a vertical plane of isotropy 
(90o), which represents its maximum value, with minima when the plane of isotropy is 
horizontal (0/180o), like in the near field; 

 The isotropic continuum has a lower displacement than the transversely isotropic 
continuum model except when the plane of isotropy is horizontal (0/180o), where both 
models have the same response, like in the near field.  

 

Figure 8-7 Far field vertical displacement of model due to moving point load modelled in a discontinuum (Case 5), 
equivalent transversely isotropic (TI) continuum (Case 6) and isotropic continuum (Case 13) models. Joint angle ≡ 

angle of plane of isotropy. Measured at a vertical offset of 10 m from “Loading Line” 

Figure 8-8 shows the displacement contours for the models shown in this section after 0.2 s, 

which is when the moving load had reached the end of the “Loading Line”. The displacement 

at the measurement locations shown may not be the same as the displacements shown in 

Figure 8-6 and Figure 8-7, as Figure 8-8 only shows a snapshot of the displacement of the 

model and the previous Figures show the maximum displacement recorded at the 

measurement locations at any time during modelling. As the models are elastic, there is a 

linear relationship between stress and displacement. Therefore, the displacements in Figure 

8-8 can be thought of as a proxy for the stresses in the model. The key observations from 

Figure 8-8 are: 

 The continuum models, whether they are transversely isotropic or isotropic, give 
displacement patterns which are symmetrical about the “Loading Line”; 

 In the transversely isotropic continuum models, the zone of peak displacement  
becomes elongated vertically when the plane of isotropy is orientated vertically (90o), 
while a horizontal plane of isotropy does not affect the horizontal spread of the 
displacement; 
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 When the plane of isotropy is orientated horizontally the displacement pattern is 
almost identical to the isotropic case, shown by Figure 8-8 j;  

 The discontinuum models show greater displacement being concentrated underneath 
the “Loading Line”, in comparison to the continuum models. This is with the exception 
of vertical (90o) joints which have more energy transferred upwards. Energy is being 
transferred downwards in most of these models due to the loading being applied 
vertically downwards to the model;  

 The dipped joints (45 and 135o) show that energy is transferred along intact blocks, 
with 45o joints transferring energy downwards opposite the direction of travel of the 
load and upwards in the direction of travel of the load. The opposite pattern occurs 
with the 135o joints in Figure 8-8 f. The same trends are not observed in their 
equivalent continuum models, shown by Figure 8-8 c and Figure 8-8 e, which show 
identical displacement patterns for both 45 and 135o planes of isotropy.  

 

Figure 8-8 Contours of vertical displacement (m) of model after 0.2 s. a,c,e,g = transversely isotropic continuum; b, d, 
f, h = discontinuum; j = isotropic continuum; black lines = joints; white lines = construction lines for mesh; crossed 

circles = measurement locations; black dashed line = Loading Line (20 m) 

When the transversely isotropic continuum models are considered in isolation Figure 8-6 and 

Figure 8-7 show that as the vertical stiffness of the model increases the vertical displacement 

increases. This is a different outcome to the studies of Rieckh et al. (2012) and Ba et al. (2019) 

where they found that increasing the vertical stiffness results in a reduction in the vertical 

displacement. The model used in this study is fundamentally different from those of Rieckh et 

al. (2012) and Ba et al. (2019). Firstly, in the previously mentioned studies the angle of the 

plane of isotropy is always horizontal (0 or 180o). The ratio of horizontal (Eh) to vertical stiffness 

(Ev) is altered by changing the properties of the relative directions, while in this study the in-

plane stiffness is varied by changing the angle of the plane of isotropy. This has the result that 
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the out of plane horizontal stiffness is always high. Secondly, previous studies model the 

transversely isotropic material as being located directly below a free surface. Finally, the 

tunnel loading in Rieckh et al. (2012) is applied to an isotropic layer, with transversely isotropic 

properties applied to a layer above this. Any of these effects could cause the differences 

observed. To eliminate one possible cause, the Eh:Ev ratio, Figure 8-9 is generated. The 

stiffnesses used in the models for Figure 8-9 are implemented in the same way as Rieckh et al. 

(2012) and Ba et al. (2019), with the angle of the plane of isotropy kept at 0o. Case 14 is 

generated for this sensitivity analysis. Figure 8-9 shows the same trend of results as Figure 8-6 

and Figure 8-7, with an increasing vertical stiffness leading to a reduction in the vertical 

displacement. This implies that the differing relationship between Eh:Ev found in this study and 

in literature is due to the model confinement and the position of the load, rather than effects 

relating to the out of plane material stiffness.  

 

 

Figure 8-9 Vertical displacement of model due to moving point load modelled in a Transversely Isotropic continuum 
with a changing vertical (Eh) to horizontal (Ev) stiffness ratio (Eh:Eh). Angle of plane of isotropy = 0o 

8.2.3.2. Equivalent Discontinuum Models 

The modelling results in this section show different discontinuum models, which have the 

same overall transversely isotropic properties. Using Equation 8-1 and Equation 8-2 the joint 

spacing is changed and the joint stiffness modified to compensate. The combinations of joint 
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spacing and stiffness modelled in this section are: i) 2 m / 1 GPa/m (Case 5), as modelled in 

section 4.1; ii) 4 m / 0.5 GPa/m (Case 7), and iii) 10 m / 0.2 GPa/m (Case 8). The transversely 

isotropic results shown in Figure 8-10 and Figure 8-11 are the same as those shown in Figure 

8-6 and Figure 8-7 (Case 6). Figure 8-10 shows the near field displacement results, recorded in 

the centre of the “Loading Line” (Figure 8-2). The key observations from Figure 8-10 are: 

 All discontinuum models have a minimum when joints are vertical (90o), as also 
observed in Figure 8-6; 

 Increasing the joint spacing / decreasing the joint stiffness leads to a reduction in 
displacement;  

 Increasing the joint spacing / decreasing the joint stiffness reduces the effect of the joint 
angle on modifying displacements, with a smaller difference between the minimum 
displacement and maximum displacement; 

 The difference between the 45 and 135o joints reduces as the joint spacing increases / 
joint stiffness decreases; 

 When the plane of isotropy is vertical (90o) the transversely isotropic continuum shows 
a greater displacement than the 10 m spacing discontinuum and equal displacement as 
the 4 m spacing discontinuum when joints are orientated vertically. 

 

Figure 8-10 Near field vertical displacement of model due to moving point load in discontinuum models of the same 
rock mass stiffness but different joint spacing and stiffness (Cases 5, 7, 8). Legend shows joint spacing (m) and joint 

stiffness (GPa/m). Equivalent transversely isotropic continuum results are included (TI Cont.) (Case 6). Measured at a 
vertical offset of 0 m from “Loading Line” 

Figure 8-11 shows the far field displacement results, recorded in the centre of the “Loading 

Line” (Figure 8-2). The key observations from Figure 8-11 are: 
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 Vertical joints (90o) do not always represent maximum displacements, unlike in Figure 
8-7; 

 For vertical (90o) and horizontal (0/180o) joints, increasing the joint spacing / decreasing 
the joint stiffness leads to a reduction in displacement, like in Figure 8-10; 

 For 45o joints increasing the joint spacing / decreasing the joint stiffness leads to an 
increase in displacement, the opposite of the trend in the near field (Figure 8-10); 

 For 135o joints increasing the joint spacing / decreasing the joint stiffness has a non-
linear relationship with displacement, with 2 m spacing being the minimum, 4 m spacing 
the maximum and 10 m spacing an intermediate value. This is different to the 45o joints; 

 When the plane of isotropy is horizontal (0/180o) the transversely isotropic continuum 
displacement is greater than the 4 m spacing and 10 m spacing discontinuum models.  

 

 

Figure 8-11 Far field vertical displacement of model due to moving point load in discontinuum models of the same 
rock mass stiffness but different joint spacing and stiffness (Cases 5, 7, 8). Legend shows joint spacing (m) and joint 

stiffness (GPa/m). Equivalent transversely isotropic continuum results are included (TI Cont.) (Case 6). Measured at a 
vertical offset of 10 m from “Loading Line” 

Figure 8-12 shows the displacement contours for the models shown in this section after 0.2 s, 

which is when the moving load had reached the end of the “Loading Line”. The results in the 

third column for the 2 m spacing / 1 GPa/m model are identical to those in Figure 8-8. The 

equivalent transversely isotropic continuum results for all models are shown in Figure 8-8. 

Figure 8-12 confirms the results found in Figure 8-10 and Figure 8-11, although it does not 

indicate mechanisms for the unexpected trends in the far field for 45 and 135o joints. The key 

observations from Figure 8-12 are: 

 Reducing the joint stiffness reduces the amount of energy which can be transmitted 
away from blocks which are not directly influenced by the loading. For example, Figure 
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8-12 a shows little displacement above the joint directly above the “Loading Line”, 
with Figure 8-12 b showing more displacement above the equivalent joint and Figure 
8-12 c more again; 

 The displacement pattern of each discontinuum model is quite different, despite all 
being equivalent.  

 

 

 

Figure 8-12 Contours of vertical displacement (m) of equivalent discontinuum models after 0.2 s. Black lines = joints; 
white lines = construction lines for mesh; crossed circles = measurement locations (lower = near field, upper = far 

field); black dashed line = Loading Line (20 m). Joint spacing (m) and joint stiffness (GPa/m) for columns, joint angle 
shown for rows 

8.2.3.3. Effect of Changing Joint Spacing 

The modelling results in this section show the effect of changing the joint spacing on the 

displacement response of discontinuum and transversely isotropic continuum models. All 

models in Figure 8-13 to Figure 8-15 have the same joint stiffness, so changing the joint 

spacing leads to different equivalent transversely isotropic continuum properties, which are 
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also modelled. The joint spacings modelled are 2, 4 and 10 m, as modelled in the previous 

subsection, with a constant joint stiffness of 1 GPa/m, as modelled in the subsection previous 

to that (Cases 1, 3, 5). Bespoke modelling properties for each transversely isotropic continuum 

are calculated using Equation 8-1 and Equation 8-2 (Cases 2, 4, 6). Figure 8-13 shows the near 

field displacement results, recorded in the centre of the “Loading Line” (Figure 8-2). The key 

observations from Figure 8-13 are:  

 All discontinuum models have a minimum when joints are vertical (90o), like observed 
in Figure 8-6 and Figure 8-10; 

 Increasing the joint spacing leads to a reduction in displacement, like in Figure 8-10;  
 Increasing the joint spacing reduces the effect of the joint angle on modifying 

displacements, with a smaller difference between the minimum displacement and 
maximum displacement, like observed in Figure 8-10; 

 The difference between 45 and 135o joints reduces as the joint spacing increases, like 
observed in Figure 8-10; 

 The transversely isotropic continuum always shows less displacement than their 
equivalent discontinuum models, which is different to the observations in Figure 8-10; 

 When the plane of isotropy is horizontal (0/180o) all transversely isotropic continua 
show the same displacement.  

 

Figure 8-13 Near field vertical displacement of model due to moving point load with different joint spacing modelled 
as a discontinuum (Cases 1, 3, 5). Legend shows joint spacing (m) and joint stiffness (GPa/m). Equivalent transversely 
isotropic continuum results are included (TI Cont.) (Cases 2, 4, 6). Measured at a vertical offset of 0 m from “Loading 

Line” 
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Figure 8-14 shows the far field displacement results, recorded in the centre of the “Loading 

Line” (Figure 8-2). The key observations from Figure 8-14 are: 

 Vertical joints (90o) do not always represent maximum displacements, like in Figure 
8-11; 

 For vertical (90o) and horizontal (0/180o) joints, increasing the joint spacing leads to a 
reduction in displacement, like in Figure 8-11; 

 For 45o joints, increasing the joint spacing leads to an increase in displacement, like in 
Figure 8-11; 

 For 135o joints, increasing the joint spacing has a non-linear relationship with 
displacement, as observed in Figure 8-11; 

 When the plane of isotropy is horizontal (0/180o) the transversely isotropic continuum 
displacement is greater than the 4 m spacing and 10 m spacing discontinuum models; 

 When the plane of isotropy is horizontal (0/180o) all transversely isotropic continua 
show the same displacement, like in Figure 8-13.  

 

Figure 8-14 Far field vertical displacement of model due to moving point load with different joint spacing modelled 
as a discontinuum (Cases 1, 3, 5). Legend shows joint spacing (m) and joint stiffness (GPa/m). Equivalent transversely 

isotropic continuum results are included (TI Cont.) (Cases 2, 4, 6). Measured at a vertical offset of 10 m from 
“Loading Line” 

Figure 8-15 shows the displacement contours for the models shown in this section after 0.2 s, 

which is when the moving load had reached the end of the “Loading Line”. The results in the 

third column for the 2 m spacing / 1 GPa/m model are identical to those in Figure 8-8. The key 

observations from Figure 8-15 are: 

 The displacements in the first two columns are lower than in the first two columns of 
Figure 8-12; 
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 There is less displacement above the first joint above the “Loading Line” in Figure 8-15 
b than in Figure 8-12 b; 

 Comparing the 45o joint results in Figure 8-12 and Figure 8-15 indicate that the higher 
joint stiffnesses in Figure 8-15 allow less energy to be transmitted into blocks which 
are not directly loaded by the loading source. This can be seen by comparing the top 
left of Figure 8-12 e and Figure 8-15 e. However, at 135o the opposite appears to be 
true, which can be seen by comparing in Figure 8-12 m and Figure 8-15 m; 

 When comparing the vertical (90o) joints in in Figure 8-12 and Figure 8-15 the results 
seem to be similar.  

 

Figure 8-15 Contours of vertical displacement (m) of changing joint spacing in discontinuum models after 0.2 s. Black 
lines = joints; white lines = construction lines for mesh; crossed circles = measurement locations (lower = near field, 

upper = far field); black dashed line = Loading Line (20 m). Joint spacing (m) and joint stiffness (GPa/m) for columns, 
joint angle shown for rows  
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8.2.3.4. Effect of Changing Joint Stiffness 

The modelling results in this section show the effect of changing the joint stiffness on the 

displacement response of discontinuum and transversely isotropic continuum models. All 

models in Figure 8-16 to Figure 8-18 have the same joint spacing, so changing the joint 

stiffness leads to different equivalent transversely isotropic continuum properties, which are 

also modelled. The joint stiffnesses modelled are 0.2, 0.5 and 1 GPa/m, as modelled in section 

4.2, with a constant joint spacing of 2 m, as modelled in section 4.1 (Cases 5, 9, 11). Bespoke 

modelling properties for each transversely isotropic continuum are calculated using Equations 

8-1 to 8-3 (Cases 6, 10, 12). Figure 8-16 shows the near field displacement results, recorded in 

the centre of the “Loading Line” (Figure 8-2). The key observations from Figure 8-16 are: 

 All discontinuum models have a minimum when joints are vertical (90o), as observed in 
Figure 8-6, Figure 8-10 and Figure 8-13; 

 Decreasing the joint stiffness leads to an increase in displacement, the opposite of Figure 
8-10;  

 Decreasing the joint stiffness causes the relative displacement magnitude of the 45o and 
135o joints to change. At a joint stiffness of 0.2 GPa/m the 45o joint shows more 
displacement than the 135o joint. At a joint stiffness of 1 GPa/m the 135o joint shows more 
displacement than the 45o joint, while for the intermediate joint stiffness of 0.5 GPa/m the 
two joint angles are similar. This effect is not observed in Figure 8-10; 

 When the plane of isotropy is vertical (90o) the transversely isotropic continuum shows 
greater displacement than the equivalent discontinuum when the joint stiffness is low (0.2 
GPa/m), with similar results at 0.5 GPa/m and less displacement at 1 GPa/m. The same trend 
can be observed in Figure 8-10;  

 When the plane of isotropy is horizontal (0/180o) all transversely isotropic continua show 
the same displacement, like in Figure 8-13 and Figure 8-14.  
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Figure 8-16 Near field vertical displacement of model due to moving point load with different joint stiffness modelled 
as a discontinuum (Cases 5, 9, 11). Legend shows joint spacing (m) and joint stiffness (GPa/m). Equivalent 

transversely isotropic continuum results are included (TI Cont.) (Cases 6, 10, 12). Measured at a vertical offset of 0 m 
from “Loading Line” 

Figure 8-17 shows the far field displacement results, recorded in the centre of the “Loading 

Line” (Figure 8-2). The key observations from Figure 8-17 are: 

 Vertical joints (90o) always represent maximum displacements, unlike in Figure 8-11; 
 For vertical (90o), horizontal (0/180o) and 45o joints increasing the joint stiffness leads 

to a reduction in displacement. This is the same trend as observed in Figure 8-11 for 
vertical and horizontal joints, but not for the 45o joints; 

 For 135o joints increasing the joint stiffness increases displacement, while the same 
angle in Figure 8-11 had a non-linear relationship with displacement; 

 The displacement of the transversely isotropic continuum is always less than the 
displacement of the equivalent discontinuum; 

 When the plane of isotropy is horizontal (0/180o) all transversely isotropic continua 
show the same displacement, like in Figure 8-13, Figure 8-14 and Figure 8-16.   
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Figure 8-17 Far field vertical displacement of model due to moving point load with different joint stiffness modelled 
as a discontinuum (Cases 5, 9, 11). Legend shows joint spacing (m) and joint stiffness (GPa/m). Equivalent 

transversely isotropic continuum results are included (TI Cont.) (Cases 6, 10, 12). Measured at a vertical offset of 10 
m from “Loading Line” 

Figure 8-18 shows the displacement contours for the models shown in this section after 0.2 s, 

which is when the moving load had reached the end of the “Loading Line”. The results in the 

third column for the 2 m spacing / 1 GPa/m model are identical to those in Figure 8-8. The key 

observations from Figure 8-18 are: 

 The displacements in the first two columns are greater than in the first two columns of 
Figure 8-12 and Figure 8-15; 

 When the joint stiffness is reduced there is a greater displacement above the joint 
directly above the “Loading Line”, for the horizontal joints shown by Figure 8-18 a to c.  

 When comparing the vertical (90o) joints in Figure 8-12 and Figure 8-18 the results are 
hugely different, with the low joint stiffness leading to much greater displacements. 
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Figure 8-18 Contours of vertical displacement (m) of changing joint stiffness in discontinuum models after 0.2 s. 
Black lines = joints; white lines = construction lines for mesh; crossed circles = measurement locations (lower = near 

field, upper = far field); black dashed line = Loading Line (20 m). Joint spacing (m) and joint stiffness (GPa/m) for 
columns, joint angle shown for rows 

8.2.4. Discussion of UDEC Modelling Results 

The displacement results shown in Figure 8-6 to Figure 8-18 indicate that minor changes to a 

model can have significant impacts in the near field and far field displacement response. Even 

when models are equivalent in terms of overall stiffness, small changes to joint properties or 

changing the material model can cause significant differences in displacement. These 

differences are not brought about by inelastic or non-linear behaviour in the discontinuum 

models, as all models are modelled as linear-elastic, and instead are brought about by localised 

differences in stiffness around explicit fractures. This is in opposition to the conclusion of 

Eitzenberger (2012), who suggests that jointed rock masses can be modelled as an equivalent 

continuum when the joint spacing is small, as this study found that the response in the near 
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and far field is different to a changing joint spacing. This agrees with other findings in this 

thesis, as the spring resonance effect tends to occur when the joint spacing is smaller than the 

wavelength of an incident wave.  

8.2.4.1. Material Model of Equivalent Rock Masses 

Figure 8-6, 8-7, 8-8, 8-10, 8-11 and 8-12 address the effect of analysing equivalent situations 

using different material models; namely a discontinuum, equivalent transversely isotropic 

continuum and an isotropic continuum. These Figures show that the discontinuum results 

typically show greater displacement than continuum results. However, when the joint spacing 

is large and joint stiffness is low, the near field displacement can reduce sufficiently to be 

lower in the discontinuum model than the transversely isotropic continuum model. The 

transversely isotropic continuum results are very similar to the isotropic continuum results 

when the plane of isotropy is orientated horizontally (0 and 180o), with the difference between 

the results increasing as the angle of the plane of isotropy approaches a vertical orientation 

(90o).  

Figure 8-12 indicates that the mechanism behind the differences between the discontinuum 

and continuum models is due to the presence of joints in the discontinuum. When a stress 

wave, induced by the moving load, is incident upon a joint, some of the energy from this will 

be transmitted through the joint to the next block while some is reflected. In the near field 

reflected energy is trapped between joints, which leads to the general increase in 

displacement across all joint angles. Horizontal joints (0 and 180o) reflect more energy back to 

the near field, while vertical joints (90o) reflect more energy away from the near field. This can 

be seen in Figure 8-6 and Figure 8-10 where the horizontal joints show greater displacement 

than the vertical joints. The intermediate joint angles of 45 and 135o are expected to show less 

displacement than the horizontal joints as some energy will be reflected away from the near 

field while some is reflected towards it. This is the case of 45o joints; however, 135o joints show 

more displacement than the horizontal joints. This is likely to be due to the joint dip angle in 

relation to the direction of the moving load and represents a physical reason for the difference 

than a numerical one related to the model set up.  

The same effects which cause the difference in displacement in the near field also appears to 

occur in the far field, albeit with the effect reversed. In Figure 8-7 the horizontal joints (0 and 

180o) show the least displacement, with the vertical joints (90o) showing the most. As the 

horizontal joints trap energy in the near field, energy will be prevented from entering the far 

field, while vertical joints do not trap as much energy in the near field allowing it to “leak 
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away” into the far field. The intermediate joint angles of 45 and 135o show very similar results 

in the far field, indicating that they both transmit energy away from the near field to a similar 

degree.  

All the transversely isotropic continuum results, regardless of if they are measured in the near 

field or far field, show the same trend, with a maximum displacement at 90o. This is in 

opposition to the trends observed by Ba et al. (2019) and Rieckh et al. (2012), where a high 

horizontal stiffness leads to a high vertical displacement. Figure 8-9 shows that this is not due 

to the different out of plane stiffnesses modelled in this research and the previous studies. 

Therefore, for a deep tunnel the trends identified in this study are expected to be found in 

practice, where a tunnel is embedded in a transversely isotropic material. When considered in 

this context the difference in displacement response between the different angles of isotropy 

can be explained by the different stiffnesses in different directions. When the plane of isotropy 

is orientated vertically (90o), energy is preferentially transferred vertically, giving a greater 

displacement in the vertical direction, as shown by Figure 8-8. When the plane of isotropy is 

horizontal (0 and 180o), the horizontal stiffness is higher than the vertical stiffness, giving a 

greater horizontal velocity, which prevents energy from being transmitted vertically. It would 

be expected that the energy will spread out horizontally although Figure 8-8 indicates that this 

is not the case.  

8.2.4.2. Near Field Response of Changing Joint Properties 

Figure 8-10, 8-13 and 8-16 show how the near field response is affected by the joint properties 

and joint angle. The relationships found in the near field are quite clear with increasing 

stiffness or joint spacing leading to a reduction in displacement. The effect of joint spacing 

appears to be more significant than joint stiffness. For example, in the case of the equivalent 

models in Figure 8-10, the increase in spacing, despite a reduction in stiffness, still causes a 

reduction in displacement. The mechanism behind this is that increasing either the joint 

stiffness or joint spacing leads to a reduction in the ability of the model to reflect energy back 

into the near field. This allows energy to escape and reduce the near field displacement 

response. The same is evident in the different responses of the joint angles, with horizontal 

joints reflecting more energy back into the near field and giving a greater displacement, while 

vertical joints allow more energy to escape the near field reducing the displacement.  

When near field discontinuum displacements are compared to their equivalent transversely 

isotropic continuum displacements, a large joint spacing or a low joint stiffness can lead to a 

discontinuum showing less displacement than the continuum, when the plane of isotropy is 
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orientated vertically (90o). For all other angles of the plane of isotropy the discontinuum shows 

a greater displacement than its equivalent transversely isotropic continuum.  

8.2.4.3. Far field response of changing joint properties 

Figure 8-11, Figure 8-14 and Figure 8-17 show how the far field response is affected by the 

joint properties and joint angle. The relationships between these properties in the far field is 

more complicated than the near field, with different responses depending on the joint angle. 

Generally, increasing either the spacing or stiffness of joints causes a reduction in far field 

displacements. This is only a general trend as there are different trends depending on the joint 

angle. These are somewhat contradictory if thought of in terms of a static load. With less 

joints, brought about by a higher joint spacing, less energy will be reflected, while an increase 

in joint stiffness will also lead to less energy being reflected. It would be expected that this 

would mean more energy present in the far field to increase the displacement response, 

although this appears not to be the case. Therefore, it seems likely that the process causing 

the change in displacement is not a simple case of energy being able to escape the near field. 

There could be some degree of superposition of incident and reflected waves occurring in the 

low joint stiffness and low joint spacing models. With more reflective surfaces the possibility of 

superposition of these waves will increase, which may then lead to greater amplitude waves 

and an associated greater displacement. This process is similar to the superposition resonance 

effects observed in 2D models Chapter 6.  

A reversal of the previously described trends is observed at 45o when joint spacing is altered 

(Figure 8-11 and 8-14) and at 135o when only joint stiffness is altered (Figure 8-17). When joint 

spacing is also altered the trend at 135o becomes non-linear. The mechanism causing this to 

occur is unclear, although it is likely to be a complex interaction between joint stiffness and 

joint spacing as well as the joint angle, with some effect of wave superposition.  

The transversely isotropic continuum results are not always lower than their equivalent 

discontinuum. When the plane of isotropy is horizontal (0/180o) large joint spacings can lead to 

the continuum showing a greater displacement than the equivalent discontinuum. Whereas, in 

Figure 8-17, altering the joint stiffness does not have the same effect, with discontinuum 

results always being greater than the equivalent continuum.   

8.2.4.4. Effect of moving load direction 

The discontinuum results presented in Figure 8-6 to Figure 8-18 show that there is often a 

difference in the displacement response at 45o and 135o in the same model. These two joint 

angles are mirror images of each other (Figure 8-3 a), with a 45o jointed model with a left to 
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right moving load being the same geometrically as a 135o jointed model with a right to left 

moving load. The difference in the responses of the same model for these different joint 

angles implies that the direction of the moving load can affect the response of a model. It is 

not always the case that one joint angle shows greater displacement than the other, with the 

relative magnitude of the displacements being affected by the joint stiffness and joint spacing. 

However, a general trend is that the 135o jointed model has a greater displacement if joint 

spacing is modified, with the 45o jointed model showing a greater displacement if the joint 

stiffness is modified. The same movement direction effects are not observed in any of the 

continuum models, indicating that this only occurs due to the presence of joints. This suggests 

that if a train tunnel is constructed in a jointed rock mass it is necessary to model the train 

loading moving in both directions along the tunnel to ensure the maximum vibration levels are 

recorded during modelling.  

8.2.4.5. Comment on results 

This section has examined the effect of joint spacing and stiffness, although there are expected 

to be some combinations of measurement location, joint spacing and stiffness which will 

change the trends found. For example, a very high joint stiffness, where no joint is present 

between the loading location and the tunnel, would be expected to perform very similarly to 

an isotropic model as there will be a limited influence of joints on the results. Therefore, the 

stress waves will only have travelled through an isotropic continuum on their way to the 

measurement point. This rock mass would be considered as massive, so it should be modelled 

as a continuum, although the presence of a single major fracture, such as a fault, could 

influence transmission in certain places surrounding a tunnel, as found by Eitzenberger (2012). 

Engineering judgement should be exercised in such situations and a sensitivity analysis carried 

out to investigate whether the presence of a joint affects results.  

The results presented above do not show any great degree of equivalence between the 

discontinuum and equivalent transversely isotropic continuum models, with the exception of 

the near field results for the 2 m spacing, 0.5 GPa/m model in Figure 8-16 at 90o. However, this 

individual result should not be considered significant. The observed effect of the moving load 

direction will further obscure any equivalence. Equivalence between the discontinuum and 

equivalent continuum results is expected when the wavelength is much greater than the joint 

spacing, following the work of Schoenberg & Sayers (1995), so it can be assumed that the 

models studied here do not reach that limit. However, the previous Chapters in this thesis 

suggest that a large wavelength in comparison to the joint spacing can bring about resonance 

through the spring resonance effect. Despite this, with a sufficient number of joints, the spring 
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resonances will merge giving the possibility of a low frequency equivalence. The equivalence 

will therefore be a function of the position of the measurement point, with the greater 

distance between the excitation and measurement allowing more potential blocks to be 

formed and therefore more spring resonance frequencies.  

Although this study only considers relatively stiff rock, specifically basalt, there are some 

suggestions as to the expected results of modelling soft ground tunnels in materials which 

behave as a continuum. Natural soft ground tunnelling materials, such as London Clay, which 

show Eh:Ev ratios of greater than 1 and with a plane of isotropy orientated close to horizontal, 

could be modelled as an isotropic continuum with minimal error introduced in the results. This 

is shown by the similarity between the results for the horizontal (0o) plane of isotropy in the 

transversely isotropic continuum and the isotropic continuum. This approach represents a 

more simplistic approach to modelling transversely isotropic continuum materials. This would 

only be applicable to deep tunnels, where the influence of a free surface is not felt, embedded 

in a material which can be considered as a continuum, such as soft ground deposits (i.e. 

London Clay) or a disintegrated (i.e. flysch) or massive (i.e. granitic batholith) rock masses.  

8.2.5. Summary of results 

This section provides a comparison of the results in the near field and far field for a moving 

load source in a transversely isotropic material, modelled as either a parallel jointed 

discontinuum or a transversely isotropic continuum. All cases studied are modelled as jointed 

basalt, although it should not be considered that the outcomes of this study only apply to 

igneous or other very stiff rocks. Although the exact results presented here will only be 

applicable to a rock mass composed of basalt, the qualitative trends which are identified, and 

which are considered to be the main outcome of this analysis, can be applied to any rock mass 

which can be considered as a discontinuum. Table 8-4 provides a summary of the key trends 

observed in modelling from Section 8.2.  
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Table 8-4 Summary of modelling results 

Model Near Field Effect Far Field Effect 

Discontinuum Least displacement in vertical (90o) 
joints.  

Greatest displacement in dipped (45 
or 135o) or horizontal (0 or 180o) 
joints. 

Displacement with 45o joints are not 
necessarily equal to 135o joints. 

Least displacement in horizontal (0 
or 180o) joints. 

Greatest displacement depends on 
joint spacing and stiffness.  

Displacement with 45o joints are not 
necessarily equal to 135o joints. 

Transversely 
Isotropic Continuum  

Greatest displacement with vertical 
(90o) plane of isotropy. 

Least displacement with horizontal 
(0 or 180o) plane of isotropy. Equal 
to isotropic continuum results.  

Displacement with 45 and 135o plane 
of isotropy is equal.  

Greatest displacement with vertical 
(90o) plane of isotropy. 

Least displacement with horizontal 
(0 or 180o) plane of isotropy. Equal 
to isotropic continuum results. 

Displacement with 45 and 135o plane 
of isotropy is equal.  

Effects of Material 
Model 

(Equivalent 
discontinuum, 
transversely isotropic 
continuum and 
isotropic continuum) 

Discontinuum has greater 
displacement than continuum 
models.  

Isotropic continuum has greater 
displacement than transversely 
isotropic continuum when plane of 
isotropy is horizontal (0 or 180o). At 
all other angles isotropic continuum 
displacement is less than 
transversely isotropic continuum. 

Discontinuum has greater 
displacement than continuum 
models.  

Isotropic continuum has equal 
displacement to transversely 
isotropic continuum when plane of 
isotropy is horizontal (0 or 180o). At 
all other angles isotropic continuum 
displacement is less than 
transversely isotropic continuum. 

Effects of Equivalent 
Discontinuum 

(Joint spacing 
increased and joint 
stiffness decreased 
to give same overall 
stiffness) 

Increasing joint spacing and 
decreasing joint stiffness leads to 
reduced displacement. 

Increasing joint spacing and 
decreasing joint stiffness leads to 
reduced displacement at 0, 90 and 
180o joints and increased 
displacement at 45o joints. Effect at 
135o joints is non-linear.  

Effects of Joint 
Spacing  

(Consistent joint 
stiffness) 

Increasing joint spacing reduces 
displacement. 

Increasing joint spacing leads to 
reduced displacement at 0, 90 and 
180o joints and increased 
displacement at 45o joints. Effect at 
135o joints is non-linear.  

Joint spacing has a greater effect 
than joint stiffness.  

Effects of Joint 
Stiffness  

(Consistent joint 
spacing) 

Increasing joint stiffness reduces 
displacement. 

Increasing joint stiffness leads to 
reduced displacement at 0, 45, 90 
and 180o joints and increased 
displacement at 135o. 
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8.3. Transfer Functions for Moving Loads 

The previous section uses a slightly different approach to previous Chapters, by not 

determining the effect of joints on wave transmission in the frequency domain. This section 

analyses results of models using transfer functions, with the insertion loss concept being 

adopted, as used with the 2D analyses in Chapter 6 (Figure 6-2). The goal of this section is to 

determine whether the previously identified resonance effects persist with moving loads, 

instead of the distribution of the displacement pattern, as investigated in the previous section 

in this Chapter.  

The finite difference method, using WAVE2D, is used in this section. This simplifies the 

application of the source as a moving load as WAVE2D has a built-in moving load function.  

8.3.1. Model setup 

The rock masses considered in this section are modelled in 2D plane strain, similar to those 

modelled in the Chapters which focus on non-moving point loads. The loads in this section are 

modelled following the same reasoning as the previous section in this Chapter, based on the 

study of Yuan et al. (2015), with a source modelled moving along a linear path within the 

model.  

All models used in this section have the same material properties and use the same joint 

stiffness. The effect of these parameters has been extensively studied in previous Chapters, so 

their effect is known.  

All models used have a square grid with an element size of 0.1 m, composed of 2400 x 2400 

elements. This gives a model size of 240 x 240 m. The model is shown in Figure 8-19.  
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Figure 8-19 Schematic diagram of the WAVE2D moving load model 

The loading path is located in the centre of the model, with the loading travelling from left to 

right. A range of different source velocities are used, with the same model run time of 0.5 s. As 

the source is in the centre of the model at half the run time, the sources start in different 

positions dictated by the source velocity. For example, a 100 m/s source velocity has a path 

length of 50 m, while a 50 m/s source velocity has a path length of 25 m.   

8.3.2. Moving Load Source 

The moving load modelled in this section is intended to be an impulse, much like in previous 

Chapters; however, in the time domain impulses cannot be easily modelled. Therefore, as 

described in Chapter 4, an impulse-like source is required. As used in previous Chapters, a 

modified Ricker wave is adopted for the moving load. Figure 8-20 a shows the input wave used 

and Figure 8-20 b the frequency spectrum, taken from an equivalent non-moving point load 

model. Due to the inbuilt moving load function in WAVE2D a band limited sine wave is not 

required, unlike in the previous section conducted in UDEC.  
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Figure 8-20 Input waves for moving point load models. Wave taken from an equivalent non-moving point load 
model. a) time series, b) frequency spectrum 

A range of different wave speeds are investigated in this section. For a fair comparison of 

different models, it is necessary that all of these have the same waveform. This is shown in 

Figure 8-21, with data taken from the centre of the loading line in a continuum model. The 

subplots in Figure 8-21 all have the same waveform despite the wave speed ranging from 0 

m/s, which is a non-moving point load source, to 100 m/s. Although it could be argued that 

changing the wave speed will cause the source to change, as shown by Zhang (2020), in order 

to generate the transfer functions the same source is required for all load speeds. Changing 

the waveform will change the frequency content, which will mask any frequency related 

effects within the model.   
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Figure 8-21 Waveforms from models with different wave speeds 

8.3.3. Effect of a moving load and the load speed 

For an initial analysis, the effect of a moving load is investigated by comparing the response of 

a non-moving point load model at a set distance from the source, with the response of a 

moving load model at the same position. The non-moving model is defined as an impulse 

applied to a single element which does not move. These results are derived from continuum 

models, allowing only the effect of the moving load to be established. This has been 

undertaken at a range of moving load speeds of 25, 50 and 100 m/s. The non-moving model 

gives uref for Equation 4-1, while the moving load models gives u.  

Figure 8-22 shows the transfer function for the three load speeds. Each model shows a 

maximum at 0 Hz, followed by an almost zero transmission zone with a peak at a frequency 

which increases as the load speed increases. Past this, there is a high transmission zone with 

rapid oscillations. The peak is at 250, 500 and 1000 Hz for the 25, 50 and 100 m/s models, 

respectively. With a mesh size of 0.1 m, the moving load will move between elements every 

0.004, 0.002 and 0.001 s for each of the load speeds (25, 50 and 100 m/s). This is calculated as 

dt=dL/v (dL = mesh size, v = load speed). These values of dt correspond to frequencies of 250, 

500 and 1000 Hz, which matches up with the peaks. This shows that an artefact in the 

numerical model causes this peak. This will only occur if the transfer function is calculated by 
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comparing a moving model with a non-moving point load model, as is the case here, or a 

different velocity moving model. 

 

Figure 8-22 Transfer functions for 100, 50 and 25 m/s moving loads, compared to non-moving point loads (0 to 1000 
Hz) 

The frequency response past the maximum transmission cannot be thought of as being 

realistic. This gives a general trend of a peak at 0 Hz, which rapidly decays to a zero 

transmission zone. The low frequency portion of the transfer functions is shown in Figure 8-23.   

Figure 8-23 shows that, for the low frequency response of a moving load, the load speed 

influences the relatively high transmission zone, with the 100 m/s load speed showing the 

greatest response over the greatest range, and the 25 m/s load speed showing the lowest and 

most confined range. This implies that a load moving at 0 m/s would show the lowest 

response, which cannot be the case, as that is effectively used as the input for the assessment. 

In fact, a 0 m/s load speed would show a transmission coefficient of one at all frequencies. A 

train travelling at 0 m/s would not cause an impulse; however, as the research is trying to 

determine the effect of load speed on the presence of potential resonance effects this nuance 

has been ignored.  

Equally, an infinitely fast load would be expected to show a high transmission at all 

frequencies. This might be more likely, as an infinitely fast moving load would effectively load 

all parts of the transmission pathway at all times.  
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Figure 8-23 Transfer functions for 100, 50 and 25 m/s moving loads, compared to non-moving point loads (0 to 50 
Hz) 

8.3.4. Effect of a moving load with parallel joints 

Figure 8-24 to Figure 8-27 show the transfer functions for moving loads models with two, 

three, four and five joints, respectively. The transfer functions in these Figures are compared 

to the spring resonant frequencies for the rock mass, defined in Chapter 4. The 0 m/s load 

speed is a non-moving point load and is presented as a comparison. The non-moving loading 

will act in the same way as the non-moving point loads in the previous section concerning 2D 

jointed rock masses.  

The transfer functions show very clear high transmission zones at the frequencies predicted by 

the spring resonance Equation (Equation 4-18). The superposition resonance of this particular 

model should occur at over 832 Hz. This is evidence of the presence of the spring resonance 

effect in rock masses excited by moving loads.  
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Figure 8-24 Two joints with loads of 0, 25 and 50 m/s 

 

Figure 8-25 Three joints with loads of 0, 25 and 50 m/s 
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Figure 8-26 Four joints with loads of 0, 25 and 50 m/s 

 

Figure 8-27 Five joints with loads of 0, 25 and 50 m/s 

8.3.5. Moving Loads in Blocky Materials 

The previous section investigates whether moving loads generate the spring resonance effect 

in parallel jointed materials, with the resonance mechanisms positively identified in transfer 
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functions. Despite this, blocky rock masses, with more than one set of fractures, are often 

encountered in nature. Chapter 5 shows that the spring resonance effect exists when a non-

moving point load excites a blocky rock mass; however, the interaction between a blocky 

material and a moving load is more complex. A plane wave exciting a blocky rock mass will 

only really encounter the joints which are orientated perpendicular to the direction which the 

wave is propagating in, while both the vertical and horizontal joints are encountered by a non-

planar wave moving through a rock mass. This section examines simple blocky models and 

attempts to understand whether rock mass resonance mechanisms do exist in them. An 

example of a simple blocky rock mass model is shown in Figure 8-28. The simplest case of a 

blocky material is used, which is using two joints, giving a single block in the centre of the 

model. The x-velocity is recorded within the block as this is the block which will be oscillating 

due to the spring resonance.  

 

Figure 8-28 Schematic of blocky material model 

A series of models are run using the set up shown in Figure 8-28. The vertical joints are spaced 

at 2, 5 and 10 m. The vertical joints are sandwiched between horizontal joints with a spacing of 

2 m. The transfer functions are generated, using the insertion loss method, by comparing a 

model with (u) and without (uref) the blocks between the parallel joints. The results of this are 

shown in Figure 8-29. As the insertion loss method is used, the resonances of the horizontal 

joints should not affect the transfer functions shown, and instead only the effect of the blocks 
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are being analysed. It is clear from the Figure that there are large regions of the transfer 

functions which show transmission coefficients of greater than 1. This effect increases when 

the joint spacing reduces. The model with a 2 m joint spacing between the vertical joints has a 

twin peak high transmission zone centred at 700 Hz (Figure 8-29 a), with the 5 m spacing 

model with a clear peak at 600 Hz (Figure 8-29 b). There are no clear high transmission zones 

in the model with a 10 m joint spacing (Figure 8-29 c). These peak transmissions do not seem 

to be affected to a significant degree by the joint stiffness, so they are unlikely to be created by 

the spring resonances, which occurs between 13 and 99 Hz, depending on the model 

properties. Equally, they are not at the correct frequency for the superposition resonance 

mechanism, which would occur at 832, 333 and 166 Hz for the 2, 5 and 10 m models, 

respectively. These also have not been created by superposition of S-waves, which would 

occur at 480, 192 and 96 Hz for the models in Figure 8-29. The causes of the interactions 

within these models remain unclear.  

 

Figure 8-29 Transfer functions for blocky materials. Dashed black line shows Transmission Coefficient =1. 

Figure 8-29 represents a very brief investigation into whether the spring resonance effect 

occurs in loads moving parallel to a blocky rock mass. From this, it looks unlikely that this 

resonance effect is occurring in this scenario.  

Masonry tunnel linings are constructed of blocks, such as brick or stone, held together using 

cement. Such a structure can be thought of as an artificial blocky rock mass, with the brick or 
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stone being the equivalent of blocks and the cement being a joint infilling. This is similar to the 

model shown for the above sensitivity analysis or Figure 7-4. The masonry structure is to all 

intents a periodic material, which will therefore exhibit a resonant frequency related to the 

spring resonance effect, as described in Chapter 7. If the spring resonance occurs in the walls 

of a masonry tunnel, it is possible that the oscillation of the blocks could lead to the 

deterioration of the strength of the masonry joint. Over time this reduction in strength could 

lead to a tunnel collapse. Such effects could be exacerbated by changes in vibration source, 

such as an upgrading of line speed. Changes in line speed could be brought about by re-using 

existing railway tunnels for new high speed rail lines. However, Figure 8-29 has shown that a 

blocky rock mass orientated perpendicular to the direction of a moving load, which is similar to 

the orientation of a tunnel wall in relation to a train track, does not show a clear spring 

resonance effect. Therefore, train vibrations are unlikely to affect the stability of a masonry 

tunnel lining, through the spring resonance mechanism.  

8.4. Conclusions for moving loads 

This Chapter investigates moving loads using the combined DEM-FDM, as well as the FDM. A 

DEM-FDM model is generated, and the maximum displacement of the rock mass recorded at 

two different locations, one on the loading path (the near field) and another located above the 

loading path (the far field). It is found that stress waves, generated by moving loads are 

affected by joints, which vary depending on the orientation of the joint and the direction of 

the moving load. The joint stiffness and joint spacing also influence wave transmission. This 

indicates that it may not be appropriate to use an equivalent continuum instead of a discretely 

jointed material model, which is found in previous Chapters related to wave transmission in 

non-moving point load models.  

Following this an FDM model is used to determine whether the spring resonance effect occurs 

in parallel jointed and blocky rock masses. The spring resonance effect is found to occur in 

parallel jointed rock masses, although it is not identified in blocky rock masses. This indicates 

that a moving load travelling within a jointed rock mass will have a preferentially transmitted 

frequency, polarised with the direction of vibration perpendicular to the moving load 

direction. However, the spring resonance effect does not appear to occur within a blocky rock 

mass, with the direction of vibration polarised perpendicular to the moving load direction. As 

such, masonry joints in masonry lined tunnels will not show additional degradation due to the 

passage of trains through the tunnel.   
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9. Conclusions 

 
“This concludes this projects scope, 

With the findings which are kinda dope. 
From a beginning with numerical models, 

The outcomes finally viewed from realistic goggles. 
 

Spring and superposition resonance occurs, 
Giving the frequencies a material prefers. 

These are found in various situations, 
And discussed for different applications. 

 
I hope this summary was illuminating, 

A novel way of a study communicating. 
I thank you for your perusal, 

And I hope it has your approval.” 
 

 
© Army of Cats 2023  
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9.1. Synopsis 

 
“Education never ends, Watson. It is a series of lessons with the greatest for the last.” – 

Sherlock Holmes 
(Doyle, 2014, pg. 782) 

 
This chapter covers the main findings of this thesis, as well as their contribution to the current 

state of the art research. The limitations of the research and potential further works are 

summarised.  

The research question originally posed for this project was titled “Modelling high-speed 

railway induced vibrations around tunnels (ground support)”, although this has subsequently 

morphed into “Modelling high-speed rail induced vibrations around tunnels (jointed rock 

masses)” during the research. Jointed rock masses are by no means a less compelling field than 

tunnel support, and if anything, represent an area of research which is applicable to a wider 

audience than merely high speed rail tunnels. The outcome of this research is applicable to 

anything which cause vibrations, from manmade sources, such as rail vibrations and machine 

foundations, to natural sources, such as earthquakes. 

The project methodology was focused around adding complexity at each stage of analysis, 

with early conceptual models including an unlined cavity within a jointed rock mass (Figure 1-

1). The simplest way to view this was using a 1D model, which represents the transmission 

pathway of stress waves through a rock mass, moving directly from a source to a receiver. It 

was intended that, after moving to a 2D model, it would be possible to add in tunnel support in 

the form of liners and rock bolts to the models to determine the effect of these additions on 

vibrations and vice versa. In fact, the intention to model rock bolts motivated the study of 

jointed rock masses. However, rock support was never added into models. Out of the 

numerical codes used in this thesis, UDEC is the only one which is capable of modelling rock 

support such as those previously mentioned. However, again in early models developed for 

this research work, which are not included here, rock support was found to be difficult to 

model in a dynamic situation, causing models to crash. Therefore, efforts were devoted to the 

study of jointed rock masses alone, although unlined cavities were also modelled in later 

Chapters (Chapter 6).  

Much of the work in this thesis took on a similar theme, using transfer functions to determine 

how stress waves are transmitted through jointed rock masses. This was initially done using a 

simplistic 1D model, although additional complexity was introduced as the work progressed. 
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The initial intention of the first transfer function Chapter (Chapter 4) was to merely present a 

new method of looking at jointed rock mass transmission, which the transfer function 

approach represents. However, clear trends could be seen in the data with peaks in 

transmission of certain frequencies. The frequency of the peaks were found to change when 

the properties of the rock mass changed. It was also found that the peak transmissions could 

be split into two groups, a low frequency group and a high frequency group, which appeared 

to be controlled by different factors (Section 4.6). With the use of a large systematic database 

of peak transmissions, the mechanisms behind these were identified. The low frequency high 

transmission operated on a mechanism related to masses between springs while the high 

frequency high transmissions were controlled by a mechanism related to superposition of 

reflected waves. The high transmissions were identified to be resonant frequencies of the rock 

mass. The low frequency resonance has been referred to as spring resonance and the high 

frequency resonance as superposition resonance.   

Spring resonance occurs when blocks oscillate like masses between springs. This gives an equal 

number of resonant frequencies as there are blocks within a rock mass. The joints in the rock 

mass are equivalent to springs and the intact blocks are equivalent to masses. The blocks only 

relate to unbounded blocks, which are those which have joints on either side of them in the 

numerical models used in this study, and not the blocks which are at the ends of the model. 

Equation 4-18 is presented which can predict the frequency of the spring resonant frequencies 

(Section 4.6.1). The accuracy of the analytical equations was improved by altering the joint 

stiffness by incorporating the stiffness of the blocks using equation 4-17. In idealised mass 

between spring systems the masses are rigid; however, in the numerical models the blocks 

have a stiffness. Therefore, the introduction of the stiffness of the blocks into the term related 

to the stiffness of the joint was a reasonable step, which had a sound engineering principle 

behind it. Spring resonance, despite being based on classical mechanics, has not previously 

been identified in studies of stress wave transmission through jointed rock masses.  

The superposition resonance occurs through reflections which take place when stress waves 

are incident upon a joint. Some energy is transmitted through the joint while the rest is 

reflected. Multiple reflections from the joints on either side of the block cause multiple waves 

within the block. These waves superimpose on one another, causing both destructive and 

constructive interference. At wavelengths which are multiples of half the block size, 

constructive interference occurs. This behaves in a similar way to standing waves on a string. 

Equation 4-20 is presented to predict the frequency of superposition resonance (Section 4.6.2). 

Theoretically, there are an unlimited number of super position resonant frequencies. This 



236 
 

 

effect has previously been identified in stone blocks, has its own British Standard, and is 

exploited in resonance enhanced drilling. Superposition of reflected waves was also the 

mechanism proposed which caused high transmissions in previous studies of jointed materials; 

however, these occur at much lower frequencies than the ones identified in this study and 

would theoretically be occurring at frequencies which would generate destructive interference 

(Section 5.4).  

Chapters 5 to 8 study the spring resonance mechanism and attempt to understand how it 

operates and whether it has been brought about by the highly simplified models used in the 

Chapter 4. To do this more complex models were generated, changing the boundary 

conditions (Section 5.3.2), introducing blocky rock masses (Section 5.3.1) as well as generating 

a non-plane wave source in a 2D model (Chapter 6). In addition to this, a new numerical 

modelling code, the finite difference method, and a new source wave form were used. All of 

this helps to determine whether the spring resonance mechanism is a real effect in jointed 

materials or whether it is merely a modelling artefact. The spring resonance effect was 

identified in each model, with the frequency of the resonances matching the results shown by 

Equation 4-18. The 2D models showed that the spring resonance effect does not just occur 

directly above a source, where waves will be normally incident upon a joint, but also when the 

wave is not normally incident (Section 6.5.2). 2D models also showed that when a cavity is 

modelled the resonance effect persists (Section 6.5.3). All this shows that the spring resonance 

effect is quite robust to changes in the modelling scenario. Evidence is presented showing that 

if a full waveform were modelled in previous studies, the resonance mechanisms would have 

been identified (Section 5.4). 

Equivalent material models are analysed to determine whether these can show the identified 

resonance effects (Section 5.3.3). Homogenous equivalent media show no resonance effects 

due to the resonance effects being generated by the presence of joints within the material. A 

homogenous equivalent medium averages out the effect of the joints over the entire material, 

so the individual reflective and low stiffness zones which generate the resonance are not 

present. A localised equivalent medium, which applies equivalent medium properties to the 

nodes in the finite difference mesh which would represent joints, does show the resonance 

effects. This is because, despite a discrete fracture and an equivalent medium fracture being 

modelled in slightly different ways, both methods do have a low stiffness reflective boundary 

present in the model; therefore, generating the resonance effects.  
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The resonance mechanisms identified in this study were investigated for their influence on 

vibrations generated by trains (Section 6.6). It was found that a high transmission zone will be 

generated at low frequencies when there are a large number of joints as the spring resonances 

will all occur below a cut off frequency, which is related to the properties of the rock mass. 

This cut off frequency is compared for a range of common rock types, and it is shown that 

vibrations related to the train itself are likely to not be affected by the resonance mechanisms 

with vibrations being transmitted unopposed, while some vibrations related to sources from 

the track will fall outside the high transmission zone and be reduced (Figure 6-23).  

The resonance mechanisms in jointed rock masses are shown to be similar to frequency 

response effects in periodic metamaterials (Chapter 7). Evidence from literature is presented 

which shows that a physical experiment of a periodic metamaterial shows a peak in 

transmission at the frequency predicted by the spring resonance effect (Figure 7-3). This 

provides the first proof of such an effect occurring in reality. Despite similarities with the 

frequency response of periodic metamaterials, jointed rock masses cannot be thought of as 

being a type of periodic metamaterial due to the derivation of the term metamaterial. Instead, 

it is suggested that a jointed rock mass is a natural periodic material, while metamaterials are 

artificial periodic materials.  

Despite the semantic differences between jointed rock masses and periodic metamaterials, 

the similarity in their frequency response led to an investigation into a theoretical wave barrier 

(Section 7.5). This employed the predictable high and low transmissions of the spring 

resonance mechanism to cut out a significant degree of the frequency content of a signal. The 

principle is similar to locally resonant phononic cell wave barriers already in existence. 

However, those in use now use identical phononic cells, while the proposed barrier would use 

two different phononic cells. The two different cells would complement each other with the 

resonant frequency (pass band) of one falling within the low transmission (band gap) of the 

other. The proposed wave barrier was found to cut out a significant degree of the frequency 

content of a wave; however, it did not outperform the wave barrier composed of multiple 

identical cells, except at the resonant frequency of the cell. The proposed barrier is a less 

optimum set up because the resonant frequency of a single cell can be designed to fit within 

an area of low amplitude vibrations from the source.  

The resonance effects are finally explored in models containing moving loads (Chapter 8). The 

spring resonance effect is identified in models where joints run parallel to the moving load 

direction (Section 8.3.4). However, the spring resonance does not occur in a blocky rock mass 
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orientated perpendicular to this (Section 8.3.5). Furthermore, an alternative moving load 

analysis was also presented which results from a DEM-FDM analysis of equivalent materials 

(Section 8.2). Discontinuum analyses containing a single joint set were excited by a moving 

load. The response of these models were compared to equivalent transversely isotopic 

continua, whose plane of isotropy ran parallel to the dip of the joints, and an isotropic 

continuum with the same properties as the intact blocks in the discontinuum model. It was 

found that the transversely isotropic continua have a different response to their equivalent 

discontinuum models. It was also found that the moving load direction in relation to the dip of 

the joints can affect the response of a rock mass. This has implications for vibration analysis of 

tunnels in industrial practice, where the load would need to travel in both directions through a 

tunnel to ensure the correct vibration levels are captured by a scoping study.  

This study has extensively used numerical modelling and has identified interesting and original 

effects within jointed rock masses. It would have been of benefit to this thesis to have 

successfully performed a physical experiment which identified the resonance effects. However, 

despite attempts being made this was not possible (Section 5.3.4). This is a clear omission from 

the research presented in this thesis and would be of value for any future research. 

9.2. Key Findings 

The key findings of this thesis are summarised below: 

 Jointed rock masses show two types of resonance mechanism with analytical 

equations presented for each of these; 

o Mass between spring type resonance (spring resonance); 

o Superposition of multiple reflections (superposition resonance). 

 The resonance mechanisms have been found to be robust to changing modelling 

assumptions and load types, including non-moving and moving loads. 

 Spring resonances can form a high transmission zone at low frequencies; 

o The high transmission zone will cause much of the vibration spectrum from 

trains to be transmitted unhindered. 

 The spring resonance mechanism has can be identified from physical experiments of 

periodic metamaterials; 

o Periodic metamaterials have similar resonance characteristics as jointed rock 

masses; 
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o Jointed rock masses are defined as being a class of periodic metamaterials, 

natural periodic metamaterials. Conventional periodic metamaterials are 

manmade periodic metamaterials. 

 Equivalent materials do not show the same response to excitation sources, when 

compared to their explicitly jointed and localised equivalent medium comparisons. 

9.3. Limitations 

Despite the best attempts of the author, this thesis does have its limitations. The work 

conducted in this thesis is entirely based upon numerical modelling results, solved in either 1D 

or 2D. The addition of 3D modelling would add an additional dimension to the work, 

figuratively and literally; although, with a simple 3D rock mass, it is unlikely that anything new 

will be identified and instead the presence of the resonance mechanisms will be more robustly 

identified. However, results from physical modelling would add gravity to the conclusions of 

this thesis. While results from a physical model from published literature were re-analysed and 

used as proof of the physical presence of the resonance mechanisms the model was not 

strictly a jointed rock mass. Identifying the resonance mechanisms in a physical sample 

composed blocks with unfilled joints would provide very convincing proof that the resonance 

mechanisms could occur in almost any jointed rock mass. The use of more advanced 

constitutive models for joints, such as the non-linear Barton-Bandis joint model, would be of 

scientific interest. Damping is another factor which has been largely omitted from this work. Its 

addition would make the results from the research more realistic.   

9.4. Further Work 

This thesis has tried to address transmission of train vibrations through jointed rock masses 

which surround tunnels. Some additional questions and omissions in this study exist and are 

areas of future work. 

 A physical experiment to verify the presence of the resonance effects in jointed rocks. 

Although this was attempted it was never successfully completed (Section 5.3.4); 

 An investigation into the role of damping on the resonance mechanisms. This could be 

incorporated into all models included in this work and would be expected to give some 

degree of spatial limit of the maximum number of blocks which could be included in 

the spring resonance mechanism in a continuous rock mass; 

 Investigate the effect of non-linear joint stiffnesses on the resonance mechanisms; 

 An investigation of resonance in tunnel support. There has been some discussion 

about the role of the jointed rock mass resonance mechanisms in masonry tunnels 
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(Section 8.3.5); however, this does not study how segmental linings and rock bolts 

interact with jointed materials; 

 Three dimensional models of transmission through joints. This is considered to be a 

natural further step from the work shown in this study, which has progressed from 1D 

into 2D already.   

9.5. Publications 

The following publications have been produced during the course of this research work. 

1. Holmes, H.T., Paraskevopoulou, C. and DeMoraes, R. 2020. Determining the Relative 

Influence of Joint and Rock Properties on the Propagation of Planar Waves in Jointed 

Rock Masses Using Multivariate Statistical Techniques In: 54th US Rock 

Mechanics/Geomechanics Symposium. 

2. Holmes, H., Paraskevopoulou, C., Hildyard, M., Neaupane, K. and Connolly, D.P. 2023. 

Jointed rock masses as metamaterials-implications for railway tunnel vibrations. 

Transportation Geotechnics. 41, p.101033. 

3. Holmes, H., Paraskevopoulou, C., Hildyard, M., Neaupane, K. and Connolly, D.P. 2023b. 

Numerical modelling of resonance mechanisms in jointed rocks using transfer 

functions. Journal of Rock Mechanics and Geotechnical Engineering. 15(5), pp.1076–

1089. 

4. Holmes, H., Paraskevopoulou, C., Hildyard, M., Neaupane, K. and Connolly, D.P. 2023c. 

Equivalent material modelling of fractured rock mass resonance effects In: Expanding 

Underground-Knowledge and Passion to Make a Positive Impact on the World: 

Proceedings of the ITA-AITES World Tunnel Congress 2023 (WTC 2023), 12-18 May 

2023, Athens, Greece., p.268. 

5. Holmes, H., Paraskevopoulou, C., Hildyard, M., Neaupane, K. and Connolly, D.P. 2023d. 

Effect of joint dip on the transmission of stress waves from a moving point load in a 

parallel jointed rock mass (in press) In: 15th ISRM Congress. 

 

 

 

"I think we've outgrown full-time education ... Time to test our talents in the real world, 
d'you reckon?" – Fred Weasley 

(Rowling, 2003, pg. 861) 
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Appendix A – Database of High Transmissions 



 

 

Spacing Stiffness Jn Rock Cp Peak Number             

(m) (MPa/m)   (m/s) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

8 1.00E+05 2 Shale 2365 0 81 221 366 512 657 803 949 1094 1238 1375     

8 1.00E+05 2 Original 3328 0 107 306 511 716 913 1118 1321 1524 1726 1929     

8 1.00E+05 2 Quartzite 5910 0 173 518 867 1216 1572 1928 2286        

8 1.00E+04 2 Shale 2365 0 66 198 336 477 619 762 907 1051 1195 1340 1484 1629 1772 1915 
8 1.00E+04 2 Original 3328 0 83 261 454 653 856 1060 1261 1470 1667 1872 2078    

8 1.00E+04 2 Quartzite 5910 0 104 416 770 1123 1490 1865 2220        

8 1.00E+03 2 Shale 2365 0 42 159 302 448 595 742 886 1033 1180 1326 1472 1617   

8 1.00E+03 2 Original 3328 0 41 217 422 626 834 1039 1247 1455       

8 1.00E+03 2 Quartzite 5910 0 43 374 742 1108           

8 5.00E+02 2 Shale 2365 0 29 154 300 445 593 738 886 1034 1179 1326     

8 5.00E+02 2 Original 3328 0 30 212 419 625 833 1038 1246        

8 5.00E+02 2 Quartzite 5910 0 31 371 740 1109           

5 1.00E+05 2 Shale 2365 0 122 351 581 807 1041 1264 1496        

5 1.00E+05 2 Original 3328 0 163 483 802 1126 1445 1762         

5 1.00E+05 2 Quartzite 5910 0 266 800 1350 1906           

5 1.00E+04 2 Shale 2365 0 97 303 522 748 976 1205 1435 1664 1893 2125     

5 1.00E+04 2 Original 3328 0 117 399 710 1031 1356 1673 2001 2328       

5 1.00E+04 2 Quartzite 5910 0 162 635 1206 1788 2373          

5 1.00E+03 2 Shale 2365 0 51 249 480 714 947 1181 1415        

5 1.00E+03 2 Original 3328 0 54 342 670 1001 1330          

5 1.00E+03 2 Quartzite 5910 0 55 596 1185            

5 5.00E+02 2 Shale 2365 0 38 242 476 712 944 1179 1414        

5 5.00E+02 2 Original 3328 0 39 337 669 998 1329          

5 5.00E+02 2 Quartzite 5910 0 39 594 1181            

2 1.00E+05 2 Shale 2365 0 284 840 1374 2151           

2 1.00E+05 2 Original 3328 0 385 1146 1886            

2 1.00E+05 2 Quartzite 5910 0 579 1824             

2 1.00E+04 2 Shale 2365 0 203 696 1244 1804 2370          

2 1.00E+04 2 Original 3328 0 232 927 1700 2514           

2 1.00E+04 2 Quartzite 5910 0 267 1535             

2 1.00E+03 2 Shale 2365 0 86 604 1187            

2 1.00E+03 2 Original 3328 0 87 841 1663            

2 1.00E+03 2 Quartzite 5910 0 88 1481             



251 
 

 

2 5.00E+02 2 Shale 2365 0 61 598 1182            

2 5.00E+02 2 Original 3328 0 62 837 1661            

2 5.00E+02 2 Quartzite 5910 0 62 1480             

1 1.00E+05 2 Shale 2365 0 540              

1 1.00E+05 2 Original 3328 0 708              

1 1.00E+05 2 Quartzite 5910 0 980              

1 1.00E+04 2 Shale 2365 0 334 1309 2400            

1 1.00E+04 2 Original 3328 0 363 1740 2681            

1 1.00E+04 2 Quartzite 5910 0 387 3000             

1 1.00E+03 2 Shale 2365 0 123 1193             

1 1.00E+03 2 Original 3328 0 124 1669             

1 1.00E+03 2 Quartzite 5910 0 125              

1 5.00E+02 2 Shale 2365 0 87 1186             

1 5.00E+02 2 Original 3328 0 88 1664             

1 5.00E+02 2 Quartzite 5910 0 88              

8 1.00E+04 8 Shale 2365 0 16 33 50 66 82 99 114 200 337 477 618 762 906 1050 

8 1.00E+04 8 Original 3328 0 22 42 65 87 105 124 140 264 454 652 853 1057 1261 1466 
8 1.00E+04 8 Quartzite 5910 0 30 58 87 113 139 158 172 414 764 1125 1489    

8 1.00E+03 8 Shale 2365 0 10 20 29 39 46 53 56 155 298 447 594 741 888 1034 
8 1.00E+03 8 Original 3328 0 11 22 32 41 49 55 59 217 420 627 833    

8 1.00E+03 8 Quartzite 5910 0 12 23 34 43 51 57 60 376 741      

8 5.00E+02 8 Shale 2365 0 8 15 23 29 35 38 42 157 299 446 593    

8 5.00E+02 8 Original 3328 0 8 16 24 30 36 39 42 213 418 626     

8 5.00E+02 8 Quartzite 5910 0 9 16 24 31 36 40 43 372       

5 1.00E+04 8 Shale 2365 0 25 49 75 99 123 147 167 306 523 747 975 1204 1434 1663 

5 1.00E+04 8 Original 3328 0 30 63 93 124 152 178 197 400 707 1027 1351 1677   

5 1.00E+04 8 Quartzite 5910 0 41 81 120 155 185 211 227 639 1207 1788     

5 1.00E+03 8 Shale 2365 0 14 27 39 51 61 69 74 244 483 714 948 1182 1413 1646 
5 1.00E+03 8 Original 3328 0 14 28 42 53 63 71 75 342 670 1001     

5 1.00E+03 8 Quartzite 5910 0 15 30 43 55 65 72 76 594 1182      

5 5.00E+02 8 Shale 2365 0 10 20 29 38 45 50 53 243 475 711     

5 5.00E+02 8 Original 3328 0 11 21 30 38 46 51 54 337 668      

5 5.00E+02 8 Quartzite 5910 0 11 21 31 39 46 51 55 592       

2 1.00E+05 8 Shale 2365 0 67 143 214 281 353 423 493 846 1409      

2 1.00E+05 8 Original 3328 0 97 192 289 383 476 569 656 1146 1918      
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2 1.00E+05 8 Quartzite 5910 0 143 297 441 583 717 840 936 1825       

2 1.00E+04 8 Shale 2365 0 53 107 160 209 254 295 324 692 1240 1806     

2 1.00E+04 8 Original 3328 0 62 122 180 237 287 326 352 914 1705      

2 1.00E+04 8 Quartzite 5910 0 72 140 206 264 313 351 375 1527       

2 1.00E+03 8 Shale 2365 0 23 45 67 86 101 113 120 604 1184      

2 1.00E+03 8 Original 3328 0 24 47 68 87 102 114 121 841       

2 1.00E+03 8 Quartzite 5910 0 24 47 69 88 103 115 122 1479       

2 5.00E+02 8 Shale 2365 0 17 33 48 61 72 81 86 597 1183      

2 5.00E+02 8 Original 3328 0 17 33 49 62 73 81 86 836       

2 5.00E+02 8 Quartzite 5910 0 17 34 49 62 73 81 87        

1 1.00E+05 8 Shale 2365 0 134 274 412 547 675 808 928        

1 1.00E+05 8 Original 3328 0 183 356 537 710 878 1038 1177        

1 1.00E+05 8 Quartzite 5910 0 252 500 745 976 1190 1370 1497        

1 1.00E+04 8 Shale 2365 0 88 175 258 335 406 461 498 1296       

1 1.00E+04 8 Original 3328 0 98 190 281 362 433 488 522 1748       

1 1.00E+04 8 Quartzite 5910 0 105 207 299 384 453 506 539        

1 1.00E+03 8 Shale 2365 0 34 66 96 123 145 161 171 1193       

1 1.00E+03 8 Original 3328 0 34 67 97 124 146 162 172        

1 1.00E+03 8 Quartzite 5910 0 34 67 98 125 146 163 173        

1 5.00E+02 8 Shale 2365 0 24 47 69 88 103 115 122 1186       

1 5.00E+02 8 Original 3328 0 24 48 69 88 103 115 122        

1 5.00E+02 8 Quartzite 5910 0 24 48 69 88 104 115 123        

8 1.00E+03 3 Shale 2365 0 26 50 165 299 446 592 742 888 1034 1181 1327    

8 1.00E+03 3 Original 3328 0 28 51 213 418 625 888 1041 1248 1454      

8 1.00E+03 3 Quartzite 5910 0 31 53 372 740 1109          

8 5.00E+02 3 Shale 2365 0 20 36 151 297 445 592 740 887 1033 1180     

8 5.00E+02 3 Original 3328 0 21 37 211 418 625 833 1040 1247       

8 5.00E+02 3 Quartzite 5910 0 22 38 370 740 1109          

5 1.00E+03 3 Shale 2365 0 36 64 243 476 711 999 1180        

5 1.00E+03 3 Original 3328 0 37 66 337 668 946 1331         

5 1.00E+03 3 Quartzite 5910 0 39 68 593 1182           

5 5.00E+02 3 Shale 2365 0 26 47 240 474 711 946 1180        

5 5.00E+02 3 Original 3328 0 27 48 335 668 999 1329         

5 5.00E+02 3 Quartzite 5910 0 28 48 592 1183           
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2 1.00E+03 3 Shale 2365 0 59 106 597 1189           

2 1.00E+03 3 Original 3328 0 61 107 836 1666           

2 1.00E+03 3 Quartzite 5910 0 62 108 1484            

2 5.00E+02 3 Shale 2365 0 43 76 600 1184           

2 5.00E+02 3 Original 3328 0 44 76 834            

2 5.00E+02 3 Quartzite 5910 0 44 76             

1 1.00E+03 3 Shale 2365 0 87 151 1199            

1 1.00E+03 3 Original 3328 0 88 152 1664            

1 1.00E+03 3 Quartzite 5910 0 88 153             

1 5.00E+02 3 Shale 2365 0 62 107 1183            

1 5.00E+02 3 Original 3328 0 62 108 1663            

1 5.00E+02 3 Quartzite 5910 0 62 108             

1 1.00E+03 6 Shale 2365 0 45 86 123 151 169 1192         

1 1.00E+03 7 Shale 2365 0 38 75 108 136 157 170 1196        

1 1.00E+03 9 Shale 2365 0 30 59 87 111 133 151 164 171 1196      

8 1.00E+03 4 Shale 2365 0 20 39 53 160 302 448 594 741 887 1035 1181    

8 1.00E+03 4 Original 3328 0 21 41 55 217 421 627 834 1041 1247      

8 1.00E+03 4 Quartzite 5910 0 23 43 57 374 714 1110         

8 5.00E+02 4 Shale 2365 0 15 29 39 154 299 445 593 740 887 1034 1180    

8 5.00E+02 4 Original 3328 0 16 30 40 212 419 626 832 1040       

8 5.00E+02 4 Quartzite 5910 0 17 31 40 372 740          

5 1.00E+03 4 Shale 2365 0 27 51 69 249 479 713 948 1182 1415      

5 1.00E+03 4 Original 3328 0 28 54 71 342 670 1001 1331        

5 1.00E+03 4 Quartzite 5910 0 30 55 72 596 1184          

5 5.00E+02 4 Shale 2365 0 20 38 50 243 476 711 946 1180       

5 5.00E+02 4 Original 3328 0 21 39 51 337 668 999         

5 5.00E+02 4 Quartzite 5910 0 21 39 51 593 1183          

2 1.00E+03 4 Shale 2365 0 46 85 113 604 1186          

2 1.00E+03 4 Original 3328 0 47 87 114 841 1664          

2 1.00E+03 4 Quartzite 5910 0 48 88 115 1482           

2 5.00E+02 4 Shale 2365 0 33 61 81 597 1183          

2 5.00E+02 4 Original 3328 0 33 62 81 836           

2 5.00E+02 4 Quartzite 5910 0 34 62 81 1478           

1 1.00E+03 4 Shale 2365 0 66 123 161 1192           
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1 1.00E+03 4 Original 3328 0 67 124 162 1670           

1 1.00E+03 4 Quartzite 5910 0 67 124 163            

1 5.00E+02 4 Shale 2365 0 48 87 115 1186           

1 5.00E+02 4 Original 3328 0 48 88 115            

1 5.00E+02 4 Quartzite 5910 0 57 88 115            

8 1.00E+03 5 Shale 2365 0 17 32 45 55 156 300 446 594 741 888     

8 1.00E+03 5 Original 3328 0 17 34 47 57 220 419 627 834       

8 1.00E+03 5 Quartzite 5910 0 19 36 49 58 373 741         

8 5.00E+02 5 Shale 2365 0 13 24 34 40 152 299 445 593 739      

8 5.00E+02 5 Original 3328 0 13 25 35 41 211 419 626 832       

8 5.00E+02 5 Quartzite 5910 0 13 26 35 41 372 741         

5 1.00E+03 5 Shale 2365 0 22 42 59 71 245 478 715 948 1181 1414     

5 1.00E+03 5 Original 3328 0 23 45 61 73 345 672 1000 1332       

5 1.00E+03 5 Quartzite 5910 0 24 46 63 74 598 1184         

5 5.00E+02 5 Shale 2365 0 16 31 44 51 241 476 711 946       

5 5.00E+02 5 Original 3328 0 17 1 45 52 336 668 999        

5 5.00E+02 5 Quartzite 5910 0 17 33 45 53 594          

2 1.00E+03 5 Shale 2365 0 37 70 98 116 600 1183         

2 1.00E+03 5 Original 3328 0 38 72 99 117 844          

2 1.00E+03 5 Quartzite 5910 0 38 73 101 118           

2 5.00E+02 5 Shale 2365 0 26 51 70 83 596 1182         

2 5.00E+02 5 Original 3328 0 27 51 71 83 838          

2 5.00E+02 5 Quartzite 5910 0 27 52 71 84 1479          

1 1.00E+03 5 Shale 2365 0 54 102 141 166 1196          

1 1.00E+03 5 Original 3328 0 54 102 142 167           

1 1.00E+03 5 Quartzite 5910 0 54 103 142 168           

1 5.00E+02 5 Shale 2365 0 38 73 100 118 119          

1 5.00E+02 5 Original 3328 0 38 73 101 118           

1 5.00E+02 5 Quartzite 5910 0 38 73 101 119           
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Appendix B – Green’s Functions 
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Green’s Functions for Displacement and Tractions in 2D plane strain from Tadeu & Kausel 

(2000). 

Green’s Functions for Displacement (H): 

 
𝐻௫௫ =

1

4𝑖𝜌𝜔ଶ 𝑘௦
ଶ𝐻ఉ −

1

𝑟
𝐵ଵ + 𝛾௫

ଶ𝐵ଶ൨ [Equation A-1] 
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1
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1

𝑟
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ଶ𝐵ଶ൨ [Equation A-2] 

 
𝐻௫௬ = 𝐻௬௫ =

1

4𝑖𝜌𝜔ଶ ൣ𝛾௫𝛾௬𝐵ଶ൧ [Equation A-3] 

Green’s Functions for Tractions (G): 
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ଶ𝐵ଷ൨ [Equation A-6] 

 𝐺
 = 𝜆𝜀௩

 𝛿 + 2𝜇𝜀
  [Equation A-7] 

     

Auxiliary Functions and Definitions: 

 𝐵 = 𝑘ఉ
𝐻ఉ − 𝑘ఈ

𝐻ఈ [Equation A-8] 

 𝐻 = 𝐻
(ଶ)(𝑘𝑟) (𝑖 = 𝛼, 𝛽) [Equation A-9] 

 𝛾 =
𝑥

𝑟
  (𝑖 = 1, 2)(1 = 𝑥, 2 = 𝑦) [Equation A-10] 

 𝑟 = ඥ𝑥ଶ + 𝑦ଶ [Equation A-11] 

 𝑘ఈ =
𝜔

𝛼
 [Equation A-12] 

 𝑘ఉ =
𝜔

𝛽
 [Equation A-13] 

 
𝛼 = ඨ

𝜆 + 2𝜇

𝜌
 [Equation A-14] 

 
𝛽 = ඨ

𝜇

𝜌
 [Equation A-15] 
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Hn2 = second Hankel function of order (n); α = P-wave velocity; β = S-wave velocity; δij = 

Kronecker delta function (i = 1,2; j=1,2); l = direction of load (l=1,2); λ =  Lame’s constant; μ = 

Shear Modulus, ρ = density.  
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Green’s Functions for Displacement in 2D plane strain from (Dominguez, 1993). 

 

Figure B1 Schematic of equation parameters for Green’s Functions from (Dominguez, 1993). From Hussein (2004) 
Figure D.1 

 
𝐺෨(𝜔, 𝑟, 𝜑ଵ, 𝜑ଶ) =

1

2𝜋𝛽ଶ𝜌
[−0.5𝜒 sin 2𝜑ଵ𝑠𝑖𝑛 𝜑ଶ + 𝜓𝑐𝑜𝑠𝜑ଶ

− 𝜒𝑐𝑜𝑠ଶ𝜑ଵ𝑐𝑜𝑠𝜑ଵ] 

[Equation A-16] 
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Where 𝜑I is the angle of the impulse (1) and response (2) from vertical. Other variables have 

the definitions shown for equations from Tadeu and Kausel (2000). 
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Appendix C – Moving Load FISH Function 
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;Fish Function for Moving Load in UDEC Model 

def _pos 
 whilestepping 
 _v=100 ;velocity of load 
 _a=0.0001 
 _pos1=(time*_v)-10 
 _pos2=((time-_a)*_v)-10 
 _pos3=((time-(2*_a))*_v)-10 
 _pos4=((time-(3*_a))*_v)-10 
 _pos5=((time-(4*_a))*_v)-10 
 _pos6=((time-(5*_a))*_v)-10 
 _pos7=((time-(6*_a))*_v)-10 
 _pos8=((time-(7*_a))*_v)-10 
 _pos9=((time-(8*_a))*_v)-10 
 _pos10=((time-(9*_a))*_v)-10 
 _pos11=((time-(10*_a))*_v)-10 
 _pos12=((time-(11*_a))*_v)-10 
 _pos13=((time-(12*_a))*_v)-10 
 _pos14=((time-(13*_a))*_v)-10 
 _pos15=((time-(14*_a))*_v)-10 
 _pos16=((time-(15*_a))*_v)-10 
 _pos17=((time-(16*_a))*_v)-10 
 _pos18=((time-(17*_a))*_v)-10 
 _pos19=((time-(18*_a))*_v)-10 
 _pos20=((time-(19*_a))*_v)-10 
 if _pos1>-10 then 
  command 
   boundary interior yload -0.024471742 range annulus (_pos1,-100) 0 0.1 
 endcommand 
 endif 
 if _pos2>-10 then 
  command 
   boundary interior yload -0.071019761 range annulus (_pos2,-100) 0 0.1 
 endcommand 
 endif 
 if _pos3>-10 then 
  command 
   boundary interior yload -0.110615871 range annulus (_pos3,-100) 0 0.1 
 endcommand 
 endif 
 if _pos4>-10 then 
  command 
   boundary interior yload -0.139384129 range annulus (_pos4,-100) 0 0.1 
 endcommand 
 endif 
 if _pos5>-10 then 
  command 
   boundary interior yload -0.154508497 range annulus (_pos5,-100) 0 0.1 
 endcommand 
 endif 
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 if _pos6>-10 then 
  command 
   boundary interior yload -0.154508497 range annulus (_pos6,-100) 0 0.1 
 endcommand 
 endif 
 if _pos7>-10 then 
  command 
   boundary interior yload -0.139384129 range annulus (_pos7,-100) 0 0.1 
 endcommand 
 endif 
 if _pos8>-10 then 
  command 
   boundary interior yload -0.110615871 range annulus (_pos8,-100) 0 0.1 
 endcommand 
 endif 
 if _pos9>-10 then 
  command 
   boundary interior yload -0.071019761 range annulus (_pos9,-100) 0 0.1 
 endcommand 
 endif 
 if _pos10>-10 then 
  command 
   boundary interior yload -0.024471742 range annulus (_pos10,-100) 0 0.1 
 endcommand 
 endif 
 if _pos11>-10 then 
  command 
   boundary interior yload 0.024471742 range annulus (_pos11,-100) 0 0.1 
 endcommand 
 endif 
 if _pos12>-10 then 
  command 
   boundary interior yload 0.071019761 range annulus (_pos12,-100) 0 0.1 
 endcommand 
 endif 
 if _pos13>-10 then 
  command 
   boundary interior yload 0.110615871 range annulus (_pos13,-100) 0 0.1 
 endcommand 
 endif 
 if _pos14>-10 then 
  command 
   boundary interior yload 0.139384129 range annulus (_pos14,-100) 0 0.1 
 endcommand 
 endif 
 if _pos15>-10 then 
  command 
   boundary interior yload 0.154508497 range annulus (_pos15,-100) 0 0.1 
 endcommand 
 endif 
 if _pos16>-10 then 
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  command 
   boundary interior yload 0.154508497 range annulus (_pos16,-100) 0 0.1 
 endcommand 
 endif 
 if _pos17>-10 then 
  command 
   boundary interior yload 0.139384129 range annulus (_pos17,-100) 0 0.1 
 endcommand 
 endif 
 if _pos18>-10 then 
  command 
   boundary interior yload 0.110615871 range annulus (_pos18,-100) 0 0.1 
 endcommand 
 endif 
 if _pos19>-10 then 
  command 
   boundary interior yload 0.071019761 range annulus (_pos19,-100) 0 0.1 
 endcommand 
 endif 
 if _pos20>-10 then 
  command 
   boundary interior yload 0.024471742 range annulus (_pos20,-100) 0 0.1 
 endcommand 
 endif 
end 

 

 


