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Abstract 
 

Measuring language learning aptitude faces theoretical and methodological challenges. 

First, the development of aptitude batteries has not generally kept pace with changes in 

theoretical frameworks that conceptualise aptitude constructs pertaining to second 

language (L2) learning. Second, it is crucial to ascertain the reliability and validity of aptitude 

batteries prior to conducting aptitude-learning research, yet this step has been surprisingly 

neglected to date (cf. Bokander & Bylund, 2020).  In response to these gaps, an internet-

based battery, Tests of Aptitude for Language Learning (TALL), has been developed, 

informed by the theoretical frameworks of the Stages Approach (Skehan, 2016) and the 

Phonological/Executive (P/E) Model (Wen, 2016), as well as major existing aptitude 

batteries. TALL measures four facets of aptitude that represent cognitive abilities involved 

in the early stages of L2 learning and development: associative memory, phonetic coding 

ability, language analytic ability, and working memory (specifically, phonological short-term 

memory and executive control capacity). These abilities are measured by five subtests, i.e., 

Vocabulary Learning, Sound Discrimination, Language Analysis, Serial Nonwords Recall, 

and Complex Span Tasks, respectively. TALL employs domain-specific verbal stimuli and 

has two separate test suites to differentiate the modalities (aural and written) of test items.  

Initial validation checks were conducted with 165 participants (L1 Chinese 

undergraduates with L2 English) taking two sessions of tests with items counterbalanced 

across modality and test session. Results of analyses at the subtest, item, and battery levels 

suggested that, in general, TALL displayed satisfactory reliability and internal validity for 

measuring aptitude conceptualised in the theoretical frameworks. Linear mixed-effects 

modelling analyses revealed significant effects of modality on test results. Multiple 

regression analyses revealed that aural and written suite of TALL could explain 16% and 

19% variance, respectively, of the self-reported L2 proficiency scores. Implications for 

battery refinement, further scrutiny of validation, utilisation of TALL in aptitude related 

research, and the potential of TALL as an open research tool are discussed.   
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CHAPTER 1: INTRODUCTION 
 

1.1 The research context 

Research into second language (L2) learners’ foreign language aptitude (interchangeably 

referred to as language aptitude or simply aptitude throughout this thesis), defined as the 

special cognitive abilities to learn an additional language efficiently and successfully (Carroll, 

1990), has been ongoing for several decades since the inception of the concept in the 1950s 

(Wen et al., 2019). Over the course of sixty years, research into foreign language aptitude 

has experienced cycles of varying interest occasionally followed by periods of neglect. 

However, there has been a substantial growth of the number of publications in the first two 

decades of the millennium (as observed by Vuong & Wong, 2019), evidenced by the 

publication of significant edited volumes (Wen et al., 2019; 2023a) and thematic issues in 

leading journals (Doughty & Mackey, 2021; Li & DeKeyser, 2021). These outputs signify 

notable progress in aptitude-related research within the field of L2 learning.  

Language aptitude, as a componential construct of cognitive abilities (Doughty, 2019; 

Doughty & Mackey, 2021), is represented by learners’ performance on the tests employed 

to measure it. Consequently, the construct of aptitude is somewhat defined by what is 

measured by aptitude tests (Li & Zhao, 2021). The first comprehensive aptitude test that 

was influential in L2 learning research is the MLAT (the Modern Language Aptitude Test; 

Carroll & Sapon, 1959), followed by numerous aptitude batteries that have emerged, 

including the PLAB (the Pimsleur Language Aptitude Battery; Pimsleur, 1966), the CANAL-

FT (the Cognitive Ability for Novelty in Acquisition of Language‒Foreign Test; Grigorenko 

et al., 2000), the LLAMA tests (Meara, 2005; Meara & Roger, 2019), and the Hi-LAB (the 

High-Lever Language Aptitude Battery; Linck et al., 2013). These batteries have yielded 

empirical evidence that contributes to the collective knowledge of language learning 

aptitude. However, theoretical and methodological concerns regarding aptitude batteries 

used in L2 learning research have persisted. 

First and foremost, as argued by Skehan (2023), aptitude batteries serve as 

operationalisations of various perspectives regarding the nature of L2 learning. Therefore, 

they ought to align with views on L2 learning processes and contribute to the evolution of 

theories that facilitates understanding of the nature of L2 learning. However, the most 

influential and widely used battery, the MLAT, which is built upon J. B. Carroll’s (1962, 1973, 

1981) classic four-factor model of language aptitude, has been in existence for over six 

decades. While it has provided a significant amount of empirical evidence, particularly 

before the emergence of new aptitude batteries, it has been commented as primarily 
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focusing on the outcomes rather than the processes of L2 learning (Li, 2019). Moreover, 

Carroll himself (1981, 1990) noted that the MLAT lacks adequate measures of the memory 

system, especially working memory (WM), which can predict language learning success. In 

recent decades, two batteries, i.e., the LLAMA tests and the Hi-LAB, have come to dominate 

aptitude-related research in the field. These batteries can be seen as reflecting the 

advancement of aptitude theories pertaining to L2 learning. The Hi-LAB, in particular, is 

influenced by contemporary cognitive psychology and comprises subtests designed to 

measure cognitive abilities particularly relevant to achieve a high level of proficiency in L2 

learning (Doughty, 2019).   

However, shortcomings are associated with these two prominently used aptitude 

batteries. Firstly, the limited accessibility of the Hi-LAB, owing to its government-sponsored 

background, restricts its use to the authors of the battery and their associates and on 

specific learner populations. This limitation has led to only partial validation evidence, which 

may undermine the robustness of claims based on the battery’s findings (Skehan, 2023). 

Secondly, despite the growing popularity of the LLAMA tests in numerous studies in recent 

years, attributed to its open accessibility for other researchers in the community, the lack of 

sufficient validation evidence for this battery raises significant concerns (Bokander & Bylund, 

2020, Bokander, 2023). The absence of comprehensive aptitude research designs further 

compounds the limitations arising from the dominance of these two batteries, impeding a 

broader advancement in understanding the construct of aptitude and its role in L2 learning. 

As highlighted by Skehan (2023), recent progress in this realm has been characterised as 

“instrument-led rather than construct-led” (p. 232), revealing substantial room for further 

exploration.    

1.2 The research aim 

The primary objective of this thesis is to bridge the existing gaps by developing a 

comprehensive aptitude battery, Tests of Aptitude for Language Learning (TALL). This 

battery is designed to fulfil two crucial requirements: (1) to reflect a theoretical framework 

that underpins a componential construct of aptitude within the context of L2 learning, and 

(2) to undergo preliminary validation processes to ascertain the reliability and internal 

validity of this new battery before its use in substantive research.  

In pursuit of these primary objectives, the development of a valid aptitude battery 

grounded in aptitude‒L2 learning theories is accompanied by several considerations. First, 

the unresolved contrast between domain generality and specificity (Wen et al., 2017) has 

been tackled by devising domain-specific verbal stimuli for all subtests, including two for 

WM. This initial step is intended to pave the way for further examination of convergent 
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validity by comparing TALL with other measures using domain-general stimuli, such as the 

Hi-LAB. Second, the design of TALL incorporates different modalities (aural and written) for 

the test items in three subtests, resulting in the creation of two separate test suites. This 

differentiation enables an investigation into the potential impact of modality on test 

outcomes. In addition, to mitigate the potential confounds of L2 knowledge, TALL employs 

the participants’ first language (L1), Mandarin Chinese, as the instructional language of the 

entire battery and the encoding language for the stimuli in WM subtests. Furthermore, a 

semi-artificial language, adapted from Lithuanian, has been used to create target items in 

the subtests related to language learning. This approach ensures the novelty of the items 

for participants in the current research. Importantly, TALL has been developed into an 

internet-based battery, facilitating remote data collection on the test platform 

(https://www.tall-webtest.com), thus offering a practical solution to the restrictions imposed 

by the Covid-19 pandemic on lab-based research. The internet-based research capability 

of TALL is noteworthy, as it enables the development of TALL into an open research 

instrument accessible for other researchers, aligning with the spirit of open research 

practices (Pan & Marsden, under review). This initiative is anticipated to facilitate the 

accumulation of validation evidence for TALL across diverse temporal and contextual 

settings.   

In its essence as a methodological study, this PhD research mainly provides 

empirical evidence to verify TALL as a reliable and valid battery for measuring language 

aptitude. Moreover, it seeks to explore the effects of modality in measuring aptitude and to 

investigate predictive validity of TALL concerning participants’ L2 proficiency.  

1.3 Outline of the thesis 

The current chapter has established the research context and the research aims, focusing 

on the development and validation of an internet-based battery, TALL.  

Chapter 2 will provide a comprehensive review of the relevant research literature, 

organised into four sections: (1) an overview of language aptitude for L2 learning, 

encompassing fundamental concepts of aptitude, a synthesis of research connecting 

aptitude and L2 learning, theories concerning language aptitude, and a dedicated review of 

working memory as a constituent of aptitude and a theoretical framework conceptualising 

WM in the context of L2 learning; (2) a synthesis of existing aptitude batteries, focusing on 

the theoretical inquiries and methodological challenges related to measuring the multi-

faceted construct of aptitude; (3) an outline of the rationale driving the current research, with 

the aim of addressing empirical and methodological gaps in measuring aptitude; and (4) the 

formation of the research questions, which concern the internal validity of TALL as an 

https://www.tall-webtest.com/
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aptitude battery, the effects of modality on the results of measuring aptitude, and the 

predictive validity of TALL in relation to L2 proficiency.  

Chapter 3 will detail the methods employed, providing insights into the decision-

making process behind the development of TALL’s subtests, data collection procedure, and 

analysis plan.  

Chapter 4 presents the outcomes of the analysis conducted for Research Question 

1, followed by an accompanying discussion. This chapter concerns the internal validity of 

TALL as a battery for aptitude, evaluated through a validation plan that yields evidence for 

making (1) a generalisation inference about the representative nature of all subtests as 

measures for their intended constructs; (2) a scoring inference about the efficacy of the 

items in each subtest in assessing participants’ componential abilities; and (3) an 

explanation inference about TALL, as a battery for aptitude, aligning with the theoretical 

frameworks underpinning its construction.  

Chapter 5 will report the results of the analysis undertaken for Research Question 

2, which examines the effects of modality in measuring aptitude, followed by a discussion 

of these findings.  

Chapter 6 will present the findings from the analysis addressing Research Question 

3, which investigates the predictive validity of subtests of TALL in explaining participants’ 

L2-English proficiency reflected by their (self-reported) scores in the National Matriculation 

English Test (NMET). This chapter will also be accompanied by a discussion.  

Lastly, Chapter 7 (Conclusion) will summarise the main findings and contributions 

of the study. It will additionally outline the limitations of the study and propose avenues for 

future research. 
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CHAPTER 2: LITERATURE REVIEW & THE CURRENT 

RESEARCH 

 

This chapter starts with a review of language aptitude and L2 learning research and an 

outline of key theoretical frameworks that conceptualise the construct of aptitude in L2 

learning. A particular focus is on two theoretical frameworks that lay the foundation of the 

current research. It is followed by critiques of existing major aptitude batteries, which leads 

to the research gaps the current research attempts to address and the research questions 

it aims to answer. 

2.1 Aptitude for L2 learning 

Foreign language aptitude, while remaining a complex and frequently contentious research 

area of inquiry, continues to hold a central position in the field of L2 research. Despite 

general recognition of its role as a trait that significantly influences individual learners’ 

success in L2 learning, a consensus regarding the magnitude of its role, specific nuances 

of its influence, and the dimensions of the construct remain elusive (Doughty & MacKey, 

2021).  This section seeks to present a comprehensive overview of the intricate relationship 

between the concept of aptitude and L2 learning. Specifically, it aims to delve into the nature 

of aptitude as it pertains to L2 learning, explore its role in explaining various aspects of 

learning outcomes, and shed light on the current consensus and ongoing debates 

surrounding its role in learning. Additionally, this section unpacks the implications of 

theoretical perspectives of language aptitude on the development of aptitude measurement.   

2.1.1 Basic concepts of aptitude 

Foreign language aptitude is a significant construct related to individual differences. It is 

defined as a special talent that reflects a general capacity for acquiring a second or foreign 

language (Carroll, 1981, 1990, 1993; Dörnyei, 2005; Skehan, 1998; Sparks et al., 2011). A 

prominent researcher in foreign language aptitude, John Carroll, characterised the concept 

as an individual’s readiness and ability for learning a foreign language, along with the 

potential for achievement under favourable conditions. In this regard, aptitude is a synonym 

with ability, differing primarily in contextual use rather than meaning (Dörnyei, 2005). 

Accordingly, aptitude is considered an inherent trait that remains relatively stable over 

extended periods and is resistant to training. It may predict the rate or speed of learning 

and future learning progress through measures of achievement that serve as indicators of 

aptitude (Carroll, 1981).    
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While it is recognised as one of a number of key factors (among others such as 

motivation, learning experience, and context) that determines language learning success, 

foreign language aptitude is specifically defined as cognitive factors that are a composite 

construct encompassing various abilities of readiness to learn a second language (Carroll, 

1981). It is also conceptualised as being distinct from other cognitive individual differences, 

such as general intelligence. The analysis of three measures, i.e., L2 proficiency, language 

aptitude, and two types of intelligence (verbal intelligence and reasoning) by Sasaki (1996) 

revealed that aptitude and intelligence were distinct from each other according to first-order 

factor analysis. However, the presence of a factor that is common between aptitude and 

intelligence, that is, analytic ability, was confirmed through Sasaki’s second-order factor 

analysis. These findings suggest that aptitude and intelligence are interconnected, while 

components of aptitude in Carroll’s model (1962, 1981) such as phonetic coding ability and 

rote memory are independent of intelligence. In addition, the meta-analytical findings from 

Li (2016) showing strong and positive correlations between aptitude and intelligence also 

suggests that the two constructs share a large overlap but remain non-identical.  

2.1.2 Aptitude and L2 learning research 

Decades of L2 learning research have shown that language aptitude, as the second 

strongest variable after the age of onset (that is, the age when learners are first meaningfully 

exposed to the L2), typically accounts for 10% to 20% of the variance in the prediction of 

the ultimate L2 attainment (Granena & Long, 2013). Despite the fact that it has experienced 

varying interests and attention in the field of second language acquisition (SLA) research, 

language aptitude research has (re)gained a prominent position in the research landscape 

over recent years (Vuong & Wong, 2019). An important shift of aptitude research involved 

the transition from a main focus on trying to predict the success of language learning using 

the results from aptitude tests towards a greater focus on explaining the outcomes of 

specific processes and aspects in L2 learning to gain a deeper understanding of the 

constituent elements of aptitude and their roles (Wen et al., 2019).  

Comprehensive systematic reviews provide cumulative evidence that aptitude plays 

an important role in L2 learning. For example, Li (2016) compiles the results of 66 empirical 

studies that investigate the correlations between L2 learning achievement and aptitude 

components reflected in the batteries of the MLAT (Carroll & Sapon, 1959) and the PLAB 

(Pimsleur, 1966). The results showed an overall correlation of r = .49 (95% CI= [.45, .54]) 

between aptitude and general L2 proficiency, with the component of phonetic coding ability 

being the strongest predictor, and rote memory the weakest predictor. The examination of 

the effect sizes concerning aptitude, as measured through comprehensive test batteries, 
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revealed moderate correlations (r > .30) with the criterion variables (that is, L2 knowledge 

and skills). However, aptitude had a weak association (r = .15) with vocabulary knowledge, 

and a non-significant correlation with L2 writing skill. The component of phonetic coding had 

a stronger correlation with vocabulary knowledge (r = .38) than with other outcome variables, 

and it had a weak correlation with listening skill (r = .12). Language analytic ability was 

reported as a stronger predictor for grammar knowledge (r = .39) and reading skill (r = .35) 

than for other L2 outcomes. Rote memory did not appear to be a strong predictor of L2 

knowledge and skills. The key message conveyed from this meta-analysis is that the 

predictive power of aptitude outperforms other individual variables, such as working 

memory, motivation, and anxiety. Thus, aptitude can be considered as an effective predictor 

of L2 achievement, although its prediction of various elements within L2 learning outcomes 

differ. Li’s earlier (2015) meta-analysis, based on 33 studies using either the MLAT or the 

adapted batteries modelled on the MLAT, synthesises the role of aptitude in explaining 

grammar acquisition. It reports an aggregate effect size of .31 with narrow confidence 

intervals, supporting the conclusion that aptitude plays a significant role in L2 

morphosyntactic learning, and this effect has been confirmed in both naturalistic and 

instructed L2 learning contexts.  

More recent studies continue to provide empirical evidence to support the important 

role of aptitude in different aspects of L2 learning. For example, in the aspects related to 

phonological attainment and comprehension of auditory input, Saito’s (2019) investigation 

on the role of aptitude in L1-Japanese learners’ English pronunciation attainment indicated 

that phonological analysis and memory in aptitude, measured by the LLAMA tests (Meara, 

2005), may predict the occurrence of advanced L2 segmental proficiency attainment in an 

instructed context. Sok and Shin (2021) investigated the influence of individual differences 

on the listening comprehension of L1-Korean English-as-a-foreign-language (EFL) learners 

and found that aptitude (measured by the MLAT-elementary version) predicts the listening 

performance of L2 though it is mediated by metacognitive awareness. Furthermore, in terms 

of grammar and vocabulary learning and writing competence, Li et al. (2019) provides 

empirical evidence on the role of specific components of aptitude (i.e., language analytic 

ability measured by the PLAB and executive control working memory measured by an 

operation span test) in relation to L2 grammatical learning under different instructional 

conditions. The results suggest that language analytic ability can influence the outcomes of 

learning under conditions without external assistance (i.e., explicit instructions and 

interactional feedback), and WM is associated with performance when feedback was 

provided within the task. Mujtaba et al., (2021) examined the role of aptitude, WM and 

vocabulary size on L2 English learners’ writing performance and found that subtests (i.e., 
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LLAMA_B and LLAMA_E) of the aptitude measurement, receptive vocabulary size, and WM 

(measured by an operation span test) were evidenced as significant predictors of L2 writing 

performance. 

A comprehensive synthesis that includes sixty-five studies by Li and Zhao (2021) 

provides an overview of the methods used to investigate the role of language aptitude in 

SLA. This synthesis reveals that, as a multi-facet construct, aptitude may display varied 

magnitudes of prediction on different aspects of L2 learning. The discrepancy of empirical 

evidence is due to (a) different measurements used to operationalise aptitude as a set of 

latent abilities, conceptualised in the underlying aptitude theoretical frameworks, (b) 

nuanced aspects of L2 learning and processing measured by a large variety of tests, and 

(c) moderating factors in relations to L2 learning settings (naturalistic and instructed learning) 

and other individual difference variables (e.g., learners’ age and learning experience). In 

the following sections, aptitude theories and measurements will be reviewed, providing 

critiques of existing aptitude measures, and offering rationales for the current 

methodological endeavour. 

2.1.3 Language aptitude theories   

Driven by collaborative efforts from educational psychology, applied linguistics, and 

cognitive (neuro)science, the concept of foreign language aptitude has undergone 

significant modifications since its inception and continues to evolve (Wen et al., 2017).  This 

section sets out to review the advances in language aptitude theoretical construction based 

on some comprehensive reviews in the field (e.g., Li, 2019; 2022; Wen et al., 2017), followed 

by the introduction of two theoretical models, i.e., the Stages Approach (Skehan, 2016) and 

the Phonological / Executive (P/E) WM Model (Wen, 2016), which are the theoretical 

foundations of the current research. 

The Carrollian approach  

The contributions of American educational psychologist John Carroll and his work nearly 

seven decades ago cannot be ignored in any review of foreign language aptitude research. 

Carroll’s theory of aptitude lays the foundation for the Modern Language Aptitude Test 

(MLAT) (Carroll & Sapon, 1959), which is known to have the highest predictive validity 

among all language aptitude tests according to Li’s meta-analytic review (2015, 2016).  

Carroll (1962, 1981, 1990, 1993) conceptualised aptitude construct as consisting of four 

measurable abilities: (1) phonetic coding ability to code and retain unfamiliar auditory input; 

(2) grammatical sensitivity to identify the linguistic functions of words in sentences; (3) 

inductive language learning ability to generalise patterns based on the examples from the 
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input; and (4) associative memory to form and retain the link between verbal elements in L1 

and L2 in memory. 

The Carrollian approach was theoretically underpinned by behaviourism, a learning 

theory that also influenced the audiolingual approach to language teaching (Li, 2019). This 

influence is exemplified by methods of mechanical drills, rote memorising, and grammar 

instruction. As reviewed by Li (2019), the Carrollian approach exhibits the following 

characteristics that received criticism and sequentially informed the advancing of aptitude 

theories. First, aptitude serves as a determinant of learning success, focusing on learning 

outcomes rather than learning processes. Second, aptitude is considered a unified 

construct with validity based on a composite aptitude score measured by the MLAT. This 

implies that there is no room for the understanding that learners can be strong in one 

component while having weakness in another ability. Third, aptitude is conceptualised as a 

trait involved in the initial stages of learning. While this does not imply that aptitude becomes 

insignificant in advanced learning, it suggests the components measured by the MLAT may 

differ from the type(s) of aptitude more relevant to advanced learning. Furthermore, the 

componential abilities only pertain to the linguistic aspects of L2 learning and do not 

encompass the ability of using L2 appropriately in various communicative situations, as the 

MLAT solely focuses on measuring comprehension of linguistic materials without involving 

language production.    

The Carrollian approach, according to Li’s (2022) review, proposes that aptitude is 

primarily associated with instruction that involves learners’ conscious, laborious processing 

of language materials, making it pertinent to explicit or instructed learning rather than implicit 

learning. 

Since the foundation laid by Carroll’s theory and the dominant applications of the 

MLAT battery anchored in the Carrollian theory, a large body of empirical evidence has 

been generated on the positive correlation between aptitude and L2 learning outcomes. 

This situation, however, did not seem to fuel further theoretical development of language 

aptitude of relevance to L2 learning. It has been claimed to fall far behind (before the start 

of the twenty-first century) when compared to the theoretical progress of L2 motivation, an 

equally important factor among all individual differences that has been purported to predict 

L2 learning outcomes (Wen et al., 2017).  The relatively limited empirical research and 

theoretical development in the aptitude-related area were possibly due to a perception that 

language aptitude is a relatively fixed trait with relevance mainly to (outdated) language 

teaching approaches such as audiolingualism. The research landscape was predominantly 

driven by Carroll’s theory and the comparison design of pre‒post learning outcomes using 
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the MLAT as the measurement (Skehan, 1998, 2002).  This situation started to improve 

with several significant lines of inquiry in a new wave of theorising, leading to a variety of 

new conceptualisations of language aptitude that went beyond Carroll’s ideas.     

Linguistic Coding Differences Hypothesis (LCDH) model 

The LCDH model, proposed by Sparks & Ganschow (2001), is considered a variant of the 

Carrollian approach (Li, 2019). Based on the assumption that L1 and L2 learning share the 

same set of cognitive skills (Ganschow & Sparks, 1996), this model proposes that aptitude 

for L2 learning is simply a carryover of aptitude for L1 learning, and that L1 skills of learners 

are predictive of their additional language achievements. The model conceptualises four 

basic components of aptitude: (1) phonological / orthographical skills of L1 and L2, including 

phonetic coding and phonological processing ability; (2) language analytic ability of L1 and 

L2, including comprehension, grammar, vocabulary, and inductive language learning; (3) 

IQ (Intelligence Quotient) / memory skills, including intelligence and paired associate 

learning measures of L1 and L2; and (4) self-perceptions of motivation and anxiety of L2.  

 Two critical comments by Li (2019) question the theoretical conceptualisation of this 

model and its validation evidence: First, L1 skills needs to be clarified, particularly in terms 

of whether vocabulary and reading comprehension should be considered as language 

achievements rather than cognitive abilities. Second, the correlation between L1 skills and 

L2 aptitude could be the result of another unexamined variable such as motivation. Thus, 

the correlational or predictive relationships between L1 skills, L2 aptitude and L2 

achievements need to be clarified. However, as an expansion upon Carroll’s four-factor 

model, LCDH model highlights the significant alignment of L1‒L2 language analytic skills 

and purports to include a phonological measure of L1 and L2 in aptitude measurements. 

The implication of adding components of cross-linguistic phonology/orthography decoding 

skills in language aptitude research can be informative to the development of aptitude 

measurements.  

Aptitude-Treatment-Interaction (ATI) approaches and Aptitude 

Complexes/Ability Differential (ACAD) frameworks 

The ATI approaches, introduced by Snow (1991), conceptualises aptitude as any factors of 

individual differences, including not only cognitive factors but also affective factors that 

influence learning. It emphasises the interaction between aptitude and learning conditions, 

suggesting that learners with different attitude profiles may benefit differently from various 

types of instruction. Specifically, low-aptitude learners may benefit from structured materials, 
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and high-aptitude learners may excel when they are encouraged to generalise patterns and 

rules through their own cognitive abilities.   

Although the ATI approaches define aptitude differently from a narrow 

conceptualisation that specifies aptitude as cognitive variables in L2 research, these 

approaches have been instructive to the theoretical development of aptitude pertaining to 

L2 learning (Li, 2019). Robinson (2002a, 2005, 2007, 2012) proposed the Aptitude 

Complexes/Ability Differential frameworks, expanding on the ATI approaches, which 

provide a new perspective in conceptualising L2 field-specific aptitude as distinct clusters 

of cognitive abilities, known as aptitude complexes, involved in different learning conditions. 

The frameworks incorporate two hypotheses: the Aptitude Complexes Hypothesis contends 

that a collection of fundamental cognitive skills (e.g., processing speed, pattern recognition, 

phonological working memory capacity) combined to form higher-order aptitude complexes 

(e.g., noticing the gap, memory for contingent speed), which can be used in specific learning 

tasks; the Ability Differential Hypothesis states that L2 learners exhibit variations in cognitive 

abilities, resulting in their distinct profiles in the relevant aptitude complexes.  

Robinson’s (2005) frameworks are presented in a hierarchical wheel-shape diagram 

(p. 52‒53), as shown in Figure 2.1, in which ten first-order abilities situated in the innermost 

circle, the aptitude complexes in the second circle, the task aptitudes in the third circle, and 

the pragmatic/interactional abilities/trait in the most outward circle. The abilities and aptitude 

complexes in the two inner circles contribute largely to initial input-based learning, and the 

outer circles of task aptitudes and broader capacities are more related to task performance 

and transferable to real-world interactive settings. The frameworks also postulate that adult 

learning is predominantly a conscious process, implying very little role for implicit aptitude 

(Li, 2022). 
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Figure 2.1 The diagram of Aptitude Complexes/Ability Differential frameworks 

 

The ACAD frameworks, as observed in the comprehensive reviews of aptitude 

theories and L2 learning research (e.g., Li, 2019; Wen et al., 2017), propose that the 

relevance of aptitude in L2 learning varies depending on the content of learning and 

instructional conditions. This proposal, in turn, suggests a detailed representation of 

dynamic interactions underpinning human cognitive abilities in specific educational contexts. 

The frameworks can be instructive to the development of aptitude theory as it identifies the 

dynamic interaction between aptitude profiles and task complexity and specific educational 

contexts. This characterises the ACAD frameworks as having a significant advantage by 

aligning with ATI approaches, which holds that different methods of L2 learning and 

teaching are differentially associated with components of language learning aptitude 

(Dörnyei, 2005). The concept of aptitude complexes, representing various combinations of 

aptitude components, implies their varying significance in diverse learning environments. 

Thus, the frameworks are in line with the current shifts to “micro” approaches that integrate 

aptitude measures into experimental or quasi-experimental research designs to examine 

instructional comparisons or intervention procedures (Skehan, 2019). However, the 

dynamic nature postulated in the aptitude complexes pose challenges for collecting 

empirical evidence to testify the plausibility of the theoretical hypotheses in the ACAD 

frameworks.    

Cognitive Ability for Novelty in Language Acquisition-Foreign (CANAL-F) model 

The CANAL-F model (Grigorenko, Sternberg & Ehrman, 2000) has been proposed, relying 

on Sternberg’s (1997, 2002) conception of successful intelligence that claims to capture the 
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fundamental nature of human abilities. The model consists of three aspects: analytic, 

creative, and practical. Based on the hypothesis that intelligence and aptitude play different 

roles in foreign language learning, it emphasises the abilities to handle novel language 

occurrences when learning a new language. As such, the model proposes new parameters 

about how language aptitude should be tested.  First, rather than simply testing memory 

and analytic skills, creative and practical language learning abilities should be tested. 

Second, the need for a more in-depth evaluation of learners’ aptitude should be satisfied by 

providing sub-scores that can inform the appropriate types of training rather than just a 

general language-aptitude score. Third, the use of dynamic testing is considered, where 

testing and training should take place simultaneously, providing a simulation of learning in 

real time in which aptitude can be assessed (Sternberg, 2002).    

 To achieve the above aims, a new language aptitude test, the Cognitive Ability for 

Novelty in Acquisition of Language as applied to foreign language test (the CANAL-FT) 

(Grigorenko et al., 2000), was developed on the CANAL-F model to reflect the focus on the 

ability of coping with novelty in L2 learning. The test engages the participants in a simulated 

setting where they are gradually exposed to an artificial language and instructed to complete 

several learning activities by which their aptitude is measured.  The authors propose five 

knowledge acquisition processes, i.e., selective encoding, accidental encoding, selective 

comparison, selective transfer, and selective combination, which, in turn, are 

operationalised at four linguistic levels, i.e., the lexical, morphological, semantic, and 

syntactic levels of processing. Specifically, the lexical level addresses how a person learns, 

comprehends, and uses vocabulary items. The morphological level tackles the structures 

and derivations of words. The semantic level, which is based on knowledge from higher 

order units of sentences and paragraphs, handles the understanding and use of the 

meaning of the words learners learn. The syntactic level manages the acquisition, 

comprehension and application of the grammatical rules that link the words to the higher 

order units. Unlike previously developed aptitude measurements, such as the MLAT, the 

CANAL-FT addresses the modes of input (visual and oral) in its design that are involved in 

different types of language tasks, that is, the visual mode in reading and writing, and the 

oral mode in listening and speaking. This test will be introduced in detail in Section 2.2.1.  

The memory-incorporated models and the High-Level Language Aptitude 

Battery (the Hi-LAB)  

The integration of WM in the aptitude model is clearly supported by a considerable body of 

evidence from studies that examine the relationships between WM, aptitude, and language 

learning,  suggesting an important role for WM as components within foreign language 
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aptitude.  For example, Robinson (2002b) found that WM (measured by a reading span test) 

had a moderately strong correlation with language aptitude scores in Sasaki’s (1996) 

Language Aptitude Battery for the Japanese, which is a three-section measurement based 

on the MLAT and the PLAB. Similarly, Sáfár & Kormos (2008) found that phonological short-

term memory (PSTM) of WM (measured by a nonword repetition task) had positive 

significant correlation with the inductive ability of aptitude though not with the total aptitude 

scores. The authors, therefore, suggested that the storage capacity, not the processing and 

executive control function, of WM could be a cognitive ability distinct from traditional aptitude 

constructs. Bolibaugh & Foster (2013) also discovered that the variations of adult learners’ 

individual differences in PSTM predicted both learning rate and ultimate attainment. The 

evidence from these studies suggest that various aspects of WM play important roles in L2 

learning and processing and they should be represented in aptitude test (DeKeyser & Koeth, 

2011). 

The development of the High-Level Language Aptitude Battery (Hi-LAB) (Linck et al. 

2013) has contributed significantly to the theoretical development of foreign language 

aptitude. The battery was designed to target gifted adult learners, and thus it could 

accurately predict and explain their high levels of L2 competence based on the 

componential structure of the battery built on advancement of the underlying theoretical 

model. Specifically, the Hi-LAB improves the measurement of aptitude in several ways, 

which include the theoretical advancement of (i) incorporating WM measures for executive 

control function and PSTM; and (ii) conceptualising components that underlie implicit 

learning, which is claimed as crucial during advanced stages of L2 learning by adults. In 

addition, methodological innovations exist for measuring cognitive components of aptitude 

through computer-based cognitive tasks (Doughty, 2019). Thus, the final componential 

battery measures multiple facets of cognitive abilities, i.e., WM of executive function and 

PSTM, Associative memory, Long-term memory retrieval, Implicit learning, Processing 

speed, and Auditory perceptual acuity.  

 The validation study of the Hi-LAB (Linck et al., 2013) evidenced that this battery 

could distinguish between a learner group of “successful” and a group of “very successful”. 

However, the effectiveness of its sub-tests in separating the two groups varied. The results 

revealed that PSTM, Associative memory, and Implicit learning were three subtests that 

had the highest discriminative power, whereasthe Executive function of WM, Long-term 

retrieval memory, Processing speed, and Auditory perceptual acuity were not as effective 

in distinguishing the two groups. Although this sophisticated battery underpinned by 

theoretical foundations in cognitive science was perceived as an exciting advancement in 
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measuring aptitude, it has not been validated by further research conducted by researchers 

other than the developers and their associates, which is regretfully due to the restriction of 

its availability to the research community. Section 2.2.3.2 will provide an overview on this 

aspect.  

The integration of WM in the theoretical framework of language aptitude is also 

reflected in the Stages Approach (Skehan, 2002, 2012, 2016) that is proposed to take 

both language and memory into account in conceptualising language aptitude. This 

theoretical framework will be introduced in the following section.   

As reviewed above, aptitude research has generated fruitful knowledge over the 

past few decades, yet no peculiar hypothesis has emerged as the dominant theoretical 

framework to conceptualise aptitude construct, mirroring the dynamic and complex nature 

of L2 learning theories. The emerging theoretical perspectives in aptitude can provide 

frameworks for the development of instruments to measure the proposed aptitude construct, 

a critical need for advancing the evidence-based knowledge of aptitude for L2 learning.  It 

is worth noting that the above review of aptitude theories does not include a synthesis of 

perspectives from cognitive neuroscience, being suggested as a vital part of aptitude 

conceptualisation in the field (see the reviews in Li, 2019, 2022; Wen et al., 2017), simply 

because this branch of work engages different research paradigms and techniques that the 

current study does not involve.  

The following two sections will introduce two instructive theoretical frameworks, that 

is, Skehan’s Stages Approach integrated with Wen’s Phonological / Executive Model, which 

inspired the current research and provide its theoretical foundations. 

2.1.4 Theoretical frameworks of the current research 

2.1.4.1 The Stages Approach 

The Stages Approach (Skehan, 2002, 2012, 2016) aims to incorporate the SLA-related 

insights that have emerged since the creation of the MLAT (Carroll & Sapon, 1959). These 

insights include, for example, the recognition of different learning processes involved in the 

development of interlanguage and the importance of specific types of instruction for learners 

of ages beyond the close of the critical period in various learning contexts. To achieve this 

goal, Skehan introduces the concept of exploring sequential stages of interlanguage 

development into the conceptualisation of aptitude, particularly in SLA. He proposes an 

alternative approach to comprehending the relationship between aptitude and the 

development of L2. This SLA-compatible aptitude approach posits that individual 

differences existing in the developmental stages of language learning can predict learning 
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outcomes. The model outlines a series of developmental phases in SLA and estimates the 

effects of individual differences on learning outcomes in suggested phases. Based on these 

considerations, measurements of aptitude can be established (Wen & Skehan, 2021).   

The Stages Approach explores the theoretical aspects of foreign language aptitude 

beyond Carroll’s classic four-factor framework. It emphasises the importance of 

incorporating not only general cognitive skills but also language-specific abilities within the 

construct to achieve a balanced conceptualisation of aptitude related to L2 learning. The 

theoretical foundation of the model proposes that L2 learning is based on partial access to 

the innate capacity (i.e., Universal Grammar) for acquiring language. However, this innate 

capacity is supplemented by other structures and processes (Skehan, 2019). As a result, 

language is argued to involve “a hybrid system in which domain-general and domain-

specific capacities co-exist” (p. 57). Consequently, language aptitude is purported to consist 

of components related to individual differences in both the language acquisition 

device―entailing domain-specific capacities for identifying language patterns and 

processing mechanisms―and the language-making capacity, involving domain-general 

cognitive operations like general implicit learning, pattern learning, and working memory. 

The construction of the model also reflects a shift in aptitude research from a ‘macro’ 

approach, where aptitude is explored in relation to L2 ultimate attainment (thus proposing 

its role in predicting learning achievement, as represented by the MLAT), to a ‘micro’ 

approach, which involves incorporating measures of aptitude into experimental or quasi-

experimental research designs to investigate instructional comparisons or intervention 

procedures (Skehan, 2019).  

The stages proposed in the model and the cognitive processing involved in each 

stage are listed in Table 2.1 (based on Wen et al., 2017; Wen & Skehan, 2021) together 

with the corresponding aptitude constructs that can inform the development of aptitude 

measurements.  

The model originally outlines nine stages of language learning (Skehan, 2002, 2016), 

which are labelled as L2 cognitive processes. Skehan (2016) suggests a broad distinction 

between the first half of the stages (that is, the L2 cognitive processes of Input processing, 

Noticing, Pattern identification, Complexification, and Handling feedback) and the second 

half of stages (that is, the cognitive processes of Error avoidance, Automatisation, Creating 

a repertoire and achieving salience, and Lexicalisation). The first half of the stages relates 

to developing knowledge (which involves noticing linguistic input and applying analytic 

ability to extrapolate patterns from noticed input extensively), whereas the second half 

focuses on developing control over that knowledge developed in actual use (which involves 
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accessing the language system and proceduralising learned knowledge for production). 

The Stages Approach essentially addresses the aptitude construct within the framework of 

cognitive abilities in SLA. It aligns with the notion that working memory and language 

aptitude (conceptualised by the Carrollian approach) play significant roles in aspects 

involving input processing, noticing, pattern recognition, complexification, and feedback 

(Wen & Skehan, 2021).  

 

Table 2.1 The Stages Approach 

SLA stages L2 cognitive processes Aptitude constructs 

Input-oriented Input processing (segmentation) Attentional control 

Working memory 

Noticing Phonetic coding ability 

Working memory 

Development of 

interlanguage 

Pattern identification Phonetic coding ability 

Working memory 

Language analytic ability 

Complexification  

(e.g., generalising, extending, 

restructuring, integrating ) 

Language analytic ability 

Working memory 

Handling feedback Language analytic ability 

Working memory 

Performance-

oriented 

Error avoidance Working memory 

Retrieval memory  

Automatisation Retrieval memory 

Creating a repertoire,  

achieving salience 

Retrieval memory 

Chunking 

Lexicalisation Chunking 

 

Note: Aptitude constructs in italics are components not included in Carroll’s four-factor model. 

 

The preliminary assumption, as elucidated by Skehan (2016), is that each stage in 

the list possesses sufficient distinctiveness to warrant research, thereby informing the 

creation of potential aptitude subtests. The first half of the set of knowledge‒acquisition 

(establishing knowledge) phases generally aligns with the aptitude constructs proposed in 

theoretical frameworks. However, the latter half of the stages, which focuses on enhancing 

knowledge control, presents greater challenges in establishing connections with aptitude 

constructs. Regarding the comprehensiveness of the subtests in representing the 
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componential constructs, existing aptitude measures―across the totality of measures 

available―perhaps encompass all the constructs involved in the first half of the stages, 

even though a single battery may not yet have included subtests for all constructs 

completely. This will be discussed in Section 2.2.2.1.  

A second point asserted by Skehan (2016) is that auditory or memory processes 

are not explicitly included in the list of the stages. This omission is not intended to downplay 

the importance of these processes as verbal learning abilities, which remain central to any 

aptitude measurements. They should undoubtably be included and examined in all existing 

aptitude measurements (p. 19).  

The construction of the Stages Approach provides valuable insights into the 

development of measures that require multiple subtests to represent various components 

of aptitude construct. This is elucidated by outlining a sequential list of phases in SLA, with 

the aim of enhancing the construct validity of aptitude measures (Skehan, 2016). 

Consequently, the model serves as one of the foundations for constructing aptitude subtests, 

enabling the consideration of the influence of cognitive individual differences on learning 

effectiveness at different stages. It also facilitates the application of distinct aptitude 

subtests to predict stage-specific learning outcomes and reflect the progress of SLA (Wen 

& Skehan, 2021).  

2.1.4.2 WM and the P/E Model  

Working memory and L2 learning   

WM is a vital cognitive function enabling individuals to store and manipulate task-relevant 

information in their mind during various cognitive activities. It serves as a limited capacity 

memory system underlying critical cognitive processes, including language comprehension 

and production (Miyake & Shah, 1999). WM involves the temporary storage, manipulation, 

and maintenance of information essential for ongoing mental operations, whether linguistic 

or visual (Cowan, 2017; Oberauer et al., 2018; Schwieter, et al., 2022). Despite its limited 

capacity, WM is assumed to play a larger role than long-term memory in subserving human 

cognitive and action (e.g., Baddeley et al., 1988; Miyake & Shah, 1999; Lieder & Griffiths, 

2020, cited in Wen & Jackon, 2022). 

Although WM has been considered a general cognitive function since its original 

conceptualisation and has been argued as domain-general cognition in the processes of 

language acquisition (Roque-Gutierrez & Ibbotson, 2023), extensive research has been 

conducted to re-conceptualise the construct of WM, aiming to tailor it to specific domains of 

human cognition and behaviour (Logie et al., 2021). Notable early studies that discussed 
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the role of WM in explaining individual differences in language learning and outcomes, such 

as those by Gathercole and Baddeley (1993) and Baddeley (2003), have significantly 

influenced how L2 researchers conceptualise the role of WM in L2 learning. This 

conceptualisation is closely tied to the seminal model of WM introduced by Baddeley and 

Hitch (1974), which has evolved over almost four decades of research (Williams, 2012).  

This model initially posited two functional systems: one for processing and 

temporarily storing information (the short-term memory), consisting of two dissociable 

components, that is, the Visuo-spatial Sketchpad for visual and spatial information and the 

Phonological Loop for verbal information. The other system, termed the Central Executive, 

with limited capacity, facilitates interaction between the two components and the entire 

system, including long-term memory (LTM), to handle task requirements. However, this 

model faced a significant challenge due to extensive evidence for the predictive capacity of 

WM Span. Specifically, it struggled to explain good performance on the WM span test given 

that neither the phonological loop nor the sketchpad was modelled to be capable of holding 

multiple sentences, and when the central executive was primarily seen as an attentional 

system. Consequently, the model was expanded to include an additional component, the 

Episodic Buffer, added by Baddeley (2000). This component functions to bind multi-

dimensional representations or episodes with storage capacity for conscious access 

(Baddeley, 2017).  Hence, the model incorporates the episodic buffer functioning as a 

temporary storage system to absorb inputs from diverse perceptual sources and integrate 

them with information from different long-term memory components. This process is 

assumed to be accessed through conscious awareness to regulate the distribution of 

attentional resources across various storage subcomponents under the control of central 

executive, given the limited capacity of WM (Baddeley, 2022).  

Within the scope of SLA research, various features of WM, including its limited 

capacity, attention control and allocation, executive functions in maintaining task-related 

information and inhibiting interference, as well as the phonological loop for storing novel 

linguistic occurrences, have gained significant attention. These features play vital roles in 

explaining individual differences involved in different aspects of L2 learning processes and 

outcomes, such as sentence processing, reading, speaking, lexical development, and 

overall proficiency (Juffs & Harrington, 2011; Williams, 2012).  Meta-analysis results 

indicate a positive association between WM and both L2 processing and proficiency 

outcomes, with an estimated effect size of .255 (Linck, et al., 2014). Different WM 

components, such as PSTM and central executive function, have also been shown to 

influence various aspects of L2 acquisition and processing. For example, PSTM is 
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particularly relevant to the learning of vocabulary items (Abu-Rabia, 2001; Speciale et al., 

2004; Gathercole, 2006) and formulaic sequences and grammatical rules (French & O’Brien, 

2008; Robinson, 1997; Williams & Lovatt, 2003), whereas the central executive plays a 

more crucial role in cognitive resource-demanding processing and real-time performance 

(Havik et al., 2009; Mackey et al., 2010; Sagarra, 2007).   

Phonological / Executive (P/E) model 

In alignment with the recent trend of modelling a domain-specific WM system, Wen (2016) 

introduces an integrated framework for WM. This framework aims to unveil emerging 

patterns in hypothetical relationships postulated between WM and the processes and 

outcomes of L2 learning, which it predicts and explains. Wen’s (2016) framework is rooted 

in the understanding of WM’s components and functions regarding potential effects on 

specific aspects of L2 learning and processing. The framework draws on theoretical 

assumptions underlying the conceptualisation of WM construct in various models, whether 

as a multi-componential system proposed by Baddeley and colleagues (see Baddeley, 2022 

for reviews), or as a cognitive system with embedded executive processes by Cowan (1999), 

or as a cognitive capacity for attentional control by Engle (2002).  

This SLA domain-specific WM is further elucidated by Wen and Jackson (2022) and 

Wen et al. (2021) as (a) a collection of cognitive resources of limited capacity, (b) a construct 

consisting of multiple components and embedded mechanisms, and (c) a set of micro-level 

subprocesses that can be operationalised and measured separately. The framework, 

known as P/E model, proposes two key components of WM in language learning and 

processing: First, phonological WM (PWM) consists of a short-term phonological store and 

an articulatory rehearsal mechanism, functioning as “a language learning device” playing 

the roles in the storage, chunking (grouping information into meaningful units), consolidation, 

and retrieval of novel phonological forms (Wen & Skehan, 2021, p. 10). Second, executive 

WM (EWM) refers to the attention control and executive function of WM that composes 

subprocesses for information updating, task-switching, and inhibitory control (Miyake & 

Friedman, 2012), serving to control and modulate processes during L2 comprehension and 

production, as well as L2 interactions of feedback or recasts (Wen & Jackson, 2022). 

The P/E model provides a foundational theoretical framework that proposes criteria 

for empirical investigations to uncover the role of WM as a critical construct of individual 

differences in SLA research. The model’s structure is also compatible with the two 

categories of WM span tasks informed by measurement construction in cognitive 

psychology (Conway et al., 2005). Simple memory span tasks, such as digit span, letter 
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span, and nonword span tasks, can measure PWM’s storage aspect, providing empirical 

evidence for understanding PWM’s role underlying aspects of learning lexical items, 

phrases, or formulaic chunks, and morphosyntactic structures in L2 learning (Wen & 

Skehan, 2021). Conversely, complex span tasks, like reading span and operation span 

tasks, which involve processing-plus-storage in task design, can measure the inhibitory 

control functions of EWM (Wen et al., 2021). In summary, the P/E Model of is built on the 

presumption that WM constraints are integral to the language learning mechanisms, 

influencing and constraining L2 processing, and the evolution and long-term development 

of language (Wen & Skehan, 2021). 

However, despite P/E model’s availability to inform WM-related research in SLA, 

few methodological endeavours have been reported in SLA that aim to develop WM 

measurements tailored for L2 research since the proposal of P/E model. The heterogeneity 

of measurements used to investigate the role of WM as a multi-faceted construct in 

explaining variations in L2 learning may be resulting in an increasingly large body of 

inconsistent findings. Systematic review (e.g., Shin & Hu, 2020) of WM tasks used in L2 

research underscore the need to develop standardised measurements that can accurately 

assess WM in ways relevant to L2 learning. It is important to note that while the P/E model 

offers guidance for WM-related research in SLA and types of span tasks have been 

extensively validated in the field of cognitive psychology, developing reliable and valid WM 

measures for specific use in SLA still needs to address several theoretical and 

methodological challenges, which will be discussed in the following sections.   

2.2 Measuring language aptitude   

There exists a consensus within the field that aptitude comprises a set of cognitive abilities 

(Doughty & MacKey, 2021). Given that this construct is reflected in the performance of 

learners in responding to the tests used to measure the construct, aptitude construct is 

defined by what is measured in the aptitude tests (Li & Zhao, 2021).  This section offers an 

overview of major aptitude batteries that have been widely used or reviewed (e.g., by Li & 

Zhao, 2021; Skehan, 2023).  Subsequently,  associated theoretical inquiries and 

methodological considerations will be presented, providing a foundation for the current 

research, which aims to develop and validate a new aptitude battery.  

2.2.1 An overview of aptitude batteries  

The Modern Languages Aptitude Test (MLAT)  

Based on Carroll’s aptitude theory, the Modern Languages Aptitude Test (the MLAT) 

(Carroll and Sapon, 1957) stands as the most influential aptitude measurement (Li & Zhao, 
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2021). It provided compelling evidence in predicting L2 learning and influenced our 

understanding of the relationship between aptitude and L2 learning (Roehr-Brackin, 2022).  

For example, in systematic reviews, the MLAT demonstrates the highest predictive validity 

relative to other batteries (Li, 2015; 2016) and it constitutes contributes 58.8% of all aptitude 

measures used in L2 aptitude research (Chalmers et al, 2021).  

The MLAT contains five subtests, namely Number Learning, Phonetic Script, 

Spelling Clues, Words in Sentences, and Paired Associates. Specifically, the subtest of 

Number Learning assesses learners’ ability to acquire numbers in a new artificial language. 

Initially, learners listen to number names presented in one-, two-, and three-digit forms. 

During the testing phase, they are required to write down the numbers they hear in the 

testing phase. Phonetic Script is to evaluate learners’ ability to associate sounds with a 

written symbol. Participants learn phonetic scripts for specific sounds and are subsequently 

tested by matching the scripts with the corresponding sounds presented. The subtest of 

Spelling Clues measures learners’ aptitude for associating sounds with symbols based on 

their knowledge of English vocabulary. A typical question in this subtest involves presenting 

learners with a disguised word (e.g., kloz) spelled in an unconventional manner. Learners 

are then prompted to select one of five given options (e.g., attire, nearby, stick, giant, 

relatives) that best corresponds in meaning to the disguised word. The subtest of Word in 

Sentences requires learners to identify the linguistic functions of elements within sentences. 

It begins with practice questions. In each instance, a word in the first sentence is underlined 

and capitalised. Learners are instructed to identify a word in the second sentence that 

serves a similar role to the underline word in the initial sentence. Through this exercise, 

learners grasp the testing format and are subsequently required to complete the testing 

questions that measure their grammatical sensitivity to sentence elements. The subtest of 

Paired Associates, focusing on rote memory in language learning, assesses memorisation 

of words in a foreign language (Maya) alongside their corresponding English meaning.  

Learners are then tested on their ability to match each given test item with the appropriate 

meaning from five options.   

Although the MLAT is rooted in Carroll’s aptitude theory, it does not offer the one-

to-one correspondence with all four components (i.e., phonetic coding ability, grammatical 

sensitivity, inductive language learning ability, and associative memory) proposed by the 

theoretical framework. For example, Number Learning assesses both phonetic coding 

ability and associative memory. Moreover, concerns have been raised about the MLAT’s 

predictive power beyond the specific context of intensive language training using the 

audiolingual approach, which is conceived as the methodological assumption underpinning 
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Carroll’s model and the MLAT. However, these doubts regarding the applicability of the 

MLAT in diverse learning contexts have been resolved through empirical studies, indicating 

that aptitude as measured by this battery remains relevant as a predictor of learning in both 

naturalistic and instructed learning conditions (Roehr, 2012; Roehr-Brackin, 2022).  

The Pimsleur Language Aptitude Battery (PLAB)  

Sharing the similar theoretical foundation of Carrollian approach in conceptualising aptitude, 

the Pimsleur Language Aptitude Battery (PLAB) (Pimsleur, 1966) is directed at a specific 

learner demographic, encompassing grades seven through twelve (ages 12 to 18).  This 

battery consists of six distinct parts, with the initial two parts centring on learners’ self-

reported GPAs and a questionnaire regarding their interest in language learning. It is 

important to note that these components do not directly assess language knowledge or the 

aptitude construct. The remaining four subtests, integral to the measurement of aptitude, 

includes Vocabulary, Language Analysis, Sound Discrimination, and Sound‒symbol 

Association. Specifically, the subtest of Vocabulary evaluates learners’ grasp of English 

vocabulary. Stimuli words are presented, and learners are required to select those that 

closely approximate the given stimuli in meaning. For example, the word extended should 

be chosen from three other words (prompt, decreased, difficult) because it closely matches 

the meaning of the stimulus word prolonged. Language Analysis is the subtest designed 

to measure language analytic ability (also known as inductive learning ability). It engages 

learners in extracting grammatical rules from an artificial language. Test takers then apply 

these rules to answer questions. The process commences with vocabulary items and a 

sentence containing those items. Test takers induce grammatical rules and subsequently 

apply them to select the correct sentence conveying a designated meaning from four 

available options. The subtest of Sound Discrimination assesses the ability to differentiate 

similar sounds within a new language. Isolated words or phrases containing similar sounds 

are presented. Learners are subsequently prompted to identify which word occurs in each 

given sentence during the testing phase. The subtest of Sound‒symbol Association 

measures phonetic coding ability by exposing learners to auditorily presented pseudo words. 

Their task is to select the accurate spelling of the given words from four options based on 

their knowledge of English pronunciation and orthography.  

 Despite its inclusion of a subtest for inferring language structures from provided 

stimuli (a dimension not operationalised in the MLAT) and validation involving 6,000 

language learners (Li & Zhao, 2021), the PLAB has not gained popularity as an aptitude 

measurement for several reasons. First, the battery is primarily perceived as suitable for 

adolescent learners, thereby constraining its applicability in aptitude-related research that 
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targets diverse learner populations. Second, two of its components (i.e., GPA and 

motivation) are not cognitive abilities, potentially undermining the battery’s exclusivity as a 

measurement for language aptitude. Third, although the PLAB assesses certain 

components (such as phonetic coding ability and grammatical sensitivity based on inductive 

language learning ability) proposed in Carroll’s theoretical model, it notably omits 

associative memory, a crucial cognitive ability essential for learning a new language 

(Skehan, 2016).   

The Cognitive Ability for Novelty in Acquisition of Language‒Foreign Test (the 

CANAL-FT)  

Developed by Grigorenko et al. (2000), the Cognitive Ability for Novelty in Acquisition of 

Language‒Foreign Test (the CANAL-FT) is grounded in the CANAL-F theoretical model, 

which postulates that the ability for handling novelty plays a central role in language learning. 

This test is designed to simulate a naturalistic learning situation, progressively introducing 

an artificial language, Ursulu, across various cognitive processes on lexical, morphological, 

semantic, and syntactic levels. These cognitive processes are (a) selective encoding, which 

involves discriminating between relevant and less relevant information within a stream of 

input, aligned with learners’ specific goals; (b) accidental encoding, which is to encode and 

comprehend background information within the context, enhancing both comprehension 

and knowledge for production; (c) selective comparison, an integral process that involves 

determining the applicability of previously acquired knowledge to current tasks. This 

process is linked to learners’ capacity to retain ambiguous information in working memory; 

(d) selective transfer, which entails applying rules decoded or inferred from a previous 

situation to a new context; and (e) selective combination, combining the segmental data 

gathered from prior processes (selective and accidental encoding) with existing knowledge, 

to generate new knowledge. This new knowledge eventually modifies preexisting cognitive 

representations.  

 The CANAL-FT consists of nine sections, with five involving immediate recall and 

four (1‒4 below) mirroring these same sections but also with delayed recall. These sections 

are (1) Learning Meanings of New Vocabulary from Context; (2) Understanding the Meaning 

of Passages; (3) Continuous Paired-Associate Learning; (4) Sentential Inference; and (5) 

Learning Language Rules (tested solely on immediate recall). In these sections, learners 

are exposed to the characteristics of Ursulu contextualised within the knowledge of English. 

Their cognitive abilities related to encoding, storage, and retrieval of information are 

evaluated through immediate recall (occurring immediately after learning) and delayed 

recall (taking place at substantial interval after learning). Notably, the CANAL-FT is 
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distinguished by its incorporation of various input modalities, accounting for information 

processing in both visual and oral formats.  

 Grigorenko et al. (2000) validated the CANAL-FT on grounds of its convergent 

validity with the MLAT, discriminant validity compared to general intelligence measured by 

two tests, and predictive validity in relation to participants’ performance in a language 

course, as assessed by instructors. However, due to its government sponsorship with a 

diplomatic focus (Skehan, 2023), this aptitude battery has not been widely used in aptitude‒

L2 learning research, largely due to its limited availability to other researchers. While sample 

items are disclosed in the appendix of Grigorenko et al. (2000), the testing items employed 

remain largely unexplored by subsequent studies. The challenges posed by restricted 

accessibility in providing reliability and validity evidence will be further discussed in Section 

2.2.3.2. 

The LLAMA Language Aptitude Tests 

The battery of the LLAMA tests (Meara, 2005; Meara & Rogers, 2019) is another aptitude 

measure related to Carroll’s model and loosely based on the components of the MLAT. This 

battery aims to provide a more user-friendly, freely available, and engaging computer-based 

interface, leveraging technological advancements (Rogers, et al., 2017).  In this regard, the 

LLAMA tests, administered in a computer-based format, represent a methodological 

enhancement in measuring aptitude based on the Carrollian approach.  

Since its initial release in 2005, the developers of the LLAMA tests have maintained 

a continuous process of refinement, guided by feedback from the research community 

(Rogers et al., 2023). This iterative approach reflects a responsible and commendable 

academic endeavour. The three versions released (the 2005 Windows-based version, the 

web-based LLAMA v.2.0 in 2018, and the recently launched LLAMA v.3.0) primarily involve 

cosmetic enhancements to the user interface, rectification of a small number of item errors, 

scoring revisions, and the inclusion of user identification recording. Notably, the 

fundamental structure of subtests and content design remains largely unchanged.  

The battery consists of four subtests: (i) LLAMA_B is a vocabulary learning module 

that evaluates users’ associative memory by linking unfamiliar vocabulary items (names) to 

non-existing (fictional) objects presented in images; (ii) LLAMA_D is a subtest designed to 

measure phonetic recognition ability, in which participants are required to discriminate 

repeated sounds from new sounds; (iii) LLAMA_E is adapted from Phonetic Script in the 

MLAT. This subtest measures the ability to form sound‒symbol associations. Participants 

memorise visually presented symbols and their corresponding syllables, later applying 
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these associations to complex two-syllabic new sounds; and (iv) LLAMA_F, a grammatical 

inferencing test to measure inductive or analytic ability in language learning. Participants 

inductively work out grammatical and morphological rules (i.e., word order, nominal affixes 

for gender difference and plurality, conjugating prepositions) from pictures and 

corresponding verbal forms. They are then assessed on the application of these rules in 

forming sentences. LLAMA_F has undergone iteration in version 3, transforming into the 

sole subtest for participants’ language production (i.e., composing sentences based on the 

given lexical options) in the LLAMA battery.  

The LLAMA tests have emerged as widely used measurements in recent aptitude-

related research, largely attributed to their independence from a test taker’s L1 (Rogers, et 

al., 2017; Roehr-Brackin, 2021) and their open accessibility to researchers in the field, 

especially when other batteries like the MLAT and the Hi-LAB (Linck et al., 2013) are not 

available to individual researchers (Chalmers et al., 2021; Li & Zhao, 2021; Roehr-Brackin, 

2021). By 2021, this battery and its subtests had been referenced over 4,000 times in 

Google Scholar (Rogers et al., 2023) and featured in approximately 50 empirical studies 

published in international journals or book chapters (Bokander & Bylund, 2020).  

However, while the LLAMA tests have gained prominence, few studies have 

rigorously examined their internal validity before employing them in substantive research. 

Notable researchers, including the battery’s creator (Meara, 2005) and others (Singleton, 

2017), have raised concerns about their uncritical utilisation. Recent empirical evidence has 

further raised questions about its internal validity as an aptitude battery (Bokander & Bylund, 

2020) and the predictive validity of the original LLAMA (version 1) in relation to L2 learning 

outcomes (Bokander, 2023). In addition, a relationship between LLAMA_D and implicit 

learning has been suggested (Granena, 2013, 2019), followed by an increasing number of 

studies using LLAMA_D to measure aptitude in relation to implicit learning (e.g., Artieda & 

Muñoz, 2016; Saito, et al., 2019; Yalçın & Spada, 2016; Yi, 2018). However, construct 

validity of LLAMA_D as a measure of implicit learning aptitude has been questioned by 

Suzuki (2021a) and Iizuka and DeKeyser (2023).    

The High-Level Language Aptitude Battery (the Hi-LAB) 

The development of the High-Level Language Aptitude Battery (the Hi-LAB) (Linck et al. 

2013) aligns with the theoretical advancements in modern cognitive research, providing a 

robust foundation for conceptualising language aptitude and incorporating cognitive factors 

like WM in the battery.  The Hi-LAB, as its name suggests, is designed to differentiate 

exceptionally successful language learners from other individuals. Its conceptualisation of 
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aptitude is informed by research such as DeKeyser (2000), which underscores the 

significance of aptitude for adult learners. Consequently, the components within this battery 

are operationally defined, focusing on cognitive and auditory perceptual abilities pertinent 

to adult learners who exhibit the potential for high-level achievement in L2 learning.  

As outlined in Section 2.1.3, the Hi-LAB battery specifically targets gifted adult 

learners, enabling accurate predictions and explanations of their elevated levels of L2 

competence based on its proposed aptitude constructs. These constructs encompass 

several key elements: Working Memory, consisting of two sub-constructs of Executive 

Functioning (with Updating in Inhibitory Control and Task Switching components) and 

Phonological Short-term Memory (PSTM), Associative Memory, Long-term Memory 

Retrieval, Implicit Learning, Processing Speed, and Auditory Perceptual Acuity. To measure 

these constructs, the Hi-LAB employs eleven tests, including: (1) Running Memory Span 

measuring sub-construct of Updating of Executive Functioning of WM, (2) Antisaccade and 

(3) Stroop assessing Inhibitory Control of Executive Functioning, (4) Task Switching 

Numbers evaluating Task Switching of Executive Functioning, (5) Letter Span and (6) 

Non-Word Span targeting the sub-construct of PSTM, (7) Paired Associates assessing 

Associative Memory, (8) Available Long-term Memory Synonym evaluating Long-term 

Memory Retrieval, (9) Serial Reaction Time measuring both Implicit Learning and 

Processing Speed, and (10) Phonemic Discrimination and (11) Phonemic 

Categorization both measuring Auditory Perceptual Acuity.  

The Hi-LAB has distinctive features compared to the MLAT, which performs well at 

predicting learning at earlier stages in instructioned context.  The Hi-LAB battery includes 

WM measurements for executive control functions and PSTM, incorporating the concept of 

implicit learning, and employs computer-based cognitive tasks (Doughty, 2019). As a result, 

the battery is anticipated to measure diverse aspects of both domain-general cognitive 

abilities and domain-specific language perceptual abilities, combined in order to define the 

aptitude construct for high-level attainment among adult learners (Linck, et al., 2013). 

 The validation study of Hi-LAB (Linck et al., 2013) yielded results supporting the 

robust predictive validity, particularly of PSTM, implicit learning, and associative memory in 

predicting high-level attainment. It is also indicated that the predictive capabilities of the Hi-

LAB are more pronounced for listening than reading achievement, suggesting that potential 

benefit of incorporating measures of visual perceptual acuity in future versions of the battery 

(Doughty, 2019).  
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 While the initial validation study demonstrated promising results of predictive validity, 

further research is imperative, specifically to establish internal validity (including item quality 

and subtest construction based on the theoretical framework) and convergent validity (in 

comparison to other aptitude measurements). However, due to limited availability of this 

battery to the research community, studies on the Hi-LAB conducted by other researchers 

rather than the authors and their affiliates have been scarce in the last decade since its 

inception. This limitation hampers comprehensive knowledge about this battery and the 

underlying theoretical framework, despite claims of it being a significant advancement in 

language aptitude research (Linck et al., 2013).  

Summary of the section  

This section provided an extensive overview of various batteries that have been used to 

collect data related to language aptitude, significantly contributing to our understanding of 

this multi-faceted construct. These batteries are of great significance, as they provide 

scores that represent aptitude and contribute to its definition based on the aspects 

measured (Li & Zhao, 2021). Nonetheless, these batteries face a few theoretical and 

methodological challenges that could potentially compromise their instrumental validity. 

Consequently, these challenges underscore the need for efforts to design, validate, and 

introduce new aptitude measures. Subsequent sections will delve into these pertinent 

questions and challenges, providing the foundation for the development of a new aptitude 

battery in the current research. 

2.2.2 Theoretical inquiries on measuring aptitude 

2.2.2.1 What components should be included?   

Debates persist regarding the theoretical underpinnings of the multi-faceted construct of 

language aptitude and its role in explaining intricate aspects of L2 learning (Doughty & 

MacKey, 2021). The theoretical exploration of aptitude construct necessitates the creation 

of aptitude batteries, intrinsically linked to the development of aptitude measures. Given 

that an aptitude test needs to include various components measuring diverse aptitude 

constructs (DeKeyser & Koeth, 2011), this section aims to provide an overview of the 

componential constructs proposed in the theoretical models reviewed above, as illustrated 

in Table 2.2. These constructs are particularly relevant to the initial phases of language 

learning, focusing solely on language perception and excluding language production, as 

categorised by the Stages Approach (Skehan, 2016). Subsequently, this section presents 

a summary of whether these componential constructs are incorporated within existing 

aptitude batteries, as illustrated in Table 2.3. 
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Table 2.2 List of aptitude componential constructs in the theoretical frameworks 

Construct 

Theoretical frameworks  

Carrollian  LCDH ACAD CANAL-F Hi-LAB Stages 

Phonetic coding ability √ √ × √ √ √ 

Associative memory √ √ √ √ √ × 

Language analytic ability √ √ √ √ × √ 

Working memory × × √ √ √ √ 

 

Note. Keys to column headings: Carrollian = Carroll’s classic model; LCDH = the Linguistic Coding 

Differences Hypothesis model; ACAD = the Aptitude Complexes/Ability Differential frameworks; 

CANAL-F = the Cognitive Ability for Novelty in Language Acquisition-Foreign model; Hi-LAB = the 

High-Level Language Aptitude Battery; Stages = the Stages Approach; MLAT = the Modern 

Languages Aptitude Test; PLAB = the Pimsleur Language Aptitude Battery; CANAL-FT = the 

Cognitive Ability for Novelty in Language Acquisition-Foreign Test; LLAMA = the LLAMA Tests; √ = 

included,  × = not specified,  * = related 

Table 3.3 List of aptitude componential constructs in major existing batteries 

Construct 

Aptitude batteries 

MLAT PLAB CANAL-FT Hi-LAB LLAMA 

Phonetic coding ability √ √ √ √ √ 

Associative memory √ × √ √ √ 

Language analytic ability √ √ √ × √ 

Working memory × × * √ × 

 

Note. Keys to column headings: MLAT = the Modern Languages Aptitude Test; PLAB = the 

Pimsleur Language Aptitude Battery; CANAL-FT = the Cognitive Ability for Novelty in Language 

Acquisition-Foreign Test; LLAMA = the LLAMA Tests; √ = included,  × = not specified,  * = related 
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Phonetic coding ability 

The construct of phonetic coding ability, that is, the ability to code and retain unfamiliar 

auditory input, has been conceptualised as an important component of aptitude and 

included in almost all aptitude theoretical frameworks (except ACAD), as reviewed in 

Section 2.1.3. To be exact, the classic Carrollian model (Carroll, 1962, 1981, 1990, 1993) 

includes phonetic coding ability as one of the four measurable abilities. The LCDH model 

(Sparks & Ganschow, 2001), similarly, includes phonetic coding ability as one of the four 

basic components of aptitude. Although the ACAD frameworks (Robinson, 2002, 2005, 

2007, 2012) do not specify phonetic coding ability in the core cognitive abilities, the 

frameworks suggest the supplementation and expansion rather than the replacement of 

traditional aptitude model (the Carrollian model) and its components. The CANAL-F model 

(Grigorenko et al., 2000) proposes five acquisition processes when learners handle novel 

language occurrences while learning a new language. These processes are operationalised 

at lexical, morphological, semantic, and syntactic levels and involve selective encoding and 

accidental encoding abilities in both oral and visual input modes. The Hi-LAB model also 

includes auditory perceptual acuity as one of the cognitive abilities conceptualised, which 

is operationalised by phonemic discrimination and phonemic categorization.  Among the 

stages outlined in the Stages Approach (Skehan, 2002, 2012, 2016) of L2 learning, phonetic 

coding ability is involved in the cognitive processes of Input processing, Noticing, and 

Pattern recognition of linguistic input.   

Associative memory 

The construct of associative memory, also known as rote memory, has been included in all 

theoretical frameworks. This construct generally refers to the ability to encode and store 

unfamiliar linguistic input in memory, with the stored forms being retrievable for future use. 

The Carrollian model employs associative memory to define the ability to establish and 

retain links between verbal elements in L1 and L2, offering a similar definition. In the LCDH 

model, memory skill for L2 paired-associate learning is incorporated. The ACAD 

frameworks go further, encompassing more memory-related constructs within the model, 

among which rote memory is positioned within the innermost cognitive abilities. Additionally, 

memory for contingent speech and memory for contingent text are proposed as aptitude 

complexes in the frameworks. Although a separate construct of associative memory is not 

explicitly outlined in the CANAL-F model, the relevant abilities involved encoding, storage, 

and retrieval of information are operationalised within the framework. In the Hi-LAB model, 

memory is notably emphasised as a significant cognitive ability in aptitude conceptualisation. 

Both associative memory and long-term memory retrieval are integral components of the 
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aptitude construct. Finally, while associative memory is not not explicitly listed in the 

categories of L2 cognitive processes in the Stages Approach, Skehan (2016) acknowledges 

that auditory or memory processes are central to any aptitude measurement.    

Language analytic ability 

Language analytic ability refers to learners’ ability to ‘infer rules of language and make 

linguistic generalizations or extrapolations’ (Skehan, 1998, p. 204). This construct has been 

integrated in Carroll’s model and the LCDH model, particularly in relation to L2 learning 

within instructed context, except in the Hi-LAB model. The ACAD frameworks incorporate 

pattern recognition and grammatical sensitivity within the ten first-order abilities in the 

innermost circle, and metalinguistic rule rehearsal as a complex in the second circle.  While 

the CANAL-F model does not explicitly label a construct as language analytic ability, 

analytic abilities for managing structures, deviations of words, and the acquisition and 

application of grammatical rules are involved in the five acquisition processes. In the Stages 

Approach, the development of interlanguage involves cognitive processes such as pattern 

identification, complexification (generalising, extending, restructuring, and integrating), and 

handling feedback―all of which engage the construct of language analytic ability.  

 An exception to including language analytic ability as a componential construct of 

aptitude is the Hi-LAB model. This model emphasises components grounded in implicit 

learning mechanism, which are believed to be predictive of highly advanced levels of L2 

learning, thus excluding analytic ability as a primary explicit learning mechanism.       

Working memory 

The inclusion of WM as a component in the theoretical framework of language aptitude has 

sparked more controversy than any of the previously reviewed components. Notably, WM 

has not been proposed in Carroll’s model or the LCDH model. Skehan (2016) contends that 

the phonetic coding ability in Carroll’s model entails processing unfamiliar sounds in a way 

that involves some basic structural processing, akin to the conceptualisation of the 

phonological buffer of WM. This suggests that WM should be integrated into aptitude model 

to reflect the evolution of aptitude theory. In the ACAD model, Phonological Working 

Memory Capacity, Phonological Working Memory Speed, Text Working Memory Capacity, 

and Test Working Memory Speed are first-order abilities situated in the innermost circle, 

underpinning Aptitude Complexes in the second circle.  The CANAL-F model relies on 

memory-related cognitive abilities to support its five knowledge acquisition processes, 

which involve comprehending linguistic information, encoding it into WM, transferring it, and 

storing it in long-term memory. While the CANAL-F Test does not specifically measure WM, 
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its sections (Learning Meanings of Neologisms from Context, Understanding the Meaning 

of Passages, Continuous Paired-Associate Learning, Sentential Inference, and Learning 

Language Rules) likely engage WM to varying extents. The Hi-LAB model includes distinct 

Executive Functions in WM alongside Phonological Short-term Memory, offering a 

comprehensive conceptualisation of WM through various subtests. Wen and Skehan (2021) 

further elaborate on WM as a componential construct of aptitude, highlighting the interaction 

between an acquisition-oriented approach and memory-related assumptions, as well as the 

interdependent nature of memory and language aptitude.   

In summary, Table 2.2 and Table 2.3 provide an overview of the reviewed 

components of aptitude in theoretical models and major existing aptitude batteries. 

Interestingly, these aptitude batteries do not appear to cover all four componential 

constructs proposed in the evolution of language aptitude theories. Since aptitude is defined 

by what is measured in aptitude tests (Li & Zhao, 2021), the development and refinement 

of aptitude batteries should align with theoretical advancements. However, this alignment 

often falls short in practice. The CANAL-FT is the battery that loosely incorporates all four 

constructs in its instrumentation. However, its restricted access to other researchers is a 

regrettable issue, which will be further discussed in Section 2.2.3.2. 

2.2.2.2 Should aptitude measures be domain specific or general?   

The question of domain generality versus specificity has been extensively discussed 

(Skehan, 2016, 2019; Wen et al., 2017) in the context of whether cognitive abilities for 

language learning differ fundamentally from those for other domains. This argument 

essentially centres on the unknown nature of language learning mechanisms, debating 

whether infants rely on mechanisms specifically developed for language acquisition or pre-

existing mechanisms for general learning to understand language (Saffran & Thiessen, 

2007).   

When extending the discussion to L2 learning, the definition of language aptitude as 

cognitive abilities facilitating success in learning an additional language raises the question 

of whether it is distinct from general intelligence or learning abilities (Li, 2019), thus 

rendering language aptitude domain specific.    

The domain generality‒specificity debate for language aptitude has practical 

implications for the content design in aptitude batteries. Should aptitude measures be based 

on language materials, or can non-linguistic materials suffice? Two primary justifications 

support the former, as outlined by Skehan (2016, 2019) and Wen et al., (2017). First, 

language material processing might involve language-oriented capacities resulting from a 
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critical period, accruing as individual differences for adult learners (Carroll, 1973). Second, 

Carroll’s (1993) hierarchical theory proposes sub-abilities such as verbal, mathematical, 

musical, and mechanical aptitudes, indicating that the presence of these specialised 

abilities within the verbal domain may contribute to language aptitude. Existing aptitude 

batteries, except the Hi-LAB, align with the domain-specific approach.  

Contrarily, counter-justifications for a domain-general approach consider that 

learning, whether L1, L2, or non-language domains, shares similar processes driven by 

usage or frequency (Ellis, 2002). Such perspectives suggest that aptitude measurements 

could rely on general learning tasks rather than specific language materials.    

The domain-general perspective is embodied in the design of the Hi-LAB, which 

posits that proposed cognitive abilities, irrespective of their theoretical language-related 

associations, predict L2 learning (Li & Zhao, 2021). The Hi-LAB includes subtests (i.e., Task 

Switching Numbers Test for Executive Functioning and Serial Rection Time Test for 

Sequence Learning) completely eschew language specific materials, following the broad 

cognition approach in the test design. Two other subtests for Inhibitory Control in Executive 

Functioning (i.e., Antisaccade Test and Stroop Test) incorporate language materials (letters 

and words) in the instrumentation, though, the design of the subtests does not rely much 

on the linguistic characteristics of the materials (Skehan, 2016; Wen et al., 2017). The 

remaining seven subtests use language materials to measure memory-related cognitive 

abilities (see Linck et al., 2013) but again do not focus on or require attention to the language 

properties. 

Recent research also incorporates domain-general cognitive abilities in language 

aptitude conceptualisation, aiming to elucidate the predictive power of other domain-general 

cognitive abilities beyond WM in explaining L2 learning. For example, Saito et al. (2021) 

measure different aspects of auditory processing abilities (i.e., audio-motor integration and 

auditory acuity for temporal and spectral information) and investigate the relationship 

between these domain-general abilities proposed as a perceptual-cognitive foundation of 

human language learning and L2 speech learning. However, it is important to consider 

whether their research is domain general in nature, as the materials employed in the 

measurement can arguably be perceived as linguistic materials, suggesting that the 

approach they proposed could in fact be domain specific (Wen & Skehan, 2021). 

Although recently developed aptitude measure (the Hi-LAB) attempts to include 

subtests for the components of higher order cognitive abilities that are generally predictive 

for learning, research on the relationship between domain-specific components and other 
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primary cognitive abilities is still notably lacking (Wen & Skehan, 2021). This is particularly 

pronounced in the measures of WM. Most researchers may agree that WM, as a multi-

faceted construct in relation to language learning, comprises the storage system being 

domain specific and the executive component being domain general (Williams, 2012). In 

the recent achievements in modelling language aptitude, the P/E model (Wen, 2016) 

provides specific implications that the phonological ‘P’ part of WM is a language learning 

device (following Baddeley et al., 1998, cited in Wen, et al. 2023b), which is a domain-

specific ability for L2 learning. The executive control ‘E’ part of WM, on the other hand, is 

the ability to control attention and suppress competing resources that may involve cognitive 

processes, such as recall of the temporarily held information, rather than memory per se 

(Juffs & Harrington, 2011). This ability is used to achieve cognitively demanding tasks 

related to L2 subskills (Wen, et al. 2023b), hence it could be domain general. This notion 

has been represented in a noticeable increase of using operation span tasks (solving 

mathematical operations while trying to remember words) to measure the executive 

functioning part of WM in L2 research. This leads to substantially more occurrences of using 

nonverbal WM tasks than verbal tasks (such as reading span tasks in which grammatical 

or semantic judgements of sentences are made while trying to remember words embedded 

in the sentences) in recent studies (see the systematic review in Shin & Hu, 2020).  

However, the executive function of WM measured by complex span tasks can be 

operationalised in dual tasks reflecting both processing and storage and in which domain-

general and domain-specific stimuli can both be used in instrumentation.  Which type of 

stimuli should be used to operationalise executive function of WM has not been specified in 

L2 research. The convergent validity of verbal and non-verbal span tasks as WM 

measurements in L2 research has not been systematically investigated (cf. Draheim et al., 

2018, which compares the validity of three nonverbal span tasks, that is, operation span, 

symmetry span and rotation span tasks, but does not include reading span tasks). Therefore, 

it has not been established whether using domain-specific stimuli would display the same 

construct validity as using domain-general stimuli in complex span tasks to measure WM in 

L2 learning research. This casts doubt on the synthesis of research findings in relation to 

the predictive validity of WM tests on L2 learning outcomes, as methodological disparities 

are apparent.   

Given the availability of domain-specific complex span tasks, such as reading span 

tasks and listening span tasks, it seems prudent to include them in language aptitude 

batteries. Cai and Dong (2012) suggest that researchers need to attend to specific aspects 

of WM theory and make decisions in a hierarchical order of weighting. Specifically, the 
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information types of the WM measure (verbal versus non-verbal) related to the domain 

generality‒specificity are foremost decisions to make, followed by the encoding modalities 

(listening versus reading span tasks). The encoding languages (i.e., whether the test is 

conducted in participants’ L1 or L2) are the final set of decisions to make.  

Practical reasons may explain a decision to use more domain-general 

measurements. The potential confounding of language skills and experience can contribute 

to the variance of test results (see, e.g., Farmer et al., 2016). Domain-specific measures 

may have to deal with more challenges in terms of whether task stimuli should be in L1 or 

L2, as the language used may influence the outcomes (Linck et al., 2014).  Therefore, a 

domain-specific measurement that has been validated with a cohort of participants in one 

study would require further scrutiny of cross-linguistic mapping, accurate translation, and 

revalidation when it is used in other research that has a different cohort of participants in 

another context, given that diverse language backgrounds may be involved (Wen et al., 

2017).  

In summary, most subtests of the existing aptitude batteries have been developed 

using a domain-specific approach. However, the tests for the operation-related aspect of 

WM (referred to as the Executive control part of the P/E model) does not commonly use 

linguistic materials. As a result, there is an incompatibility between the Stages Approach, 

which emphasises the domain specificity of language aptitude components, and the P/E 

model, which emphasises the domain generality of (part of) WM construct (Wen & Skehan, 

2021). This calls for methodological efforts in developing measures to generate empirical 

evidence that can lead to inform a better understanding of these two theoretical models.  

2.2.2.3 Does modality matter?   

The theoretical frameworks of aptitude discussed in previous sections have conceptualised 

the componential constructs of cognitive abilities as the foundations for developing aptitude 

measures. Among these components, some involve the processing linguistic occurrences 

perceived in either aural or written (visual) forms. For instance, the ACAD frameworks 

include both oral content (memory for contingent speech and deep sematic processing) and 

written content (deep semantic processing and memory for contingent text) for incidental 

learning, suggesting that the construct of aptitude may not always be operationalised in one 

modality.  

However, except the CANAL-FT, the input modality used in major aptitude batteries 

has been left unspecified. Components like associative memory, language analytic ability, 

and executive control capacity in working memory can be measured using either aural or 
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written stimuli. The choice of modality for operationalising aptitude components is not purely 

methodological as it holds theoretical significance for understanding the interplay between 

components and their roles in explaining various aspects of L2 learning. Despite studies 

demonstrating the impact of input modalities on language learning (e.g., Kim & Godfroid, 

2019; Plonsky et al., 2020; Webb & Chang, 2020; Zhao, et al. 2021) and the effects of task 

modality on cognitive individual differences and language learning (e.g., Zalbidea, 2017; 

Zalbidea & Sanz, 2020), the influence of modality on measuring language aptitude remains 

an unanswered question, warranting empirical investigation. 

This section addresses the overlooked issue of modality concerning specific 

aptitude constructs and their representation in existing aptitude batteries, establishing one 

of the rationales for the current research. 

Phonetic coding ability 

Despite all aptitude batteries featuring subtests for phonetic coding ability (analysing and 

retaining unfamiliar sounds), their design involves mixed modalities. For example, in the 

MLAT, Phonetic Script tests sound-to-writing symbol associations, and Spelling Clues links 

sounds (presented in mis-spelled written forms) with vocabulary items. Both subtests 

measure participants’ phonetic coding ability in the way that the form-meaning connection 

is retrieved orthographically. Similar approaches appear in the PLAB (Part 6 Sound-Symbol 

Association) and recent LLAMA_E. In this design, while phonetic coding involves handling 

sounds with primitive structures for better retention (Skehan, 2016), the ability to apply 

orthographical rules to recognise new sounds and link them to scripts is also tested. This 

ability, referred to as perceptibility, involves perceiving an auditory contrast that is 

systematically represented in writing (see the systematic review in Hayes-Harb & Barrios, 

2021). Thus, these tests may introduce confounds to results and potentially compromise 

any (assumed) unidimensionality of the psychometric measurements for phonetic coding 

ability. 

Another concern with using sound-text association for measuring phonetic coding 

ability is that this method may introduce confounds related to learners’ knowledge of Roman 

alphabetic writing systems (which have specific principles for mapping between graphemes 

and spoken language units; Chang et al., 2016), especially for those with different L1s like 

Chinese. Such methodological challenges emerge in aptitude battery design.   

Associative memory 

Associative memory, often termed rote memory, is involved when forming links between 

representations of the L1 and a new language. This ability is typically evaluated through 
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learning vocabulary items (some can be pseudo words to control the confound of the 

existing knowledge of vocabulary) in the written modality, with the corresponding meaning 

displayed in the form of textual equivalent in L1, or as a pictorial referent. Despite vocabulary 

research indicating the effects of modality in testing vocabulary knowledge (e.g., Masrai, 

2019; Milton & Hopkins, 2006; Mizumoto & Shimamoto, 2008), the methodological 

convention of using vocabulary items solely in the written form to measure associative 

memory in aptitude batteries is widely accepted. A notable exception is the CANAL-FT 

(Grigorenko, et al., 2000). In Section 3 (Continuous Paired-Associate Learning) of the 

battery, the selective comparison and combination of lexical and morphological materials 

encoded into WM and retained in long-term memory are measured, using materials in both 

visual and oral forms.  

Relying solely on written vocabulary items to measure associative memory assumes 

that orthographical forms can accurately operationalise the ability to store and retrieve 

phonological forms. This may compromise the construct validity of the subtest of associative 

memory in aptitude measures and the predictive power of the measurements in explaining 

the learning outcomes, particularly when aural input (or production) is substantially involved. 

Language Analytic Ability 

Language Analytic Ability (LAA) involves inferring linguistic rules and generalising or 

extrapolating linguistic concepts. It has been proposed to play a central role in L2 learning 

(Skehan, 1998) and has been included in nearly all aptitude models, except for the Hi-LAB.  

Although LAA is not explicitly outlined in Carroll’s aptitude model, it underlies two 

constituent abilities, i.e., grammatical sensitivity (the ability to recognize the grammatical 

function of words) and inductive learning ability (the ability to infer grammatical rules from 

language examples) (Carroll, 1990; Roehr, 2008). The Stages Approach situates LAA in 

the interlanguage development, in which LAA involves three consecutive processes, i.e., 

Pattern identification, Complexification (e.g., generalising, extending, restructuring, and 

integrating), and Handling feedback (Skehan, 2016).  

The construct of LAA is measured, often though not always, by engaging learners 

attending to the target features in the learning phase, and then testing their ability to apply 

the rules to complete the questions or tasks in the testing phase. In the subtests for LAA in 

all aptitude batteries except the CANAL-FT (see Table 2.3), materials are presented in the 

written modality. The CANAL-FT addresses the modality in its design. In Section 2 

(Understanding the Meaning of Passages), questions requiring inference and application of 

semantic information are used to measure the ability to apply selective and accidental 
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encoding, comparison, and combination for both visually and orally presented materials that 

are beyond the lexical level. Section 3 (Continuous Paired-Associate Learning) measures 

the selective comparison and combination of lexical and morphological materials in both 

visual and oral forms. Tasks presented visually or orally in Section 4 (Sentential Inference), 

which measures selective encoding, comparison, transfer, and combination, firstly at the 

syntactic and morphological levels, then at the lexical and semantic levels. The section that 

has stimuli presented in written form only is Section 5 (Learning Language Rules), which is 

administered as the last section to measure participants’ overall learning of the Ursulu 

language by using items (lexical, semantic, morphological, and syntactic) provided 

throughout the test.   

Similar to the concerns about the construct validity of the subtest of associative 

memory in aptitude measurements, measuring LAA solely in the written modality has not 

been explicitly justified in research to date. Since LAA operates in a critical phase of input 

processing during the creation of rules, it handles the information received for processing, 

which stems from “the product of the phonemic coding stage” and is subsequently 

processed, inspected for consistent patterns, and serves as the foundation for rule 

formation (Skehan, 1998, p. 204). Therefore, the input involved in LAA does not rule out 

language examples being presented in the aural form. This raises concerns about the 

construct validity of the LAA subtests and their predictive validity in explaining learning 

outcomes, particularly when measures solely employ stimuli in the written modality in 

learning situations where novel auditory input is substantially involved. 

Working memory 

In Baddeley's model (1986, 1992), the WM system consists of two distinct subsystems—a 

phonological loop and a visuo-spatial sketchpad—that independently process information. 

Specifically, the phonological loop processes auditory verbal information (such as listening 

to words), while the visuo-spatial sketchpad handles visual verbal information (e.g., reading 

words). The theoretical model of WM in L2 learning, such as the P/E model (Wen, 2016), 

specifies two components: the Phonological Short-term Memory (PSTM) and the Executive 

Control capacity. When measuring these two components, using stimuli presented in the 

aural modality appears suitable for PSTM. However, the question of which modality should 

be employed to measure executive control and whether variations in modality influence test 

outcomes remain unexamined in existing measures.     

Using the Hi-LAB as an example, which is the only aptitude battery featuring specific 

subtests for WM (see Table 2.2), the stimuli’s modality has not undergone systematic 
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control. This battery incorporates two domain-specific span tasks, namely the letter span 

tasks and the nonword span tasks, both of which present stimuli visually on the screen to 

assess PSTM. Additionally, it includes four subtests to measure executive functioning of 

WM, using domain-general materials that do not necessarily involve cognitive processing 

of linguistic attributes. Among these, three subtests (that is, Antisaccade Test, Stroop Test, 

and Task Switching Numbers Test) employ visual stimuli, while the Running Memory Span 

Test uses auditorily-presented letters.    

Two types of complex span tasks using linguistic materials―the reading span tasks 

and the listening span tasks― are available to measure executive control functioning in WM. 

However, a systematic investigation into whether these two measurements yield consistent 

(highly correlated) results has not been conducted. Considering the potential impact of 

modality effects on measuring WM (e.g., Fougnie & Marois, 2011) would facilitate 

evaluation of potential pitfalls in instrument design. As discussed in the preceding section, 

the encoding modalities (listening versus reading span tasks) of WM tests could be 

important (Cai & Dong, 2012). 

2.2.3 Methodological challenges in measuring aptitude 

2.2.3.1 Reliability and validity of aptitude batteries   

Reliability and validity are critical for the robustness of measurements, given the impact that 

the design of measurements can exert on results. Aptitude, being a construct composed of 

various cognitive individual differences, finds its definition somewhat shaped by the 

measures that assess it (Li & Zhao, 2021). Thus, it is crucial to ascertain the reliability and 

validity of aptitude measurements prior to conducting aptitude‒learning research. This 

section reviews the reliability and validity evidence pertaining to existing aptitude batteries. 

Subsequently, it will introduce established frameworks that can offer insights into the 

validation of these aptitude measures.      

Reliability and validity of research measures 

Reliability and validity of educational measures are succinctly summarised by Cohen et al. 

(2011). Reliability pertains to the stability, equivalence, and internal consistency of an 

instrument, while validity refers to the extent to which an instrument measures its intended 

target. To elaborate more, reliability, often referred to as stability, denotes a measure’s 

ability to consistently yield comparable data from the same (or similar) respondents. 

Equivalence related to reliability is the capacity of different iterations of a data collection tool 

to yield comparable outcomes, as well as the level of agreement among various raters when 

human judgement is involved in the tool. Internal consistency, a facet of reliability, assesses 
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how well a set of elements cohesively converge to produce coherent examination. This is 

often quantified through coefficients like Cronbach’s (1951) alpha, reflecting inter-item 

correlations that represent the relationship of each item with the total of all other items within 

the measurement. In terms of the quality or acceptability of an educational measurement, 

reliability signifies a form of accuracy in obtaining consistent outcomes when the 

measurement is conducted on different occasions or by different samples of test takers from 

the same population.  

Validity of a measurement is defined as “the extent that a test measures what it is 

supposed to measure” (Henning, 1987, p.89). In most empirical kinds of validity, a 

necessary but not a sufficient condition in the form of reliability is introduced: a test can 

exhibit reliability without necessarily possessing validity for a specific purpose, but validity 

cannot exist without prior reliability. Consequently, the emphasis often leans toward 

‘validating’ a test rather than solely establishing its reliability (Henning, 1987).  

Transparent reporting of reliability and validity evidence of measurements is 

fundamental in research, serving to ensure the credibility of results obtained. However, this 

crucial practice has often not been granted the necessary attention. Questionable 

measurement practices in the field of Psychology have drawn criticism for downplaying the 

importance of measurement, which obscures a remarkable range of choices available to 

researchers (i.e., the source of researcher degrees of freedom). Ultimately, these practices 

pose a significant risk to the integrity of accumulated knowledge within psychological 

science, characterised as a ‘measurement schmeasurement’ attitude (Flake & Fried, 2020).   

In the field of SLA, research has revealed gaps in this aspect (e.g., Plonsky & Gass, 

2011; Plonsky, 2013), raising concerns about the validity of methods and the scientific rigour 

of research findings, especially given the prevalence of developing or modifying instruments 

to measure a range of constructs in L2 research (Li & Prior, 2022). Measurements have 

often not been adequately described, leading readers to rely on them without knowing about 

their reliability and validity, initially discussed by Bachman and Cohen (1998), and 

subsequently by Cohen and Macaro (2013) and Norris and Ortega (2012). More recently, 

the practice of incomplete reporting of validity and reliability have been characterised as a 

‘sin’ that undermines statistical quality in psychometrics within the field (see Al-Hoorie & 

Vitta, 2019).  

Systematic reviews of reporting practices in L2 research have revealed areas that 

demand enhanced transparency. For instance, Plonsky (2013) found that a mere 21% of 

the 606 articles published between 1990 and 2010 in two key journals (Language Learning 
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and Studies in Second Language Acquisition) in L2 research reported instrument reliability. 

Similarly, Derrick’s (2016) investigation disclosed that reliability coefficients were reported 

for only 28% of the instruments employed across 385 empirical research articles published 

in three leading journals (Modern Language Journal, Language Learning and Studies in 

Second Language Acquisition) between 2009 to 2013.  Moreover, Shin and Hu’s (2022) 

meta-analytic review of working memory measures used in L2 research underscores the 

inadequate reporting of instrument reliability, with just 15% of the samples providing 

adequate reports, even lower than the rate of 21% reported by Plonsky (2013).  These 

studies emphasise the need for greater reporting of reliability across various instruments in 

L2 research.  

Returning to the topic of reliability and validity of aptitude measurements, it is worth 

noting that validation research has been conducted on both the MLAT and the PLAB, 

involving planned variations on substantial numbers of participants and extensively detailed 

in publications. This not only provides insights into how aptitude batteries should be 

validated but also underscores the importance of funding in facilitating validation research 

to refine aptitude measures (Skehan, 2023). However, when it comes to more recently 

developed batteries like the CANAL-FT and the Hi-LAB, there remains a gap in 

comprehensive validation evidence, partly caused by limited accessibility to these batteries.   

In addition to the lack of reporting, low coefficients perhaps raise even more serious 

questions about the quality of aptitude-related research in the field. A comprehensive 

overview of methodology of research on language aptitude is offered by Li and Zhao (2021). 

In this review, reliability, as a foundation for validity, has been reported as high or at least 

acceptable for tests of explicit aptitude (like the MLAT), falling within the coefficient range 

of 0.7 and 0.9, which surpasses the recommended threshold of  > .70 (Field, 2013).  

However, one widely used aptitude battery, the LLAMA tests, has faced challenges 

in terms of its reliability and internal validity in empirical studies. For example, Bokander 

and Bylund (2020) revealed a complicated pattern of reliability coefficients (Cronbach’s α) 

across all subtests in the LLAMA tests (version 2). These coefficients could not be easily 

interpreted as evidence supporting the notion that measures related to explicit learning yield 

higher reliability coefficients than those related to implicit learning. Although LLAMA_B 

(measuring explicit learning ability in associative memory) has the highest reliability 

coefficient (.81), LLAMA_F did not demonstrate a high reliability coefficient (.66), even with 

misfitting items being excluded, despite also aiming to measure another aspect of explicit 

learning ability (language analytic ability). LLAMA_D, reported the lowest reliability 

coefficient (.60), intended to measure implicit learning ability (Granena, 2013). This led the 
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authors to conclude that internal validity of the LLAMA battery is questionable and express 

significant concerns about its widespread usage in SLA research. Similarly, the developers 

of the battery, Rogers and Meara (2019), reported low reliability coefficients for the LLAMA 

tests of the same version. Furthermore, recent investigations exploring LLAMA_D have 

raised doubts about its construct validity as a measure of implicit learning ability (see Iizuka 

& DeKeyser, 2023; Suzuki, 2021a).  

There are various strategies to enhance instrument reliability, such as removing 

misfitting items or items with low discrimination, increasing the number of items in the test, 

or applying different scoring criteria (see Bokander & Bylund, 2020; Shin & Hu, 2022; Li & 

Zhao, 2021). However, although reliability is a necessary condition, it is not sufficient to 

validate measures (Henning, 1987). Thus, the focus should (also) be on rigorously 

scrutinising the validity of a measure, particularly when the measure is newly developed for 

a multi-faceted construct like language aptitude. In the welcome message from the editorial 

team of a new journal, Research Methods in Applied Linguistics, dedicated to advancing 

methods and approaches in language-related research, Li and Prior (2022) highlights two 

broad categories―internal validity and external validity―when it comes to evidence for 

construct validity. They also propose prioritising the examination of internal validity for newly 

developed measures and external validity for measures that already exist in the field.  

In the following section, an established validation framework will be introduced, 

particularly focusing on the investigation of internal validity within the context of aptitude 

battery. To illustrate this framework, an example related to the examination of internal 

validity of an aptitude battery will be introduced.  

A framework for validating aptitude measures   

The concept of validity is central to measurement evaluation to determine what constitutes 

a valid test and how scores derived from such tests can be deemed valid. Messick (1989) 

introduces a comprehensive perspective on validity, which not only includes the construct 

validity of the measured trait but also considers the broader consequences associated with 

the influence of the measurement. He suggests that we can assess this unitary concept of 

validity by considering it as an integrated accumulation of evidence, rather than as isolated 

pieces of evidence.  

The Interpretation/Use Argument, as proposed by Kane (2006, 2013), shifts the 

focus of validity from being an inherent property of a single test to being an argument or 

notion of how scores are appropriately employed. This perspective acknowledges that 

validity resides not in the test itself, but in the argument and rationale underlying the uses 
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of scores. Within the framework of the Interpretation/Use Argument, the interpretive 

argument forms a chain of inferences and assumptions that underpin the interpretation and 

application of test scores. In essence, validation involves scrutinising the coherence of this 

argument and assessing the validity of both the theoretical underpinnings and empirical 

evidence through a series of analyses and empirical investigations. This process aims to 

establish the soundness of the proposed inferences by aligning them with the theoretical 

framework and the empirical evidence (Kane, 2006, 2013).  

To addressing the need for specificity regarding the types of appropriate evidence 

and the required level of sufficiency within the framework, particularly in the context of 

applied linguistics, Purpura et al. (2015) engaged in an extensive exploration of how Kane’s 

(2006) principles could be effectively employed. They investigated the contextualisation of 

the underlying principles of validation within the domain of SLA, using examples from a 

study by Révész (2012) that examined the effects of recasts. In this endeavour, Purpura et 

al. adapted Kane’s validation framework to systematically identify, scrutinise, and 

substantiate claims related to the constructs being measured in the exemplary study. This 

involves the idea that specific language usage patterns can be elicited, manipulated, or 

measured through the execution of specific empirical tasks. 

Specifically, Purpura et al. proposed an additional Domain Description Inferences to 

establish connections between the target domain and the performance sample obtained 

through tasks. These inferences are introduced sequentially as follows:  

(1) Scoring Inference (also referred to as Evaluation Inference) connects 

performance samples to observed scores. This inference assumes that the 

performance produced can generate the observed scores, indicating the 

intended test construct. It involves statistical analysis to either support or refute 

claims regarding the functionality of the measurement.  

(2) Generalisation Inference links the observed scores to expected scores, 

assumed to be consistently obtained regardless of variations in measurement 

conditions.  

(3) Explanation Inference connects the expected scores to the underlying test 

construct. The underlying assumption is that observed scores generated from 

the tasks accurately reflect the constructs being measured or the associated 

network related to the construct. This inference provides support for the 

appropriate operationalisation of the theoretical construct, which needs to be 

substantiated through examinations of the internal structure of the test, 

comparisons of sample group differences, or assessments of task difficulty.  
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(4) Extrapolation Inference connects the construct-related score with a real-life or 

target score. It offers evidence that a score on a measure corresponds to 

performance on real-like tasks that engage the same knowledge, skills and 

abilities.  

(5) Utilization Inference connects the target score to the use of the score for 

decision-making purposes, representing the practical implications of applied 

linguistics research.  

Building upon the research of Kane (2006) and Purpura et al. (2015), Bokander & 

Bylund (2020) applied a schema for the validation of aptitude scores from the LLAMA tests. 

The schema includes inferences relating to scoring, generalization, explanation, 

extrapolation, and implication. Specifically, the first inferential level is the scoring inference, 

which results in an observed score and involves converting individual responses into a scale 

score for each subtest. This initial level of inference also encompasses factors such as the 

item format and variables related to the test context, such as the test takers’ comprehension 

of the task. The generalization inference, which leads to a universe score, pertains to 

determining whether a scale score is a reliable measure of its underlying construct. In other 

words, it examines whether the scale score validly represents all theoretically possible items 

that assess the construct. The explanation inference, which leads to a construct 

interpretation, relies on construct validity evidence that specifically addresses the theoretical 

justification of each subtest. The authors explain that in the case of the LLAMA, this 

inference involves determining whether each subtest accurately measures its intended 

construct and does not capture any extraneous construct. The extrapolation inference, 

along with its corresponding target score, shares similarities with criterion validity 

(concurrent or predictive) in classical test theory. This involves assessing the correlations 

between the target score and other pertinent measures, such as L2 proficiency test. The 

implication inference relies on evidence that supports valid and well-grounded 

interpretations of the aptitude construct(s) being assessed. Additionally, it considers the 

impact of the test on all stakeholders, particularly when the test results are utilised in 

decision-making processes like recruitment or course admittance. In order to clarify where 

to search for the evidence, the authors have separated the test results into three levels: 

single item, subtest or scale scores, and test battery level with compound scores. This 

systematic approach enables a comprehensive assessment of the test performance and 

aids in understanding the reliability and validity related to the inferences drawn from the test 

results.  
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2.2.3.2 Accessibility of aptitude batteries   

As reviewed above in Section 2.2.1, some aptitude batteries (e.g., the CANAL-FT and the 

Hi-LAB) involving cognitive constructs (e.g., WM) in the theoretical frameworks 

underpinning the subtests have provided considerable insights about the aptitude construct. 

However, the lack of accessibility to these aptitude measurements has significant 

implications for their utilisation in L2 research. Specifically, the MLAT has not been available 

to individual researchers and the PLAB is a commercially available battery. The CANAL-FT 

was a government sponsored battery that has not been used except by the authors of the 

battery, hence, little validity information is available other than what has been reported by 

Grigorenko et al. (2002). The Hi-LAB was also government sponsored measurement; hence 

the battery is selectively available and has not been used in research that involves non-

government populations and across proficiency levels (Skehan, 2023).  Despite the 

promising reliability and validity evidence provided by the authors of these measurements, 

these batteries have not been scrutinised independently. A more rigorous evaluation of the 

batteries necessitates a level of objectivity or scepticism that may frequently be beyond of 

the reach of developers themselves (Isbell & Kim, 2023, referring to Kane, 2013).  

 In contrast, the LLAMA tests are openly accessible research instruments that can 

be used for data collection through the internet. Being among the most widely used aptitude 

measurements in recent decade, their popularity in aptitude-related research is largely 

attributed to their open accessibility and continuous development based on feedback from 

the research community. This underlines the importance of accessibility of aptitude batteries 

for other researchers. As this battery facilitates internet-based research (IBR), it overcomes 

restrictions on the use of the battery, which, in turn, may enhance the progress of aptitude 

research.  

 This section primarily explores strengths of using IBR for data collection, along with 

potential concerns that could pose challenges to the reliability and validity of research 

findings derived from IBR.  

Strengths of internet-based measures 

The increased accessibility facilitated by IBR has been particularly highlighted during the 

COVID-19 pandemic. Furthermore, advancements in technology and the rapid 

development of IBR capabilities have presented new opportunities to address the limitations 

of traditional lab-based, in-person research. For example, IBR promotes better sampling 

diversity, as individuals can conveniently participate in research remotely (Casler et al., 
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2013; Newman et al., 2021), and can yield larger samples in a quicker and more cost-

effective manner (Newman, et al., 2021).  

 Despite advantages that IBR instruments and platforms offer, certain 

methodological concerns have been raised and summarised below, as discussed by 

Newman et al. (2021) in their review of IBR platforms for collecting survey and experimental 

data.  

Challenges to the internet-based measures 

Newman et al. (2021) highlights three specific concerns―sampling, quality, and ethical― 

that could threaten the ethical principles and validity of IBR measures.  

First, sample bias occurs when the participant population is skewed towards specific 

demographic groups, such as those with higher levels of education or computer literacy 

(Follmer, et al., 2017). Such biases can lead to non-representative data, reducing the 

generalisability of the results to the intended population. Another related concern is self-

selection bias, where participants opt to join studies based on their interests, thereby 

violating the assumptions of randomness, and introducing potential biases (Stritch et al., 

2017). Outcomes of self-selected participation in particular types of studies can be 

influenced by unobservable factors (Cheung et al., 2017). While random assignment can 

mitigate this bias in experimental design, its application becomes more complex in 

longitudinal studies where information about non-participants is absent. Data non-

independence and in-group bias further raise concerns. Participants on the same IBR 

platform might form close communication networks and collaborate, introducing potential 

biases into the collected data (Gray, et al., 2016). The issue of non-naivety arises from 

participants’ increasing familiarity with research instruments over time. As participants 

become more experienced, they might align their responses with researchers’ expectations 

(Hauser, et al., 2019), thereby compromising the data quality (Chandler et al., 2015; Devoe 

& House, 2016).  

 Second, a range of quality concerns, such as inattentiveness and 

fraudulent/dishonest behaviour, can undermine the validity of measures. In particular, 

participants’ inattentiveness may result in non-compliant or careless responses that 

threaten the internal validity of the measures and the statistical conclusions drawn from the 

obtained responses. This could potentially lead to the inflation or attenuation of observed 

relationships between variables (Aruguete et al., 2019; Buhrmester et al., 2018; Cheung et 

al., 2017).  Furthermore, insufficient response effort on IBR platforms can introduce random 

measurement errors, further compromising the validity of the generated findings (Huang et 
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al., 2015). Another pertinent quality concern is fraudulent or dishonest behaviour, involving 

actions where participants submit duplicated responses through multiple accounts or 

misrepresenting their eligibility for participatory compensation (Dennis et al., 2020; Kan & 

Drummey, 2018; MacInnis et al., 2020).  

Lastly, ethical concerns relate to participatory compensation and procedural 

transparency in participant recruitment. The issue of financial incentives provided to 

participants revolves around whether researchers and platforms offer fair and ethical 

compensation, considering that participants recruited from these platforms often exhibit 

lower socioeconomic status, reduced well-being levels (Stone et al., 2019), and higher rates 

of clinical depression (Ophir et al., 2020) compared to the general population. To address 

these concerns, it is advisable for researchers to seek for approvals from their own Ethics 

Boards, aiming to establish compensation standards and addressing ethical dilemmas 

stemming from the potential exploitation of participants, who might be viewed as sources of 

inexpensive labour for scientific research (Palan & Schitter, 2018; Shank, 2016). Such 

unethical practices can also compromise data quality (Bohannon, 2016). Another ethical 

concern pertains to procedural transparency in the treatment of participants recruited from 

IBR platforms. This concern is related to the emerging criticisms about whether these 

participants are treated equitably in comparison to participants in traditional lab-based 

research. It has been suggested, in particular, that IBR participants may not have the same 

rights to withdraw from studies without adverse consequences or penalties (Gleibs, 2017), 

and that information about study risks and details may intentionally remain unclear (Pittman 

& Sheehan, 2016).  

All of the aforementioned concerns highlight the necessity for researchers to 

thoroughly evaluate the limitations and potential biases inherent in the data collected 

through IBR platforms, which could threaten the reliability and validity of their findings. 

Newman et al. (2021) provide practical recommendations to address these concerns, as 

outlined in the table of recommendations for future research using online platforms (p. 

1394‒1396). Specifically, these recommendations include strategies to ensure appropriate 

sampling, such as striving for sample representativeness and minimising the inclusion of 

non-naïve participants. To tackle data quality issues, they suggest implementing attention 

checks, conducting per-screening of participants, and offering explicit instructions, 

questions, and warnings. Finally, the authors advocate for proper participant compensation 

and enhanced transparency in disclosing research details to participants and during the 

journal submission process.  
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While these concerns and recommendations primarily pertain to conducting 

research via IBR platforms in a general sense, they offer valuable guidance for the creation 

of internet-based aptitude measures to enhance accessibility.  In the current research, 

several factors aligning with these recommendations have been carefully considered 

throughout the development of a novel IBR aptitude battery, which will be described in 

Chapter 3. 

2.2.3.3 What language(s) should be used in measuring aptitude?   

The language(s) used in aptitude batteries constitute another factor that necessitates 

consideration, although this matter has received relatively limited attention and hasn’t been 

included as a major factor in systematic reviews of aptitude measures. Decisions regarding 

encoding language (the language of test items) and instructional language (the language in 

which test instructions are presented) taken by the creators of existing aptitude measures 

might appear self-evident. Nonetheless, a detailed examination of these measures, provide 

below, could offer insights into the conceptualisation and operationalisation of the aptitude 

constructs themselves.  

Encoding language 

The subtests within the MLAT, such as Phonetic Script and Spelling Cues, feature test items 

presented in semi-artificial languages, yet they assess participants’ abilities based on their 

understanding of phonological and morphosyntactic rules in English. Similarly, the subtests 

(Number Learning and Paired Associates) for cognitive abilities like inductive learning ability 

and associative memory employ stimuli encoded in English. The subtest of Words in 

Sentences also uses English stimuli. However, the potential influence of knowledge of 

English on this battery has not been taken into account.  

The instrumentation of the PLAB, much like the MLAT, primarily revolves around 

assessing linguistic knowledge related to English across its subtests. An exception is found 

in Part 5 Sound Discrimination. This particular subtest prompts participants to distinguish 

between pitch, orality, and nasality in words presented in a novel language. This could be 

difficult for L1 English speakers but less so for learners whose L1 has phonemes that vary 

in similar ways in terms of pitch, orality, and nasality. However, there is a lack of 

comprehensive research investigating the reliability and validity of this battery among 

learners with diverse linguistic backgrounds.  

The design of the CANAL-FT incorporates linguistic features from an artificial 

language, Ursulu, in all nine sections. These features are embedded within an English-

language context across the sections. Given that this battery has seen limited use in 



 

61 

 

research beyond its initial validation study by its authors (Grigorenko et al., 2000), we do 

not know about the reliability and validity of the measure when employed with learners from 

diverse L1 backgrounds. 

The Hi-LAB battery focuses more on domain-general cognitive abilities, resulting in 

the use of L1-neutral stimuli across most of its subtests, such as digits, coloured rectangles, 

and boxes. While certain subtests involve verbal stimuli like letters, words, and nonwords, 

the performance heavily relies on English-language knowledge. This design stems from the 

battery’s intended purpose of distinguishing participants with aptitude for high-level 

attainment. Notably, the validation of the battery was conducted with U.S. government 

agencies and members of the U.S. military. However, due to the battery’s unavailability, the 

opportunity for further investigation into its validity for learners from diverse L1 backgrounds 

is hindered. 

In the design and iterations of the LLAMA tests, careful consideration has been 

given to the issue of encoding language issue. LLAMA_B uses unfamiliar vocabulary items, 

while LLAMA_F employs grammatical and morphological rules that differ from those of 

English. Consequently, the stimuli in these subtests are distinct from the English language. 

On the other hand, LLAMA_D and LLAMA_E have employed phonetic representations that 

closely resemble the phonological rules of Germanic languages. To investigate the potential 

impact of heterogeneous language backgrounds on test performance, empirical research 

has been undertaken by the authors. The findings of these studies indicated that there were 

no significant differences in test performance among participants from various L1s. As a 

result, the LLAMA tests were deemed to be language neutral in nature. However, it is 

noteworthy that participants’ prior language learning experiences, such as bilingualism, 

monolingualism, or instructed L2 learning, may influence their test results. Specifically, 

participants with instructed learning experiences tend to outperform their monolingual and 

bilingual counterparts (Rogers et al., 2017).  

Researchers have made efforts to adapt existing aptitude batteries to cater to the 

specific language backgrounds of L2 learners. For example, Li and Luo (2019) developed 

and validated an aptitude test tailored to L1-Chinese learners. Their test design was 

informed by the MLAT and the PLAB. However, they used Chinese and an artificial 

language to create stimuli, which encouraged participants to employ their L1 knowledge 

instead of relying on their L2-English. Specifically, for four subtests (i.e., Number Learning, 

Spelling Clues, Phonetic Script, and Paired Associates) that measure phonetic coding 

ability and associative memory, they used stimuli conforming to phonetic rules in 

participants’ L1‒Chinese. Furthermore, to measure grammatical sensitivity and language 



 

62 

 

analytic ability, they employed stimuli featuring Chinese grammatical features and an 

artificial language in two subtests (Words in Sentences and Language Analysis). This 

strategy aimed to ensure that the stimuli were independent of L2-English proficiency. The 

reliability of this adapted battery was demonstrated through preliminary results, although 

some misfitting items were identified, underscoring the need for further refinement.  

 The potential influence of the language used in WM tasks on test results raises 

concerns. This is particularly relevant due to the fact that processing in L2 generally 

consumes more cognitive resources than processing in the L1. Nevertheless, the existing 

research evidence remains inconsistent in providing a definitive answer to the question of 

which language should be used to assess WM capacity. Insights emerge from Linck et al.’s 

(2014) meta-analysis, which delved into the connection between WM and L2 learning. In 

their study, WM span tasks’ encoding language were categorised as either L1 (tasks 

requiring the processing or storage of numeric stimuli were coded as L1) or L2. The findings 

demonstrated stronger correlations between WM and L2 learning outcomes when WM 

measurements were conducted in L2. This outcome led the authors to suggest a potential 

confound of L2 proficiency with WM abilities when WM tasks are administered in L2. 

Distinguishing the true essence of what WM tasks measure becomes challenging where L2 

proficiency potentially moderates WM abilities.  

 Researchers in SLA have taken steps to mitigate the potential confounding effect of 

using L2 stimuli in WM tasks. One approach is adapting reading span tasks into different 

language versions. For example, Gass et al. (2019) used Arabic and Chinese versions of 

the reading span tasks in Unsworth et al. (2009). However, further research is required, as 

the validity evidence for these translated versions of WM tasks relied on small sample sizes.    

Instructional language 

The choice of instructional language used in aptitude measures has received less attention 

than the encoding language issue. It is evident that instructions are more easily understood 

when provided in participants’ native language. However, for openly accessible aptitude 

measures it can be challenging to ensure comprehensibility for participants with diverse 

linguistic backgrounds.  

In the case of the LLAMA tests, efforts have been made to address this challenge. 

Rogers et al. (2023) detailed their exploration of instructional language in the LLAMA online 

v.2. In this version, they aimed to surpass the limitations of specific languages by using 

language neutral symbols along with a comprehensive set of references, moving away from 

relying solely on English instructions.  However, this approach encountered issues, as the 
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symbols displayed inconsistently across different operational systems, leading to confusion 

for test takers. Consequently, the LLAMA v.3 reverted to using English language 

instructions, acknowledging the need for clarity and consistency in instructions. However, 

the LLAMA team has acknowledged the necessity of adapting the battery into other 

language versions to accommodate the diverse linguistic backgrounds of participants and 

enhance the test’s accessibility and comprehensibility (Rogers, et al., 2023).  

2.3 Rationales for the current research 

Language aptitude research has made significant advances in recent years, but there are 

still theoretical and methodological challenges that need to be addressed. One key limitation 

highlighted by Skehan (2023) is the fragmented nature of aptitude research, which is partly 

a result of the limited variety of available aptitude and working memory measures. This 

restricts researchers from obtaining a comprehensive understanding of the relationships 

between componential constructs of aptitude and aspects of L2 learning. Skehan 

emphasises that researchers have made fragmented contributions without fully developing 

complete test batteries. This has led to the dominance of two aptitude batteries in recent 

research, each with its own strengths and limitations. The Hi-LAB offers a wide range of 

aptitude subtests, but its accessibility is limited, and validation evidence is confined to a 

narrow population. On the other hand, the LLAMA tests have amassed substantial amount 

of empirical findings, but the battery itself lacks adequate validation.  To address these 

limitations and to advance the aptitude research, Skehan proposes a combination of major 

aptitude batteries to leverage the strengths of different batteries and overcome their 

limitations. Moreover, Skehan suggests adopting a flexible approach to instrument 

construction. This involves creating a pool of validated tests that researchers can choose 

from based on the specific context of their study, a departure from the current ‘one size fits 

all’ approach (p. 233).  

The current research responds to Skehan’s (2023) call for urgent ‘re-evaluation’ (p. 

214) of existing aptitude instrumentation, by undertaking a comprehensive re-construction 

of an aptitude battery guided by aptitude‒SLA theoretical frameworks. Instead of relying on 

unvalidated or inaccessible batteries, this effort aims to develop a new measure aligned 

with the latest theoretical advancements, effectively capturing the multi-faceted nature of 

aptitude across language specific domains, involving sound, working memory and 

processing (Skehan, 2023).  

To be specific, the theoretical foundations of the new battery are rooted in the 

integration of some of the components of the first stage ('Input-oriented’) and all of the 

components of the second stage ('Interlanguage development’) of the Stages Approach, as 
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well as  certain components underlying major existing aptitude batteries such as the MLAT, 

the PLAB, and the LLAMA. Four primary components―associative memory, phonetic 

coding ability, language analytic ability, and WM―are operationalised. Additionally, the 

second-order components related to WM, i.e., PSTM and executive control, are constructed 

based on the P/E model. The initial validity check aims to establish this new battery’s 

capacity to accurately measure aptitude and provide insights into its potential applications 

in aptitude-related research within the field of SLA.  

The current research aims to address the gaps in aptitude measures, as outlined 

below. 

2.3.1 Empirical gap 1: verifying theoretical frameworks 

One significant research gap in aptitude-related research is the lack of empirical verification 

of certain aptitude theoretical frameworks. For example, the Stages Approach (Skehan, 

2016) has been proposed with aptitude components unfolding in a sequential manner, 

corresponding to the developmental phases in SLA, which seems to be promising to 

understand the caveats of L2 learning processes in relation to the aptitude components. 

However, the model has not been used to guide the development of aptitude batteries, thus 

has not been rigorously verified by empirical studies. Similarly, although the P/E model 

(Wen, 2016) proposes componential constructs of working memory in relation to L2 learning, 

the need for standardised measurements to accurately measure the multi-facets of working 

memory in L2 research has not been fulfilled.  

Wen and Skehan’s (2021) theoretical endeavours seek to synthesise the Stages 

Approach and the P/E model. The primary aim is to address the challenge of fragmentation 

when conceptualising the multifaced constructs of aptitude and WM concerning the 

complexity of L2 learning development. The synthesised model introduces certain 

theoretical assumptions, which require empirical verification. The key prerequisite for 

verifying these theoretical assumptions is the availability of an aptitude battery developed 

on these frameworks. However, the current disconnect between the development of 

theoretical frameworks and aptitude measures constrains the verification of aptitude 

theoretical frameworks and impedes our understanding of interactions among aptitude 

dimensions and the roles of aptitude components on L2 learning. Therefore, there is a need 

to develop a new aptitude battery that incorporates the synthesis of the Stages Approach 

and the P/E model. Additionally, developing a new aptitude battery using domain specific 

measurements becomes appealing to address the tension between the concern for domain 

specificity (as related to the Stages Approach) and domain generality (as related to the P/E 

model), as pointed out by Wen and Skehan (2021).  
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2.3.2 Empirical gap 2: investigating effects of modality  

The effects of modality in measuring aptitude have not been systematically investigated. 

Most existing aptitude measures (except for the CANAL-FT) do not consider the input 

modality as a potential factor and do not systematically control the possible confound of 

modality in instrumentation. However, exploring the impact of modality on measuring 

aptitude can provide valuable insights into optimal presentation formats and task design 

that operationalise aptitude components. Additionally, this exploration can shed light on the 

validity of aptitude measures in explaining specific aspects of L2 learning outcomes. 

To bridge this empirical gap, a new aptitude battery must take modality into 

consideration. Specifically, for those constructs (e.g., associative memory, language 

analytic ability, and working memory) that can be operationalised in either aural or written 

modalities, it is necessary to design parallel versions of test items, allowing the comparison 

of the results obtained from tests administered in each modality. This can be better achieved 

through within-subject design, engaging the same participants tested in different modality 

conditions with different versions of the ‘same’ test in each modality.   

2.3.3 Empirical gap 3: providing initial validation evidence 

Although there are several aptitude batteries and some have gained popularity in SLA 

research, reliability and validity evidence has not been consistently established, leading to 

concerns about the quality of aptitude-related research. Transparent reporting of reliability 

and validity evidence is crucial to ensure the methodological rigour of aptitude research and 

the confidence in the findings. 

To address this gap, a thorough evaluation of aptitude measures (or any other 

psychometric measurements) is required. By employing established validation schema, 

such as those discussed in Section 2.2.3.1, the current research aims to provide a 

transparent and replicable process to scrutinise the initial evidence of reliability and validity 

of a new battery. 

2.3.4 Methodological gap: developing L1 sensitive measures  

Most existing aptitude measures are written in English and incorporate stimuli that are more 

engaging for participants if their L1 is English or close to Germanic languages. This design 

may yield potential confounds if participants are non-native English speakers and have 

varying proficiency of the encoding language (i.e., the language in which the test items are 

written). 

 This gap may need the development of an aptitude battery that (initially, at least) 

targets a specific learner population rather than the creation of a uniform battery that could 
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be suitable for all L2 learners regardless of their language experience. Therefore, the 

current research aims to develop a new aptitude battery that is sensitive to the L1 of 

participants who, in case of the current research, are native speakers of Chinese. This can 

initiate a long methodological journey and provide a prototype to invite further iterations of 

more language versions that can be used for different learner populations. 

2.4 Research questions for the current research 

These research gaps in aptitude measures necessitate the development of a new aptitude 

battery to facilitate empirical investigations through methodological advancements. In 

response to these gaps, the current research develops a new aptitude battery, Tests of 

Aptitude for Language Learning (TALL), based on the synthesis of the Stages Approach 

and the P/E model, with the aim of measuring foreign language aptitude of L1-Chinese 

learners.  

Three research questions are addressed concerning an initial validation of this 

battery:  

Research question 1:  

To what extent does TALL display satisfactory internal consistency and internal validity as 

a battery for language aptitude? 

Research question 2:  

To what extent does modality have effects on scores in the subtests that are administered 

in the aural and the written modality? 

Research question 3:  

To what extent does TALL predict the foreign language (English) proficiency of the 

participants? 
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CHAPTER 3: METHODS 

 

3.1 Introduction 

The first section of the chapter―Instrumentation―provides general considerations relating 

to (a) design decisions for the test suites of Test of Aptitude for Language Learning (TALL) 

and (b) technical issues involved in developing TALL into an IBR instrument. Following this, 

the details in the design of each subtest are elaborated, as well as the rationales and 

contributions of pilots to the final instrumentation. The second section―Main 

study―presents the study design, data collection procedure, and data analysis plan.  This 

section also highlights the efforts made to address the issue of ‘power’, a problems that can 

affect the quality of quantitative L2 research (Isbell et al., 2022; Plonsky, 2013; Plonsky & 

Gass, 2011). These efforts include conducting a priori power analysis to compute required 

sample size, applying strategies to deal with outliers systematically, and using a multivariate 

data analysis plan.   

3.2 Instrumentation 

3.2.1 General considerations in developing TALL into an IBR instrument  

3.2.1.1 Componential constructs 

In Section 2.3, a theoretical framework for TALL has been proposed based on the Stages 

Approach (Skehan, 2016) and the Phonological/Executive (P/E) Model (Wen, 2016). Given 

that the aim of TALL is to measure the components of aptitude specifically involved in the 

early stages of L2 learning, which primarily focuses on handling novel input through central 

processing without involving language output, five componential constructs are postulated. 

These constructs are associative memory, phonetic coding ability, language analytic ability, 

and working memory (WM), with WM composed of phonological short-term memory and 

executive control capacity according to Wen (2016).  

To measure the above constructs respectively, TALL was designed with five 

componential subtests: Vocabulary Learning (TALL_VL) for associative memory, Sound 

Discrimination (TALL_SD) for phonetic coding ability, Language Analysis (TALL_LA) for 

language analytic ability, Serial Nonwords Recall (TALL_SNWR) for phonological short-

term memory, and Complex Span Tasks (TALL_CST) for executive control capacity. 

3.2.1.2 Modalities and material versions 

In Section 2.2.2.3, the effects of input modalities in L2 learning were reviewed. This leads 

to Research Question 2 about whether using stimuli in different modalities to measure 
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aptitude would provide different results. Most existing aptitude batteries (except the CANAL-

FT) have not taken into consideration the effects of modality in which stimuli are presented, 

suggesting a methodological gap in literature that needs to be addressed. To answer this 

RQ, three subtests, i.e., TALL_VL, TALL_LA, and TALL_CST, were designed to be 

administered in both aural and written modalities. However, aptitude, as a hybrid construct, 

should be measured by a complete test suite that contains all the subtests. Therefore, TALL 

was developed into two suites, each holding five subtests as shown in Table 3.1. 

 

Table 4.1 Test suites and subtests of TALL 

Test Suite Subtest Input modality Targeted component in aptitude 

Aural  

TALL_VL aural associative memory  

TALL_SD aural phonetic coding ability 

TALL_LA aural language analytic ability  

TALL_SNWR aural phonological short-term memory  

TALL_CST aural executive control capacity 

Written 

TALL_VL written associative memory 

TALL_SD aural phonetic coding ability 

TALL_LA written language analytic ability 

TALL_SNWR aural phonological short-term memory 

TALL_CST written executive control capacity 

 

Participants were tested in different modalities in a repeated within-subject design. 

Therefore, two versions of stimuli were developed, that is, each test suite had two material 

versions with stimuli counterbalanced so that a participant did not see the same item (or 

trial) in both modalities. For the three subtests that were administered in two modalities, 

stimuli in two versions of materials were consistent across the modalities.  

3.2.1.3 Instructional and encoding languages 

In Section 2.2.3.3, methodological issues related to the use of language in aptitude batteries 

are reviewed. To avoid potential confounds of participants’ L2 knowledge, it is likely to be 

important to use participants’ L1 for the instructions in psychometric measurements. In the 

current study, the target population was participants who had Mandarin, the dominant 

variety of Chinese in mainland China and Taiwan, as their L1 and English as their later 

learned foreign language, so TALL was developed using Mandarin for the instructions.  
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The target language in the subtests of TALL_VL, TALL_SD, and TALL_LA that 

involve language learning tasks was a miniature language adapted from Lithuanian, a Baltic 

language that was highly likely to be novel to the participants in the current study. The ideal 

of using artificially designed language stimuli adapted from a natural language was in line 

with the design of LLAMA subtests, which provided test stimuli that were neutral (arguably) 

to the L1s of participants, as evidenced by the insignificant differences in the performance 

of participants from different L1 backgrounds (Rogers, et al., 2017).  

The encoding language in which the nonword stimuli were used in the TALL_SNWR 

followed the phonological rules of the participants’ L1 Mandarin. Care also had to be taken 

to ensure that nonword could not be used as a cue to elicit associated sematic information. 

These considerations aimed to address two methodological restrictions (or confounds) 

summarised in Gathercole (2006). First, language knowledge can influence the accuracy of 

nonword repetition. Second, nonword stimuli containing syllables of lexical items or 

segments with high phonotactic frequencies can increase the accuracy of the task. Given 

that participants’ L1 is Mandarin, nonword stimuli should be designed to conform to 

Mandarin phonology. Also, it was important to avoid real meaning associations. This 

methodological consideration can be challenging to ensure as individual syllables may 

correspond to one or more meanings in Mandarin, which may explain that nonword 

repetition task using stimuli in Mandarin is scarce in previous studies. In other words, the 

formation of a stimulus being legitimate phonologically yet illegitimate in meaning (i.e., a 

nonword) in Mandarin Chinese can be difficult relative to creating a nonword in English or 

other alphabetic language.  

The design of nonword stimuli in TALL_SNWR was informed by the way of defining 

nonwords following phonological rules of Cantonese, a Chinese variety predominantly used 

in Hong Kong, Macau and Guangdong Province in China, introduced by Chan et al. (2011). 

Specifically, the principles for nonword formation in Mandarin Chinese were postulated as: 

(1) nonwords were in the form of consonant‒vowel‒consonant‒vowel (CVCV) disyllabic 

words, which is the most frequent word formation in Mandarin; (2) all syllables in the 

nonwords were combination of a consonant and a vowel conforming to the phonotactic rules 

of Mandarin, being articulatable by a Mandarin native speaker. Meanwhile, the combined 

syllables should not exist in the Mandarin syllabary, hence they did not correspond to any 

Chinese characters. This, therefore, prevented the elicitation of associations of semantic 

meanings by the participants, as suggested by Gathercole (2006); (3) all nonwords and 

their componential syllables were presented in one consistent tone (i.e., the high-level tone) 

to minimise the demand for tonal encoding and the possibility of semantic association of 
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any disyllabic words that had similar tones; and (4) two consonants and two vowels in each 

nonword were different so as to avoid possible prosodic effects, such as rhyme or alliteration. 

These principles were followed in the formation of all the nonwords in TALL_SNWR.  

Verbal stimuli are commonly used in domain-specific complex span tasks to 

measure executive control capacity in WM (Conway, et al., 2005). The encoding language 

in which verbal stimuli are presented in the processing task has been proposed to be 

participants’ L1 to eliminate the potential confound of other language knowledge. In other 

words, the design of verbal stimuli for meaning processing needs to be sensitive to the L1 

of the participants. In the current study, participants’ L1 Chinese was used to compose the 

sentence stimuli for meaning processing, and English letters were used as the stimuli for 

recalling. This task design was adopted from the reading span tasks in Gass et al. (2019), 

which is a Chinese version adapted from the reading span tasks in Unsworth et al. (2009), 

developed in the Attention & Working Memory Lab in Georgia Institute of Technology 

(https://englelab.gatech.edu/).   

3.2.1.4 Techniques of the Internet-based research methods 

TALL was intended to be conducted in person for data collection before the COVID-19 

pandemic. However, logistical challenges during the pandemic imposed the necessity of 

developing an instrument that can be used on the Internet to collect data remotely. The 

applications of IBR methods in measuring aptitude have been reviewed in Section 2.2.3.2, 

in which the strengths, concerns and recommendations have been highlighted. In this 

section, specific technical considerations are introduced. These considerations served the 

purpose of minimising the potential issues that may threaten the internal validity of TALL as 

an IBR instrument.   

Archival techniques 

Archival techniques were applied to record response times and to identify invariant 

responding, the measures recommended to ensure data quality in IBR (Newman et al., 

2021). Specifically, response times in all testing items were recorded and downloadable as 

part of the raw datasets. This allowed attention checks to identify inattentive participants 

and manually exclude the relevant data points in the data preparation protocol (to be 

introduced in Section 3.3.5.1). In addition, the design of TALL did not allow participants to 

skip an item without any response.  

Explicit instructions, warnings, and time features 

Explicit instructions and warnings were used throughout TALL to ensure the efficacy of the 

study and validity of research findings based on the responses at the level of reduced 

https://englelab.gatech.edu/
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dishonesty (Buhrmester et al., 2018; Hunt & Scheetz, 2019). For example, explicit 

instructions forbidding note taking were communicated at the beginning of all subtests 

except in TALL_LA, in which participants were instructed that they could take notes in the 

learning phase. The instruction of “Note-taking Are Forbidden” was displayed on the screen 

throughout the testing phases in two WM subtests, i.e., TALL_SNWR and TALL_CST.   

It is highly recommended to increase procedural transparency in IBR, as reviewed 

in Section 2.2.3.2.  This purpose can be achieved not only in the process of recruiting 

participants and collecting their consents but also in the procedure of the experiment. 

Specifically, in all the subtests, countdown timers were displayed on the screen to indicate 

the available time for the learning tasks, as well as the progress of testing.  

Techniques to limit non-naivety 

As reviewed in Section 2.2.3.2, non-naivety of participants may compromise data quality. 

Given that TALL is a novel battery that has not been publicised or used by participants other 

than those in the current study, it was unlikely that participants had become familiar with 

TALL when they took the test. Despite the unlikeness of participants’ non-naivety, 

techniques were still applied to avoid participants taking the same test more than once by 

providing a one-time test code for each invited participant. This ensured that a participant 

could only use an assigned test code once and was not able to reattempt the access to the 

test. The test codes were within the control of the researcher, hence eliminating the potential 

fraudulent or dishonest behaviour of submitting multiple responses to achieve higher scores 

or to obtain more financial compensation.    

Service and backend data protection 

TALL was developed by outsourced developers using Java scripts. The test platform was 

powered by a commercial service Tencent Cloud (http://www.tencentcloud.com), with the 

server IP:139.186.128.135 based in China. The study complied with the General Data 

Protection Regulation (GDPR) and received ethical approval. Additional measures were 

taken to protect data collected through the test platform, as follows. 

 First, the website server has been connected to the Tencent Cloud T-Sec host 

security service for privileged clients. The service is based on the massive threat data 

accumulated by Tencent Security and uses machine learning to provide users with security 

protection services such as asset management, Trojan file detection, hacker intrusion 

detection, and vulnerability risk warning. 
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Second, a dual strategy of carrying out regular back-up on both the server and local 

backend has been implemented to maintain the database. This measure ensures that data 

can be recovered against the situations of the backend database being damaged due to 

network attacks or force majeure. The backup data has been archived in the School of 

Foreign Languages and Cultures at Chongqing University, the institution that financially 

sponsored the technical development of TALL.  

Third, a database security audit mechanism has been adopted, whereby the server 

can constantly record the operations performed by users and save them in the relevant log 

files. These audit logs allow the administrator to monitor the details of accesses and 

operations to detect security vulnerability of the system through log analysis, and to fix the 

vulnerability in time. This admin role has been undertaken by one of the developers.  

3.2.2 Development of subtests    

The following sections describe the considerations in the design of each subtest of TALL. 

They provide details about the selections of stimuli and the comparisons of the subtests to 

similar tests in other aptitude measures. All materials used in TALL subtests, including 

written, audio, and pictorial forms of stimuli, have been uploaded to the project portfolio in 

the OSF repository (https://osf.io/bhca3/), and all the subtest manuals can be found in 

Appendix A. 

3.2.2.1 TALL_VL: Vocabulary Learning 

TALL_VL, informed by Paired Associates in the MLAT (Carroll & Sapon, 1959) and 

LLAMA_B in the LLAMA tests (Meara, 2005; Meara & Rogers, 2019), was developed to 

measure associative memory of the participants, demonstrated by the participants matching 

the vocabulary items in a novel language they learnt to the corresponding meanings 

displayed by pictures. This subtest was designed in both aural and written modalities, with 

each modality having two counterbalanced versions of vocabulary items.  

Phases of TALL_VL: learning and testing 

Figure 3.1 showed the experimental paradigm of this subtest having two sequential phases. 

In the learning phase in two minutes, participants were exposed to 20 pictures of objects 

that were arranged in a fixed layout on the screen. Participants listened to a name that 

matched with an object by clicking a picture of an object with the mouse if they were 

assigned to take the aural test suite, or they read the name of an object on the screen by 

hovering over the corresponding picture with the mouse cursor if they took the written suite. 

Participants were allowed to click on or hover over any picture as many times as they 

https://osf.io/bhca3/
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wanted, with a two-minute countdown bar displayed on the screen helping them to manage 

the learning pace.  

In the testing phase, participants were presented with the same 20 pictures of 

objects on the screen as in the learning phase, but the layout of the pictures was randomly 

arranged. They were then presented with acoustic forms (in the aural suite) or written forms 

(in the written suite) of the 20 vocabulary items, one at a time in random order (random for 

different participants). Participants were tested on the ability to identify the correct object 

that matched the form they listened to or read by clicking on the corresponding picture (thus, 

it is a receptive, meaning recognition test, as all pictures were available for every answer). 

Participants were allowed to take the test at their own pace to complete the testing phase. 

Performance was scored based on the number of vocabulary items that a participant 

correctly matched with the corresponding pictures, with a total score of 20. A participant’s 

final score was displayed immediately upon the completion of this subtest. 

 

 

Figure 3.1 Experimental paradigm of TALL_VL 

 

Characteristics 

In existing major batteries, associative memory is operationalised in vocabulary learning 

tasks that measure participants’ ability to establish connections between verbal stimuli (e.g., 

words in L1) and responses (e.g., equivalents in a foreign language) and retain such 
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associations in memory. The relevant subtests in the MLAT, CANAL-FT, LLAMA, and Hi-

LAB all employ this paradigm, though they differ in the creation of test items in terms of 

modality, contextualization, and time of recall. As discussed in Section 2.2.1, the CANAL-

FT is the only battery using test items in both aural and written forms, embedding target 

items in learning context, and assessing both immediate and delayed recall. In contrast, the 

other batteries solely use written items and assess immediate recall in non-contextualised 

learning tasks. 

In the design of TALL_VL, the issue of modality has been addressed by presenting 

items in either aural or written forms in different modality suites. This approach allows for 

the investigation of the effects of modality on measuring associative memory (part of RQ2). 

Moreover, the decision to only employ non-contextualised leaning task and immediate recall 

was influenced by the practical considerations of the experimental process and length, as 

well as the alignment of two sets of test items. The creation of test items drew extensive 

inspiration from the MLAT and the LLAMA_B. However, the items in TALL_VL are distinct 

from those tests in several ways.  

First, TALL_VL used vocabulary items, adapted from Lithuanian words that were 

novel to L1 Chinese participants, as target forms to learn, with the meaning of the target 

items presented in pictures. This design was different from that in the MLAT, in which the 

target vocabulary items in Turkish were paired with words written in English. The MLAT may 

be suitable for participants of L1 English learning other languages. However, this learning 

design can add a potential confounding factor when participants have different levels of 

knowledge of the English vocabulary if their L1s are not English. The moderating effect of 

proficiency in the language through which learning took place has been evidenced in recent 

vocabulary learning research (e,g., Degani & Goldberg, 2019). Therefore, the design of 

TALL_VL broke away from the language paired association format and allowed participants’ 

learning of novel vocabulary items not depending on their knowledge of an earlier acquired 

language.  

Second, although the design of TALL_VL was similar to the vocabulary learning 

subtest (LLAMA_B) in the LLAMA tests, it is different from LLAMA_B in terms of the nature 

of the objects that represent the meanings. LLAMA_B uses non-existing objects (new 

entities with unfamiliar shapes and unknown functions) to match with the target vocabulary 

items in an artificial language, while TALL_VL uses objects that have corresponding lexical 

forms of concrete nouns in participants’ L1 Chinese. The design of LLAMA_B aims to 

remove the confound of various L1s in other aptitude measurements, such as the MLAT, 

and it is claimed that by presenting non-existing but still describable objects “breaks away 
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from the paired-associate format” and “allows test-takers a lot of flexibility” (Rogers, et al., 

2017, p. 50). However, it is not clear the extent to which these non-existing objects could 

be challenging for the participants to decode, form the associations between the concepts 

of unfamiliar objects and their auditory or verbal formats, and store the associations for 

memory retrieval if the participants are from different L1 related cultural backgrounds or 

different age groups. Considering these potential additional variables such design of 

LLAMA_B could bring to the test, TALL_VL uses objects that have corresponding lexical 

forms of concrete nouns in participants’ L1 Chinese. This design is to ensure that all the 

target vocabulary items are perceived by participants in a similar way that is unlikely to 

involve the visual recognition and processing of novel objects, which could be confounded 

by visual and perceptual capacities. One rationale for this design decision was that very 

often (and arguably, most often) learning a new language, requires learning new words for 

broadly known entities, that are broadly comparable to concepts and constructs already 

learnt, especially in the case of concrete nouns. Of course, sometimes language learning 

can involve learning new objects, categories, or concepts themselves, such as nuances of 

time, colour, emotions, or weather, as well as new constructs denoted by nouns and verbs. 

However, as it is possible that learning such new concepts and constructs draws on different 

mechanisms, relative to learning new forms for known entities, TALL_VL focused on just 

the learning of new forms for familiar objects.  

In addition to these design steps, the target vocabulary items (adapted from 

Lithuanian words) and the corresponding objects in two versions in TALL_VL were also 

controlled in terms of the number of syllables, letters, and diacritics, and the frequencies of 

the lexical equivalents in Chinese. Specifically, in each version of vocabulary items, ten 

monosyllabic and ten disyllabic target words were used. In each version, ten words were in 

three letters and ten in four letters, and ten words were with diacritics. All the lexical 

equivalents were chosen from A Frequency Dictionary of Mandarin Chinese (Xiao et al., 

2009) based on the index of ‘usage rate’ of a word and the occurrences per million tokens 

in the corpora. To maintain the consistency of the target words in the two versions, the 

mean and standard deviation of the usage rates of their Chinese equivalents were 

calculated and compared, which indicated non-significant differences between the two 

versions. In this way, the target vocabulary items in TALL_VL were controlled in terms of 

the likely degree of familiarity of the L1 lexis to the participants.    

3.2.2.2 TALL_SD: Sound Discrimination 

TALL_SD, informed by Part 5 in the PLAB (Pimsleur, 1966), was developed to measure 

participants’ phonetic coding ability―specifically, their ability to encode and remember 
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unfamiliar sounds in a new language. The test evaluates participants’ phonological 

awareness, encompassing their capacity to encode incoming sounds, identify the sounds 

within different sound sequences, distinguish them from similar vowels, segment phrases 

into individual sounds, and associate the sounds with their given corresponding meanings. 

All of these skills are driven by their phonological awareness, as outlined by Anthony and 

Francis (2005). Following this design, participants were required to discriminate three 

similar sounds that were presented as embedded sounds in short phrases or sentences in 

the new language. 

Phases of TALL_SD: learning and testing 

Figure 3.2 shows the paradigm of this subtest, with two sequential phases. In the learning 

phase, participants listened to three isolated sounds while they saw three corresponding 

pictures of objects on the screen‒these same three pictures were constant throughout. 

They then listened to four sets of phrases, each set having three phrases with one of the 

three sounds embedded in each phrase. While a phrase was played, the corresponding 

picture of the sound embedded in this phrase was highlighted to display the match of the 

sound and its meaning. For example, when participants were presented with an auditory 

phrase mūsų sija pilna, they saw three pictures on the screen, among which the picture of 

a corn highlighted in a red frame, corresponding to the meaning of the sound sija. 

 

 

Figure 3.2 Experimental paradigm of TALL_SD 
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In the testing phase, participants were presented with the same three pictures that 

corresponded to the sounds on the screen as in the learning phase. They then listened to 

30 test stimuli one at a time and were required to discriminate which of the three sounds 

was embedded in the stimuli by clicking on the corresponding picture associated with the 

sound. Participants were given a maximum of 15 seconds to make the choice for each 

stimulus. 10 sets of stimuli were designed, each having 30 stimuli in total in the testing 

phase, and each sound was presented 10 times. The playing order of all stimuli was random, 

and the progress through the test was displayed by a bar on the screen, showing the 

proportion of total testing items participants had completed. Although TALL_SD was 

administered only in the aural modality, it had two versions of materials that were counter-

balanced across test suites. The performance of the participants in this subtest was scored 

by the number of the correct choices they made, and the total score was 30. A participant’s 

final score was displayed immediately upon the completion of this subtest. 

Characteristics 

In existing major batteries, phonetic coding ability is operationalised in diverse subtests, 

characterised by features that inspired the design of TALL_SD. Firstly, subtests in the 

CANAL-FT and Hi-LAB measure phonetic coding ability without requiring participants to 

associate novel sounds with written forms. This approach avoids introducing confounds 

related to differences in participants’ abilities to perceive phonological and orthographical 

forms, as well as their existing knowledge of Romanic writing systems. Secondly, in the 

PLAB and CANAL-FT, the subtests measuring perceiving and retaining novel sounds 

require participants to create form-meaning connections, extending beyond merely 

measuring participants’ perceptual acuity of novel sounds. These subtests present test 

items contextually, embedded within short phrases or passages. This operationalisation 

engages participants’ phonological awareness not only in encoding and identifying the 

novel sounds but also segmenting the novel sounds from the phonological input and 

associating them with their corresponding meanings. This paradigm simulates language 

learning processes involving phonetic coding ability, such as Input processing, Noticing, 

and Pattern recognition of linguistic input, as outlined in the Stages Approach.   

In the design of TALL_SD,  the modality has been decided to be exclusively aural. 

Additionally, practical considerations regarding the alignment of two sets of test items 

were taken into account. The design was informed by the test format of Part 5 in the PLAB 

but differs from this test in several ways.   
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First, being different from the target stimuli in the PLAB that are adopted from a tone 

language, TALL_SD used two versions of sounds in Lithuanian, and each version included 

three target sounds that were similar. These sounds were in the consonant-vowel-

consonant-vowel (C1V1C2V2) formation, with only the first vowel (V1) being different across 

the three sounds. The combinations of the three sounds were consistent across two 

versions, that is, one diphthong (i.e., two vowels in a single syllable in V1) and two single 

vowels were used in each version.  

Version A:  vieta (火山, volcano) / vata (望远镜, telescope) / vyta (椅子, chair) 

Version B:  sauja (蝴蝶, butterfly) / sėja (帐篷, tent) / sija (玉米, corn) 

The length of the stimuli in the learning and testing phases and the auditory elements 

other than the sounds in the stimuli were identical in the same set. For example, in Version 

B, the stimuli in Set 4 of the learning phase were: sauja mūsų / sėja mūsų / sija mūsų. In 

addition, the sounds were evenly embedded at the beginning, in the middle, or at the end 

of the stimuli in the two phases and two versions. In this way, the differences between the 

two versions of stimuli were controlled as close as possible. 

In addition, unlike the design in the PLAB that presents the meaning of the target 

sounds in English words, TALL_SD used pictures of objects to present the meanings of the 

sounds. The objects were selected from A Frequency Dictionary of Mandarin Chinese (Xiao 

et al., 2009), with the mean and standard deviation of the usage rates of the corresponding 

lexical forms being consistent and statistically non-significantly different between the two 

versions. In this way, the L1 meaning of the sounds in TALL_SD were controlled in terms 

of the degree of familiarity to the participants.                 

3.2.2.3 TALL_LA: Language Analysis 

TALL_LA subtest, informed by the test format of the Language Analysis in the PLAB and 

the LLAMA_F, was designed to measure language analytic ability in learning grammatical 

features in a miniature language. The target features and vocabulary items in this subtest 

were adapted from Lithuanian. This subtest was administered in both aural and written 

modalities.  

Phases of TALL_LA: learning and testing 

Figure 3.3 shows the paradigm of this subtest, in which participants were required to go 

through two sequential phases. In the learning phase, participants clicked one of the blue 

buttons arranged in a grid on screen and were presented with a picture displaying the 

semantic meaning of verbal phrases or sentences. In the aural modality, participants 
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listened to verbal phrases or sentences that described the meaning of the displayed picture, 

while in the written modality, they read the verbal phrases or sentences on the screen. The 

design of the learning task was adapted from the cross-situational learning paradigm (see, 

for example, in Bovolenta & Marsden, 2020; Walker et al., 2020), in which learners are 

presented with vocabulary and grammar across multiple learning situations without any 

feedback. Specifically, in TALL_LA, when participants were presented with a picture about 

‘a horse is sleeping’, they listened to or read a sentence description plaktukas miega; they 

were presented with another picture of ‘two horses are sleeping’ and its sentence 

description plaktukai miega. Inferences could be made that, for example, plaktukas was the 

singular form of plaktukai, and both words referred to the animal, the horse. Participants 

were given five minutes to examine 20 pictures corresponding to 20 phrases and sentences 

consisting of vocabulary items: two nouns, three verbs, and two adjectives (in Version Ａ) 

or adverbs (in Version B). Morphological and syntactic properties were presented in the 

verbal descriptions, including three morphosyntactic rules (i.e., nominal endings, verbal 

inflections, and word order) in the target language. In the learning phase, participants were 

allowed to click the pictures in any order and as many times as they wanted, with a five-

minute countdown bar displayed on the screen helping them manage the learning pace. 

 

 

Figure 3.3 Experimental paradigm of TALL_LA 

 

In the testing phase, participants were presented with pictures one at a time and 

were required to choose the correct verbal description of the picture from four given options 
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given. In the aural modality, participants were required to click (as many times as they 

wanted) each button of the four options to listen to the optional descriptions and then make 

the choices, while in the written modality, the four options were displayed on the screen for 

them to choose by clicking the correct optional sentence describing the picture (as shown 

in Figure 3.3). 

TALL_LA had no time limit for participants to complete all 30 testing items that were 

presented in random order, and the testing progress was displayed by a bar on the screen 

showing the proportion of total testing items a participant had completed. This subtest had 

two versions of materials that were counter-balanced across test suites. The performance 

of the participants in this subtest was scored by the number of the correct choices they 

made, and the total score was 30. A participant’s final score was displayed immediately 

upon the completion of this subtest.     

Characteristics 

TALL_LA was informed by the test format of the Language Analysis in the PLAB and the 

LLAMA_F, both using miniature language forms that are different from the prior acquired 

languages of the participants. The potential confound of grammar knowledge among 

participants could be addressed by using target structures in a miniature language, which 

helped to achieve a baseline where the target forms are unfamiliar to all participants. 

However, TALL_LA had substantially different test design from the existing measures in 

several ways.  

First, TALL_LA can be administered in both aural and written modalities, while both 

the Language Analysis in the PLAB and the LLAMA_F present language stimuli in the 

written modality. Therefore, TALL_LA allows investigation on the effect of modality in 

measuring language analytic ability when the target features are perceived in different 

modalities.  

Second, the design of the stimuli in TALL_LA, as presented in Table 3.2, employed 

three morphosyntactic rules―nominal endings, verbal inflections, and word orders, each 

rule having pair of features. Each rule pair differed between two versions of stimuli. These 

features either did not exist in the participants’ L1 Chinese (nominal endings and verbal 

inflections) or existed in the L1 but in a different form (word orders). The selection of these 

specific rules in TALL_LA was based on the consideration of interpretability and inferability 

to achieve form‒meaning mapping. These features were either interpretable, contributing 

essentially to the meaning (e.g., verbal inflections related to tenses, and affirmative and 
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negative forms), or inferable from the pictorial stimuli (e.g., agreement rules involving 

nominal endings and word orders involving adjectives and adverbs).  

It should be noted that although TALL_LA drew inspiration from the subtests in the 

PLAB and the LLAMA, the features were distinct from those present in these batteries in 

the following aspects:  

(1) The morphosyntactic rules used in TALL_LA were different from those in the 

PLAB and the LLAMA_F. Specifically, the Language Analysis in the PLAB focuses on word 

orders, an object marker, and verbal inflections. On the other hand, the features in the 

LLAMA_F pertain to word order (e.g., prepositions in sentence initial positions, adjectives 

preceding nouns, singular markers as sentence final elements, and numerals preceding 

nouns) and semantical agreement (e.g., colour adjectives agreeing with shapes, numerals 

agreeing with prepositions). A practical consideration factored into the selection of rules in 

TALL_LA, as two parallel sets of each target feature were necessary to generate stimuli for 

the counterbalanced design. 

(2) Whereas LLAMA_F used pictures of non-existed objects (i.e., coloured shapes 

with an eye and legs), TALL_LA used pictures to simulate the scenarios that demonstrated 

two classes of nouns (i.e., animals in Version A and people in Version B) and their 

behaviours. The creation of the pictorial stimuli was challenging with a few considerations. 

For example, the appearances of people that were ‘typically’ feminine (with longer hair, 

ponytails, or a bun) and masculine (with shorter hair or a moustache) that could inform the 

biological genders related to the use of the nominal endings. The use of left or right arrows 

with Chinese characters of 昨天 (yesterday) and 明天 (tomorrow) conceptualised the past 

and future tenses. The background of the garden fence and the household furniture 

differentiated the uses of the adverbs (inside and outside) in the stimuli.  

(3) In the testing phase, TALL_LA included a generalised vocabulary item (either a 

noun, a verb, or an adjective/adverb) that tested generalisation of a rule as it was not 

introduced in the learning phase. This is different to the previous measures, in which all the 

vocabulary items are either provided in the instructions (in PLAB) or presented in the 

learning phase (in LLAMA_F).  

(4) TALL_LA provided explicit test instructions that allowed notetaking in the learning 

phase, which was the same as the subtest in the PLAB, while it was different from the 

notetaking instructions in the LLAMA_F. Whether notetaking is allowed during any learning 

(or testing) phase can be relevant to the validity of the test. For the PLAB, notetaking is not 
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Table 5.2 Target features in TALL_LA  

Rule Version Paired features Example of target feature English meaning 

Nominal ending A singular grotuvas bega  a dog is running 

plural grotuvai bega dogs are running 

B feminine vireja taise a grandma planted 

masculine virejas taise a grandpa planted 

Verbal inflection A affirmation grotuvas verda a dog is eating 

negation grotuvas verdane a dog is not eating 

B past tense kirpeja valge a woman watered   

future tense kirpeja valgelo a woman will water 

Word order A adjective position in affirmation grotuvas melyn miega a blue dog is sleeping 

adjective position in negation plaktukas gelton begane a yellow horse is not running 

B adverb position in past tense kirpeja viduje taise a woman planted inside 

adverb position in future tense kirpejas lauke valgelo a man will water outsdie 
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a potential threat to the validity of the test, given that there is no prior learning phase in the 

test (cues for learning are provided as a list of vocabulary items in the test directions). 

However, notetaking instruction needs more considerations in TALL_LA. It may threaten 

the validity of the tests because both are internet-based in which participants are not 

invigilated.  Evidence on the effect of notetaking on test results is reported in the LLAMA 

validation study by Rogers et al.(2017). Although they found that the performance of note-

taking participants was not significantly different from that of their counterparts who were 

not allowed to take notes, participants were observed writing out the complete sentences 

and drawing the corresponding pictures in the learning phase rather than trying to figure out 

the grammatical rules before the testing phase.  Given that note-taking was therefore likely 

to happen, it was decided that it would better to provide clear instructions that explicitly allow 

notetaking in TALL_LA. However, the inclusion of the generalisation vocabulary test items 

(that were not in the learning phase) could mitigate the potential effects of note-taking 

behaviour.  

Third, TALL_LA had a different testing format and scoring strategy from precious 

measures.  Participants were required to choose the correct answer from four alternative 

forced choices (4AFC), similar to the format in the Language Analysis in the PLAB. Among 

the four alternative choices, target morphosyntactic features were presented correctly in 

one choice and incorrectly in other three alternatives. The lexical item in these four choices 

was the same, which ease the difficulty as participants were not tested on whether they 

remembered the lexical meanings of the words. The final score in TALL_LA was obtained 

by the number of correct choices the participants made, and the correct choices represent 

the target features and lexical items. As such, TALL_LA aimed to gauge participants’ ability 

to inferentially analyse morphosyntactic features and correctly recognise the features in the 

new sentences.  

This testing format was different from that in the LLAMA_F, in which participants 

need to construct a target sentence by choosing lexical items from the list of 16 items that 

they have been exposed to in the learning phase to create a sentence. In this respect, 

LLAMA_F involves production of sentences. However, LLAMA_F does not score 

participants’ answers for complete accuracy, that is, each of the ten sentences is scored for 

including two items corresponding to two syntactic features, and any other items appearing 

in the answer are ignored regardless of being correct or not (Rogers et al., 2017; Rogers et 

al., 2023). For example, a participant may be scored with full credit if he or she correctly 

chooses two items of the two features (e.g., verbs/preposition being sentence initial, and 

sentences with a singular subject ending in a singular marker). Any response that correctly 
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includes a verb/preposition and a singular noun in a sentence ending with a singular marker 

will be awarded two points, despite that the response includes an incorrect singular noun 

and/or an incorrect singular maker. This scoring strategy aims to ease the difficulty of 

scoring production by ignoring test-takers’ learning of vocabulary items. However, it is not 

clear whether each test item contains only two grammatical features, as the full list of test 

items are not introduced in the literature. This point is important because partial scoring of 

the target features but ignoring other features included in the same response may threaten 

the validity of the test, as learning of the exposed features is not precisely reflected in the 

test scores.  

In addition to the above considerations in test design, TALL_LA also controlled the 

number of target features appearing in each test item. Specifically, each stimulus in a 

material version included two grammatical features. Therefore, the 30 test stimuli had a 

consistent number of occurrences of target features across two versions. The stimuli in each 

version include 15 pairs of features of nominal endings, 15 pairs of verbal inflections, and 

14 pairs of word order.  The number of syllables in the same type of items was consistent 

in the learning and testing phases, and the number of lexical items was also consistent 

between the two versions of the materials.  

3.2.2.4 TALL_SNWR: Serial Nonwords Recall 

TALL_SNWR was developed to measure the participants’ phonological short-term memory 

(PSTM), a component of working memory, by requiring participants to repeat a series of 

nonwords in the order they were presented. As discussed in Section 2.2.2.3, employing 

auditory stimuli seems appropriate for measuring the PSTM component because the 

phonological loop, proposed as a distinct subsystem of WM, processes auditory verbal 

information (Baddeley, 1986, 1992). Nonword repetition tasks, extensively used to measure 

PSTM (Gathercole, 1995, 2006; Gathercole & Baddeley, 1989), inherently involve auditory 

stimuli. However, in the Hi-LAB, the sole existing aptitude battery featuring specific subtests 

for WM, the nonword span tasks present stimuli visually on screen to assess PSTM, lacking 

a specified justification of this methodological deviation from the norm. The design of 

TALL_SNWR aligns with the nonword repetition tasks paradigm by Gathercole and 

colleagues, using auditory stimuli only. Despite using nonword stimuli exclusively in the 

aural modality, two versions of materials were developed and counterbalanced across both 

the aural and written test suites of TALL.  

Phases of TALL_SNWR: practice and testing  
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Figure 3.4 shows the paradigm of this subtest. The participants were first provided with 

three trials to practise in the learning phase. These trials had two, three, and five nonwords, 

respectively. The purpose of the practice phase was to help participants become familiar 

with the experimental format. The participants listened to a trial containing a series of 

nonwords presented sequentially with constant speed (1000 ms) and intervals (1500 ms), 

then they were required to repeat the nonwords, in the same order in which they were heard, 

by clicking the corresponding ‘开始录音假词 1’ (start recording nonword No.1) buttons on 

the screen. After they completed the recording of the nonwords in this trial, they were 

required to submit their recalling of the nonwords by clicking the ‘提交’ (submit) button on 

the screen. After three practice trials, the testing phase began and followed the same 

procedure of the practice phase: participants first listened to a trial with a series of nonwords, 

then repeated the nonwords one by one in the presenting order by clicking the 

corresponding recording buttons, submitted their recalling to complete the test of the trial 

and continued to next trial till the end of this subtest. 

17 trials with 74 nonwords in total were randomly presented in the test, each trial 

having between two to seven nonwords. Participants were allowed to record and submit 

their recalling of each trial in 30 seconds. If they did not submit the recalling of a trial in this 

time limit, the test program would automatically move on to the next trial. The progress of 

the testing phase was displayed by a bar on the screen that shows the proportion of the 

total testing trials a participant had completed.  

TALL_SNWR was the only subtest in TALL that collected participants’ production 

data, that is, their articulations of nonwords, hence the data of participants’ performance 

were stored in TALL’s backend and downloadable for the manual scoring after the 

completion of the experiment. The final score of TALL_SNWR was the number of nonwords 

that were assessed manually as being correctly articulated in the correct order. The total 

score was 74.  
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Figure 3.4 Experimental paradigm of TALL_SNWR 

 

Characteristics 

TALL_SNWR is the only subtest in TALL that elicit production data. Participants’ ability to 

perceive and discriminate novel sounds could differ from their ability to articulate novel 

sounds, especially when the sounds are domain-specific and composed following 

phonological rules in different languages. Therefore, the creation of the nonwords followed 

participants’ L1 phonological rules in Mandarin to ensure that the nonwords are articulatable. 

Additionally, as introduced in Section 3.2.1.3, to address the methodological limitations in 

the nonword repetition task described by Gathercole (2006), syllables of the nonwords do 

not exist in the Mandarin syllabary to avoid real meaning associations.  

Given that the nonwords in TALL_SNWR adhere to the phonological rules in 

Mandarin, these nonwords were consistently created with two syllables, the most common 

word formation in Mandarin. Thus, the trials in TALL_SNWR consist of a serial of two-

syllabic nonwords, ranging from 2 to 7. This design differs from the nonwords developed by 

Gathercole and colleagues, as they created English nonwords with varied number of 

syllables, ranging from one to five. The reason for not creating multi-syllable nonwords, as 

in the tasks designed by Gathercole, was that multi-syllable words were less observed in 

Mandarin than two-syllable words, and words with four or five syllables might be associated 

with prosodic effects, a potential confound that was undesirable.  
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Consequently, the formation of nonwords in TALL_SNWR was extensively informed 

by the creation of nonword stimuli for Cantonese speakers by Chan et al. (2011), as 

introduced in Section 3.2.1.3, and the nonword repetition task used in Suzuki (2021b) for 

Japanese speakers, in which three-mora nonwords―the most common word formation in 

Japanese―were created by combining three Japanese morae randomly. Taking into 

account the above-mentioned considerations, seven consonants (b, c, d, f, m, p, r) and 

seven vowels (a, ai, e, ei, ia, ou, ua) were chosen from the Mandarin syllabary to form 11 

non-existing syllables (be, bou, cei, dua, fai, fe, mia, pe, pia, ra, rei).  

As shown in Table 3.3, these 11 non-existing syllables were used to form 14 

nonwords. Given that two versions of stimuli were needed for the counterbalancing design, 

the componential syllables in each nonword were combined in a different order to form a 

paired version of nonwords. For example, if be-dua was used in Version A, then its reversed 

form dua-be was used in Version B. In this way, each of the nonword stimuli could only be 

used in one version. The 14 disyllabic nonwords appeared 6 times throughout the practice 

and testing phases, and this generated 84 stimuli in each version. All nonwords were 

presented with a constant speed of 3 seconds per item. In the practice phase, the trials and 

the nonwords in each trial were presented in a fixed order, that is, the 3-nonword trial was 

the first trial presented, followed by the 4-nonword trial, and the 5-nonword trial was played 

last. In the testing phase, trials were presented in a random order, but nonwords in each 

trial were presented in the constant order. This design followed that of Gathercole et al. 

(1994). 

 

Table 6.3 Two versions of nonwords in TALL_SNWR 

Version Nonwords (combined in different orders in each trial) 

A cei-ra, pia-fe, dua-cei, rei-pia, fai-bou, fe-rei, pia-fai, cei-mia, be-dua, mia-fe, fe-ra 

B ra-cei, fe-pia, cei-dua, pia-rei, bou-fai, rei-fe, fai-pia, mia-cei, dua-be, fe-mia, ra-fe 

 

3.2.2.5 TALL_CST: Complex Span Tasks 

Complex span tasks (CST) are commonly used to examine active and controlled 

mechanisms of primary memory more than the passive characteristics of short-term 

memory, as in the nonword recall test (Draheim et al., 2018). Essentially, complex span 

tasks comprise two intertwined components of storage and processing. The processing 

component is inserted between the stimuli to be retained by participants as a distractor to 

prevent rehearsal of the stimuli to be retained. The primary objective of the participant is to 
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retain the stimuli presented despite the interference caused by the distractor, which 

gradually increases from one trial to another.  CST using verbal stimuli in both processing 

and recalling tasks are used as domain-specific tasks to measure executive control capacity 

in working memory (Conway, et al., 2005). To investigate the modality effect in measuring 

aptitude, TALL_CST was adapted from the Reading Span Tasks in Gass et al. (2019), which 

is a Chinese version of the reading span tasks in Unsworth et al. (2009). The stimuli for 

sentence meaning processing were developed in both aural and written modalities.  

Three methodological considerations were reflected in the design of the verbal 

stimuli in TALL_CST. First, the length of the sentence stimuli was controlled constantly. 

Second, the location of the lexical cues was fixed to be at the end of the sentence, on which 

the decision of implausibility of the sentence meaning can be made, following the 

methodological consideration in Gass & Lee (2011). Third, the lexical cues were controlled 

in terms of the mean and standard deviation of usage rates from A Frequency Dictionary of 

Mandarin Chinese (Xiao et al., 2009).   

Phases of TALL_CST: practice and testing 

Figure 3.5 and 3.6 shows the paradigms of TALL_CST that had dual tasks design to engage 

participants’ trying to understand the meaning of the sentence stimuli and recalling the 

letters in the correct displaying order. A practice phase was designed to help participants 

become familiar with the testing procedure. Three steps were designed in the practice 

phase. First, the participants practised four recall trials, in which they listened to or read a 

string of letters (2 to 4 letters) in English, then clicked the corresponding letters on the 

screen based on the order in which the letters were displayed. Second, the participants 

practised the sentence processing task of listening to a sentence (in the aural modality) or 

reading a sentence on the screen (in the written modality) in Chinese, then making a 

semantic judgement about whether the sentence was sensible in terms of meaning by 

clicking the button ‘正确’ (correct) or ‘错误’ (incorrect). There were 15 sentences for practice 

in this step. Third, participants were provided with the opportunity to practise both the 

sentence processing task and letter recalling task in two further practice trials. That is, they 

made a judgement of the plausibility of the meaning of a sentence first, then they were 

presented with a letter, followed by another sentence judgement, then a letter to recall, until 

at the end of the trial when they were required to recall all the letters in the correct presenting 

order. The two practice trails were displayed in a fixed order, with the first trial having 3 

sentences and 3 letters, followed by the trial having 4 sentences and 4 letters. All trials and 

the sentences and letters included in the trials were displayed in the fixed order in the 

practice phase.  
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Figure 3.5 Experimental paradigm of TALL_CST (aural modality) 

 

 

Figure 3.6 Experimental paradigm of TALL_CST (written modality) 

 

The design of the tasks in the practice phase followed the design of the pre-test 

tasks of reading span tasks in Unsworth et al.(2009). These tasks also served as attentional 

checks for the data quality. Specifically, recalling a string of 2 to 3 English letters was 

unlikely to be challenging for the participants in the current study considering their level of 
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literacy in L2 English as college students. Failure to recall the letters correctly would indicate 

inattentiveness of the participants, leading to the termination of the test. The sentence 

meaning judgement task required participants to process 15 sentences in order to make a 

semantic judgement as quickly as they can. The reaction time in the practice trials was 

recorded and used to compute a subject-adaptive response time limit for each individual 

participant to make a sentence meaning judgement in the testing phase. This procedure 

follows the processing time limit design (i.e., time limit is computed by the mean of the 

reaction time for responding to 15 sentences plus twice the standard deviation) in the 

reading span tasks in Unsworth et al. (2009).  

There were 15 trials in the testing phase, each containing 3 to 7 sentences. The total 

number of letters to be recalled, 74, was the same as the total number of sentences. 

Participants followed the same procedure of the third step in the learning phase, that is, the 

combination of processing and recall tasks. They were randomly presented with a trial 

containing sentence stimuli for meaning processing and letter stimuli for recall. They were 

required to recall the letters in the correct order at the end of the trial. The test programme 

would proceed to the next sentence stimulus if a participant did not make a semantic 

judgment within the time limit based on the individual performance in the sentence 

processing tasks in the practice phase, and the stimulus without a response to the judgment 

would be recorded as incorrect. Participants were also required to complete the recall of the 

letter string at the end of each trial in 30 seconds. English letters were randomly assigned 

in all trials and presented (aurally in the aural modality and on the screen in the written 

modality) with constant speed (800 ms) and interval (200 ms). The sentence stimuli within 

each trial were presented in a constant order and the sequence of the trials was randomised. 

50% of the sentence stimuli were semantically plausible, while the other half of the 

sentences did not make sense (they were grammatically correct, but the meaning was very 

strange). The participants’ judgements of the semantic plausibility of the sentence stimuli 

and their recall of the string of letters were stored for data analysis.  

For self-monitoring purposes, participants were also provided with the percentage 

of accuracy in sentence processing throughout the testing phase, and a bar on the screen 

showed the proportion of the total testing trials a participant had completed. The 

performance of the participants in this subtest was scored by the total number of correct 

letters that were recalled in the correct order, and the total score was 74. A participant’s 

final score was displayed immediately upon the completion of this subtest. 

Characteristics 
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The reading span tasks in Unsworth et al.(2009) has been translated into different language 

versions, and the Chinese version was used in Gass et al. (2019). TALL_CST used 

sentence stimuli that were different from the Chinese version of the stimuli in Gass et al. 

(2019). First, the composition of the sentences was rigidly controlled, which produced 

compound sentences, each containing 20 characters and a comma.  Second, the cue word 

on which the implausibility of a sentence meaning can be judged was located at the end of 

the sentence. This design ensured that semantic judgement would not be apparent to the 

participants until the final word, following the methodological consideration in Gass & Lee 

(2011). This is an example: 

(a)天气       暖和 起来，草地      上   到处         是  野餐的     学生     和  真理。 

          weather  warm  up,   grassland on everywhere be picnicking student and truth  

Literal translation: ‘The weather has been getting warm and the grass was full of students 

and truth for picnics.’  

This sentence stimulus, as shown in (a), was for participants to process meaning and make 

a semantic judgement. The final word “真理” (truth) was the cue word to ascertain that this 

sentence did not make sense, as shown in the literal translation. Third, the final word, that 

is, the cue word, in all sentences was a two-character word, the most commonly used word 

form in Mandarin Chinese. Given that two versions of stimuli were needed for the 

counterbalanced design, all the final words were chosen from A Frequency Dictionary of 

Mandarin Chinese (Xiao et al., 2009) with consistent means and standard deviations of the 

usage rates across the two versions.  

3.2.3 Stages of pilots 

Two stages of pilots were conducted before the data collection of the main study, with a 

larger sample size than one would perhaps normally have in a pilot study. As a completely 

new internet-based test platform that was developed by outsourced technicians, TALL 

needed to be validated with a large number of test takers to testify to the stability of the 

system for data collection when multiple test takers could access the test simultaneously. 

This also helped to capture the nuances in the process of collecting data on an internet-

based platform, which was different from conducting lab-based experiments in person.  

3.2.3.1 Preliminary pilot  

Stage 1 involved a preliminary pilot study conducted in two months, with the objective of a) 

establishing the logistic procedures of recruiting participants from different universities, 

distributing test codes and instructions to the participants online, and providing 
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asynchronous technical support via a commonly used social media platform QQ (im.qq.com) 

powered by Tencent; b) identifying the time spent and the degree of fatigue of participants 

in completing one suite of five subtests; and c) assessing the stabilities of the test platform 

and the back-end data storage and data retrieval, especially in the circumstance when 

multiple users took the test online in an overlapping time window. Given that the preliminary 

pilot was conducted before the finalising of the two material versions for the 

counterbalanced design in the main study, only one version of test items was used in the 

preliminary pilot, that is, participants took the same version of test items in both aural and 

written modalities. Hence, the data elicited in the preliminary pilot study were not used for 

analyses, as taking the same test twice would be a confound in the results.   

In the preliminary pilot, participants (N = 205) who were undergraduates in the first 

or the second year from two universities completed two rounds of tests, one in the aural 

modality and one in the written modalities. The back-end data provided the information 

about the time it took, in general, to complete one test suite. Among these participants, 22 

people agreed to conduct an online think-aloud task while taking TALL in the first round. 

They were required to verbally report whatever came into their mind in the process of the 

test. Even though they were not required to think-aloud while they were engaging in the WM 

related subtests, their behaviours in those subtests, such as repeating the stimuli aloud to 

consolidate the memory, were also observed. These participants were also asked to 

describe their degree of fatigue in the testing process, as well as their feeling about the 

clarity and comprehensibility of the experimental instructions. 

This pre-pilot study provided initial information on whether test items would be 

suitable (at all) for learners at their proficiency level (that is, college students who had 

passed the English proficiency test for the higher education admission, explained in detail 

in Section 3.3.3). It also informed the practicality of the test procedures, verified the 

interpretability of the experimental design, and ensured that completion of a TALL suite in 

an average of 45 minutes would not cause serious fatigue for participants. More importantly, 

the pre-pilot study with a sample size close to the main study provided nuanced information 

in terms of whether the test could be conducted with elicited data captured and stored under 

varied conditions/qualities conditions of internet connection. This information led to further 

technical refinements of using the resumable transfer in the backup system. This improved 

the capability of the test system to resume a data transfer from the point it was interrupted 

or stopped due to the unstable internet connection, hence it ensured the stabilities of the 

test system and data transfer.   
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3.2.3.2 The main pilot  

Stage 2 involved a pilot study after the completion of the development of two versions of 

materials. The main objectives of the pilot study were to assess a) the accuracy of the 

random distributions of material versions in two sequential sessions; b) the stability of the 

test platform and the back-end data storage and data retrieval after the technical 

refinements informed by the preliminary pilot; c) the clarity and intelligibility of test stimuli in 

TALL, especially the pictorial stimuli used in TALL_LA which aimed to demonstrate linguistic 

features, such as the biological genders of human beings, affirmation and negation, and the 

past and future tenses; and d) the functionality of generating a complete TALL score report 

for participants individually.   

Twenty-two volunteers showed interest in participating the pilot test, but only ten of 

them took the test at least once. Seven participants completed two rounds (aural and written 

suites) of tests within one week.  Participants were provided with a report of their scores 

after the completions of the pilot study. Five of these participants agreed to give an online 

post-test debriefing. This 5-minute debrief collected the participants’ retrospective 

comments about the degree of difficulties and fatigue they felt during the test process, as 

well as their comments on the clarity and comprehensibility of the experimental instructions 

and the acoustic and pictorial stimuli used in TALL. Considering that these volunteers were 

first year undergraduates majoring in foreign languages, in addition to providing them with 

a report of their scores, I organised an online workshop introducing TALL and its design to 

the volunteers who had enrolled in the pilot study. A Questions & Answers session was also 

included in this workshop to nurture participants’ interests in language learning research, 

cognitive individual differences, and psychometric test design.  

The pilot study provided reassurance that the completion time for the entire TALL 

suite would be around 45 minutes, and it would not cause serous fatigue to participants at 

the college level. It also informed us about the stability of the test platform and the back-

end data storage after the technical refinements. A comparatively low attendance rate of 

participants who had shown their interest in taking the test also provided helpful information. 

This led to a strategy applied in the main study: online recruitment continued until the 

number of participants reached a threshold on the last planned day of the first test session. 

This threshold was set at least 25% higher than the minimum expected sample size (as 

detailed in Section 3.3.1.1 below). If the number of the attending participants did not reach 

the threshold, the data collection time would be extended.   
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3.3 The main study 

3.3.1 Samples and sampling 

3.3.1.1 Participants recruitment 

The recruitment of participants in the current study was advertised with an online 

registration form on a Tencent-powered QQ social platform in the professional network of 

the researcher in Chongqing, China. The purpose of using a register form was to pre-screen 

participants if they were a particular cohort of population, for example, that they could 

provide L2 English proficiency scores from a specific set of the National Matriculation 

English Test (NMET), and if they were not from foreign language related undergraduate 

programmes. The prescreening considerations were to keep the proficiency scores, that is, 

the scores of NMET, comparable in the current study as college students took different sets 

of NMET for the college admission. The scores of different sets of NMET are eligible for 

higher education admission in China, and the different sets of NMET reflect regional 

differences in the foreign language proficiency tests in the country. To increase the 

representativeness of the target population, participants in this study were recruited from 

11 colleges or universities at different academic tiers, ranging from community colleges to 

national key universities. To sum up, the participants who were invited to participate in this 

study were (a) Year One students from disciplines other than the major of Foreign 

Languages and Literature, and (b) test takers who took National Set 1 of NMET in the last 

six months before the recruitment date.  

892 eligible participants were filtered from the 990 initial registrations, and they were 

randomly assigned into two conditions (i.e., taking aural suite in the first round of test then 

written suite in the second round, and vice versa). Each of them received a test invitation 

email including an information package of the introduction of the study, the instructions on 

how to set up the personal computer and how to access the test website, and an identical 

test code. Participants were also invited to join a social media chat group the researcher 

set up on the QQ platform, on which they could ask for help if they met difficulties in 

accessing the test and receive asynchronous technical support.  The researcher was aware 

of the potential issues associated with data non-independence and in-group bias (as 

reviewed in Section 2.2.3.2) if all the participants were engaged in the same network. To 

mitigate these issues, the chat group was set up by disabling functions of friend requests 

and private chat, and all the members were reminded that test content related discussion 

was not allowed. Considering that it would be difficult to anticipant how many participants 

would take the test because the test was not scheduled individually, the recruitment of 

participants continued till the final day of the first test session according to the research 
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timeline. The halt of the recruitment was called with more confidence when the sample size 

had reached the minimum threshold. The next section will introduce the details about the 

prior power analysis for the sample size.   

3.3.1.2 Prior power analysis 

The power of a statistical test is defined as the likelihood that a test would provide 

statistically significant findings (Cohen, 1988). Given that quantitative research intently 

seeks for statistical significance to achieve the goal of generalising findings from samples 

in studies to wider population under investigation, a priori probability of statistical 

significance would be expected to be regularly calculated and well understood, and hence 

researchers are advised to determine the desired sample size so that they can ensure an 

adequate degree of statistical power of the findings (Nicklin & Vitta, 2021). However, as 

reminded by experts, researchers in SLA rarely conduct a power analysis. For example, 

only 6 studies out of 606 conducted a power analysis as reported in Plonsky's (2013) 

synthesis study on the quality of quantitative research in the field of second language 

research. The current study aimed to avoid this questionable research practice. 

In the current study, the investigation of the effects of modalities in measuring 

aptitude (Research Question 2) relied on the comparison of the performance of the 

participants in taking the TALL subtests that were administrated in both modalities. 

Therefore, it was necessary to perform the prior power analysis to inform the sample size 

with which the study could have the ability to detect an effect of a particular magnitude. To 

achieve this purpose, statistical power analysis was conducted to predetermine the 

expected sample size using the software G* Power 3 (Faul et al., 2016). The software 

computed the number of participants based on the setting of the required power level (1 ‒ 

β) (usually the convention is 0.80) and the estimates of effect size suggested by the meta-

analytical results in previous studies. Given that each subtest was informed by the effect 

size relevant to the componential construct that it was designed to measure, the current 

study computed the expected sample size for each subtest, respectively. In cases that the 

information about the synthetical effect size in the investigation of the same construct was 

not available, the effect sizes from the pairwise comparisons between groups in previous 

studies would be used. If such effect sizes were not available, the benchmark effect sizes 

suggested in Plonsky and Oswald’s (2014) meta-analysis of effect sizes in the L2 research 

were consulted.   

Table 3.4 shows the results of the planned sample sizes using G * Power 3 with the 

setting power level and the referenced effect sizes. The results suggested that 67 

participants were needed for the repeated design of TALL_VL to obtain the effect of the 
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modality reported in a study on the testing of vocabulary size in aural and written formats 

(Mizumoto & Shimamoto, 2008). Since there was no available information on the effect of 

modality in measuring grammar learning or executive control in WM, a benchmark effect 

size of a small magnitude in L2 research was adopted. This allowed for the determination 

that a sample size of 52 was needed in taking TALL_LA and TALL_CST in two modalities. 

Therefore, the predetermined sample size of the current study suggested by G*Power 3 

was 67.  

 

Table 7.4 Prior power analysis results  

Subtest Effect size Description Power level 
Sample size 

required 

TALL_VL partial η2 = .42 the main effect of test 

format (Mizumoto & 

Shimamoto, 2008) 

α = .05 

Power = .80 

n = 67 for one 

group in within-

subject design 

TALL_LA 

& 

TALL_CST 

d = .4 the meta-analytical small 

effect of group 

comparisons in L2 

research (Plonsky & 

Oswald, 2014)   

α = .05 

Power = .80 

n = 52 for one 

group in within-

subject design 

All 

subtests 

d = .4 the meta-analytical small 

effect of group 

comparisons in L2 

research (Plonsky & 

Oswald, 2014)   

α = .05 

Power = .80 

n = 61 for one 

group in within- 

subject design; 

n = 198 for two 

groups in 

between-subject 

design 

 

Using G * Power 3 software to conduct power analysis has been applied in recent 

publications (e.g., Bovolenta & Williams, 2022; Walker et al., 2020). But it was not the only 

method available to achieve the purpose of prior power analysis. For the exploratory 

purposes,  R code of a power analysis (see below) introduced by Norouzian (2020) was 

also applied in the current study for the mixed repeated measures designs, which means 

the same research groups were tested several times and the performance across the 
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testing sessions was measured by an interaction factor, namely, the modality factor in the 

current study.  

plan.mrm(d = .4, n.rep = 2, n.group = 1, factor.type = "within") 

The results produced by this code suggested that in order to achieve a conventional 

statistical power of .80 when comparing a group tested using one test suite of one modality 

at the first session to the same group tested by the other suite in the second session, 61 

participants were needed to detect an effect size of d = .40. This effect size was based on 

the benchmark of a small magnitude in L2 research as synthesised by Plonsky and Oswald 

(2014). Similarly, to achieve a conventional statistical power of .80 of a comparison of two 

groups tested by using different suites in the first session, the code was adapted as:  

plan.mrm(d=.4, n.rep=1, n.group=2, factor.type="between") 

The result suggested that 198 participants for two groups are required to detect the same 

effect size of d = .40.  

The sample sizes obtained from the prior power analysis using different statistical 

methods did not have considerable differences. The results suggested that it would be 

necessary to have 198 participants in the first test to allow the between-subject comparison 

of the effect of modality, and 67 participants to complete two rounds of test for the within-

subject design. 

3.3.1.3 Final sample size 

As mentioned earlier, the recruitment strategy involved continuously inviting participants to 

take the test until the scheduled final day of the first test session. This approach was 

adopted to account for the unpredictable drop-off rate and the attrition commonly associated 

with Internet-based research. Additionally, the predetermined sample size of 198, as 

explained in the previous section, ensured that the actual sample size met the minimum 

requirements for acceptable statistical power. To be specific, recruitment would end if more 

than 198 participants had taken the test by the planned final day of the first session. 

Otherwise, recruitment would continue until the number of participants reached a total of 

198. 

The data collection period spanned a total of 80 days.  At the beginning of the 

procedure, 892 test codes were issued to invite participants to take the test. Of these, 276 

participants accessed the test website using their assigned test code. Among these 

participants, 221 individuals (80%) completed all subtests during the first session, and their 

behaviour was verified by checking the recorded data of TALL_SNWR to ensure there were 
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no instances of misbehaviour, such as talking to others, or chewing food during the process, 

or playing the audio stimuli on a separate device to help with the recall.  These 221 

participants became eligible to participate in the second session after a minimum 30-day 

interval. Out of these eligible participants, 194 returned to take the second session, and 181 

of them (93.3%) completed the second session, which constituted the final sample size for 

the within-subject design employed in the main study. Figure 3.7 shows the overview of the 

number of participants in the experiment process. 

 

 

Figure 3.7 An overview of participants’ involvement  
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3.3.2 Ethical Considerations 

Before commencing data collection, ethical approval for this study was obtained from the 

Ethics Committee of the Department of Education at the University of York. The ethical 

approval includes an explanation of the use of the internet-based instrument developed for 

data collection with participants recruited from China. This study was unlikely to present 

significant ethical risks since all participants were over 18 years old and were recruited 

through the researcher’s professional network, without any involvement in the courses or 

modules for which the researcher was the instructor.  

Each participant received an email with a set of test invitations. This package 

included an identical test code and detailed participation requirements, such as the 

necessary digital equipment, the expected time for completing the test, and the possibility 

of retaking the test after a minimum 30-day interval. Furthermore, the invitation package 

provided information about the lack of connection between test performance and 

participants’ academic achievements, along with what they could expect in return: a 50-

yuan cash payment made online and a report of their scores in all subtests.   

All participants who used the provided test codes to access the test platform read, 

signed, and downloaded the consent forms written in their L1 Chinese, before proceeding 

with the test. Examples of equivalent consent forms in both English and Chinese are 

available in Appendix B. Participants were informed that they had the option to withdraw 

from participation at any point during the test without the need to provide a reason. They 

could also request the withdrawal of their data by emailing the research within two weeks 

after the data had been collected. 

Although the overall ethical risk was low, a primary concern revolved around the 

potential anxiety experienced by test-takers. This anxiety could manifest as feelings of 

inadequacy in dealing with the test or in setting up their computers for the test’s purpose. In 

order to mitigate this anxiety, the researcher established a social media chat group on the 

QQ platform to provide asynchronous technical support, as explained in Section 3.3.1.1, 

and to address any inquiries.  

All participants had the flexibility to complete the tests in the comfort of their homes 

or dormitories at their own pace. The researcher expressed gratitude to the group 

continuously but ensured the anonymity of all participants. This social media chat group 

was maintained for six months after the completion of data collection, in case further 

consultation or support was required.  
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3.3.3 Measures 

The TALL suites 

As introduced in Section 3.2.1.2, TALL had two suites for use in the current research. One 

was the aural suite, with all instructions and materials presented in the aural modality. The 

other was the written suite, comprising all instructions and materials in TALL_VL, TALL_LA 

and TALL_CST presented in the written modality, while TALL_SD and TALL_SNWR had 

materials (necessarily) presented in the aural modality. The audio instructions were 

generated in a female voice using an online application 

(https://app.xunjiepdf.com/text2voice/). The audio stimuli in the target language for 

TALL_VL, TALL_SD, and TALL_LA were presented by a female native speaker of 

Lithuanian, while the audio stimuli in Chinese for TALL_SNWR and TALL_CST were 

presented by a female native speaker of Mandarin Chinese. 

English Proficiency Test: the NMET 

The proficiency of participants’ L2 English was determined by referring to the NMET scores, 

which were self-reported by the participants in the pre-test background questionnaire (see 

Appendix C).  The NMET is the college entrance exam for English undertaken in all 

provinces in mainland China and serves as the official reference for assessing test takers’ 

English language ability for college and university admission. Although the NMET is a 

national wide high-stake examination regulated by the Ministry of Education, different test 

sets are developed and administered in various provinces.  

In the current study, the National Set 1 was selected because this was the test set 

taken in Chongqing, the city where the universities and colleges from which participants 

were enrolled are located. Thus, a larger number of students would have taken this test set 

compared to other test sets. The National Set 1 consists of four sections with a total score 

of 150. Section 1 assesses listening skills with 30 points, comprising 20 multiple choice 

questions based on 10 recorded dialogues or monologues. Section 2 evaluates reading 

skills with 50 points, including 15 multiple-choice and 5 filling-in-gap questions related to 

four passages, each consisting of 250 to 300 words. Section 3 measures grammar and 

vocabulary knowledge with 30 points, involving cloze and word-filling questions. Section 4 

assesses writing skills with 40 points, featuring two writing tasks. Test takers receive only 

their total NMET score and are not provided with a breakdown of scores for individual 

sections. As explained in Section 3.3.1.1, participants were selected based whether they 

reported their scores from the National Set 1, which they had obtained six months prior to 

the start of the current study.  

https://app.xunjiepdf.com/text2voice/
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 In addition to collecting information about the participants’ L2 English learning 

background, such as the years of instruction and scores of various proficiency tests, the 

background questionnaire also included questions about whether the participants had 

instructed learning experiences in other foreign languages. While 19 participants reported 

having experience learning six foreign languages (Japanese, French, Russian, German, 

and Korean) apart from English, none of them had studied any of these languages for more 

than one year or reported taking any proficiency tests. It is evident that, in general, the 

participants had a homogenous language background. 

3.3.4 Procedure 

Within-subject design 

To address the research question regarding the reliability and validity of TALL as a battery 

for language aptitude (RQ1) and to investigate the effects of modality on measuring aptitude 

(RQ2), a within-subject design was employed to enhance statistical power during data 

analysis. In this design, the participants completed five TALL subtests in one suite (either 

aural or written) during the first session. They then took the test in the other suite during a 

subsequent session, separated by a minimum 30-day interval.  

To mitigate any potential carry-on effect that might arise from repeated testing, the 

main study was designed as a longitudinal study, enabling participants to complete two 

rounds of tests with the specified interval. Additionally, the modality of the test suites and 

the material versions were counterbalanced between the two sessions. Furthermore, the 

order of items in the testing phases of all subtests was randomised, ensuring that every 

possible item sequence was presented to the participants with no control over how often 

each sequence was used.  

Considering the possibility of a high attrition rate in the Internet-based longitudinal 

study, the within-subject design with a minimum 30-day interval between two test sessions 

allowed for an alternative comparison between participants based on the data collected in 

the first session. In other words, the performance of  participants who completed the aural 

suite in the first session could be compared to those who took the written suite in the first 

session, in case many participants did not take the second round of testing1. The study 

design is illustrated in Figure 3.8.  

The slight numerical imbalance between groups in different modality and material 

version conditions was expected. Participants were randomly assigned to two groups, 

 
1 The final sample size was sufficient for within-subject comparison. Therefore, the optional 
between-subject comparison was not exercised. 
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determining the order in which they took the test suites prior to their participation in the first 

session. Additionally, the material version that participants took in the first session were 

randomly assigned after they logged in using the assigned test code. Furthermore, the 

variation in sample sizes across modality and version conditions resulted from attrition, with 

some participants who completed the first session not participating in the second session.  

 

 

Figure 3.8 The study design 

 

General experimental procedure 

The main data collection phase occurred between November 2021 to February 2022. To 

complete all subtests of TALL in a single session, participants required approximately 45 

minutes. They were instructed to complete these subtests on the test platform in a quiet 

environment, at their convenience. Participants were trusted to work independently, without 

seeking assistance from others. The data collection procedure is outlined in Figure 3.9. 
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Participants received the invitation package containing the URL of the test website. 

They were instructed to set up their computer to enable the recording function, following the 

provided instructions in the invitation package. Afterward, they initiated the audio testing 

procedure2 by accessing the website, using the test code provided to login. They were then 

directed to the consent form, which they were required to review, sign off on, and download. 

Additionally, they were asked to provide demographic and foreign language learning 

background information. 

 

 

Figure 3.9 Procedure of data collection 

  

 Following the pre-test procedure described above, participants had the flexibility to 

take the subtests in a fixed order (TALL_VL, TALL_SD, TALL_LA, TALL_SNWR, and 

TALL_CST) at their own pace. The computer provided a mandatory 30-second break 

between TALL_SNWR and TALL_CST to alleviate potential fatigue. This break was 

 
2 Participants were instructed not to start the test if they were unable to hear the recorded voice in 

the testing trial. However, some participants, despite encountering setup issues, proceeded with 
the test, resulting in blank recordings in TALL_SNWR and an incomplete test.    
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implemented based on participants’ feedback during pilot testing, where they reported that 

TALL_SNWR was cognitively demanding. 

 Participants who completed all the subtests in the first session were informed to 

take the second session after at least 30 days. A reminder email was sent to participants 

when the 30-day period elapsed. Following the completion of the second session, 

participants received  a report containing their complete TALL scores for both modality 

suites and the monetary compensation of 50 yuan.  

3.3.5 Data analysis plan 

This section begins by outlining the steps taken to prepare data sets for analysis, focusing 

on general scoring principles and dealing with missing values and outliers. It then presents 

the general data analysis plan for each research question. To enhance readability and 

minimise the need for readers to refer back to this section, specific decisions regarding 

statistical procedures are presented separately in Chapters 4, 5, and 6.  

Data collected in the current research were analysed using R (R Core Team, 2022), 

with R markdown files (see Appendix D) documenting data analysis procedures and present 

analysis results. This practice aligns with the recommendation of developing and 

disseminating data analysis tools to promote reproducibility and data sharing within the field 

of applied linguistics (Mizumoto, 2023). 

3.3.5.1 Data preparation 

The raw data were collected on the TALL test website and stored in the back-end database, 

with one data file generated for each subtest on a daily basis. Given that all raw data 

associated with test codes were collected and stored, it posed a significant workload to 

exclude data from participants who withdrew during the process or due to erroneous 

recordings (which will be discussed later in this section).  

Data preparation was conducted using the tidyverse package (Wickham et al., 

2019) in R to organise and rename variables for analysis. This process was carried out 

separately for each subtest.  

Erroneous data removal 

TALL generated raw data that included two types of erroneous data points. The first type 

comprised raw data sets with missing values, meaning that participants’ responses were 

not recorded.  This type of missing values differed from participants’ failure to respond 

because the testing programme recorded non-responses as 0. In other words, regardless 

of whether a participant could respond to an item or not, the data set should have been 
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complete with all test items recorded. However, in the data pool of the current study, four 

participants had incomplete data sets. This issue might have resulted from backend 

operational error related to the broken point transfer and data storage stability (see the 

technical improvement after the preliminary pilot in 3.2.3.1).  Consequently, the data from 

these four participants were excluded from the final datasets for analysis.  

The second type of erroneous datasets consisted of repetitive data points found 

within the raw data sets. There were two possible reasons for these problematic data points. 

First, it might have resulted from repetitive attempts by the researcher to download data 

files, leading to the duplication of responses for certain items in the data sets. Second, 

although unlikely, it could still be possible that participants took the same test more than 

once. Although the design of TALL was intended to prevent participants from taking the 

same test repeatedly by controlling access with one-time test codes, a small number of 

observations still appeared to be caused by repetitive testing. Consequently, a manual 

check was conducted to address this issue. Specifically, (1) only the repetitive portion of 

data pointes was removed if the responding times for repetitive items were the same (for 

the first possible reason), and (2) the entire data sets of participants were removed if they 

had taken the test more than once (for the second possible reason).   

Outliers 

An outlier in a dataset is defined as an observation that significantly deviates from the other 

observations in that dataset (Barnett & Lewis, 1994). Two types of outliers are recognised: 

extreme observations, which are values that are either extremely low or high but still belong 

to the same distribution as the other values in the data set, and contaminants, which are 

values from a different distribution and may not necessarily be extreme values. In 

psychological experiments, which typically involve small sample sizes, distinguishing 

between these two types of outliers can be challenging, as contaminants can also be 

extreme, and some extreme values can occur in heavy-tailed distributions that resemble a 

normal distribution (Wilcox, 1998).   

The removal of outliers from a dataset is a common practice in quantitative research, 

as it can reduce the standard error of the estimates. However, the handling of outliers raises 

concerns in psychology, as inappropriate methods can lead to increased error variance, 

reduced sample size, diminished statistical power, and violations of test assumptions, such 

as the assumption of a normal distribution (Aguinis et al., 2013; Osborne & Overbay, 2004, 

cited in Nicklin & Plonsky, 2020).  While various strategies have been recommended for 

handling outliers (e.g., Bakker & Wicherts, 2014), and diverse practices within specific 
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subdomains of applied linguistics have been synthesised (see Nicklin & Plonsky, 2020), 

determining the appropriate approach can be challenging when the goal is to conduct 

exploratory analyses of data to uncover phenomena rather than initially testing hypotheses 

(Isbell et al., 2022).  

Considering the research aim of providing initial evidence of reliability and validity 

for a new psychometric measurement, and recognising the exploratory nature of the 

analyses, a cautious approach to handling outliers was adopted in the current study. In 

general, automatic exclusion of outliers from the analysis was avoided, unless they could 

be attributed to errors, to prevent the risk of inflating the Type I error rate, as recommended 

by Bakker and Wicherts (2014).  

Outliers in this study were identified based on observed behavioural responses that 

indicated participants were not engaging in the test in a typical manner. For example, in 

TALL_VL in the aural modality, participants who did not click all the buttons of the pictures 

of the stimuli during the learning phase had their extremely high scores identified as outliers.  

Similarly, in TALL_CST, participants who either did not provide any response or 

indiscriminately clicked the same button were identified, and their data were treated as 

outliers. 

The determination of outliers in the data of TALL_CST was distinct. It was based on 

the performance of semantic judgments on sentence stimuli in the participants’ L1, which 

may not have posed significant cognitive challenges for the college students in this study. 

Therefore, statistical criteria, specifically the z-score (calculated as the difference between 

the score and the mean score divided by the standard deviation), with a threshold of 3.29 

(Field et al., 2012), to identify outliers in the processing data in TALL_CST.  

It is important to note that this approach for removing attentional outliers in 

TALL_CST differs from the practice suggested by Conway et al. (2005). They 

recommended that data sets are removed if accuracy in the processing task falls below 

85%. While this threshold aims to ensure “near perfect” precision in the processing task (p. 

775), it can be somewhat arbitrary, as processing stimuli may impose varying demands on 

heterogenous populations with diverse L1 literacy backgrounds. Therefore, in the current 

study, data in TALL_CST were retained for analysis if two conditions were met: (1) the 

recorded behavioural responses in the sentence processing task did not suggest that 

participants were disengaged from the experiment, and (2) the processing data had a z-

score of less than 3.29. 

Data preparation protocol 
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A stepwise protocol (see Appendix E) was developed and followed to prepare datasets for 

analysis. The aim was to manage inconsistent sample sizes resulting from cases where 

participants either completed the test once or withdrew during the testing process.   

Scores in the subtests 

In the TALL_VL, TALL_SD, and TALL_LA subtests, the datasets used for analysis were 

derived from scores reflecting the number of accurate responses to test items in the raw 

data files.  

The scoring approach applied in TALL_SNWR and TALL_CST followed the all-or-

nothing scoring approach suggested in Conway et al. (2005), where methodological 

considerations for scoring procedures were discussed, and recommendations for decisions 

based on experimental design within the framework of WM theories were made. Specifically, 

an all-or-nothing scoring approach credits performance only when stimuli are accurately 

recalled in the correct serial position. For example, if three stimuli to be recalled in the 

correct sequence are as “ABC” and the participant produces “BCA”, 0 will be scored as 

none of the three stimuli is recalled accurately in the correct position. This scoring approach 

deviates from partial credit scoring, which gives credit for partly correct stimuli accurately 

recalled but not in the correct sequential position. The rationale behind choosing all-or-

nothing scoring was to equally emphasise accuracy in both the form of items recalled and 

the sequential position of target items. 

In TALL_SNWR, the raw data consisted of audio files containing productive data 

that required manual scoring. Participants’ raw scores in this subtest reflected the number 

of stimuli articulated correctly in the correct sequential position. Scoring was conducted by 

the researcher and an invited marker who was a native speaker of Mandarin. They achieved 

98.6% agreement rate, resolving any discrepancies through further further crosschecks and 

discussions.  

For TALL_CST, the raw data files contained both processing data (i.e., semantic 

judgements of sentence plausibility) and storing data (i.e., letters recalled in sequential 

order). However, only the storing data were used for analysis in this subtest, consistent with 

the practice of analysing the storing data only in previous research involving complex span 

tasks (e.g., Gass et al., 2019; Unsworth et al., 2009). The processing data were employed 

to identify potential outliers, a process described in detail in the preceding section titled 

“Outlier”. 

Types of data  
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Two types of data, split data at the item or trial level, and aggregated data of the subtests, 

were generated for analysis.  

First, in TALL_VL, TALL_SD, and TALL_LA, the item-level data were binary (or 

dichotomous) data, with ‘0’ indicating an incorrect response and ‘1’ representing a correct 

response.  

The data files for TALL_SNWR and TALL_CST were transformed into polytomous 

data (i.e., data with more than two distinct response categories or levels) for analysis. The 

proportion of correct responses in each trial constitutes the item-level data. Specifically, 

unit-weighted scoring option was applied in data transformation. In this option, each trial 

was scored as a proportion of correctly recalled stimuli in this trial, with all stimuli being 

treated equally, regardless of the size of the trial. For example, in this research, recalling 

one stimulus in a  trial of the size of two stimuli was scored the same as recalling two stimuli 

in a four-stimulus trial, both yielding a score of 0.50. This scoring option contrasted with 

load-weighted scoring, which assigns higher weight to stimuli in trials with a higher load 

(larger trial size). The decision of choosing unit-weighted scoring option was based on the 

empirical results that did not reveal a significant difference between unit-weighted and load-

weighted options in Conway et al. (2005). Furthermore, unit-weighted scoring aligned with 

established procedures from psychometric measures in complex span tasks, as reviewed 

by Conway et al.   

It is noteworthy that the approach used for transforming data (i.e., the proportion of 

correct responses in each trial as the item-level data) for analysis in TALL_SNWR and 

TALL_CST differed from the scoring approaches used in other studies involving aptitude or 

WM measurements. For instance, in the Hi-LAB (Linck, et al., 2013), the total number of 

correctly recalled stimuli functioned as the scores in WM-related subtests. Similarly, Kormos 

and Sáfár (2008) used weighted average scores (i.e., the weighted average of the number 

of repeated syllables) in a non-word repetition test. The lack of standardised scoring 

approach in studies about WM‒L2 relationship has been highlighted in synthesis studies 

(e.g., Leeser & Sunderman, 2016; Shin & Hu, 2022), as the varied scoring approaches in 

WM tasks may yield discrepant and incomparable findings across different research 

endeavours. 

 Second, the aggregated data sets of TALL_VL, TALL_SD, and TALL_LA were 

generated using transformed percentage total scores, with the maximum score set at 100%. 

This scoring approach was consistent with the method reported by Bokander and Bylund 

(2020). In contrast, the aggregated datasets for TALL_SNWR and TALL_CST were derived 
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from the average scores of the test trials, following the approach suggested by Conway et 

al. (2005). 

3.3.5.2 Data analysis for RQ1: Validation plan 

In order to address RQ1, which explores the extent to which TALL demonstrates 

satisfactory reliability and internal validity as an aptitude measure, data were analysed at 

the item, subtest, and battery levels. This validation plan was adapted from the schema 

used by Bokander and Bylund (2020) to investigate the internal validity of the LLAMA tests, 

which draws upon the multilevel inferences outlined by Kane (2006) and Purpura et al. 

(2015).  

 Data analysis for RQ1, as illustrated in Figure 3.10, starts at the subtest level, aiming 

to assess the internal consistency of the test items within each subtest ‒ essentially, the 

reliability of each subtest as a measure of a specific component of aptitude. Prior to the 

reliability checks, unidimensionality of each subtest, which indicates the degree of 

commonality among the test items, was evaluated. The assumption of unidimensionality at 

the subtest level serves as the foundation for subsequent examinations at the item level.  

At the subtest level, data were split according to different material versions and 

modalities, followed by analysis to estimate the reliability and factor structure of variables 

underpinning the data. This analysis was conducted based on the principles of the theory 

of generalizability (G theory) outlined by Cronbach et al. (1963) and Gleser et al. (1965). 

The outcomes of this analysis provided evidence for making generalisation inferences, that 

is, the extent to which scores can be generalised to a broader array of potential items 

targeting the same construct intended by the subtest.  

At the item level, analyses aimed to assess the suitability of items within each 

subtest using Item Response Theory (IRT) models (see Appendix F for a brief introduction). 

These analyses provided insights into the scoring quality of each subtest, evaluating 

whether it consisted of well-functioning items with appropriate levels of difficulty for 

participants and the ability to discriminate participants’ latent abilities. Separate analyses 

were conducted for different conditions of modalities and material versions, within each 

subtest at the item level.  

In three subtests (TALL_VL, TALL_SD, and TALL_LA), the one-parameter logistic 

(1PL), two-parameter logistic (2PL), and three-parameter logistic (3PL) models were 

applied, respectively, to dichotomous datasets. These models were compared to determine 

which best fit the data. For polytomous datasets in two WM subtests (TALL_SNWR and 

TALL_CST), the Generalised Partial Credit Model (GPCM) was applied.  
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Figure 3.10 Data analysis flowchart for RQ1 

 

At the battery level, analyses focused on the explanation inference within the 

validation plan, which assesses the internal validity of TALL as a componential measure for 

aptitude.  Two statistical methods were employed on aggregated data sets, which included 

the scores of each subtest (rather than individual item scores), to provide evidence for the 
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explanation inference. This evaluation aimed to determine the extent to which TALL 

subtests reflected a structure consistent with theoretical frameworks of language aptitude, 

specifically the Stages Approach (Skehan, 2016) and the P/E Model (Wen, 2016)), upon 

which TALL was conceptualised.  

Firstly, Principal Component Analysis (PCA) was used to investigate whether TALL 

subtests could succinctly measure the dimensions of the aptitude construct without much 

redundancy. Confirmatory Factor Analysis (CFA) was used to verify whether TALL, as an 

aptitude battery, tapped into the components supported by the alignment of the data with 

the structure of four primary factors based on the theoretical models it was built upon. 

3.3.5.3 Data analysis for RQ2: Mixed-effects Modelling 

To explore the extent to which input modality differentially influenced scored in in TALL_VL, 

TALL_LA, and TALL_CST (RQ2), data were collected using a within-subject design to 

investigate modality effects in these three subtests. 

Mixed-effects modelling (MEM) was used for this research question. MEM offers 

statistical advantages when dealing with related data points in experimental designs where 

participants provide repeated responses to multiple measurements for each stimulus or item, 

and when testing materials involve counterbalanced stimuli or items that share multiple 

characteristics (Gries, 2021).  

In the current investigation, besides considering modality as the predictive variable, 

test sessions and material versions when analysing the data generated in the experimental 

design. Additionally, due to the use of convenience samples and the inability of the 

developed materials to encompass all possible linguistic options, crossed random effects 

for subjects and items were included in the data analysis (Baayen et al., 2008).  

In summary, MEM allowed us to simultaneously consider multiple effects when 

dealing with repeated measurements, a task that t tests or ANOVAs could not efficiently 

handle. 

3.3.5.4 Data analysis for RQ3: Correlations and multiple regressions 

To address RQ3, which examines the extent to which TALL predicts participants’ L2 English 

proficiency as measured by the NMET, scores were aggregated from the TALL subtests in 

two ways (as introduced in Section 3.3.5.1).  

Correlation analyses were conducted to examine the relationships between the 

scores of TALL subtests and participants’ self-reported NMET scores. The results of the 
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correlation analyses informed the application of regression analysis, taking into 

consideration the potential collinearity of the data.  

Before performing multiple regression analyses, the aggregated data were 

transformed and checked against the assumptions of the regression model. Multiple 

regressions were than employed to estimate the proficiency of participants’ L2 based on the 

values of other predictive variables―namely, the scores obtained from the TALL subtests.  

3.4 Chapter summary 

In this chapter, the rationale and methodological considerations for developing TALL are 

presented. The focus is on the development of the subtests within the battery, including the 

selection and development of test stimuli, formats, and scoring options. Additionally, 

detailed methods for data collection and data analysis are reported, covering considerations 

in sampling, data preparation, and the data analysis plan. Subsequent chapters will present 

results related to the research questions.   
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CHAPTER 4: RESULTS & DISCUSSION FOR RQ1 – 

RELIABILITY AND INTERNAL VALIDITY 
 

4.1 Introduction 

This chapter reports the analyses that aimed to answer RQ1 about the extent to which TALL, 

as a measure for language aptitude, displayed satisfactory reliability and internal validity. 

The first section of this chapter presents the results from the data wrangling following the 

protocol and practices introduced in Section 3.3.5.1, which re-composes datasets into a 

usable format with cleaned data prior to further analysis. Different types of data files of all 

subtests and the aggregated data files of the two test suites (aural and written) were 

generated in this section. The second section reports descriptive statistics of the data of 

each subtest split by the conditions of material version and/or modality, as well as the self-

reported L2 English proficiency test (NMET). These results were about normality checks, 

the means, the standard deviations, and the plots displaying the density of distribution and 

the error bars of the confidence intervals. The third section presents the results from the 

data analyses at the subtest, item, and battery level respectively, based on the validation 

plan introduced in Section 3.3.5.2.  In this section, unidimensionality and reliability checks 

were performed at the subtest level to check the dimensional assumption prior to the 

analysis at the item level. IRT models were applied for the item level analysis to diagnose 

the item quality of each subtest. At the battery level, PCA was performed on the aggregated 

datasets to investigate whether TALL could succinctly measure the dimensions of aptitude 

construct without much redundancy. CFA was used to verify whether TALL, as an aptitude 

battery, measured the components (i.e., associative memory, Phonetic coding ability, 

language analytic ability, and WM) informed by the theoretical models of language learning 

aptitude.  All results and analysis code in this chapter were rendered in R markdown files 

(see Appendix D). 

4.2 Final data files 

Following the stepwise data preparation protocol (Appendix E),  the paired datasets were 

obtained from participants who had scores of five subtests from two sessions available for 

analysis. Further removing erroneous data and outliers resulted in the final data files for 

analysis from 165 participants (118 females and 47 males, agemean = 19.01, ranging from 

17 to 20). This final sample size was larger than the intended sample size based on the 

results of the prior power analysis (see Section 3.3.1.2).  
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In this chapter, to provide descriptive statistics, datasets were formed for each 

subtest, respectively. The dataset of each subtest was further split by conditions of material 

version and/or modality and the unaggregated data (item scores) were analysed at the 

subtest and item level. Table 4.1 shows the split datasets in five subtests. The aggregated 

datasets (subtest scores rather than item scores) were also generated at the battery level 

for each test suite (see Table 4.2).  

 

Table 4.1 Split datasets  

Subtest Split dataset 

TALL_VL (Vocabulary Learning) Version A in aural modality 

Version B in aural modality 

Version A in written modality 

Version B in written modality 

TALL_SD (Sound Discrimination) Version A 

Version B 

TALL_LA (Language Analysis) Version A in aural modality 

Version B in aural modality 

Version A in written modality 

Version B in written modality 

TALL_SNWR (Serial Nonwords Recall) Version A 

Version B 

TALL_CST (Complex Span Tasks) Version A in aural modality 

Version B in aural modality 

Version A in written modality 

Version B in written modality 
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Table 4.2 Aggregated datasets  

Test suite Subtest Aggregated dataset 

Aural TALL_VL Combined (Version A and B) in aural modality 

TALL_SD Combined (Version A and B) in aural suite 

TALL_LA Combined (Version A and B) in aural modality 

TALL_SNWR Combined (Version A and B) in aural suite 

TALL_CST Combined (Version A and B) in aural modality 

Written TALL_VL Combined (Version A and B) in written modality 

TALL_SD Combined (Version A and B) in written suite 

TALL_LA Combined (Version A and B) in written modality 

TALL_SNWR Combined (Version A and B) in written suite 

TALL_CST Combined (Version A and B) in written modality 

 

Note. The combined datasets were created by aggregating scores from different participants who 

took each version. 

 

4.3 Subtest level analysis 

Subtest level analysis was performed using data of each subtest separately. Datasets were 

split by the conditions of materials version and/or modality respectively. Descriptive 

statistics will be reported first, followed by results from the unidimensionality and reliability 

checks, providing the evidence to demonstrate the assumptions were met for the analysis 

at the item level (to be reported in Section 4.4). 

4.3.1 Descriptive statistics  

Descriptive statistical analyses were performed on each subtest using datasets split by 

the conditions of material version and/or modality, as well as on participants’ self-reported 

NMET scores. 

TALL_Vocabulary Learning 

The total score of TALL_VL is 20. The results (see Table 4.3 for descriptive statistics) did 

not indicate substantially skewed distribution of the scores in any condition according to the 

rules of thumb for skewness (between -2 to +2) and kurtosis (between -7 to +7) (Hair et al., 

2010). However, the results from Shapiro-Wilk normality test showed that only the scores 

of Version B in the written modality were normally distributed (p = 0.12), while the datasets 

of scores in other conditions did not have normal distributions, with p values less than .01.  
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Table 4.3 Descriptive statistics of TALL_VL 

modality version n min max mean std.dev skew kurt. std.err 
Shapiro-Wilk 

W p 

aural A 81 0 19 5.46 3.32 1.46 2.85 0.37 0.88 < .001 

aural B 84 0 19 7.14 3.98 0.82 0.62 0.43 0.95 0.002 

written A 84 0 20 8.23 4.47 0.58 -0.32 0.49 0.96 0.009 

written B 81 1 20 9.95 4.68 0.03 -0.80 0.52 0.98 0.12 

 

The violin box plots of the scores (Figure 4.1) displayed the information on density 

of the distribution (i.e., the shape of the violin), the range between the upper and lower 

quartiles (i.e., the box showing 50 % of the scores), the mean (i.e., the point in the box), 

and the error bar for confidence intervals (i.e., the error bar in the box) of the split datasets 

of materials versions in two modalities (aural and written) from two test sessions (first and 

second).  

 

 

Figure 4.1 Violin box plot of TALL_VL 
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TALL_Sound Discrimination 

The total score of TALL_SD is 30. The results (see Table 4.4 for descriptive statistics) did 

not indicate substantially skewed distribution of the scores in any condition according to the 

rules of thumb for skewness. However, the results from Shapiro-Wilk normality test showed 

that scores of both versions did not have normal distributions, with p values less than .001. 

 

Table 4.4 Descriptive statistics of TALL_SD 

version n min max mean std.dev skew kurt. std.err 
Shapiro-Wilk 

W p 

A 165 6 30 21.80 6.50 -0.50 -0.85 0.51 0.93 < .001 

B 165 4 30 23.61 4.09 -1.84 6.03 0.32 0.86 < .001 

 

The violin box plots of the scores are shown in Figure 4.2.  

 

 

Figure 4.2 Violin box plot of TALL_SD 
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TALL_Language Analysis 

The total score of TALL_LA is 30. The results (see Table 4.5 for descriptive statistics) did 

not indicate substantially skewed distribution of the scores in any condition according to the 

rules of thumb for skewness. However, the results from Shapiro-Wilk normality test showed 

that all scores did not have normal distributions, with p values less than .001.  

 

Table 4.5 Descriptive statistics of TALL_LA 

modality version n min max mean std.dev skew kurt. std.err 
Shapiro-Wilk 

W p 

aural A 81 3 30 19.73 9.34 -0.41 -1.42 1.04 0.87 < .001 

aural B 84 4 30 20.24 7.36 -0.58 -0.88 0.80 0.92 < .001 

written A 84 4 30 24.73 7.55 -1.46 0.73 0.82 0.71 < .001 

written B 81 0 30 23.88 7.43 -1.44 1.02 0.83 0.76 < .001 

 

The violin box plots of the scores are shown in Figure 4.3.  

 

Figure 4.3 Violin box plot of TALL_LA 
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TALL_Serial Nonwords Recall 

The total score of TALL_SNWR is 17. The results (see Table 4.6 for descriptive statistics) 

did not indicate substantially skewed distribution of the scores in any condition according to 

the rules of thumb for skewness. However, the results from Shapiro-Wilk normality test 

showed that scores of both versions did not have normal distributions, with p values less 

than .001.  

 

Table 4.6 Descriptive statistics of TALL_SNWR 

version n min max mean std.dev skew kurt. std.err 
Shapiro-Wilk 

W p 

A 169 0.25 14.76 5.70 2.56 0.74 0.75 0.20 0.97 < .001 

B 169 0.84 15.20 5.71 2.69 0.68 0.27 0.21 0.97 < .001 

 

The violin box plots of the scores are shown in Figure 4.4.  

 

Figure 4.4 Violin box plot of TALL_SNWR 
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TALL_Complex Span Task 

The total score of TALL_CST is 15. The results (see Table 4.7 for descriptive statistics) did 

not indicate substantially skewed distribution of the scores in any condition according to the 

rules of thumb for skewness. However, the results from Shapiro-Wilk normality test showed 

that all scores did not have normal distributions, with p values less than .001.  

 

Table 4.7 Descriptive statistics of TALL_CST 

 modality version n min max mean std.dev skew kurt. std.err 
Shapiro-Wilk 

W p 

aural A 81 7.16 15 12.25 1.90 -0.87 0.11 0.21 0.93 < .001 

aural B 84 5.44 15 12.25 2.00 -0.95 0.72 0.22 0.93 < .001 

written A 84 7.41 15 13.32 1.20 -1.61 5.51 0.13 0.89 < .001 

written B 81 6.08 15 13.00 1.48 -1.63 4.61 0.16 0.89 < .001 

 

The violin box plots of the scores are shown in Figure 4.5.  

 

 

Figure 4.5 Violin box plot of TALL_CST 
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NMET Scores 

The total score of NMET is 150. The results (see Table 4.8 for descriptive statistics) did not 

indicate substantially skewed distribution of the scores according to the rules of thumb for 

skewness. However, the normality of the NMET scores was evaluated using the Shapiro-

Wilk normality test and the result showed that the scores did not have normal distributions, 

with p values less than .001.  

 

Table 4.8 Descriptive statistics of NMET scores 

n min max mean std.dev skew kurt. std.err 
Shapiro-Wilk 

W p 

165 53 146 126.11 15.81 -1.9 4.5 1.23 0.83 < .001 

 

The histogram and box plots of the scores are shown in Figure 4.6.  

 

 

Figure 4.6 Histogram and box plots of NMET scores 
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4.3.2 Reliability and unidimensionality 

This section is mainly about the internal consistency of the items in each subtest, that is, 

the reliability of each subtest as a measure for a component of aptitude. Reliability checks 

can also inform the unidimensionality of the subtests, that is, the degree of commonality of 

the latent abilities that can be reliably captured by each subtest. The reliability and 

unidimensionality analysis aimed to (1) ascertain that each subtest measures a latent 

construct with the internally consistent set of items, and (2) retain as many items in the 

measurement as possible whilst adhering to the internal consistency of the items.  

To achieve the first aim, the unidimensionality indices and the reliability coefficients 

of each dataset collected by the same instrument (i.e., the instrument using the same 

version of materials in the same modality) were examined. To achieve the second aim, two 

solutions were needed. First, the changes of the reliability coefficient of each dataset were 

checked if each item was dropped. Additionally, items were checked on the loading to the 

general factor in the statistical outputs. If the reliability coefficient was incrementally 

increased via the deletion of a certain item, or if an item had factor loading less than 0.2 to 

the general factor (Revelle, 2022), this indicated that the item would receive further scrutiny 

in further IRT analysis at the item level (see section 4.4).  

4.3.2.1 Reliability coefficients: from α to ω 

Reliability is crucial to determine whether psychometric instruments can accurately measure 

latent variables. The fundamental issue of reliability is the extent to which scores obtained 

in one time and place using one instrument can predict scores obtained in a different time 

and/or place, perhaps using a different instrument (Revelle & Condon, 2019). Instrument 

reliability can also take various forms, such as the estimates of internal consistency 

provided by items within a test, the estimates of alternate form reliability provided by the 

observed correlation between alternate forms or parallel tests administered simultaneously, 

the dependability measured by the same tests given at similar times, and the stability 

assessed by the same measures taken over a longer period.  

In the current research, two forms of reliability were examined. The main concern 

was the internal consistency of the subtests as reliable instruments that could obtain scores 

by participants taking a particular version of materials (i.e., the form) in one or two modalities 

(i.e., the occasion). Another type of reliability was alternate form reliability that only applied 

to two subtests (i.e., TALL_SD and TALL_SNWR), which were administered in the aural 

modality only. In these two subtests, alternate form reliability was estimated by the 

correlations between the scores obtained by two different versions of materials that were 

conceptually similar but with different items.  It is worth noting that test session was not 
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considered as a condition for splitting data for reliability assessment because the 

measurements in the same material version and the same modality were treated as 

equivalent for reliability analysis, regardless of the session in which they were administered. 

This is also reasonable given that the carry-over effects have been controlled by 

counterbalancing design of the test items in different sessions.  

 In addition to poor L2 instrument reliability reporting and the low reliability of aptitude 

measures (Bokander & Bylund, 2020; Rogers & Meara, 2019; see the review in Section 

2.2.3.1), the question about which reliability coefficient should be used has also been raised 

by researchers in the field (e.g., O’Reilly & Marsden, 2020).  Derrick’s (2016) systematic 

review reports that reliability coefficients were reported for 28% of the instruments, with 

Cronbach’s alpha (α) being the most frequently used index in 22% of the instruments. 

Although Cronbach’s alpha has been a widely used reliability coefficient index in the 

literature in L2 research broadly, and of aptitude research specifically, it has been argued 

that its assumptions are often not met or corrected. For example, McNeish (2018) argues 

that Cronbach’s alpha may impose limitations that result in underestimating reliability of 

psychometric measures as its assumptions may often be violated. These assumptions 

include that Cronbach’s alpha assumes items having tau equivalence (that is, all test items 

contribute equally to the total score), a normal continuous distribution of data, 

unidimensionality (that is, all test items measure the same construct), and uncorrelated 

errors (that is, items are not correlated via any other sources). To overcome these limitations, 

McNeish proposed other alternatives (omega coefficients, coefficient H, and greatest lower 

bound) that use factor analysis of item loadings on a single latent dimension to determine 

instrument reliability (see, however, Raykov and Marcoulides (2019) who argue that under 

appropriate conditions, Cronbach’s alpha should continue to be used, challenging 

McNeish’s interpretation of the original assumptions of Cronbach’s alpha). Revelle and 

Condon (2019) also discuss two problems with α as a poor estimate of reliability despite 

that it can be easy to calculate from just the item statistics and the total score. These 

problems are that, first, α underestimates reliability of a test in cases where there is a lack 

of tau equivalence and overestimates of the proportion of test variance if that is associated 

with the general variance in the test, and second, α does not measure internal consistency 

because it is a function of the number of items and the average correlation between the 

items, rather than a function of the unidimensionality of the test. Therefore, they provide 

practical guides to use a variety of coefficients, including McDonald’s (1999) omega 

estimates, as powerful alternatives to Cronbach’s alpha according to the appropriateness 

for certain purposes.  
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 The choice of reliability coefficient is critical in the field of applied linguistics, though 

scarce empirical studies provide thought-provoking evidence. For example, O’Reilly & 

Marsden’s (2020) use of ordinal omega as an alternative to Cronbach’s alpha provides a 

clear illustration for omega being a superior reliability check than alpha when item 

responses are of the non-continuous nature and when tau equivalence is violated due to 

the variation in terms of items’ relation to the construct. Considering the important 

psychometric property of the measures in the current research, such as the proportion of 

variance in scores associated with the general factor that the instrument deemed to 

measure, and the assumption of tau equivalence of items being violated, it would be 

reasonable to use omega estimators, based on factor analytic approaches, as alternative 

to Cronbach’s alpha.  

Specifically, the current research used the omega function in psych package 

(Revelle, 2022) in R to examine two omega coefficients: omega hierarchical (ωh) estimated 

the reliability of the general factor of a test after controlling the variance of other factors 

(Green & Yang, 2015), and it was the coefficient index of the general factor loadings on the 

items with the exploratory Schmid-Leiman procedure (Zinbarg, et al., 2007). Omega total 

(ωt) was the estimate of the total reliable variance of the instrument, i.e., the estimate of the 

total reliability of the test. The difference between these two omega coefficients is that the 

former is based upon the sum of squared loadings on the general factor, while the latter is 

based upon the sum of the squared loadings of all factors. In addition, Cronbach’s alpha 

estimate with its 95% confidence intervals was also included in the report of the results to 

facilitate comprehensible comparison to the α coefficients reported in previous literature 

about the reliability of aptitude measurements.  

4.3.2.2 Unidimensionality indices 

Dimensions are known to be the constructed variables of psychometric measures. Most 

psycho-educational measures are not essentially unidimensional, i.e., the measures may 

not merely gauge the latent variable of interest, and secondary minor latent variables may 

be included in the measures (Slocum-Gori et al., 2009). As explained in the above section, 

omega hierarchical (ωh) can be used as the estimate of the general factor that accounts for 

the data to a full extent. It is also recommended that researchers should always examine 

the pattern of the estimated general factor loadings prior to estimating ωh, an informal 

assumption test to avoid possible misinterpretations of the estimate (Zinbarg et al., 2006). 

The assumption holds that if the factor loadings were salient for only a relatively small 

subset of the ‘indicators’ (i.e., the items of the subtest in the current research), this would 

suggest no true general factor underlying the data. Accordingly, unidimensionality checks 
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should be an indispensable part of the results that inform our understanding of the reliability 

of instruments. 

Although the unidimensionality check is important before examining reliability, there 

is no uniform or well-accepted objective index to represent the unidimensionality of a test 

(Slocum-Gori & Zumbo, 2010). The current research used omega and unidim functions in 

psych package to conduct exploratory analysis of item-response data prior to the check of 

reliability. Specifically, in the diagnostic statistical outputs of the omega function, the relative 

size of the eigen value of a general factor (g) compared to the other eigne values and the 

Explained Common Variance (ECV) were reported to indicate unidimensionality of the 

amount of test variance accounted for by a general factor (Revelle, 2022). To be more 

precise, g greater than 1 provided evidence that the measurement captured one factor with 

reliable commonality, i.e., the eigenvalue-greater-than-one rule (Mulaik, 1972). This rule 

was applied to interpret the unidimensionality evidence of the test. It suggests that any factor 

that accounts for more variability than a single observed variable should be considered as 

a dimension measured by the instrument. However, this rule has been criticised in the 

literature as performing poorly, especially for small sample sizes (see the discussion in 

Slocum-Gori & Zumbo, 2011). The eigenvalue for the first factor (F1) was also reported in 

the current research as it was suggested that this eigenvalue can be particularly important 

for external evaluation when the eigenvalue greater than 1 is used as the only retention 

criterion (Henson & Roberts, 2006).  The unidim function also calculates several indices to 

assess whether the items of a subtest measured one latent trait. In the output of this function, 

u provides high values when the data are unidimensional. The product of fa.fit (that is, the 

fit of the one factor model to the correlations) is the measure of unidimensionality based on 

a simple logic: a one factor model of the data fits the covariances of the data if the data are 

unidimensional. Thus, the closer fa.fit to 1, the higher degree of unidimensionality is 

evidenced, and fa.fit would be 1 when the factor model is perfect (Revelle, 2022). It is worth 

noting that other approaches can be used to check unidimensionality of the data, e.g., using 

confirmatory one-factor model to check the goodness of fit of the data to the model (Flora, 

2020). However, considering the exploratory purpose of the current research to diagnose 

the pattern of factor loadings of test items in each subtest as a measure for a latent construct, 

the current research did not apply confirmatory approaches to examine unidimensionality 

of the item level data. 

4.3.2.3 The results 

The results of reliability and unidimensionality of each subtest were obtained using psych 

package in R. 
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TALL_Vocabulary Learning 

As shown in Table 4.9, although the eigen value of general factor (g) was greater than one 

in each dataset, the relative value of g compared to F1 in the dataset of Version A in the 

aural modality was the lowest of the four datasets, suggesting that it was possible the first 

factor could be accounting for the observed scores more than the general factor could. 

Other unidimensionality indices also showed that this dataset had the lowest 

unidimensionality of the four datasets in this subtest though its fa.fit value (= .60) indicated 

that the 60% covariances of the data fitted the one factor model, which could still be 

considered as the evidence of unidimensionality of this instrument version measuring a 

general latent variable. 

In Table 4.9, the results supported, in general, the satisfactory reliability of the split 

datasets in TALL_Vocabulary Learning evidenced by omega_total (ωt) and Cronbach’s 

alpha (α) coefficients. Omega hierarchical (ωh) estimate of Version A in the aural modality 

was the lowest (.31) among all datasets of this subtest. Similarly, this dataset also had the 

lowest reliability coefficient in α (.70), which was lower than the acceptable threshold of .74 

proposed by Plonsky and Derrick (2016). But its 95% confidence intervals of alpha estimate 

(CI = [.60, .79]) included the threshold value of .74.  

Changes of the reliability coefficient of each dataset were checked if each item was 

dropped. The results showed that the incremental deletions of two items (that is, Item A1 of 

Version A in the aural modality and Item A1 of Version A in the written modality) would 

slightly increase the α coefficient by .01. These items were retained in further analysis 

because the goal was to keep as many items as possible, as long as their inclusion would 

maintain acceptable internal consistency. However, several items had factor loadings less 

than 0.2 to the general factors. Specifically, the following items needed further checks in 

IRT analysis: Items A1, A16, A17, A18, and A19 of Version A in the aural modality, Item 

B17 of Version B in the aural modality, Item A1 of Version A in the written modality, and 

Item B18 of Version B in the written modality.  
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Table 4.9 Reliability and unidimensionality of TALL_VL 

Subtest Dataset n k 

Unidimensionality 

 

Reliability 

g F1 ECV u fa.fit ωh ωt α 
95% CI 

lower upper 

Vocabulary 

Learning 

Version A in aural modality 81 20 1.70 2.00 .23 .29 .60  .31 .86 .70 .60 .79 

Version B in aural modality 84 20 3.70 1.60 .42 .49 .77   .56 .90 .78 .70 .84 

Version A in written modality 84 20 3.30 2.80 .36 .58 .82   .49 .91 .81 .75 .87 

Version B in written modality 81 20 4.40 1.80 .45 .69 .88   .58 .93 .84 .78 .88 

 

Note. Key to column headings: n = number of participants (each did two of the tests, e.g., version A in aural modality and version B in written modality); k = 

number of test items; g = eigen value of the general factor; F1 = eigen value of the first factor other than the general factor; ECV = explained common 

variance; u = unidimensionality value; fa.fit = unidimensionality measure; ωh= omega hierarchical; ωt = omega total; α = Cronbach’s alpha; 95 % CI = 95% 

confidence intervals of Cronbach’s alpha with lower and upper bound 
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TALL_Sound Discrimination 

As shown in Table 4.10, although g values of both datasets were greater than one, the 

dataset of Version B had the eigen value of the first factor (F1 = 6.74) greater than the g 

value of the general factor, suggesting that it was possible the first factor could be 

accounting for the observed scores more than the general factor could. The results of other 

unidimensionality indices (i.e., ECV, u and fa.fit) provided similar evidence that the dataset 

of Version B had a slightly lower degree of unidimensionality compared to the dataset of 

Version A.  

The results provided strong evidence of high reliability of the two instrument versions 

in TALL_Sound Discrimination, evidenced by ωt and α coefficients. Both versions had α 

coefficients higher than the acceptable threshold of .74. ωh estimates of the datasets also 

indicated satisfactory reliability of the general factor the subtest measured.  

Changes of the reliability coefficients were checked if each item was dropped. The 

results showed that the deletion of any item would not increase the coefficient of the 

instrument of Version A, while the incremental deletions of two items (that is, Item B2B and 

B8B) of Version B would slightly increase the α coefficient by .01. In addition, no items of 

Version A had factor loadings less than 0.2 to the general factor, while seven items (i.e., 

B1B, B3A, B3C, B5C, B6C, B9B and B10B) had factor loadings less than 0.2 to the general 

factor, and hence these items needed further check in IRT analysis. 
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Table 4.10 Reliability and unidimensionality of TALL_SD 

Subtest Dataset n k 

Unidimensionality 

 

Reliability 

g F1 ECV u fa.fit ωh ωt α 
95% CI 

lower upper 

Sound 

Discrimination 

Version A 165 30 7.40 2.20 .50 .79 .91  .62 .96 .89 .87 .92 

Version B 165 30 6.18 6.74 .41 .48 .83   .72 .92 .78 .73 .83 

 

Note. Key to column headings: n = number of participants; k = number of test items; g = eigen value of the general factor; F1 = eigen value of the first 

factor other than the general factor; ECV = explained common variance; u = unidimensionality value; fa.fit = unidimensionality measure; ωh= omega 

hierarchical; ωt = omega total; α = Cronbach’s alpha; 95 % CI = 95% confidence intervals of Cronbach’s alpha with lower and upper bounds 
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TALL_Language Analysis 

As shown in Table 4.11, all indices provided clear evidence to support that all versions of 

this subtest had high degree of unidimensionality in terms of measuring a general latent 

variable.  

In Table 4.11, ωt and α coefficients provided strong evidence of high reliability of all 

instrument versions in TALL_Language Analysis. The α coefficients were much higher than 

the acceptable threshold of .74.  ωh estimates also indicated strong reliability of the general 

factor the subtest measured. 

Changes of the reliability coefficient of each dataset were checked if each item was 

dropped. The results showed that the incremental dropping of only one item (TB26 of 

Version B in the written modality) would slightly increase the α coefficient of alpha by .01. 

This item was retained in further analysis because its inclusion would maintain acceptable 

internal consistency. Additionally, no items having factor loadings less than 0.2 to the 

general factors that needed further scrutiny in IRT analysis. 

 

TALL_Serial Nonwords Recall 

As shown in Table 4.12, all indices provided clear evidence to support that all versions of 

this subtest had high degree of unidimensionality in terms of measuring a general latent 

variable.  

In Table 4.12, ωt and α coefficients provided strong evidence of high reliability of all 

instrument versions in TALL_Serial Nonwords Recall. α coefficients were much higher than 

the acceptable threshold of .74. ωh estimates also indicated satisfactory reliability of the 

general factor the subtest measured.     

Changes of the reliability coefficients were checked if each item was dropped. The 

results showed that the incremental deletion of only one item (that is, AT1) would slightly 

increase the α coefficient of Version A by .01. This item was retained in further analysis 

because its inclusion would maintain acceptable internal consistency. In addition, only Item 

AT1 of Version A had factor loadings less than 0.2 to the general factor, and so only this 

item needed further checking in IRT analysis. 
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Table 4.11 Reliability and unidimensionality of TALL_LA 

Subtest Dataset n k 

Unidimensionality 

 

Reliability 

g F1 ECV u fa.fit ωh ωt α 
95% CI 

lower upper 

Language 

Analysis 

Version A in aural modality 81 30 14.70 1.70 .72 .94 .98  .80 .98 .95 .94 .97 

Version B in aural modality 84 30 12.00 .00 .71 .75 .93   .84 .97 .91 .88 .94 

Version A in written modality 84 30 14.30 5.20 .63 .91 .97   .74 .99 .96 .94 .97 

Version B in written modality 81 30 14.81 .04 .73 .92 .97   .82 .98 .94 .93 .96 

 

Note. Key to column headings: n = number of participants (each did two of the tests, e.g., version A in aural modality and version B in written modality); k = 

number of test items; g = eigen value of the general factor; F1 = eigen value of the first factor other than the general factor; ECV = explained common 

variance; u = unidimensionality value; fa.fit = unidimensionality measure; ωh= omega hierarchical; ωt = omega total; α = Cronbach’s alpha; 95 % CI = 95% 

confidence intervals of Cronbach’s alpha with lower and upper bounds 

 

Table 4.12 Reliability and unidimensionality of TALL_SNWR 

Subtest Dataset n k 

Unidimensionality 

 

Reliability 

g F1 ECV u fa.fit ωh ωt α 
95% CI 

lower upper 

Serial Nonwords 

Recall 

Version A 165 17 4.43 1.60 .66 .80 .95  .72 .89 .86 .82 .89 

Version B 165 17 5.04 1.10 .69 .84 .96   .76 .91 .88 .85 .90 

 

Note. Key to column headings: n = number of participants; l = number of test items; g = eigen value of the general factor; F1 = eigen value of the first factor 

other than the general factor; ECV = explained common variance; u = unidimensionality value; fa.fit = unidimensionality measure; ωh= omega hierarchical; 

ωt = omega total; α = Cronbach’s alpha; 95 % CI = 95% confidence intervals of Cronbach’s alpha with lower and upper bounds 
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TALL_Complex Span Tasks 

As shown in Table 4.13, g values of all datasets were greater than one. However, the 

dataset of Version B in the written modality had the g value of the first factor (F1 = 1.34) 

greater than the g value, suggesting that the first factor could be accounting for the observed 

scores more than the general factor could. In addition, the relative sizes of g values 

compared to the F1 values in two datasets of the written modality were lower than those of 

the aural modality, suggesting lower degree of unidimensionality of the instruments when 

they were administered in the written modality.  Given that fa.fit values of the datasets in 

the written modality (.69 of Version A and .80 of Version B) indicated that at least 69% 

covariances of the datasets fitted the one factor model, unidimensionality of these 

instrument versions measuring a general latent variable was still sufficiently convincing. 

Table 4.13 provides evidence, in ωt and α being higher than the acceptable 

threshold of .74, of acceptable reliability of the datasets in the aural modality of this subtest. 

ωh estimates of the datasets in the aural modality were higher than those in the written 

modality. Although α coefficients of the two datasets in the written modality (.64 of Version 

A and .72 of Version B) were lower than the acceptable threshold of instrument reliability 

coefficient (α = .74), the 95% confidence intervals of the coefficients still included the 

threshold value.  

Changes of the reliability coefficient of each dataset were checked if each item was 

dropped. The results showed that the incremental deletion of only one item (Item B_T3 of 

Version B) would slightly increase the α coefficients of alpha by .01. This item was retained 

in further analysis because its inclusion would maintain acceptable internal consistency. 

However, several items had factor loadings less than 0.2 to the general factors. Specifically, 

the following items needed further checks in IRT analysis: Item A_T4 of Version A in the 

aural modality, Items A_T6, A_T7, A_T11, A_T13, and A_T15 of Version A in the written 

modality, and Items B_T3 and B_T6 of Version B in the written modality.  
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Table 4.13 Reliability and unidimensionality of TALL_CST 

Subtest Dataset n k 

Unidimensionality 

 

Reliability 

g F1 ECV u fa.fit ωh ωt α 
95% CI 

lower upper 

Complex 

Span Tasks 

Version A in aural modality 81 15 3.10 1.20 .53 .69 .88  .64 .87 .84 .78 .88 

Version B in aural modality 84 15 2.59 1.21 .46 .73 .89   .56 .86 .82 .76 .87 

Version A in written modality 84 15 1.09 0.64 .30 .36 .69   .35 .68 .64 .51 .74 

Version B in written modality 81 15 1.17 1.34 .26 .60 .80   .33 .79 .72 .62 .81 

 

Note. Key to column headings: n = number of participants (each did two of the tests, e.g., version A in aural modality and version B in written modality); k = 

number of test items; g = eigen value of the general factor; F1 = eigen value of the first factor other than the general factor; ECV = explained common 

variance; u = unidimensionality value; fa.fit = unidimensionality measure; ωh= omega hierarchical; ωt = omega total; α = Cronbach’s alpha; 95 % CI = 95% 

confidence intervals of Cronbach’s alpha with lower and upper bounds 
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4.4 Item level analysis 

This section mainly addresses the check of item quality of the data split by the conditions 

of material versions and/or modalities in each subtest using IRT models. The following 

sections introduces IRT models that were suitable to the characteristics of the data of the 

subtests. The results and summary plots will be presented for each subtest. 

4.4.1 Item Response Theory (IRT) models 

In the current research, two types of data at the item level were generated in five subtests: 

dichotomous data from TALL_VL, TALL_SD, and TALL_LA, and the polytomous data from 

TALL_SNWR and TALL_CST. The following section introduces different IRT models that 

were applied to these two types of data.  

4.4.1.1 IRT models for dichotomous data (TALL_VL, TALL_SD, and TALL_LA) 

Rasch modelling was used in this analysis, although concerns about the appropriateness 

of using Rasch analyses in language testing and assessment research have been raised 

(see Appendix F for a summary of the debate about the use of Rasch).  

1PL, 2PL, and 3PL models 

Basic Rasch model (also known as One-Parameter Logistic model, 1PL), Two-Parameter 

Logistic (2PL), and Three-Parameter Logistic (3PL) model were applied on the dichotomous 

data.  The purpose of using different IRT models was to examine if adding the parameter 

of discrimination in the 2PL model and two parameters, i.e., discrimination and guessing, in 

the 3PL model, the data would have a better model fit than only having a parameter of item 

difficulty in the 1PL model. To achieve this purpose, ltm package (Rizopoulos, 2006) in R 

was used. The current research also used eRm package (Mair & Hatzinger, 2007) to provide 

supplementary analysis if 1PL model was evidenced as the model with the best fit to the 

data from the analyses through ltm package (see Appendix F for explaining reasons for 

using two packages).  

Stepwise analyses 

As introduced above, analyses were performed in the following steps, using IRT models on 

the dichotomous data in TALL_VL, TALL_SD, and TALL_LA, respectively. More detailed 

explanations on the stepwise analyses can be found in Appendix F. 

Step 1. Model comparisons 

In the first step of the analysis, Rasch models were created using rasch function in the ltm 

package. Initially, a basic Rasch model with equal discrimination parameters was generated 
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and compared to an unconstrained Rasch model. The comparison involved a likelihood 

ratio test (through the anova function), including the Akaike Information Criterion (AIC), the 

Bayesian Information Criterion (BIC) and the p-value of the log-likelihood ratio to assess 

model fitness. Lower AIC and BIC values indicated better fit.  

Subsequently, more complex 2PL and 3PL models were explored, and their 

performance was compared to the initially identified Rasch model. Model comparisons were 

used to determine if adding discrimination and guessing parameters were needed. If the 

2PL or 3PL models were found to have a better fit, further analyses were conducted in the 

ltm package. However, if the Rasch model was superior, supplementary estimations were 

made using the RM function in the eRm package to assess item and person fitness. It’s worth 

noting that no comparisons between the 2PL and 3PL models across different R packages 

were made because the eRm package does not support the estimations of the 2PL and 3PL 

models.  

Step 2. Model Fitness   

In this step, model fitness was assessed to ensure the quality of the chosen model. Fit 

statistics were obtained to determine if the Rasch model met the assumption of 

unidimensionality, identifying items that deviated from the expected pattern. A non-

significant p-value (>.05) from the GoF.rach function in the ltm package and the LRtest 

function in the eRm package suggested acceptable model fit for the Rasch model (Mair & 

Hatzinger, 2007; Rizopoulos, 2006). For the 2PL or 3PL models, the margins function 

examined fitness through two-way χ2 residuals, with a rule of thumb of 3.5 as an indicator 

of goodness of fit. 

Step 3. Model estimations and item/person fitness 

In this step, the chosen model with the best fit was analysed using various functions in the 

two R packages. Descriptive statistics were obtained using summary function in both 

packages, including coefficients of difficulty (and discrimination for 2PL and 3PL models) 

and standard errors for all items.   

In the ltm package, item.fit and person.fit functions can be used to compute 

item and person fit statistics for 1PL, 2PL and 3PL models. The χ2 (displayed as X^2) 

statistic tested the null hypothesis that the item responses follow the chosen model against 

the alternative hypothesis that they did not. A large χ2 value indicated poor fit of the item to 

the model, while a small χ2 value indicated good fit. 
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For the Rasch model, the itemfit and personfit functions in the eRm package 

were used, which produced outputs easier to interpret.  Several cut-off values of the item 

and person model fit were applied as the criteria to ascertain the adherence of the items 

and participants to the model’s expectations. The value of mean square (MNSQ) fit statistics 

is expected to be close to 1.0 if the item or person fits well to the model. The current research 

took the reference of the acceptable ranges of MNSQ values [0.50, 1.50] (Wright & Linacre, 

1994), and [0.70, 1.30] with the infit t statistics ranging of [-2, 2] (Bond & Fox, 2015). If the 

MNSQ values of any items and persons were greater than 1.50, further examinations were 

conducted to investigate the reasons of the misfitting.  

Step 4. Plots of model estimations 

Plots of IRT model estimations provides visualisations of the items and persons 

characteristics and the test information.  

Items or Persons Pathway Maps visually identify misfitting items or persons outside 

the range of satisfactory infit t-statistic between -2 and +2. Person-item maps display item 

and person parameters along the latent dimension, ideally showing a spread across the 

entire range with adequate test takers.  

The slopes of Item Characteristic Curve (ICC) indicate discrimination ability of items, 

with steep slopes reflecting effective discrimination. A positive slope signifies the item’s 

effectiveness in measuring the construct and distinguishing levels of ability between test 

takers.  

Item Information Curve (IIC) reveals how much information about the latent ability 

an item provided at each level of the latent ability. Similarly, Test Information Curve (TIC) 

shows how much information about the latent ability the instrument provided at each level 

of ability, evaluating the test’s appropriateness and difficulty level for participants.  

4.4.1.2 IRT models for polytomous data (TALL_SNWR and TALL_CST) 

In this part of analysis, the term “item” was used interchangeably to “trial”, both referring to 

the sets of stimuli to be retained. The scoring method and datasets composition have been 

introduced in Section 3.3.5.1. The ltm package was used for the analyses in this section, 

as it applies Marginal Maximum Likelihood Estimation (MMLE) to estimate data based on 

the assumption that individual person parameters conform to a specific distribution (Nicklin 

& Vitta, 2022). Generalised Partial Credit model (GPCM) (Muraki, 1997) in the this package 

was used to examine the model fit of the polytomous data from TALL_SNWR and 

TALL_CST.  
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Stepwise analyses 

Analyses were performed in the following steps, applying the GPCM on the polytomous 

data sets split by material versions in TALL_SNWR and by versions and modalities in 

TALL_CST. More detailed explanations on the stepwise analyses can be found in Appendix 

F. 

Step 1. Model comparisons 

To build the GPCM, the gpcm function was used in the ltm package that allows three 

constraint options, i.e., gpcm option assuming each trial having an estimated discrimination 

parameter, 1PL option assuming the discrimination parameter being equal for all trials, and 

Rasch option assuming the equal discrimination parameter being fixed at one. All three 

options were applied to the split data sets separately, and the models were then compared 

with each other to ensure that the chosen model had the best fit to each dataset.   

Step 2. Model Fitness   

Fitness statistics of the chosen model to the data were obtained in this step. For the Rasch 

model, the GoF.gpcm function was used to perform a parametric bootstrap goodness-of-fit 

test using χ2 statistic. Based on 50 iterated datasets, the non-significant p-value > .05 would 

suggest an acceptable fit of the model (Rizopoulos, 2006).   

Step 3. Model estimations  

The descriptive statistics of the chosen model with better fitness were analysed by the 

summary function, providing coefficients of the category threshold parameters and the 

discrimination parameter. The category threshold parameters represented the points on the 

latent trait scale that determine when the test takers were equally likely to endorse one 

answer option versus the next. The lower values of the category threshold parameters 

indicated that the item was more difficult to endorse, and the higher values indicated that 

the item was easier to endorse. The discrimination parameter provided information about 

the how well the item distinguished between individuals with different level of the latent 

ability. In the outputs, the z-value for each coefficient was also displayed, which was 

obtained by the coefficient divided by the standard error and indicated whether the 

coefficient was statistically significant. As a rule of thumb, a z-value with the absolute value 

greater than 1.96, indicating the statistical significance of the coefficient at the 5% level, 

suggested that the parameter was unlikely to have arisen by chance.  

Step 4. Plots of model estimations 
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Plots of IRT model estimations provides visualisations (the ICC, the IIC, and the TIC) of the 

items’ characteristics and the test information, as introduced in the previous section about 

the stepwise analysis of dichotomous data.  

4.4.2 The results  

The results of IRT analyses on the data of the subtests are presented separately. The 

analysis code and output are documented in R markdown files (see Appendix D) separately 

for dichotomous data from TALL_VL, TALL_SD, and TALL_LA, and for polytomous data 

from TALL_SNWR and TALL_CST. 

4.4.2.1 Item quality in TALL_VL 

Model comparisons 

The results of the AIC, BIC and p-value of likelihood ratio tests for the 1PL, 2PL and 3PL 

models suggested that the inclusions of different discrimination parameters per item in the 

2PL model and a guessing parameter in the 3PL model did not increase the model fitness 

to all datasets in this subtest. Therefore, the 1PL (Rasch) model was chosen to provide 

model estimations using the ltm package and the eRm package.   

Model fitness 

The results of the parametric bootstrap goodness-of-fit test using χ2 statistic suggested that 

all datasets had acceptable fit of the chosen models, with p-values > .05. Similarly, the 

Andersen likelihood ratio tests also returned p-values >.05, indicating that all datasets fitted 

well to the Rasch models. 

Model estimations and item/person fitness 

The results of item fitness statistics of all datasets showed that no items had associated χ2 

p-value < .05, suggesting no items had poor fit to the model.   

Additional evidence of item fitness was obtained through MNSQ fit statistics and infit 

t statistics. Although three items (see Figure 4.7) fell outside the range of [-2, +2] for infit t 

statistics, none of them displayed a poor model fit, as all had Infit MNSQ values lower than 

1.5. This suggested that none of the items in this subtest required removal due to poor 

model fit.  

The person fit statistics revealed that two participant (refer to Figure 4.8) had infit t 

values fell outside the range of [-2, +2]. However, their Infit MNSQ values were below 1.5, 

indicating acceptable person fit statistics. Thus, there was no evidence from the person fit 

statistics to suggest that any individual estimations poorly fit the Rasch models.  
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Plots of model estimations 

  

  

Figure 4.7 Items Pathway Maps for TALL_VL 

 

  

  

Figure 4.8 Persons Pathway Maps for TALL_VL 
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The person-item maps (Figure 4.9) showed that, in general, the items were well-

targeted to the ability levels of the participants without any item that located at the extreme 

ends of the map. Item A1(alk, lion) in both aural and written modalities displayed abrupt 

transitions to the items next to it, which suggested that this item was much less challenging 

to the participants. The maps also showed that the participants’ ability levels were not evenly 

distributed (see the upper bar for Person Parameter Distribution). Most of the participants 

who took Version B in the aural modality, or Version A or B in the written modality roughly 

located in the middle of the map. The exception was the participants who took Version A in 

the aural modality, with the majority locating on the lower dimension of ability between -1 

and -2.  

The ICCs plotted (Figure 4.10) showed that all items in both modalities had strong 

positive slopes, indicating that the items were measuring the unidimensional construct. The 

curves also showed that, in general, all items had a range of difficulty levels to discriminate 

individuals’ levels of the vocabulary learning ability, and they were similarly effective to 

measure the construct. 

 

  

  

Figure 4.9 Persons-Item Maps for TALL_VL 
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Figure 4.10 Item Characteristic Curves for TALL_VL 

 

 The information provided by the IICs (Figure 4.11) showed that, compared to the 

items of Version A, items of Version B had better quality in terms of providing information 

evenly along the scales of ability. However, one item (Item A1) of Version A, however, was 

too easy compared to other items of the same version.  

Finally, the TICs and the statistics in Table 4.14 indicated that all instruments were 

appropriate to evaluate participants’ ability, with consistent information provided about the 

latent ability scales. To be specific, instruments administered in the written modality had 

more evenly distributed information about the latent ability, especially with Version B 

providing nearly equal information (48.96% and 50.31%) about participants who had 

negative (poor) and positive (strong) ability along the scale (see the nearly symmetric curve 

spread across the x axis). Instruments administered in the aural modality provided much 

more information about the higher-level ability, suggesting that the instruments were more 

challenging comparing to the same instruments but administered in the written modality. 
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Figure 4.11 Item Information Curves for TALL_VL 
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Table 4.14 Test Information for TALL_VL 

Modality Version Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Test Information Curve 

 

aural 

 

A 

 

15.54 

 

3.9 

(25.09%) 

 

11.07 

(71.24%) 

 

 

 B 20 6.74 

(33.68%) 

13.09 

(65.46%) 

 

written A 20 7.9 

(39.49%) 

11.96 

(59.83%) 

 

 B 20 9.79 

(48.96%) 

10.06 

(50.31) 
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4.4.2.2 Item quality in TALL_SD 

Model comparisons 

1PL, 2PL models were generated to the data of the subtest of Sound Discrimination 

obtained by using Version A and B separately, but 3PL models with a guessing parameter 

added could not converge to the datasets. The results of the AIC, BIC and p-value of 

likelihood ratio tests for the 1PL and 2PL models suggested that the inclusions of different 

discrimination parameters per item in the 2PL models did not increase the model fitness to 

the datasets from this subtest. Therefore, the 1PL (Rasch) model was chosen to provide 

model estimations using the ltm package and the eRm package.   

Model fitness 

The results of the parametric bootstrap goodness-of-fit test using χ2 statistic suggested that 

datasets obtained by using Version A had acceptable fit to the Rasch model, with the p-

value (.09) > .05. Similarly, the Andersen likelihood ratio tests also returned non statistically 

significant p-value (.76) >.05 to indicate that the data fitted well to the Rasch model. 

However, the results of model fitness check did not suggest that the data obtained by using 

Version B had an acceptable fit to the Rasch model, with the p-value (.01) < .05 of the 

parametric bootstrap goodness-of-fit test and the p-value (.024) < .05 of the Andersen’s 

likelihood ratio test.  

Model estimations and item/person fitness 

The results of item fitness statistics of two datasets of both versions showed that none of 

the items in this subtest exhibited a poor model fit (having associated χ2 p-value <.05) that 

would necessitate their removal. As displayed in Figure 4.12, items in Version A fitted well 

to the the Rasch model, evidenced by the infit t statistics. These items also had values of 

MNSQ fit statistics below 1.5.  In Version B, only one item, Item B2B (sėja su vėju), had a 

large value of infit t statistics (4.039) out of the acceptable range [-2, +2], suggesting overfit 

of the item to the model. However, this item had acceptable Outfit and Infit MNSQ fit 

statistics less than the cut off value of 1.5. Given that MNSQ statistics are more relevant to 

the impact of underfit on the test (Bond et al., 2020; Nicklin & Vitta, 2022), this item should 

not be diagnosed as problematic item that could potentially threat the validity of the 

measurement.  

As shown in Figure 4.13, when participants took Version A, two persons had infit t 

statistics beyond the acceptable range, but their MNSQ fit statistics remained below 1.5, 

indicating no misfit. In contrast, when participants took Version B, several individuals had 

infit t statistics falling outside [-2, +2]. Among these, four participants exhibited MNSQ 
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statistics beyond the acceptable threshold of 1.5, suggesting misfit to the Rasch model. 

Given that the current analysis is exploratory, focusing on checking the internal validity of a 

new instrument, the data of these four participants were not excluded from further analyses. 

The results that more participants had exhibited mist fit in Version B than in Version A 

provided insights into the comparison of the two versions, which will be discussed in Section 

4.7.2.1.  

Plots of model estimations 

  

Figure 4.12 Items Pathway Maps for TALL_SD 

  

  

Figure 4.13 Persons Pathway Maps for TALL_SD 

 

The person-item maps (Figure 4.14) showed that, in general, the items were well-

targeted to the ability levels of the participants without any item that located at the extreme 

ends of the map. However, some differences between two material versions were 

evidenced. Version A yielded more evenly distributed items of difficulty parameters, with all 

items having smooth transitions in-between. Items of Version B, however, had abrupt gaps 

between the items containing the sound sauja and the items containing the sounds of sėja 
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and sija, indicating that the sound sauja was systematically less challenging than the other 

two sounds.  

The maps also revealed uneven distribution of participants’ ability levels in two 

versions (see the upper bar for Person Parameter Distribution). In version A, most 

participants clustered in the positive half of the latent dimension, indicating better 

performance and stronger sound discrimination ability as measured by Version A compared 

to Version B. Conversely, participants who took Version B showed a wider spread along the 

latent dimension than Version A. The majority still resided in the positive half, signifying 

stronger abilities in Version B than in Version A. However, a minority of participants 

positioned around the lower end of ability scales (around -2), reflecting a preference for the 

less challenging items of Version B compared to Version A.  

 

  

Figure 4.14 Persons-Item Maps for TALL_SD 

 

The ICCs plotted (see Figure 4.15) showed that all items in both modalities had 

strong positive slopes, indicating that the items were measuring the unidimensional 

construct. The curves also showed that, compared to the items of Version A, items of 

Version B had a wider range of difficulty levels to discriminate individuals’ levels of the sound 

discrimination ability, and these two versions of materials were not equally effective to 

measure the same construct.  
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Figure 4.15 Item Characteristic Curves for TALL_SD 

 

 The information provided by the IICs (see Figure 4.16) revealed that, compared to 

items of Version B, items of Version A provided more information about the latent ability 

and demonstrated superior quality in terms of evenly distributing information along ability 

scales. In contrast, items of Version B, particularly those containing the sound ‘sauja’, were 

less challenging than other items within the same version. Consequently, these items of 

Version B provided limited information about higher levels of ability due to their low difficulty 

levels.  

 

  

Figure 4.16 Item Information Curves for TALL_SD 

 

Finally, the TICs and the statistics in Table 4.15 indicated that both versions were 

appropriate, in general, for evaluating participants’ ability, as they provided inconsistent 

amounts of information about the latent ability scales of [-6, +6]. Specifically, Version A 

provided more information about the latent scales than Version B did, although both 

versions provided more information for participants with low ability, that is, the amounts of 
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test information for ability levels in the interval (-6, 0)  were about 80% and 77%. This 

suggested that, for the participants in the current research, both versions were not 

challenging to measure their ability to discriminate the sounds. 

 

Table 4.15 Test Information for TALL_SD 

Version Total 

Information 

Information  

(-6, 0) 

Information  

(0, 6) 

Test Information Curve 

 

A 

 

41.6 

 

33.25 

(79.92%) 

 

8.29 

(19.93%) 

 

 

B 29.98 23.02 

(76.78%) 

5.81 

(19.39%) 

 

 

4.4.2.3 Item quality in TALL_LA 

Model comparisons 

1PL, 2PL and 3PL models were applied to the data of Language Analysis from Version A 

and B, separately for aural and written modalities. For Version A in the aural modality and 

Version B in the written ability, AIC, BIC, and likelihood ratio test p-values favoured the 1PL 

model over the 2PL and 3PL models. However, for Version B in the aural modality and 

Version A in the written ability, the data did not support that adding extra parameters in 2PL 

or 3PL models improved model fit significantly compared to the 1PL model. The choice of 

the 1PL model was based on its parsimony.  

Model fitness 

The results of the parametric bootstrap goodness-of-fit test using χ2 statistic and the 

Andersen likelihood ratio tests suggested that, in general, most datasets had acceptable fit 

of the chosen models, with p-values > .05. The only exception was the results from the 

parametric bootstrap goodness-of-fit test on the data of Version B in the written modality, 
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which had a p-value = .01. However, the Andersen likelihood ratio test on this dataset had 

a p-value =.802, supporting an acceptable model fitness to the data.  

Model estimations and item/person fitness 

The results of the parametric bootstrap goodness-of-fit test using χ2 statistic suggested that 

most items did not have associated χ2 p-value < .05, indicating the poor fitness of the items 

to the model.  The only exception was Item B26 (virejas viduje ruke, a grandpa swam inside) 

in the written modality, which might be an item having a poor model fit (p value =.04).  

Additional evidence of item fitness was provided by MNSQ fit statistics and the infit 

t statistics. The results showed that although there were a few items (see Figure 4.17) 

having infit t statistics out of the range of [-2, +2], none of the items exhibited a poor model 

fit with Infit MNSQ values lower than 1.5. This suggested that they should not be removed 

as being threaten to the validity of the instruments.  

Furthermore, the results of person fit statistics (see Figure 4.18) showed that six 

participants (four from Version A and two from Version B) in the written modality had infit t 

values beyond [-2, +2]. But they all had Infit MNSQ values lower than 1.5. Consequently, 

there was no evidence from the person fit statistics to suggest that any person estimations 

poorly fit the Rasch models.  

Plots of model estimations 

  

  

Figure 4.17 Items Pathway Maps for TALL_LA 
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Figure 4.18 Persons Pathway Maps for TALL_LA 

 

The person-item maps (Figure 4.19) showed that, in general, the items were well-

targeted to the ability levels of the participants without any item that located at the extreme 

ends of the map. All items of both versions in two modalities yielded evenly distributed 

difficulty parameters as they had smooth transitions in-between. The maps also showed 

that the participants’ ability levels were not evenly distributed (see the upper bar for Person 

Parameter Distribution), and most of them located on the positive half on the scales of ability 

dimension. The results suggested that generally the participants had strong ability of 

language analysis measured by the instruments. This was particularly reflected when the 

participants took the test in the written modality. Most of them located on the right end of 

the scales (3 to 4) on the maps, indicating clear ceiling effects when they were tested in the 

written modality.  

The ICCs plotted (Figure 4.20) showed that all items in both modalities had strong 

positive slopes, indicating that the items were measuring the unidimensional construct of 

language analytic ability. The symmetry of the curves also showed that, in general, all items 

had a range of difficulty levels to discriminate individuals’ levels of the latent ability, and they 

were similarly effective to measure the construct.  
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Figure 4.19 Persons-Item Maps Maps for TALL_LA 

   

  

  

Figure 4.20 Item Characteristic Curves for TALL_LA 
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The information provided by the IICs (Figure 4.21) indicated that, compared to the 

items of Version B, items of Version A provided more information along the scales of ability. 

Most items provided more information about lower-level ability than higher-level ability.  

Finally, the TICs and the statistics in Table 4.16 indicated that, in general, all 

instruments were appropriate to evaluate participants’ ability. However, Version A in both 

modalities provided more information about the ability compared to Version B. All 

instruments did not provide evenly distributed information about the latent ability, with much 

more, from 72% to 90%, test information provided for lower ability levels in the interval (-6, 

0). This pattern was particularly reflected in the written modality, which suggested that all 

instruments were not very challenging, especially when they were administered in the 

written modality, to measure the language analytic ability. 

 

  

  

Figure 4.21 Item Information Curves for TALL_LA 
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Table 4.16 Test Information for TALL_LA 

Modality Version Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Test Information Curve 

 

aural 

 

A 

 

60 

 

46.62 

(77.69%) 

 

13.39 

(22.31%) 

 

 

 B 44.95 32.39 

(72.07%) 

12.53 

(27.88%) 

 

written A 79.72 65.8 

(82.54%) 

13.92 

(17.46%) 

 

 B 58.82 53.48 

(90.91%) 

5.34 

(9.08%) 

 

 

4.4.2.4 Item quality in TALL_SNWR 

Model comparisons 

GPCM was applied to data from Version A and Version B of the subtest, using three 

constraint options. The “gpcm” constraint option failed to converge with the data from both 

versions. AIC, BIC and likelihood ratio test p-values indicated that the GPCM with the the 

“1PL” constraint option provided a better fit for both versions. Consequently, the GPCM with 

the “1PL” constraint, assuming equal discrimination parameters for all test items (trials), 

was selected for model estimations using the ltm package.   
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Model fitness 

The results of the parametric bootstrap goodness-of-fit test using the χ2 statistic showed 

that p-values for both versions of the data were .02, which is smaller than the predefined 

criterion of .05. These results suggested that, assuming the null hypothesis (i.e., the 

hypothesis that the observed data follows the expected data distribution), there is a 

probability of 2% or less of obtaining data as extreme as what was observed. In other words, 

the data from this subtest did not have a good overall model fit to the chosen model.  

Model estimations and item parameters 

The chosen GPCM constrained the discrimination parameters to be equal for all items, and 

the coefficients of discrimination parameters were similar for data from both versions. The 

z-values of the coefficients for both versions were greater than the 1.96, corresponding to 

a two-tailed p-value of .05, indicating non-statistical significance at the 5% level. These 

results suggested that the discrimination parameters estimated by the GPCM for data from 

both versions were similarly reliable.  

The coefficients of the category threshold parameters and the corresponding z-

values generally indicated reliable estimations of difficulty parameters for data from both 

versions. Fewer than 25% of the total coefficients were below 0, indicating difficulty in 

endorsing higher category thresholds. Approximately half of these coefficients had z-values 

greater than 1.96,  signifying reliable estimations. However, fewer than 27% of all 

coefficients had statistically significant z-values (that is, absolute values < 1.96), raising 

doubts about the reliability of model estimations for difficulty parameters. Items with the 

smallest set sizes (i.e., 2 stimuli to retain) were the easiest to remember, while items with 

larger set sizes appeared more challenging. Exceptions occurred in items with larger set 

sizes (e.g., 6 or 7 items in one trial), where the last category threshold coefficients were 

lower than the earlier ones, which may be due to testing errors. 

Plots of model estimations 

As shown in Table 4.17, IICs were plotted for trials with the same set size (number of stimuli 

in one trial) in both versions. Additionally, information for trials with the same set size was 

calculated. The plots revealed that trials with larger set size offered greater information than 

those with smaller set size. Furthermore, most IICs were positioned on the positive side of 

the interval (0, 6) on the ability axis, indicating that trials were more informative about the 

higher ability levels than the lower ability ones. An exception was observed for trials with a 

set size of 2, which provided more information about lower ability levels within the interval 

(-6, 0) on the ability scale. 
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Table 4.17 Trial Information for TALL_SNWR 

Version Trial 

size 

Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Item Information 

Curve 

 

A 

 

2 

 

4.441 

 

2.77 

(62.37%) 

 

1.539 

(34.66%) 

 

 

 3 6.661 2.258  

(33.9%) 

4.192 

(62.93%) 

 

 4 8.884 2.48  

(27.92%) 

6.161 

(69.35%) 

 

 5 10.359 2.49  

(24.04%) 

7.509 

(72.49%) 

 

 6 13.333 2.823 

(21.17%) 

10.256 

(76.92%) 

 

 7 9.634 1.582 

(16.42%) 

7.958 

 (82.6%) 

 



 

156 

 

Version Trial 

size 

Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Item Information 

Curve 

B 2 5.125 3.211 

(62.66%) 

1.822 

(35.55%) 

 

 3 7.687 2.617 

(34.04%) 

4.937 

(64.22%) 

 

 4 10.248 2.9      

(28.3%) 

7.111  

(69.4%) 

 

 5 12.809 3.067 

(23.94%) 

9.437 

(73.67%) 

 

 6 15.377 3.022 

(19.65%) 

12.146 

(78.99%) 

 

 7 11.109 1.841 

(16.57%) 

9.201 

(82.83%) 

 

 

Finally, TICs and statistics in Table 4.18 indicated how much information about the 

nonword recall ability associated with the phonological short-term memory each version 

provided at the different levels of ability. In general, although both versions were appropriate 

to evaluate participants’ ability, Version B provided more information about ability compared 

to Version A. Both versions, however, did not provide evenly distributed information about 
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the latent ability, with much more amounts (above 70%) of test information for ability levels 

in the interval (0, 6), suggesting that both versions were challenging to the participants. 

 

Table 4.18 Test Information for TALL_SNWR 

Version Total 

Information 

Information (-6, 0) Information (0, 6) Test Information Curve 

 

A 

 

53.313 

 

14.404 

(27.02%) 

 

37.615 

(70.56%) 

 

 

B 62.354 16.658 

(26.71%) 

44.654 

(71.61%) 

 

 

4.4.2.5 Item quality in TALL_CST 

Model comparisons 

GPCM was applied the split data of both versions in two modalities, using three constraint 

options. All three constraint options were successfully applied to all data sets except the 

data of Version A in written modality, on which the model with the “gpcm” constraint option 

could not be successfully converge. The results of model comparisons showed that the 

models with the “1PL” constraint option had better fit on the data, evidenced by the AIC, 

BIC and p-values of likelihood ratio tests. Therefore, the GPCM with the “1PL” constraint, 

assuming equal discrimination parameter for all trials, was selected for model estimations 

using the ltm package.   

Model fitness 

The results of the parametric bootstrap goodness-of-fit test using χ2 indicated that the p-

value of Version B in the aural modality was greater than the .05 criterion, indicating a better 

model fit. The p-value from the analysis of the data from Version A in written modality was 

marginally smaller than the .05 criterion. However, the data from Version A in the aural 

modality and Version B in the written modality had a poor fit to the model, with p-values 
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smaller than .05, indicating that the observed data had a probability of less than 5% being 

generated from the expected data distribution under the assumption of the null hypothesis 

(i.e., no significant difference between the observed data and the expected data according 

to the model) being true. Hence, the results suggested that the models did not adequately 

fit the datasets.   

Model estimations and item parameters 

The chosen GPCM constrained the discrimination parameters to be equal to all items, and 

the coefficients of discrimination parameters of the data from two versions in the same 

modality were similar. The results indicated non-statistical significance of the coefficients at 

the 5% level, hence suggested that the discrimination parameters estimated by the GPCM 

for all data were reliable. The coefficients of discrimination parameters in the aural modality 

were higher than those in written modality. 

The coefficients of the category threshold parameters and the corresponding z-

values indicated complicated patterns of difficulty parameters of data in this subtest.  Except 

a small number of coefficients, most coefficients of all datasets were smaller than 0, showing 

that most category thresholds were easy to endorse. Among the coefficients greater than 

0, only two (Category 5 of Trial 10 in Version A and Category 6 of Trial 14 in Version B) in 

the written modality had z-values greater than 1.96, indicating the reliable estimations. 

Second, about one third of the coefficients had statistically significant z-values (that is, 

absolute values < 1.96), raising doubts about reliability of model estimations for difficulty 

parameters. In addition, the coefficients of the last category threshold parameter tended to 

be consistently lower than those of the former category threshold parameters on the data 

obtained in the written modality, which was reasonable, with a few exceptions: Trials 11, 12 

and 14 in Version A, and Trials 11, 13 and 14 in Version B.  

Plots of model estimations 

As shown in Table 4.19, IICs were plotted for trials that had the same set size in both 

versions of aural modality separately. Additionally, information for trials with the same set 

size were calculated. The plots revealed that trials with larger set sizes provided more 

information than those with smaller set size. Furthermore, all IICs were positioned on the 

negative side of the interval (-6, 0) on the ability axis, indicating that all trials were more 

informative about the lower ability levels than the higher ability ones.  
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Table 4.19 Trial Information for TALL_CST in aural modality 

Version Trial 

size 

Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Item Information 

Curve 

 

A 

 

3 

 

3.522 

 

2.664 

(75.62%) 

 

0.431 

(12.23%) 

  

 

 4 6.543 5.759 

(88.02%) 

0.584  

(8.93%) 

 

 5 7.731 6.365 

(82.33%) 

1.126 

(14.56%) 

 

 6 13.662 10.216 

(74.78%) 

2.909 

(21.29%) 

 

 7 7.734 5.299 

(68.52%) 

2.246 

(29.04%) 

 

B 3 5.235 4.388 

(83.82%) 

0.512  

(9.78%) 

 

 4 6.422 5.707 

(88.87%) 

0.56 

(8.73%) 
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Version Trial 

size 

Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Item Information 

Curve 

 5 7.592 6.203     

(81.7%) 

1.215 

(16.01%) 

 

 6 13.43 10.521 

(78.34%) 

2.634 

(19.61%) 

 

 7 7.597 5.591  

(73.6%) 

1.895 

(24.95%) 

 

 

 

Table 4.20 provided information of trials with the same set size in both versions of 

written modality. The patterns were similar to those from aural modality, indicating that trials 

were more informative about the lower ability levels than the higher ability ones. Importantly, 

all trials in written modality were less informative when compared to their counterparts with 

the same set sizes in aural modality.    
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Table 4.20 Trial Information for TALL_CST in written modality 

Version Trial 

size 

Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Item Information 

Curve 

 

A 

 

3 

 

1.825 

 

0.825 

(45.18%) 

 

0.065 

(3.56%) 

  

 

 4 3.783 3.051 

(80.65%) 

0.194 

(5.12%) 

 

 5 4.149 3.461 

(83.42%) 

0.298  

(7.18%) 

 

 6 6.888 5.333 

(77.42%) 

1.107 

(16.06%) 

 

 7 4.497 2.999 

(66.68%) 

1.197 

(26.62%) 

 

B 3 1.166 0.514 

(44.06%) 

0.041  

(3.54%) 

 

 4 4.375 3.828  

(87.5%) 

0.268 

(6.14%) 
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Version Trial 

size 

Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Item Information 

Curve 

 5 5.118 4.419     

(86.35%) 

0.403 

(7.88%) 

 

 6 7.994 6.1 

(76.31%) 

1.426 

(17.84%) 

 

 7 5.095 3.443 

(67.58%) 

1.408 

(27.63%) 

 

 

Finally, TICs and the statistics in Table 4.21 indicated that Version B was slightly 

more informative than Version A in both modalities about the ability of executive control in 

WM. Both versions in aural modality provided more information about the ability than those 

in written modality. All instruments, however, did not provide evenly distributed information 

about the latent ability, with much more amounts (above 74%) of test information for lower 

ability levels in the interval (-6, 0), suggesting that they were not challenging to the 

participants. 
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Table 4.21 Test Information for TALL_CST 

Modality Version Total 

Information 

Information 

(-6, 0) 

Information 

(0, 6) 

Test Information Curve 

 

aural 

 

A 

 

39.192 

 

30.303 

(77.32%) 

 

7.296 

(18.62%) 

 

 

 B 40.276 32.411 

(80.47%) 

6.817 

(16.93%) 

 

written A 21.143 15.669 

(74.11%) 

2.861 

(13.53%) 

 

 B 23.747 18.304 

(77.08%) 

3.547 

(14.94%) 

 

 

4.5 Battery level analysis 

This section addresses the explanation inference (as part of the validation plan) which 

concerns the construct validity of TALL as a componential measure of aptitude.   

As introduced in Section 3.3.5.2, two statistical methods were applied on the 

aggregated datasets (that is, the score of each subtest rather than the scores at the item 

level of each subtest). The aggregated data for each subtest were split by the condition of 

modality only, i.e., the data from the two versions of materials in the same modality were 

not split. Prior to taking this decision, the mean differences of the data of Version A and 

Version B in the same modality, in each subtest, were compared using pairwise t-tests.  

This step was to ensure that the differences between the data obtained using Version A 

and Version B in the same modality were not statistically significant from each other.  
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 Descriptive statistics (see Table 4.22 and Table 4.23) and Shapiro-Wilk Test 

revealed that most datasets were not normally distributed, except for Vocabulary Learning 

in the written suite. Consequently, non-parametric t tests were deemed appropriate. To 

assess homogeneity of variance between data from both versions in the same suite, 

Levene’s Test, less sensitive to deviations from normality, was employed. If the 

homogeneity of variance was statistically significant, the Yuen‒Welch (Y‒W) Test (a robust 

method for non-normality distributed data with unequal variances) was applied using yuen 

function in the WRS2 package (Mair & Wilcox, 2020). Alternatively, when Levene’s Test 

indicated no significant variance difference, the Mann-Whitney-Wilcoxon (MWW) Test was 

used to compare non-normally distributed data with assumed equal variance, conducted 

through the wilcox.test function.  

 The results of the non-parametric t-tests indicated that the mean differences 

between the data collected using Version A and Version B, in general, were not statistically 

significant. Therefore, it should not be problematic to combine the data from the two material 

versions for the analyses at the battery level, as these datasets from different versions in 

the same modality were independent, taken by different participants (and at different times).  

Specifically, Principal component analysis (PCA) was used to investigate whether TALL 

subtests could succinctly measure the dimensions of aptitude construct without much 

redundancy. Confirmatory factor analysis (CFA) was used to verify whether TALL, as an 

aptitude battery, tapped into the components evidenced by the fitness of the data to the 

structure of factors informed by the theoretical models. The applications and the 

conventions of output interpretation of PCA and CFA will be introduced in the following 

sections, together with the results. 
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Table 4.22 Summary of descriptive analysis for TALL aural suite 

subtest version n mean sd min max skew kurtosis se 
Shapiro-Wilk 

W p 

VL A 81 0.27 0.17 0.00 0.95 1.46 2.85 0.02 0.88 < .001 

B 84 0.36 0.20 0.00 0.95 0.82 0.62 0.02 0.95 < .01 

SD A 81 0.75 0.22 0.27 1.00 -0.61 -0.91 0.02 0.9 < .001 

B 84 0.79 0.14 0.13 1.00 -1.48 4.55 0.02 0.9 < .001 

LA A 81 0.66 0.31 0.10 1.00 -0.40 -1.43 0.03 0.87 < .001 

B 84 0.67 0.25 0.13 1.00 -0.57 -0.88 0.03 0.92 < .001 

SNWR A 81 0.33 0.14 0.04 0.87 0.72 1.04 0.02 0.96 < .05 

B 84 0.35 0.15 0.07 0.74 0.56 -0.35 0.02 0.96 < .01 

CST A 81 0.82 0.13 0.48 1.00 -0.85 0.08 0.01 0.93 < .001 

B 84 0.82 0.13 0.36 1.00 -0.95 0.71 0.01 0.93 < .001 

 

Note. Key to subtest: VL = Vocabulary Learning; SD = Sound Discrimination; LA = Language Analysis; SNWR = Serial Nonwords Recall; CST = Complex 

Span Tasks 
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Table 4.23 Summary of descriptive analysis for TALL written suite 

Subtest version n mean sd min max skew kurtosis se 
Shapiro-Wilk 

W p 

VL A 84 0.41 0.22 0.00 1.00 0.58 -0.32 0.02 0.96 <.01 

B 81 0.50 0.23 0.05 1.00 0.03 -0.80 0.03 0.98 0.12 

SD A 84 0.70 0.22 0.20 1.00 -0.41 -0.80 0.02 0.94 < .01 

B 81 0.79 0.14 0.17 1.00 -2.18 7.48 0.02 0.81 < .001 

LA A 84 0.82 0.25 0.13 1.00 -1.47 0.75 0.03 0.71 < .001 

B 81 0.80 0.25 0.00 1.00 -1.43 1.02 0.03 0.76 < .001 

SNWR A 84 0.34 0.16 0.06 0.82 0.80 0.34 0.02 0.95 < .01 

B 81 0.33 0.17 0.05 0.89 0.78 0.55 0.02 0.96 < .01 

CST A 84 0.89 0.08 0.49 1.00 -1.63 5.60 0.01 0.89 < .001 

B 81 0.87 0.10 0.41 1.00 -1.61 4.43 0.01 0.88 < .001 

 

Note. Key to subtest: VL = Vocabulary Learning; SD = Sound Discrimination; LA = Language Analysis; SNWR = Serial Nonwords Recall; CST = Complex 

Span Tasks 

 

 



 

167 

 

4.5.1 Principal Component Analysis (PCA): Exploring factor structure 

PCA is a descriptive method which is included under the broad term of Exploratory Factory 

Analysis (EFA) to obtain the factor structure based on the data clustering pattern (Plonsky 

& Gonulal, 2015).  As an umbrella term of statistical analysing method, EFA covers both 

PCA and EFA, which can be used when no particular expectations regarding the number 

and nature of the underlying factors (i.e. latent variables) that exist in the data (Loewen & 

Gonulal, 2015). Conceptually, the difference between EFA and PCA lies in how the variance 

in the data are treated, that is, PCA analyses variance whereas EFA analyses covariance, 

while the importance of the distinction between these two methods can be controversial 

(Field et al., 2012).  The goal of PCA is to identify principal components, which are directions 

that maximize the variation in the data. This method is particularly useful when the variables 

in the dataset are highly correlated, indicating that there may be redundancy in the data. 

Therefore, PCA can be applied to reduce the dimensionality of multivariate data to two or 

three principal components that can be visualized graphically, while preserving most of the 

original information. When the goal of a research is to reduce the number of variables, PCA 

is a high-quality choice for statistical analysis (Conway & Huffcutt, 2003). 

The PCA procedures, as outlined in Field et al. (2012), involves using a correlation 

matrix to calculate the variates of the variables, which are represented by eigenvectors. The 

largest eigenvalue associated with each of the eigenvectors serves as a measure of the 

significance of the corresponding component. The eigenvalue for a factor is calculated by 

summing the square of the loadings for that factor. This allows for an assessment of how 

much of the variance in the variables could be explained by that factor, based on the 

loadings of the variables. Consequently, a higher loading indicates a greater extent to which 

a factor accounted for the variance in the variables. Through PCA, the factors with large 

eigenvalues are retained or extracted.  

The main purpose of PCA was to investigate the extent to which the five subtests 

measure the dimensions of the componential construct of aptitude without much 

redundancy, rather than to reduce or consolidate variables. Ideally, the results of PCA 

should demonstrate that the subtests were correlated and made distinct contributions to the 

componential construct represented by principal factor dimensions, and hence no subtests 

should be considered as being redundant which may lead to their removal.  

 PCA in the current research was conducted through functions in the psych package 

(Revelle, 2022),  the FactoMineR package (Husson, et al., 2017), and the factoextra 

package (Kassambara & Mundt, 2017) in R, following a stepwise protocol (see Appendix 

G).  
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4.5.1.1 PCA of the aural suite    

First, preliminary analysis was conducted prior to conducting PCA. The results of Shapiro-

Wilk test for normality suggested that all scores of the subtests were not normally distributed, 

informing that Kendall’s tau should be the appropriate correlation coefficient for the non-

parametric data. The correlation matrix with statistically significant coefficients displayed 

with an asterisk (see Figure 4.22) suggested a moderate level of association between most 

variables (here the subtests), indicating a fundamental assumption of PCA, that is, there is 

some degree of linear relationship between variables. Bartlett’s test of sphericity, χ2 (10) = 

84.76, p < .001, provided additional information to indicate that correlations between 

subtests were sufficiently large for PCA. The Kaiser-Meyer-Olkin measure verified the 

sampling adequacy for the analysis KMO = .65 (‘mediocre’ according to Kaiser, 1974), and 

all KMO values for individual subtests were above the acceptable limit of .5. The value of 

the correlation matrix determinate was greater than 0.00001, indicating that the matrix did 

not have a heuristic problem.  

 

 

Figure 4.22 Correlation matrix of subtests in aural suite 

 

PCA was conducted on the data from the aural suite using oblique rotation (oblimin). 

The initial analysis aimed to obtain eigenvalues for each component in the data. Two 

components had eigenvalues over Kaiser’s criterion of 1, jointly explaining 60.5% of the 

variance. However, when applying Jolliffe’s (1972) criterion, three components exhibited 

eigenvalues greater than 0.70, with all five components exceeding Stevens’ (2002) criterion 

of 0.512 for a sample size of 100. These results implied that a single principal factor 

explanation was less than ideal due to the very low correlations between certain subtests 
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(see Figure 4.22). Furthermore, it appeared that none of the five underlying factor 

dimensions should be omitted, given that even the least important component could account 

for 11.2% of the variance (eigen value = 0.56). The scree plot (Figure 4.23) illustrated the 

percentage of variance explained by the five dimensions.  

 

 

Figure 4.23 Scree plot of aural suite 

  

Table 4.24 reported the factor loadings after rotation, along with the percentage of 

variance explained by each dimension and the cumulative percentage of variance explained 

by the extracted factors. The clustering of the subtests on the components indicated that all 

subtests contributed nearly evenly to the first dimension (component 1). It might be 

reasonable to consider extracting the first two dimensions as the principal components, 

explaining 60.5% of the total variance, which aligns with the field-specific criterion of 60% 

(Plonsky & Gonulal, 2015). Alternatively, one could consider extracting the first three 

dimensions as the principal components, explaining 75.68% of the total variance with higher 

confidence. Regardless of the number of factors chosen as principal components, the PCA 

results clearly indicated minimal redundancy, making it unadvisable to reduce the variables 

(in this case, the subtests), as all variables made distinct contributions to the principal 

components. This interpretation was visualised in the factor map of contributions (Figure 

4.24), describing the relationships between the subtests and the underlying factor 

dimensions.  
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Table 4.24 Summary of factor loadings of subtests in aural suite 

Subtest 

Oblimin rotated factor loadings 

Dimension 

1 

Dimension 

2 

Dimension 

3 

Dimension 

4 

Dimension 

5 

TALL_VL .75 .02 ‒.05 ‒.53 ‒.39 

TALL_SD .60 .44 ‒.45 .46 ‒.14 

TALL_LA .49 .65 .47 ‒.07 .33 

TALL_SNWR .65 ‒.48 ‒.30 ‒.10 .49 

TALL_CST .57 ‒.51 .49 .39 ‒.18 

Eigenvalues 1.92 1.11 .76 .66 .56 

% of variance 38.38 22.12 15.19 13.14 11.18 

Cum. % of var. 38.38 60.50 75.68 88.82 100.00 

 

Note. Factor loadings over .30 appear in bold. Key: VL = Vocabulary Learning; SD = Sound 

Discrimination; LA = Language Analysis; SNWR = Serial Nonwords Recall; CST = Complex Span 

Tasks; Cum. % of var. = cumulative percentage of variance 

 

 

Figure 4.24 Factor map of contributions in aural suite   
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4.5.1.2 PCA of the written suite   

The results of Shapiro-Wilk test for normality indicated that all data from the written suite 

were not normally distributed, informing the use of Kendall’s tau as the correlation. The 

correlation matrix with statistically significant coefficients displayed with an asterisk (see 

Figure 4.25) suggested a moderate level of association between most variables (here the 

subtests), indicating that a fundamental assumption of PCA was met. Bartlett’s test of 

sphericity, χ2 (10) = 52.51, p < .001, provided additional information to indicate that 

correlations between subtests were sufficiently large for PCA. The Kaiser-Meyer-Olkin 

measure verified the sampling adequacy for the analysis KMO = .69 (‘mediocre’ according 

to Kaiser, 1974), and all KMO values for individual subtests were above the acceptable limit 

of .5. The value of the correlation matrix determinate was greater than 0.00001, indicating 

that the matrix did not have a heuristic problem.  

 

 

Figure 4.25 Correlation matrix of subtests in written suite 

  

PCA was conducted on the data from the written suite using oblique rotation 

(oblimin). The initial analysis was run to obtain eigenvalues for each component in the data. 

One component had eigenvalue over Kaiser’s criterion of 1 and explained 36.1% of the 

variance. However, when applying Jolliffe’s (1972) criterion, four components exhibited 

eigenvalues greater than 0.70, with all five components had eigenvalues greater than the 
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Stevens’ (2002) criterion of 0.512 for a sample size of 100. These results implied that a 

single principal factor explanation was less than ideal due to the very low correlations 

between certain subtests (see Figure 4.25). Furthermore,  it appeared that none of the five 

underlying factor dimensions should be omitted, given that the least important component 

could account for 14% (eigen value = 0.7) of the variance. The scree plot (Figure 4.26) 

illustrated the percentage of variance explained by the five dimensions.  

 

 

Figure 4.26 Scree plot of written suite 

  

Table 4.25 reported the factor loadings after rotation, along with the percentage of 

variance explained by each dimension and the cumulative percentage of variance explained 

by the extracted factors. The clustering of the subtests on the components indicated that all 

subtests contributed nearly evenly to the first dimension (component 1).  It might be 

reasonable to consider extracting the first two factor dimensions as the principal 

components, explaining 54.56% of the total variance, although the eigenvalue of the second 

dimension was slightly lower than Kaiser’s criterion of 1. This cumulative percentage of 

variance (54.56%), however, was slightly lower than the field-specific criterion of 60% 

(Plonsky & Gonulal, 2015), suggesting that it would be reasonable to consider extracting 

the first three dimensions as the principal components, explaining 71.26% of the total 

variance. Regardless of the number of factors chosen as principal components, the PCA 

results clearly indicated minimal redundancy, making it unadvisable to reduce the variables 

(subtests), as all variables made distinct contributions to the principal components. This 
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interpretation was visualised in the factor map of contributions (Figure 4.27), describing the 

relationships between the subtests and the underlying factor dimensions.  

 

Table 4.25 Summary of factor loadings of subtests in written suite 

Subtest 

Oblimin rotated factor loadings 

Dimension 

1 

Dimension 

2 

Dimension 

3 

Dimension 

4 

Dimension 

5 

TALL_VL .55 ‒.58 .46 ‒.03 .39 

TALL_SD .64 .33 ‒.16 ‒.66 .13 

TALL_LA .53 .57 .54 .28 ‒.15 

TALL_SNWR .65 ‒.38 ‒.15 .00 ‒.64 

TALL_CST .63 .09 ‒.53 .46 .32 

Eigenvalues 1.8 .92 .84 .74 .7 

% of variance 36.09 18.47 16.7 14.74 14.01 

Cum. % of var. 36.09 54.56 71.26 85.99 100.00 

 

Note. Factor loadings over .30 appear in bold. Key: VL = Vocabulary Learning; SD = Sound 

Discrimination; LA = Language Analysis; SNWR = Serial Nonwords Recall; CST = Complex Span 

Tasks; Cum. % of var. = cumulative percentage of variance 

 

 

Figure 4.27 Factor map of contributions in written suite    
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In summary, the results from PCA showed that both aural and written suites of TALL 

did not have much redundancy. All five subtests loaded nearly evenly to the first factor 

dimension (or the principal component 1) that explained about 36% (written suite) or 38% 

(aural suite) of the total variance. It seemed to be more reasonable to extract the first two 

or three dimensions that could explain up to about 71% (written suite) or 75% (aural suite) 

of the total variance in cumulation, which fitted in the 70-90% range of the score variance 

(Jolliffe, 2002) that the extracted factors should explain. The results also suggested that all 

subtests, in general, contributed similarly to the principal components underlying the 

construct of aptitude.  

4.5.2 Confirmatory Factor Analysis (CFA): Verifying a four-factor model 

CFA, as a part of Structural Equation Modelling (SEM), is one of the two main analytical 

methods based on the common factor model, the other being the Exploratory Factor 

Analysis (EFA). While both methods aim to identify the underlying structure of observed 

relationships among the measures with a smaller set of latent variables, CFA differs from 

EFA in terms of the number and nature of prior specifications and restrictions made on the 

factor model. Unlike EFA, which is a data-driven approach, CFA requires a strong empirical 

or conceptual foundation to guide the specification and evaluation of the factor model. The 

number of factors and the patten of measure-factor loadings need to be specified in 

advance, and the prespecified factor solution is evaluated based on its ability to reproduce 

the sample correlations (covariance) matrix of the measured variables. As such, CFA is 

typically used in later phase of scale development and construct validation, after the 

underlying structure has been established on prior empirical (EFA) and theoretical grounds 

(Brown, 2015).  

In the preceding section, PCA results provided empirical evidence supporting that 

TALL subtests can effectively measure a componential construct with minimal redundancy. 

To further validate whether TALL, as a battery for aptitude, aligns with the proposed 

components outlined in theoretical models―specifically,  the Stages Approach and the P/E 

Model―CFA was employed.  

The theoretical framework of TALL, upon which the five subtests were developed, 

posits that these subtests should be structured around four primary factors: associative 

memory, phonetic coding ability, language analytic ability, and WM. Therefore, CFA was 

applied separately on the data from both suites, with a pre-specified factor structure. In this 

structure, the subtests of TALL_VL, TALL_SD, TALL_LA were expected to load onto the 

three factors (associative memory, phonetic coding ability, and language analytic ability), 
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while the subtests of TALL_SNWR and TALL_CST were anticipated to load onto a single 

factor representing WM.  

The objective of using CFA was to evaluate how well the hypothesised model fitted 

the empirical data. CFA was conducted using the lavaan package (Rosseel, 2012) in R, 

following a stepwise protocol (see Appendix H) of data preparation, model constructing and 

model fit checking. 

4.5.2.1 CFA of the aural suite   

The transformed data of all subtests in the aural suite were substantially improved and had 

non-significant skew and kurtosis, i.e., the absolute values of skew.2SE and kurt.2SE were 

less than 1. However, the results of Shapiro-Wilk test showed that, except for the data of 

TALL_SNWR, the data were still not normally distributed even after transforming the outliers, 

with p values less than .05 (TALL_CST), less than .01 (TALL_VL and TALL_SD), and less 

than .001 (TALL_LA).  

To deal with the non-normal data, the estimator option of “MLM” was specified in the 

cfa function through the lavaan package, which fit the model using standard maximum 

likelihood to estimate the model parameters but with robust standard errors and Satorra-

Bentler correction for scaled test statistics. The robust model fit indices showed that the 

model fit the data well, as indicated by the non-significant chi-square test for the User Model 

(χ2 (2) = 2.47, p = .29), and that the specified model provided a significantly better fit to the 

data compared to the baseline model (χ2 (10) = 102.50, p < .001). The approximate fit 

indices, i.e., CFI = .995, TLI = .975, RMSEA = .021, and SRMR = .019, also indicated that 

the data of the aural suite fit well to the four-factor model hypothesised based on the 

theoretical framework of aptitude.  The estimates for the factor loadings, intercepts and 

variances were all significant, showing that the model explained a substantial amount of 

variance in the observed variables (i.e., the subtests).  

4.5.2.2 CFA of the written suite   

The transformed data of all subtests in the written suite were substantially improved.  Most 

of the transformed data had non-significant skew and kurtosis with the absolute values of 

skew.2SE and kurt.2SE below than 1. The only exception was the data of TALL_LA, which 

had a significant skew with skew.2SE = 1.96. The results of Shapiro-Wilk test showed that, 

except for the data of TALL_VL, the data were still not normally distributed even after 

transforming the outliers, with p values less than .05 (TALL_SNWR), less than .01 

(TALL_SD and TALL_CST), and less than .001 (TALL_LA).  
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To deal with the non-normal data, the estimator option of “MLM” was specified in the 

cfa() function through the lavaan package, which fit the model using standard maximum 

likelihood to estimate the model parameters but with robust standard errors and Satorra-

Bentler correction for scaled test statistics. The robust model fit indices showed that the 

model fit the data well, as indicated by the non-significant χ2 test for the User Model (χ2 (2) 

= 1.99 with p = .40), and that the specified model provided a significantly better fit to the 

data compared to the baseline model (χ2 (10) = 66.48, p < .001). The approximate fit indices, 

i.e., CFI = 1.000, TLI = 1.001, RMSEA = .000, and SRMR = .018, also indicated that the 

data of the written suite fit almost perfect to the four-factor model hypothesised based on 

the theoretical framework of aptitude.  The estimates for the factor loadings, intercepts and 

variances were all significant, showing that the model explained a substantial amount of 

variance in the observed variables (i.e., the subtests).  

4.6 Summary of the results 

The focus of this chapter was to investigate the RQ1:  

• To what extent does TALL display satisfactory internal consistency and validity as a 

measure for aptitude? 

A data cleaning protocol was followed to prepare the final data for analysis from 165 

participants, and the data files were formed for each subtest and split by conditions of 

material version and/or modality as unaggregated data sets for analyses at the subtest and 

item levels. Aggregated datasets (joining together different versions of the tests) were also 

generated for each test suite at the battery level, though modality was always kept separate.  

The results of reliability and unidimensionality checks revealed that, in general, 

all subtests had satisfactory reliability evidenced by the coefficients of Omega and 

Cronbach’s alpha according to the field-specific acceptable threshold of coefficient 

alpha > .74 proposed by Plonsky & Derrick (2016). Two data sets, i.e., the one of Subtest 

TALL_VL using Version A in the aural modality and the other of Subtest TALL_CST using 

Version A and B in the written modality had the coefficients lower than .74. However, their 

95% CI of alpha estimates still included the threshold value.  The unidimensionality of all 

subtests was evidenced, as the fa.fit statistics indicated satisfactory proportions (from the 

lowest of 60% to the highest 98%) of covariance being accounted for by the general factor.  

The item analysis using IRT models did not provide evidence for the deletion of 

any items in any of the subtests that could have been considered as poor discriminators of 

the latent abilities the subtests intended to measure. The results also showed test 

information provided by the subtests varied. TALL_SD, TALL_LA, and TALL_CST were not 
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challenging to the participants, while TALL_VL and TALL_SNWR were difficult. 

TALL_SNWR was the most challenging subtest to the participants. 

Finally, internal validity at the battery level was investigated on the aggregated 

data sets of the aural suite and the written suite, using PCA and CFA respectively.  The 

results of PCA revealed that both suites of TALL did not have much redundancy (that could 

have led to the reduction of any specific subtests). All subtests, in general, contributed 

similarly to the first principal component underlying the construct of aptitude. The CFA 

results provided strong evidence of model fit statistics, indicating that the data of both suites 

fitted well to the hypothesised four-factor model based on the theoretical frameworks on 

which TALL was constructed. 

4.7 Discussion for RQ1 

RQ1 sought to scrutinise the internal validity of TALL as a theory-based aptitude battery by 

analysing the data on the subtest level, item level, and battery level sequentially, following 

the validation plan. The results suggested that the internal validity of TALL can be 

established, based on evidence to make (a) the generalisation inference that scores may 

be generalised to the componential construct each subtest intended to measure, (b) the 

scoring inference that all subtests were composed of well-functioning items with appropriate 

levels of difficulty and discrimination, and (c) the explanation inference that TALL can be 

the measure for the construct of aptitude that is conceptualised by the theoretical 

frameworks. The discussion of RQ1 below is under four general themes: reliability and 

unidimensionality, item quality, and verification of theoretical frameworks. 

4.7.1 Reliability and unidimensionality   

4.7.1.1 Unidimensionality 

The results of unidimensionality checks for all datasets provided a general indication that 

each subtest effectively measures a componential construct of aptitude. Following the 

eigenvalue-greater-than-one rule (Mulaik, 1972), all datasets had extracted a general factor 

with its eigenvalue (g) greater than one, which indicated that a common factor should be 

retained and the common factor in each dataset accounts for a substantial portion of the 

variance in the dataset. However, the eigenvalues of F1 in most of the datasets (except 

Version B in the aural and written suites of TALL_LA, and Version A in the written suite of 

TALL_CST) were greater than one as well, indicating that other factors, not only the general 

factors, also contributed significantly to the variance associated with other variables. This 

finding was not surprising, as most of the psycho-educational measures are not purely 

unidimensional (Slocum-Gori et al., 2009). Considering that the factors in the datasets were 
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highly likely to be correlated, the ratio of explained common variance (ECV) and the fa.fit 

were used to inform unidimensionality of each measurement. The indices of ECV and the 

unidimensionality measure represented in the fa.fit suggested that the datasets of TALL_VL 

in the aural suite and TALL_CST in the written suite need cautious interpretation. 

Specifically, these datasets had the lowest values of the explained common variance (ECV), 

which were .23 and .26, respectively, and they had lowest values of .60 and .69 of fa.fit.  

The unidimensionality issue related to measuring associative memory using 

vocabulary learning task in the aural modality may suggest that retaining new words in the 

acoustic forms involves more factorial dimensions than remembering words in the written 

forms. This can be explained by Skehan’s (2006) notion that the ability to process sound 

and retain new language occurrences in long-term memory being related to vocabulary 

learning and, therefore, central to measuring aptitude. Thus, measuring associated memory 

by vocabulary learning task in the aural form taps into both sound processing and form 

retaining.  

A methodological explanation of the results could be related to the testing equipment 

used. Since participants were tested in the online condition, it was unavoidable that they 

used their own headphones or speakers. Hence, perceiving the input could be more 

susceptible to the external factors involved in the aural modality than in the written modality. 

However, this heterogeneity of audio quality did not seem to lead to higher variability 

(reflected in the standard deviations in Table 4.3) in the results from TALL_VL in the aural 

suite compared to the results in the written suite.  

Regarding the subtest of TALL_CST in the written modality, the indices of 

unidimensionality were also relatively lower than those in the aural modality. This issue may 

be related to the reliability of this subtest in the written modality, which will be discussed in 

the following section.  

4.7.1.2 Reliability 

The results indicated satisfactory reliability for most subtests, as evidenced by the 

coefficients of Omega hierarchical (ωh), Omega hierarchical (ωt), and Cronbach’s alpha (α) 

estimators. However, scores in the datasets of Version A in the aural suite of TALL_VL and 

Version A and Version B in the written suite of TALL_CST displayed lower coefficients, 

albeit still close to the acceptable threshold of .70 (Field et al., 2012). The results suggested 

variability attributable to subfactors in these datasets, as they had the lowest values of ωh 

(.31, .35, and .33, respectively), indicating that after controlling the variance of other factors, 

the estimated reliability of the general factor was lower than .35.  
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The suitability of using Cronbach’s alpha (α) as the reliability coefficients for the 

current study was considered. Given that the assumption of normal distribution was violated 

in all datasets and the assumption of unidimensionality was only approximately met in 

several datasets as mentioned above, Cronbach’s alpha could underestimate the actual 

value of reliability (McNeish, 2018). This was reflected in the current study as the 

coefficients in α were systematically lower than those in ωt in all datasets, and the 

discrepancies were particularly apparent for the above-mentioned datasets that had 

concerns about unidimensionality. Specifically, Version A in the aural suite of TALL_VL 

had .70 of coefficient in α but the coefficient in in ωt was .86; Version A and Version B in the 

written suite of TALL_CST had coefficients of .64 and .72 in α, whereas their coefficients in 

ωt were .68 and .79, respectively. Importantly, reporting the reliability coefficient solely in α, 

which is almost always the case in the research field, may possibly miss an important 

psychometric property of a measurement, the proportion of variance in the scores 

associated with a general factor, as reflected in ωh (Zinbarg et al., 2005). This suggested 

that the choice of reliability coefficient in the field of applied linguistics merits more 

considerations, and the practice of using other suitable estimators rather than relying on 

Cronbach’s alpha should be encouraged  (see the similar discussion in O’Reilly & Marsden, 

2020). 

The purpose of using Cronbach’s alpha in the current study was to provide 

comparable coefficients to the reliability coefficients of other aptitude measurements 

reported in literature. The results showed that all subtests had coefficients greater than .70, 

a threshold of the moderate benchmark suggested in the L2 domain by Brown (2014), 

except one dataset of Version A in the written suite of TALL_CST which had the coefficient 

of .64.  

When compared to the reliability coefficients of specific subtests of the LLAMA tests 

from which TALL were informed, the two versions of TALL_VL in the written suite had 

coefficients (.81 and .84) that were similar to the coefficient of LLAMA_B (.81) reported by 

Bokander and Bylund (2020). The two versions of TALL_LA in the written suite had 

coefficients (.96 and .94) that were much higher than the coefficient of LLAMA_F (.60).  

Compared to the reliability coefficients of the subtests in the Hi-LAB that measure 

the construct of phonetic coding ability, the two versions of TALL_SD had coefficients (.89 

and .78), which were in line with the coefficients of Phonemic Discrimination in the Hi-LAB 

(.81 and .80) reported by Tseng et al. (2015), and were higher than the coefficients of 

Phonemic Categorization (.66 and .77) reported by Mislevy et al. (2010) (cited in Hughes, 

et al., 2023). The two versions of TALL_SNWR displayed the coefficients (.86 and .88), 
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which were very much in line with the coefficient of Non-Word Span (.86) measuring 

phonological short-term memory in the Hi-LAB (Mislevy et al., 2010) and slightly lower than 

the coefficient of Non-Word Span (.93) (Tseng et al., 2015). TALL_SNWR also displayed 

coefficients at the higher bound of the mean reliability values (ranging from .72 to .89) of 

simple span tasks, as calculated by Shin and Hu (2021) in their meta-analysis. 

Two versions of TALL_CST in the written suite had lower coefficients (.64 and .72) 

compared to the coefficients of the subtests of Operation Span (.81) and Running Memory 

Span (.77) in the Hi-LAB, both measuring executive control capacity of WM, reported by 

Mislevy et al. (2010). Furthermore, the coefficients of TALL_CST in the written suite were 

lower than the coefficient (.86) of the translated Reading Span Tasks (Gass et al., 2019), 

though their coefficient of .86 was computed jointly on the Chinese and Arabic versions with 

a small sample size of 19 and so may not be an appropriate comparator. 

It is worth noting that the scoring approach used in the WM subtests in this study 

(i.e., the proportion of correct responses in each trial as the item-level data) differed from 

the scoring methods employed in the Hi-LAB, which relied on the total number of correctly 

recalled stimuli. Had the total number of correctly recalled stimuli been applied in the current 

study, the numbers of items for analysis would have increased from 17 to 74 (in 

TALL_SNWR) and from 15 to 76 (in TALL_CST). Mathematically, the computation of 

Cronbach’s alpha would have been inflated due to a larger number of homogenous items, 

despite the instrument remaining unchanged. Consequently, the reliability results obtained 

through the current scoring approach might be comparatively more conservative than those 

observed in the Hi-LAB, but the coefficients generally surpassed the acceptable threshold. 

Therefore, the overall reliability of the WM subtests in TALL was considered satisfactory.      

To sum up, except TALL_CST in the written suite, subtests of TALL had displayed 

similar or higher reliability compared to the subtests in other aptitude batteries that measure 

the constructs in the same input modality. 

The lower coefficients of TALL_CST in the written modality compared to the 

coefficients in the aural modality might be related to the stimuli for processing. The 

sentences presented in participants’ L1 for semantic judgement probably lacked challenge 

for the participants in the current study, as they were college undergraduates. This was 

evidenced by the ceiling effect in the scores of this subtest and participants’ responses 

lacking variability (See Table 4.7 in Section 4.3.1).  

A technical arrangement in the experiment design also contributes to the 

discrepancy between the levels of challenge in the two modalities. Participants were not 
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allowed to make a sentence judgement by clicking on the ‘correct’ or ‘incorrect’ button until 

the complete sentence had been played in the aural modality, while their responses to 

select the answer of the judgement were not controlled in the written modality. This means 

that they could make the choice at any time once a sentence was displayed on the screen. 

The data recorded at the backend revealed that the reaction time for semantic judgements 

of sentence stimuli was systematically shorter in the written suite compared to the aural 

suite. This shorter time interval between sentence processing and letter recall suggests that 

cognitive load in retaining letters in WM was reduced when the sentence stimuli were 

presented in the written suite.   

4.7.2 Item quality  

4.7.2.1 Dichotomous datasets from TALL_VL, TALL_SD, and TALL_LA 

In general, Rasch models applied to the dichotomous datasets of TALL_VL, TALL_SD, and 

TALL_LA obtained good model fitness statistics. The results of item parameters and item 

fit for the Rasch models provided no clear evidence that any items were of poor quality and 

could threaten the internal validity of the instruments, and so deletion of items was not 

necessary. Some nuances of item quality, particularly the alignment of two equivalent 

versions used in some measurements, still merit discussion. 

Subtest of TALL_VL 

As revealed in Section 4.4.2.1, four datasets of this subtest fitted well to the Rasch models 

applied, and no items displayed particular concerns that led to their deletion. However, 

Version A in the aural suite had the lowest reliability coefficient in ωh (.31), albeit its 

coefficients of ωt (.86) and α (.70) were satisfactory. Version A seemed to have yielded less 

reliable data compared to Version B in both test suites, and the discrepancy of reliability 

between the two versions was more apparent in the aural suite than in the written suite. 

The possible reason may relate to the design of items. In version A, 8 out of 10 

three-letter items end with the same consonant k, whereas in version B, 5 out of 10 three-

letter items end with the consonant k. To discriminate more words that share a same 

consonant and to retain them in memory could pose extra challenges, especially when the 

words are presented in the aural modality. This observation is evidenced by the descriptive 

statistics, in which the mean score of Version A in the aural modality was the lowest, and 

the discrepancy between the mean scores of two versions was greater in the aural modality 

than in the written modality. This point should be considered in future refinement of the 

instrument, important when two versions of stimuli are needed for a counterbalanced design. 



 

182 

 

In addition, the coefficients of the difficulty parameters suggested that two versions 

in the aural suite were more challenging to the participants than the versions in the written 

suite. The total information of test also evidenced that this subtest provided more 

information about participants whose ability was above the average, especially in the aural 

suite. Considering that the participants in the current study were expected to have high 

ability of associative memory, this subtest may need to be revised to decrease the level of 

difficulty. It could be refined with a simple methodological revision, that is, to increase the 

time allowed for learning from the current two minutes to three minutes.   

Subtest of TALL_SD 

In this subtest, Version A may have better item quality than Version B, as the dataset of 

Version B of TALL_SD had poor model fit to the Rasch models applied. The reason may be 

due to the larger differences in the parameters of difficulty and discrimination between items 

in Version B compared to those in Version A. It was revealed that the items of Version B 

had a wider variability in difficulty, which was particularly reflected in that items having the 

first diphthong sauja were consistently less challenging to the participants compared to the 

other sounds (sija and sėja) that had single vowels. This variability was not reflected in the 

dataset of Version A, in which the first diphthong vieta was not perceived as the easiest 

sound compared to other single-vowel sounds (vata and vyta). In addition, four participants 

had misfitted person fit statistics in Version B, but none had misfitted person fit statistics in 

Version A. 

The results also suggested that the two test versions were not aligned in terms of 

item difficulty and discrimination though they both displayed satisfactory reliability 

coefficients and could be used as reliable measurements for the same construct. Therefore, 

a refinement may be necessary if two versions are needed for a within-subject design. 

Subtest of TALL_LA 

Most of the datasets from TALL_LA showed good fit to the applied Rasch models, except 

the dataset of Version B in the written suite. In this case, the results of the χ2 statistic yielded 

inconsistent outcomes, with a significant p value of .01 in the parametric bootstrap 

goodness-of-fit test and a non-significant p value of .80 in the Andersen likelihood ratio test.  

This inconsistency can be attributed to the different assumptions underlying these two 

statistical tests. The parametric bootstrap goodness-of-fit test assumes that the Rasch 

model is correctly specified and assesses how well the model fits the data, while the 

Andersen likelihood ratio test compares the Rasch model to a null model that assumes no 

relationship between the observed responses and the latent ability being measured. It is 
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worth noting that while overall model fit statistics are valuable, especially for model 

comparison, they may not provide detailed insights when the primary objective is to assess 

individual items in isolation. In this case, a thorough examination of item quality, as 

discussed in Section 4.4.2.3, did not reveal any concerning evidence related to any specific 

item within this subtest.   

While the total information curves suggested that the subtest performed better in 

distinguishing participants with below-average abilities, indicating that it was not challenging 

for the college undergraduates in this study, this observation is not unexpected or 

concerning. It is reasonable to anticipate that college undergraduates, typically possessing 

high analytic abilities, might find certain tasks not challenging. Furthermore, it is crucial to 

note that the total information provided by this subtest was sufficient, and the reliability and 

internal validity indices for this subtest were deemed satisfactory in the current study. As a 

result, there does not appear to be a pressing need for revisions to the test items or 

experimental design unless additional evidence emerges that warrants refinement. 

4.7.2.2 Polytomous datasets from TALL_SNWR and TALL_CST 

The results of analyses on the polytomous datasets of the subtests of TALL_SNWR and 

TALL_CST using the Generalised Partial Credit Models (GPCM) suggested complicated 

findings on the item quality.  

Options of constraints on discrimination parameters 

In the analysis of the TALL_SNWR datasets, it was observed that the GPCM failed to 

converge when discrimination parameters were not constrained equally across trials. 

Models assuming equal discrimination parameters for all trials exhibited better fit than those 

assuming unequal discrimination parameters for individual trials. In the case of the four 

datasets from TALL_CST, the GPCM converged successfully without constraints on equal 

discrimination parameters, except for the dataset of Version A in the written suite. However, 

model comparison indicated that models assuming equal discrimination parameters for all 

trials yielded the best-fit statistics.  

These results align with findings reported by Draheim et al. (2018) in their application 

of the GPCM to other complex span tasks (Operation span, Symmetry span, and Rotation 

span). The finding in the current study contradicts the assumption that item/trial 

discrimination would vary across different set sizes. One potential explanation could be that 

the datasets in this study comprised a relatively small number of data points, limiting their 

ability to successfully converge to models with more intricate estimations, such as those 

without constraints on equal discrimination parameters.  
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Model fit statistics 

The results of the parametric bootstrap goodness-of-fit tests showed that, except 

the dataset of Version B of TALL_CST in the aural suite, p values of χ2 statistics were 

smaller than .05 (though greater than .01), indicating that in most datasets the observed 

data significantly deviated from what was expected according to the models. This suggested 

that the model estimations may not fit the data adequately. This finding echoes the poor 

model fit (with p values lower than .01) reported by Draheim et al. (2018). Given that the 

overall model fit statistics were useful especially for model comparison, it was not 

particularly informative when the main purpose of the current study was to check individual 

items in isolation (Draheim et al, 2018, referring to Kang et al., 2005). 

Difficulty parameters 

TALL_SNWR 

In TALL_SNWR, most difficulty parameter coefficients were greater than 0, indicating that 

the subtest presented a high level of overall difficulty for the participants in the current study. 

Total information curves, as shown in Figure 4.26 in Section 4.4.2.4, indicated that the 

subtest was most discriminative for participants with above-average abilities. Given that the 

participants were college undergraduates with high abilities, it may be beneficial to consider 

revising the subtest. This revision could involve removing two trials with a set size of 7, 

which provided over 80% of information about above-average ability and adding trials with 

set sizes of 2 to 4. This adjustment would provide more information about below-average 

ability while maintaining an acceptable level of participant fatigue during the experiment.   

The results also revealed that the coefficients of the first category threshold 

parameters in all trials were consistently lower than those of the latter category threshold 

parameters in all trial. This pattern indicated that it was easier for participants to get all 

nonwords recalled incorrectly than to get some nonwords recalled correctly, suggesting that 

the task was challenging. However, some inconsistent patterns were observed in the trials 

involving large set sizes (e.g., 6 or 7 stimuli in a single trial), making it unclear whether 

recalling fewer nonwords correctly was consistently easier than recalling more nonwords 

correctly in these trials. This variability might be related to a testing strategy possibly 

employed by the participants: when faced with trials having large set sizes, they may have 

recorded the nonwords they could recall without adhering to the requirement of recalling the 

sequence of nonwords. In other words, participants could click the ‘Recording’ button for 

any nonword they remember, disregarding the order of the nonwords, rather than recalling 

them in sequence. This testing approach could have been used by participants in the 
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uninvigilated online testing environment, potentially introducing errors in the testing results. 

Addressing this technical issue merits refinement in future iterations. 

TALL_CST 

The coefficients of the category threshold parameters of difficulty in the subtest of 

TALL_CST showed that most category threshold parameters were below 0, suggesting the 

overall difficulty of the subtest was low in the current study. The total information curves 

(shown in Figure 4.29 in Section 4.4.2.5) indicated that the discrimination of this subtest 

was maximised for below average participants. TALL_CST in the written suite provided 

even lower total information than in the aural suite, and it performed very poorly at 

discriminating participants whose ability were above the average.  

 The poor performance of TALL_CST in providing information on participants who 

performed above the average in this subtest suggested concerns about whether complex 

span tasks would be appropriate to measure executive control capacity of working memory 

of the populations with high WM ability. Similar concerns are discussed by Draheim et al. 

(2018), particularly considering that complex span tasks are widely used to measure 

participants at the college level who may have high cognitive ability. Complex span tasks 

used in the current study are essentially the same as operation span tasks discussed by 

Draheim et al., that is, using English letters as the stimuli for recall and applying the partial 

span score (i.e., the total number of letters recalled in proper serial position). Letters for 

recall can be the simplest stimuli, allowing participants to engage in more articulatory 

rehearsal of the stimuli. Although TALL_CST was designed to include domain-specific tasks 

that used verbal stimuli (i.e., sentences) for processing, the stimuli were written in 

participants’ L1, which was not challenging for the populations at high L1 literacy level, like 

the participants in the current study. The processing stimuli of sentences in L1 used in 

TALL_CST could be even less challenging than the simple arithmetic used in the operation 

span tasks and are likely to be automatically processed by participants at high literal level 

of L1. Therefore, the processing part of the complex span tasks is not effective as a 

distractor to prevent articulatory rehearsal.  

This invites reconsiderations about the verbal stimuli used in the paradigm of the 

listening and reading span tasks. TALL_CST used verbal stimuli in participants’ L1 to 

address the confound of L2 English proficiency in the processing tasks, as most listening 

and reading span tasks are written in English. This methodological implementation should 

be kept as the core element in this subtest. What can be refined may be the verbal stimuli 

for recall, similar to the Klingon characters used in Hicks et al. (2016) and Ruiz et al. (2021). 
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For example, in the reading span tasks, using verbal stimuli presented in the unfamiliar 

orthographical forms would be able to suppress articulation and help remove the influence 

of articulatory rehearsal (Baddeley et al., 1984). Participants may need to retain the 

orthographical forms in short-term memory and select the stimuli from given multiple options. 

In this scenario, the storage component of executive control would entail the retrieval of 

visual representations of novel stimuli, rather than the recall of auditory stimuli. In listening 

span tasks, using stimuli presented in unfamiliar but still articulatable phonological forms 

might also be effective. However, it may require technical refinement to record participants’ 

recall of the stimuli, as opposed to having them choose answers from a provided list of 

visually presented letters.   

One straightforward solution could involve technical refinements that include trials 

with increased set sizes of 8 and 9, as suggested by Draheim, et al. (2018). It is worth noting 

that Draheim and colleagues reported that the difficulty of trials with 8 and 9 stimuli remained 

below average ability level, resulting in an overall low level of difficulty.  Given the technical 

arrangement applied in TALL_CST, which necessitates a longer interval between sentence 

processing and stimuli recall, adding an extra load in retaining stimuli for an extended 

duration in the aural suite compared to the written suite (as discussed in Section 4.7.1.2), 

the technical solution of increasing set size merits consideration in future refinement of this 

subtest, particularly in the aural suite. Furthermore, empirical evidence demonstrating digit 

span and monosyllabic word span among Mandarin speakers (e.g., Mattys et al., 2018) may 

provide additional support for the option of increasing set size in span tasks, especially if 

the subtest targets L1-Chinese participants. 

To gain a deeper understanding of the internal validity of CST, it is highly 

recommended that both the processing component, involving processing accuracy and 

processing time, and the storage component, be considered and reported (Conway et al., 

2005; Shin & Hu, 2020). This comprehensive approach is crucial as both components may 

contribute substantial unique variance to the results. For instance, Unsworth et al. (2009) 

used CFA and the Structure Equation Model to examine the relationships among the 

components of CST and their effectiveness in predicting higher-order cognition 

(represented by a number of general fluid abilities tests covering different content domains, 

including spatial, numerical, and verbal). Their findings indicated that CST is multi-faceted 

task that relies on components offering unique information and are not redundant. This 

underscores a limitation in the current study’s data analysis and the need for future research 

to employ sophisticated analyses to provide a more detailed breakdown of the variance 

explained by each component of CST.  
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4.7.3 Verification of aptitude theoretical frameworks 

The validation of TALL as a battery for language aptitude includes the investigation into the 

explanation inference in the validation plan that relates to whether the data collected by this 

battery displayed satisfactory fitness to the theoretical frameworks, i.e., the combination of 

the Stages Approach (Skehan, 2016) and the P/E model (Wen, 2016).  The results from 

PCA confirmed that all subtests representing their corresponding componential constructs 

of aptitude in both suites of TALL contributed similarly to the first principal component 

underlying the construct of aptitude, and they did not have much redundancy in factor 

dimensions that might led to the reduction of any subtest. The results from CFA results 

provided strong evidence of model fit statistics, indicating that data of both suites fitted well 

to the hypothesised four-factor model based on the theoretical framework on which TALL 

was developed. 

 Using PCA to investigate the interrelationship between the different subtests has 

been reported in a limited number of studies, which are almost all on the data elicited by 

the LLAMA tests. Bokander and Bylund (2020) reported the results of PCA that shared a 

similar component structure to that revealed in literature (e.g., Artieda & Muñoz, 2016; 

Granena, 2013), that is, the LLAMA subtests loaded on two separate components, with 

LLAMA D loading on one component and other subtests loading on the other. Although the 

results from PCA in the current study are not comparable to the results reported by 

Bokander and Bylund, some points related to their findings suggested by PCA are intriguing. 

 First, what information can be provided by PCA needs careful consideration. The 

primary aim of PCA is to reveal the interrelationship between subtests included in aptitude 

batteries, which underlines the nature of this analysis being exploratory for the factors under 

the existing data, rather than being confirmatory for testing hypothesis predetermined 

according to theories. When the two-component or the three-component solution is selected 

in PCA, it has changed the exploratory nature of PCA. Instead of this approach to using 

PCA, how many principal components should be extracted from the data comes as the 

result, not the other way around. 

 Second, even if the two-component factor structure is validly extracted from PCA, 

could this lead to the conclusion that these two components represent the two dimensions 

of implicit and explicit nature of aptitude operationalised in the LLAMA tests (Bokander & 

Bylund, 2020; Granena, 2013)? The answer is NO, with certainty. An alternative 

interpretation of the two-component factor structure of the LLAMA tests could be that 

LLAMA_D is the only subtest that relies on the ability to process phonological forms, 

whereas the other subtests engage the ability to process stimuli presented visually. In fact, 
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the two-component factor structure can only provide the evidence that LLAMA_D is a 

subtest essentially different from the other subtests, and it has loaded on a separate 

dimension from the others. It cannot lead to the conclusion that LLAMA_D is implicit in 

nature, which has been criticised as a premature conclusion in recent studies (see Iizuka & 

DeKeyser, 2023; Suzuki, 2021a), nor that the other subtests are explicit.  

 Third, the current study used the Oblimin method of Oblique factor rotation rather 

than the Varimax solution used by Bokander and Bylund, as the former allows factors to be 

correlated, which seems to be plausible for the interrelationships between the subtests and 

the components of aptitude they represent.  

 The current study also used CFA to verify the predetermined four-factor structure 

that is proposed in the Stages Approach. The model fit statistics provide strong support to 

indicate that the data of both suites fit well to the models. However, running CFA with most 

latent variables represented by single indicators (i.e., the subtests in this study) may not be 

a typical practice. Nevertheless, this concern was addressed by choosing the four-factor 

model after the unifactor baseline model was conducted. Future research may be needed 

to try out other statistical methods for this verification purpose. 
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CHAPTER 5: RESULTS & DISCUSSION FOR RQ2 – 

EFFECTS OF MODALITY  

 

5.1 Introduction 

This chapter presents the results to answer RQ2: To what extent does input modality have 

effects on participants’ scores in the subtests of TALL_VL, TALL_LA, and TALL_CST? The 

prediction relevant to this RQ was that participants could perform better in these subtests if 

the stimuli were presented in the written form because the stimuli in the written form would 

be easily coded by the visual processing mechanism in comparison with the stimuli input in 

the aural form. The first section of this chapter introduces the rationale of using Mixed-

effects Modelling (MEM) as the statistical method for data analysis. It also includes the 

summary of model parameters in applying MEM. The second section presents the results 

of MEM analyses on the unaggregated data of three subtests (i.e., TALL_Vocabulary 

Learning, TALL_Language Analysis, and TALL_Complex Span Task) that were 

administered in two input modalities. The third section summarises the results in this 

chapter, which leads to the final section of discussion about the results and findings in 

relation to the effect of modality in measuring aptitude.  All results and analysis code in this 

chapter were rendered in an R markdown file (see Appendix D). 

5.2 Mixed-effects Modelling (MEM) 

MEM was used to answer this research question. MEM has its significant advantage in 

modifying or enriching generalised linear models in terms of the assumption that data points 

need to be statistically independent of one another. The statistical merit of MEM is to deal 

with data points that might be related when participants in the experimental design produce 

repeated responses (i.e., the same participant responds to many different items), and when 

specific versions of testing materials with counterbalanced stimuli or items that might share 

multiple characteristics (e.g., many participants respond to the same stimuli) (Gries, 2021). 

Although repeated measures ANOVA, which may take into account person or item-level 

variability, have been used to analyse the data obtained from participants responding to 

many test items, the analytic techniques have several drawbacks. Since they cannot 

simultaneously account for both sources of variability, observations within a condition must 

be compressed over either items or persons. As such, the statistical power of the study, or 

the possibility of identifying an existing effect, is reduced when essential information about 

variability among individuals or items may get lost during data aggregation (Barr, 2008). 

This limitation of data-being-independent assumption can be addressed by LMM that takes 
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the dependencies in the data into account. Furthermore, other than indicating whether an 

effect is significant or not by ANOVA, MEM provides information about the magnitude or 

direction of the effect by offering individual coefficient estimates for each predictor that show 

growth or trajectory (Brown, 2021). 

RQ2 aimed to investigate the effect of input modality as the predictor variable on the 

scores of three subtests (i.e., TALL_VL, TALL_LA, and TALL_CST) that were administered 

in both aural and written modalities. As introduced in Section 3.3.4, participants took two 

rounds of TALL in a repeated design, with order of the test suites (aural and written) and 

material versions (A and B) counterbalanced. The accuracy of their response to the test 

items/trials in three subtests administered in both modalities were the dependant variable 

in MEM analysis. Input modality was the primary fixed effect in MEM on the test scores (as 

reviewed in Section 2.2.2.3). Additionally, previous research has shown that repeated 

exposure to the experimental paradigm may potentially improve participants performance 

due to the familiarity participants gained with the test procedure and paradigm (Suga & 

Loewen, 2023; Suzuki & Koizumi, 2020). Therefore, test session could be a potential source 

of variability that should also be taken into account when analysing the data collected in the 

repeated experimental design.  This hypothesised fixed effect could also be postulated from 

the eyeballing of the violin box plots presented in Section 4.3.1. 

Given the fact that convenience samples were used in the current research and the 

materials developed would not exhaust all possible options, test scores might vary across 

levels of the grouping factors of subjects and items. More importantly, data were collected 

in the current research when all participants were tested more than once and when each 

item/trial were measured more than once. This suggested a crossed random-effects 

structure of the current research design, that is, the multiple repeated-measurements 

structure coexisted in the single experimental design. Therefore, by-subject and by-item are 

both sources of variation that need to be counted in as random effects in a single model, 

which can be achieved in MEM (Baayen et al., 2008; Gries, 2021). Furthermore, individual 

items/trials were related in a specific version of materials, hence they shared extra 

organised characteristics, known as nested random effects (Gries, 2021). 

To summarise, multiple factors (i.e., input modality, test session, participants and 

test items nested in the material version) in the current research need to be taken into 

account simultaneously when investigating their effects on the test performance, and MEM 

helps to consider these multiple factors when repeated measurements were used in a way 

that ANOVA could not. 
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MEM analyses were performed in the following steps, using data from TALL_VL, 

TALL_LA, and TALL_CST, respectively. These steps followed the practice guidance for 

linear MEM in psychological science (e.g., Meteyard & Davies, 2020) and the general 

overview of a MEM process with specific example in linguistics (e.g., Gries, 2021, Winter, 

2013). The software used was the lme4 package (Bates, et al., 2015) in R. 

5.2.1 Data preparation and assumption checks  

The first step of MEM analyses involved exploring and preparing data for analyses. Data 

used in the MEM analysis were wrangled into unaggregated long format through the 

tidyverse package, in which each row represented an individual observation that did not 

aggregate across either participants or test items/trials.  

 Prior power analysis had been conducted (see Section 3.3.1.2) to show that 67 

participants were needed to facilitate a within-subject design with two rounds of test.  In the 

current step, the total sample size should generate 900 to 2500 data points for the MEM 

analysis, as suggested by Meteyard and Davies (2020) for psychological research. 

 In addition, correlation between the results from two modalities was analysed after 

the normality check of distribution on each dataset. Non-normality of data distribution of the 

results from all three subtests indicated that correlation coefficients (i.e., Kendall’s tau) 

should be used on the non-parametric ranks of the data (Field et al., 2012).  

Assumption checks are essential to ensure that the necessary conditions are met 

when conducting a meaningful analysis using MEM. First, Linearity of data was checked 

through the residual plot of a simple regression formula of the fixed effects. For categorical 

binary data from TALL_VL and TALL_LA, the residual plot of linearity indicated the pattern 

of two lines, while for continuous data from TALL_CST, the residual plot did not indicate a 

nonlinear or curvy pattern.  Second, absence of collinearity of the fixed effects were 

checked. It was to ensure that the multiple predictors were not highly correlated, in other 

words, they were not very similar to each other. Otherwise, the interpretation of the model 

became unstable as it would be very difficult to decide which predictor played a big role 

(Winter, 2013). This assumption was checked by calculating variance inflation factors (VIFs), 

with value less than 5 for each predictor indicating that multicollinearity was not a significant 

issue (Fox, 2020). Third, homoskedasticity, which refers to the approximately equal 

variability of the data across the range of predicted values, was assessed using the 

residuals of the model. Ideally, the residual plot should exhibit a blob-like pattern of the data 

points. Forth, the normality of residuals assumption was checked for the continuous data 

from TALL_CST. It is worth noting that this assumption is considered the least important, 
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as linear models are relatively robust against violations of normality assumption (Winter, 

2013). Finally, the absence of influential data points was checked to detect any that could 

drastically change the results. This assessment was performed using the dfbeta function in 

R on the regression models, which yielded ‘leave-one-out diagnostics’ (p. 19). In this 

approach, coefficients needed to be adjusted if a specific data point was excluded. If any 

value caused the slope to change sign, that data point was identified as influential and 

required special attention. Another approach involved visually inspecting values to identify 

any differed by at least half of the absolute value of the slope (Winter, 2013).  

5.2.2 Model selections  

This step first involved the selection of random effects according to the experimental design. 

As mentioned above, the current research had a crossed random-effects structure from the 

multiple repeated-measurements, therefore, subjects and test items should be considered 

as the random effects.  Given that individual items/trials were related in a specific version 

of materials, material version could be accounted in the model as a nested random effect. 

However, the complex random effect structures may inhibit model convergence, therefore 

the selection of subject and material version as the random effects was used as a way of 

simplifying model structure to deal with any convergence problems.  

 To enhance transparency of the practice in this step, a table was used, adapted 

from a supplementary example in Meteyard and Davies (2020), to document the model 

comparison and the model building/selection process. This documentation included the 

specifications and statistics of all models, as well as the approach taken to address 

convergence issues. The rationale for employing model simplification methods was also 

included in this step, with the results of comparison methods (such as Likelihood-Ratio-Test, 

AIC, BIC) being reported.  

The model building process started by establishing the model with all random effects 

and subsequently simplifying it by removing random effects to check whether the model fit 

improved. In essence, this involved a process from a maximal model to a minimal model 

that converges, with the aim of selecting the most appropriate random effects for an 

improved model fit. Once the model with selected random effects was established, fixed 

effects were added to construct the main effects models. These models incorporated all 

fixed effects, both with and without interactions, along with random effects featuring random 

intercepts and random slopes corresponding to each fixed effect in the models. It is 

important to note that random slopes should be included in the models, as it is reasonable 

to assume that the responses from participants or items to the fixed effects (modality and 

session) did not follow precisely the same pattern.  
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5.2.3 Model interpretation  

This step presented the output of the final selected model, i.e., the model that did not have 

convergence issues and had the best fit. The results are provided in a table with parameters 

estimates for the fixed effects (coefficients, standard errors with confidence intervals, and 

associated test statistics and p-values) and random effects (intercepts and slopes). The 

model’s performance was summarised using the marginal R2 and the conditional R2, 

necessary to identify and estimate sources of variance in regression models (Plonsky & 

Oswald, 2017). The marginal R2 showed the proportion of variance explained by the fixed 

effects alone in the model, while the conditional R2 indicated the proportion of variance 

explained by both the fixed and random effects. In addition, to obtain an intuitive 

interpretation of magnitude of effect sizes, both marginal R2 and conditional R2 were 

converted to correlation coefficient of r. This allowed comparisons to the benchmarks (i.e., 

r close to .25 is considered small, .40 medium, and .60 large) suggested by Plonsky and 

Oswald (2014) for interpreting effect sizes in L2 research. 

5.3 Results of MEM analyses  

Generalised Linear Mixed-effects Model (GLMM) was applied to the binary data from 

TALL_VL and TALL_LA through the glmer function in the lme4 package, while Linear 

Mixed-effects Model (LMM) was applied to the continuous data from TALL_CST through 

the lmer function.  

 Assumption checks were performed on three subtests separately. All subtests had 

the total sample sizes that generated data points significantly surpassing the range of 900 

to 2500 data points recommended by Meteyard and Davies (2020). This suggested that the 

sample size in the current study did not indicate any statistical power issue in applying 

GLMM or LMM. 

Correlation coefficients of Kendall’s tau ( .16 for TALL_VL, .32 for TALL_LA, and .20 

for TALL_CST) indicated  positive correlations between the scores obtained in two 

modalities across all three subtests, reaching a significant level. However, based on 

Cohen’s (1988) general benchmarks for effect sizes―where r = .1 signifies a small effect, .3 

a medium effect, and .5 a large effect―the observed effect sizes of correlations were within 

the small to medium magnitude range. Alternatively, considering the benchmarks 

suggested by Plonsky and Oswald (2014) for interpreting findings in L2 research, these 

effect sizes might be interpreted at a lower magnitude. 

 The results from assumption checks indicated that the linearity of data was 

evidenced. The residual plot of linearity showed the pattern of two lines for TALL_VL and 
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TALL_LA, and the pattern of four lines for TALL_CST. All three subtests had the VIFs values 

for modality and session (both were 1.00) smaller than 5, indicating that these two predictor 

variables were not highly correlated with each other. This indicated that the assumption of 

absence of collinearity was met. The residual plot did not exhibit a clear pattern indictive of 

homoskedasticity for TALL_VL and TALL_LA. While the datasets met statistical power 

requirements for GLMM, their sample sizes might be limited and affected this assessment. 

The evidence of homoskedasticity for TALL_CST was clear as the variability of the data 

were approximately equal across the range of predicted values. No influential data points 

were detected in the datasets from all three subtests. In general, the assumption checks on 

a model of the simple regression formula did not raise issues that need special attention 

prior to GLMM or LMM analysis for the datasets from all three subtests. 

5.3.1 TALL_VL  

Model selection 

Model selection process (see Table 5.1) started from the comparisons of null models with 

random effects only. The results from AIC, BIC, and χ2 with p values of the Likelihood-Ratio-

Test suggested the Reduced Null 1 model having the best fit among null models. Two fixed 

effects (modality and session) were added into the chosen null model to build two main-

effects models. The Main Effects 1 model included random slopes for both fixed effects, 

while the Main Effects 2 model introduced an interaction between these two fixed effects. 

Both main-effects models converged. Initially, the Main Effects 1 model was compared to 

the Reduced Null 1 model using a likelihood-ratio test, indicating a better model fit to the 

data. Subsequently, the two main-effects models were compared to each other, with the 

likelihood-ratio test revealing that the Main Effects 1 model exhibited lower AIC and BIC 

values. However, the difference between the two models was statistically insignificant. 

Considering the lack of statistical evidence for the interaction between the fixed effects (β̂ = 

0.001,  SE = 0.29, z = 0.004,  p = .997) in the Main Effects 2 model, the final model selected 

was the Main Effects 1 model. This choice enables the interpretation of individual fixed 

effects as isolated predictors (Brown, 2021).  

The final selected GLMM was: 

accuracy ~ 1 + modality + session + (1 + modality | subject) + (1 + session 

| subject) + (1 + modality | item) + (1 + session | item) 

The output of analysis on the final chosen model (see Table 5.2) showed the parameters 

estimates for the fixed effects and random effects, as well as the model performance. 
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Fixed effects  

Examination of the output for the fixed effects in the model showed that the regression 

coefficient for the intercept was -1.08, indicating the average expected value when all 

predictor variables (modality and session) were zero. The p-value was below the alpha level 

of .001, indicating that the intercept was statistically different from zero. Furthermore, the 

analysis indicated that scores, on average, were estimated to be 0.71 points higher in the 

written modality compared to the aural modality ( β ̂= 0.71, SE = 0.13, z  = 5.60), with a p-

value less than .001. Additionally, scores were estimated to be 0.29 points higher when 

participants took the subtest in the second session compared to their performance in the 

first session ( β ̂ = 0.29, SE = 0.10, z = 2.81), with a p value of 0.005.  

Additionally, Table 5.2 includes odds ratios (ORs) derived from exponentiating the 

coefficients of the chosen GLMM. These ORs can be interpreted as the ratio of the odds of 

an event occurring in one group compared to the odds of the same event in another group. 

In this study, ORs represented the odds of correctly answering test items with a one-unit 

increase in the fixed effects, such as switching from the aural to the written modality or from 

the first test session to the second session. The results showed an OR of 2.04 for the effect 

of modality on accuracy, suggesting that switching from the aural to the written modality 

increased the odds of a correct response by a factor of 2.04 (equivalent to a 104% increase), 

while holding the session constant. Similarly, the OR for the effect of session on accuracy 

was 1.34, indicating that taking the test in the second session increased the odds of a 

correct response by a factor of 1.34 (equivalent to a 34% increase), while keeping the 

modality constant. Both predictor variables had statistically significant impacts on the test 

outcomes. 
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Table 5.1 The model selection process (TALL_VL) 

Sampling Units N total observations = 6600 
N Subjects = 165; N items = 40 

 

Model 
specification 

Model name Nested / 
simpler 
Model 

Fixed 
Effects 
added 

 Random Effects Model fit LRT Test against 
nested 

Subjects Items AIC BIC LL df df χ2 

 

RE only 
  

Null 1: subject 
+ item + 
version/item 

 - -  intercepts intercepts unidentification warning – simplify the 
model by removing version/item 

- - 

Null 2: subject 
x item   

- -  “ “ Unidentification issue – simplify the 
model by removing the subject/item 
interaction 

- - 

Reduced null 
1: subject + 
item 

Reduced null 
2: subject + 
version 

-  “ “ 7967.8 7988.2 ‒3980.9 6597 0 424.57 

Reduced null 
1: subject + 
item 

Reduced null 
3: subject  

-  “ “ 7967.8 7988.2 ‒3980.9 6597 1 470.12*** 

Reduced null 
1: subject + 
item 

Reduced null 
4: item 

-  “ “ 7969.8 7988.2 ‒3980.9 6597 1 421.79*** 

 

FE main 
effects 

Main effects 1 
 

Reduced null 
1: subject + 
item 

modality + 
session 

 Slopes for 
2 FEs 

Slopes for 
2 FEs 

7613.3 7715.2 ‒3791.6 6585 12 378.49*** 

FE two-way 
interactions 

Main effects 2 Main effects 
1 
 

modality x 
session 

 “ “ 7615.3 7724.0 ‒3791.6 6584 1 0 

 

Notes: RE – Random effect; FE – Fixed effect; AIC – Aikake Information Criterion; BIC – Bayesian Information Criterion; LL – Log Likelihood; df – 

degrees of freedom; LRT – Likelihood Ratio Test; χ2– Chi-square.  A “ in the table cell indicates no changes from the previous model.      
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Table 5.2  Results from final selected model (TALL_VL) 

 

Fixed Effects 

  Log-Odds SE  95% CI z p 

Intercept ‒1.08 0.14   [‒1.37, ‒0.89] ‒7.53 < .001 

Modality 0.71 0.13  [0.46, 0.96] 5.60 < .001 

Session 0.29 0.10  [0.09, 0.49] 2.81 0.005 

 

 Odds Ratios 95% CI p 

Intercept 0.34 [0.26, 0.45] < .001 

Modality 2.04 [1.59, 2.61] < .001 

Session 1.34 [1.09, 1.64] 0.005 

 

Random Effects 

  Variance SD Correlation 

Modality | Subject (intercept) 0.03 0.19  

Modality | Subject (slope) 0.60 0.77 -0.11 

Session | Subject (intercept) 0.38 0.61  

Session | Subject (slope) 0.54 0.73 0.11 

Modality | Item (intercept) 0.30 0.55  

Modality | Item (slope) 0.25 0.50 -0.28 

Session | Item (intercept) 0.28 0.53  

Session | Item (slope) 0.02 0.16 -0.44 

 

Model performance 

R2 

Marginal Conditional 

0.037 0.2 

 

Notes: p-values for fixed effects calculated using Satterthwaites approximations. 
Confidence Intervals have been calculated using the Wald method. 
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Random effects 

The estimates of random intercepts and slops provided insights into the extent of score 

variations among participants and items relative to the fixed effects.  

Specifically, the SD (0.19) for the modality-by-subject random intercepts indicated 

that scores for participants derived from the average intercept (-1.08) by approximately 0.19 

points. The SD (0.77) for modality-by-subject random slope indicated that participants’ 

estimated slopes deviated from the average slope of 0.71 by approximately 0.77 units. 

Consequently, an individual participant with a slope 1 SD below the mean (0.71 ‒ 0.77 = -

0.05) would have an estimated slope near 0, suggesting that this person’s scores were not 

affected much by the modality in which the test items were presented. Conversely, an 

individual participant with a slope 1 SD above the mean (0.71 + 0.77 = 1.48) would have a 

steeper slope, indicating a difference of approximately 1.48 units in scores between 

modalities.  

Similarly, the SD (0.61) for the session-by-subject random intercepts indicated that 

scores for participants derived from the average intercept (-1.08) by approximately 0.61 

points, larger than derivation related to modality. The SD for the session-by-subject random 

slopes (0.73) indicated that participants’ estimated slopes deviated from the average slope 

of 0.29 by approximately 0.73 units. Consequently, an individual participant with a slope 1 

SD below the mean would have an estimated slope of 0.44, indicating that this person’s 

scores were affected by the session in which the test was taken. Conversely, an individual 

participant with a slope 1 SD above the mean would have a steeper slope, indicating a 

difference of approximately 1.02 units in scores between the two test sessions. 

The results also provided information about participants’ variability across modalities 

and sessions, i.e., the random effect of ‘subject’. The variance for the session-by-subject 

intercepts (0.38) with an SD of 0.61 was considerably larger than that for the modality-by-

subject intercepts (0.03) with an SD of 0.19. This discrepancy suggested that differences in 

participants’ performance in the first session were much larger than differences related to 

the aural modality. However, the modality-by-participant random slopes (0.77) closely 

matched the session-by-participant random slopes (0.73), indicating that this cohort of 

participants exhibited similar variability when comparing their performance across two 

modalities and two sessions.  

In terms of the variability of test items across modalities and sessions, i.e., the 

random effect of ‘item’, the results revealed that the modality-by-item intercepts (0.30) with 

the SD (0.55) was close to the session-by-item intercepts (0.28) with the SD (0.53), 
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indicating that the variance of items’ scores in the aural modality were similar to those in the 

first session. However, the variance of modality-by-item random slopes (0.25) was larger 

than that of the session-by-item random slopes (0.02), indicating that scores in relation to 

items were more affected by modality condition than by session.   

The output also included correlations among random effects. Specifically, the 

correlation between modality-by-subject intercepts and modality-by-subject slopes was -

0.11, suggesting a moderate negative relationship between these two indices in the model. 

This result indicated that participants who had higher scores (random intercepts) in the 

baseline responses (the aural modality) tended to exhibit a shallower (more negative) slope 

in their performance when they switched to the written modality, although this relationship 

is not very strong due to the weak correlation coefficient. In other words, when compared 

to their counterparts at lower ability level in the aural modality, performance of participants 

with higher ability was slightly less influenced by the change of modality condition. In 

addition, the correlation between session-by-subject intercepts and session-by-subject 

random slopes was 0.11, indicating a modest positive relationship between these two 

indices. It suggested that, when compared to their counterparts at lower ability level in the 

first session, the performance of participants with higher ability was slightly more influenced 

by the change of session. 

Furthermore, the correlation between modality-by-item intercepts and modality-by-

item slopes was -0.28, indicating a moderate negative relationship between these two 

indices. The result suggested that items with more accurate responses in the aural modality 

were less influenced by the change of modality compared to items with less accurate 

responses. Similarly, the correlation between session-by-item intercepts and session-by-

item random slopes was -0.44, indicating a negative relationship between these two 

components. The result suggested that items with more accurate responses in the first 

session were much less affected by the change of session condition. However, the 

magnitude of the negative influence on item responses related to the session condition was 

greater than that related to modality. 

Model summary 

Finally, the performance of the final selected model was summarised by the marginal R2 

and conditional R2. The marginal R2 of 0.037 indicated that only a small proportion of 

variance (about 3.7%) in the outcome of this subtest was explained by the fixed effects of 

modality and session alone. Converting this to r, the correlation coefficient (r = .19) 

suggested a negligible effect size according to the benchmarks proposed by Plonsky and 
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Oswald (2014). However, the conditional R2  was 0.2, indicating that a larger proportion of 

variance (about 20%) was explained by both the fixed and the random effects, and the effect 

size converted (r = .45) was a medium effect size according to the benchmarks. This 

suggested that taking the fixed effects and the random effects together into account could 

explain a substantially larger amount of variance in the outcome than only considering the 

fixed effects.  

In summary, GLMM on the data from TALL_VL evidenced statistically significant 

effects of the fixed effects (i.e., modality and test session) on participants’ performance. 

Specifically, when tested in the written modality, or when they took the test in the second 

time, participants obtained significantly higher scores. In addition, participants’ variability 

across modality and session was evidenced, and their scores varied similarly when they 

were tested across modality and session conditions. Conversely, the degree of variance in 

test items was larger across modality than session. The results also suggested that 

participants who had better ability in learning vocabulary items in the aural modality tended 

to be negatively affected by the change of modality condition but more affected by the 

change of session condition. However, the strength of the relationships was relatively weak. 

A substantial proportion of variance (approximately 20%) was accounted for by both the 

fixed and the random effects, in contrast to the relatively negligible proportion of variance 

(approximately 3.7%) explained by the fixed effects alone.  

5.3.2 TALL_LA  

Model selection 

The model selection process (see Table 5.3) started from the comparisons of null models 

with random effects only. The results from AIC, BIC, and χ2 with p values of the Likelihood-

Ratio-Test suggested the Reduced Null 1 model the best fit among null models. Two fixed 

effects (modality and session) were added to this selected null model to build two main-

effects models. The Main Effects 1 model included random slopes for both fixed effects, 

while the Main Effects 2 model introduced an interaction between these two fixed effects. 

Both main-effects models converged. Initially, the Main Effects 1 model was compared to 

the Reduced Null 1 model using a likelihood-ratio test, indicating a better model fit to the 

data. Subsequently, the two main-effects models were compared to each other, with the 

likelihood-ratio test revealing that the Main Effects 1 model exhibited lower AIC and BIC 

values. However, the difference between the two models was statistically insignificant. 

Considering the lack of statistical evidence for the interaction between the fixed effects (β ̂= 

-0.31,  SE = 0.53, z  = -0.58,  p = .56) in the Main Effects 2 model, the final model selected 
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was the Main Effects 1 model to allow the interpretation of the individual fixed effects as 

predictors in isolation.  

The final selected model was: 

accuracy ~ 1 + modality + session + (1 + modality | subject) + (1 + session 

| subject) + (1 + modality | item) + (1 + session | item) 

The output of analysis on the final selected model (see Table 5.4) showed the parameters 

estimates for the fixed effects and random effects, as well as the model performance.  

Fixed effects  

Examination of the output for fixed effects in the model showed that the regression 

coefficient for the intercept was 0.85, indicating the average expected value for the score 

when all the predictor variables (modality and session) were zero. The p value was below 

the alpha level of .001, indicating that the intercept was statistically different from zero. 

Furthermore, the analysis indicated that scores, on average, were estimated to be 1.27 

points higher in the written modality compared to the aural modality ( β ̂= 1.27, SE = 0.17, z 

= 7.46), with a p-value less than .001. Additionally, scores were estimated to be 0.61 points 

higher when participants took the subtest in the second session compared to their 

performance in the first session ( β ̂ = 0.61, SE = 0.17, z = 3.68), with a p value < .001.  

Additionally, results in Table 5.4 showed an OR of 3.54 for the effect of modality on 

accuracy, indicating that switching from the aural to the written modality increased the odds 

of a correct response by a factor of 3.54 (i.e., 254%), while holding the session constant. 

Similarly, the OR for the effect of session on accuracy was 1.85, indicating that the odds of 

a correct response increased by a factor of 1.85 (i.e., 85%), while holding the modality 

constant. Both predictor variables had statistically significant effects on the test outcome. 
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Table 5.3 The model selection process (TALL_LA) 

Sampling Units N total observations = 9900 
N Subjects = 165; N items = 60 

 

Model 
specification 

Model name Nested / 
simpler Model 

Fixed 
Effects 
added 

 Random Effects Model fit LRT Test 
against nested 

Subjects Items AIC BIC LL df df χ2 

 

RE only 
  

Null 1: subject 
+ item + 
version/item 

 - -  intercepts intercepts Singularity issue – simplify the model 
by removing version/item 

- - 

Null 2: subject 
x item   

- -  “ “ Unidentification issue – simplify the 
model by removing the subject/item 
interaction 

- - 

Reduced null 
1: subject + 
item 

Reduced null 2: 
subject + 
version 

-  “ “ 9230.2 9251.8 -4612.1 9897 0 142.27 

Reduced null 
1: subject + 
item 

Reduced null 3: 
subject  

-  “ “ 9230.2 9251.8 -4612.1 9897 1 142.27*** 

Reduced null 
1: subject + 
item 

Reduced null 4: 
item 

-  “ “ 9230.2 9251.8 -4612.1 9897 6 2072.6*** 

 

FE main 
effects 

Main effects 1 
 

Reduced null 1: 
subject + item 

modality + 
session 

 Slopes for 
2 FEs 

Slopes for 
2 FEs 

8205.1 8313.1 -4087.5 9885 12 1049.2*** 

FE two-way 
interactions 

Main effects 2 
  

Main effects 1 
 

modality x 
session 

 “ “ 8206.8 8322.0 -4087.5 9885 1 0.32 

 

Notes: RE – Random effect; FE – Fixed effect; AIC – Aikake Information Criterion; BIC – Bayesian Information Criterion; LL – Log Likelihood; df – 

degrees of freedom; LRT – Likelihood Ratio Test; χ2 – Chi-square.  A “ in the table cell indicates no changes from the previous model.
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Table 5.4 Results from final selected model (TALL_LA)  

Fixed Effects 

  Log-Odds SE  95% CI z p 

Intercept 0.85 0.16   [0.52, 1.17] 5.15 < .001 

Modality 1.27 0.17 [0.93, 1.60] 7.46 < .001 

Session 0.61 0.17  [0.29, 0.94] 3.68 < .001 

 

 Odds Ratios 95% CI p 

Intercept 2.33 [1.69, 3.22] < .001 

Modality 3.54 [2.54, 4.94] < .001 

Session 1.85 [1.33, 2.57] < .001 

 

Random Effects 

  Variance SD Correlation 

Modality | Subject (intercept) 1.44 1.20  

Modality | Subject (slope) 1.65 1.28 -0.23 

Session | Subject (intercept) 1.08 1.04  

Session | Subject (slope) 1.86 1.36 -0.29 

Modality | Item (intercept) 0.10 0.32  

Modality | Item (slope) 0.04 0.20 -0.42 

Session | Item (intercept) 0.17 0.41  

Session | Item (slope) 0.01 0.09 -0.25 

 

Model performance 

R2 
Marginal Conditional 

0.089 0.433 

 

Notes: p-values for fixed effects calculated using Satterthwaites approximations. 
Confidence Intervals have been calculated using the Wald method. 
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Random effects 

The SD (1.20) for the modality-by-subject random intercepts indicated that scores for 

participants derived from the average intercept (0.85) by approximately 1.20 points. The SD 

(1.28) for modality-by-subject random slope indicated that participants’ estimated slopes 

derived from the average slope of 1.26 by approximately 1.28. Consequently, an individual 

participant with a slope 1 SD below the mean (1.26 ‒ 1.28 = -0.02 ) would have an estimated 

slope near 0, suggesting that this person’s scores were not affected much by the modality 

condition. Conversely, an individual participant with a slope 1 SD above the mean (1.26 + 

1.28 = 2.54) would have a steeper slope, indicating a difference of approximately 2.54 points 

in scores between modalities.  

Similarly, the SD (1.04) for the session-by-subject random intercepts indicated that 

scores for participants derived from the average intercept (0.85) by approximately 1.04 

points, similar to the derivation related to modality. The SD (1.36) for session-by-subject 

random slopes indicated that participants’ estimated slopes derived from the average slope 

of 0.61 by about 1.36. Consequently, an individual participant with a slope 1 SD below the 

mean would have an estimated slope of -0.75, indicating that this person’s scores were 

negatively affected by the session in which the test was taken. Conversely, an individual 

participant with a slope 1 SD above the mean score would have a steeper slope, indicating 

a difference of approximately 1.96 units in scores between the two test sessions.  

The results also provided information about the random effect of ‘subject’. The 

variance for modality-by-subject intercepts (1.44) with an SD of 1.20 was slightly greater 

than that for the session by-subject intercepts (1.08) with the SD (1.04). This discrepancy 

suggested that differences in participants’ performance in the aural modality were slightly 

larger than that in the first session. Modality-by-subject random slopes (1.65) was slightly 

lower than session by-participant random slopes (1.86), indicating the performance of this 

cohort of participants exhibited slightly less variability when comparing their performance 

across modalities than sessions.  

In terms of the information about the random effect of ‘item’, the results revealed 

that modality-by-item intercepts (0.10) was close to session-by-item intercepts (0.17), 

indicating the variance of items’ scores in the aural modality was similar to that in the first 

session. Similarly, modality-by-item random slopes (0.04) was close to session-by-item 

random slopes (0.01), indicating scores in relation to items were minimally affected across 

both modality and session conditions. 
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The correlation between modality-by-subject intercepts and modality-by-subject 

random slopes was -0.23, indicating a negative relationship with a moderate strength 

between these two indices. This result suggested that participants who had higher scores 

in the aural modality tended to exhibit a steeper decline in their performance when they 

switched to the written modality, and this relationship is moderate. In other words, when 

compared to their counterparts at lower ability level in the aural modality, performance of 

participants with higher ability was less influenced by the change of modality condition. 

Similarly, the correlation between session-by-participant intercepts and session-by-

participant random slopes was -0.29, indicating a moderate negative relationship. It 

suggested that participants who had better performance in the first session exhibited a 

steeper decline in their performance when they took the subtest in the second session. In 

other words, when compared to their counterparts achieved lower scores in the first session, 

the performance of participants with higher ability were less influence by session condition.  

Furthermore, the correlation between modality-by-item intercepts and modality-by-

item random slopes was -0.42, indicating a strong negative relationship between these two 

indices. The result suggested that items with more accurate responses in the aural modality 

were much less influenced by the change of modality compared to items with less accurate 

responses. Similarly, the correlation between session-by-item intercepts and session-by-

item slopes was -0.25, indicating a moderate negative relationship. The result suggested 

that items with more accurate responses in the first session were less affected by the 

change of session condition. The magnitude of the negative influence on item responses 

related to the modality condition was greater than that related to session. 

Model summary 

Finally, the performance of the final selected model was summarised by the marginal R2 

and conditional R2, suggesting that taking the fixed effects and the random effects together 

into account could explain a substantially larger amount of the variability in the outcome 

than only considering the fixed effects. Specifically, the marginal R2 of 0.089 indicated that 

only a small proportion of variance (about 8.9%) in the outcome of this subtest was 

explained by the fixed effects of modality and session alone. The related correlation 

coefficient (r = .30) suggested a small to medium effect size according to the benchmarks 

proposed by Plonsky and Oswald (2014). However, the conditional R2  was 0.43, indicating 

that a much larger proportion of variance (about 43%) was explained by both the fixed and 

the random effects, and the effect size converted (r = .66) was large according to the 

benchmarks.  
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In summary, GLMM on the data from TALL_LA subtest evidenced statistically 

significant effects of the fixed effects (i.e., modality and test session) on participants’ 

performance. Specifically, when tested in the written modality, or when they took the test in 

the second time, participants obtained significantly higher scores. In addition, participants’ 

variability across modality and session was evidenced, and their scores varied similarly 

when they were tested across modality and session conditions. The results also suggested 

that participants who had better ability in learning grammatical rules in the aural modality 

tended to be negatively affected by the modality and the session conditions. The strength 

of the relationships was moderate. A much larger proportion of variance (about 43%) was 

explained by both the fixed and the random effects, in contrast to the relatively small 

proportion of variance (about 8.9%) explained by the fixed effects only, although the effect 

size of the fixed effects was small to medium in magnitude. 

5.3.3 TALL_CST  

Model selection 

The model selection process (see Table 5.5) started from the comparisons of null models 

with random effects only. The results from AIC, BIC, and χ2 with p values of the Likelihood-

Ratio-Test suggested the Reduced Null 1 model the best fit among null models. Two fixed 

effects (modality and session) were added to this selected null model to build five main-

effects models, among which two models converged. They were the Main Effects 4 model 

including random slopes for modality by two random effects and the Main Effects 5 model 

including fixed effects interaction based on the Main effects 4.  Initially, the Main Effects 4 

model was compared to the Reduced Null 1 model using a likelihood-ratio test, indicating a 

better fit to the data. Subsequently, the two converged main-effects models were compared 

to each other, with the likelihood-ratio- test revealing that the Main Effects 5 model exhibited 

lower AIC and BIC values. However, the difference between the two models was statistically 

non-significant. Considering the lack of statistical evidence for the interaction between the 

fixed effects (β ̂= -0.02,  SE = 0.03, t  = -0.61,  p = .55) in the Main Effects 5 model, the final 

model selected was the Main Effects 4 model to allow the interpretation of the individual 

fixed effects as predictors in isolation. 

The final selected model was: 

accu_rate ~ 1 + modality + session + (1 + modality | subject) + (1 + 

modality | trial)  

The output of analysis on the final selected model (see Table 5.6) showed the parameters 

estimates for the fixed effects and random effects, as well as the model performance.  
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Table 5.5 The model selection process (TALL_CST) 

Sampling Units N total observations = 4950 
N Subjects = 165; N trials = 30 

Model 
specification 

Model name Nested / 
simpler 
Model 

Fixed 
Effects 
added 

 Random Effects Model fit LRT Test 
against nested 

Subjects Trials AIC BIC LL df df χ2 

 

RE only 
  

Null 1: subject 
+ trial + 
version/trial 

 - -  intercepts intercepts Failed to converge – simplify the model by 
removing version/trial 

- - 

Null 2: subject 
x trial   

- -  “ “ Could not be built – simplify the model by 
removing the subject/item interaction 

- - 

Reduced null 
1: subject + 
trial 

Reduced null 
2: subject + 
version 

-  “ “ -902.29 -876.26 455.15 4949  0 605.46 

Reduced null 
1: subject + 
trial 

Reduced null 
3: subject  

-  “ “ -902.29 -876.26 455.15 4949 1 606.11*** 

Reduced null 
1: subject + 
trial 

Reduced null 
4: trial 

-  “ “ -902.29 -876.26 455.15 4949 1 360.79*** 

 

FE main 
effects 
  

Main effects 1 
 

- modality + 
session 

 Slopes for 
2 FEs 

Slopes for 
2 FEs 

Singularity issue – simplify the model by 
removing the random slope for session by 
trial 

 -  - 

Main effects 2 - modality + 
session 

 “ Slope for 
modality 

Unidentification issue – simplify the model by 
removing the random slopes for FEs by trial 

- - 

Main effects 3 - modality + 
session 

 “ intercepts Failed to converge – simplify the model by 
removing the random slopes for session by 
REs 

- - 

Main effects 4 Reduced null 
1: subject + 
trial  

modality + 
session 

 Slope for 
modality 

Slope for 
modality 

 -1227.61   -1162.54  623.81 4947  6  337.32*** 

FE two-way 
interactions 

Main effects 5 Main effects 4 
 

modality x 
session 

 “ “  -1226.0    -1154.4  623.99 4946  1  0.37 

Notes: RE – Random effect; FE – Fixed effect; AIC – Aikake Information Criterion; BIC – Bayesian Information Criterion; LL – Log Likelihood; df – 

degrees of freedom; LRT – Likelihood Ratio Test; χ2 – Chi-square.  A “ in the table cell indicates no changes from the previous model. 
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Table 5.6 Results from final selected model (TALL_CST)  

Fixed Effects 

  Est/Beta SE 95% CI t p 

Intercept 0.81  0.02  [0.77, 0.84]  46.42  < .001 

Modality  0.06  0.01 [0.03, 0.09]   9.95 < .001 

Session  0.02  0.01  [‒0.00, 0.04] 3.45  0.074 

 

Random Effects 

  Variance S.D. Correlation 

Modality | Subject (intercept) 0.01 0.12  

Modality | Subject (slope) 0.01 0.12 ‒0.81 

Modality | Trial (intercept) 0.01 0.08  

Modality | Trial (slope) 0.00 0.04 0.06 

 

Model performance 

R2 
Marginal Conditional 

0.017 0.312 

 

Notes: p-values for fixed effects calculated using Satterthwaites approximations. 
Confidence Intervals have been calculated using the Wald method. 

 

Fixed effects  

Examination of the output for fixed effects in the model showed that the regression 

coefficient for the intercept was 0.81, indicating the average expected value for the score 

when all the predictor variables (modality and session) were zero. The p-value was below 

the alpha level of .001, indicating that the intercept was statistically different than zero. 

Furthermore, the analysis indicated that scores, on average, were estimated to be 0.06 

units higher in the written modality compared to the aural modality ( β ̂= 0.06, SE = 0.01, t 

= 9.95), with a p value below the alpha level of .001. Additionally, scores were estimated to 

be 0.02 higher when participants took the test in the second session compared to their 

performance in the first session ( β ̂ = 0.02, SE = 0.01, t = 3.45), with a  p value (.074) greater 

than the alpha level of .05.  

Random effects 
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The SD (0.12) for modality-by-subject random intercepts indicated that scores for 

participants derived from the average intercept (0.81) by approximately 0.12 points. The 

SD (0.12) for modality-by-subject random slopes indicated that participants’ estimated 

slopes derived from the average slope of 0.06 by approximately 0.12. Consequently, an 

individual participant with a slope 1 SD below the mean (0.06 ‒ 0.12 = -0.06 ) would have 

an estimated slope near 0, suggesting that this person’s scores were not affected much 

by the modality in which the test items were presented. However, an individual participant 

with a slope 1 SD above the mean score would have a steeper slope (0.06 + 0.12 = 0.18), 

indicating that this person’s scores were influenced by modality, with a difference of 

approximately 0.18 points in scores between modalities.  

Similarly, the SD (0.08) for session-by-trial random intercepts indicated that scores 

for participants derived from the average intercept (0.02) by approximately 0.08 points. The 

SD for modality by-trial random slopes (0.04) indicated that participants’ estimated slopes 

varied around the average slope of 0.02 by approximately 0.04. Consequently, an individual 

participant with a slope 1 SD below the mean would have an estimated slope (0.02‒0.04) 

of -0.02, indicating that this person’s scores were not affected much by the session in which 

the test trials were presented. Conversely, an individual participant with a slope was 1 SD 

above the mean score would have a slightly steeper slope (0.02 + 0.04) of 0.06, indicating 

this person’s scores in the second session increased by only about the score of 0.06. 

The variance for modality by-participant intercepts (0.01) with the SD (0.12) was 

very close to the by-trial intercepts (0.01) with the SD (0.08), indicating mean difference of 

participants’ performance in the aural modality were similar to that in the first session. The 

SD for modality by-participant random slopes (0.12) was slightly greater than the SD for 

modality by-trial random slopes (0.04), indicating the variation of performance of this cohort 

of participants across the modality was slightly greater than that of trials across the modality.  

The correlation between modality-by-subject intercepts and modality-by-subject 

slopes was -0.81, indicating a strong negative relationship between these two indices. This 

result suggested that participants who had higher ability in the aural modality exhibited a 

much steeper decline in their performance when they switched to the written modality. In 

other words, when compared to their counterparts at lower ability level in the aural modality, 

the performance of participants with higher ability was much less influenced by the change 

of modality condition.  

The correlation between modality-by-trial intercepts and modality-by-trial random 

slopes is 0.06, indicating a negligible relationship between the two indices. This result 



 

210 

 

suggested that the trials having higher accurate responses in the aural modality did not 

differ much compared to the trials obtaining lower accurate responses. In other words, the 

variability of trials was unlikely to be influenced by the modalities.   

Finally, the performance of the final selected model was evaluated by the marginal 

R2 and conditional R2. The marginal R2 of 0.017 indicated that only a very small proportion 

of variance (about 1.7%) in the outcome of this subtest was explained by the fixed effects 

of modality and session alone. The correlation coefficient (r = .13) suggested a negligible 

effect size according to the benchmarks proposed by Plonsky and Oswald (2014) for 

interpreting effect sizes in L2 research. However, the conditional R2  was 0.31, indicating 

that a much larger proportion of variance (about 31%) was explained by both the fixed and 

the random effects, and the effect size converted (r = .56) was close to the benchmark of a 

large effect size. This suggested that random effects of participants and test trials in the 

model accounted for a larger amount of the variability in the outcome.  

In summary, LMM on the data from TALL_CST evidenced the statistically significant 

effects of the fixed effect of modality, but not session, on participants’ performance, although 

the magnitude of difference was very small. Specifically, when tested in the written modality 

but not when they took the test in the second time, participants had significantly higher 

scores. In addition, the variability of participants across modality was evidenced, and the 

results also suggested that participants who had better ability tended to be much less 

affected by the modality in which this subtest was administered, and the negative 

relationship was strong. The degree of response variance in test trials was much smaller 

than that in participants, and trial variability seemed to be susceptible to the modality 

conditions. A much larger proportion of variance (about 31%) was explained by both the 

fixed and the random effects, in contrast to the relatively small proportion of variance (about 

1.7%) explained by the fixed effects alone, which was negligible in magnitude. 

5.4 Summary of the results 

The focus of this chapter was to investigate RQ2:  

• To what extent does modality have effects on scores in the subtests of Vocabulary 

Learning, Language Analysis and Complex Span Tasks that can be administered in aural 

and written modality? 

Correlation checks on the data of each subtest showed that the results of two 

modalities were significantly correlated, evidenced by the non-parametric coefficient of 

Kendall’s tau. MEM was applied, which allowed the investigation of the main effect, i.e., 

modality, to be considered simultaneously with other factors (i.e., test session and the 
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variability of participants and test items) that could be the sources of variation in the 

repeated design.  

The adequacy of sample size and data points were confirmed, and assumptions for 

applying linear regression modelling were checked on all subtests respectively prior to the 

MEM analyses. GLMM was applied on the binary data from the subtests of TALL_VL and 

TALL_LA, while LMM was applied on the continuous data from TALL_CST. A systematic 

process of constructing and selecting models was followed, starting from the null models 

only including random effects to the main-effects models built by adding fixed effects and 

random slopes. The selection of the final appropriate model was achieved based on the 

comparisons of model fit indices (i.e., the values of AIC, BIC, and the results from the 

likelihood ratio tests). The performance of the final selected model was evaluated by the 

marginal and conditional R2.  

The results from MEM analyses indicated that modality as the main factor 

significantly differentiate participants scores in all three subtests, which provided a clear 

support to the hypothesis that participants’ performance would benefit more if the subtests 

were administered in the written modality. Although test session as another main factor also 

had effects on participants’ scores in the subtests of Vocabulary Learning and Language 

Analysis, its effects on participants’ performance in the Complex Span Tasks were not 

evidenced.  The variability of participants across modality were greater than the variability 

of test items or trials across modality in all three subtests, which was not surprising. 

Additionally, participants who had higher abilities in these subtests seemed to be less 

influenced by the modality conditions when compared to their counterparts who had lower 

abilities. As the models built for the purpose of investigating the effects of modality and 

simultaneously considering the other factors on participants’ scores, the performance of 

these selected models showed that much larger proportion of variance was explained by all 

factors rather than the main factors of interest (i.e., modality and session) alone.  

5.5 Discussion for RQ2 

5.5.1 The fixed effect of modality 

RQ2 sought to investigate whether stimuli presented in different modalities (i.e., 

aural and written) would have effects on scores in the subtests of TALL_VL, TALL_LA, and 

TALL_CST, in which test items were presented in different modalities. The scores of each 

subtest obtained in two modalities had a significant but weak correlation. This suggests that 

participants who have displayed, in general, consistent abilities of associative memory, 

language analytic ability and executive control capacity of WM across different input 
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modalities of test items in these subtests. However, it is admitted that there is relatively low 

reliability and unidimensionality of TALL_VL in the aural suite and TALL_CST in the written 

suite (as mentioned in Section 4.3.2.3), and TALL_CST in the written suite lacks challenge 

to the participants (as mentioned in Section 4.4.2.5). These factors may potentially 

undermine the confidence in the findings when using these instruments. 

The analyses of the (Generalised) Linear Mixed-effects Models provided strong 

evidence to indicate that modality, as a main fixed effect, significantly differentiate the 

scores in three subtests, and participants’ performance benefited more if the test items were 

presented in the written modality. The superiority of the written modality in relation to the 

performance is not surprising. It is predicted that L2 learning, in general, would be easier 

through the visual rather than through the auditory modality, given that processing input in 

the written form may make the structures more salient by allowing attentional resources to 

focus more on the form. The untimed nature of input in the written modality as opposed to 

the fleeting nature of auditory modality may also facilitate deeper processing of linguistic 

input as L2 learners have time for self-paced processing (Gilabert et al., 2016).  

Specifically, the results on the datasets of TALL_VL were in line with the finding 

reported by Mizumoto and Shimamoto (2008) that vocabulary size test in the aural modality 

was more difficult than in the written modality. A recent study about orthographic versus 

auditory word learning by Escudero et al. (2022) reported similar findings that recognition 

performance was more accurate when novel words were presented in the written forms 

than in the aural forms, although word learning in their study was investigated in the cross-

situational learning paradigm. However, the effect size of the fixed effects (calculated from 

the marginal R2) was negligible on the test scores according to the benchmarks for 

interpreting effect sizes in L2 research (Plonsky & Oswald, 2014), especially compared to 

the medium effect size of all fixed and random effects taken together.  

The results of TALL_LA suggested that, compared to learning morphosyntactic rules 

with stimuli presented in the written modality, learning in the aural modality can be more 

challenging. This was in line with the findings revealed in studies comparing the modalities 

of tasks in task-based learning. For example, Zalbidea (2021) found that participants 

engaged in the L2 production and input processing in the written modality could have 

sustained gains of the lower-salience target structure, whereas their counterparts in the 

aural modality could not. The challenge of learning the morphosyntactic rules with input in 

the aural modality can be paramount in the cross-situational learning paradigm, as learning 

processes may involve detecting word boundaries, decoding the meanings of novel words, 

identifying lexical categories, and understanding the relations between categories 
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established by the morphosyntactic rules (Walker et al., 2020). However, the effect size of 

the fixed effects (modality and test session) on test score was small (though larger when 

random effects were included.  

The discrepancy of performance between test modalities in TALL_CST may not be 

exclusively related to the cognitive demand of processing stimuli presented in the aural 

modality. The technical design that poses longer interval between the tasks of processing 

and recall may add extra load in retaining the stimuli for a longer time in the aural suite than 

in the written suite (as discussed in Section 4.7.1.2). In this subtest, modality was the only 

fixed effect that differentiated the test scores significantly. However, the effects size of the 

fixed effect was negligible though the effect size of all fixed and random effects was medium.    

The relationships between participants’ abilities and the effect of modality are worth 

noting. It was found that in three subtests, the performance of participants who had higher 

ability (i.e., achieved higher scores) had a weaker association with and less affected by the 

modality conditions compared to their counterparts who had lower ability. This suggests 

that higher ability may wash out the modality effect.  

The low correlations observed between the scores from the aural and written 

modalities across these three subtests warrant discussion. As reported in Section 5.3, the 

correlation coefficients of Kendall’s tau (.16 for TALL_VL, .32 for TALL_LA, and .20 for 

TALL_CST) fell within the small to medium magnitude range. One plausible statistical 

explanation of these low correlations could be attributed to the use of the non-parametric 

ranking correlation coefficient, Kendall’s tau, necessitated by the non-normal distribution of 

data in the current study. To complement this, an additional analysis was conducted using 

Pearson’s r under the pseudo-assumption of normality. Subsequently, the correlation 

coefficients increased to .23 for TALL_VL, .41 for TALL_LA, and .25 for TALL_CST. This 

suggests that if the data had exhibited normality, the correlations might have shown an 

increase.  

Nevertheless, even with the correlations enhanced by the pseudo-assumption of 

normality using Pearson’s r, they still remain relatively low. This discovery raises a 

fundamental inquiry concerning the nature of aptitude in aural and written modalities: Are 

aural and written modalities encompassing substantially distinct constructs of aptitude? This 

question goes beyond methodological considerations regarding modality selection in 

operationalising aptitude; it holds theoretical significance in understanding the potential role 

of aptitude in diverse learning contexts that may foreground the aural modality (naturalistic 
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contexts) or written modality (instructed contexts). The question warrants further in-depth 

investigations.    

The findings in this chapter offer valuable insights, indicating that modality may play 

a crucial role as a moderating variable that warrants thorough examination in future 

research on aptitude for L2 learning. For instance, if language analytic ability is exclusively 

assessed in the written modality, as seen in other existing aptitude batteries, it may only be 

relevant to classroom learning contexts employing explicit and skill acquisition-informed 

learning and teaching approach. Moreover, learners’ abilities, such as vocabulary learning, 

language analytic ability and executive control in WM, may be influenced to varying degrees 

by modality. This highlights the importance of considering modality conditions when explain 

cognitive individual differences in L2 learning. Therefore, it is essential for psychometric 

measurements and experimental design to be sensitive to these nuances. The development 

of TALL into two test suites enables the exploration of modality in future research.  

5.5.2 The fixed effect of test session 

The results showed that test sessions significantly differentiated the scores in the subtests 

of TALL_VL and TALL_LA, but not in TALL_CST. This suggests a clear test-learning effect 

in TALL_VL and TALL_LA. A test-learning effect, also known as a test-practice effect,  

occurs when a test-taker performs better on a  subsequent test due to familiarity with the 

same or similar test content, despite possessing the same level of knowledge or skills 

pertaining to the assessed construct (Davies et al., 1999, cited in Suga & Loewen, 2023). 

In this study, two aspects of the research design were implemented to address potential 

carry-over effects between the two test sessions: a minimum interval of 30 days was 

imposed, and equivalent sets of materials with counterbalanced items were used. Despite 

these measures, results from TALL_VL and TALL_LA still indicated that participants 

showed improved performance when taking the subtests for the second time. One possible 

explanation is that  participants became familiar with the test format or procedures and 

developed effective strategies through repeated engagement with the same test (Suzuki & 

Koizumi, 2020). However, this explanation did not align with the results from TALL_CST, 

where the test-practice effect was not observed. 

 The findings revealing the presence of a test-practice effect in two language 

learning-related subtests (TALL_VL and TALL_LA) and the absence of such an effect in 

one working memory subtest (TALL_CST) are thought-provoking. Methodologically, it 

prompts inquiries regarding the (test-retest) reliability of specific subtests in measuring the 

underlying constructs of aptitude. More importantly, it touches upon the stability of the 

aptitude construct itself. This raises the pivotal question: is aptitude, as defined in the 
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existing literature (Carroll, 1981; Dörnyei, 2005), an inherent and consistent trait that 

remains relatively stable and resistant to change through training? Or is aptitude malleable, 

susceptible to improvement with exposure to language learning opportunities? The scarcity 

of empirical evidence regarding the stability of aptitude measurements restricts comparison 

with past findings, especially considering the use of different aptitude batteries, some of 

which have faced criticism due to instrument unreliability.  

A noteworthy exception is the reliability assessment of the Hi-LAB conducted in a 

series of studies discussed in Hughes et al. (2023). Results from their Reliability Study 3 

indicated that among nine tasks in the Hi-LAB, three tasks exhibited “small” practice effects 

(defined as less than 1/10 of the score range between test-retest sessions) on participants’ 

performances, and two tasks showed “moderate” practice effects (defined as more than 

1/10 of the score range instead). However, crucial details such as the interval between test-

retest sessions and the use of counterbalanced test items were not included in the report. 

Removing methodological uncertainties concerning instrument validity is anticipated to 

facilitate empirical insights into the questions about stability of aptitude: whether it is an 

inherent trait that resists changes through training, a reflex of language experiences that 

can be enhanced with exposure to language learning opportunities, or perhaps a multi-

faceted construct where some components are malleable, but others remain stable. Further 

dedicated investigation into the test-practice effect in measuring aptitude is needed and 

should be included in the research agenda to validate TALL. 

 An additional point is interesting: the interaction between the fixed effects of modality 

and session was not evident in all three subtests, suggesting that the effect of modality on 

the test scores does not vary across different sessions. In other words, the impact of 

modality on participants’ performance in these subtests remains consistent regardless of 

the specific session under consideration.  

5.5.3 All fixed and random effects  

The results from the (Generalised) Linear Mixed-effects Models suggested that small to 

medium proportions of variance can be explained by both the fixed effects and the random 

effects, indicating small to medium effect sizes of all effects considered together on test 

performance. This highlights the importance of including individual differences and task 

characteristics as sources of variation to provide a more comprehensive understanding of 

the observed effects. In linguistic research, the evaluation of MEM often relies on the 

conditional R2 to reflect the predictiveness of the complete model (including both fixed and 

random effects) on the outcome variables, taking individual variability into account.  
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However, some researchers advocate using marginal R2 rather than conditional R2 

(e.g., Barth & Kapatsinski, 2018) to evaluate the predictiveness of MEM. It is important to 

note that much smaller proportion of variance accounted for by fixed effects compared to 

all effects in MEM is frequently reported in studies in SLA (e.g., Bovolenta & Williams, 2022; 

Palma et al., 2022; Suarez-Rivera et al., 2022; cf. Gries, 2021). This perhaps merits a meta-

analysis on marginal R2 and conditional R2 in the literature to determine how much of the 

effects we are interested in examining can actually explain L2 learning phenomena.   
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CHAPTER 6: RESULTS & DISCUSSION FOR RQ3 – 

PREDICTIVE VALIDITY 

 

6.1 Introduction 

This chapter focuses on the investigation of the predictive validity of TALL as a measure for 

language aptitude on learners’ L2 proficiency, and hence providing the evidence of the 

extrapolation inference about the extent to which the scores of TALL subtests reflect 

participants’ L2 learning success (see Section 2.2.3.1). It addresses RQ3: To what extent 

do subtests of TALL predict English proficiency measured by the National Matriculation 

English Test (NMET)?  

The first section introduces the choice of data analytical methods for this RQ, that 

is, the use of statistical method of Multiple Regression Analysis (MRA) to examine subtests 

of TALL as the predictor variables (PVs) in relation to NMET scores of participants’ L2-

English proficiency as the dependent variable (DV) in the current research. It also highlights 

the rationale of using Dominance Analysis (DA) as a supplementary analysis method for 

determining the relative importance of the multiple PVs in predicting a DV (Mizumoto, 

2022a).  The second section presents the results from MRA and DA on the data from the 

Aural Suite and the Written Suite, respectively.  This section is followed by a summary of 

the results, which sequentially leads to the final section of the discussion about the results 

of the predictive validity of TALL on L2 proficiency.  

6.2 Multiple Regression Analysis and Dominance Analysis 

MRA is a statistical analysis method to examine the relationship between a DV and multiple 

PVs. The main goal of MRA, in general, is to create an equation of a model, whether linear 

or nonlinear, that results in a line accurately representing the data while ideally attaining 

parsimony in the model (Jeon, 2015). The equation of MRA can yield the predicted value of 

the DV by summing up the coefficients representing the effect of each PV on the DV and 

the residual representing the variation in DV that is not explained by the PVs. Essentially, 

the coefficients of PVs represent the estimated changes in the DV for every one-unit 

increase in the corresponding PV when holding all other PVs constant.  

For RQ3 in the current research, the primary purpose of analysis was to find out 

whether each of the five components of the aptitude construct, as measured by TALL, can 

stand as an individual predictor of learners’ L2-English learning outcome, as represented 

by NMET scores, after the variances due to other aptitude components were partialled out. 
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The total variance explained by the model was indicated by R2, indicating percentage of the 

variance of L2-English learning outcome that can be predicted from the components of 

aptitude in the model. To address RQ3 about the predictive validity of TALL as a battery 

that has five componential subtests, MRA would be an appropriate analytical method as it 

allows accurately describing the relationships between the DV (the proficiency score) and 

the PVs (the five subtests) while accounting for the shared variance across the PVs 

(Plonsky & Oswald, 2017). 

In the current research, participants took two tests suites in a repeated design, with 

order of the suites and the material versions counterbalanced.  The data were analysed 

separately for each suite, therefore, informing the extent to which the subtests, in each of 

the two suites, could predict L2-English proficiency scores. Data analysis code in this 

chapter was adapted from (Mizumoto, 2022b), rendered in an R markdown file (see 

Appendix D). 

6.2.1 Data preparation and steps for assumption checks 

Prior to the MRA, preparatory steps, as adapted from Jeon (2015), were followed to make 

sure that the data met the assumptions of MRA. 

Step 1. Check the sample size of data for analysis 

This step ensured that the sample size was adequate for conducting a reliable MRA 

according to the rules of thumb proposed in the literature. For example, the sample size 

should be equal or larger than 50 + 8k (k is the number of PVs) (Tabachnick & Fidell, 2012), 

or at least 15 participants for each PV (Stevens, 1996).  

Step 2. Check the linearity of relationship  

In this step, linear relationship between the individual PVs and the DV was checked by the 

scatterplots of each subtest and the NMET score. 

Step 3. Check data independence   

The independence assumption suggested that the observations should be independent of 

each other. This was checked by the autocorrelation plot conducted on the residual of the 

regression model. Ideally, the lags in the plot should not extend beyond the blue lines, which 

suggests that this assumption was met. 

Step 4. Check for homoscedasticity 

This assumption suggested that the variance of the errors should be constant across all 

levels of the variables. It was checked by the scatterplot that displayed the residuals of the 
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regression model in relation to the fitted value predicted by the model. The residuals should 

spread almost equally for all values of the PVs.  

Step 5. Check the normality   

Data used in this section were normalised (see Section 4.5.2 and Appendix H). The 

assumption of the normality of the residuals was checked by plotting the histograms of 

residuals and the normal probability plot (Q-Q plot) on the regression model. 

Step 6. Check the multicollinearity 

This assumption required that PVs in MRA should not be highly correlated. It was checked 

by the computation of the variance inflation factor (VIF). VIF values should be less than 2.5 

for each predictor to indicate that multicollinearity is not a significant issue (Allison, 1999) in 

the regression model. 

6.2.2 Process of Dominance Analysis   

As explained above, MRA is to create the best-fitting model for predicting the DV from a 

group of PVs. This correlation-based method examines the relationship between multiple 

PVs and a single DV by comparing the standardised beta (b*) coefficients. Additionally, 

MRA can also determine the amount of variance in the DV that can be explained by the 

PVs (R2) and the relative importance or contribution of each PV to the overall effect. 

However, in the L2 research community, the pervasive practice of making claims about the 

relative importance of individual predictors in contribution to the learning outcomes based 

on the magnitude of the b* coefficients has been considered a misuse of MRA (Karpen, 

2017). The core of this problem, as elaborated in detail by Mizumoto (2022a), is the 

existence of the suppression effect that could potentially lead to the underestimation or 

overestimation of the importance of PVs if the b* coefficients are compared. The 

suppression effect occurs when one of the PVs is more strongly correlated with the other 

PVs than with the DV, which can lead to the magnitudes of the b* coefficients being different 

from the magnitudes of the correlation (r) coefficients. This limitation cannot be overcome 

by computing the coefficients of partial or semipartial correlations because these methods 

also treated PVs as uncorrelated. Mizumoto, therefore, suggests the use of Dominance 

Analysis (DA) as a supplementary analysis to MRA in order to help tackle the problematic 

interpretation of the relative importance of PVs on DV using the b* coefficients.  

DA as one type of regression, estimates the relative importance of PVs by analysing 

the change in the total variance accounted by the regression model (R2) from adding one 

PV to all possible combinations of the other PVs. In the current research, given that the 
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subtests were the indispensable components of the construct of aptitude, the correlations 

among them should be taken into account in MRA. However, the suppression effect could 

potentially exist because the subtests may correlate with one another more than with the 

NMET as a composite score of L2 English proficiency. Therefore, to address RQ3 about 

the predictive validity of TALL suites for proficiency and to understand accurately the relative 

importance of each subtest as a predictor to the proficiency score, DA should be conducted 

as a complement to the results of MRA. 

The following sections introduce the steps to analyse the relative importance of the 

subtests by conducting relative weight analysis. Relative weight analysis is an alternative 

to DA suggested in Mizumoto (2022a) with less computational expense. This analytical 

approach has been introduced in the field of L2 in Larson-Hall (2016) as a method to 

compute the relative importance metric. The process of conducting relative weight analysis, 

termed as DA by Larson-Hall (2016), started by generating multiple regression models on 

the data, conducting relative weight analysis using the relaimpo package (Grömping, 2006), 

and calculating confidence intervals for the dominant weight of all PVs based on 

bootstrapping procedures using the boot package (Canty & Ripley, 2021) and the yhat 

package (Nimon, et al., 2021). The purpose of using bootstrapped replications to obtain and 

report 95% confidence intervals alongside the dominance weights was to improve the 

interpretation of the rank order of weights. This approach was adapted because the use of 

bootstrapped replications helps account for sampling error variance, which can otherwise 

result in unstable estimates of the magnitudes and rank ordering of dominance weights 

(Braun et al., 2019, cited in Mizumoto, 2022a). The results of correlation coefficients 

between the PVs and the DV, the standardised b* coefficients with p values, and the 

dominance weights with 95% CIs are reported in the section of results.  

6.2.3 Post hoc power analysis of MRA   

Other than the precision of statistics, the quality of data analysis through MRA would be 

largely ensured by power, the likelihood that a test would provide statistically significant 

findings when the relationship of interest exists in truth (Jeon, 2015). The computation of a 

priori power analysis for MRA should be based on previous research and/or theory, for 

example, using the expected value of R2. However, given that TALL is a novel measurement 

that has not been used for substantive research yet to provide the reference values, the 

prior power analysis was not conducted before MRA. The sample size decided in the pre-

data collection stage was based on the prior power analysis conducted for the mixed-effects 

modelling, as reported in Section 3.3.1.2, to investigate the effects of modality in measuring 

aptitude (to address RQ2). Therefore, after conducting MRA, a post hoc power analysis 



 

221 

 

was conducted to compute power, which would help to better understand the quality through 

MRA in the current research and to provide preliminary evidence for prior power analysis in 

future research. 

The formulas for power analysis used in this chapter are introduced by Jeon (2015).  

First, the population effect size (ƒ) was computed from the total variance accounted by the 

regression model (R2) in the following formula: 

𝑓 =
𝑅2

1 − 𝑅2
 

Then the ƒ value obtained was used to determine L, the value needed to identify power in 

the L table (in Cohen et al., 2003) of the selected probability level (e.g., α =.05 in the current 

study), using the following formula, in which N is the sample size and k is the number of 

predictor variables: 

𝐿 = 𝑓2(𝑁 − 𝑘 − 1) 

The corresponding value in the L table (see Figure 6.1) provides information about the 

quality of the regression model in terms of its statistical power. The expected sample size 

could be calculated inversely by using the target power indices of .50 as the threshold for 

adequacy and .80 as the threshold for the ideal (Murphy & Myors, 2004). By corresponding 

to these L values, substantive research can be carried out to obtain further evidence of the 

predictive validity of TALL on L2 learning outcomes.  

 

 

Figure 6.1 L values (α = .05)  

(shorten from TABLE E.2 in Cohen et al., 2003, p. 651) 
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6.3 The results  

6.3.1 Assumption checks 

Multiple regression models were built on the data from the Aural Suite and the Written Suite 

separately to check the assumptions, following the steps introduced in the previous section. 

The output of assumption checks can be found in the R markdown file in Appendix D.    

The final sample size of 165 in each test suite met the required sample sizes, 

specifically 90 according to the rule of thumb in Tabachnick and Fidell (2012) or 75 in 

Stevens (1996). However, this decision could potentially compromise the data’s quality, 

given that test sessions had significant effects on participants’ scores in TALL_VL and 

TALL_LA, as indicated by the results from GLMM in examining modality and session as the 

fixed effects  (see Section 5.3.1 and Section 5.3.2).  

The linear relationships between the subtests and NMET were plotted separately 

for the data from the two suites. The results from the independence assumption checks 

suggested that this assumption was approximately met, with only a few lags extending 

beyond the blue lines, which may not be a serious issue. Additionally, the results from the 

homoscedasticity assumption checks showed that while the scatterplot did not precisely 

indicate equal spreading of the residuals, they also did not exhibit highly clustered patterns. 

This suggested, in a conservative interpretation, that the assumption of homoscedasticity 

was likely satisfied. The results from the normality of residuals checks indicated that the 

distributions of the residuals of the regression models were generally normal. However, it 

is worth noting that some residuals had deviated from normality, especially at both ends. 

Finally, all the VIF values calculated for the predictors were below 2.5 in both suites, 

indicating that multicollinearity was not a significant concern in the regression models. The 

correlation coefficients between all the subtests and NMET scores are provided in Table 

6.1 and 6.2 in the following sections. These tables also serve as evidence that the 

assumption of no multicollinearity was met. 

6.3.2 Regression coefficients and importance weights 

6.3.2.1 The aural suite 

The left part of Table 6.1 showed the correlation coefficients, especially the simple 

correlation coefficients (see the left end column of r) between the DV (i.e., NMET) and each 

of the PVs (i.e., TALL subtests) in the aural suite. The results indicated that the coefficients 

were very close. Specifically, the three subtests of language learning tasks (i.e., TALL_VL, 

TALL_SD and TALL_LA) had coefficients of .24, .26 and .28, respectively, in relation to 

NMET, and the two WM subtests (i.e., TALL_SNWR and TALL_CST) had similar 
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coefficients of .21 and .22, respectively, in relation to NMET.  The standardised b* 

coefficients described the direct relationship between NMET and each subtest while 

controlling for the indirect effects of the other subtests.  The results indicated that only 

TALL_LA had the b* coefficient of .20 that accounted for 20% of NMET variance with a 

significant p value = .01.  

The results from applying DA to the data yielded the dominance weight of each 

subtest and its contribution in percentage to the total variance (R2) accounted for by the 

regression model. Among these results, TALL_LA had the highest dominance weight (.052) 

that contributed 33.55% of the total variance, being clearly the strongest predictor to NMET. 

The dominance weights of all the subtests summed up to R2 = .155, indicating that 15.5% 

variance was explained by the model. The column labelled ‘95% CI’ displayed the lower 

and upper bounds of confidence intervals for the dominant weights of all the subtests. These 

intervals, calculated using bootstrapping procedures, indicated that if samples were 

extracted from the population 1000 times, approximately 95 out of those 100 intervals would 

include the dominance weight (considered as the population parameter) of the 

corresponding subtest. In the rightmost column labelled ‘rank’, all subtests were assigned 

a rank order based on their dominance weights. The ranking provided information about the 

relative importance of the subtests in the aural suite when predicting participants’ L2 English 

proficiency, as represented by NMET scores.  

 

Table 6.1 Coefficients of correlation and regression, and dominance weights (aural suite) 

  

Variables 

r 

b* p 

Dominance 

weight (%) 95% CI Rank 1 2 3 4 5 6 

1 NMET ―           

2 TALL_VL .26 ―     .12 .15 .033 (21.29%) [.004, .092] 2 

3 TALL_SD .24 .31 ―    .09 .27 .025 (16.13%) [.004, .075] 3 

4 TALL_LA .28 .28 .36 ―   .20 .01 .052 (33.55%) [.010, .128] 1 

5 TALL_SNWR .21 .31 .24 .03 ―  .10 .24 .020 (12.90%) [.002, .079] 5 

6 TALL_CST .22 .24 .13 .11 .37 ― .12 .13 .025 (16.13%) [.002, .088] 4 

Total         .155 (100%)   

 

Notes: Dependent variable is NMET of English proficiency. N = 165. R2 = .155, 95% CI [.046, .234]. 

Boldface indicates the coefficient with p value exceeding alpha of .05. 
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The results also indicated the inconsistency in the order of relative importance 

reflected in correlation coefficients from the correlation analysis and the standardised b* 

coefficients from the regression analysis. Specifically, TALL_SD which was given the lowest 

standardised beta coefficient (b* = .09) was not the subtest that had the lowest correlation 

coefficient to NMET. This inconsistency was solved by the DA as the dominance weight of 

TALL_SD (.025 or 16.13%) ranked the third place among all subtests, contributing more 

than TALL_CST and TALL_SNWR to NMET.   

Figure 6.2 visualises the dominance weights of the subtests along with their 

corresponding 95% confidence intervals (horizontal error bars show 95% confidence 

intervals computed from 1,000 bootstrapped replications). These are displayed in 

descending order from the subtest with the largest dominance weight (i.e., TALL_LA) to the 

smallest (i.e., TALL_SNWR). To determine statistical differences between pairs of subtests, 

the confidence intervals were considered. It was found that none of the subtests had a 

statistically larger dominance weight compared to another subtest, as the confidence 

intervals of all subtest pairs contained 0.  

 

 

Figure 6.2 Dominance weights and 95% CI (aural suite) 
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6.3.2.2 The written suite 

The left part of Table 6.2 showed the correlation coefficients, especially the simple 

correlation coefficients (the left end column of r) between the DV (i.e., NMET) and each of 

the PVs (i.e., TALL subtests) in the written suite. The results indicated that the coefficients 

of all the subtests except TALL_CST in relation to NMET were very close, ranging from .24 

to .32. The coefficient between TALL_CST and NMET was the lowest (r = .16)  The results 

of the standardised b* coefficients indicated that two subtests, TALL_SD and TALL_LA, had 

b* coefficients of .22 and .17, respectively. These coefficients accounted for 22% and 17% 

of NMET variance, with significant p-values of .004 and .03 respectively.  

The results from applying DA to the data yielded the dominance weight of each 

subtest and its contribution in percentage to the total variance (R2) accounted for by the 

regression model. Among these results, TALL_SD had the highest dominance weights 

(.067) that contributed 36.22% of the total variance, being the strongest predictor to NMET. 

The dominance weights of all subtests summed up to .185, which was a similarly low value 

of R2 as that in the aural suite, indicating that 18.5% variance was explained by the model. 

The 95% confidence intervals displayed the lower and upper bounds of confidence intervals 

for the dominant weights of all the subtests. In the column of ‘rank’ provided information 

about the relative important of the subtests in the written suite when predicting participants’ 

L2 proficiency in NMET scores. 

 

Table 6.2 Coefficients of correlation and regression, and dominance weights (written 

suite) 

  

Variables 

r 

b* p 

Dominance 

weight (%) 95% CI Rank 1 2 3 4 5 6 

1 NMET ―           

2 TALL_VL .24 ―     .13 .07 .031 (16.76%) [.002, .111] 4 

3 TALL_SD .32 .18 ―    .22 .00 .067 (36.22%) [.017, .148] 1 

4 TALL_LA .27 .15 .27 ―   .17 .03 .043 (23.24%) [.006, .116] 2 

5 TALL_SNWR .26 .27 .23 .16 ―  .15 .06 .037 (20.00%) [.004, .108] 3 

6 TALL_CST .16 .17 .23 .22 .30 ― .00 .99 .007 (3.78%) [.002, .044] 5 

Total         .185 (100%)   

 

Notes: Dependent variable is NMET of English proficiency. n = 165. R2 = .185, with 95% CI 

[.07, .27]. Boldface indicates the coefficients with p values exceeding alpha of .05. 
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The results did not show inconsistency in the order of relative importance reflected 

in correlation coefficients from the correlation analysis and the standardised b* coefficients 

from the regression analysis. Dominance weights of all subtests assured TALL_SD (.025 or 

16.13%) ranked highest among all subtests, with TALL_LA, TALL_SNWR, and TALL_VL 

contributing in a descending order to the variance of NMET. TALL_CST had a negligible 

contribution, with its dominance weight being the least among all subtests.   

Figure 6.3 presents the visualisation of the dominance weights of the subtests and 

the corresponding 95% confidence intervals with error bars in a descending order from the 

largest dominance weight (TALL_SD) to that with the smallest dominance weight 

(TALL_CST). The confidence intervals for all pairs of subtests indicated the statistical 

differences existing between the dominance weights of Sound Discrimination and Complex 

Span Tasks at the alpha level of .05. Other pairs of subtests did not have statistically 

different dominance weight in comparison with one another.  

 

 

Figure 6.3 Dominance weights and 95% CI (written suite) 

Note. The asterisk indicates statistically a significant difference (p < .05)  
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6.3.3 Post hoc power analysis 

A post hoc power analysis was conducted to compute power after MRA to provide further 

information about the quality of the analysis in the current research and preliminary 

evidence for prior power analysis in future research.   

Using the formulas presented in Section 6.2.3, the population effect size (ƒ = .183) 

of the aural suite was obtained from the total variance accounted by the regression model 

(R2 = .155). This further indicated that, based on the sample size (n = 165) in the current 

research, the regression analysis had statistical power (L = 5.25) of the index around .40 in 

the L table (see Figure 6.1), which is relatively low. Inversely, if the same regression model 

(R2 = .155) could demonstrate adequate statistical power, the acceptable sample size would 

be n = 217 and the ideal sample size would be n = 395, calculated by using the acceptable 

power index of .50 and the ideal power index of .80 (Murphy & Myors, 2004) and their 

corresponding L values (6.99 for .50, and 12.83 for .80) in the L table.  

 Similarly, the population effect size (ƒ = .23) of the written suite was calculated from 

the total variance accounted by the regression model (R2 = .185). This further indicated that, 

based on the sample size (n = 165), the regression analysis had statistical power (L = 8.27) 

of the index close to .60 in the L table (Figure 6.1), which is above the acceptable threshold 

of power index of 0.50. Inversely, if the same regression model (R2 = .185) could 

demonstrate acceptable statistical power, the acceptable sample size would be n = 140 and 

the ideal sample size would be n = 253, calculated by using the corresponding L values in 

the L table. 

6.4 Summary of the results 

The focus of this chapter was to investigate RQ3:  

• To what extent do subtests of TALL predict English proficiency measured by the National 

Matriculation English Test (NMET)? 

MRA with supplementary DA was used, as these facilitated the examination of the total 

variance of the dependent variable, i.e., NMET of L2 English proficiency, being accounted 

for by five subtests of TALL in the aural and the written suites, respectively. Prior to 

conducting MRA, assumptions were checked and warranted. The results of MRA indicated 

that the subtests in both suites could only explain about 16 – 19 % variance of NMET. 

Dominance weights computed through DA indicated that TALL_LA was the strongest 

predictor of NMET in the aural suite, though the differences between any pairs of subtests 

in dominance weights were not statistically significant at the alpha level of .05. The rank 

order of dominance weights of the subtests in the written suite had a different pattern from 
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that in the aural suite. Specifically, TALL_SD had the highest contribution in explaining the 

variance of NMET and it had statistically significant difference compared to the subtest of 

TALL_CST (which had a negligible contribution) in their dominance weights.   

Post hoc power analysis indicated that the regression analyses had statistical power 

of indices of .40 for the aural suite and .60 for the written suite approximately on the sample 

size (n = 165) in the current study. The results suggested that if the population effect sizes 

were taken as the preliminary evidence for prior power analysis in future research, larger 

sample sizes (ideally, 395 for the aural suite and 253 for the written suite) would be 

necessary to warrant the acceptable statistical power of the regression model computing 

the predictive validity of the subtests of TALL on L2 proficiency represented by NMET.   

6.5 Discussion for RQ3  

RQ3 sought to investigate the predictive validity of TALL in participants’ L2-English 

proficiency represented by their self-reported scores in the National Matriculation English 

Test (NMET). To answer RQ3, MRA with supplementary DA were used. This ‘macro’ 

approach, as explored in the current study, examines the correlations of aptitude constructs 

with language achievement. This approach has received less attention in recent decades 

compared to the ‘micro’ approach, which involves investigating aptitude through 

experimental or quasi-experimental research designs focused on instructional comparisons 

or intervention processes (Skehan, 2019). Nevertheless, the current results of correlations 

between TALL (in two suites) and L2 proficiency scores are informative, providing insights 

into how aptitude measures relate to L2 achievement that has been developed overtime.   

6.5.1 Predictive validity of TALL for global aptitude  

The results of MRA indicated that participants’ scores obtained in the aural suite of TALL 

could explain about 16% of the total variance of their scores on NMET, while their scores in 

the written suite could explain about 19% of the total variance of their scores on NMET. 

These results aligned with what reported by Granena and Long (2013): aptitude typically 

accounts for 10%‒20% of the variance in predicting learners’ ultimate L2 attainment. 

Converting the percentages of the total variance (i.e., R2) to correlation coefficients, 

participants’ performance in TALL’s aural suite correlated to their L2 proficiency (as 

measured by NMET) at r (165) = .39, close to a medium effect size according to the 

benchmarks suggested by Plonsky and Oswald (2014), and their performance in TALL’s 

written suite had a medium effect size of r (165) = .43 in terms of its correlation to their 

NMET scores. The results suggested that other variables of individual differences, e.g., 

learners’ motivation and previous learning experience, that are not captured by TALL may 

also predict the L2 proficiency, which is not surprising.  In general, the current study 
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suggested that aptitude had a small to medium effect size on participants’ L2 proficiency. 

Compared to using measures for aptitude in the aural suite, aptitude may correlate better 

with L2 proficiency―at least when measured by assessments such as NMET―when 

measured in the written suite.  

The findings of the moderate correlations between aptitude (written suite) and L2 

proficiency was slightly lower than a meta-analytic correlation (r = .49) between 

aptitude/aptitude components (measured by the MALT, the PLAB, the LLAMA and VORD 

(Child, 1998)) and general L2 proficiency (represented by course/exam grades or TOEFL) 

in Li (2016). Furthermore, findings in the current study align with correlations between the 

composite LLAMA scores and L2 outcomes, reported in the synthesis study by Bokander 

(2023). The author found that (drawing on only a small number of studies that have used 

composite scores of the LLAMA tests), all 7 studies in the synthesis reported significant 

correlations. Specifically, Artieda and Muñoz (2016) yielded a moderate correlation of r (88) 

= .39 between the LLAMA tests and the end-of-year official school L2 proficiency tests, with 

its largest sample of participants at the intermediate level of L2-English. Their findings were 

in line with the correlations revealed in the current study.    

 It needs to be noted that the research plan was affected by the pandemic (as 

indicated in the COVID-19 Impact Statement). As a result, participants were recruited based 

on their self-reported L2 proficiency scores, which were obtained after at least 6 years of 

instructed English-as-a-foreign-language learning. Given that TALL’s design was built upon 

Skehan’s (2016) Stages Approach that draws upon aptitude componential abilities in the 

early stages of language learning, it is expected that the correlations between TALL and L2 

attainments after long-term learning experience would be weak, given that so many other 

factors come into play over time during language learning. However, the results of the 

current study still evidence moderate correlations between aptitude and L2 attainment.  

Further research is essential to explore the predictive validity of TALL in L2 learning 

outcomes using the ‘micro’ approach. This entails obtaining evidence regarding the role of 

TALL in explaining aspects of language learning within diverse contexts through 

experimental or quasi-experimental studies. Such studies should maintain stringent control 

over the nature of the learning measures, considering factors such as the written/aural 

modality, explicit or metalinguistic knowledge involved, timed/untimed conditions, and 

spontaneous/controlled elicitation. It is important to recognise that predictive power of 

aptitude batteries is likely to be influenced by these factors in the learning measures. 

Additionally, it is also needed to investigate the role of aptitude in naturalistic learning 

environments, particularly where learning predominantly occurs in the aural modality, as 
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seen in the case of learners with low literacy or (im)migrant learners. Such research will 

contribute to the evaluation of the underlying structure of aptitude upon which TALL has 

been constructed and will enhance our understanding of  the relationship between the 

global aptitude construct and various aspects of L2 learning. 

6.5.2 Individual predictors of the subtests   

The results of DA provided the breakdown of dominance weights of the subtests as 

individual predictors in explaining L2 proficiency scores. The results indicated that, in the 

aural suite, TALL_LA (Language Analysis) was the strongest predictor and the only subtest 

that significantly predicted the scores of NMET, followed by TALL_VL, TALL_SD, 

TALL_CST, and TALL_SNWR sequentially. The subtests in the written suite, however, had 

a different rank order of dominance weights: TALL_SD was the strongest predictor, followed 

by TALL_LA, both predicted NMET significantly. TALL_SNWR, TALL_VL and TALL_CST 

ranked sequentially in a descending order of the dominance weights as non-significant 

predictors. Furthermore, TALL_SD and TALL_CST in the written suite was the only pair that 

had significantly different dominance weight. This suggests that, in general, the subtests of 

TALL play roles that are not significantly different in explaining L2-English proficiency. 

These findings indicated that modality has effects on the predictive validity of TALL, as 

different suites of TALL show varying levels of explanatory power on learning gains.  

The predictive role of each subtest will be discussed sequentially below. 

6.5.2.1 Predictive role of TALL_LA 

The finding of TALL_LA predicting L2 proficiency scores significantly is not surprising. It is 

in line with the results reported by Bokander’s (2023) synthesis of predictive validity of 

LLAMA_F (measuring language analytical ability) on general L2 learning. The author 

reported that LLAMA_F has contributed more correlational evidence than other LLAMA 

subtests and has the highest proportion of significant correlations, although individual 

studies investigating predictive validity of LLAMA_F on general L2 learning reported mixed 

findings. For example, LLAMA_F had a significant positive correlation of r (88) = .39 with 

participants at L2-English intermediate level in Artieda and Muñoz’s (2016) study. However, 

LLAMA_F was not found to significantly predict the proficiency of learners of Swedish (n = 

48) at the beginner level who had non-Germanic L1 background in Bokander’s (2020) study. 

Bokander explained that the lack of correlation between LLAMA_F and learning outcomes 

could possibly be due to the way the L2 was measured: The global measure of Swedish 

using C-test does not target any particular linguistic features but rather on the general 

language proficiency tapping into textual, grammatical, and lexical knowledge. Although 

NMET used in the current study is also a global proficiency test (albeit it is different from the 
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C-test), it was significantly predicted by TALL_LA in both modalities. This provides strong 

support to the notion that language analytic ability plays important role in L2 learning 

(Skehan, 1998; Roehr-Brackin, 2022).  

6.5.2.2 Predictive role of TALL_SD 

As shown in the results, TALL_SD for phonetic coding ability predicted NMET scores 

significantly in the written suite, and this subtest had the highest dominance weights among 

all subtests. This finding is intriguing because the coefficient and dominance weight from 

the regression model for TALL_SD is lower in the aural suite than in the written suite, 

although the subtest remains the same in both suites (albeit experienced in different 

versions by individual participants). It suggests that TALL_SD, as a measure for the ability 

of encoding and differentiating unfamiliar sounds, explains more variance of a composite 

score of NMET when it is used in the written suite than in the aural suite. In addition, another 

subtest measuring sound-related ability, that is TALL_SNWR, also has a lower coefficient 

and dominance weight in the aural suite relative to in the written suite, although it does not 

explain the variance of NMET scores at a significant level.  Taking these findings together, 

it seems that these two subtests, administered in the aural modality but included in the 

written suite may predict L2 proficiency in NMET better compared to their predictive power 

in the aural suite when other subtests are also administered in the aural modality. The 

possible explanation could be that the mix of modalities in the written suite of TALL (with 

some aural and some written tests) has closer alignments with the test composition of the 

NMET: the score of NMET reflects the combination of performance from the sections 

involving listening, reading, knowledge use and writing that are in both aural and written 

modalities. This finding also provide evidence to support that the ability to handle unfamiliar 

sounds plays a fundamental role in learning a new language, and it can be an important 

predictor of L2 proficiency (Skehan, 1998, 2016).   

This finding was in line with the results reported in Li’s (2016) synthesis of empirical 

studies investigating correlations between L2 learning achievement and aptitude 

components measured by the MLAT and the PLAB, in which phonetic coding ability was 

found to be the strongest predictor. It also aligned with the findings reported by Artieda and 

Muñoz (2016) that LLAMA_E (measuring sound-symbol pairing in the written modality) had 

a significant correlation (r = .26) with L2-English proficiency scores of 88 participants at 

intermediate level, although LLAMA_D (measuring sound sequency recognition in the aural 

modality) did not correlate significantly with participants’ L2 proficiency. However, as noted 

above, the results in Bokander (2020) from the multiple regression analysis showed that 

LLAMA_E and LLAMA_D displayed non-significant coefficients in explaining the variance 
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of proficiency of Swedish in the subgroup of participants (n = 48) who had non-Germanic 

L1 background. The discrepancy of findings in the role of sound-related aptitude subtests 

can perhaps be explained by the different proficiency tests used in these studies. 

Specifically, the English proficiency test in Artieda and Muñoz (2016) measured use of 

language, reading, listening, writing, and speaking of the participants, which were similar to 

the NMET in the current study. The Swedish proficiency in Bokander (2020) was tested in 

the C-test involving textual, grammatical, and lexical knowledge, which was in the written 

format.  

6.5.2.3 Predictive role of TALL_VL 

The results in the current study indicated that TALL_VL, in both suites, eliciting the construct 

of associative memory, plays a small but non-significant role to predict NMET. This role 

does not appear to vary when tested in different modalities.  

 The limited role of associative memory on explaining L2 proficiency in the current 

study aligns with Bokander’s (2020) finding of a non-significant regression coefficient of 

LLAMA_B (measuring associative memory) in explaining L2-Swedish proficiency among 

the non-Germanic L1 subgroup. However, it’s worth noting that Artieda and Muñoz (2016) 

reported a weak but significant positive correlation coefficient (r (88) = .21)) between 

LLAMA_B and L2-English proficiency participants at intermediate level. Notably, this 

correlation coefficient was slightly lower than Kendall’s tau coefficients (.26 in aural 

suite, .24 in written suite) of TALL_VL and NMET.  

In summary, while MRA did not establish a statistically significant predictive 

relationship between TALL_VL and NMET, there does appear to be some small statistical 

association between associative memory and L2 proficiency. This could possibly be 

explained by the relatively advanced stage of the participants in this study. Their relatively 

large and still expanding lexicons may not accurately reflect the very early stages of word 

learning that TALL_VL is designed to assess. Another possible explanation could be related 

to the issue of relatively lower reliability and unidimensionality of TALL_VL in the aural 

modality (as mentioned in Section 4.3.2.3), which might undermine the confidence in the 

findings when using this particular instrument. 

6.5.2.4 Predictive role of WM subtests 

The results indicated non-significant role played by the two WM subtests on predicting 

NMET scores. Their predictive powers ranked lower in both suites when compared to the 

subtests of TALL_VL, TALL_SD, and TALL_LA that involve language learning tasks (except 

that TALL_SNWR contributed slightly higher than TALL_VL in the written suite). TALL_CST 
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in the written suite, in particular, was the predictor that explained the least amount of 

variance in NMET scores.  

The finding that executive control capacity in WM contributes the least to the 

prediction of L2 proficiency aligns with the non-significant (and some unexpected non-

positive) relationships between executive functions and high-attainment outcomes of 

advanced foreign language learners reported in Linck et al. (2013) when executive functions 

were assessed by the domain-general measures in the Hi-LAB. However, PSTM in WM, as 

measured by domain-specific span tasks in their study, was found to significantly predict 

learning outcomes, which did not align with the finding that TALL_SNWR fails to predict 

NMET in the current study. Possible reasons for this disparity could be the different L2 

proficiency tests used and variations in the proficiency levels between the two studies.  

It’s noteworthy that WM has been found to have significant associations with L2 

proficiency in studies using correlation analysis. For example, in Kormos and Sáfár’s (2008) 

research in the classroom-based foreign language learning context, the authors explored 

the relationship between WM (measured by a nonword repetition test and a backward digit 

span test) and participants’ performance in a global English proficiency test, encompassing 

reading, listening comprehension, composition, language use, and oral exam. For 

Hungarian-speaking teenage learners at the pre-intermediate level (n = 21), the weighted 

average scores of the nonword span tasks exhibited a moderate and significantly positive 

correlation (r =.47) with the global scores of the proficiency test. Regarding general WM (as 

termed by the authors) measured by the backward digit span test, a significantly positive 

correlation (r =.55) was observed between the total scores of L2 proficiency and the 

backward digit span test scores for participants (n = 45) at both beginner and pre-

intermediate levels. Interestingly, the two WM tests were found to be uncorrelated with each 

other.  

Given the heterogeneity in sampling, scoring, and statistical methods used,  direct 

comparison between the results of the current study and Kormos and Sáfár’s (2008) study 

can be challenging. However, the correlation and regression coefficients of TALL_SNWR 

concerning L2 proficiency in the current study may still suggest the potential role of PSTM 

in explaining the L2 proficiency of learners beyond the beginner level. However, the 

predictive power of PSTM may be relatively small. In contrast to Kormos and Sáfár’s 

findings, the two WM subtests in the current study were significantly correlated. This result 

is plausible since the subtests were constructed based on the P/E model (Wen, 2016) and 

both used domain-specific verbal stimuli. 
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Admittedly, the holistic L2 proficiency score in the current study may not offer further 

evidence regarding the role of WM in predicting language learning outcomes involving 

specific competencies. Understanding the relationships between WM and various L2 

learning processes merits extensive research, as elucidated in the discussion of the 

relationships between WM and specific learning processes by Juffs and Harington (2011). 

Additionally, it’s crucial to acknowledge the relatively lower reliability and unidimensionality 

(as mentioned in Section 4.3.2.3), as well as the lack of challenge in assessing participants’ 

ability in TALL_CST in the written modality (as mentioned in Section 4.4.2.5). This could 

potentially undermine the confidence in the findings when using this subtest in the current 

study. 

6.5.3 Statistical power of regression analyses 

The results of post hoc power analysis indicated that the regression analyses in the current 

study had relatively low statistical power indices, approximately .40 for the aural suite 

and .60 for the written suite, given the sample size of 165 participants in this study. These 

post hoc power analyses suggest that the sample size could be considered almost 

acceptable, as it is above the threshold of power index of 0.50 for the written suite, but not 

for the aural suite. These findings can sever as preliminary evidence for the need to conduct 

power analysis in subsequent research endeavours. Ideally, to ensure sufficient statistical 

power for the regression model with an ideal index of .80 based on the population effect 

sizes found in the current study, future studies should recruit a sample size of 395 

participants for the aural suite, and 253 participants for the written suite.  

 The findings from this study contribute to the ongoing debate in the field, as 

highlighted by Isbell et al. (2022), Nicklin and Vitta (2021), and Plonsky (2013), regarding 

the need to enhance the methodological rigour of quantitative research. These results 

underscore the importance of conducting prior power analysis, which is essential to ensure 

the robustness of results when investigating the predictive validity of aptitude measures on 

L2 learning outcomes.   
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CHAPTER 7: CONCLUSION 

 

7.1 Summary of the study 

This thesis has reported the development of an internet-based aptitude battery, known as 

Tests of Aptitude for Language Learning (TALL), and the preliminary checks of its internal 

validity as an aptitude battery and its predictive validity for explaining participants’ scores 

on an L2-English proficiency test.  

 The development of TALL has been motivated by the theoretical inquires and 

methodological concerns regarding the aptitude batteries used in L2 learning research. First, 

the development of aptitude measurements has not generally kept pace with changes in 

theoretical frameworks that characterise the multi-faceted construct of aptitude pertaining 

to L2 learning. Second, it is crucial to ascertain the reliability and validity of aptitude batteries 

prior to conducting aptitude-learning research, yet this step has been surprisingly neglected 

to date (cf. Bokander & Bylund, 2020). Based on the theoretical frameworks of the Stages 

Approach (Skehan, 2016) and the Phonological/Executive (P/E) Model (Wen, 2016), TALL 

has been developed to measure four facets of aptitude that represent cognitive abilities 

considered to be involved in the early stages of L2 learning and development. These 

abilities are associative memory, phonetic coding ability, language analytic ability, and 

working memory (specifically, phonological short-term memory and executive control 

capacity), measured by five subtests, i.e., Vocabulary Learning (TALL_VL), Sound 

Discrimination (TALL_SD), Language Analysis (TALL_LA), Serial Nonwords Recall 

(TALL_SNWR), and Complex Span Tasks (TALL_CST), respectively.  

In addition, TALL has been designed to address unresolved concerns in aptitude 

measurement to date. First, it has employed domain-specific verbal stimuli in all subtests, 

including WM subtests. Second, TALL has two separate test suites to differentiate the aural 

and the written modalities in which test items are presented in the subtests of TALL_VL, 

TALL_LA, and TALL_CST. Additionally, the potential confounds of L2 knowledge have been 

mitigated by using participants’ L1 as the instructional language of the entire battery and 

the encoding language for the stimuli in WM subtests. Finally, items for language learning 

tasks have been created in a semi-artificial language to ensure the novelty for participants 

in the current research.  

Importantly, TALL has been developed into an internet-based battery to enable 

remote data collection during the Covid-19 pandemic. Specific technical considerations 

served to minimise problems that may threaten its internal validity (Newman et al., 2021). 
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For example: (i) archival techniques for recording response time allows researchers to 

identify anomalous (too fast) responses; (ii) explicit instructions and warnings displayed on 

the screen throughout the test aims to reduce dishonest test behaviours; (iii) assigned 

single-use test codes prohibit participants from reattempting the test. The efforts of 

developing TALL into an internet-based instrument merited making the instrument openly 

accessible to other researchers (Pan & Marsden, under review).    

The current study was conducted to answer three research questions. RQ1 sought 

to examine the reliability and internal validity of TALL, based on a validation plan that 

provide evidence for making (1) a generalisation inference about all subtests being 

representative as measures for their intended constructs; (2) a scoring inference about 

items in each subtest being efficient to assess participants’ abilities; and (3) an explanation 

inference about TALL aligning with the theoretical frameworks underpinning its construction. 

RQ2 investigated the extent to which modalities had effects on the scores in the three 

subtests that had test stimuli presented in the aural and the written modalities. RQ3 

concerned the predictive validity of the subtests of TALL in explaining participants’ L2-

proficiency represented by self-reported scores on the National Matriculation English Test 

(NMET).  

The final data for analyses were collected from 165 participants who were Year-one 

undergraduates from eleven universities in China and had taken the NMET within six 

months prior to the study recruiting date. They took two rounds of TALL in a within-subject 

design, with two test suites (one ‘aural’ suite, with only aural subtests, and the other ‘written’ 

suite, with written and aural subtests) and two versions of items in each subtest being 

counterbalanced over two sessions. A minimum 30-day interval between the two sessions 

was imposed to reduce any carry-over effect that participants would have in taking TALL 

repeatedly. After completing tests, participants received 50-yuan cash through online 

payment and a report of the scores in all subtests.   

7.2 Summary of the findings 

Analysis 1 

Analysis 1 of the reliability and internal validity of TALL was conducted on the data at the 

subtest level, the item level, and the battery level.  

The results showed that, in general, all subtests had satisfactory reliability according 

to the coefficients of omega and Cronbach’s alpha, except that three datasets, i.e., Version 

A of TALL_VL in the aural suite, Version A and Version B of TALL_CST in the written suite, 

had coefficients of alpha lower than .74, the field-specific acceptable threshold proposed by 
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Plonsky and Derrick (2016).  The indices used to explore the unidimensionality of the 

subtests revealed that these three datasets had displayed lower unidimensionality 

compared to other datasets, suggesting that these subtests may not measure a single 

underlying dimension or construct.  

The data at the item level were analysed used the Rasch model (for dichotomous 

datasets of TALL_VL, TALL_SD, and TALL_LA) and the Generalised Partial Credit model 

(for polytomous datasets of TALL_SNWR and TALL_CST) based on the Item Response 

Theory. The results did not reveal clear evidence to suggest that any items were of poor 

quality that may threaten the validity of the subtests, and so deletion of items was not 

necessary. However, the amount of information provided by the instruments varied between 

the subtests, with TALL_CST in the written suite providing least total information about 

participants’ executive control capacity in WM and performed particularly poor at 

discriminating those who had ability above the average. This suggested a ceiling effect of 

TALL_CST administered in the written modality.  

The internal validity of TALL as a comprehensive aptitude battery was investigated 

at the battery level on the aggregated datasets of the aural suite and the written suite, 

respectively. The results of Principal Component Analysis revealed that neither suite had 

much redundancy and so there was no reduction (removal) of any subtests. The results of 

the Confirmatory Factor Analysis provided strong evidence that the data of both suites fitted 

well to the hypothesised four-primary-factor model based on the theoretical frameworks (the 

Stages Approach and the P/E Model) on which TALL was constructed. 

Analysis 2 

Analysis 2 about the effects of modality on subtest scores presented in the aural and the 

written modalities (whereby each participant experienced different stimuli in the different 

modalities) was conducted using generalised linear mixed-effect modelling on the 

dichotomous data of TALL_VL and TALL_LA, and linear mixed-effect modelling on the 

polytomous data of TALL_CST. The results provided clear support to the hypothesis that 

participants’ performance in these three subtests would benefit more if the items or stimuli 

are presented in the written form than in the aural form. Although test session as another 

main factor was also found to have effects on participants’ scores in TALL_VL and TALL_LA, 

which suggested a clear test-learning effect (Davies et al., 1999), the effect of test session 

on participants’ performance in the Complex Span Tasks was not evidenced. The results of 

model performance evaluation indicated that a much larger proportion of the variance in 

test performance was explained by all factors, which included both the fixed effects and the 
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random effects of individual factors into account, than by the main factors of interest (i.e., 

modality and session) alone. The results from the (Generalised) Linear Mixed-effects 

Models indicated that substantial proportion of variance can be explained by both the fixed 

effects (i.e., modality and test session) and the random effects (i.e., participants and test 

items), and the effect sizes of all effects taken together were medium to large on explaining 

performance. This highlights the importance of including individual differences and task 

characteristics as the sources of variation to provide a more comprehensive understanding 

of the observed effects.  

Analysis 3 

Analysis 3 of the validity of the subtests of TALL in predicting L2-English proficiency 

measured by the NMET involved multiple regression analysis with supplementary 

dominance analysis. The results of multiple regression analysis showed that all subtests 

could only explain about 16 – 19 % variance of NMET (which converted to a small to 

medium effect size of the correlations), which is not surprising as it suggested that other 

variables of individual differences, e.g., learners’ motivation and previous learning 

experience, that are not captured by TALL may also predict the L2 proficiency scores.  

Dominance weights computed through dominance analysis indicated that TALL_LA in the 

aural suite was the strongest predictor of the NMET, while TALL_SD in the written suite had 

the highest contribution in explaining the variance of the NMET.  

7.3 Limitations and implications for future research  

7.3.1 … related to implicit-explicit language learning and knowledge    

TALL has been developed to measure different components of the aptitude construct and 

tailored to investigate effects of modality on aptitude measures. However, it has a 

limitation―it is not designed to differentiate implicit and explicit aptitude constructs that are 

involved in implicit and explicit learning. The main reason for this limitation is the challenge 

of developing domain-specific measures that are valid for assessing implicit aptitude.  

A special issue of Studies in Second Language Acquisition was dedicated to implicit 

language aptitude (Li & DeKeyser, 2021) with the aim of distinguishing implicit aptitude from 

the “traditional” concept of explicit aptitude in explaining the nature of L2 learning or 

knowledge. Methodological concerns regarding the validity of measurements used to test 

language aptitude claimed to be implicit persist. For example, Perruchet (2021) reviews four 

possible reasons to explain the unexpected general pattern in which implicit learning tasks 

(supposed to measure implicit aptitude) did not, or only weakly, correlated with each other 

and demonstrated inconsistent predictive power on L2 learning, as reported by the studies 
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published in the special issue. These reasons are: (i) an inadequate choice of tasks; (ii) a 

low reliability of measures used; (iii) the profound impact of the initial ability level on the 

supposedly ‘new’ implicit tasks; and (iv) the fact that L2 learning may also rely on the 

automatic utilisation of knowledge initially gained through explicit learning, which may not 

be fully captured by the implicit learning tasks used in the experimental settings.  

These methodological limitations, in turn, raise fundamental questions about the 

operationalisation of implicit aptitude. A practical challenge in distinguishing between 

implicit and explicit aptitude lies in the lack of convincingly established methods for 

capturing implicit/explicit learning or knowledge (Isbell and Rogers, 2021). Recent studies 

using a fine-grained research paradigm have compared neurocognitive and behavioural 

data, suggesting that advanced learners dynamically utilise both types of knowledge 

(Suzuki, et al., 2022, 2023). Thus, there is a pressing need for a valid experimental 

paradigm to investigate implicit (versus explicit) aptitude and its predictive role in L2 learning. 

This direction will be an integral part of a long methodological journey to refine and iterate 

TALL.  

7.3.2 … related to sampling bias  

While the current research recruited participants from eleven colleges and universities to 

include samples that could reflect wide level of individual abilities, it is not immune to the 

systematic sampling bias in SLA research (Andringa & Godfroid, 2020) which tends to 

sample from WEIRD (Western, Educated, Industrialised, Rich, and Democratic; Henrich et 

al., 2010) populations. Even though the sample is from the Chinese (non-Western) context, 

it represents only a narrow slice of learner populations, and it shares many characteristics 

with other WEIRD samples, e.g., most of the participants are young college students who 

are expected to have high levels of cognitive ability and L1 literacy.   

 The superior aptitude of college students for language learning has been evidenced. 

For instance, strong L1 and L2 relationships were reported between individual differences 

(measured by the MLAT) in L1 attainment and in L2 achievement (Sparks et al., 2023), and 

Sparks and Dale (2023) argued that the predictive power of the MLAT for L2 achievement 

is primarily due to its functioning as a measure of L1 ability. Thus, aptitude research relying 

on learners with high L1 literacy level impedes generalising findings to wider learner 

populations. Additionally, WM measures and its functions are found to vary across the 

lifespan (see Gajewski et al., 2018), thus, college students, being self-selecting and then 

triaged through admission criteria do not fully reflect the full spectrum of working memory 

capacities (Wen et al., 2021). 
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 Making TALL an IBR instrument should, in principle, unlock the potential to diversify 

participant sample beyond the traditional pool of college undergraduates (Casler et al., 2013; 

Newman et al., 2021). However, in practice, IBR platforms may still contribute findings that 

represent a narrow sample of the entire learner population (Newson et al., 2021; De Oliveira 

& Baggs, 2023), as they only reach those who have access to online digital facilities, as 

highlighted in the guidelines by the British Psychological Society on IBR (BPS, 2021). In the 

current study, efforts were made to address issues related to accessibility, such as using 

participants’ L1-Chinese as the language in recruiting communication, consent form, and 

test instructions. These efforts also helped address potential conflation with L2-English 

proficiency. Additionally, asynchronous technical support was offered through chat function 

of a social media group to engage participants who lacked sufficient digital literacy. However, 

despite these efforts, some obstacles related to accessibility were not fully addressed.  

Various issues need to be addressed in future research especially when wider 

learner populations are sought (e.g., participants from low L1 literacy and less social-

economically privileged backgrounds). For example, including an automatic ‘read aloud’ 

feature (see Shepperd, 2022) in participants’ background questionnaire and consent form 

could address low levels of print literacy. However, the test instructions in TALL need to be 

presented in different modalities aligned with test suites. Digital literacy (participants’ 

knowledge about the set-up of the computer), internet access, and access to an appropriate 

environment for testing are also essential to collecting quality data. One solution is to 

provide a test venue that is distraction-free with stable internet access. 

7.3.3 … related to aptitude‒treatment interaction research  

The existence of a valid aptitude battery can help to diversify instructional methods to 

optimise learning outcomes based on individual differences (Cronbach & Snow, 1977, cited 

in Hughes et al., 2023; DeKeyser, 2019; Roehr-Brackin, 2020). Research on aptitude‒

treatment interaction has been ongoing since the MLAT’s inception. However, its progress 

has been hindered by the limited availability and validation of aptitude measures. These 

measures should be underpinned by theoretical frameworks and supported by accumulated 

empirical evidence that links aptitude components to L2 learning.  

 In particular, two directions for aptitude‒treatment interaction research merit 

exploration.  

First, within instructed L2 learning contexts, little research has compared learning 

outcomes across different aptitude components using approaches, such as immersion, 

task-based instruction, and traditional grammar-based instruction (Li & Zhao, 2021). 
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Moreover, it is important to consider optimal strategies for managing cognitive demands 

during classroom activities and aptitude assessments, particularly when dealing with 

vulnerable populations, which also relates to the concern about sampling bias discussed in 

Section 7.3.2. 

Second, in naturalistic (such as long-term immersion) L2 learning contexts, limited 

research has investigated the role of aptitude in explaining learning outcomes (e.g., 

Bolibaugh & Foster, 2021). In untutored settings, for any explicit learning to take place, 

learners must direct their own attention to discern meaningful patterns from the input. Thus, 

high aptitude or specific components like language analytic ability may enhance learning 

success. To investigate this, an aptitude battery in the aural modality, such as TALL, may 

be useful. However, Roehr-Brackin (2020) highlights that the existing studies in naturalistic 

learning environments have predominantly depended on short-term interventions or the use 

of artificial or mini-languages. This raises questions about the depth of our understanding 

regarding aptitude‒treatment interaction in such contexts. 

7.3.4 … related to Open Research practice 

The investment of time and funding to develop TALL into an internet-based instrument 

merited making the instrument openly accessible to other researchers to address the 

restriction issues around most of the existing aptitude batteries. With this goal in mind, a 

roadmap has been drawn to first deploy TALL on an openly accessible test platform 

(https://tall-webtest.com), enabling separate access for researchers and invited test takers. 

To be specific, researchers can self-administrate data collection on the platform by 

generating test codes, download and upload datasets at the item level, and navigate the 

test manuals and try out demo tests for their own research interests or for pedagogical (e.g., 

research training) purposes. Meanwhile, participants are allowed to access via the “Test-

taker Entry” only, using the test codes they receive from researchers; hence, they remain 

naive to the full test, as they cannot access it without a code. The effort to develop 

functionality in access control and self-administration is particularly necessary, not only to 

secure the quality of the data collected, but also to maintain the sustainability of TALL as a 

resource that can be used by the community without relying on any individual to administer 

it. Furthermore, in the longer term, TALL will be developed into an open data tool that can 

amass data collected by using this uniform battery and offer open access to the 

accumulated data pool, collected across different sites by different teams, to the research 

community.  

https://tall-webtest.com/
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TALL, functioning as a shared open research infrastructure for data collection and 

accumulation, holds potential aligned with the vision that is crucial for the advancement of 

SLA theory and research practices (as argued by MacWhinney, 2017).  

First, TALL can be used as a reliable once some minor revisions have been 

implemented following the findings of the current study. These revisions may involve 

adjusting test items to improve the alignment of item difficulty and discrimination between 

the two versions in TALL_VL and TALL_SD (as discussed in Section 4.7.2.1), revising 

verbal stimuli for recall in TALL_CST, and implementing technical refinements to record 

stimuli recall in TALL_SNWR and TALL_CST (as discussed in Section 4.7.2.2). TALL has 

the potential to serve as a convenient measure of aptitude that allows for remote data 

collection at no cost. This may facilitate better sampling practices and multi-site studies to 

obtain larger and more diverse samples.  

Second, TALL reduces duplication of effort where researchers ‘reinvent the wheel’. 

Third, it constrains researcher degrees of freedom (Simmons et al., 2011) caused by 

methodological variation, which may adversely affect (comparability of) results. This should 

facilitate replication and reproducibility in research (Bolibaugh et al., 2021; Marsden et al., 

2018). Finally, in the long run, TALL could amass a cumulative open data pool; that is, 

aggregated data collected by using a uniform battery, which helps reduce heterogeneity 

between studies, a prerequisite for high-quality syntheses of research findings (Plonsky & 

Ziegler, 2016).  

7.4 Contributions of the current research    

In conclusion, the present study has made significant contributions to the field of foreign 

language aptitude research. 

First, despite the presence of aptitude batteries such as the MLAT (Carroll & Sapon, 

1959), the LLAMA tests (Meara, 2005; Meara & Rogers, 2019), and the Hi-LAB (Linck, 2013) 

for over 60 years, 18 years and 10 years respectively, they had encountered theoretical and 

methodological challenges: (i) not keeping pace with evolving theoretical frameworks of 

aptitude constructs pertaining to L2 learning; and (ii) lacking comprehensive validation 

evidence from research conducted independently of the authors of the aptitude measures, 

engaging diverse learner populations. The present study addressed the first challenge by 

developing a new aptitude battery, TALL, with theoretically conceptualised componential 

constructs. It then provided preliminary evidence of TALL’s internal validity and predictive 

validity in explaining L2 proficiency. Furthermore, TALL has been developed openly 

accessible for further validation checks by other researchers, taking the initial step to 
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address the second challenge. By creating TALL test suites in aural and written modalities 

and incorporating language domain-specific items, this study bridges empirical and 

methodological gaps by systematically exploring the effects of input modality and 

reconciling domain generality‒specificity disparity (Wen et al., 2017; Wen & Skehan, 2021) 

in measuring aptitude by including domain specific measures in the WM subtests.  

The second contribution of the present study is the demonstration of a series of 

practices aimed at preventing misconduct and questionable research practices. These 

practices are designed to safeguard the methodological rigour of quantitative research 

within the field of applied linguistics.  They encompass various aspects, including the 

development of a validation plan for a thorough scrutiny of reliability and internal validity, 

conducting prior power analysis to ensure an adequate sample size and post hoc power 

analysis to inform sample size requirements for future research. Additionally, datasets were 

careful prepared with considerations about removing outliers, while assumptions for 

statistical analyses were rigorously examined. Selection of indices was based on their ability 

to capture factorial dimensions and item quality nuances. Furthermore, to promote research 

transparency, all materials, data and R code are openly available on the OSF site 

(https://osf.io/czqxt/) and field-specific IRIS repository (www.iris-database.org) upon the 

approval of this thesis. This accessibility encourages replications and further scrutiny of 

TALL for future refinements. TALL has been developed into a tangible product with the 

potential to evolve into an open research infrastructure. This infrastructure aims to facilitate 

less heterogeneous data collection and data access for high-quality synthesis research. 

The development of this aptitude battery prototype underscores the importance of empirical 

testing. Such testing can be achieved on a large-scale data collected across time and space 

with the open availability of the battery (Pan & Marsden, under review). 

This research, while primarily a methodological endeavour involving the 

development of a new aptitude battery and the provision of initial evidence for its validation, 

contributes to our understanding of aptitude itself. TALL effectively operationalises the 

componential constructs of aptitude as proposed in the Stage Approach and the P/E model. 

The findings indicate that these components are distinct from one another, and most of 

them exhibit significant positive correlation. Moreover, all five subtests in both suites load 

almost evenly on the first principal component, displaying no redundancy and explaining 

substantial proportions of the total variances. The data align well with the four-primary-factor 

structure informed by theoretical frameworks. 

The research also demonstrates the significant influence of modality on measuring 

aptitude components (associative memory, language analytic ability, and executive control 

https://osf.io/czqxt/
http://www.iris-database.org/
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in WM). It indicates that performance related to these constructs is consistently better when 

tested in the written modality compared to the aural modality. Importantly, the effects of 

modality may vary in their impact on learners at different ability levels, emphasising the 

importance of considering modality as a moderating variable when examining the role of 

aptitude in diverse L2 learning outcomes among wider populations in various learning 

conditions. 

Furthermore, test-practice effects are evidenced in certain language learning 

subtests (i.e., TALL_VL and TALL_LA). This finding warrants further investigation, 

especially when learners take an aptitude test more than once. The question of whether 

aptitude can be improved through such repetitions is intriguing and relevant to whether 

aptitude is a stable trait that is unsusceptible to training.    
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Appendix A: Subtest manuals 

 

TALL_VL (v1.0): Vocabulary Learning 

TALL_VL is the subtest designed to measure participants’ ability to learn new vocabulary 

items that they are exposed to. This subtest is intended to assess the retrieval memory 

component of aptitude.  

This subtest can be administered in either the aural modality, using the TALL aural 

suite, or the written modality, using the TALL written suite. Participants will have two 

minutes to learn 20 new vocabulary items that correspond to 20 familiar nouns in a novel 

language. They will then be tested on their ability to match the given vocabulary items to 

the corresponding pictures of the nouns. 

The opening pages of TALL_VL provide participants with test instructions, as shown 

in Figure VL.1. 

  

(in the aural suite) (in the written suite) 

 

Figure VL.1 Opening pages 

TALL_VL has two sequential phases.  

In the learning phase, participants will be exposed to 20 pictures arranged in a fixed 

layout on the screen (see Figure VL.2). In the aural suite, participants can listen to the name 

of the picture by clicking on the corresponding picture with the mouse. In the written suite, 

participants can read the name of the picture by hovering over the corresponding picture 

with the mouse cursor.  
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(in the aural suite) (in the written suite) 

 

Figure VL.2 The learning phases of TALL_VL 

Participants are allowed to click on or hover over any picture as many times as they 

wanted, with a two-minute countdown bar displayed on the screen to help them manage 

their learning pace.  

In the testing phase, participants will be presented with the same 20 pictures on the 

screen as in the learning phase, but the layout of the pictures will be randomly arranged. 

They will then be presented with the acoustic or written forms of the 20 vocabulary items 

(see Figure VL.3), one at a time in random order. Participants will be tested on their ability 

to identify the correct picture that matches the form they hear or read by clicking on the 

corresponding picture. 

 
 

(in the aural suite) (in the written suite) 

 

Figure VL.3 The testing phases of TALL_VL 
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Participants will be allowed to take the test at their own pace without a time limit to 

complete the testing phase. Their performance will be scored based on the number of 

vocabulary items they can correctly match with the corresponding pictures, with a total score 

of 20.  

Participant’s final score will be displayed immediately upon completion of the subtest 

(as in Figure VL.4). Participants can click on “回到主页面”（Back to the homepage）to 

move onto the next subtest. 

  

Figure VL.4 The score report page of TALL_VL 
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TALL_SD (v1.0): Sound Discrimination 

TALL_SD is the subtest designed to measure participants’ phonemic coding ability to 

identify and retain unfamiliar sounds in a new langauge.  

This subtest is administered in the aural modality in both the TALL aural suite and 

the written suite. Participants are exposed to three basic sounds, either in isolated form or 

embedded in short sentences. Their phonemic coding ability is tested by discriminating 

these sounds correctly when they are embedded in 30 sentences.  

TALL_SD has two sequential phases.  

In the learning phase, participants listen to three isolated basic sounds while seeing 

the corresponding pictures on the screen (see Figure SD.1). 

 

Figure SD.1 Learning three basic sounds in TALL_SD 

 

Then, they listen to four sets of phrases, each containing three phrases with one of 

the three basic sounds embedded. While a phrase is played, the corresponding picture of 

the basic sound embedded in this phrase is highlighted to show the match between the 

basic sound and its meaning, as shown in Figure SD.2. 
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Figure SD.2 Learning phrases containing the basic sounds in TALL_SD 

  

In the testing phase, participants are presented with the same three pictures that 

correspond to the basic sounds as in the learning phase. They listen to 30 test stimuli, one 

at a time, and are required to discriminate which of the three sounds is embedded in the 

stimuli by clicking on the corresponding picture of the sound. Participants have a maximum 

of 15 seconds to make the choice for each stimulus. There are 30 stimuli in total in the 

testing phase, and each basic sound is presented equally 10 times. The order of all stimuli 

is randomly assigned, and a bar on the screen shows the testing progress, indicating the 

proportion of total testing items participants have completed (see Figure SD.3).  

 

Figure SD.3 The testing phase in TALL_SD  
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Participants’ performance in this subtest is scored by the number of the correct choices they 

make, with a total score of 30. A participant’s final score is displayed immediately upon the 

completion of this subtest (as in Figure SD.4). 

 

Figure SD.4 The score report page of TALL_SD 
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TALL_LA (v1.0): Language Analysis 

TALL_LA is the subtest designed to measure participants’ language analytic ability in 

learning grammatical features in a miniature language adapted from Lithuanian.  

This subtest can be administered in either the aural modality, using the TALL aural 

suite, or the written modality, using the TALL written suite. Participants will have five 

minutes to learn new vocabulary items and grammatical rules in a novel language. Their 

language analytic ability will be tested by choosing the correct sentences that corresponding 

to the given pictures.  

The opening pages of TALL_LA provide participants test instructions are shown in 

Figure LA.1. 

 
 

(in the aural suite) (in the written suite) 

 

Figure LA.1 The opening pages of TALL_LA 

 

TALL_LA has two sequential phases. 

In the learning phase, participants will click one of the blue buttons arranged in a 

grid on the screen and then be presented with a picture. As shown in Figure LA.2, in the 

aural modality, participants will hear verbal phrases or sentences that describe the meaning 

of the displayed pictures, while in the written modality, they will read the verbal phrases or 

sentences on the screen.  
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(in the aural suite) (in the written suite) 

 

Figure LA.2 The learning phases of TALL_LA 

 

Participants have five minutes to explore 20 pictures corresponding to 20 phrases 

and sentences consisting of vocabulary items of two nouns, three verbs, and two adjectives 

or adverbs. Morphological and syntactic properties are presented in the sentences, 

including three morphosyntactic rules (i.e., nominal endings, verbal inflections, and word 

order) in the target language. Participants are allowed to click the pictures in any order and 

as many times as they wanted in the learning phase, with a five-minute countdown bar 

displayed on the screen to help them manage their learning pace.  

In the testing phase, participants are presented with pictures one at a time and are 

required to choose the correct sentence from four given options displayed on the screen to 

describe the meaning of the picture.  

As shown in Figure LA.3, in the aural modality, participants are required to click each 

button of the four optional choices to listen to the sentences and then decide which option 

is the correct description. In the written modality, the four options are displayed on the 

screen for them to choose by clicking the correct optional sentence that describe the picture. 
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(in the aural suite) (in the written suite) 

 

Figure LA.3 The testing phases of TALL_LA 

 

TALL_LA has no time limit for participants to complete all 30 testing items that are 

presented in random order, and the testing progress is displayed by a bar on the screen 

showing the proportion of total testing items participants have completed. 

Participants’ performance is scored by the number of the correct choices they make, with 

the total score of 30. The final score is displayed immediately upon the completion of the 

subtest (Figure LA.4). Participants can click on “结束”（Completed）to move onto the next 

subtest. 

 

Figure LA.4. The score report page of TALL_LA 
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TALL_SNWR (v1.0): Serial Nonwords Recall 

TALL_SNWR is the subtest designed to measure participants’ phonological short-term 

memory in working memory by requiring participants to repeat a series of nonwords in the 

order they are presented. 

This subtest is administered in the aural modality in both the aural suite and the 

written suite.  

The opening page of TALL_SNWR provide participants test instructions is shown in 

Figure SNWR.1. 

 

Figure SNWR.1. Test instruction page of TALL_SNWR 

 

TALL_SNWR has two sequential phases.  

In the practice phase (see Figure SNWR.2), participants are provided with three 

practice trials to become familiar with the experimental format. These trials have two, three, 

and five nonwords, respectively, and they are different from the trials in the testing phase.  
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Figure SNWR.2 The practice phase of TALL_SNWR 

As shown in Figure SNWR.2, participants will listen to a trial containing a series of 

nonwords presented sequentially with identical speed (1000 ms) and intervals (1500 ms). 

They are then required to repeat the nonwords in the display order by clicking the 

corresponding ‘开始录音假词 1’ (start recording nonword No.1) buttons on the screen. After 

completing the recordings of the nonwords in each trial, participants must submit their 

recordings by clicking the ‘提交’ (submit) button on the screen.  

The testing phase follows the same procedure as the practising phase (see Figure 

SNWR.3): participants first listen to a trial with a series of nonwords, then repeat the 

nonwords in the presented order by clicking the recording buttons, submit their recordings 

to complete the trial, and move on to the next trial until the end of the subtest. 

 

Figure SNWR.3 The testing phase of TALL_SNWR 



 

256 

 

Seventeen trials with 74 nonwords are randomly presented in the testing phase, with 

each trial having nonwords ranging from two to seven. Participants are allowed to record 

and submit their recall of each trial within 30 seconds. If they fail to submit the recall of a 

trial within the time limit, the test program will automatically move on to present the next trial. 

The progress of the testing phase is displayed by a bar on the screen that shows the 

proportion of the total testing trials a participant has completed.  

The final score of TALL_SNWR is the number of nonwords that are assessed 

manually as being correctly articulated in the correct display order, with a total score of 74. 

Participants will be notified about the scoring plan (see Figure SNWR.4). They can take a 

short break (min. 30 seconds) and click on “第二部分” (Part Two) to move onto the second 

part of working memory test, that is, the subtest of Complex Span Tasks in TALL. 

 

Figure SNWR.4 The closing page of TALL_SNWR 
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TALL_CST (v1.0): Complex Span Task 

This subtest is used to measure participants’ executive control capacity in working memory.  

Essentially, the subtest comprises two intertwined components of storage and processing. 

The processing compoenet is inserted between the stimuli to be retained by participants, 

as a distractor, to prevent their rehearsal. The primary objective of participants in the test is 

to retain the presented stimuli despite the interference caused by the distractor.  

TALL_CST uses verbal stimuli in both processing and recalling tasks. The stimuli 

for sentence meaning processing are developed either in the aural modality in the TALL 

aural suite, or in the written modality in the written suite.  

Figure CST.1 and Figure CST.2 show the experimental paradigms of TALL_CST 

that have dual tasks design to engaged participants’ processing the meaning of sentence 

stimuli and recalling the letters in the correct display order.  

 

 

Figure CST.1 Experimental paradigm of TALL_CST (in the aural suite) 
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Figure CST.2 Experimental paradigm of TALL_CST (in the written suite) 

 

The practice phase is design in three steps to help participants become familiar with 

the testing procedure. First, participants will practise the sentence processing task by 

listening to a sentence (in the aural modality) or reading a sentence on the screen (in the 

written modality) in Chinese, then make a semantic judgement on whether the sentence is 

sensible in terms of meaning by clicking the button ‘正确’ (correct) or ‘错误’ (incorrect). 

Second, participants will practise the recall task, in which they listen to or read a string of 

letters in English, then click the corresponding letters on the screen based on the correct 

display order of the letters. Third, participants will have the opportunity to practise the testing 

format of the combination of sentence processing task and letter recall task with a trial. That 

is, they make a judgement of the plausibility of the meaning of a sentence first, then they 

are presented with a letter followed by another sentence judgement, then a letter to recall, 

until the end of the trial when they are required to recall all the letters in the correct 

presentation order.   

There are 15 trials in the testing phase, each containing 3 to 7 sentences. The total 

number of letters to be recalled, 74, is the same as the total number of sentences. 

Participants follow the same procedure as the third step in the practice phase, that is, the 

combination of processing and recall tasks. They will be randomly presented with a trial 

containing sentence stimuli for meaning processing and letter stimuli for recall. They are 

required to recall the letters in the correct order at the end of the trial. The test program will 
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proceed to the next sentence stimulus if participants fail to make a semantic judgment within 

the time limit based on their individual performance in the sentence processing tasks during 

the practice phase. A stimulus without a response to the judgment will be recorded as 

incorrect. Participants are also required to complete the recall of the letter string at the end 

of each trial within 30 seconds.  Twelve English letters are randomly assigned in all trials 

and presented (aurally in the aural modality and on the screen in the written modality) with 

identical speed (800 ms) and interval (200 ms), while the sentence stimuli in each trial are 

presented in a constant order, and the sequence of the trials is randomised. Participants’ 

judgements of the semantic plausibility of the sentence stimuli and their recall of the string 

of letters are stored for data analysis.  

For self-monitoring purposes, participants will be provided with the percentage of 

accuracy in sentence processing throughout the testing phase, and a progress bar on the 

screen shows the proportion of the total testing trials a participant has completed.  

Participants’ performance in this subtest is scored by the total number of correct 

letters that are recalled in the correct order, with a total score of 74.  

The final score will be displayed immediately upon the completion of the subtest 

(see Figure CST.3). Participants can exit TALL by closing this page.   

 

Figure CST.3 The closing page with the final score of TALL_CST 
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Appendix B: Consent forms 

 
[English version] 

 

 
 

PhD Project: Adult learners’ development of online predictive processing 

 

This project is being conducted by Junlan Pan, a PhD researcher at the Department of 

Education of the University of York (UK). This web-based test (Chinese adult learners’ 

cognitive individual differences) is a part of the PhD project "Adult learners’ development of 

online predictive processing", conducted from 2019 at University of York. The informed 

consent form is produced in the Chinese version for participants’ use and remains identical 

in content with the English version for departmental ethical approval. 

  

Dear Participant, 

My name is Junlan Pan. I am a PhD researcher at the Department of Education, University 

of York. I am currently carrying out a research project about “Adult learners’ development 

of online predictive processing”.  I would like to invite you to take part in a web-based test 

of cognitive individual differences, which is a part of this research project. 

Before agreeing to take part, please read this information sheet carefully and let me 

know if anything is unclear or you would like further information.  

______________________________________________________ 

What is the purpose of this study? 

The study is designed to validate the web-based measurement of Chinese learners’ 

cognitive individual differences in learning a foreign language. 

What would this mean for you? 

As I would like to measure learners’ differences in learning a foreign language in different 

modes, participating in this test has two phases: (1) completing the aural version of the test 

before the end of 2020, and (2) completing the written version of the test in at least four 

weeks after the completion of phase (1).  

It will take you up to 60 minutes to complete each phase, and each phase must be 
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completed in one go. All participants who complete both versions of the test will receive 50 

Yuan as a Thank You. At the end of the second phase of this test, I will provide you a 

summary of your testing results with descriptions of your related cognitive abilities in 

language learning.  

At the end of this test, I will ask if you would be willing to participate in an online interview 

to explore some themes from the test. I will select only 10 participants for this part. 

Participation is voluntary 

Participation is optional. If you do decide to take part, you will be asked to complete a 

consent form online and I will email you a copy of information sheet for your records. You 

may feel a manageable degree of stress when you work on the testing items. If you change 

your mind at any point during the study, you will be able to withdraw your participation 

without having to provide a reason. Once the test is completed you can request for the data 

to be withdrawn by emailing jp1763@york.ac.uk up to 2 weeks after the data is collected. 

Storing and using your data 

The data that you provide (e.g., test results) will be stored anonymously by code number.  

Any information that identifies you will be stored separately from the data.   

The data will be stored in a password protected file and will only be accessible to me and 

my supervisor, Prof. Emma Marsden, who is involved in the project. The anonymous data 

may be used in presentations, online, in research reports, in project summaries or 

similar.  Your individual data will not be identifiable but if you do not want the data to be 

used in this way please do not participate in this test. In addition, anonymous data may be 

used for further analysis.  The data will be kept for indefinitely in the digital repository of 

IRIS (www.iris-database.org) for the practice of Open Science. 

 I will process personal data for research purposes under Article 6(1) (e) of the General 

Data Protection Regulation (GDPR): Processing is necessary for the performance of a task 

carried out in the public interest. Special category data is processed under Article 9 (2) 

(j):  Processing is necessary for archiving purposes in the public interest, or scientific and 

historical research purposes or statistical purposes. 

For information about General Data Protection Regulation (GDPR) please follow the link: 

https://www.york.ac.uk/education/research/gdpr_information/ 

Questions or concerns 

If you have any questions about this participant information sheet or concerns about how 

http://www.iris-database.org/
https://www.york.ac.uk/education/research/gdpr_information/
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your data is being processed, please feel free to contact Junlan Pan by email 

jp1763@york.ac.uk, or the Chair of Ethics Committee via email education-research-

admin@york.ac.uk. If you are still dissatisfied, please contact the University’s Data 

Protection Officer at dataprotection@york.ac.uk 

I hope that you will agree to take part in.  If you are happy for you to participate, please 

complete the form attached and click “submit” to return the form.  

Many thanks for your help with this research. 

Yours sincerely 

Junlan Pan 

________________________________________________ 

Chinese learners’ cognitive individual differences in FL learning 

Consent Form 

Please click each box if you are happy to take part in this research. 

Statement of consent Click 

each box 

I confirm that I have read and understood the information given to me 

about the above-named research project and I understand that this will 

involve me taking part as described above.   

 

 

I understand that participation in this study is voluntary.  

I understand that my data will not be identifiable and the anonymous data 

may be used in publications, presentations and online.    

 

I confirm that I have read the information about GDPR  

 

Name: 

Signature: 

Date: 

 

 

mailto:education-research-admin@york.ac.uk
mailto:education-research-admin@york.ac.uk
mailto:dataprotection@york.ac.uk
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[Chinese version] 

 
 

博士研究项目：成人学习者在线预测加工能力的发展 

 

项目由英国约克大学教育系博士研究生盘峻岚执行。本在线测试（中国成人学习者

的认知个体差异）是博士项目“成人学习者在线预测加工能力的发展”（2019 年

起）的一部分。中文知情同意书供测试参加者使用，与教育系伦理审查通过的英文

版内容一致。 
  

尊敬的测试参加人： 

您好！ 

我叫盘峻岚，是英国约克大学教育系的博士研究生，正进行一项关于“成人学习者在线预测

加工能力的发展”的研究项目。很荣幸地邀请您参加这个项目中的认知个体差异在线测试。 

在您同意参加测试前，请仔细阅读以下信息，如果您有任何疑问或需要了解更多信

息，请联系我。 
______________________________________________________ 

本研究的目的是什么？ 

本研究旨在设计中国外语学习者的认知个体差异测试，并证实其内在效度。 

本研究对您意味着什么？ 

由于我们将使用不同的方式测试学习者的差异，您需要分两次参加测试：（1）首先完成视

听版或文字版的测试，（2）在前一次测试后至少四周后完成另一版本的测试。 

每一次测试至少需要一个小时，不中断地一次性完成。完成两次测试后您将收到 50 元人民

币作为酬谢。本研究完成了第二阶段测试后，我们将为您提供一份有关您学习外语的认知

能力的报告。 

自愿参加原则 

本研究系自愿参加。如果您愿意参加，我们将提供相关信息和知情同意书。测试中您会有

适度的紧张感。如果您在测试过程中不想继续参加了，您可以选择退出，不需要解释理由。 

匿名与保密 

您提供的数据（比如测试的分数）将编码保存。任何可以辨识您身份的信息都将与数据分

开保存。您可以在数据收集的过程中放弃参加本研究。在数据收集完毕后的两周内，您也

可以发邮件至 jp1763@york.ac.uk,要求撤销您的数据。 

数据保存与使用 

数据将加密保存，这意味着在关于本研究的演讲、成果上线、研究报告、项目总结中的数

据都将匿名。匿名数据将无法识别您的身份。另外，匿名数据可能会用于后续的分析，并
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有可能通过开放数据库分享给其他研究人员进行分析。如果您不同意我们用这种方式使用

您的数据，请您不要参加本测试。 

我们将按照《通用数据保护条例》(GDPR)第 6(1)(e)条规定进行个人数据保护：处理数据是

从事以公益为目的的工作的需要。 

特殊目录数据的处理根据第 9(2)(j)条：处理数据是公益性的存档，或科学和历史研究目的，

或统计目的的需要。 

关于《通用数据保护条例》(GDPR)的信息，请登陆查询：

https://www.york.ac.uk/education/research/gdpr_information/ 

问题或顾虑 

如 果 您 有 任 何 关 于 测 试 信 息 和 数 据 处 理 的 问 题 或 顾 虑 ， 敬 请 联 系 盘 峻 岚 ：

jp1763@york.ac.uk,或者联系伦理委员会主席：education-research-admin@york.ac.uk。

如果您对他们提供的信息还有不满意之处，敬请联系约克大学数据保护官员：

dataprotection@york.ac.uk。 

我真诚地希望您能同意参加本测试。如果您愿意参加，请完成所附的知情同意书，点击“确

认”发回。 

非常感谢您对本研究的帮助！ 

此致 

敬礼 

盘峻岚 

—————————————————————— 

请点击“继续”确认您已经理解了上述信息，并同意参加本次测试。 

中国外语学习者认知个体差异测试 

知情同意书 

如果您同意参加测试，请点击每一项确认。 

同意内容 点击确认 

我确认我已经阅读并理解了关于这一研究项目的信息，我理解研究需要我

参与其中。 

 

我理解参加研究是自愿的。  

我理解本研究保存的我的数据将无法辨识我的身份，我的匿名数据将被用

于发表、演示、上线或分析。 

 

我确认我已经阅读了关于 GDPR 的信息。  

 

姓名（签字）: 

日期: 

  

https://www.york.ac.uk/education/research/gdpr_information/
mailto:dataprotection@york.ac.uk
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Appendix C: Participant’s background questionnaire 

 

学习背景调查 

 

您的性别： ⃞ 男  ⃞ 女 

1）您的最高学历： 

⃞ 初中  

⃞ 高中   

⃞ 高职高专 

⃞ 大学本科   

⃞ 研究生 

您的专业属于： 

 ⃞ 人文门类 （文学、历史学、哲学、艺术学） 

 ⃞ 社会科学门类（教育学、法学、经济学、管理学、军事学） 

 ⃞ 理工门类（理学、工学） 

 ⃞ 农医门类（医学、农学） 

    ⃞ 以上学科的交叉 

       学科为：       

2）您的外语学习经历 

您学习（参加课程学习）了      年英语 

1. 0-3 年以内 

2．3-6 年以内 

3．6-10 年以内 

4．10 年以上 

    您是否有海外学习/生活的经历？：⃞ 是  ⃞ 否   

    您在哪个（或哪些）国家学习/生活过？（               ） 

    您在这个（这些）国家学习/生活了多长时间？（        ） 
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您的高考英语成绩是     分。 

 您参加过的其它英语水平考试有（可多选） 

 ⃞ 大学英语四级，成绩为      

 ⃞ 大学英语六级，成绩为      

 ⃞ 雅思考试，成绩为      

 ⃞ 托福考试，成绩为      

⃞ 以上考试都未参加过 

除英语之外，您学习（参加课程学习）过其它外语吗？（可多选） 

⃞ 俄语，学习了      年 

⃞ 日语，学习了      年 

⃞ 法语，学习了      年 

⃞ 德语，学习了      年 

⃞ 西班牙语，学习了      年 

⃞ 其他语种，学习了      年 

您的其它外语水平考试成绩（可多选）： 

⃞ 俄语，考试名：      ；分数：       

⃞ 日语，考试名：      ；分数：       

⃞ 法语，考试名：      ；分数：       

⃞ 德语，考试名：      ；分数：       

⃞ 西班牙语，考试名：      ；分数：       

⃞ 其他语种，考试名：      ；分数：       

⃞ 没有参加过水平考试 
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Appendix D: List of R markdown files 

 

R code and output from analyses were documented in R markdown files and accessible on 

the OSF page (https://osf.io/3nxaw/) of the project. The list below explains these files and 

in which section they provide results. 

Please note that these files must be downloaded to view; they are in HTML format 

and do not need to be opened in R.  

RQ1 in Section 4.3.2.3: 

1. Reliability and Unidimensionality checks (https://osf.io/ctpvd) 
 

RQ1 in Section 4.4.2: 

2. IRT (Rasch model) analyses for TALL_VL, TALL_SD, and TALL_LA 
(https://osf.io/uy4mn) 

3. IRT (Generalised partial credit model) analyses for TALL_SNWR and TALL_CST 
(https://osf.io/brsjy) 

 

RQ1 in Section 4.5.1: 

4. Principal Component Analysis for both suites (https://osf.io/wafe6) 
 

RQ1 in Section 4.5.2: 

5. Confirmatory Factor Analysis for both suites (https://osf.io/ba2yh) 
 

RQ2 in Section 5.3: 

6. (Generalise) Linear Mixed-effects Modeling for TALL_VL, TALL_LA, and 
TALL_CST (https://osf.io/9q4ax) 

 

RQ3 in Section 6.3: 

7. Multiple Regression and Dominance Analysis (https://osf.io/h5n4g) 

 

 

https://osf.io/3nxaw/
https://osf.io/ctpvd
https://osf.io/uy4mn
https://osf.io/brsjy
https://osf.io/wafe6
https://osf.io/ba2yh
https://osf.io/9q4ax
https://osf.io/h5n4g


 

268 

 

Appendix E: Data preparation protocol 

 

Step 1: Data from the second round of TALL_CST, which was the last subtest participants 

took, were cleaned to remove erroneous or outlying data points. This step resulted in the 

data of participants who took two rounds of the test and completed all five subtests in the 

second session. 

 

Step 2: Data of TALL_SNWR in the second session were manually checked to ensure that 

the recordings were available for scoring. This quality control step was crucial, as some 

participants might not have followed the test instructions or failed to set up the recording 

function on their PCs. The clean data from this step were then merged with the data 

obtained in Step 1, thereby returning the data of participants who had matched data in two 

WM subtests (TALL_SNWR and TALL_CST) from both test sessions. 

 

Step 3: Data from TALL_LA were initially cleaned by removing erroneous data points and 

data from behavioural outliers. The resulting clean dataset was merged with the data 

obtained in Step 2, thereby returning the data of participants who had matched data from 

TALL_LA, TALL_SNWR and TALL_CST in two test sessions.  

 

Step 4: Data of TALL_SD were cleaned, involving the removal of erroneous data points. 

The clean dataset was then merged with the data obtained in Step 3, consequently returning 

the data of participants who had matched data from TALL_SD, TALL_LA, TALL_SNWR 

and TALL_CST in two test sessions.  

 

Step 5: Data from TALL_VL underwent cleaning process that involved removing erroneous 

data points and data from behavioural outliers. The clean dataset was merged with the data 

obtained in Step 4, thus returning the data of participants who had matched data from all 

five subtests in two test sessions. 
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Appendix F: IRT models and analysis protocol 

 

This file documents the detailed information (in Section 3.3.5.2 and Section 4.4.1) about 

introducing Item Response Theory (IRT), the debated about using Rasch modelling in 

language testing research, the reasons for applying different statistic packages for Rasch 

modelling in the current study, and the stepwise IRT analyses performed on dichotomous 

data (from TALL_VL, TALL_SD, and TALL_LA) and polytomous data (from TALL_SNWR 

and TALL_CST). 

 

1. Item Response Theory (IRT) 

IRT is a psychometric assessment method used to investigate the relationship between a 

participant’s response to a single test item and the overall performance on a latent trait the 

item is designed to measure. van der Linden (2016) defines IRT by three key principles. 

First, the focus is on how human subjects respond to individual test items rather than a 

predetermined score for the whole test, as is the case with the traditional test theory. Second, 

IRT recognises that responses are random and require a probabilistic model to explain their 

distribution. Third, IRT separates the parameters for test takers’ abilities and the properties 

of the test, which distinguishes it from Classical Test Theory (CTT) that represents a test 

taker’s expected score on a set of items as a linear combination of a true score and a test 

error, without separating the true score according to the separate effects further based on 

subject’s ability and the property of the test.  

As a model-based technique, item analyses based on IRT has gained several 

advantages over that on Classical Test Theory (CTT), which can make the inference of the 

abilities of a group of test takers according to the values of the indices, but the values may 

not be stable if the test is trailed on another group with variable ability. The considerable 

merit of IRT is that it enables more sophisticated analysis of test items independent from 

the whole test. It does do by measuring latent traits while considering the relative abilities 

of the trial group to understand the difficulty of the items for a broader range of test takers 

than those represented in one trial group. Additionally, IRT provides a more complete 

picture of how items function. Therefore, it is also known as Latent Trait theory (Crock & 

Algina, 2008), on which analytical approaches are allowed to calculate estimate parameters 

on both the item and the individual test taker that can provide nuanced information about 

person ability level, item difficulty, item discrimination, etc. As such, each item in a 
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measurement can be treated as a separate and independent entity, which is fundamentally 

different from CTT that each item is assumed to have the same level of difficulty or the same 

amount of contribution to the overall test score (Draheim et al., 2018).  In other words, the 

crucial difference between analyses on CTT and IRT can be compared to the difference 

between descriptive and inferential statistics (Knoch & McNamara, 2015). With descriptive 

statistics, the raw scores (e.g., counts of items a candidate got right) and item related values 

(simple counts of how many candidates got an item right) describe the characteristics of a 

specific testing sample. They do not draw inferences about the characteristics of the 

population from which the sample is taken, nor make any claim as to the representativeness 

of the sample. With inferential statistics, on the other hand, the characteristics of the sample 

are used to make estimates of the population from which the sample has taken. This 

comparison suggests that IRT analyses can provide inferences on how items are related to 

person ability, which is usually represented by the score on the test and estimated by a 

mathematical modelling about the chances of a candidate with certain ability achieving 

certain scores on items at given difficulty. As such, generalisations beyond the performance 

of a sample of test takers on a sample of testing items can be made about the ability of the 

entire population in relation to the measurement consisting of such items, as well as the 

level of difficulty of the items for the prospective test takers.  

In the current research, the results from IRT analyses may provide statistical 

inferences on the extent to which each subtest of TALL is a valid measure to the component 

of the aptitude that it is intended to measure. 

2. The debate about the use of Rasch modelling 

Rasch modelling based on IRT has become generally accepted and widely used in 

language testing and assessment research despite the debates and disagreements in two 

decades before 2000 about choosing Basic Rasch model over other models, such as 2- 

and 3-parameter IRT models, for the analysis of dichotomous data in the test.  According 

to McNamara and Knoch's (2012) review of the history of Rasch analysis, advocates for 

more complicated IRT models criticised the Rasch assumption of equal item discrimination. 

However, proponents of the Basic Rasch model argue that its strength lies in its capability 

to detect significant deviations in item discrimination from the assumed values, which can 

potentially impact measurement accuracy. This demonstrates the model’s careful 

consideration of its underlying assumptions. In the 1980s, applied linguists seemed to hold 

more reservations than psychometricians about the use of Rasch analysis in language 

testing. They were concerned about the assumption of unidimensionality in Rasch, as 

applying a single dimension to analyse language test data would be inappropriate given the 
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complex nature of language proficiency.  However, these objections were challenged by 

defenders of Rasch analysis with empirical evidence that Rach analyses could confirm the 

unidimensionality of a language test that appeared to test multiple dimensions, and hence 

it could be a powerful means of examining underlying construct issues in communicative 

language tests (e.g., McNamara, 1990). The disputes about the appropriateness of using 

Rasch analyses seem to be resolved in language testing research since the first decade of 

the twenty-first century as Rasch measurement, particularly multi-faceted Rasch 

measurement has been uncontroverially accepted as a useful tool (McNamara & Knoch, 

2012). 

3. Reasons for applying different statistic packages for Rasch modelling 

The reason for applying two statistic packages in the current study was to explore the 

possibility that different statistic approaches may yield inconsistent results to diagnose the 

item quality. As reviewed in Nicklin and Vitta (2022), the major difference between these 

two statistic packages in terms of Rasch analysis is that they have applied different 

maximum likelihood estimation methods, which is the statistical processes for calculating 

the item difficulty and person ability parameters. Specifically, the ltm package uses 

Marginal Maximum Likelihood Estimation (MMLE) to estimate data based on the 

assumption that individual person parameters conform to a specific distribution. This 

assumed distribution is then used in estimating item parameters, allowing individual 

parameters to be “marginalised” from the likelihood. As such, MMLE is considered more 

computationally efficient than other methods that estimate items independently of 

individuals. In contrast, the eRm package uses Conditional Maximum Likelihood Estimation 

(CMLE) to assess data without considering individual differences. In this method, estimates 

of individual parameters are removed from item parameter equations because they may not 

be consistent and could introduce bias or disagreement with the model’s expectations. By 

avoiding the calculation of individual parameters until the item difficulty parameters are 

determined, CMLE may produce more precise residuals and fit statistics, while satisfying 

the objective of not relying on a particular sample for item estimates.  

However, as asserted by Nicklin and Vitta, if individual differences are important to 

the analysis, caution should be taken when interpreting the results. To provide evidence 

about the differences between the results produced by different software and R packages 

applying different estimation methods, Nicklin and Vitta analysed 1000 simulated 

dichotomous datasets for Rasch models assessments using six software or R packages 

with three different estimation methods, that is, MMLE, CMLE, and Joint Maximum 

Likelihood Estimation (JMLE). They concluded that the differences between results 
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produced with estimation methods were negligible, and the discrepancies observed in fit 

statistic estimations were attributable to the software choice. Therefore, they echoed the 

recommendation by Linacre (2021) that at least two packages are applied to obtain the 

confirmation of estimate values when conducting R-based Rasch analysis. The exploratory 

approach of using two packages in the current study for Rasch model analysis followed this 

recommendation.  

4. Stepwise analyses 

1 PL, 2 PL, and 3PL models for dichotomous data (TALL_VL, TALL_SD, and TALL_LA) 

Step 1. Model comparisons 

The initial step was to use rasch function in the ltm package to generate the basic form of 

the Rasch models, assuming equal discrimination parameters with the constraint argument 

specifying the value of the parameter as 1. The data were then be fitted to the unconstrained 

version of the Rasch model by calling the same rasch function without specifying the 

constraint argument. These two Rasch models were compared using the results of a 

likelihood ratio test, which was performed using the anova function. Specifically, the Akaike 

Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the p-value of the 

log-likelihood ratio were provided as evidence of the model fitness statistics. Lower values 

in the AIC and BIC indicate better model fit, while p-values suggest the null hypothesis, 

stating that the two models have the same model fit, should be rejected or not.  

The extensions of the unconstrained Rasch model were further explored using 

functions in the ltm package. First, the 2PL model was generated using the ltm function, 

which assumes a different discrimination parameter for each item. This function 

accommodated up to two latent variables to represent the underlying structure of the data. 

An added feature of the ltm function allowed for an interaction between these two latent 

variables. Consequently, three optional 2PL models were compared to the previously 

identified Rasch model, which had exhibited a better fit in prior analysis, to assess their 

relative performance.   

The 3PL model was subsequently applied to the data using the tpm function, which 

introduced a fixed guessing parameter to the unconstrained Rasch model. Two options 

(‘rasch’ and ‘latent.trait’) were specified to construct the optional 3PL models.   

Model comparisons between the better-fitted Rasch model and the 2PL and 3PL 

models provided evidence regarding whether extensions of discrimination and guessing 

parameters were necessary. If model comparison results indicated the 2PL or 3PL model 



 

273 

 

exhibited a better fit to the data, item analyses would be consistently conducted in the ltm 

package. However, if the results favoured the Rasch model as having a superior fit, the RM 

function in the eRm package was employed to generate supplementary model estimations. 

These estimations served to compare the fitness of items and persons fitness obtained from 

different statistics packages (as explained in the previous section). It is important to note 

that since the eRm package does not support the estimation of the 2PL and 3PL models, no 

comparisons between these two model estimations were made within the R packages. 

Step 2. Model Fitness   

Fit statistics of the chosen model to the data were obtained in this step. In the Rasch model 

estimations, fit statistics are used to determine whether a subtest has been developed with 

sufficient quality that values for both persons and items can be represented using the 

measure. These statistics are essential for investigating whether the assumption of 

unidimensionality for the Rasch analysis has been met. To put in another way, fit indices 

help to identify items that do not fit the unidimensional construct and hence diverge 

significantly from the expected ability/difficulty pattern. It determines whether item 

estimations can be considered as meaningful quantitative summaries of the observations, 

indicating the extent to which each item contributes to the measurement of the only 

construct (Bond & Fox, 2015).    

For the Rasch model, GoF.rasch function through the ltm package was used to 

perform a parametric bootstrap goodness-of-fit test using χ2 statistic. Based on 200 iterated 

datasets, the non-significant p-value > .05 would suggest an acceptable fit of the model 

(Rizopoulos, 2006). LRtest function through the eRm package also provided statistics of 

model fitness by splitting the dataset into two parts for conducting the Andersen likelihood 

ratio test. Similarly, the non-significant p-value > .05 would evidence the fitness of the model 

(Mair & Hatzinger, 2007).  

 If the 2PL or 3PL model was the model with better fit than the Rasch model, margins 

function through the ltm package was used to investigate the model fitness by examining 

the two-way χ2 residuals. To calculate these residuals, the 2 ⅹ 2 contingency tables for all 

available items were created, and the goodness of fit in each cell was evaluated by means 

of Pearson’s χ2 statistics, using the value 3.5 as a rule of thumb.  

Step 3. Model estimations and item/person fitness 

The descriptive statistics of the chosen model with better fitness were analysed by the 

summary() function in the ltm and eRm packages, providing coefficients of difficulty values 
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and standard errors of all items. In the ltm package, descript() function also provided output 

containing the χ2 p-values for pairwise associations between the items, with non-significant 

results, i.e., p-values > .05 informing the potential problematic items. This interpretation 

assumed that in the latent variable models, latent variables can account for the high 

associations between items. If pairs of items did not reject the null hypothesis of 

independence, the assumption of the models could be violated (Rizopoulos, 2006).  The 

parameter estimates through descript() were transformed to probability estimates using 

coef(). The results showed the probability of a correct response to a specific item for the 

average test taker.  

 In the ltm package, functions of item.fit() and person.fit() can be used to compute 

item and person fit statistics for 1PL, 2PL and 3PL models.  The χ2 (displayed as X^2) 

statistic tested the null hypothesis that the item responses follow the chosen model against 

the alternative hypothesis that they did not. A large χ2 value indicated poor fit of the item to 

the model, while a small χ2 value indicated good fit. The associated Pr(>X^2) p-values 

indicated the probability of observing the corresponding X^2 values as large as or larger 

than the values under the null hypothesis. The significant p-values < .05 would inform the 

poor fitness of the items to the model.     

For the Rasch model, itemfit() and personfit() in the eRm package were used, which 

produced output easier to interpret. Several cut-off values of the item and person model fit 

were applied as the criteria to ascertain the adherence of the items and participants to the 

model’s expectations. Mean-square (MNSQ) fit statistics, which are calculated from the 

residuals to indicate the distance between an observed data point and the model’s 

expectation, were analysed and reported. MNSQ value is expected to be close to 1.0 if the 

item or person fits well to the model. Values greater than 1.0 suggest noise unfit to the 

model or other unclear variance in the data, which can degrade the measurement, while 

values less than 1.0 suggest the data points’ overfit to the model, indicating that the data 

are ‘too good to be true’ that may cause the report of inflated statistics (Bond, et al., 2020). 

Two MNSQ fit statistics, outfit and infit, are reported in the eRm package. As explained by 

Nicklin and Vitta (2022), Outfit MNSQ statistics are susceptible to being influenced by 

outliers in the dataset, while Infit MNSQ statistics are weighted to address the issue of 

outliers, but are more prone to being influenced by data points that fit the model too well. 

The current research took the reference of the acceptable ranges of MNSQ values [0.50, 

1.50] (Wright & Linacre, 1994), and [0.70, 1.30] with the infit t statistics ranging of [-2, 2] 

(Bond & Fox, 2015). If the MNSQ values of any items and persons were greater than 1.50, 

further examinations were conducted to investigate the reasons of the misfitting.  



 

275 

 

It is important to highlight that, in the current research, items that were answered 

correctly by every participant were considered for removal. This was informed by Nicklin 

and Vitta's (2022) item deletion strategy, as this research shared the same goal of 

determining which items to retain in the test. The authors’ speculation that poor model fit 

might not necessarily indicate poor item quality but could instead be attributed to careless 

mistakes by high-ability persons or lucky guessed by low-ability participants appeared 

reasonable and was therefore taken into consideration in the current research.    

The outputs of item and person statistics from both packages were consulted to 

provide comparable results that aimed to make more reliable interpretations. 

Step 4. Plots of model estimations 

Plots of IRT model estimations provides visualisations of the items and persons 

characteristics and the test information.  

Items or Persons Pathway Maps plotted the location of each item or each person 

against its infit t-statistic. They provided clear visualisations to identify misfitting items or 

persons if the items or persons lying outside of the range between -2 and +2.  

A person-item map presented the location of item parameters and the distribution of 

person parameters along the horizontal axis of the latent dimension, with the easiest items 

at the top and the most difficult items at the bottom, and the most skilled test takers at the 

right-hand side and the least skilled at the left-hand side. This map helped to compare the 

distribution and position of items to those of persons. If the instrument measures the latent 

trait accurately, items should be located along the entire scale, with smooth transitions in-

between. In an ideal scenario in which adequate test takers represent the population, their 

ability levels reflected by the person parameters should be spread out across the entire 

range of the latent dimension.  

An Item Characteristic Curve (ICC) plots the probability (Pi) that a test taker with 

ability value (θ) answers the item i correctly. The slope of the ICC indicates how steeply the 

probability of a correct response increased as ability level increased, and hence a steep 

ICC indicated that the item discriminated participants’ ability well, while a shallow slope of 

the curve showed that the item discriminated ability poorly. In addition, a positive slope 

showed that when the test takers’ ability level increased, the probability of correctly 

answering the item increased as well, which indicated that the item was effective to measure 

the construct being targeted and to differentiate test takers having various levels of latent 

ability.  
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An Item Information Curve (IIC), on the other hand, shows how much information 

about the latent ability an item provided at each level of the latent ability. It helps to indicate 

how well an item can discriminate between test takers at different level of ability and 

provides an estimate of the precision of an item at each level of ability. The location of the 

IIC on the axis of ability represented the level of ability at which the item is most informative.   

Similarly, Test Information Curve (TIC) was plotted for the whole instrument, 

showing how much information about the latent ability the instrument provided at each level 

of ability. The range of ability levels measured by the instrument were represented by the 

width of the TIC. This information was used to evaluate the appropriateness of the test for 

the participants and to identify whether the test was too difficult or lacked challenges.  

GPCM for dichotomous data (TALL_VL, TALL_SD, and TALL_LA) 

The ltm package was used, as it applies Marginal Maximum Likelihood Estimation (MMLE) 

to estimate data based on the assumption that individual person parameters conform to a 

specific distribution (Nicklin & Vitta, 2022). Generalised Partial Credit model (GPCM) 

(Muraki, 1997) in the this package was used to examine the model fit of the polytomous 

data in the subtests of Serial Nonwords Recall and Complex Span Task.  

It needs to be noted that although Partial Credit model (PCM) is available in the eRm 

package for the analysis of the polytomous data, it differs from GPCM in a key aspect. PCM 

assumes item discrimination remains consistent across different set sizes (the number of 

stimuli in one trial), which may not hold true for the current research data. This is because 

the trials with varying span sizes, ranging from 2 or 3 to 7 stimuli, can provide differing levels 

of discrimination evidence related to latent ability. As a result, the GPCM, which permits 

different constraint options on the discrimination parameter, appears to be the more suitable 

IRT model for analysing the polytomous data in the current research.  

Step 1. Model comparisons 

To build the GPCM, gpcm function was used in the ltm package that allows three constraint 

options, i.e., gpcm option assuming each trial having an estimated discrimination parameter, 

1PL option assuming the discrimination parameter being equal for all trials, and Rasch 

option assuming the equal discrimination parameter being fixed at one. All three options 

were applied to the split data sets separately, and the models were then compared with 

each other to ensure that the chosen model had the best fit to each dataset.   

Step 2. Model Fitness   
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Fitness statistics of the chosen model to the data were obtained in this step. For the Rasch 

model, the GoF.gpcm() function through the ltm package was used to perform a parametric 

bootstrap goodness-of-fit test using χ2 statistic. Based on 50 iterated datasets, the non-

significant p-value > .05 would suggest an acceptable fit of the model (Rizopoulos, 2006).   

Step 3. Model estimations  

The descriptive statistics of the chosen model with better fitness were analysed by the 

summary function, providing coefficients of the category threshold parameters and the 

discrimination parameter. The category threshold parameters represented the points on the 

latent trait scale that determine when the test takers were equally likely to endorse one 

answer option versus the next. The lower values of the category threshold parameters 

indicated that the item was easier to endorse, while the higher values indicated that the item 

was more difficult to endorse. The discrimination parameter provided information about the 

how well the item distinguished between individuals with different level of the latent ability. 

In the outputs, the z-value for each coefficient was also displayed, which was obtained by 

the coefficient divided by the standard error and indicated whether the coefficient was 

statistically significant. As a rule of thumb, a z-value with the absolute value greater than 

1.96, indicating the statistical significance of the coefficient at the 5% level, suggested that 

the parameter was unlikely to have arisen by chance.  

Step 4. Plots of model estimations 

An Item Characteristic Curve (ICC) graphically represents the probabilities that a test taker 

with certain ability on the latent ability scale responds correctly to all categories of the trial 

correctly. A positive slope shows that when a test takers’ ability level increases, the 

probability of correctly endorsing the category increases as well, which indicates that the 

category is effective to evidence the construct being targeted and to differentiate test takers 

with various levels of latent ability.  

An Item Information Curve (IIC), on the other hand, shows how much information 

about the latent ability an item provides at each level of the latent ability. It helps to indicate 

how well an item can discriminate between test takers at different level of ability and 

provides an estimate of the precision of an item at each level of ability. The location of the 

IIC on the axis of ability represents the level of ability at which the item is most informative.   

Similarly, the Test Information Curve (TIC) is plotted for the whole instrument, which 

shows how much information about the latent ability the instrument provides at each level 

of ability. The range of ability levels measured by the instrument is represented by the width 

of the TIC. This information is used to evaluate the appropriateness of the test for the 
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participants and to identify whether the test is too difficult or the test lacks challenges. In 

addition, the TIC also displays how well the tests measure individuals of different abilities 

based on the location of the ability level the information curve peak.  As asserted by Draheim 

et al. (2018), the TIC is not affected by the distribution of test takers’ ability levels and is 

invariant to the ability levels of the participants in the test. 
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Appendix G: A stepwise protocol of PCA 

 

PCA in the current research was conducted through functions in the psych package 

(Revelle, 2022), the FactoMineR package (Husson, et al., 2017), and factoextra package 

(Kassambara & Mundt, 2017) in R, following the steps below. 

Step 1. Preliminary analysis 

The first step was to check the correlations of the subtests as PCA was conducted based 

on the assumption that TALL measured the same underlying factor dimension(s) that were 

correlated with each other. Prior to the calculation of correlation coefficients, normality 

checks on the data of the test suites were conducted, informing the choice of the appropriate 

type of correlation coefficients.  

The analysis of correlation aimed to detect two potential problems: (1) the 

correlations were not high enough, usually with coefficients lower than .3, which may violate 

the assumption of PCA; (2) the correlations were too high, with coefficients greater than .9, 

which suggested extreme multicollinearity and singularity that should be avoided for factor 

analysis. However, these cut-off values of the coefficients may be subjective (Field, et al., 

2012). Bartlett’s test of sphericity was used as an objective method to examine whether the 

correlation matrix resembled an identity matrix, suggesting all correlation coefficients were 

close to zero. The statistically significant p-value < .05 would indicate that the variables 

somehow correlated with all other variables. In addition, the determinant of the R-Matrix 

was used to provide information about whether the correlation matrix was singular 

(determinant is 0), or whether all subtests were completely unrelated (determinant is 1), or 

somewhere in between. The value greater than the necessary value of 0.00001 would 

suggest the determinant not being problematic. 

 In this step, the sample size related to the stability of factor solutions was also 

examined, using the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (Kaiser, 

1970). The acceptable value of KMO would be greater than .5, with values between .5 

and .7 being mediocre, values between .7 and .8 being good, values between .8 and .9 

being great, and values above .9 being superb (Hutcheson & Sofroniou, 1999). 

Step 2. Factor extraction 

Given that the purpose of conducting PCA in the current research was to explore whether 

the subtests could measure the principal component without much redundancy rather than 

to reduce or consolidate variables, in this step, solutions without reducing the number of 
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factors as the same of the number of subtests were conducted, using PCA function in the 

FactoMineR package.  Eigenvalues of the solutions were inspected against the rules of 

retaining factors having eigenvalues greater than 1 (Kaiser, 1960), greater than 0.70 (Jolliffe, 

1972) and greater than 0.512 for sample size of 100 (Stevens, 2002). Meanwhile, to improve 

the interpretation of the solution, the oblimin method of oblique rotation was used, which 

allowed factors to correlate.  

Another criterion for deciding the proper solutions of retaining the number of factors 

is the cumulative percentage of variance that the extracted factors explain. Field et al. (2012) 

suggests that the minimum cumulative percentage of explained variance should be around 

55‒65%, while a field-specific thresholds in factor analytic L2 research is suggested to be 

approximately 60% (Plonsky & Gonulal, 2015), which means that it may be appropriate to 

retain the number of factors until they account for at least 60% of the total variance (Loewen 

& Gonulal, 2015). 

The strength of the association between the subtests and each factor dimension can 

be examined by the factor loadings. However, the interpretation of what establishes a high 

loading is subjective and may follow different optimal factor loading scores (Loewen & 

Gonulal, 2015). In this section, factor loadings > .30 were considered significant, following 

the practice of a field-specific sample study, Loewen et al. (2009), suggested by Plonsky 

and Gonulal (2015). The results are presented in the tables of factor loadings.  

Step 3. Plots 

Scree plots provided visualisation of the eigenvalues ordered from largest to the smallest, 

which informed the number of principal components. The graphs of variables (i.e., subtests) 

were also plotted to describe the relationships between the variables and the factor 

dimensions. In specific, the correlation between a variable and the factor dimensions was 

described as the coordinate of the variable on the factor dimensions. The quality of 

representation of the variables on the factor dimensions was calculated as cos2, which was 

the squared coordinate. The contribution (in percentage) of a variable to a given factor 

dimension was calculated by the cos2 of the variable divided by the total cos2 of the 

dimension.  In addition, a correlation circle plotted showed the variable correlations on the 

dimensions of the first two principal components. The plot could be interpreted in the 

following way: positively correlated variables were grouped together, while negatively 

correlated variables were positioned on opposite sides of the plot origin (opposed 

quadrants). The distance between variables and the origin showed the quality of the 
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variables on the factor map, with variables away from the origin being well represented on 

the factor map (Kassambara & Mundt, 2017). 
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Appendix H: A stepwise protocol of CFA 

 

The objective of using CFA in the current study was to evaluate how well the hypothesised 

four-factor model fitted the empirical data. CFA was conducted using the lavaan package 

(Rosseel, 2012) in R. 

Step 1. Data preparation 

Prior to the CFA, data preparation was required for having a reliable parameter estimation. 

The prerequisites of CFA involved the check on skewness and kurtosis of variables and 

outliers that affect the analysis (Schoonen, 2015). The results of normality checks are 

reported in Section 4.5.1.1 and 4.5.1.2, indicating that the data of all subtests in both suites 

were not normally distributed. Therefore, data transformation was applied on the individual 

data set of each subtest in each suite.  

 Initially, extreme observations within the dataset were identified and handled as 

outliers in the scores. In the aural suite, nine extreme observations from TALL_VL, eight 

from TALL_SD, one from TALL_LA, five from TALL_SNWR, and nine from TALL_CST. In 

the written suite, three from TALL_VL, seven from TALL_SD, nine from TALL_LA, six from 

TALL_SNWR, and four from TALL_CST.  

To manage these outliers, the extreme observations were replaced with scores that 

were recalculated by reverting them from a z-score of 2. These extreme observations were 

defined as those with absolute z-scores exceeding 2 standard deviations from the mean. 

The replacement scores were calculated as the mean plus two standard deviations.  

The decision to modify extreme scores stemmed from the observation that the 

extreme scores achieved by participants were not treated as statistical outliers in the current 

research (as explained in Section 3.3.5.1). While retaining these values in the dataset had 

its advantages, such as preventing an inflation of the Type I error rate, it was evident that 

these extreme values were unrepresentative and could introduce bias into the model 

estimations. Therefore, the adjustment of scores was considered a more favourable option, 

despite the potential drawback of altering the original score distribution to enhance normality, 

as noted by Field, et al. (2012). This choice aimed to ensure that extreme values did not 

unduly influence subsequent analyses, thus leading to more robust and reliable results. 

Subsequently, the dataset with the extreme values replaced underwent a 

transformation using the arcsine-square-root transformation, a standard procedure for 

handling proportional data (Sokal & Rohlf, 1995). The aim of this transformation was to 
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achieve normality in the data distribution. To ensure that the transformed datasets of 

variables met the criteria for normality, skewness and kurtosis were assessed. An absolute 

skew.2SE or kurt.2SE value greater than 1, following Field, et al. (2012) for significance at 

p < .05, indicated significant skewness or kurtosis. These checks were crucial for verifying 

data assumptions in subsequent analyses. 

Step 2. Model building and model fit check 

A four-factor model was specified using the structure of factors postulated by the theoretical 

framework of aptitude construct, that is, the subtests of TALL_VL, TALL_SD, TALL_LA load 

to three factors respectively and the subtests of TALL_SNWR and TALL_CST load to one 

factor. Model fit was checked to evaluate how well the data of both suites fit the four-factor 

model by comparing the observed data with the predicted data based on the model.  

The model fit can be evaluated using various goodness-of-fit indices to assess the 

fit of specified model to the data. Specifically, the statistical results under “Model Test User 

Model” in the output are relevant for assessing the fit of the model to the data, in which a 

non-significant p-value above .05 may suggest a good fit between the model and the data. 

The results under “Model Test Baseline Model” indicate the comparison of the user model 

to a baseline model (i.e., a simpler model that assumes no relationships or associations 

between the variables), which is to determine if the specified user model provide a 

significantly better fit to the data compared to the baseline model with the p-value < .05. 

The Chi-square test statistics, degrees of freedom, and p-value in the output of both “Model 

Test User Model” and “Model Test Baseline Model” are reported. In addition, the 

approximate fit indices are also reported to indicate the model fit in CFA.  Specifically, 

Comparative Fit Index (CFI) and the Tucker-Lewis Index (TLI) above 0.9 and close to 1, 

Root Mean Square Error of Approximation (RMSEA) below .05, and Standardized Root 

Mean Square Residual (SRMR) below .08 would evidence the good fit of the data to the 

theoretical model (Brown, 2015). 
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