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Abstract 

Endocrine resistance in ER-positive breast cancers is a common occurrence with 

hormonal therapies leading to accelerated tumour progression and metastatic 

complications. The exact molecular mechanisms driving resistance are still unclear 

and need further elucidation. In this study, long noncoding RNAs were highlighted 

as key players in orchestrating the complicity of different molecular pathways of 

resistance. LncRNAs are pervasively transcribed across the genome, measuring > 

200 nucleotides in length, and found to be dysregulated in several tumorigenic 

pathways.   

We hypothesised that tamoxifen resistance is influenced by dysregulated lncRNAs, 

and they constitute novel targets for nominating new biomarkers and therapeutics. 

To first investigate this, we generated a list of lncRNAs differentially expressed 

between tamoxifen resistant and sensitive MCF-7 cells using RNA sequencing. Of 

which, LUCAT1, SOX21-AS1, NR2F1-AS1, and HOTAIRM1 were selected to 

undergo further molecular validation studies, mainly siRNA mediated depletion of 

expression in tamoxifen resistant cells, then assessing tamoxifen sensitivity in vitro. 

While the 4 nominated lncRNAs’ expression was significantly high in tamoxifen 

resistant MCF-7 compared to tamoxifen sensitive MCF-7, no observable change in 

the tamoxifen sensitivity was observed when silencing any of the lncRNAs. To aid 

further candidate lncRNAs selection for invitro studies, GEO and TCGA databases 

were searched for data related to tamoxifen resistant phenotype, analyzing the data 

allowed for expanding our understanding of the genotypic changes related to 

tamoxifen resistance, as many genes known in the pathway of resistance were 

confirmed. Also, this offers grounds for nominating promising candidate lncRNAs in 
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the pathway of tamoxifen resistance. In conclusion, RNA-seq analysis identified 

many dysregulated lncRNAs and protein coding genes, of which LUCAT1, NR2F1-

AS1, SOX21-AS1 and HOTAIRM1 were prioritized as lncRNAs driving tamoxifen 

resistance in breast cancer. LUCAT1 was promising after bioinformatics 

investigation and remains a significant candidate for invitro validation. It was 

showed that comparisons, relating and overlapping between differentially 

expressed genes from RNA-seq and publicly available datasets resulted in 

nominating lncRNA ZNRD1ASP as possible candidate, additional in-depth analysis 

is needed. 
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Chapter 1 Introduction 

1.1 Breast Cancer Biology 

1.1.1 incidence and development 

About 1 in 8 women will be affected by breast cancer in their lifetime, this is a 

cumulative risk of 12.5%. According to the latest statistics, about 2.3 million women 

were diagnosed with breast cancer in 2020, and it accounted for more than 600,000 

cancer related deaths (Sung et al., 2021). In the UK, breast cancer is considered a 

major public health issue, with about 55,000 new cases annually and more than 

11,000 deaths associated with the disease (Cancer Research UK, 2017). While 

familial breast cancer cases constitute only 5% of breast cancers, most of breast 

cancer cases are sporadic. Unlike mono-genetic diseases, where an easily 

identified mutated single gene is responsible for pathology, breast cancer is a multi-

genetic disorder. Many somatic gene mutations and gene expression aberrations 

are found to be directly and indirectly associated with the development and 

progression of breast cancer (Nandy, Gangopadhyay, and Mukhopadhyay, 2014). 

The complexity of breast cancer is further enhanced by the strong association with 

environmental mutagens and social factors that alter many molecular pathways 

such as cell signalling and DNA repair (Ferrucci et al., 2009).   

Breast cancer originates in either the ductal or lobular compartments of the 

mammary glands; with most breast cancers classified as invasive ductal 

carcinomas (Goh et al., 2019). Carcinogenesis in breast tissue starts usually with 

abnormal proliferation (hyperplasia) that progresses to carcinoma in-situ then 

becomes invasive to adjacent breast tissue (local disease), breast lymph nodes 
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(regional disease), to invade distant organs (metastatic or secondary disease) (L. 

Chen et al., 2013). Further pathological examination of the breast cancer 

histological biopsies labels it with a grade according to cancer cellular degree of 

differentiation compared to normal cells. Staging of breast cancer follows tumour-

node-metastasis (TNM) system, where T expound the size of primary breast 

tumour, N is for the number of regional lymph nodes involved, and M for presence 

or absence of distant metastases, based on the TNM score breast cancer get a 

stage from 0 – 4  (Li et al., 2018).  

Breast cancer receptor status together with pathological properties and staging 

impact the treatment plan dramatically. Treatment is usually multi-strategic 

combining surgery, chemotherapy, radiation, and targeted therapy (Schmitz et al., 

2012). Owning to advancement in treatment options, targeted therapies, and early 

detection, the mortality rate has improved considerably over the past decades. With 

larger numbers of survivors, long-term complications like drug resistance and 

progression can be observed more in the population (Zhang et al., 2013).  

Better understanding of the genomic signatures of breast cancer will lead to 

comprehension of the cellular and molecular mechanisms that give rise to the 

complexity of disease. In addition, this understanding will further advance clinical 

practice towards more personalised medicine.  

1.1.2 Molecular subtypes of breast cancer 

The difference in genetic profiles of breast cancers creates an extensive 

heterogeneity in-terms of clinical response and progression in phenotypically very 

similar cases. This demanded the application of molecular classification of breast 
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tumours to allow for better allocation of treatment plans and targeted therapies 

(Cianfrocca and Gradishar, 2009). 

There are three main categories of breast cancer based on pathological markers: 

the most prevalent type, hormone-receptor positive, exhibit either or both of 

oestrogen hormone receptors (ER) and progesterone hormone receptors (PgR). 

ER positive tumours comprise more than 70% of cases, such tumour cells depend 

on oestrogen hormone for growth and expansion (ZHANG et al., 2014). Based on 

this principle, over the past five decades endocrine therapies have been used 

successfully to prevent cell proliferation in this type of cancer and to improve 

survival rates (Vasconcelos et al., 2016). Human epidermal growth factor receptor 

2 (HER2) also called HER2/neu or Erb-B2 receptor tyrosine kinase 2 (ERBB2) is 

over expressed in about 20% of breast cancers. The prognosis for this type of 

breast cancer was considered poor until the introduction of targeted 

immunotherapies that dramatically improved survival (Incorvati et al., 2013). HER2 

expression can occur with or without ER/PR expression. A third type of breast 

cancer is triple negative breast cancer, these tumours lack hormone and HER2 

receptors. Most patients with genetic predispositions like BRCA1 and BRCA2 gene 

mutations get diagnosed with this type of breast cancer, it is the least common type 

with least favourable prognosis due to the lack of targeted therapies (Mayer et al., 

2014).   

Creating an effective categorisation model for breast cancer has been complex and 

many classification techniques have been developed over the past two decades. 

Using gene expression profiles, based on the degree of expression of ER, PgR, 

HER2 and Ki-67, five main intrinsic molecular subtypes were identified: ER-positive 
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(luminal A and luminal B +/-HER2) and ER-negative (HER2-positive and basal-like) 

(Table 1.1  (Vasconcelos et al., 2016; Charles et al., 2000). 

 

Table 1.1.  Molecular subtypes of breast cancer 

Molecular subtypes ER PgR HER2 Ki-67 

Luminal A + + - low 

Luminal B-HER2 + -* - High* 

Luminal B+HER2 + + or - + High or low 

HER2 +ve - - + n/a 

Basal like (triple negative) - - - n/a 

 

  

 

1.1.3 Oestrogen receptor signalling 

Oestrogen hormone is the main steroid hormone initiating and maintaining sexual 

growth in females. It regulates development of secondary sexual characteristics 

(e.g., growth and proliferation enhancing effects on mammary cells), menstrual 

cycles, and gestation (Khan, 2019). It’s vital systemic action supports homeostasis, 

healthy bones, heart, and brain, both in males and females (Bartos, 2009) (Figure 

1.1). Throughout reproductive years, ovaries serve as an endocrine gland 

producing oestrogen under the influence of gonadotropin-releasing hormone 

(GnRH) from the hypothalamus, and luteinizing hormone (LH) and follicular-

releasing hormone (FSH) from the anterior pituitary. Gonadotropins stimulate theca 

 (*) either PR is absent, or law or Ki-67 is high. (n/a) not associated. (+) 

positive, (-) negative.  
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and granulosa cells in ovary to metabolite androstenedione to oestrogen (Cui et al., 

2018) (Figure 1.1). Oestrogen gets secreted in a cyclical manner through the 

menstrual cycle, the lowest level of oestrogen is reached during menstruation and 

highest is reached peri-ovulation (Gaskins et al., 2012).  
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Figure 1.1. Estrogen production and physiological actions. TOP: Scheme

of estrogen synthesis and control by ovary and brain, where LH stands for

luteinising hormone, FSH for follicle stimulating hormone. BOTTOM: organ and

systems regulated by estrogen, affecting almost all tissues in the body with

gender specific and nonspecific manner.

Oestrogen 
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There are three different forms of oestrogen, Estradiol (E2) is the most potent and 

the predominant form circulating during female reproductive age, Estron (E1) is the 

main oestrogen post-menopause, and Estriol (E3) that is primarily produced during 

pregnancy (Bartos, 2009). After menopause, ovarian oestrogen production stops 

and much lower quantities of oestrogen get produced from nongonadal sites, mainly 

adipose tissue but also from skin, liver and adrenal glands (Rachoń and Teede, 

2010).    

Oestrogenic effects are classically exerted through E2 interactions with binding 

sites on ERs in the target tissue. These are ligand-activated nuclear receptors that 

function as transcription factors (TF) regulating gene expression (Fuentes and 

Silveyra, 2019). Oestrogen receptors, like other members of the nuclear receptor 

superfamily, hold a well-conserved and central structural component containing a 

DNA-binding domain (DBD) that interacts with the DNA in a sequence-specific 

manner at oestrogen response elements (ERE). There are two subtypes of ERs, 

both transcribe from different genomic locations, oestrogen receptor-alpha (ERα) is 

transcribed from ESR1 gene on 6q24-q27-chromosome six and oestrogen 

receptor-beta (ERβ) which is transcribed from ESR2 on q22-24-chromosome 14. 

Both ESR1 and ESR2 encode eight exons and generate three and five isoforms 

respectively by alternative splicing (Greene et al., 1986; Enmark et al., 1996). The 

structural organisation of both consists of five domains: A/B which form the ligand-

independent domain, C which forms the DBD, D which forms the hinge domain and 

E/F domain that forms the ligand-dependant activation area as shown in (Figure 

1.2) (Nilsson et al., 2001). ERα and ERβ share a lot of resemblance in structure,  
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but have differences in localisation, activity, and interactions, details of which are 

given in (Table 1.2). 

 

 

 

  



 

 

27 

 

 

 

 

 

The physical association between E2 and ER initiates series of molecular events 

that induce oestrogen receptor conformational change and receptor dimerization, 

where ERα and ERβ homodimers (ERαα or ERββ) or heterodimers (ERβα) are 

formed according to the specific tissue distribution of ERα and ERβ (Cowley et al., 

1997) (Table 1.2). 

 

Difference ERα ERβ 

Gene and location ESR1 / 6q25.1 ESR2 /14q22–24  

Tissue distribution Breast (Epithelial cells nuclei) 

Bone, Adipose tissue, liver, 

kidney. 

Breast (Epithelial 

and myoepithelial 

cells nuclei) 

Colon, lungs, male 

reproductive 

organs, 

neurological tissue 

Domains Different N-terminal domain but similar DBD and LBD 

Response to tamoxifen Partial agonist Pure antagonist 

Expression in normal 

mammary cells 

~5-15 % Widespread 

Expression in breast 

cancerous cells 

~70% Far smaller than 

Erα 

Association with breast 

cancer 

Well demonstrated Unclear and needs 

further 

investigation 
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Once activated the ER-E2 complex undergoes nuclear trans-localization where it 

binds to a specific region on cis-acting transcripts proximal to oestrogen targeted 

genes on the DNA called oestrogen responsive elements (ERE), this binding is  

followed by recruitment of co-activators and co-suppressors to directly stimulate or 

supress the desired genes transcription (Nilsson et al., 2001) (Figure 1.3.A). 

Moreover, ER-E2 binding is not exclusive to ERE, under certain conditions, it can 

interact with alternative response elements (figure 1.3.B), such as nuclear factor 

kappa B (NF-КB), activator protein 1 (AP-1) and specificity protein 1 (SP1) and 

mediate the transcription of their targeted genes (deGraffenried, 2004). 

In addition to the above-mentioned pathways that mediate oestrogen genomic 

signalling through nuclear ERs, oestrogen is known to have a nongenomic 

signalling pathways through membranous ERs. Membrane ERs are the same 

protein product as nuclear ERs but post-translational chemical modification (i.e., 

palmitoylation of cysteine on the C-terminal LBD (E/F domains)) is responsible for 

the ability of ER to translocate to the cell membrane and attach to signalling 

molecules such as G-proteins and c-Src (Razandi et al., 2003) (Levin, 2008). G-

protein coupled ERs (GPER) mediate rapid oestrogen signalling by activating 

several intracellular cascades through second messenger signalling to many 

growth-related kinases such as extracellular signal-regulated kinase (ERK) and 

phosphatidylinositol 3-kinase (PI3K) in a similar manner to classic G-protein 

coupled receptors (GPCR) (Levin, 2008). E2 is also a known ligand for orphan G-

protein coupled receptor 30 mediates rapid oestrogen signalling through protein 

kinase A/cyclic adenosine monophosphate (Camp/PKA) signaling pathway (Mo et 
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al., 2013; Filardo et al., 2002) (Figure 1.3.C). Functional studies using truncated 

forms of ER protein showed that, in the absence of E2, ER-activation can be 

achieved in a ligand-independent manner through growth factor receptors (GFRs) 

(e.g. EGFR, HER2 and IGF-R1) and G-protein coupled receptors (GPCRs) (e.g. 

protease-activated receptor 1 (PAR1) and GPR116) signalling cascades. GFRs 

activate downstream protein kinases (e.g., mitogen-activated protein kinase 

(MAPK), phosphatidylinositol-3 kinase (PI3K)) that in-turn mediate the 

phosphorylation of AF-1 (A/B) domain of ER and subsequent ER-related 

transcriptional activation (El-Tanani and Green, 1997) (Maggi, 2011) (Figure 1.3.D) 

. GPCRs ER-activation by phosphorylation is achieved mainly through cAMP/PKA 

pathway but it can also crosstalk with GFR pathway components at the level of 

mTOR and MAPK (Thomas et al., 2006) (Singh, Nunes and Ateeq, 2015). Thus, 

while E2-nuclear ER interaction is the dominant driver of growth signalling in 

mammary tissue, non-classical ER signalling contributes to a complex network of 

molecules that have the capacity to override E2-ER pathway and facilitate cellular 

growth and proliferation.  

Well-controlled and balanced oestrogen signalling is essential for functional breast 

physiology, while dysregulated signalling and prolonged E2 exposure are known to 

gives rise to uncontrolled growth, proliferation, and progression of breast tumours 

(Colditz, 1998). 

  

https://www.sciencedirect.com/topics/neuroscience/coagulation-factor-ii-receptor
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1.2 Endocrine therapies and resistance in Breast Cancer 

1.2.1 Hormones and breast cancer 

In the past it was the standard of care to prescribe hormone replacement therapy 

(HRT) for post-menopausal women. These were mainly combined oestrogen and 

progesterone hormones and aimed to reduce menopause symptoms, such as: hot 

flushes, mood swings and vaginal dryness. However, a correlation between 

combined HRT and increased risk of breast cancer has been established 

necessitating reconsiderations such as shortening the exposure duration, using 

oestrogen-only HRT or alternative therapies (Vinogradova, Coupland and 

Hippisley-Cox, 2020; Stuenkel et al., 2015; Bassuk and Manson, 2014; Crosignani, 

2003).  

The direct relationship between oestrogen hormone and breast cancer was firmly 

evidenced many decades ago (Dimitrios, Brian and Philip, 1972). Oestrogen’s 

major role in breast tissue is to enhance mammary cell proliferation and 

differentiation (Yaghjyan and Colditz, 2011).  It was proved that the longer the 

exposure to endogenous oestrogen, the higher the risk of breast cancer – e.g., early 

menarche and late menopause (Hamajima et al., 2012). After menopause, while 

oestrogen production cesses from the ovaries, oestrogen gets produced from 

peripheral body parts, mainly adipose tissue, by converting circulating 

androstenedione to oestrogen by enzyme aromatase (Hetemäki et al., 2017). 

Hence obesity is more significant as a risk factor for breast cancer in post- than in 

pre-menopause (Gravena et al., 2018). It was clearly concluded that the cumulative, 

excessive, and prolonged exposure to oestrogen is one of the most important 

predisposing factors to developing oestrogen receptor positive breast cancer.  
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1.2.2 Targeted Endocrine therapies for ER-positive breast cancer  

The treatment strategies for breast cancer have evolved dramatically over the past 

decades. Early on, breast cancer would be treated with surgical (radical 

mastectomy), irradiation and chemical castration, hypophysectomy (removal of 

pituitary glands) and bilateral adrenalectomy (removal of adrenal glands) in a 

sequential manner (Kennedy, 1965). Use of combined chemotherapeutic regimens 

was then in fashion during the seventies (Cooper, 1969) (Hortobagyi, 2000). Such 

old, nonspecific treatment strategies of breast cancer were harsh, invasive, delayed 

and based on trial and error, with modest survival improvement.  

Given that oestrogen is the main influencer of ER-positive breast cancer cells and 

that it functions by reacting with oestrogen receptors forming an active oestrogen-

ER complex, hindering this interaction is a logical target in treating ER-positive 

breast cancer. Three hormonal drug classes are available, each with a distinct 

mechanism of action: (1) selective oestrogen receptor modulators (SERMs): e.g., 

Tamoxifen and Raloxifene, these competitively bind the oestrogen receptor 

blocking it’s growth and proliferation enhancing actions. (2) selective oestrogen 

receptor down-regulators (SERD): e.g. Fulvastrant, which mediates oestrogen 

receptor destruction and degradation, counteracting ER upregulation, and (3) 

aromatase inhibitors (AI): e.g. Letrozole, Anastrozole and Exemestane, these block 

the action of aromatase enzyme and thus reduce oestrogen synthesis (Burstein et 

al., 2014). The focus of this thesis will be on tamoxifen resistance, other types of 

endocrine resistance are covered in many reviews (e.g., (Macedo, Sabnis and 

Brodie, 2008)  (Ma et al., 2015) (Huang et al., 2017) (de Marchi et al., 2016). 
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1.2.3 Tamoxifen  

Previously known as compound I.C.I. 46,474, Tamoxifen is a trans-isomer of a 

substituted triphenylethylene, nonsteroidal antioestrogen (Walpole and Harper, 

1966). It was first synthesized and tested as postcoital contraception (HARPER and 

WALPOLE, 1967). However, on the contrary, it was shown to stimulate ovulation 

function (Williamson and Ellis, 1973). It’s potential as an anticancer was first tested 

in advanced breast cancer patients, but results were modest (Cole, Jones and 

Todd, 1971). Despite the unencouraging results, researching tamoxifen potential 

as an antioestrogen therapy for breast cancer continued through the 1970s (Jordan, 

2008). It gained approval in the 1977, initially as a palliative therapy for metastatic 

breast cancer (Kiang, 1977). Subsequent evidence showed unprecedented 

qualities of tamoxifen compared to standard chemotherapies, such as: selectivity -

tissue specific oestrogen regulatory function - (Radin and Patel, 2016)  and 

chemoprotection, reducing the incidence of breast cancer for high-risk patients 

(Fisher et al., 1998). The eventual introduction of tamoxifen as standard therapy 

dramatically improved the clinical outcomes of breast cancer patients, most 

importantly in terms of decreasing mortality rate by 31% and improving relapse-free 

survival (Abe et al., 2005). Currently, a highly recommended 5-year adjuvant 

course, extendable to 10 years, is now the standard of care for oestrogen receptor 

positive breast cancers (Burstein et al., 2014). A timeline of development of 

tamoxifen is shown in Figure 1.4. 
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Tamoxifen is known to be a pro-drug so therapeutic effects are exhibited through 

hepatic metabolic activation by Cytochrome P450 enzymes, to produce active 

metabolites, mostly 4-hydroxy tamoxifen (4-OHT) and endoxifen (Lim et al., 2006). 

It’s unique chemical structure closely resembles that of oestrogen with some 

chemical and structural differences making it of higher affinity for ER than oestrogen 

hormone (Nilsson et al., 2001). Tamoxifen mainly acts as a cytostatic agent, 

terminating pre-cancerous cell cycle progression at G0, rather than being cytotoxic 

to the already matured cancerous cells (Dalvai and Bystricky, 2010).  

 

1.3 Endocrine resistance in breast cancer 

While endocrine therapies are proven effective in ER-positive breast cancer 

treatment and prevention, endocrine resistance, de-novo and acquired is reported 

to be as high as 40 % (Lei et al., 2019). In theory, the overexpression of ERα in 

breast cancer should be the definite indication of positive response to endocrine 

therapy. However, this is not always the case, approximately half of ERα positive 

advanced breast cancers is not responsive to tamoxifen and more than one third of 

initially responsive patients end up with endocrine resistance, interrupting their 

course of treatment. These patients often feature local or distant metastasis, and/or 

primary tumour progression and recurrence (Normanno et al., 2005). 

1.3.1 Mechanisms of tamoxifen/endocrine resistance  

Tamoxifen competitively binds and effectively blocks ERα, However, with 

continuous prolonged exposure, cancer cells start to desensitize and become 

resistant regardless of their oestrogen receptor positivity (de Marchi et al., 2016). 
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Well-defined pathways of resistance include defective ER expression and aberrant 

molecular interactions with growth-related transcription factors resulting in 

uncontrolled ER-signaling. In addition, the presence of crosstalk between ERs and 

growth factor receptors pathways (e.g., EGFR and HER2) that act through many 

intracellular signaling cascades (PI3K/AKT/mTOR and MAPK/ERK) to control 

differentiation and cell cycle progression can contribute to resistance (details follow 

in the following sections). It should be noted that these pathways are tightly 

regulated under normal physiological conditions, but they get out of balance usually 

due to carcinogenic transformations in the breast cancer genome or in response to 

external stimulus such as endocrine therapies. Overview of mechanism of 

resistance is shown in Figure 1.5.  
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Figure 1.5. Mechanisms of tamoxifen resistance in estrogen receptor

positive breast cancers. This includes loss or hyperactivation of ESR1

expression or producing faulty ER prone to ligand independent activation by

phosphorylation. GFRs are central contributors in driving tamoxifen resistance,

where growth factors such as IGF, EGF and TGF bind GFR initiating cellular

growth signalling cascade. miRNAs have a widespread regulatory function and

can participate in resistance by freeing RNAs from their control. Tamoxifen

resistance is a complex interconnected pathways that can involve one or a

combination of mechanisms. GFR denotes growth factor receptor, GF is growth

factor, ER is estrogen receptor, p is phosphate, AkT is activated tyrosine kinase,

MAPK is mitogen-activated protein kinase and TF is transcription factor.
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1.3.2 Mutations/ alterations in ER molecules  

Many genomic aberrations in the gene encoding ERα itself, ESR1, cause structural 

and functional alterations in the receptor and have been linked to endocrine 

resistance pathways. Loss of ER expression as a genotype is the main cause of de 

novo endocrine resistance phenotype in triple negative breast cancers. In acquired 

endocrine resistance, this relation is much more complicated as ER downregulation 

has been observed in only ~15% of resistant patients (Encarnacion et al., 1993; 

Yao et al., 2013). While it is not completely understood if ER loss is the cause or a 

consequence in the resistance pathway, it has been correlated with growth factor 

receptor (GFR) (e.g., HER2 and EGFR) overexpression that seem to supress ER 

expression to take over the control on growth and proliferation (Gutierrez et al., 

2005; Osborne and Schiff, 2011).  

Somatic point mutations, mostly affecting the part encoding LBD on the ESR1 gene, 

give rise to a truncated form of ERα, capable of ligand-independent autoactivation 

and causing conformational change that makes ligand binding sites inaccessible to 

tamoxifen. Most frequent ESR1 mutations are Y537S and D538G (in 20 – 30 % of 

cases) (Merenbakh-Lamin et al., 2013; Fanning et al., 2016), less frequent 

mutations include Y537N, Y537C and L536R, (in 3 - 13 % of cases). Interestingly 

mutations were mostly observed in advanced breast cancers pre-treated with 

endocrine therapies rather than endocrine therapy-unexposed ER-positive or ER-

negative subtypes (Jeselsohn et al., 2014; Fanning et al., 2016). This observation 

suggests a probable ESR1 genetic scarring caused by endocrine therapies making 

tumours prone to endocrine resistance.  
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Other possible genomic alterations related to resistance include alternative splicing 

and exon skipping that produce functionally distinctive isoforms such as ERα-36, 

ERα-46 and types1, 2 and 3 exon skipping splice variants that have reluctant 

binding abilities to tamoxifen (Klinge et al., 2010; Li et al., 2013; Lee et al., 2016). 

In addition, genomic rearrangements and translocations that give raise to ESR1–

CCDC170 gene fusions were observed in 4% of breast cancer cases examined (8 

out of 200 ER-positive tumours) and were especially reported in the aggressive 

resistant form of breast cancer, this genetic defect produced ΔCCDC170 protein 

that is believed to participate in malignant progression and resistant transformation 

(Veeraraghavan et al., 2014). 

1.3.3 Dysregulation of alternative reactive elements signalling pathway 

The transcription of oestrogen responsive genes can be activated through other 

mechanisms and can compensate for the blockage of ER signalling by 

antioestrogens. Upregulation of TFs known to act on genes associated with 

proliferation and tumorigenesis, has been linked to endocrine resistance (Dixon, 

2014). For example, NF-κB. NF-κB is a TF normally found in an inactive form in the 

cytoplasm under the inhibitory effect of IКB. Upstream stimuli such as stress and 

growth factor receptor activation (e.g., EGFR, FGFR and IGF-1R) induce the 

proteolysis of IКB. Dissociation of IKK from NF-κB, activates NF-κB, that in turn 

translocates to the nucleus and acts as an alternative TF for ER signalling 

(deGraffenried, 2004). ER-negative and tamoxifen resistant breast cancer cell lines 

show much greater DNA-binding affinities to NF-κB than ER-positive and tamoxifen 

sensitive cell lines (Yamamoto and Gaynor, 2001). Furthermore, combining IKK 
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inhibitor PA with tamoxifen re-sensitized resistant cell lines (HER2-positive and 

tamoxifen resistant ER-positive) (Zhou et al., 2005). 

 1.3.4 Upregulation of ligand-independent signalling pathway  

One of the most prominent mediators of tamoxifen resistance is the overexpression 

of transmembrane tyrosine kinase growth factor receptors, that cause growth and 

proliferation in a ligand-independent manner (Figure 1.3.D) (Paplomata and 

O’Regan, 2014). GFRs such as EGFR, FGFR, HER2 and IGF-1R bind their ligands 

and cause subsequent crosstalk between ERα and many downstream kinases: 

mitogen-activated protein kinase (MAKP), phosphoinositide 3-kinase (PI3K) and 

protein kinase B (AKT) that lead to ER activation by phosphorylation. All these 

molecules have been reported to be upregulated in breast cancer and linked to the 

development of endocrine resistance (Davis et al., 2014). Another subset of 

receptors that crosstalk with the ER signaling pathway and are found to be 

upregulated in endocrine resistant breast cancer cell lines are GPCRs, that act 

through second messenger signalling (cAMP, Ca2+, IP3), to activate PKA and 

induce ERα phosphorylation and activation of cyclic A (Kulkoyluoglu and Madak-

Erdogan, 2016) (Figure 1.3.C).  

1.3.5 Overactivation of membrane ER signaling pathway. 

Studying ERα knockout mice models proved that malignant breast tumour growth 

is not solely dependent on the expression of ERα (Bocchinfuso et al., 1999). 

Another proposed alternative is E2 binding to cell surface G-protein coupled 

oestrogen receptors (GPER) (Figure 1.3.C). Many studies have argued the identity 

of GPER as an oestrogen adapter and E2 as a potential ligand (Otto et al., 2008, 
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2009; Kang et al., 2010). Others have suggested GPER may have a tumour 

suppressor role in ER-positive breast (Ariazi et al., 2010). On the other hand, some 

studies have linked its overexpression to triple negative resistant phenotype and to 

HER-2/EGFR overexpression (Ignatov et al., 2011). This controversy is strongly 

inclined toward expression being an endocrine resistance initiator and promoter of 

invasion and migration (Otto et al., 2008), and might be explained by the presence 

of other factors controlling this receptor activation, suppression, interactions with 

other molecules. 

1.3.6 Altered microRNAs (miRNA) 

miRNAs are short single stranded non-coding RNA molecules of ~ 22 nucleotides, 

they predominantly function through post-transcriptional silencing of targeted RNA 

transcripts. Regulation of gene expression occurs through two main mechanisms, 

either by cleaving RNA sequences to induce their degradation or by altering the 

sequence, blocking the process of translation (Shyu, Wilkinson and van Hoof, 

2008). Genomic analysis found more than half of miRNAs originate from cancer-

associated genomic regions (Calin et al., 2004) and many miRNAs have been 

linked to cancer related cellular processes. For example, miR-126 has been shown 

to have a role in proliferation (Guo et al., 2008), miR-24 in apoptosis (Qin et al., 

2010) and miR-181d in DNA repair (Zhang et al., 2012). Classified as oncogenes 

or tumour suppressors, miRNAs can directly or indirectly release inhibited pro- or 

anti- carcinogenesis pathways (Zhang et al., 2007). There are several reports of 

miRNAs alterations being significantly altered in tamoxifen resistant phenotypes. 

For example, manipulation of miR-342-5p expression level impacted tamoxifen 

sensitivity and was linked to changes in several cancer pathways (Cittelly et al., 
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2010). Another tamoxifen response related miRNA where reduced expression 

linked to poor prognosis is miR-26a (Jansen et al., 2012). On the other hand, miR-

210, miR-126 and mir-10a were all more highly expressed in ER-positive breast 

cancers with worse prognosis and tamoxifen response (Rothé et al., 2011; Hoppe 

et al., 2013). 

1.3.7 DNA damage Response  

An essential biological strategy to contain acquired mutational events that could 

lead to resistance, and which might be caused spontaneously, or by radiotherapy 

or cytotoxic drugs is the DNA damage response (DDR) (Jeggo, Pearl and Carr, 

2016). DDR is a complex pathway responsible for detecting and repairing DNA 

damage, essential for genomic stability and ultimately restraining the propagation 

of damaged cancerous cells(reference). Following DNA damage detection, series 

of signaling cascades are initiated, aiming to repair the DNA damage, regulation of 

cell proliferation and cell cycle, or opting for programmed cell death (apoptosis). In 

the context of tamoxifen resistance, defective DDR can lead to genomic damage 

not effectively repaired and consequently the accumulation of pathological 

mutations related to resistance pathway(reference). Defective DDR especially 

homologous recombination (HR) has been observed in most resistant breast 

cancer subtypes (Triple negative and hereditary breast cancer mutations: BRCA1 

and BRCA2) (Turner and Reis-Filho, 2006). HR-associated protein p53 

accumulation and TP53 mutations are frequent in breast cancers (~30%) and were 

linked to increased susceptibility to developing endocrine resistance (Yamashita et 

al., 2006). 
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1.4 Genomic information 

1.4.1 Central dogma of molecular biology 

While DNA may contain the permanent copy of the genome itself, RNA has the final 

say on protein production. RNA is a polymeric molecule of nucleotides of single 

stranded sequence, made from DNA by RNA polymerase and transcribed 

transcripts possess a diverse set of functions. The structural properties of RNA 

allow for freedom of movement and adoption of different functional structures; 

however, this negatively affects the stability and degradability. Many types of RNAs 

have been identified, either protein coding (messenger RNA) or non-coding - 

ribosomal RNA (rRNA) the predominant form in cells, transfer RNA (tRNA), long 

noncoding RNAs, microRNA (miRNA), small interfering RNA (siRNA), small 

nucleolar RNA (snoRNAs), and Piwi-interacting RNA (piRNA). RNA has a diverse 

range of functions either as a distinct entity (rRNA and tRNA) or as an intermediary 

molecule serving as a catalyst of cellular reactions (siRNA and microRNA) or having 

a regulatory role (lncRNA, snoRNAs and piRNA) (Table 1.3).  
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Table 1.3. RNA species and their known functions. 

 

 

 

 

 

 

 

 

 

RNA Type  Size Function Example Reference  

mRNA >200 
nucleotides 

Curry genetic sequence for 
protein synthesis. 

BRCA, ESR1 and PD-1.  (Mei et al., 
2020) 

rRNA Variable sizes Form ribosome organelles 
responsible for protein 
synthesis 

5S rRNA, 16S rRNA and 
23S rRNA. 

(Harold et 
al., 2021) 

tRNA 75 to 90 
nucleotides 

Intermediate molecule 
between mRNA and 
protein, mainly transfer 
amino acids to the 
ribosome during protein 
synthesis.  

tRNAArg(CCU), 
tRNATyr(GUA), tRNASer(GCU)  

(Pavon-
Eternod et 
al., 2009) 

miRNA 20-25 
nucleotides 

Gene expression regulation 
by mRNA degradation. 

miR-92a-3p, miR-23b-
3p and miR-191-5p 

(Sharifi et 
al., 2022) 

siRNA 20-26 
nucleotides 

RNA interference- 
repressing translation 
process. 

Related to the targeted 
gene. 

(Tyagi et al., 
2017) 

lncRNA >200 
nucleotides 

Molecular regulation of 
cellular processes. 

MALAT1, HOTAIR and 
GATA3 

(Xu et al., 
2017) 

piRNAs 24-31 
nucleotides 

regulation of transposable 
elements, epigenetics, and 
gene expression. 

piR-36712, piR-62011, 
piR-49145. 

(Tan et al., 
2019) 

snoRNA 60-300 
nucleotides 

biogenesis and maturation 
of other RNA molecules. 

SNORA38 (Song et al., 
2022) 
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The concept of central dogma describes the basic logic of the genetic code (Burian 

and Barbieri, 2015). However, the continuous information flow (DNA > RNA > 

Protein) has been revisited many times due to a lot of findings that extended or 

contradicted the way the central dogma was conceived originally. In alternative 

pathways genetic information flow is reversed. For example, reverse transcription 

in retroviruses, where DNA is synthesised from RNA, not the reverse, it gets 

integrated in the host original genome, pathologically affecting cellular integrity 

(Weiss, 1998) Additionally, the transcription step can be skipped such as in the 

case of RNA viruses where upon infection, viral RNA is translated into a protein 

directly (Wu and White, 2007). Most interestingly, the discovery of non-coding 

RNAs showed that some transcripts skip the process of translation and act directly 

on targeted molecules driving their regulation (Ponting, Oliver and Reik, 2009). In 

this thesis, we studied the role of one class of non-coding RNAs, long non-coding 

RNAs (lncRNAs), in endocrine resistance in breast cancer using in-silico and in-

vitro approaches. 

1.4.2 lncRNAs  

lncRNAs are classified according to their relationship with the adjacent protein 

coding genes: linc RNA is intergenic lncRNA and is transcribed from the region 

between two genes; antisense lncRNA is transcribed from the antisense strand; 

sense lncRNA is transcribed from the sense strand and intronic lncRNA is 

transcribed from an intronic region (Ponting, Oliver and Reik, 2009). Influencing 

protein-coding genes’ expression by lncRNAs may occur  in cis (proximal) or in 

trans (distal) relative to their site of transcription(Wang and Chang, 2011). This fact 

guided the search for functional lncRNAs, and many were discovered through 
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searching the active transcription sites for lncRNA signatures. Correlating the 

expression of lncRNAs to protein coding genes known to be related to endocrine 

resistance is a useful technique to predict distinct functions and behaviours of 

lncRNAs.  

1.4.2.1 Functions of lncRNAs 

LncRNAs have a specific pattern of expression and unique distribution in a wide 

spectrum of cellular events and compartments, where the activation and 

suppression of their transcription is tightly regulated, and varies with cellular 

conditions such as proliferation, development, aging and disease (Ponting, Oliver 

and Reik, 2009). The expression of lncRNAs can be controlled by classical 

transcription factors (e.g., NF-КB regulates AK019103) (Wan, Mathur, et al., 2013), 

coding genes (e.g., c-Myc regulates HOTAIR) (Li et al., 2016); miRNA (e.g. miR-

141 regulates HOTAIR) (Chiyomaru et al., 2014); and epigenetic processes (e.g. 

hypermethylation supresses MEG3) (Wang and Chang, 2011). In turn, lncRNAs 

can control the processes of transcription, translation, and posttranslational 

modification, either directly or by interacting with other regulatory molecules 

(transcription factors, proteins and micro RNAs). This bidirectional regulatory 

mechanism forms a complex network around many recognized cancer pathways.  

This is evident with the network of lncRNAs around p53 which has a significant role 

as a tumour suppressor by directing the transcription of many genes involved in 

apoptosis, DNA repair and cell cycle arrest in response to DNA damage, and many 

cancers associated lncRNAs found upstream and downstream of p53 as shown in 

(figure 1.7). 
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LncRNAs act mainly by orchestrating chromatin modifications to enhance or silence 

target gene transcription (Khalil et al., 2009), for example lncRNA XIST directs X 

chromosome inactivation in females during embryogenesis via chromosome 

structural changes (Sun, Deaton and Lee, 2006). Also, lncRNAs can serve as 

scaffolds that bind and guide the interaction of several molecules at once such as 

the HOTAIR (HBXIP/LSD1) complex during regulation of c-Myc (Li et al., 2016). In 
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addition, many lncRNAs can influence alternative mRNA splicing, protein 

localization, act as precursors to small RNAs, act as decoys directing the 

destruction of many RNA species and many other functions, reviewed in:(Wang 

and Chang, 2011).  With their diverse functions, lncRNAs have become increasingly 

recognized to be a significant contributor to the development and progression of 

pathological conditions. Pertaining to treatment resistance, lncRNAs was found to 

alter drug response through several mechanisms. Drug efflux and drug metabolism 

was affected by many lncRNAs such as MALAT1, that negatively affects the 

expression of the efflux transporters MRP1 and MDR1, contributing to 

chemoresistance (Fang et al., 2018). Drug targets expression such as apoptosis-

related proteins was confirmed to be a target of lncRNAs HOTAIR (Liu et al., 2013) 

and XIST (Xu et al., 2020) inhibiting apoptosis and disrupting cell cycle prpgression. 

The regulatory role of lncRNAs extend to function as an Immunomodulators 

affecting various immune processes and anti-inflammatory factors, such as 

lncRNAs NEAT1, LINC00473 and NKX2-1-AS1 that create an immune escape 

resisting immunotherapy (Zhou et al., 2019). 

1.4.2.2 lncRNAs role in endocrine resistance  

Given what is already known about the function of lncRNAs, they form suitable 

candidates as regulators of endocrine resistance in breast cancer (Terai et al., 

2016). Indeed, emerging data from deep sequencing of multiple breast cancer 

genomes, suggests the presence of a considerable number of lncRNAs 

differentially expressed between sensitive and resistant tissues. The predicted 

functions of these lncRNAs span the range of oncogenic events linked to endocrine 

resistance including ER signalling, enhanced growth factor receptor signalling and 
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altered DNA damage response (Table 1.3). In addition to those listed, NF-КB 

interacting LncRNA (NKILA) was found to supress NF-КB signaling by interfering 

with IКB phosphorylation (Liu et al., 2015). However, this mechanism of action was 

questioned by (Dijkstra and Alexander, 2015), who suggested that NKILA is 

transcribed from and regulates the prostate transmembrane protein androgen 

induced 1 (PMEPA1) gene that in turn directly affects the NF-КB pathway. 

Regardless of this dispute, decreased expression of NKILA, increased expression 

of MALAT1, HOTAIR and lincRNA-p21 and others all enhance the expression of 

NF-КB in many types of cancers (Mao, Su and Mookhtiar, 2017). Further support 

for lncRNAs being associated with resistance comes from a study that used a 

different approach to identify lncRNAs potentially associated with endocrine 

resistance. They identified more than 30 oestrogen receptor agitation related 

(ERAR) lncRNAs, many could be used to classify ER+ tumours as high or low risk 

of endocrine resistance (Wu et al., 2016).  A table of current literature is included 

Table 1.3. 

 

Considering the issue of endocrine resistance from a wider perspective, defective 

DNA damage response (DDR) is a logical causative factor for many genomic 

defects. Many lncRNAs have been linked to DDR pathways, for example the 

complex network of lncRNAs around p53 (Figure 1.7). Another effector molecule in 

DDR is Ataxia-telangiectasia mutated (ATM) kinase, a key respondent to DNA 

double-strand breaks. Among the lncRNAs associated with this molecule are 

LncRNA-JADE and ANRIL (antisense non-coding RNA in the INK4 locus), both are 

induced by DNA damage in an ATM dependent manner and mediate subsequent 
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regulation of downstream proteins such as p53 and BRCA1 (Wan, Hu, et al., 2013; 

Wan, Mathur, et al., 2013). However, their role in endocrine resistance in still to be 

investigated. 

Endocrine resistance is a molecular defence mechanism of cancer cells against 

endocrine therapies, compensating for the growth restrictions imposed. Studying 

the molecular mechanism of endocrine resistance and different variables 

contributing to tamoxifen response is an active and promising field of research. the 

expression status of hundreds of lncRNAs was found to be distinctively up or 

downregulated in comparative analysis of drug resistance conditions, implying that 

lncRNAs can provide insights into the underlying mechanisms of gene regulation 

and provide reliable biomarkers and effective therapeutic targets.  However, the 

number of studies investigating the mechanistic role of lncRNAs in endocrine 

resistance in breast cancer is relatively minor compared to the massive number of 

differentially expressed lncRNAs in different forms of breast cancer either sensitive 

or resistant to endocrine therapies. 
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ROR (regulator of reprogramming), EMT (epithelial mesenchymal transition), UCA1 (Urothelial carcinoma associated 1), 
BCAR4 (Breast cancer anti-estrogen resistance 4), HIF1α (Hypoxia-inducible factor 1-alpha), HOTAIR (HOX transcript 
antisense RNA), ZEB1,2 (Zinc finger E-box-binding homeobox 1,2), CCAT2 (Colon Cancer Associated Transcript 2), DSCAM-
AS1 (DSCAM antisense RNA 1) 

  

Table 1.4 lnc RNAs linked directly to endocrine resistance. 
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1.5 Studying the genome(techniques)  

.1.5.1 The human genome project 

The Human Genome Project’s (HGP) main aim was to study the DNA molecules in 

human cells physically and functionally. Genes were sequenced, identified, 

mapped, and assembled. HGP revolutionised scientific research by revealing the 

genetic root of cellular processes and dysfunctions, hence laying the ground for 

biomarkers and drug discoveries. The greatest accomplishment for HGP was the 

creation of the human reference genome; allowing for comprehensive and 

comparative genetic research and considered the long-waited solid foundation of 

molecular biology (Gates et al., 2021). The project was initiated in 1990 and 

released the final version 13 years later in 2003, costing the US government about 

3 billion dollars (National Human Genome Research Institute (NHGRI), 2020). 

Further development of the project produced improved versions with less error rates 

and less gaps. The latest complete version was released publicly in early 2022 and 

consisted of 3,117,275,501 sequenced base pairs representing the final sequence 

of the 23 chromosomes (T2T Consortium, 2022). Research in the aftermath of the 

HGP has a focus bias towards the protein coding landscape of the genome with 

most studies revolving around widely known genes (Gates et al., 2021). After 

characterising the permanent hub of genomic information by HGP, where only a 

tiny part of the DNA encodes protein coding genes (Birney et al., 2007), the worth 

of the profound amount of ‘junk’ DNA sequence now needs to be studied. In 

addition, study of what was determined later as ‘the effector molecule’ (the RNA or 

transcriptome) is needed to understand the convoluted physiology of biological 

processes such as cellular proliferation and differentiation, and the pathophysiology 
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of complex diseases such as cancer and autoimmune disorders. Ever-growing 

research technologies in many areas including sequencing platforms and 

bioinformatics permitted The Encyclopaedia of DNA Elements (ENCODE) project 

to launch as follow up to HGP. ENDCODE Transcriptome sequencing aims to 

inspect functional genomics, gene discovery and novel protein characterisation (de 

Souza, 2012). Compared to the DNA molecule, RNA and other genomic elements 

show a profound depth and diverse range of activity. Type of cell, pathological 

condition, and even external factors like environment, affect the transcriptome 

activity in a sequential manner (Kotsantis et al., 2016). Gene expression 

quantification is a fundamental way to study how genotypic alterations are 

expressed as a specific phenotype (Deonarine et al., 2007). Gene expression 

profiling or sequencing is the process that allows detection of simultaneous 

changes in a large set of genes in controlled condition at a certain moment 

(Kotsantis et al., 2016). 

1.5.2 Next generation sequencing (NGS) 
 

The most recent development in sequencing technologies is next-generation 

sequencing, that enable high throughput quantitative genomic and transcriptomic 

study. Here DNA/RNA is fragmented to multiple bits (called libraries), adapters are 

added, the whole lot is sequenced and then a genomic sequence is computationally 

reassembled. In the field of next generation sequencing, Illumina is the lead 

manufacturer and developer globally. The platform’s series includes Genome 

Analyzer, HiSeq, MiSeq and the HiScanSQ (Bentley et al., 2008). More recently, 

the company introduced NovaSeq sequencing system, with a wider range of 
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applications and noticeably improved performance(Liu et al., 2022). As per illumine 

data, NovaSeq6000 machine can produce up to 6 terabases in a single run, it offers 

more simplified and scalable workflow with shorter running time at lower cost 

(Illumina, 2016). 

1.5.3 Determining the transcriptome  

RNA molecules are dynamic, that means they undergo multiple changes at different 

times such as alternative splicing (Gallego-Paez et al., 2017), alternative 

polyadenylation (APA) (Xia et al., 2014) and post-transcriptional modification 

(Seelam, Sharma and Mitra, 2017). Most importantly, the functional spectrum of 

RNA extends to controlling the activity of other genomic elements including DNA 

methylation and histone modifications and post translation modification. Modern 

technologies enable gene expression quantification at a global level (Takahashi et 

al., 2015). An unprecedented flow of genomic information provides a full-scale 

catalogue of sequencing data from different organisms and disease-phenotypic 

samples. Many bioinformatic technologies and datasets are available for studying 

many genomic processes.  

1.5.4 RNA-seq 

RNA-seq has emerged as a strong NGS technique to study the gene expression 

and the molecular regulatory relationships within the genome. Following genetic 

material isolation from target cells and genomic DNA removal, total RNA is further 

purified and assessed for integrity, quality, and amount. The predominant form of 

RNA is ribosomal RNA (rRNA) (80-90%), a non-protein coding RNA that functions 

in the process of protein translation (Henras et al., 2015). Since sequencing rRNA 
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is not needed for gene profiling, sequencing raw total RNA without targeted 

population selection is a waste of time and finance. So, to ensure a strong signal is 

attained from sequencing (Flannigan et al., 2017), the first step in the sequencing 

workflow is depletion of unwanted RNA subtypes and enrichment for the wanted 

RNA-population. Several library prep kits and techniques are available for different 

purposes and platforms (Aigrain, Gu and Quail, 2016). Magnetic bead-based 

methods are the most popular, of the large pool of total RNA, poly A tail on target 

RNA transcripts gets captured onto complementing poly T oligos on the beads, 

loose RNA then gets washed away (Z. Li et al., 2021). Alternatively, probes can be 

hybridized on rRNA sequences, the reaction is then mixed with a specific type of 

bead that pulls down unwanted rRNAs to be discarded (Hinahon et al., 2013). To 

be compatible with the sequencing platform, the now enriched RNA is sheared, into 

fragments appropriately sized for the sequencer (e.g., by nebulization, sonication, 

hydrodynamic shear, or transposase) (Sambrook and Russell, 2006) and converted 

to double stranded cDNAs, if required. Adapter ligation is the next step; specially 

designed oligos (barcoded adapters) are attached to both ends of the fragment. 

This introduces sequencing primer hybridization sites for the next step and allows 

for indexing of the fragments so that many samples can be run in the same 

sequencing reaction (Ring et al., 2017). A more progressive option is Tagmentation, 

that is transposomes technology, which combines both approaches (fragmentation 

and tagging), allowing reduced library preparation time and reducing the amount of 

genomic material required and resulting in more uniform and consistent library yield 

(Adey and Shendure, 2020). Finally, satisfactory library quantification and quality 

control results in approval of samples for sequencing. Sequencing is initiated by a 
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cluster generation step that occurs within the specially designed glass slide called 

a ‘flowcell’. It starts with cDNA fragments ‘flowing’ into the flowcell where the ligated 

adapters get captured onto complementary surface-bound oligos. There are then 

several rounds of isothermal bridging amplification which prepares the cDNA 

fragments for sequencing (Holt and Jones, 2008). Illumine platforms predominantly 

use sequencing-by-synthesis (SBS) technology, a reversible terminator–based 

method.  Here, only forward, or reverse strand clusters are massively parallel 

sequenced simultaneously in one read. Florescent tagged nucleotides are added 

to the sequencing primer, after each sequencing cycle, tagged nucleotides get 

excited by a light source emitting a specific signal, the image is then captured, and 

the corresponding nucleobases are called. This is a base-by-base sequencing, so 

the number of cycles reflects the length of the sequenced fragment (Turcatti et al., 

2008). Other next-generation sequencing manufacturers and systems 

commercially available include Oxford Nanopore Technologies (Wood et al., 2019), 

Ion Torrent (Vanni et al., 2015), Roche (Nielsen et al., 2014), Complete Genomics 

(Weißbach et al., 2021), Helicos BioSciences (Milos, 2008). 

In general, simultaneous measurement of gene expression provides insight into the 

continuously changing cellular transcriptome. Carefully constructed experimental 

designs make use of comparative analyses to relate genotype to biological diversity 

and dysregulated cellular functions. Utilizing RNA-seq data is one of the most 

powerful methods in the path of dissecting mechanisms of biological processes. 

1.5.3 Microarray technology 

Another method to measure gene expression levels and determine DNA/RNA 

sequence is microarrays, a hybridisation-based method (Wang, Gerstein and 
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Snyder, 2010). Microarray is a chip base genome array that contains a certain 

number of known gene sequence probe sets, this allows for selecting the genetic 

traits under query. By simultaneously detecting thousands of genes parallelly, the 

relative abundance of genes in many samples can be determined precisely in a 

single experiment (Alonso-Betanzos, 2019). Microarray chip or slide’s unique 

design comprise spots featuring oligonucleotide probes to which complementary 

target sequence binds (Tsoi and Zheng, 2007). Extracted sample RNA/DNA is 

fluorescently tagged and sequence hybridisation generates a signal from 

fluorescence emission during light excitation when slides are scanned (Alonso-

Betanzos, 2019). The sample’s gene expression profile is identified from intensities 

produced relative to the degree of hybridization detected on the chip (Alonso-

Betanzos, 2019). The output is an image incorporating signal intensities that can 

be further analysed and gene expression profiles can then be compared under 

different conditions (Levant, 2005). While both microarray and RNA-seq are used 

to measure gene expression levels, they are totally different techniques. Depending 

on the research question, experimental design, and the budget. In general, RNA-

seq is considered superior in term of speed and versatility. Still microarray is 

cheaper per sample and have well-established/characterised workflow, and has a 

wide use in thee field of research.(Weißbach et al., 2021),(Levant, 2005). 

1.6 Hypotheses 

• LncRNAs play a significant role in the development of Tamoxifen resistance 

in breast cancer.  

• Altered expression of candidate lncRNAs can change breast cancer cell 

response to tamoxifen.  
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• LncRNAs are potential biomarkers, prognostic factors, and therapeutic 

targets in endocrine resistance breast cancer.  

1.7 Project Aims 

1. To use the previously generated RNA-seq data from tamoxifen resistant and 

non-resistant breast cancer cell lines to identify candidate lncRNAs for 

subsequent investigation. 

2. To use different bioinformatics tools and publicly available breast cancer 

microarray and RNA-seq data sets to identify lncRNAs involved in tamoxifen 

resistance.  

3. To alter these candidate lncRNA expression levels in breast cancer cell lines 

and investigate response to tamoxifen.  

4. To identify any other functional consequences of alteration of candidate 

lncRNAs in the context of breast cancer. 
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2. Materials and methods  

2.1 Materials  

2.1.1 Water  

Double-distilled purified water (ddH2O) was used. Laboratory grade ultra-pure 

ddH2O was produced by triple tree water technology that uses chemical-free 

electro-deionisation system.  

2.1.2 Sterilisation 

Glass vessels and solutions were sterilised by autoclaving at 120 °C under pressure 

of 15 p.s.i for 15 minutes. Solutions that could not be autoclaved were filter sterilised 

using a sterile syringe filter to remove fine particles and microorganisms. 

2.1.3 Drugs 

4-Hydroxy Tamoxifen 

4-OH tamoxifen supplied by Santa Cruz Biotechnologies was diluted in ethanol or 

DMSO to reach a stock concentration of 10 mM, aliquoted and stored at -20 ͦ C. 

All-trans retinoic acid (ATRA) 

ATRA stock was purchased from ACROS organics and was diluted in DMSO 

(sigma) to reach a stock concentration of 10mM and stored at -20 ͦ C. all 

preparations and handlings of ATRA were done under subdued lighting. 

2.1.4 PCR probes:  

For each gene, when there are more than one transcript, RefSeq database were 

used to select the one with the most reliable sequence information. 
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Table 2.1 PCR probes 

Gene Target Assay ID Technology Supplier 

HORAIRM1  LPH10483A SYBR® Green Qiagen 

HOXA1 PPH01464B SYBR® Green Qiagen 

HOXA10 LPH41929A SYBR® Green Qiagen 

HOXA5 LPH31164A SYBR® Green Qiagen 

HOXA9 LPH29723A SYBR® Green Qiagen 

LUCAT1 LPH16113A SYBR® Green Qiagen 

NR2F1-AS1  LPH12924A SYBR® Green Qiagen 

SOX21-AS1 LPH06753A SYBR® Green Qiagen 

β-actin  PPH00073G  SYBR® Green Qiagen 
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2.1.5 Antibodies 

2.1.5.1 Primary antibodies: 

 

Table 2.2 primary antibodies. 

IF: Immunofluorescence, WB: Western blot  

Antibody Name 
Host 

Animal 

Manufacturer 

(Catalogue Number) 

Application 

(Dilution) 

Phosphorylated H2A   

histone family member X (γH2AX) 

S139 

Mouse  Millipore (JBW301)  IF (1:500) 

γH2AX S139  Rabbit  
Cell Signalling 

Technology (2577) 
IF (1:500) 

Epithelial cadherin (E  

cadherin) 
Rabbit  Cell Signalling (24E10)  IF (1:200) 

Glyceraldehyde 3-  

phosphate dehydrogenase 

(GAPDH) 

Mouse  
Proteintech (60004-1-

Ig)  
WB (1:20,000) 

Vinculin  Mouse  
R & D Systems 

(MAB68961)  
IF (10 µg/mL)  

Yes kinase-associated protein 

(YAP) 
Rabbit  Santa Cruz (sc-154-07)  IF (1:100) 

β-tubulin Mouse Sigma-Aldrich (T8328) WB (1:10000) 

β-catenin  Mouse  

Santa Cruz 

Biotechnology (sc-

7963) 

IF (1:200) 
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2.1.5.2 Secondary antibodies 

 

Table 2.3 Secondary antibodies. 

 IF: Immunofluorescence, WB: Western blot 

Antibody Name Host 

Animal 

Manufacturer 

(Catalogue Number) 

Application 

(Dilution) 

Anti-mouse Alexa 488  Goat  Thermo Fischer Scientific 

(A11017) 

IF (1:1000) 

Anti-mouse Alexa 594  Goat  Thermo Fischer Scientific 

(A11005) 

IF (1:500) 

Anti-rabbit Alexa 488  Donkey  Life Technologies (A21206)  IF (1:500) 

Anti-rabbit Alexa 594  Goat  Thermo Fischer Scientific 

(A11037) 

IF (1:1000) 

Anti-mouse IgG horse radish 

peroxidase  

(HRP) 

Horse  Cell Signalling  

Technology  

(7076) 

WB (1:2000) 

Anti-rabbit IgG HRP  Goat  Cell Signalling  

Technology (7074) 

WB (1:2000) 
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2.1.6 Cell lines:  

 

 

 

 

Name Supplier Genotype Receptor   

Expression 

CAL-51  DSMZ  Human mammary gland   

adenocarcinoma, derived from metastatic site: 

pleural effusion 

ER - 

PR - 

ERBB2- 

MCF-7  ATCC  Human mammary gland   

adenocarcinoma, derived from metastatic site: 

pleural effusion 

ER+   

PR+   

ERBB2- 

MDA-MB-

231  

ATCC  Human mammary gland   

adenocarcinoma, derived from metastatic site: 

pleural effusion 

ER - 

PR - 

ERBB2- 

MDA-MB-

468  

ATCC  Human mammary gland   

adenocarcinoma, derived from metastatic site: 

pleural effusion 

ER - 

PR - 

ERBB2- 

ZR-75-1  ATCC  Human mammary gland ductal carcinoma, 

derived from metastatic site: ascites 

ER+   

PR - 

ERBB2- 

T-47D  ATCC  Human mammary gland ductal carcinoma, 

derived from metastatic site: pleural effusion 

ER - 

PR+   

ERBB2- 

 

Table 2.4 Cell lines. ATCC: American Type Culture Collection, DSMZ: Deutsche Sammlung 

von Mikroorganismen und Zellkulturen 
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Tamoxifen resistant MCF-7 cell line.  

TAMR (tamoxifen resistant MCF-7) cell lines were kindly provided by Dr Julia Gee, 

Cardiff University. Briefly, TAMR cell line was created by culturing MCF-7 cell line 

in RPMI 1640 phenol-red free media supplemented with 4-OH Tamoxifen at a 

concentration of 1uM for several months (> 6 months) (Knowlden et al., 2003). 

2.1.7 Cell culture medium 

MCF-7 cells: Roswell Park Memorial Institute (RPMI)-1640 media (Lenzo) supplied 

with 5% FCS (foetal calf serum) (Gibco), 1% PenStrep (Gibco) and 1% 

amphotericin B (Gibco) or RPMI phenol red free media supplied with 5% charcoal 

stripped FCS, 2% L-glutamax, 1% PenStrep and 1% amphotericin B, when 

challenged with tamoxifen. 

TAMR cells: RPMI-1640 phenol red free media (Gibco) supplied with 5% charcoal 

stripped FCS (sigma), 2% L-glutamax (Gibco), 1% PenStrep (Gibco) and 1% 

amphotericin B (Gibco), 4 OH-tamoxifen was added fresh to cell culture flasks at a 

concentration of 1 µmol.  

CAL-51, MDA-MB-231 and ZR-75-1 cell lines:  High glucose Dulbecco’s Modified 

Eagle Medium (DMEM) containing L-glutamine and 1% of 1x non-essential amino 

acids (NEAA) (Sigma Aldrich).  

MDA-MB-468 and T-47D cell lines: RPMI-1640 medium containing L-glutamine and 

1% of 1x non-essential amino acids (NEAA) (Sigma Aldrich). 

All prepared media were stored at 5 ºC in tissue culture lab and used under sterile 

conditions.  
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2.1.8. Trypsin and versene/EDTA 

To release the adherent cells from culture vessel surfaces, Trypsin EDTA with 0.5 

g/L Trypsin and 0.2 g/L versene (EDTA) was supplied by Lonza. Stock was stored 

at -20 ͦ C and thawed when needed.     
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2.1.9 Short interfering RNAs (siRNAs) 

  

 

siRNA name ID  siRNA sequence Company  

Control si-RNA  SiGENOME  Non-targeting siRNA pool  Dharmacon 

si-HOTAIRM1 
HOTAIRM1 

siRNA#1 

Sense: 

ACUGGUAGCUUAUUAAAGAtt 

Antisense: 

UCUUUAAUAAGCUACCAGUct 

Ambion® 

si-HOTAIRM1  
HOTAIRM1 

siRNA#2 

Sense: 

GAAAUGUGGGUGUUUGAAAtt  

Antisense: 

UUUCAAACACCCACAUUUCaa 

Ambion® 

si-HOTAIRM1 
HOTAIRM1 

siRNA#3 

Sense: 

 ACUUAGUUAUUGACCUCCatt 

Antisense: 

UCCAGGUCAAUAACUAAGUta 

Ambion® 

Si-LUCAT1 
LUCAT1 

siRNA# 

Sense 

CCCAUCAGAAGAUGUCAGAAGAUAA 

Antisense 

UUAUCUUCUGACAUCUUCUGAUGGG 

Eurofin 

Si-LUCAT1 
LUCAT1 

siRNA#2 

Sense 

CAAGCUCUUGCAGUCAACAAGAACU 

Antisense 

AGUUCUUGUUGACUGCAAGAGCUUG 

Eurofin 

Si-SOX21-AS1 
SOX21-AS1 

siRNA#1 

Sense 

AACAGAAACAGAGGCUUCUCGCAUU 

Antisense 

AAUGCGAGAAGCCUCUGUUUCUGUU 

Eurofin 

Si-SOX21-AS1 
SOX21-AS1 

siRNA#2 

Sense 

CAGUUAACUUACAGUGUCUCACUUA 

Antisense 

UAAGUGAGACACUGUAAGUUAACUG 

Eurofin 

Si-NR2F1-AS1 
NR2F1-AS1 

siRNA#1 

Sense 

ACCACAAUAUUAACCAGGAtt 

Antisense 

UCCUGGUUAAUAUUGUGGUca 

Ambion® 

Si-NR2F1-AS1 
NR2F1-AS1 

siRNA#2 

Sense 

GAAUUGGCUAGAUCAGGAAtt 

Antisense 

UUCCUGAUCUAGCCAAUUCta 

Ambion® 

 

Table 2.5 Short interfering RNAs 
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2.1.10. Matrigel matrix 

ECM basement membrane matrix gel from Engelbreth-Holm-Swarm Murine 

Sarcoma was supplied by Corning. 

2.1.11. Buffers 

Phosphate buffered saline (PBS) 

PBS was produced by dissolving 1 Oxoid PBS tablet per every 100 ml of ddH2O to 

prepare balanced salt solution without calcium and magnesium. PBS was sterilised 

by autoclave and stored at room temperature. 

Tris-buffered saline (TBS) 

10x TBS solution was made by dissolving 24.2 g Tris Base (200 mM) with 80 g 

NaCl (1.4 M) in 800 ml ddH2O. 5 M HCl was then used to acidify solution pH to 7.6 

before increasing the volume to 1 L by adding ddH2O. 10x solution was kept at 

room temperature. 1x solution was achieved by diluting a part of 10x solution with 

9 parts of ddH2O. 

1 M Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCL) pH 6.8 and 

8.0 

To prepare 1M Tris-HCL solution, 121.1 g of Tris base (C4H11NO3, CAS Number: 

77-86-1) was dissolved in 800 ml ddH2O using magnetic stirrers. Then, 5 M HCl 

was added to adjust solution pH to 6.8 or 8.0. finally, volume was adjusted to 1 L 

with ddH2O. 1 M Tris pH 6.8 and pH 8.0 were stored at room temperature for several 

weeks. 

1.5 M Tris-HCL pH 8.8 

1.5 M Tris solution was made by mixing 181.7 g of Tris base in 800 ml ddH2O. 

Then, 5 M HCl was used to adjust solution pH to 8.8, then, final volume was topped 
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up to 1 L with ddH2O. this Tris solution was stored at room temperature for several 

weeks. 

10 mM Tris-HCL 1 mM EDTA solution pH 9.0 

To produce 10 mM Tris-HCL 1 mM EDTA solution, 1.21 g of Tris base and 0.37 g 

EDTA were dissolved in 800 ml ddH2O. 5 M HCl was then used to modulate 

solution pH to 9.0. 0.5 ml Tween 20 (0.05%) was then added to the solution before 

bringing up volume to 1 L with ddH2O. 10 mM Tris-HCL 1 mM EDTA solution pH 

9.0 was stored at 4 ͦ C. 

10% SDS 

10% SDS solution was prepared by diluting 500 mL 20% SDS solution with 500 mL 

ddH2O. The solution was then stored at room temperature. In case of the presence 

of precipitation, 10%SDS was heated to 60 °C until the precipitated SDS become 

homogenised again. 

5 x Radio-immunoprecipitation assay (RIPA) lysis buffer 

100 ml 5 x RIPA lysis buffer was produced by adding 25 ml 1 M Tris-HCL pH 8.0 

(250mM), 15 ml 5 M NaCl (750mM), 5 ml 10% SDS (0.5%), 5 ml NP-40 (5%), 2.5 

g Sodium deoxycholate (2.5%) and ddH2O to total volume to 100 ml. 5 x RIPA lysis 

buffer was autoclaved and stored at room temperature for several weeks. 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) running buffer 

10 x SDS-PAGE running buffer was produced by mixing 30 g Tris-HCL base (250 

mM) with 144 g Glycine (1.9 M) in 900 mL ddH2O. Then 100 ml of 10% SDS (1%) 

was added to bring volume up to 1 L. SDS-PAGE running buffer was then stored at 

room temperature for several weeks. 
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5 x SDS sample buffer 

5 X SDS sample buffer was produced by mixing 25 ml 1 M Tris pH 6.8 (250mM), 

10 g SDS (10%), 50 ml glycerol (50%), 5 ml β-mercaptoethanol (5%), 20 mg 

bromophenol blue (0.02%) and ddH2O to bring volume to 100 ml. 5 x SDS sample 

buffer was stored at room temperature for several weeks. 

1 x SDS-PAGE running buffer 

1 x SDS-PAGE running buffer was produced by diluting 100 ml 10 x SDS-PAGE 

running buffer with 900 ml ddH2O. 

10 x Towbin transfer buffer 

10 x Towbin transfer buffer was made by dissolving 30.3 g Tris base (250 mM) and 

144 g Glycine (1.9 M) in 800 ddH2O, then, solution was brought to a final volume of 

1 L with ddH2O.  

1 x Towbin transfer buffer 

1 x Towbin transfer buffer was made by mixing by order 100 ml of 10 x Towbin 

buffer, 700 ml of ddH2O and 200 ml methanol. The buffer was chilled to 4 ͦ C before 

using. 

Crystal violet stain 

To stain cells in static adhesion assay, 0.1% crystal violet with 20% methanol was 

prepared. First, 20% methanol was prepared by mixing 10 mL 100% methanol with 

40 mL ddH2O. Then, 0.05 g of crystal violet powder was added and mixed well by 

magnetic stirrer. Solution then was passed through a sterile syringe filter to remove 

fine particles and was stored at room temperature. 
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2.2 Methods  

2.2.1 Cell passaging  

All cell lines were kept at 37 °C, 5% CO2 growth environment in cell culture 

incubator from Sanyo Electric Co. Growth was evaluated using light microscope, 

once cells reached 80-90% confluency they were ready for passaging. Media were 

removed, and cells were washed with 10 ml PBS. Cells were then removed from 

the flasks by trypsinisation, this  step included the addition of 1ml of trypsin/EDTA 

solution followed by incubation for 5 minutes. When the cells started to detach, 9mL 

of the appropriate maintenance media was added and the solution was pipetted up 

and down several times to form a single cell suspension. According to the desired 

subculture ratio, usually ranging from 1:3 to 1:6, cell suspension was aliquoted into 

fresh T75 cell culture flasks and resuspended in media to reach a total volume of 

10mL. Passage number was considered in all experiments, biological repeats of 

the same experiment were done within 10 passages to avoid biological variation. 

2.2.2 Cells long term storage  

Performed on cells of as low passage number as possible. Once the cells in the 

culture flask reach 80-90% confluence, standard trypsinization protocol was 

followed, the cells were then re-suspended in 10 ml of media and transferred to 

sterile 15 ml tube to be centrifuged in 2000 rmp for 3 minutes after that the 

supernatants were removed. 1 ml of medial and 100 μl of DMSO were added slowly 

to the cells and the solution was transferred into 1.8 ml CryoPure tube and kept at 

-80 °C to be stored afterward in liquid nitrogen tank for long term reservation. 
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2.2.3 Transfection of cells with siRNA 

SiRNA was transfected into cells using cationic lipid-based transfection reagent. 

DharmFECT 1 was purchased from Dharmacon or Lipofectamine™ 2000 

transfection Reagent was purchased from Invitrogen™ as transfection reagents. 

For better siRNA stability during storage, 100 µM stock for all siRNAs were 

prepared by briefly centrifuging the provided 5 nmole powder to ensure all the dried 

RNA oligonucleotides are collected in the bottom of the tube. Then, it was mixed 

with 50µL of RNase-free 1x siRNA buffer or provided RNase free water. The 

solution then aliquoted and kept at -20 ͦ C to reduce the freezing-thawing cycles 

when preparing the working solution. To prepare working solution, 25µL of stock 

solution was diluted in into RNase-free 1x siRNA buffer to reach 5 µM and aliquoted 

into Eppendorf tubes to reduce the number freezing-thawing cycles and stored at -

20°C.  

2.2.4 Cell pellet preparation 

When the cells reached 60-70 % confluence, they were washed with 10 ml PBS, 

trypsinised and 10 ml of media was added and transferred to 15 ml Falcon tubes 

and centrifuged for 3 minutes at 1000 rpm, supernatants were then discarded. Cells 

then were resuspended in 10 ml of PBS and centrifuged again, supernatants 

removed, and cells resuspended in 1 ml of PBS and transferred to 1.5ml Eppendorf 

tube, centrifuged in cooled microcentrifuge at 3000 rpm for 5 minutes, supernatants 

were then removed, and cell pellets kept at -70 ͦ C.  
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2.2.5 RNA extraction  

Total RNA was extracted from cell pellets using RNeasy Mini Kit (Qiagen Cat 

No.: 74104) according to manufacturer instructions. For each cell pellet, the first 

step was cell lysis and homogenization, this involved the following: RLT buffer was 

prepared by mixing 10µl of β-ME with every 1ml of RLT and 600 µl of the mixture 

were added to every sample, then cell lysate was disrupted and homogenized by 

passing through 20-gauge needle attached to a sterile syringe 10 times followed by 

the addition of 600µl of 70% Ethanol. Next step was RNA purification through 

centrifugation to remove contaminants such as genomic DNA and small RNAs 

leaving only RNA species >200 bases attached to the spin column membrane. 

Here, 700 µl of the sample were transferred to RNA spin column and centrifuged 

for 15 seconds at ≥10,000 rpm then flow-through were discarded, this step was 

repeated for the remainder of the sample. This is followed by three washes by 

adding 700 µl of buffer RW1 to RNase spin column for the first wash then 500 µl of 

buffer RPE for each of the second and third washes with centrifuging the spin 

column for 15 s at ≥10,000 rpm and discarding flow-through from the collection tube 

after each wash. The last step is purified RNA elution by adding 50 µl of RNase free 

water to the spin column placed in 1.5 ml collection tube and centrifuging the 

sample for 1 minute at ≥10,000 rpm. To achieve a higher RNA concentration, the 

eluate produced were re-loaded into the spin column and centrifuged at ≥10,000 

rpm for 1 minute. RNA concentration for each sample was measured by NanoDrop 

spectrometer ND-1000 by loading 1 µl of sample after water blank then samples 

were stored at -70 ͦC.  
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2.2.6 Quantification of RNA concentration 

The concentration and quality of the extracted RNA were assessed using NanoDrop 

spectrometer ND-1000, After thoroughly cleaning the NanoDrop pedestals, 1 μL of 

RNase free water was used to blank the instrument prior to initiation. Then the 

proper setting for measuring RNA concentration on the available software were 

selected.  1 μL from each sample was loaded and RNA concentration for each in 

ng/μL were recorded. Also, the ratio of absorbance at 260/280 nm and 260/230 nm 

were noted, and ~2.0 were indicative of accepted purity of the sample. In-between 

each measurement, the lower and upper pedestals were wiped with soft laboratory 

wipes and re-blanked with RNase free water.  

2.2.7 cDNA synthesis  

For cDNA synthesis RT2 first strand kit (Qiagen Cat No./ID: 330404) was used. 

Reagents and RNA samples were thawed on ice then briefly centrifuged to get the 

contents at the bottom of the tubes. First, for each RNA sample, genomic DNA 

elimination mix was prepared by mixing 2 µg of RNA and 2 µl of Buffer GE and 

enough amount of Nuclease-free water to reach a final volume of 10 µl in 0.5 ml 

Eppendorf tubes, samples then were centrifuged briefly and incubated in heating 

block at 42 ͦC for 5 minutes then on ice while preparing the Reverse transcription 

(RT) mix. For RT mix enough for 12 samples, in one 1.5 ml tube, 48 µl 5x buffer 

BC3, 12 µl Control P2, 24 µl RE3 Reverse Transcriptase mix and 36 µl Nuclease-

free water were mixed by pipetting and 10 µl of RT mix were mixed in with genomic 

DNA elimination mix. Samples then were incubated for 60 min at 37 ͦC directly 

followed by 5 minutes at 95 ͦC to stop the reaction. Finally, 91 µl of Nuclease-free 

water were added and the samples finally were stored at -20 ͦ C. 
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2.2.8 Real-time PCR 

RT² SYBR Green ROX qPCR Mastermix (Qiagen, Cat No./ID: 330523) were used 

according to manufacturer instruction to detect HOTAIRM1 expression. ACTB (B-

actin) was used as an internal control, as ACTB expression does not change under 

experimental conditions. 1:10 dilution of HOTAIRM1, ACTB in RNase free water 

were prepared. For example, volume for 14 reactions (12 reactions (3 technical 

replicate) + 10% pipetting errors) of PCR components were mixed in RNase free 

0.5 ml tube for each sample, this consists of: 8.4 µl Nuclease free water, 70 µl SYBR 

Green Mastermix and 5.6 µl sample cDNA. 6 µl of sample’s PCR mix and 4 µl of 

diluted primers were loaded in each well of 384 well-.  Plate then was centrifuged 

for 2 minutes at 1000 rpm in PCR plates centrifuge to remove bubbles and was 

sealed with optical film to avoid evaporation of samples in the PCR machine.  

2.2.9 Drug treatment of cells  

ATRA treatment 
 
It has been shown that HOTAIRM1 expression can be induced by exposing NB4 

cells to ATRA (X Zhang et al., 2009). Following the same experimental conditions, 

three biological replicates of MCF-7 cells were cultured in 10mL of experimental 

media with 1µL of 10mM ATRA to reach a final concentration of 1µM in 75cm2 cell 

culture flask. Cells were divided into 4 groups according to treatment period :48 

hours, 24 hours, and 2 hours and untreated (control) group. Cell pellets were 

harvested and kept at -70 ͦC for RNA extraction, cDNA synthesis and HOTAIRM1 

expression analysis using RT-qPCR.   

. 
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Tamoxifen treatment 

Cells were passaged once in experimental media prior to addition of increasing 

doses of 4-hydroxy tamoxifen or ethanol control. Cells were divided into 4 groups 

according to treatment period :48 hours, 24 hours, and 2 hours and untreated 

(control) group. Cell pellets were harvested and kept at -70 ͦC for RNA extraction, 

cDNA synthesis and HOTAIRM1 expression analysis using RT-qPCR.   

2.2.10 Candidate lncRNAs depletion from cells 

To optimise protocol for transfection of siRNA targeting lncRNAs we started with 

three different siRNAs for HOTAIRM1 (section 2.1.13) and the Bryant lab optimized 

protein coding gene siRNA transfection protocol for MCF-7 cell line was followed. 

TAMR cells were seeded in 6-well plate at cellular density of 5×105 cell/well in 2 ml 

of maintenance media. Once reached 60-70% confluency, transfection complexes 

were prepared by diluting 10 µl of each siRNA (for HOTAIRM1 and scrambled 

control) in 190 µl of SAFM (serum-free and antibiotic-free media) to reach a total 

volume of 200 µl for each well. In another tube, 4 µl of DharmaFECT 1 were diluted 

in 196 µl of SAFM to reach a total volume of 200 µl for each well, this mixture was 

then incubated for 5 minutes at room temperature then 200 µl of diluted 

DharmaFECT were mixed gently with each diluted siRNA tube and this were 

incubated for 20 minutes at room temperature. Cells were washed twice with 2 ml 

of PBS and filled with 1600 µl of antibiotic-free media and 400 µl of transfection 

complex were added drop by drop to each labelled well and incubated for 48 hours. 

Cellular toxicity was evaluated visually under light microscope, by observing 

changes in cell morphology, cell density, and cell confluency.  
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This transfection protocol was further optimized to reach the optimum cell density 

with least toxicity. Using 6-well plates, three different cell densities of TAMR cells 

(300,000/ 500,000/ 700,000 cells per well) and three different DharmaFECT 

concentrations (4/6/8 µl per well) were used following the same protocol mentioned 

above. For lncRNAs knockdown in 96-well plates, the number of cells were scaled 

down and the procedure were repeated according to the manufacturer’s 

instructions. 

2.2.11 MTT cell viability assay  

The main purpose of MTT assay is to monitor the effect of tamoxifen on growth and 

proliferation of different cell lines under different experimental conditions. Cells 

were allowed to reach 80-90% confluence, then they were detached by the addition 

of 1 ml of trypsin, re-suspended in steroid-free media and counted by 

haemocytometer. Cells were plated as 6000 in 96 well-plates (200μl/well) by an 8-

chanel pipet. Four hours post seeding the cultivated cells were treated with different 

concentrations of 4-hydroxy tamoxifen (i.e., 10μM, 1μM, 0.1μM, 0.01μM), and 10 

wells were treated with 1µL DMSO as vehicle control. MTT assay was performed 

four days later, when the control group reached 70-80 % confluence. MTT solution 

was prepared at 3 mg MTT reagent per 1 ml of PBS, 50μl of the MTT solution were 

added to each well, plates were placed in the incubator for four hours. Media were 

removed and replaced by 100μl of DMSO the plates were placed in plate reader to 

calculate the optical density at a wavelength of 560nm and subtract background at 

670nm. 
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2.2.12 Immunofluorescent staining. 

Slide preparation and fixation 
 
22 × 22mm Coverslips were dipped in ethanol, allowed to dry, and lay flat onto 6 

well plate, 400,000 cells were added directly on the coverslips. Plates were kept at 

37°C and 5%CO2 overnight to adhere to coverslips before knockdown. Optimised 

HOTAIRM1 depletion protocol was followed. Now cells were ready for fixation.  

Fixation step was performing by media removal from the treated cells then washed 

with 2 ml PBS for 5 minutes. Cells then were fixed with 4% paraformaldehyde for 

10 minutes; this step was followed by 5 minutes TBS wash twice. Cells were 

permeabilised with 1 mL of 0.2% v/v Triton-X-100 in PBS for 10 minutes then 

washed with TBS 3 times each for 5 minutes. Next, cells were blocked for 1 hour 

with 200 μL 3% w/v BSA in PBS as blocking buffer. Finally, cells were washed twice 

with 2 mL TBS each for 10 minutes. If the slides were not to be stained immediately, 

1 mL of TBS was added to each well to prevent dryness, plates covered and 

wrapped in plastic wrap and kept at 4 °C up to 1 month ready for staining and 

imaging. All the washings were done gently by adding buffers to the walls of wells 

and all done at room temperature on the orbital shaker.  

Staining method 

TBS was removed from fixed slides and coverslips were inverted onto 100 μl 2% 

w/v BSA (E-cadherin and β-catenin) or 1% w/v BSA (γH2AX) in TBS containing the 

appropriate concentration of primary antibodies for 1 hr at room temperature (E-

cadherin and β-catenin) or overnight at 4 ͦ C (H2AX) in a humidified chamber. 

Coverslips then were inverted back into 6 well plates (the side with cells attached 

facing up) and washed 3 times in 2 mL TBS for 10 minutes. Coverslides were then 
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inverted (the side with cells attached facing down) on 100 μL of Alexa Fluor® 594–

conjugated goat anti-mouse IgG secondary antibody and Alexa Fluor® 488–

conjugated donkey anti rabbit IgG secondary antibody diluted in 1% w/v BSA in 

TBS with 1 μg/mL DAPI and kept for 1 hour at room temperature in a humidified 

chamber protected from light. Coverslides were inverted onto 6 well dish then 

washed 2 times with 2 mL TBS. Finally, each Coverside were inverted on a drop of 

Shandon™ Immu-Mount on labelled glass microscope slide. Mounted coverslips 

were allowed at least 2 hours to dry in the dark at room temperature before being 

stored at 4 ͦ C protected from light prior to imaging. 

Analysis. 

Images of 100 cells per condition were acquired on a Nikon TE200 inverted 

fluorescent microscope using a 60x/1.4 oil immersion objective lens with Volocity 

software. Fluorescent channels of corresponding images were merged using FIJI 

and the signal intensity of E-cadherin and β-catenin assessed for each condition. 

Alternatively, the nuclear γH2AX foci intensity per nuclei determined using FIJI 

software for each condition. 

2.2.13 Fluorescence-activated cell sorting (FACS) 

Cell harvesting 

Optimised HOTAIRM1 depletion protocol was followed. Cells were harvested for 

FACS analysis 48 hours post transfection. Cells were gently washed with 2 mL PBS 

and dislodged with 0.5 mL trypsin EDTA. Cells were collected in 5 mL of the 

appropriate media in a 15 mL falcon tube. Cells were pelleted at 1200 RPM for 

three minutes then media was poured off, tubes were kept on ice all the time. Next, 

cells were resuspended in 5 mL PBS, pelleted at 1200 RPM for 3 minutes, PBS 
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was poured off. Cells were resuspended in 1 ml of PBS and centrifuged at 2000 

RPM for 5 minutes at 4 ͦ C, PBS was discarded completely. Next, the cell pellet was 

resuspended in 1 ml ice cold 100% methanol gradually with frequent vortexing. 

Cells were stored in 100% methanol for overnight minimum up to a month at -20 ͦC. 

Propidium iodide (PI) and S10 p-Histone 3 co-staining 

Cells were retrieved from -20 ͦ C and pelleted at 2000 RPM for 5 minutes at 4 ͦ C 

before methanol was gently poured off and cells were washed twice in PBS on ice. 

Then, were resuspended in 1 mL PBS. Cells were incubated with anti-pH3 antibody 

for 1 h at RT then after washing 3 x in PBS PI solution was added and cells ran 

though the FACS machine. 

Analysis 

First step was doublets exclusion, by forward scatter height vs area and gating FL3-

Width low cells. 10,000 events were collected in this gating region per sample and 

a FL3-height distribution histogram was produced. The G1 proportion of cells was 

defined by gating across the base of the first peak in FL3-H plot (~200 FL3-H), the 

G2 proportion of cells was defined by gating across the base of the second peak in 

FL3-H plot (~400 FL3-H). S phase population was defined as all signal between 

first and second peaks. 

2.2.14 Cell migration  

Optimised HOTAIRM1 depletion protocol was followed. Cells were harvested for 

cell migration assessment 48 hours post-transfection. Cells were gently washed 

with 2 mL PBS and dislodged with 0.5 mL trypsin EDTA, resuspended in media, 

and counted using a hemocytometer. In-order to achieve the appropriate cell 

density, different seeding densities of control siRNA cells were used (5 × 104, 4 × 
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104 and 3 × 104) cells per well. The appropriate cell density was selected when the 

cells reached a confluent monolayer after overnight incubation. For gap creation, 

cells were seeded at an optimised density of 3 × 104 cells per well in culture-Insert 

2-Well. After cells were allowed to attach overnight, culture-insert was removed, 

and cells were gently washed with 2 mL of warm (37 ͦ C) PBS twice to remove any 

debris or non-adherent cells. Then, 2 mL 0.5% FCS supplied culture media was 

provided; to exclude the effect of proliferation and ensure only migration is 

measured. Baseline image (0 H) and subsequent gap closure images were 

captured at 24-, 48- and 72 hours using Nikon TE200 inverted fluorescent 

microscope at 10× magnification.  

Analysis 

The gap closure was measured over time using ImageJ software. To calculate the 

remaining clear area after each time point compared to the control time of zero 

hour. The gap areas were measured, and the percentage of the closed area was 

calculated. These steps were repeated for each condition. The percentage of gap 

closure was calculated using the following equation:  

Gap remaining (%) = 
 (area of the initial gap – area of the remaining gap at 0,24,48 or 72h) × 100 

width of initial gap
 

The experiments were repeated three times for each experimental condition.  

 

2.2.15 Cell adhesion  

To prepare culture plates, EMC Corning Matrigel mix was thawed overnight at 4 ͦ C, 

6 well-plates and pipets were precooled at 4 ͦ C before use. EMC gel was diluted as 

1:2 in cold media cell culture medium, then 35 µL of EMC mix was dispensed in 

each well as 5 technical repeats per condition, 1 plate was made per time point and 
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left in incubator for 30 mins to set, then plates were kept at 4 ͦ C for up to two weeks.  

The product will gel within 5 minutes at 20°C. For prolonged manipulations, work 

should be conducted below 10°C. Cells can be plated on top of a thin gel layer of 

0.5 mm, 96 well-plates were coated with stored at 4 ͦ C for up to two weeks. 

Optimised HOTAIRM1 depletion protocol was followed. Transfected cells were 

harvested for cell adhesion assay 48 hours post transfection. Cells were gently 

washed with 2 mL PBS and dislodged with 0.5 mL trypsin EDTA, resuspended in 

media and counted using hemocytometer. 200 µL of optimised number of 

transfected cells’ solution (25,000 cells per well) was seeded in Matrigel coated 

wells. Cells were incubated at 37 ͦ c and 5% CO2 for 1 hour. Then, gently the media 

was discarded, and plates washed three times gently with 200 µL PBS without 

touching gel layer, to remove non-adherent cells. Attached cells then were fixed 

with 100 µL 4%paraformaldehyde for 15 minutes, after the time passed 

paraformaldehyde was removed gently and cells were washed twice with 200 µL 

PBS. To stain cells, 100 µL of 0.1% crystal violet with 20% methanol were added 

for 15 minutes. Subsequently, stain was removed, and cells were washed twice 

with 200 µL PBS to remove excess crystal violet. Gels/with cells attached were 

solubilised with 100 µL 1% SDS added carefully, to avoid any bubbles, for 30 

minutes on the belly dancer. Absorbance was recorded at 590 nm on plate reader. 

2.2.16 Western blotting. 

Lysate production. 

Optimised HOTAIRM1 depletion protocol was followed. About 1 million cells were 

harvested for protein extraction 48 hours post transfection (3 culture wells of 6 well-

plates per condition). Transfected cells were gently washed with 2 mL PBS and 
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dislodged with 0.5 mL trypsin EDTA. Cells were collected in 5 mL of appropriate 

media in 15 mL falcon tube. Cells were pelleted at 1200 RPM for three minutes then 

media was poured off, tubes were kept on ice all the time. Next, cells were 

resuspended in 5 mL PBS, pelleted at 1200 RPM for 3 minutes, PBS was poured 

off. Cells were resuspended in 1 ml of PBS and centrifuged at 2000 RPM for 5 

minutes at 4  ͦC, PBS was discarded completely. 1 X lysis buffer was prepared by 

mixing 700 μL ddH2O, 200 μL 5x RIPA lysis buffer, 10 μl 100 mM PMSF, 10 μl 100x 

protease inhibitor, 10 μL 100x phosphatase inhibitor and 2 μl Benzonase per 1 mL. 

Then, the pellet was resuspended in one pellet volume of 1x lysis buffer. The 

resuspended pellet was incubated on ice and periodically vortexed every 10 

minutes for 30 minutes, then homogenisation step followed by passing cell lysate 

through a 25G needle 10-15 times. This solution was then centrifuged for 10 

minutes at 13,400 RPM at 4 °C to separate protein lysates. The supernatant was 

transferred into a new 1.5 mL Eppendorf tube before being stored at -20 oC until 

required.  

Protein quantification. 

To accurately determine protein concentration from the lysate, a standard curve 

was produced using commercially available protein standards: bovine serum 

albumin (BSA) concentrations (Bradford, 1976). One microlitre of each lysate was 

diluted in 799 μl of ddH2O followed by addition of 200 μl of Bio-Rad protein assay 

dye reagent concentrate in 1.5 mL Eppendorf tubes (see Table). 200 μL of each 

solution moved to a well in 96 well plate. The optical density (OD) was measured 

using a Multiskan™ FC microplate photometer, absorbance was measured at 595 

nm. ODs of BSA standards were plotted against their known concentrations to 
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produce a standard curve. The standard curve line from this allowed calculation of 

total protein in lysates from their OD values. The amount of protein was calculated 

to be loaded per lane for western blot. 

Table 2.6 Volumes needed for producing BSA standard curve. 

 

SDS-PAGE.   

Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) is the 

method used to separate proteins based on their mass (molecular weights). The 

highest of interest protein molecular weight was E-cadherin (135 kDa), while the 

lowest is GAPDH (37 kDa). Referring to Table 2.2 it was decided to make 8% 

percent polyacrylamide resolving gel as detailed in Table x. Volumes were scaled 

up and down as required to produce multiple gels. When making the gels, TEMED 

and APS were added immediately before pouring the gels in moulds. The resolving 

gel was allowed to set completely. Then 5 mL of stacking gel was poured on top 

and a comb of desired well number and size placed into it. The wells were washed 

with water following setting to ensure that they were clear of any debris. Lysates 

Total Protein 

(μg) 

0.1mg/ml 

BSA (μl) 

ddH2O 

(μl) 

Biorad Protein Assay Dye 

Reagent Concentrate (μl) 

0 0 800 200 

1 10 790 200 

5 50 750 200 

10 100 700 200 

15 150 650 200 

20 200 600 200 
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achieved by RIPA lysis were loaded in equal amounts of 30-60 μg per lane with 1x 

SDS sample buffer. In addition, 5 μL of Precision Plus protein standard was loaded 

to one lane to run parallel to the samples so it can be used as a marker of molecular 

weights and samples’ proteins can be identified relatively. More 1x SDS-PAGE 

running buffer were added carefully and power were run at 180 V for 45 minutes to 

1 hr 30 minutes until the proteins of interested were migrated and sufficiently 

separated.  

 

Table 2.7. The appropriate resolving gel percentages for certain ranges of protein 

sizes. 

 

Protein molecular weight (kDa) Resolving gel percentage (%) 

4-40 20 

12-45 15 

10-70 12.5 

15-100 10 

25-200 8 
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Table 2.8. Volumes of solutions for preparing resolving and stacking gels. 

 

Protein transfer. 

Proteins fractionated by SDS-PAGE were then electrophoretically transferred 

(Figure 2.1) from the gels onto 0.45 μm Protran nitrocellulose transfer membrane 

(GE Healthcare) using a Criterion blotter and 1x pre-chilled Towbin transfer buffer 

on ice. A current of 85 V was used for 2 hours. 

 

Solution 
8% Resolving gel 

(10 mL) 
Solution 

5% Stacking gel (5 

mL) 

ddH2O (ml) 4.6 ddH2O (ml) 3.4 

30% Acrylamide (ml) 2.7 30% Acrylamide (ml) 0.83 

1.5 M Tris pH 8.8 (ml) 2.5 1 M Tris pH 6.8 (ml) 0.63 

10% SDS 0.1 10% SDS 0.05 

10% APS (ml) 0.1 10% APS (ml) 0.05 

TEMED (ml) 0.006 TEMED (ml) 0.005 
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Antibody detection 

To reduced background noise and increase specificity of primary antibodies, 

following protein transfer, membranes were blocked with a neutral protein (5% w/v 

skimmed milk powder in TBS for 1 hr at room temperature). To identify target 

proteins, membranes were then probed with primary antibody diluted in 5% w/v 

skimmed milk powder in TBS at 4 °C for 16-24 hrs, then washed three times with 

0.05% v/v Tween-20 in TBS (TBS-T) every 10 minutes. Membranes were then 

incubated with the appropriate HRP-labelled secondary antibody that act as a 

reporter for targeted proteins, secondary antibodies were diluted in 5% w/v 

skimmed milk powder in TBS for 1 hr at room temperature. Following secondary 

antibody incubation membranes were washed three times with TBS-T every 10 

minutes prior to chemiluminescent detection. 

Figure 2.1. assembly Illustration of transfer sandwich setup. The

sandwich cassette layers as observed from the top for the western

blotting experiment. It is advisable to build on the black side of the

sandwich holder, which will go towards the black side of the electrode

box.
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Enhanced chemiluminescence (ECL). 

Equal volumes of reagent 1 and reagent 2 of the Amersham ECL Western blotting 

detection reagent kit were mixed in a falcon tube and then incubated with the 

membrane for 1 minute at room temperature with gentle agitation to ensure full 

coverage of the membrane. The membrane was then moved to a developing 

cassette and exposed to X-ray film in a dark room for varying amounts of time to 

acquire different exposures. The signal was developed and fixed in the film 

processor using RG universal X-ray developer and using RG universal X-ray fixer 

respectively. 

Western blot quantification. 

Developed films were scanned in on an EPSON EXPRESSION 1680 pro scanner 

in JPEG format at 1600 dpi. Relative protein expression levels in each sample were 

determined by first quantifying the band densitometry of the target protein in FIJI 

software. This value was then normalised to the band densitometry of an internal 

control for the same sample. A medium exposure was chosen for each protein to 

ensure it was within the detection range and that signals were not saturated. 

2.2.17 CAL51 cell lines for RNA-seq  

Optimised HOTAIRM1 knockdown protocol was followed (section) aiming to get the 

recommended number of cells for sequencing (106 cells per sample). 48 hours post 

transfection, cells were gently washed with PBS, trypsinised, pelleted and stored at 

-70  ͦC. frozen cell pellets were sent on dry ice to Genewiz (sequencing service) to 

be sequenced.  
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2.3 Computational methods 

All codes used in this project can be accessed through the following this URL: 

https://drive.google.com/drive/folders/1JuHXVMtmcnoRc5UdozUVZS4_-

gGiqVIc?usp=sharing 

2.3.1 RNA sequencing  

2.3.1.1 data processing 

RNA-seq data was obtained as BAM files of aligned reads that was annotated using 

supplied Gene Transfer Format (GTF) file, that is an essential annotation file that 

contains information about genes and their corresponding features (chromosome 

name, starting point, ending point, strand…, etc). Sequenced reads were then 

counted by applying FeatureCounts command with the help of Dr Mark Dunning 

(personal communication). Sample information matrix was created defining each 

sample and what phenotype it represents. In R software, matrixes were submitted, 

and data was re-arranged following the pipeline requirements. Next stage was data 

processing, it included filtering unexpressed or lowly expressed genes followed by 

data quality control assessment and finally normalisation. The process of identifying 

genes with differences in expression levels between different experimental 

conditions was done through differential expression analysis (DEA), that was 

performed using Deseq2 package following package manual. DEA results file was 

annotated using BioMart package to get gene biotypes and gene names. 

2.3.1.2 Prioritisation of lncRNAs for molecular studies 

Differentially expressed lncRNAs were filtred on three levels. The first filter applied 

was the consideration of the combined effect of fold change (FC)= 1.5, as a 
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measure of change in gene expression level, and p-value of < 0.005, as a measure 

of statistical significance of FC value, to increase the validity of lncRNAs presumed 

to be differentially expressed between MCF-7 and TAMR (Conesa et al., 2016). The 

second filter was the protein coding probability score generated using Coding 

Potential Assessment Tool (CPAT), a score of < 0.3 was determined the optimal 

cut-off to select the true noncoding transcripts according to (Wang et al., 2013). For 

the third filter, annotation, /and characterisation of lncRNAs were evaluated. Next, 

the shortened list of prioritised lncRNAs generated from the above filtering steps 

were assessed in term of the published literature, annotation, and availability of 

reagents upon choosing the first lncRNA for molecular evaluation.   

Four candidate lncRNAs (LUCAT1, SOX21-AS1, NR2F1-AS1 and HOTAIRM1) 

were selected and further reviewed in the published literature. Inspection of the 

genomic location was done using ensemble genomic browser (Genome assembly: 

GRCh38.p10) to survey neighbouring genes and transcription factors binding sites 

(Zerbino et al., 2018). 

2.3.1.3 GSEA 

Gene set enrichment analysis (GSEA) was performed with software ((Debrabant, 

2017).  Raw counts were normalised using Deseq2 software, input files were 

prepared according to GSEA protocol, the first file is the expression dataset file that 

contain Contains features of consistent gene identifiers (ensemble IDs) in rows, 

samples one in each column, and a normalised number of counts for each gene in 

each sample. The second file was a phenotype labels file contains GSEA format of 

categorical labels that define a discrete phenotype associating each sample with a 

specific phenotype. Final file needed was a gene sets file selected from file servers 
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hosted on GSEA associated Molecular Signature Database (MSigDB), list of 

selected gene sets selected are listed in Table 2.7. These gene sets represent 

published lists of genes known to be associated with tamoxifen resistance 

pathways. In this type of files, each gene set has a given name and list of genes 

related evidentially in this set.  
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Table 2.8. List of selected MSigDB gene sets. 

genes description
BECKER_TAMOXIFEN_R

ESISTANCE_DN
54 Genes downregulated in a breast cancer cell line resistant to tamoxifen [PubChem=5376] compared to the

parental line sensitive to the drug.
BECKER_TAMOXIFEN_R

ESISTANCE_UP
54 Genes up regulated in a breast cancer cell line resistant to tamoxifen [PubChem=5376] compared to the

parental line sensitive to the drug.
BHAT_ESR1_TARGETS_

NOT_VIA_AKT1_DN
88 Genes bound by ESR1 [GeneID=2099] and down-regulated by Estradiol [PubChem=5757] in MCF-7 cells

(breast cancer).
BHAT_ESR1_TARGETS_

NOT_VIA_AKT1_UP
211 Genes bound by ESR1 [GeneID=2099] and up-regulated by Estradiol [PubChem=5757] in MCF-7 cells (breast

cancer).
BHAT_ESR1_TARGETS_

VIA_AKT1_DN
82 Genes bound by ESR1 [GeneID=2099] and down-regulated by Estradiol [PubChem=5757] in MCF-7 cells

(breast cancer) expressing constitutively active form of AKT1 [GeneID=207].
BHAT_ESR1_TARGETS_

VIA_AKT1_UP
281 Genes bound by ESR1 [GeneID=2099] and up-regulated by estradiol [PubChem=5757] in MCF-7 cells (breast

cancer) expressing constitutively active form of AKT1 [GeneID=207].
BOWIE_RESPONSE_TO

_EXTRACELLULAR_MAT

RIX

17 Genes up-regulated by growing HMEC-E6 cells (mammary epithelial cells damaged by expression of HPV-16

E6 [GeneID=1489078]) in extracellular matrix (ECM).

BOWIE_RESPONSE_TO

_TAMOXIFEN
18 Genes up-regulated by tamoxifen [PubChem=5376] in HMEC-E6 cells (mammary epithelial cells damaged by

expression of HPV-16 E6 [GeneID=1489078]).
CLIMENT_BREAST_CAN

CER_COPY_NUMBER_D

N

8 Genes from the most frequent genomic losses and homozygous deletions in a panel of patients with lymph

node negative breast cancer (NNBC).

CLIMENT_BREAST_CAN

CER_COPY_NUMBER_U

P

23 Genes from the most frequent genomic gains and amplifications in a panel of patients with lymph node

negative breast cancer (NNBC).

CREIGHTON_ENDOCRI

NE_THERAPY_RESISTA

NCE_1

533 The ‘group 1 set’ of genes associated with acquired endocrine therapy resistance in breast tumors expressing

ESR1 and ERBB2 [GeneID=2099;2064].

CREIGHTON_ENDOCRI

NE_THERAPY_RESISTA

NCE_2

470 The ‘group 2 set’ of genes associated with acquired endocrine therapy resistance in breast tumors expressing

ESR1 and ERBB2 [GeneID=2099;2064].

CREIGHTON_ENDOCRI

NE_THERAPY_RESISTA

NCE_3

726 The ‘group 3 set’ of genes associated with acquired endocrine therapy resistance in breast tumors expressing

ESR1 and ERBB2 [GeneID=2099;2064].

CREIGHTON_ENDOCRI

NE_THERAPY_RESISTA

NCE_4

309 The ‘group 4 set’ of genes associated with acquired endocrine therapy resistance in breast tumors expressing

ESR1 but not ERBB2 [GeneID=2099;2064].

CREIGHTON_ENDOCRI

NE_THERAPY_RESISTA

NCE_5

493 The ‘group 5 set’ of genes associated with acquired endocrine therapy resistance in breast tumors expressing

ESR1 but not ERBB2 [GeneID=2099;2064].

FRASOR_RESPONSE_TO

_ESTRADIOL_DN
77 Genes down-regulated in MCF-7 cells (breast cancer) by estradiol (E2) [PubChem=5757].

FRASOR_RESPONSE_TO

_ESTRADIOL_UP
35 Genes up-regulated in MCF-7 cells (breast cancer) by estradiol (E2) [PubChem=5757].

FRASOR_RESPONSE_TO

_SERM_OR_FULVESTRA

NT_D

49 Genes down-regulated in MCF-7 cells (breast cancer) by selective estrogen receptor modulators (SERM) 4-

hydroxytamoxifen, raloxifene, or ICI 182780 but not by estradiol [PubChem=44959;5035;3478439;5757].

FRASOR_RESPONSE_TO

_SERM_OR_FULVESTRA

NT_U

23 Genes up-regulated in MCF-7 cells (breast cancer) by selective estrogen receptor modulators (SERM) 4-

hydroxytamoxifen, raloxifene, or ICI 182780 but not by estradiol [PubChem=44959;5035;3478439;5757].

FRASOR_TAMOXIFEN_

RESPONSE_DN
12 Genes preferentially down-regulated in MCF-7 cells (breast cancer) by tamoxifen [PubChem=5376] but not by

estradiol or fulvestrant (ICI 182780) [PubChem=5757;3478439].
FRASOR_TAMOXIFEN_

RESPONSE_UP
51 Genes preferentially up-regulated in MCF-7 cells (breast cancer) by tamoxifen [PubChem=5376] but not by

estradiol or fulvestrant (ICI 182780) [PubChem=5757;3478439].
MASRI_RESISTANCE_T

O_TAMOXIFEN_AND_A

ROMAT

20 Genes down-regulated in derivatives of MCF-7aro cells (breast cancer) that developed resistance

to tamoxifen [PubChem=5376] or inhibitors of aromatase (CYP19A1) [GeneID=1588].

MASRI_RESISTANCE_T

O_TAMOXIFEN_AND_A

ROMAT

20 Genes up-regulated in derivatives of MCF-7aro cells (breast cancer) that developed resistance

to tamoxifen [PubChem=5376] or inhibitors of aromatase (CYP19A1) [GeneID=1588].

MASSARWEH_RESPON

SE_TO_ESTRADIOL
62 Genes rapidly up regulated in breast cancer cell cultures by estradiol [PubChem=5757].

MASSARWEH_TAMOXI

FEN_RESISTANCE_DN
257 Genes down-regulated in breast cancer tumors (formed by MCF-7 xenografts) resistant

to tamoxifen [PubChem=5376].
MASSARWEH_TAMOXI

FEN_RESISTANCE_UP
581 Genes up-regulated in breast cancer tumors (formed by MCF-7 xenografts) resistant

to tamoxifen [PubChem=5376].
RIGGINS_TAMOXIFEN_

RESISTANCE_DN
221 Genes down-regulated SUM44/LCCTam cells (breast cancer) resistant to 4-hydroxytamoxifen

[PubChem=63062] relative to the parental SUM44 cells sensitive to the drug.
RIGGINS_TAMOXIFEN_

RESISTANCE_UP
67 Genes up-regulated SUM44/LCCTam cells (breast cancer) resistant to 4-hydroxytamoxifen [PubChem=63062]

relative to the parental SUM44 cells sensitive to the drug.
WP_TAMOXIFEN_MET

ABOLISM
21 Tamoxifen metabolism

Table 2.4 list of MSigDB selected gene sets.
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After loading data into GSEA, analysis was performed using the default settings 

except for “perpetuation type” which was set to “gene_set”. Gene sets were 

identified as significant if false discovery rate (FDR) q-value < 0.05 to control the 

expected number of false positive genes.  

2.3.2 Analysis of publicly available sequencing data  

2.3.2.1 The Gene Expression Omnibus (GEO) Project 

GEO is a public database that archives high throughput genomic data (microarray 

and RNA-seq) from different independent studies supplied by research (Barrett et 

al., 2013). Steps of bioinformatic analyse of genes expression in breast cancer 

datasets are  

Dataset Selection 

Selecting the right datasets is of great importance. Datasets built upon studies that 

has the appropriate experimental conditions suitable for our project. Consequently, 

the resulted lists of differentially expressed genes would be considered highly 

related to the phenotype under investigation. 

Planning and creating a systematic search consist of the following steps: 

1. Formulating a focused search question. 

2. Select an appropriate database to search in.  

3. formulate the key concepts that explain different elements of the question. 

4. Document the search process. 

5. Identify synonyms for search key words. 

6. Use variations with search words such as truncation, spelling differences 

and abbreviations. 
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7. Use database-appropriate syntax, parentheses, and Boolean operators. 

8. Collect the articles that appeared in the search.  

Data analysis  

Systematic search for microarray studies resulted in 120 GEO series, for a study to 

be included it has to have the appropriate number of samples which is three in each 

experimental condition, microarray platform should be either illumina or Affymetrix 

and raw data files (.CEL) should be available in the database. 5 datasets were 

included in the analysis (3 clinical biopsies and 2 in-vitro cell culture models). 

GEOquery package manual were followed to perform the DEA. 

2.3.2.2 The Cancer Genome Atlas (TCGA) 

This project collects high throughput sequencing analysis of tumour samples and 

the clinical information of participants diagnosed with more than 20 types of cancers 

(Li et al., 2017). Gene expression profiles from the TCGA study breast cancer 

project (BRCA) were accessed using the TCGAbiolinks package in R software. 

Using samples barcodes (Figure 2.2) cases were identified to have matched normal 

solid and solid tumour tissues samples were selected to be compared. Then PAM50 

classified barcodes of BRCA data were compared as follows, (luminal A tumours vs 

basal tumours), (luminal A normal vs luminal A tumours), (Basal normal vs Basal 

tumours). HER2 enriched and luminal B subtypes were excluded. Considering the 

aim of this analysis, to select lncRNAs and protein-coding genes of interest from 

the DEA results table: lncRNAs were divided into up- or down- regulated genes 

based on fold change direction. However, due to the high number of differentially 

expressed protein-coding genes, the cut-off of a significant p-value and FC is 0.005 

and 1.5 respectively. 
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2.3.2.3 The cancer cell line encyclopaedia (CCLE) data  

RNA-seq Gene expression profiles of breast cancer cell lines were downloaded 

from the CCLE database (Barretina et al., 2012) Data included gene expression for 

1019 cell lines, of which 51 breast cell lines were selected that were marked ER-

positive or ER-negative based on the provided metadata. Gene expressions were 

provided in Reads Per Kilobase Million mapped reads (RPKM) that defined as the 

output value after normalizing the read counts in term of sequence depth and gene 

length. Log2 RPKM was calculated and candidate lncRNAs expression and 

correlation to ESR1 gene were evaluated.  

  

Figure 2.2. illustration of how a sample is assigned a TCGA barcode at 
each processing step. This example is for matched tumour and normal 
samples from the same case.
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Chapter 3. Bioinformatic analysis of tamoxifen resistant 

and sensitive breast cancer cell lines.  

3.1 Introduction 

Transcription is the flow of genomic information from DNA to RNA, it is a crucial 

biological step that controls cellular homeostasis and the manifestation of different 

normal or pathological traits (Mattick, 2003). The transcriptional landscape 

encompasses the whole population of RNA molecules consisting of protein coding 

and a variety of non-protein coding transcripts; it forms an intermediate passageway 

connecting genomic DNA to the protein end-product (Djebali et al., 2012). The 

classic assumption of protein coding transcripts being the functional unit in the cell 

has changed dramatically. Noncoding regions in the genome were found to be 

pervasively transcribed, producing mainly lncRNAs among others (Szymański et 

al., 2003). Furthermore, across-organisms genome analyses showed quite similar 

numbers of protein coding genes in multicellular organisms, but the increasing ratio 

of non-protein coding genes relative to the total genome size in higher organisms 

was correlated to the evolutional complexity (Taft, Pheasant and Mattick, 2007; Liu, 

Mattick and Taft, 2013). In addition, the ENDCODE project proposed that about 

90% of pathological single nucleotide polymorphisms (SNPs) lay in noncoding 

areas (Myers et al., 2011). Based on these arguments, non-coding RNAs are 

believed to be key functional molecules orchestrating arrays of biological pathways. 

Functional genomic analysis of many candidates long noncoding RNAs revealed 

their broad functionality, acting as mediators of biological developmental and 

differentiation (Dinger et al., 2009). Recent data suggested their driving role in 
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complex diseases especially in cancer and lncRNAs have emerged as potential 

biomarkers and drug targets (Silva, Bullock and Calin, 2015). For example, 

lncRNAs UCA1 (urothelial carcinoma associated 1) and telomerase RNA 

component (TERC) were found be bladder carcinoma non-invasive biomarkers with 

a strong sensitivity and specificity (70-80%) (Srivastava et al., 2014; Chen et al., 

2022). One clinically implemented lncRNA biomarker is prostate cancer antigen 3 

(PCA3), a test is available commercially in the form of Progensa® PCA3 test kit and 

is used for diagnosing and follow up in prostate cancer (Haese et al., 2008; Hologic, 

2012). Identifying more cancer relevant lncRNAs for practical use in the field of 

cancer diagnostics and treatment is facilitated through understanding the functional 

role of lncRNAs is tumorigenesis.    

RNA-seq is a fundamental next generation sequencing technology and one of the 

most reliable methods used for studying lncRNA. Combined with other 

experimental methods it deciphers the interconnected biochemical, physiological, 

and biological systems controlling different cellular organisation.  This process 

provides a wide range of molecular information on the input samples. Through 

measuring the global abundancy of RNA transcripts, gene expression analysis is 

carried out. It offers quantitative measurement, hence perspectives on the 

transcriptional patterns. When detecting the similarity and diversity in transcriptional 

profiles between two distinctive experimental conditions, dysregulated RNA 

signaling is detected and a cause effect relationship can be established and further 

investigated. 
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The hypothesis of this chapter is:  

Gene expression analysis of tamoxifen resistant (TAMR) and parent tamoxifen 

responsive breast cancer cell lines (MCF-7), will produce a list of candidate 

lncRNAs that may have biological function relevant to tamoxifen acquired 

resistance after long term tamoxifen treatment.   

 

The aims of this chapter are: 

1- To process RNA-seq data of TAMR and MCF-7 cell lines using quality 

control and differential expression bioinformatics pipelines. 

2- To construct a list of statistically significant differentially expressed genes.  

 

The objectives of this chapter include:  

1- Validating input raw sequencing data by: 

A) Assessing samples library sizes and adjusting for any detected 

systematic biases.  

B) Checking sample to sample relationship to each other and global 

distribution of count data.  

2- Performing differential expression analysis (DEA). 

3- Ranking lncRNAs and protein coding genes based on DEA results. 

4- Choosing a few lncRNAs for further investigation. 
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3.2. Results 

3.2.1. Sequencing data generation 

Transcriptome quantification is one of the core RNA-seq activities, enabling other 

downstream analyses. In this project, RNA--sequencing of breast cancer cells 

aimed to establish a regulatory role of lncRNAs in tamoxifen resistance. Cell lines 

were kindly provided by Dr Julia Gee, Cardiff University (Knowlden et al., 2003). 

Before sequencing the tamoxifen sensitivity of each cell line was confirmed. Both 

cell lines were exposed to increasing concentrations of tamoxifen and sensitivity 

determined by MTT assay (Figure 3.1). MCF-7 cell lines were significantly more 

sensitive to tamoxifen at all tested concentrations. Mean lethal concentration (50% 

of cell mortality observed (LC50) of tamoxifen in MCF-7 was 1 µM, while for TAMR 

cells, even with the highest concentration of tamoxifen (10 µM), only 30.6% of cells 

were affected, compared to 87.7% of MCF-7 cells.  
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Following conformation of tamoxifen resistance in TAMR vs parent MCF-7 cells. 

Total RNA was extracted, then in-house quality and concentration assessments 

were performed. Further in-depth quality control assessments were carried out in 

the sequencing facility. As a result, biological samples were confirmed of high-

quality RNA with no gDNA contamination or RNA degradation. Samples were 

prepped and sequenced following Illumina-based RNA-seq protocol. FASTQ-

format files were generated, sequenced reads were aligned to the human reference 

Figure 3.1 TAMR and MCF-7 cells sensitivity to tamoxifen. Cells were

cultured in 96-well plates, treated with increasing concentrations of
tamoxifen ( 0.01 µm, 0.1 µm, 1 µm and 10 µm) and vehicle control (C).
MTT was performed 4 days post treatment, by reading optical densities in
the plate reader. Cell viability was calculated by dividing tamoxifen treated
well reads by vehicle control read. Data points represent mean cell
viability of each treatment group. Error bars depict standard deviation of
the mean (N=3). Statistical significance was determined using unpaired
one-tailed Student’s t-test at each concentration * denotes p= ≤0.05, **
denotes p= ≤0.01, *** denotes p=≤0.001
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genome and stored in the form of BAM files that then were annotated, and 

sequenced reads were counted. Next, computational analysis of RNA-seq data in 

R software started by reading and formatting the data to give 2 basic files: 1) Count 

matrix of measured gene expression data that included 58,381 genes (also called 

feature counts) identified by the official Entrez gene ID and their number of reads 

in each of the 6 samples, 3 repeats of each cell line. 2) a comma separated file 

containing meta data or sample information to identify each sample and provide 

information that help determine the type of statistical comparison desired. Both files, 

used together, form the foundation of this bioinformatics analysis (Figure 3.2).  

 

Figure 3.2 Flow diagram of pipeline used to analyze RNA-seq data. 

Flow diagram of pipe-line used to analyse RNA-seq data
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3.2.2. Data filtering  

Although RNA-seq is very reliable deep-sequencing technology, the amount of data 

produced is huge and presents many statistical challenges. It is very important to 

address such issues early on, carefully considering the upcoming biological and 

computational limitations. The extensive statistical analyses the data undergo, 

demanded setting an expression standard value to help us demarcate gene 

expression standards. Filtering is a common practice that allows for excluding lowly 

expressed genes, alleviating the statistical burden they procure. As a result, more 

sensitive detection of deferentially expressed genes was obtained, increasing both 

confidence and precision of downstream analyses and increasing the number of 

detected DEGs.  

For this thresholding method was used filtering low-expression genes using the 

edgeR package. Initially, untranscribed genes were defined to have 0 count reads 

in the input sequenced genes matrix were removed.  Count-per million (CPM) 

values were calculated from raw counts. CPM were used as it corrects for sample 

library size as a method of read count normalisation. Filtering threshold was sited 

at 0.5 CPM, as it fulfils the recommended limit for the number of counted reads in 

each gene to be considered expressed (5-10 counts in each sample library). In 

addition, a gene should be expressed in at least 3 samples to avoid being filtered 

out. As a result, from a total of 58,381 genes, 14,780 met expression inclusion 

conditions while 43,601 genes were excluded being below expression threshold 

and/or expressed in less than 3 samples at the same time. Figure 3.3. depicts how 

the expression distribution changed dramatically after filtering of lowly expressed 



 

 

102 

genes. Before filtering, a large proportion of sequenced genes clustered around 

areas defining them as not or lowly expressed. After applying filtering standards 

(0.5 CPM expression threshold in at least 3 of the 6 samples), the plotted curve of 

filtered data has changed focus onto highly expressed genes, excluding all 

uninformative genes and clearly showing overall data uniformity across all samples.  

 

3.2.3 Quality control 

After filtering below-standard genes, the following analysis focused on assessing 

the quality of satisfactorily expressed genes. The presence of non-biological factors 

can have a major effect on sequencing quality, resulting in noticeable variations in 

Figure 3.2. Raw counts distribution before and after filtering of lowly expressed

genes . Density plot illustrating the effect of Filtering lowly expressed genes on the
number of counts in each sample. A) majority of genes have zero reads, manifested in
the peak at -3.322 corresponding to log2 (0+0.1) (dotted line). B) After excluding

genes with a number of counts less than 0.5 CPM in at least 3 of the 6 samples, the
area under the curve corresponding to (35-1000 reads) expands, (dotted lines), this

reflects the shifted focus onto genes with a satisfactory number of counts. Blue lines
are MCF-7 samples, and red lines are TAMR samples. X-axis is log transformed raw
counts, y-axis represent the amount of genes bearing certain number of counts.

A B

MCF-7

TAMR
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the data produced. Batch effects may result from subsets of samples exposed to 

technical variabilities due to practical restrictions. This might occur due to laboratory 

conditions, such as different technicians handling the samples or even changes in 

lab atmosphere. Also, the extensive list of reagents, kits used in RNA-seq 

preparation varying in lots or providers or different sequencing platforms used can 

contribute to creating this batch effect. This is a major issue that needs to be 

addressed early, to avoid letting easily recognisable sources of variation result in 

incorrect conclusions. In our sequencing study, the number of paired-end reads 

were plotted for each sample. Bearing in mind the principle understanding that 

sequencing data is not normally distributed, and a bell-shaped continuous bar plot 

is not expected. So, while it is normal for sequencing data of independent repeats 

to have different library sizes no obvious or extreme differences should be 

recognised.  Using raw count measures to visualise library size laying (Figure 3.4), 

we assumed that a good degree of read distribution with no major discrepancies or 

imbalanced coverage had been achieved and that further analysis downstream 

could occur. Furthermore, variance stabilizing transformation (VST) of the data was 

carried out to investigate more exploratory plots for the quality control step. The vst 

function from DESeq2 package was used to calculate log2 cpm and other 

calculations in order to eliminate internal factors that could create bias such as 

outliers. Other, benefits of this transformation are that it adjusts for data skewness 

making it conform to a normal distribution model and reduces variability. The output 

of this step is a matrix of normalised counts. This method accounts for extreme 

reads resulting from variations in sequencing depths and library composition, where 

many genes’ counts fluctuate between samples. Added to that, the process is 



 

 

104 

blinded for study design, to further eliminate any hint from the provided sample 

information allowing for an unbiased comparison. This is especially important to 

observe in our experimental design, that compares between tamoxifen sensitive 

and resistant cell lines. Tamoxifen, a selective oestrogen receptor modulator exerts 

widespread effects as an oestrogen agonist/antagonist through up- and down 

regulating hundreds of genes (Frasor et al., 2003) (Frasor et al., 2006). This might 

result in wide disruptions in genetic activity, requiring robust methods of 

normalisation and inquiring data quality from different angles. Looking into the 

scaled data (figure 3.5), the distribution of scaled reads counts is uniform, with very 

close clustering around the median (blue line). Both analyses above conclude the 

input data is of good sequencing quality.   
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Figure 3.4. Similar distribution of expression profiles were confirmed by 

boxplot of scaled RNA-seq data. samples were sequenced and variance-
stabilising transformation was applied on CPM transformed expression values to 
check all genes distributions  on the log2 scale across all samples. blue 

horizontal line corresponds to the median log2 CPM.

Figure 3.3. Library sizes of RNA-seq samples. Samples were sequenced, 3 

samples in each cells group and the total number of raw counts in each 
sample adapted a bar indicating the library size. 
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The next part of quality assessment focused on evaluating the data at the sample 

level. The aim was to build a hierarchy of samples by deciding which samples to 

combine in a cluster and which to split apart, this is done based on a measure of 

distances between the observations in samples, following their overall degree of 

similarity or dissimilarity is determined. For this purpose, dist function was used on 

the filtered normalised data to create a matrix of Euclidean metrics that help 

performing hierarchical agglomerative clustering in the form of a heatmap of 

sample-to-sample distances between rows and columns. This showed independent 

repeats of the same cell line belonging to the same cluster, indicating a 

considerable correlation within the same biological group of samples. On the other 

hand, a weak correlation between MCF-7 and TAMR can be detected (figure 3.6). 

Also, unsupervised principal component analysis was performed; this is a data 

transformation technique. After variable value standardisation, the data is 

compressed and the dimensional distances between samples is calculated, this 

reflects the degree of variance each group of samples processes. This method is 

another way to separate samples based on how different they are in term of intrinsic 

gene expression. Consistent with previous findings, our data appear to cluster well 

and spread across the two main principal components (PC1 and PC2), that account 

for 97% and 2% of the total variation respectively (figure 3.7). The TAMR samples 

cluster closely together, reflecting how similar their transcription profiles are. At the 

other end of the PC1 axis, the MCF-7 samples look less clustered. This finding does 

not negatively affect MCF-7 clustering, because the samples diverge on the PC2 

axis that is inferior to PC1 in determining cluster distinction (only 2% of variation). 

Taken all together, quality control output support data validity. The data suggests 
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that biological properties are the main source of variation, which is consistent with 

the experimental design, hence we can conclude that the data is fit for subsequent 

analyses. 

 
Figure 3.5. Heatmap of sample-sample distances. Variance-stabilising transformation was
applied to raw count data to calculate distances between samples. RNA-seq samples are
plotted against each other. Dendrogram on the sides of the heat map shows clustering of
similar samples. The shorter the distance between samples shows higher intensity of the
colours in cells, ranging from dark blue to white.
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3.2.4 Differential expression analysis (DEA) 

The main utilization of transcriptomic data produced by RNA-seq is for DEA. 

Sequencing data provides quantitative information about the genes in the samples, 

when performing DEA, the observable trend can be explained. 

The uploaded data has two sample levels, tamoxifen resistant (TAMR samples) 

and tamoxifen sensitive (MCF-7 samples). The MCF-7 group of samples were 

assigned as the reference level, the goal of this analysis is to find out which genes 

changed when cells adopted the tamoxifen resistant phenotype. 

After filtering off lowly expressed genes and testing the quality of samples at 

different levels, now we have the final count matrix as an input for DEA. The basic 

principle of statistical detection of differentially expressed genes is to measure the 

dispersion of gene counts. Dispersion parameter estimates the metric location of 

each repeat relative to the mean. By correctly estimating the dispersion, more 

reliable DEA results are obtained (Landau and Liu, 2013).  

Figure 3.6. Principle component analysis plot showing variability in global gene expression
between samples. Variance-stabilising transformed gene expressions were determined, then, the
pattern of unsupervised variability between samples was plotted on a 2D plan as percentage,
where, PC1 on x-axis were plotted against a PC2 on y-axis. Sample groups are indicated in
coloured dots (red: MCF-7, blue: TAMR). The relationships between samples are determined by
judging the distance between samples on the horizontal PC1 axis, the further the distance
between samples, the highest degrees of variability.
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3.2.4.1 RNA-seq data properties and distribution  

Initially, the statistical properties of the RNA-seq data were assessed. To carry out 

a DEA, the data distribution needs to be determined and fitted to an appropriate 

model. As shown in figure 3.8.A, count data clearly did not fit within a normal 

distribution curve. Also, additional properties about the underlying data were 

observed. Firstly, the values were normal numbers, never including minus or 

decimals, as a fraction or subtract of a read cannot be mapped to a gene. Secondly, 

the data was continuous and its range dynamic, this means it does not fall within a 

fixed range of values (the long right tail). Taken all together, the RNA-seq data 

suggested it could be a Poisson distribution, that mainly evaluates the relationship 

between mean and variance in the data. A vector of mean and variance was created 

by calculating each for each variable, then both were plotted against each other. 

However, when the data were fitted into a Poisson model, the observed trend did 

not fit as the model requires the mean counts to be equal to the variance counts 

(Witten, 2011). As shown in figure 3.8.B, across samples, genes in our data have 

high mean and variance expressions, meaning the Poisson model is inappropriate.  

Considering the data properties and the observed degree of variability in data, the 

next candidate model was negative binomial distribution figure 3.8.C. Plotting of 

per-gene dispersion estimates in R allowed us to see that dispersion decreased as 

the mean increases, which is the expected trend of RNA-seq data of this nature 

(Ren & Kuan, 2020).  
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Figure 3.7. Distribution of gene expression levels in RNA-seq samples. (A) Histogram of

count data illustrating basic properties of the expression set. X-axis represents the
number of reads mapped to a particular gene, y-axis indicates the frequency by which a
particular number of counts recuring in the data set. (B) Poussin distribution (PD) plot,

counts were fitted within PD parameters, mean counts on x-axis and variance counts on
y-axis. Red diagonal line is where mean equals variance for a particular gene. Black dots
represent individual genes. Genes falling to fall along the red line indicates unfit to PD
model. (C) Deseq2 plot of dispersion estimates, the higher the mean value on x-axis ,
the more probability the gene is found in tested samples, y-axis is the dispersion
parameter that illustrate how spread samples are. Solid blue dotes are the genes with
the final adjusted dispersion values, black dotes surrounded by blue hue are genes that
have a very high dispersion compared to other genes, the red curve is the genes
expected value of dispersion.
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3.2.4.2 DEseq2 analysis 

DEseq2 is a popular bioconductor package that adopts the negative binomial 

distribution (NBD) to measure differential gene expression across genes count 

matrix (Love, Huber and Anders, 2014). NBD uses a linear model to account for the 

extra variability in the variance produced by the experimental design. By accounting 

for library size and composition, DEseq2 estimates a size factor for each sample 

by applying the median of ratio method. Subsequently, gene-wise dispersion or 

spread relative to mean counts is calculated and log2 fold change is calculated 

based on the linear model equations programmed with in the package.  

The principal concept is shown in the first equation below where (Kij) is the number 

of mapped sequenced reads (K) for gene (i) in sample (j). Kij is to be represented 

by the negative binomial model (NB) which has two main parameters, sample and 

gene specific fitted mean (μij) and extra variability resulting from experimental 

design per-gene (i) is accounted for by the dispersion parameter (αi). The fitted 

mean (equation 2 – below) in turn consists of two parameters, firstly sample specific 

normalisation, or size factor (Sj) - a constant to be used for all genes in one sample, 

and secondly the per-sample (j) concentration of gene (i) fragments (qij). Finally, 

log2 fold change between conditions is calculated based on a generalized linear 

model in the form of equation 3 (below). Where xj is the design factor that depends 

on the initial experimental design, in our case a one factor design comparing 

between samples (conditions), with two values tamoxifen sensitive and tamoxifen 

resistant conditions, and βi is the gene expression coefficient whereas explained in 

equation 4 ( Table 3.1), where β0 refers to the expression in the reference samples 

(tamoxifen resistant) or β1 for the opposite condition.  
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Table 3.1 Equations used for estimating data distribution. 

 

3.2.4.3 DEseq2 results 

After confirming our data fit using the DEseq2 basic statistical handling method, the 

raw sequencing data matrix was loaded into R software together with the sample 

metadata files. Subsequently, a differential expression results table was generated 

where rows are genes and columns consist of 6 calculated DEA parameters 

including  “baseMean” (average normalised counts of all samples),” 

log2FoldChange”(change in gene expression in tamoxifen resistant samples group 

compared to tamoxifen sensitive samples group), “IfcSE” (Standard error estimates 

for log2fold changes), “stat”(Wald test values),  “pvalue” (p-value or statistical 

significance), “padj” (statistical significance adjusted for multiple testing). (Table 

3.2) 
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Table 3.2. Example of differential gene expression analysis results as an output of 
Deseq2 package. 
 

If a p-value <0.5 is used, this means 5% of statistically significant genes are false 

positives, relating to our data, 7786 genes had p-value <0.05, implying 398 genes 

are a result of natural random variation, tamoxifen resistance had no effect on them. 

Here the importance of adjusting p-values can be seen, due to the massive number 

of low p-values and multiple statistical testing data undergo. For this, DESeq2 

package uses Benjamini-Hochberg method to determine the false discovery rate 

adjusted p-value (padj), aiming control the probability of making at least one false 

positive, reducing the chance of making type one error. 

Log2foldchange is the main element in the results table, it allows for evaluating 

gene expression between samples. log2foldchange values were used for 

hypothesis testing, the null hypothesis (H0) states no change in gene expression 

between TAMR and MCF-7 samples, this was true for 9641 genes with 

log2foldchange of 0. On the other hand, 2506 genes had log2foldchange values 

more than 0 while 2633 genes had values less than 0 (Figure 3.9).  
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3.2.4.3 Annotation of DEseq2 results 

The next step was to annotate the DEA results table. For this the BioMart data base 

was used, a query was built with ensemble ids, calling for the corresponding gene 

names and biotypes. The DEA annotated table included data for 12439 protein 

coding genes, 1511 lncRNAs, 7 Mitochondrial DNA (Mt RNA), 21 miscellaneous 

RNA (miscRNA), 10 micro RNAs(miRNA), 102 To be Experimentally Confirmed 

(TEC), 542 pseudogenes (199 processed pseudogenes, 195 transcribed 

unprocessed pseudogenes, 61 transcribed processed pseudogenes, 48 

unprocessed pseudogenes, 36 transcribed unitary pseudogenes, 1 unitary 

pseudogene, 1 rRNA pseudogene, 1 polymorphic pseudogene), 1 Constant chain 

T cell receptor gene (TR_C) gene, 5 Small Cajal body-specific RNAs (scaRNA), 1 

small conditional RNA (scRNA), 47 Small nucleolar RNAs (snoRNA), 36 Small 

nuclear RNAs (snRNA) and 57 un annotated IDs (NA values). Taken all together, 

from the 14780 genes that underwent DEA, 9544 genes were excluded for having 

an adjusted p-value >0.005, of the remaining 5235 genes, 770 were upregulated in 

TAMR, 1911 genes were upregulated but by less than 1.5 log2 fold change, 804 

were downregulated in TAMR and 1750 genes were downregulated in TAMR but 

by less than 1.5 log2 fold change, visual expression of these results can be seen in 

(Figure 3.9).  By observing the gene clustering pattern, we can get an indication of 

data integrity and of the expected load of statistically significant results, this is 

because genes were stratified visually based on holding an adjusted p-value of less 

than 0.005 and 1.5 log2 fold change. 
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 When looking at the relationship between significant change in gene expression 

and expression strength of the genes, the DEA data reflect the observed raw 

number of genes to  

be included and excluded in downstream analyses.     

3.2.4.4 DEseq2 result filtering. 

In this project our interest was focused primarily on lncRNAs and protein coding 

genes due to the nature of lncRNA regulatory function (G. Chen et al., 2013). To 

increase the probability of detecting truly differentially expressed genes, we 

considered our experimental design that includes three samples per condition with 

a sequencing depth of about 15-20 million reads, consequently, we chose to 

change DEseq2 default settings that automatically apply log2 fold change of greater 

than or less than 0, to a log2 fold change of greater than 1.5 or less than -1.5, and 

from using default p-value of < 0.1 to using an adjusted p-value of < 0.005, that 

indicated 0.5% of final list of genes are likely false positives not tamoxifen 

resistance related genes. After filtering out unwanted genes, a total of 88% of 

lncRNAs and 90% of protein coding genes were excluded (Table 3.3). 
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Table 3.3 number of genes in results before and after filtering. 

Finally, lncRNAs and protein coding genes were counted and divided into groups 

based on range of log fold changes (Table 3.4). LncRNAs upregulated in TAMR 

have log2 fold changes ranging from 8.8 to 0.42, and protein coding genes 

upregulated in TAMR have log2 fold changes ranging from 11.8 to 0.25. LncRNAs 

downregulated in TAMR have log2 fold changes ranging between 11.7 and 0.39 

and protein coding genes of the same category range between 12.2 and 0.25.  

 

Table 3.4 Numbers of lncRNAs and protein coding genes according to log2 fold change 

values. 

Before filtering After filtering

Gene

biotype

Upregulated

in TAMR

Downregulated

in TAMR

Upregulated

in TAMR

Downregulated

in TAMR

lncRNAs 620 891 79 104

Protein

coding

genes

6316

Table 2
6123 594 627

Table 3.2. Number of genes in result table, before and after filtering.

 

 lncRNAs Protein coding genes 

log2 fold 

change 

Upregulated 

in TAMR 

Downregulated 

in TAMR 

Upregulated in 

TAMR 

Downregulated 

in TAMR 

≥5 10 16 85 84 

5≥4 3 4 53 60 

4≥3 21 16 97 81 

3≥2 28 34 224 154 

2≥1.5 17 35 167 215 

<1.5 79 145 1841 1636 

Table 3.3. Numbers of lncRNAs and protein coding genes

according to log2 old change values.
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After filtering genes below the determined threshold, ensuring that genes with 

significant fold changes between tamoxifen sensitive and resistant experimental 

conditions have biological relevance. the next step was prioritisation of genes 

identified. This followed the pipeline in Figure 3.10. 
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3.2.4.5 Most dysregulated genes following all analysis – top 10s. 

In addition, protein coding probability were calculated using CPAT, genes with a 

score less than 0.003 were selected to insure them being noncoding transcripts 

(Wang et al., 2013).  The top 10 lncRNAs and protein coding genes up- and 

downregulated in TAMR group of samples were exported (Tables 3.5, 3.6, 3.7 and 

3.8)  
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Tables 3.5 and 3.6 Up and down regulated protein coding genes. 

 

Ranking ensembl_gene_id log2FoldChange padj gene_name gene_biotype

1 ENSG00000126947 11.8554 2.07E-17 ARMCX1 protein_coding

2 ENSG00000139352 11.62548 2.00E-17 ASCL1 protein_coding

3 ENSG00000213988 11.23954 2.40E-16 ZNF90 protein_coding

4 ENSG00000171587 10.81729 2.14E-39 DSCAM protein_coding

5 ENSG00000095627 10.43166 6.81E-45 TDRD1 protein_coding

6 ENSG00000152977 10.33537 1.19E-17 ZIC1 protein_coding

7 ENSG00000180155 10.18176 7.41E-13 LYNX1 protein_coding

8 ENSG00000075213 9.785136 2.12E-20 SEMA3A protein_coding

9 ENSG00000183036 9.326026 1.26E-10 PCP4 protein_coding

10 ENSG00000196208 9.240923 0 GREB1 protein_coding

Ranking ensembl_gene_id log2FoldChange padj gene_name gene_biotype

1 ENSG00000185008 -12.2383 5.28E-19 ROBO2 protein_coding

2 ENSG00000174343 -12.2057 8.20E-24 CHRNA9 protein_coding

3 ENSG00000041982 -11.4903 2.05E-16 TNC protein_coding

4 ENSG00000175329 -10.9376 4.95E-15 ISX protein_coding

5 ENSG00000155966 -10.6765 2.19E-14 AFF2 protein_coding

6 ENSG00000138435 -10.4532 3.17E-13 CHRNA1 protein_coding

7 ENSG00000187527 -10.2186 3.90E-17 ATP13A5 protein_coding

8 ENSG00000042980 -9.91368 9.34E-12 ADAM28 protein_coding

9 ENSG00000175556 -9.80161 4.55E-12 LONRF3 protein_coding

10 ENSG00000185008 -12.2383 5.28E-19 ROBO2 protein_coding

Table 3.4 and 3.5 up and down regulated protein coding genes
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Tables 3.7 and 3.8 Up and down regulated lncRNA genes. 

 

Ranking ensembl_gene_id log2FoldChange padj gene_name gene_biotype

1 ENSG00000254337 11.73365 1.11E-17 Na lncRNA

2 ENSG00000251129 8.335559 5.92E-12 LINC02506 lncRNA

3 ENSG00000232638 8.07619 1.86E-08 Na lncRNA

4 ENSG00000196668 8.008662 3.17E-08 LINC00173 lncRNA

5 ENSG00000254251 7.897944 7.69E-11 Na lncRNA

6 ENSG00000197308 6.932705 1.60E-88 GATA3-AS1 lncRNA

7 ENSG00000235123 6.735506 3.08E-90 DSCAM-AS1 lncRNA

8 ENSG00000272734 6.657618 4.10E-34 ADIRF-AS1 lncRNA

9 ENSG00000254290 6.525568 1.02E-12 Na lncRNA

10 ENSG00000267383 6.110617 1.23E-33 Na lncRNA

Ranking ensembl_gene_id log2FoldChange padj gene_name gene_biotype

1 ENSG00000197301 -8.85136 1.02E-09 HMGA2-AS1 lncRNA

2 ENSG00000248323 -8.17352 2.09E-08 LUCAT1 lncRNA

3 ENSG00000260573 -7.88631 7.47E-08 Na lncRNA

4 ENSG00000258175 -7.64873 2.25E-07 LINC02300 lncRNA

5 ENSG00000250266 -7.49781 3.99E-07 LINC01612 lncRNA

6 ENSG00000231683 -7.21264 3.78E-09 Na lncRNA

7 ENSG00000261713 -6.15492 7.14E-66 SSTR5-AS1 lncRNA

8 ENSG00000253339 -6.0558 1.38E-06 Na lncRNA

9 ENSG00000281131 -5.83702 3.20E-06 SCHLAP1 lncRNA

10 ENSG00000227640 -5.81193 3.18E-17 SOX21-AS1 lncRNA

Table 3.6 and 3.7 up and down regulated lncRNAvgenes
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3.2.4.6 Most dysregulated genes following all analysis – top 50s. 

Expression discrepancies in lncRNAs and protein coding genes were screened 

visually using heatmap representation; to gather insights into RNA-seq large 

dimensionality, addressing gene expression in each sample individually, where 

expression matrix were displayed in a range of colours scaled to expression 

intensity. We opted to turn off default DEseq2 automatic clustering; to present the 

descending ranking of top 50 genes based on the value of fold change. However, 

clustered heatmaps are available in (Figures 1, 2 ,3 and in appendix), showing 

genes re-ordered based on degree of similarity in expression profile, creating 

groups of genes that might have biological associations. Four heat maps were 

produced, top 50 upregulated lncRNA genes, top 50 upregulated protein coding 

genes, top 50 downregulated lncRNA genes and top 50 downregulated protein 

coding genes in TAMR samples (heat maps 3.1, 3.2, 3.3, 3.4). The process of 

scanning through colour-hue coded gene expressions of samples separately and 

relative to each other indicated the degree of expression variability and hints at 

gene-cluster wise functionality.  
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HMGA2-AS1
LUCAT1
na
LINC02300
LINC01612
na
SSTR5-AS1
na
SCHLAP1
SOX21-AS1
WNT5A-AS1
LINC00607
na
na
na
na
LINC02830
na
DLX2-DT
AQP5-AS1
na
na
na
NR2F1-AS1
SPRY4-AS1
LINC01844
DIO3OS
NOVA1-DT
FGF12-AS2
na
na
na
RDH10-AS1
PRICKLE2-AS2
BMP7-AS1
LINC00942
na
HOXA-AS2
LINC01611
na
ITGB2-AS1
na
na
LINC00862
na
HOTAIRM1
LINC00994
LINC01876
na
LINC02882

Repeat 1Repeat 1 Repeat 2 Repeat 3

TAMR

Repeat 2 Repeat 3

MCF-7

Heat map 3.1 of top 50 lncRNAs up-regulated in TAMR samples. From the DEA 
result table,  we chose 50 differentially expressed lncRNAs with the highest 
expression in TAMR compared to MCF-7 samples. lncRNAs were ranked in fold 
change decreasing order. In the grid heat map, coloured tiles are scaled to the 
strength of gene expression, as seen in the colour key (Matrix), ranging from 
dark red (higher expression) to dark blue (lower expression) . Rows correspond 
to genes annotated by ensemble IDs and gene names (na indicated missing 
annotation), and columns correspond to samples (Three MCF-7 biological 
repeats and three TAMR biological repeats).
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na
LINC02506
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LINC00173
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GATA3-AS1
DSCAM-AS1
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HEY2-AS1
BTG1-DT
na
na
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DOCK8-AS1
TPM1-AS
LINC02067
na
na
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LINC00847
SIAH2-AS1
CD27-AS1
IRAIN
FLNB-AS1
na
SEMA3B-AS1
na
LINC00992
YPEL3-DT
LINC02321
LINC01517
TTC12-DT
STARD13-AS
LINC02021
na
na
LINC01016
na

Repeat 1Repeat 1 Repeat 2 Repeat 3

TAMR

Repeat 2 Repeat 3

MCF-7

Heat map 3.2 of top 50 lncRNAs downregulated in TAMR samples. From DEA
result table, we chose 50 differentially expressed lncRNAs with the highest
expression in TAMR compared to MCF-7 samples. lncRNAs were ranked in fold
change decreasing order. In the grid heat map, coloured tiles are scaled to the
strength of gene expression, as seen in the colour key (Matrix), ranging from
dark red (higher expression) to dark blue (lower expression) . Rows correspond
to genes annotated by ensemble IDs and gene names (na indicated missing
annotation), and columns correspond to samples (Three MCF-7 biological
repeats and three TAMR biological repeats).
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Heat map 3.3 of top 50 protein coding genes up-regulated in TAMR samples. 
From DEA result table,  we chose 50 differentially expressed protein coding 
genes with the highest expression in TAMR compared to MCF-7 samples. protein 
coding genes were ranked in fold change decreasing order. In the grid heat map, 
coloured tiles are scaled to the strength of gene expression, as seen in the colour 
key (Matrix), ranging from dark red (higher expression) to dark blue (lower 
expression) . Rows correspond to genes annotated by ensemble IDs and gene 
names (na indicated missing annotation), and columns correspond to samples 
(Three MCF-7 biological repeats and three TAMR biological repeats).
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Repeat 1Repeat 1 Repeat 2 Repeat 3

TAMR

Repeat 2 Repeat 3

MCF-7

ARMCX1
ASCL1
ZNF90
DSCAM
TDRD1
ZIC1
LYNX1
SEMA3A
PCP4
GREB1
RAMP3
ANKRD30B
GPR173
SIGMAR1

SLC14A1

CABCOCO1

KRT13

PCDH10

ECEL1
IL20
ZNF69
SGCG
PI15
NCAM2
MFAP2
SYNPO2
IRF7
GATA4
SCUBE2
TNFRSF10C
CXCL12
PCDH9
GFRA1
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RGL3
CA12
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COL9A2
PPP1R3C
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BMERB1
MESP2
ADAMTS19
SLC4A10

Heat map 3.4 of top 50 protein coding genes up-regulated in TAMR samples. 
From DEA result table,  we chose 50 differentially expressed protein coding 
genes with the highest expression in TAMR compared to MCF-7 samples. protein 
coding genes  were ranked in fold change decreasing order. In the grid heat map, 
coloured tiles are scaled to the strength of gene expression, as seen in the colour 
key (Matrix), ranging from dark red (higher expression) to dark blue (lower 
expression) . Rows correspond to genes annotated by ensemble IDs and gene 
names (na indicated missing annotation), and columns correspond to samples 
(Three MCF-7 biological repeats and three TAMR biological repeats).
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3.2.5 Mapping Interactions across gene populations 

lncRNA-miRNA-mRNA correlation is an important mechanism implicating the 

function of these lncRNAs. To identify the relationship between nominated lncRNAs 

and miRNAs, miRcode database was used to find the target relationship between 

a candidate lncRNA and different miRNA families, so basically the output is a list of 

microRNAs that are conserved in the genomic location of these lncRNAs of interest. 

Next, TargetScan database was applied (using miRcode results), to find all the 

protein coding genes targets of these miRNAs, for this, the Aggregated PCT score 

of 0.5 was considered, defined as the probability of conserved targeting, which is 

the estimation score of the probability that a site is conserved due to the miRNA 

targeting rather than by chance. So, for example a score of 0.99 means the site has 

a 1 % chance of being conserved by chance. Shown in figures 3.11, 3.12. 3.13 and 

3.14. The interaction networks were built around significantly differentially 

expressed lncRNAs as central nodes, connected through microRNAs to protein 

coding genes enriched in carcinogenesis and oestrogen signaling-related gene 

ontology gene families (Table 3.10) 
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Figure 3.9. LUCAT1-miRNA-mRNA interaction network. The figure shows
relationships between coexpression modules. Candidate lncRNA (red), protein
coding genes (pink) and miRNAs (green).

Figure 3.10. SOX21-AS1-miRNA-mRNA interaction network. The figure shows
relationships between coexpression modules. Candidate lncRNA (red), protein
coding genes (pink) and miRNAs (green).
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Figure 3.11. NR2F1-AS1-miRNA-mRNA interaction network. The figure shows
relationships between coexpression modules. Candidate lncRNA (red), protein
coding genes (pink) and miRNAs (green).

Figure 3.12 HOTAIRM1-miRNA-mRNA interaction network. The figure shows
relationships between coexpression modules. Candidate lncRNA (red), protein
coding genes (pink) and miRNAs (green).
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3.2.6 Gene set enrichment analysis  

Gene set enrichment analysis was performed to identify genes involved in 

overrepresented functional groups. Protein coding genes were used for this; as 

functional and gene ontology analysis of lncRNAs is still not well developed. So, it 

was opted here to predict lncRNAs function by looking to protein coding genes, 

presuming they were affected by dysregulated lncRNAs. DEseq2 normalised matrix 

of counts were loaded into GSEA software along with tamoxifen related gene set 

files downloaded from MSigDB molecular signatures database (Debrabant, 2017). 

10 out of 29 gene sets were enriched with genes raked to be highly expressed in 

TAMR samples and 10 were enriched with genes raked to be lower in TAMR 

samples, (Tables 3.9 and 3.10). 
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NAME SIZE ES NES
NOM p-

val
FDR q-

val
LEADING 

EDGE

CREIGHTON_ENDOCRINE_THERAPY_RESIS
TANCE_5

474 -0.401 -1.810 0 0.001
tags=32%, 
list=16%, 

signal=37%

CLIMENT_BREAST_CANCER_COPY_NUMB
ER_UP

18 -0.655 -1.770 0.005 0.004
tags=50%, 
list=16%, 

signal=59%

BHAT_ESR1_TARGETS_VIA_AKT1_DN 80 -0.362 -1.330 0.058 0.201
tags=21%, 

list=8%, 
signal=23%

FRASOR_RESPONSE_TO_SERM_OR_FULVE
STRANT_UP

20 -0.475 -1.294 0.169 0.191
tags=35%, 
list=10%, 

signal=39%

BHAT_ESR1_TARGETS_NOT_VIA_AKT1_D
N

84 -0.343 -1.272 0.077 0.177
tags=23%, 

list=9%, 
signal=25%

RIGGINS_TAMOXIFEN_RESISTANCE_DN 202 -0.290 -1.209 0.089 0.225
tags=26%, 
list=16%, 

signal=30%

RIGGINS_TAMOXIFEN_RESISTANCE_UP 57 -0.340 -1.170 0.213 0.245
tags=23%, 

list=7%, 
signal=25%

FRASOR_RESPONSE_TO_ESTRADIOL_DN 72 -0.306 -1.108 0.265 0.317
tags=28%, 
list=11%, 

signal=31%

BECKER_TAMOXIFEN_RESISTANCE_UP 45 -0.322 -1.055 0.382 0.380
tags=20%, 
list=10%, 

signal=22%

BECKER_TAMOXIFEN_RESISTANCE_DN 46 -0.274 -0.895 0.660 0.695
tags=30%, 
list=17%, 

signal=36%

Table 3.8. Gene sets enriched with genes upregulated in TAMR
samples
SIZE: number of genes, ES: enrichment score, NES: normalized

enrichment score, NOM p-val: nominal p-value, FDR q-val: false
discovery rate.
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GSEA results show that, out of the 10 gene sets upregulated in TAMR, two sets 

had a significant FDR q-value<0.05. 

“CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_5” was the top gene set 

enritched. It includes 474 genes involved with acquired endocrine therapy 

resistance in ESR1 expressing breast tumours (Creighton et al., 2008). Enrichment 

score (ES) is the the primary result of GSEA mediated ove-representation analysis, 

it shows if an assigned gene list positively correlates to TAMR phenotype. A visual 

representation of ES is shown through an enrichment plot of the Creighton gene 

set (figure 3.15), that demonstartes the enrichment profile or curve peaking at an 

ES of 0.401 as it runs through gene list, starting with the ones ranked to be most 

upregulated in TAMR samples and fading as this correlation decreases. The 

second gene set enriched was 

“CLIMENT_BREAST_CANCER_COPY_NUMBER_UP “. This includes 23 genes 

found to gain DNA copy number abberations in breast cancers (Climent et al., 

2007). The ES of the Climent gene set was 0.655. While reflecting a higher 

NAME SIZE ES NES
NOM p-

val
FDR q-val

MASSARWEH_TAMOXIFEN_RESISTANCE_DN 232 -0.547 -2.404 0 0

MASSARWEH_RESPONSE_TO_ESTRADIOL 59 -0.675 -2.389 0 0

CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_
4

282 -0.510 -2.316 0 0

BHAT_ESR1_TARGETS_NOT_VIA_AKT1_UP 195 -0.526 -2.296 0 0

FRASOR_RESPONSE_TO_ESTRADIOL_UP 33 -0.672 -2.130 0 0

BHAT_ESR1_TARGETS_VIA_AKT1_UP 261 -0.439 -1.962 0 0.0001

MASRI_RESISTANCE_TO_TAMOXIFEN_AND_AROM
ATASE_INHIBITORS_UP

16 -0.670 -1.833 0.004 0.0002

FRASOR_RESPONSE_TO_SERM_OR_FULVESTRANT
_DN

49 -0.479 -1.673 0.002 0.004

CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_
2

357 -0.264 -1.222 0.026 0.140

FRASOR_TAMOXIFEN_RESPONSE_UP 51 -0.309 -1.089 0.302 0.279

Table 3.9 Gene sets enriched with genes downregulated in TAMR samples.
SIZE: number of genes, ES: enrichment score, NES: normalized enrichment score,
NOM p-val: nominal p-value, FDR q-val: false discovery rate.
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association, it is still ranked inferior to the Creighton gene set. This can be explained 

when looking into the normalised enrichment score (NES) results. NES is used to 

compare between gene sets as it accounts for the size of gene set and corrlates it 

to the expression set, showing the true rank of a functional gene set (Subramanian 

et al., 2005). The results above show statistically significant enrichnet of Creighton 

and Climent pathways in TAMR cells, validating that a large number of the 

expression changes observed are related to the tamoxifen  resistance phenotype. 

 

Figure 3.15. GSEA analysis results of top gene sets enriched for
TAMR phenotype. RNA-seq expression set file was uploaded in GSEA
software and tested against tamoxifen related gene sets. Only gene

sets with FDR q-value < 0.05 were considered. (A) Enrichment score
plots for Creighton gene signature. Positive enrichment is observed
for TAMR group (FDR q-val = 0.001), negative enrichment is observed
for MCF-7 group. (B)Enrichment score plots for Climent gene
signature. Positive enrichment is observed for TAMR group (FDR q-val

= 0.004), negative small enrichment is observed for MCF-7 group.
Along the x-axis is RNA-seq genes ranked by their expression from the
left (high in TAMR ) to right (low in TAMR compared to MCF-7 .y-axis is
the enrichmet metrics related to ranked genes per particular pathway
or gene set.
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3.2.7 Final filtering step to identify 4 genes for further investigation. 

Further filtering of lncRNAs was done. The protein coding probability of transcripts 

was examined and by applying a limit of < 0.3 score a further 50 lncRNAs were 

excluded. Finally, we decided to exclude any unannotated genes or those lacking 

Ref.seq data, this was 45 lncRNAs. Thus, at the end of the filtering lncRNAs 

process, 31 upregulated lncRNAs and 26 downregulated lncRNAs in TAMR 

samples were identified (Table 1 and 2 appendix).  

From this list it was opted to nominate 4 lncRNAs (LUCAT1, SOX21-AS1, 

HOTAIRM1 and NR2F1-AS1) from TAMR upregulated lncRNA genes group to 

further investigate them in-vitro experimentally; because each of these lncRNAs 

showed statistically significant high fold change score, low coding probability and 

acceptable annotation profiles. 

 

3.3 Discussion  

In this chapter, the aim was to provide an insight into the genomic variation between 

tamoxifen sensitive and resistant breast cancers by investigating differential gene 

expression between matched tamoxifen sensitive and resistant cell lines - the 

tamoxifen sensitive MCF-7 and an offspring resistant TAMR cell line. Resistance 

was created by long-term exposure of MCF-7 cells to increasing amounts of 

tamoxifen until cleared resistant (Knowlden et al., 2003). Tamoxifen sensitivity 

patterns seen were consistent with the literature, validating the model for 

subsequent testing (Gu et al., 2016; Fagan et al., 2017; Men et al., 2021). Our cell 

line model has many advantages, being reproducible, reliable, and feasible, but has 

many limitations, such as the inadequate or even non-existent interactions between 
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the cellular and extracellular environments, and the fact that cells have been grown 

in culture for a long time; and are therefore likely adapted and thus changed 

compared to patient tissues.  

Studies reporting tamoxifen resistance genotype-phenotype correlations have 

showed countless gene-level dysregulations in key regulators of intracellular 

signaling pathways that control several cellular processes, including proliferation, 

apoptosis, and survival (Rondón-Lagos et al., 2016). RNA-seq is a very reliable 

method for accurately measuring gene expression, making it possible to determine 

the absolute quantification of RNAs and directly compare results between 

experiments. However, RNA-seq is a lengthy multistep process, exhibiting various 

types and degrees of bias. Experimentally, wet-lab processes such as samples 

(e.g., siRNA-transfection, RNA extraction) and library preparation (library 

development, fragmentation, and size selection) steps are often error-prone, 

involving many procedures, each with technical bias, batch effect, and sample loss 

(Ross et al., 2013). We put this into consideration from the initial steps of 

bioinformatics analysis by performing quality control data assessment on our data 

at different levels, on the gene level, variance stabilizing transformation was applied 

on raw counts to get normalized and variance-stabilized log CPM values of gene 

expressions, while VST method we used is one of the highly recommended 

normalization methods, there is no settlement in the literature on the best 

normalization method to use (Zwiener, Frisch and Binder, 2014; Noel-MacDonnell 

et al., 2018). On the samples level, sample-sample distance-dependent clustering 

and PCA were applied. Taken all together, the quality control assessment used 
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concluded that RNA-seq data are suitable, and declared accepted by published 

statistical standards, for subsequent analyses. 

For differential gene expression analysis, while there are several statistical, 

algorithmic models available to fit RNA-seq data, it was opted to use Deseq2, which 

is one of the most potent and popular models, mainly when applied to the matrix of 

raw counts, designed to account for variations in library size internally and know to 

yield a higher number of differentially expressed genes (Pan et al., 2021; Tong, 

2021; Y. Li et al., 2021). From there, different sequential filtering steps were 

systematically applied on DEA results to rank genes. Referring to the highly cited 

article (Conesa et al., 2016), it was taken into consideration the sequenced number 

of replicates, library sizes, and quality control assessments based on this, adjusted 

p-value score limit was set to <0.005 (Noble, 2009) ;to construct a proper statistical 

power analysis. From TAMR upregulated lncRNAs prioritized list, already published 

breast cancer drug resistance-related genes emerged, for example, LINC00942 

(Sun et al., 2020), HOXA-AS2 (Cui et al., 2020), and NKILA (Wu et al., 2018), this 

is supportive of our approach and of the model. In addition, looking at the overall 

DEA results, differentially expressed protein coding genes were utilized for GSEA 

analysis as an indirect was to predict lncRNAs functions as functional analysis is 

not yet developed and reliable solely for lncRNAs, this revealed significant 

enrichment for tamoxifen resistance-related genes. Results from the GSEA 

analysis therefore suggested a strong potential of the input data for creating 

tamoxifen resistance functional signature. However, unexpectedly some well-

characterized lncRNAs such as DSCAM-AS1 (Ma et al., 2019), H19 (Wang et al., 

2019), and GATA3-AS1 (Zhang et al., 2020), featured in the downregulated 
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lncRNAs, these are reported previously as oncogenes and drivers of tamoxifen 

resistance, implying an opposite functional role in the constructed model. This 

contradiction highlights a significant potential limitation of RNA-seq being 

vulnerable to multiple sources of bias both experimentally and statistically (Ross et 

al., 2013; Costa-Silva, Domingues and Lopes, 2017) or could reflect differences in 

the models used. 

 

It’s been shown that lncRNAs function mainly as regulatory molecules of protein 

coding genes by acting as a sponge for miRNAs, interrupting their guided negative 

control of oncogenes (X. Zhang et al., 2019), or their role as inhibitory decoys for 

tumour suppressors (Singh et al., 2022). Such comprehensive assembly of our data 

compared to single genes prioritization practice is believed to be more 

representative of biological function, stable, and accurate (Barter et al., 2014). This 

is especially true with lncRNAs, as shown in many studies related to tamoxifen 

resistance (Y. Liu et al., 2019; Feng et al., 2020; Fang et al., 2022). 

 

Summary 

In summary, we have conducted a bioinformatics analysis of sequenced tamoxifen 

resistant and sensitive cell lines. Following the analysis pipeline, our RNA-seq data 

passed the quality checkpoints at every stage. Indicating the integrity of our DEA 

results. In addition to lncRNAs being the main focus of our project, differentially 

expressed protein coding genes were also considered for gene set enrichment 

analysis and were used to build co-expression networks. The resulted gene lists 

will be used for subsequent analysis.    
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Chapter 4. Role of LUCAT1, SOX21-AS1, NR2F1-AS1 and 

HOTAIRM1 in TAMR cells 

4.1 Introduction 

In the previous chapter RNA sequencing (RNA seq) was used as a high-throughput 

in-depth sequencing method to reveal the transcriptomic changes in breast cancer 

cells under the experimental conditions of interest. Quality assured total RNA was 

extracted from TAMR and parent MCF-7 cells, RNA sequencing was performed, 

and in-silico bioinformatics analysis performed, differentially expressed lncRNAs 

were only included if they had a log2FC of 1.5 and an adjusted p-value >0.005. 

From the results of this RNA-seq analysis, four genes were selected from the list of 

lncRNA genes differentially expressed between TAMR and MCF-7 cell lines - 

LUCAT1, SOX21-AS1, NR2F1-AS1 and HOTAIRM1. Each was highly expressed 

in tamoxifen resistant TAMR compared to tamoxifen sensitive MCF-7 cells (log2FC 

of 7.5, 5.9, 3.5 and 2.7 consecutively). Statistically significant differential expression 

in addition to high fold change in expression suggests a role in tamoxifen 

resistance.  

An introduction to each gene follows. 

4.1.1 Candidate lncRNA LUCAT1 

The lung cancer-related transcript 1 (LUCAT1) is a lincRNA that has 65 transcripts, 

the longest is 3072 bp in length (Cunningham et al., 2022). It transcribes from the 

antisense strand in the genomic location, chromosome 5: 91,054,834-91,314,547, 

opposite the area in between protein coding genes adhesion G protein-coupled 
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receptor V1 (ADGRV1) and arrestin domain- containing 3 (ARRDC3). LUCAT1 was 

first identified as upregulated in bronchial epithelium of cigarette smokers and panel 

of lung cancer cell lines (Hsien and Journal, 2013). Higher expression of LUCAT1 

was found in non-small cell lung cancer tissues (NSCLC), enhancing cisplatin 

resistance, and was connected to worsened patient survival (Renhua et al., 2016; 

Shen, Xu and Xu, 2020). Many studies have linked dysregulated LUCAT1 to the 

initiation and progression of multiple cancers. In colorectal cancer, LUCAT1 was 

seen to increase cellular proliferation by regulating myc transcription via interaction 

with RNA-binding protein Nucleolin (NCL) (Wu et al., 2020). In addition, hypoxia 

has been shown to induce LUCAT1 transcription that in turn stimulates expression 

of DNA damage-related genes and as a result combats DNA damage inducing 

chemotherapeutic agents such as Adriamycin and Oxaliplatin (Huan et al., 2020). 

LUCAT1 was also shown to promote metastasis and poorer survival in ovarian 

cancer (Yu et al., 2018). Consistent with these findings, it was reported that 

LUCAT1 depletion in papillary thyroid cancer compromises cell proliferation, cell 

cycle progression and invasion while inducing apoptosis (Luzón-Toro et al., 2019). 

Similar effects on carcinogenesis have been observed in pancreatic ductal 

adenocarcinoma (Nai et al., 2020), clear cell renal cell carcinoma (Wang et al., 

2018), cervical cancer (L. Zhang et al., 2019) and prostate cancer (C. Liu et al., 

2019).  

In breast cancer, high expression of LUCAT1 has been related to advanced clinical 

stage especially in the triple negative subtype, it has been shown to promote 

proliferation, invasion, migration and EMT. One of the molecular mechanisms by 

which LUCAT1 can promote carcinogenicity was via a negative correlation with 
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micro-RNA miR-7-5p, that acts as a sponge for the oncogene SOX2. Finally, 

LUCAT1 has been shown to act as a competing endogenous RNA (ceRNA) 

impairing the regulatory function of miR-5702 (Mou and Wang, 2019; Li et al., 

2020).  

4.1.2 Candidate lncRNA SOX21-AS1 

SRY-box transcription factor 21 antisense RNA 1 (SOX21-AS1) is an intergenic 

lncRNA that has 7 transcripts, the longest is 3287 bp in length. It transcribes from 

the forward strand in the genomic location, Chromosome 13: 94,703,454-

94,803,430, from within protein coding gene SOX21 (Cunningham et al., 2022). The 

first reported SOX21-AS1 role in cancer implied it as a tumour repressor in Oral 

squamous cell carcinoma (Yang et al., 2016). Following studies contradicted this, 

showing that SOX21-AS1 has tumour promoting roles in a variety of cancers. For 

example, its high expression in colorectal cancer was correlated to worsen 

prognosis, and directly related to cancer cellular proliferation, invasion, and 

migration. In this context,  Wei, et al. found that SOX21-AS1 antagonizes miR-145, 

detaching colorectal cancer related oncogene MYO6 from microRNA mediated 

regulation. Similarly, in lung adenocarcinoma, SOX21-AS1 was found to have a 

similar effect on survival and tumorigenesis. Here, depletion of SOX21-AS1 caused 

a cell cycle arrest in S phase by hindering the expression of cell cycle-dependent 

kinase inhibitor p57 (Lu et al., 2017). Another demonstrated mechanism of action 

involves the sponging of miR-24-3p, which was seen to dysregulate the expression 

of its downstream target oncogene PIM2 (Wang et al., 2021). 
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4.1.3 Candidate lncRNA NR2F1-AS1  

Nuclear receptor subfamily 2 group F member 1 antisense RNA 1 (NR2F1-AS1) is 

an intergenic lncRNA that has 75 transcripts, the longest is 8117 bp in length. It 

transcribes from the antisense strand in the genomic location, Chromosome 5: 

93,360,779-93,585,649, opposite NR2F1 gene (Cunningham et al., 2022). The first 

study to report a role for NR2F1-AS1 in cancer corelated high NR2F1-AS1 

expression to increased tumorigenicity in hepatocellular carcinoma (Huang et al., 

2018). In addition, NR2F1 has been shown to predispose to oxaliplatin resistance 

via interfering with miR-363’s inhibitory function on the ABCC1 oncogene. This 

function is supported by (Ji et al., 2021; Management, 2021; Xu et al., 2021), who 

linked high levels of NR2F1-AS1 in hepatocellular carcinoma to advanced stage 

disease and poor prognosis. In contrast, low NR2F1-AS1 expression has been 

associated to worse prognosis both in colorectal and cervical squamous cell 

cancers (Peng et al., 2020; Wang et al., 2020).  

4.1.4 Candidate lnc RNA HOTAIRM1 

HOX antisense intergenic RNA myeloid 1 (HOTAIRM1) is a linc RNA, with 6 

transcripts the longest one is 889 bp in length, it transcribes antisense to the HOXA 

gene cluster from in between HOXA1 and HOXA2, from the genomic location: 

chromosome 7: 27,095,647-27,100,265 (Cunningham et al., 2022). Unlike most 

lncRNAs HOTAIRM1 is highly conserved between species (Gardner et al., 2015). 

The HOXA gene cluster is an active transcription site for many protein coding and 

noncoding RNAs associated with cell proliferation, cell cycle progression and 

apoptosis, and a considerable number of these genes are altered in several 

malignancies (Wei et al., 2016).  
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HOTAIRM1 was first described as being involved in granulocytic differentiation 

under the influence of retinoid acid (Zhang et al., 2009). Further studies have 

indicated the significance of this lncRNA as a prognostic indicator of  many types 

of leukaemia, colorectal cancer and glioma (Díaz-Beyá et al., 2014, Chen et al., 

2015, Wan et al., 2016). It has also been found to be highly upregulated in 

pancreatic adenocarcinoma and ovarian cancer cells (Zhou et al., 2016, Yang et 

al., 2017).  

While the exact molecular functions of HOTAIRM1 have not been fully addressed, 

it has been seen to interact with several molecules such as microRNAs (e.g., miR-

3960 and miR-196b) where it acts as a sponge, restraining microRNAs from mRNA 

silencing or as a precursor for small RNAs (Diaz-Beya et al., 2015), and proteins 

(e.g., PML-RARA oncoprotein and PRC2) to regulate the expression of many genes 

(Chen et al., 2017). In addition, HOTAIRM1 has been demonstrated to regulate the 

transcription of neighbouring HOXA genes in a temporal co-linear manner through 

chromatin reorganization (Wang and Dostie, 2017). Hence more comprehensive 

functional characterisation of HOTAIRM1 can be achieved by focusing on a) the 

genes closely related to HOTAIRM1 in term of physical location, b) microRNAs and 

proteins known to play an intermediate role between HOTAIRM1 and genes liked 

to resistance pathways. 

4.1.5 Hypothesis and Aims of this chapter.  

The Hypothesis of this chapter is that depleting each candidate lncRNA expression 

in tamoxifen resistant cell lines will re-sensitize them to tamoxifen. 

The aims of this chapter are:  

1. To validate candidate lncRNA expression in tamoxifen resistant cell line models.  
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2. To determine the response of breast cancer cells to tamoxifen after depletion of 

each lincRNA.  

The objectives of this chapter are:  

1. To perform siRNA mediated depletion of each of the four candidate lncRNA.  

2. To assess the sensitivity of a range of tamoxifen resistant cell lines to tamoxifen 

treatment after relevant lncRNA expression depletion and investigate if resistance 

or proliferation can be reversed. 

4.2 Results  

4.2.1 In-vitro validation of candidate lncRNAs differential expression in 

MCF7 compared to TAMR cell lines. 

Next generation sequencing generates a high output of data that goes through a 

pipeline of bioinformatics and statistical analyses, increasing the chances of genes 

false discovery rate. Before proceeding with any functional studies confirmation of 

differential expression was therefore an essential step. Quantitative PCR (qPCR) 

is the gold standard method to validate sequencing results. qPCR is superior in-

terms of being specific for the gene of interest, it is cheaper and with much less 

data generated there is less statistical burden so less chances of false discovers 

errors. Validation is important in two main aspects: most importantly, measuring 

gene expression in a different cohort of samples establishes biological 

reproducibility. Also, qPCR validation allows for easy assessment of same-sample 

replicates that establishes technical reproducibility of the findings.  

To validate the RNA-seq data in chapter 3, total RNA was extracted from cells, 

cDNA was synthesised, and qPCR was performed on a set of three biological 



 

 

144 

samples each in three technical repeats, using (Figure 4.1 A). The results of qPCR 

agreed with the RNA-seq results, all lncRNAs were significantly highly expressed 

in TAMR cells compared to MCF-7 cells across all the biological repeats. LUCAT1 

had the highest relative expression in TAMR cells at 27.7 log2 fold increase 

compared to MCF-7 cells (Figure 4.1 B), followed by SOX2-AS1 - 26.6 log2 fold 

increase (Figure 4.1 C), NR2F1-AS1 - 14 log2 fold increase (Figure 4.1 D), and 

HOTAIRM1 by 7.2 log2 fold increase (Figure 4.1 E) . These data therefore confirm 

RNA-seq findings, not only in-terms of increased expression in TAMR vs MCF-7 

but also in the order by which candidate lnRNAs fold change in gene expression 

rank in relation to each other. 
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4.2.2 Expression of candidate lncRNAs in other breast cancer cell lines 

Given our hypothesis that high expression of lncRNAs is associated with tamoxifen 

resistance in breast cancer. Publicly available next generation sequencing data for 

a large panel of breast cancer cell lines was used to evaluate the expression of 

each candidate lncRNA and the degree of co-expression of the gene encoding 

oestrogen receptor alpha (ERα) ESR1. RNA-seq data for breast cancer cell lines 

was obtained from the Cancer Cell Line Encyclopaedia (CCLE) project.  

A

Figure 4.1. High expression of candidate lncRNAs in TAMR compared to parent MCF-7. A.

Expression of LUCAT1, SOX21-AS1, NR2F1-AS1 and HOTAIRM1 lncRNAs in RNA-seq analysis.
Data represent mean normalised raw counts +/- SD . qPCR confirmation of pattern of
expression in TAMR.MCF-7 and MCF-7 cells of B. LUCAT1, C. SOX21-AS1, D. NR2F1-AS1, E.

HOTAIRM1 lncRNAs. Each lncRNA expression was normalised to ACTB housekeeping gene
expression within the same repeat, each data point represent log2FC in lncRNA expression

relative to same gene expression in MCF-7 as control condition. Data points represent
mean relative lncRNA expression +/- SD. * denotes p= ≤0.05, ** denotes p= ≤0.01, ***
denotes p= ≤0.00, (Student’s independent samples unpaired two-tailed t-test).
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 A GCT file of gene expression data, in this case RNA-seq data of 51 sequenced 

breast cancer cell lines was downloaded. Gene expression was displayed as reads 

per kilobase of transcript per million mapped reads (RPKM) values. The matrix file 

included gene expression values of 56,205 annotated genes, both protein-coding 

and non-protein-coding. The HMEL cell line was excluded from analysis due to 

being identified as a non-cancerous. The final list included 32 oestrogen-receptor 

negative and 18 oestrogen-receptor positive breast cancer cell lines. Values then 

were log2 transformed in preparation for downstream analyses.  

LUCAT1 had a positive RPKMs (log2) value in six cell lines MDA-MB-436, HMC18, 

HCC1395, HCC1143, MDA-MB-231 and BT20 (figure 4.2. A).  Interestingly each of 

these cell lines was also ER- negative and LUCAT1 was not detected in any of the 

oestrogen receptor positive cell lines. Correlation analysis between LUCAT1 and 

ESR1 expression resulted in Pearson’s correlation coefficient (r = - 0.394, p-value 

of 0.004) which implies a significant negative correlation (figure 4.2. B). LUCAT1 

mean expression was overall higher in oestrogen receptor negative compared to 

oestrogen receptor positive cell lines (-1.472 and -2.951 RPKMs (log2) 

respectively). To confirm the in-silico observed trend of LUCAT1 expression across 

different breast cancer cell line, RT-qPCR was performed on seven breast cancer 

cell lines available within the lab sorted into 3 groups: ER-negative (CAL51, MDA-

MBA-231 and MDA-MB-468), ER-positive (ZR751 and T47D) and our tamoxifen 

resistance model (parent MCF-7 and TAMR), that was included in the experiment 

to see how it relates to other examined cell lines in terms of LUCAT1 expression 

level. Averaged delta CT values of LUCAT1 normalised to ACTB were plotted 

(Figure 4.2.C). In contrast to the data from the CCLE, LUCAT1 could be detected 
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in all cell lines, however except for the MDA-MB-231, MDA-MB-468 and TAMR cell 

lines, CT values indicated very low expression. MDA-MB-231 and MDA-MB-468 

did not show expression in the CCLE data set but this difference could be due to 

the sensitivity of RNA seq compared to qPCR. MDA-MB-231 and MDA-MB-468 are 

oestrogen receptor negative. These data are therefore also generally supportive of 

an association between oestrogen receptor expression and LUCAT1, as both 

bioinformatics data (CCLE and RNA-seq) and invitro validation shows higher 

LUCAT1 expression in estrogen receptor negative and tamoxifen resistant 

phenotypes.  
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Figure 4.2. LUCAT1 expression in breast cancer cell line CCLE panel
(A) LUCAT1 expression presented in log2 RPKM values in 32 estrogen receptor negative
(ER-negative) and 18 estrogen receptor positive (ER-positive) cell lines, RNA-seq data were

obtained from CCLE database, cell lines in each group are presented in descending order of
LUCAT1 expression. (B) Pearson correlation investigating the relationship between estrogen

receptor gene (ESR1) and LUCAT1 expression levels across breast cancer cell lines. Each
data point represent a cell line, coloured red if classified estrogen receptor negative and blue
if estrogen receptor positive. r is Pearson correlation coefficient and p-value is statistical

significance. (C) LUCAT1 expression in the breast cancer cell lines determined by RT-qPCR.
Data points represent average relative delta CT values relative to β-actin. Plotted in black is

the mean and standard deviation of 3 independent experiments (N=3) each tested in three
technical repeats.
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The second lncRNA investigated was SOX21-AS1. The same analysis as above 

was performed. In the CCLE data set, all cell lines had log2 RPKM values lower 

than 0 regardless of oestrogen receptor status(Figure 4.3 A). Oestrogen receptor 

negative cells had slightly higher mean expression level of -3.003 vs -3.227 in 

oestrogen receptor positive by there was no significant correlation between ESR1 

and SOX21-AS1. Low SOX21-AS1 expression was confirmed when measured by 

qPCR in our cell lines (Figure 4.3 C), with high or undetermined delta CT values in 

all but TAMR cell line. Undetermined delta CT value means the gene is below 

detection level either due to low amount of cDNA due to not enough genetic material 

or low expression level, failed reaction due to disrupted thermal cycles, bad quality 

of SOX21-AS1 primers or sample RNA. The same RNA was used for analysis of 

all lncRNAs we therefore discounted bad sample RNA, the primers amplified 

SOX21-AS1 in TAMR we therefore discounted primer quality or design. Three 

biological replicates each in triplicate was performed and undetermined was seen 

consistently suggesting the result was not from thermal cycling failure. In addition, 

we tried adding more cDNA and using a second machine. We therefore conclude 

that very low levels of SOX21-AS1 are present in our cells in line with previously 

reported RNA-seq data. This limits our ability to draw conclusions about expression 

and oestrogen receptor status. However, our findings are contradictory to findings 

of Liu et al. (2020) who found SOX21-AS1 to be overexpressed in triple negative 

breast cancer especially in MDA-MB-231 and MDA-MB-468 cell lines. In that study 

depletion of SOX21-AS1 expression in both cell lines reduced carcinogenic 

characteristics and promoted apoptotic fate of cells. Correlation analysis between 
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SOX21-AS1 and ESR1 expression (Figure 4.3 B) was a negative correlation with 

Pearson’s correlation coefficient (r = -0.169), though statistically insignificant (p-

value>0.05). It is not clear why these differences were seen.  
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Figure 4.3. SOX21-AS1 expression in breast cancer cell line CCLE panel
(A) SOX21-AS1 expression presented in log2 RPKM values in 32 estrogen receptor
negative (ER-negative) and 18 estrogen receptor positive (ER-positive) cell lines, RNA-

seq data were obtained from CCLE database, cell lines in each group are presented in
descending order of SOX21-AS1 expression. (B) Pearson correlation investigating the

relationship between estrogen receptor gene (ESR1) and SOX21-AS1 expression levels
across breast cancer cell lines. Each data point represent a cell line, coloured red if
classified estrogen receptor negative and blue if estrogen receptor positive. r is Pearson

correlation coefficient and p-value is statistical significance. (C) SOX21-AS1 expression
in the breast cancer cell lines determined by RT-qPCR. Data points represent average

relative delta CT values relative to β-actin. Plotted in black is the mean and standard
deviation of 3 independent experiments (N=3) each tested in three technical repeats.
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Thirdly NR2F1-AS1 expression was examined. In the CCLE data (Figure 4.4 A), 

NR2F1-AS1 positive RPKMs (log2) values were reported in eight oestrogen 

negative cell lines (MDA-MB-453, HCC1937, HS578T, BT20, JIMT1, CAL51, MDA-

MB-468 and MDA-MB-231) and one oestrogen receptor positive cell line 

(HCC1500). Overall mean expression was -1.278 in oestrogen receptor negative 

vs -2.537 in oestrogen receptor positive cell lines with a trend but no significant 

correlation (Figure 4.4 B) (Pearson’s correlation coefficient r = -0.246, p-value 

>0.05). NR2F1-AS1 expression trend was validated using qPCR in our cell line 

panel, lncRNA expression was detectable at different levels in all cell lines except 

in oestrogen receptor positive ZR75 cell line. Highest expression of NR2F1-AS1 

was detected in oestrogen receptor negative CAL51 and MDA-MB-231 and our 

TAMR cell line, with lower levels in the oestrogen receptor positive cell lines, 

suggesting a correlation with oestrogen receptor status (Figure 4.4 C). The 

exception to this was MDA-MB-468 which had lower levels in our hands but had a 

high expression of NR2F1-AS1 in the RNA-seq data. These data do suggest an 

association between oestrogen receptor status and NR2F1-AS1 although it 

appears weak. 
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Figure 4.4. NR2F1-AS1 expression in breast cancer cell line CCLE panel
(A) NR2F1-AS1 expression presented in log2 RPKM values in 32 estrogen receptor negative
(ER-negative) and 18 estrogen receptor positive (ER-positive) cell lines, RNA-seq data were

obtained from CCLE database, cell lines in each group are presented in descending order of
NR2F1-AS1 expression. (B) Pearson correlation investigating the relationship between

estrogen receptor gene (ESR1) and NR2F1-AS1 expression levels across breast cancer cell
lines. Each data point represent a cell line, coloured red if classified estrogen receptor
negative and blue if estrogen receptor positive. r is Pearson correlation coefficient and p-

value is statistical significance. (C) NR2F1-AS1 expression in the breast cancer cell lines
determined by RT-qPCR. Data points represent average relative delta CT values relative to

β-actin. Plotted in black is the mean and standard deviation of 3 independent experiments
(N=3) each tested in three technical repeats.
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Finally, HOTAIRM1 expression was examined. Mean expression in the CCLE was 

lower in oestrogen receptor positive compared to oestrogen receptor negative cell 

lines, 0.094 and -2.100 respectively. 16 oestrogen receptor negative cell lines had 

high expression of HOTAIRM1, and all oestrogen receptor positive cell lines had 

expression values of less than zero except for MDA-MB-361, MCF7 and KPL1 cell 

lines (figure 4.5 A). Correlation analysis between HOTAIRM1 and ESR1 expression 

resulted in Pearson’s correlation coefficient (r = - 0.2058) which implies a negative 

correlation. However, with p-value>0.05 this relationship is not statistically 

significant (p>0.05) (figure 4.5 B). To confirm the in-silico observed trend of 

HOTAIRM1 expression across different breast cancer cell line, RT-qPCR was 

performed in-vitro on our panel of 7 cell lines, two oestrogen receptor negative cell 

lines had the highest HOTAIRM1 expression (CAL51 and MDA-MB-468), even 

higher than TAMR but the MDA-MB-231 had non-detectable expression In the 

oestrogen receptor positive cells HOTAIRM1 expression was non-detectable in 

ZR751 and T47D cells and although HOTAIRM1 expression was detectable in 

MCF-7 cells, it was significantly low compared to TAMR, CAL51 and MDA-MB-468 

cell lines (figure 4.5 C). These data therefore also suggest an association between 

oestrogen receptor status and HOTAIRM1 expression.  
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Figure 4.5. HOTAIRM1 expression in breast cancer cell line CCLE panel
(A) HOTAIRM1 expression presented in log2 RPKM values in 32 estrogen receptor
negative (ER-negative) and 18 estrogen receptor positive (ER-positive) cell lines, RNA-

seq data were obtained from CCLE database, cell lines in each group are presented in
descending order of HOTAIRM1 expression. (B) Pearson correlation investigating the

relationship between estrogen receptor gene (ESR1) and HOTAIRM1 expression levels
across breast cancer cell lines. Each data point represent a cell line, coloured red if
classified estrogen receptor negative and blue if estrogen receptor positive. r is Pearson

correlation coefficient and p-value is statistical significance. (C) HOTAIRM1 expression in
the breast cancer cell lines determined by RT-qPCR. Data points represent average

relative delta CT values relative to β-actin. Plotted in black is the mean and standard
deviation of 3 independent experiments (N=3) each tested in three technical repeats.
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ESR1 expression is a strong predictor of breast cancer response to tamoxifen (Kim 

et al., 2011). Based on this, ESR1 expression was correlated with each candidate 

lncRNA expression in sequencing data available in CCLE for 50 breast cancer cell 

lines. While correlation coefficient always had negative value, indicating lncRNAs 

have an inverse relationship with ESR1, i.e. the higher lncRNA gene expression, 

the lower ESR1 expression, this was not always statistically significant and thus 

association may be weak. Negative trend in association supports the project’s main 

hypothesis that lncRNAs are contributors to tamoxifen resistance. However, p-

values were nonsignificant for correlation analyses except for LUCAT1. This finding 

may be explained by the variations in lncRNA expression across many cell lines in 

RNA-seq data that has other major molecular characteristics such as HER2 status.  

4.2.3 Depletion of candidate lncRNAs in tamoxifen resistant MCF-7 (TAMR) 

cells 

One of the most important tools to investigate lncRNAs of interest is using gene-

specific siRNAs to interfere with lncRNA expression. siRNA mediated depletion of 

lncRNAs was chosen due to our special interest in studying lncRNAs upregulated 

in TAMR cell lines. The double-stranded sequence of a transfection siRNA binds to 

RNA molecule encoding targeted lncRNA gene to direct it to physical degradation 

resulting in gene silencing. Based on the results obtained from in-house RNA-seq 

experiment and cell line investigation (CCLE and qPCR data), our interest in 

lncRNAs was ordered as follows: LUCAT1, HOTAIRM1, SOX21-AS then NR2F1-

AS1.  
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4.2.3.1 Effect of silencing LUCAT1 expression on tamoxifen sensitivity and 

proliferation 

Two different siRNA sequences targeting different regions of LUCAT1 sequence in 

the optimised siRNA transfection protocol for MCF-7 cells were used. LUCAT1 

siRNAs#1 and #2 and scrambled control siRNA were delivered into TAMR cells 

using DharmaFECT1 transfection reagent. 48 hours post-transfection, cells were 

evaluated for cellular toxicity then harvested to confirm siRNA mediated depletion 

of LUCAT1. Surprisingly, initial experiments showed that both siRNAs increased 

rather than decreased LUCAT1 expression compared to SC control (Figure 4.6 A). 

We changed transfection reagent, plating density and incubation period, however, 

the same upregulated expression pattern was observed (Figure 4.6 B). 
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4.2.3.2 of silencing SOX21-AS1 expression on tamoxifen sensitivity and 

proliferation 

TAMR cells were transfected with two different siRNA transcripts targeting SOX21-

AS1 sequence. Scrambled control siRNA, SOX21-AS1 siRNA #1 and siRNA#2 

were transfected into seeded TAMR cells using DharmaFECT1, 48 hours post 

treatment, cells were collected into a pellet, RNA isolated and cDNA made.  

Substantial level of expression demotion was achieved with both siRNAs in all 

repeats (89%-98%) (figure 4.7.A). MTT assay was then used to examine the effect 
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Figure 4.6 . LUCAT1 expression does not change after treatment with siRNA. 
(A) TAMR cells were transfected with scrambled siRNA Control siRNA), LUCAT1 
siRNA#1 AND siRNA#2 using transfection reagent DhrmaFECT1. 48 hours post 
transfection, cell pellets were collected, RNA isolated, cDNA synthesised and 
LUCAT expression was measured by RT-qPCR.  LUCAT1 CT values were averaged 
and normalised to β-actin. For each condition, 2 independents pellets were 
collected (N=2) and 3 technical replicates were processed. (B) TAMR cells were 
transfected with scrambled siRNA Control siRNA), LUCAT1 siRNA#1 AND 
siRNA#2 using transfection reagent Lipofectamine 2000. For each condition, 
one pellet was collected (N=1) and 3 technical replicates were processed. Data 
points are log2 fold change (log2FC) in LUCAT1 expression relative to control 
siRNA treated samples. 
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of SOX21-AS1 depletion on response to tamoxifen, transfected TAMR cells (control 

siRNA, sRNA#1 and siRNA#2) were treated with increasing doses of tamoxifen for 

3-4 days and cell viability was determined relative to vehicle control. Cell viability 

through all treatment conditions was almost identical, implying SOX21-AS1 

depletion, has no effect on TAMR cells sensitivity to tamoxifen (figure 4.7.B). 

Furthermore, TAMR cell proliferation under the three transfection conditions was 

examined. We observed that cell viability decreased in cells treated with SOX21-

AS1 siRNA#1 by about 17%. However, no statistically significant change in cell 

viability was observed with SOX21-AS1 siRNA#2 (figure 4.7.C). Considering the 

comparability in individual cell viability values between both siRNAs, the reduction 

in proliferation in siRNA#1 rather than siRNA#2 can be explain by nonspecific 

siRNA targeting or technical variability.   
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4.2.3.3 Effect of silencing NR2F1-AS1 expression on tamoxifen sensitivity 

and proliferation 

Two different siRNA transcripts targeting NR2F1-AS1 sequence were used to 

transfect TAMR cells. Scrambled control siRNA, NR2F1-AS1 siRNA #1 and 

siRNA#2 were transfected into seeded TAMR cells using DharmaFECT1, 48 hours 

post treatment, cells were collected into a pellet, RNA isolated and cDNA made.  

Figure 4.7. SOX21-AS1 depletion does not affect proliferation and Tamoxifen sensitivity in
TAMR cells. (A) siRNA attenuated SOX21-AS1 Expression: TAMR cells were transfected with
scrambled siRNA (Control siRNA), SOX21-AS1 siRNA#1 AND siRNA#2 using transfection
reagent DhrmaFECT1. 48 hours post transfection, cell pellets were collected, RNA isolated,

cDNA synthesised and SOX21-AS1 expression was measured by RT-qPCR, SOX21-AS1 CT
values were averaged and normalised to β-actin. For each condition, data points represent

log2 fold change of relative SOX21-AS1 expression +/- SD, 3 independents experiemnts were
collected (N=3) and 3 technical replicates were processed. (B) TAMR cells transfected with
scrambled siRNA (Control siRNA), SOX21-AS1 siRNA#1 and siRNA#2 were tested for

sensitivity with different tamoxifen concentrations and vehicle control. Data points represent
mean relative cell viability +/- SD, for each condition 3 experiments were performed (N=3)
and 5-10 technical replicates were processed. (C) TAMR cells transfected with scrambled
siRNA (Control siRNA), SOX21-AS1 siRNA#1 and siRNA#2 were tested for SOX21-AS1
depletion effect on proliferation. Data points represent mean cell viability +/- SD, for each
condition, 5 experiments were performed (N=5) and 5-10 technical replicates were processed
* denotes p= ≤0.05, ** denotes p= ≤0.01, *** denotes p= ≤0.001, (Student’s independent
samples unpaired two-tailed t-test).
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NR2F1-AS1 siRNA#1 showed superior depletion efficiency reducing NR2F1-AS1 

level by 90.6%, compared to NR2F1-AS1 siRNA#2 which depleted NR2F1-AS1 

expression by 67% (figure 4.8.A). MTT assay was used to examine the effect of 

NR2F1-AS1 depletion on response to tamoxifen, transfected TAMR cells (control 

siRNA, sRNA#1 and siRNA#2) were treated with increasing doses of tamoxifen for 

3-4 days, cell viability was determined relative to vehicle control. Cell viability 

through all treatment conditions was almost identical implying NR2F1-AS1 

expression depletion has no effect on TAMR cell sensitivity to tamoxifen (figure 

4.7.B). Furthermore, TAMR cell proliferation under the three transfection conditions 

was examined. We observed that cell viability decreased with cells treated with 

NR2F1-AS1 siRNA#1 by 20.1% and NR2F1-AS1 siRNA#2 by 22.1% (figure 4.8.C). 

This supports a pro-proliferative role for NRSF1-AS1 in breast cancer. 
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4.2.3.4 Effect of silencing HOTAIRM1 expression on tamoxifen sensitivity 

and proliferation 

To prepare the cells for transfection, TAMR cells were seeded and allowed to attach 

overnight to 6-well plates, scrambled control siRNA, HOTAIRM1 siRNA#1 and 

siRNA#2 were transfected into TAMR cells using DharmaFECT1, 48 hours post 
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Figure 4.8. NR2F1-AS1 depletion does not affect proliferation and Tamoxifen
sensitivity in TAMR cells. (A) siRNA attenuated NR2F1-AS1 Expression: TAMR cells
were transfected with scrambled siRNA (Control siRNA), NR2F1-AS1 siRNA#1 AND

siRNA#2 using transfection reagent DhrmaFECT1. 48 hours post transfection, cell pellets
were collected, RNA isolated, cDNA synthesised and NR2F1-AS1 expression was

measured by RT-qPCR, NR2F1-AS1 CT values were averaged and normalised to β-actin.
for each condition, data points represent log2 fold change of relative NR2F1-AS1
expression +/- SD, 3 independent experiments were performed (N=3) and 3 technical

replicates were processed, . (B) TAMR cells transfected with scrambled siRNA (Control
siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 were tested for sensitivity with different

tamoxifen concentrations and vehicle control. data points represent mean relative cell
viability +/- SD, for each condition 3 independent experiments were performed (N=3) and
5-10 technical replicates were processed. (C) TAMR cells transfected with scrambled

siRNA (Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 were tested for NR2F1-AS1
depletion effect on proliferation. data points represent mean cell viability +/- SD, for each

condition 3 independent experiments were performed (N=3) and 5-10 technical replicates
were processed * denotes p= ≤0.05, ** denotes p= ≤0.01, *** denotes p= ≤0.001,
(Student’s independent samples unpaired two-tailed t-test).

C
o

n
t
r

o
l 

s
iR

N
A

N
R

2
F

1
-

A
S

1
 
s

iR
N

A
#

1

N
R

2
F

1
-

A
S

1
 
s

iR
N

A
#

2

0 . 0

0 . 5

1 . 0

1 . 5

C o n d i t io n

L
o

g
2

F
C

 i
n

 
N

R
2

F
1

-
A

S
1

 
e

x
p

r
e

s
s

io
n

n
o

r
m

a
li

s
e

d
 t

o
 
A

C
T

B

*

* * *

B CA

v
e

h
ic

le

0
.
0

1

0
.
1 1

1
0

0 . 0

0 . 5

1 . 0

1 . 5

T a m o x i f e n  c o n c e n t a r t i o n  ( u M )

C
e

ll
 V

ia
b

il
it

y

C o n t r o l  s iR N A

N R 2 F 1 - A S 1  s i R N A # 1

N R 2 F 1 - A S 1  s i R N A # 2



 

 

163 

treatment, cells were collected into a pellet, RNA isolated and cDNA synthesised. 

Both siRNAs tested showed substantial degree of HOTAIRM1 depletion 

diminishing expression by 96.4% and 96.2% respectively compared to scrambles 

control siRNA (figure 4.9.A)  

To examine HOTAIRM1 depletion on TAMR cells response to tamoxifen, in 96-well 

plates, TAMR cells were transfected with two HOTAIRM1 siRNAs and scrambles 

siRNA as a control. 48 hours following transfection, 4-OH tamoxifen was added at 

increasing concentrations and plates were incubated for three to four days. An MTT 

assay was then performed to assess whether HOTAIRM1 depletion can have a 

direct impact on TAMR response to tamoxifen. Cell survival and transfection 

efficiency was assessed in three independent experiments. There was not a 

statistically significant increase in TAMR cell sensitivity to tamoxifen following 

targeted depletion of HOTAIRM1. Indeed, there was even a small increase in 

resistance with siRNA#1 through this was non-significant (figure 4.9.B).  

One of most distinctive traits of cancer cells, is their ability to sustain uncontrolled 

proliferation, when cells get stuck in intemperate cell growth and division cycle. To 

assess the role of HOTAIRM1 in promoting cellular proliferation in tamoxifen 

resistant cells.  HOTAIRM1 siRNA#1 and siRNA#2 were exploited to supress 

HOTAIRM1 expression in TAMR cells. Using cell viability after 3-4 days as a marker 

of proliferation, compared to scrambled control siRNA, downregulating HOTAIRM1 

expression had no effect on proliferation (figure 4.9.C).  
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4.2.4 Effect of silencing NR2F1-AS1 expression on tamoxifen sensitivity and 

proliferation in triple negative breast cancer cell lines  

Triple negative cell lines are also resistant to tamoxifen. According to CCLE data 

(section 4.2.2), while SOX21-AS1 expression was below zero overall in different 

breast cancer cell lines, LUCAT1, NR2F1-AS1 and HOTAIRM1 expressions were 
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Figure 4.9. HOTAIRM1 depletion does not affect proliferation and Tamoxifen
sensitivity in TAMR cells. (A) siRNA attenuated HOTAIRM1 Expression: TAMR cells
were transfected with scrambled siRNA (Control siRNA), HOTAIRM1 siRNA#1 AND

siRNA#2 using transfection reagent DhrmaFECT1. 48 hours post transfection, cell pellets
were collected, RNA isolated, cDNA synthesised and HOTAIRM1 expression was

measured by RT-qPCR, HOTAIRM1 CT values were averaged and normalised to β-actin.
for each condition, data points represent log2 fold change of relative HOTAIRM1
expression +/- SD, 3 independent experiments were performed (N=3) and 3 technical

replicates were processed. (B) TAMR cells transfected with scrambled siRNA (Control
siRNA), HOTAIRM1 siRNA#1 and siRNA#2 were tested for sensitivity with different

tamoxifen concentrations and vehicle control. data points represent mean relative cell
viability +/- SD, for each condition for each condition 3 independent experiments were
performed (N=3) and 5-10 technical replicates were processed. (C) TAMR cells

transfected with scrambled siRNA (Control siRNA), HOTAIRM1 siRNA#1 and siRNA#2
were tested for HOTAIRM1 depletion effect on proliferation. data points represent mean

cell viability +/- SD, for each condition 3 independent experiments were performed (N=3)
and 5-10 technical replicates were processed * denotes p= ≤0.05, ** denotes p= ≤0.01,
*** denotes p= ≤0.001, (Student’s independent samples unpaired two-tailed t-test).
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the highest in different cellular models of triple negative breast cancer (Figure 4.5). 

LUCAT1 siRNA mediating expression depletion was ineffective, so we tested the 

effect of NR2F1-AS1 and HOTAIRM1 silencing on tamoxifen sensitivity in thress 

triple negative cell lines. HOTAIRM1 silencing results will be presented in the 

chapter 5.   

Tamoxifen resistance in each cell line was first confirmed (Figure 4.10). 

 

 

Figure 4.10. Triple negative breast cancer cells sensitivity to tamoxifen. (A) CAL51 cell

line, (B)MDA-MB-468 cell line, and (C) MDA-MB-231 cell line. Cells were cultured in 96-
well plates, treated with increasing concentrations of tamoxifen ( 0.01 µm, 0.1 µm, 1 µm
and 10 µm) and vehicle control (C). MTT was performed 4 days post treatment, by

reading optical densities in the plate reader. Cell viability was calculated by dividing
tamoxifen treated well reads by vehicle control read. Data points represent mean cell

viability of each treatment group. Error bars depict standard deviation of the mean (N=3).
Statistical significance was determined using unpaired one-tailed Student’s t-test at each
concentration * denotes p= ≤0.05, ** denotes p= ≤0.01, *** denotes p=≤0.001.
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Among triple negative breast cancer cell line available in-house, CAL51 cell line 

had the highest NR2F1-AS1 expression, so it was the first cell line examined. 

Optimised density of cells was seeded and transfected for 48 hours with three 

siRNAs, scrambled siRNA as a control, NR2F1-AS1 siRNA#1 and siRNA#2. As 

shown in (figure 4.11.A), both siRNAs effectively reduced NR2F1-AS1 with 

siRNA#2 more effective reducing lncRNA expression by 97% compared to 92.7% 

with NR2F1-AS1 siRNA#1. Progressing to test tamoxifen sensitivity, cells were 

seeded into a 96-well plate, transfect with siRNA and 48 hours post transfection, 

tamoxifen was added to the wells in increasing concentrations along with vehicle 

control. No change in response to tamoxifen was observed (figure 4.11.B). CAL51 

cell proliferation was also assessed post transfection Proliferation was slightly 

reduced in cells treated with siRNA#1 compared to control cells, though this not 

statistically significant (figure 4.11.C). Thus, depletion of NR2F1-AS1 does not 

appear to alter tamoxifen sensitivity or baseline proliferation in CAL51 cells. 

 



 

 

167 

 

Figure 4.11. NR2F1-AS1 depletion does not affect proliferation and Tamoxifen
sensitivity in CAL51 cells. (A) CAL51 cells were transfected with scrambled siRNA
(Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 using transfection reagent

DhrmaFECT1. 48 hours post transfection, cell pellets were collected, RNA isolated,
cDNA synthesised and NR2F1-AS1 expression was measured by RT-qPCR, NR2F1-

AS1 CT values were averaged and normalised to β-actin. for each condition, data
points represent log2 fold change of relative NR2F1-AS1 expression +/- SD, 3
independent experiments were performed (N=3) and 3 technical replicates were

processed. (B) CAL51 cells were transfected with scrambled siRNA (Control siRNA),
NR2F1-AS1 siRNA#1 and siRNA#2, then were tested for sensitivity with different

tamoxifen concentrations against vehicle DMSO control. data points represent mean
relative cell viability +/- SD, for each condition for each condition 3 independent
experiments were performed (N=3) and 5-10 technical replicates were processed. (C)

CAL51 cells was transfected with scrambled siRNA (Control siRNA), NR2F1-AS1
siRNA#1 and siRNA#2 were tested for NR2F1-AS1 depletion effect on proliferation.

data points represent mean cell viability +/- SD, for each condition 3 independent
experiments were performed (N=3) and 5-10 technical replicates were processed **
denotes p= ≤0.01, *** denotes p= ≤0.001, (Student’s independent samples unpaired

two-tailed t-test).
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MDA-MB-468 and MDA-MB-231 cell lines were examined next. Cells were treated 

as above. RT-qPCR results showed effective NR2F1-AS1 depletion (figure 4.12 

and 4.12). However once again no change in tamoxifen sensitivity and very little 

change in baseline proliferation was observed.  
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Figure 4.12. NR2F1-AS1 depletion does not affect proliferation and Tamoxifen
sensitivity in MDA-MB-468 cells. (A) MDA-MB-468 cells were transfected with
scrambled siRNA (Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 using

transfection reagent DhrmaFECT1. 48 hours post transfection, cell pellets were
collected, RNA isolated, cDNA synthesised and NR2F1-AS1 expression was

measured by RT-qPCR, NR2F1-AS1 CT values were averaged and normalised to β-
actin. for each condition, data points represent log2 fold change of relative NR2F1-
AS1 expression +/- SD, 3 independent experiments were performed (N=3) and 3

technical replicates were processed. (B) MDA-MB-468 cells were transfected with
scrambled siRNA (Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2, then were

tested for sensitivity with different tamoxifen concentrations against vehicle DMSO
control. data points represent mean relative cell viability +/- SD, for each condition for
each condition 3 independent experiments were performed (N=3) and 5-10 technical

replicates were processed. (C) MDA-MB-468 cells transfected with scrambled siRNA
(Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 were tested for NR2F1-AS1

depletion effect on proliferation. data points represent mean cell viability +/- SD, for
each condition 3 independent experiments were performed (N=3) and 5-10 technical
replicates were processed * denotes p= ≤0.05, *** denotes p= ≤0.001, (Student’s

independent samples unpaired two-tailed t-test).
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Figure 4.13. NR2F1-AS1 depletion does not affect proliferation and Tamoxifen
sensitivity in MDA-MB-231 cells. (A) MDA-MB-231 cells were transfected with
scrambled siRNA (Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 using

transfection reagent DhrmaFECT1. 48 hours post transfection, cell pellets were
collected, RNA isolated, cDNA synthesised and NR2F1-AS1 expression was

measured by RT-qPCR, NR2F1-AS1 CT values were averaged and normalised to β-
actin. for each condition, data points represent log2 fold change of relative NR2F1-
AS1 expression +/- SD, 3 independent experiments were performed (N=3) and 3

technical replicates were processed. (B) MDA-MB-231 cells were transfected with
scrambled siRNA (Control siRNA), NR2F1-AS1 siRNA#1 and siRNA#2, then were

tested for sensitivity with different tamoxifen concentrations against vehicle DMSO
control. data points represent mean relative cell viability +/- SD, for each condition 3
independent experiments were performed (N=3) and 5-10 technical replicates were

processed. (C) MDA-MB-231 cells transfected with scrambled siRNA (Control
siRNA), NR2F1-AS1 siRNA#1 and siRNA#2 were tested for NR2F1-AS1 depletion

effect on proliferation. data points represent mean cell viability +/- SD, for each
condition 3 independent experiments were performed (N=3) and 5-10 technical
replicates were processed. ** denotes p= ≤0.01, *** denotes p= ≤0.001, (Student’s

independent samples unpaired two-tailed t-test).
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This data together shows no direct cause-effect relationship between NR2F1-AS1 

and tamoxifen resistance in acquired or de-novo tamoxifen resistance cell models 

tested and does not support a major role for NR2F1-AS1 in breast cancer 

proliferation.  

In summary none of the genes identified a high priority for testing as tamoxifen 

resistance genes in chapter 3 could be validated in chapter 4. 

 

4.3 Discussion 

in chapter 3, we nominated four lncRNAs (LUCAT1, SOX21-AS1, NR2F1-AS1, and 

HOTAIRM1) to further investigate their role in tamoxifen resistance. In this chapter, 

RT-qPCR results found that all four lncRNAs’ expressions were significantly 

overexpressed in TAMR compared to the parent MCF-7 cell line. In this chapter we 

validated expression and tested functional significance by depleting each lncRNA. 

Candidate lncRNAs expression across CCLE breast cancer cell lines RNA-seq data 

was investigated. All candidate lncRNAs were expressed the highest in ER-

negative cell lines, these results were further validated using RT q-PCR in three 

ER-negative cell lines (CAL51, MDA-MB-468 and CAL51, MDA-MB-468) and ER-

positive cell lines (T47D and ZR-75-1). The same trend of expression as seen in 

RNA-seq was also seen in these results, adding confidence to the conclusions of 

Chapter 3.  Correlation of these lncRNAs CCLE expression to ESR1 expression 

were not statistically significant (except for LUCAT1), but were always negative, 

positively adding to the correlation of these lncRNAs upregulation to tamoxifen-

resistant phenotype.  
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LUCAT1 was the first lncRNA investigated, beginning with depleting of expression 

in TAMR cell line. Surprisingly, LUCAT1 expression rather went up rather than 

down even when changing the transfection reagent/conditions. This contrasts with 

the findings of Mou & Wang (2019), where LUCAT1 depletion was successful 

resulting in suppression of many carcinogenic characteristics (e.g., proliferation, 

migration, invasion, EMT and dysregulated apoptosis). In contrast to the method 

we used, (Mou and Wang, 2019) used a DNA plasmid to deliver short hairpin RNA 

(shRNA) and achieved a good level of LUCAT1 depletion in triple-negative breast 

cancer cell lines. The increased expression seen in our approach could be 

explained by potential off-target effects of the siRNAs used. Perhaps rather than 

targeting the LUCAT1 transcript for degradation, a feedback loop of related coding 

or noncoding genes was activated (Scacheri et al., 2004). As we did not achieve 

depletion, we did not continue with analysis of tamoxifen sensitivity.  

 

SOX21-AS1 expression was depleted successfully in the TAMR cell line but no 

effect was observed on cell proliferation and viability in response to tamoxifen. In 

breast cancer, SOX21-AS1 depletion were found reduce the carcinogenic 

properties of breast cancer stem cells (Li, Meng and Wang, 2021) and triple 

negative breast cancer (Liu et al., 2020b). Both of these studies were carried out 

primarily on triple negative breast cancer cells, highlighting SOX21-AS1 role as an 

oncogene in triple negative subtype were supportive of our hypothesis. Findings of 

Sheng et al. (2020), regarding SOX21-AS1 depletion inhibiting proliferation, while 

done on MCF-7 that has the same genetic background as our TAMR model, it does 
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not necessarily mean they respond the same way, this is evidenced by the large 

number of RNA-seq differentially expressed genes from chapter 3. Moreover, they 

used a different test to measure cell viability (CCK8) rather than what we used 

(MTT), which have been shown to produce unconcordant results in-terms of 

assessing cell viability (Jiao et al., 2015). 

 

NR2F1-AS1 siRNA-mediated depletion was very successful in all cell lines 

especially MDA-MB-231. Still, no change was observed in sensitivity to tamoxifen 

in any of the cell lines. A difference was found in TAMR proliferation in response to 

NR2f1-AS1 depletion similar to results found by Zhong and Zeng (2022). Liu et al. 

(2021) revealed a cis regulatory link between NR2F1-AS1 and NR2F1 oncogene 

that interestingly is significantly upregulated by more than two folds in TAMR cell 

line in our RNA-seq dataset. It would be interesting to further explore the effect of 

NR2F1-AS1/NR2F1 dysregulation on tamoxifen resistance as the relationship 

might be reversed (NR2F1 → NR2F1-AS1 rather than what we assumed (NR2F1-

F1-AS1 → NR2F1); another possibility is that as shown in chapter 3, a miRNA is 

an intermediate functional molecule (Huang et al., 2018; Zhong and Zeng, 2022). 

Whilst we did not observe a significant difference in tamoxifen sensitivity in any 

tamoxifen resistant cell lines tested after NR2F1-AS1 depletion, we did observe a 

difference in TAMR cells proliferation but with some variation in cell viability results 

between repeats. So, further repeats of cell viability post NR2F1-AS1 depletion in 

TAMR are required to confirm this.  

Cell viability in response to tamoxifen treatment, and TAMR cells proliferation did 

not show any change after HOTAIRM1 depletion. Our findings are completely 
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opposite to those previously reported (Kim et al., 2020), as they found a direct 

relationship between HOTAIRM1 expression and tamoxifen resistance. In the 

previous study, HOTAIRM1 KD was performed using a pool of four different siRNAs 

rather than using multiple different single siRNAs targeting alternative areas of 

HOTAIRM1, using separate siRNA reduces the risk of off-target effects (Brown et 

al., 2022). There is a risk that previously observed effects are through off target 

effects. So, it would be useful to further investigate HOTAIRM1 depletion in different 

cell lines.  

 

Summary 

 

The role of the four upregulated candidate lncRNAs in tamoxifen resistance in 

breast cancer has not been investigated previously and our data highlights this as 

an area which warrants further investigation. Following successful siRNA mediated 

depletion of each candidate lncRNA (except for LUCAT1). However, this had no 

effect on breast cancer cells proliferation or response to tamoxifen. Recently 

published studies linked genomic dysregulations in these lncRNAs to multiple 

pathways of tamoxifen resistance. This warrant revisiting of our functional 

investigation pipeline to explore their role in tamoxifen resistance from different 

angles.   
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Chapter 5. HOTAIRM1 Molecular Studies 

5.1. Introduction  

HOTAIRM1 was one of the four lncRNAs upregulated in TAMR cells, that were 

selected for the in-vitro validation of their role in tamoxifen resistance in breast 

cancer. Following effective depletion in TAMR cells, resistance to tamoxifen did not 

change as shown in chapter 4. However, HOTAIRM1 was the most consistently 

upregulated gene and was also upregulated in more in ER negative compared to 

ER positive tumour cell lines. It has been reported that HOTAIRM1 acts as an 

oncogene in a wide range of cancer processes (Zhao et al., 2020). However, not 

many studies have considered the role of HOTAIRM1 in breast cancer so we 

decided to see if HOTAIRM1 depletion in cell lines with high levels of HOTAIRM1 

would have any cancer related phenotypic effects separate to tamoxifen resistance. 

Further, the homeobox cluster A (HOXA) is a group of highly conserved 11 protein-

coding genes located in chromosome 7, many reported to regulate gene expression 

and cellular differentiation, morphogenesis, and proliferation (Bhatlekar, Fields and 

Boman, 2014). HOTAIRM1 is known to transcribe from within the HOXA gene 

cluster (Wei et al., 2016), but as yet, there is limited evidence linking HOTAIRM1 to 

HOXA genes or elucidating their mutual regulatory relationship, so we decided to 

investigate this as well. 

 

The hypothesis of this chapter is:  

Manipulation of HOTAIRM1 expression in breast cancer cell lines (with high levels 

of HOTAIRM1) will alter carcinogenic features and growth characteristics.  
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The aim of this chapter is 

To evaluate different carcinogenic properties of HOTAIRM1 in TAMR and 

CAL51 cell lines  

The objectives of this chapter are:  

1. Further validation of HOTAIRM1 depletion 

2. Determine the effect of HOTAIRM1 depletion on proliferation in CAL51 and 

MDA-MB-468 cell lines  

3. Determine the effect of increased HOTAIRM1 expression on tamoxifen 

sensitivity in MCF-7 cell line. 

4. Determine effect of HOTAIRM1 depletion on cell cycle progression in TAMR 

and CAL51 cell lines. 

5. Determine effect of HOTAIRM1 depletion on EMT, endogenous DNA 

damage, and HOXA genes expression in TAMR and CAL51 cell lines 

6. Determine the effect of HOTAIRM1 depletion on global differential gene 

expression in CAL51 cell line.  

 

5.2 Results 

5.2.1. Confirmation of HOTAIRM1 depletion 

Depletion efficiency differs according to the cell line, transfection reagent used, and 

the sequence of the siRNA used. Three commercially available HOTAIRM1 
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targeting siRNAs were compared. The standard Bryant lab protocol for siRNA 

transfection of the parental MCF-7 cell line was used (methods). Cells were left 

untreated, treated with the transfection reagent alone, transfection reagent plus a 

control siRNA (which is reported not to target any known sequence in the genome), 

or transfection reagent with one of the three HOTAIRM1 targeting siRNAs. In each 

case, HOTAIRM1 expression was determined by RT-PCR. 

Comparing HOTAIRM1 expression in non-treated or transfection reagent alone 

treated cells, Untreated TAMR cells showed a small but non-significant increase in 

gene expression. Transfection with each of the HOTAIRM1 targeting siRNAs 

reduced expression to 80%, 84%, and 75% of the scrambled siRNA control treated 

sample, for HOTAIRM1 siRNA#1, HOTAIRM1 siRNA#2, and HOTAIRM1 siRNA#3 

respectively (Figure 5.1). Toxicity was assessed by eye and appeared to be very 

low under all conditions (approximately 15-20% cell death). Subsequent 

experiments used 500,000 cells as transfection efficacy was not altered but a 

greater number of cells could be obtained (data not shown).  
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Figure 5.1. HOTAIRM1 depletion in TAMR cells following transfection with

siRNA. HOTAIRM1 expression as log2 fold change of scrambled siRNA

control was determined in cells untreated (UT), DharmaFECT 1 only treated

(D), control non-targeting scrambled siRNA treated (Control siRNA), or treated

with HOTAIRM1 targeting siRNAs: HOTAIRM1 siRNA#1, HOTAIRM1

siRNA#2, HOTAIRM1 siRNA#3. HOTAIRM1 expression was determined by

qRT-PCR relative to ACTB reference gene 48 h post-transfection. The mean ±

SD of two independent repeats is shown. Knockdown data are expressed

relative to data from cells transfected with scrambled siRNA control. denotes

p= ˃0.05, * denotes p= ≤0.05, ** denotes p= ≤0.01, *** denotes p=≤0.001.
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5.2.2 Duration of HOAIRM1 silencing post-transfection 

Given the short life cycle of siRNAs, they usually lose their effect on gene 

expression in a few days following transfection (Grimm, 2009). The persistence of 

siRNA efficiency was investigated, to ensure the knockdown stayed effective during 

subsequent experiments that might take place over up to five days.   

The two most effective HOTAIRM1 siRNAs (siRNA#1, and siRNA#2) and 

scrambled control siRNA were transfected in to TAMR cells under optimised 

conditions (5 nM siRNA, 4 µL DharmaFECT1, and 500,000 cells per well). Then 

harvested at 24 h, 48 h, 72 h, 96 h, and 120 h post-transfection (Figure 5.2). 

Maximal knockdown was reached by 48h, when HOTAIRM1 expression was 

reduced by 90% and 95% in siRNA#1 and siRNA#2 transfected cells respectively 

and remained low for up to 120 hours.  
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Figure 5.2. Duration of HOTAIRM1 silencing in TAMR cells after a single

siRNA transfection. Cells were transfected with two different HOTAIRM1

siRNAs at standard concentrations. Cells were lysed 24 to 120 hours post-

transfection. RT-qPCR was performed to detect the level of HOTAIRM1

expression at 24h, 48h, 72h, 96h, and 120h. The mean ± SD of three

independent repeats is shown. Knockdown data are expressed relative to

data from cells transfected with scrambled siRNA control. denotes p= ˃0.05,

* denotes p= ≤0.05, ** denotes p= ≤0.01, *** denotes p=≤0.001
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5.2.3 Effect of silencing HOTAIRM1 expression on tamoxifen sensitivity and 

proliferation in triple negative breast cancer cell lines   

A distinctive characteristic of cancer cells is an increased rate of proliferation. 

Depletion of HOTAIRM1 has already been shown to have no effect on proliferation 

of TAMR cells (Figure 4.9). Here the effect of depletion of HOTAIRM1 was 

examined in 2 other cell lines that were seen to have high levels of HOTAIRM1 i.e.  

CAL51 and MDA-MB-468 cells. In addition, we decided to check the sensitivity to 

tamoxifen as it could be done in parallel. Cells were transfected with HOTAIRM1 

siRNAs (siRNA#1 and siRNA#2) and scrambled siRNA as a control in 96-well 

plates. 48 hours following transfection, where appropriate 4-OH tamoxifen was 

added at increasing concentrations, and plates were incubated for three to four 

days. An MTT assay was then performed to assess cell viability. There was not a 

statistically significant change in proliferation or tamoxifen sensitivity in either cell 

line (Figure 5.3).  
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Figure 5.3. HOTAIRM1 depletion does not affect proliferation and Tamoxifen 
sensitivity in CAL51 or MDA-MB-468 cells. (A/D) siRNA attenuated HOTAIRM1 
Expression: CAL51 cells (A-C) and MDA-MB-468 cells (D-F) were transfected with 

scrambled siRNA (Control siRNA), HOTAIRM1 siRNA#1 AND siRNA#2 using 
transfection reagent DhrmaFECT1. 48 hours post-transfection, cell pellets were 

collected, RNA isolated, cDNA synthesised, and HOTAIRM1 expression was measured 
by RT-qPCR, HOTAIRM1 CT values were averaged and normalised to β-actin. for each 
condition, data points represent log2 fold change of relative HOTAIRM1 expression +/- 

SD,  3 independent experiments were performed (N=3) and 3 technical replicates were 
processed. (B/E) cells transfected with scrambled siRNA (Control siRNA), HOTAIRM1 

siRNA#1 and siRNA#2 were tested for HOTAIRM1 depletion effect on proliferation. 
(C/F) cells transfected with scrambled siRNA (Control siRNA), HOTAIRM1 siRNA#1, 
and siRNA#2 were tested for sensitivity with different tamoxifen concentrations and 

vehicle control. data points represent mean cell viability ± SD, for each condition 3 
independent experiments were performed (N=3) and 5-10 technical replicates were 

processed * denotes p= ≤0.05, ** denotes p= ≤0.01, *** denotes p= ≤0.001,  (Student’s 
independent samples unpaired two-tailed t-test).
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5.2.4 Effect of HOTAIRM1 depletion on cell cycle in TAMR and CAL51 cell 

lines  

Linked to proliferation is cell cycle progression. Cell cycle analysis was carried out 

to investigate the influence of HOTAIRM1 on breast cancer cells cell cycle 

progression. TAMR and CAL51 cells were transfected with control siRNA, 

HOTAIRM1 siRNA#1 and #2. Forty-eight hours post-transfection, cells were 

collected and stained with DNA-binding PI dye. Samples then run through the flow 

cytometer and data were then analysed in FlowJo software. As shown in (Figures 

5.4), no changes were observed in cell cycle distribution in either cell line when 

depleting HOTAIRM1. 
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Figure 5.4. HOTAIRM1 depletion does not alter the cell cycle in TAMR and CAL51 cell lines. (A)

Representative images of HOTAIRM1 depleted TAMR cell cycle analysis using flow cytometry
following propidium iodide staining (B) quantification of the cell cycle populations. (C)
Representative images of HOTAIRM1 depleted CAL51 cell cycle analysis using flow cytometry

following PI staining. (D) quantification of the cell cycle populations. Data are expressed as the
mean ± SD of three independent repeats. ns denotes non-significant, *** denotes p= ≤0.001,

(Student’s independent samples unpaired two-tailed t-test).
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5.2.5 Effect of HOTAIRM1 depletion on TAMR and CAL51 cell adhesion  

Metastasis occurs in breast cancer and is associated with worse prognosis. 

Endocrine resistant breast cancer is known to have more metastatic potential. One 

of the processes in metastasis is a change in adhesion of cells to sold matrixes.   

Analysis of cell adhesion in TAMR and CAL51 cells depleted of HOTAIRM1 was 

performed on matrigel-coated 96-well plates. After depletion cells were reseeded in 

the prepared 96 well plates and were allowed time to bind to the extracellular matrix 

prior to washing and staining with crystal violet. Following HOTAIRM1 depletion in 

CAL51 and TAMR cells showed no change in cell adhesion (Figure 5.5 A/B).  
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5.3.6 Effect of HOTAIRM1 depletion on CAL51 cell migration  

Cell migration is also linked to metastasis. Therefore, cell migration rates were 

assessed in tamoxifen resistant breast cancer cells to investigate the influence of 

HOTAIRM1 on breast cancer cell movement. Cal51 cells were transfected with 

control siRNA, HOTAIRM1 siRNA#1 and #2. Forty-eight hours post-transfection, 

cells were seeded at 3 × 104 cells per well in cell inserts 2-wells. After achieving a 

confluent monolayer, a gap was created by removing the culture inserts and cell 
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Figure 5.5. Depletion of HOTAIRM1 does not alter the adhesion of cells to 
Matrigel. (A) TAMR or (B) CAL51 cells. Cells were transfected with two independent 
HOTAIRM1 siRNAs and scrambled control siRNAs. Cells were then seeded on 

matrigel-coated wells in 96-well dish in 5 technical repeats per condition and incubated 
for 1 hour at 37 ͦC. After washing adherent cells were fixed and stained with crystal 

violet. Light absorbance of stained cells is proportional to the number of cells. 
Absorbance relative to the control siRNA was calculated. The mean ± SD of four 
independent repeats is shown.
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left to move into the gap in low serum media. Images were captured at 0 h, 24 h, 

48 h, 72 h, and 96 h post-gap creation (Figure 5.6). The wound area in percentage 

represents the rate of migration of TAMR across the created gap. Depleting 

HOTAIRM1 with HOTAIRM1 targeting siRNA did not change the pattern of 

migration compared to control.  
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Control siRNA HOTAIRM1 siRNA #1

0 H

24 H

48 H

72 H

HOTAIRM1 siRNA #2

Figure 5.6. Depletion of HOTAIRM1 does not alter cell migration. (A) 
representative images of CAL51 cells following treatment with control siRNA, 
HOTAIRM1 siRNA#1, and HOTAIRM1 siRNA#2. Cells were transfected with siRNA 

and left 48 h prior to replating in culture cell dishes.  The culture well was then 
removed, and images were taken. (B) Quantification of cell migration as indicated by 
100% gap remaining relative to time 0. The mean ±  SD of 3 independent 

experiments are shown. ns denotes non-significant Student’s T.test comparing control 
siRNA to HOTAIRM1 siRNAs at each time point. 
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5.3.7 Effect of HOTAIRM1 depletion on EMT  

TNBC are well established to be more aggressive and invasive. Epithelial-

mesenchymal transition (EMT) enables some cancer cells to suppress epithelial 

characteristics and adopt mesenchymal like features. This facilitates cell movement 

and thus metastasis. Several proteins are associated with EMT. First, we chose to 

investigate E-Cadherin, a protein known to be vital to maintaining tissue integrity. 

E-Cadherin is a transmembrane protein that interacts extracellularly with adjacent 

cells to maintain cell to cell adhesion. The second protein investigated was β-

catenin which links the intracellular domain of E-cadherin to the cellular 

cytoskeleton. Also, together with TGF-1 and Wnt signalling pathway, B-Catenin 

acts as a transcription factor participating in tissue morphogenesis and 

carcinogenesis. Yes-associated protein (YAP) was the third protein investigated, 

that functions in Hippo pathway, primarily acting as a transcriptional co-activator for 

many genes involved in proliferation and apoptosis.  

Two siRNAs targeting HOTAIRM1 transcript, and a scrambled control siRNA were 

transfected into Cal51 cells. 48 hours post-transfection cells were stained for E-

Cadherin, and β-Catenin. Images were taken and analysed for signal intensity as a 

quantitative measure of corresponding marker abundance in cells. As shown in 

(Figure 5.7). No significant change was observed in any condition. 

In addition, 48 h post transfection cells were lysed, and western plot was performed 

using antibodies specific to β-catenin, E-cadherin, and YAP proteins, no change 

was detected (Figure 5.8). This data suggests no apparent effect of HOTAIRM1 

depletion on the assessed proteins.   
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Figure 5.7. HOTAIRM1 deple on does not affect β-catenin or E-cadherin signals in CAL51 

cells. (A) Representa ve images of CAL51 stained for DAPI (cyan), E-cadherin (red), and β-
catenin (green) (B) quan fica on of E-cadherin signal intensity. (C) quan fica on of β-catenin 
signal intensity 100 cells were counted per condi on per repeat, data points represent the 
mean ± SD of three independent repeats. Imaged were taken with a 40x microscope 
objec ve, scale bars represent 20 μm
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5.3.8 Effect of HOTAIRM1 depletion on DNA damage 

A common phenomenon of cancer is increased genomic instability this can often 

be seen as an increase in DNA damage in cancer cells. We looked at H2AX foci as 

a marker of damage again staining 48h post transfection of siRNA. No differences 

were seen (figure 5.9) 

Figure 5.8. Depletion of HOTAIRM1 does not alter the expression of EMT-
related protein-coding genes. CAL51 cells were seeded on coverslides placed 
in 6-well dish in 3 technical repeats per condition and incubated overnight at 37 ͦ C  

and transfected the next day. cells were fixed and exposed to the appropriate 
primary and secondary antibodies. Band intensity is proportional to the expression 

of the gene of interest. expression relative to the control ACTB band was 
calculated. Mean ± SD of three independent repeats is shown, except for E-
cadherin (n=2). Ns denotes nonsignificant.
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Figure 5.9. HOTAIRM1 deple on does not  affect 
γH2AX foci signal in CAL51 cells. (A) Representa ve 
images of CAL51 stained for DAPI (cyan) and γH2AX 
(red) (B) quan fica on of γH2AX foci intensity. 100 

cells were counted per condi on per repeat., data 
points represent the mean ± SD of three 

independent repeats. Imaged were taken with a 40x 
microscope objec ve, scale bars represent 20 μm
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5.3.9 Effect of HOTAIRM1 depletion on HOXA genes cluster  

Considering the regulatory role lncRNA usually play on neighbouring genes and 

that HOTAIRM1 is transcribed from chromosome 7 within the HOXA genes cluster 

and that HOXA is an established role in cancer and drug resistance (Bhatlekar, 

Fields and Boman, 2014). TAMR and CAL51 cells were transfected with control 

siRNA, HOTAIRM1 siRNA#1 and #2. Forty-eight hours post-transfection, cells were 

collected, RNA was extracted, and cDNA was synthesised. Samples were then run 

through RT-qPCR machine to test for changes in HOXA1, HOXA5, HOXA9, and 

HOXA10. Fold changes in expression of each gene compared to scrambled control 

sample were calculated. As shown in Figure 5.10, regardless of successful 

HOTAIRM1 expression depletion, no significant change was observed in gene 

expression when depleting HOTAIRM1 with HOTAIRM1 targeting siRNA compared 

to control in both cell lines (TAMR and CAL51).  
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5.3.10 Effect of HOTAIRM1 upregulation using ATRA treatment on MCF-7 

response to tamoxifen.   

Given that HOTAIRM1 is upregulated in tamoxifen resistant MCF-7 cells we sought 

to induce resistance by inducing expression of HOTAIRM1 in normal tamoxifen 

sensitive MCF-7 cells. Considering the location of HOTAIRM1 transcript is in HOXA 

gene cluster, transcription of this region is well established to be enhanced by 

retinoic acid (RA), an interaction known to play important role in myeloid cells 

differentiation (Wei et al., 2016). For the purpose of HOTAIRM1 expression 

manipulation studies, it was decided to initially try ATRA treatment (section 2.1.7), 

to examine how it affects HOTAIRM1 expression in MCF-7 cells, where HOTAIRM1 

expression is lower than that in the resistant cell line. MCF-7 cells were incubated 

with 1 µM ATRA for either two hours, 24 hours, or 48 hours. As shown in (Figure 

5.11 A) 2 hours, 48 hours, and 24 hours of exposure gave a pronounced increase 

in the log 2-fold change of HOTAIRM1 expression (5, 40, and 69) respectively. 

Therefore, considering the time factor, 2 hours and 24 hours exposure were chosen 

as the optimal ATRA exposure period for MCF-7 cells to express sufficiently 

upregulated levels of HOTAIRM1. These results were encouraging to take a further 

step into testing the viability of ATRA-treated cells in tamoxifen, and whether the 

change in HOTAIRM1 level might enhance their survival.   
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The impact of HOTAIRM1 upregulation in MCF-7 cells on their response to 

tamoxifen treatment was determined using the MTT assay. MCF-7 cells were 

cultured in the absence and presence of 1uM ATRA for two hours and 24 hours, 

where-after increasing concentrations of tamoxifen were added and cells incubated 

for a further four days (Figure 5.11). Upregulation of HOTAIRM1 did not alter 

sensitivity to tamoxifen.  

 

5.3.11 Effect of HOTAIRM1 depletion on global gene expression in CAL51 

cell line 

Given that depletion of HOTAIRM1 failed to produce any significant changes in cells 

with high levels of expression but that HOTAIRM1 did appear to be aberrantly 
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Figure 5.11. Upregulation of HOTAIRM1 expression using ATRA does not 
alter MCF-7 cells response to tamoxifen. (A) The log2 fold change in 
HOTAIRM1 expression shows an increase with longer incubation time. 2 hours 

(2H), 24 hours (24H)  and 48 hours (48H). HOTAIRM1 expression was 
determined by qRT-PCR relative to ACTB reference gene. (B) ATRA-treated 

MCF-7 cells viability with tamoxifen treatment. MCF-7 cells were treated with 
ATRA for two hours (2H-ATRA) or 24 hours (24H-ATRA) prior to the addition of 
tamoxifen. Cell viability was then determined by MTT after a further four days. 

lines indicate mean ± SD of technical repeats on one occasion (n=3). 
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expressed in TNBC cell lines and patient samples. We decided to take an unbiased 

approach to look at the effect of depletion on global transcriptomics.  

The expression profiles of 3 groups of samples were compared: CAL51 transfected 

with control scrambled siRNA (SC), CAL51 transfected with HOTAIRM1 siRNA#1 

(HA) and CAL51 transfected with HOTAIRM1 siRNA#2 (HB). Each group contained 

three biological replicates. CAL51 cells were treated, and cell pellets sent for 

external RNA-seq. Sequencing read primary data were trimmed to remove 

adapters and poor-quality nucleotides then aligned to Homo sapiens GRCh38 

reference genome. Gene counts were then calculated by using featureCounts 

command.  

For analysis raw reads counts were inputted with a reference file that contains, 

basic biological information essential to identify samples and their criteria 

comparisons (below).  

Sample ID Cell Type Condition 

SC1 CAL51 Control siRNA 

SC2 CAL51 Control siRNA 

SC2 CAL51 Control siRNA 

HA1 CAL51 HOTAIRM1 siRNA#1 

HA2 CAL51 HOTAIRM1 siRNA#1 

HA3 CAL51 HOTAIRM1 siRNA#1 

HB1 CAL51 HOTAIRM1 siRNA#2 

HB2 CAL51 HOTAIRM1 siRNA#2 

HB3 CAL51 HOTAIRM1 siRNA#2 
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One of the most important steps in data prepossessing is filtering low-expression 

genes. There are many reasons for doing this step: physically, genes with law 

counts are not long enough to produce any considerable biological effect. (From 

reads to genes to pathways). In addition, from a statistical point of view, lowly 

expressed sequenced reads have a higher rate of measurement errors and noise. 

Hence, excluding this type of genes at the very start, is vital to reduce the burden 

of the multiple testing. This simultaneously improves sensitivity of downstream 

differential gene expression (DGE) analysis and increase the number and quality 

of detected genes. To filter data, count-per-million (CPM) values were obtained 

using cpm function in edgeR package. Looking at the trend of library sizes in our 

samples (Figure 5.12 A). With library sizes between 15-27 million reads, it was 

required that for a gene to be included it have at least 0.5 CPM in all 9 samples. 

The instant effect of removing unwanted genes was observed in density plots, 

generated using plotDensity function from affy package (Figure 5.12 B). This 

function calculates the density for each observation in the input log base 2 scaled 

raw count matrix and estimates the probability density function of a random variable 

creating a smooth, continuous distribution curve. The peak of the curve represents 

the maximum concentration of raw counts. Unfiltered data has 3 peaks the far 

biggest is at -3.321 which equals log base 2 of 0, the value that makes the most of 

data (figure 5.12 A). After filtering, samples’ curves are smoother and show better 

overlap and similar peaks with no strange deviations (Figure 5.12 B). Library size 

distribution was also evaluated for any aberrating data (Figures 5.12 C and D). 
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Sample 

ID

SC1 SC2 SC3 HA1 HA2 HA3 HB1 HB2 HB3

Library 

size 

(bp)

20483155 27630701 20680817 19084970 15857378 22772696 16161720 20423209 17479654

Figure 5.12. Quality control assessment of HOTAIRM1 depleted 
CAL51 RNA-seq data. (A) Raw counts distribution before filtering of lowly 
expressed genes. (B) Raw counts distribution after filtering of lowly 

expressed genes. (C)/(D) Library sizes of RNA-seq samples. Samples 
were sequenced, 3 samples in each cells group and the total number of 

raw counts in each sample was adapted into a bar indicating the library 
size. 

B
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Raw data also underwent a quality control step post-filtering; to assess the quality 

of each samples’ biological annotation and how they relate to each other 

statistically. To check for batch effect in the experiment, principal component 

analysis (PCA) was conducted using R package DESeq2 function plotPCA. PCA is 

a statistical procedure used to observe the direction and distance of which samples 

diverge based on their statistical variation. In a two-dimensional co-ordinate 

system, samples were plotted relative to the two features with maximum variance 

called principal component 1 and 2 (PC1 and PC2). The PCA plot produced for 

sequenced HOTAIRM1 depleted CAL51 cells raised concern with this data set as 

a whole. Samples were showed to vary based on their biological repeat number 

rather than depletion status (Figure 5.13).  

 

 

Figure 5.13. Principle component analysis plot showing variability in global 
gene expression between samples. variability between samples was plotted on 
a 2D plan as a percentage, where, PC1 on the x-axis was plotted against a PC2 

on the y-axis. Samples are indicated in coloured dots. The relationships between 
samples are determined by judging the distance between samples on the 

horizontal PC1 axis, the further the distance between samples, the highest 
degrees of variability. 
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5.3 Discussion 

The aim of this chapter was to provide insight into the role of HOTAIRM1 in 

carcinogenesis using TAMR and CAL51 cell lines as a representation of 

HOTAIRM1 highly expressing cells. Of the four candidate lncRNAs initially tested 

in chapter 3, we opted to further explore HOTAIRM1 in detail for many reasons, 

fundamentally, the consistent level of expression among different cell lines and the 

considerable depletion level we were able to achieve. The planned subsequent 

experiments required more persistent silencing of HOTAIRM1 that might extend to 

5 days. So, our siRNA-mediated silencing protocol was further optimised, and the 

duration of silencing was assessed; to cover the duration of our experiments without 

affecting cellular wellbeing. Proliferation, adhesion to solid matrix, migration, EMT 

marker expression and DNA damage were all assessed. These were chosen due 

to previous literature linking HOTAIRM1 to each of the processes in other cancers. 

In none of the HOTAIRM1 highly expressing cell lines did depletion of HOTAIRM1 

lead to changes in proliferation. This is in contrast to findings in thyroid cancer (Li 

et al 2021) glioblastoma (Lin et al 2020) and endometrial cancer (Li et al 2019).  

Aggressive cancer cells are also known to possess less ability to adhere to 

surrounding tissue and increased motility, making them more prone to metastasise 

(Osuchowska et al., 2021). In this regard lncRNA has suggested as a prognostic 

marker for metastasis in oestrogen receptor positive breast cancer (Sørensen et al 

2013). We did not see any change in EMT type gene expression, adhesion, or 

mobility upon HOTAIRM1 depletion in either CAL51 or TAMR cells. Again, this is 

not consistent with what is seen in other cancers where lncRNA has been shown 

to in other cancers e.g. thyroid cancer (Li et al 2021). Our observations on EMT-
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related phenotypes could be expanded to more repeats and different assays such 

as the trans-well test. 

(Xueqing Zhang et al., 2009) and (Zhang, Sherman M. Weissman and Newburger, 

2014) proposed that the knockdown of HOTAIRM1 maintains cell cycle activation 

from G1 to S phases. Though, our cell cycle analysis showed no difference in cell 

cycle population quantification between HOTAIRM1 depleted and unmodified cells 

in either TAMR or CAL51 cell lines. Both studies were in leukaemia cells, 

suggesting a different cell cycle role in breast cancer cells.  

The HOXA gene cluster enfolds HOTAIRM1 in addition to many protein-coding 

genes. Following HOTAIRM1 depletion in TAMR and CAL51 cell lines, the 

expression of each of the four HOXA genes (HOXA1, HOXA5, HOXA9, HOXA10) 

were compared between HOTAIRM1 depleted and highly expressing cells. HOXA5 

has been previously shown to participate in tamoxifen resistance in breast cancer 

(Kim et al., 2021), in our data, the expression of HOXA5 was decreased in response 

to HOTAIRM1 silencing, although this was only statistically significant only with one 

of the siRNAs, it is still encouraging as a potential axis for driving resistance, and 

further experimenting on more repeats would clarify this more. Recently, Kim et al., 

(2020), published the direct relationship between HOTAIRM1 being a driving cause 

of tamoxifen resistance in breast cancer, acting through HOXA1 transcriptional 

regulation HOXA1 down-regulation might be an off-target effect of the used 

HOTAIRM1 siRNA silencing technique, as using a pool of multiple siRNAs rather 

than individual siRNAs increase this risk, especially with genomic location; both 

genes being in close proximity to each other (Brown et al., 2022)   
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We used ATRA treatment to induce the expression of HOTAIRM1 in a cell line 

where HOTAIRM1 expression was low (MCF-7) following the same protocol 

mentioned in the literature for acute promyelocytic leukemia cell line (Wei et al., 

2016). This was done mainly to have an idea about the degree of inducibility of 

HOTAIRM1 in this cell line. HOTAIRM1 was shown to be highly induced, especially 

after overnight and two-day incubation. ATRA is known to induce the proliferation 

of leukemia cells and induction of HOTAIRM1 is frequently seen with ATRA 

treatment (Zhang, Sherman M Weissman and Newburger, 2014; Wei et al., 2016), 

due to its global effect on many HOX genes (Chen et al., 2012). Here ATRA did 

regulate HOTAIRM1 expression but no change in proliferation was observed. 

However, to really answer whether HOTAIRM1 expression in a low background can 

drive resistance this experiment would need to be refined by pure HOTAIRM1 

targeted amplification for example by HOTAIRM1 over-expression using an 

expression vector. 

By sequencing the total RNA extracted from HOTAIRM1 depleted CAL51 cells we 

sought to achieve a comprehensive view of the effect HOTAIRM1 might have on 

global gene expression and molecular pathways. So, more targeted 

experimentation can be planned. Though the knockdown was successful. We faced 

a major obstacle in the quality control step while analysing RNA-seq data 

computationally. Samples are clustered by biological repeat rather than by 

experimental condition. This inconvenience is common as a result of batch-effect 

or sample cross-contamination while handling the physical samples. Unfortunately, 

it was not possible to make any conclusions from these data as the aberrated 
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clustering attenuated proceeding with the downstream analysis of this data. This 

could be repeated. 

Summary 

In summary, we have screened for several aspects of cancer in HOTAIRM1 

depleted TAMR and CAL51 cell lines. Although we saw no differences in the 

processes examined, the HOTAIRM1/HOXA5 axis is a tempting pathway for 

resistance, needing further in-depth investigation.  
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Chapter 6. Analysis of Publicly Available Datasets  

6.1 Introduction  

In chapter 3 a list of differentially expressed genes was produced by comparing the 

transcriptomic profiles of tamoxifen-resistant and sensitive breast cancer cell lines. 

Functional biological assessment of these genes - LUCAT1, SOX21-AS1, NR2F1-

AS1, and HOTAIRM1 – was carried out in chapters 4 and 5.  Unfortunately, none 

of these candidates could be validated as having a role in tamoxifen resistance. 

Our next step was to analyse publicly available datasets that include different 

endocrine resistance phenotypes in order to try again to identify common genes 

involved in the complex pathophysiology of tamoxifen resistance in breast cancer.  

Two databases were selected  

1. The Gene Expression Omnibus (GEO) database  

GEO (Edgar, Domrachev and Lash, 2002) is a public repository that stores next 

generation sequencing data submitted by different scientific groups. Archived 

datasets are available for researchers and can be accessed through different direct 

and indirect modalities. Large data input is preferable as it retains statistical power, 

however, it is not always accessible. Instead, what’s readily available is a huge 

number of small sample size datasets hosted in a database such as GEO. When 

metadata available in the GenomeBrowser database 

(www.ncbi.nlm.nih.gov/sites/GDSbrowser) (about 4348 GEO datasets) were 

analysed, most had a sample size of 12. (Figure 6.1)  

 

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser
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2. The Cancer Genome Atlas (TCGA) data base  

TCGA (Tomczak, Czerwińska and Wiznerowicz, 2015)is one of the biggest next 

generation sequencing datasets. TCGA collects different types of data, clinical 

information (e.g., patient data, treatment, and survival data), molecular analyte 

metadata (e.g., samples collection and processing) and molecular experimental 

data (e.g., gene expression and copy number microarray). 
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Figure 6.1. Sample size frequency for datasets in the GEO database. The
histogram illustrates the frequency of datasets containing the number of
samples.
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The hypothesis of this chapter is: 

Gene expression analysis of publicly available datasets related to tamoxifen 

response, will produce a list of lncRNAs and protein coding genes that may overlap 

with RNA-seq in chapter 3. 

The aims of this chapter are: 

1- To systematically search GEO dataset for tamoxifen resistance related 

phenotypes 

2- To process GEO microarray expression data using quality control and 

differential expression bioinformatics pipelines, construct a list of 

statistically significant differentially expressed genes for each study.   

3- To process TCGA RNA-seq expression data using quality control and 

differential expression bioinformatics pipelines and construct a list of 

statistically significant differentially expressed genes. 

The objectives of this chapter include:  

1- analysing GEO raw sequencing data by: 

A) Assessing sample library sizes and adjusting for any detected 

systematic biases.  

B) Performing DEA and ranking lncRNAs and protein-coding genes based 

on DEA results. 

2- analysing TCGA sequencing data based on PAM50 classification of 

samples 

3- comparing GEO and TCGA data internally and to RNA-seq results. 
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6.2 GEO data set analysis 

6.2.1 GEO Data set selection  

Selecting the right datasets to be analysed was critical, as studying a disease with 

complex genotype requires finding studies that have asked the right research 

questions. A search strategy was created, and appropriate datasets were selected 

from a systematic search of the GEO while including several inclusion and 

exclusion criteria. 

Our search question was formulated using P.I.C.O.T format (P symbolizes the 

target population, I is the Intervention of interest, C is the control group, O is the 

key outcomes, and T is the Time frame over which the outcomes took place) (Riva 

et al., 2012) as follows: 

• Population:  endocrine resistant breast cancer tissue or cells  

• Intervention/exposure: dysregulated of gene expression  

• Comparison/control: endocrine sensitive breast cancer  

• Outcome: relapse/recurrence/endocrine resistance 

The time factor was excluded from the search strategy as it is not applicable in the 

case of endocrine resistance. 

Based on that, our search question was “What are the genes that are differentially 

expressed between endocrine resistant and sensitive breast cancers leading to 

relapse of patients”.  

Inclusion and exclusion criteria were chosen as follows: For a data set to be 

included, firstly, samples can be either clinical from human patients, or they can be 

from human cancer cell lines, as they are all considered biological models 
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representing the phenotype under investigation. Samples from other species were 

excluded, being biologically disparate and too divergent to be included. Secondly, 

the minimum number of samples were assigned as three controls and three 

comparative phenotype samples, this allows for establishing a solid argument of 

statistical significance. In addition, this cut-off fulfils the requirements of many 

software packages, that reject number of samples lower than three per condition. 

Thirdly, microarray data sets were only included when raw .cel files were submitted 

and were generated using platforms from Affymetrix and Illumina only, due to their 

compatibility with the used software pipelines in this chapter. 

Target key words were produced for terms “breast cancer” and “endocrine therapy” 

or terms known to be associated with these phenotypes such as “triple negative 

breast cancer”, “metastatic breast cancer”, “Tamoxifen”, “Antineoplastic Hormonal 

therapy” and others. Our search query was built using appropriate variations in 

spelling and abbreviations following GEO database guidelines (GEO, 2021).  

Studies were checked to fit the established inclusion criteria by referring to the 

metadata and experimental design information provided by the depositor. Five 

microarray datasets were selected to undergo further analysis, details of the 

selected data sets can be found in Table 6.1. 
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GEO ID

Number

of

samples

Type
Samples

background
Platform Publication

GSE67916 18
Cell

lines

MCF-7 and TAMR

were used in

microarray

experiment

GPL570
(Elias et al., 

2015)

GSE27473 6
Cell

lines

Wiled type MCF7

cell compared to

estrogen receptor

silenced MCF-7

GPL570
(al Saleh et 
al., 2011)

GSE124647 140
Clinical

biopsied metastatic

hormone receptor

positive breast

cancer underwent

expression profiling

by array

GPL96
(Sinn et al., 

2019)

GSE58644 321 Clinical

Biopsies of

different types of

breast cancer

GPL6244
(Tofigh et al., 

2014)

GSE9195 77 Clinical

Biopsies from

estrogen receptor-

positive breast

cancer patients

treated with

tamoxifen

GPL570 (Loi et al., 
2010)

Table 6.1. Datasets selected from GEO data repository. GEO ID is the GSE
reference that is one of GEO entities of the corresponding study. Number of
samples indicates the size of the dataset. Type is the samples origin. Samples

background provides a brief description about samples. Platform indicates the
technical array record used for microarray data processing. Publication contains

the reference supplied with the data on GEO.
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Three datasets were formed of breast cancer tissue samples from patients with 

associated clinical data and two datasets of breast cancer cell lines. These 

microarray data were programmatically accessed and analysed from GEO using 

GEOquery package. 

6.2.2 The GEO data sets 

6.2.2.1 GSE67916.  

In this dataset, there are 18 samples, 10 are tamoxifen resistance breast cancer 

cell lines and 8 are parent MCF-7 cell lines. Tamoxifen resistant cells were 

established by gradually exposing MCF-7 cells to increasing doses of tamoxifen 

until they adapt to growing normally in 1 µM of tamoxifen. The 10-tamoxifen 

resistant breast cancer cell lines were divided in 4 groups (3 TamR1 samples, 3 

TamR4 samples, 2 TamR7 samples and 2 TamR8 samples), after quality 

assessment of the data and normalisation, MCF-7 samples were compared to 

TamR1 and TamR4 separately, since they satisfy the inclusion criterias. Raw 

microarray data format or CEL files and corresponding data frame of samples 

metadata were loaded, processed, and arranged in a way fitting the used pipeline. 

Gene expression measurements were calculated, then normalised, using the 

robust multichip average (RMA) normalization method. RMA includes the following 

steps, background correction, normalization to account for technical variations 

between individual samples (Figure 6.2 A, B, C and D), and finally calculation of 

gene expressions. To perform DEA, the first step is to describe the experiment in 

the analysis pipeline. So, what’s called   a sample level were assigned to fit samples 

based on their point of disparity; to design the study layout, making tamoxifen 

resistant phenotype the reference in the analysis. The multiple independent 
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statistical tests data undergo demand that it is filtered, going through the probe-

level intensities, the MAS 5.0 absolute detection method was used to calculate the 

probability of observing probe intensity and assign a call for a probe being ‘present’ 

or expressed. We decided to include a probe if it was expressed in at least 9 

samples at the same time, this excluded almost half of the probe population. In 

addition, probes that cross hybridized with other genes and Affymetrix control 

probes were also removed. Before proceeding to DEA, quality control analysis was 

also performed to compare replicates by observing their clustering behaviour 

relative to each other. As shown in (Figure 6.2 E) tamoxifen resistant samples 

clustered opposite to MCF-7 samples along the principal component 1 axis 

(representing the most distinguishable variation between samples). There was 

some concern around one MCF-7 sample (MCF-7.8) and one tamoxifen resistant 

sample (TR1.1), however we decided to sill include them for the following reasons. 

First though they are relatively close to each other, they are still on the same side 

of their group of samples, second there are 7 other MCF-7 samples and finally, we 

will analyse each tamoxifen resistant group of samples independently then 

compare and find the intersection with other comparisons. After calculating 

differential expression statistics, annotations were added. A summary of number of 

genes in each category comparing MCF-7 versus TR1 and TR4 is produced in 

(Table 6.2).  
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Figure 6.2. GSE67916 raw data
quality assessment. After
determining gene expression

measures, data distribution (A) before
and (B) after normalisation were . (C)

Box plot of expression values before
and (D) after normalisation. (E)
Principle component analysis plot

showing variability in gene expression
between samples, the number in PCA

is given for sample identification. TR1
tamoxifen resistant breast cancer cell
line number 1, TR4 tamoxifen

resistant breast cancer cell line
number 4, TR7 denotes tamoxifen

resistant breast cancer cell line
number 7, TR8 denotes tamoxifen
resistant breast cancer cell line

number 8, and RMA denotes robust
multichip average
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To compare DEA results of this dataset to other GEO data sets, we decided to find 

the common differentially expressed genes between TR1 and TR4. The number of 

differentially expressed lncRNAs after applying 1.5-fold change and 0.005 p-value 

cut off was very low, so the common genes were found by intersecting lncRNAs 

that had a fold change in expression above or below zero. Conversely, protein 

coding genes were high in number, so we used the 1.5-fold change and <0.005 p-

value cut off to find the commonly differentially expressed genes. The shared genes 

are shown in (Figures 6.3 and 6.4).  

 

Selection 

criteria

lncRNAs protein coding genes

TR1 TR4 TR1 TR4

Up 

regulated

Down 

regulated

Up 

regulated

Down 

regulated 

Up 

regulated 

Down 

regulated

Up 

regulated

Down 

regulated 

log fold 

change 1.5 

and adjusted 

p-value 

<0.005

4 1 3 1 86 36 116 59

difference in 

expression 

level 

154 87 141 99 6620 4603 5906 5317

Table 6.2. Number of differentially expressed lncRNAs and protein coding genes
in GSE67916 dataset. TR1 tamoxifen resistant breast cancer cell line number 1,
TR4 denotes tamoxifen resistant breast cancer cell line number 4.
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ENSG00000203497 PDCD4-AS1

ENSG00000218510 LINC00339

ENSG00000230551 CTB-89H12.4 

ENSG00000233937 CTC-338M12.4

ENSG00000240032 RP11-274H2.3

ENSG00000240498 CDKN2B-AS1 

ENSG00000245532 NEAT1 ONC

ENSG00000246731 CTD-2514K5.2

ENSG00000260669 AL136419.6

ENSG00000265282 RP11-269G24.4

ENSG00000272711 RP11-259N19.1

ENSG00000282977 PCBP2-OT1

lncRNAs up in TAMRlncRNAs up in GSE67916

Figure 6.3. Common lncRNAs up-regulated both in GSE67916 tamoxifen
resistant cells and our chapter 3 TAMR cells.
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6.2.2.2 GSE27473 

The second study aimed to test the global transcriptomic effect of oestrogen 

receptor silencing on oestrogen receptor positive breast cancer cell line. Three 

samples of wild type MCF-7 cells and 3 samples of MCF-7 cells depleted of ERS1 

(oestrogen receptor alpha) gene by siRNA. Raw data were quality assessed and 

normalised as previously described (Figures 6.5 A, B, C and D). As part of quality 

control step, samples were clustered relative to each other in respect to the most 

accounted variations (principal components 1 and 2). It is clear the two sample 

ENSG00000120833 SOCS2

ENSG00000198189 HSD17B11

Protein coding genes
up in TAMR

Protein coding genes
up in GSE67916

Figure 6.4 Common protein coding genes up-regulated both in GSE67916
tamoxifen resistant cells and our chapter 3 TAMR cells.
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groups cluster far from each other (Figure 6.5 E), confirming their biological 

diversity.  The initial DEA results are shown in (Table 6.3).  
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Figure 6.5. GSE27473 raw data quality assessment. After determining
gene expression measures, data distribution (A) before and (B) after
normalisation were . (C) Box plot of expression values before and (D) after

normalisation. (E) Principle component analysis plot showing variability in
gene expression between samples, the number in PCA is given for sample

identification. Control denotes wild type MCF-7 cells, ESR1KD denotes
MCF-7 modified with ESR1 depletion, and RMA denotes robust multichip
average.
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To formulate the final list of differentially expressed genes from the initial DEA 

results, we decided to include differentially expressed lncRNAs regardless of the 

fold change and p-value cut off, accounting only for the fact that a gene was up or 

down regulated in ESR1 silenced group. However, with protein coding genes we 

used the 1.5-fold change and 0.005 p-value cut off to form the list of genes for 

downstream analysis. These genes were compared to genes upregulated in TAMR 

samples, the genes laying in the intersection as common genes between both ate 

shown and listed in (Figures 6.6 and 6.7).    

Selection 
Criteria

lncRNAs protein coding genes

Up 
regulated 
in ESR1KD

Down 
regulated 
in ESR1KD

Up 
regulated 
in ESR1KD 

Down 
regulated 
in ESR1KD

log fold 
change 1.5 

and 
adjusted p-

value 
<0.005

18 14 1181 41

difference 
in 

expression 
level 

109 106 6013 4854

Table 6.3. Number of differentially expressed lncRNAs
and protein coding genes in GSE27473 dataset.
ESR1KD denotes MCF-7 modified with ESR1 depletion
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ENSG00000157306 RP11-66N24.4

ENSG00000182165 TP53TG1
ENSG00000203497 PDCD4-AS1

ENSG00000218510 LINC00339

ENSG00000234912 LINC00338

ENSG00000240498 CDKN2B-AS1

ENSG00000261087 KB-1460A1.5

ENSG00000267296 CEBPA-AS1

lncRNAs up in TAMRlncRNAs up in GSE27473

Figure 6.6. Common lncRNAs up-regulated both in GSE27473 ESR1

depleted MCF-7 samples and our chapter 3 TAMR cells.
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ENSG00000041353 RAB27B

ENSG00000060656 PTPRU

ENSG00000073792 IGF2BP2

ENSG00000088538 DOCK3

ENSG00000100504 PYGL

ENSG00000105388 CEACAM5

ENSG00000110660 SLC35F2

ENSG00000114251 WNT5A

ENSG00000128512 DOCK4

ENSG00000131389 SLC6A6

ENSG00000131711 MAP1B

ENSG00000132334 PTPRE

ENSG00000133083 DCLK1

ENSG00000138640 FAM13A

ENSG00000138795 LEF1

Protein coding genes

up in TAMR

Protein coding genes

up in GSE27473

Figure 6.7. Common protein coding genes up-regulated both in GSE27473

ESR1 depleted MCF-7 samples and our chapter 3 TAMR cells.

ENSG00000141404 GNAL
ENSG00000148700 ADD3

ENSG00000151690 MFSD6
ENSG00000153250 RBMS1

ENSG00000154822 PLCL2
ENSG00000162409 PRKAA2

ENSG00000162496 DHRS3
ENSG00000168675 LDLRAD4

ENSG00000175745 NR2F1
ENSG00000175832 ETV4

ENSG00000178726 THBD
ENSG00000183421 RIPK4
ENSG00000185650 ZFP36L1
ENSG00000196139 AKR1C3

ENSG00000196954 CASP4
ENSG00000213654 GPSM3
ENSG00000221988 PPT2
ENSG00000244274 DBNDD2
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6.2.2.3 GSE124647 

This data set included microarray data of 140 biopsied metastatic tissues taken 

from stage IV breast cancer patients. Referring to the clinical data provided by the 

submitters, samples were split into two groups depending on progress free survival 

(PFS), a mean of 5.53 months were chosen as a reference of comparison. 70 

samples had a PFS more than 5.53 months, they were assigned to the high PFS 

(Hpfs) group, and 70 samples had a PFS less than 5.53 months, they were 

assigned to the low PFS (Lpfs) group. CEL files were loaded, and raw data were 

extracted, quality assessed and normalised as previously described (Figures 6.8 A, 

B, C and D). As part of quality control step, samples were clustered relative to each 

other in respect to the most accounted variations (principal components 1 and 2) 

(Figure 6.8.E). However, it appears to be hard to separate samples according to 

their assigned group. No distinguishable clustering pattern could be recognised as 

distances between samples were closer than expected. Since this dataset were 

formed of sequenced tissue samples, this observation can be explained by 

genotypic diversity between patients.   
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BA

C

D

Figure 6.8. GSE124647 raw data quality assessment. After
determining gene expression measures, data distribution (A) before
and (B) after normalisation were . (C) Box plot of expression values

before and (D) after normalisation. Continued on next page
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To perform DEA, Hpfs group were set as a reference and the results are 

summarised in Table 6.4.  

Figure 6.8. GSE124647 raw data quality assessment. Continued (E) Principle
component analysis plot showing variability in gene expression between samples,
the number in PCA is given for sample identification. Lpfs denotes low progression

free survival, and Hpfs denotes high progression free survival, RMA denotes
robust multichip average.

E

 Lpfs  Hpfs 
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To produce the list of differentially expressed lncRNAs and protein coding genes 

from the initial DEA results, we decided to include differentially expressed lncRNAs 

regardless of the fold change and p-value cut off, considering only whether a gene 

was up or down regulated in the Lpfs group. Also, for protein coding genes we used 

0.005 adjusted p-value cut off to form the list of genes for downstream analysis. 

These genes were compared to genes upregulated in TAMR samples, the genes 

laying in the intersection as common genes between both ate shown and listed in 

(Figures 6.9 and 6.10). 

 

Selection 
Criteria

lncRNAs protein coding genes

Up regulated 
in Lpfs

Down 
regulated 

Lpfs

Up regulated 
Lpfs 

Down 
regulated 

Lpfs

adjusted p-
value <0.005

1 6 81 319

difference in 
expression 

level 
57 83 2464 4493

Table 6.4. Number of differentially expressed lncRNAs and protein coding
genes in GSE67916 dataset. TR1 tamoxifen resistant breast cancer cell line
number 1, TR4 denotes tamoxifen resistant breast cancer cell line number 4.
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ENSG00000182165 TP53TG1

ENSG00000224078 SNHG14

ENSG00000230551 CTB-89H12.4

ENSG00000233937 CTC-338M12.4

ENSG00000262879 RP11-156P1.3

ENSG00000272821 CTA-384D8.36

ENSG00000282977 PCBP2-OT1

lncRNAs up in TAMRlncRNAs up in GSE124647

Figure 6.9. Common lncRNAs up-regulated both in

GSE124647 low progress free survival samples and our
chapter 3 TAMR cells.
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6.2.2.4 GSE58644 

This data set included microarray data of 321 breast cancer tissues taken from 

patients of different subtypes and stages of breast cancer. The clinical data file 

provided by the submitters, included a lot of details about patients, sample 

collection and study protocol. The samples were split into two groups depending on 

their oestrogen receptor status. 251 oestrogen receptor positive samples were 

Protein coding genes

up in TAMR

Protein coding genes

up in GSE124647

ENSG00000102804 TSC22D1

ENSG00000130066 SAT1

ENSG00000164056 SPRY1

Figure 6.10. Common protein coding genes up-regulated both in

GSE124647 low progress free survival samples and our chapter 3
TAMR cells.
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compared to 70 oestrogen receptor negative samples. CEL files were loaded, and 

raw data were extracted, quality assessed and normalised as previously described 

(Figures 6.11 A, B, C and D). As part of quality control step, samples were clustered 

relative to each other in respect to the most accounted variations (principal 

components 1 and 2) (Figure 6.11. E). No distinguishable clustering pattern could 

be recognised as distances between samples were closer than expected. Since this 

dataset were formed of sequenced tissue samples, this observation can be 

explained by genotypic diversity between patients.   
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ERp ERn

ERp ERn

R
M

A
R

M
A

BA

C

D

E

Figure 6.11. GSE58644 raw data
quality assessment. After determining
gene expression measures, data

distribution (A) before and (B) after
normalisation were . (C) Box plot of

expression values before and (D) after
normalisation. (E) Principle component
analysis plot showing variability in gene

expression between samples, the
number in PCA is given for sample

identification. ERp denotes estrogen
receptor positive breast cancer, ERn
denotes estrogen receptor negative

breast cancer. RMA denotes robust
multichip average

 ERn  ERp 

 

ERn 

ERn ERp 

ERp 
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To perform DEA, oestrogen receptor positive group were set as a reference. A 

summary of number of lncRNAs and protein coding genes differentially expressed 

between oestrogen receptor positive and negative samples is shown in (Table 6.5).   

 

 

A list of differentially expressed lncRNAs and protein coding genes was then 

formulated from the DEA results. We Included differentially expressed lncRNAs 

regardless of the fold change and p-value cut off while for protein coding genes we 

only used 0.005 adjusted p-value cut off to form the list of genes for downstream 

analysis. These genes were compared to genes upregulated in TAMR samples, the 

genes laying in the intersection as common genes between both ate shown and 

listed in (Figures 6.12 and 6.13) 

 

Selection criteria

lncRNAs protein coding genes

Up 
regulated 

in ERn

Down 
regulated 

in ERn

Up 
regulated 

in ERn 

Down 
regulated 

in ERn

adjusted p-value <0.005 53 59 869 1000

difference in expression level 434 340 6171 4622

Table 6.5. Number of differentially expressed lncRNAs and protein coding genes 
in GSE58644 dataset. ERn denotes estrogen receptor negative breast cancer
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ENSG00000082929 C4orf6
ENSG00000170161 RP11-262H14.4
ENSG00000174365 SNHG11

ENSG00000177410 ZFAS1
ENSG00000185904 LINC00839

ENSG00000197670 RP4-724E16.2
ENSG00000206195 AP000525.9

ENSG00000224078 SNHG14
ENSG00000228794 LINC01128

ENSG00000231312 AC007246.3

ENSG00000232973 CYP1B1-AS1
ENSG00000235865 GSN-AS1

ENSG00000237491 RP11-206L10.9

ENSG00000244041 LINC01011

ENSG00000249087 C1orf213

ENSG00000253552 HOXA-AS2
ENSG00000255198 SNHG9

ENSG00000257621 RP11-349A22.5

ENSG00000258655 ARHGAP5-AS1

ENSG00000260669 AL136419.6
ENSG00000261713 SSTR5-AS1

ENSG00000264247 LINC00909

ENSG00000267249 RP11-973H7.3
ENSG00000272142 RP11-428J1.5

ENSG00000278175 GLIDR

lncRNAs up in TAMRlncRNAs up in GSE58644

Figure 6.12. Common lncRNAs

up-regulated both in
GSE58644 estrogen receptor
negative samples and our

chapter 3 TAMR cells.
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Protein coding genes

up in TAMR

Protein coding genes

up in GSE58644

ENSG00000067167 TRAM1

ENSG00000088881 EBF4
ENSG00000101230 ISM1

ENSG00000102265 TIMP1
ENSG00000107159 CA9

ENSG00000110693 SOX6

ENSG00000111341 MGP
ENSG00000121039 RDH10

ENSG00000135363 LMO2

ENSG00000138759 FRAS1
ENSG00000147251 DOCK11
ENSG00000148468 FAM171A1

ENSG00000154065 ANKRD29
ENSG00000162576 MXRA8
ENSG00000167772 ANGPTL4

ENSG00000168032 ENTPD3
ENSG00000168487 BMP1

ENSG00000168685 IL7R
ENSG00000175329 ISX
ENSG00000175899 A2M

ENSG00000175928 LRRN1
ENSG00000181104 F2R

ENSG00000182568 SATB1

ENSG00000196139 AKR1C3

Figure 6.13. Common protein-coding genes up-regulated both in GSE58644
estrogen receptor negative samples and our chapter 3 TAMR cells.
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6.2.2.4 GSE9195 

This data set included microarray data of 77 oestrogen receptor positive breast 

cancer tissues taken from patients of different diagnostic stages of breast cancer. 

The clinical data file provided by the submitters, included a lot of details about 

patients, sample collection and study protocol. samples were split into two groups 

depending on the value of their relapse free survival time (RFS). Mean RFS was 

determined as 2835 days, and samples were classified as having RFS higher than 

this number (high RFS group) or lower than the mean (low RFS group). As a result, 

44 high RFS samples were compared to 33 low RFS samples. Initially, CEL files 

were loaded, and raw data were extracted, quality assessed and normalised as 

previously described (Figures 6.14 A, B, C and D). As part of quality control step, 

samples were clustered relative to each other in respect to the most accounted 

variations (principal components 1 and 2). As shown in Figure 6.14.E, no 

distinguishable clustering pattern can be recognised as distances between samples 

were closer than expected.  
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Since this dataset were formed of sequenced tissue samples, this observation can 

be explained by genotypic diversity between patients. To perform DEA, higher RFS 

group of samples were set as a reference. A summary of number of lncRNAs and 

protein coding genes differentially expressed between oestrogen receptor positive 

and negative samples is shown in (Table 6.6).  

 

 

A list of differentially expressed lncRNAs and protein coding genes was formulated 

from the DEA results. Differentially expressed lncRNAs were included regardless 

of the fold change and p-value cut off, while for protein coding genes used 0.005 p-

value was used as a cut off to form the list of genes for downstream analysis. These 

genes were compared to genes upregulated in TAMR samples, the genes laying in 

the intersection as common genes between both ate shown and listed in (Figures 

6.15 and 6.16) 

 

Selection 
Criteria

lncRNAs protein coding genes

Up 
regulated 

in Lrfs

Down 
regulated 

Lrfs

Up 
regulated 

Lrfs

Down 
regulated 

Lrfs

adjusted 
p-value 

<0.005

0 0 383   202  

difference 
in 

expressio
n level 

657  648 
9204 9420

Table 6.6. Number of differentially expressed lncRNAs and protein coding 
genes in GSE9195 dataset. Lrfs denotes low release free survival breast cancer
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lncRNAs up in TAMRlncRNAs up in GSE9195

ENSG00000153363 LINC00467
ENSG00000157306 RP11-66N24.4

ENSG00000163364 LINC01116
ENSG00000167920 TMEM99

ENSG00000170161 RP11-262H14.4

ENSG00000170919 TPT1-AS1
ENSG00000180769 WDFY3-AS2

ENSG00000182165 TP53TG1

ENSG00000189223 PAX8-AS1
ENSG00000196756 SNHG17

ENSG00000206195 AP000525.9
ENSG00000214293 RSBN1L-AS1

ENSG00000224281 SLC25A5-AS1

ENSG00000224870 RP4-758J18.2
ENSG00000226686 AC012309.5

ENSG00000228506 RP11-98I9.4
ENSG00000228630 HOTAIR

ENSG00000229152 ANKRD10-IT1

ENSG00000229953 RP11-284F21.7
ENSG00000229970 AC007128.1

ENSG00000230551 CTB-89H12.4

ENSG00000231074 HCG18
ENSG00000231312 AC007246.3

ENSG00000231721 LINC-PINT
ENSG00000232533 AC093673.5

ENSG00000232677 LINC00665

ENSG00000232956 SNHG15

ENSG00000233184 RP11-421L21.3

ENSG00000233429 HOTAIRM1

ENSG00000233461 RP11-295G20.2
ENSG00000233621 LINC01137

ENSG00000233937 CTC-338M12.4
ENSG00000234684 SDCBP2-AS1

ENSG00000237310 GS1-124K5.4

ENSG00000237491 RP11-206L10.9
ENSG00000237753 AC079922.3

ENSG00000237807 RP11-400K9.4
ENSG00000237976 RP11-126K1.6

ENSG00000239911 PRKAG2-AS1

ENSG00000242086 LINC00969
ENSG00000244879 GABPB1-AS1

ENSG00000245213 RP11-10K16.1

ENSG00000245532 NEAT1
ENSG00000246731 CTD-2514K5.2

ENSG00000247271 ZBED5-AS1
ENSG00000247950 SEC24B-AS1

ENSG00000250988 RP11-752G15.6

ENSG00000251562 MALAT1
ENSG00000252690 SCARNA15

ENSG00000253200 RP11-582J16.5
ENSG00000253716 RP13-582O9.5

ENSG00000253982 CTD-2336O2.1

ENSG00000257621 RP11-349A22.5
ENSG00000257702 LBX2-AS1

ENSG00000257894 RP1-78O14.1

ENSG00000258634 RP4-773N10.4

ENSG00000258701 LINC00638

ENSG00000258708 SLC25A21-AS1

ENSG00000259248 USP3-AS1

ENSG00000259642 C15orf37
ENSG00000260231 JHDM1D-AS1

ENSG00000260317 RP11-48B3.4

ENSG00000260329 RP11-412D9.4

ENSG00000260669 AL136419.6

ENSG00000260793 RP5-882C2.2

ENSG00000260912 RP11-363E7.4

ENSG00000260966 RP11-690D19.3

ENSG00000261512 RP11-46D6.1

ENSG00000261654 RP11-96K19.4

ENSG00000261754 CTC-523E23.1
ENSG00000261824 LINC00662

ENSG00000262580 RP11-334C17.5

ENSG00000262879 RP11-156P1.3

ENSG00000264112 RP11-159D12.2

ENSG00000265282 RP11-269G24.4

ENSG00000266916 CTD-3064H18.1

ENSG00000266962 RP11-400F19.6

ENSG00000267106 C19orf82

ENSG00000267152 CTD-2528L19.6

ENSG00000267216 AC010642.1
ENSG00000267254 CTD-2162K18.5

ENSG00000267280 RP11-332H18.4
ENSG00000267296 CEBPA-AS1

ENSG00000267322 SCARNA17
ENSG00000267575 CTC-459F4.3

ENSG00000268205 CTC-444N24.11
ENSG00000268713 CTC-444N24.8

ENSG00000270673 YTHDF3-AS1

ENSG00000270820 RP11-355B11.2
ENSG00000272086 CTD-2186M15.3

ENSG00000272288 RP11-140K17.3
ENSG00000272335 RP11-53O19.3

ENSG00000272341 RP1-151F17.2
ENSG00000272841 RP3-428L16.2

ENSG00000273314 RP5-1136G13.2
ENSG00000273344 PAXIP1-AS1

ENSG00000273456 RP11-686O6.2
ENSG00000273680 NA

ENSG00000273888 FRMD6-AS1

ENSG00000275202 NA
ENSG00000275234 NA

ENSG00000275557 NA
ENSG00000276116 FUT8-AS1

ENSG00000277534 NA
ENSG00000278156 TSC22D1-AS1

ENSG00000278175 GLIDR
ENSG00000278291 NA

ENSG00000280206 NA
ENSG00000283103 NA

Figure 6.15. Common lncRNAs up-regulated both in GSE9195 low relapse

free survival samples and our chapter 3 TAMR cells.
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Finally, tamoxifen response related up-regulated lncRNAs and protein coding 

genes from all GEO studies were all related to each other in a Venn diagram 

(Figures 6.17 and 6.18); to find what genes are common between them all. Only 

one lncRNA (ENSG00000196299 ZNRD1ASP) was upregulated in all the data 

sets. Searching literature about this gene was trick as its annotation and 

ENSG00000110660 SLC35F2
ENSG00000113448 PDE4D

ENSG00000118263 KLF7

ENSG00000133687 TMTC1

ENSG00000135363 LMO2
ENSG00000156113 KCNMA1

ENSG00000164116 GUCY1A3

ENSG00000166002 SMCO4

ENSG00000166173 LARP6

ENSG00000169851 PCDH7

ENSG00000171004 HS6ST2

ENSG00000198121 LPAR1

Protein coding genes

up in TAMR

Protein coding genes

up in GSE9195

Figure 6.16 Common protein coding genes
up-regulated both in GSE9195 low relapse
free survival samples and our chapter 3
TAMR cells.
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classification keep on changing, there were about 10 synonymous of its ensemble 

ID (C6orf12, Em:AB023056.3, HCG8, HCGVIII, HCGVIII-1, HTEX4, NCRNA00171, 

ZNRD1-AS, ZNRD1-AS1, ZNRD1AS), its biotype also went prom a processed 

transcript to a lncRNA to a pseudogene (Ensemble, 2022), few studies were found 

concerning this gene role in carcinogenesis (Wang et al., 2017; Ba et al., 2021). 

Since none were related to endocrine positive breast cancer(H. W. Kim et al., 2020), 

this data while very interesting, it inspires further in-silico and in-vitro sequence and 

functional analysis of this gene.  
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ENSG00000196299 ZNRD1ASP

GSE27473

GSE124647

GSE67916

GSE58644 GSE9195

GSE9195GSE58644

GSE27473
GSE67916

GSE124647

Figure 6.17 Common lncRNAs up-regulated in all GEO analysed datasets

Figure 6.18 Common protein coding genes up-regulated in all GEO analysed
datasets
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6.3 TCGA data set analysis 

The TCGA is another publicly available data set that we wanted to take advantage 

of. TCGA-BRCA project were accessed through GDC open-access data 

consortium using TCGAbiolinks package. TCGA-BRCA samples were then 

classified into different groups based on their barcode identification and clinical 

metadata. After dividing samples to normal and tumour, tumour was further divided 

based on PAM50 categorisation system into luminal A, luminal B, HER2-enriched 

and basal-like breast cancer subtypes. In order to look at genes related to a 

tamoxifen resistance phenotype, a series of comparisons was then carried out, 

using the assumption that Basal-like tumours can be used as a proxy for tamoxifen 

resistant tumours and Luminal A breast cancer samples represent tamoxifen 

sensitive samples. 

Firstly 58 luminal A normal tissues were compared to 412 luminal A tumour tissue 

samples, the resulting DEA table (Table 6.7) included 1495 protein coding genes 

and 64 lncRNAs up regulated in luminal A tumours. Secondly, 13 Basal-like normal 

tissue was compared to 131 Basal-like tumour tissue samples, the resulting DEA 

table (Table 6.8) included 1221 protein coding genes and 68 lncRNAs up regulated 

in Basal-like tumours.  
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lncRNAs upregulated in tumour samples in Lum A and Basal-like subtypes were 

then cross compared in Venn diagram to find common and differentially up and 

down regulated genes (Figure 6.19 and 6.20). Genes common between both data 

sets were considered general cancer related genes.  
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Examples of protein coding genes in this set include: CMA1 which is associated 

with poor prognosis and immunological infiltrations in gastric cancer (Shi et al., 

2020), ANGPT4 involved with promotion of a pro-cancer microenvironment in 

ovarian cancer (Brunckhorst et al., 2014), and PCK1 and IGFBP1 both of which 

have roles in colorectal cancer metastasis (Kim et al., 2016; Yamaguchi et al., 

2019). Examples of lncRNAs include: H19 and XIST which are both thought to have 

pan-cancer oncogenic roles (Eldesouki et al., 2022; Ma et al., 2014; Wei et al., 

2017; Yu et al., 2020; Q. Zhang et al., 2018), and SNHG8 which has a reported role 

in ovarian and prostate cancers (Shi et al., 2021; Xuan et al., 2021).   

To focus solely on basal-like breast cancer, we opted to include only the set of 

genes differentially expressed in Basal-like but not in luminal A tumour samples. 43 

and 1111 upregulated lncRNAs and protein coding genes respectively, were in this 

Protein coding genes upregulated 
in luminal A tumours

Protein coding genes upregulated
in Basal tumours

Figure 6.20. Common protein coding genes up-regulated in TCGA Basal
tumours and Luminal A tumours, surrounded by the red square is the genes
up regulated only in Basal tumours (pure Basal).
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group. When these were compared to the genes identified in chapter 3, 7 lncRNAs 

(Figures 6.21) and 64 protein coding genes (Figure 6.22) were in common.  

 

 

 

ENSG00000174365 SNHG11

ENSG00000182165 TP53TG1

ENSG00000186493 C5orf38

ENSG00000224975 INE1

ENSG00000228630 HOTAIR
ENSG00000245532 NEAT1

ENSG00000251562 MALAT1

lncRNAs upregulated 

in TAMR

lncRNAs upregulated 

in pure basal tumours (TCGA)

Figure 6.21. Common lncRNAs up-regulated both in TCGA basal tumours and
our chapter 3 TAMR cells.
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Examples include lncRNAs such as ATXN8OS which has been reported previously 

to have a role in promoting tamoxifen resistance in breast cancer (Zhang et al., 

Protein coding genes upregulated 

in TAMR

Protein coding genes upregulated 

in pure basal tumours (TCGA)

ENSG00000145451 GLRA3
ENSG00000145703 IQGAP2
ENSG00000150527 CTAGE5
ENSG00000151715 TMEM45B
ENSG00000156113 KCNMA1
ENSG00000162009 SSTR5
ENSG00000165078 CPA6

ENSG00000165548 TMEM63C
ENSG00000166106 ADAMTS15
ENSG00000166840 GLYATL1
ENSG00000168594 ADAM29
ENSG00000168743 NPNT
ENSG00000170786 SDR16C5
ENSG00000171385 KCND3

ENSG00000171564 FGB
ENSG00000172602 RND1
ENSG00000174343 CHRNA9
ENSG00000175745 NR2F1
ENSG00000178401 DNAJC22
ENSG00000179023 KLHDC7A
ENSG00000180616 SSTR2

ENSG00000183580 FBXL7
ENSG00000185008 ROBO2
ENSG00000186197 EDARADD
ENSG00000187550 SBK2
ENSG00000188817 SNTN
ENSG00000197208 SLC22A4
ENSG00000197249 SERPINA1

ENSG00000203697 CAPN8
ENSG00000203952 CCDC160
ENSG00000249853 HS3ST5
ENSG00000253485 PCDHGA5

Figure 6.22. Common protein coding genes up-regulated both in TCGA basal
tumours and our chapter 3 TAMR cells.

ENSG00000009765 IYD
ENSG00000010310 GIPR
ENSG00000016402 IL20RA
ENSG00000041353 RAB27B
ENSG00000073910 FRY
ENSG00000079337 RAPGEF3
ENSG00000080493 SLC4A4

ENSG00000086548 CEACAM6
ENSG00000088881 EBF4
ENSG00000100003 SEC14L2
ENSG00000103460 TOX3
ENSG00000105388 CEACAM5
ENSG00000106003 LFNG
ENSG00000106018 VIPR2

ENSG00000109472 CPE
ENSG00000109738 GLRB
ENSG00000110169 HPX
ENSG00000113924 HGD
ENSG00000114248 LRRC31
ENSG00000115461 IGFBP5
ENSG00000115844 DLX2

ENSG00000122584 NXPH1
ENSG00000130643 CALY
ENSG00000130997 POLN
ENSG00000133083 DCLK1
ENSG00000135111 TBX3
ENSG00000137968 SLC44A5
ENSG00000137976 DNASE2B

ENSG00000139910 NOVA1
ENSG00000139970 RTN1
ENSG00000140284 SLC27A2
ENSG00000144355 DLX1
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2021), and TP53TG1 which has been shown independently to be more abundant 

in tamoxifen resistant cell lines (Muluhngwi and Klinge, 2021).  

In addition, 412 Luminal A tumour samples were directly compared to 131 Basal 

tumour samples (Table 6.9) 

 

Global breast cancer genotypic profile changes have also been considered by 

performing DEA comparing gene expression profiles of all TCGA normal breast 

samples to all breast cancer tumour samples. Finally, only matching solid normal 

and primary solid tumour samples corresponding to 220 patient samples were 

compared results for DEA are in (Table 6.10) 
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6.4 Discussion 

This chapter aimed to utilize publicly available next generation sequencing 

databases to help nominate better candidate lncRNAs for in-vitro study of their role 

in tamoxifen resistance. A systematic search for relevant datasets was conducted 

in the GEO database to analyse conditions representative of tamoxifen response in 

breast cancer. Following the P.I.C.O.T design to formulate the search question, 120 

datasets were found, after applying inclusion criteria the total number was down to 

five studies. At this early stage, a challenge was highlighted as the number of 

included studies was smaller than expected. Including a larger number of 

appropriate datasets would be possible by expanding the inclusion criteria and 

adding more time and resources. On the other hand, selected studies had the 

element of diversity covering cell lines and patient biopsies, adding more power to 

the analysis.   

 

Gene lists were generated by running each GEO dataset through the decided DEA 

pipeline, results included different populations of genes of which we chose lncRNAs 

and protein-coding genes to undergo more detailed analysis. Conventionally, after 

differential expression analysis, a threshold is set to produce a statistically 

significant ranked list of differentially expressed genes. For protein-coding genes, 

applying the same threshold we used in RNA-seq data in chapter 3 (FDR<0.005 

and fold change =1.5), produced a satisfactory number of differentially expressed 

genes. When applying the same threshold to lncRNA, DEA results were usless as 

the number of lncRNAs was very low or even nill. So, it was clear that applying the 

conventional threshold will not work in favour of producing enough lncRNAs from 
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all datasets. Consequently, we decided to treat this class of genes differently. After 

differential expression analysis of each of our GEO datasets, fold change and 

direction was identified for each lncRNA. Genes were assigned to up-regulated or 

down-regulated groups depending on their fold change sign being positive or 

negative according to each study design. While this method has many downsides, 

from a statistical perspective, making the results more vulnerable to false positives 

and false negative conclusions. Yet, we took into consideration two facts, firstly, 

lncRNAs are known to have a wider dynamic range of activity and function at low 

expression, where small changes in expression level produce a pronounced 

pathological effect  (Ahadi, 2021). Secondly, this chapter studies differential gene 

expression profile similarities between GEO datasets and our tamoxifen resistance 

model from chapter 3, and lncRNAs selected by the fold change direction method 

will not be extensively studied directly unless they were consistently dysregulated 

across different studies and validated independently. Here, we assessed the 

performance of five microarray datasets, consistent results were obtained from all 

datasets from bioinformatics quality control processing (e.g., normalization and 

batch-effect assessment). This was regardless of being sourced by five different 

centres. Much of this good quality data observed may stem from adhering to the 

set inclusion criteria especially starting with raw(.CEL) files and restricting platforms 

used to Illumina and Affymetrix suppliers that algorithms fit perfectly with most DEA 

pipelines. We observed randomness in the distribution only with samples from 

opposite groups in clinical datasets (GSE124647, GSE58644 and GSE9195) 

across PCA axes that represent the degree of variance in the dataset. Higher 

dimensionality is expected in clinical samples like biopsies sourced from different 
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individuals. This is due to them featuring gene expression values that are the result 

of a long-term accumulation of physiological and pathological stimuli. In addition, 

as RNA is highly unstable with a high rate of decay, biopsy tissue handling, and 

storage is an extensive source of technical bias and batch effect compared to cell 

line highly controlled experiments.  

 

Upregulated lncRNAs and protein-coding genes in each GEO study were compared 

to genes upregulated in TAMR group from chapter 3. The literature showed 

conflicting statements about combining microarray and RNA-seq data due to 

fundamental differences in the technical ground between them (Machlus et al., 

2010). For this reason and a lot of others, the results of comparing datasets should 

be interpreted carefully. Many relevant genes have been identified to be common 

between TAMR and multiple GEO datasets, for example, multi cancer-associated 

oncogene identified as Erα target lncRNA NEAT1 (Chakravarty et al., 2014; Pang 

et al., 2019), RP11-156p1.3 (Ali et al., 2020) and CDKN2B-AS1 (Zhuang et al., 

2019). TP53TG1 was found commonly upregulated in three GEO datasets in 

addition to our TAMR data set, it had an oncogenic role in hepatocellular 

Carcinoma(Lu et al., 2021), pancreatic cancer (Y. Zhang et al., 2019) and glioma 

(Gao, Qiao and Luo, 2021) but tumour suppressor in lung (Xiao et al., 2018) and 

breast cancer (Diaz-Lagares et al., 2016; Shao et al., 2020).  The same trend of 

contradiction was also observed in LINC00339 literature (Wu et al., 2022). A 

number of breast cancer protein-coding oncogenes overlapped between chapter 3 

TAMR dataset and multiple GEO datasets such as AKR1C3 (Penning, 2019), and 

LMO2 (Liu et al., 2017) and SLC35F2 (Winter et al., 2014). Next, we compared 
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lncRNAs marked upregulated in tamoxifen resistance-related phenotypes in each 

GEO dataset to other GEO datasets. Interestingly, one lncRNA emerged as 

mutually upregulated in all geo data sets (ensemble ID: ENSG00000196299), 

However, it was not differentially expressed in our TAMR dataset by any degree, 

taking us back to the questionable degree of concordance between microarray and 

RNA-seq output (Perkins et al., 2014). Moreover, when searching the literature for 

verified information referencing this gene, we faced the classic lncRNA annotation 

problem,10 gene name synonyms were found for this ensemble ID and even the 

biotype classification was diverse from a lncRNA to a pseudogene to a processed 

transcript. In general, when interpreting the results, we noted that the published 

literature about lncRNA is lacking and holds contradictions to in-silico results. In 

contrast, search results describing protein-coding genes were much clearer and 

more decisive, which is very expected, a possible explanation for this might be that 

the latter being far well-studied and characterised by all means compared to 

lncRNAs.  

 

The other publicly accessible dataset searched in detail was TCGA-BRCA dataset. 

Our interest centred around the Basal PAM50 subtype; as it represents triple 

negative tamoxifen resistance breast cancer phenotype. DEA was applied to 

normal versus tumour transcriptomic profiles of samples tagged Luminal A and 

basal breast cancer cases. The output of this comparison (Figures 6.19 and 6.20) 

was a list of genes purely upregulated in Basal subtype; when compared to TAMR 

list of genes, many lncRNAs (e.g., HOTAIR (Xue et al., 2016) and MALAT1 (Huang 

et al., 2016)) and protein-coding genes (e.g., CEACAM6 (Cummings et al., 2007) 
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and TOX3 (Seksenyan et al., 2015)) emerged in the literature as being well 

characterised with relation to tamoxifen resistance and carcinogenesis pathways. 

Additional comparisons were also informative, most prominently tamoxifen 

resistance associated BCAR4 was found to be down-regulated in luminal A tumours 

while up-regulated in basal tumours, these results are similar to those reported by 

(Godinho et al., 2010, 2011).  

 

Summary  

In summary, we have identified multiple lists of differentially expressed lncRNAs 

and protein-coding genes believed to be related directly or indirectly to tamoxifen 

resistance and aggressiveness of breast cancer. Results from comparing relevant 

GEO and TCGA DEA results to TAMR upregulated genes generated common 

genes that can be utilised to construct novel interaction networks. To make up for 

the contradiction observed it is important when a gene is prioritised, its expression 

trend should not be taken at face value. Planning the next steps should be 

supported by other sources of information. 
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7.  Discussion 

Breast cancer is the most common cancer in the female population and is 

considered to be a major health issue with high morbidity and mortality rates 

worldwide (Cancer Research UK, 2017). The clear majority of breast tumours 

express ERα, indicating a positive response to endocrine therapies such as 

tamoxifen and aromatase inhibitors. However, endocrine resistance in ER-positive 

breast cancers is one of the major obstacles needing to be resolved. While many 

mechanisms of resistance have been proposed, many of the key triggers and 

regulators of these pathways are yet to be identified in order to establish highly 

sensitive and specific prognostic biomarkers and new therapeutic targets and 

hence improve survival rates. Most of the studies elaborate on the role of alterations 

in protein-coding genes on the molecular mechanism of endocrine resistance, such 

as ESR1, ErbB-family (EGFR, HER2, and HER3), and IGFR (Osipo et al., 2007; 

Jeselsohn et al., 2014; Murphy and Dickler, 2016).  

Many lncRNAs having been found to be altered in endocrine-resistant breast 

cancers such as HOTAIR and BCAR4 (Godinho et al., 2010; Bhan et al., 2013) 

However, the role of lncRNAs in the pathways of resistance is still obscure, and 

many aspects of their integrated functional association with other molecules are 

missing. Generally, the main function of lncRNAs is directing genomic 

transcriptional, post-transcriptional, and translational processes (Wang and Chang, 

2011). This is achieved by regulatory chromatin looping and histone modification to 

control targeted protein-coding gene expression, many lncRNAs also act as 

precursors of small non-coding RNAs (Cai and Cullen, 2007) and microRNA 

sponges to suppress or enhance their repressive activities (Huang et al., 2017). 
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Taken together, this gives the impression that lncRNAs work on multiple levels and 

locations on the genome. The complexity of lncRNAs’ mechanism of action and the 

dynamic nature of their expression, where active transcription and degradation 

occur according to continually changing cellular conditions, form a major challenge 

in the functional dissection of lnc RNA transcripts. 

The overall aim of this project is to assess the role of lncRNAs in driving tamoxifen 

resistance in breast cancer. Our objective was to nominate a group of lncRNAs to 

further investigate in-vitro. Our entire project consisted of four main stages. Stage 

one was the foundation that was established by identifying a list of lncRNAs using 

RNA-seq technology. Stage 2 was to study a few of the nominated lncRNAs in-

vitro, by manipulating their expression and assessing the effect on tamoxifen 

sensitivity in TAMR cells. Unfortunately, none of the investigated lncRNAs could be 

confirmed as regulating tamoxifen resistance. Therefore, for the next stage, we 

investigated the function one of the lncRNAs identified HOTAIRM1 in detail in 

pathways other than resistance. The final stage of our project was to utilize publicly 

available next generation sequencing datasets to help strengthen and refine our 

lncRNA selection criteria. This general discussion section summarizes the main 

findings of each results section, outlines the limitations of these studies, and 

discusses ideas for future research development.  

The results from RNA-seq bioinformatics analysis identified differentially expressed 

lncRNAs and protein-coding genes between tamoxifen-sensitive and tamoxifen-

resistant MCF-7 cell lines. From this we proposed that dysregulated lncRNAs act 

as oncogenes if their expression is increased or tumor suppressors if their 

expression is decreased. lncRNAs upregulated in TAMR cells were prioritised 
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mainly based on the degree of difference in expression and the statistical 

significance of this change. Of this list, LUCAT1, SOX21-AS1, NR2F1-AS1, and 

HOTAIRM1 lncRNAs were selected to undergo further in-silico analysis. GSEA 

functional characterisation of the list of differentially expressed lncRNAs and 

protein-coding genes were also performed. Initially general carcinogenesis 

pathways produced a list of significantly enriched pathways larger than expected. 

To gain more functional context for our list of differentially expressed protein-coding 

coding genes of which found to enrich carcinogenesis/endocrine resistance-

associated gene sets were used to seed a lncRNA-miRNA-mRNA interaction 

network for each of the four lncRNAs.  

Analysis of the 4 prioritised genes indicated a number of promising potentials for in-

vitro validation. Silencing of candidate lncRNAs was successful except for LUCAT1. 

However, no increase in tamoxifen sensitivity was observed after depleting the 

expression of SOX21-AS1, NR2F1-AS1, or HOTAIRM1 which is contrary to what 

was expected. For the next stage of our project, HOTAIRM1 was selected to 

undergo further molecular investigations in an effort to explain our previous 

observations in the light of enhanced carcinogenic properties is that drive the 

aggressiveness of breast cancer cells with dysregulated HOTAIRM1 expression. 

The results of the effect of HOTAIRM1 depletion on EMT-related molecular 

expressions and HOXA5 expression affection in triple-negative breast cancer 

(CAL51) cells. We considered these areas to be needing further investigation as 

some changes were observed, such as increased migration and higher relative 

expression of β-catenin. Though it happens only with one of the siRNAs and might 
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be an off-target, non-specific effect, however, we can consider this area 

inconclusive and can be a candidate for further exploration. 

 

Finally, datasets pertaining to tamoxifen responsiveness were sourced from the 

GEO and TCGA databases. We aimed to develop a methodological pipeline 

capable of producing multiple lists of differentially expressed genes and comparing 

different phenotypes and then highlighting the genes shared across comparable 

populations. Matchings between differentially expressed lists of genes between our 

list of RNA-seq data, GEO, and TCGA data, will further validate the prioritised list 

of candidate genes and give flexibility when evaluating any candidate gene stand 

relative to tamoxifen response in breast cancer. 

Strengths and Limitations  

The present study was designed to prioritise and then study the function of one of 

the identified lncRNAs generated using RNA-seq technology. While RNA-seq is a 

very reliable technology, bias can be introduced at any level along the pathway of 

the experiment. From technical bias during wet lab handling to the sequencing 

machine technical bias and to the bioinformatics analysis itself. Here, we noticed 

that RNA-seq produced a huge number of significantly expressed lncRNAs and 

protein-coding genes. When prioritising the genes, setting the fold change and p-

value cut-off was a risky step of introducing false positives or excluding false 

negatives. Also, there was the well-established issue of lncRNA annotation and 

non-coding genes biotype determination, which has potential for losing true 

candidates, in this field we noticed the annotation resources to be very limiting, so, 

validating the annotation (automatically) was not possible.  
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There was also the challenge of choosing a tamoxifen resistant model for studying 

tamoxifen resistance in breast cancer. Due to the time limit, only a 2D monolayer 

culture model was used. While it is easier, and more readily used, it does not 

account for the tumour’s microenvironment nor the patient physiological variables. 

It is undeniable that the affected supply chains due to the recent global pandemic 

affect some of our decisions regarding directing the project, while HOTAIRM1 was 

a considerable candidate for driving tamoxifen resistance, other candidates were 

also serious contenders for molecular analyses. 

Transcriptomic analysis of GEO and TCGA datasets enabled the exploration of a 

broad diversity of genes, together with our RNA-seq data. It created a genotypic 

foundation that has the flexibility to be used and re-analysed for following omics 

studies. 

Future work 

For the currently nominated lncRNAs, further exploration and refinement of the 

constructed lncRNA-miRNA-mRNA interaction networks of each in areas such as 

prioritising an entire axis to be tested in-vitro. LUCAT1 expression negatively 

correlated with ESR1 expression in the analysed CCLE data and was significantly 

upregulated in TAMR cells. It would be therefore interesting to investigate the 

response of TAMR cells to LUCAT1 down-regulation. HOTAIRM1 characterization 

by expression manipulation was done using ATRA treatment for gene amplification. 

ATRA -mediated amplification is not specific for HOTAIRM1 only and carries an 

unignorable risk for off-target modifications. Therefore, HOTAIRM1 targeted 

amplification is to be achieved using vector mediated HOTAIRM1 overexpression.  
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There are a number of very promising candidates lncRNAs, and the process of 

nominating the true proper candidate is a vast area for improvement. For this 

matter, further exploration of more (raw datasets) from the publicly available 

databases; will give much uniform and reliable results, especially when paired with 

clinical data from the same samples that can give us the opportunity to stratify 

patients based on hormone receptor status, type of treatment given, the outcome 

of treatment (survival analysis), and associated genomic alterations. Furthermore, 

correlation analysis between HOTAIRM1 and protein-coding genes and miRNAs, 

known to be involved in the resistance pathways would be used to identify upstream 

regulators and downstream targets of any nominated lncRNA.  

Conclusion 

Our study aimed to examine the contribution of lncRNAs in the development of 

tamoxifen resistance in breast cancer. The in-silico study model used, was a 

comprehensive bioinformatics approach using R programming, utilizing RNA-seq 

technology; to pinpoint candidate lncRNAs with potential implications in driving 

tamoxifen resistance. we identified many dysregulated lncRNAs, of which we 

prioritized LUCAT1, SOX21-AS1, NR2F1-AS1, and HOTAIRM1 for further 

investigation. These four genes were significantly upregulated in tamoxifen 

resistant breast cancer cell line. Therefore, we proceeded with in-vitro analyses, 

that showed no association between downregulating any of the four lncRNAs and 

the overall response to tamoxifen. Consequently, we sought to refine our selection 

criteria by exploring publicly available GEO and TCGA datasets relative to our RNA-

seq results. Despite research limitations due to the time factor and the effects of 

global pandemic, an intriguing list of lncRNAs has been identified, that might prove 
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useful for the development of novel therapeutic targets and prognostic biomarkers. 

By improving the experimental models and expanding the bioinformatics analyses 

we can enhance our understanding of the role of lncRNAs in tamoxifen resistance 

and ultimately improve the survival rates and quality of life of breast cancer patients. 
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Appendix  

Table 1 Prioritised lncRNAs upregulated in TAMR cells 

 
ensembl_gene_id external_gene_name baseMean log2FoldChange lfcSE pvalue padj 

1 ENSG00000197301 HMGA2-AS1 25.05572602 -8.851355246 2.820294481 1.16E-10 1.02389E-09 

2 ENSG00000248323 LUCAT1 17.0438206 -8.17352108 2.749795999 2.81E-09 2.08615E-08 

3 ENSG00000250266 LINC01612 11.74716322 -7.497809528 2.687526209 6.49E-08 3.99482E-07 

4 ENSG00000231683 na 34.79485654 -7.212641057 1.298035761 4.61E-10 3.77571E-09 

5 ENSG00000227640 SOX21-AS1 61.81278581 -5.811933421 0.667590309 1.84E-18 3.17557E-17 

6 ENSG00000235770 LINC00607 35.88862503 -4.256486108 0.56012439 6.56E-15 8.62992E-14 

7 ENSG00000236651 DLX2-DT 21.10114095 -3.731187172 0.627504169 5.1E-10 4.13564E-09 

8 ENSG00000237187 NR2F1-AS1 91.57338412 -3.476229928 0.453015277 1.73E-15 2.38034E-14 

9 ENSG00000231185 SPRY4-AS1 37.51520264 -3.468792847 0.467410452 1.9E-14 2.41775E-13 

10 ENSG00000236714 LINC01844 17.16702041 -3.382548377 0.671066262 7E-08 4.28236E-07 

11 ENSG00000257842 NOVA1-DT 74.90697817 -3.298047728 0.359820312 6.2E-21 1.25509E-19 

12 ENSG00000230126 FGF12-AS2 25.42660312 -3.207412817 0.531730025 2.37E-10 2.01336E-09 

13 ENSG00000250295 RDH10-AS1 23.75927853 -3.062927828 0.565945714 7.43E-09 5.23465E-08 

14 ENSG00000249628 LINC00942 23.11475092 -2.897886944 0.578723452 6.16E-08 3.80383E-07 

15 ENSG00000231776 LINC01611 17.74706973 -2.7768074 0.597356625 3.77E-07 2.08372E-06 

16 ENSG00000203721 LINC00862 55.88612405 -2.551037385 0.361738362 1.8E-13 2.08609E-12 

17 ENSG00000233429 HOTAIRM1 22.56620131 -2.500997587 0.601596247 3.72E-06 1.78725E-05 

18 ENSG00000189196 LINC00994 188.849314 -2.42264431 0.219269944 2.03E-29 6.41732E-28 

19 ENSG00000226383 LINC01876 37.3554781 -2.418727981 0.381400628 2.84E-11 2.65278E-10 

20 ENSG00000251138 LINC02882 30.92034239 -2.36288442 0.448552038 1.77E-08 1.17953E-07 

21 ENSG00000241359 SYNPR-AS1 14.82027978 -2.333579518 0.638752144 3.03E-05 0.000124293 

22 ENSG00000241111 PRICKLE2-AS1 342.2366951 -2.243213416 0.158677926 2.78E-46 1.6594E-44 

23 ENSG00000227036 LINC00511 31.00389315 -2.098839981 0.425159653 9.86E-08 5.91245E-07 

24 ENSG00000250548 LINC01303 22.138081 -1.895056661 0.46560589 6.61E-06 3.03661E-05 

25 ENSG00000236432 MFF-DT 22.06083272 -1.765508291 0.462635198 2.09E-05 8.79911E-05 

26 ENSG00000235529 AGAP1-IT1 38.9152265 -1.76442891 0.406227015 2.16E-06 1.07798E-05 

27 ENSG00000225953 SATB2-AS1 47.06643079 -1.708380044 0.360652871 3.51E-07 1.9502E-06 

28 ENSG00000251432 LINC02615 51.19226167 -1.669286165 0.336163491 1.19E-07 7.09357E-07 

29 ENSG00000226067 LINC00623 180.5334226 -1.600593124 0.214993796 1.79E-14 2.28058E-13 

30 ENSG00000250786 SNHG18 74.63359773 -1.578218131 0.311554919 7.28E-08 4.43883E-07 

31 ENSG00000226476 LINC01748 28.51313219 -1.501403002 0.404168154 4.04E-05 0.00016167 
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Table 2 Prioritised lncRNAs doregulated in TAMR cells 

 
ensembl_gene_id external_gene_name baseMean log2FoldChange lfcSE pvalue padj 

1 ENSG00000251129 LINC02506 73.17295375 8.335559324 1.29353 5.3196E-13 5.92492E-12 

2 ENSG00000196668 LINC00173 16.2768872 8.008662123 2.669429 4.39555E-09 3.17218E-08 

3 ENSG00000235123 DSCAM-AS1 20002.90821 6.735506235 0.332166 1.35483E-92 3.08066E-90 

4 ENSG00000249421 ADAMTS19-AS1 20.97909443 5.040796291 0.912942 1.5268E-08 1.02248E-07 

5 ENSG00000225362 CT62 113.3227372 4.897281009 0.413158 3.25219E-33 1.16668E-31 

6 ENSG00000245904 BTG1-DT 19.72078462 3.855285689 0.891783 1.43301E-06 7.32108E-06 

7 ENSG00000245060 LINC00847 183.8176812 3.189294663 0.267364 7.43818E-34 2.75529E-32 

8 ENSG00000244161 FLNB-AS1 48.02732743 2.967889135 0.371596 1.73149E-16 2.55658E-15 

9 ENSG00000232352 SEMA3B-AS1 15.54650222 2.816615484 0.63761 1.25457E-06 6.47436E-06 

10 ENSG00000232624 LINC01517 14.75900804 2.713757205 0.659308 4.61249E-06 2.17752E-05 

11 ENSG00000236581 STARD13-AS 44.18117173 2.643104395 0.443072 2.55502E-10 2.15175E-09 

12 ENSG00000249846 LINC02021 48.68117328 2.623974679 0.340617 1.71872E-15 2.37408E-14 

13 ENSG00000249346 LINC01016 44.32662342 2.527297159 0.555693 4.94355E-07 2.6902E-06 

14 ENSG00000246695 RASSF8-AS1 34.32273203 2.233286257 0.393816 1.90526E-09 1.43892E-08 

15 ENSG00000247809 NR2F2-AS1 19.75900329 2.110613376 0.535522 1.0475E-05 4.66953E-05 

16 ENSG00000223749 MIR503HG 42.15565348 2.004706279 0.550357 3.09818E-05 0.00012667 

17 ENSG00000267131 na 92.82991853 1.991241517 0.472151 2.95021E-06 1.4386E-05 

18 ENSG00000224424 PRKAR2A-AS1 27.76847063 1.901905201 0.487985 1.31475E-05 5.74401E-05 

19 ENSG00000243701 DUBR 72.64471061 1.901163348 0.338972 2.9592E-09 2.19233E-08 

20 ENSG00000231107 LINC01508 47.16095784 1.88933689 0.451283 3.84281E-06 1.84106E-05 

21 ENSG00000273018 FAM106A 15.12403021 1.852616361 0.583775 0.000207319 0.000728699 

22 ENSG00000225077 ICMT-DT 25.83824463 1.844572261 0.542297 8.83504E-05 0.000333202 

23 ENSG00000262155 LINC02175 26.49943504 1.787980611 0.47712 2.5429E-05 0.000105573 

24 ENSG00000255100 TSKU-AS1 21.07523663 1.745081826 0.516882 0.000109731 0.000405761 

25 ENSG00000245888 NSMCE1-DT 21.70646887 1.613683721 0.485786 0.000151045 0.000543834 

26 ENSG00000229267 SNHG31 32.74171109 1.600995598 0.377066 4.06377E-06 1.9375E-05 
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Figure 1 Top 50 lncRNAs up regulated in TAMR  

Deseq2 Clustering on  
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Figure 2 Top 50 lncRNAs down regulated in 

TAMR Deseq2 Clustering on  
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Figure 3 Top 50 protein coding genes up regulated in TAMR  

Deseq2 Clustering on  
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Figure 4 Top 50 protein coding genes down regulated in TAMR  

Deseq2 Clustering on  
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