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Abstract

Radiation therapy plays a crucial role in the treatment of cancer and is widely used in curative

and palliative care. While this therapy effectively targets tumour tissue, it can inadvertently

harm cells in nearby organs, resulting in toxicity. These toxicity effects significantly impact pa-

tients’ well-being, causing physical and mental challenges. In pelvic radiotherapy, the majority

of patients may develop three common toxicities related to irradiation of the bowel including

diarrhoea, faecal incontinence, and bowel urgency.

The severity of toxicity depends on various factors, including cellular characteristics, radiation

dosage to non-cancerous tissues, patient attributes, and oncologic treatment variables. However,

the relationship between these factors and the risk of toxicity remains unclear. To minimise the

impact of toxicity, it is crucial to accurately assess potential risks during treatment planning.

This research delves into the application of machine learning, particularly deep learning meth-

ods, to identify the correlation between late toxicity and various features after radiotherapy.

Specifically, the research aims to establish a framework for predicting radiotherapy-induced

toxicity, as well as detecting and analysing potential risk factors for patients with pelvic cancers.

The main framework of this research includes two convolutional blocks for analysis of com-

puterized tomography (CT) scans and dose distribution data, and a fully-connected path for

analysis of clinical variables, including demographics, comorbidities, medications, and treat-

ment features. An attention mechanism was employed to determine possible risk factors and

critical anatomical regions. In the study, a dataset of 315 patients treated at Leeds Cancer Centre

in the United Kingdom between 2009 and 2014 was utilized.

The summary of the results indicates that the attention weights for bowel urgency were primar-

ily concentrated on the right iliac fossa, and the attention weights for faecal incontinence were

focused on the postero-inferior region (i.e., corresponding to the anorectum). However, no spe-

cific anatomical region could be identified from the attention weights for predicting diarrhoea.

The analysis of clinical data, in conjunction with CT and dose, led to an improvement in predic-

tion performance, resulting in an area under the receiver operating characteristic curve (AUC)

of 88% for bowel urgency and 78% for faecal incontinence. In contrast, the best performance

for predicting diarrhoea was achieved when analyzing clinical features alone, resulting in a 68%

AUC. The proposed frameworks and the outcomes of this study can assist clinicians in gaining

a better understanding of toxicity and its intricate relationship with different factors.
v
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Chapter 1

Introduction

The objective of this chapter is to provide a succinct overview of the issue of radiotherapy-

associated toxicity and the ways in which current techniques assist in reducing this. The con-

tribution of this doctoral studies to this area and the overall structure of the thesis are also

included.

1.1 Problem definition

Radiation therapy (RT) is currently utilised in over 50% of patients with cancer, either as a

curative treatment or for palliative care [35]. It can be considered as the main treatment or

in combination with chemotherapy, surgery and immunotherapy to manage cancerous tissues

and it is sometimes used to treat non-cancerous (benign) tumours and other diseases, such

as thyroid eye disease and blood disorders [58]. Broadly, there are two different methods for

RT: external beam radiotherapy (irradiation from outside the body) and internal radiotherapy

(irradiation from inside the body). The former involves focusing high-energy radiation beams

typically using a linear accelerator into the tumour area, while the latter can be performed by

injecting/swallowing radioactive liquids or implanting radioactive metal inside the body near
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1.1 Problem definition

the cancerous tissue either temporarily (brachytherapy) or permanently (seed brachytherapy).

Depending on the type, stage, and location of the tumour, the number (or fraction) of treatments

administered varies. The use of concurrent chemotherapy or other concurrent agent (used as a

radiosensitizer) again depends on the type of cancer and staging and patient fitness.

Using ionising radiation to eliminate tumour tissue can also affect normal tissues in surrounding

organs, referred to as “organs at risk” (OAR), potentially resulting in damage to that tissue,

leading to toxicity; RT generates highly reactive molecules within the cellular structures to

disrupt DNA strands and other vital cellular components, leads to irreversible cellular damage

and death to healthy cells.

The majority of patients report various side effects after RT, which affect their well-being and

quality of life [35]. Side effects are related to the anatomical position of RT and the adjacent

tissues. Hair loss, nausea, sore mouth, diarrhoea, sore or red skin, mucosal injury, and moderate

fatigue are all common acute side effects of radiation therapy ([35], [35]).

These toxicities may be associated with short-term and long-term consequences. In short-term

(acute) toxicity, adverse effects appear during radiotherapy or within three months after the

treatment, and they may resolve within months. Long-term (late) toxicities are observed later

than three months, and are usually considered progressive and irreversible over time and affect

the patient’s quality of life.

The damage caused by RT to normal cells depends on various factors, including cellular char-

acteristics, organs’ physiology and anatomy, radiation dose to normal tissues, patient charac-

teristics, and oncological treatment features. However, the relationship between these factors

and the risk of late toxicity for many organs remains unclear. To reduce the damage to normal

tissues and minimise toxicity risk, RT is precisely planned for each patient. Clinicians must

have a clear understanding of the relationship between different risk factors for late toxicity

affecting each patient in order to develop the most efficient treatment plan. As a result, an ac-

curate assessment of potential toxicity risks is a crucial component of radiotherapy treatment
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Figure 1.1: Example of a female pelvis in three different views. The “peritoneal cavity” struc-
ture is considered as the bowel bag (organ at risk) for this thesis.

planning.

1.1.1 Long-term toxicity from pelvic radiation therapy

The pelvis is the lower part of the torso consisting of the intestines, urinary bladder and repro-

ductive organs. Fig. 1.1 illustrates important anatomical structures in the female pelvis which

can be affected by RT. Bilateral femurs (hip bone) are connected in front, at the pubic sym-

physis, along with iliac bones at the side and the sacrum and coccyx behind form the major

pelvic bones, and provide support and balance for the torso. Throughout the entire thesis, the

“peritoneal cavity” structure is identified as the “bowel bag”, which is the organ at risk being

studied for potential toxicities.

Pelvic cancers develop in organs and structures such as the reproductive organs(uterus/cervix

in females or prostate in males), the bladder, rectum, and the anus. A variety of pelvic cancers,

including anal cancer, rectal cancer and bladder cancer, affect both men and women. Other

cancers are dependent on patient sex; cervical, uterine/ endometrial, ovarian, vaginal, and vul-

val cancers being female-specific, whilst prostate and testicular cancer are specific to male.

The most prevalent side effect or toxicity after pelvic RT are gastrointestinal (GI) disorders.
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It is estimated that 50% of patients treated with RT develop GI toxicities over a period of 10

years after their treatment [3], [32]. Diarrhoea, faecal incontinence, bleeding, bowel urgency,

abdominal discomfort, cramping, mucous in the stool, and tenesmus are the most common.

The severity of these side effects depends on the irradiated area and treatment regimen, but

majority of the patients reported that it decreased the quality of their life([32]).

1.2 Reducing radiotherapy toxicity

In modern radiotherapy techniques, three-dimensional (3D) images of the body, usually CT

scans, are utilised for the purpose of planning and optimising individual patient treatment plans.

This process involves creating organ segmentation (structure sets) and ultimately generates a

3D dose distribution or matrix, which accurately represents the radiation dose delivered to the

specific anatomical structures involved. Efforts to minimise adverse effects of RT have mirrored

advances in radiation physics and treatment regimens. Conformal radiotherapy (CRT) and

intensity-modulated radiation therapy (IMRT) are techniques where radiation beams are tightly

shaped to closely fit the area of the cancer and avoid healthy tissues as much as possible.

CRT involves shaping radiation beams to match the shape of the tumour as closely as possible.

This is achieved by using multiple radiation beams and customised blocking devices to shape

the radiation field. The goal of CRT is to deliver a higher dose to the tumour while minimising

radiation exposure to surrounding healthy tissues. On the other hand, IMRT takes the concept

of conformal radiotherapy a step further. IMRT uses advanced computer algorithms to divide

the radiation beam into many smaller beamlets, each with individually adjustable intensity.

This allows for more precise modulation of radiation dose within the tumour, enabling higher

doses to be delivered to specific regions while sparing nearby healthy tissues. IMRT offers

greater flexibility in delivering varying radiation doses to different areas within the tumour.

Although CRT and IMRT reduce the risk of toxicity (by exposing less normal tissues to ra-

diation), the higher doses used still affect non-target cells around tumours which can lead to
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toxicity.

To address this issue, clinicians personalise treatment plans for each patient based on assump-

tions about the relationship between radiation dose, tumour control, and potential treatment

toxicity. These relationships have been explored with traditional outcome modelling tech-

niques, which rely on volume segmentation information and 3D dose information to create

treatment dose volume histograms (DVH) for different organs at risk. In DVH-based models,

the radiation dose is simplified into a one-dimensional form, for instance mean absorbed dose,

for each anatomical structure. Then this dose representation is related to outcome, e.g., through

generalised linear modelling, potentially taking patient characteristics or other clinical factors

into account.

However, collapsing a three-dimensional dose distribution into a one-dimensional dose vector,

limits the modelling power and may result in a low accuracy prediction. In particular, spatial

dose distribution information and heterogeneous radio-sensitivity of organs can improve the

prediction power, which are not considered by current outcome modelling methods. Details

about analysing dose spatial information and its impact on the prediction performance are

discussed in the following chapters.

1.3 Treatment improvement with artificial intelligence

The main disadvantage of DVH-based methods is that they do not consider spatial information

within the dose treatment plan. Furthermore, coping with unstructured visual information such

as 3D CT scans or magnetic resonance imaging (MRI) data is challenging, and manual methods

of processing and analyzing such quantities of data is labour intensive. On the other hand, it has

been demonstrated that deep learning models can reliably perform image analysis tasks such

as classification, segmentation, and registration [101] due to their ability to efficiently identify

spatial patterns. This has inspired researchers to apply machine learning techniques to medical

image analysis tasks.
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In recent years, medical image analysis has been leveraging artificial intelligence (AI) and par-

ticularly deep learning techniques [74], [132]. AI as a broad field encompassing the develop-

ment of intelligent machines that can perform tasks that typically require human intelligence,

wide range of techniques and approaches, such as machine learning (ML), computer vision,

and robotics. Deep learning (DL) is a subfield of ML that utilizes artificial neural networks

(ANNs) to learn from data. Using ML and deep learning models to analyse medical data has

resulted in image processing models with higher accuracy and lower time complexity. Fur-

thermore, deep networks can help uncover hidden patterns and recognise complex structures

of medical data autonomously within a couple of minutes, which is humanly impracticable to

perform. Automatic dose treatment planning for head and neck cancer [50], [115], prediction

and prognostication of treatment outcome [71], image registration for RT [147] and RT qual-

ity assurance [80] are some examples of recently developed ML methods for clinical tasks in

radiation oncology.

Despite the numerous potential advantages offered by AI in the medical field, there are still

several challenges; Firstly, AI technology is relatively new and consequently inaccuracies are

possible. Due to the critical nature of medical tasks, there is always a need for human surveil-

lance. Furthermore, the implementation of AI in clinical practice encounters licensing chal-

lenges, necessitating a validation process for AI systems to be utilised as medical devices;

to ensure patient safety and regulatory compliance, a thorough validation process is required.

This process involves rigorous evaluation, testing, and certification of AI systems as medical

devices. Moreover, processing dimensionally-huge data requires powerful resources (comput-

ers with fast graphical processing units (GPUs) and large memories) that can be expensive.

Lack of adequate datasets and being susceptible to security risks are other challenges AI faces

in medical tasks.
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1.4 Thesis contribution and overview

Although modern treatments for cancer have improved survival rates, and state-of-the-art radio-

therapy techniques offer much less toxic treatment than even just a few decades ago, radiation-

induced late toxicity still affects a significant number of people. Adverse effects of cancer

treatment often impact patients’ quality of life and cause physical and psychological problems

for them. Knowledge of the treatment outcome leads to a more precise approach for con-

trolling RT toxicity and an improvement in symptom control. Reducing long-term toxicities

has emerged as a key component of radiotherapy treatment optimisation, and this needs to be

addressed in oncology research and practice.

There are several studies focused on the outcome prediction with the help of ML-based methods

to handle dose data (the related works and their challenges are thoroughly reviewed in chapter

2). What is less clear and is a major limitation in many studies is that the response (output)

of the model is not fully understood; the complexity of ML models makes it challenging to

identify risk factors and explain their behaviour, leading to a significant amount of uncertainty

regarding the relationship between input data and the classification outcome.

The focus of this research is to study the use of ML, and in particular deep learning meth-

ods, with the aim of exploring the correlation between late toxicity and various features after

pelvic radiotherapy. A specific objective is to provide a framework for predicting bowel-related

toxicities (as the most common toxicity following pelvic radiotherapy), including urgency, di-

arrhoea, and faecal incontinence, and identifying possible risk factors in patients with pelvic

cancers. The presented framework is a novel approach that leverages multiple instance learn-

ing and an attention mechanism to identify correlations between input data and bowel-related

toxicities, simultaneously assessing the impact of each data on the toxicity. This thesis anal-

ysed data collected from a research project (Ethics Committee approval code: 13-YH-0156;

project name: improving assessment and recording of pelvic cancer treatment effects; funder:

National Institute for Health and Care Research; start date: 01/04/2014; end date: 19/03/2015)
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Figure 1.2: Overview of the study. Developing a machine learning framework to analyse
CT scans, dose distribution, and clinical data, with the aim of predicting toxicity after pelvic
radiotherapy; and detecting correlations between toxicity and various factors.

which included patient reported data (from validated questionnaires) on bowel toxicity, along-

side clinical and treatment data, radiotherapy dose and imaging data from patients treated with

curative intent RT for four pelvic malignancies (rectal, anal, cervical and endometrial cancer)

at Leeds Cancer Centre. Fig.1.2 shows the overall structure of this work. this thesis studies

sought to address these outcome prediction tasks through the following objectives:

1. Analysis of patient’s numerical data including patient’s demographic, treatment features

and pre-treatment medical information with machine learning to:

• predict the occurrence of patient-reported bowel-related toxicities.

• analyse and quantify the impact of each numerical feature on the predicted toxicity.

2. A fully-automated workflow using patient’s 3D image data including CT scans and dose

distributions to:

• predict the occurrence of bowel-related toxicities.

• provide visual explanations for the predicted outcome in order to identify which

anatomical structures are involved in the toxicity.

• quantitatively analyse the importance of CT and dose data and their associations

with toxicity.
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3. A fully-automated workflow exploring a combination of image and numerical data to:

• predict the occurrence of bowel-related toxicities.

• quantify the correlation between inputs and the predicted outcome.

4. Construct an atlas to summarise, visualise and localise the radiotherapy-induced toxicity

based on the anatomical structure of the pelvis.

The aim of these studies is to improve the prediction of toxicity using novel prediction methods,

which in the future could be used to develop a clinical decision support tool for radiotherapy

planning, not only improving patient outcomes but also potentially providing clinicians with

time, cost, and efficiency savings.

The overall structure of this thesis takes the form of six chapters, where:

• Chapter 2 provides a review of recent studies which used machine learning and deep

learning models to predict RT-induced toxicity. A modified version of the review orig-

inates from my paper “Deep learning for radiotherapy outcome prediction using dose

data–a review” published in Clinical Oncology [6].

• Chapter 3 provides information on the datasets employed in this research; two datasets

of image and numerical data with their pre-processing procedures are described in de-

tail. Then, a data analysis plan presenting a roadmap for analysis, interpretation, and

organisation of data in the study is provided.

• Chapter 4 reports the findings of an outcome prediction study focusing on numerical

data. In this chapter, employing three different machine learning methods, toxicity was

analysed with respect to patients’ clinical data. The quantitative assessment of possible

risk factors is provided as the outcome of this chapter.

• Chapter 5 presents a novel deep learning model for toxicity prediction based on multi-

ple instance learning and attention mechanism. The output of the model addresses three
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issues: toxicity classification, toxicity risk map and input associations. A toxicity at-

las summarising risk maps based on bowel bag structure is also presented as a separate

result of this chapter. A shortened version of this chapter originates from my paper “Tox-

icity Prediction in Pelvic Radiotherapy Using Multiple Instance Learning and Cascaded

Attention Layers” published in IEEE Journal of Biomedical and Health Informatics [47].

• Chapter 6 reports the findings of an outcome prediction study utilising both imaging and

numerical data and their associations with RT-induced toxicity. The proposed method

employs both types of data in order to analyse and predict toxicity after pelvic radiother-

apy. A shortened version of this chapter is submitted to Medical Physics Journal and a

section of the analysis from this chapter was published as a scientific abstract entitled

“Deep learning with visual explanation for radiotherapy-induced toxicity prediction”,

presented at the SPIE Medical Imaging, Computer-Aided Diagnosis conference held in

San Diego, California, United States in February 2023 [46]

• Chapter 7 provides an executive summary of the findings of this research, and reflects

on the implementation of the research in practice, discussion of limitations and future

work.

1.5 Summary and conclusions

This initial chapter briefly introduced the issue of radiotherapy-induced toxicity and explored

current methods aimed at mitigating it. Furthermore, an overview was provided on how ma-

chine learning can potentially help address these problems. In order to comprehend why ma-

chine learning has emerged in this field and identify the specific shortcomings of traditional

models that have prompted the adoption of machine learning, it is necessary to review the ad-

vantages and disadvantages of existing models. In the next chapter, a more in-depth discussion

of the limitations of current models and a comprehensive summary of recent works will be

provided. The subsequent chapter will also define the technical background to this work.
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Chapter 2

Literature Review and Technical

Background

This chapter offers a comprehensive overview of the current models used for radiotherapy

outcome prediction. It delves into the details of various machine learning and deep learning

models proposed for this purpose. Additionally, the technical background of these reviewed

models is thoroughly explained. By exploring the state of research in this field, this chapter

provides insights into the current progress, the challenges faced, and the strategies employed

to address them.

A modified version of the review originates from my paper “Deep learning for radiotherapy

outcome prediction using dose data–a review” published in Clinical Oncology journal [6].

2.1 Introduction

Recent improvements in personalised radiotherapy have involved the use of predictive models

to optimise the treatment plan individually for patients [108], [2], [85], [160]. Traditional out-

come modelling in radiation oncology uses statistical models to explore the correlation between
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input data and toxicity. These statistical models are typically in the form of generalised linear

modelling and rely on one-dimensional (1D) input data. Consequently, there is data dimension

reduction as a pre-processing step. For instance, in the vast majority of prediction methods,

the 3D dose treatment plan is reduced to a one-dimensional dose vector, where each element

represents the mean absorbed dose or volume receiving a certain dose for a specific anatomical

structure. Representing highly complex and multidimensional RT data with one-dimensional

vectors leads to missing correlations and discards spatial information. Sensitivity to outliers

and data independency are other challenges that affect traditional prediction approaches.

Methodologies using machine learning have emerged to overcome the shortcomings of classic

radiotherapy outcome prediction models. They have been utilised to explore the complex re-

lationships between input and output data. In this chapter, the studies that leverage machine

learning models for RT outcome prediction are reviewed. Prior to that, the technical aspects

underlying the ML models employed in these reviewed studies are explained.

2.2 Technical background

2.2.1 Machine learning for classification

Machine learning is a field of study concerned with building methods and algorithms that learn

from examples. ML methods leverage these examples, known as “training data,” to learn to

perform some set of tasks, and they are applied to new examples, known as “test data,” for

their performance evaluation. Classification is a task where the model learns how to assign

“labels” to samples from the input data in order to distinguish their categories. Various types

of machine learning models have been researched and developed for classification problems;

artificial neural networks, decision trees, regression analysis, K-nearest neighbour, Bayesian

networks and support vector machines are amongst well-known methods. Different factors can

affect choosing one model over the others; including the nature of the problem, size and quality

of the data, type of the desired output, urgency of the task, available computational resources,
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etc.

Typically, traditional machine learning techniques require a domain expert to identify and ex-

tract features in order to simplify the data and increase the visibility of patterns for the learning

algorithms to work effectively. However, deep learning algorithms have a significant advantage

in that they are capable of learning high-level features directly from the data. As a result, the

need for domain expertise and complex feature extraction is significantly reduced. Leveraging

the powerful ability to discover inherent patterns in 3D images, the usage of artificial neural

networks to address the problem of predicting radiotherapy-related toxicity was explored.

As previously discussed, traditional outcome modelling in radiation oncology typically analy-

ses 1D input data with generalised linear modelling. In order to evaluate the performance of

deep models that take spatial information into account compared to methods without spatial

information, clinical data using three machine learning models including support vector ma-

chine, logistic regression, and random forest was analysed. Each of these models was selected

for specific reasons, which are explained in detail in the following sections.

Logistic regression

Logistic regression (LR) is a generalised linear model for classification that computes the pos-

terior probability of class C1 with a logistic Sigmoid function σ on a linear combination of

feature vector ϕ ([17]) as:

p(C1|ϕ) = y(ϕ) = σ(wTϕ) (2.1)

where w are parameters of the model and determined with maximum likelihood during the

model training. For a dataset {ϕn, tn}, where ϕn = ϕ(Xn) and tn ∈ {0, 1}, with n = 1, ...,N, the

likelihood can be noted

p(t|w) =
N∏

n=1

yn
tn{1 − yn}

1−tn , (2.2)
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where yn is the output of the LR model (the probability of belonging to class C1 where the

input is xn) and t is a vector of all the labels (t = (t1, ..., tn)T ). The negative logarithm of the

likelihood function is the error function -cross entropy function- and it is minimised by the

proposed model. The minimisation can be performed during the training with respect to the

gradients of the error function.

A considerable amount of literature in radiotherapy outcome prediction has used LR-based

models (see e.g. ([75], [99]), [112]). This may be due to a number of reasons: First, logistic

regression is relatively easy to implement and interpret. Second, for a M dimensional feature

space, the model needs to adjust M parameters, which means the complexity of the model

is linear and dependent on M. In problems with large feature space, such as medical data

analysis, LR models are quite efficient. Third, it is easy to infer the importance of the feature

as it computes a direct association between features and output; in the toxicity prediction issue,

understanding the clinical features that impact the outcome of treatment is a crucial aspect.

Furthermore, due to the simplicity of the algorithm, the training time can be less than for other

complex algorithms, and it can be extended for multi-class classification.

Logistic regression has a linear decision surface that requires linearly separable input data.

Therefore, non-linear problems are very challenging to solve. As the relationship between

clinical features and toxicity is not necessarily linear, traditional LR may not be the most ap-

propriate model for the data. There are some approaches, such as data transformation, that can

help with non-linear problems, but they increase the learning complexity.

Support vector machines

Support vector machine (SVM) is a ML algorithm that aims to find a hyperplane that separates

different classes with the maximal margin. In two-dimensional space, the hyperplane is a line

that splits the plane into two sections, each attributed to one class (See Fig.2.1). Support vectors

are the data points located near the hyperplane, and they influence the location and orientation
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Figure 2.1: SVM is trained to distinguish two different classes by finding the hyperplane with
the maximum margin of support vectors. Support vectors are shown with filled-in shapes.

of the final hyperplane. Considering these support vectors, the algorithm finds the optimal

hyperplane with the largest margin from the support vectors. With a training dataset containing

N input vectors x1, ...,xN , corresponding labels values y1, ..., yN where yn ∈ {−1, 1}, and f (x)

as the predicted, the loss function helps find the optimal hyperplane is as below:

c(x, y, f (x)) =


0, if y ∗ f (x) ≥ 1

1 − y ∗ f (x), otherwise
(2.3)

SVMs are widely used for classification and regression in many real-world problems, and there

are a number of reasons for that. First, the algorithm can solve both linear and non-linear classi-

fication problems by having different kernels, which means it is suitable for toxicity prediction

where there are complex relationships between data points. Second, working with support vec-

tors (data points on the margins) makes SVM comparably memory systematic, which is an

essential aspect in medical data storage since not all clinical tools can be hosted on systems

with large memory resources. Moreover, it can work comparably well in high-dimensional

spaces and support multi-class classification ([17]).

However, due to the computational complexity of the method, it does not perform efficiently

when the training dataset is large. Additionally, focusing on support vectors, SVM cannot

perform well when there are noises or the target classes are overlapped.
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Random forest

Random forest (RF) is a popular machine learning algorithm for both classification and regres-

sion that is made up of multiple decision trees. In the case of classification, the output of an

RF model is the majority vote of all the decision trees, while for regression, it is the average of

them. Fig. 2.2 illustrates a simple example of a random forest with three decision trees for a

classification problem.

Figure 2.2: An example of a classification problem solved by random forests. The nodes in
the leaf layer (last layer of the tree) are possible categories, and the nodes in the intermediate
layers are input features. The orange nodes show the decision nodes.

A decision tree is a supervised machine learning algorithm that follows a collection of if-else

conditions to generate a classification output. The root and intermediate nodes within the

tree represent the features/attributes of the data in the dataset. Leaf nodes are the prediction

of a numerical or categorical value for regression or classification, respectively. A typical

decision tree is reconstructed by recursively assigning the best attribute to each node, from top

to bottom (see Algorithm 1). The word “best attribute” refers to the attribute that best splits the

features. This is accomplished by certain evaluation metrics, such as Entropy and Gini index

for categorical data and Mean Square Error (MSE) for continuous values ([17]).
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Algorithm 1: Decision Tree Induction Algorithm
Data: S = set of classified instances
Result: decision tree

1 while all partitions processed do
2 maxGain← 0
3 spliA← null
4 e← Entropy(Attributes)
5 for all Attributes a in S do
6 gain← InformationGain(a,e)
7 if gain > maxGain then
8 maxGain← gain
9 splitA← a

10 end
11 end
12 Partition(S, splitA)
13 end

There are several key benefits that random forest presents when used for learning problems.

The main advantage of using them is that they reduce the risk of overfitting; when there is an

adequate number of decision trees, the averaging of uncorrelated trees remarkably lowers the

prediction error and overall variance. Additionally, similar to SVM, decision trees can capture

non-linear patterns within the training data, ;therefore, they are suitable for solving non-linear

problems, including toxicity prediction. Moreover, in medical datasets missing values are very

common and random forests are able to create decision trees to handle the missing feature. The

other key feature of RF is the simplicity of the algorithms, which makes it straightforward to

identify the important features for the final decision. Therefore, detecting clinical risk factors

in toxicity prediction can be easily understood and accomplished.

However, since RF can be trained on large dataset, computing each individual decision tree may

slow down the learning process and increase the time and memory complexity. Furthermore,

the final output of an RF is a majority vote of all the trees, and this makes them highly sensitive

to imbalanced datasets (datasets where one outcome category is much more common than

others).
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2.2.2 Deep learning and convolutional neural networks

Deep learning is a subset of machine learning methods based on artificial neural networks

(ANN). An ANN, inspired by the biological neural model, is a computing system that is devel-

oped to mirror the learning procedure of a human brain. The basic structure of a neural network

is composed of collections of layers and nodes connected to each other. The first layer receives

the input data; mathematics computations are processed through middle (hidden) layers; and

the last layer returns the results. In the case of toxicity prediction, the first layer is the pa-

tient’s data (CT scans, dose, etc.), and the last layer is the predicted toxicity (such as “toxicity

yes/no”). Based on the neurons’ connectivity and network architecture, there are various types

of neural networks. A fully connected neural network (FcNN), where all the neurons (nodes)

in one layer are connected to all the neurons of the next layer, is the initial type of proposed

neural networks. Fig. 2.3 illustrates the architecture of a FcNN.

Figure 2.3: The architecture of a fully-connected neural network

The most common type of ANN is the convolutional neural network (CNN;[90]) in which

a specific number of nodes in each layer are connected to the next layer through different

kernels (see Fig. 2.4). The input of each neuron is computed by a mathematical operation

called “convolution”. CNN leverages three prominent ideas that help the network be more

efficient. These are:

(i) sparse interactions/connectivity: helps to detect local meaningful features
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(ii) parameter sharing: improves memory requirements and computing operations

(iii) equivariant representation: the distinctive feature of convolution operation, extract shift-

invariant and more robust features compared to FcNNs.

Figure 2.4: The schematic illustration of convolution layer. The middle layer represents a
convolutional filter with kernel size (3×3×3). Image credit: Wikimedia[28]

CNNs are composed of a series of layers, each of which performs a specific operation on the

data. A typical CNN includes:

• Convolution layer: The convolution layer applies a filter to the input image, which ex-

tracts features from the image. The output of the convolution layer is a feature map,

which contains the extracted features. Convolution operation [90] is a mathematical op-

eration that takes two functions as input and produces a third function as output. In the

context of CNNs, the two functions are the input image and the filter. The filter is a small

matrix of weights that is used to extract features from the input image. The convolution

operation is applied to the input image at every possible location, and the output is a

new image that contains the extracted features. For a 3D image, the convolution layer

computes the features as below:

( f ∗ g)(x, y, z) =
∞∑

i=−∞

∞∑
j=−∞

∞∑
k=−∞

f (i, j, k) · g(x − i, y − j, z − k), (2.4)
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where f represents the input image volume, g denotes the filter or kernel, and (x, y, z)

represents the spatial coordinates within the output feature map.

• Pooling layers: Pooling is a down-sampling operation that reduces the size of the output

image from the convolution operation. Pooling is often used to reduce the computational

complexity of CNNs and to improve the generalisation performance of the models. There

are two main types of pooling: max pooling and average pooling. Max pooling takes the

maximum value from a small neighbourhood of pixels, while average pooling takes the

average value from a small neighbourhood of pixels.

• Activation function: An activation function is a non-linear function applied to the output

of the convolution/pooling layers. There are several activation functions used in CNNs,

such as the Sigmoid function, the hyperbolic tangent function (tanh) function, and the

rectified linear unit (ReLU) function.

• Loss function: A loss function is a measure of the difference between the output of the

CNN and the ground truth. The loss function is used to train the CNN by minimising the

error between the predicted output and the ground truth. There are various loss functions

that can be used in CNNs, such as the mean squared error (MSE) loss function and the

cross-entropy loss function.

• Optimisation algorithms: It finds the optimal values for the network’s parameters that

minimise the loss function and improve the network’s performance on the given task.

The optimisation algorithm plays a crucial role in training the CNN by iteratively updat-

ing the model parameters based on the gradients of the loss function with respect to those

parameters. There are several optimisation algorithms that can be used to train CNNs.

Some of the most popular optimisation algorithms for CNNs include Stochastic gradient

descent (SGD) [84], momentum [125] and Adam [86].

• Batch normalisation: It is a technique used in CNN to normalise the output of each
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layer. During training, as the network learns, the distribution of the extracted feature

can change. This can make training more challenging as the network has to constantly

adapt to these changing distributions. Batch normalisation addresses this by normalising

the features maps. It calculates the mean and standard deviation of them the and applies

a normalisation transformation. This ensures that the mean of the features is zero and

the standard deviation is one. It can speed up training, and increased stability and gen-

eralisation of the network. It also reduces the sensitivity of the network to the choice

of learning rate and can act as a regulariser (regularisers are mathematical functions or

penalty terms that are added to the loss function during the training process), reducing

the need for other regularisation techniques.

• Dropout layer: Dropout layer randomly sets a fraction of input units to zero during

training, which helps to prevent the network from relying too heavily on specific input

features. During each training iteration, dropout randomly “drops out” (i.e., deactivates)

a certain percentage of neurons in the layer. This means that the remaining neurons

must collectively learn to represent the complete set of features, rather than relying on

a few dominant features. Therefore, it encourages the network to learn more robust and

generalised representations of the input data.

Apart from dropout layer, there are several regularisation approaches that can be applied to deep

model to improve generalisation. These techniques aim to prevent overfitting by introducing

constraints that discourage the model from learning overly complex patterns that may not be

relevant to the general data distribution. Commonly employed techniques include L1 and L2

regularization to control weight magnitudes, early stopping to prevent training beyond the point

of diminishing returns, data augmentation to increase training data diversity, and weight decay

to penalize large weights.

Deep neural networks and in particular CNN-based models have been very successful in real-

world applications ([59]) and they have been applied to many clinical tasks including radio-
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therapy outcome prediction, which will be reviewed further in this chapter.

2.2.3 Transfer learning

Use of deep learning models in medical image processing is rapidly growing. However, on

of their major limitation is the lack of generalisation for unseen data. This poses a significant

challenge when applying these models to clinical practice. Additionally, the performance of

the deep models is related to the amount of training data, and medical datasets are often limited.

With a small dataset, the network may not be able to accurately learn the data distribution. The

obvious solution to this limitation is to acquire more data. However, it is not always possible to

obtain the exact supervised data required. In such cases, transfer learning may be considered a

viable alternative.

Transfer learning ([118]) is a technique in deep learning where a model trained for a task

(called the “source task”) is used as the starting point of training for another task (called the

“target task”). The general idea of transfer learning is to use the knowledge learned by one

model for another where there is not enough data to train exclusively for the second task.

Instead of learning a problem from scratch, the model starts the learning procedures using

the already learned patterns as initiation. In image analysis with neural networks, the model

tries to detect low-level features such as edges and corners in the earlier layers, shapes and

textures in the middle layers, and task-specific features in the last layers. Therefore, the earlier

and middle layers can share knowledge across specific tasks as they solve a similar feature

extraction problem across different medical image analysis applications. However, depending

on how similar the target and source tasks are, the transferring weights of different layers may

differ. As an example, the weights of a network trained on object detection task can be assigned

to the initial weights of a network for segmentation task (see Fig.2.5).
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Figure 2.5: Comparison between (a) traditional learning process and (b) transfer learning. Im-
age credit: S.J. Pan et al.[118]

.

Use of pre-trained networks can be performed in two modes; feature extraction mode, where

the transferred weights are not involved in the training and their values do not change, and

fine-tuning mode, where the transferred weights are in the set of learnable parameters and their

values are updated by the training algorithm.

This knowledge sharing approach offers several advantages; The main advantage is that it helps

the learning process for applications with comparatively small datasets or unlabelled data. Ac-

quiring and labeling large amounts of data can be time-consuming, expensive, and impractical

in many domains. however, with transfer learning, the pre-trained model has already learned

to extract meaningful features from the big dataset, which can be used for the new task with

a small dataset (by fine-tuning the model’s parameters)[118]. Donahue et al. [40] introduce

DeCAF, a deep convolutional activation feature, showcasing the effectiveness of pre-trained

models on generic visual recognition tasks with limited data. Moreover, transfer elarning can

improve the network generalisation [174]; by leveraging knowledge from pre-trained models

it encourages the new model to learn robust features that are not specific to the training data.

Yosinski et al. [174] demonstrate that features learned from one task can be transferable to an-

other, enhancing the model’s ability to generalize to new, unseen data. Finally, it significantly

reduces the training computations, resulting in faster convergence and a shorter training time;
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by adopting a superior initialization for the weights in a deep network, the minimisation of the

loss function can be accelerated, preventing the network from becoming ensnared in local min-

ima. This improved starting point within the loss function landscape offers a more favourable

commencement, particularly amplifying the benefits of transfer learning. [180].

In summary, transfer learning is an important technique for improving generalization in deep

learning models. It can reduce overfitting, encourage robust feature learning and allow to

leverage existing knowledge. This makes transfer learning a valuable tool for researchers and

practitioners in a variety of domains.

Demis Hassabis, The CEO of DeepMind argues that transfer learning is the key to artificial

general intelligence [64]. In his YouTube video, he illustrates transfer learning using a gamer

analogy. If you are an experienced gamer who has mastered multiple video games, and you

and someone who has never played any video game before, start playing a new game together

for the first time, you would have a better performance. This is because your previous gaming

expertise allows you to recognise and apply repetitive patterns. This is exactly the concept of

transfer learning.

While transfer learning is a powerful technique, there are some potential pitfalls and chal-

lenges to consider. For example, one of the main challenges of transfer learning is domain

mismatch. This occurs when the source domain (the domain from which the pre-trained model

was trained) is different from the target domain (the domain for which the model is being fine-

tuned). For example, if you are using a pre-trained model that was trained on images of cats

and dogs to classify images of cars, you may encounter domain mismatch. This is because

the pre-trained model may not have learned the features that are important for classifying cars.

Transfer learning can also introduce bias to the model. This is because the pre-trained model

may have been trained on a dataset that is biased. For example, if the pre-trained model was

trained on images of cats and dogs that were mostly male, the model may be biased towards

classifying male cats and dogs as cats and female cats and dogs as dogs.
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To overcome these pitfalls, careful consideration should be given to the compatibility between

the pre-trained model and the target task. Additionally, fine-tuning strategies and data augmen-

tation methods can be applied to mitigate overfitting and improve the performance of transfer

learning.

2.2.4 Evaluation metrics for classification

The most important task in developing a machine learning model is evaluating its performance

on a test set. One evaluation should be performed during the training to make sure the model

is not over-fitted, and one should be done on an unseen dataset after the training to evaluate

the performance of the trained model. There are various evaluation metrics specifically defined

for classification problems. Prior to deploying an ML-based model to new unseen data, there

should be a proper assessment of the performance with different evaluation metrics. Without

it, the model may face problems such as poor generalisation and wrong predictions. Because

this thesis research question is a binary classification, the classification metrics are explained

based on binary prediction.

Accuracy, as the simplest classification metric, measures how often the model correctly pre-

dicts. Considering TP as true positive, TN true negative, FP false positive and FN false nega-

tive, accuracy is defined as:

Accuracy =
TP+TN

TP+TN+FP+FN
. (2.5)

Accuracy can show the performance of the model when the training data is well-balanced. In

case of imbalanced dataset (which is very common for medical applications), a biased model

can report accuracy > 0.9 where most of the samples in the evaluation set are from the majority

class. Therefore, it is not enough to only report the accuracy for the model performance. The

confusion matrix is defined to describe the performance by reporting the number of false/true

predictions. It reports TP, FP, FN and TN in a matrix. Combining the values in a confusion
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matrix to a single metric, F1 score reports:

F1 score =
TP

TP+ 1
2 (FP + FN)

. (2.6)

A higher value for the F1 score shows higher prediction performance for a model. For many

medical tasks where the detection of rare events is important (including toxicity), it is necessary

to have an evaluation metric that measures a model’s performance in predicting minority class.

The sensitivity metric indicates how the model learned the positive class distribution and how

well it can predict the true positive labels. It can be written as

Sensitivity =
TP

TP + FN
. (2.7)

Specificity is defined as the proportion of all the actual negative samples that were correctly

predicted. The mathematical notation of specificity is as

Specificity =
TN

TN + FP
. (2.8)

A report of both sensitivity and specificity can declare if the model is biased. In the case where

the model is biased to generate negative/positive labels, the sensitivity/specificity value will be

very low, while specificity/sensitivity metric will be relatively high.

All of the evaluation metrics mentioned above analyse the performance based on the final

results of the classification. Consider two binary classifiers, A and B, where model A predicts

label one with a probability of 0.6 and model B predicts it with a probability of 0.9. In this

case, while the prediction threshold of 0.5 yields the same accuracy for both models, clearly

model B is more convinced in its prediction. The receiver operating characteristics (ROC)

curve is a chart depicting the true positive rate (TPR) against the false positive rate (FPR) at

various threshold values. Plotting the ROC curve can illustrate the superiority of model B over
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model A. Changing the threshold value in [0, 1], ROC curve shows the ability of the classifier

to distinguish between two classes. In order to quantify the superiority of the two models, the

area under the ROC curve, known as the AUC, can be reported. When 0.5 <AUC< 1 (true

positive rate is higher than the false positive rate), the classifier is able to distinguish between

positive and negative classes better than a random guess.

2.3 Review of current models for radiotherapy outcome prediction

In radiotherapy, tumour control probability (TCP) is a metric to determine the proportion of tu-

mour killing with a given radiation dose, while normal tissue complication probability (NTCP)

characterises the predicted damage to normal tissues as a function of dose to those tissues. It

can be challenging to attain a treatment outcome that has a high TCP and a low NTCP since

the correlation between dosimetric and clinical data, and the desired outcome is not clearly

understood. In 1991, one of the earliest and most highly-cited studies carried out by Emami et

al.[48], proposed that certain significant complications are influenced by both cumulative dose

and the volume of organ-at-risk exposed to radiation. They provided practical guidelines based

on basic calculations, suggesting a 5% and 50% NTCP for complete, two-thirds, and one-third

uniform irradiation of individual organs-at-risk, assuming the remaining volume receives zero

dose. After this work, Kutcher et al.[89] proposed a dose–volume histogram (DVH) reduction

algorithm that reduced an arbitrary non-uniform dose distribution into a partial volume that

receives the highest dose. This DVH-based analysis inherently presumes that organ function

is evenly distributed throughout the organ, while experimental animal studies on the volume

effect have provided crucial proof-of-principle that challenges this assumption [14]. However,

most NTCP modelling has still relied on this basic assumption, discarding spatial heterogeneity

in dose-response.

Since 1991, a lot has changed, and numerous clinical studies have been published on the anal-

ysis of outcome prediction based on dose and clinical data. As an example, one category
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of NTCP models transfers 3D dose data into a single value, commonly referred to as “effec-

tive volume,” which is the effective dose for a specified reference volume. This value is then

connected to the probability of normal tissue toxicity using a Sigmoid function [152], [33].

The DVH reduction algorithm proposed by Kutcher et al. is one specific example of such an

‘effective volume’ reduction approach. Dawson et al.[34] proposed using principal component

analysis (PCA) to analyse the partial volume effects of normal tissues under radiation. Employ-

ing PCA, they identified the variance in cumulative DVH. Features with the largest variance

in the DVH were further studied as related to complication risks. Another model proposed by

Bonta et al.[18] relied on Critical Volume NTCP models. The authors assumed that organ com-

plications happen when radiation damage to a non-target organ exceeds a specific threshold,

which depends on the size of the organ. They used logistic regression to predict the probability

of a patient developing toxicity and the maximum likelihood for model parameter estimation.

In the same year, Stavreva et al. [142] proposed a new model that is a more complex version

of the traditional Critical Volume NTCP models. Other modelling approaches have also been

proposed, such as multivariable modelling [43], Bayesian networks[92], machine learning clas-

sifiers, and artificial neural networks. Machine learning and neural networks are reviewed in

the following sections.

In summary, there are certain difficulties associated with traditional outcome modelling ap-

proaches, and care should be taken when employing these models; typically, they are based

on data extracted from DVH, which is not an accurate representation of the 3D doses for three

reasons: (i) the spatial information of doses is discarded; (ii) it imposes that all the regions have

equal functional importance; and (iii) the radiobiological fraction size effects are not taken into

account.
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2.4 Review on machine learning for radiotherapy outcome predic-

tion

Radiation oncology has leveraged machine learning techniques for both therapeutic and prog-

nostic purposes in recent years ([81] [44], [168]), and many studies have been proposed to

improve the radiotherapy treatment workflow. These new techniques have gained rapidly grow-

ing interest in this field of study. Deep learning, as an extremely popular branch of machine

learning models, has shown promising success in radiotherapy-related tasks [113]. Fig.2.6

illustrates the number of publications applying ML and deep neural network models for radio-

therapy since 2015.

Figure 2.6: The number of publications applied machine learning and deep learning models
in the radiotherapy field. The search has been done with at least the phrases “radiotherapy”
or “radiation oncology” or “radiation therapy” and for machine learning approaches, at least
the terms “support vector machine’ or “logistic regression” or “random forest” and for deep
learning, at least the terms “deep neural networks” or “convolutional neural network” in their
titles. The statistics are obtained from Google Scholar.

Among all machine learning methods, logistic regression, support vector machines and random

forest are the most popular classification models utilised in several studies. Logistic regression

is ideal when the predictor features are not complex and are linearly connected to the outcome.
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Sini et al. [140] adopted a multivariate logistic regression model to predict patient-reported

intestinal toxicity in prostate cancer. They had access to selected clinical and dose-volume data

for 206 patients in their dataset. In a similar study, Lee and colleagues [93] used a multivari-

ate regression model to show that both dosimetric and non-dosimetric features were associated

with xerostomia toxicity. They evaluated the significance of risk factors and noted that age,

smoking, financial status, local tumor extent, and alcohol abuse had relationships with xerosto-

mia toxicity. Robertson et al. [131] explored the dose-volume relationship of bowel irradiation

and severe diarrhoea using a logistic regression model. With a dataset of 152 patients, their

results revealed highly significant correlations (p < 0.001) between small bowel receiving at

least 15 Gy and the presence of toxicity.

To cope with more complex and non-linearly separable data, support vector machines were

widely used for binary classification in radiotherapy outcome prediction. Chen et al. [23]

proposed an SVM model to predict grade≥ 2 of radiation-induced pneumonitis for patients with

lung cancer. They trained the SVM on a dataset of 219 patients, where a total of 93 features

consisting of dose and non-dose factors were collected for each patient. Experimental results

were performed to evaluate dosimetric features with and without clinical factors. The results

demonstrated that the combination of both significantly improved the prediction performance;

the AUC was 0.76 when both types of predictors were used, while it was 0.71 when only

dosimetric features were trained. By analyzing the coefficients of SVM, they reported that the

mean lung dose and chemotherapy prior to RT were the most powerful predictor features.

In another work by the same group, [134], the authors proposed to combine multiple ML mod-

els in order to empower the prediction. They used ensemble decision trees, SVM, and neural

networks to predict pneumonitis. The average of the predictions from each model was used as

the final prediction. The results showed that combining multiple models was more robust than

each model individually. Klement et al. [87] conducted a comprehensive analysis and discus-

sion comparing SVM and traditional outcome modeling. Klement and colleagues investigated
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the support vector machine to predict the local TCP after radiation therapy for non-small cell

lung cancer. A cohort of 399 patients was included in their study, and different combinations

of prognostic features in the dataset were considered for training. The results showed that

the strongest predictor was the biologically effective dose at the isocenter. The comparison of

AUC showed that SVMs were superior to traditional outcome modeling in stereotactic body

radiation therapy. Wang et al. [161] designed three different SVM models to evaluate which

variables were important for locally advanced nasopharyngeal carcinoma. Patients’ character-

istics, including age, gender, cancer stage, therapeutic regimen, and 38 molecular biomarkers,

were considered for 49 cases for model training. They reported the significance of each clinical

variable by extracting the model coefficients.

For further evaluation of correlated features and radiotherapy-induced toxicity, some studies

utilized random forest models. In [98], the authors applied RF to investigate the correlation of

multiple variables with pneumonia caused by radiotherapy in patients with esophageal cancer.

A dataset of 118 patients, of whom nearly 61% developed radiation pneumonia, was included

in this study. Wang et al. [164] employed random forest with the aim of exploring risk fac-

tors for reactivation of hepatitis B virus after radiotherapy in patients with liver cancer. They

established various RF models to investigate the key factors in the prediction and compared

the results with Bayesian classifiers. The Bayesian prediction model was trained using the top

five prognostic features as determined by random forest. The experimental results showed that

RF could predict the hepatitis B virus with an accuracy 1% higher than the Bayesian model.

In another work, [36], RT dose-volume and spatial dose metrics were used to predict acute

mucositis after head-and-neck radiotherapy with three ML models: logistic regression, support

vector machine, and random forest. The comparison of AUC demonstrated that the RF model

had the best prediction power.
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2.5 Review on deep learning for radiotherapy outcome prediction

Deep neural networks have transformed many areas of medicine, and they have the potential to

handle various challenges faced in radiation oncology. The radiotherapy workflow consists of

several complex tasks, including initial decision-making for treatment, organ and tumour seg-

mentation, treatment planning and dose treatment optimisation, tumour motion management,

outcome modelling, and quality assurance. Deep learning can potentially play an important

role in most of the RT steps in order to assist the clinical team [74], [157], [138]. For the ini-

tial treatment steps, deep neural networks can extract clinically crucial features that help with

treatment decisions. For example, the analysis of the pathological response of lymph nodes in

patients treated with chemotherapy can help the clinician decide on the radiotherapy treatment

[82]. In the tumour/organs segmentation step, deep neural networks have shown promising

performance, and they are currently used in many real-world medical tools [69], [41]. As an

example, automated organ at risk segmentation of CT images using deep networks before treat-

ment planning in head-and-neck cancer radiotherapy [116]. In terms of treatment planning and

optimisation of dose prescription, DL models can assist in personalising the treatment. There

are various neural networks that generate optimised dose treatment plans [107] or predict the

optimal individual patient radiation dose distribution [24], [106]. Predicting tumour motion us-

ing 4D CT images [100], and quality assurance of treatment [149] are other examples of deep

learning assisting in the radiotherapy workflow.

Outcome modelling can also benefit from neural networks, as they have the potential to take in

more detailed information for response prediction. In recent years, there has been an increasing

amount of literature on employing deep learning only for radiation therapy outcome prediction.

Much of the current literature has used three-dimensional images as input into the network.

However, there are relatively few studies that have focused on two-dimensional networks. Zhen

et al. [177] introduced a 2D CNN model to predict rectum toxicity for patients after cervical

cancer radiotherapy. They used a pre-trained CNN with 16 convolutional layers to predict
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grade≥ 2 rectum toxicity. For the model input, a 2D dose surface map was constructed by

unfolding the 3D dose distribution of the rectum. They also compared the prediction perfor-

mance with logistic regression that was trained with only dose information. The comparison

results showed that the features extracted by the CNN are more powerful than 1D dose-volume

parameters for outcome prediction, and the proposed deep network outperformed the logistic

regression model. Although unfolding 3D dose can be applied to the rectum, it cannot be ex-

trapolated to most of the other organs; the rectum is a hollow structure and approximating it

with an unfolded 2D surface does not lead to information loss, unlike many other organs.

2.5.1 Analysing only dose data

Liang et al.[99] used a three-dimensional convolutional network to determine the relationship

between the 3D dose image and the RT outcome. They employed C3D [151], a well-known

convolutional network for the task of video action recognition pretrained on the UCF101

dataset [141], to predict radiation pneumonitis in patients with non-small cell lung cancer.

Moreover, they analysed three multivariate logistic regression models with numerical data, in-

cluding dosimetric factors, NTCP, and dosiomics features. The comparison results showed

that the CNN outperformed the LR models, with an AUC of 0.84 compared to 0.78 for the

latter. Similarly, another group [76] reported that deep learning methods produced almost two

times fewer false positives for toxicity prediction compared to DVH-based models. They pro-

posed a 3D CNN to investigate patterns in the dose treatment plan and their association with

hepatobiliary (HB) toxicity after liver stereotactic body radiotherapy (SBRT). The authors also

proposed a fully-connected neural network to explore the correlation of clinical features with

HB toxicity. The weighted sum of the two predictors was considered the best prediction model.

2.5.2 Analysing dose and CT data

To increase the prediction power, several studies have considered the effects of other data in

addition to the dose distribution for outcome prediction. In [75] the authors used a concatena-
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tion of dose images and CT scans as the inputs in their network. They proposed a 3D CNN

with residual blocks to investigate the relationship between CT scans and dose with late HB

toxicity. In the same vein, Yan et al. [172] proposed utilising both dose distribution and CT

scans to train a CNN with the aim of predicting post-treatment gastro-urinary function after

prostate radiotherapy. The input of their network was a two-channel (dose and CT images)

path, extracting significant features within 3D convolutional blocks. The results showed there

is a substantial association between the dose irradiated to the bladder and side effects after

treatment. This view was supported by Men and colleagues [112], who propose a three-path

residual 3D CNN for predicting xerostomia after radiotherapy for head and neck squamous cell

carcinoma. The network consisted of three separate convolutional paths, each processing dose

distribution images, CT scans, and region of interest contours. The output of the three paths

was summed and passed through four linear layers to predict toxicity. They reported the pre-

diction performance with various experiments; first, they investigated the importance of each

input. They trained the network for four input modes when they have (i) all three inputs, (ii) all

but the contour data, (iii) all but the CT data, and (iv) all but the dose distribution data. With

an AUC of 0.84, the best performance was obtained when all three data were used as inputs.

The contour images were the least associated input data, with an AUC of 0.82 (when trained

with dose and CT data), while the dose image was the most associated with toxicity (AUC of

0.70 when trained without dose data). They also compared the results of their network with

LR models. The inputs of LRs were clinical and dosimetric variables, and the best AUC was

reported at 0.74.

In a study of predicting local failure, Aneja et al., [4] used a convolutional neural network to

analyse only CT scans. They employed a 3D CNN with the input of CT images to predict

local failure following SBRT. Additionally, they analysed the prediction power of clinical risk

factors (age, histology, biology, etc.) with three ML techniques: random forest, SVM, and

LR. The comparison results demonstrated that the best performance is achieved when the deep

neural network analysed CT imaging, with an AUC of 0.81. The second-best performance was
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for random forest with an AUC of 0.69, and this was followed by SVM and LR with 0.65 and

0.59, respectively.

2.5.3 Analysing other imaging modalities

There are relatively few works that have considered other imaging modalities than standard

3D CT for RT outcome prediction. Bin and colleagues [15] focused their study on dose dis-

tribution, ventilation imaging (VI; derived from four-dimensional CT), and functional dose

(obtained by weighting the dose image with VI). They used C3D network [151] as a feature

extractor and applied ML methods including SVM, LR, K-nearest neighbour, and random for-

est to predict pneumonitis after thoracic radiotherapy. In [163], slice concatenation of pre-RT

CT, pre-RT positron emission tomography (PET) imaging, and dose distribution were used for

training an 8-layer CNN in order to predict the outcome of radiotherapy for oropharyngeal

cancer. In another study, Wang et al. [162] developed a recurrent neural network with input of

MRI and cone-beam CT scans to predict the outcome of lung cancer treatment. Hongming and

colleagues [96], proposed to analyse only CT scans and PET images to predict the survival rate

after radiotherapy for rectal cancer. They compared the results with traditional survival predic-

tion (based on radiomic features) and reported that their deep network had higher prediction

performance.

2.5.4 Analysing imaging combination with clinical factor

Although much of the current literature attempted to evaluate the association of 3D (imag-

ing and dose) data with RT-induced toxicity, there are a number of studies that have explored

the combination of image and clinical features for outcome prediction. Predicting cancer recur-

rence and survival rate in SBRT [77], the authors proposed a multi-path convolutional network;

one path for the input of the 3D dose distribution and the other path for the treatment features

(including patients’ demographics, OAR properties, tumour size, laboratory measurements of

the liver function, etc.). Each path extracted the important features, and their concatenation
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was passed through a fully-connected layer to predict the outcome. Similar to [77], Welch et

al. [166] developed a pipeline to combine clinical data with dose distribution, CT scans, and

contour data to predict locoregional failure at 3 years after head and neck radiotherapy. They

compared the results of the neural network pipeline with LR and RF methods (trained on nu-

merical features). According to their findings, the logistic regression model had the highest

AUC. The authors argued that these results could be due to the breadth of information included

in their clinical data, which requires a less complicated modelling technique.

2.5.5 Analysing only clinical data

There are a limited number of studies that employed deep neural networks for DVH data. In a

study conducted by Qi and colleagues [124], the authors investigated the potential correlation

between dosimetric features and patient-reported quality of life (QOL). They applied numer-

ical predictors extracted from the dose-volume histogram to a fully-connected deep network

to predict the score of QOL for urinary functions and the rectal domain. An accuracy of 0.90

showed that radiotherapy for prostate cancer can affect rectal-related QOL, and there is an asso-

ciation between urinary functions and the dose irradiated for treatment. In a similar work [30],

the authors used multiple neural networks (with different architectures) to predict local control

after radiotherapy for patients with non-small cell lung cancer. They trained the networks with

biological features (levels of cytokines, micro-RNAs, and single nucleotide polymorphisms),

features extracted from PET imaging data, and dose-volume histograms.

Overall, there is a large and growing body of literature investigating RT outcome prediction

with the help of deep learning models. The studies are reviewed and summarised focusing on

specific aspects. Table 2.1 illustrates a summary of the reviewed works.
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Table 2.1: Summary of studies utilising neural networks for radiotherapy outcome prediction

Ref Cancer Dataset Summary of Network Predicted Outcome Visual Explanation

[177] Cervical 42 patients. 3D Dose treatment

plans

16-Layer 2D-CNN (Adopted

from VGG-16 [139])

Grade≥ 2 rectum toxicity Grad-CAM

[99] Lung 70 patients. 3D dose treatment

plans

5-layer 3D-CNN pretrained on

video classification

Grade ≥ 2 Radiation

pneumonitis

Grad-CAM

[76] Liver 125 patients. 3D dose treatment

plans, non-dosimetric features

3-layer 3D-CNN pretarined

on anatomical images. Non-

dosiemtric features are used to

train FcNN

Grade ≥ 3 hepatobiliary

toxicities

Saliency maps created by

systematically varying

dose

[75] Liver 122 patients. 3D dose treatment

plans, 3D CT scans

10-layer 3D-CNN pretrained on

anatomical images. The input is

a concatenation of dose and CT

Grade ≥ 3 hepatobiliary

toxicities

same as their previous

work [76]

[172] Prostate 52 patients. 3D dose treatment

plans, 3D CT scans

3-layer CNN with two input

channels each processing one

input.

Urinary and bowel symp-

toms

N/A

[112] Head and neck 784 patients. 3D dose treatment

plans, 3D CT scans, contours

6-layer 3D-rCNN with three

input channels

Grade ≥ 2 xerostomia N/A
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Ref Cancer Dataset Summary of Network Predicted Outcome Visual Explanation

[15] Thoracic 217 patients. 3D dose treatmen

plans, VI, functional dose

8-layer 3D-CNN pretrained on

video classification (C3D [151])

Grade ≥ 2 Radiation

pneumonitis

N/A

[163] Oropharyngeal 66 patients. 2D dose treatment

plans, 2D CT scans, 2D FDG-

PET images (all on axial slices)

8-layer 3D-CNN. A concatana-

tion of 2D PET/CT and dose is

taken as the input

2D axial PET images at

mid-treatment

N/A

[162] Lung 11 patients and a public dataset

[73] with 13 patients.

2D-RNN with 6 residual blocks Acute esophagitis N/A

[77] Liver 120 patients. 3D dose treatment

plans, clinical features

two-path network from [76] for

dose data and numerical data.

Post-SBRT survival and

local cancer progression

Saliency maps created by

systematically varying

dose

[166] Oropharyngeal 160 patients. 3D dose treatment

plans, 3D CT, contours, clinical

features

4-layer 3D-CNN with three

channels for dose, CT and

structure set

Locoregional failure at 3

years

N/A
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Ref Cancer Dataset Summary of Network Predicted Outcome Visual Explanation

[4] NSC Lung 344 patients. CT scans, clinical

factors

3D-CNN trained with CT scans

and FcNN trained with clini-

cal factors. The CNN is pre-

trained on 1,009 CT scans from

an outer dataset LIDC [7]

Local failure N/A

[96] Rectal 84 patients.CT scans, PET im-

ages

Two 3D-CNN with the same

architecture for analysing CT

and PET separately.

Time of local tumour

recurrence

N/A

[124] Prostate 86 patients. Dosimetric parame-

ters

Deep fully-connected network

with 200 numbers of neurons in

hidden layers

Quality of life score for

urinary and rectal func-

tions

N/A

[30] NSC lung 98 patients. Biological vari-

ables and features extracted

from dose/PET images

Three different architeccutres:

1D-CNN, locally-connected

network and FcNN

Local control N/A

[45] Lung 219 patients, 1D Clinical fea-

tures

three-layer feed-forward neural

network

Grade ≥ 2 Radiation

pneumonitis

N/A
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Ref Cancer Dataset Summary of Network Predicted Outcome Visual Explanation

[143] NSC Lung 142 patients, 1D features ex-

tracted from lung dose-volume

FcNN with three layers pneumonoitis N/A

[21] Prostate 664 patients, 1D Clinical fea-

tures

1 layer feed-forward network Faecal incontinence N/A

[148] Prostate 718 patients, Clinical + features

from DVH

3 layer fcNN Late rectal bleeding N/A

[63] Prostate 119 patients, dosimetric fea-

tures extracted from DVH

1 layer feed-forward network bladder and rectum com-

plications, Biochemical

control

N/A

[122] Prostate 321 patients, clinical and dosi-

metric features

Different ANN architectures

are tested. The best result is for

FcNN with 2 layers.

astro-intestinal and

genito-urinary toxicities

N/A

[171] Prostate 754 participants, clinical and

dosimetric features

1 layer feed-forward network Urinary toxicities N/A

Abbreviations: CNN, convolutional neural network; FcNN, fully-connected neural network; rCNN, residual CNN; RNN, recurrent neural network; SBRT, stereo-

tactic body radiation therapy; NSC, non-small cell; VI, ventilation image; DVH, dose-volume histogram; ANN, artificial neural network.
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2.5.6 Current challenges and opportunities

The use of artificial neural networks in radiotherapy outcome prediction is a rapidly evolving

field of study that holds great promise in the improvement of cancer treatment. However, it is

still in its early stages, and many challenges yet need to be addressed.

Classification modelling

The majority of papers summarised in this chapter used a binary variable to predict toxicity

outcomes, usually predicting the occurrence of toxicity as “yes” or “no,” despite the fact that

toxicity presentation is more complex than a binary number. Clinically, toxicity often scored

with ordinal grades, reflecting the severity of the side effects, or, in relatively few cases, con-

tinuous scales capturing patient-reported outcomes. Modelling the toxicity with a binary value

causes a loss of information. This issue is not specific to neural networks, and traditional NTCP

modelling is also affected by it. It is also important how the toxicity labels are generated; the

severity of side effects reported by patients is a more accurate representation of toxicity com-

pared to grades clinicians assign. However, progress has been made in both fields in terms of

ordinal regression/classification and data labelling.

Several machine learning models have been altered to deal with the ordinal classification prob-

lems [127], [67], [137]. In particular, for neural networks, a “ranking learning” strategy has

been proposed. Ranking learning models are typical neural networks with minor changes in

their formulation [29], [53]. These changes are generally based on two approaches. First, they

can convert the ordinal problem into a pairwise binary classification problem. In this case, the

on-hot label encoding changes to group encoding in order to be compatible with the ordinal

problem. As an example in [25] a target formulated as [0,0,1,0] (showing the toxicity grade 3)

can be reformulated to [1,1,1,0] for ordinal classification and the standard exponential function

for classification can be changed to Sigmoid function. Li et al. [95] used the idea of target

changing for their neural network to predict the early diagnosis of Alzheimer’s disease for four
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outputs in the order of: Alzheimer’s disease, mild cognitive impairment (MCI), progressive

MCI, and normal control. In another work, [10], authors used the same ordinal coding to pre-

dict ulcer severity in patients with Crohn’s disease. The other approach to tackling ordinal

classification is to change the network architecture in order to learn multi-threshold thresh-

olds for ordinal classification. Cao and colleagues ([19]) changed the connection of biases and

weights in the last layer to restrict the neural network to make rank-consistent predictions.

Although neural networks and machine learning methods can easily deal with ordinal data, due

to the small size of medical datasets, the performance of the prediction is lower in comparison

with binary classification problems; because there are not enough examples for some classes

(for instance, the number of patients with grade > 3 toxicity in a 4-graded problem is very

low), the network is not able to learn the data distribution for the rare category, which results

in biased training and low performance.

Lack of data

The size and quality of the dataset available has a pivotal role in learning algorithms, and it

directly affects the performance of the model. Although different aspects come into play during

network development, the data are the backbone of the entire model, and without an adequate

dataset, various crucial tasks cannot be accomplished. In the medical area, it is generally

difficult to create a dataset that is large enough to train a neural network. Collecting medical

images needs professional expertise for labelling and contouring. It is thus common for datasets

used in medical image analysis to be small. Consequently, if a small dataset is used for training,

the network may not be able to effectively learn the data distribution. Additionally, in various

clinical problems, including radiotherapy outcome prediction, the population of the different

classes may be unbalanced. Training a deep network with a highly imbalanced dataset results

in a model biased towards the larger class, as it considers rare samples as noise.

There are three main solutions that can help alleviate this problem. The first approach is to
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use transfer learning, as previously discussed. This process applies information from a learned

task to improve performance on a goal task, typically reducing the amount of required training

data. All the reviewed studies, except the work by Men et al.,[112], which includes a dataset of

784 patients (Radiation Therapy Oncology Group; RTOG, 0522 trial, head and neck cancer),

employ transfer learning to overcome the problem of their small dataset. Although transfer

learning can be a solution to domain-specific data scarcity, it relies on the assumption that both

“source-task” and “goal-task” are sufficiently similar in terms of input and output data. For

non-medical image applications, neural networks are often transferrable (due to the similarity

of low-level features), but for radiotherapy imaging data, it is more complicated; dose data are

quite different from other images, lacking sharp variations and exhibiting smoother shapes over

larger receptive fields. Therefore, an optimal architecture for radiotherapy might require wider

kernel sizes, decreasing the performance of transfer learning. In general, there is a risk of task

dissimilarity, and it requires careful investigation before applying transfer learning. However,

some studies used networks that have been pre-trained on natural images or videos, and their

results are convincing; for example, Ibragimov et al. [77] and Liang et al. [99]transferred the

learned weights from the C3D network, which had been trained for video action classification.

There is also a specialised form of transfer learning known as domain adaptation which elim-

inates the necessity for retraining a model on a new dataset. With domain adaptation, a pre-

trained model can be fine-tuned to achieve optimal performance on new data, saving consid-

erable computational resources [51]. This can be achieved through various methods; instance-

based adaptation, feature-based adaptation and deep domain adaptation are the three main tech-

niques used in the literature [176],[123].

Another technique that can be employed is data augmentation, which involves making slight

modifications to the existing data in order to generate new data with the same data distribution.

Rotation, scaling, cropping, colour range changes, adding random noise and horizontal/vertical

flipping are the most common data augmentation techniques for medical images. In [76] the
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authors applied Gaussian noise with zero mean and 0.1 standard deviation to their original

dataset, Liang et al. [99] augmented their dataset by flipping along three directions and Welch

et al. [166] enriched their dataset by performing affine transformations prior to the training.

Unlike in other domains, certain transformations may not be appropriate for medical images.

For example, horizontal or vertical flipping may not be appropriate for maintaining the anatom-

ical integrity and spatial consistency of the human anatomy. Therefore, careful consideration

should be given when applying augmentation techniques to medical datasets.

The third approach is generating synthesised data. There are generative models that are able

to produce unreal or fake data with the same statistical properties and schema as the “real” sam-

ples. Generative adversarial neural networks (GANs) ([60]) and variational autoencoders(VAE),

are examples of deep neural networks to create new examples of their training data. Genera-

tive data augmentations have been applied to medical and non-medical applications to generate

larger datasets ([133], [5]). Oversampling techniques such as SMOTE ([22]) and registration

methods such as Fischer-Modersitzki ([55]) are also utilised as data synthesising methods in ra-

diotherapy outcome prediction. Due to the high complexity of generating 3D medical images,

generative techniques are not common for medical data augmentation.

Visual explanation and interpretability

Machine learning and artificial neural networks perform challenging tasks with a high accu-

racy; ResNeXt-101 ([105]) with 829 million parameters has achieved 97.6% accuracy in a

classification challenge on the Imagenet dataset ([39]). This model complexity makes it diffi-

cult to interpret network behaviour. In contrast, classical rule-based models are interpretable

but may lack high accuracy and robustness when applied to high-dimensional data. There is

usually a trade-off between interpretability and accuracy. However, the difficulty in understand-

ing the networks’ learning and responding procedures hinders their usage in real-world medical

systems. In radiation oncology, there exists a need for models with explainability/interpretabil-
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ity; oncologists personalise treatment for individual patients, and to empower this, they need to

understand which aspects of dose distributions/radiation treatments impact the outcome. For

this reason, some groups have explored visual explanations for the predicted outcome in their

network.

Gradient-weighted class activation mapping (Grad-CAM)[136] is a technique for convolutional

neural networks which highlights those input regions that are “important” for the prediction.

In a CNN, the last convolutional feature maps (features extracted by the last convolutional

layer) are the most informative features, and they carry spatial information as well as high-

and low-level features. Grad-CAM uses the last feature maps and explores their impact on the

network’s final decision. It computes the gradient of the feature maps with regard to the final

output. The gradient operation shows how any changes in each feature map affect the final

decision. Higher gradients for a feature map indicate that the features extracted from it are

more strongly correlated with the output of the network. More recent attention has focused on

the Grad-CAM method, and a few studies have used it to explain their convolutional networks.

[177] and [99] used Grad-CAM to highlight the anatomical regions with the highest activation

when predicting toxicity.

Ibragimov et al. ([76], [77], [75]) also adopted the idea of gradients of features. After training

their CNN, for each pixel x in the dose data, they created two artificial dose distribution, one

with the value of x increased and one with the value of x decreased. Then, the two new dose

plans were separately passed through the CNN, and subtraction of the predicted outputs showed

how changes in x affect the prediction. They specifically examine whether “change” in input

in a region affects the network’s prediction. In another work by Men et al., [112], the different

feature maps of the network were visualised to detect critical regions (not only the last feature

maps). Although the results showed that the CNN can extract high-risk regions of the input

image, it is still not clear how these regions are related to the output.

In summary, the transparency and interpretability of artificial neural networks, and clarifying
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their processes to their outputs can help users trust the network’s outcome, which makes them

feasible to employ in real-world problems. This trust is pivotal for the practical application of

neural networks in real-world problem-solving.

Visual explanation in RT outcome prediction is the main challenge, and there are relatively few

methods that address this issue (see Table 2.1).

2.6 Summary and conclusions

The primary objective of this chapter was to investigate the current state of research regarding

radiotherapy outcome prediction. Initially, traditional models used for prediction were exam-

ined, along with an analysis of their advantages and disadvantages. This analysis led to the

exploration of how machine learning techniques can enhance prediction models. A compre-

hensive review of ML, particularly deep learning models, was provided. Since the focus of this

research is on applying deep learning models for toxicity prediction, the chapter also elucidated

the challenges faced by deep learning models. This raises the question of whether traditional

ML models outperform deep learning models, given that the latter were introduced to address

the limitations of the former. To address this question, experiments comparing both models are

necessary.

In the later Chapters, a comparison between machine learning and deep learning models and

the answer to the questions such as “whether analysing 3D data can be helpful for prediction”,

“which data can predict toxicity with the highest accuracy”, and “whether combining clinical

data with dose and imaging improves the results” are provided.

However, prior to conducting any experiments, it is essential to provide a comprehensive in-

troduction to the dataset and the evaluation metrics employed for conducting the experiments.

The next chapter will focus on thoroughly describing the dataset, including its preprocessing

steps and the challenges encountered.
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Chapter 3

Dataset

In this chapter, a comprehensive overview of the dataset used in this research is provided. The

dataset comprises of two main sections: the clinical dataset and the image dataset, both of

which are described in detail. The approaches to data preprocessing for both clinical data and

3D CT and dose data are described in details. This information is crucial for readers to under-

stand the context and limitations of the analysis and to assess the validity and generalizability

of the findings of this research.

3.1 Introduction

Data for 315 patients with four types of pelvic cancer - including anal, rectal, endometrial,

and cervical cancer - were included. All patients were treated between 2004 and 2014 at the

Leeds Cancer Centre, United Kingdom, with curative 3D conformal radiotherapy or IMRT. A

summary of the standard treatments received for each cancer type are shown in Table 3.1.

The National Research Ethics Service Leeds East Committee approved the data collection

study following ethical review with reference number 13-YH-0156. Further use of data for

the current project was provided by the LeedsCAT research database with reference 19-YH-
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0300.

Median duration of follow-up from radiotherapy was 2 years (IQR: 1.4-3.5 years). Patient-

reported toxicities were assessed using the validated European Organisation for Research and

Treatment of Cancer (EORTC) Quality of Life questionnaires – including the core question-

naire (QLQ-C30) and disease-specific modules (QLQ-CX24, EN24 and CR29) and additional

items from the EORTC Item Library to cover those missing for patients with anal cancer (for

whom a disease-specific module was not available at the time of data collection) [1], [62],

[167], [61], [155].

Table 3.1: Summary of usual treatment received for each cancer type

Cancer type Treatment

Anal Curative chemoradiotherapy: 50 Gy in 25 fractions EBRT combined with concurrent
chemotherapy (mitomycin and 5-flurouracil)

Rectal Two neoadjuvant (pre-surgery) radiotherapy schedules depending on patient fitness and stage:
25 Gy in 5 fractions EBRT or 45 Gy in 25 fractions of EBRT combined with concurrent
chemotherapy (5-flurouracil) followed by curative surgery.

Endometrial Post surgery patients received EBRT 45 Gy in 25 fractions and some patients received vaginal
vault brachytherapy 12 Gy in 3 fractions.

Cervical Curative chemoradiotherapy: 48 Gy in 24 fractions EBRT combined with concurrent
chemotherapy (cisplatin) followed by brachytherapy 21 Gy in 3 fractions.

Abbreviations: Gy, gray (absorbed energy per unit mass of tissue); EBRT, external beam radiotherapy;

The dataset consists of 75 male and 240 female patients, of which 265 reported at least one of

the toxicities under study. 258 clinical features, including the patients’ demographics, medica-

tion and pre-RT treatment status, radiotherapy treatment information, and anatomical features,

are included in the numerical dataset. 3D dose distributions, 3D CT scans, and contour struc-

ture sets for organs in the pelvis are also collected in the image dataset.

Based on the Radiation Therapy Oncology Group (RTOG) guidelines [56], the intestinal cavity

structure was contoured as a “Bowel Bag” for each patient. The bowel bag is the organ at risk
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for all three toxicities considered here.

Table 3.2 and Fig. 3.1 summarise the patients’ statistics in the dataset. Information about

cancer stages for patients in the dataset is shown in Table 3.3 and Table 3.4 (please note that

the two patients who lacked clinical data were excluded, so both tables represent the data for a

total of 313 patients).

Table 3.2: Summary of the treatment statistics included in the dataset.

Cancer type Sex Num Age (years) Total Dose
(Gy)

Min dose
(Gy)

Max dose
(Gy)

F 68 62.12[10.30] 45.37[7.93] 26.06[18.65] 2.18[4.08]
Anal

M 27 63.95[11.03] 45.478.46] 21.90[19.61] 1.46[3.09]
F 26 61.90[17.80] 36.10[11.33] 35.98[11.92] 0.0[0.0]

Rectal
M 48 65.15[9.90] 37.0[10.84] 19.23[9.23] 0.37[1.57]

Endometrial F 49 67.36[11.70] 46.60[5.72] 61.77[17.71] 1.19[3.20]
Cervical F 97 49.82[12.95] 51.50[8.43] 71.97[12.31] 6.23[7.75]

Abbreviations: Num, number; F, female; M, male. For age, total dose, min dose and max dose, the
mean [standard deviation] is shown in the table.

Table 3.3: Details of FIGO stage of primary diagnosis for patients in the dataset.

Cervical cancer Endometrial cancer

FIGO stage Num Percent FIGO stage Num Percent

1a2 1 1.0% 1a 2 4.2%
1b 2 2.1% 1b 5 10.4%
1b1 9 9.3% 2 6 12.5%
1b2 14 14.4% 2a 2 4.2%
2a 1 1.0% 2b 1 2.1%
2b 59 60.8% 3 1 2.1%
3a 2 2.1 % 3a 13 27.1%
3b 3 3.1% 3b 1 2.1%
4a 4 4.1% 3c1 4 8.3%
4b 1 1.0% 3c 6 12.5%

3c2 3 6.3%
4b 2 4.2%

Unknown 1 1.0% Unknown 2 4.2%
Total 97 100.0% Total 48 100.0%

Abbreviations: Num:number of patients. Note: FIGO (International Federation of Gynecol-
ogy and Obstetrics) provides a standardized system for describing the extent and spread of the
cancer [153].
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Table 3.4: Details of TNM stage for patients in the dataset.

Anal cancer Rectal cancer

T stage Num Percent T stage Num Percent

1 15 16.0% 1 2 2.7%
2 39 41.5% 2 18 24.3%
3 19 20.2% 3 39 52.7%
4 15 16.0% 4 9 12.2%
X 4 4.3% X 2 2.7%

Unknown 2 2.2% Unknown 4 5.4%
Total 94 100% Total 74 100%

N stage Num Percent N stage Num Percent

0 51 54.3% 0 22 29.7%
1 13 13.8% 1 31 41.9%
2 13 13.8% 2 12 16.2%
3 4 4.3% X 5 6.8%
X 11 11.7%

Unknown 2 2.1% Unknown 4 5.4%
Total 94 100.0% Total 74 100.0%

M stage Num Percent M stage Num Percent

0 84 89.4% 0 47 63.5%
1 3 3.2% 1 11 14.9%
X 7 7.4% X 12 16.2%

Unknown 4 5.4%
Total 94 100.0% Total 74 100.0%

Abbreviations: T, local tumour extent; N, nodal involvement; M, metastasis,
Num, number of patients.
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Figure 3.1: Patients summary statistics included in the dataset. The toxicity chart displays the
percentage of patients who have reported experiencing at least one of the toxicities.
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3.2 Data analysis plan

The primary question of the data analysis is whether ML can predict those patients that expe-

rience RT-induced toxicity by considering factors such as tumour site, treatment features, indi-

vidual characteristics, CT scan and dose distribution. The strategy for addressing this question

involves utilising ML and in particular ANN models to explore possible relationships between

various factors and the toxicity.

For the purpose of this research, three most common bowel-related side effects of pelvic ra-

diotherapy were explored: bowel urgency, diarrhoea, and faecal incontinence. These toxicities

were selected and graded based on the patient’s EORTC questionnaire, as below:

• for bowel urgency: “When you felt the urge to move your bowels, did you have to hurry

to get to the toilet?”

• for diarrhoea: “Have you had diarrhoea?”

• for faecal incontinence: “Have you had any leakage of stools from your back passage?”

or “Have you had leakage of stools from your stoma bag?” (results combined as per

EORTC scoring Manual)

Responses used an ordinal scale with the following categories allocated to the data for this

dataset: 0 indicating “not at all,” 1 indicating “a little,” 2 indicating “quite a bit,” and 3 indicat-

ing “very much.” To classify patients for the purposes of this study, they were divided in two

different ways as bellow:

• for chapter 5: patients with grade ≥ 2 for experiencing moderate/severe toxicity and

patients with grade < 2 for experiencing no/mild toxicity. This approach is taken in

Chapter 5 to identify moderate or severe bowel urgency symptoms. Due to significant

imbalances, it was not feasible to use this grading style for diarrhoea and faecal inconti-

nence. However, when categorising bowel urgency, dividing it into these two categories

resulted in a balanced dataset that could be effectively learned by the network.

52



3.2 Data analysis plan

• for chapter 6: patients with grade ≥ 1 for experiencing toxicity and patients with grade

< 1 for not experiencing toxicity were classified. The reason for employing this cate-

gorisation approach is that Chapter 6 aimed to investigate symptoms of toxicity across

all three types of toxicity. This approach of categorisation enabled the network to: (i) be

trained effectively, as there were sufficient data available for all three types of toxicity,

and (ii) predict toxicity even in cases where symptoms were mild.

For bowel urgency, a total of 66 patients were excluded from the study because their data were

irrelevant to the research question (they had a stoma). Additionally, for faecal incontinence, the

toxicity grades for two patients were missed, therefore, they were also removed for analysis.

Clinical data for 315 patients were available in a STATA file and were linked to the patients’

imaging and dose data with an Excel spreadsheet file. Two patients were excluded from the

dataset as there were no study ID available for them (the Excel file consisted of 313 patients).

Imaging and dose data were analysed with an artificial neural network model and numerical

data were assessed with three basic machine learning models, including SVM, random forest,

and logistic regression, and in combination with imaging and dose data with an artificial neu-

ral network. All the models were implemented with the Python Software Foundation; Python

Language Reference, version 3.7. Available at Python.org. Deep learning models were devel-

oped using PyTorch framework [120], Torch library [119] version 1.5.1 and basic ML models

(SVM, RF, LR) were from Scikit-learn Python library version 1.0.2 [121]. All methods were

evaluated with the “metrics” package of the Scikit-learn library. The numerical dataset was

pre-processed with the Pyreadstat package [49]. Image and dose data were stored in Dicom

format, and image preprocessing was performed with the Pydicom Python library version 2.2.2

[109] and SimpleITK toolkit Python version 2.1.1 [173]. 3D volumes were plotted using the

3D Slicer platform [52].

A few risks must be considered regarding the current dataset. Firstly, the dataset is limited in

size (patient numbers), which can potentially impact the model’s ability to generalize. Sec-
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ondly, the majority of cervical cancer patients in the dataset received brachytherapy, but the

dose delivered with brachytherapy is not recorded in the external beam dose distribution, and it

was consequently not possible to factored in the effect of brachytherapy dose this study. This is

due to limitations in available methods to allow for the integration of brachytherapy data into

external beam radiotherapy toxicity models. Thirdly the dataset may be unfair for the popula-

tion of patents as an example the number of female patients are nearly three times more than

male patients.

Additionally, the dataset has missing values and it has limited follow-up time for some patients

(some patients may develop toxicity after the follow-up time), which are common challenges

in medical datasets. To address issues related to generalisation and missing values, I have

implemented data augmentation and imputation techniques have been employed. However,

it is important to note that certain challenges such as time to event and unfairness (as the

data selection process is not completely fair, exemplified by an overrepresentation of female

patients with cancer in the dataset) are inherent in the nature of medical datasets and cannot

be entirely eliminated. The small size of the dataset also impose a challenge for the model’s

generalization.Despite these challenges, I will continue to strive forthe best possible outcomes

have been pursued with the available data. Table 3.5 shows the summary of data analysis plan.

3.3 Clinical dataset

Twenty-two clinical features relevant to bowel urgency, diarrhoea and faecal incontinence were

selected based on previous research potentially demonstrating a link to radiotherapy and bowel

toxicity [26], [31], [37], [12].

Features associated with toxicity were subdivided into five categories; demographic, dosimet-

ric, comorbidity, treatment and medication features. Numerical values for demographic fea-
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Table 3.5: Summary of data analysis plan

Patient cohort Outcome to predict Input data OAR Competing risks

Variable: Bowel urgency

All patients except
Stoma

When you felt the
urge to move your
bowels, did you
have to hurry to get
to the toilet?

3D dose distribu-
tion, CT scans,
22 clinical features

Bowel bag small dataset,
missing data,
unfairness,
generalisation

Variable: Diarrhoea

All patients Have you had diar-
rhoea?

3D dose distribu-
tion, CT scans,
22 clinical features

Bowel bag small dataset,
missing data,
unfairness,
generalisation

Variable: Faecal incontinence

All patients Have you had any
leakage of stools
from your back
passage or stoma
bag?

3D dose distribu-
tion, CT scans,
22 clinical features

Bowel bag small dataset,
missing data,
unfairness,
generalisation

Abbreviations: OAR, organ at risk.

tures corresponded to the patients’ age, gender, body mass index (BMI), cancer type and smok-

ing status. Dosimetric factors were estimated from rela differential dose-volume histograms,

using relative (rather than absolute) volumes. Seven dosimetric feature corresponded to the

relative volume of bowel bag receiving 10, 20, 30, 40, 50, and 60 Gy dose and the total mean

dose received. Comorbidity features were defined by three binary values including diabetes,

cardiac diseases and previous abdominal surgery. Four treatment features were considered as

concurrent chemotherapy, surgery, conformal or Volumetric Modulated Arc Therapy (VMAT)

and tumour recurrence [83], [170]. Statins and ACE inhibitors as medication are features that

can affect bowel toxicities [165] are also considered in the candidate clinical features. Time

since RT was also included in the clinical features to account for varying follow-up times.

Table 3.6 summarises the candidate numerical data included in this study.
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Table 3.6: Candidate clinical features included in this study for toxicity prediction.

Feature Mean(std)/Num Missing
data

Description

Diagnosis
Cancer type anal:95, rectal:74,

endometrial:49,
cervical:97

0 value in {1,...,4}

Demographic
Age 60.48 (13.54) 0 year
Gender female:240,

male:75
0 1 for male 2 for female

BMI 27.62 (5.83) 59/315 -
Current smoker yes:48, no:205 62/315 binary value in {0,1}

Comorbidities
Diabetes yes:27, no:287 1 binary value in {0,1}
Cardiac yes:103, no:211 1 binary value in {0,1}
Previous Ab surgery yes:136, no:178 1 binary value in {0,1}

Medication intake
ACE Inhibitors yes:38, no:275 2/315 binary value in {0,1}
Statins yes:54, no:259 2/315 binary value in {0,1}

Treatment
Total dose 44.91 (10.47) 0 total irradiated in Gy
Concurrent chemo yes:208, no:107 0 binary value in {0,1}
Received surgery yes:119, no:196 0 binary value in {0,1}
Received VMAT yes:19, no:296 0 binary value in {0,1}
Time since RT 2.45 (1.21) 0 years after treatment
Recurrence yes:47, no:268 0 binary value in {0,1}

Dosimetric
VBowelBag10Gy 7.24 (6.34) 10/315 % of bowel bag received 10Gy dose
VBowelBag20Gy 11.28(10.34) 10/315 % of bowel bag received 20Gy dose
VBowelBag30Gy 7.28 (6.80) 10/315 % of bowel bag received 30Gy dose
VBowelBag40Gy 16.88 (14.80) 10/315 % of bowel bag received 40Gy dose
VBowelBag50Gy 2.28 (4.16) 10/315 % of bowel bag received 50Gy dose
VBowelBag60Gy 0.54 (3.47) 10/315 % of bowel bag received 60Gy dose

Abbreviations: std, standard deviation; Num, number of patients; BMI, body mass index; Ab, abdominal;
ACE, angiotensin-converting enzyme; VMAT, Volumetric modulated arc therapy; VBowelBagXGy, relative
bowel bag volume receiving X Gy effective doses.Note: all VBowelBagXGy are converted to 2 Gy equivalent
dose fractions.
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There are two main challenges with the current candidate features. First, for some entries

in the dataset data are not complete (see missing data in Tab.3.6). The missing value issue

causes practical problems for machine learning models and they require to be identified and

replaced. Second, the training dataset for each class label is imbalanced, with one class (in this

case, class toxicity) having fewer examples. As a result, it is more difficult for the model to

learn the features of the minority class and distinguish them from the majority class. This can

lead to biased models, where the model performs well on the majority class but poorly on the

minority class. Most classification models are built assuming an equal distribution of classes,

which can cause them to overlook the minority class and prioritize learning from the abundant

observations instead [65]. This is problematic as the predictions for the minority class are often

more important and valuable.

3.3.1 Statistical imputation for missing values

There are two broad categories of imputation methods: univariate imputation and multivariate

imputation [102].

Univariate imputation methods fill in missing values using only information from the individual

variable that contains the missing values. These methods calculate a statistical value (mean,

median, mode, etc.) for the missing data. While univariate imputation methods are simple

and easy to implement, they do not take into account any correlations that may exist between

variables in the dataset. Additionally, they may not be suitable for all types of datasets. For

instance, mean imputation assumes that the data is normally distributed, which may not always

be the case. Moreover, using these methods may result in biased estimates and can lead to

incorrect conclusions. Therefore, it is essential to carefully consider the nature of the data and

the specific requirements of the analysis before deciding on an univariate imputation method.

Multivariate imputation approaches, on the other hand, use information from multiple variables

to impute missing values. These methods take into account the correlations between variables
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and can produce more accurate imputations. Examples of multivariate methods include regres-

sion imputation and k-nearest neighbour imputation [102].

To analyse each imputation approach, both univariate and multivariate methods were tested for

the model’s performance. Ten missing entries for dosimetric features (VBowelBagXGy) were

not imputed as they can not be imputed based on other data in the dataset, and those patients

were excluded from the analyses.

For categorical values, including smoking, diabetes, medications, etc., univariate imputation

with replacing the most frequent data (see mode in table 3.6) was performed. For the only

continuous predictor, BMI, the average of the BMI column was estimated and replaced. Multi-

variate imputation was also applied and experiments were performed to assess the two imputa-

tion methods (all the experiments are described in chapter 4, where toxicity classification with

different ML models are reported).

For the multivariate feature imputation, the approach proposed by Van et al.[156] was imple-

mented; each missing feature was replaced in a repetitive procedure; at first, the feature column

including the missing values was considered an output y and the rest of the dataset (other fea-

ture columns) were treated as input x. A regression model fitted inputs and outputs (only for

known y) and it predicted the missing value for each feature. This was repeated until all the

missing values were replaced. The prediction performance of the model when using the K-

nearest neighbour (KNN) model for imputation was also tested. KNN imputer fills the missing

cells using the Euclidean distance. Considering the K-closest features (in terms of Euclidean

distance), it uniformly averages their values and replaces the missing sample. Scikit-learn [121]

Python library version 1.1.1, was used for all types of statistical imputation.

3.3.2 Data augmentation for imbalanced dataset

To address the problem of imbalanced datasets, data augmentation was utilised; a technique that

increases the size of the minority class by creating new synthetic data from the existing data.
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Data augmentation is often the primary solution to help balance the dataset and improve the

performance of the model [88]. Some common data augmentation techniques for imbalanced

datasets include:

• Oversampling: This involves creating new samples for the minority class by replicating

existing samples or generating new samples based on the existing samples.

• Undersampling: This involves removing samples from the majority class to balance the

dataset. This can be done either randomly or by selecting samples that are similar to the

minority class.

• Synthesizing new samples: This technique involves creating new samples for the mi-

nority class by applying a function to the current samples. For example, interpolating

between existing samples or adding random noise.

In this study, due to the small number of dataset, oversampling and undersampling was not

possible. Therefore the synthesising approach was implemented and tested on the model’s

performance. Further details are provided in Chapter 4.

3.3.3 Data normalisation and feature scaling

The numerical dataset has variable scales, and the range of values is different. For instance, the

range for the dosimetric features is in [0, 75.8] and the range for the ‘time since radiotherapy’

is [−5.05,−1.01]. For gradient-based machine learning algorithms, including logistic regres-

sion and neural networks, having features on a same scale helps the model converge more

efficiently and quickly to the minima; the feature value of x affects the step size of the gradient,

and a similar range for x results in smooth movements towards the minima. For distance-

based algorithms, including SVM, the feature range drastically impacts the performance of the

model. These models use the distance between the feature points to learn the data distribution;

for example, in SVM the support vector distances determine the optimum hyperplane for clas-

sification. Training the model with a dataset consisting of uneven ranges of features creates a
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biased model in which features with higher values gain higher weights [129]. Tree-based al-

gorithms, including random forest, are fairly insensitive to the range of features. For example,

in a RF model, the features are split based on their entropy, which is related to the order of the

features rather than their value.

Normalisation for continuous and categorical values were preformed separately. For continu-

ous features, the range of datapoint was scaled in [0, 1] with Min/Max normalisation as follow:

x =
x−min(x)

max(x)−min(x)
. (3.1)

This normalisation keeps the distance and orders of the datapoints and changes their scale.

For continuous variables this distance is meaningful while for categorical features distance and

order are randomly selected by an encoder and they do not have significant information. For

example, the value assigned for gender is 1 for male patients and 2 for female patients and

this could be the opposite. Using Min/Max normalisation assigns more value for the category

with higher number. To decrease the significance of the distance the coding of categorical

numbers was changed. Target encoding and one-hot encoding [114] are two well-known meth-

ods that change the coding for categorical values. One-hot encoding creates an sparse matrix

and inflates the categorical feature; in case of gender, instead of one column, two columns are

considered as gender where they belong to male and female feature separately. For example

for a female patient, this new encoding assigns zero/one for male/female column. Although

it vanishes the importance of the feature, for numerical value with too many categories it in-

creases the dimensionality - particularly when most of the categories are rare and useless for

prediction.

Target encoding encodes the categories with respect to the impact they might have on the target

(label for classification). For a binary classifier, it computes the posterior probability of target

= 1, given the input x is the category ci, or p(t = 1|x = ci). Since the output falls within the

range of zero to one, it does not require any further normalisation. Table 3.7 illustrates the
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range of numerical data before and after normalisation.

Table 3.7: Target category encoding results for categorical features.

Feature Value New Value BU New Value DI New Value FI
Gender {1,2} {0.33,0.38} {0.02,0.11} {0.08,0.11}
Cancer type {1,..,4} {0.49,0.37,0.15,0.29} {0.23,0.12,0.08,0.11} {0.26,0.12,0.16,0.22}

Current smoker {0,1} {0.33,0.35} {0.18,0.07} {0.12,0.10}
Diabetes {0,1} {0.32,0.50} {0.09,0.11} {0.10,0.07}
Cardiac {0,1} {0.32,0.37} {0.10,0.07} {0.13,0.03}
Previous Ab surgery {0,1} {0.31,0.37} {0.07,0.12} {0.09,0.11}
ACE inhibitors {0,1} {0.33,0.32} {0.10,0.03} {0.12,0.01}
Statins {0,1} {0.32,0.33} {0.09,0.07} {0.11,0.02}
Concurrent chemo {0,1} {0.22,0.39} {0.06,0.11} {0.03,0.14}
Received surgery {0,1} {0.40,0.19} {0.06,0.11} {0.13,0.05}
Received VMAT {0,1} {0.36,0.05} {0.10,0.05} {0.10,0.05}
Recurrence {0,1} {0.35,0.25} {0.10,0.04} {0.10,0.08}
Abbreviations: Ab, abdominal; ACE, angiotensin-converting enzyme; VMAT, Volumetric modulated arc
therapy; BU, bowel urgency; DI, diarrhoea, FI, faecal incontinence.

3.4 Imaging and dose data

Imaging and dose data for 313 patients were available in the dataset. For each patient, three

types of data were collected: CT scans, dose distributions (RD files), and structure sets (RS

files) were all collected and stored in DICOM format. CT files provide 3D anatomical infor-

mation, including the bones, blood vessels and soft tissues inside the patient’s body. RD files

include dose data (dose images) and dose metadata information. Structure set contours (organ

segmentation) were included in RS files. The contours with the bowel bag structure were ex-

tracted as it is the organ at risk available for all patients and associated with bowel toxicities.

Although the anorectum is an organ at risk, as this is target organ for treatment for patients

with anal and rectal cancer, this was not used as a training contour for the dataset. Fig. 3.2

illustrates a CT scan, dose, and overlapped mask image for one example patient in the dataset.
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Figure 3.2: An example of patient data in the dataset. A shows the CT scan and B shows
the dose distribution plan. The bowel bag contour extracted from RS file (mask image) is
overlapped with CT and dose images. From left to right: axial, coronal and sagittal views.
Higher values for dose image demonstrates higher dose irradiated. The scale for dose data is
not in units of Gy (Gray). To provide a more visually informative representation, the dose data
is plotted using a heat colour map.

Original image data are usually not ready for training machine learning models and they require

data preprocessing to be ready for inference and training. Appropriately transforming and

scaling the entire dataset, as the preprocessing step, facilitates the training/testing procedure of

the model and improves its learning performance. In order to make the dataset ready for neural

network input, various various data pre-processing steps were performed.

3.4.1 Dose distribution correction

There were two different sets of dose treatment data in the dataset; for the first group, including

data of 168 patients, multiple dose distributions per patient were available, each representing

a single radiation beam. For the second cohort (145 patients), only one dose distribution per

patient was stored. For the first cohort, the beams are delivered from 2–7 different directions

as part of each treatment (see Fig. 3.3).
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Figure 3.3: Examples of different dose data available in the dataset. Patient A, who received
dose treatment from four different angles, and patient B has only one treatment file. The dose
files for patient A need to be combined as one dose file.

To have a representation of the full treatment, combining of the beam dose distributions from

different directions into a single dose distribution was needed. Because all of the DICOM files

used the same coordinate system, a sum of all of the different beams can present the final dose

distribution. For radiobiological effect correction (i.e. taking into account fraction-size effects),

for each voxel in the dose distribution D, the dose was recalculated to the equivalent dose in 2

Gy fractions (EQD2; [13]) by:

EQD2 = nd
(d + α/β)
(2 + α/β)

, (3.2)

where n is the number of treatment fractions for patient’s RT treatment, d = D/n is the dose per

fraction, and α/β is a constant controlling the fraction-size sensitivity that is set to 3 Gy [12].

Fig. 3.4 shows a dose re-scaling operation. For patients treated with multiphase treatments (e.g.

larger fields followed by cone down), each phase was rescaled to EQD2 prior to calculating the

total dose across phases.
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Figure 3.4: Example of dose correction for a patient with four dose treatment files. The com-
bined dose is the result of summation of all the four files and the rescaled dose is computed
with the combined dose and Equation 3.2.

3.4.2 Image registration and re-sampling

Patient position in radiotherapy is determined based on the position that yields the minimum

irradiated dose to the organs at risk. Patients with prone and supine positions were available

in the datasets. Due to that, CT scans and their corresponding dose distributions had different

dimensions and orientations for patients with different positions (See Fig.3.5, original data).

To integrate all patients’ data, dose and contours data were re-sampled to their corresponding

CTs, and to improve registration time and accuracy, all the CT scans resampled to be the

same orientation as the prone position. Then, CT, dose and contour images were spatially re-

sampled with linear interpolation to voxel sizes of 0.97mm× 0.97mm and thickness of 5mm

with the SimpleITK toolkit [173] in Python. Fig. 3.5 illustrates the result of re-sampling and

CT corrections.

Moreover, the number of CT slices for each patient in the dataset varied from 49 to 224 with

an average of 98 (See Fig.3.6 ). In order to ensure that all the images used for training had a

consistent orientation, scale, and position, CT scans of all the patients were transformed into a

reference patient. This could help to eliminate variability between images and made it easier

for the neural network to learn the features that were important for the toxicity prediction.
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Figure 3.5: Example of image matching and re-sampling for two patients in different positions.
The top row shows CT and dose distributions for patient A in the prone position and patient
B in the supine position, with different dose orientations for the two patients. The bottom row
presents the outcomes of the re-sampling and CT orientation correction. Specifically, the CT
scan for patient B was re-oriented to match the orientation of patient A.

Figure 3.6: The coronal view of CT scans for two patients, A and B, with the maximum and
minimum number of slices, respectively. The bowel bag structure (region of interest for bowel-
related toxicity prediction) is shown in blue.

Image registration or image alignment involves spatially transforming the source images to

align with a target image. Prior to registration, all CT slices containing bowel bag structure

were extracted for each patients, and then these volumes were rigidly registered to a reference

image. The patient with the least number of slides (35) for bowel bag was selected as the refer-

ence patient. The height and width of CT scans were the same for all the patients ([512,512]).

The registration was performed using the SimpleITK [173] toolkit in Python. After registra-
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tion, the CT data for all the patients had a dimension of [35,512,512] voxels. Dose and mask

images were also registered using the computed transformation for their corresponding CT.

Two examples of CT registration are shown in Fig.3.7.

Figure 3.7: Example of CT registration. Composed image illustrate how moving image (green
shade) is registered to the fixed image (red shade).

3.4.3 Region of interest masking

To train the deep learning model for toxicity prediction in the bowel bag region, irrelevant

information outside of this area should be removed from the input data. This is because the

model only requires information related to the area of interest. Therefore, the bowel bag con-

tours were extracted as mask images; a mask is a tensor containing binary values of either one

or zero based on the volume’s shape. Specifically, the region of interest, which was the bowel

bag, was assigned a value of one in the mask, while the rest of the area in the mask was set to

zero. All re-sampling and registration were also applied on the mask image. Then this mask

was superimposed to its corresponding CT and dose images (in order to remove non-essential

information); the element-wise multiplication of the CT/dose volumes with the corresponding

mask was performed as the third step of image pre-processing. Fig. 3.8 illustrates the results
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of masking.

Figure 3.8: Example of region of interest masking. The blue contour in the right CT image is
the bowl bag extracted form structure file. The result of the CT and dose masking are shown
as “Masked CT” and “Masked dose”, respectively.

3.4.4 Data normalisation

The final step of image data pre-processing was normalisation . Data normalisation can im-

prove neural network convergence time and accuracy [91]. In classification networks, the

output is a number in the range [0, 1], therefore all image data was normalised to be in the

range [0, 1]. The final CT and dose images were re-scaled based on the whole population of

the dataset. Considering X as the normalised value for x, Min-Max normalisation was applied

with:

X =
x −Min(D)

Max(D) −Min(D)
, (3.3)

where Min(),Max() are functions that return the minimum and maximum of the whole dataset

D, respectively.
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I did not crop The non-zero area of the input image were not removed because my the proposed

model extracts the small patches in the image if they contain non-zero values (explained in

the chapter 5), therefore the zero patches (patches without information) will be automatically

removed.

3.5 Other approaches and limitations

It is important to acknowledge that there exist alternative approaches to data preprocessing.

For instance, in the case of normalisation, techniques such as Z-score normalisation can be

utilised. Similarly, for registration, non-rigid transformations can provide alternative options.

Additionally, various methods of imputation and augmentation are available to address miss-

ing values and enhance the dataset, respectively. However, it is crucial to carefully consider the

nature of the dataset, including its size, data distribution, and other relevant factors, when se-

lecting the most appropriate preprocessing approaches. Adapting the preprocessing techniques

to align with the specific characteristics of the dataset is key to obtaining optimal results. In

this chapter, the aim was to meticulously choose the preprocessing techniques that yield the

highest prediction performance, taking into account the nature of the dataset and the models

employed.

The approaches that have been employed for data preprocessing were not without limitations.

Rigid registration, for instance, can be affected by the quality of the images, and not all im-

ages in the dataset possessed optimal quality. As for data normalisation, one limitation is the

potential loss of information. By basing the normalisation on the entire population, data with

smaller values (specifically in dose distribution data) relative to the overall population may be

overshadowed or lost entirely. Furthermore, normalisation can impact rare data points, as their

normalised values may not accurately represent their significance or differentiate them from

more common events.

Concerning data augmentation, one major limitation in this research was the small size of
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the dataset, which impacted the effectiveness of augmentation. While augmenting a small

dataset can increase its size, it may not necessarily introduce new information. However, given

the circumstances, the available options were utlised effectively to generate an appropriate

amount of new data without encountering the issue of overfitting.]. Furthermore, the method

of augmentation must be carefully considered based on the dataset characteristics. for the aim

of this research the shape of the bowel bag should be reserved which, restricted options like

rotation or scaling for data augmentation.

Imputation also presents its own set of challenges, particularly regarding the potential impact

of new imputed data on existing relationships and correlations within the dataset. Despite

these challenges, the most suitable imputation approach was employed to address the available

gaps. It is important to note that these limitations and challenges within the data preprocess-

ing methods are present. Nevertheless, the best approaches possible was utlised, given the

circumstances, to mitigate these limitations and achieve optimal results.

3.6 Summary and conclusions

In this chapter, the dataset utilised in the study was introduced, consisting of two types of data:

3D CT imaging, dose distributions, and contours, as well as 1D clinical data. Each data type

required different pre-processing steps. For the 3D CT, dose, and contour volumes, registra-

tion, re-sampling, and normalisation were applied. Additionally, fraction-size correction was

performed for the dose data. Regarding the clinical dataset, several pre-processing approaches,

including imputation for missing values, augmentation, and normalisation were needed. The

specific details of these pre-processing procedures were elaborated upon in this chapter.

The next step is exploring the ability of machine learning to predict toxicity. Here an important

question arises: Can machine learning approaches effectively predict toxicity? In the forth-

coming chapter, the findings on how different ML models can predict toxicity based on the

available dataset are presented. The aim is to assess the predictive capabilities of these mod-
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els and determine if they can contribute to detecting clinical risk factors. By conducting this

investigation, the thesis aims to shed light on the potential of machine learning techniques in

toxicity prediction and their potential impact on enhancing accuracy and overall outcomes.
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Chapter 4

Conventional Machine Learning

Models for Toxicity Prediction

In this chapter, three conventional machine learning models (LR, SVM, and RF; as the most

common ML models for classification in medical tasks 2.2.1) are utilised to analyse clinical

metadata and predict three bowel-related toxicities. Additionally, the importance of each clin-

ical feature is assessed, and various methods of imputation for missing values in the clinical

dataset are tested. The main goal of this chapter is to demonstrate the potential of clinical

metadata alone in predicting RT-induced toxicity, given their frequent usage in current toxic-

ity prediction models. The outcomes of this chapter are needed in the following chapters to

compare the impact of image data (CT and dose) and their combination on toxicity prediction.

4.1 Introduction

In order to investigate the correlation between clinical data and different bowel toxicities, 22

pre-selected clinical features (see Chapter 3) with three ML techniques: LR, SVM and RF

for the three different types of patient-reported bowel toxicity (bowel urgency, diarrhoea and
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faecal incontinence). The main objective is to predict grade≥ 1 toxicity with pre-selected

clinical features.

4.2 Implementation details

The choice of the best kernel for svm depends on the nature of the data and the problem. The

linear kernel is suitable for linearly separable data, and due to being computationally efficient,

it is worth to explore whether this method is effective for the dataset. The model was created

using Scikit-learn Python library and the C value was set to 1 (C parameter is a regulator

term that controls the trade-off between the training error and the margin. A larger value of

C implies a smaller margin and a higher penalty for misclassification, while a smaller value

of C implies a larger margin and a lower penalty for misclassification). Exploring a curved

decision boundary, the SVM with polynomial kernel was trained with C=1 and a degree of

5 ( this implies that the decision boundary created by the SVM is a polynomial function of

degree 5 in the input space). Finally SVM with the RBF kernel was trained with the C=1 and

gamma=0.05 (the gamma determines the influence of each training example on the decision

boundary. A higher value of gamma indicates that nearby training examples have a significant

impact on the decision boundary, while a lower value of gamma means that training examples

farther away can also have an influence).

The RF model consisted of 100 randomly created trees. The “max features” hyperparame-

ter was set to the length of the training columns (max features shows the number of features

randomly considered at each split when building the individual trees within the forest).

The LR model was trained with the default parameter of the Scikit-learn library except that the

C values was selected 0.01. Due to the imbalanced dataset, data augmentation was applied to

the training set and ML models were tested for both modes with and without data augmentation.
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The class weight property for all methods was set to “imbalanced” in model training. All the

hyperparameters were selected based on a exhaustive search over specified parameter using the

GridSearchCV function of “model selection” class of Sikit-learn library.

4.3 Predicting bowel urgency with machine learning techniques

Seventy-five patients were excluded from the dataset due to missing data for dosimetric features

or a label for bowel urgency. From 240 patients, 20 patients with and 20 without bowel urgency

toxicity were randomly selected for the test set. The reminder (200 patients) were used for

training, in which 155 patients had toxicity and 45 did not. Data augmentation was only applied

to the training set.

To determine the most effective imputation method, an LR model using different imputation

techniques was trained on the training set. Among continuous features only BMI was imputed

and the missing entries for dosimetric features (VBowelBagXGy) were not imputed (as dose

data are patients specific, imputation can potentially lead to inaccurate or false information).

Consequently, patients with missing dosimetric features were excluded from the study. For

categorical features, the mean, mode (most frequent data) and median of the missing variable

distribution were replaced with univariate imputation. Multivariate imputation and KNN were

also tested for both continuous and categorical variables.

The experiment results are presented in Table 4.1. KNN yielded the highest accuracy and AUC

values among all the imputation methods. Univariate and multivariate imputation produced

similar results and notably, the performance was poor without any imputation. Having a better

performance, for all the experiments in the study, the clinical dataset was imputed using a KNN

approach.
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Table 4.1: Comparison of the different imputation methods based on the LR classifier. Best
performance in each metric is shown in bold.

Imputation Accuracy AUC Sensitivity Specificity Comment

- 0.50 0.52 0.45 0.55 Patients with missing entries were re-
moved from the training dataset.

Univariate-1 0.57 0.60 0.45 0.70 BMI is imputated with “mean” and cate-
gorical are imputed with “mode” strate-
gies.

Univariate-2 0.58 0.57 0.40 0.75 BMI is imputated with “mean” and
categorical are imputed with “median”
strategies.

Multivariate 0.55 0.60 0.40 0.70 BMI and categorical are computed with
multivariate imputation.

KNN 0.58 0.64 0.55 0.60 BMI and categorical are computed with
KNN imputation.

Abbreviations: AUC, area under the receiver operating characteristic curve; BMI, body mass index; KNN,
k nearest neighbour; LR, logistic regression.

An LR classifier with various data augmentation techniques was trained to investigate how

data augmentation affects model performance. Synthetic Minority Oversampling Technique

(SMOTE) [22] is a synthesising technique which generates synthetic data for each sample of

the minority class based on its k-nearest neighbours; for all the samples, the first k neighbours

are identified, and then between each pair of points and neighbours, a new synthetic data is

interpolated.

Another approach is Adaptive Synthetic (ADASYN) sampling, introduced by Haibo He et al.

[66] for imbalanced learning. The technique is an improved version of SMOTE that finds the

first k neighbours of the “harder-to-learn” examples in the minority class. Then after creating

those samples, it adds small random values to them, thus making them more realistic. In other

words, instead of all the synthesised samples being linearly correlated to the real samples, they

have more variance, i.e., they are more scattered. It is important to note that all augmentation

and imputation techniques were applied after target encoding and normalisation processes. As

a result, adding small values to categorical variables is permissible, as after normalisation, all

variable values (both categorical and continuous) are scaled between 0 and 1.
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Table 4.2: Comparison of the different augmentation methods based on the LR classifier. The
best performance in each metric is shown in bold.

Augmentation Accuracy AUC Precision F-1 Sensitivity Specificity

No augmentation 0.50 0.60 0.50 0.49 0.45 0.55

SMOTE 0.67 0.65 0.70 0.64 0.60 0.75

ADASYN 0.75 0.77 0.81 0.72 0.65 0.85

Abbreviations: AUC, area under the receiver operating characteristics curve.

The two augmentation approaches were separately applied to the dataset and the model per-

formance was evaluated for each method. Table 4.2 shows that the performance significantly

improved when the model was trained on the augmented dataset. The model’s accuracy was

calculated at 0.50 while this increased to 0.75 when it was trained on the dataset with aug-

mentation. The other performance metrics also improved. Comparing SMOTE and ADASYN,

the latter performs superiorly; since the dataset is highly imbalanced, it is essential to focus

on generating samples for those minority class examples that are harder to learn. Synthesizing

new samples by interpolating between all the examples, can result in overfitting and the pro-

duction of redundant samples. Therefore, ADASYN performs better than SMOTE by not only

increasing the number of minority class examples but also enhancing the diversity of the syn-

thetic samples, which is crucial for improving the classification performance for imbalanced

datasets.The ADASYN technique for oversampling was used for the rest of the experiments.

The three classifiers were trained on the augmented dataset and tested on the unseen test set.

Table 4.3 illustrates the results of the experiments.
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Table 4.3: Comparison of the different machine learning methods for bowel urgency prediction.
The best performance in each metric is shown in bold.

Method Parameter Accuracy AUC Precision F-1 Sensitivity Specificity

LR - 0.75 0.77 0.81 0.72 0.65 0.85
SVM Polynomial kernel 0.70 0.70 0.75 0.66 0.60 0.80

SVM Linear kernel 0.65 0.72 0.72 0.68 0.65 0.65

SVM RBF kernel 0.55 0.65 0.58 0.61 0.55 0.55

RF 100 trees 0.65 0.60 0.75 0.56 0.45 0.85

Abbreviations: AUC, area under the receiver operating characteristics curve; LR, logistic regression;
SVM, support vector machine; RF, random forest; RBF, radial basis function.

LR had superior performance than other models in all the evaluation metrics. The worst per-

formance was achieved by random forest; having a high specificity (0.85) and a low sensitivity

(0.45) shows that random forest is biased towards predicting label zero (the class without toxi-

city).

To find the importance of each predictor feature, (i) the magnitude of the coefficients in the

logistic regression model, (ii) SVM weights and (iii) the Gini importance computed by the ran-

dom forest model were extracted. Fig 4.1 shows the results of the experiment. Considering all

models, “BMI” and “cancer type” are among the top five important features; this implies that

both features can affect bowel urgency toxicity. Additionally, the dosimetric features (VBowel-

BagXGy) consistently scored highly across all models, suggesting a strong association between

the dose irradiated to the bowel bag and the risk of toxicity.

However, there was some overlap among the top fifteen features, including “time since RT”,

“current smoker”, “cardiac”, and “diabetes”. In contrast, at the end of the spectrum, “ACE

inhibitors” and “statins” gained the lowest weights.
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4.3 Predicting bowel urgency with machine learning techniques

Figure 4.1: Analysis of risk factors for bowel urgency. The importance of the features for
logistic regression, SVM, and random forest models are extracted. The x axis presents the
significance of features; for logistic regression the coefficients of the model, for SVM the
models weights and for random forest the Gini score of each feature are shown. Abbreviations:
BMI, body mass index; VMAT, Volumetric modulated arc therapy; RT, radiotherapy; ACE,
angiotensin-converting enzyme. Note: Total dose denotes the total prescribed dose.
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4.4 Predicting diarrhoea with machine learning techniques

For diarrhoea prediction, 10 patients were excluded due to missing values for VBowelBagXGy.

Twenty patients with diarrhoea and twenty without were randomly selected for the test set.

The remainder (265 patients) was left aside for the training set including 184 patients without

and 81 patients with symptomatic diarrhoea. ADASYN data augmentation was applied to the

minority class, and the new training set included 346 patients. Table 4.4 shows the results of

the experiment. Like the results for bowel urgency, LR performed slightly better than other

models, and the RF model had the worst performance. The low sensitivity score of 0.25 for RF

shows that the model did not learn the minority class distribution and is highly biased.

Table 4.4: Comparison of the different machine learning methods for diarrhoea prediction. The
best performance in each metric is shown in bold.

Method Comment Accuracy AUC Precision F-1 Sensitivity Specificity

LR - 0.70 0.65 0.68 0.61 0.65 0.75
SVM Polynomial kernel 0.60 0.61 0.63 0.64 0.70 0.60

SVM Linear kernel 0.65 0.63 0.54 0.54 0.60 0.50

SVM RBF kernel 0.70 0.63 0.58 0.59 0.70 0.50

RF 100 trees 0.50 0.60 0.50 0.33 0.25 0.75

Abbreviations: AUC, area under the receiver operating characteristics curve; LR, logistic regression; SVM,
support vector machine; RF, random forest; RBF, radial basis function.

To understand the influence of each predictor feature, the importance of each feature was ex-

tracted from all models similar to the previous section. Fig.4.2 illustrates the significance of

the clinical variables.

Fig.4.2 shows that the dosimetric features representing the portion of the bowel bag receiving

higher dose are associated with toxicity. The total dose is also located in the top ten features for

all models. Non-dosimetric features, including “cancer type”, “BMI” and “received VMAT”

are also correlated with risk of toxicity, as they are selected in the top 15 features by all the

models.
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4.4 Predicting diarrhoea with machine learning techniques

Figure 4.2: Analysis of risk factors for diarrhoea. The importance of the features for logistic
regression, SVM, and random forest model are extracted. The x axis presents the importance
of features; for logistic regression the coefficients of the model, for SVM the models weights
and for random forest the Gini score of each feature are shown. Abbreviations: BMI, body
mass index; VMAT, Volumetric modulated arc therapy; RT, radiotherapy; ACE, angiotensin-
converting enzyme. Note: Total dose denotes the total prescribed dose.
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4.5 Predicting faecal incontinence with machine learning techniques

Twelve patients were removed from the dataset due to missing data, for dosimetric features

or the faecal incontinence label. 20 patients with and 20 without symptomatic faecal incon-

tinence were randomly chosen for the test set. Among the 263 patients remaining for the

training set, 199 of them reported no symptoms of faecal incontinence toxicity. Due to the

imbalanced training set, ADASYN data augmentation was applied to the minority class (64

patients). Therefore all ML models were trained on the augmented dataset with 327 data. The

results of the experiment are shown in Table 4.5. Similar to the prediction of diarrhoea and

bowel urgency, logistic regression and RF models received the highest and lowest scores for

faecal incontinence prediction; LR had an accuracy of 0.70 while RF had an accuracy of 0.55.

Table 4.5: Comparison of the different machine learning methods for faecal incontinence pre-
diction. Best performance in each metric is shown in bold.

Method Comment Accuracy AUC Precision F-1 Sensitivity Specificity

LR - 0.70 0.71 0.78 0.64 0.55 0.85
SVM Polynomial kernel 0.65 0.63 0.68 0.61 0.55 0.75

SVM Linear Kernel 0.60 0.65 0.66 0.50 0.40 0.80

SVM RBF kernel 0.60 0.64 0.62 0.55 0.50 0.70

RF 100 trees 0.55 0.60 0.62 0.35 0.25 0.85

Abbreviations: AUC, area under the receiver operating characteristics curve; LR, logistic regression; SVM,
support vector machine; RF, random forest; RBF, radial basis function.

The coefficients of the LR and SVM models and the Gini score for RF were extracted to explore

the importance of each clinical factor (see Fig4.3). For all models, “BMI” is among the top

three features. Furthermore, being among the top ten features, dosimetric variables (VBowel-

BagXGy) are also highly correlated with the faecal incontinence toxicity. Other non-dosimetric

features, including “cancer type”, “time since RT”, and “ACE Inhibitors” are also highlighted

by all models within the top 15 features.
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Figure 4.3: Analysis of risk factors for faecal incontinence. The importance of the features
for logistic regression, SVM, and random forest model are extracted. The x axis presents
the importance of features; for logistic regression the coefficients of the model, for SVM the
models weights and for random forest the Gini score of each feature are shown. Abbreviations:
BMI, body mass index; VMAT, Volumetric modulated arc therapy; RT, radiotherapy; ACE,
angiotensin-converting enzyme. Note: Total dose denotes the total prescribed dose.
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4.6 Discussion

In a general view of all the models, logistic regression performed slightly better than SVM and

RF. This may be because the dataset is relatively small, and although ADASYN data augmen-

tation was used to balance the dataset and generate the hard-to-learn features, it is insufficient.

This indicates that data points in the decision boundary may not accurately reflect the true de-

cision boundary. As a result, it can create a false maximum margin boundary in SVM and a

false decision in the random forest model. Furtheremore, considering the class imbalance in

the dataset and the fact that LR is a probabilistic classifier that does not explicitly take the mar-

gin into account, it can be justifed why the LR outperforms the SVM and RF models. On the

other hand, the RF model had the lowest AUC and accuracy among all the models. It may be

due to that RF tends to distinguish the class distribution by evaluating the value of each feature,

while in LR and SVM, the correlation is determined by the product of coefficients and values

rather than just the values themselves. Considering the complex relationship between different

factors and toxicity, SVM and LR can perform superior to RF.

Comparing performance among three toxicities showed that prediction of bowel urgency had

the highest AUC and accuracy. This may be due to that the class distributions for diarrhoea

and faecal incontinence are imbalanced towards the negative class (no toxicity), meaning that

there are more samples for patients without toxicities. Additionally, the grades/labels are or-

dinal, which means that the class distributions are close together. For example, the difference

between “No” and “Mild” toxicity might be small, as might the difference between “Mild” and

“Moderate” toxicity. Although data augmentation was used to balance the dataset for all three

types of toxicity, the difference between the grades showed that there were not enough good

samples for augmentation for diarrhoea and faecal incontinence. For example, the class with

toxicity for faecal incontinence includes 64 patients, where the majority of them (52 patients)

belong to the category of mild toxicity, which can be overlapped with no toxicity (228 patients).

Therefore, data augmentation was not as effective for diarrhoea and faecal incontinence as it

82



4.7 Summary and conclusions

was for bowel urgency, where there were enough samples for each grade.

The analysis of feature importance reveals that dosimetric features ranked as top predictors

across all models, indicating a strong association between the irradiated dose and toxicity.

These findings suggest that incorporating 3D dose distribution, which provides spatial infor-

mation as well as dosimetric information, could enhance the prediction performance.

4.7 Summary and conclusions

In this chapter, three ML models were employed to predict toxicity using clinical data. This

chapter was important because it provided results for comparison and addressing the question

of whether deep learning and analysing 3D spatial information can enhance performance. As

mentioned earlier, one of the drawbacks of the traditional models is their inability to incorporate

spatial information. Hence, the emergence of deep learning models aimed to overcome this

challenge. However, certain challenges persist, particularly regarding the interpretability of the

network’s process. In the next chapter, a novel deep learning model will be introduced, which

leverages spatial information to predict toxicity while addressing the challenges associated with

explainability.
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Chapter 5

Toxicity Prediction in Pelvic

Radiotherapy Using Multiple Instance

Learning and Cascaded Attention

Layers

This chapter uses a deep learning model to explore 3D dose distributions and CT scans to pre-

dict RT-induced toxicity. The main objective of this chapter is to address three key challenges

faced by current outcome modelling techniques, as discussed in Chapter 1: exploring the spa-

tial information of input data, detecting the bowel regions that are involved in the toxicity, and

explaining the network’s behaviour. The results of this chapter can help clinicians have a bet-

ter understanding of how the irradiated dose and different anatomical regions are correlated

with toxicity. This information can be beneficial in guiding the development of optimal dose

planning.

A modified version of this chapter originates from my paper “Toxicity Prediction in Pelvic
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Radiotherapy Using Multiple Instance Learning and Cascaded Attention Layers” published in

IEEE Journal of Biomedical and Health Informatics, in February 2023 [47].

5.1 Introduction

Using CT-based models of patient anatomy, modern radiotherapy provides treatment plans that

are optimised on an individual patient basis. This optimisation is mostly based on straightfor-

ward hypotheses on the relationship between normal tissue and the radiation dose applied to

the tumour (an increase in dose will increase cancer control as well as the rate of side effects).

Particularly in the case of radiation-induced toxicity, the relationship between the delivered

dose and the toxicity is not clearly understood. In this work, a deep learning model is pro-

posed to explore this relationship; the correlations of image data, including CT scans, dose

distribution plans, and bowel urgency toxicity are investigated with a 3D convolutional neural

network. The model is based on multiple instance learning (MIL) and attention mechanism

that generates three outputs:

(i) a binary value predicting the toxicity,

(ii) a toxicity risk map illustrating the anatomical regions association with the toxicity,

(iii) an input importance map presenting the relative importance of CT and dose for the toxi-

city.

As discussed in earlier chapters, conventional methods for predicting RT outcomes often dis-

card the spatial information of dose distribution. To address this issue, several deep learning

models have been proposed to incorporate spatial information. However, a significant chal-

lenge remained: these models were unable to detect the correlation of anatomical regions with

toxicity. The novelty of the proposed model lies in its ability to detect the anatomical areas that

are related to the toxicity.

In Chapter 3 it is explained that RT-induced toxicity was classified with two different ways.
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For the purpose of this work, the focus is on analysing mild/severe bowel urgency toxicity,

which is defined as reported bowel urgency with grade ≥ 2. The reason for this is that the

dataset does not have a major imbalance for bowel urgency (161 patients without toxicity vs

79 patients with toxicity). It is not possible to analyse other toxicities in the same way because

they are highly imbalanced and it drastically affects the training of the network (even with data

augmentation dataset is still imbalanced).

5.2 Methodology

The main structure of the network consists of: (i) two encoders extracting the most significant

features from each input (i.e., CT scans and dose distribution plans) separately, (ii) two atten-

tion modules describing the network’s behaviour, and (iii) one classification module predicting

the toxicity. The final output of the network is a binary variable that determines the occurrence

of the grade≥ 2 bowel urgency toxicity.

The architecture of the network is illustrated in Fig. 5.1.

Figure 5.1: The schematic illustration of the proposed model. 3D input images are pre-
processed and fed into the MIL-Att network. The output of the network is a binary variable
defining toxicity prediction. Attention weights α1, .., αk are utilised to generate toxicity maps;
and weights of the first attention module, β1, ..., βk, are extracted to analyse the impact of each
input on the network’s decision.
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5.2.1 Multiple instance learning with convolutional blocks

Multiple Instance Learning (MIL) is a form of supervised machine learning algorithms de-

signed for datasets where individual instances lack direct labels but they are instead grouped

into “bags” that has a labels. MIL are especially beneficial for tasks where accurately labeling

individual instances is challenging or unfeasible [20]. For example, in histopathology image

processing, a pathologist may assess an entire slide image of a tissue sample to ascertain the

presence of cancer cells. However, labeling each individual cell in the slide may be impracti-

cal or even impossible [97]. A traditional MIL, the algorithms includes main components as

below:

• Instances: the basic unit of data, often represented as a feature vector. In the histopathol-

ogy example, each instance is the patch extracted from the slide. These instances may or

may not have positive/negative labels.

• Bag: a set of instances. Each bag is labelled with a binary class label. The bag label is

positive if there is at least one instance with a positive label, otherwise it is negative.

• Learning task: the classifier is trained to identify whether a bag is positive or negative.

The training process includes: (i) extracting features from each instanc within the bag.

These features capture relevant information for the classification task. (ii) fitting a clas-

sification model; there are various models than can be fitted on the extracted features to

perform classifcation [68]. An appropriate MIL algorithm should be selected based on

the characteristics of the data and the desired outcome. the most common MIL algo-

rithms include SVM, nearest neighbour, ensemble models and neural network.

For this study, a neural network has been chosen and adapted to fulfill the objectives, specif-

ically targeting the automated extraction of features and classification for toxicity prediction.

The difference between the proposed MIL and the conventional MIL lies in the labeling strat-

egy. In the proposed model, instances within a bag do not have known labels, while the bag
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label is known. In simpler terms, the network is unaware of which particular instances within

a positive bag have positive labels, but it has the information that the entire bag is positive.

The proposed MIL model is desgined with a CNN classifier with modification. In a typical

binary classification using a CNN, the goal is to detect the best model that assigns a label

y ∈ {0, 1} for a given input data x. However, in multiple instance learning one aims to find the

label y ∈ {0, 1} for multiple instances belonging to the same category.

Let X(K) = {x1, x2, ..., xK} denote a bag of K instances, the MIL model predicts the label y(K) for

the entire bag. Fig5.2 shows the difference between a typical deep learning model and multiple

instance learning model.

Figure 5.2: The difference between deep learning and multiple instance learning. The deep
learning model aims to predict if the input image is a dog, while for MIL the aim of the network
is to predict if there is any dog in the input bag.

Multiple instance learning is ideal for a variety of medical imaging jobs due to the issue of

poorly annotated data [126], [150], [27], [169], where the input image data can be divided into

multiple instances/patches. In this study, MIL is employed for two main reasons; first, medical

data are big 3D images, and it is impractical to train a deep neural network with two different

3D inputs; CT scans and dose plans were divided into smaller 3D cubes, and this drastically
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reduced time and resource (i.e., memory and GPU) complexity while offered a model that

investigated both modalities. Second, a key challenge in an outcome prediction problem is

identifying the anatomical regions associated with the toxicity. By attaching attention modules

to the MIL model, those instances within the bag (areas in the image) that trigger the final

prediction can be discovered.

5.2.2 Attention mechanism

Machine learning-based attention mechanism mirrors the human cognitive process: deliber-

ately focusing on specific relevant features, while ignoring other features.For instance, con-

sider a photograph of a family where the grandfather and grandchildren are seated in a row.

When searching for the grandfather, an individual might focus on the color of their hair while

disregarding the color of their clothes. Essentially, this person has acquired the knowledge that

the color of hair is a distinctive feature of elderly individuals. The same applies to the attention

mechanism in neural networks, where the network learns to prioritize certain features as more

crucial for determining the final output.

The attention mechanism has been introduced in various fields, but its predecessors in neural

networks were primarily used in recurrent models [110], [135]. These early attention mecha-

nisms calculated weights for words within a context sequentially, but they paved the way for

more sophisticated attention mechanisms that have found applications in translation models

[9], vision models [128] and perceiver machines [79] and transformer [158].

In the context of CNNs, various attention mechanisms, such as self-attention [178], channel

attention [72], spatial attention [179], and more, have been implemented. However, the main

approach for most of them involves calculating weights for specific components of the model,

such as features, channels, or spatial dimensions. A straightforward formulation could be

as follows: Let C represent a specific component of a CNN; the attention module calculates
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weights for the ith element of C can be calculated in the following manner:

αi =
exp(ei)∑N

k=1 exp(ek)
, (5.1)

where ei is the score generated by an alignment model showing how well the component Ci

is impact on the output. In the proposed framework, the aim is to detect the most impact-

ful (impact on the toxicity) regions within the input image, therefore the attention computes

the weight for features (the component C) that are extracted from convolutional blocks. the

alignemt model e is parameterised as a feed forward network which is simultaniusly trained

with the main CNN.

Since the aim of this framework was to provide an explanation for the network’s output in ad-

dition to toxicity prediction, to meet this goal, two attention modules were attached along with

the convolutional encoders (see Fig.5.1). In a standard MIL classification task, the features

collected from all of the instances are sent to a classification module with equal weight. How-

ever, in this work, using the attention mechanism, the weighted average of all the features were

computed (the extracted features do not have equal weight). These weights were determined

by a feed-forward neural network - the attention module - that was jointly trained with other

sections of the network.

Both attention modules are desinged with a two fully-connected layers with ReLU acitivation

function and a softmax function for the final output of the module that computes the weights

for all features extracted from different location in the input image (or instances in the input

bag). The number of layers in the attention module can vary depending on the complexity of

the input data. While a larger number of layers can potentially capture more complex relation-

ships and enhance the efficiency of the learned weights, it also increases the risk of overfitting.

In this research, due to the relatively small input size (small patches extracted from original

image), employing more than two layers led to overfitting and was therefore inappropriate for
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the model.

The novelty of this chapter is employing two attention modules that separate the attention

weights over feature and space. This allows: (i) easily distinguish the contributions of CT

and dose inputs to the predicted toxicity and (ii) locating the anatomical regions associated to

bowel urgency toxicity. Thus, for each individual patient, the network creates two risk maps;

one highlights the critical regions, where the patient’s OAR and dose delivered together drive

the toxicity risk, and the other describes how CT and dose plans trigger the network’s outcome.

5.2.3 Model formulation

Consider a bag with K instances as X(K) where: X(K) = {X1,i,X2,i, ...,XK,i} , and Xk,i represents

the kth instance from ith input of the bag. To simplify matters, X and y are denoted instead of

X(K)and y(K) for each bag and label, respectively. More details of the notation are shown in

Table 5.1.

Table 5.1: Summary of the notations.

Notation Description Value

k Instance number 1 ≤ k ≤ K (K can be different for each bag)

i Input number i ∈ {1, 2}, CT: i = 1 , dose: i = 2

hk,i Feature vector for instance k and input i hk,i ∈ R
1×l

w,V Weights for input attention w ∈ Rd×1,V ∈ Rd×l

βk,i Attention weights for instance k, input i βk,i ∈ R| 0 ≤ βk,i ≤ 1

zk Weighted feature for instance k zk ∈ R
1×l

q,R Weights for region attention q ∈ Rp×1,R ∈ Rp×l

αk Attention weights for instance k αk ∈ R| 0 ≤ αk ≤ 1

s Weighted feature for input bag s ∈ R1×l

The outcome prediction problem can be formulated as a posterior probability as below:

y = ΦΩ(X), y ∈ [0, 1], (5.2)
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where Ω is the set of the model parameters. Considering Xk,i as an input cube (an instance

in the bag) representing cube k from input i (i = 1 for CT and i = 2 for dose), the encoder

module can be written as fθi(Xk,i), which is a convolutional neural network with the parameters

θi. The module’s output is a vector, hk,i, containing the most important features of the input

cube ( fθi(Xk,i) = hk,i).

Once the features have been extracted from each input cube, the attention module β calculates

which input (CT or dose) has more relevant features for toxicity prediction. The attention

module is a two-layer fully-connected network that takes feature vectors as input and outputs

the importance weights of the inputs. It can be formulated as:

βk,i =
exp{wT tanh(VhT

k,i)}
2∑

j=1
exp{wT tanh(VhT

k, j)}
, (5.3)

where V and w are weights matrix and vector, respectively. The value of βk,i is the importance

weight for the cube k in the input i. Therefore, the ultimate feature vector representing the input

cube is computed as:

zk =

2∑
i=1

βk,ihk,i. (5.4)

Next, the aim is to find those anatomical regions which correlates the most with the toxicity

outcome. Attention module α computes the importance weight for each cube based on its

location. It can be written as:

αk =
exp{qT tanh(RzT

k )}
K∑

j=1
exp{qT tanh(RzT

j )}
, (5.5)

where R and q are the weight matrix and vectors parameters, respectively.

Finally, the feature vector that is ultimately fed to the classification module can be computed
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using:

s =
K∑

k=1

αkzk, (5.6)

Based on 5.2, the toxicity classification can be written as:

y = ΦΩ(X) = gφ(s),

gφ : s 7→ [0, 1], Ω = {φ, θ ,w,V, q,R}.
(5.7)

where gφ refers to a four-layer fully-connected network that generates the probability of the

toxicity occurrence (classification module). Assuming t ∈ {0, 1} represents the target class for

X, the model can be trained through minimizing the binary Cross-Entropy loss function given

by:

L(t,Ω) = −t log(ΦΩ) − (1 − t) log(1 − ΦΩ) (5.8)

The loss function is summed over all input bags in the training set and minimisation is per-

formed w.r.t. Ω parameters.

5.3 Experimental results

The patients were divided into two classes: those with moderate or severe (responded 2 or 3)

toxicity (79 patients) and those with no or mild (responded 0 or 1) toxicity (161 patients). For

the sake of simplicity, the former group are referred as patients with bowel urgency toxicity and

later without bowel urgency toxicity. 75 participants were not included in the study because of

incomplete data or having stomas (item not relevant).

5.3.1 Implementation details

Before the training, a 3D rigid transformation (SimpleITK [104], version 2.0.1) was utilised

to register CT scans and dose distributions to a reference patient with CT images of dimen-
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sions [35, 512, 512] voxels. The patient with the minimum number of slices for the bowel bag

structure was selected as the reference. The size of each pixel was 5mm × 0.97mm × 0.97mm

and each input data was divided into smaller cubes with voxel dimensions of [6, 32, 32]. The

encoder had two 3D convolutional modules, in which each convolution layer is followed by

maxpooling and batch normalisation layers. 30 and 50 convolution filters with a kernel size

of (2, 3, 3) were utilised in the two convolutional layers. Table 5.2 shows the parameters and

details of the network architecture.

Table 5.2: Parameters of the MIL-Att network

Module Layer Kernel size Filters/
Units

Stride Padding

Encoder-dose

Conv + ReLU+BN (2,3,3) 30 (1,1,1) 0
Maxpool (1,2,2) - (1,2,2) 0
Conv + ReLU+BN (2,3,3) 50 (1,1,1) 0
Maxpool (1,2,2) - (1,2,2) 0

Encoder-CT

Conv + ReLU+BN (2,3,3) 30 (1,1,1) 0
Maxpool (1,2,2) - (1,2,2) 0
Conv + ReLU+BN (2,3,3) 50 (1,1,1) 0
Maxpool (1,2,2) - (1,2,2) 0

Attention-α
Linear + Tanh - 512 - -
Linear + Softmax - 1 - -

Attention-β
Linear + Tanh - 512 - -
Linear + Softmax - 1 - -

Classifier

Linear + ReLU - 1000 - -
Linear + ReLU + DP p=0.5 500 - -
Linear + ReLU + DP p=0.5 50 - -
Linear + Softmax - 1 - -

Abbreviations: Conv, convolutional layer; ReLU, rectified linear unit activation function; BN, batch
normalisation; Tanh; hyperbolic tangent activation function. DP, drop out.

Adam optimisation [86] with the learning rate of 1e−4 was employed. The number of neurons

in both attention modules was set up to 512 (p, d = 512, see Table 5.1). ReLU activation

function was used for all inner layers, and the last fully-connected layers in the classification

and attention modules were activated using Sigmoid and Softmax functions respectively.
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5.3.2 Training strategy

The dataset was divided into training and test sets. The test set consisted of 40 patients: 20

patients with bowel urgency and 20 patients without bowel urgency were randomly selected.

The remaining was used for training set (209 patients).

Because the training set was imbalanced, with only 59 patients with toxicity compared to 141

patients without toxicity, data augmentation was used to address this. Specifically, Gaussian

noise (with a zero mean and 0.1 standard deviation) was added as well as smoothing recursive

Gaussian noise (with a 5 mm sigma across each axis) to the data of 59 patients in the minority.

This was performed using SimpleITK Python toolbox [104] version 2.1.1, which provides both

filters for 3D image analysis. The augmentations were applied to the dose distributions and CT

scans in their original resolution, before dividing the 3D images into smaller cubes.

After augmentation, the training dataset consisted of 321 patients. During each epoch, 40

patients were randomly selected for the validation set, and the network performance was eval-

uated by observing the results on this validation set.

Cross-validation was not used for two reasons. Firstly, when the dataset is imbalanced, dividing

it into smaller subsets may leave certain folds without a positive label, which can affect the

accuracy and AUC measures used to assess the classifier’s performance. Secondly, when using

data augmentation, only non-augmented data can be validated. Therefore, the augmentation

process must be repeated for each fold, which can be computationally expensive.

Convolutional autoencoders for transfer learning

To avoid overfitting while increasing the network generalisation, a transfer learning strategy

was employed. Two autoencoder (AE) networks, sharing the same architecture as MIL-Att

encoders, were separately trained using the pre-processed CT and dose images in the training

set, resulting in AE-CT and AE-dose, respectively.
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Only 240 of the 315 patients in the dataset were candidates for bowel urgency toxicity (n=64

patients with a stoma did not complete this questionnaire item). Except for the 40 patients in

the test set that were left out, AEs were trained with all the patients (both candidates and non-

candidates for bowel urgency). The goal of the autoencoders was to identify the key features

from the input data that are important for re-creating them. In total, 275 image datasets were

divided into cubes with dimensions of [6,32,32] voxels, and the AE networks were trained on

32303 cubes.Note that only cubes with values greater than zero were taken into account for

training, resulting in a different number of cubes for each patient. The loss function of the

AEs was mean squared error and the reconstruction error was computed as 0.0091. Table 5.3

summarises the details of the autoencoder architecture.

Table 5.3: parameters of the Autoencoder

Module Layer Kernel size Filters/
Units

Stride Padding

Encoder

Conv1 + ReLU+BN (2,3,3) 30 (1,1,1) 0
Maxpool1 (1,2,2) - (1,2,2) 0
Conv2 + ReLU+BN (2,3,3) 50 (1,1,1) 0
Maxpool2 (1,2,2) - (1,2,2) 0

Decoder

ConvTranspose1+ReLU+BN (2,3,3) 30 (1,1,1) 0
MaxUnpool1 (1,2,2) - (1,2,2) 0
ConvTranspose2+ReLU+BN (2,3,3) 1 (1,1,1) 0
MaxUnpool2 (1,2,2) - (1,2,2) 0

Abbreviations: Conv, convolutional layer; ReLU, rectified linear unit activation function; BN, batch
normalisation; Tanh; hyperbolic tangent activation function. DP, drop out.

The proposed framework was tested with different training strategies. First, the network was

trained from scratch (MIL-Att-scratch), which means that all the network’s weights were ini-

tialised at random values. Second, to explore how transfer learning can improve the perfor-

mance, the network was trained with the following settings:

(i) both encoders in MIL-Att network were initialised with the weights of the autoencoder

trained with CT images, called MIL-Att-CT,
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(ii) both MIL-Att encoders were initialised with the weights learnt by AE-dose, called MIL-

Att-dose,

(iii) CT and dose encoders were initialised separately using the weights of AE-CT and AE-

dose, respectively, called MIL-Att-both.

Fig. 5.3 shows the comparison of training and validation losses for different training modes.

Figure 5.3: Training and validation loss for four modes of MIL-Att network. Training from
scratch converged at higher epochs while for pretrained modes it converged at lower epochs.

Each network was trained over a number of epochs, computing training and validation losses

for each epoch. The training loss and validation loss both decline and stabilise for all training

modes at a particular point that denotes an optimal fit. To avoid overfitting, we performed early

stopping; during training in each epoch, 40 data were randomly selected to validate the training

procedure and monitor the performance of the model on the validation set. The training was

stopped once the performance on the validation set started to decrease. Fig. 5.3 shows that

without early stopping there would be severe overfitting. Other approaches including batch

normalisation, drop out and ransfer learning are also employed to help with the overfitting

problem. On the basis of this, the best model was chosen (model with the lowest validation

loss).

For training from scratch (without transfer learning; MIL-Att-scratch), the network was trained

for 100 epochs. Up to epoch number 47, both training and validation loss decreased (see

MIL-Att-scratch in Fig.5.3). The network was overfitted at the epoch 47 because the training

loss drastically reduced while the validation loss highly increased. All networks converged
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in lower epochs (epochs < 16) for transfer learning modes (MIL-Att-CT, MIL-Att-dose, and

MIL-Att-both), therefore training was stopped after 30 epochs (for this reason, the learning

rate for transfer learning modes was set to 1e−3). After epochs > 16, the validation loss was

significantly higher than the training loss, that also shows that the network was overfitted.

The best validation results (the lowest validation loss) gained by MIL-Att-both indicating that

pretraining both encoders can improve the training process.

Classification performance

The network performance was measured by assessing five evaluation metrics: accuracy, sen-

sitivity, specificity, F1-score, and AUC. The findings were compared with three previously

proposed models by Yang et al.[172], Ibragimov et al. [76] and Liang et al.[99] (reviewed in

2.5) each for a specific reason.

Yang et al.[172] proposed a convolutional network (CT-dose-CNN) that, like this proposed

network, included two different channels for analysing CT scans and dose images for toxicity

prediction after prostate RT. Liang et al. [99] transferred the weights learnt by C3D (proposed

in [151]) to predict the toxicity outcome after lung radiotherapy. The network was trained with

two different settings; training all layers (C3D-FT) and only training the last layer (C3D-FE).

The authors used Grad-CAM to generate a toxicity risk map. The prediction performance of

their model was compared to the current network and the associated attention risk map was

correlated with their Grad-CAM toxicity map. The last work, Ibragimov et al. [76] used a 3D

convolutional network (Dose-CNN) with three layers to predict liver toxicity. Only one input

channel is included in their proposed network, and they only analyse dose’s impact on toxicity.

The current model was compared to theirs to identify how exploring CT data in addition to

dose can affect the performance.

All models were implemented with Python 3.7 and followed the given procedures in the respec-

tive papers to train. Table 5.4 and Fig. 5.4 summarise the prediction performance experiments.
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Table 5.4: Comparison of prediction performance across different methods. Best performance
in each metric is shown in bold. All the reported results pertain to the performance achieved
on the test set.

Method Parameter Accuracy Specificity Sensitivity F-1

MIL-Att

scratch 0.65 0.70 0.60 0.64
CT 0.65 0.60 0.70 0.64

dose 0.75 0.75 0.75 0.80
both 0.80 0.80 0.80 0.82

C3D[99]
FE 0.65 1.0 0.30 0.65
FT 0.72 0.75 0.70 0.75

CT-dose-CNN[172] - 0.60 0.55 0.65 0.60
Dose-CNN[76] - 0.60 0.85 0.35 0.46

Abbreviation:: FE, feature extraction mode; FT, fine tuning mode.

Figure 5.4: Receiver operating curve analysis for toxicity prediction using the test set.

Table 5.4 shows that the prediction performance of MIL-Att-both gained the highest values for

accuracy, sensitivity and F1-score, while for specificity, the C3D-FE model achieved the best

value (1.0). The specificity summarises how effectively the negative class is classified, and sen-
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sitivity metric is the complement to it. The low value of 0.3 for sensitivity in C3D-FE indicates

that the C3D-FE network was biased towards predicting negative class (without toxicity) and

it did not adequately learn the data distribution for the positive class (with toxicity). With the

same inference, Dose-CNN was also biased toward predicting negative labels. The next best

value for specificity was achieved by MIL-Att with pre-trained encoders. The ROC analysis

(Fig.5.4) also supports the superiority of the MIL-Att-both model compared to the others.

AUC evaluation with DeLong’s test

To investigate significant differences between models, AUC metrics were compared using De-

Long’s test [38]. DeLong et al. proposed a technique for determining whether the AUC of

one machine learning model differs significantly from an alternative model. They proposed

to compute empirical AUC rather than traditional (binomial) AUC for this reason: because

the normal AUC relies on strong normality assumptions, while the empirical AUC does not.

In other words, the typical AUC is invariant with respect to the rate of positive samples and

in the case of a small and imbalanced test set, comparing AUCs may not reflect the difference

between the performances of the two models. The empirical AUC can be calculated as follows:

Θ̂ =
1

mn

m∑
j=1

n∑
i=1

Ψ(xi, yi), where Ψ(xi, yi) =



1 y<x

1
2 y=x

0 y>x

(5.9)

In order to investigate whether one model is better than the other in terms of AUC, the z score

can be calculated between two models as below:

z =∆
Θ̂(A) − Θ̂(B)√

Var[Θ̂(A) − Θ̂(B)]
(5.10)

After calculating the z score between two models, the corresponding p-value can be extracted

100



5.3 Experimental results

from a lookup table presented by [154]. If p-value< 0.05 it can be concluded that Model

A has a statistically significant different AUC from Model B. DeLong’s test was performed

using Python library [144] on the test set to compare different models. Fig.5.5 illustrates the

experiment results.

Figure 5.5: AUC comparison using DeLong’s test. Smaller p-values demonstrate significant
differences. AUC values are in parentheses.

From Fig. 5.5 it can be seen that CT and dose pre-trained networks improved the AUC com-

pared to training from scratch (p-value< 0.05). Considering p-value= 0.913, it can be con-

cluded that the pre-training with CT did not statistically improve the model’s performance

compared to training from scratch. Additionally, the network that was pre-trained with both

CT and dose did not perform noticeably better than the network pre-trained with only dose data

(p-value=0.958).

These findings imply that the model’s performance can be enhanced by pre-training the network

using dose data. This may be due to the features of dose distribution are different than those
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of CT data; dose data is a grayscale image with subtle intensity variations, whereas CT data

contains several edges, corners, ridges, and other distinctive features.

5.3.3 Prediction performance discussion

When comparing the proposed model (MIL-Att) and C3D with other methods, it can be ob-

served that they outperform CT-dose-CNN and Dose-CNN. This may be related to the depth

of the networks or how the features are extracted; three convolutional layers in both networks

(CT-dose-CNN and Dose-CNN) collect features from the input data. In contrast, C3D used

eight convolutional layers to transform the input into latent features.

On the other hand, MIL-Att network extracts the features locally using two encoders that each

has two convolutional layers. The proposed network explores the 3D CT scans and dose dis-

tributions locally for every cube. The average number of cubes for input data was 209, which

means the network represents the input on average with 209 cubes and extracts feature from

each of them separately. One might conclude that the architecture of the layers for CT-dose-

CNN and Dose-CNN may not be sufficient to represent the dataset’s natural pattern of the data

distribution.

The performance of C3D is very close to that of MIL-Att. This is because both methods learn

deep features either from the entire input or by exploring local areas in the data. However,

MIL-Att outperformed C3D overall on the assessment metrics on the test set. This is because,

opposite to C3D, the MIL-Att network analyses CT scans and dose data. This finding em-

phasises the fact that combining CT scans with dose distributions can provide more useful

information and, as a result, improve prediction performance.

Comparing network architectures, MIL used fewer convolutional layers than C3D. This notice-

ably reduces the number of parameters to learn; for example, MIL-Att learns about 11 million

parameters, compared to C3D’s about 78 million. It should also be considered that C3D only

investigates one input, while MIL-Att analyses two 3D inputs.
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The ultimate software developed from these models will be utilised in hospitals and it must be

stored in conventional computers (it is not common for hospitals to have GPU machines with

large memories). Therefore, it could be said that when analysing large medical data, MIL can

be more efficient regarding time and resource usage. It should be noted that while the concept

of MIL may share similarities with other efficient models that explore adjacent patches or slices

(such as 2.5D networks), the main difference is that in MIL, the entire volume is still considered

as the input. Therefore, the output is determined based on the complete volume, not just each

stack or cube. In problems likes classification, where the final result is determined based on

the whole input (despite 3D segmentation), multiple instance learning is particularly memory

and GPU usage efficient.

Comparing CT-dose-CNN and dose-CNN reveals that despite analysing both CT and dose

images, CT-dose-CNN had a lower AUC. This might be because CT-dose-CNN applies con-

volutional filters to the original size of the CT and dose, whereas Dose-CNN scales down and

crops the input to the size of [19,19,19] images. This suggests that the latent space dimensions

in the CT-dose-CNN are not enough to project (present) the inherent structure of the input data

(i.e., CT and dose) in the dataset.

In summary there are three broad points:

1) The best performance is gained when both CT and dose data are sufficiently explored.

2) When memory is limited and input data are huge 3D volumes, a multiple instance learn-

ing model can encode the input more efficiently than conventional deep learning net-

works.

3) Extracting the most discriminating features is a key point in the toxicity prediction prob-

lem.
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5.3.4 Patient specific risk map

Generating toxicity risk map

The main novelty of the MIL-Att network is that it can present visual explanations for the

network’s behaviour by using an attention mechanism. In MIL-Att, the features are locally

extracted from different regions of the bowel bag and the attention layers investigate how they

affect the final decision (output). Finding these critical areas is necessary for clinicians, as

they need to know how the network makes its decisions. Consequently, it can help them with

optimal radiotherapy treatment planning.

After training, the second attention weights (αk) were retrieved for every patient in the test set

to create the risk map. 3D visualisations of the toxicity maps for two patients without bowel

urgency and two patients with bowel urgency are shown in rows A and B of Fig. 5.6, respec-

tively.

Results were plotted in three distinct views for easier visualisation. Greater values in the risk

map show more critical regions for the bowel urgency toxicity. For both patients that reported

bowel urgency, the attention weights are gathered in the anterior and iliac fossa anatomical

areas of bowel bag, indicating that these locations are linked to a higher risk of bowel urgency.

Contrarily, in patients without bowel urgency, the attention weights are dispersed across the

entire intestinal bag and are not concentrated in any one area.
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Figure 5.6: 3D comparison of generated toxicity map by MIL-Att for four patients in two
groups of A and B without and with bowel urgency, respectively. From left to right: the first
image shows patient CT scan where the bowel bag is detected with blue contour. The second
image is the dose distribution overlapped with the CT scan, and the third image is the attention
map generated by the proposed model. The attention map is shown with heatmap, where the
higher numbers show the more association with toxicity. For each patient, three different views
are plotted to clarify the toxicity-associated regions.

Comparison with Grad-CAM

As mentioned in Section 2.5.6, many studies have employed the Grad-CAM technique to ex-

plore network attention, in an attempt to understand the spatial features affecting toxicity risk.

The current model was compared with Grad-CAM based on the C3D-FT network to further

assess the derived attention risk maps. The PyTorch Grad-CAM library[57] was adopted and

adapted for 3D data. Fig.5.7 illustrates the 3D comparison of risk maps for two sample patients,

A and B, without and with bowel urgency, respectively.
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Figure 5.7: 3D comparison of generated toxicity map by MIL-Att and Grad-CAM for two
patients A and B without and with bowel urgency, respectively.

Attention weights are distributed throughout the bowel bag for the patient without bowel ur-

gency (patient A). In contrast, for the patient with toxicity (patient B), all the attention is on the

front side (anterior) of the patient’s bowel bag. Grad-CAM also produced similar results; for

patient without bowel urgency, gradients of the features are distributed across the cube, while

for patient with bowel urgency, the highest gradients are concentrated anteriorly.

The 2D presentation of the toxicity risk maps were also plotted to have a thorough comparison.

Fig. 5.8 depicts three slices of the patient’s abdomen, covering various parts from the bottom

(slice number = 0) to the top (slice number = 35).

Figure 5.8: 2D comparison of generated toxicity map by MIL-Att and Grad-CAM for two
patients A and B without and with bowel urgency, respectively.

From Fig.5.8, it can be seen that the Grad-CAM activation map varies slightly as the number
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of slices increases. This is because the feature maps in the last convolution layer (those that are

used to generate the risk map) are noticeably smaller than the input image’s size, and to gener-

ate the activation map, they should be up-sampled. This generates an estimated representation

for the high-risk regions. The input size in the C3D network is [18,112,112] voxels, and the

size of the features in the final convolution layer is [2,7,7] voxels. Due to the up-sampling on

a grid, the Grad- CAM map does not match the morphology of the bowel bag anatomy. As op-

posed to Grad-CAM, which highlights the entire anterior area of the activation maps as crucial

locations, the MIL-Att generates attention weights individually for each cube in the bowel bag,

making toxicity localisation more accurate and reliable.

5.3.5 Association of input data with high-risk toxicity

In addition to the dose distribution, recently developed deep learning algorithms incorporated

additional input parameters (such as CT, PET) for their model (previously addressed in Section

2.5). Men et al. [112] showed that prediction performance improved when the network was

trained with both CT and dose distributions. At the time of writing, no published research

has examined the relative significance of the inputs on toxicity outcome. Using an attention

module, each input’s importance for the network decision was assessed. The attention module

β computes the significance of each cube based on its location in dose and CT. The module is a

fully-connected network that outputs a value in (0, 1), which shows the importance of the input

cube. The attention weights β were extracted for cubes in CT and dose data and computed the

average of the weights for each slice inside the pelvis (see Fig. 5.9)

For the bottom part of the pelvis (inferior slices of the bowel bag; slice number< 10), CT

and dose slices obtained equally high attention. This suggests that the anatomical information

(feature extracted from the CT scans) and received dose are both related to the toxicity risk.

For the more cranial portion of the pelvis (slice number> 10), features collected from the dose

distribution gained higher attention (weights) to predict the bowel urgency toxicity. From a

clinical standpoint, this makes sense: the structure of bowel present in the lower part of the
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Figure 5.9: Quantitative evaluation of input association with toxicity. Higher value of attention
weights shows higher impact on toxicity prediction.

pelvis can be different for each patient (for example, due to bladder size/location); and the risk

of toxicity not only depend on the dose received, but also on the patient’s bowel shape (for

example, if the patient has low-lying bowel loops). On the other hand, the upper section of

the pelvis exhibits a more consistent bowel structure, as all patients will have both large and

small bowels in this area. The sole factor in this region distinguishing patients with and without

bowel urgency is likely the dose received. As an illustration, in Fig. 5.8 shows that patients A

and B have nearly the same bowel bag structure in slices 20 and 34, but distinct morphologies

in slice 5, representing the inferior aspect of the bowel bag.

After averaging the attention weights across all slices, the CT and dose inputs had average

weights of 0.17 and 0.53, respectively. When the overall weights were normalised, it was

observed that the dose distribution had a strong association of 76% with bowel urgency toxicity.

In contrast, the CT image had a comparatively weaker association of only 24%.

108



5.3 Experimental results

5.3.6 Atlas for toxicity modelling

Because patients’ organs vary in size and shape, the toxicity risk maps differ for each person.

Instead of using separate risk maps to study correlations between anatomical regions and bowel

urgency toxicity, a toxicity atlas was created from all the maps produced by the proposed

model. Using the 3D Diffeomorphic Demons registration technique [159], the CT images for

all patients with toxicity were co-registered to the reference patient. Dose slices and toxicity

maps was also registered with the same transformation (computed from their corresponding

CT). The average of all the transformed risk maps was computed (called atlas). Fig. 5.10

depicts the result of the generated atlas. Considering the attention atlas, one can conclude that

bowel urgency toxicity is related to the irradiation dose delivered to the bowel bag’s anterior

and right iliac fossa regions.

Figure 5.10: Toxicity model. From top to bottom: reference patient, average of irradiated dose
and atlas for toxicity. Generated atlas localises high-risk regions for toxicity with higher values.

From a clinical perspective, these findings could potentially be applied to radiation therapy

treatment planning to minimize radiation exposure to these sensitive anatomical regions. It is

most probable that the anterior dose region is related to small bowel loops (within the radio-

therapy field). As the use of IMRT becomes more prevalent in clinical practice, where radiation
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therapy dose can be shaped to more easily avoid organs at risks, the dose to this region is likely

to be lower than what was observed in this series (where most patients received 3D-conformal

radiation therapy). On the other hand, the right iliac fossa region is likely linked to the radi-

ation dose to the terminal ileum. This region is commonly impacted in Crohn’s disease, and

it is known to be associated with bowel symptoms, such as diarrhoea and urgency. Damage

to this region may be related to nutritional deficiencies such as bile acid malabsorption, which

is identified as a known side effect after pelvic radiotherapy [3]. This anatomical region is

not currently an avoidance structure in standard radiotherapy practice and should be an area of

future research.

5.4 Summary and conclusions

In this chapter, a novel deep learning model was proposed for predicting bowel urgency toxicity

following pelvic radiotherapy.

The novelty of this work is that it goes beyond mere prediction of toxicity and instead provides

explanation of how the network detect that toxicity. To do that, the model integrated two

attention modules to clarify: (i) which anatomical regions are correlated to a higher risk of

toxicity and (ii) how CT and dose images impact the network’s prediction.

Additionally, a toxicity atlas was constructed which integrates information from all toxicity

risk maps, summarising and visualising the toxicity based on the bowel bag structure. This

proposed visual interpretation helps enhance understanding of the network’s function and can

assist clinicians having a better view of how each input data are involved with the toxicity. The

comparative experiment demonstrated that this framework provides clinically convincing tools

for radiotherapy outcome prediction.

As mentioned previously, the informative factors for toxicity prediction extend beyond imaging

and dose data. Clinical data has also proven to be valuable in predicting toxicity and are
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currently utilised in NTCP models. The upcoming chapter further explores this analysis by

incorporating clinical factors into the model, aiming to evaluate the impact of adding these

variables to enhance the predictive capabilities.
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Chapter 6

Deep Learning Combining Imaging,

Dose and Clinical Data for Predicting

Bowel Toxicity After Pelvic

Radiotherapy

In this chapter, a new architecture for MIL-Att model is proposed which simultaneously anal-

yses CT scan, dose distributions and patients’ clinical features. The primary objective of this

chapter is to predict toxicity by analysing different input data and provide an explanation of

how each input can impact toxicity. Specifically, the question as to whether clinical features

provide additional useful information to the toxicity prediction model is explored. The novelty

of this chapter is that, in contrast to a few previous works that integrated clinical data with

imaging and dose, this neural network can identify which clinical features are associated with

a higher risk of toxicity. The findings of this chapter can assist clinicians in gaining a better

understanding of how different data can influence treatment outcomes and which features may
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pose a risk for each patient.

A modified version of this chapter originates from my paper “Deep learning combining imag-

ing, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy”, submitted

to the Medical Physics journal and currently under review. Additionally, a section of the anal-

ysis from this chapter was published as a scientific abstract entitled “Deep learning with vi-

sual explanation for radiotherapy-induced toxicity prediction”, presented at the SPIE Medical

Imaging, Computer-Aided Diagnosis conference held in San Diego, California, United States

in February 2023 [46].

6.1 Introduction

As discussed in earlier chapters, traditional methods for analysing radiotherapy dose data of-

ten overlook the complete 3D treatment information. In contrast, deep learning models have

shown promise in their ability to automatically process 3D information and have achieved no-

table success. However, side effects caused by radiotherapy not only depend on dose but also

various other factors, including cellular properties, organs’ physiology and anatomy, treatment

features and patient’s characteristics[78], [146], [54]. Therefore, for a thorough understanding

of toxicity, both 3D and clinical data must be taken into account. It was also discussed in earlier

chapters that a limited number of studies have explored the combination of CT, dose data and

clinical features, but despite the efforts to integrate data with neural networks, the complex-

ity of these models presents challenges in explaining the relationship between input data and

toxicity.

In this chapter, the model outlined in Chapter 5 is expanded to evaluate three different aspects of

bowel toxicity; as well as bowel urgency, faecal incontinence and diarrhoea are also evaluated.

In addition, the model is further expanded by incorporating clinical data alongside the dose and

imaging dataset to achieve two goals: (i) predicting three types of induced bowel toxicity and

(ii) identifying potential clinical risk factors.
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6.2 Dataset

Based on the EORTC standard Quality of Life questionnaires [1], [62], [167], [61], [155]

the patient’s responses to three questions related to bowel urgency (“when you felt the desire

to move your bowels, did you have to rush to get to the toilet?”), diarrhoea (“have you had

diarrhoea?”) and faecal incontinence (“have you had faecal incontinence?”) were extracted

(see Table 3.5). Responses to the questions were based on the severity of the symptom as

follows: grade zero for “not at all”, grade one for “a little”, grade two for “quite a bit” and

grade three for “very much”. For the purposes of this chapter, patients were stratified into two

classes: without toxicity for grade= 0, and with toxicity for grade≥ 1.

3D CT scans and 3D dose distributions were collated for the study cohort. ‘Bowel Bag’ was

masked for each patient (see Table 3.5). Furthermore, 22 clinical features relevant to bowel

toxicity were chosen (see Table 3.6 and Section 3.3). For each toxicity, 40 randomly selected

patients (20 with and 20 without toxicity) were left aside for a test set and the reminder were

used for training and validation sets. Table 6.1 shows the number of patients for each experi-

ment. Data augmentation was only applied to the training set.

Table 6.1: Number of patients included in the experiments

Toxicity Grade=0 Grade≥ 1 Excluded Train Test Augmented

Bowel Urgency 65 175 75 200 40 110

Diarrhoea 204 101 10 265 40 100

Faecal Incontinence 219 84 12 263 40 135

Note: total number of patients available in the original dataset was 315. Train + Augmented sets were used
for model training.

6.3 Neural network for combining image, dose and clinical data

The MIL-Att model was expanded with a new path for the analysis of clinical data (MIL-Att-

H). Fig.6.1 shows the new architecture of the proposed model. 22 clinical features were passed
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through the attention module γ, which is a fully-connected neural network. The goal of this

module is to explore whether each clinical feature is important regarding toxicity. Having h3

as the feature vector presenting clinical data (h3 ∈ R
1×22), the output of attention module γ

(weights for clinical feature) n are as follows:

γn =
exp{(Mh3)n}

22∑
j=1

exp{(Mh3) j}

. (6.1)

Considering ◦ as element-wise product, the weighted feature vector sC can be computed as:

sC = γ ◦ h3. (6.2)

Unlike MIL-Att, where there was only one feature vector (extracted from CT and dose), in

the new model (MIL-Att-C), there are two feature vectors for the final classification. The

concatenation of these two vectors can be considered as the final feature vector representing

the input data. The weighted average of extracted features was used to compute the final feature

vector for image data (CT and dose) as follows: sI =
∑K

k=1 αk ∗ zk (see Section 5.2.3). With

the network configuration discussed in the previous chapter, sI had a dimension of 1 × 5400,

while sC had a dimension of 1 × 22. Training the network with the concatenation of these

two vectors resulted in the model refusing to consider clinical data. The γ weights were small

numbers (close to zero) that did not show any significance for clinical data. To avoid this issue,

a fully-connected module lµ was used to reduce the dimension of sI before concatenation.

Consequently, the setting for the classification module (gφ) was changed, and the number of

layers decreased in it to two. The feature vector sI had the form as below:

sI = lµ(
K∑

k=1

αkzk). (6.3)

Considering s as the concatenation of sC and sI , the final output of the model can be written
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as: y = gφ(s), where y is the predicted label and (gφ) is the classification block. The MIL-Att-C

network (ΦΩ) is formulated with:

y = gφ(s) = ΦΩ(x),

gφ : s 7→ [0, 1], Ω = {θ, µ, φ,w,V, q,R,M}.
(6.4)

Let t ∈ {0, 1} be the target class label for patient’s data x, the network is trained by minimizing

the binary cross-entropy loss function as:

L(t,ΦΩ) = −t log(ΦΩ) − (1 − t) log(1 − ΦΩ) (6.5)

The loss function is summed over all inputs from the training set and minimization is performed

w.r.t. Ω parameters.

Figure 6.1: Architecture of multiple instance learning with attention modules (MIL-Att) net-
work with three paths for analysing clinical data, 3D CT scans and 3D dose treatment plans.
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6.4 Model training

To avoid overfitting, transfer learning with the same methodology as described in the previous

chapter was applied to the image dataset. The two pre-trained autoencoders’ weights were

transferred to the model encoders. The clinical data were repeated for the newly generated

(augmented) data.

In order to determine which input data are more informative for prediction, the model was

trained using three different strategies as below:

• only clinical features (metadata): only the path with the clinical data was trained and CT

and dose paths were disabled (MIL-Att-M).

• spatial features (images): two paths analysing CT and dose were trained (MIL-Att-I)

• combination of clinical and spatial paths were trained (MIl-Att-C)

6.5 Traditional machine learning models

Conventional methods for modeling radiotherapy outcomes solely rely on clinical data to pre-

dict toxicity. Recently, deep learning has been widely used in researches with the aim of

improving the prediction performance. In order to investigate the impact of deep learning,

a separate analysis of the 22 clinical features using common machine learning models (LR,

SVM, RF) was conducted (see Chapter 4). Since one of the primary objective of this chapter

was to identify clinical risk factors, the three machine learning models were evaluated in terms

of their ability to detect risk factors and compared to the proposed model.
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6.6.1 Prediction performance

Fig.6.2 shows the experimental results for accuracy and AUC. When examining bowel urgency

and faecal incontinence, it is seen that combining CT imaging, dose distributions, and clinical

information improved the prediction accuracy and AUC; as training the model with just CT

scans and dose distributions for bowel urgency and faecal incontinence prediction achieved

80% and 70% accuracy, respectively, while this increased to 85% and 75% when clinical fea-

tures were also added (with corresponding results for AUC).

Figure 6.2: Comparison of prediction performance for various models for different toxicities.
Abbreviations: AUC: area under the receiver operating characteristic curve; LR: logistic re-
gression; RBF: radial basis function; MIL-Att: multiple instance learning network with atten-
tion; MIL-Att-M: network trained with clinical data; MIL-Att-I: network trained on CT and
dose data; MIL-Att-C: network trained with combination of clinical data, CT scans and dose
plans.

In comparison, training both paths of the model for diarrhoea produced a lower AUC and

accuracy than just training with the clinical data. Bowel urgency had the highest values for

accuracy and AUC, while diarrhoea had the lowest values for both.
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When the same clinical data were assessed using different classification models (as shown by

the green bars in Fig.6.2), the results indicated that logistic regression and the neural network

(MIL-Att-C) achieved slightly higher values than SVM and random forest models.

To assess the significance of performance improvement, we conducted the DeLong test (see

Fig.6.3 ).The combination of the model significantly enhanced predictions for bowel urgency

and faecal incontinence in comparison to traditional ML models (p value < 0.05). However,

for diarrhoea, the statistical improvement between LR and deep learning models was not sig-

nificant.

Figure 6.3: p value map of DeLong test between the different models in the test sets. AUC
values are in parentheses.

6.6.2 Toxicity risk map - analysis of α weights

The results of the α attention module show the importance of different cubes in the bowel bag

(the higher the weight, the more important the cube is). For each patient, the attention weights

α were used to construct a toxicity risk map.

Fig.6.4 illustrates the toxicity risk map for two randomly selected patients with bowel urgency

toxicity. Similar results to the previous model analysing only image data were acquired; the

attention weights are concentrated on the right iliac fossa of the bowel bag for the prediction

of bowel urgency, even when taking clinical factors into account.
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Figure 6.4: Examples of the toxicity risk map generated for bowel urgency. For each view,
from left to right, the first and second images are the patient’s bowel bag structure and the
radiation dose distribution, respectively. The third image is the toxicity map generated by the
model. The higher value of the toxicity map indicates a higher importance for the risk of
developing toxicity.

Figure 6.5: Examples of the toxicity risk map for diarrhoea. For each view, from left to right,
the first and second images are the patient’s bowel bag structure and the radiation dose distri-
bution, respectively. The third image is the toxicity map generated by the model. The higher
value of the toxicity map indicates a higher importance for the risk of developing toxicity.

In contrast, no clear anatomical region could be identified from the attention weights for pre-

diction of diarrhoea (see Fig.6.5), while for faecal incontinence the toxicity was predicted

by attention weights in the postero-inferior region (i.e. corresponding to the anorectum; see

Fig.6.6).

The toxicity maps observed in patients vary significantly, reflecting the real-world diversity of

the study cohort, including different anatomical variations such as size, BMI, and gender. To

further understand the correlation between toxicity and anatomical region, a toxicity atlas was

created using the maps generated by the proposed network with the same approach as 5.3.6.

Fig.6.7 shows the generated atlas for each type of toxicity. The attention atlas for bowel urgency

revealed that cubes located in the anterior and right iliac fossa of the bowel gained the highest

120



6.6 Experimental results

Figure 6.6: Examples of the toxicity risk map for faecal incontinence. For each view, from
left to right, the first and second images are the patient’s bowel bag structure and the radiation
dose distribution, respectively. The third image is the toxicity map generated by the model.
The higher value of the toxicity map indicates a higher risk of toxicity.

attention, which matches the findings of initial model when only CT scans and dose plans were

analysed to predict mild/moderate bowel urgency toxicity. Atlas for diarrhoea shows that the

attention weights were scattered throughout the bowel bag, while for faecal incontinence, the

postero-inferior area stood out as the location with the most attention.

Figure 6.7: Toxicity atlas generated by the proposed model.
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6.6.3 Importance of CT and dose - analysis of β weights

The β weights provide insight into how much impact each image modality has on toxicity

prediction. By computing the average weight for each slice in both CT and dose plan, a better

understanding of their importance can be achieved. Fig.6.8 visualises the relative significance

of CT and dose for their respective 2D slices. In general, for bowel urgency and diarrhoea, dose

had more of an effect on the final prediction, while for faecal incontinence, the caudal parts of

the pelvis (slice number < 15) had higher weights for dose data and the cranial (upper) parts

had higher values for CT data.

Figure 6.8: Quantitative evaluation of image association. Higher value of attention weight
shows higher importance for toxicity prediction.

6.6.4 Detecting risk factors - analysis of γ weights

To gain a better understanding of how each clinical variable is correlated with toxicity and

to provide more information for the outcome prediction, the 22 clinical variables were jointly

trained with the spatial data. Additionally, three ML models were trained with the clinical

features alone as a comparison to the CNN model, which incorporates spatial information. The

results of this comparison are shown in Fig. 6.9 (for a better representation, only the top fifteen

features are presented).

When exploring bowel urgency, various models identified distinct sets or orders of features

as the most significant variables. Nevertheless, the top ten features shared several elements,

including BMI and cancer type which ranked among the first five important features in all
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Figure 6.9: Analysis of risk factors. Fifteen most important features for LR, SVM, RF and
the proposed model are extracted. The x axis presents the importance of features: for LR and
SVM the coefficients of the model, for RF the mean decrease in impurity and for MIL-Att-C
the gamma weights present the importance of each feature.
Abbreviations: BMI, body mass index; VMAT, Volumetric modulated arc therapy; RT, radio-
therapy; ACE, Angiotensin-converting enzyme; SVM, support vector machine. Note: Total
dose denotes the total prescribed dose.
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models. Additionally, VBowelBag10Gy, VBowelBag30Gy, time since RT, smoking status,

and diabetes were also recurrent across the models.

Regarding diarrhoea, dosimetric features, which capture the total dose or volume of the irra-

diated bowel bag (VBowelBagXGy), were significant for the ML models. In contrast, MIL-

Att-M only included two dosimetric features (VBowelBag30Gy, VBowelBag10Gy) in the top

10 list. Cancer type, age, BMI, and VMAT were all included in the list for all models as

non-dosimetric factors.

The plots for faecal incontinence indicate that almost half of the features were shared among

the models. Cancer type was one of the top five features (except for RF, where it ranked ninth),

similar to bowel urgency, and BMI had relatively high weights in all models. Other features

such as total dose, VBowelBag30Gy, VBowleBag10Gy, and time since RT were also among

the top 15 factors for all models. Moreover, ACE inhibitors were assigned high values in LR,

SVM, and RF, but not in MIL-Att-C.

6.7 Discussion

Toxicity prediction models in conventional radiotherapy primarily rely on 1D data extracted

from dose-volume histogram data (sometimes supplemented with clinical factors), and these

models do not consider spatial information. In this study, a 3D CNN that analyses CT imag-

ing, dose distributions, and clinical features together to predict RT-induced toxicities has been

explored. By combining attention mechanisms with multiple instance learning, the model can

visually explain toxicity distribution and identify potential risk factors. The experimental re-

sults for prediction performance show that models integrating spatial data (dose and CT) out-

performed “traditional” machine learning models for two of the three toxicities. Specifically,

the model reveals a possible differential spatial dose dependence for various bowel symptoms,

likely reflecting different underlying pathophysiologies.
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As reviewed in Chapter2, machine learning and deep learning techniques have demonstrated

promising potential in toxicity prediction issue. Most published studies have utilised CNNs to

analyse the inherent patterns among spatial variables in CT and dose data ([75],[172], [112]),

and there are few that consider other imaging modalities (e.g., ventilation scintigraphy [15],

positron emission tomography [163], and MRI [162]). Although these studies suggest that

incorporating additional imaging data (beyond dose information) can enhance predictive accu-

racy, they do not provide a clear explanation of how these inputs can improve predictions; or

quantify the importance of each input in relation to toxicity.

Moreover, predictive performance can be improved not only by adding imaging data but also

by incorporating clinical features. Although there are a few studies that have reported deep

learning models combining dose distribution and imaging data with clinical features ( [77],

[166]), the specific significance of each clinical feature in these models remains unclear.

To address these issues, a 3D CNN that simultaneously analyses CT scans, dose distribution,

and patient clinical data has been explored to predict bowel toxicities. This proposed approach

offers a solution to the issue of interpretability by employing attention layers that help explain

how the network arrives at its final output.

Regarding bowel urgency, the results of α weights showed that the anterior and right regions

of the bowel bag were associated with higher rates of toxicity. The generated atlas for faecal

incontinence demonstrated that attention weights were concentrated in the postero-inferior re-

gions. From a clinical standpoint, this pattern is intuitive and reflects the symptoms of anorectal

toxicity.

Regarding diarrhoea, the atlas produced did not reveal a distinct association with any specific

anatomical region. This could be due to the fact that diarrhoea is a complex concept, consisting

of various bowel symptoms including stool consistency, frequency, urgency, and incontinence.

These multifaceted symptoms may have diverse underlying mechanisms, and thus could be

linked with different parts of the bowel rather than being confined to a particular region.
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The analysis of β weights for diarrhoea showed that the dose distribution gained slightly higher

attention for most slices, indicating that diarrhoea symptoms are mostly dependent on the dose

received by the bowel. However, for the last slices (cranial parts), CT gained slightly higher at-

tention, with considerable variation across the patient cohort, potentially indicating that neither

dose nor CT are of particular importance in this part of the bowel volume. Regarding faecal

incontinence, the analysis of β weights suggests that the dose delivered to the lower anorectum

area is highly related to toxicity, with limited dependence on dose to other regions. For bowel

urgency, the the analysis for β is the same in previous chapter.

By incorporating the attention module γ into the MIL-Att network, the model was able to deter-

mine which clinical variables were most significant in predicting the outcome. The comparison

of γ weights with the feature importance obtained by traditional ML models indicated that they

largely agreed on the top 15 important features. However, the ML models placed greater im-

portance on dosimetric features than the MIL-Att-C network did. This suggests that dosimetric

features are generally strongly associated with toxicity, and the neural network may be extract-

ing these features independently from the dose distribution, resulting in lower γ weights for

these features in the MIL-Att-C model.

Combining clinical data with CT and dose plans resulted in improved prediction performance

for bowel urgency and faecal incontinence, as evidenced by higher AUC and accuracy scores.

However, for diarrhoea, the model trained solely on clinical data outperformed the one trained

on combined data. Perhaps while training with CT, dose and clinical data, the network stuck

in a local minimum which is not as good as the optimum point in the cost function of training

network with clinical data.

Comparing different input data for prediction performance in diarrhoea shows that clinical vari-

ables may have a stronger association with toxicity compared to dose or CT scans. However,

the network’s prediction accuracy for diarrhoea symptoms was the lowest among the three

types of toxicities. This may be due to the fact that patient-reported diarrhoea describes multi-
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ple symptoms as previously described, reflecting a complex underlying cause that depends on

several factors. As a result, the relationship between dose distribution and the risk of diarrhoea

may be less reliable, as observed in this experiment.

In general, the results showed that combining imaging, dose and clinical data mainly outper-

formed training on dose and CT. In an additional experiment, the impact of using only dose

images in predicting toxicity compared to using dose and CT images was investigated. A model

was trained with a single path using only dose images as input. The results showed that incor-

porating both dose and CT images also improved prediction performance. The details of this

experiment are provided in Appendix A, as it falls outside the scope of this chapter.

The model achieved the highest accuracy in predicting bowel urgency, which is attributed to

two factors: firstly, the relationship between anatomical dose distribution and bowel urgency

is more straightforward; secondly, the dataset for diarrhoea and faecal incontinence was less

balanced than that of bowel urgency; the number of patients with bowel urgency toxicity in the

dataset is higher than those with either diarrhoea or faecal incontinence. This likely impacted

the efficiency of network training and consequently model performance for these symptoms.

6.8 Summary and conclusions

In this chapter, a model to jointly analyse image data (3D CT scans and 3D dose distribution

plans) and clinical features for the prediction of radiation-related toxicities has been presented.

The main contribution of this is the ability to explain the network’s behaviour in three different

ways:

• analysis of α attention weights to identify the distribution of toxicity in different anatom-

ical regions.

• analysis of β weights to determine the importance of CT and dose for prediction.

• analysis of γ weights to investigate the possible risk factors for patients.
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Furthermore, experiments were conducted on different input data to analyse their predictive

performance for three types of toxicities.

The model described in this chapter could in the future help clinicians in gaining a more com-

prehensive understanding of the factors that affect treatment outcomes as well as identifying

potential risk factors for toxicity in patients. By analysing various data inputs and identifying

key features associated with toxicity, clinicians can design an optimised dose treatment plan

and minimise the risks of toxicity for each patient.

A comprehensive summary of these contributions, as well as the overall summary of this thesis,

can be found in the next chapter. In that chapter, I will elaborate on the research itself, its

objectives, limitations, and areas for potential improvement. Additionally, I will outline the

direction of this research and discuss future works that can build upon the findings of this

thesis. This chapter will provide a holistic view of the research, encapsulating its significance

and paving the way for further advancements in the field.

128



Chapter 7

Conclusions

7.1 Summary and Achievements

This thesis presented a novel deep learning model for prediction of toxicity following external

beam radiotherapy. The main objective of the study was to develop a workflow that could tackle

some of the challenges involved in the current approaches for predicting toxicity outcomes.

The current conventional approaches for toxicity prediction mainly analyse uni-dimensional

(1D) dosimetric data, which does not account for spatial information. In recent years, a num-

ber of deep learning models have been proposed as an alternative approach for toxicity predic-

tion [103]. Unlike conventional methods, these models utilise 3D dosimetric data that include

spatial information, providing a more comprehensive representation of the radiation dose dis-

tribution. However, the complexity of deep learning models poses a significant challenge for

their application in real-world clinical problems. Several of the recent models used gradient-

based methods to identify the most significant features to overcome this limitation. However,

these methods often generate approximations of the patient’s anatomy and lack clarity in their

association with specific anatomical structures. To address this issue, a deep learning model

that could explore spatial information in 3D CT scans and dose distributions was proposed.
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The novelty of this work is that it provides an explanation for the final decision of the network

by highlighting specific anatomical regions associated with a higher risk of toxicity.

Moreover, the predictive capability is not limited to spatial information alone; clinical metadata

can also influence it. While there have been a few works that have addressed combining 3D

imaging and dose data with clinical metadata, they still lack explainability. To address this, the

proposed model was expanded with a new path, in which it incorporated clinical data along

with CT and dose data. This increased the prediction power of the model. Employing an

attention module along with the new path, the model could identify the risk factors that are

associated with toxicity outcomes.

The predictive performance of the proposed network was evaluated by comparing it with three

different analyses. Also, the attention risk map generated by the proposed model was com-

pared with the Grad-CAM map to assess its ability to detect high-risk anatomical regions. In

addition, a comprehensive analysis of three common machine learning models, LR, SVM, and

RF, was conducted to evaluate the proposed deep learning model ability to identify clinical risk

factors and prediction. Comparing different analysis techniques with and without clinical data

was helpful because it allowed to identify the contribution of clinical data in improving the

performance of the model for toxicity prediction. Through this comparison, the relative im-

portance of dosimetric and clinical features in predicting toxicity was determined. Overall, the

comparative experimental results demonstrated the proposed frameworks have great potential

for assisting clinicians with outcome prediction. In the following, the major contributions of

the thesis are outlined.

In Chapter 2, several published work that employed deep learning techniques for radiotherapy

toxicity prediction were reviewed. By carefully analysing the findings of these studies, valu-

able insights into the current state-of-the-art methods for toxicity prediction as well as the key

challenges and opportunities, including generating toxicity map or combining and analysing

different data type, in this field were gained. In particular, the various approaches taken by re-
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searchers to address issues such as data imbalance and model interpretability were examined.

In Chapter 5, a framework to analyse image and dose data for moderate/severe bowel urgency

prediction was proposed. This work has been the first published attempt that can explain the

network’s decision procedure in terms of detecting anatomical regions associated with toxicity

and how informative the different kinds of 3D information (here CT and dose) are for outcome

prediction.

In Chapter 6, the framework was expanded to combine 3D imaging and dose data with clinical

features to predict three symptomatic side effects after pelvic RT: bowel urgency, diarrhoea,

and faecal incontinence. The new architecture included a path for clinical data, along with a

separate attention module that detects the importance of each feature for the predicted toxicity.

This study has been the first attempt to explicitly provide an estimate of the importance of each

clinical factors while combining 3D imaging data with clinical features.

From a clinical perspective, this study concludes that for bowel urgency toxicity, the anterior

and right iliac fossa regions of the bowel bag are correlated with the risk of toxicity. For faecal

incontinence, the postero-inferior regions may be associated with risk of toxicity. However, for

diarrhoea, no specific anatomical regions were identified. The analysis of beta weights revealed

that CT scans can provide information for predicting toxicity and the informative slices of the

CT scan varied depending on the specific type of toxicity being predicted. Moreover, the

analysis of the gamma weights indicated that cancer type, BMI, and dosimetric features are

clinical risk factors for bowel urgency and faecal incontinence. For diarrhoea, while summary

dosimetric features played a crucial role in correlating with toxicity, cancer type, age, BMI,

and VMAT also emerged as significant factors.
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7.2 Publications

The following publications were derived from work presented in this thesis:

Journal papers:

• Ane L Appelt∗, Behnaz Elhaminia∗, Ali Gooya, A lexandra Gilbert, Mike Nix, “Deep

learning for radiotherapy outcome prediction using dose data–a review”, Clinical Oncol-

ogy (2022), doi: 10.1016/j.clon.2021.12.002.

∗Joint first author

• Behnaz Elhaminia, Alexandra Gilbert, John Lilley, Moloud Abdar, Alejandro F Frangi,

Andrew Scarsbrook, Ane Appelt, Ali Gooya. “Toxicity Prediction in Pelvic Radiother-

apy Using Multiple Instance Learning and Cascaded Attention Layers.” in IEEE Journal

of Biomedical and Health Informatics (2023), doi: 10.1109/JBHI.2023.3238825.

• Behnaz Elhaminia, Alexandra Gilbert, Andrew Scarsbrook, John Lilley, Ane Appelt,

and Ali Gooya. “Deep learning combining imaging, dose and clinical data for predicting

bowel toxicity after pelvic radiotherapy” submitted to Medical Physics (under review).

Conference paper:

• Behnaz Elhaminia, Alexandra Gilbert, Alejandro F Frangi, Andrew Scarsbrook, John

Lilley, Ane Appelt, Ali Gooya.“Deep learning with visual explanation for radiotherapy-

induced toxicity prediction”, SPIE Medical Imaging, February 2023, doi:10.1117/12.2652481.

7.3 Limitations and areas for improvement

Despite the progress made by the work presented in this thesis, there are still some concerns

that need to be addressed. Firstly, it should be acknowledged that the data availability in the
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current dataset are limited. This can significantly impact the training of the network as well as

the generalisability of the model and its ability to perform well on unseen datasets. To address

this limitation, further training on a larger dataset can potentially increase the model’s perfor-

mance and enhance its generalisability. In the future works, testing the model on a completely

independent and (preferably) external dataset - i.e. test performance and the generated attention

maps on an independent dataset, without further training can be performed.

Secondly, there is no established ground-truth for the toxicity risk map, which makes it difficult

to quantify the effectiveness of the attention risk map in terms of localisation. However, at this

stage, the only possible option was to seek expert opinions to validate the clinical relevance

of the findings. This can provide valuable insights and help to determine how the model’s

predictions align with clinical information. In the future, it may be possible for clinicians to

establish a standard approach to create ground-truth labelling. This would provide a more

objective measure to evaluate the performance of the model.

Thirdly, the γ attention weights revealed the relationship between each clinical feature and

toxicity, but it remains unclear how different classes within these features impact the outcome.

For instance, the network recognised BMI as a risk factor, but it is not clear if a high BMI

carries more influence in causing side effects than a low BMI. To address this issue, the average

γ weights for each class in each clinical feature (see Appendix B) is computed. Nonetheless,

more analysis is necessary to provide a conclusive answer. This issue can be the focus of the

future work.

Fourthly, cross-validation was not feasible for our dataset for two reason; (i) for the purpose of

transfer learning, we trained an autoencoder on our dataset. Then, we transferred its learned

weights to the encoders of a MIL-Att network. In cross-validation, the dataset is divided into

n folds and, one fold, is selected as the test set. Then in each iteration, the model is evalu-

ated based on that test set. This means that cross-validation tests the model on all the data

in the dataset. Now, if we performed cross-validation on our dataset, the data that are in the

133



7.3 Limitations and areas for improvement

test fold have been already seen by the autoencoders. This would make the cross-validation

results inaccurate. One solution would be to remove the data in the selected fold and train the

autoencoder with the rest of the data, then transfer the weights from the autoencoder to the

MIL-Att network and train the MIL-Att network. since this process should be repeated in each

iteration, it is computationally expensive and not feasible. Instead, we selected 40 patients

from the beginning and trained the autoencoders without those 40 patients. We then tested the

model on those 40 patients, which were completely unseen data. (ii) the number of patients

with positive labels is generally small in our dataset. If we divide the dataset into different

folds for cross-validation, we must have at least one positive label in each fold to be able to

evaluate the performance. Considering that we performed data augmentation, it is possible that

the positive data in the test fold is an augmented version of real data in the training folds. This

evaluation is also not accurate because the data in the test is already in the train set. However,

to provide more comparison, the DeLong test was examined and reported.

Regarding the Delong test, it is important to acknowledge that its primary purpose is to compare

empirical AUC values for different models. However, interpreting the results poses challenges.

The DeLong’s test is specifically designed to compare the AUC of two or more correlated

models, employing calculations to conduct a statistical analysis and ascertain if observed dif-

ferences in AUC are statistically significant. An issue that arises is the potential for the multiple

comparisons problem; since the statistical test is conducted on a sample rather than the entire

population, there is a risk of finding something statistically significant purely by chance with

a sufficient number of tests. This phenomenon is known as the type I error, where the chance

of incorrectly declaring an effect due to random error in the sample is present. To address this,

the p-value of each individual test should be adjusted upwards, ensuring that the overall error

rate for all tests remains at 0.05. This precaution is crucial to mitigate the risk of incorrectly

identifying a significant difference. Despite the acknowledged flaws in reporting Delong’s p-

values and the inevitability of certain issues, it remains a standard and convenient approach in

association studies. Various methods, such as Bonferroni–Holm correction [70], exist to ad-
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just p-values, but careful and thorough assessment is necessary. More sophisticated statistical

analysis of the results could be in the future work to further strengthen the findings.

There are also some limitations regarding the data used in this study. Firstly, most cervical

cancer patients in the dataset also received brachytherapy. However, the dose delivered during

this therapy was not captured in the external beam dose distribution. This limitation could

affect the accuracy of the model’s predictions, and it is important to find ways to integrate

brachytherapy data into the model to improve its accuracy.

Secondly, typical of medical datasets, the current approach is also challenged by data missing

and time to event. The dataset utilised in this study contained missing data, primarily due to

that data couldn’t be found in the patient’s clinical records; and for toxicity data was missing as

patients may not have responded to the relevant questions on the questionnaires. These missing

data instances posed limitations in the analysis and interpretation of the results. In an attempt

to address the missing variables, including BMI, imputation methods was employed. However,

it is important to note that imputation involves estimating the missing values and it does not

precisely reflect the exact values that were missing.

Thirdly, the patient grouping in the dataset was adjusted to address the imbalance issue, al-

though for clinical purposes, it might be more beneficial if the model could predict ordinal

labels or different groupings. Unfortunately, due to the limited and imbalanced nature of the

data, analysing the model with ordinal and alternative groupings was not feasible. It is worth

mentioning that in Chapter 5, the grouping was based on grades 0 and 1 for cases without

toxicity and grades 2 and 3 for those with toxicity. Despite the inability to extend this group-

ing strategy for Chapter 6, the attention results remained consistent. Both grouping models

indicated that toxicity was localized in the anterior and right iliac fossa.

Additionally, the toxicity grade was determined based on patient-reported grading, presenting

both advantages and disadvantages. On the positive side, relying on patient self-reporting

can enhance accuracy by capturing subtle symptoms not immediately apparent to healthcare
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professionals. However, a drawback is the potential for variability in symptom reporting among

patients, and also some patients may not complete the questionnaires consistently or accurately.

Finally, fairness and bias are also significant challenges; medical datasets are often collected

from specific populations or patient groups, which can lead to biases in the data. For example,

the dataset employed in this study includes more female patients than male patients. Therefore,

it may not be representative of the general population. This can lead to biased results and may

limit the generalisability of the findings. Additionally, medical datasets may also be biased due

to factors such as unequal access to healthcare, differences in treatment protocols, and diag-

nostic errors. Several studies have been conducted to explore fairness and address associated

issues [42], [111]. Additionally, there are various tools such as Python libraries like AIFair360

[11] and FairLearn [16] that have been developed specifically for bias detection within datasets.

While the detection of dataset fairness was not within the scope of this PhD thesis, it presents

an avenue for future research and investigation.

There are also some limitation that relates to the scope of the study. For example, the focus of

study is on only three commonly reported bowel symptoms. There are other potential toxicity

outcomes that could have been considered, such as urinary and sexual symptoms, which are

also common following radiotherapy. Further research could potentially enhance the overall

understanding of the relationship between anatomical regions and toxicity.

Another criticism that may arise regarding this study is the issue of causality. Currently, the

research examines associations, specifically identifying which parts (spatial/anatomical) of the

dose distributions and CT scans appear to be most strongly linked to toxicity based on their

weighted importance in the model. However, it is crucial to acknowledge that these associa-

tions do not establish causation. The study should recognise this limitation and the fact that

further investigations would be necessary to establish causal relationships. There are casual

methods that are used to infer causal relationships between variables or factors in a system

[8]. Causal methods aim to uncover the cause-and-effect relationships and understand the un-
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derlying mechanisms that drive those correlations (In contrast to traditional machine learning

methods that focus on predicting outcomes based on observed correlations in the data). The

objective of this research did not encompass the investigation of causality, and it is a potential

avenue for future work.

Overall, it is essential to address all these challenges to ensure that the model’s predictions

are as accurate and reliable as possible. Tackling these concerns will improve the robustness

and accuracy of the model and pave the way for more effective treatment and management of

radiotherapy. This can be accomplished for the future works.

A note on Chapter 2:

In Chapter 2, a review paper that summarised the published works on toxicity prediction using

deep learning models was presented. However, since the publication of that paper, there have

been several other studies that have employed deep learning techniques for toxicity prediction

or reviewed these models in the context of radiotherapy [117], [94], [130], [145] and[175].

Therefore, it is important to acknowledge the more recent works that have contributed to the

field and have extended understanding of the potential of deep learning for toxicity prediction

in radiotherapy.

7.4 Further research directions

For future work, there are several potential directions to pursue. Firstly, expanding this study

to other datasets could validate the findings in different populations. Secondly, a segmentation

approach could replace the use of cubes in the bags, where different segments of the bowel are

extracted, and multiple instance learning can be performed on these segments. This has the po-

tential to improve the localisation of the risk map. Thirdly and the most crucial focus of future

work could be to automatically generating an optimal dose plan that minimises the risk of tox-

icity; developing more sophisticated machine learning algorithms, such as Bayesian networks
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and graph convolutional networks, along with this proposed model can create a framework to

optimise the dose distribution which minimise the toxicity risk. Furthermore, the area of inter-

est for predicting bowel related toxicities was the bowel bag, a decision made by Dr. Alexandra

Gilbert, an expert in patient-reported outcomes following pelvic radiation therapy. However, a

potential avenue for future research could involve analysing additional regions and areas out-

side the bowel bag, such as the spinal cord. Ultimately, the goal for future work can be to create

a more personalised and effective approach to radiation therapy that minimises the risk of side

effects for patients, and this research can have the potential to make a significant impact in the

field of cancer treatment.
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Appendix A

Analysis of dose data for toxicity

prediction

In several studies, toxicity prediction has been analysed solely based on dose data, and tra-

ditional NTCP modeling has also focused on dose data. Thus, in this experiment, we aim to

evaluate whether incorporating CT data can improve the performance of toxicity prediction

compared to using only dose data.

In this experiment, we trained the model only with one path and dose distribution input data.

Figure A.1: The schematic illustration of the trained model. 3D input image is pre-processed
and fed into the Attention-MIL network. The output of the network is a binary variable defining
toxicity prediction.
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Fig.A.1 shows the architecture of the trained model. The training process follows the method-

ology outlined in Chapter 5 and the experimental results are conducted on unseen data (test

set). Table A.1 shows the results of comparison for three types of toxicities.

Table A.1: Comparison of prediction performance across different input analysis. Best perfor-
mance in each metric is shown in bold.

Bowel urgency Diarrhoea Faecal incontinence

Method Acc AUC ACC AUC ACC AUC

MIL-Att-dose 0.70 0.76 0.60 0.65 0.67 0.72
MIL-Att-I 0.80 0.85 0.60 0.62 0.70 0.76

*Abbreviation:: Acc, accuracy; AUC, area under receiver operating characteristic curve.

The comparison of the experimental results revealed that the incorporation of CT scans in ad-

dition to dose images led to a noticeable improvement in prediction performance for bowel

urgency and faecal incontinence, but not for diarrhoea. These findings are consistent with

the results obtained from combining imaging data with clinical variables; the observed lack

of improvement in the prediction accuracy for diarrhoea after incorporating CT scans in ad-

dition to dose images could be attributed to the complexity of the symptom. Diarrhoea is a

multi-dimensional symptom that includes several bowel symptoms such as stool consistency,

frequency, and urgency, which makes it more challenging to identify the specific factors con-

tributing to its development. However, it is known that the dosimetric data is closely related to

the risk of diarrhoea toxicity. As a result, the inclusion of CT scans may not be as informative

in identifying the factors contributing to diarrhoea toxicity as dosimetric data. Therefore, based

on the findings from this comparison experiment and previous experiments, it can be concluded

that incorporating CT scans and clinical variables can improve the prediction performance for

bowel urgency and faecal incontinence, while the prediction of diarrhoea symptoms is mostly

dependent on the dosimetric data.
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Appendix B

Average of γWeights

The attention module γ computes importance weights that reveal the neural network’s focus on

clinical factors in predicting toxicity. For example, for all types of toxicities, the cancer type

received high attention weights. Nevertheless, it remains unclear which specific cancer subtype

(rectal, cervical, endometrial, or anal) has the most substantial impact on the final output. To

investigate this, we computed the average γ weights for each subcategory within each feature.

The top 15 weights are presented in Figure B.1.

We can see that for bowel urgency the highest attention weight gained by rectal cancer, followed

by endometrial, cervical, and anal cancers in descending order. Let’s say we’re looking at the

relationship between rectal cancer and bowel urgency toxicity. We might assume that rectal

cancer increase the probability of a patients developing bowel urgency toxicity. But this is

not completely true, as the relationship between variables and the outcome are complex. The

relationship between different variables and toxicity follows a structural causal model, which

means that there may be hidden variables with various pathways, such as chains or forks,

between them. Investigating these relationships requires a thorough study beyond the scope of

our study.
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Figure B.1: The average of γweights for top 15 important features. Abbreviations: BMI, body
mass index; VMAT, Volumetric modulated arc therapy; RT, radiotherapy; ACE, Angiotensin-
converting enzyme. Note: Total dose denotes the total prescribed dose.
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