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Abstract 

Air pollution is a major issue which causes ~7 million deaths annually worldwide. Within 

Europe, despite reductions in emissions, recommended thresholds for pollutants such 

as ozone (O3) are regularly exceeded. This thesis uses satellite tropospheric composition 

data and an atmospheric model to quantify long-term changes in European O3 and the 

global hydroxyl radical (OH), both central to tropospheric chemistry. 

Novel application of a simplified steady-state approximation to IASI satellite data is used 

to quantify the spatio-temporal distribution of mid-tropospheric OH. This satellite-derived 

OH compares well with modelled OH and aircraft observations. Between 2008 – 2017, 

annual global OH varied by -3.1 and +4.7%, driven by O3 and carbon monoxide (CO) 

inter-annual variability. The method could be further improved with the inclusion of terms 

involving nitrogen oxides (NOx).  

Three long-term (1996 – 2017) lower tropospheric (0 – 6 km) O3 satellite records (GOME, 

SCIAMACHY and OMI), show small European-wide trends (0.0 to -0.2 DU year-1), with 

relatively large uncertainties. The model and ozonesonde records are broadly consistent, 

supporting a negligible trend. Overall, this indicates that lower Europe-wide tropospheric 

O3 has remained stable in the satellite era. Small local negative O3 trends occurred over 

central Europe in the model, which model experiments show were predominantly driven 

by emissions over meteorological factors.  

Activity restrictions during the COVID-19 pandemic caused reductions in O3 precursor 

emissions, with initial studies showing O3 reductions in the 2020 Northern Hemisphere 

free troposphere. Here, a study of the European satellite record reveals peak O3 

reductions in April and May 2020 (~2 DU), repeating in spring 2021. Reducing the 

precursor emissions yields large negative model anomalies peaking in May 2020. The 

reduction in emissions is the larger influence, compared to meteorology, explaining 

~60% of the decrease. The meteorological reduction was driven by a large anomaly in 

the flux of stratosphere-troposphere O3 exchange (-64%). 
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Chapter 1 Introduction 

1.1 Motivation 

Globally, air quality is a substantial environment issue. It is estimated that in 2019 alone, 

ambient air pollution caused 4.2 million premature deaths (World Health Organization, 

2022). In the same year, 99% of the global population were living in areas where the air 

did not meet the World Health Organisation (WHO) guidelines on safe air to breathe. Air 

pollution has been shown to cause strokes, heart disease, lung cancer and chronic and 

acute respiratory diseases such as asthma (World Health Organisation, 2018). There is 

an increasing wealth of tropospheric composition data products, e.g. surface, satellite, 

balloon and aircraft observations with which to study air quality. However, there are still 

gaps in knowledge and uncertainties within this research area, especially relating to the 

long-term changes in tropospheric species. Satellite-derived observations are now 

available for the past few decades, which provide enhanced spatio-temporal information 

compared to other observations. These satellite records have the potential for the 

evaluation of long-term changes, either directly or indirectly, and therefore provide the 

opportunity to address this gap in knowledge.  

The overarching aim of this thesis is to explore the use of satellite tropospheric 

composition records to understand long-term changes in two important species in the 

troposphere, ozone (O3) and the hydroxyl radical (OH). Tropospheric O3 is an 

atmospheric pollutant, as acute and chronic exposure is harmful to both humans and 

plants. It is also a greenhouse gas (GHG) and is a large contributor to the total global 

radiative forcing (RF). OH is a highly reactive radical and a strong oxidant. It is therefore 

known as the ‘detergent’ of the atmosphere due to its control on the lifetime of many 

other important species e.g. methane (CH4), ozone-depleting substances (ODS) and air 

pollutants. Therefore, enhancing our understanding of the interannual to decadal 

changes in both species is important. These two species (OH and O3) are closely linked 

in the troposphere, as O3 is the key primary source of OH, and OH is the major sink of 

many species important to O3 e.g. CO, CH4, and it is also key in the production of O3 by 

oxidising volatile organic compounds (VOCs) to form peroxy radicals. Investigating both 

species in this thesis aims to provide important information about these links. As there 

are currently no available satellite retrievals of OH, this work focuses on developing a 

novel method of deriving OH from other satellite species, and the subsequent application 

of this method to studying long-term changes in OH. For O3, this work focuses on 

studying the satellite retrieval products already available, to better understand what 

information can be provided about long-term changes in tropospheric composition.  

Direct in-situ measurements of OH are scarce due to its short lifetime (~1 second in the 

daytime) and very low abundance (Stone et al., 2012). Current indirect methods of 

inferring global OH provide little spatial information, and reductions in the viability of 

methods involving the commonly used tracer, 1,1,1-trichloroethane (methyl chloroform, 

MCF), highlights the importance of developing other methods to infer OH. Currently, 



2 
 

there are no tropospheric satellite retrievals of OH. However, satellite retrievals of other 

species could be used to constrain some of the key source and sink terms of OH, deriving 

OH using a steady-state approximation. Utilising satellite data would provide a much 

higher level of spatial and temporal information about OH than currently available from 

direct observations. This thesis aims to explore the potential of using satellite retrievals 

of key OH source and sink species to derive global OH, using a simplified steady-state 

approximation, and what this satellite-derived OH record can provide about the long-term 

changes in OH.   

Despite declining regional precursor gas emissions, the secondary pollutant tropospheric 

O3 is a persistent issue in Europe, with 16,800 premature deaths attributed to acute O3 

exposure in 2019 (European Environment Agency, 2021). An estimated 34% of the 

European urban population were exposed to O3 concentrations above the European 

Union (EU) standards (maximum daily 8-hour running average (MDA8) < 120 µg/m3) and 

99% above WHO guidelines (MDA8 < 100 µg/m3) in 2019 (European Environment 

Agency, 2021). Satellite retrievals of tropospheric O3 present a relatively new approach 

to studying this important pollutant, providing a comprehensive spatio-temporal record 

since the mid-1990s. As part of the Tropospheric Ozone Assessment Report (TOAR-I), 

Gaudel et al. (2018) presented variation in the magnitude and sign of tropospheric O3 

trends across Europe from several satellite records, highlighting inconsistencies 

between the records. This thesis aims to further explore long-term trends in lower 

tropospheric O3 and the variation between instruments across several satellite records 

produced by the Rutherford Appleton Laboratory (RAL).   

The global COVID-19 pandemic resulted in ‘lockdowns’ across many European 

countries in 2020 and 2021. The reduction in many activities produced a large decrease 

in the emissions of many primary pollutants in the observational record, including the O3 

precursor gases, NOx (nitrogen dioxide (NO2) & nitric oxide (NO)) and VOCs. This 

coincided with a large reduction (~7%) in tropospheric O3 observed by ozonesondes 

across the northern hemisphere (NH) free troposphere in the spring and summer of 2020 

(Steinbrecht et al., 2021). A combination of NASA satellite records (ending in August 

2021) showed that this reduction in the NH repeated in the spring/summer 2021 (Ziemke 

et al., 2022). The factors controlling this reduction, e.g. the relative effect of reduced 

emissions and meteorology, are currently poorly understood. This thesis aims to 

investigate what information several satellite records of the troposphere and model 

simulations above Europe can provide about 2020/2021 for O3 in relation to previous 

years, and to extend the analysis of the O3 record to the end of 2021. The change in 

anthropogenic surface emissions and secondary pollutants (e.g. O3) due to activity 

restrictions during the global pandemic also provides an opportunity to study the impact 

to OH during this period, which is currently poor constrained by observations.   
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1.2 Aim and research questions 

The overall aim of this thesis is to improve our understanding of long-term changes and 

variation in tropospheric composition, with a particular focus on European tropospheric 

O3 and global OH, which are two closely linked species that are very important to 

tropospheric chemistry, human health impacts and the global radiative effective. There 

are three specific research gaps which this thesis will explore: 

1. Information about OH abundance, distribution and long-term variation. 

2. More robust quantification of long-term European O3 trends. 

3. Characterisation and quantification of European O3 and global OH variation, 

compared to previous years, in spring/summer 2020 and 2021, in the context of 

the global COVID-19 pandemic. 

The first research gap will be addressed in Chapter 4 by developing a new indirect 

method to derive OH distribution and temporal variation, using satellite retrievals of 

tropospheric composition (e.g. tropospheric O3, a key source of OH) and a simplified 

steady-state approximation. The following research questions will be addressed: 

1.1: In what regions of the atmosphere are different steady-state approximations for 

[OH] valid? 

1.2: Can satellite data be applied to a simplified steady-state approximation and how 

does it compare to modelled [OH]? 

1.3: How does the satellite-derived [OH] distribution compare to direct 

measurements of [OH] in the free troposphere? 

1.4: What is the uncertainty associated with the satellite-derived OH? 

1.5: What can this method tell us about long-term variations in [OH] and it’s source 

and sink terms (e.g. O3)?  

Following on from the investigation of long-term OH variation, the second research gap 

will be addressed in Chapter 5 by studying long-term trends in European tropospheric 

O3 in the RAL satellite record. The following research questions will be addressed: 

2.1: What are the trends in satellite-observed lower tropospheric O3 over Europe 

since 1996?  

2.2: How do these trends vary spatially and seasonally?  

2.3: How do these trends vary between instruments? What could be causing the 

differences? 

2.4: Are these trends captured by a model and other observations of the troposphere 

(e.g. ozonesondes)? 

2.5: How do variations in O3 precursor gas emissions and meteorology impact these 

trends? 
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The third research gap will be addressed in Chapter 6 by studying variation in European 

tropospheric O3 records during the spring/summer of 2020 and 2021, and the 

corresponding temporal evolution in approximated OH. The following research questions 

will be addressed: 

3.1: What happened to satellite-observed lower tropospheric O3 in the 

spring/summer of 2020 and 2021? How does this compare to previous years? 

3.2: How does the satellite record compare to the ozonesonde and surface data 

records in the spring/summer of 2020 & 2021? 

3.3: What information can atmospheric chemistry transport model simulations 

provide about the causes of the spring/summer 2020 reduction of lower tropospheric 

O3? Can a quantification of the relative contribution of emissions and meteorology 

be calculated? 

3.4: What happened to global satellite-derived OH in 2020? 

These three research gaps and their associated research questions will help to address 

the overall aim of the thesis, to better understand long-term changes in tropospheric O3 

and OH.  

1.3 Thesis layout 

This thesis consists of 7 chapters, including this one. Chapter 2 describes the 

background to the relevant concepts in the thesis, including tropospheric O3 and OH 

radical chemistry, previous literature on European tropospheric O3 trends, O3 

observations methods in the free troposphere and methods of inferring OH 

concentrations. Chapter 3 describes the datasets used e.g. satellite, ozonesondes, and 

also the TOMCAT 3-D model. Chapters 4 – 6 present the results of the thesis, with each 

chapter starting with a review of the most relevant literature. Chapter 4 presents an 

investigation into deriving the OH radical from satellite data and steady-state 

approximations. Chapter 5 presents an evaluation of long-term tropospheric O3 trends in 

the satellite record. Chapter 6 presents a study of more recent tropospheric O3, and 

approximated OH, focusing on the spring/summer of 2020 and 2021 in the satellite 

record. Lastly, Chapter 7 presents a synthesis and summary of the key scientific findings 

of the thesis, answers to the research questions and outlook for further work. 
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Chapter 2 Tropospheric ozone and the hydroxyl radical 

This chapter describes the background to the concepts relevant to understanding the 

thesis aims and results. Further specific literature relevant to each results chapter is 

discussed at the start of those chapters. Section 2.1 summarises the current state of 

European air quality, with a focus on tropospheric O3. Section 2.2 describes O3 in the 

atmosphere, the tropospheric budget, controlling factors and summarises the current 

literature on long-term trends across observations and models. Section 2.3 describes 

OH in the atmosphere and summarises the methods used to infer OH. Section 2.4 

summarises methods of observing O3 in the free troposphere, with a focus on satellite 

retrievals. Lastly, Section 2.5 describes recent campaigns of observing OH in the free 

troposphere.  

2.1 European air quality  

Despite improvements, air pollution is still the largest environmental health risk in Europe 

(European Environment Agency, 2022). Emissions of all major primary pollutants 

(including O3 precursor gases) have declined since 2005 across 27 European countries 

(EU-27), as shown in Figure 2.1 (European Environment Agency, 2021). These 

pollutants include sulphur dioxide (SO2), NO2, ammonia (NH3), PM10 (particulate matter 

smaller than 10 µm in diameter), PM2.5 (particulate matter smaller than 2.5 µm in 

diameter), non-methane VOCs, carbon monoxide (CO), CH4 and black carbon (BC). 

Between 2005 – 2019, emissions of SO2 decreased the most (76%) and those of NH3 

the least (8%). However, despite improving air quality over Europe, currently some air 

pollutants still exceed EU/WHO standards and air pollution is still the largest 

environmental health risk in Europe (European Environment Agency, 2022). In 2019, 

across 27 EU member states, 307,000 premature deaths were attributed to long-term 

PM2.5 exposure, 40,400 to long-term NO2 exposure and 16,800 to acute O3 exposure 

(European Environment Agency, 2021).  

 

Figure 2.1: Changes in primary pollutant emissions for EU-27 countries. From 2005 
to 2019 as a % of 2005 levels. EU-27 gross domestic product (GDP), as a % of 2005 
GDP, is also shown. Taken from European Environment Agency (2021). 
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There is a still-present problem with tropospheric O3 in Europe, with O3 concentrations 

have not decreased as fast as some primary pollutants, with most stations missing the 

EU targets. In 2019, across the European Environment Agency’s (EEA) 2170 air quality 

monitoring stations (European Environment Agency, 2021): 

• 99% of the EU urban population was exposed to O3 levels which exceeded the 

2021 WHO guidelines and 34% were exposed to O3 levels exceeding the EU 

standards. This EU exceedance level was higher than for other pollutants e.g. 

NO2 (4%), PM2.5 (4%) and PM10 (15%).  

• Long-term EU O3 objectives of MDA8 (<120 µg/m3, maximum of 25 days of 

exceedances a year) were only met at 12% of stations, with all countries reporting 

stations which exceeded the objective (Figure 2.2).  

• WHO guideline of O3 <100 µg m-3 (MDA8) was only met at 3% of stations.  

Average O3 values for 2019 are shown on a country basis in Figure 2.2, and the 

distribution of the 93.2 percentile of O3 MDA8 (represents the 26th highest value in the 

series, to account for the 25 days of exceedances allowed in the target value) at the 

monitoring sites in 2019 is shown in Figure 2.3. These figures show that O3 values are 

highest in southern and central Europe, specifically Bosnia & Herzegovina, Switzerland, 

Italy, Cyprus, Greece and Austria. However, the network of monitoring stations is very 

sparse across some parts of Europe, which leads to uncertainty in these estimates for 

the regions not densely covered by monitoring stations (Figure 2.3). 

 

Figure 2.2: Average O3 concentrations for each European country in 2019 (not 
averaged across 3 years as in EU target value of <120 µg m-3). Average, maximum, 
minimum and 25th/75th percentiles are shown. The red line represents the EU target 
threshold (<120 µg m-3). Taken from European Environment Agency (2021). 
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Figure 2.3: O3 concentrations at surface sites across Europe in 2019. The figure 
shows the 93.2 percentile of the O3 MDA8. This percentile corresponds to the 26th 
highest daily maximum of the running 8-hour mean. The orange/red dots (above 
120 µg m-3) represent an exceedance of the 120 µg m-3 target threshold value for 
this metric. Taken from Jaume et al. (2021). 

2.2 Tropospheric ozone 

2.2.1 Ozone in the troposphere & stratosphere 

O3 is a trace gas in the atmosphere, which is both naturally present and produced by 

anthropogenic processes. The majority of O3 (~90%) is in the stratosphere, a region of 

the atmosphere which extends from ~8 – 18 km to ~50 km altitude. The region in the 

stratosphere with the highest O3 concentrations is known as the ‘ozone layer’, as shown 

in Figure 2.4 (Fahey and Hegglin, 2011). O3 in this region is often known as ‘good ozone’ 

as it absorbs incoming solar ultraviolet (UV) B radiation which would otherwise be 

harmful to humans and plants. Additional UV radiation reaching the surface could cause 

an increase in incidences of skin cancer, eye cataracts and suppressed immune systems 

in humans, and also adversely impact crops, plants and ocean plankton (Fahey & 

Hegglin, 2011). The abundance of O3 in the O3 layer is up to ~ 10 ppm.  
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Figure 2.4: Schematic diagram of O3 in the troposphere and stratosphere. Taken 
from Fahey & Hegglin (2011).  

The remaining 10% of atmospheric O3 is located in the troposphere. The troposphere is 

the region of the atmosphere between the surface and the tropopause. The tropopause 

was defined by the World Meteorological Organisation (WMO) in 1957 as the lowest level 

at which the temperature lapse rate decreases to 2 K km-1 or less, and the average lapse 

rate between this level and all higher levels within the next 2 km does not exceed 2 K 

km-1 (World Meterological Organization, 1957; Stohl et al., 2003). There has been 

subsequent studies, defining the tropopause based on other thermal, chemical and 

dynamical characteristics (e.g. Reed and Danielsen (1958), Holton et al. (1995), Bethan 

et al. (1996)). In the tropics, the tropopause is around 16 – 18 km altitude, decreasing 

with decreasing temperature towards the poles, where it can be as low as 6 – 8 km 

altitude (Stohl et al., 2003). The abundance of O3 in the troposphere is ~ 20 – 100 ppb. 

Tropospheric O3 is known as ‘bad ozone’ because of the harmful impact on human and 

plant health. In humans, O3 is a lung irritant, with acute exposure causing reductions in 

lung function and capacity, increased respiratory symptoms (e.g. coughing), increased 

reactivity, permeability and inflammation of the airways, exacerbation of diseases such 

as asthma, emphysema and chronic bronchitis, and increased mortality from respiratory 

and cardiovascular diseases (Lippmann, 1991; Fahey and Hegglin, 2011; Zhang et al., 

2019). The evidence is less conclusive on the long-term exposure health impacts of O3, 

however, there is evidence to suggest that chronic exposure is associated with increased 
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mortality from respiratory and cardiovascular diseases, new-onset asthma in children 

and asthma exacerbation (Nuvolone et al., 2018). The health impacts are caused by O3 

being a strong oxidant, which induces oxidative damage to the lining fluid and cells of 

the lungs, causing immune-inflammatory responses within the lungs and body (Zhang et 

al., 2019). For vegetation, O3 can cause damage in several ways, including causing 

visible injury (e.g. discolouration), and also reducing crop yields and forest growth 

through reducing rates of photosynthesis and speeding up leaf senescence (final stage 

of leaf development) (Ashmore, 2005). The major damage occurs due to uptake of O3 

by the plant stomata, where it reacts with plant surfaces to form other reactive oxygen 

species, which can damage cell structures and membranes, impacting photosynthesis 

and plant growth (Wilkinson et al., 2012; Hayes et al., 2020). Globally the impact of O3 

on crop losses was estimated to cause an economic loss of between US$14 – 26 billion 

in 2000 (Van Dingenen et al., 2009). Across Europe, studies have shown wide-spread 

vegetation damage from O3 exposure, with evidence across 17 European countries (Mills 

et al., 2011).  

O3 is also an important GHG, with an estimated effective RF for O3 in both the 

troposphere and stratosphere of 0.47 W m−2 (uncertainty range of 0.24 – 0.71 W m−2) 

between 1750 – 2019, relative to a total effective RF of 2.72 W m−2 from this time period 

(Skeie et al., 2020; IPCC, 2021). O3 has been estimated to have caused ~0.23°C of 

warming from 1750 - 2019, relative to a total of 1.27°C (IPCC, 2021). O3 in both the 

troposphere and stratosphere is the 3rd largest contributor to the total change in effective 

RF between 1750 – 2019, after CO2 (2.16 W m−2) and a combination of other well-mixed 

GHGs (CH4, N2O, halogens, causing 0.54, 0.21, 0.41 W m−2, respectively) (Skeie et al., 

2020; IPCC, 2021). This RF is more heavily influenced by tropospheric O3 compared to 

stratospheric O3 (IPCC, 2021). It will also be important in the future as well, Iglesias-

Suarez et al. (2018) estimated that under the RCP8.5 scenario, there would be a net O3 

RF of 435 ± 108 mWm−2 in 2100, relative to 2000.   

2.2.2 Budget 

The tropospheric O3 burden was estimated at ~ 335 ± 10 Tg by Wild (2007), derived from 

ozonesonde measurements of the 1980s/1990s. Model intercomparison studies have 

shown similar values (Wild et al., 2020), e.g. ACCENT showed a mean burden of 344 ± 

39 Tg (Stevenson et al., 2006), HTAP showed a mean burden of 328 ± 41 Tg (Fiore et 

al., 2009) and ACCMIP showed a mean burden of 337 ± 23 Tg (Young et al., 2013). The 

tropospheric O3 budget is controlled by photochemical (production and destruction) and 

physical (transport and removal at the Earth’s surface) processes (Monks et al., 2015). 

Chemical production is the main source of global tropospheric O3, producing ~ 5000 Tg 

yr-1 (Monks et al., 2015). Stratosphere-troposphere exchange (STE) provides a net 

source of ~ 550 ± 140 Tg yr-1 (Olsen et al., 2001; Hsu et al., 2005; Monks et al., 2015). 

For removal, dry deposition occurs at the Earth’s surface on vegetation and other 

surfaces. Models suggest a net removal of ~ 1000 ± 200 Tg yr-1 (Monks et al., 2015). 

Table 2.1 shows the range of values in the source and sink fluxes across 2 model 
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intercomparison studies and a comparison of 17 published chemistry transport model 

(CTM) studies. As Table 2.1 shows, there is a large uncertainty on all of these O3 budget 

terms, with different model studies showing large differences (Wild, 2007). Aside from 

differences in the surface precursor emission values, these differences are caused by 

representation of key processes in the models such as STE, wet and dry deposition, 

humidity and lightning (Wild, 2007). The definition of the tropopause can also affect the 

tropospheric O3 burden calculated. Wild (2007) found that ~ ±15% of the variability in the 

burden from 3 O3 climatologies was due to tropopause choice.  

 

ACCENT 

(Stevenson et 

al., 2006) 

CTM studies 

2000 – 2004 

(Wild, 2007) 

ACCMIP 

(Young et al., 

2013) 

Number of models 21 17 15 

Source 

(Tg yr-1) 

Chemical 

Production 

(Source) 

5110 ± 606 4465 ± 514 4877 ± 853 

STE (Source) 552 ± 168 529 ± 105 477 ± 96 

Sink  

(Tg yr-1) 

Chemical Loss 

(Sink) 

4668 ± 727 4114 ± 409 4260 ± 645 

Dry Deposition 

(Sink) 

1003 ± 200 949 ± 222 1094 ± 264 

Tropospheric Burden (Tg) 344 ± 39 314 ± 33 337 ± 23 

Table 2.1: Summary of the sources, sinks and burden of tropospheric O3 in the 
model intercomparison studies of ACCENT, ACCMIP and across published CTM 
studies between 2000 – 2004.   

The relative dominance of the budget terms varies geographically, with net chemical 

production occurring over the continent in the boundary layer (BL), due to high precursor 

emissions, and in the upper troposphere, where there is slow destruction (Monks et al., 

2015). For net chemical destruction, this occurs in the marine BL and mid-troposphere, 

due to low concentrations of precursor gases, and also in urban areas, due to the high 

NOx concentrations (titration, see Section 2.2.2.1) and in polar areas due to localised 

halogen-catalysed O3 destruction (Monks et al., 2015). Any variation in these processes, 

e.g. precursor gas emissions (natural or anthropogenic, geographical distribution), air-

mass transport and STE, can influence tropospheric O3 trends. The following sub-

sections discuss the budget source and sink terms in more detail.  

2.2.2.1 Photochemical production and destruction 

Tropospheric O3 is a secondary pollutant as it is not directly emitted. O3 can be present 

in the troposphere due to transport from the stratosphere (Jacob, 1999), with the 

remaining O3 produced photochemically in the troposphere. It can have a lifetime of 
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hours in polluted urban environments to weeks in the free troposphere, with an average 

of ~ 22 days (Young et al., 2013; Monks et al., 2015). The longer lifetime in the free 

troposphere allows it to be transported across the hemisphere to different continents 

(Monks et al., 2015).  

Production involves the presence of the precursor gases, NOx and a range of VOCs. 

VOCs in the atmosphere include CO and hydrocarbons such as CH4, ethane (C2H6), 

propane (C3H8) and isoprene (C5H8). The primary reaction that forms O3 is the photolysis 

of NO2, producing oxygen atoms O(3P), which then combine with O2 in the atmosphere, 

as shown in Equations 2.1 and 2.2 (Jacob, 1999; Monks et al., 2015): 

NO2 + ℎ𝑣 (λ < 430 nm)  → NO + O(3P) Equation 2.1 

O2 +  O(3P) + M → O3 + M Equation 2.2 

where M represents any inert third body molecule in the atmosphere (commonly N2 and 

O2). Collision with M is required to stabilise the excited product by removing the excess 

energy, which is dissipated eventually as heat (Jacob, 1999).  

O3 production by NO2 photolysis is summarised in Figure 2.5(a), with NOx chemistry a 

key control on O3. In a relatively unpolluted environment, with an absence of 

hydrocarbons, a null cycle is established within NOx and O3 chemistry as the main source 

of NO2 is the destruction of O3, as given in Equation 2.3.   

NO + O3 → NO2 + O2 Equation 2.3 

For net production of O3, the reaction of NO to form NO2 must not involve O3, which would 

lead to a null cycle. VOCs (including CO and CH4) are oxidised by the OH radical in the 

atmosphere to produce peroxy radicals (e.g. hydroperoxyl, HO2, methyl peroxy, CH3O2). 

The peroxy radicals produced can react with NO to form NO2 (Figure 2.5(b)), resulting in 

net O3 production. O3 photoloysis is the major primary production reaction for OH in the 

troposphere, however, VOC and NOx presence allows OH to be regenerated.  

The oxidation of CO and CH4 by OH to form peroxy radicals is shown in Equations 2.4 

and 2.5, respectively.  

OH + CO (+O2)  → CO2 + HO2 Equation 2.4 

OH + CH4 (+O2)  → CH3O2 +  H2O Equation 2.5 

If NOx is present, the peroxy radiacals (HO2 & CH3O2) generated will react with NO, as 

shown in Equations 2.6 and 2.7, respectively (Wayne, 1991). 

HO2 + NO → OH + NO2 Equation 2.6 

CH3O2 + NO → CH3O + NO2 Equation 2.7 
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The methoxy radical (CH3O) generated in Equation 2.7 can react to form formaldeyde 

which can be photolysed to form HO2.  

Other VOCs are also oxidised by OH, following a similar reaction to CH4, which produces 

peroxy radicals which can react with NO to form NO2. This is shown in generic reaction 

of a hydrocarbon (R-H) in Equations 2.8 to 2.11.  

OH +  RH (+O2) →  RO2 +  H2O Equation 2.8 

RO2  +  NO →  NO2  +  RO Equation 2.9 

RO + O2  →  HO2  + R’CHO Equation 2.10 

HO2  +  NO →  OH + NO2 Equation 2.11 

R’ represents daughter alkyl radicals or groups. Equations 2.8 to 2.11 show the 

propagation reactions of the oxidation of a generic VOC. NO is converted into NO2 ready 

for O3 production and the OH radical is regenerated which can then go on to oxidise 

further VOCs.  

The loss or termination reactions for the chain reactions described here, are shown in 

Equations 2.12 and 2.13. Hydrogen peroxide (H2O2) and nitric acid (HNO3) can be 

dissolved in cloud droplets and therefore removed from the system (wet deposition) 

(Wayne, 1991).  

HO2  + HO2  →  H2O2  +  O2  Equation 2.13 

Another loss pathway for HO2, is its uptake onto aerosol surfaces, a process which is 

currently poorly understood (Dyson et al., 2023). A recent study by Dyson et al. (2023) 

found that modelled aerosol HO2 uptake was important in HO2 loss (~29%) during low 

NO concentrations in Beijing, China.  

This production of O3 is most efficient at medium NOx concentrations. At high NOx 

concentrations, NOx is removed from the cycle by reaction of OH with NO2 forming HNO3 

which is then washed out of the atmosphere in wet deposition. This reduces the amount 

of free radicals and NOx available to form O3. O3 is also destroyed through the reaction 

with NO (Equation 2.3), known as ‘NOx titration’. Therefore, through a combination of 

these two processes, in urban areas with very high NOx concentrations, there can be be 

surpressed O3 concentrations. At high NOx concentrations, additional VOCs increases 

the amount of free radicals, and therefore leads to greater O3 production. 

Tropospheric O3 production is dependent on the balance of NOx and VOCs in the 

atmosphere and therefore can vary locally based on emissions of these species (Jacob, 

1999). Figure 2.6 shows the relationship between NOx and VOC emissions. The area in 

the bottom right (labelled ‘C’) is known as the NOx-limited regime, a region of VOC 

OH +  NO2  +  M →  HNO3  +  M Equation 2.12 
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saturation where varying the NOx emissions has the dominant impact on the O3 

concentration. The area in the top left (labelled ‘A’) is the VOC-limited region, a region of 

NOx saturation where varying the VOC emissions has the largest impact on the O3 

concentration. In Figure 2.6, moving from ‘A’ to ‘B’ along a line of constant NOx 

emissions, but increasing VOC emissions will increase O3 production. The same is true 

of moving from ‘C’ to ‘B’ along a line of constant VOC emissions but increasing NOx 

emissions. For areas with high O3 levels, different action plans would be required to 

reduce the O3 concentration depending on which regime was present, as varying the 

NOx in a VOC-limited region (or vice versa) would have little or a negative effect on trying 

to decrease O3 concentrations.  

 

Figure 2.5: (a) Cycling of NOx to produce and destroy O3, a null cycle in the 
absence of hydrocarbons. b) Cycling of NOx to produce O3 in the presence of 
hydrocarbons. RO2 representes the peroxy radical generated by the generic 
reaction of a non-methane hydrocarbon (R-H) and OH.  

(a) (b) 
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Figure 2.6: O3 mixing ratios (ppb) varying with NOx and VOC emissions as 
simulated by UKCA global chemistry-climate model (UMUKCA). ‘A’ indicates the 
NOx-saturated region (VOC-limited), ‘C’ indicates the VOC-saturated region (NOx-
limited). Taken from Monks et al. (2015). 

2.2.2.2 Surface dry deposition 

Surface deposition is an important sink of O3. Dry deposition can take place on the 

surface of vegetation or O3 can undergo uptake by the stomata of vegetation, with the 

latter the process which can cause harm to the vegetation (Fowler et al., 2009; Monks et 

al., 2015). Vegetation physiological activity and associated gas exchange, solar 

radiation, air temperature, air humidity and soil moisture are the key controls on stomatal 

uptake of O3 (Fowler et al., 2009). Stomatal uptake has been shown to account for ~ 

40% – 60% of total deposition over a plant canopy (Fowler et al., 2009). Deposition can 

also occur on any other surface, including the soil, snow and water (Fowler et al., 2009). 

Non-stomatal deposition is controlled by solar radiation, surface temperature, wind 

speed and surface wetness (Fowler et al., 2009). Other notable controls of O3 in the 

canopy, are where soil emissions of NO are very large as this suppress the O3 

concentration (see Equation 2.3), and large emissions of VOCs from vegetation can also 

rapidly reduce O3 concentrations (Monks et al., 2015).  

2.2.2.3 Stratosphere-troposphere exchange 

STE is an important source of tropospheric O3, providing a net O3 source of ~ 550 ± 140 

Tg yr-1 (Olsen et al., 2001; Hsu et al., 2005; Monks et al., 2015), with a broader estimate 

of around 400 – 600 Tg yr-1 (Hsu et al., 2005). STE describes the transport of gases in 

both directions, known as stratosphere-to-troposphere transport (STT) and troposphere-

to-stratosphere transport (TST) (Boothe and Homeyer, 2017). STT transports O3-rich air 

into the troposphere and TST transports air rich in water vapour and tropospheric 
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pollutants into the stratosphere. In this thesis, the term STE will be predominantly used 

to refer to STT, in the context of influencing the amount of O3 in the troposphere.  

On a global scale, STE is dominated by TST in the tropics and STT outside the tropics 

(extratropics) (Boothe and Homeyer, 2017). This is due to upwelling from the tropics in 

the troposphere, transport to the stratospheric extratropics and a downward mass flux in 

the middle and high latitudes (Stohl et al., 2003; Boothe and Homeyer, 2017). This 

stratospheric overturning process is driven by Brewer-Dobson circulation (BDC) (Brewer, 

1949; Dobson, 1956). BDC is the circulation of air from the tropical tropopause, 

ascending diabatically into the tropical stratosphere, where it is moved dynamically 

towards the poles and downward to the extratropical lower stratosphere by Rossby and 

gravity waves breaking in the extratropical middle atmosphere (Stohl et al., 2003; Boothe 

and Homeyer, 2017). A schematic diagram of BDC is shown in Figure 2.7.  

 

Figure 2.7: Schematic of the dynamical structure of the upper troposphere/lower 
stratosphere for the NH summer. The thick solid black line shows the thermal 
tropopause. The thin solid lines represent isentropes and the thick red dashed line 
represents the 380 K isentrope. The red region is the tropical tropopause layer. 
The blue regions labelled LS, LMS and ExTL represent the lower stratosphere, 
lowermost stratosphere and extratropical tropopause layer, respectively. The thin 
yellow lines represent the jet stream. The thick orange arrows show the movement 
of air masses within the stratosphere (BDC). The upper horizontal arrow 
represents deep circulation and the lower horizonal arrow represents shallow 
circulation. Taken from Müller et al. (2016).  

STE occurs near the tropopause and is driven by dynamical processes, across different 

spatial and temporal scales (Boothe and Homeyer, 2017). STE in the extratropics has 

been shown to occur near extratropical cyclones. This exchange is mostly STT and is 

caused by clear-air turbulence along edges of stratospheric intrusions (or tropospheric 
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folds) in the upper troposphere (Boothe and Homeyer, 2017). Reutter et al. (2015) found 

that 50 – 60% of STE across the North Atlantic occurred in the vicinity of cyclones. 

Stratospheric intrusion events have been found to reach the surface, however, more 

typically they reach the middle or upper troposphere (Hocking et al., 2007; Tarasick, 

Carey-Smith, et al., 2019). Aside from extratropical cyclones, stratospheric intrusions 

can also develop along the cyclonic side of upper tropospheric jet streams, however, 

these exchange less air (Boothe and Homeyer, 2017).  

STE has been shown to impact tropospheric O3 variation, with studies showing O3 

variation in the upper and lower troposphere to be well correlated with lower stratospheric 

O3 variation. Tarasick et al. (2005) found a strong correlation between tropospheric and 

stratospheric O3 in ozonesondes above Canada from 1980 – 2001. Ordóñez et al. (2007) 

found that changes in lowermost stratospheric O3 were a dominant influence on 

variability and trend of background tropospheric O3 from 1992 – 2004. More 

quantitatively, Tarasick, Carey-Smith, et al. (2019) found that across several 

ozonesonde campaigns in Canada between 2005 – 2007, STT was responsible for 3.1% 

of O3 in the BL (0 – 1 km), 13% in the lower troposphere (1 – 3 km) and 34% in the middle 

and upper troposphere (3 – 8 km). Neu et al. (2014) found that variation in stratospheric 

circulation (~40%) lead to approximately half of the variation seen in the NH mid-latitudes 

tropospheric O3. Griffiths et al. (2020) found that a decrease in stratospheric O3 (from 

ODS) in a model between 1979 – 1994 reduced STT, however, this was offset but an 

increase in tropospheric O3 due to increased precursor emissions.  

Due to the 1987 Montreal Protocol, and its later amendments, stratospheric O3 is 

recovering from the depletion of the stratospheric O3 layer, with a likely return date to 

global 1960 levels by ~ 2070 (varying with region) (Pyle et al., 2022). This increase in 

stratospheric O3 has been predicted to increase STE into the troposphere (Banerjee et 

al., 2016) and to reduce the photolysis rates in the troposphere, due to the change in 

radiation reaching the surface below the O3 layer (Zhang et al., 2014). Zhang et al. (2014) 

finds a larger impact to simulated O3 destruction rates than the production rates from 

stratospheric O3 recovery, reducing OH concentrations and increasing tropospheric O3 

lifetime. In addition to the recovery of stratospheric O3 due to a reduction in ODS, climate 

models have predicted an increase in BDC (Butchart, 2014), increasing O3 in the mid-

latitude lower stratosphere (Butchart et al., 2006). Hegglin and Shepherd (2009) predict 

a STE flux increase of 23% between 1965 – 2095 for a moderate emissions scenario.  

2.2.3 Precursor gases  

The key tropospheric O3 precursor gases are NOx and VOCs (including CO and CH4). 

These gases are key to O3 production, and therefore are important to the study of O3 

distribution and long-term changes. Here, a summary of the key sources of these 

precursor gases is provided and an outline of how emissions and concentrations of these 

gases have changed over the last few decades.   
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The key tropospheric sources of NOx are combustion of fossil fuels (estimated global 

source of ~ 21 Tg N year-1 (Jacob, 1999)). A large proportion of these emissions are from 

road transport, e.g. in 2020 road transport was responsible for the majority (37%) of 

European NOx emissions (European Environment Agency, 2022). The other main 

sources of NOx are biomass burning (from tropical agriculture and deforestation, ~ 12 Tg 

N year-1) and emissions from denitrifying bacteria in soil (~ 6 Tg N year-1) and electrical 

storms (lightning, ~ 3 Tg N year-1) (Wayne, 1991; Jacob, 1999). During combustion of 

fossil fuels, some NOx will be produced due to oxidation of organic nitrogen present in 

the fuel. Additionally, in combustion engines, at very high temperatures (~ 2000 K) there 

is thermal decomposition of the air producing NO, as shown in Equations 2.15 - 2.17 

(Jacob, 1999):  

O2 → O + O Equation 2.14 

O + N2  → NO + N Equation 2.15 

N + O2  → NO + O Equation 2.16 

 

The oxidation of CO, CH4 and VOCs leads to O3 production, and therefore it is important 

to understand their sources and sinks. The large CO sources are anthropogenic, 

predominantly from fossil fuel combustion (global estimated source of ~ 700 Tg year -1) 

and biomass burning (associated with tropical agriculture, ~ 500 Tg year-1) (Zheng et al., 

2019). There are also smaller natural sources e.g. emissions from vegetation (~ 200 Tg 

year-1) and the oceans (~ 20 Tg year-1). Oxidation of CH4 (~ 900 Tg year-1) and other 

hydrocarbons (~300 Tg year-1) is also another major source of CO (Zheng et al., 2019). 

The major sources of CH4 are a combination of anthropogenic (global estimated source 

of ~ 330 Tg year-1) and natural emissions (~ 370 Tg year-1) (Saunois et al., 2020). The 

key anthropogenic emissions are from agriculture and waste, e.g. enteric fermentation 

in animals (wild/domesticated, ~ 100 Tg year-1), landfills (~ 60 Tg year-1) and rice 

cultivation (~ 30 Tg year-1). Additional anthropogenic sources are from fossil fuels (~ 110 

Tg year-1) and biomass burning (~ 30 Tg year-1). The major natural emissions are from 

wetlands (~ 150 Tg year-1), freshwater (~ 160 Tg year-1), onshore geological sources (~ 

40 Tg year-1) and termites (~ 10 Tg year-1) (Saunois et al., 2020). For other VOCs there 

are many different natural and anthropogenic sources, e.g. emissions from vegetation, 

soils, the ocean, fires, solvents and vehicle exhausts (Wayne, 1991; Sindelarova et al., 

2014). Biogenic VOCs (BVOCs) are the largest source of atmospheric VOCs, with an 

estimated annual total emission of ~ 760 Tg (Carbon, C) year-1, consisting mostly of 

isoprene (C5H8, ~ 70%) and monoterpenes (~ 10%) (Sindelarova et al., 2014). Smaller 

sources of VOCs include anthropogenic (~ 80 Tg (C) year-1), biomass burning (~ 30 Tg 

(C) year-1) and oceans (~ 52 Tg (C) year-1) (Safieddine et al., 2017). 

Overall, many studies have shown a decrease in emissions and concentrations of 

European O3 precursor gases in the last few decades. Emissions of O3 precursor gases 
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across Europe have shown large reductions between 2005 and 2019 (Figure 2.1), by ~ 

30% for NMVOCs and ~ 45% for NOx (European Environment Agency, 2021). There are 

many observational studies across Europe of reductions in surface NOx and VOCs 

concentrations e.g. European Alpine sites show small decreases of NOx and CO 

between 1995 – 2007, with the large decreases in winter and smallest decreases in 

summer (Gilge et al., 2010). The NOx and CO reductions were ~ 0 – 2% year-1 during 

1997 – 2007, which is smaller than the negative emission trend estimates over central 

Europe (~ 3 – 5 % year-1 for NOx, ~ 6% year-1 for CO) (European Environment Agency, 

2009; Gilge et al., 2010). Two European surface site networks have shown a reduction 

in NOx concentrations, of ~ 1.9% year-1 (EU-AIRBASE network - urban) and 1.7% year-1 

(EU-EMEP network - rural), between 1990 – 2010 across the European domain (Xing et 

al., 2015). Concentrations of VOCs are also decreasing in the urban environment, as at 

an urban site, von Schneidemesser et al. (2010) showed decreases between 1998 – 

2008 of up to 26% year-1 for 18 individual VOCs and 12% year-1 for CO. In the free 

troposphere, using satellite data, Pope et al. (2018) found significant reductions of 

tropospheric column NO2 across pollution hotspots in the UK from 2005 – 2015 e.g. -

0.23 ± 0.05 ×1015 molecules cm-2 year-1 above London.  

2.2.4 Seasonal cycle 

On a global scale, the seasonal variation of O3 is largest in the NH mid-latitudes, showing 

the lowest values in Autumn (Oct/Nov) and ~ 30% larger values in early Summer (June) 

(Monks et al., 2015). This large seasonality could be explained by the STE flux which is 

lowest in November and highest in May. Tropospheric O3 annual variation is shown in 

Figure 2.8 (Boleti et al., 2020), which highlights the variation across clusters of European 

surface sites. For continental Europe (‘Central North’, ‘Central South’, ‘West’ and ‘Po 

Valley’ in Figure 2.8), the peak O3 is around summer (June – July) due to high 

photochemical production from enhanced solar radiation. These sites show lower O3 

concentrations in winter due to the high NOx concentrations suppressing O3 (Wilson et 

al., 2012). For more remote continental and marine sites (‘North’ in Figure 2.8) the peak 

O3 is earlier in the year (March – April), possibly due to enhanced stratospheric input and 

hemispheric-wide photochemical production and transport, although there is no 

overarching consensus (Monks, 2000; Parrish et al., 2013). For these remotes sites, 

where there is less NOx, there are also lower O3 concentrations in summer due to 

enhanced photochemical destruction (Parrish et al., 2013). The tropospheric O3 

seasonal cycle has been shown to vary over time; Parrish et al. (2013) showed that the 

seasonal cycles at several NH mid-latitude sites have shifted, at a rate of 3 – 6 days per 

decade since the 1970s, so that peak concentrations are earlier in the year.  
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Figure 2.8: Annual cycle of surface tropospheric O3 across 5 clusters of European 
surface sites (see Boleti et al. (2020)). S(t) represents the seasonal variation. Taken 
from Boleti et al. (2020). 

2.2.5 Diurnal variation  

Free tropospheric O3 shows a diurnal cycle, an example of which is shown in Figure 2.9 

using aircraft measurements from the MOZAIC-IAGOS programme (‘Measurement of 

Ozone and water vapour by Airbus in-service airCraft’ (MOZAIC) and ‘In-service Aircraft 

for a Global Observing System (IAGOS)) (Petetin et al., 2016). The largest diurnal 

variation is found nearest the surface (1000 & 950 hPa in Figure 2.9) and also during the 

spring and summer (March, April, May (MAM)/June, July, August (JJA)). This large 

variation is likely due to more active O3 production and loss processes at the surface, 

especially high values of photochemical production found during summer. Lower values 

of O3 are found overnight due to dry deposition and NO titration. No discernible diurnal 

cycle could be seen above 750 hPa, therefore there is a large variation in diurnal cycle 

across the pressure regions within the troposphere.  
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Figure 2.9: Seasonal diurnal variation in the average O3 mixing ratios above 
Frankfurt, Germany, for 1994 – 2012. ANN represents the annual averages. 15 
pressure levels are shown. Taken from Petetin et al. (2016). 

2.2.6 Other influences on tropospheric ozone  

Aside from the previously discussed photochemical production, STE and diurnal 

influences, there are additional processes which can control tropospheric O3 and its long-

term variation. Long-distance transport can control O3 as, due to the relatively long 

lifetime of O3 in the free troposphere, it can be transported at the hemispheric scale 

(Monks et al., 2015). The transport direction is mostly from west to east in the mid-

latitudes, so pollution plumes can be transported from North America to Europe (Lewis 

et al., 2007; Derwent et al., 2018). Derwent et al. (2018) found baseline O3 from transport 

across the Atlantic increased from the 1980s, but has begun to decline since around 

2010. Transport patterns are also seasonally affected, due to variations in wind patterns 

and the transition between summer and winter monsoons (Monks et al., 2015).  

Another influence is short-term climate variability (e.g. on the scale of a few years), which 

can impact transport, and can also impact photochemistry on a regional scale (Monks et 

al., 2015). Examples of climatic fluctuations include the El Niño–Southern Oscillation 

(ENSO), the Pacific North American pattern (PNA) and the North Atlantic Oscillation 

(NAO). Changes in emissions associated with ENSO, e.g. increases in biomass burning 

emissions, can impact the tropospheric O3 burden. Rowlinson et al. (2019) found that 

during the El Niño event of 1997 – 1998, the simulated tropospheric O3 burden was 

decreased by changes in transport and lower humidity but was increased by enhanced 

NOx and CO production from fire emissions. Longer scale climatic variability (on the 

decadal scale) can also impact long-term O3 variation; for example, Lin et al. (2014) 

showed that decadal cooling of the eastern equatorial Pacific Ocean lead to a weakening 

of the spring transport of O3 from Eurasia to the Mauna Loa Observatory in the 2000s.   
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2.2.7  Global distribution 

The global distribution of tropospheric O3 from surface sites is shown in Figure 2.10 from 

Gaudel et al. (2018). Figure 2.10 highlights the sparse nature of measurements of 

surface O3 outside of Europe, North America and East Asia (specifically South Korea 

and Japan). In the NH winter, the higher O3 values (>40 ppb) are found at high elevations 

e.g. western USA, mountainous regions of Europe (Alps, Apennines and Pyrenees), 

central Japan and the Himalayas (Gaudel et al., 2018). In the NH summer, the higher O3 

values (>50 ppb) are found mostly in the northern mid-latitudes, e.g. western USA, 

southern Europe and East Asia (China, South Korea, Japan).  

The global O3 distribution from aircraft and ozonesondes at different levels in the free 

troposphere is shown in Figure 2.11 (Gaudel et al., 2018). In the aircraft observations for 

the upper troposphere (9 – 12 km), the highest values are found in the NH poleward of 

20°N in the summer, at the time of maximum photochemical activity. Overall, there is 

very little information about the southern hemisphere (SH) from the aircraft observations, 

but there are some high values around the equator in spring (September, October, 

November (SON)) likely due to biomass burning. Broadly the ozonesondes (Trajectory-

mapped Ozonesonde dataset for the Stratosphere and Troposphere - TOST) show 

higher O3 values in the NH, especially poleward of  20°N in the spring and summer. The 

SH shows lower O3 for most seasons, aside from some high O3 values in the middle and 

upper troposphere in the SH winter and spring, which coincide with the peak biomass 

burning period during spring (SON) in these regions. Near the surface (2 – 3 km), the 

highest values are found in the NH, in the spring and summer.   
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Figure 2.10: Global average daytime O3 (ppb) from 2010 – 2014 at 2702 non-urban 
surface sites. Top panel shows December, January, February (DJF) and bottom 
panel shows JJA. Taken from Gaudel et al. (2018). 
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Figure 2.11: Global free tropospheric O3 distribution in DJF (left) and MAM (left 
middle), JJA (right middle) and SON (right) from IAGOS (top panels: aircraft, 9 – 
12 km, 2009 – 2013) and TOST (lower 3 panels: ozonesondes, 2008 – 2012). 
Adapted from Gaudel et al. (2018). 

2.2.8  Trends in European tropospheric ozone 

European tropospheric O3 is controlled by a range of processes including emission of 

surface precursor gases, atmospheric chemistry, meteorology (e.g. long-range transport, 

local temperature) and STE. These processes control the concentration of O3 throughout 

the troposphere and different measurement techniques can provide important 

information on its spatial distribution and temporal evolution (e.g. surface sites can 

provide information on the impact of O3 on air quality while ozonesondes can provide 

information in the upper troposphere on O3-climate interactions). Therefore, the following 

sub-section discusses the spatiotemporal evolution of surface O3 characteristics (e.g. 

historical baseline, peak values, regional patterns) and FT O3 trends using a range of 

observational methods. 

2.2.8.1 Surface – historical 

Broadly, studies have shown a large increase in tropospheric O3 over the last century, 

however, there are issues with using and comparing historical datasets (before ~ 1970s) 

because of problems with their accuracy and therefore these estimates have a large 

uncertainty. Also, archived air cannot be used to retrospectively study O3 due to its 

instability, so other methods must be considered (Parrish et al., 2021). Due to the issues 

with studying historical O3 datasets, the estimates of long-term changes in the literature 
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are wide ranging. One estimate of the historical increase of European tropospheric O3 

found a large increase of ~ 12 – 16 ppb O3 between historic (pre-1975) and modern 

measurements (1990s onwards) (Figure 2.12) (Tarasick, Galbally, et al., 2019). Based 

on all historical measurements, they concluded that northern temperate and high latitude 

O3 has increased between 32% – 53% (12-hour daytime average) and 43% – 71% 

(MDA8) since 1975. Another approach including using a few long-term datasets of 

baseline O3 (e.g. alpine sites) suggesting an increase of northern mid-latitude baseline 

tropospheric O3 between 1950 – 2000 by a factor of 2.1 ± 0.2 (110% increase), based 

on a synthesis of results from the Hemispheric Transport of Air Pollution (HTAP) project 

and TOAR-1 (Parrish et al., 2012; Parrish et al., 2014; Parrish et al., 2021).  

 

Figure 2.12: Northern temperate region historical and modern measurements of 
surface O3 (30°N-60°S) from mostly European surface sites. The modern 
measurements (1995 onward) are 5 yearly averages at “rural” sites below 2000 m 
altitude. Light blue shows daily 8-hour maxima data and the dark blue shows 
daytime averages. Taken from Tarasick et al. (2019). 

2.2.8.2 Surface – baseline/background 

There is evidence that the background O3 levels of Europe have increased since around 

the 1980s. Background (or baseline) O3 usually refers to O3 at a particular site that is not 

influenced by strong local effects (Wilson et al., 2012). It is often represented by the lower 

percentiles (e.g. 5th, 10th) in O3 concentration distributions or at remote surface sites. 

Increasing background O3 is problematic as during high episodes of local/regional O3 

production, the total O3 will be exacerbated by enhanced background concentrations.  

A key long-term monitoring site of tropospheric O3 is at the Mace Head Atmospheric 

Research Station on the west coast of Ireland (western edge of Europe) (Derwent et al., 

2013; Derwent et al., 2018). This site monitors the air masses that move over the North 

Atlantic and into Europe, which at the point of Mace Head represent air masses 
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unaffected by any local European emissions, and so are representative of baseline 

concentrations. Derwent et al. (2018) presents 30 years of measurements from Mace 

Head (1987 – 2017), filtering for NH mid-latitude baseline air masses. The increase in 

baseline O3 was largest in the 1980s and 1990s, especially in winter and spring, 

stabilising in the 2000s, and beginning to decline in the 2010s. A linear fit of this record 

shows a positive trend of +0.27 ±0.09 ppb year-1. A non-linear fit shows a slope of 0.34 

±0.07 ppb year-1 with a deceleration term of 0.0225 ± 0.008 ppb year-1, which suggests 

a declining annual growth rate from 1987 – 2017. Earlier Mace Head studies do show 

larger linear trends e.g. +0.37 pbb yr-1 for 1987-1992 (Derwent et al., 1994) and +0.49 

pbb yr-1 for 1987-2003 (Simmonds et al., 2004). It has been suggested that with baseline 

O3 beginning to stabilise and decline from the 2000s onwards, reductions in local 

European surface precursor emissions may become more evident in the future in 

reducing tropospheric O3, as previously these reductions were balanced by a long-term 

increase in baseline O3 (Derwent et al., 2018).  

Some of the longest continuous records of modern era O3 are from alpine surface sites. 

Alpine surface sites are partly representative of background O3 due to their altitude, 

although sometimes can be affected by BL O3 (Logan et al., 2012). There is evidence to 

suggest these sites show a positive tropospheric O3 trend in the 1980s and 1990s which 

becomes less positive and possibly negative over the 2000s and 2010s. Logan et al. 

(2012) found that alpine surface data shows summer O3 increased by 6.5 – 10 ppb from 

1978 – 1989 and 2.5 – 4.5 ppb from 1990 – 1999 and decreased by 4 ppb from 2000 – 

2009. Similarly, Oltmans et al. (2013) showed that for an alpine site in Germany 

(Zugspitze) O3 increased by around 15 ppb between 1981 and 2000, with no real change 

between 2000 and 2010.  

Several studies of background O3 from a range of surface sites have shown increasing 

O3. These studies range from a limited number of sites, to a large monitoring network, 

but overall mostly show a positive trend. For example, Jenkin (2008) found a significant 

positive trend of 0.3 – 0.5 µg m-3 yr-1 from 1990 – 2006 at a remote Scottish site. 

Alternatively, Wilson et al. (2012) found a positive trend of 0.13 ± 0.02 ppbv yr-1 for the 

5th percentile of 158 European rural sites from 1996 – 2005 and Yan et al. (2019) found 

that from 1995 – 2012 there have been positive trends in the lower percentiles of O3 (~ 

5th – 30th percentiles) at all site types across 685 sites in the European Airbase network. 

Seasonally, Yan et al. (2019) found that spring and summer have their greatest positive 

trends at the lower percentiles. Across these studies there is no clear consensus on the 

cause of this positive trend. In contrast to the increase in the background O3 found by 

the above studies, Derwent and Parrish (2022) found a decrease in the annual maximum 

8-hourly mean O3 across 32 low elevation rural surface sites (EMEP (European 

Monitoring and Evaluation Programme) network) in continental NW Europe, with a linear 

trend of -0.45 ppb year-1 between 1989 – 2018. This reduction was attributed to a decline 

in O3 from enhanced regional photochemical production, from a reduction in surface 

precursor emissions. 
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There are confounding factors in studying long-term tropospheric O3 trends, e.g. Wilson 

et al. (2012) found that extreme events in particular years e.g. European heatwave of 

2003 generated a large interannual variability which masked long-term trends. Other 

trend masking factors included meteorological variability and shifts in emission source 

patterns (Wilson et al., 2012). Jenkin (2008) found that tropospheric O3 is influenced by 

a combination of global, hemispheric, regional and local scale effects, which impacts 

trends varying with space and time. Across the UK, Jenkin (2008) found the 3 important 

influences to be increasing hemispheric background O3 (impacting the O3 transported to 

the UK from North America), short term high O3 during summertime from regional 

European scale photoproduction and the reduction of local removal of O3 by NO, due to 

NOx emission reductions.  

Increases and variation in background O3 have been attributed to global effects in the 

NH. Ordóñez et al. (2007) used ozonesondes and high-altitude surface O3 

measurements to study if the changes in the lower stratospheric O3 lead to the positive 

trend of lower troposphere background O3 from 1992 to 2004 across Europe. They 

suggest that an enhanced contribution from stratospheric O3, especially in the winter and 

spring, could be the process responsible for the increasing background O3 seen over 

Europe. Koumoutsaris et al. (2008) used model simulations to suggest that the positive 

tropospheric O3 anomalies at northern mid-latitudes in spring 1998 were due to the El 

Niño event of the previous year. Their results showed that the El Niño in 1997 caused 

increased STE and the increased export and transport of Asian and North American 

pollution towards Europe in the following spring. Between 1987 – 2005, positive O3 

anomalies in spring were found in years after an El Niño year.  

2.2.8.3 Surface – peak 

Peak O3 concentrations, especially in the summer, have been shown to be decreasing 

across Europe. Peak O3 events are often represented by the higher percentiles (e.g. 

95th) or maximum O3 in concentration distributions. Jenkin (2008) and Munir et al. (2013) 

found negative trends of maximum O3 at both rural and urban sites in the UK during 1990 

– 2006 and 1993 – 2011, respectively. Yan et al. (2019) found for the 95th percentile in 

summer daytime O3 concentrations across the European Airbase network from 1995 – 

2012, the 685 rural, urban and suburban sites all showed large statistically significant 

negative trends (-1.19, -0.96 and -1.09 µg m-3 y-1, respectively). The annual trends were 

also negative for all the site types at the 95th percentile, although smaller (-0.85,-0.51 

and -0.78 µg m-3 y-1, respectively) due to less negative or positive trends in the spring, 

autumn and winter seasons. Yan et al. (2019) attributes these negative trends in peak 

summertime O3 to the decrease in precursor gas emissions over Europe due to 

European legislation, as peak concentrations are more sensitive to changes in local 

emissions compared to long-distant transport. Model sensitivity experiments by Yan et 

al. (2019) suggest that the decreases in the 95th percentile O3 are due to the decline in 

precursor gases, especially NOx. Jenkin (2008) also attributed elevated summer O3 

events in the UK to regional-scale photochemistry of emitted NOx and VOCs over NW 
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Europe. Under anti-cyclonic (stable) conditions air masses move slowly over NW 

Europe, thereby enhancing levels of precursor gases (NO2 and VOCs). The increased 

photochemistry rates in summer leads to greater O3 production and when the air mass 

eventually moves across the UK, greater O3 concentrations are experienced. The 

negative trends in peak summertime O3 are therefore attributed by Jenkin (2008) to the 

decrease in precursor emission over Europe due to European legislation.  

2.2.8.4 Surface – rural & urban 

Surface O3 measurements are often impacted by spatial variation, usually divided 

between rural and urban (and also sometimes remote and suburban). Urban sites 

generally have less O3 than rural sites as the high levels of NOx in urban areas causes 

a reduction in O3 from reaction by NO (Jenkin, 2008). Jenkin (2008) found that the rural 

sites had more negative trends of summertime peak O3 than urban and remote sites. 

The effect of transported precursor gases is regional, with precursor gas transport the 

primary source of O3 to rural sites, as these regions do not produce large quantities of 

emissions. Therefore, Jenkin (2008) attributes the greater negative trends of rural sites 

to decreasing levels of regional precursor gases from European legislation. In urban 

areas, reducing the precursor gases also decreases the O3-supressing effect caused by 

high NOx concentrations, therefore reducing the negative trend. Yan et al. (2019) found 

that urban sites had a greater positive trend in mean annual O3 (0.22 – 0.83 µg m-3 yr-1) 

compared to suburban sites (0.09 – 0.42 µg m-3 yr-1). In comparison, they found no 

significant trends in annual mean O3 at rural sites due to the balance between increasing 

O3 in winter and decreasing O3 in summer. This suggests that urban O3 could 

comparatively become an increasing problem in Europe in the future. 

2.2.8.5 Free troposphere – ozonesondes & aircraft 

Aside from satellite data, key measurements of O3 in the free troposphere are from 

commercial aircraft and ozonesondes, which show high vertical sensitivity, however the 

spatial coverage of these observations can be quite limited (Cooper et al., 2014). 

Oltmans et al. (2013) found an increase in O3 from a European ozonesonde launch site 

between 500 – 700 hPa from the beginning of the 1970s to the end of the 1980s, and a 

slow decline to 2010. A trend of between ~ 3 – 5 % decade-1 was seen across pressures 

of the surface – 300 hPa for 1970 – 2010, but near-zero trends are shown across these 

pressures when only 1980 – 2010 is considered. This ozonesonde record differs in 

comparison with an alpine site (Zugspitze, Germany), where the increase in O3 seen 

continues into the 1990s, stabilising in the 2000s (Oltmans et al., 2013). Logan et al. 

(2012) show that aircraft data agrees better with the alpine sites, with increasing O3 

during the 1990s, and show that the ozonesondes, alpine sites and aircraft agree 

coherently on decreasing O3 since 1998. Between 1994 – 2013 ozonesonde 

observations showed very little change above southern France (Gaudel et al., 2018). 

The IAGOS commercial aircraft monitoring network found O3 increases in winter (11% 

increase) and autumn (5% increase) above Frankfurt, Germany (300 – 1000 hPa), in a 
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comparison of 1994 – 1999 and 2009 – 2013, but very little change in spring and summer 

(Gaudel et al., 2018).  

Two recently wider studies across Europe show broadly positive trends in free 

tropospheric O3. Gaudel et al. (2020) showed trends in the median O3 values from 

IAGOS over Europe of +1.3 ± 0.2 ppbv decade-1 (2.5%) for a tropospheric column (950 

– 250 hPa) and +1.3 ± 0.2 ppbv decade-1 (2.4%) for a ‘free troposphere’ column (700 – 

300 hPa) between 1994 – 2016 (Figure 2.13). Compared to other global regions, the 

European aircraft O3 trends show little variation in these trends across the different 

pressure levels of the troposphere (950 – 250 hPa) for the 1st, 5th, 50th and 95th 

percentiles, apart from a zero trend between 950 – 750 hPa in the 95th percentile (see 

Figure 2.13). Christiansen et al. (2022) found a mix of trends across 7 European 

ozonesonde records in the free troposphere between 1990 – 2017 (Figure 2.14). The 

trends across all levels range from ~ -1 – +4 ppb decade-1, with an average of 1.9 ± 1.1 

ppb decade-1 (3.4 ± 2.0% decade-1) and half of the sites showing a positive trend. The 

mix of trends highlights the potential of spatial differences across the European region, 

particularly the variation in positive and negative trends, which demonstrates the large 

local variation in tropospheric O3 and it’s controls.  

 

Figure 2.13: Trends in 50th and 95th percentiles of O3 (ppbv decade-1) for 50hPa 
pressure intervals above different global regions. Trends are calculated from 1994 
– 2016 for Europe, western North America, eastern North America, southeast 
United States, Northeast China/Korea, Southeast Asia, India, northern South 
America and the Gulf of Guinea. Trends are calculated for 1995 – 2016 for Malaysia 
and 1998 – 2016 for the Persian Gulf. Adapted from Gaudel et al. (2020). 



29 
 

Figure 2.14: Median ozonesonde trends (ppb 
decade-1) across 3 regions at 400 – 800 hPa for 
1990 – 2017. Solid circles represent statistically 
significant trends, open circles represent 
insignificant trends. Adapted from 
Christiansen et al. (2022). 

 

 

 

 

 

2.2.8.6 Free troposphere – satellite 

Satellite instruments can provide high levels of temporal and spatial information about 

tropospheric O3 in comparison to ozonesondes and aircraft, however, the vertical 

sensitivity is limited and column observations can be influenced by the methods used to 

determine O3 in the troposphere (e.g. removing the stratospheric contribution). Currently, 

there are few studies of European long-term trends of tropospheric O3 from satellite 

retrievals, using observations from a range of different satellite instruments and across 

limited spatial regions of Europe. Ebojie et al. (2016) found a non-significant negative 

trend of -0.9 ± 0.5 % yr-1 for southern Europe from 2003 - 2011 using tropospheric column 

data from the SCanning Imaging Absorption SpectroMeter for Atmospheric 

CHartographY (SCIAMACHY). Pope et al. (2018) found no significant sub-column O3 

trends across England and Wales from 2005 – 2015 using retrievals from the Ozone 

Monitoring Instrument (OMI). However, there was a significant positive O3 trend in 

Scotland (representing background O3), of 0.172 Dobson units (DU) year-1.  

The most significant comparison of tropospheric O3 products is Gaudel et al. (2018), 

presenting trends for several satellite tropospheric column product, which are discussed 

further in Chapter 5 (Section 5.1). However, the trends are presented mostly by latitude 

bands, not a European region. In the most relevant latitude band to Europe (30°N – 

60°N) the satellite products show a wide range of trends, varying in sign and magnitude. 

Two OMI products showed positive trends, with +0.16 DU year-1 (OMI/Microwave Limb 

Sounder (MLS)) and +0.13 DU year-1 (GOME (Global Ozone Monitoring Experiment) & 

OMI), with another OMI product showing a near-zero trend of +0.03 DU year-1 (OMI-

RAL). In contrast, two products from the Infrared Atmospheric Sounding Interferometer 

(IASI) show a negative trend of -0.50 DU year-1 (IASI-FORLI) and a near-zero trend of -

0.03 DU year-1 (IASI-SOFRID).  

2.3 Hydroxyl radical 

A key species in atmospheric chemistry is the hydroxyl radical (OH) due to its very 

important role in the oxidation of many different species. Notably for this thesis, OH is 
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important for the oxidation of VOCs, CO and CH4 which leads to the net formation of O3, 

as seen in Section 2.2.2.1 (Jacob, 1999). OH is often referred to as the ‘detergent’ of the 

atmosphere due to its highly oxidising nature from its unpaired electron, meaning that it 

is responsible for much of the oxidation of anthropogenic pollutants in the troposphere. 

Therefore, OH largely determines the oxidation capacity of the troposphere and controls 

the lifetimes of many important species. Some of the key species controlled by OH 

include important GHGs (e.g. CH4), ODS (e.g. hydro-chlorofluorocarbons), as well as 

other short-lived anthropogenic and natural pollutants (e.g. VOCs, NOx and CO) 

(Lelieveld et al., 2016). OH has a very short lifetime in the troposphere, ~1 second in the 

daytime, and a very low abundance, with global tropospheric mean OH concentration of 

~ 1 ×106 molecule cm-3. 

The importance of OH to tropospheric oxidation capacity was recognised in the early 

1970s (Levy, 1971). There have been many scientific investigations into OH since, 

especially in relation to the lifetime of CH4, e.g. McNorton et al. (2016), Rigby et al. (2017) 

and Turner et al. (2019). A better understanding of the spatial and temporal distribution 

of the primary sink of CH4, the OH radical, could help the interpretation of recent trends 

in CH4, such as the 2000–2007 concentration stabilisation period (Turner et al., 2019).  

2.3.1 Chemical production 

One of the most important primary sources of OH in the troposphere is the photolysis of 

O3 by UV radiation (< 340 nm wavelength). This forms O(1D) which then reacts with water 

vapour (H2O) to form OH (Stone et al., 2012; Lelieveld et al., 2016), as shown in 

Equations 2.17 and 2.18: 

O3  +  ℎ𝑣  (λ < 340 nm) →  O2  +  O(1D) Equation 2.17 

O(1D) + H2O →  2OH Equation 2.18 

The OH radical formed is very reactive due to the unpaired electron on the oxygen atom. 

The formal notation of the radical is ‘HO·’, with the dot representing the unpaired 

electron, however, within the literature the dot is omitted and the radical is presented as 

‘OH’ (Lelieveld et al., 2016). After the OH radical is formed, it can attack reduced and 

partly oxidised gases (e.g. CH4, CO, VOCs), removing them from the atmosphere and 

forming peroxy radicals (e.g. HO2). A key example of this, the reaction of CO and OH to 

form HO2, is shown earlier in Equation 2.4 (Section 2.2.2.1). OH and HO2 are closely 

coupled and collectively known as HOx. The peroxy radicals can then form peroxides 

and participate in many other atmospheric reactions (e.g. O3 formation) and can also 

reform OH (Stone et al., 2012; Lelieveld et al., 2016).  

There are also secondary reactions that form OH, known as OH recycling, which involve 

the peroxy radicals formed by OH as described above. In polluted air, the important 

secondary production reaction is the reaction of NO and HO2 (see Equation 2.11). In less 
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polluted air, two important recycling reactions are the reaction of O3 and HO2 (Equation 

2.19) and photolysis of hydrogen peroxide (H2O2) (Equation 2.20). 

O3  + HO2  → 2O2 + OH Equation 2.19 

H2O2 + ℎ𝑣 (λ < 550 nm) →  OH + OH Equation 2.20 

2.3.2 Distribution 

The modelled average annual OH distribution in the troposphere is shown in Figure 2.15 

(Lelieveld et al., 2016). For this distribution, the highest OH values are found in the 

tropics, with decreasing OH values with increasing latitude. The average column values 

range from 1×105 to 22×105 molecule cm−3. The annual zonal mean OH distribution 

(Figure 2.15 – right panel) shows that the high OH values in the tropics can extend up to 

the tropical tropopause. The main region of high OH tropical maximum values extends 

up to ~ 300 – 400 hPa, and there is and additional region of maximum values in the 

tropics at ~ 150 – 200 hPa. The high FT OH in the tropics is due to emissions from 

vegetation and lightning NOx emissions from deep thunderstorm clouds, especially 

above central Africa where there is intense deep convection and lightning (Lelieveld et 

al., 2016). In the NH extratropics, the OH distribution is similar over both the continental 

and marine boundary layers, which is due to the transport and mixing of species 

(oxidants – O3, and precursor gases NOx and VOCs) from polluted continental regions 

across the oceans (Atlantic/Pacific), whereas, weaker sources and transport of pollutants 

in the SH means that OH is higher over the continental boundary layer (Lelieveld et al., 

2016).  

 

Figure 2.15: Global distribution of OH (units of ×105 molecule cm-3). Modelled 
tropospheric annual mean (left panel) and zonal annual mean (1000 – 10 hPa, right 
panel). Dashed line shows the mean tropopause (with solid surrounding lines 
showing annual maximum and minimum tropopause pressures). Solid line near 
the surface is the average BL pressure. Taken from Lelieveld et al. (2016). 
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2.3.3 Inferring and modelling the hydroxyl radical  

Considering its importance, there is limited information available on the OH radical 

distribution and temporal variation. This is due to limited direct in-situ measurements 

because of the short lifetime (~ 1 second in the daytime) and low abundance (Stone et 

al., 2012). Direct measurements of OH include surface field campaigns and aircraft 

campaigns across different global locations, however, this provides limited spatio-

temporal information. Also due to the lack of homogeneity in the processes which control 

the formation and loss of OH globally, it is difficult to use these sparse field 

measurements to infer a global mean OH (Montzka et al., 2011; Liang et al., 2017).  

A common method of inferring global mean OH indirectly is to use observations of trace 

gases which are oxidised by OH as a tracer, e.g. 1,1,1-trichloroethane  (known as methyl 

chloroform, CH3CCl3, MCF) (Lovelock, 1977; Singh, 1977; Montzka et al., 2011; Patra et 

al., 2021). MCF can be used as a tracer as its major sink is OH and the sources are well 

known (Liang et al., 2017). Although this method can provide a global mean, it still 

provides relatively limited spatial distribution otherwise e.g. only at the hemispheric scale 

(Patra et al., 2014). It also relies on very accurate estimates of the emissions and use of 

a CTM (Monks et al., 2017). MCF is an ODS, so it is regulated under the legislation 

initiated by the 1987 Montreal Protocol. Its production has been phased out by countries 

since the late 1990s and has experienced a sharp decline in atmospheric abundance 

(Reimann et al., 2005). This reduces the viability of using this method in the long-term, 

due to the MCF concentrations decreasing to within the uncertainty estimates of the 

method (Liang et al., 2017). Therefore, there is a demand for another method of 

calculating the global OH abundance. Other methods include using observations of a 

different tracer or tracers e.g. using 14CO measurements (Krol et al., 2008), using a single 

or combination of hydrofluorocarbons and hydrochlorofluorocarbons oxidised by OH 

(Huang and Prinn, 2002; Liang et al., 2017). Wolfe et al. (2019) used satellite 

observations of formaldehyde (HCHO) as a proxy for OH based on HCHO production 

and loss rates.  

The MCF method can be used to study long-term interannual variability of OH (Prinn et 

al., 2005; Montzka et al., 2011; Rigby et al., 2017; Patra et al., 2021), which is discussed 

further in Chapter 4. Studying the interannual variability of OH provides information on 

the stability of the oxidation capacity of the troposphere (Montzka et al., 2011) and is of 

interest in the context of the recent varying CH4 growth rate (Turner et al., 2017). The 

accuracy of this method depends on accurate estimates of MCF emissions, which has 

shown to be challenging (Reimann et al., 2005; Rigby et al., 2017).  

CTMs and chemistry-climate models can be used to simulate the OH distribution, 

abundance and its long-term variability e.g. Dalsøren et al. (2016), Stevenson et al. 

(2020) and Zhao et al. (2020). Wild et al. (2020) found that chemistry-climate models 

show large variation in the drivers of global OH (e.g. surface NOx emissions, biogenic 

isoprene emissions, deposition rates, atmospheric humidity, cloud depth, turbulence in 
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the BL) which may contribute towards the variation in modelled CH4 lifetimes in the 

troposphere.  

2.3.4 Hydroxyl radical reactivity  

The inverse of OH lifetime, OH reactivity (OHR), is also measured in the field and can 

provide additional information on the tropospheric oxidation capacity and OH radical 

abundance. If OHR and other relevant OH sink trace gas measurements can be made 

together e.g. during aircraft campaigns such as NASA’s Atmospheric Tomography 

Mission (ATom) (Wofsy et al., 2018), then OHR can be calculated and compared with 

the direct measurements. OHR is calculated by summing individual sink terms, which 

consist of measured trace gas concentrations (of sources/sinks) multiplied by their 

respective reaction rate coefficients with OH (Yang et al., 2016). However, multiple field 

campaigns have shown that there is often a large difference between the measured and 

calculated OHR, known as the “missing” reactivity (Ferracci et al., 2018). This substantial 

missing reactivity can account for 20% – 80% (20% is usually outside of the OHR 

uncertainty range) of the measured OHR (Yang et al., 2016). An example of missing 

reactivity is shown in Figure 2.16 from Thames et al. (2020) using ATom aircraft 

observations in the marine BL. They found missing reactivity of up to ~ 2.5 s-1. There are 

several proposed reasons for the “missing” reactivity found in the literature, including: 

short-lived VOCs that were not measured (Kovacs et al., 2003); unidentified biogenic 

emissions and photo-oxidation products in the rainforest (Edwards et al., 2013; Nölscher 

et al., 2016); the presence of unidentified VOC with an ocean source (Thames et al., 

2020); and uncertainty in tropospheric reaction rates in the literature (Kim et al., 2022).  

 

Figure 2.16: Global measurements of OHR (left) and calculated missing reactivity 
(right). Top panels are ATom-1, middle are ATom-2 and bottom are ATom-3. 
Triangles indicate that measurements were taken over land, circles indicate 
measurements over the ocean. Taken from Thames et al. (2020). 
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2.4 Observation methods for ozone in the free troposphere 

This thesis uses several datasets of observations of the free troposphere, from satellite 

instruments and ozonesondes. The following sub-section provides an overview of these 

observation techniques, with a key focus on satellite retrievals, explaining the technique 

and scientific basis in further detail and the key limitations associated with this method.  

2.4.1 Satellites 

Instruments on board satellites are used to monitor atmospheric composition using 

remote sensing techniques. The observations of trace gases used in this thesis are from 

instruments on satellites with polar orbits. Polar orbits are a low earth orbit, at ~ 750 – 

800 km altitude, taking ~ 100 minutes per orbit and completing ~ 14 orbits in a day 

(Martin, 2008). The path that the satellite follows is almost perpendicular to the equator 

and crosses above (or near to) the north and south poles, as shown in Figure 2.17. 

Satellites following this near-polar orbit have a fixed orbit plane with reference to the sun. 

This produces a sun-synchronous orbit which passes over most points at the same local 

solar time (LST) each day. These orbits provide large spatial coverage but temporal 

information is limited to two local times at any location (am & pm). Alternatively, satellites 

with geostationary orbits (altitude of ~ 36,000 km) which continuously cover the same 

location centred on the equator, are beginning to cover regions of the globe and monitor 

atmospheric composition e.g. the Geostationary Environment Monitoring Spectrometer 

(GEMS) above East Asia, launched in 2020 (Kim et al., 2020). These satellites provide 

high levels of temporal information and are likely to provide new insights in the future.  

Figure 2.17: Diagram of a polar 
and a sun-synchronous orbit of 
Earth. Taken from European 
Space Agency (2023).  

 

 

 

 

 

 

Satellite instruments monitor trace gases by two main passive methods, solar 

backscatter and thermal IR emission (Martin, 2008). The solar backscatter method 

compares the radiation that reaches the satellite, having passed through the atmosphere 

(Earth radiance), and the solar irradiance (Gottwald et al., 2006). The intensity of the 

radiation (UV, Visible (Vis), Near Infrared (NIR) and Short Wave Infrared (SWIR)) will 

have been attenuated by different processes in the atmosphere, such as scattering by 

air molecules (Rayleigh and Raman scattering), scattering and absorption by aerosol 
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and cloud particles (Mie scattering), absorption and emission by trace gases and surface 

reflection (Gottwald et al., 2006), as shown in Figure 2.18. An example of a comparison 

between the Earth radiance and the solar irradiance, measured by OMI at the top of the 

atmosphere, is shown in Figure 2.19 (Levelt et al., 2006). Trace gases exhibit 

characteristic absorption patterns in different wavelength bands, due to rotational 

transformations (IR/microwave), vibrational-rotational transitions (IR) and electronic 

transitions (UV/Vis), which allows their identification (Gottwald et al., 2006). For the 

thermal IR emission method, the spectra measured by the instrument at the top of the 

atmosphere is a composed of the initial long-wave IR emission (Earth’s black body 

emissions) which has passed through the atmosphere, interacting with IR absorbing 

molecules (Martin, 2008; Clerbaux et al., 2009; Clerbaux et al., 2010).  

 

Figure 2.18: Schematic diagram of the processes which impact the pathways of 
solar radiation (UV-Vis-NIR and SWIR) through the atmosphere and interactions 
with the surface (Gottwald et al., 2006). 

  

Figure 2.19: (a) Example of OMI solar irradiance and measured Earth radiance 
above the Netherlands in 2005. (b) Ratio of radiance to irradiance for the spectra 
in panel (a). Taken from Levelt et al. (2006) (© 2006 IEEE).  

Satellites have been used to observe aerosols and trace gases in the atmosphere since 

the mid-1970s (Gottwald et al., 2006; Martin, 2008). The era of monitoring trace gases 

in the troposphere began in the mid-1990s with the launch of GOME on the satellite ERS-

2 (Martin, 2008; Streets et al., 2013). Over time the spatial resolution of the instruments 

has increased, from the coarse resolution of 40 km × 320 km for GOME (launched in 

1995) to the recent instrument TROPOMI which has a resolution of 7 km × 3.5 km 
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(launched in 2017) (Burrows et al., 1999; Veefkind et al., 2012). This has greatly 

improved the spatial information available from satellite data, allowing analysis to be 

done on smaller spatial scales and giving improved information on the individual sources 

and transport methods of atmospheric pollutants. The 5 instruments which are used in 

this thesis are described in greater detail in Section 0.  

In the case of O3, total column O3 has been measured since the Backscatter Ultraviolet 

(BUV) experiment (1970s), a UV nadir viewing sensor, aboard the NASA satellite Nimbus 

4 (Gottwald et al., 2006). Observations of tropospheric O3 are more recent. Initially 

tropospheric O3 was derived by subtracting an estimate of the stratospheric column O3 

from the total column O3, starting with studies by Fishman and Larsen (1987) and 

Fishman et al. (1990). This was done by using information about the O3 profile from the 

Stratospheric Aerosol and Gas Experiment (SAGE) and total column O3 from the Total 

Ozone Mapping Spectrometer (TOMS). A more recent example of a similar methodology 

is from Ziemke et al. (2006), subtracting MLS retrievals of stratospheric column O3 from 

total column O3 retrievals from OMI, both aboard the AURA satellite. Direct retrievals of 

tropospheric information, from the temperature dependence in the Huggins band (see 

Section 2.4.1.3) was first proposed by Chance et al. (1997) and utilised by Munro et al. 

(1998) from RAL on data from GOME. This technique has subsequently been used in 

other retrieval schemes e.g. Van Der A et al. (2002), Liu et al. (2010) and Cai et al. 

(2012). Increases in spectral resolution of the instruments over time, in the relevant 

bands to O3, has also allowed for retrievals of O3 with height information (van der A et 

al., 2002).  

2.4.1.1 Retrieval methods 

Retrieval methods (or inverse methods) are required to estimate the variable of interest 

e.g. O3 concentration, from the indirect observation (Maahn et al., 2020). Optimal 

estimation (OE) is a retrieval technique which is widely used for deriving information from 

satellite measurements (Rodgers, 1976; Miles et al., 2015). Measurements, prior 

information and the corresponding uncertainties are combined in OE algorithms to 

provide an estimate of the state vector (Maahn et al., 2020). The principle of this method 

is that if a measurement, e.g. radiation spectra, has sensitivity to the atmospheric 

variable of interest e.g. O3 concentration, a model could be used to compute what 

measurement the instrument would make for a particular atmospheric state. Then the 

model (known as a forward model) could be inverted to provide information about the 

atmospheric variable of interest from the measurement (Maahn et al., 2020). OE is an 

example of a physical retrieval method, which uses and inverts a forward model through 

an iterative process, converging on a solution (Maahn et al., 2020). This method of 

retrieval is based on the observations and forward models having an inherent uncertainty 

and can be represented by probability distributions, this means that the solution includes 

an uncertainty estimate (Maahn et al., 2020).  
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Due to the large number of unknowns, and the lack of unique solutions, the 

retrieval/inversion problem is often ill-posed (Maahn et al., 2020). Prior information is 

required with the forward model to constrain the problem, for example, an O3 climatology 

profile (Maahn et al., 2020). The accuracy of the prior information used has a large impact 

on the accuracy of the retrieval.  

A forward model contains all the relevant physics to the measurement (Rodgers, 2000). 

It is used to predict what would be measured, given a particular state vector (Siddans, 

2019). Inverting the forward model will provide state vectors which map onto the remote 

observations (Maahn et al., 2020). Prior information (e.g. an O3 profile climatology) is 

used to constrain the ill-posed problem, so that the most likely state is selected from the 

possible solutions (Maahn et al., 2020). In the case of atmospheric trace gas retrievals, 

the forward model will be a radiative transfer model. A radiative transfer model simulates 

how electromagnetic radiation is transferred along the viewing path through the 

atmosphere, as it is emitted and absorbed by trace gases (Met Office, 2023).  

As an example, the OE technique used by RAL for UV-Vis instruments is described 

below. It is based on the standard OE algebra for the non-linear problem in Rodgers 

(2000). The technique is based around minimising the cost function (𝜒2) as shown in 

Equation 2.21 (Miles et al., 2015): 

𝜒2 = (𝒚 − 𝐹(𝒙))
𝑇

𝑺𝑦
−1(𝒚 − 𝐹(𝒙)) + (𝒙𝑎 − 𝒙)𝑇𝑺𝑎

−1(𝒙𝑎 − 𝒙) Equation 2.21 

where 𝒚 is the measurement vector, 𝒙 is the state vector, 𝒙𝑎 is the a priori vector, 𝐹 is 

the forward model, 𝑺𝑦 is the measurement error covariance matrix and 𝑺𝑎 is the a priori 

error covariance matrix. The iterative updating of the state vector is shown in Equation 

2.22: 

𝒙𝑖+1 =  𝒙𝑖 + (𝑲𝑖
𝑇𝑺𝑦

−1𝑲𝑖 + 𝑺𝑎
−1 + 𝛾𝑰)

−1
𝑲𝑖

𝑇𝑺𝑦
−1 

(𝒚 − 𝐹(𝒙𝑖) + 𝑲𝑖(𝒙𝒊 − 𝒙𝑎)) 
Equation 2.22 

where 𝛾 is the step size and 𝑲 is the weighting function (at iteration 𝑖) as defined in 

Equation 2.23: 

𝐾𝑖 =  
𝛿𝐹(𝒙𝑖)

𝛿𝑥𝑖
 Equation 2.23 

The error of the solution (𝑆𝑥) are defined by the covariance matrix in Equation 2.24:  

𝑺𝒙 = (𝑺𝒂
−1 + 𝑲𝑻𝑺𝒚

−1𝑲)
−1

 Equation 2.24 

This error is a measure of the random error of the retrieval and is presented for the 

satellite records used in Chapter 5 (see Section 5.3.1.3) and Chapter 6 (see Section 

6.3.1.3). It includes both errors from measurement noise and smoothing error from the 

prior constraint (Miles et al., 2015).   

A measure of how much information a satellite retrieval provides is the degrees of 

freedom for signal (DOFS). It describes the number of independent pieces of information, 

given the prior state, which can be obtained from a measurement.  
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2.4.1.2 Retrieval process limitations and uncertainties 

The associated uncertainties and limitations with the OE retrieval method are 

summarised as follows: 

• There is no unique solution to the problem. There could be several different state 

vectors that map to an observation (Maahn et al., 2020). Different retrieval 

methods will provide different solutions.  

• There are uncertainties in the forwards model e.g. how well the model represents 

the relevant physics (Maahn et al., 2020). These models contain many 

approximations and assumptions, which may be due to limitations in 

understanding of physical processes or to enhance computational efficiency.  

• There are uncertainties associated with the measurements, i.e. noisy 

observations going into the retrieval process due to instrument imperfections 

(Maahn et al., 2020). If the instrument uses multiple channels or multiple 

instruments are used in the retrieval then there are random uncorrelated errors 

for each element, as well as correlated errors between the different elements 

(Maahn et al., 2020). 

• Inaccurate prior information will lead to an inaccurate solution. Therefore, it is 

important how closely the prior information represents the current case. For 

example, during extreme events the retrieval will have a lower accuracy (Maahn 

et al., 2020).  

2.4.1.3 Tropospheric ozone 

Remote sensing of O3 from satellite is based on understanding how O3 absorbs radiation 

in the atmosphere. The key bands of O3 absorption in the UV/Vis wavelengths are the 

Hartley, Huggins (both UV) and Chappuis bands (Vis). The Hartley band is wavelengths 

of 200–310 nm, the Huggins band is wavelengths of 320–360 nm and the Chappuis 

bands are between wavelengths of 450–850 nm. Information about O3 in the troposphere 

comes from the Huggins band, due to the temperature-dependent spectral structures 

(Chance et al., 1997; Munro et al., 1998). Absorption peaks in the Hartley and Huggins 

bands can be seen in the example from OMI in Figure 2.19, with a lower ratio of Earth 

radiance and solar irradiance in the wavelength band of 270 – 330 nm.  

Column (or sub-column) O3 is usually presented in DU. One DU represents the number 

of O3 molecules that would create a pure O3 gas layer 0.01 mm thick at standard 

temperature and pressure (273 K and 1013.25 hPa, respectively) (BIRA-IASB, 2023). It 

was defined with reference to total column O3, where the average value is ~ 300 DU, 

which would equal 3 mm of pure O3 gas layer at standard temperature and pressure. A 

column of air of 1 DU would contain 2.69 × 1020 O3 molecules for each m2 at the base of 

the column.  



39 
 

2.4.1.4 Other trace gases 

Satellite retrievals of CH4, CO and H2O are used in this thesis, from IASI. Retrievals of 

CH4 are based on the SWIR and thermal IR spectral bands, with a spectral range of 1232 

– 1288 cm-1 (7764 – 8117 nm) used in the RAL CH4 retrieval scheme (Siddans et al., 

2017). The RAL retrieval scheme used for H2O, O3 and CO is based on 139 channels 

between 662.5 – 1900 cm-1 (15094 – 5263 nm) (Siddans, 2019; Trent et al., 2023).  

2.4.2 Ozonesondes 

Ozonesondes are small O3 monitoring instruments launched aboard balloons from 

stations around the world. The technique was pioneered in the 1930s, with the first 

measurements of O3 from a balloon sonde made in 1934 near Stuttgart in Germany 

(Tarasick, Galbally, et al., 2019). Ozonesondes provide high vertical resolution O3 

profiles (typically 100 – 200 m) of the free troposphere, and are often used to validate 

satellite observations. However, they provide limited horizonal and temporal resolution, 

with routine launches at only ~ 100 sites globally (see Figure 3.10), typically launching 

around once per week (Tarasick, Galbally, et al., 2019). Regular use of ozonesondes in 

Europe, North America, Australia and Antarctica began towards the end of the 1960s. 

Modern ozonesonde instrument techniques include Electrochemical Concentration Cell 

(ECC), Brewer-Mast, Brewer-GDR, Indian KC and Japanese KC (Tarasick, Galbally, et 

al., 2019). These techniques are all based on the reaction of O3 with potassium iodide. 

There are associated limitations with this monitoring technique, such as poor preparation 

of the sonde, issues with monitoring sharp O3 gradients, interference from other gases 

in polluted areas, pump rate and temperature errors, radiosonde pressure biases and 

background currents (Tarasick, Galbally, et al., 2019). Ozonesondes have the benefit of 

being able to be launched in cloudy conditions so are not biased towards clear-sky 

conditions, such as other instruments e.g. satellite instruments (Gaudel et al., 2018).  

2.4.3 Other ozone observation methods 

There are also several other methods for observing O3 in the free troposphere, aircraft, 

lidar and ground-based solar viewing Fourier Transform Infra-Red (FTIR), which are 

briefly summarised here. Regular monitoring of O3 from commercial aircraft started in 

1975, with a collaboration of NASA and US airlines called the Global Atmospheric 

Sampling Program (GASP) (Tarasick, Galbally, et al., 2019). O3 has also been measured 

on research aircraft, often with a focus on observing a specific atmospheric event, 

providing temporal and spatial bias to sampling (Tarasick, Galbally, et al., 2019). Two 

large programmes of monitoring O3 using UV absorption monitors on Airbus commercial 

aircraft are MOZAIC and the successor programme IAGOS, which have provided 

monitoring since 1994. The IAGOS database contains measurements from over 60,000 

commercial flights (Gaudel et al., 2020). MOZAIC and IAGOS aircraft measurements 

have been shown to be around 5% higher than ozonesonde measurements in the lower 

troposphere and 8% higher in the upper troposphere (between 1994 – 2012) (Tarasick, 
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Galbally, et al., 2019). Spatial sampling is biased in these measurements according to 

airport location and popular flight routes. Lidar is an active remote sensing technique 

used to monitor tropospheric O3, through a technique called UV Differential Absorption 

Lidar (DIAL) (Tarasick, Galbally, et al., 2019). It is used at ground-based sites and on 

aircraft and can measure O3 from around 100 m to the tropopause. The vertical and 

temporal resolution can be high, for example, up to 50 – 100 m in the lower troposphere 

and measurements every minute (Tarasick, Galbally, et al., 2019). However, the sensing 

period is limited by the requirement of human operators, and so is usually around 2 - 4 

times per week (Gaudel et al., 2018). Ground-based solar viewing Fourier Transform 

Infra-Red (FTIR) instruments are a remote sensing technique used to observe 

tropospheric O3 since 1980 (Tarasick, Galbally, et al., 2019). Observations from a global 

network of FTIR are provided by the Infrared Working Group of the Network for Detection 

of Atmospheric Composition Change (NDACC). The instruments have a very high 

spectral resolution (at least 0.005 cm-1) and usually several observations are taken each 

day, with an uncertainty of ~ 14% (Gaudel et al., 2018; Tarasick, Galbally, et al., 2019).  

2.5 Observation methods for the hydroxyl radical in the free 

troposphere 

In this thesis, aircraft measurements of [OH] are used from the ATom campaign (Wofsy 

et al., 2018; Brune et al., 2019) (see Section 3.4 for further details), which was a large 

campaign that sampled the Atlantic and Pacific oceans in all seasons across 3 years. 

Previous aircraft campaigns have provided enhanced information about OH on a smaller 

regional scale. Notable regional scale campaigns measuring OH include (Stone et al., 

2012): SUCCESS (Subsonic aircraft: Contrails and Cloud Effect Special Study) in 1996 

above the USA (Brune et al., 1998); PEM (Pacific Exploratory Missions) in 1996 and 

1999 above the south Pacific (Mauldin et al., 2001); SONEX (Subsonic assessment, 

Ozone and Nitrogen oxide Experiment) in 1997 above the northern Atlantic (Brune et al., 

1999); TRACE-P (TRansport and Chemical Evolution over the Pacific) in 2001 above the 

western Pacific (Eisele et al., 2003); and INTEX (INtercontinental Chemical Transport 

EXperiment) in 2004 and 2006 over North America, the western Atlantic and the Pacific 

(Ren et al., 2008).  

2.6 Summary 

Overall, this chapter summarises the concepts and literature relevant to the results 

presented later in this thesis (Chapters 4, 5 and 6). O3 and the OH radical are two 

important species in the troposphere that require continued study, including using new 

methods, to better determine their long-term variations. There are many studies of 

European surface O3 showing long-term changes in baseline, median and peak values. 

However, there are only limited studies of the free troposphere, which could be further 

explored using the increasing breath of satellite-derived tropospheric O3 products 

available. For OH, there has so far been limited methods of deriving OH concentrations 
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from atmospheric observations which can provide spatial and temporal information. 

Satellite-derived products could be a solution, proving a method to study long-term 

changes in OH. The following chapter (Chapter 3) will summarise the satellite data 

products used here in greater detail and provide a background to the model used, the 

other key source of data in this work. 
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Chapter 3 Datasets and model 

This chapter presents an overview of the key datasets used in this thesis, from satellite, 

ozonesonde and aircraft. The model used in this work, TOMCAT, is also described and 

information provided about its setup.  

3.1 Satellite datasets  

This thesis uses and investigates several records of satellite-derived tropospheric 

composition from RAL. IASI data is used in chapter 4; GOME, SCIAMACHY and OMI in 

chapter 5; and IASI and GOME-2 in chapter 6. This section presents an overview to the 

instruments, corresponding satellites and the retrieval schemes used. Further detailed 

description on how these satellite datasets are used is documented in the result chapters 

(Sections 4.3.4, 5.3.1 and 6.3.1).   

3.1.1.1 IASI  

The Infrared Atmospheric Sounding Interferometer (IASI) is aboard EUMETSAT’s 

MetOp series of 3 satellites (A, B and C) and was designed by the Centre National 

d’Etudes Spatiales (CNES) based on a Fourier Transform Spectrometer (Clerbaux et al., 

2009). MetOp-A was launched in October 2006, ceasing operation in November 2021 

and MetOp-B was launched in September 2012 and is still in operation at present 

(EUMETSAT, n.d.; Clerbaux et al., 2009). The MetOp series of satellites have a sun-

synchronous, near polar orbit (98.7° inclination), at a mean altitude of 817 km, with a 

equator crossing time of 9:30 LST. The swath has a width of 2200 km, and in the nadir 

viewing mode, there are four circular fields of view across-track with a diameter of 12 

km, covering a square 50 × 50 km2, shown in Figure 3.1. The IASI instrument measures 

in the IR wavelength range (645 – 2760 cm-1) with a spectral resolution of 0.3 - 0.5 cm-1 

(Clerbaux et al., 2009).  

Figure 3.1: Diagram of IASI observing 
mode. Taken from Clerbaux et al. 
(2009). 
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Chapters 4 and 6 use RAL’s Infrared and Microwave Sounding (IMS-Extended) scheme 

for retrievals of O3, H2O and CO. The IMS-extended scheme is described in the 

supplement of Pope et al. (2021) and a comparison of IASI-IMS-Extended O3 with 

ozonesonde observations is presented in the supplement of Pimlott et al. (2022) (Section 

S3). Briefly, the IMS scheme was initially developed to retrieve H2O, temperature and 

stratospheric O3 profiles from IASI, the Microwave Humidity Sounder (MHS) and the 

Advanced Microwave Sounding Unit (ASMU). A description of the IMS scheme can be 

found in Siddans (2019). The scheme uses the OE technique (described in Section 

2.4.1.1). The scheme has been extended to also retrieve tropospheric O3, CO profiles 

and column amounts of other trace gases (known as IASI-IMS-Extended) (Pope et al., 

2021). The extension of the scheme builds on new capabilities of the radiative transfer 

model used (Radiative Transfer for TOVS 12 (RTTOV12), Saunders et al. (2017)) in the 

modelling of atmospheric scattering. In this thesis, the IASI record from 2008 – 2017 is 

from IASI aboard MetOp-A and the record from 2018 – 2021 is from IASI aboard  

MetOp-B.  

Chapters 4 and 6 also use CH4 from the improved version (v2.0) of RAL’s CH4 retrieval 

scheme (Siddans et al., 2020; Knappett et al., 2022) (v1.0 is described in Siddans et al. 

(2017)). Another tropospheric O3 product from a different retrieval scheme, provided by 

the Université de Toulouse and the Centre National de la Recherche Scientifique 

(CNRS) (IASI-SOFRID, SOftware for a Fast Retrieval of IASI Data Version 3.5), is used 

in Chapter 6. The IASI-SOFRID product is first described in Barret et al. (2011). The 

scheme uses the RTTOV radiative transfer model (Saunders et al., 1999) and the optimal 

estimation method and an O3 a priori based on an ensemble of ozonesondes from the 

World Ozone and Ultraviolet Radiation Data Centre (WOUDC), Southern Hemisphere 

Additional Ozonesondes (SHADOZ) and the aircraft campaign MOZAIC (Rodgers, 2000; 

Barret et al., 2011; Barret et al., 2020). In their validation of IASI-SOFRID, Barret et al. 

(2020) found a difference of less than 2.5% in comparison with ozonesondes for 

tropospheric column O3 in the NH, and up to 9.5% in the SH.  

3.1.2 RAL UV-Vis retrieval scheme 

The UV-Vis retrieval scheme used by RAL for GOME, SCIAMACHY, GOME-2 and OMI 

is initially described in Munro et al. (1998), with updates described in Miles et al. (2015). 

To summarise here, the RAL retrieval of vertical O3 profiles is based on optimal 

estimation, as discussed in Section 2.4.1.1 (Rodgers, 2000; Miles et al., 2015). It is a 

sequential three-step approach: 

• Step 1 – A fit is performed to the sun-normalised radiance spectrum in the long-

wave tail of the Hartley band (wavelengths between 266–307 nm). This provides 

mostly information about the mid-upper stratosphere, retrieving an O3 profile that 

is used in step 3. The O3 absorption in this region is strongly wavelength 

dependent, giving information about the altitude from where the radiation was 

backscattered, but not from below peak O3 (e.g. not from below the stratosphere) 
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(Munro et al., 1998). The fit is a direct fit of the sun-normalised radiance (𝑟) as 

defined in Equation 3.1 (Miles et al., 2015): 

𝑟 =
𝐼

𝐼0
𝜋 Equation 3.1 

where 𝐼 is the measured Earthshine radiance and 𝐼0 is the direct-sun irradiance 

measurement.  

• Step 2 – Retrieving an effective surface albedo from the sun-normalised radiance 

spectrum at wavelengths of 336 nm for each ground pixel.  

• Step 3 – The retrieved O3 profile and error covariance matrix from the fit in step 

1 and the retrieved effective albedo contribute to prior information for a final fit in 

step 3. The temperature dependence on the spectral structure in O3 absorption 

in the Huggins Band (323–335 nm) is utilised to provide information about the 

lower stratosphere and troposphere, extending the retrieval down, closer to the 

surface.  

The a priori O3 profiles are from the McPeters-Labow-Logan climatology, which is derived 

from ozonesondes (McPeters et al., 2007; Keppens et al., 2018). European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA-interim meteorological fields 

(pressure and temperature profiles) are used in the retrieval. The retrieved O3 profile is 

on a fixed pressure grid of: surface pressure, 450, 170, 100, 50, 30, 20, 10, 5, 3, 2, 1, 

0.5, 0.3, 0.17, 0.1, 0.05, 0.03, 0.017, 0.01 hPa, which is approximately equivalent to 

altitudes of: 0, 6, 12, 18 km, then every 4 km up to 80 km. For the combined band 

retrieval, DOFS is typically 5 – 6 (Miles et al., 2015). The radiative transfer model used 

is based on GOMETRAN++ (Rozanov et al., 1997) updated with several improvements 

to processing speed (Miles et al., 2015).  

The accuracy of radiometric calibration is important for the first step, the fit of the sun-

normalised radiance. The calibration is performed in the laboratory before launch. 

However, during the instrument’s operation the diffuser, which scatters the incom ing 

radiation, can become contaminated, leading to bias in the observation (known as ‘UV 

degradation’). GOME (also SCHIAMACHY and GOME-2) has experienced degradation 

of the UV photometric throughput, due to this damage of the instrument’s optical 

elements (Liu et al., 2007; Miles et al., 2015). The degradation has varied over time, 

which adds uncertainty when considering long-term trends, with larger uncertainty for 

shorter wavelengths. For example, GOME measurements of Earth radiance and solar 

irradiance have degraded in different ways over the operation period, starting in around 

1998 (van der A et al., 2002; Cai et al., 2012). This degradation can have a large impact 

on the data, causing biases of up to ~30% for tropospheric column O3 (Liu et al., 

2007).The retrieval schemes used for GOME and SCIAMACHY here, have a correction 

applied to account for this UV degradation (Miles et al., 2015). The correction is based 

on the ratio between climatological modelled UV sun-normalised radiance and the 

observed sun-normalise radiance spectrum for the record. In contract, the OMI 

instrument has a different instrument design, and is considered to have experienced 
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negligible UV degradation, with OMI radiances varying by only 1 – 2% (Schenkeveld et 

al., 2017; Levelt et al., 2018).  

3.1.3 GOME 

The Global Ozone Monitoring Experiment (GOME) instrument was aboard the European 

Space Agency’s (ESA) second European Remote Sensing Satellite (ERS-2) launched in 

April 1995 and which ceased operation in 2011 (European Space Agency, n.d.; Burrows 

et al., 1999). The orbit of ERS-2 was sun-synchronous and near-polar (98.5° inclination), 

with an average altitude of 795 km and an equator crossing time of 10:30 LST. The 

satellite had a nadir viewing mode, a swath with an across-track width of 960 km, a 

ground-pixel resolution of 40 × 320 km2 and achieved global coverage in 3 days (43 

orbits). GOME measured in the UV-Vis wavelength range (240-790 nm) at a spectral 

resolution of 0.2 – 0.4 nm (Burrows et al., 1999). Tropospheric sub-column O3 retrievals 

from GOME (RAL UV-Vis retrieval scheme) are used in Chapter 5.  

The failure of the tape recorder aboard ERS-2 caused a reduction in geographical 

sampling from around 2003 onwards (Van Roozendael et al., 2012). This caused the 

GOME instrument to lose global coverage towards the end of its operation. As shown in 

total column retrievals of O3 in Koukouli et al. (2012), the reduction in sampling was 

predominantly in the SH, but does reach up to around latitudes of 30°N. The European 

domain studied here (30°N – 70°N) is not within the affected latitude, however, this is 

still a limitation to consider.  

3.1.4  SCIAMACHY 

The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 

(SCIAMACHY) instrument was aboard ESA’s Envisat launched in March 2002 and which 

ceased operation in April 2012 (Bovensmann et al., 1999; Ebojie et al., 2016). The orbit 

of Envisat was sun-synchronous and near-polar (98.55° inclination), with an average 

altitude of 800 km and an equator crossing time of 10:00 LST. The satellite had 3 viewing 

modes, limb, nadir and solar/lunar occultation, a swath with an across-track width of 960 

km and a ground-pixel resolution of 30 × 60-240 km2. SCIAMACHY measured in the UV, 

Vis and NIR wavelength range (240-2380 nm) at a spectral resolution of 0.2-1.5 nm 

(Bovensmann et al., 1999). Tropospheric O3 retrievals from SCIAMACHY (RAL UV-Vis 

retrieval scheme) are used in Chapter 5. 

3.1.5 OMI 

The Ozone Monitoring Instrument (OMI) is aboard NASA’s AURA satellite, launched in 

July 2004 and is still in operation at present (Levelt et al., 2006). The AURA satellite has 

a sun-synchronous and near polar (98.2° inclination) orbit at an average of 705 km 

altitude. The satellite crosses the equator at 13:45 LST (ascending node) and flies as 

part of a formation called the ‘A-train’. OMI uses a nadir viewing mode with a swath width 

of 2600 km and a ground resolution of 13 × 24 km2, providing nearly global coverage 
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every day (Figure 3.2). OMI measures in the UV-Vis wavelength range (270 – 500 nm) 

with a spectral resolution of 0.45 – 1.0 nm (Levelt et al., 2006). Tropospheric O3 retrievals 

from OMI (RAL UV-Vis retrieval scheme) are used in Chapter 5.  

 

Figure 3.2: Diagram of the OMI measurement principles. Taken from Levelt et al. 
(2006) (© 2006 IEEE).  

3.1.6 OMI row anomaly  

The instrument OMI uses 2-D detectors, where one dimension obtains the spectral 

information, and the other detects the spatial information (Levelt et al., 2006). It has 60 

across-track viewing angles or ‘rows’. In the RAL product used in this thesis, the 60 rows 

are ‘co-added’, creating a product with only 30 rows. The OMI instrument has been 

impacted by the OMI row anomaly since around 2007, with large changes occurring in 

2009 and early 2011, however, since then it has been relatively stable (Schenkeveld et 

al., 2017; Levelt et al., 2018). The row anomaly impacts the quality of all wavelengths of 

radiance data from a specific viewing direction, corresponding to a row in the 2-D 

detectors of OMI. It was caused by damage to the insolation blankets that cover OMI, 

which has blocked part of the field of view (Levelt et al., 2018). The impact depends on 

channel (UV/Vis), latitude and season. Since 2014 the percentage of affected rows 

ranges from 30% (Vis) - 37% (UV1) (Schenkeveld et al., 2017). The impact of the row 

anomaly on the results, and the method used to analyse the data, is discussed in Section 

5.3.1.1.  

3.1.7 GOME-2 

The Global Ozone Monitoring Experiment-2 (GOME-2) is aboard EUMETSAT’s MetOp 

series of satellites (as described in Section 3.1.1.1) (Callies et al., 2000; Munro et al., 

2016). GOME-2 measures in the UV-Vis wavelength range (240 – 790 nm) with a 

spectral resolution of 0.26 - 0.51 nm. The instrument has a swath width of 1920 km and 
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a ground resolution of 80 × 40 km2 (Munro et al., 2016). Tropospheric O3 retrievals from 

GOME-2 from MetOp-B (GOME-2B) (RAL UV-Vis retrieval scheme) are used in Chapter 

6.  

Figure 3.3: Photograph 
of the GOME-2 
instrument. Taken from 
Munro et al. (2016).  

 

 

 

 

 

Miles et al. (2015) 

assessed the performance of the RAL retrieval scheme for GOME-2A, by validating 

against 2 years of ozonesondes (2007 – 2008). After application of averaging kernels 

(AKs) to the sonde profiles there was an average retrieval bias of 6% (1.5 DU) in the 

lower troposphere, with a positive bias (satellite overestimation) in the NH of 10% (2 DU). 

For cloud-free pixels, they found a small bias of 0.7 DU with TOMCAT in August 2008s, 

and a correlation between pixels of 0.66.  

3.1.8 Uncertainty and limitations  

Satellite data has associated uncertainty and limitation in use. Malfunctions of the 

instrument, e.g. the OMI row anomaly, GOME tape recorder failure and UV degradation 

to GOME and SCIAMACHY , can reduce the volume and quality of data provided. As 

with the OMI row anomaly and UV degradation, this reduction in data volume and quality, 

can vary through the record (Miles et al., 2015).  

Different retrieval algorithm schemes will produce different results, which leads to 

uncertainty in the observations. Implementation of the scheme, such as choice of a priori, 

which spectroscopic data and other forward model parameters to use, can also impact 

the result (Gaudel et al., 2018). For example, Liu et al. (2013) highlighted the variation 

caused by using different O3 cross-sections on OMI O3 profile retrievals, showing that 

using two different cross sections caused biases of 5 – 20 DU for tropospheric O3. The 

accuracy of the retrieval scheme also replies on the assumptions in the forward model.   

Another key considerations for satellite observations is the presence of clouds and 

aerosols. Clouds scatter radiation, which reduces the instrument’s sensitivity to trace 

gases below the cloud (Martin, 2008), and cloudy observations are generally filtered out 

during the processing, e.g. Gaudel et al. (2018) presents 8 satellite products with cloud 

fraction filtering ranging from < 13 – 30 %. Aerosols can also decrease the instrument’s 
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sensitivity depending on their single scattering albedo and vertical distribution (Martin, 

2008).  

3.1.9 Averaging kernels 

AKs provide information about the vertical sensitivity of the satellite retrievals. AKs 

provide a quantification of the relative sensitivity of the retrieval to the ‘true state’ of the 

retrieved layers (Rodgers, 2000; Gaudel et al., 2018). The AKs will vary with the different 

properties of each sounding e.g. land or ocean retrieval, day or night retrieval, spectral 

range, spectral resolution, choice of a priori and measurement noise (Gaudel et al., 

2018).  

Following on from the optimal estimation equations earlier in Section 2.4.1.1, the AKs 

are calculated using the weighting function (𝐊) as shown in Equation 3.2 

𝐀 = 𝐆𝐊 Equation 3.2 

where 𝐆 is the gain matrix, which defines the sensitivity of the retrieval to measurement 

perturbations (Rodgers, 2000; Miles et al., 2015). 𝐆 is calculated as shown in Equation 

3.3: 

𝐆 = (𝐊T𝐒𝐲
−1𝐊 + 𝐒𝐚

−1)
−1

𝐊T𝐒𝐲
−1 Equation 3.3 

where, as before, 𝐒𝐲 is the measurement error covariance matrix and 𝐒𝐚 is the prior error 

covariance matrix.  

In comparing satellite observations with model data it is important to apply the AKs to 

the model profiles to make the comparison more robust, due to the enhanced information 

about vertical sensitivity. Applying the AKs to the model maps the sensitivity of the 

retrieval onto the model profile. For each satellite retrieval, a model profile is co-located 

from the nearest grid box and AKs applied, which is then used to form the monthly 

average. The AKs are applied as shown in Equation 3.4: 

𝒀𝑺𝑪 = (𝐈 − 𝐀) 𝒂𝒑𝒓 + 𝑨. 𝑿𝑺𝑪 Equation 3.4 

where 𝒀𝑺𝑪 is the model sub-column with AKs applied, 𝑰 is the identify matrix, 𝒂𝒑𝒓 is the 

a priori of the satellite sub-column, 𝑨 is the AK matrix of the sub-column and 𝑿𝑺𝑪 is the 

model profile without AKs applied.  

Example profiles of AKs, satellite O3 and model O3 are shown in Figure 3.4 for GOME 

and Figure 3.5 for SCIAMACHY (used in Chapter 5). Figures 3.4 and 3.5 show that for 

the lowest sub-column (1000 – 450 hPa, lowest point on profile), applying the AKs, 

reduces the model O3 for GOME and SCIAMACHY in their respective years for January, 

however, has little impact for July. All the AK profiles in Figures 3.4 and 3.5 show 

sensitivity in the troposphere, with high AK values from the lowest two sub-columns 

between around 1000 – 170 hPa. This demonstrates that these satellite records are 

appropriate to use in the study of tropospheric O3.  



49 
 

 

Figure 3.4: (a) GOME O3 AK profile averaged for January 1996. (b) O3 profiles 
averaged in January 1996 for GOME, TOMCAT with AKs and TOMCAT without AKs 
(both model profiles are co-located with the GOME retrievals). (c) As (a) for July 
1996. (d) As (b) for July 1996. A dotted line highlights 450 hPa. Sub-column values 
are plotted on the pressure axis as mid-points for their sub-column.  

 

Figure 3.5: As Figure 3.4 for SCIAMACHY in January and July 2003.  
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3.2 Chemistry transport model 

In this thesis, the TOMCAT CTM is used to simulate tropospheric O3. CTMs are 

numerical models which are widely used to simulate chemistry and transport in the 

atmosphere. An ‘off-line’ CTM, such as TOMCAT, uses meteorological fields (e.g. winds, 

temperatures) from reanalyses or another model, as they do not calculate their own 

meteorology (Chipperfield, 2006). In comparison to models that do simulate their own 

meteorology (e.g. general circulation models (GCM)), off-line CTMs benefit from being 

computationally cheaper and, as they are constrained by ‘real’ meteorological analysis, 

they allow for a better comparison with observations. In contrast, models that simulate 

their own meteorology are needed for future predictions and to study chemical-radiative-

dynamical feedbacks (Chipperfield, 2006).  

3.2.1 TOMCAT model description 

TOMCAT/SLIMCAT is a global off-line Eulerian 3-D CTM (Chipperfield, 2006). It has 

been used for an extensive range of studies of the chemistry of the troposphere and 

stratosphere, e.g. Rowlinson et al. (2019) used TOMCAT to study the impact of ENSO 

on tropospheric O3 and CH4, and Dhomse et al., (2021) used TOMCAT, machine 

learning and satellite data to create a long-term stratospheric O3 profile record. The 

version of TOMCAT used in this thesis has a horizontal resolution of 2.8° × 2.8° and 31 

vertical levels between the surface and 10 hPa (shown in Figure 3.6), with ~ 5 – 7 levels 

in the BL and ~10 in the mid-troposphere, depending on latitude. The model uses a 

hybrid vertical co-ordinate system (σ - p), with the near-surface levels following the 

terrain (σ) and higher levels (<100 hPa) using pressure levels (p).  

The model is driven by 6-hourly ERA-Interim (Chapters 4 and 5) or ERA-5 (Chapter 6) 

meteorological reanalyses, of wind, temperature and humidity, from ECMWF. The ERA-

Interim product was released in 2006, covering the time period from 1979 – August 2019 

(Dee et al., 2011; Hersbach et al., 2020). ERA-5 is a new reanalysis product from 

ECMWF, to replace ERA-interim, which covers 1950 – present (Hersbach et al., 2020). 

The spatial resolution for ERA-5 is higher, with a 31 km grid, compared to a 80 km grid 

for ERA-interim and benefits from improvements in model physics, core dynamics and 

data assimilation (Hersbach et al., 2020). Large-scale advection of tracers in TOMCAT 

is based on the Prather (1986) scheme in the meridional, zonal and vertical directions 

(Chipperfield, 2006; Monks et al., 2017). Transport on a sub-grid scale (e.g. BL mixing 

and convective transport) is based on Tiedtke (1989) and Holtslag and Boville (1993).  
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Figure 3.6: Representation of average global 
pressure levels for the TOMCAT model setup used in 
this thesis. Taken from Monks et al. (2017). 

 

 

 

 

 

 

 

 

 

TOMCAT is coupled with the Global Model of Aerosol Processes (GLOMAP), which 

calculates aerosol chemistry and microphysics (Spracklen et al., 2005; Mann et al., 

2010). GLOMAP includes size-resolved primary emissions, formation of new particles, 

condensation, coagulation, cloud processing, dry deposition, sedimentation, nucleation 

and impact scavenging (Mann et al., 2010). There are four aerosol size distributions 

(nucleation, Aitken, accumulation and coarse) and four aerosol components (sulphate, 

BC, organic carbon (OC) and sea-salt).  

For the simulations in this thesis, the full chemistry mode of TOMCAT is used. A 

description of the tropospheric chemistry scheme can be found in Monks et al. (2017) 

(updated from Arnold et al. (2005)). The full chemistry scheme includes 79 species, 

including 16 species that are emitted, and ~200 chemical reactions. Isoprene oxidation 

is based on the Mainz Isoprene Mechanism (Pöschl et al., 2000), the emission and 

destruction of ethene, propene, toluene and butane is based on the Extended 

Tropospheric Chemistry scheme (ExtTC) (see supplement of Monks et al. (2017)) and 

that of monoterpenes is based on the MOZART-3 chemical mechanism (Kinnison et al., 

2007). The kinetic reaction rates used are from the 2005 recommendations of the 

International Union of Pure and Applied Chemistry (IUPAC, Atkinson et al. (2006)) and 

the Leeds Master Chemical Mechanism (MCM) from 2004. Some of the surface 

emissions used in this thesis have been updated compared to those described in Monks 

et al. (2017). The surface emissions used in each results chapter are described in 

Sections 4.3.5, 5.3.3.1 and 6.3.4. The surface monthly mean emissions are read into the 

model on a 1° × 1° grid and re-gridded online to the model spatial resolution and linearly 

interpolated temporally to the model timestep (Monks et al., 2017). NOx emissions from 

lightning are coupled to model convection, which is derived from the meteorological 

reanalyses. Therefore, lightning NOx emissions vary due to the seasonality and spatial 

pattern of convective activity (Stockwell et al., 1999). The simulations were run on the 

Leeds high performance computing facility, ARC3. The model output of 3D tracer fields 
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and meteorological variables was sub-sampled daily at 9.30 and 13.30 LST to match 

that of the satellite overpass used in this thesis.  

The simulations have also been setup with an update to the climatological cloud fields 

(from the International Satellite Cloud Climatology Project (ISCCP) (Rossow and 

Schiffer, 1999)) using reanalyses of cloud fraction from ECMWF, which is described in 

Rowlinson et al. (2019). This update provides cloud fields which vary by year, improving 

the representation of interannual variability and photolysis rates in the model.  

3.2.1.1 STE representation in TOMCAT 

In Chapters 5 and 6 a tracer for STE is used from the TOMCAT simulations to understand 

the impact of O3 transport from the stratosphere. This tracer represents tagged 

stratospheric O3. In the stratosphere, the tracer equals the stratospheric O3 as calculated 

by the model. When the tracer enters the troposphere, there are no additional sources 

of the tracer, but the sink processes for O3 in the troposphere all apply, e.g. photolysis, 

reaction with species such as HOx/NOx and surface deposition (Monks et al., 2017). The 

lifetime of the tracer depends on the model sink reactions and surface deposition, as with 

untagged tropospheric O3.  

3.2.1.2 Surface dry deposition representation in TOMCAT 

Surface deposition is an important sink for tropospheric O3. TOMCAT uses the dry 

deposition scheme described by Giannakopoulos et al. (1999). Dry deposition velocities 

are based on fixed land cover fields and sea-ice fields that vary seasonally from the 

NCAR community land model (CLM). These fields were reclassified from 16 types to the 

five TOMCAT land types (water, forest, grass/crop/shrub, desert/bare ground and 

snow/ice) (Hollaway, 2012; Monks et al., 2017). The deposition velocity is then based on 

the local time of day and season and weighted based on the proportion of each grid-box 

covered by each land type (Hollaway, 2012; Monks et al., 2017).  

3.2.2 Model performance 

3.2.2.1 OH radical 

Two recent studies have evaluated TOMCAT OH: Monks et al. (2017) and Rowlinson et 

al. (2019). The TOMCAT version and model set up used in Chapter 4 is most similar to 

that in Rowlinson et al. (2019), due to the updated cloud fields from ECMWF reanalyses, 

which will impact the photolysis in the model, which is relevant to OH production. 

Rowlinson et al. (2019) found an average global tropospheric concentration of 1.04 ×106 

molecule cm-3 and an average CH4 lifetime of 8.0 years. This is similar to several other 

studies, such as: A global mean concentration of 1.08 ×106 molecule cm-3 from the 

Monks et al. (2017) TOMCAT version (CH4 lifetime of 7.9 years); 0.94 ± 0.1 ×106 

molecule cm-3 by Prinn et al. (2001) from inferred OH observations from MCF (CH4 

lifetime of 9.3 years); 1.08 ± 0.6 ×106 molecule cm-3 from the POLARCAT Model 

Intercomparison Project (POLMIP) (Emmons et al., 2015); and the multi-model mean of 
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1.11 ± 0.2 ×106 molecule cm-3 from the Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP) (CH4 lifetime of 9.7 years) (Naik et al., 2013). The 

comparison found by Rowlinson et al. (2019) (Figure 3.7), using the evaluation 

methodology of 12 sub-domains by Lawrence et al. (2001). Figure 3.7 shows that in the 

vertical distribution, the two TOMCAT studies (Monks et al. (2017) & Rowlinson et al. 

(2019)) show the largest TOMCAT [OH] to be between the surface and 750 hPa near 

the equator. Comparatively, Spivakovsky et al. (2000), using the MCF method, and the 

ACCMIP multi-model mean [OH] (Naik et al., 2013) have the largest OH values higher 

up in the troposphere. All [OH] records show a similar latitudinal distribution, with higher 

values in the tropics and lower values in the SH. (Emmons et al., 2015). Differences 

between the model OH datasets could be due to modelled clouds and their impact on 

photolysis in the model (Emmons et al., 2015), as shown here (Figure 3.7), with the 

primary difference between Rowlinson et al. (2019) TOMCAT and Monks et al. (2017) 

TOMCAT being an update to cloud fields. Nicely et al. (2017) found that across 8 CTMs, 

differences in OH were caused by variations in chemical mechanisms, photolysis 

frequency and local O3, CO and NOx concentrations. 

 

Figure 3.7: Annual zonal mean [OH] from 2000, in units of 106 molecule cm-3, 
divided into 12 regions. [OH] from Rowlinson et al. (2019) is labelled as ‘TOMCAT 
2018’, [OH] from Monks et al. (2017) is labelled as ‘Monks 2017’. The ‘Spivakovsky 
dataset’ is from Spivakovsky et al. (2000) based on MCF observations and 
‘ACCMIP mean’ is based on a multi-model mean from ACCMIP (Naik et al., 2013). 
Taken from Rowlinson et al. (2019). 

3.2.2.2 Tropospheric ozone 

Rowlinson et al. (2019) has evaluated TOMCAT model tropospheric O3 profiles using 

ozonesondes (Figure 3.8) for 1995 - 2011. Generally, TOMCAT agrees well with the 

ozonesonde profiles, capturing the seasonal variation and absolute values closely. A low 

normalised mean bias (NMB) of 1.1% was found for 700 – 1000 hPa and 2.1% for 300–

700 hPa. Rowlinson et al. (2019) also found a global tropospheric burden of 342 Tg for 
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TOMCAT in 2000, which is similar to other values found in the literature e.g. 337 ± 23 Tg 

from the ACCMIP multi-model mean (based on an ensemble of 15 global models) 

(Young et al., 2013). Monks et al. (2017) also compares TOMCAT O3 with ozonesondes, 

highlighting the latitudinal differences. In two tropospheric pressure regions studied (750 

– 1000 hPa and 450 – 750 hPa), TOMCAT mostly underestimates O3 compared to the 

observations. The biases are not contained within uncertainty of the observations in the 

high latitudes of both the SH and NH. Here the model shows underestimates of O3 in the 

winter months, which suggests the model has issues with representing O3 

photochemistry in the winter in cold, remote and dark regions or deposits too much O3 

onto surfaces with ice/snow. This negative wintertime bias in the SH is also seen in the 

ACCMIP multi-model mean (Young et al., 2013). There is an overestimate of 

summertime O3 near the surface in the TOMCAT NH, which is likely due to issues with 

the surface deposition scheme in the model (Monks et al., 2017). Broadly, model inputs 

(e.g. emissions), chemistry scheme, temporal and spatial resolution, physical processes 

(e.g. deposition, transport and meteorology) and any missing processes are potential 

causes of differences between models and observations of tropospheric O3 (Young et 

al., 2018). Wild (2007) found that the modelled tropospheric O3 budget between different 

models was sensitive to the size and location of lightning NOx emissions, humidity and 

dry deposition, and model resolution strongly impacted the estimation of STE and dry 

deposition.  

 

Figure 3.8: Seasonal comparison of TOMCAT model O3 and ozonesonde O3 
observations during 1995 – 2011 (ppbv, left to right – DJF, MAM, JJA and SON). 
Panels (a) – (d) show mean O3 concentrations for 700 – 1000 hPa and panels (e) – 
(h) show mean O3 concentrations for 300 – 700 hPa. Taken from Rowlinson et al. 
(2019). 
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Figure 3.9: Monthly comparison of median O3 (ppbv), compared to an ozonesonde 
O3 climatology for 3 latitude bands (90°S – 30°S, 30°S – 30°N and 30°N – 90°N) and 
3 pressure ranges (750 – 1000 hPa, 450 – 750 hPa and 250 – 450 hPa). The error 
bars on the observations show the 25th and 75th percentiles of the observed 
concentrations. Taken from Monks et al. (2017).  

3.3 Ozonesondes 

In this thesis, Ozonesonde data from the World Ozone and Ultraviolet Radiation Data 

Centre (WOUDC) is used (WOUDC, 2021). The WOUDC is one of the six World Data 

Centres which are part of the World Meteorological Organisation’s Global Atmospheric 

Watch programme. It contains O3 data for 500 stations globally, providing ozonesonde 

data from 1951 to the present. The launch sites of ozonesondes for 4 years (1996, 2003, 

2010 and 2017) during the study period in chapter 5 (1996 – 2018) are shown in Figure 

3.10. Globally, the launch sites in this datasets are predominantly in the NH, with most 

locations in Europe, North America and East Asia. The number of ozonesonde launch 

sites decreases during the Chapter 5 study time period, as highlighted by the reduction 

in sites in 2017, which only had 17 launch sites globally (Figure 3.10), compared to 58 

in 2003. In chapter 5, ozonesonde data from European ozonesonde launches from 1996 

– 2018 (Figure 3.10) is used, and in chapter 6, ozonesonde data from 13 stations across 

Europe from 2000 – 2021 is used.  



56 
 

 

Figure 3.10: Locations of ozonesonde launch sites for 1996, 2003, 2010 and 2017 
(WOUDC, 2021). The number of launch sites in each year is given in the lower right 
corner of each panel.  

Comparisons of different types of ozonesonde (WOUDC predominantly contains ECC 

and Brewer-Mast ozonesondes) show that they agree within ~ 5% (Stübi et al., 2008). In 

a comparison between WOUDC ozonesondes and MOZAIC aircraft measurements, 

Logan et al., (2012) found a mean bias of 0.9 ± 2.8 ppb in the lower troposphere. 

3.4 Aircraft observations 

NASA’s Atmospheric Tomography mission (ATom) observed many different atmospheric 

variables from a suite of instruments aboard an aircraft, including OH and OHR, as used 

in this thesis (Wofsy et al., 2018). There were four campaigns, following a very similar 

flight route, as shown in Figure 3.11, using NASA’s DC-8 aircraft. The campaigns ran 

between 2016 – 2018: 28th July to 22nd August 2016 (ATom-1); 26th January to 22nd 

February 2017 (ATom-2); 28th September to 26th October 2017 (ATom-3); 24th April to 

21st May 2018 (ATom-4). The atmosphere was sampled across both hemispheres over 

the Pacific and Atlantic Oceans and covered all seasons. Vertically, the aircraft ascended 

and descended between 0.15 km and 10 – 13 km altitude around 6 – 9 times per flight 

(Brune et al., 2019).  



57 
 

 

Figure 3.11: Map of ATom flight paths. Taken from Brune et al. (2020).  

The Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) instrument, 

aboard the ATom mission, provided measurements of OH and OHR (Faloona et al., 

2004; Brune et al., 2019). The technique used by ATHOS is fluorescent assay by gas 

expansion (FAGE), which was developed by Hard et al. (1984) and Stevens et al. (1994). 

Air is drawn into the instrument, where it crosses perpendicular to a 308‐nm laser beam. 

The laser beam is absorbed by OH in the air causing fluorescence. This fluorescence 

signal is then measured by detectors. The estimated 2σ uncertainty on the OH and OHR 

measurements is ~ 35% and 0.8 s-1 respectively. The estimated limit of detection for OH 

is 0.018 pptv. In their comparison of modelled [OH] and ATom [OH] measurements, 

Travis et al. (2020) found a good agreement between the two records for ATom-1 and 

ATom-2 (Figure 3.12). The largest area of non-agreement was the NH summer (ATom-

1) below ~ 2 km, likely due to excessive OH production or an underestimation of the 

ocean VOC sink in the model (Travis et al., 2020).  
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Figure 3.12: Comparison of median [OH] observations from ATom-1 (2016) and 
ATom-2 (2017) with modelled [OH] from GEOS-Chem. Presented for the SH and 
NH. Taken from Travis et al. (2020). 

3.5 Summary 

This chapter has summarised the key datasets used in this thesis, the satellite, 

ozonesonde and aircraft records and also described the TOMCAT model and the setup 

used. Data products from 5 satellite instruments are used in this thesis, which vary in 

terms of sampling patterns, overpass time, instrument technique (UV-Vis vs. IR), and 

instrument-unique caveats (e.g. the OMI row anomaly). These products are used in 

conjunction with TOMCAT simulations and independent measurements of the free 

troposphere (ozonesondes and aircraft data) to provide insight into long-term changes 

in tropospheric composition.  
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Chapter 4 Global hydroxyl radical distribution and long-term 

variation derived from satellite data 

4.1 Introduction 

There is a scarcity of direct in situ measurements of OH that provide comprehensive 

spatial and temporal information about this important species. Measuring OH is 

challenging, due to its short lifetime and low abundance, and there are few instruments 

available (Stone et al., 2012; Lelieveld et al., 2016). Field campaigns (Stone et al., 2012) 

and aircraft missions (Wofsy et al., 2018; Brune et al., 2019) are the current sources of 

in situ measurements available, which both have limited spatial and/or temporal scope. 

Therefore, indirect methods to infer OH are currently in demand.  

The most established indirect method of inferring global OH is to use MCF 

concentrations to derive a global mean OH concentration, as discussed in Section 2.3.3. 

However, the regulation of MCF under the legislation initiated by the 1987 Montreal 

Protocol, has led to a large decline in its abundance in some regions since the mid-

1990s. This reduces the viability of this method, and highlights the importance of 

developing new methods (Huang and Prinn, 2002; Rigby et al., 2017; Liang et al., 2017). 

The MCF method is also unable to provide much spatial information about OH, which 

would be very valuable to understanding the distribution of the many important 

atmospheric species that OH reacts with.  

Since around the 1990s there has been an increasing wealth of tropospheric satellite 

data, which can provide spatial and temporal information about many different 

atmospheric species, however, this does not extend to OH. These satellite datasets are 

global and some span over a decade, so have the potential to provide enhanced 

information indirectly about OH. Currently, there are limited initial studies of the use of 

satellite data to infer information about global OH. Wolfe et al. (2019) used satellite 

formaldehyde observations and budget to calculate remote tropospheric column OH. 

The method was developed using aircraft data from ATom to establish formaldehyde 

production/loss and OH concentrations. Anderson et al. (2023) used satellite retrievals 

of O3, H2O, CO, NO2 and HCHO in a machine learning model to predict tropospheric 

column OH in the tropics, finding a median normalised error of 28.3% in comparison with 

ATom aircraft measurements.  

The methodology developed in this chapter to exploit satellite data uses a steady-state 

approximation, which is appropriate to use for OH due to its very short daytime lifetime. 

Using steady-state approximations to calculated OH is an established method, and has 

been used at many field studies, e.g. Cantrell (1996) and Eisele (1996) at Mauna Loa 

Observatory, Savage et al. (2001) and Smith et al. (2006) at the Mace Head Atmospheric 

Research Centre, Ireland, Creasey et al. (2003) at Cape Grim in the Southern Ocean, 

Bloss et al. (2007) in coastal Antarctica and Slater et al. (2020) in central Beijing. 
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However, currently this method has not been used with satellite data as the input terms, 

as investigated in this chapter.  

Steady-state approximations have had varied success in deriving OH. For example, 

Eisele (1996) showed that the comparison between observed and calculated OH 

depended on which type of air mass was present. They found that free tropospheric air 

masses showed better agreement than air masses from the BL. Cantrell et al. (1996) 

found a mixture of good agreement and overestimated OH from a combined steady-state 

calculation of OH, HO2 and CH3O2 over 33 days at the Mauna Loa Observatory. Savage 

et al. (2001) found that measured and calculated OH were well correlated, but the 

calculated OH produced an overestimate of ~ 30%. This chapter utilises a simplified 

approximation, using only the key source and sink terms of OH. Models using only 

simplified chemistry have been shown to capture the chemistry of some unpolluted 

regions, e.g. in Cape Grim in the SH, Sommariva et al. (2004) used a ‘detailed’ and 

‘simple’ box-model to study OH in unpolluted marine air. The ‘simple’ box-model, based 

only on CO, CH4 and inorganic reactions, agreed within ~ 5% – 10% of the ‘detailed’ box-

model (also contained NMVOCs). The modelled OH was an over-estimate (by 10% – 

20%) compared to measured OH.  

Enhanced information about OH temporal variation is important to understanding key 

aspects of atmospheric chemistry, e.g. variation in the important GHG CH4, on the 

interannual and decadal scales (Turner et al., 2019; Zhao et al., 2020). Several studies 

using MCF observations, in combination with box-model analyses, show similar annual 

OH anomalies between 1995 and 2010 (Montzka et al., 2011; Rigby et al., 2017; Turner 

et al., 2017; Patra et al., 2021). They show similar OH anomalies from 1995 – 2010, as 

mostly negative (~ -6% – 0%) from 1995 – 1999, mostly positive (~ 0% – 6%) from 1999 

– 2007 and mostly negative again (~ -5% – 0%) from 2007 – 2010. From 2010 onwards, 

the results differ, with Rigby et al. (2017) and Turner et al. (2019) showing consistently 

negative anomalies (~ -4% – 0%) from 2010 – 2018, and with Naus et al. (2019) and 

Patra et al. (2021) showing some positive anomalies in this period, e.g. ~ 0% – 4% from 

2010 – 2015. Modelling studies showed different results, for example, He et al., (2020) 

found negative anomalies (~ -5% – 0%) from 1995 – 2005 and then positive anomalies 

(~ 0% – 4%) from 2005 – 2017. Zhao et al., (2020) found a multi-model mean increase 

of 0.7 ×105 molecule cm-3 from 1980 – 2010 (equivalent to ~ 0.1 – 0.5% yr-1), as shown 

in Figure 4.1. The greatest rate of increase was in the final decade (2000–2010), and 

was predominantly due to an increase in the primary production term (O(1D) + H2O), 

though also to a decrease in the CO sink term (OH + CO). Some model studies have 

also shown that OH interannual variability is influenced by the El Niño-Southern 

Oscillation (ENSO). Low OH concentrations were associated with El Niño years, due to 

enhanced biomass burning, and therefore increased CO emissions (OH sink) and high 

OH concentrations with La Niña years (Figure 4.1), as shown in Zhao et al. (2020) and 

Anderson et al. (2021). 
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Figure 4.1: Global tropospheric OH variation. (a) Annual tropospheric mean OH 
(CH4-weighted) from the CCMI models with year-to-year variation removed. (b) 
Anomaly of detrended and de-seasonalised monthly mean OH (CH4-weighted). (c) 
Bimonthly multivariate ENSO index. Taken from Zhao et al. (2020). 

4.2 Research questions 

The aim of this chapter is to investigate the potential use of satellite data and a simplified 

steady-state approximation to provide information about OH. The chapter will address 

the following research questions: 

1. In what regions of the atmosphere are different steady-state approximations for 

[OH] valid? 

2. Can satellite data be applied to a simplified steady-state approximation and how 

does it compare to modelled [OH]? 

3. How does the satellite-derived [OH] distribution compare to direct measurements 

of [OH] in the free troposphere? 

4. What is the uncertainty associated with the satellite-derived OH? 

5. What can this method tell us about long-term variations in [OH] and it’s source 

and sink terms (e.g. O3)?  
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The work from this chapter was published in the journal Atmospheric Chemistry and 

Physics (Pimlott et al., 2022).  

4.3 Methods & data 

4.3.1 Hydroxyl radical steady-state approximations 

In the troposphere, the OH radical has a very short lifetime, so a steady-state 

approximation can be used to estimate its concentration. A generalized version of this 

approximation is shown in Equation 4.1:  

[OH]steady−state =  
𝑘𝐴+𝐵[A][B] + … + 𝑗𝐶[C] + … 

∑ 𝑘𝐷[D] +  …
 Equation 4.1 

where the numerator represents a sum of the source terms and the denominator 

represents a sum of the sink terms, which can both vary in number, impacting the 

‘complexity’ of the expression. kA+B is the reaction rate constant of A and B to form OH 

and jC is the photolysis coefficient of C to form OH. kD is the reaction rate constant of D 

and OH, where D represents an individual sink species. The accuracy of the 

approximation depends partly on the number of source and sink terms which can be 

included. In this study, the number of source and sink terms depends on the availability 

of observations (e.g. satellite, model, aircraft) to provide a constraint for each. 

In this chapter, three different steady-state approximations are proposed with varying 

complexity, to investigate how accurate they are in different regions of the atmosphere. 

The simplest is based on only 1 source term (based on a steady-state approximation for 

O(1D), see Equations 2.17 and 2.18) and 3 sink terms (based on the reaction of OH with 

CH4, CO and O3), and is shown in Equation 4.2:  

[OH]steady−state =  
(

2𝑗1𝑘1[O3][H2O]
𝑘2[N2] + 𝑘3[O2] + 𝑘1[H2O]

)

    (𝑘4[CH4] + 𝑘5[CO] + 𝑘6[O3])    
 Equation 4.2 

where 𝑗1 is the photolysis coefficient for O3 → O(1D) + O2, 𝑘1 is the reaction rate constant 

for O(1D) + H2O, 𝑘2 and 𝑘3 are the reaction rate constants of O(1D) with respect to N2 

and O2, 𝑘4, 𝑘5 and 𝑘6 are the rate constants for reaction of OH with CH4, CO and O3, 

respectively. The relevant reactions here are presented in full in Appendix A (Table A.1) 

and Section 4.3.2 (Table 4.2). The proposed simplified steady-state approximation (S-

SSA) contains some of the key source/sinks of OH in the troposphere, and contains 

species which have satellite observations available for them.  

The other two steady-state approximations are more complex. The full chemistry steady-

state approximation (FC-SSA) contains all reactions involving OH in the TOMCAT model 

full chemistry scheme, as described in Monks et al. (2017). It contains 26 source terms 

and 51 sink terms and captures the most comprehensive tropospheric chemistry of the 

three approximations. The final approximation is based on a steady-state approximation 

proposed in Savage et al. (2001) (Sav-SSA) (based on Grenfell et al. (1999)) and 

contains 5 source and 12 sink terms. It is therefore simplified with respect to FC-SSA, 
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but more complex than S-SSA, providing a suitable intermediate approximation for the 

analysis. All three steady-state approximations are summarised in full in Appendix A 

(Table A.1).   

4.3.2 Application of the steady-state approximation 

In this chapter, datasets from satellite instruments, TOMCAT and an aircraft campaign 

(ATom) are used as the input species of the different steady-state approximations. The 

specific methods of application and 𝑗1 used in each case are summarised in Table 4.1. 

For all cases, the nitrogen and oxygen are assumed to have a fixed volume mixing ratio 

of 0.78 and 0.21 respectively. The rate constants (𝑘1- 𝑘6) used in the S-SSA are 

summarised in Table 4.2. The rate constants used in the additional reactions in the more 

complex steady-state approximations (e.g. FC-SSA and Sav-SSA) are the same as 

those used in TOMCAT, which can be found in Monks et al. (2017). 

Dataset 
Relevant 

Figures 
Description 𝒋𝟏 used 

Model 

Not in 

comparison 

with the 

satellite data 

Figure 4.5 

Data averaged into 

monthly means, which 

were applied to the 

approximation. 

Model 

(2010/2017) 

In comparison 

with the 

satellite data 

Figure 

4.13 

Data co-located with the 

satellite retrievals, and 

then applied on a 

retrieval-by-retrieval 

basis. 

Model 

(2010/2017) 

Satellite 

2010/2017 
Figure 

4.12 

Applied on a retrieval-by-

retrieval basis. 

Model 

(2010/2017) 

2008 – 2017 
Figures 

4.24 - 4.27 

Applied on a retrieval-by-

retrieval basis. 
Model (2010) 

Aircraft 
Figures 

4.15 - 4.21 

Applied on a 

measurement-by-

measurement basis. 

Measured 

(see Table 

4.4) 

Table 4.1: Summary of how the steady-state approximations were applied to the 
model, satellite and aircraft data. The relevant figures to each cases are 
provided.    
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Reaction Rate coefficient Reference 

𝐎(𝟏𝐃) + 𝐇𝟐𝐎 →  𝟐𝐎𝐇 𝒌𝟏 1.63 × 10−10exp (
60

T
) (Burkholder et 

al., 2019) 

𝐎(𝟏𝐃) + 𝐍𝟐 + (𝐎𝟐)

→ 𝐎𝟑 + 𝐍𝟐 

𝒌𝟐 2.10 × 10−11exp (
115

T
) (Monks et al., 

2017) 

𝐎(𝟏𝐃) +  𝐎𝟐 + (𝐎𝟐)

→ 𝐎𝟑 + 𝐎𝟐 

𝒌𝟑 3.20 × 10−11exp (
67

T
) (Atkinson et al., 

2006; Monks et 

al., 2017) 

𝐎𝐇 +  𝐂𝐇𝟒 (+𝐎𝟐) 

→  𝐇𝟐𝐎 + 𝐂𝐇𝟑𝐎𝐎 

𝒌𝟒 1.85 × 10−12exp (
−1690

T
) (Atkinson et al., 

2006; Monks et 

al., 2017) 

𝐎𝐇 +  𝐂𝐎 (+𝐎𝟐) 

→  𝐇𝐎𝟐 + 𝐂𝐎𝟐 

𝒌𝟓 1.44 × 10−13exp (
1 + [N2]

4.2 × 10−19
) (Atkinson et al., 

2006) 

𝐎𝐇 +  𝐎𝟑 →  𝐇𝐎𝟐 + 𝐎𝟐 𝒌𝟔 1.70 × 10−12exp (
−940

T
) (Burkholder et 

al., 2019) 

Table 4.2: Summary of the rate coefficients used in the S-SSA. The rate 
coefficients have units of cm3 molecule-1 s-1. T refers to temperature in K.   

4.3.3 Hydroxyl radical reactivity 

The denominator of Equation 4.2 is known as the OH reactivity (OHR). It can be 

measured and also derived by the summation of sink terms, using a model and/or 

observed species. As with the steady-state expression of OH, the accuracy of an OHR 

calculation is dependent on the number of sink terms which are included. Therefore, it is 

also dependent on the availability of observations for the sink species. Comparison of 

OHR measurements (e.g. from the aircraft mission ATom) can be used to evaluate the 

denominator of a steady-state approximation, e.g. Equation 4.2. The denominator of 

Equation 4.2 is used as a simplified expression for OHR, as shown in Equation 4.3: 

OHR =  (𝑘4[CH4] + 𝑘5[CO] + 𝑘6[O3]) Equation 4.3 

4.3.4 Satellite data  

In this chapter, level 2 satellite profile retrievals derived by RAL of CH4, CO, O3 and H2O 

from IASI, aboard the MetOp-A satellite, are used (Section 3.1.1.1). From the satellite 

profiles, an average is taken across the 600 – 700 hPa pressure layer, as this is the focus 

of the study. The data used for 2010 and 2017 is fully processed (spatially and 

temporally). The longer record (2008 – 2017) used here to study OH temporal variation 

is sub-sampled temporally (1-in-10 days) and spatially (1-in-4 pixels), due to these years 

not being available as a fully processed record. There is a close comparison between 

the partially and fully sampled records for latitude-averaged S-SSA OH (averaged across 
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the 600 – 700 hPa pressure layer, Figure 4.2). 2010 shows an average monthly 

correlation coefficient of 0.89, and 2017 shows an average of 0.85 (Figure B.1).  

 

Figure 4.2: Zonal mean comparison of S-SSA OH (latitude-averaged) between sub-
sampled and fully sampled satellite data for all months in 2010 (averaged across 
600 – 700 hPa pressure layer). The Pearson correlation coefficient (r) is displayed 
for each month. See Appendix B (Figure B.1) for 2017. 

4.3.4.1 Biases of satellite retrievals  

The four satellite products (H2O, CO, O3 and CH4) have been compared to observations 

to calculate the bias. Trent et al. (2023) evaluated H2O (and temperature) IMS-Extended 

profiles from Metop-A as part of ESA’s Climate Change Initiative project. In a comparison 

with radiosondes, they found a bias of ~10% for H2O (and 0.5K for temperature) globally 

across 9.5 years of data. IMS-Extended CO retrievals were evaluated by Pope et al. 

(2021) (see supplement). IMS-Extended CO column averages from 2007 – 2020 were 

compared with analyses from the Copernicus Atmospheric Monitoring Service (CAMS), 

finding the uncertainty in the IMS-Extended CO to be ~ 10%. IMS-Extended O3 profiles 

were evaluated in Pimlott et al. (2022) by R. Pope (see supplement - Section S3). The 

retrieved O3 profiles were compared with ozonesondes from WOUDC and SHADOZ, 

finding a bias of ~ 10% to 20% in the pressure layer of interest to this work (600 – 700 

hPa) depending on latitude and season. IASI CH4 is evaluated by Siddans et al., (2017) 

for 2007 to 2015. Regionally, systematic differences of ~ 10 ppbv were found. Using an 

average of 1800 ppbv, this equates to an uncertainty of ~ 0.55%.  
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4.3.4.2 Vertical sensitivity of satellite retrievals 

The retrievals from the IMS-Extended scheme (H2O, CO and O3) are represented on 101 

levels within the scheme. However, the amount of information that can be resolved in 

the lower atmosphere varies between the species. Global monthly averaged AKs are 

shown, as an example, in Figure 4.3 for January 2010 and in Appendix C (Figure C.1) 

for June 2010. For H2O, a large number of independent layers can be resolved between 

the surface and ~200 hPa. There is a relatively large number of DOFS, at ~10. For CO, 

the peak of the AKs is spread out, providing little vertical sensitivity. There is only enough 

information to retrieve one independent layer, which is centred on the mid troposphere 

(~600 hPa). For O3, the AKs peak at several different levels in the troposphere and 

stratosphere. The number of DOFS is ~ 3 to 4. The AK peaks closest to the surface is 

around ~600 hPa. The CH4 measurements are from a different RAL retrieval scheme to 

the IASI-IMS-Extended, the IASI v2.0 CH4 retrieval scheme (Siddans et al., 2017), which 

retrieves CH4 on a set of coarsely spaced levels. The output files contain layer-averaged 

mixing ratios and their corresponding AKs. The DOFS is larger than 2 in the tropics but 

drops to below 2 at higher polar latitudes. Overall, the surface to 450 hPa layer (lowest 

layer) average is well resolved from layers above, peaking around 700 hPa.  

The analysis presented in this chapter focuses on a mid-tropospheric pressure region, 

of 600 – 700 hPa. For the 4 satellite input species discussed, the AKs have peaks around 

this region, with sensitivity within the free troposphere. Therefore, this data is appropriate 

to use in this study due to this confidence in the sensitivity of the satellites to this region. 

The AKs show a relatively suitable vertical sensitivity in the mid-troposphere, so there 

will be small smoothing errors. Therefore it is reasonable for the satellite-derived OH and 

TOMCAT OH to be directly compared. Additionally, there are no AKs for OH available to 

use when comparing with a model, as in this study OH has been derived from a 

combination of several satellite records, not a direct retrieval. 
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Figure 4.3: Globally averaged vertical AKs for January 2010 for O3 (top left panel), 
CO (top right panel) and H2O (bottom left panel) retrievals from the IASI IMS-
Extended scheme and CH4 retrievals (bottom right panel) from the IASI scheme. 
See Appendix C for June 2010.  

4.3.4.3 Impact of cloud filtering 

The co-located retrievals of H2O, O3 and CO data and CH4 are filtered for a geometric 

cloud fraction of 20% or less (i.e. 0.2 fractional coverage or less). Therefore, satellite 

soundings which include opaque clouds filling most of the field of view are discarded. 

TOMCAT has no cloud filtering, therefore this could produce a clear sky bias. However, 

the model is driven by ECMWF meteorological fields. These same fields are also used 

in the satellite retrieval, so overall, the model and satellite should be reasonably 

consistent.  

4.3.4.4 Satellite-derived hydroxyl radical uncertainty 

Systematic errors of the four satellite-retrieved species (CO, O3, CH4 and H2O) are used 

to estimate the uncertainty on satellite-derived S-SSA, based on Equation 4.2. The 

estimation and equations used are shown in Appendix D. The estimated uncertainty is ~ 

0.5 – 0.7 ×106 molecule cm-3 or ~ 23 – 24%. This estimation did not include uncertainty 

on the rate constants (j1, k1-6) which are a potential additional source of uncertainty. 

TOMCAT j1 and ATom j1 measurements are compared in Appendix D showing a 

reasonable agreement.  
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4.3.4.5 Daily number of retrievals 

The average daily number of retrievals of the S-SSA satellite input species (CO, O3, H2O, 

CH4) per grid-box varies between 0 and 24, with an average of ~6 (Figure 4.4). This 

suggests that there are sufficient retrievals of the input species in the S-SSA to calculate 

values of OH for most grid-boxes every day. 

 

Figure 4.4: Average number of daily retrievals for each grid-box for each month in 
2010 from the 4 input species used in the S-SSA calculation.  

4.3.5 TOMCAT model setup 

The emissions used in the TOMCAT simulations in this chapter are summarised in Table 

4.3. The emission datasets used are from the most up-to-date emission inventories e.g. 

the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Feng et al., 2020), and 

long-term, widely-used, robust estimates e.g. GFED version 4. (van der Werf et al., 

2017). The model simulation was run for 2010 and 2017, with a spin up period of 6 

months for each years. To match the MetOp-A daytime overpass time, the simulation 

was setup to be sampled daily at 9:30 am LST globally. 
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Type Description Reference 

Anthropogenic  NOx, CO 

& VOCs 

The Coupled Model 

Intercomparison Project Phase 6 

(CMIP6).   

(Feng et al., 2020).  

Butane 

(C4H10) 

The Streets v1.2 inventory. (Monks et al., 

2017) 

CH4 Emission Database for Global 

Atmospheric Research (EDGAR) 

v4.2 inventory. 

(Olivier et al., 

2012) 

Natural  

(soils/ 

oceans) 

NOx, CO 

& VOCs 

The project ‘Precursors of Ozone 

and their Effect on the 

Troposphere’ (POET). 

(Olivier et al., 

2003; Granier et 

al., 2005) 

CH4 Soil sink flux comes from the Soil 

Methanotrophy Model (MeMo).  

Wetland emissions from the 

Joint UK Land Environment 

Simulator (JULES).  

(Murguia-Flores et 

al., 2018) 

 

(Clark et al., 2011) 

C4H10 MACCity (Monks et al., 

2017) 

Biogenic CO & 

VOCs 

The Chemistry-Climate Model 

Initiative (CCMI). These 

emissions are fixed annually. 

(Morgenstern et 

al., 2017) 

Aircraft  NOx  Based on estimated aircraft 

movements in 2002 produced for 

the European QUANTIFY 

project.  

(Lamarque et al., 

2010) 

(http://www.pa.op. 

dlr.de/quantify/) 

Biomass 

burning 

NOx, CO 

& VOCs 

The Global Fire Emissions 

Database (GFED) version 4. 

(van der Werf et 

al., 2017) 

CH4 scaling  Volume mixing ratio scaled to a best 

estimate based on the globally averaged 

surface CH4 volume mixing ratio from NOAA 

for each year. 

(Dlugokencky, 

2020) 

Aerosols SO2, BC 

& OC 

MACCity (Granier et al., 

2011) 

Table 4.3: Summary of the surface emissions used in the TOMCAT simulation in 
this chapter.  
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4.3.6 ATom aircraft data 

In this chapter, ATom measurements of OH, OHR, O3, CO, CH4, H2O and j1 are used 

from all four campaigns, filtered for 08:00–11:00 LST, to compare with the 09:30 MetOp-

A overpass time. A pressure range of 600–700 hPa is also selected, where the S-SSA 

agrees best with the full chemistry model. As in Travis et al. (2020), the measurements 

are filtered to remove those strongly influenced by extreme events e.g. stratospheric air 

(O3/CO > 1.25) or biomass burning (acetonitrile concentration > 200 ppt). Therefore the 

measurements used here are more representative of the average tropospheric 

compositive, not extreme events. The measurements used here were merged into two-

minute sampling intervals by Wofsy et al. (2018). The instruments used to measure the 

noted species in ATom and the uncertainties of these measurements are shown in Table 

4.4.  

Species Instrument Uncertainty 

OH ATHOS (Faloona et al., 2004; Brune et 

al., 2020) 

± 35% (2σ confidence level), 

limit of detection - 0.018 pptv 

OHR ATHOS (Faloona et al., 2004; Brune et 

al., 2020) 

± 0.8 s-1 (2σ confidence level) 

CH4 NOAA Picarro (Karion et al., 2013) ± 0.7 ppbv 

CO NOAA Picarro (Karion et al., 2013) ± 8.9 ppbv 

H2O Diode laser hygrometer (DLH) (Podolske 

et al., 2003) 

± 5% 

O3 NOAA-NOy O3 (Ryerson et al., 2000) ± 2.0 ppb 

j1 CCD Actinic Flux Spectroradiometers 

(CAFS) (Shetter and Müller, 1999) 

± 20% 

Table 4.4: Table of instruments and associated uncertainties of the relevant ATom 
measurements (Wofsy et al., 2018). 

4.3.7  Comparison metrics 

For the comparison of OH datasets e.g. satellite-derived, modelled, aircraft, mean bias 

(MB) and NMB are calculated using Equations 4.4 and 4.5:  

MB =  
1

𝑁
∑(𝑥 − 𝑦) Equation 4.4 

NMB =  
∑(𝑥 − 𝑦)

∑ 𝑦
 × 100 Equation 4.5 

where 𝑥 is one dataset (usually the observations), 𝑦 is the other dataset (usually the 

model) and 𝑁 is the number of data points.  
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4.4 Results & discussion 

4.4.1 Application of the simplified steady-state approximation to model 

data 

Initially, TOMCAT model data of O3, CO, CH4 and H2O was applied to the S-SSA to 

assess how well S-SSA OH represents the model OH in different regions of the 

atmosphere. A zonal mean comparison between the TOMCAT OH and the TOMCAT S-

SSA OH is shown in Figure 4.5. Broadly, the agreement is best between 400 – 800 hPa, 

with an overestimation in the TOMAT S-SSA OH at the surface, and an underestimation 

higher up in the atmosphere. Average differences across these regions for January and 

June are shown in Table 4.5. At pressures <400 hPa, the average differences are very 

large (~85%), with a large underestimation from TOMCAT S-SSA OH. Nearer the 

surface, at pressures > 800 hPa the average across the region is much smaller (~2%/6% 

for Jan/Jun), however, in a latitude-longitude plot (Appendix E/Figure E.1) there are large 

differences which aren’t represented in the zonal mean plot (Figure 4.4) and the 

averaged [OH] for the pressure region. Also, in the BL there is complex OH chemistry, 

with more source and sink terms dominating, which is unlikely to be well represented by 

the simplified approximation used here. Therefore, the  investigation has been focused 

above the BL.  

The average difference between TOMCAT OH and TOMCAT S-SSA OH is ~34%/31% 

(Jan/Jun) for a mid-tropospheric region of 400 – 800 hPa. The peak grid-box values 

correspond well in this region, with peak values of 5.4 ×106 molecule cm-3 (Jan) and 7.3 

×106 molecule cm-3 (Jun) for TOMCAT S-SSA OH, and peak values of 5.6 ×106 molecule 

cm-3 (Jan) and 8.3 ×106 molecule cm-3 (Jun) for TOMCAT OH. Within this 400 – 800 hPa 

pressure region, the 600–700 hPa layer is further investigated, as it shows better 

agreement in the global mean and zonal mean structure than the wider pressure region 

(Table 4.5). There is smaller difference of ~ 31%/26% (Jan/Jun) for a pressure layer of 

600 – 700 hPa. This analysis was repeated with a TOMCAT simulation for another year, 

2017. Results from 2017, for the analysis here and also following sections, are shown in 

Appendix F. In 2017, a similar result to 2010 was found, with an agreement of ~ 31%/27% 

(Jan/Jun) for the 600 – 700 hPa pressure layer (Figure F.1).  

Therefore, for the following analysis, the pressure region 600–700 hPa was selected for 

investigation due to the good agreement between TOMCAT S-SSA OH and TOMCAT 

OH. In the 600 – 700 hPa region, OH contributes to ~15% of the tropospheric OH burden. 

From diagnosis of the model output, influence of OH in this region to CH4 oxidation is 

slightly higher, contributing to ~19% of CH4-loss-weighted OH. Across the broader 

pressure region of 400 – 800 hPa, OH contributes to ~ 51% of the tropospheric OH 

burden and ~ 60% of the CH4-loss-weighted burden.  
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Figure 4.5: (a) TOMCAT OH in January 2010, (b) TOMCAT S-SSA OH in January 
2010, (c) TOMCAT OH in June 2010, (d) TOMCAT S-SSA OH in June 2010. The 
dashed lines represent the proposed area of best agreement (600–700 hPa). The 
numbers on the right edge of each plot represent the mass-weighted mean OH of 
the pressure region shown by the dotted lines (from top to bottom): < 400 hPa, 400 
– 800 hPa, 600 – 700 hPa (blue) and 800 hPa – surface. All units are in ×106 molecule 
cm-3. See Appendix F for 2017.  

 S-SSA OH average – TOMCAT OH average  

(×106 molecule cm-3) 

Pressure range January June 

< 400 hPa -2.48 (-86%) -2.71 (-85%) 

400 – 800 hPa -0.86 (-34%) -1.01 (-31%) 

> 800 hPa -0.08 (-6%) -0.24 (-2%) 

600 – 700 hPa -0.86 (-31%) -0.96 (-26%) 

Table 4.5: Comparison of mass-weighted global mean TOMCAT OH and TOMCAT 
S-SSA OH for different pressure ranges. Percentage difference relative to the 
TOMCAT OH mean given in brackets.   

For the selected mid-tropospheric layer of best agreement (600 – 700 hPa), Figure 4.6 

highlights the spatial differences between TOMCAT OH and TOMCAT S-SSA OH. For 

January, the TOMCAT S-SSA underestimates OH by up to ~2 ×106 molecule cm-3 across 

the NH and areas of the oceans in the SH, predominantly between the equator and 30°S, 
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e.g. over the Atlantic and the edges of the Pacific. The TOMCAT S-SSA overestimates 

OH by up to ~2 ×106 molecule cm-3 across areas of the SH continents, e.g. South 

America, and by up to ~1 ×106 molecule cm-3 across the Indian Ocean and centre of the 

Pacific Ocean. The peak values seen across the SE Indian Ocean and southern African 

continent agree well. For June, TOMCAT S-SSA underestimates OH across areas of the 

NH continent, e.g. by up to ~4 ×106 across the northern African continent and China. 

There is a small overestimate of ~1 ×106 across the landmasses near the equator. There 

is a good agreement around the NH oceans, between the equator and 30°N. Overall, the 

best spatial agreement between TOMCAT S-SSA OH and TOMCAT OH is around the 

equator, although this varies on the season. For peak values, these are found mostly in 

the same locations, however, the TOMCAT S-SSA produces a peak value underestimate 

compared to TOMCAT.  

As the S-SSA is very simple, a poor agreement between the S-SSA and TOMCAT full-

chemistry OH is likely due to omission of source or sink species in that region. This is 

especially true here, when comparing TOMCAT input species in the S-SSA with 

TOMCAT modelled OH, as the input species fields are consistent with the model (i.e. 

same meteorology/temperature). The relative impact of different source and sink terms 

to the agreement are discussed in the following section.  

 

Figure 4.6: [OH] averaged over the 600-700 hPa range for (a) TOMCAT, (b) TOMCAT 
S-SSA and (c) the difference (TOMCAT S-SSA subtract TOMCAT) for January 2010. 
Panels (d)-(f) represent comparisons for June 2010. All values are in units of ×106 
molecule cm-3. 
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4.4.2 Reactions omitted from the simplified steady-state approximation 

This chapter aims to derive information about [OH] from satellite data. Therefore, several 

source and sink reactions that could be important to OH chemistry, which don’t have 

satellite retrievals available, have been omitted from the S-SSA. To analyse how 

important the other source and sink terms are in different pressure regions, TOMCAT 

data of the relevant species has been applied to a more complex steady-state 

approximation, Sav-SSA (Appendix A/Table A.1), which showed a good agreement to 

the full model OH in most regions of the atmosphere. Latitude-averaged total source 

term and percentage contribution to the total source term are shown in Figure 4.7 for 

January 2010 (Appendix G, Figure G.1, for June 2010). Higher up in the atmosphere, at 

pressures < 400 hPa, the reaction of NO and HO2 (Equation 4.6), dominates the total 

source term, so is an important missing source reaction here. 

HO2  +  NO →  OH + NO2 Equation 4.6 

Although OH and HO2 are very closely linked in chemical cycles, this is not represented 

in the S-SSA. Not including this source term in the S-SSA is causing the poor agreement 

seen at pressures < 400 hPa  (Figure 4.5).  

In the pressure layer of interest here (600 – 700 hPa), the NO + HO2 source term is 

approximately the second most dominant source term, after O3 photolysis (Figure 4.7). 

In regions where NO + HO2 shows a large percentage contribution to the total source 

term, it is likely that the S-SSA is not sufficiently capturing the important OH chemistry. 

The regional impact of this important source term in the 600 – 700 hPa pressure layer to 

the total production term of the Sav-SSA is shown in Figure 4.8. In January, the NO + 

HO2 source term shows a very large percentage contribution between 30°N and 60°N 

(of up to 100%). However, it should be noted that the [OH] is very low there and therefore 

this is relatively unimportant. For latitudes below 30°N, the spatial pattern of NO + HO2 

contribution is similar to the spatial pattern of negative differences between S-SSA [OH] 

and TOMCAT [OH] (Figure 4.6(c)), e.g. across the NH and in the SH Atlantic and Pacific 

Ocean next to South America. This indicates that an improvement in agreement could 

be achieved in these regions by adding this additional source term. In June, across the 

SH (~ 60°S to the equator) the NO + HO2 source term show a large percentage 

contribution. As with January, this is where [OH] is low, so is relatively unimportant. In 

the NH, the NO + HO2 source term makes a larger contribution over land, compared to 

the oceans. Over the oceans around the equator, there is a very low contribution, which 

corresponds to the good agreement of TOMCAT S-SSA [OH] and TOMCAT [OH] (Figure 

4.6(f)).  
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Figure 4.7: January 2010 latitude averaged (a) total Sav-SSA source term and (b) 
– (f) the different source terms as a percentage contribution of the total source 
term. The individual source terms are: (b) photolysis of O3 to form O(1D) which 
reacts with H2O for form OH, (c) reaction of NO + HO2, (d) reaction of HO2 + O3, (e) 
photolysis of H2O2 and (f) photolysis of CH3OOH. The data is presented from 90°S–
60°N due to polar night at latitudes >60°N  during January. Note the differing scales 
on the panels. See Figure G.1  (Appendix G) for June 2010.  
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Figure 4.8: (a) Total production term for Sav-SSA in January 2010 with units of 
×105 molecule cm-3 s-1, (b) percentage contribution of the NO + HO2 source reaction 
to the total production term of Sav-SSA in January 2010. Panels (c) and (d) are 
repeated for June 2010. All panels show the average across the 600-700 hPa 
pressure region.  

Additional NOx terms (1 source and 2 sinks) were added into the S-SSA approximation 

using TOMCAT data for January 2010 (Figure 4.9, Appendix G/Figure G.2 for June 

2010). The additional terms are shown in Equations 4.6 - 4.8: 

NO2 +  OH +  M →  HONO2  +  M Equation 4.7 

NO +  OH +  M →  HONO +  M 
Equation 4.8 

Therefore the S-SSA with NOx (S-SSA-NOx) is as shown in Equation 4.9: 

[OH]steady−state =  
(

2j1k1[O3][H2O]

k2[N2]+ k3[O2]+k1[H2O]
)+ k7[NO][HO2]

    k4[CH4]+ k5[CO]+k6[O3]+ k8[NO2] + k9[NO]
  Equation 4.9 

where 𝑘7, 𝑘8 and 𝑘9 are the reaction rate constants for Equations 4.6, 4.7 and 4.8 

respectively (Monks et al., 2017).  

In January, S-SSA-NOx produces an overestimate of ~0 – 5 ×106 molecule cm-3 in some 

regions in comparison to TOMCAT (Figure 4.9). There is a similar overestimate for June 

2010, with values in the range of ~0 – 8 ×106 molecule cm-3 (Figure G.2). There are also 
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some regions where adding the NOx terms improves the comparison to TOMCAT, for 

example, it reduces the underestimate found in S-SSA in the NH in January and in the 

SH in June. For example, the maximum grid-box underestimate in January is reduced 

from 4.4 ×106 molecule cm-3 to 0.4 ×106 molecule cm-3. This is likely due to the large % 

contribution of this source term in NH in January and in SH in June (Figure 4.8). 

 

Figure 4.9: Comparison of [OH] for January 2010. (a) TOMCAT [OH], (b) S-SSA 
[OH], (c) S-SSA with NOx sources/sinks (NO + HO2, NO + OH + M, NO2 + OH + M), 
(d) difference between S-SSA [OH] and TOMCAT [OH] and (e) difference between 
S-SSA [OH] with NOx sources/sinks and TOMCAT [OH]. All values are averaged for 
the 600-700 hPa pressure region. See Figure G.2  (Appendix G) for June 2010.  

As demonstrated, the NOx reactions are important for OH chemistry in some regions, 

with NO + HO2 a key source reaction (Figures 4.8 and 4.9). However, with an aim to 

derive [OH] from satellite, we cannot include these species currently, as there are no 

satellite observations of NO or HO2 that would be appropriate to use in the method e.g. 

in the relevant pressure range, although this could potentially be derived from column 

data. This is a potential area of further study as co-located tropospheric NO2 satellite 

data from another instrument on MetOp-A, GOME-2 (Munro et al., 2016), exists. 

However, this would require an additional method e.g. using a steady-state 

approximation to derive NO, and a method to derive HO2.  

For sink terms, the total sink term of the Sav-SSA and the relative contribution of the 

individual sink terms to this total is shown in Figure 4.10. In the region of interest, the 

combination of CO, CH4 and O3 dominates the total sink term for the mid troposphere 

layer of interest and above (Figure 4.10(a)). However, at pressures > 800 hPa, there are 

some other sink terms, which combined are causing up to ~ 70% of the total sink term. 
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These sink species include NO2, dimethyl sulphide (DMS), hydrogen (H2), hydrogen 

peroxide (H2O2), NO, SO2, HCHO and a combination of hydrocarbons (e.g. alkanes and 

alkenes). These missing sink terms could explain the overestimate seen at pressures > 

800 hPa in January (Figure 4.5).  

 

Figure 4.10: January 2010 latitude averaged (a) total Sav-SSA sink term and (b) – 
(n) the different sink terms as a % of the total sink term. The individual sink terms 
are: b) CO, (c) O3, (d) CH4, (e) NO2, (f) sum of hydrocarbons (C2H4, C2H6, C3H6, C3H8, 
C5H8, C4H10), (g) dimethyl sulfide (DMS), (h) H2O2, (i) CH3OOH, (j) H2, (k) NO, (l) SO2, 
(m) HCHO and (n) sum of CO, O3 and CH4 (total sink term for S-SSA/Equation 
4.2).The data is presented from 90°S–60°N due to polar night at latitudes >60°N 
during January. Note the differing scales on the panels. See Figure G.3 (Appendix 
G) for June 2010. 

The regional relative contribution of two of the larger sink species, the sum of 

hydrocarbons and formaldehyde (HCHO), across 600 – 700 hPa, are investigated further 

(Figure 4.11). Within the sum of the hydrocarbons, the dominant sink term is from the 

reaction of OH with isoprene (C5H8). Figure 4.11 shows that isoprene has a large 

contribution to the total sink term across South America and Indonesia in both January 

and June. There are regions where the S-SSA overestimates TOMCAT OH (Figure 4.6), 

which corresponds closely to these regions with a large sink contribution from isoprene. 

This indicates that the lack of the isoprene sink term in the S-SSA is causing the 

overestimation seen in this region. Therefore, in these regions, the S-SSA cannot 

capture the OH chemistry sufficiently. The HCHO contribution is more diffuse, 

representing ~10% of the total sink term in both January and June.  
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Figure 4.11: (a) Total sink term for Sav-SSA in January 2010 with units of s-1, (b) 
percentage contribution of the OH + C5H8 term to the total sink term in Sav-SSA 
for January 2010, (c) percentage contribution of the OH + HCHO term to the total 
sink term in Sav-SSA for January 2010. Panels (d) to (e) are repeated for June 2010. 
The percentage range for the panel colour bar is labelled (e.g. 0-40%).  

As with the missing source terms, adding these additional sink terms could improve the 

accuracy of the S-SSA in relation to modelled OH e.g. TOMCAT. Again, there are issues 

with available satellite retrievals for these species that would be appropriate to use in the 

method. GOME-2 (aboard MetOp-A with IASI) can provide tropospheric columns of NO2 

and other species e.g. HCHO, SO2, which could potentially be used. For most of the 

other species, satellite data is not available, either in the relevant pressure region or on 

a similar/co-located instrument. Using data from different instruments also introduces 

problems, such as how to combine observations with different vertical resolutions or 

overpass times.  

Overall, these missing source and sink terms should be considered when interpreting 

the results from the S-SSA. As shown here, the relative contribution of different source 

and sink terms varies both spatially and seasonally.  

4.4.3 Application of the simplified steady-state approximation to satellite 

data 

Satellite-retrieved O3, CO, CH4 and H2O and model j1 are applied to the S-SSA (Equation 

4.2) as described in Section 4.3.2. The global satellite-derived mass-weighted monthly 

average [OH] in 2010 (600 – 700 hPa) ranges from 2.1 ×106 molecule cm-3 in January to 

2.9 ×106 molecule cm-3 in July (Figure 4.12). Similar values are found for 2017, ranging 

from 2.0 ×106 molecule cm-3 in December to 2.8 ×106 molecule cm-3 in July (Appendix 

F/Figure F.2). There is seasonal OH variation, with the higher [OH] values (> 5.0 ×106 

molecule cm-3) predominantly in the SH in ~ December – February (SH summers), with 

a maximum grid-box value of 10.6 ×106 molecule cm-3 (Figure 4.12). These larger [OH] 

move to the tropics (30°S – 30°N) between ~ March – May, with a maximum grid-box 
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value of 10.9 ×106 molecule cm-3. The higher [OH] are present in the NH in ~ June – 

August (NH summer) with a maximum grid-box value of 28.1 ×106 molecule cm-3. Lastly, 

the larger [OH] are present around the tropics again in ~ September – November, with a 

maximum grid-box value of 11.4 ×106 molecule cm-3.  

Monthly averages of TOMCAT, TOMCAT FC-SSA, TOMCAT S-SSA and satellite S-SSA 

[OH] for the 600 – 700 hPa pressure layer in January and June are compared (Figure 

4.13). Overall the spatial pattern is very similar between the 4 estimates of OH 

distribution. TOMCAT FC-SSA shows a very good agreement with TOMCAT for [OH] 

global averages, with an underestimate of < 6%. This highlights that using a steady-state 

approximation to calculate OH matches well with the numerical integration scheme inside 

the model. Therefore, when a comprehensive number of source and sink terms are 

included, the resulting [OH] is accurate compared to modelled OH.  

Between TOMCAT OH and satellite S-SSA OH, there is reasonable agreement in both 

January and June 2010 (Figure 4.13). In January both estimates have comparable 

locations of peak values, e.g. over north-western Australia and southern Africa. TOMCAT 

has a maximum grid-box value of 9.7 ×106 molecule cm-3 and the satellite S-SSA has a 

maximum grid-box value of 10.3 ×106 molecule cm-3. The global average values are 2.85 

×106 and 2.21 ×106 molecule cm-3 for TOMCAT and the satellite S-SSA respectively, 

showing a difference of ~22%. In June, there are comparable peak value locations in 

both estimates over southern Asia and northern Africa. The global average values are 

3.80 ×106 and 2.73 ×106 molecule cm-3 for TOMCAT and the satellite S-SSA 

respectively, showing a difference of ~28%. Despite broadly good agreement, one area 

of poor agreement in June are the peak values seen over North America in TOMCAT, 

which are not seen in the satellite S-SSA. Across all the months of 2010 (Jan – Dec), the 

difference in global weighted mean varies between 20% – 30%, with the largest 

difference in April and the lowest in July. Between all grid-boxes of TOMCAT and the 

satellite S-SSA [OH] in January and June 2010, there is a Pearson’s correlation 

coefficient value of 0.85 and 0.83 for January and June, respectively, and a NMB of 24% 

and 32%, respectively (Figure 4.14). The difference between TOMCAT S-SSA and 

satellite S-SSA global average OH is ~ 10% in January and ~ 3% in June, suggesting 

that the input species in the S-SSA show a good agreement between TOMCAT and the 

satellite.  

Overall, applying satellite data to the S-SSA can successfully produce a reasonable 

agreement with TOMCAT OH, showing a good spatial comparison and a global average 

underestimate of around 20% – 30% (Figure 4.13). 2017 shows similar results (Appendix 

F/Figure F.3), with a global underestimate for the satellite S-SSA of 21% in January and 

28% in June.  

To place these results in the context of previous studies, the airmass-weighted average 

has been calculated (Lawrence et al., 2001), to compare with other datasets (e.g. some 

of those in Figure 3.7 from Rowlinson et al. (2019)). The best pressure region for which 

to compare the satellite S-SSA OH is the 500 – 750 hPa layer, as this is closest to the 
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600 – 700 hPa layer used here (Table 4.6). However, there are several differences 

between the datasets which are likely to cause large variations, e.g. Spivakovsky et al. 

(2000) and Rowlinson et al. (2019) represent averages across both daytime and 

nighttime, whereas the [OH] in this work are for 9:30, which impacts the key OH source 

from O3 photolysis. Also, Spivakovsky et al. (2000) represents a climatology and 

Rowlinson et al. (2019) represents the year 2000, whereas the [OH] in this work is for 

2010. Aside from the NH latitudes above 30°N, the [OH] in this work (both S-SSA and 

TOMCAT full model) are higher than the other estimates, which is consistent with these 

estimates being for mid-morning, so will have more average O3 photolysis than the times 

in the other studies e.g. overnight. In the NH, at latitudes between 30°N – 90°N, the 

average [OH] in the S-SSA is much lower than the other methods. This may be explained 

by 9:30 LST being during the nighttime in the NH high latitudes during winter, which 

would reduce O3 photolysis, compared to a daily average.  

 

Figure 4.12: Global satellite-derived OH (S-SSA) in units of ×106 molecule cm-3 for 
each month of 2010. Mass-weighted global monthly means are presented above 
each panel. See Figure F.2 (Appendix F) for 2017. 
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Figure 4.13: (a) TOMCAT OH in January 2010, (b) repeated for June 2010, (c) 
TOMCAT FC-SSA OH in January 2010, (d) repeated for June 2010, (e) TOMCAT S-
SSA OH in January 2010, (f) repeated for June 2010, (g) satellite S-SSA in January 
2010, (h) repeated for June 2010. All averaged across the 600 – 700 hPa pressure 
layer. Global average OH values for the selected pressure layer are given below 
each panel in units of ×106 molecule cm-3. See Figure F.3 (Appendix F) for 2017.  



83 
 

 

Figure 4.14: Scatterplot of the [OH] for all grid-boxes from the satellite S-SSA in 
comparison with TOMCAT full model for January (left panel) and June (right panel) 
2010. Units of ×106 molecule cm-3. MB represents the mean bias (satellite – 
TOMCAT) and NMB represents the normalised mean bias (normalised relative to 
TOMCAT).  

Dataset 90°S – 30°S 30°S – Eq Eq – 30°N 30°N – 90°N 

Satellite S-SSA [OH] (~9:30) 1.23 4.01 2.05 0.05 

TOMCAT S-SSA [OH] (~9:30) 1.49 3.40 1.96 0.08 

TOMCAT [OH] (~9:30) 2.54 4.49 3.26 0.52 

Spivakovsky et al. (2000) 0.72 2.00 1.99 0.88 

Rowlinson et al. (2019) TOMCAT 0.51 1.54 2.05 0.93 

Table 4.6: Annual zonal airmass-weighted averages for the 500 – 750 hPa pressure 
layer from this study (satellite S-SSA, TOMCAT S-SSA and TOMCAT full model 
[OH]) and the Spivakovsky et al. (2000) climatology based on MCF observations 
and TOMCAT [OH] from another study, Rowlinson et al. (2019) (Figure 3.7). The 
Rowlinson et al. (2019) TOMCAT is based on 6-hourly output (rather than sampling 
based on a 9:30 satellite overpass time). All in units of ×106 molecule cm-3.  

4.4.4 Application of the simplified steady-state approximation to aircraft 

data 

There are limited direct measurements of OH in the free troposphere for which to assess 

the method developed in this chapter against, however, one example is the ATom aircraft 

mission which measured a wide spatial area and across difference seasons. ATom 

measurements of CH4, CO, O3, H2O and j1 across the 4 campaigns are applied to the S-

SSA, calculating OH (OH-calc) and compared to measurements of OH by the ATHOS 

instrument (OH-obvs) (Figure 4.15). After filtering, 174 sets of measurements were used 

in the [OH] calculations (35/34/38/67 for A1/2/3/4 respectively) for 600 – 700 hPa. 

Combining all 4 campaigns, shows that the S-SSA underestimates the measured OH by 

~ 0.82 ×106 molecule cm-3 or ~25.8 %. The NMB varies between 21.1% - 25.2% (0.55 – 

1.28 ×106 molecule cm-3) for ATom-1,3 and 4, with a much higher NMB of 48.8% (0.86 

×106 molecule cm-3) for ATom-2. This NMB is smaller than the uncertainty of the OH 
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measurements, which is ~35 % (Brune et al., 2019). Although ATom-2 shows a higher 

percentage difference, the absolute average difference value is more similar to the other 

campaigns (0.86 ×106 molecule cm-3). OH-calc and OH-obvs are well correlated, with a 

correlation coefficient of 0.78 for the combined record (ranging from 0.56 to 0.86). 

As stated above, the average difference between OH-obvs and OH-calc is ~26%, which 

is in a similar order of magnitude to the large uncertainty of 35% for the OH 

measurements from the ATHOS instrument. Despite the large scale of the ATom 

campaign, it provides only a limited spatial and temporal comparison for which to assess 

the S-SSA methodology, which is a limitation that must be considered. As the difference 

between OH-obvs and OH-calc is within the large measurement error and considering 

the limited spatiotemporal comparison, the datasets are sufficiently correlated to justify 

further study and use of the S-SSA in the 600 – 700 hPa pressure layer.  

 

Figure 4.15: Left panel – Combination of the 4 ATom campaigns. Right 4 panels – 
individual ATom campaigns (labelled). Comparison of OH-calc and OH-obvs, both 
from ATom. ATom observations are filtered for 600 – 700 hPa and 08:00 – 11:00 
LT. Orange data points are excluded as either below the limit of detection (0.018 
pptv / 0.31 ×106 molecule cm-3) or as an outlier (> mean + 3.0 standard deviations). 
Displayed at the top of each panel is: the Pearson’s correlation coefficient (r); the 
MB (OH-calc subtract OH-obvs); and the NMB (% with respect to OH-obvs)  

In consideration of the impact of the spatial region on the comparison, higher [OH] is 

found near the equator, aside from some exceptions, e.g. around 45°N in ATom-1 or 

around 30°S in ATom-2 (Figure 4.16). For most latitudes OH-obvs is larger than OH-

calc, aside from some exceptions in ATom-2 and ATom-4, with the differences ranging 

from -9.7 ×106 molecule cm-3 to 4.1 ×106 molecule cm-3. Broadly, the differences are 

smallest in the SH (90°S – 30°S) and around the equator (30°S – 30°N). The small 

differences in the SH are mostly due to the lower values here, suggesting that the small 

differences around the equator indicate good agreement here despite larger [OH]. The 

largest differences are found in the NH, where several outlier [OH] are found. 
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Figure 4.16: Left panels – latitude-averaged ATom OH (pptv) for the 4 ATom 
campaigns (labelled). Includes error bars of 35%. Right panels – latitude-averaged 
OH difference between OH-calc and OH-obvs for the 4 ATom campaigns. The mean 
difference is labelled for 3 different regions of latitude. The regions are 90°S – 30°S, 
30°S – 30°N and 30°N – 90°N. Units are ×106 molecule cm-3. 

To compare satellite S-SSA (OH-sat) and ATom OH-obvs, OH-obvs has been overlayed 

onto a base map of the satellite-derived OH (Figure 4.17), which has been averaged 

across the days for each ATom campaign in 2017 (~ 1 month per campaign), as it is 

more representative of the actual time period of ATom (2016 – 2018) than 2010. Overall, 

the comparison is challenging due to the sparsity of ATom measurement points 

compared to the satellite [OH] field, and also the difference in years for ATom-1 (2016) 

and ATom-4 (2018). The agreement between OH-sat and OH-obvs is mixed, with some 

areas of good agreement. Examples of good agreement include: peak [OH] regions e.g. 

in ATom-1 off the western coast of Mexico (equator - 30°N); and good agreement in low 

[OH] regions, e.g. over the North Atlantic ocean in ATom-2. There are also areas of poor 

agreement, e.g. high OH-obvs near Alaska and low values in the OH-sat in ATom-3 and 

4. OH-sat is an underestimate for OH-obvs, with a NMB (for nearest satellite grid-box) 

ranging from -35.1% to -60.1. The Pearson’s correlation coefficient varies from 0.15 to 

0.75. Overall, as stated above, the resolution and temporal differences between the two 

records may contribute to the poor agreement.  
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Figure 4.17: Satellite S-SSA OH for 4 time periods averaged for the days of the 4 
ATom campaigns (ATom: 2016 – 2018, satellite: 2017), for the 600 – 700 hPa layer 
(A1 represents ATom-1 etc.). The ATom OH measurements (OH-obvs) are 
overlayed onto the top of the satellite map as coloured circles (both using the 
same colour bar). Displayed at the bottom of each panel is: the Pearson’s 
correlation coefficient (r), MB (nearest satellite grid cell subtract OH-obvs) and the 
NMB (% wrt OH-obvs).  

To further assess the impact of latitude on the OH-sat and ATom OH-obvs, the 

comparison of OH-sat and OH-obvs is differentiated by latitude, highlighting that the 

differences are larger at the higher NH latitudes (e.g. 30°N – 90°N) (Figure 4.18). 

Therefore, the statistics for all latitudes, 30°N – 90°N and 90°S – 30°N are presented. 

Across all 3 latitude ranges the correlation coefficient is similar (0.55, 0.67, 0.61 

respectively). However, the average difference is much higher at the higher NH latitudes, 

with a 74% underestimate (of OH-sat wrt OH-obvs), compared to only a 12% 

underestimate for the 90°S-30°N latitude range. As shown in Section 4.4.2, the OH 

source reaction of HO2 + NO represents a larger contribution to the total production in 

the NH high latitudes in winter (~ ATom-2,3,4). This could be the cause of the poor 

agreement at NH high latitudes, as the S-SSA may not be able to provide enough 

information about the chemistry of OH to provide an accurate representation.  
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Figure 4.18: Left panel – Combination of the 4 ATom campaigns. Right 4 panels – 
individual ATom campaigns (A1 represents ATom-1 etc.). Comparison of OH-obvs 
and satellite S-SSA (using the nearest satellite [OH] to ATom measurement - from 
the averaged 2017 satellite OH grid (OH-sat)). ATom observations are filtered for 
600–700 hPa and 08:00–11:00 LST. The datapoints are coloured by latitude, as 
shown on the colour bar. Orange data points are excluded as either below the limit 
of detection (0.018 pptv / 0.31 ×106 molecule cm-3) or as an outlier (> mean + 3.0 
standard deviations). Displayed below each panel is: the Pearson’s correlation 
coefficient (r); the MB (calculated from OH-sat – OH-obvs); and the NMB (% with 
respect to OH-obvs). These values (for all latitudes) are repeated for 2 additional 
latitude ranges: 90°S–30°N and 30°N–90°N.  

4.4.5 Impact of omitted source terms using aircraft data 

NOx has been shown to be an important source of OH across some global regions. Here, 

the impact of adding in NOx reactions to the S-SSA when applied to the ATom data is 

compared (Figure 4.19). The comparison is between OH-calc, and OH-calc using the S-

SSA including 3 NOx reactions (Equations 4.6 - 4.8) as shown in Equation 4.9 (OH-calc-

NOx). Adding the additional 3 NOx terms does improve the overall agreement, by 

reducing the bias (relative to OH-obvs) from -20.6% to +13.2%. The change from a 

negative to positive difference is consistent with the comparison of S-SSA with and 

without NOx reactions using model data (Figure 4.9 and Appendix G/Figure G.2). 

However, the correlation remains very similar for both S-SSAs (r = 0.76/0.78). Overall, 

these results agree with those found in Section 4.4.2 that the NO + HO2 source term, not 

represented in the S-SSA, can make a large contribution to the total source term.  
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Figure 4.19: As Figure 4.15 but with the addition of OH-calc including 3 NOx 
reactions (NO + HO2, NO + OH + M, NO2 + OH + M) (OH-calc-NOx, red/circle). OH-
calc without the additional NOx reactions is shown in blue and as crosses. 
Statistics for OH-calc (left) and OH-calc-NOx (right) are displayed above each 
panel. The statistics for OH-calc differ compared to Figure 4.15 due to using only 
measurements which had NOx measurements available.  

4.4.6 Hydroxyl radical reactivity 

OHR measurements have the potential to be compared with the denominator of the S-

SSA expression (Equation 4.3). ATom OHR measurements (OHR-obvs) and OHR 

calculated using ATom measurements in Equation 4.3 (OHR-calc) are compared (Figure 

4.20), however, there are only a few available observations of OHR in the time period 

and pressure layer of interest (08:00–11:00 LST and 600–700 hPa), ranging from 11–17 

in total per campaign. Overall, across the 4 campaigns OHR-calc is an underestimate of 

-36.7%. This bias ranges between -57.6% and +20.1% for the individual campaigns. An 

overestimate is found for ATom-4, compared to an underestimate the other campaigns. 

OHR-obvs and OHR-calc are not well correlated (r = -0.02 for the combined record, 

ranges between -0.23 and +0.20 for the individual campaigns). However, the uncertainty 

of the OHR measurements is large (0.8 s-1) and 80% of calculated OHR values fell within 

the range of measurement uncertainty from OHR-obvs (dashed lines in Figure 4.20). 

Across the 4 campaigns, ~75 % of latitude-averaged OHR-calc values are within the 

large uncertainty of the latitude-averaged OHR-obvs (Figure 4.21). Broadly, the ~25 % 

exceptions occur in the NH. The largest difference is -1.6 s-1 in ATom-1, as well as one 

uncertainty exceedance in the SH with a difference of -2.9 s-1. 
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Figure 4.20: Left panel – Combination of the 4 ATom campaigns. Right 4 panels – 
individual ATom campaigns (A1 represents ATom-1 etc.). Comparison of OHR-
obvs and OHR-calc. The dashed lines represent the ± OHR uncertainty 
(corresponding to the ± 0.8 s-1 measurement uncertainty) and the dotted lines 
show the 1:1 line. ATom OHR measurements are filtered for 600–700 hPa and 
08:00–11:00 LST. 

Travis et al. (2020), studying ATom-1 and ATom-2, also found large differences between 

calculated OHR (from ATom measurements of other sink species) and OHR 

measurements. The difference was found in both the NH and SH, and ranged in altitude 

from ~4 km to surface for ATom-1, and ~3 km to the surface for ATom-2. The selected 

pressure range used in this chapter (600 – 700 hPa) equates to approximately 3 to 4 km 

altitude. Therefore, the finding of a better agreement in ATom-2 at this pressure/altitude 

region (NMB = -24% for ATom-2, NMB = -51% for ATom-1), is consistent with Travis et 

al. (2020). Generally, an underestimate of OHR measurements by calculated OHR is 

well-documented, and commonly known as “OH missing reactivity”. Here, we find an 

average “missing reactivity” of 0.34 s-1, with a peak value of 2.9 s-1. Thames et al. (2020) 

found similar “missing reactivity” values in the marine BL for ATom-1,2 and 3 which 

varied from 0 to 2.5 s-1, with an average of 0.5 s-1. 
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Figure 4.21: Left panels – latitude-averaged ATom OHR (s-1) for the 4 ATom 
campaigns (labelled). Includes error bars of ± 0.8 s-1. Right panels – latitude-
averaged OH difference between OH-calc and OH-obvs for the 4 ATom campaigns. 
The mean difference is labelled for 3 different regions of latitude. The regions are  
90°S–30°S, 30°S–30°N and 30°N–90°N. Units are ×106 molecule cm-3. 

4.4.7 Temporal variation in satellite-derived hydroxyl radical 

Satellite data for 2008 – 2017 is applied to the S-SSA to study the long-term change in 

[OH] that can be derived from this satellite-derived record. The IASI record differs from 

that used in this chapter so far for 2010/2017, as it is sub-sampled (temporally and 

spatially), however, the agreement between the sub-sampled and fully sampled data is 

very good, and therefore appropriate to use here (Figure 4.2). Across the 2008 – 2017 

satellite S-SSA record, a fixed year of model j1 (2010 - monthly varying) has been used. 

As this value is fixed, any potential influence due to variation in j1 e.g. from variation in 

stratospheric O3 overhead, which impacts the radiation reaching the troposphere as 

some UV radiation is absorbed by stratospheric O3, is removed. This should be 

considered when interpreting these results.  

The satellite S-SSA [OH] annual average has been calculated for 4 latitude regions 

(Figure 4.22). The 4 latitude regions are global (all latitudes), NH (equator – 90°N), SH 

(90°S – equator) and tropics (15°S – 15°N). As shown in the model and aircraft data, a 

region closer to the equator shows better agreement with measurements of OH in some 

cases. Therefore, a tropical region has been included in the analysis of OH temporal 

variation. Between 2008 – 2017, the global average varied between 2.1 – 2.3 ×106 

molecule cm-3, with an average of 2.2 ×106 molecule cm-3 for the time period, and the 
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tropical region varied between 4.1 – 4.8 ×106 molecule cm-3, with an average of 4.4 ×106 

molecule cm-3. The global [OH] anomaly across the time period ranges between -3.0% 

to +4.7% and the tropics anomaly ranges from around -6.9% to +7.7%, as shown in 

Figure 4.22.  

 

Figure 4.22: (a) Annual satellite-derived OH for 2008–2017 (pressure layer 600 – 
700 hPa) in units of ×106 molecule cm-3. (b) Annual percentage satellite OH 
anomaly relative to an annual average baseline (2008–2017). Annual timeseries are 
presented for all latitudes (global), equator – 90°N (NH), 90°S – equator (SH) and 
15°S – 15°N (tropics). 

Monthly average satellite S-SSA [OH] is higher in the tropics, decreasing towards the 

poles (Figures 4.23). The hemispheres show a seasonal cycle, with the highest values 

in their respective summers and lowest values in their respective winters. The monthly 

satellite OH anomaly varies between: -0.10 and +0.15 ×106 molecule cm-3 for the global 

average; -0.15 and +0.11×106 molecule cm-3 for the NH average; -0.21 and +0.21 ×106 

molecule cm-3 for the SH average; and -0.37 and +0.54 ×106 molecule cm-3 for the 

tropical average (Figure 4.24). Mostly, all 4 latitude bands follow a similar pattern. 

Notable positive anomalies (given here for the tropical band) occur in mid-2010 (+0.30 

×106 molecule cm-3), the end of 2012 and beginning of 2013 (+0.54 ×106 molecule cm-

3), mid-2015 (+0.15 ×106 molecule cm-3) and mid-2016 (+0.14 ×106 molecule cm-3). 

Notable negative anomalies occur in mid-2009 (-0.27 ×106 molecule cm-3), 2011 to mid-

2012 (-0.37 ×106 molecule cm-3), end of 2015 and beginning of 2016 (-0.21 ×106 

molecule cm-3) and the end of 2017 (-0.22 ×106 molecule cm-3). Monthly anomaly plots 

for temperature and the other satellite input species are shown in Appendix H (Figures 

H.1 – H.5).  
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In comparison with other studies of [OH] temporal variability, e.g. using MCF 

observations and CTMs, these values are similar. For example, Patra et al., 2021 found 

a range of ~ -6% to +6% in their global [OH] anomaly during the same time period 

(however, using a longer baseline). However, as this study is for a specific mid-

tropospheric pressure region, this cannot be a direct comparison.  

 

Figure 4.23: Monthly mean satellite OH for 2008–2017 (pressure layer 600 – 700 
hPa) for 15° latitude bands across the NH (top panel) and SH (bottom panel). The 
latitude bands are labelled at the top of both panels. Displayed on each panel are 
the global (solid black line) and hemispheric averages (dotted black line). Units of 
×106 molecule cm-3.  
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Figure 4.24: Monthly mean satellite OH anomaly for 2008–2017 (pressure layer 600 
– 700 hPa): (a) 15° latitude bins and (b) 3-month average for global (all latitudes), 
NH (equator – 90°N), SH (90°S – equator) and tropics (15°S – 15°N). Anomaly is 
relative to a monthly average baseline (2008–2017).  

To diagnose the relative variation of the components of the S-SSA from 2008 – 2017, 

the monthly variation of the 3 individual sink terms and the combined source term for the 

600 – 700 hPa pressure layer is derived (Figure 4.25). CO is the largest (and therefore 

dominant) sink term. Across the NH and SH averages, CO ranges between 0.20–0.45  

s-1. The next largest sink term is CH4, which varies between 0.10–0.15 s-1. The smallest 

sink term is O3, with is consistently around 0.04 s-1. As the CO sink term is much larger 

than the others, this indicates that any variation in CO will likely dominate the resulting 

variation in the total sink term. Across the record, the CO sink term is predominantly 

larger in the NH, compared to the SH, with differences of up to ~ 0.2 s-1, largest in the 

first half of the year. The NH/SH difference in the other two sink terms is negligible, 

therefore the CO sink term will contribute less to the total sink term in the SH, especially 

in the first half of the year. This is consistent with aircraft measurements below 3 km in 

Travis et al. (2020) and from free troposphere model data in Lelieveld et al. (2016). 

Despite a positive trend in satellite CH4 of 4.5 ppb yr-1 across this pressure range from 

2008 – 2017, when the rate constant is applied, the CH4 sink term doesn’t show any 

comparable variation on the scale of the CO sink, with no large positive trend that would 

impact the CH4 sink term (Figure 4.25). The source term varies from ~ 5 – 15 ×105 

molecule cm-3 s-1 for the global, NH and SH averages and from ~ 15 – 28 ×105 molecule 

cm-3 s-1 for the tropical band.  
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Figure 4.25: Monthly variation in the S-SSA components for 2008 – 2017. Global, 
NH, SH and tropical average time series for: (a) k6[O3], (b) k5[CO], (c) k4[CH4] and 
(d) 2j1k1[O3][H2O]/(k2[N2]+k3[O2]+k1[H2O]). 

Between 2008 – 2017, there are several notable positive [OH] anomalies: mid-2010; end 

of 2012/beginning of 2013; mid-2015 and mid-2016; which all coincide with positive 

source term anomalies, and small/near-zero anomalies in the sink terms (Figure 4.26.). 

The following notable negative [OH] anomalies: mid-2009; 2011 to mid-2012 and end of 

2017; all coincide with negative source term anomalies, and a small/near-zero anomaly 

in the sink term. For the negative anomalies at the end of 2015/beginning of 2016, they 

coincide with a very large positive sink term anomaly. This produces a negative anomaly, 

even though there is a large positive anomaly in the source term at the same time. The 

large sink term anomaly coincides with a very large positive anomaly in CO at most 

latitudes (Figure H.3), which is +12% averaged across all latitudes and +20% in the 

tropical region. In 2015 – 2016, there was an El Niño event, as shown by the positive 

values in the Multivariate ENSO Index (MEI.v2) (Figure 4.26(d)). This CO anomaly is 

likely caused by this El Niño event, due to a large increase in global fire emissions 

(Huijnen et al., 2016). The event started at the end of 2014, peaking towards the end of 

2015 and continuing to around half way through 2016 with a maximum MEI.v2 value of 

+2.2 (Figure 4.26(d)). In good agreement, Voulgarakis et al. (2015) also found that 

biomass burning was the key driver of CO and OH variability. Stevenson et al. (2020) 

found that a key driver of OH change since the 1980s were changes in anthropogenic 

emissions of CO, which agrees with the work here, but also of NOx, which is not 

represented here. If NOx could be added to the S-SSA, the approximation could be used 

to comment on the relative importance of NOx variation to OH variation. Another variable 
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not represented here is variation in j1, which could vary due to incoming solar radiation 

changes (clouds/stratospheric O3), which could likely have an impact on OH interannual 

variability. Nicely et al. (2018) found that several other factors were influencing [OH] 

temporal variation in opposing directions, as a positive trend in OH due to varying 

stratospheric O3, tropospheric H2O, NOx and Hadley cell expansion was equal to the 

negative trend in OH from increase CH4 concentrations between 1980 –2015, with little 

impact from varying temperature. Opposing factors could be influencing the [OH] here, 

which would require further investigation to diagnose.  

 

Figure 4.26: Monthly anomalies for 2008 – 2017. Global, NH, SH and tropical 
average time series for: (a) OH, (b) 2j1k1[O3][H2O]/(k2[N2]+k3[O2]+k1[H2O]) (total 
source term), (c) k4[CH4] + k5[CO] + k6[O3] (total sink term) and (d) Bimonthly 
Multivariate ENSO index (NOAA, 2021). Anomalies are relative to a monthly 
average baseline (2008–2017). 

As discussed, the source term is a key driver of [OH] variation in the S-SSA 

approximation. The source term has two satellite input species, O3 and H2O. To 

determine the relative importance of O3 and H2O to the source term, the source term 

calculation has been repeated with two scenarios, using either a fixed monthly value of 

O3 or H2O. The fixed values were calculated by averaging all years (2008 – 2017) for 
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each month. Figure 4.27(b) shows the fixed O3 (varying H2O) and Figure 4.27(c) shows 

the fixed H2O (varying O3). Depending on which scenario reproduces the original 

anomaly time series (Figure 4.27(a)) the best, it would indicate that the species varying 

in that scenario is more dominant in varying the S-SSA source term. The fixed H2O 

scenario reproduces the original source term better, explaining 66% of the variability 

(R2=0.66) globally and 60% in the tropics (R2=0.60). For the fixed O3 scenario, the R2 

value is lower (R2=0.16), explaining only 16% of the variability globally and 7% in the 

tropics (R2=0.07). Therefore, fixing the H2O has a much smaller impact than fixing the 

O3, in relation to the original source term. This highlights that variations in O3 are driving 

the source term. Broadly, interannual differences in tropospheric O3 are from variation in 

anthropogenic and natural surface emissions of precursor gases (NOx and VOCs), 

transport patterns of O3 within the troposphere, surface deposition, transport of O3 from 

the stratosphere and other meteorological factors e.g. temperature. Therefore, these are 

likely factors affecting long-term changes in the S-SSA [OH]. 

 

Figure 4.27: Monthly anomalies for 2008 – 2017. Global, NH, SH and tropical 
average time series for: (a) OH S-SSA source, (b) OH S-SSA source calculated with 
fixed monthly O3 concentrations (source fixed-O3) and (c) OH S-SSA source 
calculated with fixed monthly water vapour concentrations (source fixed-wv). 
Fixed O3/water vapour calculated as monthly average from 2008 – 2017. R2 value 
presented at the top of panels (b) and (c) for both the global and tropical latitude 
regions. All data is in units of ×105 molecule cm-3  s-1. 

4.5 Summary 

In this chapter, a novel method has been developed and evaluated, using satellite 

observations and a simple steady-state approximation, to estimate mid-tropospheric 
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[OH]. The method and results can complement existing methods to measure [OH] or 

infer [OH] indirectly, as current methods have limitations, such as the limited network of 

surface sites, infrequent flight campaigns and the MCF-type approach to estimate global 

mean [OH]. As demonstrated, the use of satellite data can provide enhanced spatio-

temporal information about the OH radical.   

Steady-state approximations can be used to estimate [OH], with accuracy varying with 

the complexity of the approximations, i.e. the number of source and sink terms included. 

Limiting the number of terms in the approximation also impacts the regions of the 

atmosphere where the expression is valid. The method was developed using TOMCAT 

simulation data. A simplified steady-state approximation (S-SSA) was applied to 

simulated O3, CO, H2O, CH4 and O3 photolysis rates from TOMCAT in 2010 and 2017. 

The best agreement between modelled and S-SSA derived [OH] was found in a mid-

tropospheric region broadly around 400 – 800 hPa (with the further focus on 600 – 700 

hPa). In the 600 – 700 hPa pressure region, the modelled [OH] was underestimated by 

the S-SSA by ~ 26% – 31% (mass-weighted global mean [OH]). There was a reduced 

agreement near the surface (pressures > 800 hPa) and higher up in the atmosphere 

(pressures < 400 hPa). Using more complex steady-state approximations showed that 

additional terms were important in these regions, for example the HCHO and isoprene 

were important sink terms near the surface, and the source term reaction of NO + HO2 

was important higher up in the atmosphere. NO + HO2 was also found to be regionally 

important in the mid-tropospheric pressure region of best agreement (600 – 700 hPa), 

showing a large contribution to the total source term in some regions e.g. 30°N – 60°N 

in January 2010. The S-SSA is not likely to sufficiently capture the important OH 

chemistry in these regions.  

Satellite retrievals of O3, CO, H2O and CH4 were successfully applied to the S-SSA in 

the 600 – 700 hPa pressure region, producing global [OH] distributions for all months of 

2010 and 2017. The satellite-derived OH showed a global average underestimation of 

22% in January 2010 and 28% in June 2010 compared to the modelled [OH], with similar 

results in 2017. To assess the method with respect to direct measurements of the free 

troposphere, measurements from the aircraft mission ATom were applied to the S-SSA 

in the 600 – 700 hPa pressure region, comparing the derived [OH] to direct [OH] 

measurements from the same mission. The aircraft-derived [OH] underestimated 

measured [OH] by an average of ~ 26%, however, the [OH] measurements have a large 

uncertainty of ~ 35%. Measurements of OH reactivity (OHR) from ATom in the 600–700 

hPa layer were used to compare with the denominator of the S-SSA expression. There 

were few values to compare, showing a bias of ~ -37%. However, ~80% of these 

comparisons did fall within the uncertainty of the OHR measurement instrument.  

Lastly, the S-SSA method was used to investigate the interannual variability of mid-

tropospheric [OH], utilising 10 years of satellite observations. Between 2008 – 2017, the 

global annual mean [OH] anomaly varied from -3.0% to +4.7%. The influence of 

important terms in the OH budget were presented, highlighting the balance between the 
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source and sink terms over time. Variation in the S-SSA [OH] was found to be determined 

primarily by the combined source term, driven by O3, and by the CO sink term. In the 

tropics, OH variation reflected that of O3 (peaks in 2008, 2010 and the largest in 2013) 

and CO (negative anomaly at the end of 2015/beginning of 2016). The positive CO 

anomaly coincided with a strong El Niño event in 2015/16.
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Chapter 5 Trends in European tropospheric ozone derived from 

satellite data  

5.1 Introduction 

Trends in satellite tropospheric O3 derived from different instruments have shown 

contrasting trends for some regions around the world, e.g. Europe. Gaudel et al. (2018) 

presented long-term trends for several satellite tropospheric column O3 products for 

different latitude bands (Figure 5.1). The products were OMI/MLS from NASA Goddard 

Space Flight Centre (GSFC), GOME & OMI from the Smithsonian Astrophysical 

Observatory (SAO - GOME_OMI), OMI from RAL (OMI-RAL), IASI from the Université 

Libre de Bruxelles and LATMOS/IPSL (IASI-FORLI) and IASI from CNRS (IASI-

SOFRID). In the most relevant band to Europe, 30°N – 60°N, the OMI product showed 

positive trends, with +0.16 DU year-1 (OMI/MLS, 2005 – 2016) and +0.13 DU year-1 

(GOME & OMI, 1996 – 2015). In contrast, the IASI-FORLI product showed a negative 

trend of -0.50 DU year-1 (2008 – 2016). The OMI-RAL product (2005 – 2015) and IASI-

SOFRID (2008 – 2015) product showed small near-zero trends of +0.03 DU year-1 and -

0.03 DU year-1, respectively. This chapter aims to explore 3 RAL UV-Vis satellite records 

in further detail, highlighting the potential causes of differences between the records.  

Spatially Gaudel et al. (2018) show that the trends within Europe vary (Figure 5.2), with 

OMI/MLS showing positive trends across all the grid-boxes (5° × 5°), IASI-FORLI 

showing negative trends across all grid-boxes, and the other products showing a 

variation across the region. Overall, this disagreement shows that these trends need to 

be studied in greater detail, to explore what information the satellite record can provide 

about long-term tropospheric O3 trends. In this thesis, additional RAL satellite products 

are used, such as GOME, SCIAMACHY and a higher resolution version of OMI, to try 

and improve our understanding of these trends. In this context, to extend the work in 

Gaudel et al. (2018), comparisons with a 3-D chemical transport model, such as 

TOMCAT, can provide a common framework for comparing the impact of different 

sampling and vertical sensitivity between the instruments.   

The limited number of other studies of long-term variation in European free tropospheric 

O3 are highlighted in Chapter 2 (Section 2.2.8.5). Two key recent European-wide studies 

showed a mixture of trends across Europe. Gaudel et al. (2020) found small trends in 

median O3 from aircraft observations of ~1.3 ppb decade-1 for 700 – 300 hPa between 

1994 – 2016. Christiansen et al. (2022) found trends of median O3 of between ~ -1 to 4 

ppb decade-1 across 7 European ozonesonde sites.  
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Figure 5.1: Timeseries and trends in tropospheric column O3 for latitude bands 
observed by (a) ozonesondes, (b) OMI/MLS, (c) GOME & OMI, (d) OMI-RAL, (e) IASI-
FORLI and (f) IASI-SOFRID. Trends are in DU year-1. Taken from Gaudel et al. 
(2018). 
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Figure 5.2: Trends in tropospheric column O3 for each 5° × 5° grid-box observed 
by (top left) ozonesondes (2003 – 2012), (top right) OMI/MLS (2005 – 2016), (middle 
left) OMI (2005 – 2015), (middle right) OMI-RAL (2005 – 2015), (bottom left) IASI-
FORLI (2008 – 2016) and (bottom right) IASI-SOFRID (2008 – 2016). Trends are in 
DU year-1. Note the variation in colour scale. Taken from Gaudel et al. (2018).  

5.2 Research questions 

To evaluate the satellite tropospheric O3 record over Europe in greater detail, this chapter 

will address the following research questions: 

1. What are the trends in satellite-observed lower tropospheric O3 over Europe 

since 1996?  

2. How do these trends vary spatially and seasonally?  

3. How do these trends vary between instruments? What could be causing the 

differences? 

4. Are these trends captured by a model and other observations of the troposphere 

(e.g. ozonesondes)? 

5. How do variations in O3 precursor gas emissions and meteorology impact these 

trends? 

5.3 Data & methods 

5.3.1 RAL tropospheric ozone products  

In this chapter, three tropospheric O3 data records produced by RAL (GOME, 

SCIAMACHY and OMI) are used. For this analysis level 2 tropospheric sub-columns are 
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used, which represent a pressure region of the surface to 450 hPa (~ 6km altitude). The 

data is filtered using factors such as cloud fraction (< 0.2) and solar zenith angle (SZA, 

< 80°), and then gridded to the TOMCAT model resolution (2.8° × 2.8°). Bias correction 

factor (BCF) are applied to the three records, as shown by the example for GOME in 

Figure 5.3. The BCFs are produced by RAL, based on comparisons with ozonesondes. 

The corrections vary by month and latitude, comprising of 6 latitude bands (90°S - 60°S, 

60°S - 30°S, 30°S - equator, equator - 30°N, 30°N - 60°N, 60°N - 90°N). The BCF is 

applied by interpolating the BCF from the 6 latitude bands to the TOMCAT model grid 

(to avoid large step changes) and then subtracting it from the grid of monthly O3 for each 

month. Applying the BCFs should reduce the systematic uncertainties with respect to the 

ozonesondes and make the satellite records more comparable to each other. To study 

Europe, the record is filtered to within a domain of 30°W – 45°E and 30°N – 70°N (Figure 

5.4). 

 

Figure 5.3: Monthly BCF applied to the GOME record for all years (DU). 
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Figure 5.4: Map of European domain selected for analysis (30°W – 45°E and 30°N 
– 70°N). 

The number of satellite data sub-column retrievals used in each monthly mean value 

after filtering is shown in Figure 5.5. This shows that GOME and SCIAMACHY have not 

degraded (in terms of data produced which pass the quality control step) by a large 

amount over the course of the study period, as GOME only shows a small decrease in 

the average yearly number of good retrievals. Although SCIAMACHY has a large volume 

of retrievals which pass quality control in 2011, the data shows anomalously low O3 

values, potentially due to instrument degradation towards the end of its lifetime. 

Therefore, 2011 has been excluded from the analysis. August/September 2009 in 

SCIAMACHY; October – December 1997, July 2003 and January 2009 in GOME; and 

June 2016 in OMI; all show a very low number of data points that pass the quality control 

(less than 75% of average value for each month). Therefore, these months are also 

excluded from the analysis. OMI shows a large decrease in the volume of data from 2009 

onwards. This degradation in OMI is likely due to the documented ‘row anomaly’ (Section 

3.1.6) (Schenkeveld et al., 2017; Levelt et al., 2018).  
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Figure 5.5: Timeseries of number of satellite sub-column values used the domain 
monthly mean for each month of the: (a) GOME (×103); (b) SCIAMACHY (×103); and 
(c) OMI (×104) satellite records. Note the differing scale in panel (c).  

5.3.1.1 OMI row selection 

Due to the row anomaly, the OMI O3 profile product suffers from a reduction in the 

availability of data which passes the quality assurance flags (e.g. low cloud cover). Here, 

multiple rows from across-track positions in the swath provide limited or negligible 

useable data. It is therefore important to investigate which rows will provide a suitable 

record to study long-term trends in satellite tropospheric O3. The availability of data 

passing the quality assurance across the 30 rows (produced from the 60 OMI rows during 

the retrieval processes) is shown in Figure 5.6, highlighting the missing data in the middle 

rows from 2008/2009 onwards. The rows to select were assessed based on the O3 

seasonal cycle, position relative to the swath edge and if a complete record was 

available. A timeseries of each row is presented in Appendix I (Figure I.1). To create a 

‘best estimate’ (BE) I selected only rows with a consistent seasonal cycle (e.g. amplitude, 

shape) across the timeseries, showing minimal change over time, especially in 

comparison with the first 3 years of the mission before the OMI row anomaly occurred. 

A consistent seasonal amplitude over this time period is a reasonable approach given 

the seasonality present in ozonesonde records (Figure 5.28). Rows with an inconsistent 

seasonal cycle, or large periods of missing data, were removed (Figure 5.7, Appendix I). 

The rows selected during the time period to be in the calculation of the OMI mean O3 

sub-column (BE selection) are shown in Figure 5.6; this selection is used in the following 

OMI analysis and results. 
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Rows near the edge of the swath, e.g. rows 1, 3, 57 and 59 have a greater ‘stratospheric 

influence’. This is due to the larger viewing angle of these rows, meaning they have a 

longer viewing path, which is also true at high latitudes (large SZA). In a longer viewing 

path there are more O3 molecules which absorb more photons, preventing photons from 

the surface and troposphere from reaching the satellite. This could potentially lead to 

total absorption in the absorption bands relevant to the O3 retrievals, providing less 

information about the troposphere below the O3 layer in the stratosphere. Therefore, 

these positions are sometimes disregarded when studying tropospheric O3. However, in 

this case, they are present for the whole record (see Appendix I) unlike many others due 

to the OMI row anomaly, so can provide important information on long-term trends, which 

is the aim of this chapter. These outer edge rows are consistent at lower pressure ranges, 

not showing any anomalous points. Therefore, they have been retained in the BE 

selection here and subsequent data analysis.  

There are many positions which have only a partial record available (rows 23 – 55) 

(Figure 5.6). In the BE selection, these partial records were included, using years which 

show a complete record (e.g. row 21 has been used to the end of 2013, not afterwards 

as the record become incomplete). This approach utilises all the information available, 

however it does introduce a sample bias between the start and end of the record with 

information from a different number of rows.  

 

Figure 5.6: Timeseries of OMI sub-column O3 for each across-track position/row 
(DU). The data is shown for each month from 2005 – 2017 and for 30 rows 
(numbered 1 – 59). The blank space indicates no useable data available.    
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Figure 5.7: Same as Figure 5.6, but the additional white spaces indicate the 
(partial/complete) rows which were excluded for analysis (“best estimate” 
selection) due to an inconsistent seasonal cycle or lack of useable data for the 
whole year.  

To investigate the uncertainty that retaining or discarding different rows produces, the 

OMI record has been processed (with corresponding across-track corrections (ATC) 

calculated – see Section 5.3.1.2) using 4 selections of rows (Figure 5.8). The selections 

are: the BE as described above and shown in Figure 5.7 (1); the BE without using the 

outside 4 positions (2 at both edges of the swath – 1, 3, 57 and 59) (2); the BE without 

using the partially complete records (3); and using all the data that passed the quality 

control (as shown in Figure 5.6) (4). The largest difference from the BE is from the “all 

positions” selection, with an average difference of 2.0 DU (8.5%) across the record 

(Figure 5.8). The difference in the trend is also the greatest, showing a large significant 

negative trend of -0.17 DU year-1 from all positions, compared to the near-zero trend 

from the BE. The other 2 selections show smaller differences, with excluding the outside 

positions showing on average a difference of 1.4 DU (5.8%) and a small insignificant 

positive trend of 0.09 ± 0.05 DU year-1, and excluding partial records showing a very 

small average difference of 0.1 DU (0.3%) and a near-zero trend of -0.03 ± 0.04 DU year-

1. The selection also impacts the seasonal cycle amplitude (difference between minimum 

and maximum values in a year), ranging from 9.9 – 13.4 DU across the 4 selections. 

These results indicate the sensitivity of the OMI results to the selection of viewing rows 

and quantifies the uncertainty in the OMI timeseries and calculated trends presented in 

this chapter depending on the OMI rows used.  

Another indication of the uncertainty is shown in comparing the trends between the 9 

rows which were used for the full record (Appendix I/Figure I.1). The trends range from -
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0.79 to +0.50 DU year-1, with approximately half of the rows showing a negative anomaly 

and the other half showing a positive anomaly. The average trend across the selected 

OMI rows (whole and partial) with ATC applied is near-zero, which reflects the spread of 

trends for the individual rows.  

 

Figure 5.8: (a) European monthly average sub-column O3 (surface – 450 hPa, DU) 
for OMI using 4 selections of OMI viewing positions (labelled 1 – 4). The selections 
are as follows: (1) The best estimate (BE) (Section 5.3.1.1); (2) BE but with no 
outside viewing positions included; (3) BE but only including the positions which 
have a complete record for the time period; and (4) using all available data (which 
passes quality control). Panels (b) – (e) show the individual timeseries for all 
selections (1 – 4), with a seasonal model based on the record. The calculated linear 
trend from this seasonal model (DU year-1) is displayed on each panel. An * before 
the word “Trend” indicates that the trend is significant at the 95% confidence level. 

5.3.1.2 OMI across-track corrections 

ATCs are applied to reduce the higher O3 values from the stratospheric influence towards 

the edge of the swath, which can result in around-orbit stripes (Figure 5.9(a)). The result 

of applying the ATCs is highlighted in an example for February 2005 (Figure 5.9(b)), 

where the striping pattern is smoothed. The stripes are most prominent across the Pacific 

Ocean, which is of lesser importance to the European domain. ATCs are calculated here 

by taking the yearly median value of the O3 sub-column for all selected rows, and 

compare this to the median yearly value for each row, with the difference providing the 

ATC. Another consideration in calculating the ATC is the impact of using varying 

numbers of OMI rows over time. As the number of rows in the O3 mean calculation 
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changes over the time record, the ATC have been re-calculated for each year depending 

on the selected records (Figure 5.10).  

 

Figure 5.9: OMI sub-column O3 for February 2005 (a) before and (b) after ATC 
application.  

 

Figure 5.10: ATC (DU) for each row from 2005 – 2017. The points are colour-coded 
by year as indicated in the legend at the top of the panel. There are 30 rows, 
indicated on the x-axis by the odd numbers between 1 – 60 (e.g. 1, 3, 5, … 57, 59).  

5.3.1.3 Satellite uncertainties 

There are several known instrument issues, such as the OMI row anomaly, the GOME 

tape recorder failure and UV degradation for GOME and SCIAMACHY. Another source 

of error is calculated by RAL in the retrieval process (𝑺𝒙 - solution error covariance 

matrix), which represents the random error of the retrieval. As in Pope et al. (2015), when 

multiple retrievals are averaged together to form a monthly mean value, the random 
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errors will partially cancel, which will reduce the random error by a factor of 
1

√𝑁
 (where N 

is sample size). Once the daily level-2 swath data has been mapped onto a regular grid 

(e.g. array dimensions of 128 × 64 × number of days in each month), the monthly average 

per grid-box can be determined using this daily gridded data. Therefore, the monthly 

mean retrieved random error, per grid-box, can be scaled by 
1

√𝑁
 where N is the number 

of days within the month a grid-box has usable data (i.e. one or more retrievals which 

pass the quality assurance criteria used to derive a daily grid-box value). Table 5.1 

presents the average random error of each grid-box value and also the scaled random 

error based on averaging the daily sub-columns across the month of retrievals. The 

random errors for each month vary across the timeseries (Figure 5.11). The random 

errors for the monthly values (~ 6%) need to be considered when interpreting the long-

term trend results. 

Instrument 

Average 

random error 

for each grid-

box 

Range in 

monthly 

averages 

Scaled random 

error for monthly 

averages 

Range in 

monthly 

averages 

GOME 6.2 DU (31.6%) 
21.4% – 

47.7% 

1.1 DU  

(5.7%) 
3.8% – 10.7% 

SCIA 6.1 DU (31.1%) 
23.1% – 

44.9% 

1.1 DU  

(5.6%) 

4.1% –  

8.5% 

OMI 7.5 DU (31.5%) 
21.9% – 

49.3% 

1.4 DU  

(5.7%) 

3.9% –  

9.3% 

Table 5.1: Summary of average random errors from the 3 satellite instruments – 
GOME, SCIAMACHY and OMI.  
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Figure 5.11: Sub-column (surface – 450 hPa) satellite O3 records (DU) for (a) GOME 
(1996 – 2010), (b) SCIAMACHY (2003 – 2010) and (c) OMI (2005 – 2017). The monthly 
averaged scaled random error is shown as ± the record (thin lines) and the average 
error for each grid-box is shown as ± the record (dotted lines).  

5.3.2 Trend model 

To quantify the trends in tropospheric O3, a trend model with a seasonal component is 

used, as shown in Equation 5.1: 

𝑌𝑡 = 𝐶 + 𝐵𝑋𝑡 + 𝐴 sin(𝜔𝑋𝑡 +  𝜙) + 𝑁𝑡 Equation 5.1 

where 𝑌𝑡 is the monthly sub-column O3 for month t, C is the sub-column O3 for the first 

month of the record, 𝑋𝑡 is the number of months after the first month of the record, 

𝐴 sin(𝜔𝑋𝑡 +  𝜙) is the seasonal component (𝐴 is the amplitude, 𝜔 is the frequency (the 

period is set to 1 year, 𝜔 =
𝜋

6
) and 𝜙 is the phase shift). 𝑁𝑡 represents the model 

errors/residuals unexplained by the fit function, including interannual variability. C, B, A 

and 𝜙 represent the fit parameters which are based on a non-linear least squares fit. 

This trend model is based on a function in Weatherhead et al. (1998) and used in several 

studies looking at long-term trends in tropospheric species e.g. van der A et al. (2006), 

van der A. et al., (2008) and Pope et al. (2018).  

In Weatherhead et al. (1998), a derivation for the precision of the trend is given, as a 

function of the autocorrelation, the length of the timeseries (in months) and the variance 

in the remainder. The trend precision, 𝜎𝐵, is calculated as shown in Equation 5.2: 

𝜎𝐵 ≈ [
𝜎𝑁

𝑛
3
2

√
(1 + 𝛼)

(1 − 𝛼)
] Equation 5.2 

where 𝑛 is the number of years in the record, 𝛼 is the autocorrelation in the residuals and 

𝜎𝑁 is the standard deviation in the residuals. The autocorrelation is calculated using a 

lag of one timestep (one month), as in Pope et al. (2018). A common decision rule for 
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trend detection is that the linear trend, B (from Equation 5.1), is real at the 95th confidence 

level if Equation 5.3 is true (Weatherhead et al., 1998; van der A et al., 2006):  

|
𝐵

𝜎𝐵
| > 2. Equation 5.3 

Trends are presented in this chapter in DU year-1 with ± the precision (𝜎𝐵). 

5.3.3 TOMCAT model 

5.3.3.1 Model setup 

The emissions used in the TOMCAT simulations in this chapter are summarised in Table 

5.2. Although some emission sources are the same as Chapter 4, they are repeated here 

for clarity. A timeseries of the average total and anthropogenic surface emissions NOx, 

CO and a combination of VOCs is shown in Figure 5.12, which is shown in more detail 

for all VOCs individually and across four regions of Europe in Appendix J. NOx, CO and 

VOCs all show a decrease over the 23-year period. The model was run from 1996 – 

2018, with one year of spin up. To compare the model with satellite records with two 

different equator crossing overpass times, ~ 10:00 for Envisat (SCIAMACHY) and ERS-

2 (GOME) and ~ 13:30 for Aura (OMI), the model runs here have been setup to sample 

3-D fields of the model daily at these two local solar times. 
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Type Description Reference 

Anthropogenic  NOx, CO & 

VOCs 

CMIP6 - Combination of 

historical emissions (1996 – 

2014) and SSP245 future 

emissions projections (2015 – 

2018).  

(Riahi et al., 

2017; Gidden et 

al., 2019; Feng 

et al., 2020).  

CH4 EDGAR v4.2 inventory. (Olivier et al., 

2012) 

Natural  

(soils/ 

oceans) 

NOx, CO & 

VOCs 

POET (Olivier et al., 

2003; Granier et 

al., 2005) 

CH4 Soil sink flux from MeMo. 

Wetland emissions from 

JULES. 

(Murguia-Flores 

et al., 2018) 

(Clark et al., 

2011) 

Biogenic CO & VOCs CCMI - These emissions are 

fixed annually. 

(Morgenstern et 

al., 2017) 

Isoprene & 

monoterpenes 

JULES and the UK Earth 

System Model (UKESM) 

(calculated online). These 

emissions are annually 

varying. 

(Clark et al., 

2011; Sellar et 

al., 2019) 

Aircraft  NOx  CAMS global aviation 

emissions (CAMS-GLOB-AIR). 

Used due to issues in the 

CMIP6 NOx aircraft emissions 

between the historic emissions 

and the future scenario 

projections. 

(Granier et al., 

2019) 

Biomass 

burning 

NOx, CO & 

VOCs 

GFED version 4. (van der Werf et 

al., 2017) 

CH4 scaling Scaled to a best estimate based on the globally 

averaged surface CH4 value from NOAA for 

each year. 

(Dlugokencky, 

2020) 

Aerosols SO2, BC & 

OC 

MACCity (Granier et al., 

2011) 

Table 5.2: Summary of the surface emissions used in the TOMCAT simulation in 
this chapter. 
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Figure 5.12: European total (thick) and anthropogenic (thin) surface emissions 
(Tg) for NOx (as NO2), CO and a combination of VOCs (as Carbon) between 1996 – 
2018.  

5.3.3.2 Deriving tropospheric sub-columns 

To derive the TOMCAT tropospheric sub-column, the sub-column thickness (mass of air 

per column surface area, kg m-2) is calculated using the hydrostatic approximation 

between barrier pressure levels, as shown in Equation 5.4:  

𝜌 × 𝑑𝑧 =  −
𝑑𝑝

𝑔
 Equation 5.4 

where 𝑑𝑝 is the pressure difference between the barrier pressure levels, 𝑑𝑧 is the 

difference in height, 𝑔 is the gravitational constant and 𝜌 is the density of air. For each 

vertical grid-box, the sub-column thickness is multiplied by the mass mixing ratio (mmr) 

of O3 to derive the sub-column O3 value (O3 SC), which is converted into units of 

molecules cm-2, as shown in Equation 5.5: 

𝑂3 𝑆𝐶 = 𝑚𝑚𝑟 × 𝑙𝑎𝑦𝑒𝑟 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ×  
107 × 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜′𝑠 𝐶𝑜𝑛𝑠𝑡.

𝑂3 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠
   Equation 5.5 

This is then converted into DU by dividing the sub-column value by 2.69 ×1016 and then 

the sub-columns are totalled across the chosen pressure boundaries, here the surface 

and 450 hPa. To apply the AKs to the model profiles, a realistic simulation of O3 

throughout the atmosphere is required. Since TOMCAT simulates O3 up to 10 hPa, a 

more robust representation of upper troposphere-lower stratosphere (UTLS) O3, where 

AKs have peak sensitivity, was achieved by merging TOMCAT tropospheric O3 with 

upper atmosphere O3 profiles from the SLIMCAT model at the tropopause. The 

SLIMCAT profiles were provided by W. Feng (National Centre for Atmospheric Science 
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& University of Leeds), and are from a separate simulation, with targeted stratospheric 

chemistry. However, both TOMCAT and SLIMCAT are forced by the same 

meteorological reanalyses and provide the best estimate of O3 in their respective regions. 

The tropopause was defined chemically as where the O3 volume mixing ratio (vmr) 

reached 100 ppbv (at pressures <500 hPa), giving an estimated tropopause pressure at 

which to merge the datasets. The model sub-columns were then totalled between the 

surface and 450 hPa to generate a sub-column value from this pressure region. For each 

satellite retrieval, a model profile is co-located from the nearest grid-box and AKs applied, 

which is then used to form the monthly average. Example AK and model profiles are 

shown for the GOME and SCIAMACHY in Section 3.1.9. The example profiles show that 

for the model surface to 450 hPa sub-column (represented by the lowest point on the 

profiles) the O3 value is reduced by applying the AKs in January 1996 for GOME and 

January 2003 for SCIAMACHY.  

5.3.4 Ozonesondes 

The ozonesonde data for 1996 - 2018 is from WOUDC (WOUDC, 2021), filtered to select 

only records within 3 hours of the satellite overpass times/model output times (10:00 and 

13:30) and within the European domain. For each ozonesonde profiles, tropospheric 

sub-columns (surface – 450 hPa) were calculated for comparison to the satellite and 

model records in a methodology similar to the model data (Section 5.3.3.2), however the 

data is not co-located with any satellite retrievals. The sub-columns are averaged for 

each month. For ozonesonde-model comparison, a model record has been produced 

that is co-located with the locations of the ozonesonde measurements, from the nearest 

model grid-box.  

5.3.5 Model sensitivity experiments 

To study the relative impact of emissions and meteorology on the long-term tropospheric 

O3 trends, two model sensitivity experiments were performed. The model was run with 

fixed emissions and fixed meteorological fields. The fixed emissions simulation used 

fixed annual surface emissions (and a fixed value for the scaled CH4 mixing ratio) from 

the year 2008, as this is around the mid-point of the timeseries. The fixed meteorology 

run used repeating meteorological fields from the year 2008. Sub-columns (surface – 

450 hPa) were calculated, but these sub-columns were not co-located with any satellite 

retrievals, as the model sensitivity experiments are compared to model control simulation 

only. 

5.4 Results & discussion  

5.4.1 Comparison of satellite records  

Monthly European average O3 records for OMI, GOME and SCIAMACHY are compared 

between 1996 – 2017 (Figure 5.13). All three records show a O3 seasonal cycle of higher 

values in summer and lower values in the winter, with an average seasonal ‘amplitude’ 
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(difference between maximum and minimum monthly value for each year) of 9.6, 10.8 

and 11.7 DU for GOME, SCIAMACHY and OMI, respectively. SCIAMACHY and GOME 

show a large variation in seasonal cycle (1 standard deviation of ~2.2 and 1.8 DU, 

respectively), with notable large examples e.g. GOME in 2000, and smaller examples, 

e.g. GOME in 2010. OMI shows a smaller variation in seasonal cycle (1 standard 

deviation of ~1.1 DU). Variation in the amplitude of the seasonal cycle could potentially 

mask overall long-term changes, therefore, this effect could potentially be larger in the 

GOME and SCIAMACHY records. Broadly the GOME timeseries indicates a decrease 

from 1996 – 2002/2003 and then a stabilisation. The SCIAMACHY timeseries is fairly 

consistent, but shows two large peaks in the summer of 2007 and 2008. The OMI record 

also shows a distinctive pattern over the record, with decreasing values towards 2009, 

increasing towards ~ 2015 after which the timeseries begins to decrease again.  

There are six overlapping years between the records, 2005 – 2010 (Figure 5.13(b)), 

which allows for a direct comparison. Within these overlapping years, GOME and 

SCIAMACHY show similar absolute values, apart from higher SCIAMACHY values in the 

summers of 2007 and 2008. OMI shows much larger values than the other two records, 

on average 4.5 DU larger than GOME and 3.9 DU higher than SCIAMACHY. Despite a 

large absolute difference, OMI and SCIAMACHY show the best correlation (r = 0.91), 

compared to GOME and SCIAMACHY (r =0.62) and GOME and OMI (r = 0.64). GOME 

has the smallest average seasonal cycle ‘amplitude’ at 8.5 DU and SCIAMACHY and 

OMI show similar ‘amplitudes’ of 11.2 DU. There are several sampling related factors 

which could contribute to the differences between the instruments, such as spatial 

resolution (GOME has the coarsest resolution), vertical sensitivity and overpass time 

(~10:00 for GOME and SCIAMACHY and ~13:30 for OMI) due to diurnal variation in the 

thickness of the BL and O3 mixing ratios (although the variation in this does decrease 

with altitude), and also spatial resolution and vertical sensitivity. Other instrument specific 

caveats e.g. the OMI row anomaly, UV degradation in GOME/SCIAMACHY could also 

be contributing to the differences. Large disagreements between instruments has been 

demonstrated before e.g. in Gaudel et al. (2018), however, if these differences cannot 

be explained, this reduces confidence in using these satellite products to study long-term 

changes in tropospheric composition. 
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Figure 5.13: European monthly average sub-column (surface – 450 hPa) satellite 
O3 records (DU) between (a) 1996 – 2017 and (b) 2005 – 2010. Below the panels are 
statistics for the 2005 – 2010 overlap years: the correlation coefficient between the 
records, the mean difference between the records (DU) and the average difference 
between the minimum and maximum O3 values for each year (“amplitude”) (DU).  

5.4.2 Comparison of satellite and model records 

The model (co-located and with AKs applied – ‘TOMCAT with AKs’) shows a reasonable 

agreement with the satellite records for GOME and SCIAMACHY, with mean differences 

of 1.4 DU for both and correlations of 0.74 and 0.92, respectively (Figure 5.14). In 

contrast, for OMI, the model shows a large underestimate, with a mean difference of 4.0 

DU. Applying the AKs to the model output causes a large impact to the monthly average 

record (Figure 5.14), and therefore is considered to be very important in comparing and 

contrasting the model and satellite records. The application of the AKs improves the 

agreement between the satellite and model for GOME and SCIAMACHY, broadly by 

decreasing the absolute sub-column value to be more in alignment with the satellite, by 

~ 2.6 DU in both cases, and improving the correlation from 0.72 to 0.74 for GOME and 

from 0.83 to 0.92 for SCIAMACHY. For OMI, the application of the AKs also decreases 

the sub-column value, however this increases the underestimate by the model of the 

satellite record, from 1.0 DU to 4.0 DU. In contrast to SCIAMACHY and GOME, applying 

the AKs to the TOMCAT record co-located with OMI reduces the correlation from 0.82 

to 0.75. The reduction in agreement between OMI and the model when the AKs are 

applied is currently unexplained.  
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Figure 5.14: European monthly average sub-column (surface – 450 hPa) satellite 
and model O3 records (DU) between 1996 – 2017 for (a) GOME, (b) SCIAMACHY 
and (c) OMI. The model records are co-located with the satellite data for each 
record; for GOME and SCIAMACHY the model simulation with an overpass time of 
10:00 is used, and for OMI the model simulation with an overpass time of 13:30 is 
used. The model records are shown both with (TOMCAT with AKs) and without 
(TOMCAT without AKs) AKs applied. The correlation and mean difference between 
the model and satellite record (mean difference is the TOMCAT record (with or 
without AKs) subtract the satellite record) (DU) is shown at the top of each panel 
with AKs (black) and without AKs (red).  

5.4.2.1 Trends 

The GOME record shows a small, significant negative trend of -0.21 DU year-1 across 

the 15-year record (Figure 5.15). The term significant used here reflects if the linear trend 

satisfies Equation 5.3, which is a common decision rule for a trend being real at the 95% 

confidence level. It does not reflect the relatively large satellite uncertainty (~ 1.1 DU), 

which reduces the confidence in these results. This negative trend is not captured in the 

model record, as TOMCAT with AKs applied shows a zero trend, TOMCAT without AKs 

applied (but still co-located with the satellite data) shows a very small but significant 

positive trend of +0.06 DU year-1. For SCIAMACHY, there is a small insignificant negative 

trend (to the 95% confidence level) of -0.20 DU year-1 across the 8-year record (Figure 

5.16). This trend is also not captured in the model record, as TOMCAT with and without 

AKs applied show near-zero trends. OMI shows a zero trend across the 13-year record, 

although there is large inter-annual variability within this period (Figure 5.17). This near-

zero trend is not captured by the model, as TOMCAT with AKs applied shows a 

significantly negative trend of -0.26 DU year-1 due to low values in 2014 – 2017 which 
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are occur after the AKs applied, indicating an impact of the vertical sensitivity of the 

instrument or another currently unexplained reason. Overall, across all 3 records, there 

is relatively limited change in European tropospheric O3, despite reductions in precursor 

gas emissions across Europe during this time period. However, this small change should 

be considered in relation to the large interannual variation (see in Figure 5.13) and large 

uncertainties which have the potential to mask any possible changes across the records.  

For all three records, the model doesn’t capture the trend, despite being co-located to 

the satellite retrievals and vertical sensitivity accounted for. This indicates that something 

in the model is not being represented well e.g. O3 STE, surface precursors, O3 transport, 

O3 surface deposition, etc. Several studies have found that trends in the free troposphere 

from observations are not captured by models e.g. Parrish et al. (2014), Young et al. 

(2018) and Christiansen et al. (2022). Christiansen et al. (2022) found that one model 

represented 75% of the observed trend across 25 ozonesonde sites globally between 

1990 - 2017, and another model represented < 20% of the trend. Model trend 

underestimates may be due to uncertainties in the natural and anthropogenic precursor 

gas emissions and model representation of STE. Christiansen et al. (2022) found that 

dynamics (e.g. STE) to be more important for capturing the trends in the model in the 

middle to upper troposphere, and emissions to be more important at the surface. The 

disagreement between observational and model trends could also be due to the large 

uncertainties involved in observations e.g. the uncertainties associated with the satellite 

data products used in this study. Overall, this reduces confidence that the model has 

represented the troposphere well in comparison to observations.  
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Figure 5.15: European monthly average sub-column O3 (surface – 450 hPa, DU) for 

(a) GOME, (b) co-located TOMCAT with GOME AKs applied and (c) co-located 
TOMCAT without AKs applied. A seasonal model based on the record is shown on 
each panel. The calculated linear trend from this seasonal model (DU year-1) is 
displayed on each panel. An * before the word “Trend” indicates that the trend is 
significant at the 95% confidence level.  
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Figure 5.16: European monthly average sub-column O3 (surface – 450 hPa, DU) for 
(a) SCIAMACHY, (b) co-located TOMCAT with SCIAMACHY AKs applied and (c) co-
located TOMCAT without AKs applied. A seasonal model based on the record is 
shown on each panel. The calculated linear trend from this seasonal model (DU 
year-1) is displayed on each panel. An * before the word “Trend” indicates that the 
trend is significant at the 95% confidence level.  
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Figure 5.17: European monthly average sub-column O3 (surface – 450 hPa, DU) for 
(a) OMI, (b) co-located TOMCAT with OMI AKs applied and (c) co-located TOMCAT 
without AKs applied. A seasonal model based on the record is shown on each 
panel. The calculated linear trend from this seasonal model (DU year-1) is displayed 
on each panel. An * before the word “Trend” indicates that the trend is significant 
at the 95% confidence level.  

5.4.2.2 Seasonal trends 

The satellite trends show mostly little variation across the seasons (Table 5.3). For 

GOME, there are significant negative trends for each season except winter (DJF) which 

shows a near-zero trend, with -0.16, -0.43 and -0.26 DU year-1 for MAM, JJA and SON, 

respectively. For SCIAMACHY, there are significant negative trends for DJF (-0.31 DU 

year-1) and MAM (-0.54 DU year-1), a small positive trend for JJA (+0.19 DU year-1) and 

a small negative trend for SON (-0.20 DU year-1). The summer positive trend from 

SCIAMACHY is due to the high summer values in 2007 and 2008, which are towards the 

end of the time period. For OMI, there are no significant trends across any of the seasons 

and are all near-zero. There are very small negative trends for DJF (-0.05 DU year-1) and 

MAM (-0.05 DU year-1) and very small positive trends in JJA (+0.04 DU year-1) and SON 

(+0.06 DU year-1). As with the monthly record, the co-located model records with AKs 

applied are not capturing the satellite seasonal trends. The seasonal trends for the co-

located model records are predominantly near-zero for TOMCAT-SCIAMACHY and 

TOMCAT-GOME, apart from MAM (-0.11 DU year-1) and SON (+0.08 DU year-1) for 

TOMCAT-SCIAMACHY (Table 5.3). For TOMCAT-OMI, there are significant negative 

trends for all seasons, albeit varying in magnitude, with -0.07, -0.20, -0.57 and -0.28 DU 

year-1 for DJF, MAM, JJA and SON respectively.  
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Overall, for GOME and SCIAMACHY, smaller and/or positive trends (DJF for GOME, 

JJA for SCIAMACHY, respectively) are reducing the magnitude of the all month 

timeseries negative trends averaged for all seasons. Therefore, the other seasons are 

showing larger negative trends, of up to -0.43 DU year-1 for GOME and -0.54 DU year-1 

for SCIAMACHY, suggesting larger O3 change than when considering the monthly 

record only. However, there is some variation between the two records, as GOME shows 

smallest trend in DJF, and a larger negative trend in JJA, whereas SCIAMACHY shows 

a larger negative trend in DJF and a positive trend in JJA. This could be explained by 

the different time periods they cover, however, the conflict does reduce the overall 

confidence in the results. In the case of OMI, the very small trend across the monthly 

timeseries does not appear to be due to a cancellation of different seasonal trends, as 

the trends are very small across all seasons.  

Record Time period 

Trend (DU year-1) 

DJF MAM JJA SON 

GOME 

1996 - 2010 

-0.01 -0.16 -0.43 -0.26 

TOMCAT- 

GOME  

(with AKs) 

-0.04 -0.01 -0.02 -0.02 

SCIAMACHY 

2003 – 2010 

-0.31 -0.54 0.19 -0.20 

TOMCAT- 

SCIAMACHY 

(with AKs) 

-0.03 -0.11 -0.04 0.08 

OMI 

2005 - 2017 

-0.05 -0.05 0.04 0.06 

TOMCAT- 

OMI 

(with AKs) 

-0.07 -0.20 -0.57 -0.28 

Table 5.3: Summary of the seasonal trends for the satellite records and co-located 
TOMCAT model records (with AKs applied) of tropospheric sub-column O3, for 
their individual time periods (DU year-1).  

5.4.2.3 Spatial distribution 

The spatial distribution of sub-column O3 for GOME, SCIAMACHY, OMI and TOMCAT 

(with no co-location or AKs applied) is shown in Figures 5.18, 5.19, 5.20 and 5.21, 

respectively. GOME shows a noisy signal, especially towards the northern latitudes. The 

northern Atlantic shows a decrease over the record, as does the Mediterranean and 



123 
 

 

central Europe. SCIAMACHY shows a more spatially coherent signal over Europe. There 

are moderate O3 values in the Mediterranean from 2003 – 2005, increasing to show high 

O3 values in 2006 – 2008 and then much lower values in 2009 – 2010. The Atlantic and 

central Europe show a similar pattern. For OMI, the signal is more spatially coherent. 

The lower values in OMI in 2009 are predominantly from the Atlantic and central/northern 

Europe, with the Mediterranean/southern Europe showing mostly consistent values 

through 2006 – 2009. TOMCAT shows a consistent O3 distribution throughout the 23-

year record, apart from a notable increase in the O3 across the domain from around 2005 

– 2008. Overall, there does appear to be some regional variation in the satellite 

tendencies across the European domain, which is further explored using regional trends.  

 

Figure 5.18: Annual average European sub-column O3 (surface – 450 hPa, DU) 
from GOME for all years between 1996 – 2010.  

 

Figure 5.19: Annual average European sub-column O3 (surface – 450 hPa, DU) from 
SCIAMACHY for all years between 2003 – 2010.  
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Figure 5.20: Annual average European sub-column O3 (surface – 450 hPa, DU) 
from OMI for all years between 2005 – 2017. Note different scale to Figure 5.18, 
5.19 and 5.21.  

 

Figure 5.21: Annual average European sub-column O3 (surface – 450 hPa, DU) from 
TOMCAT (no co-location or AKs applied) for all years between 1996 – 2018. 

5.4.2.4 Regional trends 

Based on the annual spatial distributions, four regions were selected to calculate of sub-

domain trends (Figure 5.22). The regions are the Atlantic (30°W – 10°W, 30°N – 70°N, 



125 
 

 

Figure 5.23), Mediterranean (10°E – 40°E, 30°N – 45°N, Figure 5.24), Eastern Europe 

(15°E – 40°E, 35°N – 60°N, Figure 5.25) and Western Europe (10°W – 15°E, 35°N – 

60°N, Figure 5.26).  

For GOME, the regional trends are consistent across the four regions, all trends are 

significant at the 95% confidence level and range between -0.18 to -0.23 DU year-1. This 

is very similar to the whole European domain GOME trend of -0.21 DU year-1. The 

uncertainty in the seasonal model application is low, with all regional trends having an 

uncertainty of ± ~0.06 DU year-1. For SCIAMACHY, the variation between regions is 

larger, although all show negative trends. The largest negative trend is in Eastern 

Europe, of -0.33 DU year-1 and is significant. The Atlantic and Western Europe show 

significant negative trends of -0.28 and -0.26 DU year-1, respectively. The Mediterranean 

shows a smaller, insignificant negative trend of -0.13 DU year-1. As they cover different 

time periods, this could indicate a temporal change for the Mediterranean region, of 

negative to positive trends. For OMI the regional trends are all insignificant and near-

zero. The largest is the trend for the Mediterranean, with a small positive trend of +0.10 

DU year-1.  

In comparison with the model (TOMCAT co-located with the satellite and AKs applied) 

over the Atlantic region, the model doesn’t capture the negative trends seen in GOME 

and SCIAMACHY and shows a large negative trend for the OMI record, in contrast to 

the near-zero trend in the satellite. A similar pattern is found for the Eastern and Western 

Europe regions. For the Mediterranean, again, the negative trend for the GOME and 

SCIAMACHY records are not represented in the model, which shows near-zero trends. 

Here, OMI shows a very small positive trend of +0.10 DU year-1, whereas TOMCAT 

shows a negative trend of approximately a similar magnitude (-0.13 DU year-1). Broadly 

this pattern is similar for the total domain, suggesting a fairly spatially consistent 

difference between the satellite and model. Again, this poor agreement between model 

and satellite reduced confidence in how well the model is representing the troposphere. 

Differences could be caused by poor representation of key processes in the model, or 

the large uncertainties associated with the satellite observations.  

For GOME, there is a consistent negative trend across most grid-boxes in the whole 

European domain (Figure 5.27), which is consistent with the similar negative trends 

across the four regions and suggests that there is no spatial cancellation of trends for 

the domain average. For SCIAMACHY, the stronger negative trends are towards the 

northern area of the Atlantic region and towards the north east area of the Eastern 

Europe region. The Mediterranean region to contain a mixture of positive and negative 

trends for SCIAMACHY, which is consistent with this region having the smallest negative 

trend for SCIAMACHY (Figure 5.24). For OMI, the trends are much smaller across all 

grid-boxes compared to the other satellite records, apart for some larger values in the 

south of the domain (~ +0.25 DU year-1). Broadly there are positive trends from 30°N – 

40°N, near-zero trends from 40°N – 48°N, negative trends from 48°N – 60°N and a 

mixture of positive (in the west) and negative trends (in the east) in the 60°N – 70°N 
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band. This highlights that for OMI there is some degree of spatial cancellation leading to 

a very small trend across the whole domain. The co-located model records (Appendix 

K/Figure K.1) show much smaller trends across the domain and GOME and SCIAMCHY, 

and much larger ones for OMI. The most convincingly captured record is SCIAMACHY, 

with the model showing negative anomalies across most of the domain, with positive 

anomalies in the Mediterranean. This suggests that the model is reasonably capturing 

the SCIAMACHY record, after accounting for sampling pattern and vertical sensitivity. In 

contrast, the agreement is very poor for the model record co-located with OMI, 

highlighting a potential issue with this record.  

 

Figure 5.22: Locations of European regions used in the analysis: Atlantic (30°W – 
10°W, 30°N – 70°N), Mediterranean (10°E – 40°E, 30°N – 45°N), Western Europe 
(10°W – 15°E, 35°N – 60°N) and Eastern Europe (15°E – 40°E, 35°N – 60°N).  
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Figure 5.23: Timeseries of Atlantic (30°W – 10°W, 30°N – 70°N) regional monthly 
average sub-column satellite O3 records (surface – 450 hPa, DU) between 1996 – 
2017 for (a) GOME, (b) co-located TOMCAT with GOME AKs applied, (c) 
SCIAMACHY, (d) co-located TOMCAT with SCIAMACHY AKs applied, (e) OMI and 
(f) co-located TOMCAT with OMI AKs applied.  

 

Figure 5.24: Same as Figure 5.23 but for the Mediterranean (10°E – 40°E, 30°N – 
45°N). 
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Figure 5.25: Same as Figure 5.23 but for Eastern Europe (10°E – 40°E, 30°N – 45°N). 

 

Figure 5.26: Same as Figure 5.23 but for Western Europe (10°E – 40°E, 30°N – 
45°N). 
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Figure 5.27: Linear component of the linear-seasonal trend model applied to a 
timeseries of satellite sub-column O3 (surface – 450 hPa) for each grid-box across 
the European domain (DU year-1) for (a) GOME, (b) SCIAMACHY and (c) OMI. The 
respective time periods are labelled.  

5.4.3 Ozonesonde record  

Ozonesondes provide an independent observational record of the free troposphere, with 

which to compare to the satellite records. There is a fairly close agreement between the 

co-located model and the ozonesonde records for both overpass times (10:00 and 13:00, 

ozonesonde selected at ± 3 hours), with a Pearson’s correlation of 0.90 for both, 

however, there is an offset of around 2.44/2.16 DU, with larger values in the model record 

(Figure 5.28). When the trend model is applied, all four records show a consistent near-

zero trend.  The 10:00 (± 3 hours) ozonesonde record shows a trend of 0.01 ± 0.01 DU 

year-1 and the co-located TOMCAT record shows a trend of 0.01 ± 0.02 DU year-1. For 

the 13:30 (± 3 hours) ozonesonde record, there is a trend of 0.02 ± 0.01 DU year-1, and 

a trend of 0.01 ± 0.02 DU year-1 for the co-located TOMCAT record. These near-zero 

trends are smaller than the ozonesonde trends presented in Christiansen et al. (2022) 

(~ +3% decade-1) for the European region. However, as well as a different selection of 

sondes used, they showed trends in the ozonesonde record starting in 1990, a time 

period of which several studies found to show positive trends in the free troposphere, 

e.g. Logan et al. (2012), before the stabilisation after ~ 2000 found in those studies. 

Overall, the ozonesonde record indicates very little change in tropospheric O3 across the 

whole time period.  
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From 2012 onwards there is a significant drop in the number of available ozonesonde 

measurements to include in the averaged timeseries (Figure 5.28(c)). Despite this, the 

standard error of the ozonesonde record after 2012 only increases slightly in the summer 

months (Figure 5.28(d)). On an annual scale, between 1996 – 2014 there is an average 

annual standard error of 0.4 DU with a relatively small increase to 0.6 DU between 2015 

– 2018. This suggests that although there is a lower number of ozonesondes after 2012, 

the spread of the data is broadly consistent with pre-2012 levels.  

 

Figure 5.28: European monthly averaged sub-column O3 from ozonesondes and 
co-located TOMCAT model data (DU) filtered for (a) 10:00 ± 3 hours and (b) 13:30 
± 3 hours. The mean difference (model subtract ozonesonde) (DU) and correlation 
between the two records is labelled at the top of panels (a) and (b). (c) The number 
of ozonesondes that contributes to each average per month for each time 
selection. (d) The standard error of the ozonesondes for each month (DU).  

5.4.4 Six-year satellite record overlap period (2005-2010) 

There are six years across the whole time record (1996-2018) where all three satellite 

records are available, 2005-2010. In this overlap period, all three satellite records can be 

compared to better understand the differences between the records.  

5.4.4.1 Satellite  

During the overlap years, all three records show consistent significant negative trends, 

with GOME showing the smallest (-0.17 DU year-1), SCIAMACHY showing the largest (-

0.47 DU year-1) and OMI showing a value in between (-0.36 DU year-1) (Table 5.4). 

Across the monthly anomalies of the three satellite records (Figure 5.29(b)) there are 

several periods of consistency between them. The spring of 2005 shows consistent 
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positive anomalies between the three records, reaching around +2.3, +1.3 and +3.0 DU 

for GOME, SCIAMACHY and OMI, respectively. A similar positive anomaly is found 

across all three records in the spring of 2006. A positive anomaly of up to around +2.0 – 

2.5 DU is found across the late spring/summer/early autumn of 2007 for GOME and 

SCIAMACHY, but it is not present in OMI. SCIAMACHY and OMI show a consistent 

negative anomaly during most of 2009, of up to around -2.6 DU in SCIAMACHY and -

2.1 DU in OMI, with GOME showing a negative anomaly of up to -2.4 DU over the 

summer months of 2009. All three records show a negative anomaly of -2.1, -2.9 and -

2.6 DU for GOME, SCIAMACHY and OMI, respectively, in the spring of 2010. For the 

absolute records, there is a moderate Pearson correlation coefficient of 0.61 between 

GOME and SCIAMACHY and 0.64 between GOME and OMI, and a higher coefficient of 

0.91 between SCIAMACHY and OMI. Overall, this highlights that although there are 

some considerable differences between the records during this overlap period, 

especially the much higher values of the OMI record, the records are showing some 

consistency in their temporal variation. This consistency increase the confidence in the 

overall results, as the satellites do show relatively similar stories when compared across 

the same time period, however, there are still some considerable differences. Spatially, 

SCIAMACHY and OMI show the largest trends due to nearly all grid-boxes showing 

negative trends, compared to GOME, which shows a mixture of positive and negative 

trends (Figure 5.30). Any differences could be explained by differences in the vertical 

sensitivities of the instruments, sampling patterns, overpass times and any instrument 

specific caveats e.g. OMI row anomaly. 

 

Satellite trend  

(DU year-1) 

TOMCAT  

with AKs trend 

(DU year-1) 

TOMCAT 

without AKs trend 

(DU year-1) 

GOME -0.17 ± 0.05 -0.15 ± 0.02 -0.01 ± 0.02 

SCIAMACHY -0.47 ± 0.14 -0.10 ± 0.07 -0.05 ± 0.05 

OMI -0.36 ± 0.04 -0.19 ± 0.07 -0.07 ± 0.03 

Table 5.4: Summary of trends for the satellite and co-located model (with/without 
AKs applied) European monthly average sub-column (surface – 450 hPa, DU) O3 
records between 2005 – 2010. TOMCAT records are co-located with their 
respective satellite records.  
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Figure 5.29: European monthly average sub-column (surface – 450 hPa) anomalies 
(DU) of: (a) mod-GOME, mod-SCIAMACHY and mod-OMI and (b) GOME, 
SCHIAMACHY and OMI. The values given below each plot refer to the MB and NMB 
between the co-located TOMCAT records or satellite records labelled. 

 

Figure 5.30: Same as Figure 5.27 but for the 6-year satellite record overlap period 
(2005-2010).  
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5.4.4.2 Model  

For the model records with AKs applied (mod-GOME, mod-SCIAMACHY and mod-OMI), 

the satellite trend is captured by the model for GOME only, both having a significant 

negative trend of -0.17/-0.16 DU year-1 (Table 5.4). For SCIAMACHY, the model shows 

a smaller trend of -0.10 DU year-1, unlike the larger negative trend of -0.47 DU year-1 

seen in the satellite. For OMI, the model shows a significant negative trend (-0.19 DU 

year-1), around half the magnitude of the satellite trend (-0.36 DU year-1). Therefore, in 

this six-year overlap period, the model does capture the trends in the satellite more 

convincingly than across the whole record. The model records with AKs applied are also 

consistent between the three records, with Pearson’s correlation coefficients of 0.80 

between the mod-SCIAMACHY and mod-OMI, 0.97 between mod-SCIAMACHY and 

mod-GOME and 0.81 between mod-OMI and mod-GOME. Applying the AKs to the 

model also impacts the trend, making the trend more negative, and so more like the 

satellite, in all 3 cases (Table 5.4). This shows that the trend is sensitive to the vertical 

sensitivity of the satellite instruments, and therefore it is important to consider the satellite 

vertical sensitivity when studying the trends.  

For the model records with AKs applied, the monthly anomalies for all three records are 

fairly consistent, showing a similar pattern across the timeseries (Figure 5.29(a)). There 

are notable anomalies such as up to +1.4 DU in spring 2005, +1.5 – +2.0 DU in 

spring/summer 2006, -0.7 – -1.2 DU in spring 2007, +0.5 – +1.0 DU in winter 2007/2008 

and -1.1 – -1.6 DU around spring 2010. In comparison with the satellite anomalies, 

across the 6 years, the broad pattern of positive anomalies before 2009 and more 

negative ones after 2009 is similar between the satellite and co-located model records.  

The consistency of the anomalies between mod-GOME, mod-SCIAMACHY and mod-

OMI (all based on the model simulation) is compared with the 3 independent satellite 

records, GOME, SCIAMACHY and OMI (Figure 5.29). To quantify this comparison, the 

NMB between the 3 records are presented for both the satellite and co-located model 

records. Here, the NMB refers to the MB normalised according to the standard deviation 

of one of the records in each pairing, to account for the larger anomalies seen in the 

satellite record. Mod-GOME, mod-SCIAMACHY and mod-OMI show smaller normalised 

differences (~ 0.4 – 0.7 DU), compared to the 3 satellite records (~ 1.1 – 1.4 DU), 

suggesting broadly a greater consistency. This larger consistency between the model 

co-located records provides some evidence to indicate that the differences between the 

satellite records are not entirely due to factors related to sampling variation (e.g. 

overpass time and resolution) and vertical sensitivity. This is because these factors have 

been taken into consideration in the model records by co-locating the model to the 

satellite profile locations/times and then applying the AKs to the model profiles. 

Therefore, as the satellite records show larger differences than the co-located model 

records, these additional differences must be due to other factors, not just the sampling 

and vertical sensitivity as commonly stated.  
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5.4.5 Model experiments 

To distinguish the influences of emissions and meteorology variation on long-term 

tropospheric sub-column O3 trends, two additional TOMCAT simulations were 

performed, one with a repeating fixed year of emissions and the other with a repeating 

fixed year of meteorology (fixed year of 2008 for both). The timeseries of the TOMCAT 

control simulation (TOMCAT-control), the simulation with fixed emissions (TOMCAT-

fixed-emiss) and the simulation with fixed meteorology (TOMCAT-fixed-met) is shown in 

Figure 5.31. Both experiment simulations show a close agreement with the control run, 

with a Pearson’s correlation coefficient of 0.99 for TOMCAT-fixed-emiss & TOMCAT-

control and 0.98 for TOMCAT-fixed-met & TOMCAT-control. Over the timeseries, 

TOMCAT-fixed-emiss is on average 0.41 DU larger than TOMCAT-control and 

TOMCAT-fixed-met is 0.16 DU smaller than TOMCAT-control. Figure 5.31(d) and (e) 

show that 2008 was a year of emissions which caused higher O3 concentrations than 

typically. Using a fixed year of 2008 emissions in the simulation for the other years of the 

record generates a positive difference relative to the control, with higher O3 in TOMCAT-

fixed-emiss across most other years. For the fixed meteorology simulation, the 

meteorology of 2008 is shown to be more consistent with an average across the time 

period, with both positive and negative differences. The pattern of monthly anomalies for 

TOMCAT-fixed-emiss is very similar to TOMCAT-control (r = 0.88), highlighting the 

importance of varying meteorology in explaining short-term monthly tropospheric O3 

variation. The TOMCAT-fixed-met simulation is less well correlated with TOMCAT-

control (r = 0.57) but does still show an influence e.g. there are notable periods in 1998 

and 2015 where TOMCAT-control is more consistent with TOMCAT-fixed-met compared 

to TOMCAT-fixed-emiss.    

For the three simulations, all have near-zero trends (-0.01/0.00/-0.01 DU year-1 for the 

control/fixed-met/fixed-emiss), highlighting the limited impact that fixing either the 

emissions or meteorology has on the overall trend across the 23-year period. Due to the 

large impact of emissions in 2008, sub-temporal trends were created for before and after 

2008 (1996 – 2008 and 2008 – 2018, Figure 5.32). All three model runs show a similar 

pattern, with a very small positive trend for 1996 – 2008 of +0.07 DU year-1, +0.03 DU 

year-1 and +0.04 DU year-1 for TOMCAT-control, TOMCAT-fixed-emiss and TOMCAT-

fixed-met respectively, and a small negative trend for 2008 – 2018 of -0.07 DU year-1, -

0.03 DU year-1 and -0.03 DU year-1, respectively. Overall, this experiment indicates that 

neither fixing emissions nor meteorology has a large impact on the average long-term 

trends of tropospheric O3 across the European domain. Therefore, the near-zero trend 

in the control is not due to a possible cancellation of trends from a large impact of 

emissions and meteorology, despite the reduction in key O3 surface precursor gases, 

e.g. NOx and VOCs, used in the simulation (Figure 5.12). As discussed earlier, in the 

model different processes are more important to tropospheric O3 variation at the surface 

(e.g. local surface emissions) and higher up in the troposphere (meteorology, transport, 

STE). Therefore, the near-zero trend across the time period could be influenced by a 
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balance of these different processes within the surface – 450 hPa sub-column, which 

could be further studied by investigating the TOMCAT trends across the pressure levels 

within the surface – 450 hPa pressure region.  

 

Figure 5.31: (a) Timeseries from 1996 – 2018 of European average monthly sub-
column O3 (surface – 450 hPa, DU) for TOMCAT-control, TOMCAT-fixed-emiss and 
TOMCAT-fixed-met. (b) Monthly mean anomalies (relative to a monthly average 
baseline (1996 – 2018)) for the 3 simulations (DU). (c) Difference between TOMCAT-
control the two fixed simulations (DU). 
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Figure 5.32: Timeseries of European monthly average sub-column O3 (surface – 
450 hPa, DU) for (a) TOMCAT-control, (b) TOMCAT-fixed-emiss and (c) TOMCAT-
fixed-met. A seasonal model based on the record from 1996 – 2008 is shown in 
red, and 2008 – 2018 is shown in blue. The calculated linear trend from each 
seasonal model (DU year-1) is displayed on each panel. An * before the word 
“Trend” indicates that the trend is significant at the 95% confidence level.  

For each grid-box across the European domain, the trends for all three simulations are 

very small, ranging from -0.04 to 0.05 DU year-1 (Figure 5.33). TOMCAT-control shows 

negative trends across central continental Europe, with the largest negative values 

around Italy and the Balkans, and also across the North Atlantic. There are positive 

trends across the southern North Atlantic, the Southern Mediterranean counties in 

Northern Africa and NE Europe. Figure 5.33 also highlights which regions in TOMCAT-

control reflect the trends in either TOMCAT-fixed-emiss or TOMCAT-fixed-met, and thus 

show a greater impact from meteorology or emissions. The region of negative trends in 

TOMCAT-control over central continental Europe and positive trends in the southern 

North Atlantic and North Africa are present in the TOMCAT-fixed-met (varying emissions) 

run and are regions where the trend is likely to be dominated by changes in surface 

emissions from the land. As central continental Europe produces large quantities of O3 

precursor surface emissions, this confirms the expectation that the tropospheric O3 trend 

across central Europe has been more dominated by emissions than meteorology. The 

negative trends in the Northern Atlantic and the North Sea and positive trends across 

the NE of Europe are present in the TOMCAT-fixed-emiss run (varying meteorology) and 

are regions where the trend is likely to be dominated by changes in meteorology. 

Although the anomalies in the model simulations are much smaller than those of the 

satellite records (Figure 5.27), there is some evidence of a similar spatial pattern. For 
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example, the positive anomalies in southern Europe around the Mediterranean in 

TOMCAT-fixed-met are seen in the SCIAMACHY and OMI records and the negative 

anomalies across central and eastern Europe in TOMCAT-fixed-met are seen in all three 

satellite records. This similarity in spatial distribution of anomalies indicates that the 

satellite records might be showing evidence of impact dominated by surface precursor 

emissions, as seen in TOMCAT-fixed-met simulation.  

 

Figure 5.33: Linear trend for seasonal model applied to a timeseries of model sub-
column O3 (surface – 450 hPa) for each grid-box across the European domain (DU 
year-1) for (a) TOMCAT-control, (b) TOMCAT-fixed-emissions and (c) TOMCAT-
fixed-met.  

STE can impact tropospheric O3 variation and trends (Tarasick et al., 2005; Ordóñez et 

al., 2007; Neu et al., 2014). The simulations use a fixed climatological value of 

stratospheric O3, but the flux of STE will vary between the years. STE shows variation 

between 1996 – 2018, with monthly anomalies varying between -0.9 and +0.7 DU and 

between -42% and 21% (Figure 5.34). There is a zero linear trend across the time period. 

This suggests that although STE can have an impact of year-to-year O3 variability, there 

is no strong trend in the simulated STE flux, that has influenced tropospheric O3. 
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Figure 5.34: (a) European monthly average sub-column O3 and a monthly sub-
column O3 based on the % of tropospheric O3 from STE from 1996 – 2018 (DU) 
(labelled as STE). (b) Absolute anomalies for both records (DU) (relative to a 
monthly average baseline (1996–2018)). (c) as (b) as a %. (d) Seasonal model, 
linear trendline and calculated trend (DU year-1) for the STE sub-column record. 
An * before the word “Trend” indicates that the trend is significant at the 95% 
confidence level. 

5.5 Summary 

In this chapter, records of three satellite-derived tropospheric O3 records instruments 

were examined, in combination with the ozonesonde record and TOMCAT simulated O3 

between 1996 – 2018. The aim was to better understand what information these datasets 

can provide about long-term trends in European lower tropospheric O3.  

Three RAL UV-Vis lower tropospheric O3 records (from GOME, SCIAMACHY and OMI) 

showed small changes between 1996 - 2017. GOME shows a negative trend of -0.2 DU 

year-1 from 1996 – 2010; SCIAMACHY shows a negative trend of -0.2 DU year-1 from 

2003 – 2010; and OMI showed a near-zero trend from 2005 – 2017. Overall, despite a 

reduction in the key O3 precursor gas emissions during this time period, the satellite 

observations indicate only a small negative to near-zero trend, suggesting further 

measures will be needed to tackle the tropospheric O3 issue in Europe. However, 

European tropospheric O3 has a large inter-annual variability and these satellite datasets 

have a large uncertainty, which makes distinguishing long-term trends difficult. European 

tropospheric O3 is also influenced by many factors e.g. surface emissions, transport, 

meteorology and STE, which vary in importance across a tropospheric column, making 

it difficult to distinguish the drivers of the trends, especially as the co-located model 
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records with the satellite instrument showed a poor agreement, generally not capturing 

the satellite trends.  

A key consideration of the results in this chapter is the large uncertainty in satellite 

retrievals when considering small long-term trends. The average random error for each 

grid-box for the 3 instruments was ~ 6 – 7 DU (~ 31%), which was scaled to 1.1 – 1.4 

DU (~ 6%) across the monthly average. This is relatively large compared to the small 

trends found, e.g. -0.21 DU year-1 for GOME, which reduces the robustness of the 

conclusions that can be made. Other sources of uncertainty have been presented and 

discussed, such as the OMI row selection which showed variations in the monthly 

average and trend depending on which rows were selected. In the future, as the 

instruments and the retrieval schemes advance and retrieval errors and uncertainties are 

reduced, small trends such as those found here can be concluded with more robustness.  

During the 6-year overlap period (2005 – 2010) all three records show similar negative 

trends and temporal variation. GOME and SCIAMACHY show consistent absolute sub-

column O3 values, with the OMI record showing a larger offset, with a mean difference 

of ~4 DU larger than the other two records. Despite the offset in the overlap years, there 

is consistency between the three satellite products, showing similar negative trends (-

0.2 to -0.5 DU year-1) and similar anomalies across the time period. The higher 

consistency between the co-located model records during this overlap period suggests 

that sampling and vertical sensitivity differences between the satellite instruments are 

not entirely responsible for the differences seen in the satellite record anomalies, with 

the remaining differences currently unexplained. These differences require further 

investigation to explain what is causing them.    

European ozonesondes show little variation from 1996 – 2018, which corresponds well 

with the near-zero trend in the sonde co-located TOMCAT record. Model experiments of 

fixing either the meteorology or emissions in the TOMCAT simulations, showed little 

impact compared to the control simulation, all showing a negligible trend throughout the 

period averaged across the domain. This indicates that there is no clear cancellation of 

trends from opposing larger influences of emissions and meteorology, despite consistent 

surface precursor emission reductions during this period. However, there could be some 

spatial cancellation, as the small model trends of some regions are shown to be driven 

more by either emissions or meteorology. Emissions had a larger influence on the 

regional trends across mainland Europe and the Mediterranean, likely due to emission 

reductions over the period, and meteorology was the more dominant influence on the 

trends across the Atlantic.
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Chapter 6 Investigating the response of European tropospheric 

ozone to the COVID-19 lockdowns in 2020 & 2021  

6.1 Introduction 

Following on from Chapter 5, which investigates long-term tropospheric O3 trends 

between 1996 – 2018, this chapter presents results on the more recent years of 

tropospheric O3. The focus is on free tropospheric O3 across Europe in 2020 and 2021, 

in response to the low spring/summer free tropospheric O3 across the NH, initially 

described by Steinbrecht et al. (2021). As the result of a global pandemic caused by 

COVID-19 (disease from SARS-CoV-2, severe acute respiratory syndrome coronavirus-

2), several countries worldwide implemented a ‘lockdown’ of many daily life activities to 

prevent the spread of the disease (Forster et al., 2020; WHO, 2020; Zhou et al., 2020). 

This resulted in a widespread reduction in surface emissions including O3 precursor 

gases (NOx and VOCs) (Forster et al., 2020). The first national European lockdowns 

started around the beginning of March, with Italy the first country in Europe to announce 

a national lockdown (European Commission, 2023).  

Using changes in activity data, Forster et al. (2020) estimated a global reduction of ~ -

30% for NOx and ~ -20% for VOCs in April 2020 and Guevara et al. (2021) estimated 

average reductions across Europe of ~ -33% for NOx and -8% for VOCs in March/April 

2020. Furthermore Guevara et al. (2021) found that the countries with the severest 

lockdowns, e.g. France, Italy and Spain, had even higher average reductions, of ~ -50% 

for NOx and -14% for VOCs. Across Europe, many of these lockdowns started around 

spring/summer, which coincides with the low values of free tropospheric O3 described by 

Steinbrecht et al. (2021) across the NH. Another notable event for tropospheric O3 during 

winter/spring 2019/2020 was the very large stratospheric Arctic O3 depletion caused by 

a very cold, strong and long-lasting polar vortex (Wohltmann et al., 2020; Weber et al., 

2021; Feng et al., 2021).  

Steinbrecht et al. (2021) found that during the spring and summer of 2020, 

measurements of the NH free troposphere (mostly from ozonesonde stations) showed 

lower than usual values of O3. This negative anomaly in April – August 2020 was around 

an average of 7% lower (at 1 - 8 km altitude) than a climatological mean for 2000 – 2020 

(Figure 6.1). The occurrence of these low O3 values, at a large number of stations, is 

very unusual, and had not been seen in the record since at least 2000. Steinbrecht et al. 

(2021) also presented results from CAMS and NASA’s GMI model suggesting that the 

low springtime Arctic stratospheric O3 values contributed to less than 25% of this free 

tropospheric O3 negative anomaly, and attribute most of the O3 reduction to the simulated 

emission reductions.  
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Figure 6.1: Annual mean O3 anomalies (%, relative to a 2000 – 2020 average) 
between 1 – 8 km from April to August from a) ozonesonde measurements and b) 
CAMS atmospheric composition reanalyses. The light blue lines represent 
stations north of 15°N, the orange lines represent stations south of 15°N and the 
thick blue line represents an average of the stations north of 15°N. Taken from 
Steinbrecht et al. (2021).  

Chang et al. (2022) investigated further the negative anomaly in European ozonesondes, 

comparing the 2020 free troposphere profiles (700 – 300 hPa) to a long-term (1994 – 

2019) trend and the IAGOS aircraft tropospheric O3 record. They show that including 

2020 in a fused ozonesonde-aircraft record (1994 – 2019), the trend decreases from 

0.65 ppbv decade-1 (without 2020) to 0.36 ppbv decade-1 (with 2020), and 2020 has a 

mean anomaly of -3.6 ppbv. This highlights the size of the negative anomaly with respect 

to the previous years. Clark et al. (2021) also studied the IAGOS record, showing a 

negative anomaly of 10% for spring 2020, compared to an average of spring 2016-2019 

in the free troposphere above Frankfurt.  

From the satellite record, Ziemke et al. (2022) showed that the low spring/summer free 

tropospheric O3 was also present in the NASA satellite record. They show that a merged 

record of tropospheric O3 from 3 instruments (EPIC aboard Deep Space Climate 

ObserVatoRy (DSCOVR), OMI aboard Aura and OMPS aboard the Suomi National Polar 

Partnership (SNPP)) found a comparatively uniform negative anomaly in tropospheric 

column O3 between 20°N - 60°N. This negative anomaly of around 7 - 8% (3 DU), 

compared to a baseline of 2016 – 2019, was repeated again in the next year, 2021 

(Figure 6.2). They also presented satellite results of NH NO2, showing a reduction of 

around ~10 – 20% in spring/summer 2020 and 2021, attributing this as the likely cause 

to the negative O3 anomalies (Figure 6.2). They suggested that high values of wildfire 

emissions (many are tropospheric O3 precursor gases) in August – September 2020 and 

2021, could have reduced the negative anomalies in tropospheric O3 towards the end of 

the year.  
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Figure 6.2: Monthly mean 
zonal tropospheric column 

anomalies between 60°S and 

60°N for 2016 - 2021, for a) O3 
(DU) and b) NO2 from OMI 
(1014 molecules cm-2). Red 
ovals show areas of large 
negative anomalies. Taken 
from Ziemke et al.  (2022). 

 

 

 

 

 

 

 

 

 

Also from the satellite record, Cuesta et al. (2022) used a combination of IASI and 

GOME-2 in a multispectral synergism to investigate near-surface (lowermost 

tropospheric (LMT), below 3 km altitude) tropospheric O3 in the spring (1st – 15th April) of 

2020. They found an enhancement of LMT O3 in central Europe and northern Italy 

(typically VOC-limited regions) compared to the previous year (2019) and a reduction 

elsewhere in Europe (typically NOx-limited regions) (Figure 6.3). Figure 6.4 shows the 

change in LMT O3 after the observations have been adjusted to account for 

meteorological impacts using a model showing more consistent negative anomalies 

across the domain in the satellite, highlighting the importance of considering the 

meteorological impact to 2020.    

There are several modelling studies that have investigated the impact of emission 

reduction on free troposphere O3. The studies use different methods to estimate the size 

of these emission reductions. Bouarar et al. (2021) modelled scenarios of reductions in 

primary pollutant emissions during the pandemic, based on emission reductions by 

Doumbia et al. (2021), finding zonally averaged NH free tropospheric O3 to be around 5 

– 15% lower than a baseline of 2001 – 2019. One third of this reduction is attributed to 

reductions in air traffic, one third is attributed to a reduction in surface emissions and the 

final third is attributed to meteorology, which includes the very low 2020 springtime Arctic 

stratospheric O3. Miyazaki et al. (2021) found a reduction in the global tropospheric O3 

burden of around 2% in May and June 2020. Nussbaumer et al. (2022) used a mixture 

of model and aircraft results to investigate the chemical processes affecting tropospheric 

O3 over Europe, focusing on the upper troposphere. They found a -55% reduction in NOx 

mixing ratios from a 2020 aircraft campaign compared to a ‘no-lockdown’ model scenario 



143 
 

 

in the upper troposphere, due to a reduction in air traffic. They found a significant 

deceleration in the O3 cycling, but found that there was little effect on net O3 production 

rates. 

 

Figure 6.3: Spatial distribution of difference in O3 between the 1st – 15th April in 
2020 and in 2019 from a) combination of IASI and GOME-2 in the LMT and b) 
surface stations in the EEA network. Adapted from Cuesta et al. (2022).  

 

Figure 6.4: Same as Figure 6.3 but observations have been adjusted to remove the 
influence of meteorological conditions. Adapted from Cuesta et al. (2022).  

This chapter focuses on the free troposphere O3 anomalies across Europe in the 

spring/summer of 2020 and 2021, which are predominantly found to be negative in the 

literature. In contrast, as highlighted by Cuesta et al., (2022) and discussed above, at 

the surface both positive and negative anomalies were found in 2020. For example, 

Ordóñez et al. (2020) found that daily maximum NO2 decreased consistently across 

Europe at background stations by 5 – 55 % in 2020 compared to 2015 – 2019, whereas, 

MDA8 O3 decreased over Iberia but increased everywhere else in Europe. They 

attributed the O3 changes to be dominated by meteorology, rather than emissions 

reductions, as in the case of NO2. Grange et al. (2021) found an increase of O3 by 30% 

for roadside monitoring sites and 21% for urban background sites across Europe in 

during the peak activity restrictions. Souri et al. (2021) used a model constrained with 

satellite observations of NOx and VOCs from TROPOMI showing that surface MDA8 O3 

increased by ~4% across Europe, and used a fixed emission scenario to suggest that 

meteorology contributed 42% of the surface MDA8 O3 increase, with remaining 58% from 

changes in anthropogenic emissions. 
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Aside from the study Ziemke et al. (2022) described above, there are few other studies 

of tropospheric O3 in 2021 compared to 2020. One study of 2021 is from Pey and Cerro 

(2022) of surface site tropospheric O3, showing that the background O3 reductions of 

2020 across SW Europe (over ~15% at most sites) are repeated in March and April of 

2021, but to a lesser extent.  

Parrish et al. (2022) presents an extrapolation of surface tropospheric O3 data, at NH 

mid-latitude baseline sites, from a longer timeseries than that considered in Chapters 5 

and 6. As described in Chapter 2, surface NH baseline tropospheric O3 has been shown 

to have increased from around the 1980s to around 2000, when the growth rate 

plateaued, with fairly low variation since then. Parrish et al. (2022) found lower baseline 

O3 around 2016 – 2018, which suggests the start of a negative trend through the 

2010/2020s, which is fit with a quadratic trendline from 1980 – 2018 (Figure 6.5). 

Extrapolating this trendline to 2020, produces a much lower tropospheric O3 value than 

the previous ~10 years, suggesting that low tropospheric O3 values in 2020 could, in 

part, be due to this decreasing trend in baseline O3.   

In addition to O3, the change in emissions in the spring/summer 2020 is likely to have 

had an impact on OH. In the literature, there are currently few observation-constrained 

estimates of OH anomalies in 2020. Miyazaki et al. (2021) used top-down estimates of 

NOx emission reductions (using multi-constituent satellite data assimilation) to model the 

impact of tropospheric O3 and OH, finding a global average tropospheric mean negative 

OH anomaly of -4.0% in May 2020, varying up to 20% – 30% locally (compared to a 2010 

– 2019 baseline). The methodology developed in Chapter 4 presents an opportunity to 

derive OH concentrations in the spring/summer of 2020.   

Figure 6.5: NH mid-latitude 
baseline O3 from 1978 – 2018. 
The grey dots are the O3 
measurements from North 
America and western Europe. 
The open circles represent 2-
year averages from the grey 
points with the error bars 
representing ± SD. A 
quadratic fit to the grey points 
is shown as a solid black line 
(with extension to mid-2020 
shown in green). The 2020 
annual mean from Steinbrecht 
et al. (2021) is shown as a red 
square. The results of (Chang 
et al., 2022) are shown in 
purple. . Taken from Parrish et 
al. (2022). 
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6.2 Research questions 

This chapter will address the following research questions: 

1. What happened to satellite-observed lower tropospheric O3 in the spring/summer 

of 2020 and 2021? How does this compare to previous years? 

2. How does the satellite record compare to the ozonesonde and surface data 

records in the spring/summer of 2020 & 2021? 

3. What information can atmospheric chemistry transport model simulations provide 

about the causes of the spring/summer 2020 reduction of lower tropospheric O3? 

Can a quantification of the relative contribution of emissions and meteorology be 

calculated? 

4. What happened to global satellite-derived OH in 2020? 

6.3 Data & methods 

6.3.1 Satellite tropospheric ozone products 

In this chapter, two tropospheric O3 data records produced by RAL (GOME-2B and IASI-

IMS-Extended) and one record produced by the Université de Toulouse and CNRS 

(IASI-SOFRID) are presented. The two retrieval schemes are described in more detail in 

Chapter 3. The GOME-2B record has been processed with a similar methodology to 

Chapter 5, using level 2 tropospheric sub-columns for Europe with a pressure range of 

the surface – 450 hPa. Tropospheric sub-columns (surface – 450 hPa) were derived for 

the IASI-IMS-Extended record using the same method as described in Chapter 5 

(Section 5.3.3.2). The number of retrievals/sub-column values which passed the filtering 

process and are used in the monthly means are shown in Figure 6.6. Neither record 

shows a large change in retrievals passing the filtering process across the time period, 

which suggests it is appropriate to use these records for the analysis. Due to the 

reduction in anthropogenic emissions predominantly coming from the land across 

Europe, a land mask is used in the analysis. The land mask was produced as part of the 

Hemispheric Transport of Air Pollution (HTAP) Phase 2 programme (Koffi et al., 2016) 

and has been interpolated onto the TOMCAT grid (Figure 6.7).  
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Figure 6.6: Timeseries of 
number of satellite sub-
column values used in a 
monthly mean of (a) GOME-
2B (×103) and (b) IASI-IMS-
Extended (×103).  

 

 

 

 

 

 

Figure 6.7: Land mask used in 
analysis. Yellow represents 
the grid-boxes selected as 
over land.  

 

 

 

 

 

 

 

The IASI-IMS-Extended record is compared to another record from a different IASI 

retrieval scheme (IASI-SOFRID). For a longer timeseries, the IASI-IMS-Extended record, 

as described above, is also compared to a temporally partially processed record (1-in-

10 days) for 2008 – 2017, as used in Chapter 4. To identify the impact of using a partially 

processed record, the partially processed (level 2) record has been compared with a 

level 3 product of IASI-IMS-Extended which was processed for significantly more days 

(1-in-2 days). The two records are well correlated, with a Pearson’s correlation coefficient 

of 0.94, and a small average difference of 0.5 DU (Figure 6.8). This good comparison 

suggests it would be suitable to use the partially processed record in comparison with 

the MetOp-B fully processed record from 2018 – 2021.  

Due to differences in the retrieval process between IASI-IMS-Extended and IASI-

SOFRID, the products will have different vertical sensitivities. IASI-IMS-Extended shows 

better sensitivity for the lower troposphere (Figure 6.9), where this study is focused. For 

the surface to 450 hPa sub-column, IASI-IMS-Extended has an average DOFS of 0.5 in 
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January and 0.7 in July, and IASI-SOFRID has smaller average DOFS of 0.2 in both 

January and July.  

 

Figure 6.8: Comparison of temporally partially processed IASI-IMS-Extended 
record (from MetOp-A), between 1 in every 10 days and 1 in every 2 days, for 2008 
- 2017. (a) Monthly mean European sub-column O3 (surface – 450 hPa) for the 1 in 
every 10 days record (red solid line) and 1 in every 2 days record (black dotted 
line). (b) Monthly mean percentage anomalies for the two records, relative to a 
monthly average baseline (2008–2017).  

 

Figure 6.9: Average AKs above Europe for IASI-SOFRID in (a) January 2020 and 
(b) July 2020. Average AKs above Europe for IASI-IMS-Extended in (c) January 
2020 and (d) July 2020. AKs are shown from 10 – 1000 hPa. Note the differing range 
on the AK axis between the two products.  
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6.3.1.1 GOME-2B trend 

In the GOME-2B record, there is a large negative trend between 2015 and 2020 of -1.8 

DU year-1 (Figure 6.10). This large negative trend is not consistent with other 

observations, such as ozonesondes (Section 5.4.3), and is most likely due to UV 

degradation of the instrument. With the aim to establish the relative impact of 2020 

tropospheric O3 to the previous years, detrending the record is appropriate, to account 

for the strong negative trend. Using a linear model to detrend the data creates a pattern 

within the record (Figures 6.10(a) and 6.10(b)), of very low values in 2017, increasing to 

2020. This suggests that the trend from 2015 to 2020 is not linear, with a larger negative 

trend between 2015 and 2017, and a smaller negative trend between 2017 and 2020. 

Therefore, a non-linear model (2nd order polynomial) has been used to detrend the data 

(Figures 6.10(c) and 6.10(d)). This produces a record without the pattern of dipping in 

2017 and increasing to 2020. The R2 value is also slightly better for the polynomial trend 

line, with 0.58, compared to 0.55 for the linear trendline. The detrended record shown in 

Figure 6.10(d) is added to the average O3 across the original record (17.6 DU), with the 

detrended record used in the analysis shown as the black line in Figure 6.10(e).  

 

Figure 6.10: Timeseries of European monthly average sub-column (surface – 450 
hPa) O3 record (DU) derived from GOME-2B between January 2015 and October 
2020. (a) Original GOME-2B record for 2015 – 2020 with a linear trend line. (b) 
GOME-2B detrended using the linear trend model. (c) Original GOME-2B record 
with a 2nd-order polynomial trend line. (d) GOME-2B detrended using the 2nd-order 
polynomial trend model. (e) Original GOME-2B record and detrended GOME-2B 
record, using the 2nd-order polynomial trend model. 
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6.3.1.2 OH calculation  

IASI composition data from MetOp-B is used to extend the methodology from Chapter 4, 

to investigate what information the satellite observations can provide about OH in 2020. 

The IASI-IMS-Extended record of O3, H2O and CO and RAL’s IASI CH4 retrieval scheme 

record of CH4 from 2018 – 2020 is used in the method developed in Chapter 4, calculated 

over the broader 400 – 800 hPa pressure layer. The photolysis rate constant for O3 (𝑗1) 

used are daily averages (at 9.30 LST) from a TOMCAT simulation of 2010, which is 

repeated annually in the calculation.  

6.3.1.3 Satellite uncertainties 

The retrieval error calculated by RAL (𝑺𝒙 (solution error covariance matrix) in Section 

3.4.1.1), represents the random error of the retrieval (Table 6.1 and Figure 6.11). For 

GOME-2B the average random error across the record is 8.2 DU (46.7%). As in Chapter 

5 (Section 5.3.1.3) and Pope et al. (2015) the random errors will partially cancel out due 

to averaging across multiple grid-box values. The errors have been scaled (by 
1

√𝑁
) using 

N as the number of days in the month with retrievals. GOME-2B has an average random 

error of 1.5 DU (8.4%). For the IASI-IMS-Extended record, to represent the uncertainty 

in the presented monthly means, the standard deviation for the retrievals for each grid-

box (2.8° × 2.8°) across Europe has been calculated for each day. This provides a 

representation of the range in values from the satellite retrievals in every grid-box each 

day. This standard deviation has been averaged across the grid-boxes and over each 

month. The average uncertainty across 2018 – 2021 is 4.7 DU (23.1%). This uncertainty 

estimate has been scaled as above, to highlight the impact of multiple measurements on 

the uncertainty. The averaged scaled uncertainty is 0.85 DU (4.2%). As in Chapter 5, 

these random errors are large and should be considered when interpreting the results.  

Instrument 

Average 

random error/ 

uncertainty for 

each grid-box 

Range in 

monthly 

averages 

Scaled random 

error/uncertainty for 

monthly averages 

Range in 

scaled 

monthly 

averages 

GOME-2B 8.2 DU (46.7%) 
34.7% – 

67.9% 

1.5 DU  

(8.4%) 

3.8% – 

10.7% 

IASI-IMS 4.7 DU (23.1%) 
18.5% – 

29.7% 

0.85 DU  

(4.2%) 

3.3% –  

5.6% 

Table 6.1: Summary of average random errors for GOME-2B and uncertainty for 
IASI-IMS-Extended. 



150 
 

 

 

Figure 6.11: Sub-column O3 (surface – 450 hPa) record of (a) GOME-2B (detrended) 
and (b) IASI-IMS-Extended between 2015 – 2021. For (a) the monthly averaged 
random error is shown as ± the record (dotted lines) and the scaled random error 
is shown as ± the record (solid thin lines). For (b) the uncertainty is shown as ± 
the record (dotted lines) and the scaled uncertainty is shown as ± the record (solid 
thin lines).  

6.3.2 Ozonesondes 

The ozonesonde data is processed by the same methodology as in Chapter 5, deriving 

tropospheric sub-columns (surface – 450 hPa). The ozonesonde record was averaged 

for each month from 2000 – 2020 and across all profiles which sit within the European 

domain. The locations of these launch sites during the time period 2000 – 2020 are 

shown in Figure 6.12. Only 7 sites, all in central Europe, provided profiles (after filtering) 

in 2020. This highlights the reduced spatial coverage and sampling of the ozonesonde 

record, especially in comparison with that of the satellite records.  

Figure 6.12: Locations of 
ozonesonde launch sites for 
ozonesonde record between 
2000 and 2020. Sites with 
launches in 2020 are shown 
in black with a white asterisk. 
Sites with launches in 2000 – 
2019 (but not in 2020) are 
shown in orange.  

 

 

 

 

 

6.3.3 Surface data 

The surface measurements used here are from the European Monitoring and Evaluation 

Programme (EMEP), a network of monitoring sites, providing measurements of many 
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atmospheric species from the 1970s to the present. The EMEP surface monitoring data 

is provided in the database EBAS (EBAS, 2022), which is operated by the Norwegian 

Institute for Air Research (NILU) (Tørseth et al., 2012). Here, EMEP data from surface 

sites between 2010 – 2020 is used. There are 165 sites across Europe providing data 

during this time period, with 115 sites that provide above 90% of a complete monthly 

timeseries (Figure 6.13). The EMEP data has a timestep of around 1 hour, which is 

averaged for each site, to create a daily and then monthly average timeseries. To create 

a monthly mean anomaly timeseries, the sites were only included if for each month, 10 

out of the potential 11 years (2000 – 2020) were available. The instrument used to 

measure O3 has a precision of ~ ± 2% - 3% (Monteiro et al., 2012; Wilson et al., 2012).  

Figure 6.13: Locations of 115 
EMEP sites used in this 
analysis (90% monthly data 
available from the 2010 – 
2020 timeseries).  

 

 

 

 

 

 

 

6.3.4 TOMCAT model 

The model was run for 2017 – 2020, with one year of spin-up. The sources of the surface 

emissions fields are the same as in Chapter 5 (Table 5.2). The major difference between 

the model as described in Chapter 5 and here, is the use of ERA-5 meteorological fields 

to force the model, compared to the ERA-Interim fields used in Chapter 5 (ERA-5 spatial 

resolution is higher and has improvements in model physics, core dynamics and data 

assimilation (Hersbach et al., 2020)). The switch from ERA-Interim to ERA-5 was 

required as the ERA-Interim reanalysis product only covers 1979 – 2019, .  

The model was run with these surface emission files as a ‘business as usual’ (BAU) case 

from the years 2017 – 2021. The model was also run using scaled emissions, based on 

either 2020 or 2021. To determine the impact of meteorology, the model was run for the 

years of 2017 – 2019 using the fixed scaled emissions of 2020. However, this was not a 

continuous run between 2017 – 2019, instead, the years were run individually, using 

initial conditions from the BAU scenario at the start of each year. This was implemented 

to determine the impact of the scaled emissions in each individual year, rather than a 

cumulative effect from the previous years.  
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For 2020 and 2021, the anthropogenic surface emission fields are scaled based on 

changes in activity data presented in Forster et al. (2020). The scaling factors were 

calculated by R. Pope (University of Leeds, National Centre for Earth Observation), 

varying monthly and spatially across the TOMCAT 2.8° × 2.8° grid. The scaling factors 

also varied by species, covering NOx, CO, SO2, BC, OC and VOCs, with one scaling 

factor for all VOC species. The scaling factors were applied to the anthropogenic 

emissions only. An example of the scaling factors applied to the NOx emissions is shown 

in Figures 6.14 and 6.15. In this example for NOx, in January and February there is a 

limited global reduction, with only reductions seen over China. From March to December 

there are reductions in the majority of regions of the globe, with some of the highest 

percentage reductions shown in April. The scaled anthropogenic emissions are also 

shown in Figure 6.16, in comparison with the unscaled BAU emissions. In 2021, the 

scaling factors present a continuation of the reduction in emissions across the species 

impact most by the scaling, with a relatively consistent reduction compared to the BAU 

emissions across all months of 2021 (Figure 6.16).  

 

Figure 6.14: The absolute difference in NOx emissions from applying scaling 
factors for all months of 2020 (×1010 molecules cm-2 s-1).  
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Figure 6.15: Same as Figure 6.14, but the difference is shown as a percentage.  

 

Figure 6.16: (a) European anthropogenic surface emissions (Tg) for NOx (as NO2), 
CO and a combination of VOCs (as Carbon) between 2017 – 2021. The solid line 
represents the emissions used in the BAU scenario and the dotted represents the 
emissions used for the scaled emission scenario in 2020 and 2021. (b) Percentage 
reduction of the scaled emissions of NOx, CO and a combination of VOCs during 
2020 and 2021, compared to the BAU emissions.  
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6.4 Results & discussion  

6.4.1 Satellite records 

6.4.1.1 GOME 2B 

The GOME-2B sub-column tropospheric O3 record from January 2015 to October 2020 

shows a strong negative trend (linear trend of -1.8 DU year-1) during this time period 

(Figure 6.17). In order to study 2020 relative to the other years, without the influence of 

a strong negative trend, the record has been detrended using a 2nd order polynomial 

trend (Figures 6.10 and 6.17). The detrended monthly anomaly timeseries (Figure 6.17) 

shows a negative anomaly of -2.4 DU (-15.8%) in April and -2.8 DU (-18.2%) in May 

2020. Two standard deviations (2σ) across the entire monthly record is 2.0 DU (12.1%), 

which signifies that ~ 95% of the data lies within this value from the average. Therefore, 

the two months of April and May 2020 are larger than 2σ from the average, which shows 

the relative size of these anomalies compared to the record. The following months of 

June, July and August also show large (but within 2σ from the mean) negative anomalies, 

of -1.4 DU (7.7%), -1.5 DU (7.2%) and -1.2 DU (6.0%), respectively. These results 

provide further evidence, building on the literature (Steinbrecht et al., 2021; Ziemke et 

al., 2022), that there was a large tropospheric O3 reduction in spring/summer of 2020, 

and also that the reduction occurred specifically in Europe.  

Spatially, in March there is a mixture of positive and negative anomalies, including some 

large positive anomalies in NE Europe. National lockdowns across some parts of Europe 

did start around mid-March (e.g. Italy), however this was not universal across Europe. 

An enhancement of O3 in this region could be due to reductions in surface emissions of 

NOx, which would reduce the O3 titration effect by NO, leading to increased O3. Increased 

O3 in this region could also be due to enhanced O3 production (from increased precursor 

gas emissions, or a meteorological effect e.g. high temperatures), reduced O3 

destruction in this region or variation in transport of O3. Consistent negative anomalies 

across the European domain begin in April and May 2020, apart from some positive 

anomalies over NE Europe (Russia and the Baltic states) in April (Figure 6.18). In May, 

the negative anomalies are larger over the continent, compared to the Atlantic, which 

could indicate a greater impact from emissions as they are predominantly emitted above 

the land. The consistency of negative anomalies across most of the domain in May 

indicates how wide-spread this tropospheric O3 reduction was, pointing to a significant 

event e.g. consistent lockdowns across Europe. Conversely, in June, the negative 

anomalies are largest over the Atlantic, with smaller negative anomalies over land, which 

could suggest the reduction is from O3 transported across the Atlantic. In July, southern 

Europe, particularly over the Mediterranean, shows small positive anomalies, with large 

negative anomalies across the domain in a band above 40°N and below 60°N. In August, 

the negative anomalies are smaller and less consistent than in previous months, and are 



155 
 

 

predominantly across the central European continent, with small positive anomalies in 

the North.  

 

Figure 6.17: (a) European monthly average sub-column (surface – 450 hPa) O3 
record (DU) derived from GOME-2B between January 2015 and October 2020. (b) 
Monthly mean absolute anomalies for the records (2015 – 2019 monthly average 
baseline). (c) Monthly mean percentage anomalies (2015 – 2019 monthly average 
baseline). The blue dots/lines indicate the original record prior to detrending 
(dashed in panels (b) and (c), the black dots/lines represent the detrended record. 
Black dotted lines indicate ± 2σ from the average of the record. 
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Figure 6.18: GOME-2B sub-column (surface – 450 hPa) O3 anomaly for January – 
October 2020 (DU) relative to a monthly average baseline (2015–2019).  

6.4.1.2 IASI-IMS-extended 

In 2020, across the European domain, the months of April and May show large negative 

anomalies in the IASI-IMS-extended O3 record, of -2.4 DU (-12%) and -1.6 DU (-7.6%), 

respectively (Figure 6.19). The anomalies calculated here, are compared to a relatively 

short monthly average baseline (2018 – 2019). Both of these values are lower or very 

close to -2σ from the mean, which is 1.5 DU (7.6%) (calculated across the entire monthly 

record). The results are similar in April for over just land, with a negative anomaly of -2.3 

DU (-12.5%), and larger for May, at -2.6 DU (-13.1%). Both months are lower than -2σ 

(1.7 DU or 9.1%). There are also relatively large negative anomalies for the rest of 2020, 

especially in June (-0.9 DU/-3.9%), August (-1.0 DU/-4.6%) and October (-1.1 DU/-

6.0%). The anomaly values over land are similar for most months, but do show a larger 

negative anomaly in July (difference of 4.8%). Again, as with GOME-2B, these results 

indicate that there was a large tropospheric O3 reduction in the spring/summer of 2020, 

and it did occur across Europe in particular.  
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Figure 6.19: (a) European monthly average sub-column (surface – 450 hPa) O3 
record (DU) derived from IASI (IASI-IMS-extended) between 2018 and 2020. (b) 
Monthly mean absolute anomalies for the records (2018 – 2019 monthly average 
baseline). (c) Monthly mean percentage anomalies (2018 – 2019 monthly average 
baseline). The black lines/dots represent an average across the whole domain, the 
red lines/dots represent an average for the domain with a land mask applied 
(Figure 6.7). Dotted lines indicate ± 2σ from the average of the record. 

Spatially, the IASI-IMS-Extended record shows fairly consistent negative anomalies for 

April 2020, with larger negative anomalies in northern Europe, and the north Atlantic 

(Figure 6.20). In May 2020, the negative anomalies are predominately over central 

continental Europe and Northern Europe, which again could indicate a reduction in 

anthropogenic surface emissions, with positive anomalies in the southern Atlantic. The 

distribution is reversed in June 2020, with positive anomalies across central continental 

Europe and negative anomalies elsewhere. In July 2020, there are positive anomalies in 

a band from around 30°N to 40°N, and negative anomalies above 40°N, with the largest 

being in eastern Europe, a pattern which is similar to that seen in GOME-2B. The 

consistency between the spatial anomalies from GOME-2B and IASI-IMS-Extended, 

despite the potential differences in sampling pattern and vertical sensitivity between two 

satellite instruments, suggests confidence in these results.  



158 
 

 

 

Figure 6.20: IASI-IMS-extended sub-column (surface – 450 hPa) O3 anomaly for 
each month of 2020 (DU) relative to a monthly average baseline (2018–2019). 

To investigate the significance of the negative anomalies seen in the spring/summer of 

2020, these months are compared with a longer timeseries of the IASI-IMS-extended 

record (2008 – 2021) which will better represent the average baseline state. The Metop-

B data (shown in Figure 6.20) and Metop-A IASI-IMS-extended data for 2008 – 2017 

(processed for 1-in-10 days) are combined (Figure 6.21). The partially processed 1-in-

10 day data shows a good agreement with the record processed for more days, 

suggesting it is suitable for this comparison. In comparison with a longer record, the 

negative anomalies of the spring/summer 2020 do stand out, as being around -2σ (2.1 

DU/10.4%). April and May 2020 show negative anomalies of -2.4 DU (-12.4%) and -1.9 

DU (-9.3%). These negative anomalies are very similar to those compared to a monthly 

average baseline of only 2018 – 2019. June, July and August, show anomalies of around 

-5%, which is also similar to anomalies calculated from the shorter baseline. This 

suggests that the average of 2018 – 2019 is relatively comparable to a baseline from 

2008 – 2019. The broadly negative anomalies across the whole of 2020 are also unusual 

compared to the other years, where we see individual months with large negative 

anomalies. Events with negative anomalies which are as large (or larger) than the 

spring/summer 2020, include January 2012 (-18.2%), December 2014 (-13.0%) and 

Spring 2016 (-11.5%), however, such low values across most months of the year is 

unusual compared to the long-term record, with most years showing a range of positive 

and negative anomalies. This suggests that 2020 was influenced over an extended 

period of time e.g. by reductions in surface emissions and/or a meteorological-based 

process.  
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Figure 6.21: (a) European monthly average sub-column (surface – 450 hPa) O3 
record (DU) derived from IASI (IASI-IMS-extended) between 2008 and 2021. For 
2008 – 2017, the data is partially processed (1-in-10 days), for 2018 – 2021, the data 
is fully processed (all days) (see Section 6.3.1). (b) Monthly mean absolute 
anomalies for the records (2008 – 2019 monthly average baseline). (c) Monthly 
mean percentage anomalies (2008 – 2019 monthly average baseline). The black 
lines represent an average across the whole domain, the red lines represent an 
average for the domain with a land mask applied. Dotted lines indicate ± 2σ from 
the average of the record. 

6.4.1.3 IASI-SOFRID 

The longer timeseries IASI-IMS-Extended record (Figure 6.21) is compared to another 

retrieval scheme of IASI, IASI-SOFRID (2008 – 2020 from MetOp-A). In 2020, the IASI-

SOFRID record shows negative anomalies from April – September, with the largest in 

April at -1.4 DU (-8.1%), which is larger than the -2σ value of 1.0 DU (6.0%) (Figure 

6.22). There is a large off-set between the two retrieval schemes, with the IASI-SOFRID 

record being on average -3.0 DU lower. Despite the offset, the records are well correlated 

(r = 0.76). The difference between the records, may be in part due to the difference in 

vertical sensitivity, with IASI-IMS-Extended being more sensitive in the lower 

troposphere (Figure 6.9). Across the complete time period, the anomalies are generally 

larger in the IASI-IMS-Extended record compared to IASI-SOFRID. In 2020, the timing 

of the large negative anomaly is fairly consistent, both showing large negative anomalies 

in April. IASI-SOFRID shows a smaller reduction in May compared to IASI-IMS-

Extended, where May shows comparably low values to April. Towards the end of the 

year, the IASI-IMS-Extended record shows large negative anomalies which are not 

present in the IASI-SOFRID record, which shows smaller negative and then positive 
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anomalies from around August onwards. Therefore overall 2020 in the IASI-SOFRID 

record looks more consistent with the previous years, contrasting to the continuation of 

low O3 in IASI-IMS-Extended.  

Spatially, April and May show negative anomalies across the European domain for IASI-

SOFRID, with fairly consistent negative anomalies everywhere in April, apart from across 

the Iberian peninsula (Figure 6.23). In May, the negative anomalies are over central 

Europe e.g. France, and SE Europe e.g. Turkey, with near-zero anomalies across the 

rest of the domain. In June there are negative anomalies over the Iberian peninsula and 

Scandinavia, with near-zero anomalies across central Europe and in July there are 

negative anomalies consistently between 36°N and 52°N. Although the anomalies are 

smaller than IASI-IMS-Extended, the similar spatial pattern gives confidence to the 

spring/summer anomaly results.  

 

Figure 6.22: As Figure 6.21, with comparison to the IASI-SOFRID record. IASI-
SOFRID (black solid line) is shown as tropospheric sub-columns (DU) between 
2008 and 2021. The IASI-IMS-Extended record (dotted red line) has had a land 
mask applied, for consistency with the IASI-SOFRID product used (land-only). 
Black dotted lines indicate ± 2σ from the average of the record for IASI-SOFRID. 
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Figure 6.23: IASI-SOFRID sub-column (surface – 450 hPa) O3 anomaly for each 
month of 2020 (DU) relative to a monthly average baseline (2008–2019). 

6.4.1.4 Satellite data comparison 

A comparison of the two RAL satellite datasets (IASI-IMS-Extended and GOME-2B) with 

both datasets relative to the same monthly average baseline (2018 – 2019) is shown in 

Figure 6.24. The two records are well correlated, with a Pearson correlation coefficient 

of 0.82 for the absolute record, and 0.85 for the anomalies. However, the records do 

show an average difference of 2.9 DU. This offset is not surprising due to instrumental 

differences, e.g. UV/Vis vs. IR instrument, and the uncertainty involved in the detrending 

of the GOME-2B record. In 2020, both records have the largest negative anomalies in 

April and May, with very similar absolute anomaly values in April (-2.2/2.4 DU), 

corresponding to -14.7% for GOME-2B and -12.0% for IASI-IMS-Extended. Generally 

the pattern of negative anomalies across 2020 is similar between the records, decreasing 

in size from April/May towards the end of the year. Overall, the good comparison in the 

anomaly plot gives more confidence to the results, suggests that we are seeing a signal 

of a reduction in lower tropospheric O3 in the satellite record.  
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Figure 6.24: (a) European monthly average sub-column (surface – 450 hPa) O3 
record (DU) from IASI (IASI-IMS-extended, light blue line) and GOME-2B (black 
line) between 2018 and 2021. For the two satellite products, a dashed line 
represents an average for the domain with a land mask applied. (b) Monthly mean 
absolute anomalies for the two records (2018 – 2019 monthly average baseline) 
(DU). (c) Monthly mean percentage anomalies for the two records (2018 – 2019 
monthly average baseline). Black dotted lines lines indicate ± 2σ from the average 
of the record. 

6.4.1.5 Satellite observations in 2021 

Ziemke et al. (2022) found anomalously low tropospheric O3 in the spring/summer of 

2021, as well as 2020, from their combined NASA satellite product record. The IASI-IMS-

Extended record shows a similar story, with large negative anomalies in spring/summer 

2021 (Figure 6.19). March, April, May and June all show large negative anomalies, 

around the value of -2σ, with -1.4 DU (-7.1%), -2.1 DU (-10.5%), -1.6 DU (-7.8%) and -

1.4 DU (-6.7%) respectively. The land mask record anomalies show very similar values 

to the whole domain in 2021, especially from June onwards, which is more consistent 

with previous years e.g. 2018 – 2019, as opposed to 2020. As with 2020, in the longer-

term IASI-IMS-Extended comparison (Figure 6.21), the negative anomalies in 

spring/summer 2021 are similar to the shorter record, and this year stands out for having 

broadly negative anomalies for all months of the year. Overall, the repetition of a large 

negative anomaly in the spring/summer of 2021, is consistent with the NASA satellite 

products shown by Ziemke et al. (2022). The recurrence of these low O3 values suggests 

a potential continuation of the reduced anthropogenic emissions into 2021, or a feature 

linked to meteorology, which could be deduced using a model simulation.   
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6.4.2 Ozonesonde record 

For the ozonesonde record, 2020 shows lower values of tropospheric O3 for most months 

of 2020, compared to previous years (2000 – 2019, Figure 6.25). The values are around 

or just below -2σ from the average for March, May, June, July and October. In 2020, July 

shows the largest anomaly, at -3.2 DU (-15.1%). The other months in spring/summer 

2020 also show negative anomalies, with -1.5 DU (-7.5%) in March, -1.5 DU (-6.8%) in 

May and -2.0 DU (-9.3%) in June. These values are all the same or larger than 2σ for 

the specific month. Due to the long timeseries, the standard deviation has been 

calculated for each month. July shows the largest variability over the 11 year timeseries, 

however, in 2020, the negative anomaly was still larger than the larger 2σ value (12.0%). 

April also shows a negative anomaly of -0.5 DU (-2.2%), however it is smaller than the 

other months in spring/summer and not large in comparison to the standard deviation for 

April (2σ = 7.5%). Steinbrecht et al. (2021) also find the largest monthly negative anomaly 

for 2020 in July (~ -11%), for a NH average at 6 km altitude (~ near the top of the sub-

column used in this study). However, they also find a similarly large negative anomaly 

for April, which we do not find in our ozonesonde European sub-columns. The 

ozonesonde record for 2021 also shows large negative anomalies in the spring/summer, 

especially in April (-1.7 DU/-7.7%) and May (-1.9 DU/-8.8%), which are both larger than 

-2σ from the average (7.5%/7.3%, respectively). The anomalies are positive from 

September onwards, with very large positive anomalies in September and November. 

The number of ozonesonde profiles in the monthly average during 2020/2021 is towards 

the lower end of the range from 2000-2021, which should be considered in the 

interpretation of these results. However, the number of profiles for 2020/2021 is still 

within the range of other years for most months. This is suggests that we can trust these 

results with respect to number of profiles.  
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Figure 6.25: (a) Ozonesonde tropospheric sub-column (surface – 450 hPa) O3 

monthly variation (DU) for each year between 2000 – 2021. 2σ range for each 
month is shown with a dashed line above and below the monthly average. (b) 
Monthly anomaly of sub-column O3 relative to a monthly average baseline (2000 – 
2019). 2σ displayed as in panel (a). (c) Monthly number of ozonesonde profiles for 
each year between 2000 – 2021. In each panel, 2020 is displayed in blue and 2021 
in orange.  

Ozonesondes were launched from only a few sites across Europe from 2000 - 2021 

(Figure 6.12), and therefore have a limited spatial coverage and sampling in comparison 

to the satellite-derived records. Differences in spatial sampling is likely to be a cause of 

the differences between the records. To account for this difference, for each ozonesonde 

profile, the sub-column value from the nearest satellite grid-box daily average has been 

selected to form a co-located satellite record. Co-locating the satellite record to the 

ozonesondes shows a reduction in the satellite sub-column absolute values, which 

increases in the difference between the satellite and the ozonesondes, by 2.7 DU for 

IASI-IMS-Extended and 2.1 DU for GOME-2B (Figure 6.26). The co-located satellite 

record has an improved correlation (r = 0.82) for IASI, compared to the non-co-located 

record (r = 0.76). However, for GOME-2B, the correlation is lower for the co-located 

satellite record (r = 0.19), compared to the non-co-located record (r = 0.63). The 

ozonesonde record shows the largest negative anomaly in July 2020, which contrasts to 

the timing of the peak satellite negative anomaly. The co-located IASI record shows a 

small decrease in July 2020 compared to the non-co-located record, and a larger 

decrease is seen in the co-located GOME-2B record. These decreases associated with 

the co-location in July imply that the differences seen in the satellite and ozonesonde 
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records in July may be, in part, due to the difference in spatial sampling. However, this 

is not the case for all months of 2020, as there are some which show a conflicting story 

e.g. in April 2020, co-locating the GOME-2B record to the ozonesonde sampling shows 

a larger negative anomaly, when a smaller negative anomaly would be more in line with 

the ozonesonde record. This co-location process is likely to have large uncertainties, 

overall, this partly suggests that some of the differences between the ozonesonde and 

satellite records (e.g. in July 2020) are due to difference spatial sampling methods.   

 

Figure 6.26: (a) European monthly average sub-column (surface – 450 hPa) O3 
record (DU) from IASI (IASI-IMS-extended) (blue solid line), GOME-2B (black solid 
line) and ozonesondes (orange solid line), between 2018 and 2021. For the two 
satellite products, a dashed line represents the record co-located to the 
ozonesondes. The mean difference and correlation are presented for each satellite 
record with respect to the ozonesonde records. (1) refers to the satellite record 
before co-location, (2) refers to the satellite record after co-location. (b) Monthly 
mean absolute anomalies for the records (DU, 2018 – 2019 monthly average 
baseline). (c) Monthly mean percentage anomalies for the records (2018 – 2019 
monthly average baseline).  

6.4.3 Surface data 

The EMEP surface O3 record provides an opportunity to compare this study of the free 

troposphere, using satellite-derived observations and ozonesonde measurements, with 

the surface. Information on O3 concentration at the surface is very important as this is 

where it interacts with people and plants, causing negative health impacts. There are 

large negative anomalies in the monthly mean across the 115 sites in late spring/summer 

of 2020, with smaller negative/positive anomalies in early spring (Figure 6.27). There is 
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an anomaly of -0.4% in March, +0.7% in April, -5.0% in May, -7.1% in June, -15.2% in 

July and -1.7% in August. This pattern follows closely to that seen in the ozonesondes 

(Section 6.4.2), although March has a comparatively lower negative anomaly than the 

other months in the surface data, and April has a small positive anomaly. Ozonesondes 

have a greater sensitivity near the surface and lower troposphere, compared to satellites, 

which could explain the good agreement between the timings of the 2020 negative 

anomalies for the surface sites and the ozonesondes. As with the ozonesondes (Figure 

6.25), 2σ has been calculated for each month, due to the long timeseries available. The 

pattern of monthly 2σ is similar to the ozonesondes, with the largest values in summer 

and lowest in winter. For the surface data, the large negative anomalies in June and July 

are approximately equal to -2σ from the mean (8.3% in June, 14.9% in July). The 

negative anomalies in March and May are much smalller than the values of -2σ from the 

mean (8.2% in March, 9.7% in May). The larger surface negative anomalies in summer, 

not spring, could indicate that reductions in surface precussor emissions were more 

influential on FT O3 in summer, rather than spring, as emissions will be the dominant 

influence at the surface.  

 

Figure 6.27: (a) EMEP surface tropospheric O3 record for 2010 to 2020 (μg m-3). (b) 
Monthly mean absolute anomalies (2010 – 2019 monthly average baseline) (μg m-

3). (c) Monthly mean percentage anomalies (2010 – 2019 monthly average 
baseline). The solid black lines represents the mean value (for the 115 surface 
sites). The dotted blue lines represents ± 2σ from the average. Note the differing 
units to other analysis in this chapter.  

The values presented here are daily averages, but for a more consistent comparison, 

the surface data was filtered to between 8am and 11am LST to correspond with the 
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satellite overpass time. The filtered timeseries for the surface data is very similar to the 

unfiltered timeseries, with very similar negative anomalies, peaking at -15.0% in July.   

Spatially, in April 2020 there are large positive O3 anomalies across central Europe, e.g. 

France, Germany, Austria, Northern Italy, Belgium and negative anomalies across 

Northern Europe and the Iberian Peninsula (Figure 6.28). This spatial distribution pattern 

is consistent with the surface data anomalies presented by Ordóñez et al. (2020) and 

also by Cuesta et al. (2022) (Figure 6.3), which compares the 1st – 15th April 2020 with 

the same period in 2019. Therefore, the spatial distribution of anomalies between 2019 

and 2020 seems to be consistent between 2020 and a longer baseline, as in this study. 

A possible explanation of positive O3 anomalies in April at the surface is that a reduction 

in NOx, reduced the suppression of O3 by NO that happens in very high NOx 

environments, which are common across the industrial regions of central Europe. May 

and June 2020, show mostly negative anomalies across the domain, with a small region 

of positive anomalies around Belgium, the Netherlands and the UK. In July 2020, the 

sites are consistently negative across the domain, apart from a few on the Iberian 

Peninsula, with the largest anomalies found across central Europe. August shows a 

similar pattern to May and June. The good agreement between the ozonesondes and 

the surface data may also be due to the location of the ozonesonde launch sites being 

in Central Europe (Figure 6.12), which has a denser network of surface sites than other 

regions in the domain, or the higher vertical sensitivity of ozonesondes at the surface, 

compared to satellite observations.  

 

Figure 6.28: EMEP O3 anomalies for each month of 2020 (μg m3) relative to a 
monthly average baseline (2010 – 2019). 
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6.4.4 Modelling results 

6.4.4.1 Scaled emissions in 2020 & 2021  

Across Europe, the scaled emissions scenario caused a monthly reduction in 

tropospheric O3 from around March to December 2020 (Figure 6.29). The difference 

between the BAU and scaled emissions scenarios is negligible in January and February, 

increases through the spring and peaks in May; at -1.9 DU (-8.0%), and then reduces 

through the year to December (-0.8 DU/ -4.2%). In 2021, the scaled emissions scenario 

shows consistent large reductions in all months of the year, starting at -0.6 DU (-3.5%) 

in January, peaking at -1.0 DU (-4.0%) in May, and getting slightly smaller towards the 

end of the year, ending with -0.6 DU (-3.2%) in December. TOMCAT O3 across only the 

land shows lower values than the whole domain, but a similar difference between the 

scaled and BAU scenarios. The pattern of differences follows the emission scaling 

reduction closely, although the O3 difference peaks in May, compared to the emission 

reduction peaking in April. Although the pattern is similar, the percentage change is much 

smaller for tropospheric O3 (~ 8% in May) compared to the surface emissions (~ 25% in 

May), highlight the magnitude of emission reductions needed to see a signal in the 

tropospheric O3. This indicates that to see a large reduction in tropospheric O3, more 

stringent restrictions are required on surface emissions leading to large precursor gas 

reductions.  
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Figure 6.29: (a) TOMCAT European monthly sub-column (surface – 450 hPa) O3 in 
2020 (DU). The solid lines represent the BAU scenario, and the dashed lines 
represent the scenario with scaled emissions. The black lines represent the whole 
domain and the orange lines represent the domain with the land mask applied. (b) 
Difference between BAU scenario and scaled emissions scenario. (c) As panel (a) 
for 2021. (d) As panel (b) for 2021.  

6.4.4.2 Long-term results (2017 – 2020) 

The BAU simulation between 2017 – 2020 highlights that tropospheric O3 in 2020 is 

lower compared to previous years, especially compared to the high O3 values in 2019 

(Figure 6.30(a)). The BAU simulation has no emission scaling, therefore this shows the 

large impact of meteorology in 2020. In the BAU scenario, there are negative anomalies 

of up to -1.3 DU (-5.4%) in the spring and summer of 2020, with April, May and July 

showing the largest reductions, which are around the value of -2σ from the mean (1.3 

DU/ 5.7%) (Figure 6.30(b)/(d)). The variation in the BAU scenario is due to meteorology 

and variation in the surface emissions used. The BAU emissions only vary slightly 

interannually, and therefore can be considered to be relatively constant (Figure 6.16). 

Therefore, the negative anomalies show meteorology had a large impact on the 

simulated tropospheric O3 in the spring and summer of 2020.  

For a ‘realistic’ scenario, the BAU scenario for 2017 – 2019 has been combined with the 

scaled emissions scenario for 2020 and 2021. This combined record shows large 

negative anomalies in 2020, peaking at -3.2 DU (-14.5%) in May 2020, which is much 

larger than -2σ from the average (1.8 DU/ 8.3%) (Figure 6.30(b)). In comparison with the 

BAU scenario, the combined scenario suggests that ~1 DU of the negative anomaly is 
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due to meteorology (and small variations in BAU emissions) and the remaining 

contribution (~ 1 – 2 DU in spring/summer) of the negative anomaly is due to the scaled 

emissions for 2020. To further quantify the relative contributions, the difference between 

the anomalies for the BAU and ‘realistic’ scenario as a percentage of the ‘realistic’ 

scenario for 2020 was calculated. This was performed for months with a negative 

anomaly in both the BAU and ‘realistic’ scenarios (February – August 2020 and February 

– June 2021). This values represent the contribution of the emission reduction to the 

negative anomalies seen in the ‘realistic’ scenarios, and the corresponding contribution 

of meteorology (and annual differences in the BAU emissions). The contribution of 

emissions to the ‘realistic’ scenario in spring/summer 2020 is 49% (March), 59% (April), 

60% (May), 72% (June), 58% (July) and 93% (August), with an average of 65% across 

these months (Figure 6.31). Although scaling the emissions dominated across most of 

the months in 2020 (~ 2/3), the meteorology impact is considerable (~ 1/3).  

The impact of meteorology on the scaled emissions scenarios is explored in Figure 

6.30(c). The blue dashed line represents the average of the scaled emissions scenario 

using the meteorology of 2017, 2018 and 2019. This further confirms the impact of the 

2020 meteorology on tropospheric O3, as the 2020 scaled emissions scenario timeseries 

is broadly lower than the 2017/2018/2019 averaged scaled emissions scenario. The 

greatest differences between these two timeseries is in the spring and summer (February 

– July), peaking at a 1.1 DU difference in May. The timeseries is much more consistent 

from August to the end of the year, with differences below 0.5 DU. The ozonesonde and 

surface data showed the peak negative O3 anomalies in July 2020. The ‘dip’ seen in O3 

for July 2020 in the BAU and scaled scenarios, compared to the surrounding months, is 

not present in the 2017–2019 averaged scaled emission scenario (Figure 6.30(c)). This 

suggests that in the model data, the meteorology in July 2020 is contributing to the low 

O3 values in July, not only the reduction in emissions. Therefore, meteorology could be 

contributing to the large negative anomalies seen in the ozonesonde and surface records 

in July 2020. There is no clear European-wide indicator of an extreme meteorological 

event in July 2020, as western and northern Europe were colder compared to average 

(1981 – 2010), and southern and eastern Europe were warmer than average 

(Copernicus Climate Change Service, 2020). Precipitation (an indicator of cloudy 

conditions) also shows a mixed picture with some of northern Europe and eastern 

Europe/the Balkans had more rain than normal, but central Europe was drier than 

normal. 
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Figure 6.30: (a) TOMCAT European monthly sub-column (surface – 450 hPa) O3 
from 2017 – 2021 (DU). The solid black line represents the BAU scenario, the solid 
orange line represents the BAU scenario with the land mask applied. For 2020, the 
dashed line represents the scenario with scaled emissions. (b) TOMCAT O3 
anomalies relative to a monthly average baseline (2017 – 2019). Solid line 
represents the BAU scenario, the pink dashed line represents the anomaly of the 
BAU scenario from 2017 – 2019 combined with the scaled emissions scenario in 
2020. (c) BAU (solid) and scaled emission scenario (dotted) records for 2020 
(black), 2021 (green) and the 2017/2018/2019 averaged scaled emission scenario 
shown in a dark blue dashed line. (d) As panel (b) with % anomalies. In panels (b) 
and (d) the horizonal dashed lines indicate ± 2σ from the average of the record. 
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Figure 6.31: (a) TOMCAT O3 reduction (DU) for February – August 2020. The total 
reduction is the negative anomaly in the ‘realistic’ scenario, with the relative 
contribution of meteorology (and BAU emissions) shown in orange (percentage 
labelled) and the relative contribution of scaling the emissions (difference between 
BAU and SE simulations) shown in blue. The relative contribution as a percentage 
is labelled onto each section of the bars. (b) As panel (a) but for the months of 
January – June 2021.  

6.4.4.3 Stratosphere-troposphere exchange 

The TOMCAT model provides information about the contribution of STE to tropospheric 

O3. The timeseries of the STE contribution of the tropospheric sub-column (STE-sub-

column) in relation to the total tropospheric sub-column record for the BAU simulation is 

shown in Figure 6.32. The STE-sub-column shows a large negative anomaly in the 

spring/summer of 2020, of -1.4 DU in April and May (-64.4% and -64.0% respectively). 

The STE-sub-column absolute negative anomaly is larger than the total sub-column 

anomaly from March - October in 2020, suggesting that during this period, the low STE 

contribution was a dominant factor in the BAU negative anomaly of the tropospheric sub-

column. As the STE-sub-column absolute anomaly is larger than the BAU anomaly, it 

suggests that some of the other controlling factors in the BAU simulation O3 are around 

neutral or even slightly positive.  

(a) 

(b) 
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The stratospheric O3 used in the model simulation is a climatology, and so has a constant 

volume mixing ratio for each year. Therefore any variation on the STE contribution is 

from variation in the STE flux (not related to amount of O3 in the stratosphere). Therefore 

the negative anomaly seen here in the STE-sub-column is not due to the large depletion 

found in stratospheric Arctic O3 in spring 2020, and the impact of this depletion cannot 

be diagnosed here. It is possible that the low stratospheric Arctic O3 could have 

enhanced the spring tropospheric O3 negative anomaly and giving greater significance 

to meteorological (transport) processes, which could be studied using varying 

stratospheric O3 in TOMCAT.  

 

Figure 6.32: (a) As Figure 6.30(a) (no scaled scenario) with the addition of TOMCAT 
European monthly sub-column O3 based on the contribution of tropospheric O3 
from STE from 2017 – 2021 (DU), which is shown as a dotted line. (b) As Figure 
6.30(b) with the anomaly of the STE sub-column O3 in addition (pink solid line). (c) 
As panel (b) with percentage anomalies.  

6.4.4.4 O3 reduction in 2021 

The modelling results show that there are also large negative anomalies in the 

spring/summer of 2021 for the BAU scenario, although across a shorter time period. In 

2021, the BAU scenario shows negative anomalies in January – June, peaking at -1.0 

DU (-4.0%) in May (Figure 6.30(b)/(d)). The scaled emission scenario has larger negative 

anomalies, peaking at -2.0 DU (-8.4%) in May. ~ 72%, 74%, 91%, 50%, 50% and 61%, 

for January – June, respectively, of the scaled negative anomaly is due to scaling the 

emissions, with the rest due to meteorology (and BAU emissions) (Figure 6.31). This is 

an average of 66% across the 6 months. The negative anomalies in the first half of 2021 
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are consistent with the satellite data, and the results in Ziemke et al. (2022). However, 

the Ziemke et al. (2022) record stops in August 2021, so no further comparison is 

possible. Both the ‘realistic’ and BAU scenarios show predominantly positive anomalies 

in the second half of 2021 (from July onwards), with very large positive anomalies of up 

to +1.4 DU (+6.1%). This is consistent with the ozonesonde record, but diverges from 

the long-term IASI-IMS-Extended record which still shows negative anomalies in the 

second half of 2021. This could suggest a stronger positive anomaly signal towards the 

surface, with a weaker or negative signal higher up in the sub-column (up to 450 hPa).  

In 2021, the negative anomaly in STE-sub-column is smaller than for 2020, reaching a 

peak value of -0.8 DU (-24.3%) in April (Figure 6.32). The negative anomaly for STE-

sub-column is not larger than for the total sub-column in 2021, suggesting that the STE 

reduction has a smaller impact on the negative tropospheric sub-column anomalies seen 

in 2021, in comparison with 2020. Therefore, this shows that other meteorological 

processes (e.g. temperature, photolysis rates, tropospheric transport) had a bigger 

impact on the reduction in 2021.  

6.4.4.5 Comparison to satellite data 

The GOME-2B record is compared with co-located model simulations with AKs applied 

for 2017 – 2020 (Figure 6.33). In this case, the effect of co-locating the model with the 

satellite records is very small (dark and light blue dotted lines), with a much larger 

difference coming from applying the AKs. There is a large offset between the model and 

the satellite record of 7.1 DU on average (2017 – 2019), which is reduced to 4.3 DU 

when the AKs are applied. Despite the large offset, the records are well correlated 

between 2017 – 2019 (r = 0.80). Applying the AKs also improves the correlation, 

increasing the Pearson’s correlation coefficient from 0.69 to 0.80. In 2020, the scaled 

emissions simulation is also shown (co-located and with AKs applied), which shows a 

much better agreement with the satellite in the anomaly plots (Figure 6.33(b) and (c)). 

For the BAU simulation, there are negative anomalies from January to May 2020, 

however, the negative anomaly values in April and May are much smaller than shown in 

the GOME-2B record. In the scaled emissions scenario, the negative anomaly values 

are much more similar to the GOME-2B record, and this similarity continues for June – 

September.  

This model analysis is repeated for the IASI-IMS-Extended record (Figure 6.34). As with 

the GOME-2B record, the impact of co-locating the model with the satellite retrievals has 

a very small impact. Applying the AKs, reduces a 2.5 DU average overestimate by the 

model to a 1.1 DU underestimate, improving the comparison. The Pearson’s correlation 

coefficient is also improved, from 0.91 to 0.98. In 2020, the model simulation with scaled 

emissions (and AKs applied) produces a very similar peak negative anomaly to the 

satellite, with -2.6 DU (-13.8%) from the model and -2.7 DU (-13.4%) from the satellite. 

The anomaly agreement is also very close throughout the other months of 2020. In 2021, 

both the BAU and scaled emissions model records with AKs applied show much smaller 
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anomalies than the satellite for the first half of the year (February to August). For the 

scaled emissions simulation especially, the application of the AKs reduces the negative 

anomaly shown in spring/summer.  

Overall, the good agreement between the model with AKs applied and the two satellite 

records show that the model is potentially capturing the tropospheric O3 sufficiently, 

demonstrating that the model is appropriate for use in this analysis. The agreement 

between the model (with AKs) and satellite anomalies is very close in 2020, but the 

agreement is less close in 2021, suggesting we can be more confident in the 2020 model 

results, compared to 2021.  

 

Figure 6.33: (a) European monthly average sub-column (surface – 450 hPa) 
detrended O3 record (DU) derived from GOME-2B from 2017 - 2020. TOMCAT BAU 
O3 record co-located with the GOME-2B instrument, and with (solid) and without 
(dashed) GOME-2B AKs applied is also shown. The TOMCAT BAU O3 record which 
is not co-located is also shown (light blue dashed).  In 2020, the TOMCAT SE O3 
record is also shown. Dots represent the monthly satellite averages, crosses 
represent the monthly TOMCAT averages. (b) Monthly mean absolute anomalies 
(2017 – 2019 monthly average baseline) (DU). (c) Monthly mean percentage 
anomalies (2017 – 2019 monthly average baseline). Dotted lines indicate ± 2σ from 
the average of the GOME-2B record. Mean difference and correlation values are 
calculated for 2017 – 2019 (i.e. excludes 2020).  
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Figure 6.34: Timeseries of European monthly average sub-column (surface – 450 
hPa) O3 record (DU) derived from IASI from 2018 - 2021. TOMCAT BAU O3 record 
co-located with the IASI instrument, and with (solid) and without (dashed) IASI AKs 
applied is also shown. The TOMCAT BAU O3 record which is not co-located is also 
shown (light blue dashed). In 2020 and 2021, the TOMCAT SE O3 record is also 
shown. Dots represent the monthly satellite averages, crosses represent the 
monthly TOMCAT averages. Dashed lines indicate ± 2σ from the average of the 
IASI record. Mean difference and correlation values are calculated for 2018 – 2019 
(excludes 2020/2021).  

6.4.5 Ozone reduction summary across all records 

The negative anomalies of tropospheric O3 found across all the records in this chapter 

(satellite, model, surface and ozonesondes) are summarised in Figure 6.35. To make 

the comparison more consistent, they are all relative to the same baseline years (2018 

– 2019). Therefore, the anomaly values differ from those described in the previous 

sections, but the patterns are broadly the same. Despite using the same baseline years, 

there are still notable inconsistencies in their comparison which are not resolved here, 

e.g. spatial sampling, surface vs. free troposphere and vertical sensitivity. All records 

show large negative anomalies across Europe during the spring-summer of 2020 and 

2021, however, the records show different stories in terms of anomaly magnitude and 

timing of peak anomaly (Figure 6.35), which adds complexity to the story. The satellite 

datasets show their largest negative anomalies in April and May 2020, with IASI-IMS-

Extended showing large negative anomalies in April and May 2021 as well. The model 

broadly agrees with this, showing similar percentage anomalies. The surface and 

ozonesonde records show smaller negative anomalies in spring, with much larger values 
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later in July, potentially due to spatial sampling differences or to a different signal towards 

the surface, not captured in the satellite retrievals. Although the model shows peaks 

values in April/May, it still shows large negative anomalies in July, of a similar order of 

magnitude to the surface and ozonesondes. In 2021, the satellite, ozonesondes and 

model all show fairly consistent negative anomalies in April and May. This could suggest 

that there was a more similar tropospheric O3 reduction towards the surface and also 

higher up in the FT.  

 

Figure 6.35: Summary of reductions in tropospheric O3 found in this chapter as (a) 
an absolute anomaly (DU) and (b) a percentage negative, all relative to the same 
monthly average baseline (2018 – 2019). Results are presented for April/May/July 
in 2020 and April/May 2021. The records are GOME-2B, IASI-IMS-Extended, IASI-
SOFIRD, TOMCAT, EMEP surface data and the ozonesondes. The surface absolute 
results are not presented as they are not a sub-column.  

6.4.6 Global hydroxyl radical in 2020 

To investigate the global OH variation in 2020, the methodology developed in Chapter 4 

is extended, using the MetOp-B IASI-IMS-Extended data. The global, hemispheric and 

tropical OH variation across this time period, averaged for the 400 – 800 hPa pressure 

region, is shown in Figure 6.36. In 2020, a large negative global anomaly in OH in March, 

(a) 

(b) 
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of -0.3 ×106 molecule cm-3 (-20.1%), which is larger than 2σ (13.2%). Across the 

hemispheres and tropics, the percentage negative anomaly is similar, with a slightly 

smaller negative anomaly of -15.0% in the NH. Broadly there are negative anomalies 

between January and May, with March being the largest. The dominant controls on this 

satellite-derived OH estimation are the input species of O3 (source) and CO (sink). In 

March 2020, globally (averaged across 400 – 800 hPa) there was a negative anomaly in 

O3 of -8.0% and a positive anomaly in CO of 4.7% (Figure 6.37). This negative anomaly 

in the key source species and positive anomaly in the key sink species are likely 

producing the large negative anomaly seen in the derived OH.  

There are currently few observation-constrained estimates of OH anomalies in 2020 with 

which to compare. Miyazaki et al. (2021) found a smaller peak negative anomaly in the 

global average tropospheric mean OH of -4.0% in May 2020, which varied up to 20% – 

30% locally (compared to a 2010 – 2019 monthly average baseline). However, the 

satellite-derived OH here is an estimate for the 400 – 800 hPa pressure region, so this 

is not a direct comparison. Using model emission reduction scenarios (for transport, 

aircraft and industry), Weber et al. (2020) found a decrease of OH across the 

troposphere between mid-March to mid-May 2020, compared to a model control 

simulation (with no emission reductions). The average reduction in mean tropospheric 

air-mass-weighted OH was between 0.018 ×106 – 0.033 ×106 molecule cm-3 for the 

model scenarios, which varied up to ~ -10% in the mid-troposphere. Around the NH mid-

troposphere, they found that the predominant cause of OH reduction was due to surface 

transport emission reductions. The absolute reductions found are smaller than those 

calculated here, although the reduction here is for the 400 – 800 hPa pressure region 

and studies 2020 relative to the previous 3 years rather than a reduction compared to a 

control simulation. Many of these estimates of OH are based on information about 

variation during this time-period in NOx concentrations or emissions. The satellite-derived 

OH estimation used here in this thesis does not use information about NOx in the 

approximation, which could be a source of the disagreement between the estimates. 

Other methods of estimating annual OH change during this period include using methane 

inversions, for example, Peng et al. (2022) found a global average reduction of 1.6 ± 

0.2% in 2020 compared to 2019 for tropospheric OH concentrations using in situ data, 

and Feng et al. (2023) found a global average reduction of 1.4 ± 1.7% in 2020 compared 

to 2019 for tropospheric OH concentrations using satellite CH4 data. Again, a direct 

comparison is due to the satellite-derived OH estimate being for the mid-troposphere at 

~9.30 only.  
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Figure 6.36: (a) Monthly mean satellite-derived OH for 2018 – 2020 (averaged 
across the pressure layer 400 – 800 hPa). Global, NH (dashed), SH (dashed) and 
tropical latitude regions are shown. (b) Monthly mean absolute anomalies (2018 – 
2019 monthly average baseline) (DU). (c) Monthly mean percentage anomalies 
(2018 – 2019 monthly average baseline). Dotted lines indicate ± 2σ from the global 
average of the record. 
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Figure 6.37: 2018 – 2020 monthly mean (a) satellite-derived OH (averaged across 
the pressure layer 400 – 800 hPa) and (b) percentage anomalies for the satellite-
derived OH (2018 – 2019 monthly average baseline). Panels (c) – (j) are the same 
as (a) and (b) for IASI-IMS-Extended retrievals of O3 (c & d), CO (e & f), CH4 (g & h, 
note difference scale in panel h) and H2O (i & j). Global (solid with circles), NH 
(dotted), SH (dotted) and tropical (solid) latitude regions are shown. In the right 
hand side panels black dotted lines indicate ± 2σ from the global average of the 
record. 

6.5 Summary 

In this chapter, multiple records of lower tropospheric and surface O3 across Europe in 

2020 and 2021 are presented, to identify what happened to tropospheric O3 in these two 

unusual years. The methodology developed in Chapter 4 is used to provide one of the 

first observationally-constrained studies of the impact of tropospheric composition 

variations to global [OH] in 2020.  

The European tropospheric satellite record shows consistent negative anomalies in the 

spring and summer of 2020, indicating that a large tropospheric O3 reduction did occur 

during this time period. Two RAL satellite records show large negative anomalies, of  

-14.7% for both April and May from GOME-2B and -12.0%/-7.6% in April/May from IASI-

IMS-Extended (monthly average baseline of 2018 – 2019). Spatially, the satellite records 

show the most consistent negative anomalies across the European domain in April and 

May 2020, with large reductions across central continental Europe in May 2020, which 

corresponds well to surface precursor emission reductions, as this signal would be land-

based. A third satellite record, IASI from a different retrieval scheme (IASI-SOFRID), 
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shows similar, but slightly smaller, negative anomalies in the spring and summer 2020 (-

9.3%/-4.7% in April/May). An offset of ~ 3.0 – 3.5 DU between the IASI records, highlights 

the importance in considering the uncertainty in the retrieval process when studying 

satellite derived O3. However, the good agreement in negative anomalies (albeit slightly 

smaller) suggests that these IASI results can be concluded with more confidence.  

The ozonesonde record also shows large negative anomalies across Europe in the 

spring and summer of 2020, however, these peak later in the summer. The largest 

negative anomaly is in July 2020 of -17.0% (baseline of 2018 – 2019). In comparison to 

the satellite records, the ozonesondes show a lower negative anomaly for April, of -2.0%, 

but the record is more consistent with the surface data. Both records show the peak 

negative anomaly to be in July (-21.7% for the surface data), and a smaller negative 

anomaly in April/May. Differences compared to the satellite records could be caused by 

differences in spatial coverage and sampling or differences in vertical resolution. 

However, it could also suggest a variation in the tropospheric O3 reduction between the 

surface and higher up in the FT sub-column (up to 450 hPa), with peak reductions across 

the sub-column at different times.  

The satellite and ozonesonde records also show a reoccurrence of low spring and 

summer tropospheric O3 values across Europe in 2021. In 2021, there is a similar pattern 

to 2020 of negative anomalies in the spring and summer, which corresponds well to the 

findings of Ziemke et al. (2022) across the NH FT from their combined NASA satellite O3 

product (EPIC, OMI and OMPS) between 2016 and August 2021. Both the IASI-IMS-

Extended and ozonesonde records show large negative anomalies, which are more 

temporally consistent than in 2020, with peak negative anomalies in April/May of -

10.5%/-7.8% (IASI) and -7.5%/-7.4% (ozonesondes). The reoccurrence of low 

tropospheric O3 in the spring and summer of 2021 indicates a continued impact of 

reduced precursor emissions from the global pandemic in this year. 

Simulations of European tropospheric O3 highlights that the reduction was more 

influenced by reduced surface precursor emissions than meteorology. Global 

anthropogenic emissions were scaled based on activity data changes (Forster et al., 

2020), for use in TOMCAT simulations in 2020 and 2021. Using both a BAU and scaled 

emissions scenario, TOMCAT model simulations from 2017 – 2021 show negative 

anomalies of up to -5.4% (BAU simulation) and -14.5% (scaled emissions scenario) for 

the spring and summer 2020. Although scaling the emissions was the dominant influence 

on the negative anomaly from April – August, a substantial proportion (~ 41%, 40%, 28%, 

42% and 7% for April – August respectively) is due the meteorology (and small BAU 

emission variation) of 2020, highlighting it’s importance to inter-annual O3 variation. 

Therefore, meteorology can significantly enhance or reduce any potential variation due 

to emission reductions, which is relevant when considering implementation of measures 

aiming to reduce anthropogenic emissions in order to reduce tropospheric O3. 2021 

shows a reoccurrence of spring/summer O3 reductions, however, as with the satellite 

record, these are slightly smaller (up to -4.0% in the BAU scenario, -8.4% in the scaled 
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emissions scenario). The large negative anomaly in April/May 2021 is similarly 

influenced by both meteorology and emission reductions.  

The TOMCAT tropospheric O3 simulations indicate a large contribution of the negative 

anomaly in the BAU scenario is due to a reduction in the STE flux. The BAU scenario 

shows a large negative anomaly in the O3 sub-column from STE, of up to -1.4 DU in April 

and May (~ -64.4%). This indicates a very large proportion of the negative anomaly seen 

in the BAU scenario is due to this negative anomaly in the flux of STE, however this is 

not temporally universal as the same is not repeated for 2021. Although there are 

negative anomalies in the STE tracer in 2021, these are smaller (up to -0.8 DU/-24.3%) 

and do not explain most of the negative anomaly in the BAU scenario. This indicates that 

different meteorological processes vary in their contribution to tropospheric O3 on an 

annual scale.  

Lastly, an application of the method developed in Chapter 4 is demonstrated, to 

investigate the variation in satellite-derived OH in 2020 (mid-tropospheric pressure 

region of 400 – 800 hPa). Globally, the satellite-derived OH shows a large negative 

anomaly of -20.1% in March 2020. This negative anomaly in OH corresponds to 

anomalies in the key drivers in the approximation, with a negative anomaly in O3 (controls 

the source term) and a positive anomaly in the sink term of CO. This observationally-

constrained OH record for 2020, has the potential to be used in model experiments to 

understand the impact of the global pandemic on other important species e.g. CH4.   

Overall, all records show large tropospheric O3 reductions across Europe during the 

spring and summer of 2020, as highlighted in the summary bar chart (Figure 6.35), 

however, there were contrasts in the timing of the peak reduction. Broad consistency 

between the records suggests that a real tropospheric O3 reduction occurred during the 

period. The model experiments indicate that the majority of the tropospheric O3 reduction 

was due to reduced surface emissions, which suggests that a large emission reduction 

(~ 30%) will produce a reduction in free tropospheric O3 (~ 10%) across Europe. 

However, meteorology still plays an important part and shows large interannual 

variability, enhancing or diminishing any potential O3 reductions from reduced 

anthropogenic surface emissions.   
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Chapter 7 Conclusions 

In this thesis, interannual to multidecadal changes of two important tropospheric species, 

OH and O3,  have been explored using satellite datasets and an atmospheric chemistry 

transport model. A better understanding of the spatio-temporal variation of OH is 

important due to its control of the lifetime of other notable species e.g. air pollutants, 

GHGs and stratospheric ODSs, and also of O3 due to its harmful health impacts to 

humans and plants and large contribution to global RF. This thesis has addressed 3 main 

research gaps: enhanced spatio-temporal information about OH; quantification of 

European O3 trends from satellite; and characterisation of O3 and OH changes in the 

spring/summer of 2020 and 2021 in response to the global COVID-19 pandemic. In 

addressing these research gaps, the potential and also limitations of using satellite 

retrievals to better understand long-term changes in tropospheric composition has been 

highlighted. In the future, satellite instruments with enhanced spatial resolution, 

enhanced sensitivity at the surface and reduced uncertainties will add further value to 

studies such as this. Such data could provide identification of long-term variation on 

smaller scales, e.g. individual cities, which would provide valuable information in the 

context of air quality. In this chapter, the thesis results are brought together and 

discussed in the context of the overarching research gaps and corresponding research 

questions addressed in this thesis. The key results are discussed and suggestions of 

potential future work based on the results and limitations of this thesis are also 

presented.  

7.1 Overview of thesis results 

Research gap 1: Information about OH abundance, distribution and long-term 

variation. 

The work presented in Chapter 4 developed and evaluated a new method, of applying 

satellite retrievals of O3, CO, CH4 and H2O to a simplified steady-state approximation (S-

SSA). The aim was to address the need to better understand OH and it’s long-term 

variation, for which new indirect methods are required. New methods are required due 

to the limited availability of direct measurements and the decline in viability of the MCF 

method, and to enhance the spatio-temporal information available for OH. The method 

developed shows the potential to meet this need, providing monthly global coverage. 

However, the simplified approximation OH was found to be an underestimate compared 

to modelled and aircraft observations, in the region of ~ 30%, likely due to not sufficiently 

capturing more complex OH chemistry in some regions. The method would benefit from 

further development, focusing on missing source and sink reactions, e.g. by including 

additional satellite retrievals e.g. NO2, HCHO and isoprene. However, as these other 

satellite species are mostly column measurements, the method would require further 

development to use these retrievals. Further improvement to this method would also 
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come from a reduction in satellite data uncertainties and enhanced spatial and vertical 

resolution. The method was extended to 2020 in Chapter 6, demonstrating its potential 

use in approximating OH in specific periods of interest, e.g. in this unusual year for 

atmospheric composition from a large reduction in surface emissions due to the global 

COVID-19 pandemic. The work from Chapter 4 was published in the journal Atmospheric 

Chemistry and Physics (Pimlott et al., 2022). Answers to the research questions for this 

research gap are summarised as follows.   

Research Question (RQ) 1.1: In what regions of the atmosphere are different steady-

state approximations for [OH] valid?  

TOMCAT simulations showed that a simplified approximation is only valid in the mid-

troposphere, around 400 – 800 hPa, with a focus on 600 – 700 hPa for this study. More 

complex approximations are required to sufficiently capture the OH chemistry in other 

regions of the atmosphere, e.g. the production of OH from HO2 + NO, and sinks of OH 

such as isoprene and formaldehyde. 

RQ 1.2: Can satellite data be applied to a simplified steady-state approximation and how 

does it compare to modelled [OH]? 

IASI retrievals of O3, CO, CH4 and H2O were applied to the simplified steady-state 

approximation, creating monthly fields of OH in 2010 and 2017. In comparison with 

TOMCAT modelled OH, global monthly averages of satellite-derived OH were lower by 

~ 20% – 30%. 

RQ 1.3: How does the satellite-derived [OH] distribution compare to direct 

measurements of [OH] in the free troposphere? 

Satellite-derived OH was compared with measurements from the aircraft campaign, 

ATOM (2016 – 2018). The satellite-derived OH underestimated measured OH by ~ 40%. 

The agreement was poor at the northern mid-latitudes (30°N – 90°N), likely due to the 

greater importance of other sources in this region which are not included in the 

approximation e.g. HO2 + NO. Applying ATom data as the input species to the S-SSA 

produced an underestimate of ~ 26% compared to ATom measured OH. 

RQ 1.4: What is the uncertainty associated with the satellite-derived OH? 

A combination of the systematic errors of the satellite products when compared to other 

observations (e.g. ozonesondes, radiosondes) were used to estimate the uncertainty on 

the satellite-derived OH. The average uncertainty across the global domain was ~23 – 

24%. 

RQ 1.5: What can this method tell us about long-term variations in [OH]? 
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The long-term IASI record (2008 – 2017) was applied to the simplified approximation to 

derive a 10-year global monthly OH record. The record showed that in this period, annual 

global OH varied between -3.0% and 4.7%. In the approximation, the variation in O3 and 

CO were the key drivers of the OH variation. The method was also used in Chapter 6 to 

understand the impact on OH of unusual years for atmospheric composition, i.e. the large 

variations in emissions in 2020. 

Research gap 2: More robust quantification of European O3 trends. 

Chapter 5 presents an analysis of 3 satellite records across different time periods within 

1996 – 2018, with the aim to better understand long-term trends in European 

tropospheric O3. This study builds upon a comparison of satellite trends for different 

latitude regions shown in Gaudel et al. (2018), which found conflicting trends in different 

records above Europe. The work investigated the RAL satellite UV-Vis tropospheric O3 

records in greater depth, exploiting the spatial and temporal information that they 

provide, and exploring the associated uncertainties. The satellite records show small 

negative trends across the first part of the study period, 1996 – 2010, and a near-zero 

trend in the OMI record from 2005 – 2017. This work highlights the large uncertainties in 

using satellite products which should be considered when interpreting the results, which 

would mask small long-term changes. In the context of conflicting trends, the three 

instruments show relatively good agreement in the 6-year overlap period (2005 – 2010), 

however, the model showed that the differences are due to more than just the differences 

in sampling and vertical sensitivity between the instruments. The satellite and 

ozonesonde records demonstrate a small or near-zero trend in O3 since 1996, despite 

continued reductions in O3 precursor gas emissions across Europe during this time. This 

implies that more stringent measures for reducing precursor emissions in Europe and 

tackling transboundary sources of O3, would need to be introduced to see reductions in 

free tropospheric O3. Answers to the research questions for this research gap are 

summarised as follows.  

RQ 2.1: What are the trends in satellite-observed lower tropospheric O3 over Europe 

since 1996?  

The three RAL UV-Vis satellite lower tropospheric O3 records show small negative, or 

near-zero trends across the period. GOME shows a negative trend of -0.2 DU year-1 from 

1996 – 2010, SCIAMACHY shows a negative trend of -0.2 DU year-1 from 2003 – 2010 

and OMI shows a near-zero trend from 2005 – 2017. 

RQ 2.2: How do these trends vary spatially and seasonally? 

Spatially, the GOME negative trend is consistent across the European domain, 

SCIAMACHY shows a negative trend across most of the European domain, with some 

positive trends towards the southern Mediterranean. OMI shows small positive trends in 

southern Europe (30°N – 45°N) and northern Europe (60°N – 70°N) and small negative 

trends around 45°N – 60°N. Seasonally, the GOME negative trend is consistent to the 
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average trend in the spring and autumn, with a larger negative trend in summer (-0.4 DU 

year-1) and a zero trend in winter. The SCIAMACHY negative trend is consistent across 

winter, spring and autumn (largest trend in spring of -0.5 DU year-1) but positive in 

summer. The zero-trend in OMI is consistent across all seasons. 

RQ 2.3: How do these trends vary between instruments? What could be causing the 

differences? 

In the 6 years of overlap between the 3 satellite records (2005 – 2010), they show similar 

negative trends in tropospheric O3, ranging from -0.17 to -0.47 DU year-1. There is also 

some consistency in their anomalies during the period. In the co-located model records, 

there is even greater agreement, suggesting that sampling differences (e.g. overpass 

time, spatial resolution, vertical sensitivity, which are accounted for in the co-location and 

AK application) are not entirely causing the differences seen between the satellite 

records. The other factors that could be responsible for these differences are individual 

caveats with the instruments e.g. the OMI row anomaly, or UV degradation for GOME 

and SCIAMACHY. 

RQ 2.4: Are these trends captured by a model and other observations of the troposphere, 

(e.g. ozonesondes)? 

When co-located with the satellite and AKs applied, the model does not capture the 

trends, broadly showing near-zero trends co-located with GOME and SCIAMACHY and 

a negative trend co-located with OMI. Ozonesondes show a near-zero trend across 1996 

– 2018, which is the same for the co-located TOMCAT record. TOMCAT (not co-located) 

shows a near-zero trend across the time period as well. 

RQ 2.5: How do variations in O3 precursor gas emissions and meteorology impact these 

trends? 

Fixed-emission and fixed-meteorology TOMCAT simulations demonstrate that the near-

zero trend in the control simulation across the whole domain is not due to conflicting 

trends in emissions and meteorology. However, the model experiments show that the 

small trends of some regions are influenced more by either emissions or meteorology, 

e.g. trends across mainland Europe and the Mediterranean were predominantly 

influenced by emissions, and trends across the Atlantic were predominantly influenced 

by meteorology. 

Research gap 3: Characterisation and quantification of European O3 and global 

OH variation, compared to previous years, in spring/summer 2020 and 2021, in the 

context of the global COVID-19 pandemic. 

Chapter 6 presents an in-depth analysis of the free tropospheric O3 record above Europe 

in 2020 and 2021, to study how these years, impacted by a global pandemic, compared 

to previous years. This work expands on the initial studies for the NH by Steinbrecht et 
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al. (2021), Cuesta et al. (2022) and Ziemke et al. (2022) by studying different satellite 

records over Europe (GOME-2B and IASI), extending the analysis to the end of 2021 

and using a model to quantify the impact of reducing the emissions versus 

meteorological effects. There was a large reduction of O3 precursor gases due to activity 

restrictions in 2020 in response to the global COVID-19 pandemic. This is a unique 

chance to study how this might impact O3 at the surface and in the free troposphere, in 

the context of continual precursor gas emission reductions in the future. Due to the 

relatively large uncertainties in satellite tropospheric O3 data, e.g. a random error for 

each grid-box monthly average of ~ 1.1 – 1.4 DU (~ 6%) across the 3 satellite instruments 

used in Chapter 5, it is important to study more than one satellite record. Therefore this 

chapter builds on the work by Ziemke et al. (2022) from the NASA satellite tropospheric 

O3 records, examining 3 satellite-derived products with a focus on Europe. Large O3 

reductions were found across Europe in 3 satellite records (GOME-2B, IASI-IMS-

Extended, IASI-SOFRID) in spring/summer 2020 which are consistent with the previous 

studies. In 2021, reductions were found in the first 6 months of the year, but enhanced 

O3 levels were found for the last 6 months. The model was used to attribute ~60% of the 

negative anomaly in April/May 2020 to emissions reductions, with the remaining ~40% 

to meteorology, specifically to a reduced STE flux. Therefore, suggesting that despite 

the unprecedented reductions in emissions seen in 2020, meteorology still plays a very 

important part in controlling O3 in the free troposphere. Satellite data for several species 

was combined to derive [OH] in 2020, as currently there are few observationally-

constrained studies of OH change in the pandemic period, finding a large negative 

anomaly peaking in March. This followed the method developed in Chapter 4, which 

demonstrated the potential of the method to capture global [OH] in the mid-troposphere 

compared to modelled OH and aircraft measurements. Answers to the research 

questions for this research gap are summarised as follows.   

RQ 3.1: What happened to satellite-observed lower tropospheric O3 in the 

spring/summer of 2020 and 2021? How does this compare to previous years? 

Three satellite records (GOME-2B, IASI-IMS-Extended, IASI-SOFRID) showed reduced 

O3 values in a lower tropospheric sub-column (surface – 450 hPa/0 – ~ 6km) in the 

spring/ summer 2020 and also in the first half of 2021. Relative to a monthly average 

baseline of 2018 – 2019, these satellite records showed negative anomalies of -9.3% to 

-14.7% in April 2020, and -4.7 to -14.7% in May 2020. In 2021, negative anomalies are 

found in the IASI-IMS-Extended record between January and July, peaking at -12% in 

April. 

RQ 3.2: How does the satellite record compare to the ozonesonde and surface data 

records in the spring/summer of 2020 & 2021? 

Ozonesondes and surface sites show a similar story of negative anomalies in 

spring/summer 2020, peaking at -17.0% and -21.7% in July 2020 (2018 – 2019 monthly 

average baseline), respectively. The negative anomalies seen in April/May are smaller. 

Therefore, in comparison with the satellite records, there is a temporal difference in when 
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the largest O3 reductions are seen. The satellite records are less sensitive at the surface, 

which could explain the difference between the satellite and the surface. For the 

difference between the ozonesondes and the satellite, this could be caused by 

differences in spatial sampling and coverage, due to the limited number of ozonesonde 

launch sites in Europe, or vertical resolution differences, from the greater vertical 

sensitivity of ozonesondes to the surface. 

RQ 3.3: What information can atmospheric CTM simulations provide about the causes 

of the spring/summer 2020 reduction of lower tropospheric O3? Can a quantification of 

the relative contribution of emissions and meteorology be calculated? 

A TOMCAT simulation with reduced emissions, based on activity data, shows negative 

anomalies in 2020 peaking at -14.5% in May. Compared to a BAU scenario, reducing 

the emissions contributed more to the total scaled negative anomaly than the 

meteorology. This was quantified at ~60% due to the emission reduction for April and 

May 2020. 2021 showed smaller negative anomalies, peaking at 8.4% in the scaled 

emissions scenario, due equally to the emissions reduction and meteorology. A tracer 

for STE showed that the 2020 O3 reduction from meteorology was predominantly due to 

a large reduction in the STE flux, but STE had less of an influence in 2021. 

RQ 3.4: What happened to global satellite-derived OH in 2020? 

Using the method developed in Chapter 4, satellite-derived OH showed a large global 

negative anomaly (across 400 – 800 hPa) of -20.1%. This is likely due to a negative 

anomaly in O3 (source term) and a positive anomaly in CO (sink term). 

7.2 Discussion of thesis results 

This thesis has demonstrated the current potential of several satellite-derived datasets 

to provide important information about long-term changes in tropospheric composition. 

Quantification of changes in these two important species (O3 and OH) is vital to 

understand exactly how the troposphere is changing. The satellite records used in this 

thesis have shown success in quantifying changes in tropospheric OH and O3 over the 

last few decades. However, there are large uncertainties involved with using satellite 

retrievals and species such as O3 show large interannual variability, which both 

potentially mask any long-term changes. These large uncertainties mean that small 

changes found e.g. for European O3 between 1996 – 2017, cannot be concluded 

confidently. Larger changes which are consistent across several satellite records, e.g. 

tropospheric O3 reductions of larger than ~ 2 DU (~ 10%) found in this thesis in 2020, 

can be concluded with more confidence. Studying multiple satellite species together can 

provide further insights, e.g. using O3, CO, CH4, H2O to approximate OH can provide 

information on long-term OH change, and also allows for identification of how these OH 

sources and sinks varied in importance to approximated OH over time.   

An atmospheric chemistry transport model, TOMCAT, was used to provide an insight 

into what may be causing these changes e.g. variation in surface emissions, 
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meteorological processes, and understanding differences between satellite records. The 

TOMCAT record showed that surface emissions were the dominant influence on 

tropospheric O3 trends over main-land continental Europe since the mid-1990s, 

suggesting that further restrictions are needed to see larger negative trends over this 

region. The large emission reductions seen during the global COVID pandemic of 2020-

2021 suggest that similar large emission reductions will cause notable negative 

reductions in tropospheric O3 over Europe, however, meteorology still has a large impact 

(~ 1/3 in this case) so can either enhance or reduce O3 improvements.  

7.3 Future work 

Despite continual improvement in satellite earth observation techniques e.g. increased 

resolution, new retrieval techniques, there are still currently limitations associated with 

using satellite-derived products. The uncertainty associated with the satellite retrievals 

are large, e.g. in Chapter 5, the average random retrieval error for each grid-box for the 

3 instruments was ~ 6 – 7 DU or ~ 31%, which reduces to ~1.0 – 1.5 DU or ~ 6% when 

considered as a monthly average. These errors are large, especially when compared to  

small long-term changes, e.g. trends in the region of < 0.5 DU year-1, or monthly 

anomalies in the region of < 3 DU. There are also other instrument specific caveats to 

consider, such as the OMI row anomaly and UV degradation of GOME and 

SCIAMACHY, especially considering the impact of these uncertainties is likely to have 

changed over time. To confidently quantify long-term changes, improvements in the 

satellite uncertainties are required. As these instruments and the retrieval techniques 

advance, with smaller errors and uncertainties, similar analysis could be performed and 

small trends quantified more accurately.  

Another important consideration for this work is the representation of the key processes 

which impact tropospheric O3 in the model, TOMCAT. The representation of factors 

which affect tropospheric O3 in TOMCAT, e.g. surface deposition, STE, stratospheric O3 

and surface precursor gas emissions, are all important when trying to quantify long-term 

changes. Studying the impact of the representation of these factors on the O3 simulations 

would be the next step to improving the model and proving an estimate of the uncertainty 

produced by these processes. For example, relevant to Chapter 6, a valuable further 

development for this work would be the representation of interactive stratospheric O3 in 

TOMCAT. In the TOMCAT version used here, there is a fixed climatology for 

stratospheric O3. Therefore, these results cannot be used as evidence towards the 

impact of the low Arctic stratospheric O3 in the winter/spring of 2019/2020 (Wohltmann 

et al., 2020; Weber et al., 2021; Feng et al., 2021) on tropospheric O3. A better 

representation of stratospheric O3 could potentially show an enhancement or reduction 

in the negative anomaly seen in the model presented in this work, and could potentially 

be used to distinguish the influence of the amount of stratospheric O3 to the STE flux. 

Another example, relevant to Chapter 4, is the use of model photolysis rates of O3 in the 

simplified steady-state approximation for the long-term variation (2008 – 2017). The 
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accuracy of the modelled 𝑗1 needs to be further investigated, beyond the limited temporal 

and spatial comparison using aircraft measurements in Appendix D.  

There is scope to study further satellite records to investigate long-term changes, to 

complement those used here. In the method developed in Chapter 4, the simplified 

selection of sources and sinks did not sufficiently represent the more complex OH 

chemistry in some regions of the atmosphere e.g. mid-troposphere NH at latitudes 30°N 

– 60°N had a greater influence from NOx. If NO could be constrained by satellite data, 

the addition of this source into the S-SSA would improve the agreement in this region. 

Satellite retrievals of NO2 exist for a co-located instrument (GOME-2, also aboard the 

MetOp satellites) (Munro et al., 2016), which could be used to derive NO. Satellite 

observations of other species, e.g. isoprene and formaldehyde, could also be 

implemented into the approximation to improve the agreement. In Chapter 5, differences 

between instruments were highlighted, showing the different long-term trends the 

satellite products present. Therefore, it would be beneficial to study any further satellite 

tropospheric O3 products which are available, e.g. the IR instruments (IASI), to see if 

they show a similar story.   

As the satellite records cover different time periods, with limited usable lifetimes in some 

cases, it would be interesting to produce a merged or composite record to study a longer 

time period of changes. This technique has been used previously, e.g. Ziemke et al. 

(2019) and can provide trends over a much longer time period. Chapter 5 showed little 

evidence to suggest there has been a linear change in tropospheric O3 since 1996. An 

alternative approach to consider how tropospheric O3 has changed since 1996 would be 

to consider how a multi-year (e.g. 5-year) average at the start and end of the record are 

different. However, due to the limited lifetime of the products, this could be better 

achieved using a longer merged record. A merged record could also provide further 

insights into the relative variation of 2020/2021 compared to previous years. Parrish et 

al. (2022) highlighted the impact of reductions in the baseline surface O3 in recent years 

(from ~2014), which had previously stabilised since the late 1990s, to studying 2020 

relative to the last two decades. The study of 2020 tropospheric O3 in relation to long-

term O3 trends was also investigated by Chang et al. (2022). A long-term merged record, 

from products used in Chapters 5 and 6, could provide a means of studying 2020/2021 

in comparison to the long-term satellite trend from a much longer time period than 

presently, which could be compared with Chang et al. (2022) and Parrish et al. (2022). 

However, a merged record would require development and testing due to the impact of 

differences between the instruments, as highlighted in Chapter 5. There is a potential to 

use artificial intelligence (AI), e.g. machine learning (ML) techniques, to merge and 

harmonise several satellite records, as performed for the stratosphere by Dhomse et al. 

(2021).  
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Appendix A  

Approximation Source Reactions Sink Reactions 

Simplified (S-SSA) O3 + hv (λ < 330 nm) → 

O(1D) + O2 

O(1D) + H2O → 2OH 

 

CO + OH (+ O2) → CO2 + HO2 

CH4 + OH (+ O2) → H2O + 

CH3OO 

O3 + OH → HO2 + O2 

Savage et al. (2001) 

(Sav-SSA) 

O3 + hv (λ < 330 nm) → 

O(1D) + O2 

O(1D) + H2O → 2OH 

H2O2 + hv → 2OH 

CH3OOH + hv → HO2 + 

HCHO + OH 

HO2 + NO → OH + NO2 

HO2 + O3 → OH +2O2 

 

 

CO + OH (+ O2) →  CO2 + HO2 

CH4 + OH (+ O2) → H2O + 

CH3OO 

O3 + OH → HO2 + O2 

HCHO + OH (+ O2) → H2O + HO2 

+ CO 

SO2 + OH (+ O2) → SO3 + HO2 

NO2 + OH + M → HONO2 + M 

NO + OH + M → HONO + M 

DMS + OH → products 

H2O2 + OH → H2O + HO2 

CH3OOH + OH → H2O + CH3OO 

H2 + OH (+ O2) → H2O + HO2 

C2H4 + OH + M → C3H7OOO + M 

C2H6 + OH → H2O + EtOO 

C3H6 + OH + M → C3H7OOO + M 

C3H8 + OH → n-PrOO + H2O 

C3H8 + OH → i-PrOO + H2O 

C4H10 + OH → C4H10OO + H2O 

C5H8 + OH → ISO2 

C10H16 + OH → TERPO2 
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Full Chemistry (FC-

SSA) 

(Monks et al., 2017) 

O3 + hv (λ < 330 nm) → 

O(1D) + O2 

O(1D) + H2O → 2OH 

HO2 + NO → OH + NO2 

HO2 + NO3 → OH + NO2 

HO2 + O3 → OH + O2 

HO2 + CH3CO3 → OH + 

CH3OO 

O(1D) + CH4 → OH + CH3OO 

O3 + MACR → CH3C(O)CHO 

+ HCOOH + HO2 + CO  + OH 

+  CH3CO3 

O3 + C10H16 → OH +  

CH3COCH2CH3 + HO2 

C2H4 + O3 → HCHO + HO2 + 

OH + CO + H2 + CO2 + 

HCOOH 

C3H6 + O3 → HCHO +  

CH3CHO + OH + HO2 +  

C2H5OO + CH3C(O)CHO + 

CH4 + CO +   CH3OH + 

CH3OO + HCOOH 

C2H5OOH + hv → CH3CHO + 

HO2 + OH 

H2O2 + hv → OH + OH 

HONO2 + hv  → OH + NO2 

CH3OOH + hv → HO2 + 

HCHO + OH 

HONO + hv → OH + NO 

C3H7OOH + hv  → C2H5CHO 

+ HO2 + OH 

C3H7OOH + hv  → (CH3)2CO 

+ HO2 + OH 

CH3COCH2OOH + hv  → 

CH3CO3 + HCHO + OH 

CH4 + OH (+ O2) → H2O + 

CH3OO 

C2H6 + OH (+ O2) → H2O + 

C2H5OO 

C3H8 + OH (+ O2) → n-PrOO + 

H2O 

C3H8 + OH (+ O2) → i-PrOO + 

H2O 

CO + OH (+ O2) → CO2 + HO2 

C2H5CHO + OH → H2O +  

C2H5CO3 

C2H5OOH + OH → H2O +  

C2H5OO 

H2 + OH (+ O2) → H2O + HO2 

H2O2 + OH → H2O + HO2 

HCHO + OH (+ O2) → H2O + HO2 

+ CO 

HO2 + OH → H2O (+ O2) 

HO2NO2 + OH → H2O + NO2 

HO2NO2 + OH → H2O + NO3 

HONO + OH → H2O + NO2 

CH3OOH + OH → H2O +  CH3OO 

CH3ONO2 + OH → HCHO + NO2 

+ H2O 

(CH3)2CO + OH → H2O +  

CH3COCH2OO 

CH3COCH2OOH + OH →  H2O +  

CH3COCH2OO 

CH3CHO + OH → H2O +  CH3CO3 

NO3 + OH → HO2 + NO2 

O3 + OH → HO2 + O2 

PAN + OH → HCHO + NO2 + 

H2O 
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TERPOOH + hv  → OH + 

HO2 + MACR + MACR +  

TERPOOH + (CH3)2CO 

ISOOH + hv  → OH + MACR 

+ HCHO + HO2 

MACROOH + hv → OH + 

HO2 + OH + HO2 + HAC + 

CO + CH3C(O)CHO + HCHO 

CH3CO3H + hv  → CH3OO + 

OH 

C4H10OOH + hv  → 

CH3COCH2CH3 + 

CH3COCH2CH3 + C2H5OO + 

CH3CHO + HO2 + HO2 + OH 

+ OH + OH 

CH3COCH2CH3OOH + hv →  

CH3CO3 +  CH3CHO + OH 

AROMOOH  + hv → OH +  

(CH3)2CO + HO2 + CO +  

CH3CO3 + AROMOOH 

PPAN + OH →  CH3CHO + NO2 + 

H2O 

n-C3H7OOH + OH → n-C3H7OO + 

H2O 

i-C3H7OOH + OH → i-C3H7OO + 

H2O 

C5H8 + OH → ISO2 

ISON + OH → CH₃C(O)CH₂OH + 

NALD 

MACR + OH → MACRO2 

MPAN + OH →  CH₃C(O)CH₂OH 

+ NO2 

MACROOH + OH → MACRO2  

CH₃C(O)CH₂OH + OH → 

CH₃C(O)CHO + HO2 

CH₃C(O)CHO + OH → CH3CO3 + 

CO 

NALD + OH → HCHO + CO + 

NO2 

CH3CO3H + OH → CH3CO3 

CH3CO2H + OH → CH3OO 

HCOOH + OH → HO2 

CH3OH + OH → HCHO + HO2 

C10H16 + OH → TERPO2 

TERPOOH + OH → TERPO2 

C4H10 + OH → C4H10OO + H2O 

CH₃C(O)CH₂CH₃ + OH →   

CH₃C(O)CH₂CH₃OO 

ONIT + OH →  CH3C(O)CH2CH3 

+ NO2 + H2O 

C3H7OOOH + OH →   C3H7OOO 

+ H2O 

AROM + OH → AROMO2 + HO2 

AROMOOH + OH → AROMO2 
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NO + OH + M →  HONO + M 

NO2 + OH → HONO2 + M 

C2H4 + OH + M →  C3H7OOO + M 

C3H6 + OH + M →  C3H7OOO + M 

Table A.1: Source and sink reactions of OH for the 3 proposed steady-state 
approximations (Section 4.3.1). MACR represents a lumped species (methacrolein, 
methyl vinyl ketone and other C4 carbonyls), ISO2 represents peroxy radicals from 
the reaction of isoprene and OH (Pöschl et al., 2000), TERP represents generic 
terpene compound, NALD represents nitroxy acetaldehyde, ONIT represents 
organic nitrate and AROM represents a generic aromatic compound (Monks et al., 
2017). 
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Appendix B  

 

Figure B.1: Zonal mean comparison of S-SSA OH (latitude-averaged) between sub-
sampled and fully sampled satellite data for all months in 2017. The Pearson 
correlation coefficient (r) is displayed for each month. 
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Appendix C  

 

Figure C.1: Globally averaged vertical AKs for June 2010 for O3, CO and H2O 
retrievals from the IASI IMS-Extended scheme and CH4 retrievals from the IASI 
scheme.  
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Appendix D  

An uncertainty estimate for the satellite S-SSA OH is derived using relative systematic 

errors for each of the four retrieved quantities: ~10 % for CO (Pope et al., 2021), ~10 % 

for H2O (Trent et al., 2023), ~20 % for O3 (Pimlott et al. (2022) – supplementary material) 

and an average of 0.55 % for CH4 (Siddans et al., 2017). For the random errors, large-

scale averaging in the analysis in Chapter 4 will reduces random errors to values which 

are much smaller by comparison. Here, the errors on the retrieved species are assumed 

to be uncorrelated.  

The simplified steady-state approximation used in Section 4.3.1 (Equation 4.2) is 

repeated here as Equation D.1: 

[OH]steady−state =  
(

2𝑗1𝑘1[O3][H2O]
𝑘2[N2] + 𝑘3[O2] + 𝑘1[H2O]

)

    (𝑘4[CH4] + 𝑘5[CO] + 𝑘6[O3])    
 Equation D.1 

To estimate the error on the satellite-derived S-SSA OH, the systematic errors of the 

satellite retrieved species were combined. The combination of the uncertainties is based 

on Equation D.2 and Equation D.3 from Hogan (2006): 

𝐹𝑜𝑟 𝑎 = 𝑏 + 𝑐  𝑡ℎ𝑒𝑛 (∆𝑎)2  =  (∆𝑏)2 + (∆𝑐)2 Equation D.2 

𝐹𝑜𝑟 𝑎 = 𝑏𝑐 𝑜𝑟 𝑎 = 𝑏/𝑐  𝑡ℎ𝑒𝑛 (
∆𝑎

𝑎
)

2

=  (
∆𝑏

𝑏
)

2

+ (
∆𝑐

𝑐
)

2

 Equation D.3 

where 𝑏 and 𝑐 are variables and ∆𝑎 indicates the uncertainty of 𝑎 etc.  

For an equation with numerator (𝛾) and denominator (𝛿), the uncertainty (∆[𝑂𝐻]) is 

shown in Equation D.4 (based on Equation D.2 and Equation D.3): 

∆[𝑂𝐻] = √(
∆𝛾

𝛾
)

2

+ (
∆𝛿

𝛿
)

2

 × [𝑂𝐻]  Equation D.4 

The numerator of Equation D.1 (𝛾) is defined here in Equation D.5: 

𝛾 =  
2 𝑗1 𝑘1 [𝐻2𝑂] [𝑂3]

𝑘2 [𝑁2] + 𝑘3 [𝑂2] + 𝑘1 [𝐻2𝑂]
 =  

𝛼

𝛽
 Equation D.5 

Uncertainty in 𝛾 is calculated in Equation D.6 - Equation D.9: 

(
∆𝛾

𝛾
)

2

=  (
∆𝛼

𝛼
)

2

+  (
∆𝛽

𝛽
)

2

 Equation D.6 

(
∆𝛼

𝛼
)

2

=    (
∆[𝐻2𝑂]

[𝐻2𝑂]
)

2

+ (
∆[𝑂3]

[𝑂3]
)

2

 Equation D.7 

(∆𝛽)2 =    (𝑘1Δ[𝐻2𝑂])2 Equation D.8 

(
∆𝛽

𝛽
)

2

=    
(𝑘1Δ[𝐻2𝑂])2

(𝑘2 [𝑁2] + 𝑘3 [𝑂2] + 𝑘1 [𝐻2𝑂])2
. Equation D.9 

The denominator of Equation D.1 (𝛿) is defined here in Equation D.10: 
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𝛿 = 𝑘4 [𝐶𝐻4] + 𝑘5 [𝐶𝑂] + 𝑘6 [𝑂3] Equation D.10 

Uncertainty in 𝛿 is calculated in Equation D.11 and Equation D.12: 

(∆δ)2 = (𝑘4Δ[𝐶𝐻4])2 + (𝑘5Δ[𝐶𝑂])2 +  (𝑘6Δ[𝑂3])2 Equation D.11 

(
∆𝛿

𝛿
)

2

=  
(𝑘4Δ[𝐶𝐻4])2 + (𝑘5Δ[𝐶𝑂])2 + (𝑘6Δ[𝑂3])2 

(𝑘4 [𝐶𝐻4] + 𝑘5 [𝐶𝑂] + 𝑘6 [𝑂3])2
 Equation D.12 

Uncertainty in [OH] is then calculated in Equation D.13: 

∆[𝑂𝐻] = √(
∆𝛼

𝛼
)

2

+ (
∆𝛽

𝛽
)

2

+  (
∆𝛿

𝛿
)

2

 × [𝑂𝐻] Equation D.13 

Figure D.1 shows the spatial distribution of OH for all months of 2010, which corresponds 

to an average of 0.5 ×106 – 0.7 ×106 molecule cm-3 (23 – 24%).  

 

Figure D.1: Estimated uncertainty for satellite S-SSA OH for all months of 2010 in 
units of ×106 molecule cm-3. Global mass-weighted mean estimated uncertainty in 
OH (×106 molecule cm-3) are labelled for each month.  

This method assumes there is no uncertainty in the rate constants. To assess the validity 

of this assumption, TOMCAT and ATom measurements of 𝑗1 have been compared 

(Figure D.2). The TOMCAT model values of 𝑗1 are low compared to the ATom 

measurements. The MB ranges between -0.09 ×10-5  and -1.29 ×10-5 s-1 across the 4 

campaigns. Notably, there are several areas of disagreement, such as near the equator 

in ATom-2, between 60°S and 20°S in ATom-3, between the equator to 20°N in ATom-
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4 and between 40°N to 60°N in ATom-4. However, the datasets have very different 

spatial resolutions and therefore the comparison is difficult.  

 

Figure D.2: Comparison between TOMCAT simulated 𝒋𝟏 and ATom 𝒋𝟏 
measurements (from the CAFS instrument). Both datasets are averaged for each 
model latitude bin (2.8°). The four panels show the data split into the individual 
campaigns. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. 
The MB (TOMCAT subtract ATom) are displayed in each panel. Error bars of ± 20 
% (representing CAFS uncertainty (Shetter and Müller, 1999)) are displayed. All 
data is in units of ×10-5 s-1. 
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Appendix E  

 

Figure E.1: [OH] averaged over the 800-1000 hPa range for (a) TOMCAT (full 
model), (b) TOMCAT S-SSA and (c) the difference (TOMCAT S-SSA subtract 
TOMCAT) for January 2010. Panels (d)-(f) represent comparisons for June 2010. 
All values are in in units of ×106 molecule cm-3. 
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Appendix F  

 

Figure F.1: (a) TOMCAT OH in January 2017, (b) TOMCAT S-SSA OH in January 
2017, (c) TOMCAT OH in June 2017, (d) TOMCAT S-SSA OH in June 2017. The 
dashed lines represent the proposed area of best agreement (600–700 hPa). The 
numbers on the right edge of each plot represent the mass-weighted mean OH of 
the pressure region shown by the dotted lines (from top to bottom): < 400 hPa, 400 
– 800 hPa, 600 – 700 hPa (blue) and 800 hPa – surface. All units are in ×106 molecule 
cm-3. 
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Figure F.2: Global satellite-derived OH (S-SSA) in units of ×106 molecule cm-3 for 
2017. Mass-weighted global monthly means are presented above each panel.  
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Figure F.3: (a) TOMCAT OH in January 2017, (b) repeated for June 2017, (c) 
TOMCAT FC-SSA OH in January 2017, (d) repeated for June 2017, (e) TOMCAT S-
SSA OH in January 2017, (f) repeated for June 2017, (g) satellite S-SSA in January 
2017, (h) repeated for June 2017. All averaged across the 600 – 700 hPa pressure 
layer. Global average OH values for the selected pressure layer are given below 
each panel in units of ×106 molecule cm-3.  
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Appendix G  

 

Figure G.1: June 2010 latitude averaged (a) total Sav-SSA source term and (b) – (f) 
the different source terms as a % of the total source term. The individual source 
terms are: (b) photolysis of O3 to form O(1D) which reacts with H2O for form OH, 
(c) reaction of NO + HO2, (d) reaction of HO2 + O3, (e) photolysis of H2O2 and (f) 
photolysis of CH3OOH. The data is presented from 60°S–90°N due to polar night at 
latitudes >60°S  during June. Note the differing scales on the panels.  
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Figure G.2: Comparison of [OH] for June 2010. (a) TOMCAT [OH], (b) S-SSA [OH], 
(c) S-SSA with NOx sources/sinks (NO + HO2, NO + OH + M, NO2 + OH + M), (d) 
difference between S-SSA [OH] and TOMCAT [OH] and (e) difference between S-
SSA [OH] with NOx sources/sinks and TOMCAT [OH]. All values are averaged for 
the 600-700 hPa pressure region.  
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Figure G.3: June 2010 latitude averaged (a) total Sav-SSA sink term and (b) – (n) 
the different sink terms as a % of the total sink term. The individual sink terms are: 
b) CO, (c) O3, (d) CH4, (e) NO2, (f) sum of hydrocarbons (C2H4, C2H6, C3H6, C3H8, 
C5H8, C4H10), (g) dimethyl sulfide (DMS), (h) H2O2, (i) CH3OOH, (j) H2, (k) NO, (l) SO2, 
(m) HCHO and (n) sum of CO, O3 and CH4 (total sink term for S-SSA/Equation 4.2). 
The data is presented from 60°S–90°N due to polar night at latitudes >60°S during 
June. Note the differing scales on the panels.  
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Appendix H  

 

Figure H.1: Monthly mean temperature anomaly for 2008–2017 (pressure layer 600 
– 700 hPa): (a) 15° latitude bins and (b) 3-month average for global (all latitudes), 
NH (equator – 90°N), SH (90°S – equator) and tropics (15°S – 15°N). Anomaly is 
relative to a 2008–2017 baseline. 

 

Figure H.2: As Figure H.1 for CH4.  
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Figure H.3: As Figure H.1 for CO.  

 

Figure H.4: As Figure H.1 for O3.  
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Figure H.5: As Figure H.1 for H2O.   
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Appendix I  
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Figure I.1: Timeseries of European sub-column O3 (surface – 450 hPa, DU) across 
all 30 OMI viewing angles/rows (labelled as odd numbers between 1 and 60). The 
rows are labelled as included, either for the whole record or part of the record, or 
excluded from the BE scenario described in 5.3.1.1. For the records that have been 
included for the whole record, a seasonal model and linear trend (DU year-1) based 
on the row record are shown.  An * before the word “Trend” indicates that the trend 
is significant at the 95% confidence level. 
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Appendix J  

 

Figure J.1: Averaged surface emissions across the European domain for 1996 – 
2018 of (a) NOx, (b) CO, (c) C3H6, (d) HCHO and (e) C2H2. All in units of ×109 
molecules cm-2 s-1. Four sub-regions of Europe (Atlantic, Mediterranean, West and 
East Europe) are shown.  
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Figure J.2: As Figure J.1 for (a) CH3OH, (b) C3H6O, (c) C2H4, (d) C2H6 and (e) C2H4O. 

 

Figure J.3: As Figure J.1 for (a) C3H8, (b) C7H8, (c) C4H10, (d) isoprene and (e) 
monoterpenes. 
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Appendix K  

 

Figure K.1: Linear component of the linear-seasonal trend model applied to a 
timeseries of co-located model record (with AKs applied) sub-column O3 (surface 
– 450 hPa) for each grid-box across the European domain (DU year-1) for (a) 
TOMCAT-GOME, (b) TOMCAT-SCIAMACHY and (c) TOMCAT-OMI. The respective 
time periods are labelled.  
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