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Abstract

People express their opinions and experiences through text and images in social media

platforms. Analyzing social media content has several applications in natural language

processing such as sentiment analysis, hate speech detection, fact checking and sarcasm

detection. Combining text and images from social media posts is challenging due to weak

visual-text relationships. For instance, a post with the text: Feeling on top of the world

after acing my final exams! and a picture of a group of friends at the beach. The image and

the text are weakly related as the image does not directly align with the academic context,

potentially leading to confusion or misinterpretation of the intended message. Thus, effectively

modeling text and images from social media posts is crucial for advancing natural language

understanding. This thesis proposes a number of new challenging multimodal classification

tasks: point-of-interest (POI) type prediction, political advertisements analysis, and influencer

content analysis. First, we introduce POI type prediction which consists of inferring the type

of location from which a social media message was posted such as a park or a restaurant. This

task is relevant to study a place’s identity and has applications such as POI visualization

and recommendation. Second, we analyze political advertisements by introducing two new

datasets containing political ads labeled by the sponsor’s ideology (conservative, liberal),

and the sponsor type (political party, third party); and we experiment with multimodal

models for advertisement classification. Analyzing political ads is important for researching

the characteristics of online campaigns (e.g. voter targeting, non-party campaigns and

misinformation) on a large scale. Next, we perform an extensive analysis of influencer content

including multimodal approaches for identifying commercial posts, i.e., content that is

monetized. Automatically detecting influencer commercial posts is of utmost importance

for addressing issues related to transparency and regulatory compliance, such as misleading

advertising. Finally, this thesis also presents novel methods for tackling the challenges of

modeling text and visual content in social media. We propose two auxiliary losses, Image-

Text Contrastive which encourages the model to capture the underlying dependencies in

multimodal posts; and Image-Text Matching to enable visual and language alignment.
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Chapter 1

Introduction

Social media platforms serve as hubs for users to share their thoughts, opinions, and ex-

periences. Analyzing social media content has different applications in natural language

processing (NLP) such as sentiment analysis (Nguyen and Shirai, 2015; Chambers et al.,

2015; Nakov et al., 2016; Kruspe et al., 2020; Barbieri et al., 2022), rumor detection and

fact checking (Ma et al., 2018; Thorne and Vlachos, 2018; Li et al., 2019b; Zhou et al., 2019;

Li and Scarton, 2020; Santos et al., 2020; Tian et al., 2022; Guo et al., 2022), and political

discourse and biased language analysis (Johnson and Goldwasser, 2018; Huguet Cabot et al.,

2020; Mendelsohn et al., 2021; De Kock and Vlachos, 2022). Multimodal posts, consisting of

images and text, offer a creative and engaging means of communication for users and enrich

the narrative for readers. Furthermore, they highlight the necessity of automated vision and

language understanding in addressing diverse multimodal classification tasks.

Combining text and images has been largely studied for modeling vision-and-language

tasks such as visual question answering (Antol et al., 2015; Fukui et al., 2016; Ray et al.,

2019; Si et al., 2022) and image captioning (Devlin et al., 2015; Johnson et al., 2016; Li

et al., 2020b, 2022b; Dai et al., 2023) where strong image-text connections are assumed,

i.e., captions that explicitly describe a corresponding image (Hessel and Lee, 2020; Xu and

Li, 2022). However, modeling text-image pairs from social media posts presents additional

challenges. For instance, capturing cross-modal semantics that are not immediately apparent

is difficult (Vempala and Preoţiuc-Pietro, 2019). Figure 1.1 (top) shows an example where

the text refers specifically to the mood of the person in the photo (i.e., “unhappy feeling”

when @USER gets more followers...). Moreover, cases when the visuals are weakly related

to the text are also common (Xu et al., 2022). For example, Figure 1.1 (bottom) shows an
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Image Text (Post) Image-Text Relation in Post Image Caption

When @USER gets

more followers than

you in 12 hours

The image complements the

text to provide meaning of the

post

A close up of a hockey

player wearing a helmet

My baby approves The image does not add to the

meaning of the post and the text

does not provide a description of

the image

A gray and white chicken

standing in the dirt

Figure 1.1: Examples of image-text relations in social media posts from Vempala and Preoţiuc-

Pietro (2019) and corresponding image captions automatically generated with InstructBLIP

(Dai et al., 2023). While image captions have a clear visual-language connection, image-text

relationships in social media posts may no be apparent.

image of a hen accompanied by the text My baby approves. Without any further background,

it is difficult to draw a straight relationship between the two. Another challenge that arises

when modeling multimodal posts, is that the image type distribution is diverse. Image types

include screenshots, natural photos, posters, and drawing pictures (Wang et al., 2020); and

they may contain text wordings which have proved to be beneficial to model tasks such as

inferring the topic (e.g. cars, electronics) and sentiment of online commercial advertisements

(Hussain et al., 2017; Kalra et al., 2020) and identifying hateful messages (Pramanick et al.,

2021; Cao et al., 2022).

Effectively modeling textual and visual information is crucial to natural language under-

standing as incorporating both modalities enhances the understanding of the user’s intentions,

emotions, and opinions. For instance, it can aid in disambiguating the intended meaning, as

images often provide visual context that clarifies the text’s tone and intent. Visual context

can also help handling noisy textual data (e.g., abbreviations and typos), predominant in

social media, by providing additional background. Content of both text and images has been

widely used to improve upon single modality results in various downstream tasks such as

sentiment analysis (Niu et al., 2016; Ju et al., 2021), hate speech detection (Botelho et al.,

2021; Hossain et al., 2022; Cao et al., 2022), sarcasm detection (Cai et al., 2019; Xu et al.,

2020; Liang et al., 2022), and named entity recognition (Moon et al., 2018b; Sun et al., 2020).

In this thesis, we focus on three under-explored multimodal classification tasks: point-

of-interest (POI) type prediction, political advertisements analysis, and influencer content
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Task POI Type Prediction Online Political Ads Analysis Influencer Content Analysis

Image

Text Next stop: NYC

WE CAN’T LET

JOE BIDEN WIN!

VOTE EARLY

Cherry tree hill is hands

down the best view in

#Barbados. #VisitBarbados

Description

Users share content that is

relevant to their experiences

and feelings in the location.

Example of an online political

advertisement and corresponding

text.

Influencers share commercial

and non-commercial content

in social media.

Figure 1.2: Representative examples of text and image content of social media posts for three

tasks: POI type prediction, online political advertisements analysis and influencer content

analysis.

analysis. Moreover, we aim to study the intricate relationships between text and images in

social media posts, delving into how they complement, reinforce, or even contradict each

other to convey complex messages.

POI type prediction The content of social media posts shared by users from specific places

such as restaurants, shops, and parks, contributes to shaping a place’s identity, by offering

information about feelings elicited by participating in an activity or living an experience in

that place. For instance, Figure 1.2 (second column) shows an example of a post sent from a

specific place or POI. It consists of the text Next stop: NYC along with a picture of descriptive

items that people carry at an airport such as luggage, a camera and a takeaway coffee cup.

In this thesis we introduce the task of POI type prediction defined as a classification task

where given the content of a post, the goal is to classify it in one of the POI categories.

Inferring the type of place from a user’s post using text and visual information, is useful for

cultural geographers to study a place’s identity (Tuan, 1991) and has downstream geosocial

applications such as POI visualization (McKenzie et al., 2015; Yaqub et al., 2020; McKitrick

et al., 2023) and recommendation (Alazzawi et al., 2012; Yuan et al., 2013; Preoţiuc-Pietro

and Cohn, 2013; Gao et al., 2015; Zeng et al., 2020; Yang et al., 2023).

Online Political Advertising Analaysis Political advertising is defined as ‘any controlled

message communicated through any channel designed to promote the political interests of
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individuals, parties, groups, government, or other organizations’ (Kaid and Holtz-Bacha, 2006).

Figure 1.2 (third column) shows an example of an online political ad. Automatically analyzing

political ads is important in political science for researching the characteristics of online

campaigns (e.g. voter targeting, sponsors, non-party campaigns, privacy, and misinformation)

on a large scale (Scammell and Langer, 2006; Johansson and Holtz-Bacha, 2019; Biamby

et al., 2022). Moreover, computational methods for political ads analysis can help linguists to

study features of political discourse and communication (Kenzhekanova, 2015; Skorupa and

Dubovičienė, 2015; Mancini et al., 2022).

Influencer Content Analysis Social media influencers are content creators who have

established credibility in a specific domain (e.g., fitness, technology), are followed by a

large number of accounts and can impact the buying decisions of their followers (Keller

and Berry, 2003; Brown and Hayes, 2008; Nandagiri and Philip, 2018; Lee et al., 2022).

Influencer marketing (i.e., promoted content via influencer posts in social media) has grown in

popularity as an alternative to traditional advertising (e.g., magazines, television, billboards)

and mainstream digital marketing such as pop-up and platform ads for reaching a larger

and more targeted audience (Leerssen et al., 2019; Nandagiri and Philip, 2018; Gross and

Wangenheim, 2018; Lou et al., 2019; Jarrar et al., 2020; Fang and Wang, 2022).

Figure 1.2 (fourth column) shows an example of a commercial post, i.e., content that is

monetized. However, this post rather than promoting a specific product as they normally do,

it contains a description of their “personal” experience. This type of posts are also common

in non-commercial posts (Oliveira et al., 2020) making it difficult for the users to distinguish

between paid promotion and personal opinions. Therefore, automatically detecting whether

an influencer’s post involves paid promotion of products or services is of utmost importance

for addressing issues related to transparency and regulatory compliance, such as misleading

advertising or undisclosed sponsorships in large scale (Mathur et al., 2018; Evans et al., 2017;

Wojdynski et al., 2018; Ducato, 2020; Ershov and Mitchell, 2020).

1.1 Research Aims and Objectives

This thesis focuses on modeling three under-explored multimodal social media tasks namely

point-of-interest type prediction, online political advertisements analysis and influencer content

analysis using machine learning methods. We aim to achieve the next research objectives:
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• Previous work on social media analysis related to POIs, is mainly focused on the popular

task of geolocation prediction (Cheng et al., 2010; Eisenstein et al., 2010; Han et al.,

2012; Roller et al., 2012; Rahimi et al., 2015; Dredze et al., 2016; Mishra, 2020; Khanal

et al., 2022), which consists of inferring the exact geographical location of a post using

language variation and geographical cues. However, inferring the place’s type using

textual and visual information to uncover the geographic agnostic features associated

with locations of different types has yet to be studied. Therefore, we aim to develop

new data resources and models for studying POI type prediction at a large scale in

computational social science.

• Previous work in NLP related to online advertising, has explored tasks such as predicting

the category (e.g. politics, cars, electronics) and sentiment of an ad in the commercial

domain (Hussain et al., 2017; Kalra et al., 2020). Moreover, large-scale studies of

online political advertising have so far focused on understanding targeting strategies

rather than developing predictive models for analyzing its content (Edelson et al.,

2019; Medina Serrano et al., 2020). By conducting a systematic study of online political

ads consisting of text and images, the aim is to uncover linguistic and visual cues

across political ideologies (liberal or conservative) and sponsor types (political party or

third-party) using computational methods.

• Previous work on identifying influencer commercial content has focused on analyzing

user features (e.g., popularity and engagement) and network characteristics of influencers

(Zarei et al., 2020; Kim et al., 2021b), while the use of language and its relationship

to images has not been explicitly explored. Therefore, we aim to develop new expert

annotated data as well as an extensive empirical study on influencer multimodal content

focused on analyzing the contribution of text and image modalities to commercial and

non-commercial posts.

• Previous work on multimodal social media analysis has shown that combining text and

image information is challenging because of the idiosyncratic cross-modal semantics with

hidden or complementary information present in matching image-text pairs (Vempala

and Preoţiuc-Pietro, 2019; Kruk et al., 2019; Xu et al., 2022). In this thesis, we aim

to directly model this by proposing auxiliary losses that can be used jointly with any

downstream classification task when fine-tuning pre-trained multimodal models.

Additionally, as we explore these multimodal social media tasks, this thesis

seeks to study the following research questions:
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• Q1: What are the various methodologies available for extracting visual

information from social media posts, and how can these methodologies be

effectively used to enhance classification models?

• Q2: Can pre-trained multimodal models be directly applied to classify social

media posts, or how can these models be adapted to account for the unique

characteristics of social media posts?

• Q3: To what extent does multimodal commercial content exist in social

media beyond traditional forms of paid product advertising? Moreover, how

transparent are these types of advertising to social media users?

1.2 Thesis Overview: Publications and Contributions

This section lists the contributions made throughout this thesis. It follows a thesis by

publications format and consists of a collection of five papers where each paper corresponds

to an individual chapter.

Publication I: Point-of-Interest Type Inference from Social Media Text In

this paper, we conduct an analysis to uncover linguistic features specific to place types and

train predictive models to infer the place or POI category using text and posting time. The

contributions of this publication are as follows:

• We provide the first study of POI type prediction in computational linguistics.

• A large dataset made out of tweets (text and posting time) linked to particular POI

categories is developed and made publicly available.

• We provide a linguistic and temporal analyses related to the place the text was posted

from.

• Predictive models using text and temporal information.

This work has been published in Proceedings of the 1st Conference of the Asia-Pacific Chapter

of the Association for Computational Linguistics and the 10th International Joint Conference

on Natural Language Processing (AACL 2020) (Sánchez Villegas et al., 2020).
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My contributions to the work: conceptualization, data collection, methodology, software,

validation and writing.

Publication II: Point-of-Interest Type Prediction using Text and Images In

this work, we enrich the dataset developed in Publication I with images and we propose a

multimodal model to tackle the task of POI type prediction as a multimodal classification

task. The contributions of this work are as follows:

• We enrich our dataset introduced in Publication I with images.

• We propose a multimodal model that combines text and images in two levels using: (i)

a modality gate to control the amount of information needed from the text and image;

(ii) a cross-attention mechanism to learn cross-modal interactions.

• We provide an in-depth analysis to uncover the limitations of our model and uncover

cross-modal characteristics of POI types.

This work has been published in Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2021) (Sánchez Villegas and Aletras, 2021).

My contributions to the work: conceptualization, data collection, methodology, software,

validation and writing.

Publication III: Analyzing Online Political Advertisements This paper presents

the first study in NLP for analyzing the language of political ads. We define two tasks as

advertisement-level binary classification tasks and evaluate a variety of approaches, including

textual, visual and multimodal models. The contributions of this work are as follows:

• A new classification task for predicting the political ideology (conservative or liberal) of

an ad. We collect 5, 548 distinct political ads in English from 242 different advertisers in

the U.S., and label them according to the dominant political ideology of the respective

sponsor’s party affiliation (Liberal or Conservative).

• A new classification task to automatically classify ads that were sponsored by official

political parties and third-party organizations, such as businesses and non-profit orga-

nizations. For this task, we extract 15, 116 advertisements in English from 665 distinct
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advertisers in the U.S., and label them as Political Party (i.e. officially registered) and

Third-Party (i.e. other organizations) following Fowler et al. (2020b).

• Experiments with text-based and multimodal (text and images) models for political

ideology prediction and sponsor type classification.

• Analysis of textual and visual features of online political ads and error analysis to

understand model limitations.

This work has been published in Findings of the Association for Computational Linguistics:

ACL-IJCNLP 2021 (ACL Findings 2021) (Sánchez Villegas et al., 2021).

My contributions to the work: conceptualization, data collection, methodology, software,

validation and writing.

Publication IV: A Multimodal Analysis of Influencer Content on Twitter In this

paper, we conduct an empirical study of influencer content. We introduce a novel dataset of

multimodal influencer content consisting of tweets labeled as commercial or non-commercial.

This is the first dataset to include high quality annotated posts by experts in advertising. In

this publication we also experiment with an extensive set of predictive models that combine

text and visual information and conduct a thorough analysis of strengths and limitations of

our models. The contributions of this work are as follows:

• We present a large publicly available dataset of 14, 384 text-image pairs and 1, 614

text-only influencer tweets written in English. Tweets are mapped into commercial and

non-commercial categories.

• We benchmark an extensive set of state-of-the-art language, vision and multimodal

models for automatically identifying commercial content;

• We propose a simple yet effective cross-attention multimodal approach that outperforms

all text, vision and multimodal models.

• We conduct a qualitative analysis to shed light on the limitations of automatically

detecting commercial content, and provide insights into when each modality is beneficial.

This work has been published in the 13th International Joint Conference on Natural Lan-

guage Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association
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for Computational Linguistics (AACL 2023) Area Chair Award (Society and NLP)

(Sánchez Villegas et al., 2023).

My contributions to the work: conceptualization, data collection, methodology, software,

validation and writing.

Publication V: Improving Multimodal Classification of Social Media Posts by

Leveraging Image-Text Auxiliary Tasks In this work, we propose the use of two

auxiliary losses when fine-tuning pre-trained multimodal models for social media classifica-

tion: Image-Text Contrastive (ITC) which encourages the model to capture the underlying

dependencies in multimodal posts; and Image-Text Matching (ITM) to improve visual and

language alignment. Our results show consistent improvement in predictive performance upon

the inclusion of these objectives on four different tasks. The contributions of this work are as

follows:

• We present an extensive study on comparing multimodal models jointly fine-tuned with

ITC and ITM.

• We show that models using ITC and ITM as auxiliary losses consistently improve their

performance on four popular multimodal social media classification datasets.

• We provide a comprehensive analysis that sheds light on the effectiveness of each

auxiliary task and their combination.

This work is under review in ACL Rolling Review (ARR).

My contributions to the work: conceptualization, methodology, software, validation and writing.

Conclusions In Chapter 7 we summarize the findings and contributions of this thesis and

suggest possible research directions for future work.
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Chapter 2

Publication I: Point-of-Interest Type

Inference from Social Media Text

Point-of-Interest Type Inference from Social Media Text

Danae Sánchez Villegasα, Daniel Preoţiuc-Pietroβ, Nikolaos Aletrasα

α Computer Science Department, University of Sheffield, UK

β Bloomberg

Abstract

Physical places help shape how we perceive the experiences we have there. We study

the relationship between social media text and the type of the place from where it was

posted, whether a park, restaurant, or someplace else. To facilitate this, we introduce

a novel data set of ∼200,000 English tweets published from 2,761 different points-of-

interest in the U.S., enriched with place type information. We train classifiers to predict

the type of the location a tweet was sent from that reach a macro F1 of 43.67 across

eight classes and uncover the linguistic markers associated with each type of place.

The ability to predict semantic place information from a tweet has applications in

recommendation systems, personalization services and cultural geography.1

1Data is available here: https://archive.org/details/poi-data

https://archive.org/details/poi-data
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2.1 Introduction

Social networks such as Twitter allow users to share information about different aspects of

their lives including feelings and experiences from places that they visit, from local restaurants

to sport stadiums and parks. Feelings and emotions triggered by performing an activity or

living an experience in a Point-of-Interest (POI) can give a glimpse of the atmosphere in that

place (Tanasescu et al., 2013).

In particular, the language used in posts from POIs is an important component that

contributes toward the place’s identity and has been extensively studied in the context of

social and cultural geography (Tuan, 1991; Scollon and Scollon, 2003; Benwell and Stokoe,

2006). Social media posts from a particular location are usually focused on the person posting

the content, rather than on providing explicit information about the place. Table 2.1 displays

example Twitter posts from different POIs. Users express their feelings related to a certain

place (‘this places gives me war flashbacks’), comments and thoughts associated with the

place they are in (‘few of us dressed appropriately’) or activities they are performing (‘leaving

the news station’, ‘on the way to the APCE Annual’).

In this paper, we aim to study the language that people on Twitter use to share information

about a specific place they are visiting. Thus, we define the prediction of a POI type given a

post (i.e. tweet) as a multi-class classification task using only information available at posting

time. Given the text from a user’s post, our goal is to predict the correct type of the location

it was posted, e.g. park, bar or shop. Inferring the type of place from a user’s post using

linguistic information, is useful for cultural geographers to study a place’s identity (Tuan,

1991) and has downstream geosocial applications such as POI visualisation (McKenzie et al.,

2015) and recommendation (Alazzawi et al., 2012; Yuan et al., 2013; Preoţiuc-Pietro and

Cohn, 2013; Gao et al., 2015).

Predicting the type of a POI is inherently different to predicting the POI type from

comments or reviews. The role of the latter is to provide opinions or descriptions of the places,

rather than the activities and feelings of the user posting the text (McKenzie et al., 2015), as

illustrated in Table 2.1. This is also different, albeit related, to the popular task of geolocation

prediction (Cheng et al., 2010; Eisenstein et al., 2010; Han et al., 2012; Roller et al., 2012;

Rahimi et al., 2015; Dredze et al., 2016), as this aims to infer the exact geographical location of

a post using language variation and geographical cues or GPS coordinates rather than inferring

the place’s type. Our task aims to uncover the geographic agnostic features associated with
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POIs of different types. Moreover, while GPS provides crucial location information, extracting

insights from social media content augments our understanding of POIs by capturing user

experiences, sentiments, and contextual details that go beyond spatial coordinates.

Our contributions are as follows: (1) We provide the first study of POI type prediction

in computational linguistics; (2) A large data set made out of tweets linked to particular

POI categories; (3) Linguistic and temporal analyses related to the place the text was posted

from; (4) Predictive models using text and temporal information reaching up to 43.67 F1

across eight different POI types.

2.2 Point-of-Interest Type Data

We define the POI type prediction as a multi-class classification task performed at the social

media post level. Given a post T, defined as a sequence of tokens T = {t1, ..., tn}, the goal is

to label T as one of the M POI categories. We create a novel data set for POI type prediction

containing text and the location type it was posted from as, to the best of our knowledge,

no such data set is available. We use Twitter as our data source because it contains a large

variety of linguistic information such as expression of thoughts, opinions and emotions (Java

et al., 2007; Kouloumpis et al., 2011).

2.2.1 Types of POIs

Foursquare is a location data platform that manages ‘Places by Foursquare’, a database of

more than 105 million POIs worldwide. The place information includes verified metadata

such as name, geo-coordinates and categories as well as other user-sourced metadata such

as tags, comments or photos. POIs are organized into 9 top level primary categories with

multiple subcategories. We only focus on 8 primary top-level POI categories since the category

‘Residence’ has a considerably smaller number of tweets compared to the other categories

(0.78% tweets from the total). We leave finer-grained place category inference as well as using

other metadata for future work since the scope of this work is to study the language of posts

associated with semantic type places.
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Category Sample Tweet Train Dev Test Tokens

Arts & Entertainment i’m back in central park . this place gives me war flashbacks now lol 40,417 4,755 5,284 14.41

College & University currently visiting my dream school 21,275 2,418 2,884 15.52

Food Some Breakfast, it’s only right! #LA 6,676 869 724 14.34

Great Outdoors
Sorry Southport, Billy is dishing out donuts at #donutfest today. See you

next weekend!
27,763 4,173 3,653 13.49

Nightlife Spot
Chicago really needs to step up their Aloha shirt game. Only a few of us

dressed “appropriately” tonight. :)
5,545 876 656 15.46

Professional & Other Places Leaving the news station after a long day 30,640 3,381 3,762 16.46

Shop & Service Came to get an old fashioned tape measures and a button for my coat 8,285 886 812 15.31

Travel & Transport
Shoutout to anyone currently on the way to the APCE Annual Event in

Louisville, KY! #APCE2018
16,428 2,201 1,872 14.88

Table 2.1: Place categories with sample tweets and data set statistics.

2.2.2 Associating Tweets with POI Types

Twitter users can tag their tweets to the locations they are posted from by linking to

Foursquare places.2 In this way, we collect tweets assigned to the POIs and associated

metadata (see Table 2.1). We select a broad range of locations for our experiments. There

is no public list of all Foursquare locations that can be used through Twitter and can be

programmatically accessed. Hence, in order to discover Foursquare places that are actually

used in tweets, we start with all places found in a 1% sample of the Twitter feed between

31 July 2016 and 24 January 2017 leading us to a total of 9,125 different places. Then, we

collect all tweets from these places between 17 August 2016 and 1 March 2018 using the

Twitter Search API3. We collect the place metadata from the public Foursquare Venues

API. This resulted in a total data set of 1,648,963 tweets tagged to a Foursquare place. In

order to extract metadata about each location, we crawled the Twitter website to identify

the corresponding Foursquare Place ID of each Twitter place. Then, we used the public

Foursquare Venues API4 to download all the place metadata.

2.2.3 Data Filtering

To limit variation in our data, we filter out all non-English tweets and non-US places, as

these were very limited in number. We keep POIs with at least 20 tweets and randomly

2https://developer.foursquare.com/places
3https://developer.twitter.com/en/docs/tweets/search/guides/tweets-by-place
4https://developer.foursquare.com/overview/venues.html

https://developer.foursquare.com/places
https://developer.twitter.com/en/docs/tweets/search/guides/tweets-by-place
https://developer.foursquare.com/overview/venues.html
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Figure 2.1: Distribution of POIs in our dataset.

subsample 100 tweets from POIs with more tweets to avoid skewing our data. Fig. 2.1 shows

the distribution of POIs in our dataset. Our final data set consists of 196,235 tweets from

2,761 POIs.

2.2.4 Data Split

We create our data split at a location-level to ensure that our models are robust and generalize

to locations held-out in training. We split the locations in train (80%), development (10%)

and test (10%) sets and assign tweets to one of the three splits based on the location they

were posted from (see Table 2.1 for detailed statistics).

2.2.5 Text Processing

We lower-case text and replace all URLs and mentions of users with placeholders. We preserve

emoticons and punctuation and replace tokens that appear in less than five tweets with an

‘unknown’ token. We tokenize text using a Twitter-aware tokenizer (Schwartz et al., 2017).

2.3 Analysis

We first analyze our data set to understand the relationship between location type, language

and posting time.
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Arts College Food Outdoors Nightlife Professional Shop Travel

Feature χ2 Feature χ2 Feature χ2 Feature χ2 Feature χ2 Feature χ2 Feature χ2 Feature χ2

concert 167.20 campus 298.74 chicken 375.52 beach 591.81 #craftbeer 425.97 school 87.46 mall 462.03 airport 394.20

museum 152.14 college 266.63 #nola 340.64 239.00 311.68 students 79.93 store 403.00 343.30

show 134.39 university 155.65 lunch 255.98 hike 227.91 beer 203.57 grade 66.05 shopping 359.00 flight 292.94

night 104.48 class 112.23 fried 216.49 lake 193.58 bar 93.90 vote 65.80 shop 132.39 hotel 168.38

tonight 80.76 semester 103.19 dinner 203.65 park 165.92 67.00 our 63.12 126.07 conference 141.74

game 73.56 football 59.24 195.41 island 151.45 56.94 jv 60.64 95.32 landed 118.05

art 69.77 student 57.86 pizza 190.83 sunset 142.44 dj 56.56 church 52.97 apple 88.74 plane 88.42

USER 66.14 classes 57.37 shrimp 188.77 hiking 137.74 tonight 53.39 hs 50.63 market 76.60 bound 78.43

zoo 66.09 students 56.98 179.39 beautiful 109.45 ale 52.62 senior 50.05 auto 73.52 heading 62.09

baseball 62.90 camp 44.19 151.00 bridge 108.56 party 51.14 ss 44.46 stock 72.31 headed 57.12

Table 2.2: Unigrams associated with each category, sorted by χ2 value computed between the

normalized frequency of each feature and the category label across all tweets in the training

set (p < 0.001).

2.3.1 Linguistic Analysis

We analyze the linguistic features specific to each category by ranking unigrams that appear

in at least 5 different locations, such that these are representative of the larger POI category

rather than a few specific places. Features are normalized to sum up to unit for each tweet, then

we compute the (Pearson) χ2 coefficient independently between its distribution across posts

and the binary category label of the post similar to the approach followed by Maronikolakis

et al. (2020a) and Preoţiuc-Pietro et al. (2019a). Table 2.2 presents the top unigram features

for each category.

We note that most top unigrams specific of a category naturally refer to types of places

(e.g. ‘campus’, ‘beach’, ‘mall’, ‘airport’) that are part of that category. All categories also

contain words that refer to activities that the poster of the tweet is performing or observing

while at a location (e.g. ‘camp’ and ‘football’ for College, ‘concert’ and ‘show’ for Arts &

Entertainment, ‘party’ for Nightlife Spot, ‘landed’ for Travel & Transport, ‘hike’ for Greater

Outdoors). Nightlife Spot and Food categories are represented by types of food or drinks that

are typically consumed at these locations. Beyond these typical associations, we highlight

that usernames are more likely mentioned in the Arts & Entertainment category, usually

indicating activities involving groups of users, emojis indicative of the user state (e.g. happy

emoji in Food places) and adjectives indicative of the user’s surroundings (e.g. ‘beautiful’ in

Greater Outdoors places). Finally, we also uncover words indicative of the time the user is at

a place, such as ‘tonight’ for Arts & Entertainment, ‘sunset’ for the Greater Outdoors and

‘night’ for Nightlife Spots and Arts & Entertainment.
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Figure 2.2: Percentage of tweets by day of week (top) and by hour of day (bottom).

2.3.2 Temporal Analysis

We further examine the relationship between the time a tweet was posted and the POI type

it was posted from. Figure 2.2 shows the percentage of tweets by day of week (top) and hour

of day (bottom).

We observe that tweets posted from the ‘Professional & Other Places’, ‘Travel & Transport’

and ‘College & University’ categories are more prevalent on weekdays, peaking on Wednesday,

while on weekends more tweets are posted from the ‘Great Outdoors’, ‘Arts & Entertainment’,

‘Nightlife & Spot’ and ‘Food’ categories when people focus less on professional activities and

dedicate more time to leisure as expected. The hour of day pattern follows the daily human

activity rhythm, but the differences between categories are less prominent, perhaps with the

exception of the ‘Arts & Entertainment’ category peaks around 8PM and ‘Nightlife Spots’

that see a higher percent of tweets in the early hours of the day (between 1-5am) than other

categories.
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2.4 Predicting POI Types of Tweets

2.4.1 Methods

Logistic Regression We first experiment with logistic regression using a standard bag of

n-grams representation of the tweet (LR-W), including unigrams to trigrams weighted using

TF-IDF. We identified in the analysis section that temporal information about the tweet may

be useful for classification. Hence, to add temporal information extracted from a tweet, we

create a 31-dimensional vector encoding the hour of the day and the day of the week it was

sent from. We experiment with only using the temporal features (LR-T) and in combination

with the text features (LR-W+T). We use L1 regularization (Hoerl and Kennard, 1970)

with hyperparameter α = .01 (selected based on dev set from {.001, .01, .1}).

BiLSTM We train models based on bidirectional Long-Short Term Memory (LSTM)

networks (Hochreiter and Schmidhuber, 1997), which are popular in text classification tasks.

Tokens in a tweet are mapped to embeddings and passed through the two LSTM networks,

each processing the input in opposite directions. The outputs are concatenated and passed to

the output layer using a softmax activation function (BiLSTM). We extend the BiLSTM

to encode temporal one-hot representation by: (a) concatenating the temporal vector to

the tweet representation (BiLSTM-TC); and (b) projecting the time vector into a dense

representation using a fully connected layer which is added to the tweet representation before

passing it through the output layer using a softmax activation function (BiLSTM-TS). We

use 200-dimensional GloVe embeddings (Pennington et al., 2014) pre-trained on Twitter data.

The maximum sequence length is set to 26, covering 95% of the tweets in the training set. The

LSTM size is h = 32 where h ∈ {32, 64, 100, 300} with dropout d = 0.5 where d ∈ {.2, .5}.

We use Adam (Kingma and Ba, 2014) with default learning rate, minimizing cross-entropy

using a batch size of 32 over 10 epochs with early stopping.

BERT Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained

language model based on transformer networks (Vaswani et al., 2017; Devlin et al., 2019).

BERT consists of multiple multi-head attention layers to learn bidirectional embeddings for

input tokens. The model is trained on masked language modeling, where a fraction of the

input tokens in a given sequence is replaced with a mask token, and the model attempts to

predict the masked tokens based on the context provided by the non-masked tokens in the
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sequence. We fine-tune BERT for predicting the POI type of a tweet by adding a classification

layer with softmax activation function on top of the Transformer output for the ‘classification’

[CLS] token (BERT). Similarly to the previous models, we extend BERT to make use of

the time vector in two ways, by concatenating (BERT-TC), and by adding it (BERT-TS)

to the output of the Transformer before passing it to through the classification layer with

softmax activation function. We use the base model (12-layer, 110M parameters) trained

on lower-cased English text. We fine-tune it for 2 epochs with a learning rate l = 2e−5,

l ∈ {2e−5, 3e−5, 5e−5} and a batch size of 32.

2.4.2 Results

Table 2.3 presents the results of POI type prediction measured using accuracy, macro F1,

precision and recall across three runs. In general, we observe that we can predict POI types

of tweets with good accuracy, considering the classification is across eight relatively well

balanced classes.

Best results are obtained using BERT-based models (BERT, BERT-TC and BERT-TS),

with the highest accuracy of 49.17 (compared to 26.89 majority class) and highest macro-F1 of

43.67 (compared to 12.64 random). We observe that BERT models outperform both BiLSTM

and linear methods across all metrics, with over 4% improvement in accuracy and 5 points F1.

The BiLSTM models perform marginally better than the linear models. Temporal features

alone are marginally useful when models are evaluated using accuracy (+0.28 BERT, +0.34

for BiLSTMs, +0.69 for LR) and perform similarly on F1, with the notable exception of the

BiLSTM models. We find that adding these features is more beneficial than concatenating

them, with concatenation hurting performance on accuracy for both BiLSTM and BERT.

Figure 2.3 shows the confusion matrix of our best performing model, BERT, according to

the macro-F1 score. The confusion matrix is normalized over the actual values (rows). The

category ‘Arts & Entertainment’ has the greatest percentage (62%) of correctly classified

tweets, followed by the ‘Great Outdoors’ category with 54%, and the ‘College & University’

category with 44%. On the other hand, the categories ‘Nightlife Spot’ and ‘Shop & Service’

have the lowest results, where 30% of the tweets predicted as each of these classes is correctly

classified. Most common error is when the model classifies tweets from the category ‘College

& University’ as ‘Professional & Other Places’, as tweets from these places contain similar

terms such as ‘students’ or ‘class’. It is important to note the distinction between these two

classes. While ‘Professional & Other Places’ encompasses a broad spectrum of locations,
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Model Acc F1 P R

Major. Class 26.89 5.30 3.36 12.50

Random 13.63 12.64 13.63 15.68

LR-T 27.93 14.01 15.78 16.06

LR-W 43.04 37.33 37.06 38.03

LR-W+T 43.73 37.83 37.68 38.37

BiLSTM 44.38 35.77 45.29 33.78

BiLSTM-TC 44.01 38.07 41.51 36.46

BiLSTM-TS 44.72 38.26 42.91 36.30

BERT 48.89 43.67 48.44 41.33

BERT-TC 46.13 41.19 46.81 39.03

BERT-TS 49.17 43.47 48.40 41.26

Table 2.3: Accuracy (Acc), Macro-F1 Score (F1), Precision macro (P), and Recall macro (R)

for POI type prediction (all std. dev < 0.01). Best results are in bold.

including convention centers, libraries, offices, spiritual centers, and schools, ‘College &

University’ is specifically confined to colleges and universities. As part of future enhancements,

it is recommended to introduce a distinct category for educational establishments. This

expanded category would not only encompass colleges and universities but also include

schools, addressing the need for a more nuanced classification system.

2.5 Conclusion

We presented the first study on predicting the POI type a social media message was posted from

and developed a large-scale data set with tweets mapped to their POI category. We conducted

an analysis to uncover features specific to place type and trained predictive models to infer

the POI category using only tweet text and posting time with accuracy close to 50% across

eight categories. Future work will focus on using other modalities such as network (Aletras

and Chamberlain, 2018; Tsakalidis et al., 2018) or image information (Vempala and Preoţiuc-

Pietro, 2019; Alikhani et al., 2019) and prediction at a more granular level of POI types.
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Figure 2.3: Confusion Matrix of the best performing model (BERT).
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Abstract

Point-of-interest (POI) type prediction is the task of inferring the type of a place from

where a social media post was shared. Inferring a POI’s type is useful for studies in com-

putational social science including sociolinguistics, geosemiotics, and cultural geography,

and has applications in geosocial networking technologies such as recommendation and

visualization systems. Prior efforts in POI type prediction focus solely on text, without

taking visual information into account. However in reality, the variety of modalities,

as well as their semiotic relationships with one another, shape communication and

interactions in social media. This paper presents a study on POI type prediction using

multimodal information from text and images available at posting time. For that pur-

pose, we enrich a currently available data set for POI type prediction with the images

that accompany the text messages. Our proposed method extracts relevant information

from each modality to effectively capture interactions between text and image achieving

a macro F1 of 47.21 across eight categories significantly outperforming the state-of-the-

art method for POI type prediction based on text-only methods. Finally, we provide a
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detailed analysis to shed light on cross-modal interactions and the limitations of our

best performing model.1

3.1 Introduction

A place is typically described as a physical space infused with human meaning and experiences

that facilitate communication (Tuan, 1977). The multimodal content of social media posts

(e.g. text, images, emojis) generated by users from specific places such as restaurants, shops,

and parks, contribute to shaping a place’s identity, by offering information about feelings

elicited by participating in an activity or living an experience in that place (Tanasescu et al.,

2013).

Figure 3.1 shows examples of Twitter posts consisting of image-text pairs, shared from

two different places or Point-of-Interests (POIs). Users share content that is relevant to their

experience in the location. For example, the text imagine all the people sharing all the world

which is accompanied by a photograph of the Imagine Mosaic in Central Park; and the text

Next stop: NYC along with a picture of descriptive items that people carry at an airport

such as luggage, a camera and a takeaway coffee cup.

Developing computational methods to infer the type of a POI from social media posts (Liu

et al., 2012; Sánchez Villegas et al., 2020) is useful for complementing studies in computational

social science including sociolinguistics, geosemiotics, and cultural geography (Kress et al.,

1996; Scollon and Scollon, 2003; Al Zydjaly, 2014), and has applications in geosocial networking

technologies such as recommendation and visualization systems (Alazzawi et al., 2012; Zhang

and Cheng, 2018; van Weerdenburg et al., 2019; Liu et al., 2020b).

Previous work in natural language processing (NLP) has investigated the language

that people use in social media from different locations, by inferring the type of a POI

of a given social media post using only text and posting time, ignoring the visual context

(Sánchez Villegas et al., 2020). However, communication and interactions in social media are

naturally shaped by the variety of available modalities and their semiotic relationships (i.e.

how meaning is created and communicated) with one another (Georgakopoulou and Spilioti,

2015; Kruk et al., 2019; Vempala and Preoţiuc-Pietro, 2019).

1Code and data are available here: https://github.com/danaesavi/poi-type-prediction

https://github.com/danaesavi/poi-type-prediction
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imagine all the people

sharing all the world ∼
Next stop: NYC

Figure 3.1: Example of text and image content of sample tweets. Users share content that is

relevant to their experiences and feelings in the location.

In this paper, we propose POI type prediction using multimodal content available at

posting time by taking into account textual and visual information. Our contributions are as

follows:

• We enrich a publicly available data set of social media posts and POI types with images;

• We propose a multimodal model that combines text and images in two levels using:

(i) a modality gate to control the amount of information needed from the text and

image; (ii) a cross-attention mechanism to learn cross-modal interactions. Our model

significantly outperforms the best state-of-the-art method proposed by Sánchez Villegas

et al. (2020);

• We provide an in-depth analysis to uncover the limitations of our model and uncover

cross-modal characteristics of POI types.

3.2 Related Work

3.2.1 POI Analysis

POIs have been studied to classify functional regions (e.g. residential, business, and trans-

portation areas) and to analyze activity patterns using social media check-in data and

geo-referenced images (Zhi et al., 2016; Liu et al., 2020a; Zhou et al., 2020a; Zhang et al.,
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2020). Zhou et al. (2020a) present a model for classifying POI function types (e.g. bank,

entertainment, culture) using POI names and a list of results produced by searching for the

POI name in a web search engine. In contrast, our research is focused on the classification of

POI types using textual and visual content extracted from social media posts. Unlike the

approach of relying on POI names to fetch information from search engines, our emphasis is

on analyzing the inherent information within social media data to categorize points-of-interest.

Zhang et al. (2020) makes use of social media check-ins and street-level images to compare

the different activity patterns of visitors and locals, and uncover inconspicuous but interesting

places for them in a city. A framework for extracting emotions (e.g. joy, happiness) from

photos taken at various locations in social media is described in Kang et al. (2019).

3.2.2 POI Type Prediction

POI type prediction is related to geolocation prediction of social media posts that has been

widely studied in NLP (Eisenstein et al., 2010; Roller et al., 2012; Dredze et al., 2016).

However, while geolocation prediction aims to infer the exact geographical location of a post

using language variation and geographical cues, POI type prediction is focused on identifying

the characteristics associated with each type of place, regardless of its geographic location.

Previous work on POI type prediction from social media content has used Twitter posts

(text and posting time), to identify the POI type from where a post was sent from (Liu

et al., 2012; Sánchez Villegas et al., 2020). Liu et al. (2012) incorporate text, temporal

features (posting hour) and user history information into probabilistic text classification

models. Rather than a user-based study, our research aims to uncover the characteristics

associated with various types of POIs. Sánchez Villegas et al. (2020) analyze semantic place

information of different types of POIs by using text and temporal information (hour, and

day of the week) of a Twitter’s post. To the best of our knowledge, this is the first study to

combine textual and visual features to classify POI types (e.g. arts & entertainment, nightlife

spot) from social media messages, regardless of its geographic location.

3.2.3 Social Media Analysis using Text and Images

The combination of text and images of social media posts has been largely used for different

applications such as sentiment analysis, (Nguyen and Shirai, 2015; Chambers et al., 2015),
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sarcasm detection (Cai et al., 2019) and text-image relation classification (Vempala and

Preoţiuc-Pietro, 2019; Kruk et al., 2019). Moon et al. (2018a) propose a model for recognizing

named entities from short social media texts using image and text. Cai et al. (2019) use a

hierarchical fusion model to integrate image and text context with an attention-based fusion.

Chinnappa et al. (2019) examine the possession relationships from text-image pairs in social

media posts. Wang et al. (2020) use texts and images for predicting the keyphrases (i.e.

representative terms) for a post by aligning and capturing the cross-modal interactions via

cross-attention. Previous text-image classification in social media requires that the data is

fully paired, i.e. every post contains an image and a text. This becomes limiting when faced

with missing data, as not all posts contain both modalities2. To address this limitation, in this

work we propose a model that can handle both scenarios:(1) when all modalities (text-image

pairs) are present and (2) when only text is available. This dual-capability enables the model

to perform effectively in situations where information in one modality is absent.

Social media analysis research has also looked at the semiotic properties of text-image

pairs in posts (Alikhani et al., 2019; Vempala and Preoţiuc-Pietro, 2019; Kruk et al., 2019).

Vempala and Preoţiuc-Pietro (2019) investigate the relationship between text and image

content by identifying overlapping meaning in both modalities, those where one modality

contributes with additional details, and cases where each modality contributes with different

information. Kruk et al. (2019) analyze the relationship between the text-image pairs and find

that when the image and caption diverge semiotically, the benefit from multimodal modeling

is greater.

3.3 Task & Data

Sánchez Villegas et al. (2020) define POI type prediction as a multi-class classification task

where given the text content of a post, the goal is to classify it in one of the M POI categories.

In this work, we extend this task definition to include images in order to capture the semiotic

relationships between the two modalities. For that purpose, we consider a social media post

P (e.g. tweet) to comprise of a text and image pair (xt, xv), where xt ∈ Rdt and xv ∈ Rdv are

the textual and visual vector representations respectively.

2See: https://buffer.com/resources/twitter-data-1-million-tweets/

https://buffer.com/resources/twitter-data-1-million-tweets/
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Train Dev Test

Category # Tweets # Images # Tweets # Images # Tweets # Images Tokens

Arts & Entertainment 40,417 20,711 4,755 2,527 5,284 2,740 14.41

College & University 21,275 9,112 2,418 1,057 2,884 1,252 15.52

Food 6,676 2,969 869 351 724 280 14.34

Great Outdoors 27,763 13,422 4,173 2,102 3,653 1,948 13.49

Nightlife Spot 5,545 2,532 876 385 656 353 15.46

Professional & Other Places 30,640 13,888 3,381 1,499 3,762 1,712 16.46

Shop & Service 8,285 3,455 886 266 812 353 15.31

Travel & Transport 16,428 6,681 2,201 829 1,872 789 14.88

All 157,029 72,679 (46.28%) 19,559 9,006 (46.05%) 19,647 9,410 (47.90%) 14.92

Table 3.1: POI categories and data set statistics showing the number of tweets for each

category, and number (%) of tweets having an accompanying image

3.3.1 POI Data

We use the data set introduced by Sánchez Villegas et al. (2020) which contains 196, 235

tweets written in English, labeled with one out of the eight POI broad type categories

shown in Table 3.1, which correspond to the 8 primary top-level POI categories in ‘Places

by Foursquare’, a database of over 105 million POIs worldwide managed by Foursquare. To

generalize to locations not present in the training set, we use the same location-level data

splits (train, dev, test) as in Sánchez Villegas et al. (2020), where each split contains tweets

from different locations.

3.3.2 Image Collection

We use the Twitter API to collect the images that accompany each textual post in the data

set. For the tweets that have more than one image, we select the first available only. This

results in 91, 224 tweets with at least one image. During the image processing (see Section

3.5.3) we removed 129 images because we found they were either damaged, absent3, or no

objects were detected, resulting in 91, 095 text-image pairs (see Table 3.1 for data statistics).

In order to deal with the rest of the tweets with no associated image, we pair them with a

single ‘average’ image computed over all images in the train set: xv = avg(xv
tr). The intuition

behind this approach is to generate a ‘noisy’ image that is not related and does not add to

3Removed by Twitter due to violations to the Twitter Rules and Terms of Service.
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the meaning (Vempala and Preoţiuc-Pietro, 2019).4

3.3.3 Exploratory Analysis of Image Data

To shed light on the characteristics of the collected images, we apply object detection on

the images collected using Faster-RCNN (Ren et al., 2016) pretrained on Visual Genome

(Krishna et al., 2017; Anderson et al., 2018). Table 3.2 shows the most common objects for

each specific category. We observe that most objects are related to items one would find in

each place category (e.g. ‘spoon’, ‘meat’, ‘knife’ in Food). Clothing items are common across

category types (e.g. ‘shirt’, ‘jacket’, ‘pants’) suggesting the presence of people in the images.

A common object tag of the Shop & Service category is ‘letters’, which concerns images that

contain embedded text. Finally, the category Great Outdoors includes object tags such as

‘cloud’, ‘hill’, and ‘grass’, words that describe the landscape of this type of place.

Building upon the insights detailed in Sánchez Villegas and Aletras (2021) (see Section

2.3.1), a prior study which provides a linguistic analysis on the same data set, we observe a

convergence in the exploratory analyses of both image and text data. While the text analysis

shows prevalent words and expressions linked to both the place categories and the activities

users engage in at these locations, the object detection applied to images reveals common

objects specific to each place category, providing visual context that aligns with the types of

activities and environments associated with those locations. Thus, we suspect that integrating

visual information to the models will enhance their predicting capability by including the

actual objects and scenes present in these locations, and thus providing a more comprehensive

understanding of the diverse aspects related to different types of POIs.

3.4 Multimodal POI Type Prediction

3.4.1 Text and Image Representation

Given a text-image post P = (xt, xv), xt ∈ Rdt , xv ∈ Rdv , we first compute text and image

representations.

4Early experimentation with associating tweets with the image of the most similar tweet that contains a

real image from the training data yielded similar performance.
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Category Common Objects in Images

Arts & Entertainment
light, pants, shirt, arm, picture,

hair, glasses, line, girl, jacket

College & University
pants, shirt, line, hair, arm,

picture, light, glasses, girl, trees

Food
cup, picture, spoon, meat, knife,

arm, glasses, shirt, pants, handle

Great Outdoors
trees, arm, pants, cloud, hill,

line, shirt, grass, picture, glasses

Nightlife Spot
arm, picture, shirt, light, hair,

pants, glasses, mouth, girl, cup

Professional & Other Places
pants, shirt, picture, light, hair,

screen, line, arm, glasses, girl

Shop & Service
picture, pants, arm, shirt, glasses,

light, hair, line, girl, letters

Travel & Transport
pants, shirt, light, screen, arm,

hair, glasses, picture, chair, line

Table 3.2: Most common objects for each POI category.

Text We use Bidirectional Encoder Representations from Transformers (BERT) (Devlin

et al., 2019) to obtain the text representations f t.

Image For encoding the images, we use Xception (Chollet, 2017) pre-trained on ImageNet

(Deng et al., 2009).5 We extract convolutional feature maps for each image and we apply

average pooling to obtain the image representation f v.

3.4.2 MM-Gate

Given the complex semiotic relationship between text and image, we need a weighting strategy

that assigns more importance to the most relevant modality while suppressing irrelevant

information. Thus, a first approach is to use gated multimodal fusion (MM-Gate), similar to

the approach proposed by Arevalo et al. (2020) to control the contribution of text and image

to the POI type prediction. Given f t, f v the text and visual representations, we obtain the

5Early experimentation with ResNet101 (He et al., 2016) and EfficientNet (Tan and Le, 2019) yielded

similar results.
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Figure 3.2: Overview of our MM-Gated-XAtt model which combines features from text and

image modalities for POI type prediction.

multimodal representation h of a post P as follows:

ht = tanh(W tf t + bt) (3.1)

hv = tanh(W vf v + bv) (3.2)

z = σ(W z[f t; f v] + bz) (3.3)

h = z ∗ ht + (1 − z) ∗ hv (3.4)

where W t ∈ Rdt , W v ∈ Rdv and W z ∈ Rdt+dv are learnable parameters, tanh is the activation

function and ht, hv ∈ R are projections of f t and f v. [; ] denotes concatenation and σ is the

sigmoid activation function. h is a weighted combination of the textual and visual information

ht and hv respectively. We fine-tune the entire model by adding a classification layer with a

softmax activation function for POI type prediction

3.4.3 MM-XAtt

The MM-Gate model does not capture interactions between text and image that might be

beneficial for learning semiotic relationships. To model cross-modal interactions, we adapt

the cross-attention mechanism (Tsai et al., 2019; Tan and Bansal, 2019) to combine text and

image information for multimodal POI type prediction (MM-XAtt). Cross-attention consists

of two attention layers, one from textual to visual features, and one from visual to textual

features. We first linearly project the text and visual representations to obtain the same

dimensionality (dproj). Then, we compute the scaled dot attention (a = softmax (Q(K)T )√
dproj

V )

with the projected text representation as query (Q), and the projected image representation

as the key (K) and values (V ), and vice versa. The multimodal representation h is the sum

of the resulting attention layers. The entire model is fine-tuned by adding a classification

layer with a softmax activation function.
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3.4.4 MM-Gated-XAtt

Vempala and Preoţiuc-Pietro (2019) have demonstrated that the relationship between the text

and image in a social media post is complex. Images may or may not add meaning to the post

and the text content (or meaning) may or may not correspond to the image. We hypothesize

that this might actually happen in posts made from particular locations, i.e. language and

visual information may or may not be related. To address this, we propose (1) using gated

multimodal fusion to manage the flow of information from each modality, and (2) also learn

cross-modal interactions by using cross-attention on top of the gated multimodal mechanism.

Figure 3.2 shows an overview of our model architecture (MM-Gated-XAtt). Given the text

and image representations f t, f v respectively, we compute ht, hv, and z as in Equation 3.1,

3.2 and 3.3. Next, we apply cross-attention using two attention layers where the query and

context vectors are the weighted representations of the text and visual modalities, z ∗ ht and

(1 − z) ∗ hv, and vice versa. The multimodal context vector h is the sum of the resulting

attention layers. Finally, we fine-tune the model by passing h through a classification layer

for POI type prediction with a softmax activation function.

3.5 Experimental Setup

3.5.1 Baselines

We compare our models against (1) text-only; (2) image-only; and (3) other state-of-the-art

multimodal approaches.6

Text-only We fine-tune BERT for POI type classification by adding a classification layer

with softmax activation function on top of the [CLS] token which is the best performing

model in Sánchez Villegas et al. (2020).

Image-only We fine-tune three pre-trained models that are popular in various computer

vision classification tasks: (1) ResNet101 (He et al., 2016); (2) EfficientNet (Tan and Le,

6We include a majority class baseline (i.e. assigning all instances in the test set the most frequent label in

the train set).



3.5. EXPERIMENTAL SETUP 31

2019); and (3) Xception (Chollet, 2017). Each model is fine-tuned on POI type classification

by adding an output softmax layer.

Text and Image For combining text and image information, we experiment with different

standard fusion strategies: (1) we project the image representation f v, to the same dimen-

sionality as f t ∈ Rdt using a linear layer and then we concatenate the vectors (Concat); (2)

we project the textual and visual features to the same space and then we apply self-attention

to learn weights for each modality (Attention); (3) we also adapt the guided attention

introduced by Anderson et al. (2018) for learning attention weights at the object-level (and

other salient regions) rather than equally sized grid-regions (Guided Attention); (4) we

compare against LXMERT, a transformer-based model that has been pre-trained on text

and image pairs for learning cross-modality interactions (Tan and Bansal, 2019). All models

are fine-tuned by adding a classification layer with a softmax activation function for POI type

prediction. Finally, we evaluate a simple ensemble strategy by using LXMERT for classifying

tweets that are originally accompanied by an image and BERT for classifying text-only tweets

(Ensemble).

3.5.2 Text Processing

We use the same tokenization settings as in Sánchez Villegas et al. (2020). For each tweet, we

lowercase text and replace URLs and @-mentions of users with placeholder tokens.

3.5.3 Image Processing

Each image is resized to (224 × 224) pixels representing a value for the red, green and blue

color in the range of [0, 255]. The pixel values of all images are normalized. For LXMERT

and Guided Attention fusion, we extract object-level features using Faster-RCNN (Ren et al.,

2016) pretrained on Visual Genome (Krishna et al., 2017) following Anderson et al. (2018).

We keep 36 objects for each image as in Tan and Bansal (2019).
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3.5.4 Implementation Details

We select the hyperparameters for all models using early stopping by monitoring the validation

loss using the Adam optimizer (Kingma and Ba, 2014). Because the data is imbalanced,

we estimate the class weights using the ‘balanced’ heuristic (King and Zeng, 2001). All

experiments are performed using a Nvidia V100 GPU.

Text-only We fine-tune BERT for 20 epochs and choose the epoch with the lowest validation

loss. We use the pre-trained base-uncased model for BERT (Vaswani et al., 2017; Devlin

et al., 2019) from HuggingFace library (12-layer, 768-dimensional) with a maximal sequence

length of 50 tokens. We fine-tune BERT for 2 epochs and learning rate η = 2e−5 with

η ∈ {2e−5, 3e−5, 5e−5}.

Image-only For ResNet101, we fine-tune for 5 epochs with learning rate η = 1e−4 and

dropout δ = 0.2 (δ in [0, 0.5] using random search) before passing the image representation

through the classification layer. EfficientNet is fine-tuned for 7 epochs with η = 1e−5 and

δ = 0.5. Xception is fine-tuned for 6 epochs with η = 1e−5 and δ = 0.5.

Text and Image Concat-BERT+Xception, Concat-BERT+ResNet and Guided Attention-

BERT+Xception are fine-tuned for 2 epochs with η = 1e−5 and δ = 0.25; Concat-BERT +

EfficientNet for 4 epochs with η = 1e−5 and δ = 0.25; Attention-BERT+Xception for 3 epochs

with η = 1e−5 and δ = 0.25; MM-XAtt for 3 epochs with η = 1e−5 and δ = 0.15; MM-Gate

and MM-Gated-XAtt for 2 epochs with η = 1e−5 and δ = 0.05; η ∈ {2e−5, 3e−5, 5e−5}, δ

from [0, 0.5] (random search) before passing through the classification layer. We fine-tune

LXMERT for 4 epochs with η = 1e−5 where η ∈ {1e−3, 1e−4, 1e−5} and dropout δ = 0.25 (δ

in [0, 0.5], random search) before passing through the classification layer.

3.5.5 Evaluation

We evaluate the performance of all models using macro F1, precision, and recall. Results are

obtained over three runs using different random seeds reporting the average and the standard

deviation.
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Model F1 P R

Majority 5.30 3.36 12.50

BERT (Sánchez Villegas et al., 2020) 43.67 (0.01) 48.44 (0.02) 41.33 (0.01)

ResNet 21.11 (1.81) 23.23 (2.09) 29.90 (3.31)

EfficientNet 24.72 (0.76) 28.05 (0.28) 35.48 (0.23)

Xception 23.64 (0.44) 25.62 (0.50) 34.12 (0.49)

Concat-BERT+ResNet 43.28 (0.37) 42.72 (0.51) 47.59 (0.45)

Concat-BERT+EfficientNet 41.56 (0.71) 41.54 (0.88) 43.97 (0.79)

Concat-BERT+Xception 44.00 (0.52) 43.34 (0.70) 48.35 (0.75)

Attention-BERT+Xception 42.89 (0.44) 42.74 (0.19) 46.78 (1.28)

Guided Attention-BERT+Xception 41.53 (0.57) 41.10 (0.55) 45.36 (0.48)

LXMERT 40.17 (0.62) 40.26 (0.24) 42.25 (2.38)

Ensemble-BERT+LXMERT 43.82 (0.47) 43.50 (0.20) 44.67 (0.66)

MM-Gate 44.64 (0.65) 43.67 (0.49) 48.50 (0.18)

MM-XAtt 27.31 (1.58) 37.06 (2.66) 29.71 (0.60)

MM-Gated-XAtt (Ours) 47.21† (1.70) 46.83 (1.45) 50.69 (2.21)

Table 3.3: Macro F1-Score, precision (P) and recall (R) for POI type prediction (± std. dev.)

Best results are in bold. † indicates statistically significant improvement (t-test, p < 0.05)

over BERT (Sánchez Villegas et al., 2020).

3.6 Results

The results of POI type prediction are presented in Table 3.3. We first examine the impact of

each modality by analyzing the performance of the unimodal models, then we investigate the

effect of multimodal methods for POI type prediction, and finally we examine the performance

of our proposed model MM-Gated-XAtt by analyzing each component independently.

We observe that the text-only model (BERT) achieves 43.67 F1 which is substantially

higher than the performance of image-only models (e.g. the best performing EfficientNet

model obtains 24.72 F1). This suggests that text encapsulates more relevant information for

this task than images on their own, similar to other studies in multimodal computational

social science (Wang et al., 2020; Ma et al., 2021).

Models that simply concatenate text and image vectors have close performance to BERT

(44.0 for Concat-BERT+Xception) or lower (41.56 for Concat-BERT+EfficientNet). This

suggests that assigning equal importance to text and image information can deteriorate

performance. It also shows that modeling cross-modal interactions is necessary to boost

performance of POI type classification models.
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Text-Image Only

Model F1

LXMERT 47.72 (0.98)

MM-Gate 45.87 (1.48)

MM-XAtt 48.93 (2.08)

MM-Gated-XAtt (Ours) 57.64 (3.64)

Table 3.4: Macro F1-Score for POI type prediction on tweets that are originally accompanied

by an image. Best results are in bold.

Surprisingly, we observe that the pre-trained multimodal LXMERT fails to improve over

BERT (40.17 F1) while its performance is lower than simpler concatenative fusion models.

We speculate that this is because LXMERT is pretrained on data where both, text and image

modalities share common semantic relationships which is the case in standard vision-language

tasks including image captioning and visual question answering (Zhou et al., 2020b; Lu et al.,

2019a). On the other hand, text-image relationships in social media data for inferring the

type of location from which a message was sent are more diverse, highlighting the particular

challenges for modeling text and images together (Hessel and Lee, 2020).

Our proposed MM-Gated-XAtt model achieves 47.21 F1 which significantly (t-test, p <

0.05) improves over BERT, the best performing model in Sánchez Villegas et al. (2020) and

consistently outperforms all other image-only and multimodal approaches. This confirms our

main hypothesis that modeling text with image jointly to learn the interactions between

modalities benefit performance in POI type prediction. We also observe that using only

the gating mechanism (MM-Gate) outperforms (44.64 F1) all other models except for MM-

Gated-XAtt. This highlights the importance of controlling the information flow for the two

modalities. Using cross-attention on its own (MM-XAtt), on the other hand, fails to improve

over other multimodal approaches, implying that learning cross-modal interactions is not

sufficient on its own. This supports our hypothesis that language and visual information in

posts sent from specific locations may be or may not be related, and that managing the flow

of information from each modality improves the classifier’s performance.

Finally, we investigate using less noisy text-image pairs in alignment with related compu-

tational social science studies involving text and images (Moon et al., 2018a; Cai et al., 2019;

Chinnappa et al., 2019). We train and test LXMERT, MM-Gate, MM-XAtt, and MM-Gated-

XAtt on tweets that are originally accompanied by an image (see Section 3.3), excluding all

text-only tweets. The results are shown in Table 3.4. In general, performance is higher for all

models using less noisy data. Our proposed model MM-Gated-XAtt consistently achieves
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Text-Image Only − > All

Model F1

MM-Gate 40.67 (0.45)

MM-XAtt 31.00 (0.89)

MM-Gated-XAtt (Ours) 42.45 (2.94)

Table 3.5: Macro F1-Score for POI type prediction. Models are trained on tweets that are

originally accompanied by an image. Results are on all tweets. Best results are in bold.

the best performance (57.64 F1). In addition, we observe that LXMERT and MM-XAtt

produce similar results (47.72 and 48.93 F1 respectively) suggesting that cross-attention

can be applied directly to text-image pairs in low-noise settings without hurting the model

performance. The benefit of controlling the flow of information through a gating mechanism,

on the other hand, strongly improves model robustness.

3.6.1 Training on Text-Image Pairs Only

To compare the effect of the ‘average’ image (see Section 3.3) on the performance of the

models, we train MM-Gate, MM-XAtt, and MM-Gated-XAtt on tweets that are originally

accompanied by an image excluding all text-only tweets; and we test on all tweets as in

our original setting (text-only tweets are paired with the ‘average’ image). The results are

shown in Table 3.5. MM-Gated-XAtt is consistently the best performing model, followed by

MM-Gate. However, their performance is inferior than when models are trained on all tweets

using the ‘average’ image as in the original setting. This suggests that the gate operation not

only regulates the flow of information for each modality but also learns how to use the noisy

modality to improve classification prediction. This result is similar to findings by (Arevalo

et al., 2020).

3.7 Analysis

3.7.1 Modality Contribution

To determine the influence of each modality in MM-Gated-XAtt when assigning a particular

label to a tweet, we compute the average percentage of activations for the textual and visual
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Figure 3.3: Average percentage of MM-Gated-XAtt activations for the textual and visual

modalities for each POI category on the test set.

modalities for each POI category on the test set. The outcome of this analysis is depicted

in Figure 3.3. As anticipated, the textual modality has a greater influence on the model

prediction, which is consistent with our findings in Section 3.6. The category where the visual

modality has greater impact on the predicted label is Professional & Other Places (43.20%)

followed by Shop & Service (43.11%).

To examine how the visual information impacts the POI type prediction task, Figure 3.4

shows examples of posts where the contribution of the image is large while the text-only model

(BERT) misclassified the POI category. We observe that the text content of Post (a) misled

BERT towards Food, probably due to the term ‘powder’. On the other hand, MM-Gated-XAtt

can filter irrelevant information from the text, and prioritize relevant content from the image

in order to assign the correct POI category for Post (a) (Great Outdoors). Likewise, Post (b)

was correctly classified by MM-Gated-XAtt as Shop & Service and misclassified by BERT as

Arts & Entertainment. For this post 40% of the contribution corresponds to the image and

60% to text. This shows how image information can help to address the ambiguity in short

texts (Moon et al., 2018b), improving POI type prediction.

3.7.2 Cross-attention (XAtt)

Figure 3.4 shows examples of the XAtt visualization. We note that the model focuses on

relevant nouns and pronouns (e.g. ‘track’, ‘it’), which are common informative words in vision-

and-language tasks (Tan et al., 2019). Moreover, our model focuses on relevant words such
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Post (a)

#mywife finding a deep

first track through the

#powder <mention> <url>

Post (b)

it’s getting cold up

here <mention> <url>

BERT: Food

Ours: Great Outdoors

Txt: 65% - Img: 35%

BERT: Arts & Entertainment

Ours: Shop & Service

Txt: 60% - Img: 40%

Figure 3.4: POI type predictions of MM-Gated-XAtt (Ours) and BERT (Sánchez Villegas

et al., 2020) showing the contribution of each modality (%) and the XAtt visualization.

Correct predictions are in bold.

as ‘track’ for classifying Post (a) as Great Outdoors. Lastly, we observe that the XAtt often

captures a general image information, with emphasis on specific sections for the predicted

POI category such as the pine trees for Great Outdoors and the display racks for Shop &

Service.

3.7.3 Error Analysis

To shed light on the limitations of our multimodal MM-Gated-XAtt model for predicting

POI types, we performed an analysis of misclassifications. In general, we observe that the

model struggles with identifying POI categories where people might perform similar activities

in each of them such as Food, Nightlife Spot, and Shop & Service similar to findings by Ye

et al. (2011).

Figure 3.5 (a) and (b) show examples of tweets misclassified as Food by the MM-Gated-

XAtt model. Post (a) belongs to the category Nightlife Spot and Post (b) belongs to the Shop

& Service category. In both cases, the text and image content is related to the Food category,
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Post (a)

miso creamed kale with

mushrooms <mention>

Post (b)

celebrate the fruits of

#fermentation’s labor at

#bostonfermentationfestival!

next sun 10-4 <mention>

True: Nightlife Spot

Ours: Food

True: Shop & Service

Ours: Food

Figure 3.5: Example of misclassifications made by our MM-Gated-XAtt model.

misleading the classifier towards this POI type. Posting about food is a common practice in

hospitality establishments such as restaurants and bars (Zhu et al., 2019), where customers

are more likely to share content such as photos of dishes and beverages, intentionally designed

to show that are associated with the particular context and lifestyle that a specific place

represents (Homburg et al., 2015; Brunner et al., 2016; Apaolaza et al., 2021). Similarly,

Post (b) shows an example of a tweet that promotes a POI by communicating specific

characteristics of the place (Kruk et al., 2019; Aydin, 2020). To correctly classify the category

of POIs, the model might need access to deeper contextual information about the locations

(e.g. finer subcategories of a type of place and how POI types are related to one another).

3.8 Conclusion and Future Work

This paper presents the first study on multimodal POI type classification using text and images

from social media posts motivated by studies in geosemiotics, visual semiotics and cultural

geography. We enrich a publicly available data set with images and we propose a multimodal

model that uses: (1) a gate mechanism to control the information flow from each modality; (2) a

cross-attention mechanism to align and capture the interactions between modalities. Our model

achieves state-of-the-art performance for POI type prediction significantly outperforming the

previous text-only model and competitive pretrained multimodal models.

In future work, we plan to perform more granular prediction of POI types and user
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information to provide additional context to the models. Our models could also be used

for modeling other tasks where text and images naturally occur in social media such as

analyzing political ads (Sánchez Villegas et al., 2021), parody (Maronikolakis et al., 2020b)

and complaints (Preoţiuc-Pietro et al., 2019b; Jin and Aletras, 2020, 2021).
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Abstract

Online political advertising is a central aspect of modern election campaigning for

influencing public opinion. Computational analysis of political ads is of utmost impor-

tance in political science to understand the characteristics of digital campaigning. It

is also important in computational linguistics to study features of political discourse

and communication on a large scale. In this work, we present the first computational

study on online political ads with the aim to (1) infer the political ideology of an

ad sponsor; and (2) identify whether the sponsor is an official political party or a

third-party organization. We develop two new large datasets for the two tasks consisting

of ads from the U.S.. Evaluation results show that our approach that combines textual

and visual information from pre-trained neural models outperforms a state-of-the-art

method for generic commercial ad classification. Finally, we provide an in-depth analysis

of the limitations of our best-performing models and linguistic analysis to study the

characteristics of political ads discourse.1

1Data is available here: https://archive.org/details/pol_ads

https://archive.org/details/pol_ads
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4.1 Introduction

Online advertising is an integral part of modern digital election campaigning (Fulgoni et al.,

2016; Fowler et al., 2020a). The increased spending on online political ads (e.g. the 2020

U.S. election campaign spending hit an all-time record2) poses a significant challenge to the

democratic oversight of digital campaigning,3 with serious implications about transparency

and accountability, for example how voters are targeted and by whom (Kriess and Barrett,

2020).

Political advertising is defined as ‘any controlled message communicated through any

channel designed to promote the political interests of individuals, parties, groups, government,

or other organizations’ (Kaid and Holtz-Bacha, 2006). It is guided by ideology and morals

(Scammell and Langer, 2006; Kumar and Pathak, 2012), and often expresses more negativity

(Haselmayer, 2019; Iyengar and Prior, 1999; Lau et al., 1999) compared to the aesthetic

nature of commercial advertising. Table 4.1 shows examples of online political ads across

different political parties and sponsor types.

While the closely related online commercial advertising domain has recently been explored

in natural language processing (NLP) for predicting the category (e.g. politics, cars, electronics)

and sentiment of an ad (Hussain et al., 2017; Kalra et al., 2020), online political advertising

has yet to be explored. Large-scale studies of online political advertising have so far focused

on understanding targeting strategies rather than developing predictive models for analyzing

its content (Edelson et al., 2019; Medina Serrano et al., 2020).

Automatically analyzing political ads is important in political science for researching

the characteristics of online campaigns (e.g. voter targeting, sponsors, non-party campaigns,

privacy, and misinformation) on a large scale (Scammell and Langer, 2006; Johansson and

Holtz-Bacha, 2019). Moreover, identifying ads sponsored by third-party organizations is

critical to ensuring transparency and accountability in elections (Liu et al., 2013; Speicher

et al., 2018; Fowler et al., 2020b; Edelson et al., 2019). For example, third-party advertising

had an increased presence in the U.S. House and Senate races in 2018 considerably more

than in 2012 where almost half of the third-party sponsored ads were funded by dark-money

sources (Fowler et al., 2020b). Moreover, ad publishers and social media users are not

2https://www.cnbc.com/2020/10/01/election-2020-campaign-spending-set-to-hit-r

ecord-11-billion.html
3https://www.electoral-reform.org.uk/latest-news-and-research/publications/dem

ocracy-in-the-dark-digital-campaigning-in-the-2019-general-election-and-beyond/

https://www.cnbc.com/2020/10/01/election-2020-campaign-spending-set-to-hit-record-11-billion.html
https://www.cnbc.com/2020/10/01/election-2020-campaign-spending-set-to-hit-record-11-billion.html
https://www.electoral-reform.org.uk/latest-news-and-research/publications/democracy-in-the-dark-digital-campaigning-in-the-2019-general-election-and-beyond/
https://www.electoral-reform.org.uk/latest-news-and-research/publications/democracy-in-the-dark-digital-campaigning-in-the-2019-general-election-and-beyond/
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Political

Ideology
Ad Sponsor Type Sample Ad

Liberal Political Party

Conservative Political Party

N/A Third-Party

Table 4.1: Examples of online political ads by sponsor political ideology and type.

obliged to provide any disclaimer about the sponsor of the ad in several countries. Thus,

computational methods, including machine learning models, can be applied for large-scale

analysis of online political ads especially for ads where sponsor information is not available.

Finally, political ads analysis can help linguists to study features of political discourse and

communication (Kenzhekanova, 2015; Skorupa and Dubovičienė, 2015).

In this paper, we present a systematic study of online political ads (consisting of text and

images) in the U.S. to uncover linguistic and visual cues across political ideologies and sponsor

types using computational methods for the first time. Our contributions are as follows:

1. A new classification task for predicting the political ideology (conservative or liberal) of

an ad (Section 4.3). We collect 5,548 distinct political ads in English from 242 different

advertisers in the U.S., and label them according to the dominant political ideology of

the respective sponsor’s party affiliation (Liberal or Conservative);

2. A new classification task to automatically classify ads that were sponsored by official

political parties and third-party organizations, such as businesses and non-profit orga-

nizations (Section 4.3). For this task, we extract 15,116 advertisements in English from

665 distinct advertisers in the U.S., and label them as Political Party (i.e. officially

registered) and Third-Party (i.e. other organizations) following Fowler et al. (2020b);

3. Experiments with text-based and multimodal (text and images) models (Section 4.4)

for political ideology prediction and sponsor type classification reaching up to 75.76

and 87.36 macro F1 in each task respectively (Section 4.6);

4. Analysis of textual and visual features of online political ads (Section 4.7) and error

analysis to understand model limitations.
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4.2 Related Work

4.2.1 Political Communication and Advertising

Previous work on analyzing political advertising has covered television and online ads (Kaid

and Postelnicu, 2005; Reschke and Anand, 2012; West, 2017; Fowler et al., 2020b). Ridout

et al. (2010) analyze a series of YouTube videos posted during the 2008 presidential campaign

to understand its influence on election results as well as the actors and formats compared to

traditional television ads. Anstead et al. (2018) study how online platforms such as Facebook

are being used for political communication and identify challenges for understanding the

role of these platforms in political elections, highlighting the lack of transparency (Caplan

and Boyd, 2016). Fowler et al. (2020b) explore differences between television and online ads,

and demonstrate that there is a greater number of candidates advertising online than on

television.

4.2.2 Political Ideology Prediction

Inferring the political ideology of various types of text including news articles, political

speeches and social media has been vastly studied in NLP (Lin et al., 2008; Gerrish and

Blei, 2011; Sim et al., 2013; Iyyer et al., 2014; Preoţiuc-Pietro et al., 2017; Kulkarni et al.,

2018; Stefanov et al., 2020). Bhatia and P (2018) exploit topic-specific sentiment analysis for

ideology detection (i.e. conservative, liberal) in speeches from the U.S. Congress. Kulkarni

et al. (2018) propose a multi-view model that incorporates textual and network information

to predict the ideology of news articles. Johnson and Goldwasser (2018) investigate the

relationship between political ideology and language to represent morality by analyzing

political slogans in tweets posted by politicians. Maronikolakis et al. (2020b) present a study

of political parody on Twitter focusing on the linguistic differences between tweets shared

by real and parody accounts. Baly et al. (2019) estimate the trustworthiness and political

ideology (left/right bias) of news sources as a multi-task problem. Stefanov et al. (2020)

develop methods to predict the overall political leaning (left, center or right) of online media

and popular Twitter users.

Political ideology and communicative intents have also been studied in computer vision.

Political images have been analyzed to infer the persuasive intents using various features
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such as facial display types, body poses, and scene context (Joo et al., 2014; Huang and

Kovashka, 2016; Joo and Steinert-Threlkeld, 2018; Bai et al., 2021; Chen et al., 2020). Joo

et al. (2015) introduce a method that infers the perceived characteristics of politicians using

face images and show that those characteristics can be used in elections forecasting. Xi et al.

(2020) analyze the political ideology of Facebook photographs shared by members of the U.S.

Congress. Chen et al. (2020) examine the role of gender stereotypical cues from photographs

posted in social media by political candidates and their relationship to voter support.

4.2.3 Computational Analysis of Online Ads

Hussain et al. (2017) propose the task of ad understanding using vision and language. The

aim is to predict the topical category, sentiment and rhetoric of an ad (i.e. what the message

is about). The latter task has been approached as a visual question-answering task by ranking

human generated statements that explain the intent of the ad in computer vision (Ye and

Kovashka, 2018; Ahuja et al., 2018). More recently in NLP, Kalra et al. (2020) propose a

BERT-based (Devlin et al., 2019) model for this task using the text and visual descriptions

of the ad (Johnson et al., 2016). Thomas and Kovashka (2018) study the persuasive cues of

faces across ad categories (e.g. beauty, clothing). Zhang et al. (2018) explore the relationship

between the text of an ad and the visual content to analyze the semantics across modalities. Ye

et al. (2018) integrates audio and visual modalities to predict the climax of an advertisement

(i.e. stress levels) using sentiment annotations.

4.3 Tasks & Data

We aim to analyze the political ideology of ads consisting of image and text, and the type of

the ad sponsor for the first time. To this end, we present two new binary classification tasks

motivated by related studies in political communication (Grigsby, 2008; Fowler et al., 2020b):

• Task 1: Conservative/Liberal The aim is to label an ad according to the political

party that sponsored the ad either as Conservative (i.e. assuming that the dominant

ideology of the Republican Party is conservatism), or Liberal (i.e. assuming that the

dominant ideology of the Democratic Party is social liberalism) (Grigsby, 2008);

• Task 2: Political Party/Third-Party The goal is to classify an ad according
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to the type of the organization that sponsored the ad. We distinguish between ads

sponsored by official political parties and non-political organizations, such as businesses

and non-profit groups, following Fowler et al. (2020b).

To the best of our knowledge, no datasets are available for modeling these two tasks.

Therefore, we develop two new publicly available datasets consisting of political ads and

ideology/sponsor type labels from the U.S.. We opted to use data only from the U.S. because

its Federal Election Commission4 (FEC) provides publicly available information of political

ads sponsors such as official political parties (e.g. Democratic, Republican) via their FEC ID;

and third-party organizations can be identified via their Employer Identification Number5

(EIN) suitable for our study.

4.3.1 Collecting Online Political Ads

We use the public Google transparency report platform6 to collect political ads. This platform

contains information on verified political advertisers (i.e. sponsors) and provides links to

actual political ads from Google Ad Services.

We collect all U.S. available data from the Google platform consisting of ads published

from May 31, 2018 up to October 11, 2020 (note that there is no data prior to 2018). This

corresponds to a total of 168,146 image ads. Each ad is associated with a URL that links to

its summary metadata consisting of a URL to the original image file and sponsor information,

i.e. name and FEC ID, state elections registration or EIN ID.7

We scrape all available image files resulting into a total of 158,599 ads which corresponds

to 94.32% of all ads in the Google database. The rest of the ads were either not available due

to violations to Google’s Advertising Policy, the summary metadata was missing, or the file

URL was not included in the metadata.

4https://www.fec.gov/
5https://www.irs.gov/businesses/small-businesses-self-employed/do-you-need-a

n-ein
6https://transparencyreport.google.com/political-ads/region/US
7All ad sponsors must apply for eligibility verification in order to publish political ads on Google platforms

- https://support.google.com/displayvideo/answer/9014141

https://www.fec.gov/
https://www.irs.gov/businesses/small-businesses-self-employed/do-you-need-an-ein
https://www.irs.gov/businesses/small-businesses-self-employed/do-you-need-an-ein
https://transparencyreport.google.com/political-ads/region/US
https://support.google.com/displayvideo/answer/9014141
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Sample Ad

Image Text
FIGHTING FOR WORKING FAMILIES, FOR GOOD JOBS,

AND FAIR PAY. PAID FOR BY DEFAZIO FOR CONGRESS

Densecap
the man is wearing glasses, a man holding a red tie, the background

is blue

Table 4.2: Example of text, and visual information extracted from a sample Ad.

4.3.2 Extracting Text and Visual Information

Before, we label the ads with ideology and sponsor type, we extract two types of information

from the images: (1) the text contained in each ad (Image Text; IT) using the Google Vision

API;8 and (2) the descriptive caption or denscap (D) of the image using the DenseCap API,9

following the method proposed by Kalra et al. (2020) for commercial ad classification. This

way, we obtain both the actual text appearing on the ad and the textual descriptions of the

ad such as entities in the images, their characteristics and relationships. Table 4.2 shows an

example of an ad consisting of an image, text information and the densecap.

We use the textual and visual information to eliminate all duplicate images by comparing

the URL of the image, its text and densecap. Finally, we filter out all ads that contain

non-English text (i.e. IT).10 This results in 15,116 unique ads from 665 unique ad sponsors.

4.3.3 Labeling Ads with Political Ideology

Our aim is to label political ads as Conservative or Liberal (see Task 1 description). First,

we retrieve all the ad sponsors and their corresponding ads that are available in the Google

Ads database. Official political committees associated with the Democratic or Republican

parties are identified by their FEC ID (included in the sponsor’s information in the Google

database). However, the name of the political party associated with a sponsor is not available

in the Google database. Thus, we query the FEC database to obtain the affiliation for all

committees of the Democratic and Republican parties (e.g. Donald J. Trump for President,

Inc.). Then, we compare this information with the Google database (FEC ID and exact

8https://cloud.google.com/vision/docs/ocr
9https://deepai.org/machine-learning-model/densecap

10https://pypi.org/project/langdetect/

https://cloud.google.com/vision/docs/ocr
https://deepai.org/machine-learning-model/densecap
https://pypi.org/project/langdetect/
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T1: Liberal/Conservative

Train Dev Test Total

C 2,576 (58%) 369 (69%) 453 (75%) 3,398 (61%)

L 1,835 (42%) 165 (31%) 150 (25%) 2,150 (39%)

All 4,411 (79.5%) 534 (9.6%) 603 (10.9%) 5,548 (100%)

Start 05-31-18 02-01-20 07-04-20 -

End 01-30-20 06-30-20 10-10-20 -

T2: Political Party/Third-Party

Train Dev Test Total

PP 4,663 (39%) 324 (21%) 561 (37%) 5,548 (37%)

TP 7,427 (61%) 1,188 (79%) 953 (63%) 9,568 (63%)

All 12,090 (80%) 1,512 (10%) 1,514 (10%) 15,116 (100%)

Start 05-31-18 04-14-20 07-20-20 -

End 04-13-18 07-19-20 10-11-20 -

Table 4.3: Data set statistics for Task 1: Conservative (C)/ Liberal (L), and Task 2: Political

Party (PP)/Third-Party (TP).

name), to assign the corresponding affiliation to the sponsors. For example an ad sponsored

by the ‘Donald J. Trump for President, Inc.’ official committee is labeled as Republican and

subsequently as Conservative (in a similar way we label ads for the Liberal class).

In total, we collect 242 unique sponsors corresponding to 5,548 ads. Liberal ads represent

the 39% of the total ads and the rest are Conservative (61%).

4.3.4 Labeling Ads with Sponsor Type

We first label all ads from sponsors that have an associated FEC ID in the Google database

as Political Party. These sponsors correspond to official political committees affiliated with

the Democratic or Republican parties (e.g. Biden for President).

Third-party sponsors of political ads consist of groups not officially associated to any

political party such as not-for-profit organizations (e.g. NRDC Action Fund) and businesses

(Fowler et al., 2020b). This type of sponsors are identified with their EIN ID (included in the

Google database). Thus, we label all ads linked to an EIN ID as Third-Party. We collected

a total of 15,116 ads where 37% corresponds to Political Party and 63% corresponds to

Third-Party.
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Avg. Tokens (Train/Dev/Test)

Task IT D IT+D

T1 17.1/16.5/17.1 38.3/39.9/36.9 55.4/56.4/54.0

T2 16.2/17.6/19.2 36.7/38.9/37.2 52.9/56.5/56.4

Table 4.4: Average number of tokens in image text (IT), densecaps (D) and both (IT+D) for

sponsor ad ideology (T1) and type (T2) prediction.

4.3.5 Data Splits

We split both datasets chronologically into train (80%), development (10%), and test (10%)

sets. Table 4.3 shows the dataset statistics and splits for each task.

4.3.6 Data Preprocessing

Text We normalize the text from the image (IT) and the densecap (D) by lower-casing,

and replacing all URLs and person names with a placeholder token. To identify the person

names we use the Stanford NER Tagger (Finkel et al., 2005). Also, we replace tokens that

appear in less than five ads with an ‘unknown’ token. We tokenize the text using the NLTK

tokenizer (Bird et al., 2009). Table 4.4 shows the average number of tokens in IT and D for

each data split.

Image Each image is resized to (300 × 300) pixels represented by red, green and blue color

values. Each color channel is an integer in the range [0, 255]. The pixel values of all images

are dived by 255 to normalize them in the range [0, 1].

4.4 Predictive Models

We experiment with textual, visual and multimodal models for political ad classification.
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4.4.1 Linear Baselines

As baseline models, we use logistic regression with bag of n-grams and L2 regularization

using (1) the image text (LRIT ); (2) densecap (LRD); and (3) their concatenation (LRIT+D)

for representing each ad.

4.4.2 BERT

We also test three models proposed by Kalra et al. (2020) for generic ad classification

demonstrating state-of-the-art performance. The models are based on Bidirectional Encoder

Representations from Transformers (BERT) (Devlin et al., 2019) using a combination of the

image text and the densecap. We follow a similar approach and fine-tune BERT for predicting

the corresponding class in each task by adding an output dense layer for binary classification

that receives the ‘classification’ [CLS] token as input. We use three types of inputs for each ad:

(1) image text (BERTIT ); (2) densecap (BERTD); and (3) their concatenation (BERTIT+D).

4.4.3 EfficientNet

EfficientNet (Tan and Le, 2019) is a family of Convolutional Neural Network (CNN) (LeCun

et al., 1995) models which has achieved state-of-the-art accuracy on ImageNet (Deng et al.,

2009). In particular, we use EfficientNet-B3 and fine-tune it on political ad classification by

adding an output dense layer for each binary classification task.

4.4.4 BERT+EffN

We finally test two multimodal models by combining: (1) BERTIT and EfficientNet (BERTIT+EffN);

and (2) BERTIT+D and EfficientNet (BERTIT+D+EffN). We concatenate the text represen-

tation obtained by BERT and the visual information from EfficientNet into a 768 + 1536

dimensional vector from BERT and EfficientNet respectively. This vector is then passed to

an output layer for binary classification. We fine-tune the entire architecture for each task.
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4.5 Experimental Setup

We select the hyperparameters for all neural models using early stopping by monitoring the

validation binary cross-entropy loss, and we estimate the class weights using the ’balanced’

heuristic (King and Zeng, 2001) for each task, as both datasets are imbalanced. BERT and

EfficientNet models use ADAM optimizer (Kingma and Ba, 2014), and experiments use 1

GPU (Nvidia V100).

LR For LR we use bag of n-grams with n = (1, 3), n ∈ {(1,1),(1,2),(1,3)} weighted by

TF.IDF and L2 regularization. The average training time is 30 seconds.

BERT We fine-tune BERT for 20 epochs and choose the epoch with the lowest validation

loss. We use the pre-trained base-uncased model for BERT (Vaswani et al., 2017; Devlin

et al., 2019) from HuggingFace implementation (12-layer 768-dimensional) trained on English

Wikipedia (Wolf et al., 2019a). The maximal sequence length is 512 tokens. We fine-tune

BERT for 2 epochs and learning rate η = 2e−5 for ideology prediction; and η = 1e−5 for

advertiser type prediction with η ∈ {1e−5, 2e−5, 3e−5, 4e−5}. The average training time is 8.1

minutes.

EfficientNet We use EfficientNet-B3 with Noisy-Student weights (Xie et al., 2020). For

ideology prediction, we first freeze the layers of the EfficientNet (Tan and Le, 2019) model

and train it for 11 epochs with learning rate η = 1e−3 to learn the parameters of the output

layer. We then unfreeze and train the whole network for another 30 epochs with η = 1e−4, as

it has been shown that unfreezing the CNN during the latter stages of training improves the

performance of the network (Faghri et al., 2017). For predicting the type of sponsor, we train

for 45 epochs and η = 1e−2 keeping the EfficientNet layers frozen. Unfreezing the base model

did not result into lower validation loss. We use dropout rate of 0.2 before passing the output

of EfficientNet to the classification layer. The average training time is 37.8 minutes.

BERT+EffN For ideology prediction, we freeze all the layers of the pre-trained models

(BERT and EfficientNet) apart from the classification layer and train for 27 epochs with

η = 1e−3. We then fine-tune BERT for 30 epochs with η = 1e−5. For sponsor type prediction,

we freeze all EfficientNet layers and fine-tune BERT for 30 epochs with η = 2e−6. We train
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T1: Conservative/Liberal

Model P R F1

Majority 50.00 (0.00) 37.56 (0.00) 42.90 (0.00)

LRD 55.76 (0.85) 54.91 (0.89) 54.85 (1.12)

LRIT 78.38 (0.70) 71.99 (0.56) 72.65 (0.73)

LRIT+D 72.57 ( 1.03) 71.52 (0.62) 71.99 (0.79)

Kalra et al. (2020)

BERTD 59.40 (0.78) 57.77 (0.98) 57.64 (1.52)

BERTIT 72.88 (0.24) 73.46 (0.16) 73.16 (0.20)

BERTIT+D 78.62 (3.14) 74.08 (2.81) 75.49 (3.01)

EfficientNet 69.02 (3.48) 67.87 (1.23) 68.15 (1.89)

Ours

BERTIT+EffN 74.99 (1.23) 72.01 (2.27) 73.02 (2.07)

BERTIT+D+EffN 80.24 (0.06) 74.59 (1.70) 75.76 (2.19)

Table 4.5: Macro Precision (P), Macro Recall (R), and Macro F1-Score (F1) for political

ideology prediction (± std. dev. for 3 runs). Best results are in bold.

in stages to ensure that the parameters of each part of the model (textual and visual) are

properly updated (Kiela et al., 2019). The average training time is 56.65 minutes.

4.6 Results

This section presents the experimental results for the two predictive tasks, political ideology

and sponsor type prediction (Section 4.3) using the methods described in Section 4.4. We

evaluate our models using macro precision, recall and F1 score since the data in both tasks is

imbalanced. Note that for all models we report the average and standard deviation over three

runs using different random seeds. We also report the majority class baseline for each task.

4.6.1 Predictive Performance

Task 1: Conservative/Liberal Table 4.5 shows the results for the political ideology

prediction. We first observe that BERTIT (73.16%) which uses as input information the image

text outperforms BERTD (57.64%) and EfficientNet (68.15%) in macro F1. This suggests

that the text shown on a political ad is the dominant medium for conveying its main message,

corroborating findings in related research on commercial ads (Dey et al., 2021; Kalra et al.,

2020).
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T2: Political Party/Third-Party

Model P R F1

Majority 50.00 (0.00) 31.47 (0.00) 38.62 (0.00)

LRD 53.60 (0.72) 53.40 (0.65) 53.11 (0.58)

LRIT 84.02 (0.14) 85.04 (0.31) 84.47 (0.18)

LRIT+D 86.46 (0.13) 86.63 (0.09) 86.54 (0.05)

Kalra et al. (2020)

BERTD 56.50 (0.89) 56.31 (0.78) 53.45 (1.26)

BERTIT 85.57 (0.86) 86.42 (2.01) 85.86 (1.23)

BERTIT+D 87.00 (0.89) 86.81 (0.83) 86.90 (0.86)

EfficientNet 53.27 (2.86) 53.93 (2.40) 51.53 (5.46)

Ours

BERTIT+EffN 87.02 (2.74) 85.81 (0.20) 86.29 (1.11)

BERTIT+D+EffN 86.78 (0.03) 88.18 (1.10) 87.36 (0.39)

Table 4.6: Macro Precision (P), Macro Recall (R), and Macro F1-Score (F1) for sponsor type

prediction (± std. dev. for 3 runs). Best results are in bold.

Moreover, combining image text and densecap (BERTIT+D), leads to higher performance,

than using only image text (BERTIT ), i.e. 75.49% and 73.16% F1 respectively. This indicates

that the combination of textual with visual information (in the form of image descriptions)

improves the model performance. Finally, using all visual information sources, i.e. densecaps

and image representation from EfficientNet (BERTIT+D+EffN), further improves performance

achieving the highest macro F1 (75.76%) across models, followed by BERTIT+D (75.49%).

Task 2: Political-Party/Third-Party Table 4.6 shows the results for the sponsor type

prediction. The best overall performance is obtained by BERTIT+D+EffN (87.36%) which

combines both image and textual information. BERTIT+D (86.90%) and LRIT+D (86.54%)

follow very closely. By inspecting our data, we identified the presence of noise in image text,

particularly sentences are interrupted by logos and other aesthetic elements. This negatively

affects the performance of BERT because such models are usually pre-trained on ‘cleaner’

generic corpora Kumar et al. (2020). On the other hand, LR models trained from scratch can

adapt to the noisy text (see Section 4.6.2 for error analysis).

Overall, our results in both tasks suggest that text is a stronger modality for inferring the

political ideology and sponsor type of political ads compared to visual information extracted

from the images. However, integrating visual information in the form of text descriptions

(densecaps) or representations obtained by pre-trained image classification models, enhances

model performance.
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(a) True: Lib - Pred:

Cons

(b) True: Cons - Pred:

Lib

(c) True: PP - Pred: TP (d) True: TP - Pred: PP

Figure 4.1: Examples of ads with their true and predicted labels Lib (Liberal), Cons (Conser-

vative), PP (Political Party), TP (Third-Party).

4.6.2 Error Analysis

We further perform an error analysis to examine the behavior of our best performing models

(BERTIT+D+EffN and BERTIT+D) and identify potential limitations.

The ad shown in Figure 4.1 (a) was misclassified as Conservative by BERTIT+D and

BERTIT+D+EffN. This particular ad requires common knowledge of social issues (e.g. in-

adequate health support) that are often discussed in political campaigns to inform voters

about a party’s views on the issue (Scammell and Langer, 2006). This makes the classification

task difficult for the models since it requires contextual knowledge. Incorporating external

relevant knowledge to the models (e.g. political speeches, interviews or public meetings) might

improve performance (Lin et al., 2018).

The ad depicted in Figure 4.1 (b) was misclassified by BERTIT+D and BERTIT+D+EffN

as Conservative. After analyzing the densecap descriptions, we found that this information

tends to be noisy. For this particular example, it contains descriptions such as ‘a man is

holding a horse’, ‘the sign is blue’, ‘a blue and white stripe shirt’, and ‘a man wearing a hat’.

In fact, BERTIT , which only takes the image text into account, classified this ad correctly as

Conservative. Improving the quality of the image descriptions (e.g. pre-training on advertising

or political images, capturing specific attributes such as ‘military hat’) might be beneficial

for these models.

Figure 4.1 (c) shows an example of a Political Party ad misclassified by BERTIT+D+EffN

as Third-Party. The ad contains the following text:

WE CAN’T LET <person> WIN! VOTE EARLY
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The message has a confrontational and divisive tone that is common in Third Party ads

(Edelson et al., 2019), but is typically used as a political tactic for negative campaigning

(Skaperdas and Grofman, 1995; Gandhi et al., 2016; Haselmayer, 2019).

Finally, Figure 4.1 (d) shows an example of a Third-Party ad misclassified as Political

Party by BERTIT+D+EffN. The text content promotes voter participation (e.g. Vote), a

characteristic of Political Party advertising (see Table 4.8). However, one of the aims of the

Third-Party advertising is precisely to encourage voting and activism (Dommett and Temple,

2018).

There is a considerable difference between the models using visual information only (LRD,

BERTD, EfficientNet), and those that also use the ad text as input (IT, IT+D). Our intuition

is that models get confused by the appearance of shapes, colors and other aesthetic features

that are domain specific and appear frequently in political advertisements (Sartwell, 2011).

For instance, several ads that belong to the Third-Party category, include buttons linking to

websites (see Fig, 4.1 (c), (d)). However, Political Party ads, also make use of these type of

buttons to link users to donation or informative websites (Edelson et al., 2019).

4.7 Linguistic Analysis

We perform an analysis based on our new data set to study the linguistic characteristics of

political ads. We first analyze the specific features of each class for both tasks. For this purpose,

we use a method introduced by Schwartz et al. (2013) to analyze uni-gram features from image

text (see Section 4.4) using univariate Pearson correlation. Features are normalized to sum

up to unit for each ad. For each feature, we compute correlations independently between its

distribution across ads and its label (Conservative/Liberal, or Political Party/Third Party).

4.7.1 Conservative vs. Liberal

Table 4.7 presents the top unigrams correlated with Liberal and Conservative ads. We first

notice that the top words in the Conservative category are closely related to its ideology such

as ‘conservative’ and ‘republican’. Other prominent terms in these categories are words related

to current political issues, such as immigration (e.g. ‘border’) and taxation (e.g. ‘taxes’). In

fact, these are examples of emotionally evocative terms (e.g. anger about taxes) that are
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Liberal Conservative

Feature r Feature r

necessary 0.197 senate 0.271

end 0.196 republican 0.196

prohibited 0.190 ! 0.176

approx 0.186 conservative 0.127

contrib 0.181 national 0.116

void 0.177 committee 0.112

values 0.173 petition 0.109

prz 0.161 border 0.102

subj 0.156 taxes 0.099

make 0.156 radical 0.098

win 0.144 sign 0.096

place 0.140 stop 0.094

beer 0.139 states 0.093

Table 4.7: Feature correlations with Conservative/Liberal Ads, sorted by Pearson correlation

(r). All correlations are significant at p < .01, two-tailed t-test.

frequently used in political campaigns to influence voters (Brader, 2005).

Top terms of Liberal ads include ‘necessary’, ‘end’,‘values’, and ‘win’. For example, the

following ads belong to the Liberal class:

I’m supporting <person> because he has the same values that I do and he’s an honest

person.

<person> FOR CONGRESS To End Gun Violence

These are examples of ads containing a combination of moral and controversial topics (e.g.

gun regulation) which are typical characteristics of political advertising (Kumar and Pathak,

2012).

4.7.2 Political Party vs. Third-Party

Table 4.8 shows the top unigram features correlated with the sponsor type of an ad (Political

Party/Third-Party). We observe that some top terms in the Political Party class also belong

to the top terms of the political ideology task (see Table 4.7) such as ‘committee’, ‘republican’
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Political Party Third-Party

Feature r Feature r

congress 0.365 state 0.193

vote 0.308 learn 0.181

senate 0.292 champion 0.175

! 0.269 senator 0.166

president 0.248 thank 0.153

committee 0.236 action 0.147

candidate 0.223 congressman 0.130

republican 0.208 urge 0.129

authorized 0.208 protect 0.128

donate 0.202 access 0.119

join 0.199 award 0.117

<url> 0.187 american 0.116

$ 0.180 ? 0.113

Table 4.8: Feature correlations with Political Party/Third-Party Ads, sorted by Pearson

correlation (r). All correlations are significant at p < .01, two-tailed t-test.

and ‘senate’. Messages calling for vote and donation support (‘vote’, ‘donate’, ‘$’) are also

prevalent in Political Party ads (Fulgoni et al., 2016), as in the next example (See Figure 4.1

(b)):

Making sure our veterans get the care they’ve earned VOTE FOR <person>

On the other hand, top features from the Third-Party category (e.g. ‘action’, ‘protect’)

share common characteristics with the rhetoric used by media outlets focused on promoting

specific political messaging (Edelson et al., 2019; Dommett and Temple, 2018). Many of these

ads direct people to websites to read about a particular topic. For example:

Is <person> HIDING ANTI-GUN VIEWS? Learn More

This ad belongs to the Third-Party class and points the viewer to an external website for

reading further details.
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T2: Political Party /

Third Party
Acc F1

Majority 60.7 (0.0) 37.8 (0.0)

Model 87.6 (1.2) 87.1 (1.3)

Human 74.7 (2.6) 63.1 (1.8)

Table 4.9: Accuracy and Macro F1-Score (F1) for sponsor type prediction (± std. dev. for 3

runs) including human performance on a sample of ads from the test set. Best results are in

bold.

4.8 Human Evaluation

We conducted an analysis of human performance in the sponsor type classification task, i.e.,

categorizing an ad as either Political Party or Third Party based on the sponsor type. We

carefully plan our experimental setup to ensure the reliability of our evaluation process. We

sample ads from the test set in a manner that reflects the diversity of advertisers, resulting

in 285 ads, constituting 18.8% of the test set.

We ask two annotators to assign the label Political Party or Third Party to an ad. The

inter-annotator agreement, measured by Cohen’s Kappa (Cohen, 1960), is 0.56, indicating a

moderate level of agreement. In Table 4.9, we present the average accuracy and macro F1

scores across participants. Additionally, we include a majority label baseline, where the most

common label, Third Party, is chosen, and the performance of our best performing model,

BERTIT+D+EffN.

We observe that the human macro F1 performance, at 63.1, surpasses the majority baseline

of 37.8 but is lower than the model’s macro F1 performance of 87.1. This discrepancy suggests

that our model is able to identify subtle patterns or features within the data that humans

may overlook or find challenging to discern. Furthermore, unlike humans, who may be biased

by personal beliefs or opinions, our model maintains a focus on objectively analyzing the

data, contributing to more impartial decision-making. These findings highlight the relevance

of this task in enhancing the transparency of political campaigns, specifically, in ensuring the

explicit disclosure of the type of sponsor of the ads.
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4.9 Conclusion

We have presented the first study in NLP for analyzing political ads motivated by prior

studies in political communication. We have introduced two new publicly available datasets

containing political ads from the U.S. in English labeled by (1) the ideology of the sponsor

(Conservative/Liberal); and (2) the sponsor type (Political Party/Third Party). We have

defined both tasks as advertisement-level binary classification and evaluated a variety of

approaches, including textual, visual and multimodal models reaching up to 75.76 and 87.36

macro F1 in each task respectively. Our results suggest that text is a stronger modality

for inferring the political ideology and sponsor type of a political advertisement compared

to image-based features. However, the inclusion of visual information in the form of text

descriptions or image-encoder features, improves the performance of the models.

In the future, we plan to incorporate other modalities such as speech, and video, and

explore other methods of acquiring and integrating multimodal information. In addition, we

aim to extend our work for analyzing political advertising discourse across different regions,

languages and platforms. Finally, we defer the extension of our linguistic analysis to examine

the topics and intent underlying political advertisements as future work. Specifically, we aim

to delve into aspects such as engagement, fundraising, or voting, drawing inspiration from

prior research in the domain of political communication (Stromer-Galley et al., 2021).
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Abstract

Influencer marketing involves a wide range of strategies in which brands collaborate

with popular content creators (i.e., influencers) to leverage their reach, trust, and

impact on their audience to promote and endorse products or services. Because followers

of influencers are more likely to buy a product after receiving an authentic product

endorsement rather than an explicit direct product promotion, the line between personal

opinions and commercial content promotion is frequently blurred. This makes automatic

detection of regulatory compliance breaches related to influencer advertising (e.g.,

misleading advertising or hidden sponsorships) particularly difficult. In this work, we (1)

introduce a new Twitter (now X) dataset consisting of 15, 998 influencer posts mapped

into commercial and non-commercial categories for assisting in the automatic detection of

commercial influencer content; (2) experiment with an extensive set of predictive models
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that combine text and visual information showing that our proposed cross-attention

approach outperforms state-of-the-art multimodal models; and (3) conduct a thorough

analysis of strengths and limitations of our models. We show that multimodal modeling

is useful for identifying commercial posts, reducing the amount of false positives, and

capturing relevant context that aids in the discovery of undisclosed commercial posts.1

5.1 Introduction

Social media influencers are content creators who have established credibility in a specific

domain (e.g., fitness, technology), are sometimes followed by a large number of accounts

and can impact the buying decisions of their followers (Keller and Berry, 2003; Brown

and Hayes, 2008; Nandagiri and Philip, 2018; Lee et al., 2022). Influencer marketing (i.e.,

promoted content via influencer posts in social media) has gained popularity as an alternative

to traditional advertising (e.g., magazines, television, billboards) and mainstream digital

marketing such as pop-up and platform ads (Leerssen et al., 2019; Nandagiri and Philip,

2018; Lou et al., 2019; Jarrar et al., 2020; Fang and Wang, 2022) for reaching a larger and

more targeted audience (Gross and Wangenheim, 2018).

Influencer marketing is dominated by native advertising where there is no obvious distinc-

tion between commercial (i.e., content that is monetized) and non-commercial content such

as personal thoughts, sentiment and experiences (Chia, 2012). Even though the disclosure of

commercial content (via keywords such as #ad, #sponsored) by influencers has become a

requirement in some countries due to consumer protection obligations,2 identifying commercial

content in influencer posts is challenging in practice because (1) disclosure guidelines are

not always followed, e.g., not including or hiding standard disclosure terms3(Wojdynski,

2016; Boerman and van Reijmersdal, 2016; Mathur et al., 2018; Alassani and Göretz, 2019;

De Gregorio and Goanta, 2020); and (2) brand cues (i.e., elements that may affect buying

behavior) may appear in different modalities such as text, images or both (Sánchez Villegas

et al., 2021). Figure 5.1 shows an example of a commercial and a non-commercial post. Both

examples appear to include products, however only the top example is commercial. This

makes it difficult for the users to distinguish between paid promotion and personal opinions.

1Data is available here: https://github.com/danaesavi/micd-influencer-content-twitt

er
2https://icas.global/advertising-self-regulation/influencer-guidelines/
3Only about 10% of affiliate marketing content on Pinterest and YouTube contains any disclosures (Mathur

et al., 2018).

https://github.com/danaesavi/micd-influencer-content-twitter
https://github.com/danaesavi/micd-influencer-content-twitter
https://icas.global/advertising-self-regulation/influencer-guidelines/
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Commercial: Quick & easy fried rice w/shrimp - perfect for

busy weeknights and meets all of requirements for a fast, tasty

meal that’s sure to satisfy the whole family! #ZENSlifestyle

Non-commercial: Love coffee cake and donuts? Put two of

your favorites together and make these mouthwatering Coffee

Cake Donuts for breakfast this weekend! #donuts #coffeecake

Figure 5.1: Commercial and non-commercial tweets in our dataset. The distinction between

commercial and non-commercial posts is frequently uncertain.

Therefore, automatically detecting whether an influencer’s post involves paid promotion of

products or services is of utmost importance for addressing issues related to transparency

and regulatory compliance, such as misleading advertising or undisclosed sponsorships in

large scale (Mathur et al., 2018; Evans et al., 2017; Wojdynski et al., 2018; Ducato, 2020;

Ershov and Mitchell, 2020).

Previous work on identifying influencer commercial content has focused on analyzing user

features (e.g., popularity and engagement) and network characteristics of influencers (Zarei

et al., 2020; Kim et al., 2021b), while the use of language and its relationship to images has

not been explicitly explored. In this work, we present a new expert annotated Twitter (now

X) dataset and an extensive empirical study on influencer multimodal content focused on

analyzing the contribution of text and image modalities to commercial and non-commercial

posts. Our main contributions are as follows:

• We present a large publicly available dataset of 14, 384 text-image pairs and 1, 614

text-only influencer tweets written in English. Tweets are mapped into commercial and

non-commercial categories;

• We benchmark an extensive set of state-of-the-art language, vision and multimodal

models for automatically identifying commercial content, including prompting large

language models (LLMs);

• We propose a simple yet effective cross-attention multimodal approach that outperforms

all text, vision and multimodal models;

• We conduct a qualitative analysis to shed light on the limitations of automatically
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Dataset
Publicly

Available

Posts w/o

brand

mentions

Human

Annotation

Keyword

Matching

No. of

Commercial

Keywords

Platform Modality
Time

Range
Domains

Han et al. (2021) ✗ ✗ ✗ ✗ 0 Twitter Text not specified fashion

Zarei et al. (2020) ✗ ✓ ✗ ✓ 7 Instagram Text
Jul 2019 -

Aug 2019
not specified

Yang et al. (2019) ✗ ✗ ✗ ✓ 3 Instagram Text & Image not specified not specified

Kim et al. (2021b) ✓ ✓ ✗ ✓ 3 Instagram Text & Image not specified not specified

Kim et al. (2020) ✓ ✗ ✗ ✓ 1 Instagram Text & Image
Oct 2018 -

Jan 2019

beauty, family, food,

fashion, pet, fitness,

interior, travel,

MICD (Ours) ✓ ✓ ✓ ✓ 26 Twitter Text & Image
Jan 2015 -

Aug 2021

beauty, travel, food

fitness, technology,

lifestyle

Table 5.1: A comparison of existing datasets for influencer content analysis

detecting commercial content, and provide insights into when each modality is beneficial.

5.2 Related Work

5.2.1 Computational Studies on Influencers

Previous work has analyzed the characteristics of influencers on social media platforms such

as Twitter (Huang et al., 2014; Lagrée et al., 2018; Han et al., 2021), Instagram (Kim et al.,

2017, 2021a; Fernandes et al., 2022) and Pinterest (Gilbert et al., 2013; Mathur et al., 2018).

Kim et al. (2017) investigate the social relationships and interactions among influencers

while Kim et al. (2021a) explore the audience loyalty and content authenticity. On Twitter,

Lagrée et al. (2018) leverage social network analysis to discover influencers that achieve high

reach on advertising campaigns and Han et al. (2021) study the relationships among fashion

influencers to understand who they follow, mention, and retweet. Using posts from Pinterest

and YouTube, Mathur et al. (2018) examine whether influencers comply with advertising

disclosure regulations and show that while influencer commercial content has increased over

the years, its disclosure remains limited.
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5.2.2 Data Resources for Influencer Content Analysis

Datasets for analyzing influencer content have been developed to analyze the influencers’

impact on spreading information (Han et al., 2021), categorizing influencers into different

domains, e.g., fashion, beauty (Kim et al., 2020), and analyzing the characteristics of branded

content (Yang et al., 2019). Yang et al. (2019) introduce a dataset to study how influencers

mention brands in their posts. They collect 800K Instagram posts from 18K influencers that

explicitly mention (@mention) a brand, and characterize them as sponsored or non-sponsored

using three sponsorship indicators: #ad, #sponsored, #paidAD.

Datasets for analyzing commercial content shared by influencers have been developed by

Zarei et al. (2020) and Kim et al. (2021b). Zarei et al. (2020) present a dataset consisting

of 35K Instagram posts and 99K stories (i.e., posts that disappear after 24 hours) from

12K influencers and use an LSTM model (Hochreiter and Schmidhuber, 1997) to identify

whether a post is sponsored or not. Kim et al. (2021b) develop a dataset of 38K influencer

posts that explicitly mention (@mention) a brand. Similar to Yang et al. (2019), they label

these posts as sponsored if they contain at least one of three sponsorship indicators: #ad,

#sponsored, #paidAD. They propose an attention-based neural network model to classify

posts as sponsored or non-sponsored.

Limitations of existing resources Table 5.1 compares existing datasets for analyzing

influencer content. We observe that current datasets have only used a limited set of keywords

(e.g., #ad) for identifying posts with commercial content (seven or less). While some datasets

include only text content (Zarei et al., 2020), others focus only on posts that explicitly mention

(@mention) a brand (Yang et al., 2019; Kim et al., 2021b). In contrast to prior datasets for

analyzing influencer commercial content that use Instagram, we use Twitter because it is a

text-first platform and has rapidly increased in popularity as a tool for influencer marketing.

For instance, 49% of Twitter users say that they have made a purchase as a direct result of a

Tweet from an influencer.4

4https://blog.twitter.com/en_us/a/2016/new-research-the-value-of-influencers-o

n-twitter

https://blog.twitter.com/en_us/a/2016/new-research-the-value-of-influencers-on-twitter
https://blog.twitter.com/en_us/a/2016/new-research-the-value-of-influencers-on-twitter
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5.3 Multimodal Influencer Content Dataset (MICD)

We present a new multimodal influencer content dataset (MICD) consisting of Twitter posts

mapped into commercial and non-commercial classes.

5.3.1 Retrieving Candidate Influencers

To map tweets into these two classes, we first need to identify candidate influencers on

Twitter. We look for candidate accounts in six different domains (i.e., Beauty, Travel, Fitness,

Food, Tech and Lifestyle) to ensure thematic diversity. The domains related to ‘Beauty’,

‘Fitness’, ‘Travel’ and ‘Lifestyle’ are among the most popular in Twitter,5 while Food and

Tech have recently gained attention (Alassani and Göretz, 2019; Weber et al., 2021). To

retrieve influencers, we query for accounts that contain domain-specific keywords in their

bios (e.g., beauty vlogger, travel influencer, lifestyle blogger, food writer) as influencers tend to

provide such information in profile descriptions (Kim et al., 2020).6 We collect all available

image-text tweets written in English from each account using the Academic Twitter API.7

Duplicate tweets with identical text are removed.

5.3.2 Keyword-based Weak Labeling

We initially use a keyword-based strategy to automatically map posts into the commercial

and non-commercial categories (i.e., weak labeling). This is suitable in a real-world scenario

of an automatic regulatory compliance system with limited resources for manually labeling

all available posts (Zarei et al., 2020; Kim et al., 2021b).

Commercial Commercial tweets include content that promotes or endorses a brand or

its products or services, a free product or service or any other incentive. Thus, we extract

keywords strongly associated with influencer marketing following the official guidelines

provided by the Federal Trade Commission (FTC, 2019) in the US, and the Advertisements

Standards Authority and Competition and Markets Authority in the UK (CMA, 2020).

5https://influencermarketinghub.com/influencer-marketing-benchmark-report-2021/
6Influencer accounts were manually validated to ensure bots are not included.
7https://developer.twitter.com/en/products/twitter-api

https://influencermarketinghub.com/influencer-marketing-benchmark-report-2021/
https://developer.twitter.com/en/products/twitter-api
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These guidelines contain lists of keywords to appropriately disclose commercial content. In

this work, we considerably extend the keyword lists (extended and verified by members of

a national consumer authority) to not only include recommended sponsorship disclosure

terms (e.g., #ad, #sponsored), but also terms that are relevant to different business models

(i.e., market practices based on the obligations of the parties) such as gifting (e.g., #gift,

#giveaway), endorsements (e.g., #ambassador) and affiliate marketing (e.g., #aff, discount

code). A complete list of keywords can be found in Appx. 5.9. We label as commercial all

tweets containing at least one of the influencer marketing keywords excluding tweets where

the keyword is negated (e.g., not ad, not an ad). To avoid data leakage in the experiments,

we remove all of the keywords used for data labeling (see Sec. 5.5.1) from the posts after

labeling them. As a result, our models can identify commercial content without the use of

such terms (see Sec. 5.4).

Non-commercial Non-commercial posts refer to organic content such as personal ideas,

comments and life updates that do not aim for monetization. Thus, all tweets that do not

include any of the keywords presented above are considered non-commercial. To balance the

dataset, we sample non-commercial posts weighted according to the number of commercial

tweets for each account.

5.3.3 Data Splits

Text-Image Sets We split the tweets into train, dev and test sets at the account level

(i.e., tweets included in each split belong to different accounts) to ensure that models can

generalize to unseen influencer accounts and prevent information leakage in our experiments.

Text-only Test Set We further collect text-only posts from influencer accounts in the

test set. We sample text-only tweets according to the number of tweets for each influencer

account in the test set, resulting in a total of 1, 614 text-only tweets. This is done to account

for cases where only text content is provided.8

8Note that while text-only tweets are prevalent on Twitter, image-only tweets are uncommon.
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Domain Accounts

Beauty 22

Travel 22

Fitness 15

Food 22

Tech 20

Lifestyle 31

Total 132

Table 5.2: Number of influencer accounts by domain

5.3.4 Human Data Annotation

To ensure a high quality data set for evaluation, we use human annotators for labeling all

tweets in both test sets (text-image and text-only test sets).9 Four volunteer annotators

from our institution, each with a substantial legal background and knowledge of advertising

disclosure regulations labeled the test dataset. A workshop was held to introduce the task to

the annotators, explain the annotation guidelines and run a calibration round on a random

set of 20 examples. All tweets in the test sets were labeled by two different annotators

as commercial, non-commercial, or unclear (i.e., it is not clear whether the post contains

commercial content or not). In cases of disagreement, a third independent annotator assigned

the final label (commercial or non-commercial) after adjudication. Posts labeled as unclear

(15) are removed, as well as posts written in other language than English (2).

The inter-annotator agreement between two annotations across all tweets is 0.73 Krip-

pendorff’s alpha (Krippendorff, 2018) that corresponds to the upper part of the substantial

agreement band (Artstein and Poesio, 2008). Our final dataset contains 14, 384 text-image

pairs (7, 259 non-commercial and 7, 125 commercial). Additionally, the text-only test set

consists of 1, 614 tweets (1, 377 non-commercial and 237 commercial). Table 5.3 shows the

distribution of commercial and non-commercial tweets by split.

The training data is labeled using automatic weak labels, involving the removal of

keywords employed for data labeling from tweets. This strategy is implemented to encourage

the models to capture stylistic distinctions in both text and images between commercial and

non-commercial content. While this approach may introduce bias since only tweets without

commercial keywords are used for training, it is noteworthy that the test sets rely solely on

9We received approval from the Ethics Committee of our institution. Annotation guidelines can be found

in Appx. 5.10.
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Split Non-commercial Commercial Total

Train 5,781 5,596 11,377 (79.1%)

Dev 789 783 1,572 (10.9%)

Test 689 746 1,435 (10%)

Total 7,259 7,125 14,384

Text-only Test 1,377 237 1,614

All 8,636 7,352 15,998

Table 5.3: Dataset statistics showing the number of tweets for each split.

human annotations rather than weak labels. This results in the creation of test sets that

are not only more challenging but also closely aligned with real-world scenarios, specifically

instances where influencers may or may not disclose their promotion of products or services.

5.3.5 Exploratory Analysis

Exploratory analysis of our dataset revealed that influencer accounts in our dataset have

between 8K and 500K followers covering micro and macro influencers which are considered to

create highly persuasive content (Kay et al., 2020). Table 5.2 shows the number of influencer

accounts per domain. In average, each domain contains 22 accounts, and all accounts have

a minimum of 10 commercial tweets. Finally, we observe a different label distribution in

text-image and text-only test splits. Text-only test split is unbalanced with most posts

manually annotated as non-commercial (85.32% non-commercial, 14.68% commercial). On

the other hand, text-image test set label distribution is balanced (48.01% non-commercial,

51.99% commercial). This highlights the use of visuals in influencer marketing for effectively

advertising products, which is consistent with findings in conventional online advertising

research (Mazloom et al., 2016). It also emphasizes the multimodal nature of the task.

5.3.6 Comparison with Related Datasets

Table 5.1 compares our dataset, MICD, to related datasets for influencer content analysis

(see Sec. 5.2). Our dataset contains posts with and without explicit (i.e., @USER) brand

mentions from influencers of different domains. We follow a similar approach for weak labeling

commercial posts as previous work (Zarei et al., 2020; Kim et al., 2021b), but we considerably

extend the list of keywords following relevant guidelines and experts feedback (see Sec. 5.3.2).
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Moreover, we include test sets with a total of 3, 049 tweets annotated by experts in the legal

domain. We anticipate that this dataset will be beneficial not only for this study, but also for

future influencer content analysis research.

5.4 Influencer Content Classification Models

Given a social media post P (e.g., a tweet) consisting of a text and image pair (L, I), the

task is to classify a post P into the correct category (commercial or non-commercial).

5.4.1 Unimodal Models

Prompting We first experiment with prompting Flan-T5 (Chung et al., 2022) and GPT-3

(Brown et al., 2020). We use the following prompt: “Label the next text as ‘commercial’ or

‘not commercial’. Text: <TWEET>”. We map responses to the corresponding commercial or

non-commercial class and report results for each model (zero-shot). We further experiment

with few-shot prompting by appending four randomly selected training examples10 (two

examples from each class) before each prompt (few-shot). We run this three times with a

different set of examples and report average performance.

Image-only Models We fine-tune two pre-trained models that achieve state-of-the-art

results in various computer vision classification tasks by adding an output classification

layer: (1) ResNet152 (He et al., 2016) and (2) ViT (Dosovitskiy et al., 2020). ResNet uses

convolution to aggregate information across locations, while ViT uses self-attention for this

purpose. Both models are pre-trained on the ImageNet dataset (Russakovsky et al., 2015).

Text-only Recurrent Model Zarei et al. (2020) propose a contextual Long-Short Term

Memory (LSTM) neural network architecture for identifying posts in Instagram. Thus, we

also experiment with a similar bidirectional LSTM network with a self-attention mechanism

(Hochreiter and Schmidhuber, 1997) to obtain the tweet representation that is subsequently

passed to the output layer with a softmax activation function (BiLSTM-Att).

10Appx. 5.12 includes the template we use for these prompts.
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Text-only Transformers We fine-tune two pre-trained transformer-based (Vaswani et al.,

2017) models for commercial posts prediction: BERT (Devlin et al., 2019) and BERTweet

(Nguyen et al., 2020) by adding a classification layer on top of the [CLS] token. BERTweet

is a BERT based model pre-trained on a large-scale corpus of English Tweets.

5.4.2 Multimodal Models

Text & Image Transformers We fine-tune three multimodal transformer-based models:

MMBT (Kiela et al., 2019), ViLT (Kim et al., 2021c) and LXMERT (Tan and Bansal,

2019). MMBT uses ResNet and BERT as image and text encoders respectively, ViLT uses a

convolution-free encoder similar to ViT, and LXMERT takes object-level features as input

(see Sec. 5.5.1). ViLT and LXMERT are multimodally pre-trained on visual-language tasks

such as image-text matching and and visual question answering.

Aspect-Attention Kim et al. (2021b) proposed an aspect-attention fusion model to rank

Instagram posts based on their likelihood of including undeclared paid partnerships. Thus,

we repurpose their model to identify commercial posts on Twitter. Aspect-attention fusion

consists of generating a score for each modality by applying the attention mechanism across the

image and text vectors. Then, the multimodal post representation is produced by computing

a linear combination of the score and the unimodal representations. The model is fine-tuned

by adding a fully-connected layer with a softmax activation function (Aspect-Att).

ViT-BERTweet-Att We propose to combine unimodal pretrained representations via

cross-attention fusion strategy so that text features can guide the model to pay attention to

the relevant image regions. We use BERTweet to obtain contextual representations of the

text content L ∈ RdL×mL , where L is the output of the last layer of BERTweet, dL is the

hidden size of BERTweet and mL is the text sequence length. For encoding the images, we

use the Vision Transformer pre-trained on ImageNet (Russakovsky et al., 2015). We obtain

the visual representations of the image content I ∈ RdI×mI , where I is the output of the last

layer of ViT, dI is the hidden size of ViT and mI is the image sequence length. We propose

to capture the inter-modality interactions using a cross-attention layer. Specifically, given

L and I, we compute the scaled dot attention with L as queries, and I as keys and values

as follows: Cross-Att(L, I) = softmax( [W
QL][WKI]T√

dk
)[W V I], where {WQ,WK ,W V } are learnable

parameters, dk = dL = dI , and Cross-Att(L, I) ∈ RmL×dk
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The multimodal representation vector h is obtained by concatenating the ‘classification’

[CLS]L token from L (output from the last layer of BERTweet), and the [CLS]Att token from

the output of the cross-attention layer (Cross-Att(L, I)). In this way, we leverage the text

content of the influencer posts, and the relevant information from the image content. We

fine-tune the model on the commercial content classification task by adding a fully-connected

layer with a softmax activation function.11

5.5 Experimental Setup

5.5.1 Data Processing

Text For each tweet, we lowercase and tokenize text using DLATK (Schwartz et al., 2017).

We also replace URLs and user @-mentions with placeholder tokens following the BERTweet

pipeline (Nguyen et al., 2020). Emojis are replaced with their corresponding text string, e.g

thumbs up. Keywords used in the weak labeling process (Sec. 5.3.2) are removed from all

commercial tweets.

Image Images are resized to (224 × 224) pixels representing a value for the red, green and

blue color in [0, 255]. The pixel values are normalized to [0 − 1]. For LXMERT, we extract

object-level features using Faster-RCNN (Ren et al., 2016) as in Anderson et al. (2018) and

keep 36 objects for each image as in Tan and Bansal (2019).

5.5.2 Most Freq. Baseline and Evaluation

Most Freq. Baseline We assign the most frequent label in the training set to all instances

in the test set.

Evaluation We evaluate all models using weighted-averaged12 F1, precision, and recall

to manage imbalanced classes. Results are obtained over three runs using different random

seeds reporting average and standard deviation.

11Figure 5.4 shows a diagram of the model.
12Macro-averaged results are included in Appx. 5.11.
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5.5.3 Implementation Details

We select the hyperparameters for all models using early stopping by monitoring the validation

loss. We use the Adam optimizer (Kingma and Ba, 2014). We estimate the class weights

using the ‘balanced’ heuristic (King and Zeng, 2001). All experiments (unless indicated) are

performed using an Nvidia V100 GPU with a batch size of 16.

Prompting We use one GPU T4 to obtain the inference results from Flan-T5 (Chung

et al., 2022) model. We use the large version from HuggingFace library (780M parameters)

(Wolf et al., 2019b). For GPT-3 (Brown et al., 2020), we use the text-davinci-003 model via

the OpenAI13 Library. Prompt templates are included in Appx. 5.12.

Image-only For ResNet152 (He et al., 2016), we fine-tune for 1 epoch with learning

rate η = 1e−5 and dropout δ = 0.05 before passing the image representation through the

classification layer. We fine-tune ViT (Dosovitskiy et al., 2020) for 3 epochs with learning

rate η = 1e−5 and dropout δ = 0.05. η ∈ {1e−3, 1e−4, 1e−5} and δ in [0, 0.5], random search.

Text-only Recurrent Model For BiLSTM-Att we use 200-dimensional GloVe embeddings

(Pennington et al., 2014) pre-trained on Twitter data. The maximum sequence length is

set to 50. The LSTM size is h = 32 where h ∈ {32, 64, 100} with dropout δ = 0.3 where

δ ∈ [0, 0.5], random search. We use Adam (Kingma and Ba, 2014) with learning rate η = 1e−3

with η ∈ {1e−3, 1e−4, 1e−5}, minimizing the binary cross-entropy using a batch size of 8 over

6 epochs with early stopping.

Text-only Transformers We fine-tune BERT and BERTweet for 20 epochs and choose

the epoch with the lowest validation loss. We use the pre-trained base-uncased model for

BERT (Vaswani et al., 2017; Devlin et al., 2019) from HuggingFace library (12-layer, 768-

dimensional) (Wolf et al., 2019b), and the base model for BERTweet (Nguyen et al., 2020)

with a maximal sequence length of 128. We fine-tune BERT for 1 epoch, learning rate η = 1e−5

and dropout δ = 0.05; and BERTweet for 2 epochs, η = 1e−5 and δ = 0.05. For all models

η ∈ {2e−5, 1e−4, 1e−5} and δ ∈ [0, 0.5], random search.

13https://platform.openai.com/docs/

https://platform.openai.com/docs/
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Text & Image Transformers We train MMBT (Kiela et al., 2019) for 1 epoch and

η = 1e−5 where η ∈ {1e−3, 1e−4, 1e−5} and dropout δ = 0.05 (δ in [0, 0.5], random search)

before passing through the classification layer. ViLT (Kim et al., 2021c) is fine-tuned for 4

epochs and η = 1e−5, vision layers are frozen. LXMERT (Tan and Bansal, 2019) is fine-tuned

for 3 epochs with η = 1e−5 and δ = 0.05.

Aspect-Attention and ViT-BERTweet-Att We train Aspect-Attention and ViT-

BERTweet-Att with BERTweet as text encoder and ViT as image encoder for 15 epochs and

choose the epoch with the lowest validation loss. Aspect-Attention: 1 epoch with η = 1e−5 and

δ = 0.05 and ViT-BERTweet-Att 3 epochs with η = 1e−5 and δ = 0.05 ; The dimensionality

of the multimodal representation is 768. η ∈ {1e−3, 1e−4, 1e−5} and δ in [0, 0.5], random

search.

5.6 Results

Table 5.4 presents the performance on commercial and non-commercial influencer content

prediction of all predictive models on our new multimodal influencer content dataset (MICD).

5.6.1 Unimodal Models

We first observe that the two image-only models obtain similar performance. Although both

models surpass Most Freq. baseline and Flan-T5 prompting, the text-only models (BiLSTM-

ATT, BERT and BERTweet) perform better than image-only models. This corroborates

results from previous work in multimodal computational social science (Wang et al., 2020;

Ma et al., 2021) and influencer content analysis (Kim et al., 2021b). We further note that

BERT-based models (BERT and BERTweet) outperform GPT-3 prompting and BiLSTM-Att

models over 4% across all metrics. Among the text-only models, BERTweet achieves the

highest performance with 76.34, 76.80 and 76.45 weighted F1, precision and recall respectively.
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Model F1 P R

Most Freq. 31.150.0 23.050.0 48.010.0

Prompting

Flan-T5 (zero-shot) 42.980.0 72.010.0 53.510.0

Flan-T5 (few-shot) 48.701.6 62.070.9 53.470.6

GPT-3 (zero-shot) 63.910.0 65.640.0 64.810.0

GPT-3 (few-shot) 69.571.5 71.692.1 70.010.8

Image-only

ResNet 59.590.5 59.850.5 59.600.5

ViT 60.811.3 61.580.9 61.021.2

Text-only

BiLSTM-Att∗ (Zarei et al., 2020) 66.100.7 66.480.8 65.150.7

BERT 74.320.6 75.010.6 74.430.7

BERTweet 76.340.3 76.800.3 76.450.3

Text & Image

ViLT 68.460.9 66.663.8 66.663.8

LXMERT 70.640.4 71.000.3 70.680.4

MMBT 73.580.4 73.790.6 73.590.4

Aspect-Att∗ (Kim et al., 2021b) 75.450.8 77.421.1 75.680.7

ViT-BERTweet-Att (Ours) 77.50‡0.6 78.46†0.5 77.61‡0.6

Table 5.4: Weighted F1-Score, precision (P) and recall (R) for commercial influencer content

prediction. † and ‡ indicates statistically significant improvement (t-test, p < 0.05) over

BERTweet, and both BERTweet and Aspect-Att respectively. ∗ denotes current state-of-the-

art models for influencer commercial content detection. Subscripts denote standard deviations.

Best results are in bold.

5.6.2 Multimodal models

State-of-the-art pre-trained multimodal models, ViLT and LXMERT fail to outperform text-

only transformers achieving only 68.46 and 70.64 weighted F1 respectively. This emphasizes the

challenges for modeling multimodal influencer content. Specifically, ViLT and LXMERT are

pretrained on standard vision-language tasks including image captioning and visual question
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Model F1 P R

BERTweet 76.340.3 76.800.3 76.450.3

ViT 60.811.3 61.580.9 61.021.2

ViT-BERTweet-Concat 76.340.9 78.100.5 76.540.8

ViT-BERTweet-Att (Ours) 77.500.6 78.460.5 77.610.6

Table 5.5: Comparison of each of the ViT-BERTweet-Att components including the removal

of the Cross-Att layer (ViT-BERTweet-Concat). Subscripts denote standard deviations. Best

results are in bold.

answering (Zhou et al., 2020b; Lu et al., 2019a) using data where text and image modalities

share common semantic relationships. In contrast, social media advertising frequently employs

various types of visual and text rhetoric (e.g., symbolism) to convey their message with no

obvious relationship between text and image (Vempala and Preoţiuc-Pietro, 2019; Hessel and

Lee, 2020). Similar behavior is observed with MMBT which obtains comparable performance

to BERT. This suggests it is more beneficial to use a text-only encoder (BERTweet) that has

been pre-trained on the same domain, in this case Twitter, than fine-tuning a more complex

out-of-the-box multimodal transformer model (e.g., ViLT, LXMERT, MMBT).

BERTweet and ViT are used by Aspect-Att (a state-of-the-art model for influencer

commercial content prediction) and our model, ViT-BERTweet-Att, to obtain text and visual

representations. However, only ViT-BERTweet-Att outperforms all text- and image-only

models (77.50, 78.46, 77.61 weighted F1, precision, and recall), indicating that not only the

choice of text and image encoders is important, but so is the fusion strategy for effectively

modeling text-image relationships for identifying influencer commercial content.

5.6.3 Ablation Study

To analyze the contribution of each component of our ViT-BERTweet-Att in identifying

commercial posts, Table 5.5 shows the performance of ViT, BERTweet, and ViT-BERTweet-

Att with and without the Cross-Att layer (see Section 5.4). ViT-BERTweet-Att without the

Cross-Att layer consists of simply concatenating text and image vectors (ViT-BERTweet-

Concat). While the performance of BERTweet and ViT-BERTweet-Concat are comparable

(BERTweet and ViT-BERTweet-Concat weighted F1: 76.34), ViT-BERTweet-Att (weighted

F1: 77.50) outperforms BERTweet suggesting the Cross-Att layer successfully captures the



5.6. RESULTS 76

Model F1 P R

Most Freq. 78.550.0 72.780.0 85.310.0

Flan-T5 (zero-shot) 81.020.0 80.410.0 84.880.0

Flan-T5 (few-shot) 82.220.5 81.720.6 83.560.6

GPT-3 (zero-shot) 77.260.0 85.120.0 73.790.0

GPT-3 (few-shot) 84.033.0 85.551.1 83.684.8

BERTweet 87.501.0 88.580.4 86.841.3

ViT-BERTweet-Att (Ours) 88.690.2 88.690.2 88.930.5

Table 5.6: Weighted F1-Score, precision (P) and recall (R) for commercial influencer content

prediction for tweets containing text only. Subscripts denote standard deviations. Best results

are in bold.

relevant regions in images for identifying commercial posts.

5.6.4 Text-only Test Set Evaluation

Finally, previous work on text-image classification in commercial influencer content has

only experimented with fully paired data where every post contains an image and text

(Kim et al., 2021b). However, this requirement may not always hold since not all posts

contain both modalities. Thus, we further evaluate our models on our text-only test set (see

Section 5.3.3). Table 5.6 shows the results obtained. We observe a consistent improvement of

ViT-BERTweet-Att multimodal model over BERTweet text-only model, i.e., 88.69 versus

87.50. This suggests that multimodal modeling of influencer posts is beneficial for identifying

text-only commercial posts.

5.6.5 Cross-domain Experiments

Table 5.7 presents the predictive performance (macro F1 score) of models trained on tweets

(text-image pairs) from one domain and tested on all tweets from other domains using ViT-

BERTweet-Att model. We observe that predictive performance is related to the proximity

among domains. For example, tweets trained on ‘Fitness’ and tested on ‘Lifestyle’ obtain high

performance (74.48 F1), as well as trained on ‘Travel’ and tested on ‘Food’ (71.72 F1). In
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Test FT FD LS TCH TR BT

Train

FT - 66.72 74.48 70.89 54.94 65.19

FD 68.94 - 70.67 72.55 56.99 70.68

LS 72.10 69.78 - 73.79 58.46 69.75

TCH 52.64 45.48 54.68 - 57.76 49.49

TR 71.54 71.72 81.99 76.97 - 66.83

BT 69.66 74.58 73.92 58.14 69.19 -

Table 5.7: Macro F1-Score performance of models trained with tweets from one domain and

tested on other domains: ‘Fitness’ (FT), ‘Food’ (FD), ‘Lifestyle’ (LS), ‘Tech’ (TCH), ‘Travel’

(TR), ‘Beauty’ (BT).

general, we observe that ‘Tech’ obtains the lowest performance across domains, which might

be because there is a small number of examples in the dataset compared to other domains.

Moreover, the vocabulary of posts shared by tech influencers is particularly specialized to

the products they promote such as technical words to describe product specifications. On

the other hand, lifestyle influencers share content around many different topics including

makeup, fitness, and cooking (Thelwall, 2021). This is reflected in the results, with ’Lifestyle’

performing well across all domains.

5.7 Qualitative Analysis

We finally perform a qualitative analysis of the classification effectiveness between ViT-

BERTweet-Att and the best text-only model (BERTweet). We analyze the strengths and

limitations of each model.

Multimodal modeling helps to reduce the number of false positives. We find that

53% of BERTweet errors from the text-image test set are false positives, i.e., misclassifying

non-commercial posts as commercial, which would be problematic for an automated regulatory

compliance system. Our multimodal model, ViT-BERTweet-Att, on the other hand, correctly

classifies 38% of BERTweet’s false positive mistakes such as the non-commercial post in Figure

5.1. Similarly, for text-only posts, we observe that 69% of BERTweet missclassifications
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correspond to false positive errors. 50.9% of these posts are correctly classified by ViT-

BERTweet-Att.

Multimodal modeling errors. The most common error when distinguishing commercial

posts (60%) by our multimodal model, ViT-BERTweet-Att, corresponds to cases where the

post includes a standard natural or personal photo, rather than an image depicting products,

as is more common in influencer commercial content (Kim et al., 2021b) and conventional

online advertising (Al-Subhi, 2022). Figure 5.2 Post A depicts a post incorrectly labeled as

non-commercial by ViT-BERTweet-Att and correctly classified by BERTweet.

Multimodal modeling captures context beyond keyword-matching. To analyze if

multimodal modeling improves over weak labels, we apply the keyword-based weak labeling

approach14 to the test sets (see Section 5.3.2). We find that 20% and 80% of the weak labeling

errors in the text-image and the text-only test sets respectively, are correctly classified by

ViT-BERTweet-Att. This suggests that our multimodal model, ViT-BERTweet-Att captures

stylistic differences and visual information relevant to identify commercial posts beyond

keyword-matching. Indeed, most of the errors (85%) in both text-image and text-only posts

are false positives (i.e., true label is non-commercial) and are misslabeled as commercial as

they contain one of the keywords, although they are used in a different context. For example:

Just seen that Pepsi ad...awkward.

Multimodal modeling aids in the discovery of undisclosed commercial posts Using

ViT-BERTweet-Att we found undisclosed commercial posts (15%) in text-image posts such

as the one depicted in Figure 5.1 (commercial) and Figure 5.2 Post B, as well as in text-only

posts such as the next example: if you love @USER pro-collagen then you might like the new

ultra smart line.

Challenging Cases for text and multimodal models. We observe cases that remain

challenging for both multimodal and text-only models. Previous work in influencer commercial

content on Instagram (Zarei et al., 2020) highlights the difficulty of identifying commercial

influencer posts promoting products given the use of native advertising (Chia, 2012). However,

we find that the most common error (20%) when identifying commercial posts (in both

14Using the text before removing commercial keywords.



5.8. CONCLUSION 79

Post A Post B Post C

Combat the cold

weather with these

incredible @USER

sheepskin boots

chunky knits and dainty

jewels. This is my favor-

ite vintage sweater

#lovechupi

Cherry tree hill is hands

down the best view in

#Barbados.

#VisitBarbados

Actual: C Actual: C Actual: C

BERTweet: C BERTweet: NC BERTweet: NC

ViT-BERTweet-Att:

NC

ViT-BERTweet-

Att: C

ViT-BERTweet-Att:

NC

Figure 5.2: Examples of classifications of BERTweet and ViT-BERTweet-Att.

text-image and text-only posts), are those that rather than promoting products, they describe

their “personal” experiences, particularly while traveling, in both text and image as shown in

Figure 5.2 Post C. These commercial posts are difficult to identify as they do not include any

specific brand mention or product name and are accompanied by standard traveling images

also common in non-commercial posts (Oliveira et al., 2020).

5.8 Conclusion

We introduced a novel dataset of multimodal influencer content consisting of tweets labeled as

commercial or non-commercial. This is the first dataset to include high quality annotated posts

by experts in advertising regulation. We conducted an extensive empirical study including

vision, language and multimodal approaches as well as LLM prompting. Our results show that

our proposed cross-attention approach to combine text and images, outperforms state-of-the-

art multimodal models. Our new dataset can enable further studies on automatically detecting

influencer hidden advertising as well as studies in computational linguistics for analysis of

commercial language characteristics on a large scale. Future work includes modeling influencer

content in multilingual settings.
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Limitations

We experimented using only data in English. Influencer advertising strategies could differ

across cultures and languages. We plan to address this research direction in future work. We

have also presented the main limitations of our best performing model in Section 5.7.
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5.9 Appendix A: Influencer Marketing Keywords

We extract keywords strongly associated with influencer marketing from the guidelines

provided by the Federal Trade Commission (FTC, 2019) in the US, and the Advertisements

Standards Authority and Competition and Markets Authority in the UK (CMA, 2020). The

keywords in these guidelines are based on regulatory standards for digital enforcement which

are meant to create objective and transparent expectations regarding the disclosure of native

advertising on social media. Thus, our list of keywords include sponsorship disclosure terms

that are relevant to different business models (i.e., market practices based on the obligations

of the parties). A complete list of keywords is presented in Table 5.8.

5.10 Appendix B: Annotation Guidelines

Purpose of the study This annotation effort is part of a study that aims to characterize

and identify commercial content on Twitter. Commercial content is an umbrella term for

communications that relate to commercial transactions, or in other words, content that is

monetized. For influencers, that may entail various business models:

• Endorsements: an influencer receives money in order to promote a product or service.

• Affiliate marketing: the influencer is paid a percentage of referral sales, often identified

through discount codes.

• Barter: exchange of goods or services from a brand or its representatives against an

advertising service offered by the influencer.

• Direct selling: influencers can also choose to create their own products, branded products,

and/or services, and link to their web shops.

Task Description The task is to annotate whether a given influencer’s Twitter post is

perceived to contain commercial content or not given only its text and image content (if

available). If annotators perceive that the tweet contains commercial content, then it should

be annotated as commercial, otherwise as non-commercial. If it is not clear whether the

Tweet is perceived to contain commercial content, it should be labeled as unclear. The details

of each category are as follows:
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Type Description Commercial Keywords

Guidelines
Keywords retrieved from relevant guidelines

Recommended and not recommended terms.

#ad, ad, #advert #collab, collab, #spon, #sponsored,

spon, #sp, sponsored, ‘thanks to’/ ‘funded by’/

‘supported by’/‘in association with’ @USER

Endoresements
An influencer receives money to promote a

product or service.
#ambassador, ambassador

Barter

exchange of goods or services from a brand

or its representatives against an advertising

service offered by the influencer.

#gift, gift, #giveaway, giveaway

unpaid sample

Affiliate

Marketing

The influencer is paid a percentage of referral

sales, often identified through discount

codes.

#aff, aff, #affiliate, affiliate,

discount code

Table 5.8: Commercial keywords. @USER refers to an @-mention of a brand account.

Figure 5.3: Example of Annotation

• Commercial: posts refer to any of the business models mentioned above. This category

includes promoting or endorsing a brand or its products/services, a free loan of a

product/service, a free product/service (whether requested or received out of the blue),

or any other incentive. This can be noted by the use of terms or hashtags such as

#gifted, #ad, @mentions of the brand, hashtags including the name of the brand

and/or campaign slogans.

• Non-Commercial: Organic content such as personal ideas, personal comments and

life updates, and that does not seem monetized through any of the business models

mentioned above.

• Unclear: This option should be chosen when it is not clear whether the Tweet contains

commercial content or not (e.g., commenting about a brand without using hashtags or

@mentioning the brand).

Instructions

1. For each post, read the text, look at the image (if available), and select one of the
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Dataset

No. of

Commercial

Keywords

Commercial Keywords

Han et al. (2021) 0 -

Zarei et al. (2020) 7
#ad, #advert, #sponsored #advertising,

#giveaway, #spon, #sponsor

Yang et al. (2019) 3 #ad, #sponsored, #paidAD

Kim et al. (2021b) 3 #ad, #sponsored, #paidA

Kim et al. (2020) 1 #ad

MICD (Ours) 26

#ad, ad, #advert, #sponsored, #collab,

collab, spon, #sp, sponsored, #aff, aff,

‘thanks to’/ ‘funded by’/, unpaid sample,

‘supported by’/‘in association with’ @USER,

#ambassador, ambassador, discount code

#gift, gift, #giveaway, giveaway, #spon

#affiliate, affiliate,

Table 5.9: Comparison of commercial keywords used in existing datasets and in ours (MICD)

categories (Commercial, Non-commercial, Unclear).

2. If the post is annotated as Commercial, then in the “Brand Cues” section write down

the term(s) or hashtag(s) that support your decision such as: #gifted, #ad, @mentions,

hashtags including the name of the brand and/or campaign slogans. Use the “Brand

Cues” column that corresponds to the location of them: “Brand Cues Text” if the brand

cues are found in the text and/or ”Brand Cues Image” if they are located in the image.

Select the option(s) (Text, Image) used to make your annotation (e.g., if the brand cues

are in the text then select Text, if the post was annotated as non-commercial choose

the option that you looked at to make your decision).

3. If the post was annotated as Unclear, then: select the “Other” option and click on the

Tweet Link. If you find any brand cues in the Tweet’s page, write them down in the

column “Brand cues Other”. If it is still unclear whether the Tweet is commercial or

not keep the label “Unclear”, otherwise select the appropriate label (Commercial/Non-

Commercial).

Annotator Details All annotators were senior law school students (third year bachelor and

masters level) who study comparative and international law. The students have a background

in law, which entails a good grasp of consumer protection disclosures. In addition, their
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Figure 5.4: ViT-BERTweet-Att model for detecting commercial content. FC: fully-connected

layer.

profiles were also particularly interesting for annotation since they had spent 6 months of their

study being trained under an extracurricular Influencer Law Clinic honors programme. The

training consisted in multidisciplinary workshops and hands-on research on influencer-related

legal topics. The annotators come from a wide range of socio-economic backgrounds and

are fluent in English. The majority of annotators are female. However, the emphasis in

the annotation process has been on the understanding of market practices in the light of

legal frameworks, which mitigates any potential gender imbalance in the annotator pool. All

annotators expressed their written consent and were informed about how data would be used

following ethics guidelines from our Institution.

5.11 Appendix C: Predictive Performance

Table 5.10 and Table 5.11 present the macro-averaged results of commercial content prediction.
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Model F1 P R

Most Freq. 32.44 0.0 24.01 0.0 50.00 0.0

Prompting

Flan-T5 (zero-shot) 43.90 0.0 71.20 0.0 55.25 0.0

Flan-T5 (few-shot) 32.91 1.0 41.14 0.6 36.53 0.4

GPT-3 (zero-shot) 63.65 0.0 65.76 0.0 64.20 0.0

GPT-3 (few-shot) 69.32 1.7 72.12 2.2 70.24 0.4

Image-only

ResNet 59.60 0.5 59.75 0.5 59.73 0.5

ViT 60.96 1.2 61.62 0.7 61.35 0.8

Text-only

BiLSTM-Att∗ (Zarei et al., 2020) 66.10 0.7 66.37 0.7 66.27 0.7

BERT 74.35 0.6 74.84 0.6 74.61 0.6

BERTweet 76.68 0.7 76.86 0.5 76.76 0.6

Text & Image

ViLT 68.44 0.8 68.65 0.6 68.55 0.7

LXMERT 66.10 0.7 66.37 0.7 66.27 0.7

MMBT 73.38 0.6 73.89 0.6 73.46 0.7

Aspect-Att∗ (Kim et al., 2021b) 75.52 0.8 77.13 1.1 75.80 1.0

ViT-BERTweet-Att (Ours) 77.75 0.5 78.60 0.2 77.97 0.1

Table 5.10: Macro F1-Score, precision (P) and recall (R) for commercial influencer content

prediction. ∗ denotes current state-of-the-art models for influencer commercial content detec-

tion. Subscripts denote standard deviations. Best results are in bold.

Model F1 P R

Most Freq. 46.04 0.0 42.66 0.0 50.00 0.0

Flan-T5 (zero-shot) 55.43 0.0 65.60 0.0 54.81 0.0

Flan-T5 (few-shot) 40.77 1.1 43.68 0.4 39.52 1.1

GPT-3 (zero-shot) 63.96 0.0 63.38 0.0 73.64 0.0

GPT-3 (few-shot) 70.95 0.7 74.81 6.4 69.82 4.4

BERTweet 76.48 1.3 74.41 2.0 79.66 0.4

ViT-BERTweet-Att (Ours) 77.69 0.1 77.41 0.7 78.00 0.6

Table 5.11: Macro F1-Score, precision (P) and recall (R) for commercial influencer content

prediction for tweets containing text only. Subscripts denote standard deviations. Best results

are in bold.

5.12 Appendix D: Prompt Templates

5.12.1 Zero-shot Prompting

For zero-shot prompting we use the following prompt:
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Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET>.

We map responses to the corresponding commercial or non-commercial class and report

results for each model.

5.12.2 Few-shot Prompting

We experiment with few-shot prompting by appending four randomly selected training

examples (two examples from each class) before each prompt. We run this three times with a

different set examples. Table 5.4 shows average and standard deviation performance. The

few-shot prompt follows the next template:

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET-TRAIN> // <LABEL-TRAIN>

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET-TRAIN> // <LABEL-TRAIN>

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET-TRAIN> // <LABEL-TRAIN>

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET-TRAIN> // <LABEL-TRAIN>”

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET> //

<Label-TRAIN> corresponds to the true label of the <TWEET-TRAIN> training example

(commercial or non-commercial), <TWEET> refers to a testing example. We remove punctua-

tion and spaces and map the output of each model (FLAN-T5 or GPT-3) to the corresponding

label (commercial or non-commercial).
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Abstract

Effectively leveraging multimodal information from social media posts is essential to

various downstream tasks such as sentiment analysis, sarcasm detection or hate speech

classification. Jointly modeling text and images is challenging because cross-modal

semantics might be hidden or the relation between image and text is weak. However,

prior work on multimodal classification of social media posts has not yet addressed these

challenges. In this work, we present an extensive study on the effectiveness of using two

auxiliary losses jointly with the main task during fine-tuning multimodal models. First,

Image-Text Contrastive (ITC) is designed to minimize the distance between image-text

representations within a post, thereby effectively bridging the gap between posts where
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the image plays an important role in conveying the post’s meaning. Second, Image-Text

Matching (ITM) enhances the model’s ability to understand the semantic relationship

between images and text, thus improving its capacity to handle ambiguous or loosely

related posts. We combine these objectives with five multimodal models, demonstrating

consistent improvements of up to 2.6 F1 score across five diverse social media datasets.

Our comprehensive analysis shows the specific scenarios where each auxiliary task is

most effective.

6.1 Introduction

Multimodal content including text and images is prevalent in social media platforms (Vempala

and Preoţiuc-Pietro, 2019). The content of both text and images has been widely used to

improve upon single modality approaches in various downstream tasks such as sentiment

analysis (Niu et al., 2016; Ju et al., 2021; Tian et al., 2023b), hate speech detection (Botelho

et al., 2021; Hossain et al., 2022; Cao et al., 2022; Ocampo et al., 2023) and sarcasm detection

(Cai et al., 2019; Xu et al., 2020; Liang et al., 2022; Tian et al., 2023a).

Multimodal classification methods for social media tasks often combine text and image

representations obtained from pre-trained models. These are usually pre-trained on standard

vision-language data such as image captions where strong image-text connections are assumed,

i.e., captions that explicitly describe a corresponding image (Hessel and Lee, 2020; Xu and

Li, 2022). Modeling text-image pairs from social media posts presents additional challenges.

A notable difficulty lies in effectively capturing latent cross-modal semantics that may not be

apparent. Figure 6.1 (left) shows an example where the text refers specifically to the mood

of the person in the photo (i.e., “unhappy feeling” when @USER gets more followers...).

Moreover, cases where the visuals are weakly related to the text are also prevalent (Xu et al.,

2022). For instance, Figure 6.1 (right) shows an image of a hen accompanied by the text

My baby approves. It is difficult to draw a direct relationship between the two without any

additional context.

Multimodal models for social media classification can be divided into: (1) single-stream

models where image and text features are concatenated together and fed into the same

module such as Unicoder (Li et al., 2020a), VisualBERT (Li et al., 2019a), ViLT (Kim et al.,

2021c) and ALPRO (Li et al., 2022a); and (2) dual-stream approaches where images and text

are processed separately, e.g., ViLBert (Lu et al., 2019b), LXMERT (Tan and Bansal, 2019),
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METER (Dou et al., 2022) and BLIP-2 (Li et al., 2023). Consequently, these models might

still suffer from the aforementioned issues.

In this work, we examine the use of two tasks – Image-Text Contrastive (ITC) and

Image-Text Matching (ITM) – as auxiliary losses during fine-tuning for improving social

media post classification. By using the ITC contrastive loss (He et al., 2020; Li et al., 2021;

Yu et al., 2022), we anticipate that when the image contributes to the post’s meaning, as

illustrated in Fig. 6.1 (left), the model will place them closer in the representation space.

Conversely, ITM leverages binary classification loss for image-text alignment (Chen et al.; Tan

and Bansal, 2019; Wang et al., 2021). We expect that this will improve the model’s ability

to handle posts where associations may not be explicitly stated as shown in Fig. 6.1 (right).

Although ITC and ITM have been used as pre-training objectives using generic images and

their corresponding captions (Radford et al., 2021; Wang et al., 2021; Chen et al., 2022),

their potential for enhancing fine-tuning in social media classification has yet to be explored.

Our main contributions are as follows: (1) we present an extensive study on comparing

multimodal models jointly fine-tuned with ITC and ITM covering both single- and dual-stream

approaches; (2) we show that models using ITC and ITM as auxiliary losses consistently

improve their performance across five diverse multimodal social media datasets; (3) we offer

a comprehensive analysis revealing the effectiveness of individual auxiliary tasks and their

combination across various image-text relationship types in posts.

6.2 Multimodal Auxiliary Tasks

Image-Text Contrastive (ITC) Modeling text-image pairs in social media posts involves

capturing hidden cross-modal semantics (Vempala and Preoţiuc-Pietro, 2019; Kruk et al.,

2019). For instance, in Figure 6.1 (left) the visible mood of the person on the photo is related

to the text of the post. Instead of directly matching images with textual descriptions (e.g., a

man wearing a helmet), we aim to encourage the model to capture the dependencies between

the image and text within the posts.

For this purpose, we use the ITC objective (He et al., 2020; Li et al., 2021; Yu et al., 2022)

which pushes towards a feature space in which image and text representations of a post are

brought closer together, while image and text representations that appear in different posts

are pushed further apart. Let Ln and In be the n-th (normalized) representation of text and
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Post

When @USER gets

more followers than you

in 12 hours

My baby approves

Img-Txt

Relation

The image adds to the

meaning

The image does not add

to the meaning

Caption
A close up of a hockey

player wearing a helmet

A gray and white

chicken standing in the

dirt

Figure 6.1: Image-text relations in social media posts from Vempala and Preoţiuc-Pietro

(2019) and corresponding image captions generated with InstructBLIP.

accompanying image of a post in a training batch. While the cosine similarity of the pair Ln

and In is minimized, the cosine similarity of all other random pairs (e.g., Ln and Im; Im is

an image from a different post in the current batch) is maximized. Given N posts within a

training batch, ITC loss is defined as follows:

lITC =
1

2
(l1 + l2) (6.1)

l1 = −
1

N
ΣN

n=1log
exp(LIT /eτ )

ΣN
j=1exp(LI

T /eτ )
(6.2)

l2 = −
1

N
ΣN

n=1log
exp(ILT /eτ )

ΣN
j=1exp(IL

T /eτ )
(6.3)

τ is a learnable temperature parameter to scale the logits (Jia et al., 2021).

Image-Text Matching (ITM) In social media posts, unrelated or weakly related text-

image pairs are common (Hessel and Lee, 2020; Xu et al., 2022) such as the post depicted in

Fig. 6.1 (right). To address this, we use the ITM objective (Chen et al.; Tan and Bansal, 2019;

Wang et al., 2021) during fine-tuning to understand the semantic correspondence between

images and text. ITM involves a binary classification loss that penalizes the model when a

given text and image do not appear together in a post. Let In and Ln be the image and text

representation of the n-th post in a training batch, we randomly replace In with an image of

another post from the current batch with a probability of 0.5 following (Wang et al., 2021;
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Kim et al., 2021c). If In is replaced, then the image and text do not match, otherwise In and

Ln match. Thus, the ITM loss corresponds to the cross-entropy loss for penalizing incorrect

predictions, lITM = −Σ2
i=1tilog(pi) where ti is the gold label (matched or mismatched) and

pi is the softmax probability for each label.

Joint Fine-tuning Objectives The joint fine-tuning loss function includes the cross-

entropy classification loss (lCE) and the two auxiliary training objectives defined as: lC+M =

λ1lCE + λ2lITC + λ3lITM , where λ1, λ2, λ3 are hyperparameters to control the influence of

each loss.

6.3 Experimental Setup

6.3.1 Datasets

We experiment with five diverse multimodal public datasets in English: (1) TIR – text-image

relationship categorization (Vempala and Preoţiuc-Pietro, 2019); (2) MVSA – multi-view

sentiment analysis (Niu et al., 2016); (3) MHP – multimodal hate speech detection (Gomez

et al., 2020; Botelho et al., 2021); (4) MSD – multimodal sarcasm detection (Cai et al., 2019):

and (5) MICD – multimodal commercial influencer content detection (Sánchez Villegas

et al., 2023). Table 6.1 presents dataset statistics.

6.3.2 Data Splits

We use the same data splits for MVSA, MHP, MSD and MICD as in the original papers. For

TIR, instead of a 10-fold cross-validation, we randomly split the data in 80%, 10%, and 10%

for training, validation, and testing for consistency with the other tasks.

6.3.3 Data Processing

Text For each tweet, we lowercase and tokenize text using the NLTK Twitter tokenizer

(Bird and Loper, 2004). We also replace URLs and user @-mentions with placeholder tokens.
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Dataset Classification Task # Train Val Test All

TIR
Text-Image Relation

Classification
4 3,575 447 449 4,471

MVSA Sentiment Analysis 3 3,611 451 451 4,511

MHP
Hate Speech

Classification
4 3,998 500 502 5,000

MSD Sarcasm Detection 2 19,816 2,410 2,409 24,635

MICD
Influencer Commercial

Content Detection
2 11,377 1,572 1,435 14,384

Table 6.1: Description and statistics of each dataset. # refers to number of classes.

Emojis are replaced with their corresponding text string, e.g thumbs up following Nguyen

et al. (2020).

Image Images are resized to (224 × 224) pixels representing a value for the red, green and

blue color in [0, 255]. The pixel values are normalized to [0 − 1]. For LXMERT, we extract

object-level features using Faster-RCNN (Ren et al., 2016) as in Anderson et al. (2018) and

keep 36 objects for each image as in Tan and Bansal (2019).

6.3.4 Single Modality Methods

Text-only We fine-tune BERT (Devlin et al., 2019) and Bernice (DeLucia et al., 2022), a

BERT based model pre-trained on a corpus of multilingual tweets. We also experiment with

few-shot (FS) prompting using Flan-T5 (Chung et al., 2022) and GPT-3 (Brown et al.,

2020). For each dataset, we construct a few-shot prompt and include two randomly selected

training examples for each class.1

Image-only We fine-tune ResNet152 (He et al., 2016) and ViT (Dosovitskiy et al.,

2020), both pre-trained on ImageNet (Russakovsky et al., 2015). We experiment with few-

shot prompting using IDEFICS (Laurençon et al., 2023) and zero-shot prompting using

InstructBLIP (Dai et al., 2023).

1Appx. 6.8 shows the prompt templates.
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6.3.5 Multimodal Models

Ber-ViT We use Bernice and ViT to obtain representations of the text (L) and image (I).

Ber-ViT-Conc appends the text and image vectors from the corresponding L and I [CLS]

tokens to obtain the multimodal representation hLI ; Ber-ViT-Att computes cross-attention

between L and I. hLI is obtained by appending the [CLS] token from L and the [CLS] token

from the attention layer. We fine-tune each model by adding a classification layer.

MMBT (Kiela et al., 2019). Image embeddings obtained from Resnet152 are concatenated

with token embeddings and passed to a BERT-like transformer. The [CLS] token is used as

the multimodal representation (hLI) for classification.

LXMERT (Tan and Bansal, 2019) consists of three encoders and their corresponding

outputs for vision I, language L, and a multimodal vector hLI .

ViLT We fine-tune ViLT (Dosovitskiy et al., 2020) and extract the multimodal hLI that

corresponds to the first token from the last hidden state.

ITC and ITM Inputs The ITC task inputs are the text and image vectors of each model.

The ITM auxiliary task input is the respective multimodal representation hLI .

6.3.6 Evaluation

Results are obtained over three runs using different random seeds reporting average and

standard deviation. We use weighted F1 for model evaluation following standard practice on

the TIR, MHP and MICD datasets to manage class imbalance.2

2Implementation details are included in Appx. 6.7.
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Model TIR MVSA MHP MSD MICD

Majority Class 16.0 (0.0) 59.8 (0.0) 53.4 (0.0) 45.2 (0.0) 48.0 (0.0) -

Text-only Models

BERT 37.2 (1.3) 70.1 (0.8) 73.3 (1.3) 83.9 (0.2) 74.3 (0.6) -

Bernice 38.9 (1.1) 71.6 (0.6) 73.6 (0.6) 84.5 (0.8) 74.5 (2.2) -

Flan-T5∗ 3.8 (0.0) 58.9 (0.0) 46.5 (1.3) 59.6 (2.2) 48.7 (1.6) -

GPT-3∗ 16.3 (6.1) 55.9 (0.1) 58.2 (4.6) 69.6 (2.7) 69.6 (1.5) -

Image-only Models

ResNet152 48.2 (0.0) 63.8 (0.1) 51.8 (5.8) 46.9 (0.1) 59.6 (0.5) -

ViT 51.4 (1.3) 68.2 (0.6) 57.2 (1.2) 71.5 (0.1) 60.8 (1.3) -

IDEFICS∗ 12.4 (3.6) 34.7 (6.1) 34.9 (2.7) 58.9 (2.4) 35.6 (0.0) -

InstructBLIP∗ 3.9 (0.0) 47.2 (0.0) 11.0 (0.0) 22.7 (0.0) 35.6 (0.0) -

Multimodal Models

Ber-ViT-Conc 43.6 (1.2) 70.4 (0.0) 76.6 (0.6) 88.8 (0.0) 75.5 (1.9) -

+ ITC 44.91.3 (0.7) 72.0†1.6 (0.2) 77.30.7(1.1) 89.7†
0.9 (0.0) 77.21.7 (0.4) 1.2

+ ITM 44.10.5 (0.2) 73.6†3.2 (0.9) 77.81.2 (0.6) 89.2†0.4 (0.1) 76.10.6 (0.8) 1.2

+ ITC + ITM 45.82.2 (0.8) 73.4†3.0 (0.4) 77.7†1.1 (0.6) 89.7†
0.9 (0.2) 76.30.7 (0.5) 1.6

Ber-ViT-Att 53.7 (1.0) 72.1 (0.7) 76.8 (0.5) 88.8(0.3)) 75.6 (0.8) -

+ ITC 54.81.1 (0.8) 72.80.7 (0.2) 77.50.7 (0.6) 89.5†0.7 (0.2) 77.8†
2.2 (0.1) 0.8

+ ITM 55.9†
2.2 (0.8) 73.5†1.4 (0.2) 77.40.6 (0.6) 89.40.6 (0.5) 76.61.0(0.5) 1.2

+ ITC + ITM 54.60.9 (0.7) 74.6†
2.5 (0.3) 78.0†

1.2 (0.1) 89.7†
0.9 (0.3) 76.30.7 (0.2) 1.7

MMBT 53.2 (1.2) 72.4 (0.4) 74.5 (0.5) 83.2 (0.0) 73.6 (0.4) -

+ ITC 53.70.5 (1.1) 73.20.8 (1.0) 75.71.2 (1.7) 84.4†1.2 (0.3) 74.10.5 (0.8) 1.1

+ ITM 53.70.5 (0.7) 73.41.0 (0.8) 75.40.9 (1.3) 84.3†1.1 (0.3) 74.8†1.2 (0.6) 0.9

+ ITC + ITM 53.60.4 (0.2) 73.5†1.1 (0.0) 75.71.2 (0.2) 83.40.2 (0.2) 73.80.2 (0.5) 0.6

LXMERT 51.3 (0.5) 68.2 (1.1) 70.7 (0.8) 81.9 (0.5) 69.9 (1.0) -

+ ITC 51.90.6 (0.3) 70.4†2.2 (0.5) 72.1†1.4 (0.2) 82.70.8 (0.1) 70.81.0 (0.5) 1.2

+ ITM 51.80.5 (0.4) 69.51.3 (0.2) 71.81.1 (0.8) 82.30.4 (0.5) 70.91.1 (0.2) 0.9

+ ITC + ITM 52.31.0 (1.4) 69.31.1 (0.9) 71.91.2 (1.7) 82.10.2 (0.4) 70.30.5 (0.3) 0.8

ViLT 53.1 (1.1) 70.5 (1.3) 71.8 (0.0) 83.0 (0.8) 67.8 (1.6) -

+ ITC 55.7†2.6 (0.2) 72.92.4 (1.0) 72.5†0.7 (0.4) 83.40.4 (0.4) 68.30.5 (0.2) 1.3

+ ITM 55.7†2.6 (0.3) 72.11.6 (2.3) 72.00.2 (0.5) 83.50.5 (0.2) 68.70.8 (1.1) 1.1

+ ITC + ITM 55.3†2.2 (0.3) 72.92.4 (1.3) 73.41.6 (1.4) 83.20.2 (0.4) 70.02.1 (1.3) 1.7

Table 6.2: Results in weighted F1 for all datasets. Best results for each base multimodal model

are underlined and best results for each dataset are in bold. † indicates statistically significant

improvement (t-test, p < 0.05) over the corresponding base model. Subscripts denote the

relative increment over each base model and standard deviations are included in parenthesis.

refers to the average relative improvement over each base model across datasets.∗ denotes

prompting.
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Text is represented in image Text is not represented in image

Image adds to the meaning Image adds to the meaning

Image does not add to the mean-

ing

Image does not add to the mean-

ing

Figure 6.2: Accuracy per label using Ber-ViT-Att (ATT) across different image-text relation

types based on image contribution to the post’s meaning and text representation on the

image. C+M refers to ITC+ITM.

6.4 Results

Image-text auxiliary tasks improve multimodal classification. Table 6.2 shows that

multimodal models surpass single-modality approaches across datasets. We consistently find

performance gains when using either ITC, ITM, or both auxiliary losses during fine-tuning,

with improvements up to 2.6 F1 over each base model. Therefore, we can improve performance

without costly pre-training on social media text-image tasks. These findings are especially

valuable in multimodal computational social science studies, where grasping the interplay

between text and images is vital (Hessel and Lee, 2020; Xu et al., 2022)

Dual-stream methods are effective in leveraging information from the auxiliary

tasks. Across MVSA, MHP and MSD datasets, the Ber-ViT-Att+ITC+ITM model achieves

the best performance (74.6, 78.0, and 89.7 F1 respectively). Generally, we observe that both
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Text is represented in image Text is not represented in image

Image adds to the meaning Image adds to the meaning

New Years Resolution.
When @USER gets more followers than

you in 12 hours

ATT:✗ — ITC:✓ — ITM:✓ — C+M:✓ ATT:✗ — ITC:✓ — ITM:✗ — C+M:✗

Image does not add to the meaning Image does not add to the meaning

Babyface and Whitney Houston My baby approves

ATT:✗ — ITC:✗ — ITM:✗ — C+M:✓ ATT:✗ — ITC:✗ — ITM:✓ — C+M:✗

Figure 6.3: Bert-ViT-Att (ATT) predictions on randomly selected examples with varying

image-text relations.

ITC and ITM contribute to the performance improvements of Ber-ViT-Att. Overall, Ber-ViT-

Att+ITC and Ber-ViT-Att+ITM models average improvements over the base model across

datasets are 0.8 and 1.2 respectively, while Ber-ViT-Att+ITC+ITM improvement is 1.7. The

performance gap between dual- and single-stream models is narrower in TIR. ViLT+ITM

achieves 55.7 F1 while Ber-ViT-Att+ITM obtains 55.9. This is likely due to the importance

of visual information for this task (i.e., predicting the semiotic relationship between images

and text), which is better aligned with ViLT as a visual-based model.
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6.5 Analysis

We analyze Ber-ViT-Att’s predictions on TIR to understand when each auxiliary task benefits

different image-text relations as categorized by Vempala and Preoţiuc-Pietro (2019) based on

image contribution and text representation (Fig. 6.2 and 6.3).

When the text is represented in the image using both auxiliary tasks (models denoted

with C+M), the model achieves the best performance, especially when the visual content

is not semantically relevant to the post. We observe that 80.2% of the tweets are correctly

classified achieving a substantial improvement over the Ber-ViT-Att baseline where only

59.3% of the posts are correctly classified.

When text is not represented on the image, we find that including ITC performs best

when the visual content is relevant, with 59.3% of the tweets correctly classified compared to

49.2% using Ber-ViT-Att. Finally, in cases where the image does not enhance the semantic

meaning, Ber-ViT-Att+ITM exhibits the highest performance, correctly classifying 65% of

the posts. This validates our hypothesis that incorporating ITM helps models to effectively

identify posts with weaker image-text relationships.

6.6 Conclusion

We presented an extensive study on the effectiveness of using two auxiliary tasks, Image-Text

Contrastive (ITC) and Image-Text Matching (ITM) when fine-tuning multimodal models for

social media posts classification. This approach addresses the challenges of hidden cross-modal

semantics and weak image-text relationships in social media content. Future work includes

evaluation on different social media platforms and languages.

Limitations

First, the datasets used in our experiments are solely in English. This choice allows for

consistency and comparability across the datasets, but it does not test the generalizability

of our findings to other languages. In future work, we plan to extend our research to a

multilingual setting to address this limitation. The effectiveness of the models incorporating
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auxiliary tasks depends on the underlying base model, however, our approach can easily be

adapted to new models. Finally, the inclusion of auxiliary tasks in our models introduces

an increase in training time. For instance, the training time for Ber-ViT-Att on the TIR

dataset is approximately 1.5 hours on an Nvidia A100 GPU. However, when incorporating

the auxiliary tasks (Ber-ViT-Att+ITC+ITM), the training time extends to around 2.5 hours,

a 66% relative increase in training time.
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Dataset Classification Task # Train Val Test All

POI
Point-of-interest

Type Prediction
8 157,029 19,559 19,647 196,235

POLID
Political Ads Ideology

Conservative or Liberal
2 4,411 534 603 5,548

POLADV
Political Ads Sponsor:

Political Party or Third Party
2 12,090 1,512 1,514 15,116

MICD
Influencer Commercial

Content Detection
2 11,377 1,572 1,435 14,384

Table 6.3: Description and statistics of each dataset: POI, POLID, POLADV and MICD. #

refers to number of classes.

Additional Experiments

To comprehensively assess the effectiveness of our top-performing models — Ber-ViT-Att (late-

fusion) and ViLT (early-fusion) — we conduct fine-tuning experiments on multimodal datasets

for point-of-interest type prediction – POI (Sánchez Villegas et al., 2020; Sánchez Villegas

and Aletras, 2021), predicting the ideology (conservative or liberal) of political ad sponsors

– POLID (Sánchez Villegas et al., 2021), and predicting whether an ad was posted by an

official political party or a third-party sponsor – POLADV (Sánchez Villegas et al., 2021).

Additionally, we include the results on MICD (Sánchez Villegas et al., 2023), a dataset

for identifying commercial influencer content. The dataset statistics for each dataset are

presented in Table 6.3. We follow the same experimental setup as in Section 6.3. The results

of these experiments are included in Table 6.4. To offer a comprehensive reference, we include

the results of unimodal models — text-only models (BERT and Bernice) and image-only

models (ResNet and ViT).

Multimodal models performance is superior compared to text-only and image-only models

across datasets. When comparing the performance of the multimodal models, we observe

that Ber-ViT-Att obtains higher performance than ViLT for all datasets except for POLID.

Moreover, we observe the highest improvements in performance for all datasets except for

POLID when including ITC auxiliary loss, with improvements in weighted F1 of up to

2.2 on the MICD dataset using Ber-ViT-Att. Particularly for the POLID dataset, the best

performing model is observed when integrating both ITC and ITM losses on ViLT, resulting

in a 6.1 weighted F1 improvement over vanilla ViLT. These findings highlight the importance
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Model POI POLID POLADV MICD

Text-only Models

BERT 47.2 (0.4) 71.8 (0.6) 87.5 (0.2) 74.3 (0.6) -

Bernice 44.7 (0.4) 73.7 (0.5) 87.8 (0.1) 74.5 (2.2) -

Image-only Models

ResNet 43.3 (0.1) 61.6 (1.0) 75.6 (1.6) 59.6 (0.5) -

ViT 48.8 (0.3) 71.9 (0.1) 76.1 (0.7) 60.8 (1.3) -

Multimodal Models

Ber-ViT-Att 53.2 (0.8) 74.7 (1.2) 88.5 (0.2) 75.6 (0.8) -

+ ITC 54.41.2 (0.5) 75.50.8 (0.8) 89.20.7 (0.4) 77.8†
2.2 (0.1) 1.2

+ ITM 53.50.4 (0.2) 75.60.9 (1.0) 88.60.1 (0.1) 76.61.0 (0.5) 0.6

+ ITC + ITM 53.90.7 (0.4) 76.51.8 (0.4) 89.00.5 (0.3) 76.30.7 (0.2) 0.9

ViLT 48.9 (1.1) 76.4 (0.7) 84.0 67.8 (1.6) -

+ ITC 49.91.0 (1.1) 81.4†5.0 (1.4) 85.8†1.8 (0.3) 68.30.5 (0.2) 2.1

+ ITM 50.81.9 (1.7) 79.8†3.4 (1.1) 85.3†1.3 (0.2) 68.70.8 (1.1) 1.9

+ ITC + ITM 51.01.1 (1.6) 82.5†
6.1 (0.7) 84.90.9 (0.7) 70.02.1 (1.3) 2.6

Table 6.4: Results in weighted F1 for place type prediction (POI), Political Ads Analysis

(POLID and POLADV), and Influencer Content Analysis (MICD) datasets. Best results

for each dataset are in bold. Subscripts denote the relative increment over each base model

and standard deviations are included in parenthesis. † indicates statistically significant

improvement (t-test, p < 0.05) over the corresponding base model. refers to the average

relative improvement over each base model across datasets.

of tailoring multimodal methods to accommodate the unique characteristics of social media

posts. Specifically, addressing the challenges posed by hidden cross-modal semantics and

nuanced image-text relationships is crucial for optimizing performance in this context.
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6.7 Appendix A: Implementation details

6.7.1 Hyperparameters

We select the hyperparameters for all models using early stopping by monitoring the validation

loss. We use the Adam optimizer (Kingma and Ba, 2014). We estimate the class weights

using the ‘balanced’ heuristic (King and Zeng, 2001). All experiments are performed using

an Nvidia A100 GPU with a batch size of 8 for TIR and MHP and 16 for MVSA and MSD

datasets. For prompting implementation details see Appx. 6.8.

6.7.2 Unimodal Models

Image-only For ResNet152 (He et al., 2016), we fine-tune for 1, 5, 8, 6, 1, 3, 1 and 4 epochs

for TIR, MVSA, MHP, MSD, MICD, POI, POLID and POLADV datasets respectively, with

learning rate η = 1e−5 and dropout δ = 0.05 before passing the image representation through

the classification layer. We fine-tune ViT (Dosovitskiy et al., 2020) for 3 epochs for TIR, MSD,

MICD and POLADV, 10 epochs for MVSA and MHP datasets, and 4 epochs for POI and

POLID datasets with learning rate η = 1e−5 and dropout δ = 0.05. η ∈ {1e−3, 1e−4, 1e−5}
and δ in [0, 0.5], random search.

Text-only Transformers We fine-tune BERT and Bernice for 20 epochs and choose

the epoch with the lowest validation loss. We use the pre-trained base-uncased model for

BERT (Vaswani et al., 2017; Devlin et al., 2019) from the Hugging Face library (12-layer,

768-dimensional) (Wolf et al., 2019b), and the base model for Bernice (DeLucia et al., 2022)

with a maximal sequence length of 128. We fine-tune BERT for 3, 9, 5, 2 and 1, 1, 3, 1

epochs for TIR, MVSA, MHP, MSD, MICD, POI, POLID, and POLADV with learning rate

η = 1e−5 and dropout δ = 0.05; and Bernice for 3, 4, 7, 3, 3, 4, 2 and 1 epochs for TIR,

MVSA, MHP, MSD, MICD, POI, POLID, and POLADV datasets, η = 1e−5 and δ = 0.05.

For all models η ∈ {2e−5, 1e−4, 1e−5} and δ ∈ [0, 0.5], random search.
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6.7.3 Multimodal Predictive Models

We train MMBT (Kiela et al., 2019), ViLT (Kim et al., 2021c), LXMERT (Tan and Bansal,

2019) and Bernice-ViT models with λ1, λ2, λ3; λ2 and λ3 ∈ [0, 1.5] (as explained in Section

6.2), and number of fine-tuning epochs (E) for each model as shown in Tables 6.5 and 6.6. For

ViLT models we keep the vision layers frozen and we use a learning rate of η = 1e−4, dropout

δ = 0.05 and weight decay of 0.0002. For all other multimodal models we use a learning rate

of η = 1e−5, dropout δ = 0.05 and weight decay of 0.00025.

6.8 Appendix B: Few-shot Prompting

For each dataset, we construct a prompt to include two randomly selected training examples

for each class (GPT-3, FLAN-T5, IDEFICS) as follows:

• TIR (GPT-3 & FLAN-T5)

Label the next text as ‘image adds and text is represented’, ‘image adds and text is

not represented’, ‘image does not add and text is represented’, ‘image does not add

and text is not represented’. Text: <TWEET-TRAIN> // <LABEL-TRAIN> ×8

Label the next text as ‘image adds and text is represented’, ‘image adds and text is

not represented’, ‘image does not add and text is represented’, ‘image does not add

and text is not represented’. Text: <TWEET> //

• TIR (IDEFICS)

User: <IMAGE-TRAIN> Label the image as ‘image adds and text is represented’,

‘image adds and text is not represented’, ‘image does not add and text is represented’,

‘image does not add and text is not represented’. Assistant:<LABEL-TRAIN> ×8

User: <IMAGE-TEST> Label the image as ‘image adds and text is represented’,

‘image adds and text is not represented’, ‘image does not add and text is represented’,

‘image does not add and text is not represented’. Assistant:

• TIR (InstructBLIP)

– Prompt: Label the image as ‘image adds and text is represented’, ‘image adds and text

is not represented’, ‘image does not add and text is represented’, ‘image does not add

and text is not represented’
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– Image: <IMAGE-TEST>

• MVSA (GPT-3 & FLAN-T5)‘

Label the next text as ‘positive’ or ‘negative’ or ‘neutral’. Text: <TWEET-TRAIN>

// <LABEL-TRAIN> ×6

Label the next text as ‘positive’ or ‘negative’ or ‘neutral’. Text: <TWEET> //

• MVSA (IDEFICS)

User: <IMAGE-TRAIN> Is the sentiment of the image ‘positive’ or ‘negative’ or

‘neutral’?. Assistant:<LABEL-TRAIN> ×6

User: <IMAGE-TEST> Is the sentiment of the image ‘positive’ or ‘negative’ or

‘neutral’?. Assistant:

• MVSA (InstructBLIP)

– Prompt: Is the sentiment of the image ‘positive’ or ‘negative’ or ‘neutral’?

– Image: <IMAGE-TEST>

• MHP

Label the next text as ‘hateful’, ‘counterspeech’, ‘reclaimed’ or ‘none’. Text: <TWEET-

TRAIN> // <LABEL-TRAIN> ×8

Label the next text as ‘hateful’, ‘counterspeech’, ‘reclaimed’ or ‘none’. Text: <TWEET>

//

• MHP (IDEFICS)

User: <IMAGE-TRAIN> Is the image ‘hateful’, ‘counterspeech’, ‘reclaimed’ or

‘none’?. Assistant:<LABEL-TRAIN> ×8

User: <IMAGE-TEST> Is the image ‘hateful’, ‘counterspeech’, ‘reclaimed’ or

‘none’?. Assistant:

• MHP (InstructBLIP)

– Prompt: Is the image ‘hateful’, ‘counterspeech’, ‘reclaimed’ or ‘none’?

– Image: <IMAGE-TEST>

• MSD (GPT-3 & FLAN-T5)
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Label the next text as ‘sarcastic’ or ‘not sarcastic’. Text: <TWEET-TRAIN> //

<LABEL-TRAIN> ×4

Label the next text as ‘sarcastic’ or ‘not sarcastic’. Text: <TWEET> //

• MSD (IDEFICS)

‘ User: <IMAGE-TRAIN> Is the image ‘sarcastic’ or ‘not sarcastic’?. Assistant:<LABEL-

TRAIN> ×4

User: <IMAGE-TEST> Is the image ‘sarcastic’ or ‘not sarcastic’?. Assistant:

• MSD (InstructBLIP)

– Prompt: Is the image ‘sarcastic’ or ‘not sarcastic’?

– Image: <IMAGE-TEST>

• MICD (GPT-3 & FLAN-T5)

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET-TRAIN>

// <LABEL-TRAIN> ×4

Label the next text as ‘commercial’ or ‘not commercial’. Text: <TWEET> //

• MICD (IDEFICS)

User: <IMAGE-TRAIN> Is the image ‘commercial’ or ‘non-commercial’?. Assistant:<LABEL-

TRAIN> ×4

User: <IMAGE-TEST> Is the image ‘commercial’ or ‘non-commercial’?. Assistant:

• MICD (InstructBLIP)

– Prompt: Is the image ‘commercial’ or ‘non-commercial’?.

– Image: <IMAGE-TEST>

<Label-TRAIN> corresponds to the true label of the <TWEET-TRAIN> training example,

<TWEET> refers to a testing example. We remove punctuation and spaces and map the

output of each model (FLAN-T5 or GPT-3) to the corresponding label.
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6.8.1 Implementation Details

FLAN-T5 & IDEFICS We use one GPU T4 to obtain the inference results from Flan-T5

(Chung et al., 2022) and IDEFICS (Laurençon et al., 2023) models. For Flan-T5 we use

the large version from the HuggingFace library (780M parameters) (Wolf et al., 2020). For

IDEFICS, we use the 9B parameters instruct version of the model (idefics-9b-instruct) via

Hugging Face library.

InstructBLIP We use one A100 GPU to obtain inference results from InstructBLIP (Dai

et al., 2023). We use the 7B-parameters version (instructblip-vicuna-7b) from the HuggingFace

library.

GPT-3 For GPT-3 (Brown et al., 2020), we use the text-davinci-003 model via the OpenAI3

Library ($82.61 USD total).

3https://platform.openai.com/docs/api-reference

https://platform.openai.com/docs/api-reference
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Dataset TIR MVSA MHP MSD MICD

λ1, λ2, λ3 E λ1, λ2, λ3 E λ1, λ2, λ3 E λ1, λ2, λ3 E λ1, λ2, λ3 E

Ber-ViT-Conc - 3 - 7 - 7 - 1 - 2

Ber-ViT-Conc+ITC 0.9, 0.1, 0 3 0.9, 0.1, 0 5 0.9, 0.1, 0 7 0.9, 0.1,0 6 0.9,0.1,0 2

Ber-ViT-Conc+ITM 0.9, 0, 0.1 4 0.9, 0, 0.1 6 0.9, 0, 0.1 9 0.9, 0, 0.1 3 0.9,0,0.1 1

Ber-ViT-Conc+ITC+ITM 0.8, 0.1,

0.1

6 0.8, 0.1,

0.1

4 0.8, 0.1,

0.1

6 0.8, 0.1,

0.1

3 0.8,0.1,0.1 2

Ber-ViT-Att - 2 - 8 - 7 - 1 - 3

Ber-ViT-Att+ITC 0.9, 0.1,0 2 0.9, 0.1, 0 8 0.9,0.1,0 7 0.9, 0.1, 0 3 0.9,0.1,0 2

Ber-ViT-Att+ITM 0.92, 0,

0.08

3 0.9, 0, 0.1 6 0.9,0,0.1 6 0.9, 0, 0.1 3 0.9,0,0.1 1

Ber-ViT-Att+ITC+ITM 0.8, 0.1,

0.1

4 0.8, 0.1,

0.1

15 0.8,0.1,0.1 13 0.8, 0.1,

0.1

5 0.8,0.1,0.1 2

MMBT - 2 - 9 - 5 - 1 - 1

MMBT+ITC 0.9, 0.1, 0 4 0.9, 0.1, 0 5 0.9, 0.1, 0 9 0.9,0.1,0 3 0.9,0.1,0 2

MMBT+ITM 0.9, 0, 0.1 4 0.7, 0 ,0.2 6 0.9, 0, 0.1 9 0.82, 0,

0.08

4 0.9,0,0.1 2

MMBT+ITC+ITM 0.84, 0.08,

0.08

3 0.85, 0.1,

0.05

11 0.8, 0.1,

0.1

10 0.85,0.1,0.05 3 0.6,0.2,0.2 4

LXMERT - 2 - 5 - 5 - 2 - 3

LXMERT+ITC 0.9,0.1,0 2 0.9,0.1,0 8 0.9, 0.1, 0 5 0.9,0.1,0 2 0.9,0.1,0 2

LXMERT+ITM 0.85,0,0.05 1 0.9,0,0.1 6 0.8, 0, 0.1 12 0.85,0,0.05 2 0.9,0,0.1 3

LXMERT+ITC+ITM 0.9, 0.08,

0.02

2 0.83,0.02,0.15 7 0.8, 0.1,

0.1

11 0.85, 0.1,

0.05

2 0.8,0.1,0.1 3

ViLT - 6 - 5 - 4 - 1 - 4

ViLT+ITC 0.9, 0.1, 0 6 0.9, 0.1, 0 11 0.9, 0.1, 0 4 0.9, 0.1, 0 1 0.95,0.05,0 2

ViLT+ITM 0.85, 0,

0.05

5 0.9,0,0.1 3 0.9, 0, 0.1 7 0.9, 0, 0.1 2 0.92,0,0.08 2

ViLT+ITC+ITM 0.8, 0.1,

0.1

2 0.8, 0.1,

0.1

13 0.8, 0.1,

0.1

9 0.8, 0.1,

0.1

2 0.87,0.05,0.08 1

Table 6.5: Hyperaprameter values for λ1, λ2, λ3 as explained in Section 6.2, and number of

fine-tuning epochs (E) for each model.

Dataset POI POLID POLADV

λ1, λ2, λ3 E λ1, λ2, λ3 E λ1, λ2, λ3 E

Ber-ViT-Att - 4 - 4 - 2

Ber-ViT-Att+ITC 0.9, 0.1,0 5 0.9, 0.1, 0 4 0.9,0.1,0 3

Ber-ViT-Att+ITM 0.9, 0, 0.1 3 0.9, 0, 0.1 3 0.9,0,0.1 3

Ber-ViT-Att+ITC+ITM 0.8, 0.1, 0.1 3 0.8, 0.1, 0.1 5 0.8,0.1,0.1 4

ViLT - 2 - 7 - 2

ViLT+ITC 0.9, 0.1, 0 1 0.9, 0.1, 0 4 0.9, 0.1, 0 7

ViLT+ITM 0.9, 0, 0.1 4 0.9,0,0.1 6 0.9, 0, 0.1 3

ViLT+ITC+ITM 0.8, 0.1, 0.1 3 0.8, 0.1, 0.1 3 0.8, 0.1, 0.1 3

Table 6.6: Hyperaprameter values for λ1, λ2, λ3 as explained in Section 6.2, and number of

fine-tuning epochs (E) for each model.
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Chapter 7

Conclusions

This thesis presented novel work on three under-explored multimodal classification tasks:

POI type prediction, online political advertisements analysis and influencer content analysis.

Moreover, we proposed fine-tuning methods for tackling the challenges of modeling text and

image content in social media. This chapter summarizes the tasks, findings and contributions,

and suggests future research directions.

7.1 Summary of Thesis

Publication I: Point-of-Interest Type Inference from Social Media Text included in Chapter

2 presented the first study on predicting the POI type a social media message was posted

from. We developed a large-scale dataset containing tweets mapped to their POI category,

performed an analysis to find attributes specific to place type, then trained predictive models

to infer the POI category using only tweet content and posting time.

Publication II: Point-of-Interest Type Prediction using Text and Images is found in

Chapter 3. In this work, we enriched the dataset introduced in Publication I with images.

Furthermore, we proposed a multimodal model that employs: (1) a gate mechanism to control

the flow of information from each modality; and (2) a cross-attention mechanism to align

and capture interactions between modalities. Our approach outperforms the text-only model

in Publication I and competitive pre-trained multimodal models.
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Publication III: Analyzing Online Political Advertisements corresponds to Chapter 4,

where we presented the first study in NLP for analyzing the language of political ads. We

introduced two new datasets containing political ads from the U.S. in English labeled by (1)

the sponsor’s ideology (Conservative/Liberal); and (2) the sponsor type (Political Party/Third

Party). Both tasks were defined as advertisement-level binary classification and we evaluated

a variety of approaches, including textual, visual and multimodal models. Our findings

imply that text is a stronger modality for inferring the political ideology and sponsor type

of a political advertisement compared to image-based features. However, the inclusion of

visual information in the form of text descriptions or image-encoder features, improves the

performance of the models.

Publication IV: A Multimodal Analysis of Influencer Content on Twitter is included in

Chapter 5, where we introduced a novel dataset of multimodal influencer content consisting of

tweets labeled as commercial or non-commercial. This is the first dataset to include high quality

annotated posts by experts in advertising regulation. We conducted an extensive empirical

study including vision, language and multimodal approaches as well as LLM prompting.

Our findings demonstrate that our proposed cross-attention strategy for combining text

and visuals, outperforms state-of-the-art multimodal models. Our new dataset will enable

additional research into automatically detecting influencer advertising as well as studies in

computational linguistics for large-scale analysis of commercial language characteristics.

Publlication V: Improving Multimodal Classification of Social Media Posts by Leveraging

Image-Text Auxiliary Tasks is presented in Chapter 6. We proposed two auxiliary losses

to be used when fine-tuning pre-trained multimodal models for social media classification.

Image-Text Contrastive (ITC) encourages the model to capture the underlying dependencies

in multimodal posts while Image-Text Matching (ITM) enables visual and language align-

ment. Our findings suggest that including these objectives improves prediction performance

consistently. Moreover, our approach can be adapted to any multimodal architecture. This

work contributes to advancing multimodal learning in the context of social media and provides

insights for improving classification performance on text-image tasks.
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7.2 Research Questions Discussion

In this section we discuss how we addressed the research questions proposed in Section 1.1.

Q1: What are the various methodologies available for extracting visual informa-

tion from social media posts, and how can these methodologies be effectively

used to enhance classification models? In Publications II, III, IV, and V, we delved

into extracting features from pre-trained models like ResNet (He et al., 2016), leveraging

convolution to aggregate information across locations. Additionally, we explored object-level

features, isolating relevant objects and regions from images and merging them with text via

the attention mechanism. While effective, this method requires an extra processing step and

is influenced by the quality of the object detection model, such as Faster-RCNN (Ren et al.,

2016). Publications IV and V further explore the use of features from pre-trained models

using self-attention including ViT (Dosovitskiy et al., 2020). Finally, in Publication III, we

investigated the use of text descriptions of image content. While promising, this method’s

performance is contingent on the quality of image descriptions, often introducing noise due

to pre-training on diverse, sometimes less curated, data.

Q2: Can pre-trained multimodal models be directly applied to classify social media

posts, or how can these models be adapted to account for the unique characteristics

of social media posts? We explored various predictive models in Publications II to V.

We examined single-stream models, such as VisualBERT and ViLT, as well as dual-stream

approaches, like LXMERT, where images and text are processed separately. Furthermore, we

introduced models specifically tailored to the characteristics of social media posts. MM-Gated-

XATT, proposed in Publication II, effectively manages the intricate relationship between

images and text through gated multimodal fusion and cross-attention. It addresses the

challenge of incomplete data, such as missing images in posts, by incorporating an average

image as a placeholder for such cases. In Publication IV, we introduced ViT-BERTweet-Att,

which eliminates the need for multimodal gated fusion. This is achieved by leveraging image

features from ViT, which employs self-attention. The model concatenates the multimodal

representation with the original text content, recognizing the stronger signal in text. Notably,

this model removes the requirement for a placeholder image, allowing it to seamlessly handle

both text-only and image-text posts. Finally, in Publication V, we proposed leveraging

two auxiliary tasks, Image-Text Contrastive (ITC) and Image-Text Matching (ITM), as
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auxiliary losses during fine-tuning to enhance social media post classification. Our extensive

study shows consistent performance improvement across five diverse multimodal social media

datasets for models fine-tuned with ITC and ITM, covering both single- and dual-stream

approaches. This approach addresses the challenges of hidden cross-modal semantics and

weak image-text relationships in social media content.

Q3: To what extent does multimodal commercial content exist in social media

beyond traditional forms of paid product advertising? Moreover, how transparent

are these types of advertising to social media users? We analyze political advertising

in Publication III and influencer commercial content in Publication IV. In Publication

III, we analyze political advertising, an important aspect of digital election campaigning.

Additionally, we introduce the task of sponsor type prediction, aiming to differentiate between

ads from official political committees and those from third-party advertisers, crucial for

transparency in elections. Third-party advertising has seen increased presence in previous

elections, often funded by undisclosed dark-money sources. Next, in Publication IV, we delve

into influencer marketing, where distinguishing between commercial and non-commercial

content is challenging. Our focus is on automatically detecting commercial content in influencer

posts to enhance transparency regarding promoted products, addressing concerns related to

misleading advertising and undisclosed sponsorships at large scale.

7.3 Impact of Thesis Work

The tasks introduced in this thesis open new research directions, including inferring the

location type from the content of a social media post, analyzing political advertising for

sponsor type and ideology, and detecting the presence of commercial content in social media

posts. These research directions hold particular relevance for computational social science,

and offer valuable data and methods for social scientists to conduct large-scale studies.

In recent years, there has been a notable increase in interest in multimodal models for

analyzing social media (Lu et al., 2018; Moon et al., 2018a; Xu and Li, 2022; Cheema et al.,

2022; Yu et al., 2023). The datasets introduced in this thesis together with the proposed

methods, provide diverse applications in future research. They can be employed for analyzing

the characteristics of multimodal social media posts and advancing multimodal research more

broadly. For instance, in Ilias et al. (2023), the authors base their model for detecting dementia
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on our two-level multimodal model from Publication II and insights from Publication III.

Moreover, our proposed datasets and methods can be used for refining research in each

proposed task, and for contributing to the pre-training of large language models (Li et al.,

2023; Laurençon et al., 2023). Our methods, enriched by insights into tailoring models to

account for the characteristics of text-image relationships in social media posts, stand as

valuable baseline models for upcoming research work. The next section suggests future

research directions.

7.4 Future Directions

Publications I and II presented a study on POI type prediction. In the future, this work could

be extended by focusing on inference at a more granular level of location types. Currently,

the study categorized places into eight general types, but there is potential for more specific

sub-categories. For example, instead of predicting just ‘Food’ the model could predict ‘Italian

restaurant’, ‘Chinese restaurant’ or ‘fast-food restaurant’. This would require more fine-grained

data labeling. Additionally, it might require the implementation of hierarchical classification

models to tackle this task. Moreover, to accommodate diverse aspects within a single tweet,

one approach could involve redefining the problem as a multi-label classification scenario.

For instance, enabling multiple labels per tweet, such as ‘Food’ and ‘Shop & Service’ as

opposed to the current constraint of a single-label classification. Incorporating user and

network information could also enhance the models’ predictive capabilities. User behavior,

preferences, and demographics might influence their interactions with different types of

locations. Moreover, social network information could offer insights into the dynamics of

POI engagement and popularity. Exploring ways to effectively incorporate this contextual

information into the existing models could lead to more accurate predictions.

Publication III introduced work on online political ads consisting of images and text

wordings from the image. Expanding the research on political ads to include other modalities

such as speech and video would offer a more comprehensive analysis of the content used

in political campaigns. Moreover, the extension of the work to different regions, languages,

and platforms would allow for cross-cultural comparisons and insights into how political

discourse varies across contexts. Analyzing political ads across multiple languages could

present challenges in terms of natural language processing and translation, but it could lead

to valuable insights into political communication on a global scale.
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Publication IV presented a study of influencer content in Twitter (now known as ‘X’)

using images and text in English. For modeling influencer content in multilingual settings

across platforms, the research could expand its focus beyond Twitter and English. Different

social media platforms may have distinct user behaviors and content formats, so adapting

the influencer content analysis to platforms like Instagram, YouTube and TikTok in various

languages, would provide a broader understanding of influencer marketing. Multilingual

modeling may involve developing language-specific models or multilingual models capable of

processing and understanding content in multiple languages.

Publication V introduced a novel approach to enhance pre-trained models by jointly

fine-tuning them with two multimodal auxiliary tasks. This approach was evaluated on four

popular multimodal tasks using Twitter posts in English. Assessing the models’ performance

across multiple platforms and languages will help generalize the findings and identify any

platform or language-specific effects. Additional tasks could include emotion recognition, fake

news detection, or named entity recognition, which could provide valuable insights into the

dynamics of social media interactions.
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