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Abstract 

Masonry, valued for its durability and sustainability, is a common building material. However, many 
masonry structures have surpassed 100-year span, and show significant signs of deterioration. 
Therefore, inspecting and assessing these structures is crucial for their continued function and 
longevity. This research aims to streamline traditional inspection and assessment processes through 
automation. The primary contribution of this work is the development of advanced deep-learning and 
computer-vision techniques. These techniques enable precise detection, segmentation, and 
documentation of intricate masonry micro-geometry using digital data sources like images, point 
clouds, and reality-mesh objects. Additionally, this research involves creating precise numerical 
models for masonry assessment and studying how geometric accuracy affects numerical analysis. 
These objectives have been successfully achieved across various publications, encompassing both 2D 
and 3D environments. 

More specifically, the initial phase of the research focused on automating the generation of geometric 
and numerical models of masonry structures from photographs, utilizing computer-vision methods. 
This process included generating CAD drawings for documentation and DEM (Discrete Element 
Method) models for structural assessment. The validity of this approach was confirmed by comparing 
it to idealized and precise numerical models of different structures. Subsequently, improvements 
were made by incorporating deep learning for the semantic segmentation of masonry micro-geometry 
into the existing workflow. This resulted in a more reliable method for detecting masonry features. 
This step also involved integrating an existing defect-detection model and developing a new block-
detection model based on convolutional neural networks (CNNs). The enhanced workflow was further 
validated by comparing manually and automatically generated geometry using DEM. Finally, the 
research was extended to a 3D environment, where a realistic 3D model was used to generate a 
classified point cloud of any masonry structure. Feature detection in this 3D context benefited from 
CNN models for blocks and cracks, with additional classifications (mortar and other elements) 
estimated using image-processing techniques. 

In conclusion, the developed workflows simplify a significant portion of the manual procedures 
involved in visual inspection, assessment, and even computer graphics generation. In most cases, the 
generated outputs meet the accuracy standards required for commercial use, assuming clear digital 
input with visible material changes. However, opportunities for improvement remain, primarily in 
refining detection techniques to enhance accuracy, addressing the mortar-mesh effect in numerical 
analysis, and achieving a solid 3D reconstruction of identified geometry to generate 3D numerical 
models for assessment.  
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1. Introduction 

Masonry structures are the main target of the research presented in this thesis. Although one of the 
oldest construction methods, it is still presently used due to its reliability and sustainability. More 
specifically, it is estimated that at least 40% of bridge stock in the UK is composed of masonry (Eaton, 
Edwards and Crapper, 2014). Where a large portion of them is beyond the 100-year mark with 
significant signs of deterioration, which affects their performance (McKibbins et al., 2006). In many 
cases, they are still in use (i.e., masonry arch bridges used as railway pathways). Their structural 
reliability has been affected by the change of load application, environmental impact, climate-change, 
etc. Furthermore, a lot of those structures are listed as part of our cultural heritage and there are large 
efforts by the government to repair and preserve those invaluable assets (UNESCO Institute for 
Statistics, 2021; Brown, 2024). Additionally, preservation and renovation follows the UK strategy for 
greener alternatives (BEIS, 2021), in addition to the economic advantages compared to alternatives 
(i.e., demolish and rebuild).  

Frequent inspection assists on the preservation of existing structures since it can identify defects and 
formulate a suitable strategy for their preservation (Sowden, 1990; Phares et al., 2004; Eaton, Edwards 
and Crapper, 2014). However, traditional methods of visual inspection rely highly on manual 
recordings and human interaction. Thus, the inspection of engineering assets is an expensive and time-
consuming process, especially for difficult-to-reach locations or structures with moderate-to-high 
traffic. More importantly, visual inspection is subjective to the individual experience of the conductor. 
Research has demonstrated that at least 22% of the average condition ratings, of routine highway-
bridge inspection, is incorrect (Phares et al., 2004). Nonetheless, the absence or improper assessment 
of critical engineering assets can lead to substantial economic expenses and, in some cases, even loss 
of human life (specifically, in the event of sudden failure). 

Another important part of the evaluation of the current condition of existing structures is the manual 
assessment using numerical-modelling techniques (i.e., to assess the maximum load and estimate the 
crack-propagation). However, masonry is a complex element, with non-linear behaviour, since it is 
composed of multiple materials (mortar, stone, bricks, etc.). There are mainly two modelling-
strategies for the assessment of masonry structures (Lourenço, 1996, 2013; Asteris et al., 2015; D’Altri 
et al., 2020).  

The first is macro-modelling, where the structure or element is considered a continuum material. In 
which case, the formation of cracks may be shown where the maximum stresses are recorded. 
However, their accuracy is limited since it ignores the effect of composite nature of masonry and the 
masonry pattern of brickwork/stonework (Alessandri et al., 2015; Iannuzzo et al., 2018; Segura et al., 
2021). A macro-modelling alternative to continuum material is the discontinuum macro-modelling, 
where the continuum object is separated in multiple elements with the same material-properties 
(Caliò, Marletta and Pantò, 2012; Angelillo, 2019). That allows the investigation of crack propagation 
in terms of separation, but still ignoring the composite nature and actual pattern of masonry.  

A more detailed approach is micro-modelling, which considers masonry as an assemblage of mortar-
joints and masonry-units. Similarly, to the macro-modelling approach, this is also separated mainly 
into 2 different sub-classes. The simplest is the simplified micro-modelling, which considers the 
mortar-joints as a zero-thickness interface (Sarhosis and Sheng, 2014; Sarhosis et al., 2014; Sarhosis, 
Garrity and Sheng, 2015; Forgács, Sarhosis and Bagi, 2017, 2018; Zhang, Macorini and Izzuddin, 2018; 
Erdogmus et al., 2020). The advantage of this method is that the computational effort required is 
smaller, although less accurate than the alternative. Where the alternative is the detailed micro-
modelling approach, which includes the simulation of the mortar with realistic size and different 
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material-characteristics than the masonry-units (Sarhosis and Lemos, 2018). Other research also 
includes the discretization of blocks, mortar, and even backfill material as a more detailed procedure 
(Sarhosis and Lemos, 2018; Sarhosis, Forgács and Lemos, 2019). This allows internal separation of 
those materials. Nonetheless, detailed-micro-modelling introduces high complexity to the geometry 
and numerical analysis (i.e., increases time of geometry-generation and computational-effort 
significantly). Thus, it is usually avoided, for the analysis of larger elements/structures, in favor of the 
simplified micro-modelling approach. Thus, the micro-modelling approach followed depends on a 
multitude of factors such as the accuracy required, available time, computational resources, etc. Even 
so, both micro-modelling approaches provide high simulation accuracy, compared to macro-modelling 
approaches. 

Lastly, another important aspect of the numerical modelling of masonry is the effect of the geometric 
accuracy that is transferred to the numerical model. Such as potential defects, change of masonry 
pattern, actual mortar thickness in individual locations, actual size of individual bricks, etc. Recent 
research has demonstrated the effect of geometric accuracy on analysis in terms of size and shape of 
masonry materials (Erdogmus et al., 2019; Ferrante et al., 2021; Kassotakis et al., 2021). However, 
that level of accuracy is difficult to achieve using traditional means. Thus, most researchers and 
engineers focus on the idealized geometry due to the effort required to produce high-accuracy 
geometry.  

Photogrammetry and laser-scanning (LiDAR) offer a solution for the remote visualization and 
documentation of existing structures (Historic England, 2017, 2018). For example, photogrammetry 
can be used to obtain reliable information of an object by processing image-data. First conceived by 
“Albrecht Meydenbauer” for the indirect measurement of facades from photographs (Albertz, 2007). 
A Modern application of photogrammetry allows to obtain the 3-dimensional information from 
images by a technique called structure-from-motion (SfM). Where a sequence of images is used to 
provide depth information by tracking matched-features across different images. Photogrammetry is 
an inexpensive method of obtaining 3d geometry and colour of an object in space (since it only 
requires a camera for data capture). LiDAR is another method that yields results similar to 
photogrammetry, employing a laser-scanner to capture a 3D point-cloud of the scanned area. LiDAR 
measures the distance of a point in space with the emission of a laser-light and by measuring the time 
of reflection. Modern LiDAR instruments can emit more than 150,000 pulses per second for fast 
acquisition of georeferenced points. Depending on the model, the points recorded can include colour 
as well. Lastly, LiDAR has terrestrial (“Terrestrial Scanning” or “Ground Based LiDAR”) and airborne 
applications (Schmid et al., 2012). 

Although the capabilities of the aforementioned methods for the documentation of existing structures 
are enormous, they lack automation for the extraction of geometric features to assess their condition 
and structural behaviour (Morer, de Arteaga and Ortueta, 2013). The research in Napolitano and Glisic 
(2019) shows a simple method of identifying the location of bricks with the assistance of manually 
placed markers. In Sithole (2008) are able to detect individual bricks of laser-scans of masonry walls 
using a semi-automatic approach. Where the accuracy of the detection relies on the depth-difference 
between mortar and brick and is best used on single plane elements. The work in Shen et al. (2018)  
shows a novel approach of identifying different bricks from a point-cloud of an unorganised pile of 
bricks. Another example is shown in Cabaleiro et al. (2017), where it shows a potential way of 
identifying cracks in timber beams. Recent research focuses on generating BIM and H-BIM (Historical-
BIM) models (Volk, Stengel and Schultmann, 2014), with the aim to provide a useable model for 
common commercial packages (Andriasyan et al., 2020). Recent research even takes advantage of 
artificial intelligence to identify the different elements of the structure (Bassier and Vergauwen, 2020).  

Further research even tries to generate a useable numerical model of the scanned structures for 
assessment (Barazzetti et al., 2015; Korumaz et al., 2017; Bassier et al., 2019; Rolin et al., 2019; Funari 



16 
 

et al., 2021; Pepi et al., 2021); using the Finite Element Method (FEM). However, those methods 
consider the macro-modelling approach, which may not have sufficient accuracy for masonry 
structures. A different use of 3d point-clouds, for the generation of numerical models, is voxelisation 
(Hinks et al., 2013; Kassotakis and Sarhosis, 2021). Where the 3d-point-cloud is converted to a 
collection of solid cubes that replicate loosely the geometry. This allows the investigation of crack 
propagation since the voxels are separable. However, voxelised models have reduced accuracy to 
more complex alternatives (i.e., micro-modelling), since they do not consider the masonry-pattern or 
other details on the geometry (i.e., existing defects). 

The human eye can easily detect edges and shapes on an image without much effort. On the other 
hand, a computer can only perceive an image as an array of different numbers. For that reason, the 
use of complex algorithms is required to be able to acquire additional information from image-data. 
The family of those algorithms is typically referred to as image-processing.  

Feature detection refers to the ability to detect certain characteristics on an image by scanning an 
area (usually 3x3), using a dedicated algorithm. The most renown algorithm of that purpose is the 
canny edge detection (Canny, 1986). The technology behind edge detection is still evolving with more 
algorithms promising better results (Martin, Fowlkes and Malik, 2003, 2004; Arbeláez et al., 2011; 
Bora, 2017). Even with the aid of machine-learning but with the disadvantage that the algorithm 
requires sufficient training to manually-annotated data (Martin, Fowlkes and Malik, 2003, 2004). 
However, the simplicity and performance of the canny edge detection are still appreciated and used 
to this day.  A different approach is presented in Brackenbury and Dejong (2018), which investigates 
the mortar detection of masonry elements. The image is filtered using an edge-detection algorithm 
based on the Sobel kernel to locate possible edges followed by Hough-transform to identify the lines 
of the bed-joints. However, since their approach is using the Hough-transform, the detection of 
features is limited to straight-lines. A similar example is provided in Oses, Dornaika and Moujahid 
(2014), where the authors detect line segments on masonry walls, using existing image-processing 
techniques. After delineation, the result is enhanced using artificial-intelligence. Although applied on 
3d point-cloud, the research in Valero, Bosché and Forster (2018) describes a reliable method to 
detect bricks on masonry-walls using image-processing. They used the 2D Mexican-hat-wavelet 
(MHW) to detect features on the depth-map (2d array). Excess noise is removed under the assumption 
that every brick is enclosed within its convex-hull. Thus, the main limitation of the proposed approach 
is that it cannot define properly concave elements. Another approach that does not use typical 
photographs is shown in Cluni et al. (2015), where the authors use thermographic images to identify 
the location of bricks and mortar with the aim to evaluate the structural response for modal analysis. 

However, the detected edges cannot be used to define the location of the individual elements of the 
structure in that state. Segmentation is a method to divide an image into smaller groups (i.e., bricks, 
mortar, cracks, openings), which are easier to manipulate and measure. A solution to convert detected 
features to segmented areas is by the use of a technique called watershed-transform. The process is 
considering the image as a topological map with the intensity value of the pixel representing the 
height. Peaks and valleys are the local maxima and local minima of the image respectively. There are 
two main approaches to watershed segmentation, “watershed by flooding” and “watershed by rain-
falling”. “Watershed by flooding” is locating the valleys of the image and continues by flooding the 
surrounding areas gradually. The flooding stops when the peak of the surrounding ridge is reached or 
when two flooded areas meet. In the case of two flooded areas meeting, a dam of zero thickness is 
erected that separates the regions. The “watershed by rain-falling” works differently. The main 
difference is that the watershed is simulating water-falling where the water dropping along the 
surface of the image flows towards the valley following the steepest path (Kornilov and Safonov, 
2018). Over the years a great number of different watershed algorithms have been proposed. The 
version of the algorithm most commonly used is provided in Beucher, S.; Meyer (1993), which is based 
on the “watershed by flooding” method initially proposed by Vincent and Soille (1991). 
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There are many algorithms that can be used to convert the information acquired from the 
segmentation into manageable data. One example is border-following, which can be used to acquire 
the perimeter of objects in binary-images (Suzuki and Abe, 1985). In this case, the perimeter is 
acquired as a collection of vertices. Border-following can be paired with line-generalisation to reduce 
the number of vertices on the polyline and retain the most significant to describe its geometry. A 
common generalisation method is the “Ramer-Douglas-Peucker” algorithm, which is based on a 
vertical-threshold to filter the points of the polyline (Ramer, 1972; Douglas and Peucker, 1973). 

The main issue with the use of simple image-processing operations, for feature-detection, is that they 
are highly affected by the change in illumination, colour, texture, and resolution. In all except ideal 
cases, their performance is not appropriate for complete-detection. An alternative approach proposed 
is the use of machine-learning (M.L.), where an algorithm can be trained to identify the desired 
locations of micro-geometry of masonry. 

A subclass of M.L., Deep Learning (D.L.) is trying to replicate the natural ability of the human-brain to 
learn. The disadvantage of this method is that the algorithm requires a large amount of labelled data 
for adequate performance (Bagińska, Srokosz and Srokosz, 2019). There are different types of D.L 
architectures. Convolutional-Neural-Networks (CNN) are often used for image classification and 
segmentation. CNN architectures are typically composed of multiple layers of convolutions (acting as 
feature detectors), followed by fully connected layers of neurons (for classification). However, for 
semantic-segmentation usually FCN (Fully-Convolution-Network) is used instead of CNN (Long, 
Shelhamer and Darrell, 2015). The difference is that FCN replaces the fully-connected-layers (neurons) 
with convolutional layers. The advantage of FCN over CNN is that they allow the use of any image-size 
as input. This is due to the fact that the fully connected layers require a specific number of inputs, 
while convolutions do not have this limitation. Some of the commonly used FCN architectures include 
U-Net, DeepLabV3+, LinkNET, FPN, and many more (Chen et al., 2015, 2018; Ronneberger, Fischer and 
Brox, 2015; Lin et al., 2017; Chaurasia and Culurciello, 2018). 

Often a CNN or FCN architecture is paired with a backbone network that acts as feature extractor. It 
is placed prior to the main architecture, with the aim to improve classification and segmentation 
accuracy. Examples of common backbone architectures include VGG, ResNet, Inception, etc. Another 
common approach to increase the accuracy of the model is transfer-learning, where a model is 
pretrained to a different dataset with the aim to learn to detect complex-features from the image. 
Then, the model is trained as normally to the actual dataset. Transfer-learning can be used in both 
CNN and FCN architectures and has shown to boost the performance of models trained to smaller 
datasets (Hussain, Bird and Faria, 2019; Dais et al., 2021). 

Machine learning is often used in engineering projects. Regarding masonry, one common application 
of M.L. is to assist with the defect detection of heritage structures (Valero et al., 2019). Especially in 
the case of CNN/FCN for either region classification (Ali, 2019; Wang et al., 2019), patch classification 
(Chaiyasarn et al., 2018; Brackenbury, Brilakis and Dejong, 2019), or semantic segmentation (Kalfarisi, 
Wu and Soh, 2020; Dais et al., 2021), directly on the input-image. Where region classification is based 
on a region proposal system and classifies the selected regions, patch classification classifies small 
patches on the image individually, and semantic segmentation classifies every pixel on the image. 
There are also efforts to transfer the detected defects to 3D environment for improved visualisation 
(Kalfarisi, Wu and Soh, 2020). Although not as common as defect detection, recent research 
demonstrates the potential of deep-learning for the use of brick/stone detection on masonry 
structures (Ibrahim, Nagy and Benedek, 2019; Ergün Hatir and İnce, 2021; Loverdos and Sarhosis, 
2022a). Deep-learning may consider region-classification (assuming rectangle units parallel to the 
ground-plane; (Ergün Hatir and İnce, 2021)), or semantic-segmentation (Ibrahim, Nagy and Benedek, 
2019; Loverdos and Sarhosis, 2022a). Nonetheless, the complete identification of the micro-geometry 
of masonry is important if the aim is complete visualisation and evaluation of the structural condition. 
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1.1. Research-Gap Analysis 
Nowadays, data gathering is simpler than ever due to recent advances in the technology of remote 
sensing (LiDAR, Photogrammetry, smartphones, thermographic cameras, drones, etc.). However, 
those data are usually processed manually to generate i.e., the numerical model (suitable for DEM) or 
the classification of the different elements for use in BIM programs (i.e., walls, floors, etc). The 
research-gap, identified in the literature, is provided below: 

• The inspection and assessment of existing structures is traditionally a visual and manual 
process (i.e., hammer tapering, measuring of deflection, documentation of defects), that 
comes with large monetary costs, requires extensive time, and relies on expertise personnel. 
Furthermore, certain locations may prove challenging to investigate (i.e., vital infrastructure, 
tall structures, etc.). 

• There is no work in the literature to generate the “as is” geometry of masonry structures for 
documentation or analysis. Although there is work showing the application of binary-
structures for the generation of numerical-models, their application is limited to specific 
shapes (i.e., rectangle walls; (Tiberti and Milani, 2019)). Additionally, although there are 
studies that convert 3D-scans to numerical models, those are limited to macro-modelling 
techniques using FEM for analysis (Funari et al., 2021) or DEM for voxelised structures 
(Kassotakis and Sarhosis, 2021). 

• Image-processing techniques proved inadequate to identify the micro-geometry of masonry 
in most cases (Oses, Dornaika and Moujahid, 2014) due to low visual-quality of pictures, blurry 
edges between materials, change in illumination/colour/texture, etc. Furthermore, those 
techniques are incapable of identifying the composition of a structure (i.e., concrete, steel, 
masonry, openings, background, etc.). 

• The detection of defects in all type of constructions, including masonry, is a common research-
project. However, the identification of their geometric properties is usually neglected. Even 
though, the evaluation of defects has substantial commercial applications, i.e., by assisting 
with the manual-process of inspection and decision-making regarding restoration and 
maintenance of heritage structures. 

• Lastly, there is very limited work in transferring the available classifications of structures (using 
for instance CNN) to 3D environment for documentation (Kalfarisi, Wu and Soh, 2020). 
Additionally, the process of classification on 3D environment usually requires specialised data 
that is hardly available on demand (3D point-clouds), their generation requires large effort for 
classification (i.e., manual classification of structural-elements in 3D point-clouds) and 
technology that may not be available due to budget concerns (i.e., laser-scanners). 

1.2. Aim and Objectives 
The research in this document represents the effort to take advantage of visual-data to generate the 
geometric/numerical-model of masonry structures (automatically or semi-automatically), including 
the identification and measurement of detected-defects. Those are aimed at assisting engineers with 
the visual-inspection, documentation, and rehabilitation of heritage structures of masonry. The main 
objectives of the research are highlighted below. 

1. [Publication #1]: Develop a workflow for the generation of 2D geometric/numerical-models 
of masonry from image-data, including the definition of damaged areas. 

2. [Publication #2]: Define a method to identify the masonry-units from image-data, more 
reliably than simple image-processing operations.  

3. [Publication #2]: Evaluate the use of deep-learning for the detection of masonry-units from 
image-data. Identify the most suitable network-architecture for the purpose of the study and 
define the hyperparameters to maximise validation-accuracy.  
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4. [Publication #2]: Combine block-detection and defect-detection to a single image-output for 
complete visualisation of the structural condition. 

5. [Publication #3 & 4]: Combine the detection of the micro-geometry of masonry using 
CNN/FCN, with the workflow to generate the geometric/numerical-model of masonry 
structures. 

6. [Publication #3 & 4]: Define the remaining aspects of the masonry-geometry (i.e., openings, 
background, other structural elements) using the CNN/FCN output combined with image-
processing. 

7. [Publication #3 & 4]: Define a precise method for the evaluation of the geometric-properties 
of cracks in 2D environment. 

8. [Publication #5]: Develop a workflow to transfer the classification of the micro-geometry of 
masonry from 2D to 3D models (reality-mesh). 

9. [Publication #5]: Define a precise method for the evaluation of the geometric properties of 
cracks in 3D environment. 

1.3. Contributions 
The overall research is a novel approach to the visualization and assessment of masonry structures, 
which offers a number of contributions to the scientific community. The complete list of contributions 
and knowledge generated is the following: 

1. A novel workflow developed to acquire the 2D digital-representation of the geometry of a 
masonry structure, from image-data. The workflow also includes the automatic generation of 
numerical models in DEM. 

2. Evaluation of the validity of the “as is” geometry for numerical analysis (using DEM), compared 
to the commonly used “idealized” geometry. 

3. Generation of sufficient dataset for training/validation of artificial intelligence models for 
semantic segmentation of masonry brick elements. 

4. Evaluation of different CNN architectures, hyperparameters, loss functions, and optimizers for 
the semantic segmentation of masonry brick elements. 

5. Identification of the optimal combination of CNN architecture, hyperparameters, loss 
function, optimizer, etc., for the detection of brick elements. 

6. A novel workflow for the generation of a classified point-cloud from photorealistic 3d models 
of masonry structures.  

7. A novel workflow for the measurement of the geometric properties of detected defects, in 
both 2D and 3D environments. 

1.4. Organization of the Thesis and Publications 
The main body of the thesis includes the 5 peer-reviewed journal-publications, finalised during the 
postgraduate research period of 2019-2023. Those are provided in order of date of publication, where 
the main objective of each publication is to progress the initial research project (by improving the 
automation and main-capabilities of the developed algorithms). In more detail, the complete structure 
of the report is provided below: 

1.4.1. Chapter #1: Introduction 
Includes the combined literature review of all publications, in logical order to describe the research 
progression. Furthermore, it includes the research-gap analysis, aim, objectives, and organisation of 
the thesis. 
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1.4.2. Chapter #2: Publication #1 (Loverdos et al., 2021a) 
The 1st publication demonstrates a novel approach to convert binary-images of masonry structures to 
CAD drawings. Both blocks and cracks are detected using image-processing methods (i.e., canny-edge-
detection and image-thresholding). The generated-geometry is transferred to a numerical-model, by 
the conversion of DXF-lines to line-commands, for use with the commercial program UDEC. The main 
disadvantage of the developed workflow is that it relies heavily on the quality of the binary-image 
generated using image-processing. It has been perceived that a large number of images of masonry 
cannot be converted to binary-images with adequate quality for feature-extraction (solved in 
publication #2). Additionally, each processed image requires a significant amount of time to generate 
since it requires the modification of the image-processing parameters. Another issue with the work 
presented is that the mortar-mesh, used to investigate crack propagation, was placed manually 
(solved in publication #3). Thus, some mortar-mesh-elements had concave shape, which could cause 
overestimation of collapse-loads (due to interlocking). 

1.4.3. Chapter #3: Publication #2 (Loverdos and Sarhosis, 2022a) 
The 2nd publication evaluates the use of CNN for the automatic detection of masonry-units. Multiple 
network-architectures have been tested with varied configuration of the hyperparameters involved, 
to maximise accuracy. The result is combined with a crack-detection model developed by Dais et al. 
(2021), for visualisation. The aim of combining block and crack-detection using CNN is to provide a 
robust method for the detection of the micro-geometry of masonry, to replace the image-processing 
operations in the 1st publication. 

1.4.4. Chapter #4: Publication #3 (Loverdos and Sarhosis, 2023b) 
The 3rd publication combines the work presented in the 1st and 2nd publications and provides further 
improvements to the algorithm in terms of automation. It defines a complete workflow for the 
generation of geometric/numerical models of masonry structures from image-data. This includes the 
future-detection of the micro-geometry of masonry using CNN (from 2nd publication), an updated 
method for the feature-extraction of shapes as polylines (from 1st publication), automatic generation 
of convex-mesh elements to investigate crack-propagation (from 1st publication), and an accurate 
method for the measurement of detected cracks. 

1.4.5. Chapter #5: Publication #4 (Loverdos and Sarhosis, 2023c) 
The work presented in the 4th publication demonstrates the conversion of the algorithms, developed 
in the 3rd publication (Loverdos and Sarhosis, 2023b), to a self-sufficient program for industrial use. 
This includes the development of a complete graphical-user-interface (GUI), pop-up windows for the 
registration of parameter-values, etc. The publication is mainly aimed to developers, rather than 
engineers, that are interested in the applied-code and presentation of the program instead of the 
algorithmic approach. 

1.4.6. Chapter #6: Publication #5 (Loverdos and Sarhosis, 2023d) 
The work presented in the 5th publication transfers part of the previous research in a 3D environment. 
It demonstrates a novel methodology for the generation of a classified point-cloud, from an existing 
3D model of a masonry-structure (reality-mesh). The initial classification is applied on off-screen 
renders, captured automatically or semi-automatically, from the reality-mesh itself. The classification 
is applied using existing CNN models (Dais et al., 2021; Loverdos and Sarhosis, 2022a), on the 2D 
renders instead of the point cloud. Furthermore, it describes the methodology to convert the 
detected-cracks from points to mesh-elements, to measure their geometric properties. 

1.4.7. Chapter #7: Discussion 
The work presented in the supplementary chapter, is the overall discussion of the results of the 
presented thesis. More specifically, the discussion chapter includes the application of artificial 
intelligence, development of 2D workflow, and development of 3D workflow. Lastly, it includes the 
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validation of the final-version of the 2D workflow, developed and improved during the 4 first 
publications. The validation is considering the comparison of the “idealised” and “as is” geometry, for 
numerical analysis using DEM. 

1.4.8. Chapter #8: Conclusions 
The final chapter provides the conclusions of the overall research. Those include the summary, 
possible applications, advantages and disadvantages, future work, and possible improvements to the 
workflows proposed. 

1.4.9. Appendix 
Includes all publications, which are 5 peer reviewed journal-articles as 1st author (Loverdos et al., 
2021a; Loverdos and Sarhosis, 2022a, 2023c, 2023b, 2023d), 2 peer-reviewed journal-article as 2nd 
author (Ferrante et al., 2021; Vandenabeele et al., 2023), a conference article as 1st author (Loverdos 
and Sarhosis, 2023a), and lastly a conference article as 3rd author (Muhit et al., 2023). Those are 
provided separated, as individual uploads. For a complete list of publications, use the following link. 

ResearchGate Link: https://www.researchgate.net/profile/Dimitrios-Loverdos/research 

 

  

https://www.researchgate.net/profile/Dimitrios-Loverdos/research
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2. Paper #1: An innovative image processing-based framework for the 
numerical modelling of cracked masonry structures. 

 

Dimitrios Loverdosa, Vasilis Sarhosisa,*, Efstathios Adamopoulosb, Anastasios Drougkasa 

a University of Leeds, School of Civil Engineering, Woodhouse Ln, Leeds LS2 9DY, United Kingdom 
b University of Turin, Department of Computer Sciences, Corso Svizzera 185, Turin 10149, Italy 

 

Abstract 
A vital aspect when modelling the mechanical behaviour of existing masonry structures is the accuracy 
in which the geometry of the real structure is transferred in the numerical model. Commonly, the 
geometry of masonry is captured with traditional techniques (e.g., visual inspection and manual 
surveying methods), which are labour intensive and error-prone. Over the last ten years, advances in 
photogrammetry and image processing have started to change the building industry since it is possible 
to capture rapidly and remotely digital records of objects and features. Although limited work exists 
in detecting distinct features from masonry structures, up to now there is no automated procedure 
leading from image-based recording to their numerical modelling. To address this, an innovative 
framework, based on image-processing, has been developed that automatically extracts geometrical 
features from masonry structures (i.e., masonry units, mortar, existing cracks, and pathologies) and 
generate the geometry for their advanced numerical modelling. The proposed watershed-based 
algorithm initially deconstructs the features of the segmentation, then reconstructs them in the form 
of shared vertices and edges, and finally converts them to scalable polylines. The polylines extracted 
are simplified using a contour generalisation procedure. The geometry of the masonry elements is 
further modified to facilitate the transition to a numerical modelling environment. The proposed 
framework is tested by comparing the numerical analysis results of an undamaged and a damaged 
masonry structure, using models generated through manual and the proposed algorithmic 
approaches. Although the methodology is demonstrated here for use in discrete element modelling, 
it can be applied to other computational approaches based on the simplified and detailed micro-
modelling approach for evaluating the structural behaviour of masonry structures. 

 

Keywords: masonry, image processing, watershed transform segmentation, feature extraction, 
numerical modelling, DEM. 
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2.1. Introduction 
Assessing the structural performance of ageing masonry structures is a difficult task. Over the last 
three decades, significant efforts have been devoted to developing numerical models to represent the 
complex and non-linear behaviour of existing unreinforced masonry structures subjected to external 
loads. Such models range from considering masonry as a continuum (macro-models) to the more 
detailed ones that consider masonry as an assemblage of units and mortar joints (micro-models or 
meso-scale models), see (Lourenço, 1996). Since old and deteriorated masonry is typically 
characterised by low bond strength (Sarhosis and Sheng, 2014), cracking is often a result of the 
masonry units' de-bonding from the mortar joints. Given the importance of the masonry unit-to-
mortar interface on the structural behaviour of aged masonry structures, micro-modelling approaches 
(i.e., those based on Discrete Element Method; in which the mortar is described as zero-thickness 
interfaces between the masonry units) are better suited for simulating their serviceability and load 
carrying capacity (Sarhosis and Sheng, 2014; Sarhosis, Garrity and Sheng, 2015). A vital aspect when 
modelling masonry structures, based on the micro-modelling approach, is the accuracy in which the 
geometry and material performance characteristics are transferred in the numerical model (Forgács, 
Sarhosis and Bagi, 2017, 2018). Even though current numerical modelling strategies for masonry are 
focusing primarily on idealised geometry (Asteris et al., 2015), examples in the literature (e.g., 
(Erdogmus et al., 2019)) demonstrate that a more representative visualisation of the masonry leads 
to more accurate results. 

Some efforts are being made by the scientific community to accurately capture the geometrical 
characteristics of masonry structures using traditional techniques (e.g., on-site inspection and manual 
surveying methods). However, such methods have been found to be labour intensive and error-
prone(Zhang, Macorini and Izzuddin, 2018). Over the last ten years, advances in laser scanning and 
photogrammetry have started to drastically change the building industry since similar techniques are 
able to capture rapidly and remotely digital records of building elements and features in three-
dimensional (3D) point-cloud and ortho-image format (Morer, de Arteaga and Ortueta, 2013; Altuntas, 
Hezer and Kırlı, 2017; Napolitano and Glisic, 2019). However, current approaches for extracting 
geometrical features (i.e., size and positioning of masonry units, location, and size of cracks, etc.) from 
imagery, lack automation, while protocols for the systematic generation of meso-scale models for 
assessing the structural behaviour of masonry structures are absent. Thus, even today, the feature 
extraction of masonry units' geometry is done manually using either computer-aided design (CAD), 
image, or point-cloud-based approaches (Morer, de Arteaga and Ortueta, 2013; Napolitano and Glisic, 
2019). Point-based voxelisation of point-cloud data offers a possible solution by allowing the 
generation of discretised models (Hinks et al., 2013). Even so, voxelisation methods do not consider 
the effect of the masonry-unit geometry or physical defects on the numerical model. 

Image-processing approaches can offer various solutions to the problem of creating simplified records 
of masonry structures suitable for meso-scale modelling via the use of feature-detection (Canny, 1986; 
Martin, Fowlkes and Malik, 2003; Arbeláez et al., 2011; Bora, 2017) and segmentation techniques 
(Beucher, S.; Meyer, 1993; Arbeláez et al., 2011; Kornilov and Safonov, 2018). Research in automated 
detection and segmentation of masonry elements has drawn much attention by the scientific 
community (Sithole, 2008; Brackenbury and Dejong, 2018). Additionally, research in defect 
localisation using artificial intelligence also offers alternative methods to identify the extent of damage 
present on masonry structures, with high-level of automation (Chaiyasarn et al., 2018; Valero et al., 
2019; Dais et al., 2021). Feature-detection of masonry elements presents a challenging task due to the 
anisotropic radiometric characteristics of the imagery or ortho-imagery involved. Raw images or 
photogrammetric derivatives, depending on the method of acquisition, may be of low quality for the 
automated detection of features. That includes the on-image sharpness of the edges of masonry units 
and defects, efficient contrast between masonry units and interfaces, and the effect of surface 
degradation on capturing the necessary radiometric data. 
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However, recent studies have demonstrated the efficient application of image-enhancing algorithmic 
implementations, with the purpose to improve the radiometric quality of digital records of masonry, 
facilitating the extraction of geometric features of their structural elements (Valero, Bosché and 
Forster, 2018; Ibrahim, Nagy and Benedek, 2019). Advanced solutions have also considered the use of 
infrared thermography as a primary sensing technique for the interpretation of the structure of 
masonry (Cluni et al., 2015). Those recent developments establish the use of image-based applications 
as a viable solution for the mechanical evaluation of masonry elements. A similar notion is presented 
in (Tiberti and Milani, 2019, 2020a, 2020b), where it contemplates the use of binarised-images for the 
automatic construction of a voxel/pixel heterogenous pattern for the limit-analysis of irregular 
masonry. However, despite the rationale of identifying the structural composition characteristics of 
masonry in a cost and time-effective way, the practical use of feature and defect-detection is rarely 
used for the automated generation of discreet numerical models. 

To resolve the commonly discussed topic of masonry evaluation using image-obtained data, this study 
proposes an automated methodological approach for numerical model generation using the output 
of image-processing applications. The main objective is the geometric feature-extraction from 
masonry structures (e.g., masonry units, mortar, and damage pathologies) using an innovative 
watershed segmentation approach. The methodology proposed in this document is part of a holistic 
framework that aims to automate fully the generation of masonry models from point-cloud data (PCD) 
and imagery data (Fig. 2.1). Although the approach is demonstrated here for use in discrete element 
modelling, it can be applied to other computational approaches for evaluating the structural 
behaviour of masonry structures. 

 
Fig. 2.1: Suggested workflow of the overall framework. The work presented in this document is shown in blue (Second row). 

2.2. Segmentation Adjustments 
The purpose of this section is to describe the refinement procedure followed to correct spatially the 
characteristics of masonry segmentation (Fig. 2.2), which can run as input for the accurate description 
of the masonry geometry in the structural analysis model. The procedure commences with a 
watershed segmentation-derived input and considers the actual geometric characteristics of both 
mortars and cracks in masonry to correct segmentation issues caused by geometric irregularities (Fig. 
2.2: Steps 3 and 4). 

 
Fig. 2.2: Workflow of the algorithm responsible for the segmentation modifications (Algorithm #1). 

Segmentation is often used in image processing to reduce the amount of available data on an image 
from pixels to regions. The segmentation technique considered is the marker-based watershed-
transform, due to its innate ability to produce closed-regions. The methodology proposed is aimed to 
be used in combination with algorithms that can produce good binarisation. However, if the contrast 
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between building blocks and their interfaces on the source imagery is adequate, typical image 
processing techniques can be applied (Fig. 2.3(d)). Additionally, If the input includes background 
information, it should be removed during the pre-processing stage. Moreover, a background of 
uniform colour can be used to limit the segmentation by generating the background-mask (Fig. 2.3(c)). 
After an appropriate binarised image is applied, a morphological operation can be used to detect the 
local minima (Fig. 2.3(e)). In which case, H-minima transform is often used to remove false local-
minima and prevent over-segmentation (Fig. 2.3(f)). The local-minima of a modified distance-
transform provides the markers of the watershed (Fig. 2.3(g)). Figure 3 shows a typical procedure of 
watershed-segmentation. 

 
Fig. 2.3: Marker-based watershed segmentation, (a): Image source; (b): Bilateral blurring on greyscale to reduce noise and 
retain edges; (c): Background mask by global-thresholding; (d): Canny edge-detector applied on the filtered image (after 
erosion/dilation); (e): Inverse distance-transform for the markers; (f): H-Minima transform to remove false minima; (g): 

Local-minima for watershed-markers (after dilation/erosion); (h): Segmentation lines. 

2.2.1. Mortar and Damage Mask Generation 
Considering the labelling convention of the watershed segmentation, the proposed algorithm 
generates a mortar-mask based on the numerical values of the watershed array, where the 
background label is marked with zero values, while the segmented areas are positive. The input for 
the mask generation process is the initial watershed array, padded by 1-pixel with zero values in all 
four directions. That allows to scan the image using a 2x2 Region of Interest (ROI). The size of 2x2 ROI 
corresponds to the minimum size required to detect an area where multiple labels are present. The 
following are the steps to define the network of mortar interfaces: 

1. Generated Mortar Mask (GMM): The mortar mask is generated using a 2x2 ROI to scan the 
image for inner interfaces (i.e., where the 2x2 ROI has two or more unique values, and all values 
are larger than zero) (Fig. 2.4 (b)). 

2. Imported Mortar Mask (IMM): Optionally, the original rasterised output of the feature-
detection, can be included to provide with minor corrections to the GMM (Fig. 2.4(c)). However, 
the rasterised image will contain perimetral edges that should be removed. 
2.1. Generated Perimeter Mask (GPM): When the original raster image is used, the perimeter 

mask is generated (i.e. where the 2x2 ROI has two or more unique values and contains at 
least one zero) which aims to remove the perimetral edges from the IMM (Fig. 2.4(d)). 
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3. Generated Background Mask (GBM): Excessive mortar caused by the dilation of GMM and IMM 
is removed by the background mask (i.e. where the padded watershed array has zero values), 
the GBM is applied to the final segmentation (Fig. 2.4(e)). 

The padding of all masks contains values of ones, except the GBM that contains zeros (Fig. 2.4). This 
allows the background to reduce the segmentation, even if it envelopes the entire image. The initial 
line-thickness of each mask that uses a 2x2 ROI is at least 2-pixels, since the entire ROI is transferred 
to the mask. The 2-pixel thickness is required due to the segmentations being connected, and a mortar 
of 1-pixel thickness would reduce the size of a masonry unit in one side. The size of each mask is 
controlled by erosion/dilation, which effectively adjusts their effect.  The GMM is adjusted manually 
to represent the average mortar thickness. The GBM and IMM are generally used as generated 
without modifications to their thickness. However, the GPM is given an excessive value to remove the 
perimeter of the imported-mortar-mask, given that it does not override succeeding mortar layers. The 
option to adjust each mask using morphological erosion and dilation allows the fine-tuning of the final 
result if it is required. 

 
Fig. 2.4: Raster masks; (a): Initial watershed segmentation; (b): Generated-mortar (GMM); (c): Imported-mortar (IMM); (d): 

Generated-perimeter (GPM); (e): Generated-background (GBM); (f): Final mortar (FMM= IMM+GMM). 

If the damage (i.e., cracking) in masonry is provided as a raster image (IDM, Fig. 2.5(d)), it can be 
applied to the final segmentation before the background mask. However, the use of external masks 
should be adjusted or avoided; if they are inaccurate (i.e., excessive noise, false detection of damage, 
etc.). If not, they may create inappropriate discontinuities on the material (Fig. 2.5(e)) and may cause 
incorrect estimation of collapse loads during the numerical analysis. Finally, a unique label is applied 
by each mask, on the final segmentation, used by the feature extraction method to identify different 
locations (i.e. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −1;  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −2;  𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = −3). 
Assuming that the accurate mortar (GMM, IMM) and damage (IDM) location is provided, the different 
damage states will indicate different damage types (i.e., crack on mortar, crack on brick, loss of 
material due to spalling or excessive cracking, etc). If not, they will only indicate the prior label before 
the damage is assigned to the affected location (Fig. 2.5(f)). 
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Fig. 2.5: Watershed segmentation demonstrating the name convention (GMM & IDM); (a): Source image; (b): Initial 

rasterised image; (c): GMM; (d): IDM; (e): Watershed segmentation with damage; (f): Watershed lines with damage states 
(Blue: Damage on mortar pixels, Magenta: Damage on brick pixels). 

2.2.2. Segmentation Cleaning and Correction 
The application of external masks, on the watershed array, may cause the isolation of individual pixels 
or separation of a segmentation into multiple objects (i.e., Fig. 2.5(d)). Their existence must be 
corrected before the feature extraction as it may cause issues with the definition of each block. 

The first step, towards the correction of the segmentation, is the elimination of isolated pixels (Fig. 
2.6). Pixels that do not have a 4-connectivity (i.e., no diagonal connectivity) with a label are considered 
“isolated”. An “isolated” pixel may cause the erroneous description of a masonry units’ perimeter. For 
that reason, they are replaced with the most common label of its neighbour pixels (Fig. 2.6(c) & Fig. 
2.6(d)). All values of the 3x3 ROI are considered, but the pixel is replaced only by a label that has 4-
connectivity with it. 

 
Fig. 2.6: Segmentation-cleaning; (a): Initial segmentation; (b): After mask application; (c): Detection of isolated pixels; (d): 

Replacement of isolated pixels with the most common value of the 3x3 ROI (limited to 4-connectivity labels). 

The second and final step, for the correction of the segmentation, is the separation of duplicate 
objects (Fig. 2.7). If two or more segmentations have the same label, they are considered duplicates. 
Duplicate objects may cause conflicts during the feature-extraction. For that reason, duplicate objects 
are provided with a new label. Initially, each zero/positive label is isolated on a new-array (Fig. 2.7(b)) 
with a size equal to the original watershed padded by 1-pixel of zero values. The new-array contains 
zeros and ones, where one is the segmentation label examined. The watershed segmentation is then 
applied using as a mask and source the new-array and the inverse new-array to acquire the local-
minima for the markers (Fig. 2.7(c)). After the first segmentation, any subsequent labels are assigned 
a new value equal to the existing maximum plus one (Fig. 2.7(d)). The command used for the markers 
should consider only pixels with 4-connectivity to separate segmentations that are not connected 
vertically or horizontally. Doing so also solves the issue where two isolated pixels are located side-by-
side and thus not detected by the segmentation-cleaning process demonstrated above (Fig. 2.6). Only 
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zero and positive labels are verified during this step. Furthermore, any modified label is stored in the 
Changed-Contour-List (CCL), with its prior label to retain the previous state/type of the segmentation 
(i.e., Blocks, Background, etc.). The structure of the Changed-Contour-List is provided below: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛 = [𝑁𝑁𝑁𝑁𝑁𝑁 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿] (1) 

 
Fig. 2.7: Segmentation-corrections; (a): Masked segmentation; (b): Isolation of label #5 in a new array; (c): Watershed 

segmentation and detection of additional labels; (d): Re-labelling of additional segmentation. 

2.3. Feature Extraction 
The second part of the proposed framework is the extraction of a network of lines and nodes, which 
will represent the simplified geometry of the interfaces. The final output is a collection of polylines 
that will be used for the numerical model generation. The input of this section is the modified 
segmentation acquired previously (Algorithm #2, see Fig. 2.1). It initiates by scanning the watershed 
array to extract the coordinates in-between segmentations using a novel approach (Fig. 2.8: Step-1). 
The correct order of the extracted pixels is provided by using a border-following algorithm (Fig. 2.8: 
Step-2). Additionally, it uses a generalisation algorithm to reduce the number of vertices that describe 
an interface (Fig. 2.8: Step-3). Furthermore, it includes geometric operations to adjust the location of 
selected vertices and produce more accurate results (Fig. 2.8: Step-4). 

 
Fig. 2.8: Workflow of the algorithm responsible for the feature extraction (Algorithm #2). 

2.3.1. Point Detection and Contour Definition 
The input of the point-detection algorithm is the watershed array padded by 1-pixel of zero values in 
all directions (i.e., from 100x100 to 102x102, (Fig. 2.9(a)), to allow scanning using a 2x2 ROI. Moreover, 
the geometric definition of damage is excluded at this stage; since the same labels have been assigned 
to multiple segmentations and may cause false detection of the perimetrical characteristics of 
masonry units. The simplest solution is to apply the point detection on a padded watershed array 
(PWS), where all damage labels are replaced with mortar (i.e., PWS(< −1) = −1). Initially, the 
watershed array is scanned using a 2x2 ROI under the following conditions: 

1. Interface-Point: If the 2x2 ROI contains two or more unique values, it is considered an 
interface-point (Fig. 2.9(a)). In which case, it is saved on the interface-point-list (IPL), with its 
ID and location. 

2. End-Point: If the 2x2 ROI contains three or more unique values, it is considered an end-point 
(Fig. 2.9(c)). In which case it is saved on the end-point-list (EPL), with its ID and location. 

The ID is the ordered list of unique values from the ROI. The location saved for each point detected is 
the top-left location of the 2x2 ROI. Each collection of points of a unique ID (of two components), 
makes an interface with known end-points, and their location is saved on the interface list (IL). End-
points have three or more ID values and are stored to all appropriate interfaces (where they have two 
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common values). Practically, the point-detection does not consider the location of pixels, but the 
gridlines instead. This method was selected to avoid the separation between segmentations. For that 
reason, the coordinates include an additional unit in the two directions (i.e., from 100x100 to 101x101, 
Fig. 2.9(b)). The structure of the lists is provided below: 

 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃𝑃𝑃[ 𝑖𝑖, 𝑖𝑖 + 1: 𝑗𝑗, 𝑗𝑗 + 1] => 𝐿𝐿𝐿𝐿𝐿𝐿 = [𝑥𝑥,𝑦𝑦] = [𝑗𝑗, 𝑖𝑖] (2) 
 𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛 = [𝐼𝐼𝐼𝐼, 𝐿𝐿𝐿𝐿𝐿𝐿] (For 2+ unique labels) (3) 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛 = [𝐼𝐼𝐼𝐼, 𝐿𝐿𝐿𝐿𝐿𝐿] (For 3+ unique labels) (4) 
 𝐼𝐼𝐼𝐼𝑛𝑛 = [𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸𝐸𝐸 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] (5) 

 
Fig. 2.9: Point detection on the padded array; (a): interface-point with 2 unique labels; (b): All detectable interface-points; 

(c): interface-point and end-point with 3 unique labels; (d): All end-points; (e): interface with ID= [5,6] (gridline). 

At this stage, all nodes that define the geometry of the interfaces have been identified. However, their 
order is still unknown. Their sequence is calculated by applying the border-following algorithm 
developed by (Suzuki and Abe, 1985). The algorithm is applied to a new 2D-array for each unique ID 
with all its points marked (Fig. 2.10(b)). Moreover, only the parent-contours are stored (outer 
perimeter of a closed object), using the algorithm's hierarchy. As mentioned previously, the algorithm 
returns the perimeter that contains duplicate points if it is an open shape (Fig. 2.10(c)). Additionally, 
it does not return the last point of closed shapes and thus, complicates the determination of closed 
objects. The aforementioned are addressed by the following framework: 

1. Create an array of zeros where ones mark the examined interface. 
2. Apply the border following algorithm on the new array and extract the outer-contours. In rare 

cases, multiple contours may be extracted with the same interface ID (i.e., when the mortar 
label is in contact with a specific block at two separated locations). 
2.1. Scan each contour detected to find if it contains any end-points of the same interface. Each 

end-point is only considered once. 
2.1.1. If less than two end-points are detected, consider the object a closed shape. 
2.1.2. If two are detected, store only the first range between the end-points. 
2.1.3. If three or more are detected, find the first location of every end-point and store all 

ranges between end-points separately. Duplicate end-points are not considered. 
2.2. If the contour is considered a closed shape, and the first and last points are not equal, 

append the first point to the end of the 𝑥𝑥𝑥𝑥-array. 
2.3. Finally, store each range separately to the contour-list (CL), including the interface ID. 

The structure of the contour-list is the following: 

 𝐶𝐶𝐶𝐶𝑛𝑛 = [𝐼𝐼𝐼𝐼,𝐸𝐸𝐸𝐸𝐸𝐸˗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑥𝑥𝑥𝑥˗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴] (6) 
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Fig. 2.10: Ordering of interface points; (a): Marked interface with ID= [5,6], end-point #1= [2,1], and end-point #2= [2,4]; (b): 

New array of examined interface (counting gridlines); (c): Border-following output (perimeter); (d): Modified output 
(polyline). 

2.3.2. Contour Generalisation 
Contour generalisation is the process of reducing the number of vertices that define a contour. This 
process will dramatically reduce the time-cost of the structural analysis. Additionally, it will provide 
general corrections to the shape by smoothing the interface. It is also the reason why the border-
following algorithm was not used to extract the shape of each block, but was used instead on each 
interface. Using the border-following algorithm on the blocks, the generalisation of contours would 
produce multiple generalisations for the same interface (since an interface is common between two 
segmentations). Moreover, a line generalisation algorithm is developed, based on the “Ramer–
Douglas–Peucker” algorithm (Ramer, 1972; Douglas and Peucker, 1973), with conditions specialised 
to the needs of the research. 

Considering an original contour 𝐶𝐶 = [𝑝𝑝0, … , 𝑝𝑝𝑛𝑛], with 𝑛𝑛 subset of vertices 𝑝𝑝, a generalised contour can 
be defined as 𝐶𝐶′ = [… ,𝑝𝑝′𝑘𝑘−1,𝑝𝑝′𝑘𝑘 , … ] ⊆ 𝐶𝐶, with the minimum number of elements that satisfies the 
condition 𝑓𝑓(𝑆𝑆𝑘𝑘) ≤ 𝑡𝑡. Each sequential pair of vertices of 𝐶𝐶′, divides 𝐶𝐶 into sections 𝑆𝑆𝑘𝑘 =
{𝑝𝑝′𝑘𝑘−1, … ,𝑝𝑝𝑖𝑖, … ,𝑝𝑝′𝑘𝑘} ∈ 𝐶𝐶. The examined vertex 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 is tested with regards to the straight-line 
segment 𝑝𝑝′𝑘𝑘−1𝑝𝑝′𝑘𝑘�����������. If the condition is not satisfied, the vertex 𝑝𝑝𝑖𝑖  with the highest vertical distance (𝑣𝑣𝑣𝑣), 
is stored in 𝐶𝐶’. The (simplified) original condition in (Ramer, 1972), is the following: 

 𝑓𝑓(𝑆𝑆𝑘𝑘) = max�𝑣𝑣𝑣𝑣(𝑆𝑆𝑘𝑘)� ≤ 𝑡𝑡 (7) 

where 𝑣𝑣𝑣𝑣(𝑆𝑆𝑘𝑘) is the vertical distance of all elements in 𝑆𝑆𝑘𝑘 and the line segment 𝑝𝑝′𝑘𝑘−1𝑝𝑝′𝑘𝑘�����������, and 𝑡𝑡 is the 
constant-threshold value. Compared to the original, the following changes were implemented: 

Transformation: Before the first iteration and only if the contour is closed (i.e. 𝑝𝑝0 = 𝑝𝑝𝑛𝑛), the contour 
is reformed to start/end from the point 𝑝𝑝𝑖𝑖 ∈ 𝐶𝐶, with the largest distance from the initial point 𝑝𝑝0 
(similar to Eq. (8)). 

Condition #1: For the first iteration and only if the contour is closed (i.e., 𝑝𝑝0 = 𝑝𝑝𝑛𝑛), add the point 𝑝𝑝𝑖𝑖 ∈
𝑆𝑆𝑘𝑘 with the largest distance from the initial point 𝑝𝑝0, to the generalised contour. Where 𝑝𝑝𝑖𝑖  is defined 
as: 

 𝑓𝑓(𝑖𝑖) = 𝑓𝑓(𝑆𝑆𝑘𝑘) = max�𝑙𝑙𝑙𝑙(𝑆𝑆𝑘𝑘)� = max (𝑙𝑙𝑙𝑙1(𝑆𝑆𝑘𝑘), 𝑙𝑙𝑙𝑙2(𝑆𝑆𝑘𝑘)) (8) 

Condition #2: If the previous condition did not activate, then the second condition is considered. Add 
the point 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 with the largest distance from either the first or last point of the line segment, if it 
satisfies either: The vertical and length, or the horizontal and length thresholds. Using the minimum 
of the horizontal and length values of the pair. Where 𝑝𝑝𝑖𝑖  is defined as: 

 𝑓𝑓(𝑖𝑖) = 𝑓𝑓(𝑆𝑆𝑘𝑘) = max�𝑙𝑙𝑙𝑙(𝑆𝑆𝑘𝑘)� = max (𝑙𝑙𝑙𝑙1(𝑆𝑆𝑘𝑘), 𝑙𝑙𝑙𝑙2(𝑆𝑆𝑘𝑘)) (9) 
 Where the condition is disregarded if: 𝑣𝑣𝑣𝑣(𝑖𝑖) ≤ 𝑡𝑡𝑣𝑣  𝑜𝑜𝑜𝑜 min�𝑙𝑙𝑙𝑙1(𝑖𝑖), 𝑙𝑙𝑙𝑙2(𝑖𝑖)� ≤ 𝑡𝑡𝑙𝑙 (10) 
 and: min�ℎ𝑑𝑑1(𝑖𝑖),ℎ𝑑𝑑2(𝑖𝑖)� ≤ 𝑡𝑡ℎ  𝑜𝑜𝑜𝑜 min�𝑙𝑙𝑙𝑙1(𝑖𝑖), 𝑙𝑙𝑙𝑙2(𝑖𝑖)� ≤ 𝑡𝑡𝑙𝑙 (11) 
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Condition #3: If the previous condition did not activate, then the third condition is considered. Add 
the point 𝑝𝑝𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 with the largest vertical distance from the line segment, if it satisfies both: the 
vertical and length thresholds. Using the minimum of the length values of the pair. Where 𝑝𝑝𝑖𝑖  is defined 
as: 

 𝑓𝑓(𝑖𝑖) = 𝑓𝑓(𝑆𝑆𝑘𝑘) = max(𝑣𝑣𝑣𝑣(𝑆𝑆𝑘𝑘)) (12) 
 Where the condition is disregarded if: 𝑣𝑣𝑣𝑣(𝑖𝑖) ≤ 𝑡𝑡𝑣𝑣  𝑜𝑜𝑜𝑜 min�𝑙𝑙𝑙𝑙1(𝑖𝑖), 𝑙𝑙𝑙𝑙2(𝑖𝑖)� ≤ 𝑡𝑡𝑙𝑙 (13) 

Threshold: The threshold values are: Vertical (𝑡𝑡𝑣𝑣), Horizontal (𝑡𝑡ℎ), and Length (𝑡𝑡𝑙𝑙). If the value of any 
threshold is below one, then it is considered the ratio of the threshold over the length of the line 
segment. Else, if it is above one, it is the actual threshold. 

 If 𝑡𝑡 < 1: 𝑡𝑡 = 𝑡𝑡 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ�𝑝𝑝′𝑘𝑘−1𝑝𝑝′𝑘𝑘������������; else: 𝑡𝑡 = 𝑡𝑡 (14) 

Where f(i) is a simplification of: 𝑓𝑓(𝑖𝑖) = 𝑓𝑓��𝑝𝑝′𝑘𝑘−1,𝑝𝑝𝑖𝑖, 𝑝𝑝′𝑘𝑘��. Each pi point considered creates two 
horizontal (hd) and two length (ld) values (Fig. 2.11(a)), but only the minimum of each pair is tested 
(Eq. (10), Eq. (11), Eq. (13)). The “Transformation” ensures that the first point of a closed shape is 
essential to describe the general shape (i.e. Fig. 2.12(a1) as opposed to Fig. 2.12(b1)). While “Condition 
#2” (Eq. (11)), ensures that a vertex with a vertical point outside the range of the line segment and 
small vertical distance, is considered with the horizontal threshold instead (Fig. 2.11(a) & Fig. 2.11(c)). 
Additionally, the length threshold (Eq. (10), Eq. (11), Eq. (13)) ensures that both line segments created 
have adequate length. Modifying the threshold values (𝑡𝑡𝑣𝑣, 𝑡𝑡ℎ, 𝑡𝑡𝑙𝑙) allows to control the level of detail 
of the final output by reducing the number of vertices accordingly. Lastly, the threshold ratio for values 
below one, ensures that the preferred accuracy is preserved by dynamically adjusting the applied 
threshold (Eq. (14)). Every identified polyline is stored in the line-list (LL). The structure of the line-list 
is provided below: 

 𝐿𝐿𝐿𝐿𝑛𝑛 = [𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] (15) 

 
Fig. 2.11: (a): Variables of proposed algorithm; (b) Proposed algorithm (with: “th”); (c): Original algorithm (without: “th"). 

The resulting generalisations of the original “Ramer–Douglas–Peucker” (RDP) and the proposed 
algorithm (PROP) are compared at two levels of detail (Fig. 2.12). The level of detail is measured in the 
number of line segments (Lines) of the total output. Group [a] demonstrates the original algorithm 
using a static threshold (RDP), group [b] the proposed algorithm using static threshold (PROP-S), and 
[c] the proposed algorithm using a dynamic threshold (PROP-D). The results displayed below include 
only the geometry with mortar, since without mortar, almost every main vertex is pre-determined by 
the end-points between the interfaces. Regarding the results, the RDP algorithm detects a false point 
as initial (𝑝𝑝′0) on top of the closed contour in (i.e. [a1]), which is eliminated by the proposed algorithm 
using the “Transformation” (i.e. [b1, c1]). When the dynamic threshold with high ratio values is used 
(not shown below), the proposed algorithm may omit a second vertex to describe the small curvature 
near the corners better. Additionally, if a very small threshold-ratio is used (Eq. (14)), it may create an 
excessive number of vertices near the edges, where the threshold becomes smaller due to limited 
distance. Finally, all cases could be used for the development of the geometry for numerical analysis 
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except [a2, b2], where it is possible that their highly uneven and irregular interface could cause 
overestimation of collapse loads due to local hinging phenomena.  

 
Fig. 2.12: Comparison of generalisation (Purple: Contour, Green: Polyline); (a1): RDP (Lines= 443); (b1): PROP-S (Lines= 438); 

(c1): PROP-D (Lines= 431); (a2): RDP (Lines= 1049); (b2): PROP-S (Lines= 1048); (c2): PROP-D (Lines= 1075). 

2.3.3. Geometric Adjustments 
An issue arising from segmenting the masonry imagery via a watershed-based transform is that the 
location where two segmentations meet is not placed at the centre of gravity of the mortar area of 
the binarised image (Fig. 2.13(a1)). This is because the segmentation is growing further from the 
marker provided. Thus, any pixel located in the bright section will be labelled from the closest marker, 
creating a triangular shape (Fig. 2.13(a2)). This issue is amended partially when using the distance 
transform of the raster image as a source for the segmentation (Fig. 2.13(b)). Doing so creates a 
boundary located in the middle of the bright section, forcing the assignment of half the mortar 
thickness to each block. Another solution suggested, only when the final model includes mortar, is to 
use a large erosion value on the GMM and then dilation to restore its average size, covering the small 
cavities near the end-points (Fig. 2.13(c)). However, that will also introduce a small curvature to the 
edges of the block. Nonetheless, the erosion/dilation solution is often unnecessary since the 
generalisation of the contour will correct this, assuming that the threshold is not excessively low. 
However, it is required to have implemented the transformation of the previous section; otherwise, 
the top-most point will be included, since it is the first point detected by the border following 
algorithm (Fig. 2.12(a1)). 

 
Fig. 2.13: Simple corrections to segmentation: (a): Contours and polylines using the original rasterised image; (b): Contours 

and polylines using the distance transform as a source; (c): Correcting generated mortar-mask using erosion/dilation. 
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An additional processing step is introduced that adjusts only the affected vertices when the mortar is 
not modelled (Fig. 2.15(a)). The issue develops where two segmentations are connected, and two of 
the three interface lines form a near ~180° angle. Thus, the algorithm must target end-points that 
have three ID values (three unique values in the 2x2 ROI), and all are larger than zero. The location 
where the ID of end-points have zero or negative values are not affected since they do not have a 
second marker. Any end-point that has precisely three unique labels (i.e., end-points connected to 
three polylines), and all its values are larger than zero (i.e., not mortar, damage, or background) is 
considered a possible candidate. Knowing the location and the unique ID, makes possible to identify 
the three polylines that are connected to the end-point. For every polyline detected, the line-segment 
is formed between the end-point and the previous on the polyline’s 𝑥𝑥𝑥𝑥-array. That may be either the 
first two or the last two points. If the angular difference between any combination of two line-
segments is ~180°, then the end-point is relocated so that the angular difference between the two 
lines is exactly 180°. However, the global angle of the remaining line must remain the same to retain 
its shape (Fig. 2.14: 𝐵𝐵𝐵𝐵����). The extension of the line that does not form ~180° splits the geometry into 
two triangles (Fig. 2.14: 𝐵𝐵𝐵𝐵’�����), where the law of sines can be used to determine its length. Then, 
geometric functions are used to calculate the coordinates of the adjusted end-point (Fig. 2.14: 𝑃𝑃’). A 
threshold value (𝑡𝑡𝑎𝑎) is used to determine the tolerance of the angular difference. Furthermore, three 
iterations of the algorithm are required to correct all vertices. The formal description is provided 
below: 

1. Create a copy of the “End-Point-List” and “Line-List” (i.e., EPL2 and LL2), to avoid modification of 
the original lists. Important: This may be required later if a closed-block is incorrectly defined. 

2. Create the first iterative loop to repeat the process three times. 
3. Create the second iterative loop to scan through the copied end-Point-list” (EPL2). 
4. If the 𝐼𝐼𝐼𝐼 of the end-point contains exactly three labels, and all are higher than zero, consider the 

end-point (𝑃𝑃) a possible candidate (i.e., 𝐼𝐼𝐼𝐼 = [𝐿𝐿𝐿𝐿𝐿𝐿1,𝐿𝐿𝐿𝐿𝐿𝐿2,𝐿𝐿𝐿𝐿𝐿𝐿3]; and: 𝑚𝑚𝑚𝑚𝑚𝑚(𝐼𝐼𝐼𝐼) > 0). 
4.1. Identify the location index of the three polylines in the line-list (LL), by verifying that the first 

or last point of the polyline is equal to the location of the end-point saved on EPL2. The 𝐼𝐼𝐼𝐼 
label of the end-point may also be used to locate the index. 

4.2. Create the line-segments by taking either the first two, or the last two points of the 
generalised line, based on the location of the end-point (i.e. if: 𝑥𝑥𝑦𝑦𝑃𝑃 = 𝑥𝑥𝑦𝑦0, then: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
[𝑥𝑥𝑦𝑦0, 𝑥𝑥𝑦𝑦1]; else if: 𝑥𝑥𝑦𝑦𝑃𝑃 = 𝑥𝑥𝑦𝑦𝑛𝑛, then: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = [𝑥𝑥𝑦𝑦𝑛𝑛,𝑥𝑥𝑦𝑦𝑛𝑛−1]). 

4.3. Calculate the angular difference between all combinations of the three line-segments to 
identify if two of the line segments form ~180° angle (i.e., 𝐴𝐴𝐴𝐴1 = ∠𝐴𝐴𝐴𝐴𝐴𝐴;  𝐴𝐴𝐴𝐴2 =
∠𝐶𝐶𝐶𝐶𝐶𝐶;  𝐴𝐴𝐴𝐴3 = ∠𝐵𝐵𝐵𝐵𝐵𝐵). If the optional condition is used (Eq. (17)), calculate the global angle 
of the two line-segments that form ~180°, excluding the end-point (i.e., 𝐴𝐴1 = 𝛩𝛩𝐴𝐴𝐴𝐴). 

4.4. If the conditions are satisfied (Eq. (16), Eq. (17), Eq. (18)), relocate the end-point (𝑃𝑃), such 
that the lines that form ~180° become parallel (i.e. 𝐴𝐴𝐴𝐴’����� ∥ 𝑃𝑃′𝐶𝐶�����, with 𝑃𝑃′ ∈ 𝐴𝐴𝐴𝐴����), while retaining 
the global angle of the remaining line (i.e. 𝛩𝛩𝐵𝐵𝐵𝐵 = 𝛩𝛩𝐵𝐵𝐵𝐵’). 

4.5. Update the value of the modified end-point to every list used (i.e., EPL2, LL2) 
5. Repeat the process for all end-points during three iterations. 
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Fig. 2.14: Variables used in the geometric corrections (P: End-point, Blue: Old lines, Red: Adjusted lines). 

The main-condition is to verify if any combination of angular difference is ~180° (Eq. (16)). An optional-
condition to automatically avoid rubble or arch-lines is to target cases where both ~180° and ~90° 
angular-difference are detected (Eq. (17)). An alternative optional-condition, that has the same 
purpose, is to verify that the global-angle of the adjusted line that forms near ~180° local-angle, is 
either: ~0° or multiples of ~90°; before applying the geometric corrections (Eq. (18)). All proposed 
conditions of the formal description (Sub-list: [4.4]), are provided below: 

 Condition #1 (Main):  [180° − 𝑡𝑡𝑎𝑎 ≤ 𝐴𝐴𝑑𝑑𝑖𝑖 ≤ 180° + 𝑡𝑡𝑎𝑎] (16) 
 Condition #2 (Optional):  [90° − 𝑡𝑡𝑎𝑎 ≤ 𝐴𝐴𝑑𝑑𝑗𝑗 ≤ 90° + 𝑡𝑡𝑎𝑎]; 𝑖𝑖 ≠ 𝑗𝑗; (17) 
 Condition #3 (Optional):  [𝐴𝐴𝑡𝑡 − 𝑡𝑡𝑎𝑎 ≤ 𝐴𝐴𝑖𝑖 ≤ 𝐴𝐴𝑡𝑡 + 𝑡𝑡𝑎𝑎]; 𝐴𝐴𝑡𝑡 = [0° ∨ 90° ∨ …∨ 360°]; (18) 

Applying the geometric corrections to the interface between structural units allows for a more 
representative visualisation of masonry characteristics (Fig. 2.15). Regarding the examples 
demonstrated below, only the main condition was used (Eq. (16)). The arch-lines (Fig. 2.15(e)) were 
automatically excluded from the corrections since one of the three labels is zero (i.e., background). 
However, if the arch would contain more layers, an additional condition would be necessary to avoid 
the geometric adjustments on the inner interfaces (i.e. Eq. (17), Eq. (18)). 

 
Fig. 2.15: Correcting geometrical inaccuracies (𝑡𝑡𝑎𝑎 = 20°): (a): Initial generalised lines; (b): Original and modified lines 

comparison; (c): Adjusted generalised lines; (d): Original lines on arched-door; (e): Adjusted lines on arched-door. 



35 
 

2.3.4. Producing Closed-Shapes 
Specific numerical analysis software require closed-objects to define a shape (i.e., ABAQUS, 3DEC, LS-
DIANA, etc.). For that purpose, it is necessary to generate the closed-block from the open-polylines. 
An interface ID contains two labels that are equal to the two objects that are in contact, where the 
label is the value of any segmentation.  Thus, all polylines are compared, and those that contain a 
specific label are assigned to the block of the same value (i.e., Interface 𝐼𝐼𝐼𝐼 = [2, 3] is assigned to 
blocks #2 and #3). The collection of the polylines is added to a temporary-block-list (TBL) with its label. 

The polylines are then combined by comparing the initial and final vertices of each entry in the 
collection (using the first entry as a temporary combined-polyline). The process is repeated until no 
connection is found with the temporary combined-polyline. Every entry used is removed from the 
polyline-collection to ensure that it is not used repetitively. If the combined-polyline is closed (i.e., 
equal first and last vertices), it is stored to the final block-list (BL) with its original label (Eq. (1)) to 
retain its type. Alternatively, if no connection is found and the combined polyline remains open, it is 
rejected. Furthermore, the process must repeat again for the same collection if there are remaining 
entries, which is possible when multiple segmentations have the same label. However, this will not be 
the case if the “Segmentation Corrections” have been applied. The original contour (the line with all 
points included), can also be stored to allow the use of the preferred accuracy for CAD model 
generation. Negative labels (damage and mortar) are excluded from this process, but the zero label is 
included to describe the overall perimeter. The structure of the block-lists is provided below: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = [𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] (19) 
 If 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≥ 0: 𝐵𝐵𝐵𝐵𝑛𝑛 = [𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] (20) 

Moreover, if the generalisation and generation of closed shapes for the damage is required (i.e. for 
CAD design), each negatively-labelled segmentation must be assigned a unique label during the 
“Segmentation Corrections” (Eq. (1)), which aims to avoid conflicts with the contour definition. 

Although a rare occurrence, a block label may fail to regenerate or provide the correct shape when an 
external mask is supplied. This is because interfaces of equal ID value are marked on the same array 
to apply the border-following algorithm. When 1-pixel segmentation separates two interfaces of equal 
ID, they are drawn connected since the method proposed considers the gridlines rather than the 
pixels. In this case, the algorithm may return incorrect ranges by omitting an end-point that is blocked 
by connected pixels (case #1) or return a single perimeter of the combined shape instead of two 
separated interfaces (case #2). The aforementioned refers only to individual outputs of the border-
following algorithm that contain three or more end-points and is considered an open-shape. 
Additionally, it affects only watershed-segmentations that were modified using imported-masks (i.e., 
mortar, damage).  

The simplest solution to this is to increase the size of the watershed segmentation two-fold just before 
the point-detection algorithm, which will effectively increase segmentations of 1-pixel thickness to 2-
pixel. In this way, the unification of individual sections that are separated by 1-pixel is avoided. 
Alternatively, a programmable solution is also possible by forcing the algorithm to follow only the 
outer-perimeter of an affected interface. This is accomplished by applying the border-following 
algorithm on the gridlines of a segmentation instead, which will provide the outer perimeter of the 
affected block. The perimeter can be divided into interfaces by comparing the ID values of each point 
it contains. All contours/blocks of the affected cases must be removed and replaced with the adjusted 
items. However, the contour-generalisation and geometric adjustments require repetition for every 
affected item and interfaces/blocks in contact with the affected case, since modified interfaces may 
be common to two different segmentations. The programmable solution should be applied after 
combining interfaces into closed-blocks to ensure that all detection methods were used. Affected 
contours/blocks can be identified by: 



36 
 

1) Detection method #1: When an individual and open contour-output, of the border-following 
algorithm, contains duplicate inner-points. 

2) Detection method #2: When the combined closed-shape includes duplicate inner-points 
(excluding the first since it is a closed shape). 

3) Detection method #3: When failing to combine the interfaces of a segmentation into a closed-
shape (i.e., unequal first and last vertices). 

2.3.5. Data Scaling 
Before any further adjustments are made, the block and line list (BL and LL) are scaled to the preferred 
size by application of a scale factor to 𝑥𝑥𝑥𝑥-coordinates of each element (Eq. (21)).  

 𝑥𝑥′ = 𝑥𝑥 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑦𝑦′ = (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑦𝑦)  × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = max (𝑦𝑦) 

(21) 

The final geometry may include small objects that are inappropriate for use in CAD geometry or 
numerical model generation. Furthermore, the application of the line-generalisation algorithm may 
cause the generation of blocks with zero area due to inadequate space between essential vertices. 
Thus, the area verification of each object is required to provide proper input for the numerical analysis. 
The area of a closed polygon can be calculated using the Surveyor’s Formula provided below (Eq. (22): 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

1
2

× ��(𝑥𝑥𝑖𝑖 × 𝑦𝑦𝑖𝑖+1) + (𝑥𝑥𝑛𝑛 × 𝑦𝑦1) −
𝑛𝑛−1

𝑖𝑖=1

�(𝑥𝑥𝑖𝑖+1 × 𝑦𝑦𝑖𝑖) − (𝑥𝑥1 × 𝑦𝑦𝑛𝑛)
𝑛𝑛−1

𝑖𝑖=1

� 
(22) 

Acquiring the area of either the scaled closed-contour or the closed-polyline allows the removal of 
small or zero-area objects from the block-list (BL) (Fig. 2.16). This can extend to lines by removing 
entries from the line-list (LL), that do not have at least one ID label equal to the labels of the remaining 
blocks (i.e., if both labels 10 and 11 do not exist in the adjusted block-list, then the polyline with 𝐼𝐼𝐼𝐼 =
[10,11] is removed). Furthermore, the samples below exclude damage from the “point detection” 
section to avoid common issues (pg. 28). However, the damage will be included during the numerical 
analysis. 

 
Fig. 2.16: Removing small objects; (a): Initial segmentation; (b): Original contours and generalised lines; (c): Removed small 

objects (in purple); (d): Remaining objects on source image. 

2.4. Numerical Model Generation 
The last part of the proposed framework is the numerical model generation, which includes mortar 
and damage depending on the user’s preferences (Fig. 2.17: Output). The proposed framework can be 
used to simulate masonry with the simplified-micro-modelling (or meso-scale) and detailed-micro-
modelling approach. For the development of the numerical simulations, the commercial software 
UDEC, developed by Itasca, has been used (Itasca, 2019).  The formulation of the method was 
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proposed initially by (Cundall, 1971) to study jointed rock, modelled as an assemblage of rigid blocks. 
Later this approach was extended to other engineering fields requiring a detailed study of the contact 
between blocks or particles such as soil and other granular materials (Ghaboussi and Barbosa, 1990). 
More recently, the approach was applied successfully to model historic masonry structures in which 
the collapse modes were typically governed by mechanisms in which the blocks' deformability plays 
little to no role at all. 

 
Fig. 2.17: Workflow of the numerical model generation (Output) 

2.4.1. Geometric Model Generation 
The methodology used to develop the polylines from the previous sections has been used here to 
generate the model geometry in AutoCAD or directly into a structural analysis software (Fig. 2.18). 
The python library used to create the AutoCAD model was “pyautocad”. The 3D model was extruded 
using a standard value for the depth (Fig. 2.18(b)). The 2D mesh was created in AutoCAD using the 
“hatch” command (Fig. 2.18(c)) and includes both mortar and damage. For the models developed 
using the detailed micro-modelling approach, the mesh generation was made externally when the 
mortar was modelled. Optimally, the mesh could be produced programmatically when the geometry 
is aimed for UDEC, to avoid the use of AutoCAD entirely. For cases where the model was initially 
generated in AutoCAD, the python library “dxfgrabber” was used to read DXF files. Lastly, each line 
was imported in UDEC using FISH (programming language embedded in ITASCA software) to generate 
the masonry units (Fig. 2.18(d)). 

 
Fig. 2.18: Geometric model generation; (a): Image source; (b): AutoCAD 3D-model using blocks; (c): AutoCAD 2D-model 

using lines (detailed micro-modelling); (d): UDEC 2D-model using lines (detailed-micro-modelling). 

2.4.2.  Mortar and Damage Group Assignment 
In the numerical model, the mortar was assigned by calculating the area of each element. So, if an 
element is smaller than a predefined value, then it is assigned to the “Mortar” group (Fig. 2.19(a)). 
The predefined value is equal to the square of the largest (vertical or horizontal) side of the mesh 
element, see (Eq. (23)). 
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 If 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ≤ (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)2,  then assign the element to the “Mortar” group (23) 

Moreover, the mortar may be cracked, which needs to be reflected in the “Mortar” group. If this is 
the case, then the masked watershed segmentation (without padding) is used to extract the 
coordinates. Whenever a pixel with a damage label is detected, a FISH command is generated that re-
assigns the “Mortar” element that contains the specified coordinates to the “Damage” group, see (Fig. 
2.19(b)). It is essential to mention that the coordinates obtained require adjustment, since the 
interface-contours measure gridlines instead of pixels: 

 If 𝑊𝑊𝑊𝑊(𝑖𝑖, 𝑗𝑗) = −2 or 𝑊𝑊𝑊𝑊(𝑖𝑖, 𝑗𝑗) = −3: Extract adjusted 𝑥𝑥𝑥𝑥 coordinates (24) 
 𝑥𝑥 =  (𝑗𝑗 + 0.5) × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑦𝑦 =  �𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − (𝑖𝑖 + 0.5)� × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = max (𝑦𝑦) 

(25) 

 
Fig. 2.19: Assigning mortar and damage (Orange: Brick, Grey: Mortar, Black: Damage); (a): Mortar comparing the element 

area; (b): Damage per pixel at each mortar element (71030 entries – 315s). 

The method mentioned earlier used to assign the damage, requires an excessive amount of time due 
to the large number of pixels detected (i.e., 315s for 71,030 entries on a laptop with i7-9750h, Fig. 
2.19(b)). For that reason, the accuracy of pixel extraction is limited to a preferred area (i.e., 𝐴𝐴𝐴𝐴𝐴𝐴 =
5𝑝𝑝𝑝𝑝). Thus, rejecting new entries if they are in proximity to an already extracted location, which 
reduces dramatically the computational time required (i.e., 18s for 4,386 entries, Fig. 2.20(a)). The 
method used to verify the distance is by creating a test-array of equal size to the original image where 
all coordinates extracted are marked by the preferred area of double the size of the accuracy (i.e., 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇[𝑖𝑖 − 5: 𝑖𝑖 + 5, 𝑗𝑗 − 5: 𝑗𝑗 + 5] = 0). Creating multiple test-arrays for each damage state allows to 
verify and assign multiple groups (Fig. 2.20(b)), which in turn can be used to assign different material 
and joint characteristics or to remove completely specified damage-groups. The assignment accuracy 
of multiple groups depends highly on the mesh size, the precision of the imported damage/mortar 
masks, and the applied order of the damage to the model (i.e., Fig. 2.20(b)), where the mortar-damage 
is given priority). For the tested accuracy, multiple damage assignments are not recommended since 
the mesh size is not sufficiently small, and due to inadequate accuracy of the imported (not generated) 
masks. The second method proposed is based on both; a range value targeting the centroid (Eq. (26) 
& Eq. (27)) and the block that contains the specified coordinates (Eq. (25)), of mortar-elements only. 
The range of values used, in the numerical model, are provided below: 

 𝑥𝑥1 = (𝑗𝑗 + 0.5− 𝐴𝐴𝐴𝐴𝐴𝐴)  × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑥𝑥2 = (𝑗𝑗 + 0.5 + 𝐴𝐴𝐴𝐴𝐴𝐴) × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(26) 

 𝑦𝑦1 = �𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − (𝑖𝑖 + 0.5 − 𝐴𝐴𝐴𝐴𝐴𝐴)� × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑦𝑦2 = (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − (𝑖𝑖 + 0.5 + 𝐴𝐴𝐴𝐴𝐴𝐴)) × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(27) 
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Fig. 2.20: Assigning damage using range (5-pixel range, Blue: Mortar damage, Purple: Block damage); (a): General damage 

(4386 entries, 18s); (b): Multiple assignments giving priority to mortar-damage (4628 entries, 18s). 

2.5. Numerical Analysis of existing masonry walls 
The geometry obtained using the proposed algorithm is compared with the idealised model to verify 
the proposed methodology's potential to be used in automated model generation. This section does 
not aim to predict the behaviour of a real structure. Instead, it tests the structure for similar behaviour, 
assuming a similar geometry is provided, while retaining the mechanical properties equal between all 
models. The numerical analysis also assumes an accurate model calibration, by following the typical 
modelling procedure and by using representative material characteristics, using information acquired 
from the literature. Moreover, the following generalisation values are suggested for the general 
definition of the geometric model aimed for numerical analysis: 

  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0.1 (28) 
 𝑀𝑀𝑀𝑀𝑀𝑀. 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛ℎ = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1  (in pixel size) (29) 

The first model selected as a case study is the masonry arched-door (Fig. 2.21). The specific geometry 
was chosen as it introduces additional complexity to the analysis by including an arch and opening to 
the model. In this case, the mortar is represented as a zero-thickness interface since the simplified 
micro-modelling approach is typical for the numerical analysis of masonry structures. The vertical and 
horizontal generalisation-ratio used, to acquire the geometry, is equal to 0.1 with a 3-pixel minimum 
distance. Regarding the analysis, only deformable blocks are considered (although failure is expected 
to occur in the mortar joints rather than in the masonry units). The source of the action affecting the 
structure is a horizontal velocity applied on a block pattern, see (Fig. 2.21(c) & Fig. 2.21(d)). 
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Fig. 2.21: Model geometry of Arched-Door; (a): Idealised model; (b): Generated model; (c): Idealised UDEC groups; (d): 

Generated UDEC groups. 

Table 2.1: Macro properties of the brick elements- Block properties: Sandstone (Karagianni et al., 2010). 

Density (𝑘𝑘𝑘𝑘/𝑚𝑚3) Young’s modulus (𝑁𝑁/𝑚𝑚2) Poisson's ratio 
2350 26364𝑥𝑥106 0.2 

Table 2.2: Joint properties of the zero-thickness interfaces - Join contact properties of mortar (Sarhosis and Lemos, 2018). 

Normal 
stiffness 
(𝑁𝑁/𝑚𝑚3) 

Shear stiffness 
(𝑁𝑁/𝑚𝑚3) 

Friction 
(𝑑𝑑𝑑𝑑𝑑𝑑) 

Cohesive 
strength  
(𝑁𝑁/𝑚𝑚2) 

Tensile 
strength 
(𝑁𝑁/𝑚𝑚2) 

Dilation 
(𝑑𝑑𝑑𝑑𝑑𝑑) 

4 × 1011 2 × 1011 38 0.6 × 106 0.6 × 106 4 

The maximum loading of the idealised and generated model is 1,240 kN and 1,360 kN respectively 
(+9.7 %, Fig. 2.22(a)), assuming a 500 mm depth. The maximum-load difference is possibly caused by 
the interlocking/hinging mechanism between the top-left block-row and the arch in the generated 
model, not present in the idealised case. A more accurate binarised-source would provide overall 
better results. However, the failure-pattern at 10mm displacement is similar, with only minor 
differences (Fig. 2.22(b) & Fig. 2.22(c)), although the geometry between the two models is not 
identical (i.e. merged blocks, additional edges, etc.). 
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Fig. 2.22: (a): Force-Displacement graph of Arched-Door under horizontal loading; (b): Idealised model after 10mm 

horizontal displacement; (c): Generated model after 10mm horizontal displacement 

The second model for comparison is the damaged brick-wall, including the physical modelling of 
mortar (Fig. 2.23(a) & Fig. 2.23(b)). The pixels corresponding to damaged areas, detected from the 
image-processing of the original image, were directly inserted on the idealised model. This allows the 
comparison of the extracted geometry without considering the success rate of the defect detection. 
Furthermore, the damaged locations were removed to imitate the separation of material on the 
original image. The vertical and horizontal generalisation-ratio used, to simplify the geometry, is equal 
to 0.1 with a 5-pixel minimum distance. The analysis considers only deformable blocks. 

Moreover, the mechanical properties of the joints are the same as in the previous case. However, the 
brick/mortar units have different properties, which are provided below. In this particular case, the 
mortar is consisted of individual triangles of 20 mm sides to reduce the computational cost for the 
analysis. More importantly, the triangular mesh was selected since it permits diagonal separation. In 
the future, segmentation of the mortar can be done using Voronoi elements or alternative shapes. 
The source of the action affecting the structure is a horizontal velocity applied on a block pattern, see 
(Fig. 2.23(c) & Fig. 2.23(d)). 



42 
 

 
Fig. 2.23: Model geometry of Damaged-Wall; (a): Idealised model; (b): Generated model; (c): Idealised UDEC-groups; (d): 

Generated UDEC-groups; (e): Removed material of Idealised model; (f): Removed material of generated model. 

Table 2.3: Macro properties of the brick elements (Sarhosis and Lemos, 2018). 

Brick elements Mortar elements 
Density 

(𝑘𝑘𝑘𝑘/𝑚𝑚3) 
Young’s 
modulus 
(𝑁𝑁/𝑚𝑚2) 

Poisson's 
ratio 

Density 
(𝑘𝑘𝑘𝑘/𝑚𝑚3) 

Young’s 
modulus 
(𝑁𝑁/𝑚𝑚2) 

Poisson's 
ratio 

1900 19700𝑥𝑥106 0.2 1200 2974𝑥𝑥106 0.2 

The maximum loading of the idealised and generated model is 23.15 kN and 22.45 kN respectively (-
3.0 %, Fig. 2.24(a)), assuming a 102.5 mm depth. Moreover, the failure-pattern at 10mm displacement 
is similar, following the pre-existing damage and causing separation at the top-right and bottom-left 
corners (Fig. 2.24(b) & Fig. 2.24(c)). However, the shape of the mesh has not been optimised for 
numerical analysis and may interfere with the results due to local hinging phenomena. The 
investigation of the mesh type and size is outside the scope of this research (investigated partially in 
chapter 4). Nonetheless, the expected behaviour is observed in both cases (i.e., separation at 
damaged locations). 
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Fig. 2.24: (a): Force-Displacement graph of Damaged-Wall under horizontal loading; (b): Idealised model after 10mm 

horizontal displacement; (c): Generated model after 10mm horizontal displacement. 

2.6. Conclusions 
The proposed methodology proves to be a time-efficient and robust system of acquiring the geometric 
shape of a masonry structure for numerical analysis, especially in the case of complex structures where 
a significant effort is required to create the numerical model. Any type of masonry construction is 
supported, as long as an adequate source is provided (i.e., ashlar, rubble, dry-joint, mortared-joint, 
etc.). Another possible application of the proposed methodology is the automated assessment of 
numerical analysis results (by comparing the displacements of the elements with the coordinates of 
the objects acquired during the feature-extraction). Especially during evaluation of an inverse analysis 
or assessment of proposed models aimed to predict crack propagation (Tiberti and Milani, 2020b, 
2020a). The algorithm may also be used to generate precise CAD designs of real structures in an 
efficient and timely manner. Additionally, it provides a use-case for state-of-the-art research in 
feature-detection and segmentation. However, a reliable method of feature-detection is required for 
optimal results (i.e., use semantic-segmentation instead of edge-detection/thresholding). 

From the analysis of results, the efficiency of the methodology depends highly on the accuracy of the 
geometry extracted and the number of lines used to describe the same geometry. The generated 
model has the potential to provide more accurate results, assuming that it resembles the shape of the 
structure in more detail than the idealised geometry. Nevertheless, the user must ensure that no 
interlocking between the blocks is present, where it is not anticipated, due to unnecessary complexity. 
This is resolved by the proposed generalisation-algorithm, which reduces the number of edges of the 
blocks in the model. For general use, the values proposed in the “Numerical Analysis” section (Eq. (28) 
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& Eq. (29)) demonstrate adequate results, which are taking advantage of the dynamic-adjustment to 
automate the assignment (Eq. (14)). If necessary, a larger generalisation-ratio can be used to simplify 
the model further. However, the physical modelling of mortar assists on that regard since there is no 
direct interaction between the masonry blocks. 

The main limitation of the methodology is the accuracy of the original binarised-image used to 
produce the watershed segmentation (resolved in chapter 3). The proposed approach is aimed to be 
used in combination with state-of-the-art image-processing techniques to improve the overall 
precision of the feature-extraction. Additionally, the methodology is limited to 2D model generation. 
Although, simple 3D models can be generated by assuming a standard depth value across a single 
plane (i.e., Fig. 2.18(b)). 

Regarding the discrete element analysis, the mortar mesh has not been optimised for the current use-
case. Further investigation is required to optimise the mesh type and the size of each element. A 
different mesh type (i.e., Voronoi, (Sarhosis and Lemos, 2018)) and equal or smaller size than the 
mortar-thickness may prove more efficient in highly stressed areas. However, it may also increase the 
computational effort required. Moreover, the joint characteristics consider a single global assignment, 
where the mortar-to-mortar interface is equal to the block-to-mortar (only valid for the damaged-wall 
example). A more accurate representation of the joints could provide a more realistic outcome. Lastly, 
the material, joint, and damage characteristics require further investigation and should be calibrated 
to experimental data for a realistic depiction of the analysis results. 
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3. Paper #2: Automatic image-based brick segmentation and crack 
detection of masonry walls using machine learning. 
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Abstract  
This paper aims to enhance automation in brick segmentation and crack detection for masonry walls 
using image-based techniques and machine learning. Initially, a large dataset of hand-labelled images 
of different in colour, texture, and size of brickwork masonry walls has been developed. Next, various 
deep learning networks, including U-Net, DeepLabV3+, U-Net (SM), LinkNet (SM), and FPN (SM), were 
employed, and their quality was evaluated. Furthermore, the paper explores the ability to generate 
geometric models of masonry structures and evaluates the geometric properties of detected cracks. 
Additional metrics were also developed to compare the CNN-output with other image-processing 
algorithms. From the analysis of results, it was shown that the use of machine learning, for brick 
segmentation, provides better outcome than typical image-processing applications. This 
implementation of deep-learning for crack detection and localisation of bricks in masonry walls 
highlights the great potential of new technologies for documentation of masonry fabric.  

 

Keywords: masonry, image processing, documentation, watershed, segmentation, deep learning, 
CNN. 
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3.1. Introduction 
Masonry is one of the oldest building materials. It is composed of individual masonry units (bricks, 
blocks, ashlars, irregular stones, etc.) jointed together with or without mortar. Masonry structures 
represent the highest building stock worldwide. A large portion of masonry structures are “Listed 
Buildings” and form part of our “Cultural Heritage” (McKibbins et al., 2006). According to UN 
Sustainable Development Goal 11, Target 11.4, there is a need to “repair and maintenance” rather 
than “demolish and rebuild” our structures. At present, when inspecting existing masonry structures, 
damage pathologies (such as cracking and spalling) are typically recorded using traditional techniques 
like visual inspection and manual surveying methods (Eaton, Edwards and Crapper, 2014)). However, 
traditional methods are labour intensive, subjective, and error prone (Sowden, 1990; Phares et al., 
2004). Additionally, for the documentation of masonry structures, the size and location of masonry 
units and mortar is of particular interest for the engineers and architects, since such information can 
be used for the development of high-fidelity computational models for their structural analysis and 
assessment (Lourenço, 1996, 2013; D’Altri et al., 2020; Kassotakis et al., 2021). 

In the last ten years, advances in laser-scanning and photogrammetry have started to drastically 
change the building industry since such techniques are able to capture rapidly and remotely digital 
objects and features in images and points’ cloud format. Past research demonstrated that computer-
vision and image-processing can be used to create detailed digital records of masonry structures 
(Kassotakis and Sarhosis, 2021) using feature detection (Canny, 1986; Martin, Fowlkes and Malik, 
2003; Arbeláez et al., 2011; Bora, 2017) and segmentation algorithms (Beucher, S.; Meyer, 1993; 
Arbeláez et al., 2011; Kornilov and Safonov, 2018). Applications of Image-processing can be used to 
quantify deformations on masonry (i.e., when coupled with the installation of simple markers on the 
structure on key-locations to identify their position (Bal et al., 2021; Stockdale, Yuan and Milani, 
2022)). Furthermore, feature-extraction has the potential to generate the “as is” numerical model of 
masonry for detailed analysis (Tiberti and Milani, 2019, 2020a; Kassotakis et al., 2021; Loverdos et al., 
2021a). Those applications of image-processing offer a low-cost and reliable alternative to more 
traditional methods. Although, feature detection and segmentation has already been applied to 
identify the shape and location of masonry units from images (Sithole, 2008; Oses, Dornaika and 
Moujahid, 2014; Cluni et al., 2015; Brackenbury and Dejong, 2018; Valero, Bosché and Forster, 2018), 
their application proves challenging due to digital noise produced by the change in illumination, 
colour, and texture presented within the digital images. 

An alternative approach for image segmentation of masonry units and mortar is with the use of ML 
(Machine-Learning), such as Deep-Learning (DL; subset of M.L.) (Garcia-Garcia et al., 2017; Spencer, 
Hoskere and Narazaki, 2019). Some typical examples of DL include: 

• Classic-Networks: Multilayer architecture of fully-connected-layers of neurons, which are 
typically used in data classification and predictions. 

• Convolutional-Neural-Networks (CNN): Typically used for image classification and 
segmentation.  

• Fully-Concolutional-Networks (FCN): Typically used for image-segmentation, often combined 
with a CNN backbone.  

The most efficient image-segmentation architectures consider the use of FCN (Chen et al., 2015, 2018; 
Long, Shelhamer and Darrell, 2015; Ronneberger, Fischer and Brox, 2015; Lin et al., 2017; Chaurasia 
and Culurciello, 2018), since they allow any image resolution as input by replacing the final fully-
connected-layers of a CNN with convolution layers (Long, Shelhamer and Darrell, 2015). CNN and FCN 
architectures require a large labelled or annotated dataset, trained in representative sample to 
provide adequate results. However, they have the potential to detect complex features by training 
the model to a large variety of different cases. Furthermore, for smaller datasets, DL approaches can 
use a technique called Transfer-Learning which involves pre-training a CNN model on a different and 
larger dataset with the purpose to learn to detect complex features. This has been shown to provide 
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a reduction to the required computational effort and a boost to overall performance of the model for 
smaller datasets (Hussain, Bird and Faria, 2019). Transfer learning can be applied to any CNN and FCN 
(Fully Convolutional Networks) architecture. Multiple architectures have been used to demonstrate 
the ability of DL in the semantic segmentation of images.  

There are different architectures that could be used for the segmentation of masonry units. U-Net is 
an FCN architecture that was developed initially for biomedical image-segmentation (Ronneberger, 
Fischer and Brox, 2015). It is based on a contracting followed by an expansive path, that initially 
decreases and then increases the input-size. Due to its performance, U-Net is considered the 
benchmark in image-segmentation and has been used extensively especially in relatively small 
datasets. DeepLabV3+ is another state-of-the-art FCN architecture for general use semantic 
segmentation (Chen et al., 2015, 2018). Additional features on DeepLabV3+ compared to previous 
iterations and simpler architectures aim to deliver a faster and more accurate network. FPN (Feature-
Pyramid-Network) is an FCN network for object detection (Lin et al., 2017). It is a feature extractor 
that follows a bottom-up followed by a top-down path with the addition of lateral connections 
between the two to merge feature maps of equal spatial size. LinkNet is a light FCN network developed 
for pixel-wise segmentation optimised for efficiency (Chaurasia and Culurciello, 2018). LinkNet is a 
lightweight and fast FCN architecture able to be used for real time applications (i.e., video streaming). 

ML applications have already seen use in structural engineering due to their immerse potential to 
assist with visual inspection and monitoring applications (Spencer, Hoskere and Narazaki, 2019). In 
cases of damage detection, ML provides the means to identify, locate, and asses detected 
deterioration on structural elements. Valero et al. (2019)  extracted statistical data from a 3D point-
cloud and used them to train a ML algorithm for the detection and classification of chromatic (i.e., 
discoloration) and geometric defects on ashlar masonry (using logistic regression with multi-class 
classification). However, most typical applications of defect detection include the use of DL due to its 
architecture, which allows the detection of complex features on unstructured data. Chaiyasarn et al., 
2018, investigated the use of patch classification using CNN algorithm coupled with a classifier to 
identify small patches that contained damaged location of historical structures. Their work was 
continued by Ali (2019) , where Faster-R-CNN was used for the detection of bounding-boxes that 
contain locations of damaged bricks on masonry structures. The same year, Wang et al. (2019)  used 
a Faster-R-CNN model based on ResNet101 for the real time detection and classification of bounding-
boxes that include defected areas on historic masonry buildings. A workflow that utilises mobile-
phones for the direct capture and processing of image-data was also proposed by them. Brackenbury 
et al. (2019)  discussed the use of GoogleNet-Inception-V3 algorithm and the use of transfer learning 
for the classification and segmentation of mortar and defects in masonry components. Each defect 
(i.e., cracking, spalling, or vegetation) was classified separately. Kalfarisi et al. (2020)  used Mask-RCNN 
and FRCNN-FED to detect bounding boxes that contain cracks on structures and performed pixel-wise 
segmentation within the detected areas. Furthermore, they transferred the segmented locations to a 
3D reality-mesh object, generated using photogrammetry. Recently, Dais et al. (2021) tested different 
CNN algorithms for the detection of cracks on masonry images. Both patch-classification (with 95.3% 
accuracy) and semantic-segmentation (with 79.6% F1-score) on pre-trained networks were 
investigated. 

Although most research focuses in defect-detection, the detection of masonry-units and mortar is 
essential to achieve a comprehensive visualization of the condition of masonry structures. Ibrahim et 
al. (2019)  proposed the use of U-Net for the segmentation of mortar in masonry structures with 
different bonding pattern (i.e., including rubble). Additionally, they used watershed-transform for the 
segmentation of each brick unit. Ergün Hatir & İnce (2021) proposed the use of Mask-R-CNN for the 
classification and segmentation of masonry units in historic stone masonry buildings. Each stone 
detected was classified to a different lithology based on their detected features (i.e., colour, texture, 
etc). 
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Based on the information above, while there has been some progress in crack and mortar 
segmentation, no previous research has explored the integration of brick-segmentation with crack-
detection in masonry structures. The objective of this study is to combine brick-segmentation and 
defect-detection techniques to automatically offer comprehensive, real-time information for 
documenting, visually inspecting, and evaluating existing masonry structures. In this research, brick-
segmentation and defect-detection were acquired using different state-of-the-art FCN architectures 
including U-Net, DeepLabV3+, U-Net (SM), LinkNet (SM), and FPN (SM). The work presented here 
provides an automatic workflow for the assessment of masonry structures from digital images.  

3.2. Development of the database for training and evaluation  
Initially, a database was created that includes various images of brick masonry walls of regular pattern 
(ignoring rubble masonry). Some images were obtained from the internet while others were captured 
using different sources (i.e., DSLR camera, smartphones) of varied resolution. To improve 
generalisation, the dataset included masonry walls with cracks, with windows and doors, with varied 
in colour masonry units as well as with varied illumination and capture-angle. A sample of the raw 
database used for training and evaluation is shown in Fig. 3.1. 

 
Fig. 3.1: Sample of the raw database used for training-evaluation. 

In total 107 images of masonry structures were fully annotated, including multi-class annotations of 
masonry blocks, openings, lintels, other/random objects, and background (Fig. 3.2). Each class was 
annotated to a different binarized image where black was the background and white was the 
annotated element. The software used for annotation was the desktop version of “SuperAnnotate 
V.1.1.0”. This specific software was selected since it allowed vector annotations which permits a 
simplified annotation of each block, ignoring unnecessary details. It was found that simpler shapes 
could allow easier transferability to CAD environment. 

 
Fig. 3.2: Annotation of ground-truth data; a) Original image; b) SuperAnnotate vector classification; c) Bricks; d) Openings; 

e) Structural; f) Background. 
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Each image resolution was normalized based on the resolution of the image-slice passed through the 
network. This was to allow each slice to contain several blocks, but not allow the average block-size 
to be larger than the image-slice. Doing so, the accuracy of the model has increased, since each image-
slice had similar-sized blocks that improved the detection rate. The normalised resolution of each 
image was evaluated and compared with the normalised resolution of the image-slice (image-part 
passed through the network). Thus, the image is allowed a specific range of resolution. Although, using 
a specific resolution of block elements (i.e., pixels contained within a block; by capturing pictures with 
specific resolution, angle, and distance), would potentially increase the accuracy. However, that would 
reduce generalisation of the final model and complicate its use (i.e., would require the user to capture 
images from specific distance/angle). Equations 1 to 5 were used to adjust each image. If the image 
was within the limits of Eq. (32), it retained its resolution. However, if the image was outside the limits 
of Eq. (3), it was adjusted based on Eq. (34). 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (30) 
 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = �𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (31) 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 & 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
(32) 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (33) 
 (𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (34) 

,where, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is the average image-resolution, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is the average image-slice resolution, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum over the minimum limit that is allowed to disregard further 
adjustments, and 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the final resolution per image-axis.  

Furthermore, the only variables provided were the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 that are the Maximum over 
the Minimum preferred ratio to adjust the images based on the size of the image-slices. Those values 
were adjusted manually until all the image slices contained a satisfactory number of block elements 
for the specific database. For the current database, the values used were the following: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 2 , and  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 4 (35) 
The size of each image slice was equal to 224 × 224 × 3 (i.e., 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 224). Each image was padded 
to adjust its resolution to multiples of the slice-resolution per axis (i.e., 224 pixels), to retain the 
original aspect-ratio when the image is sliced to smaller parts. The padding value was equal to 255, 
which created a white border around most of the edges. Then, the white padding was used as filtered 
locations of post-processed images (i.e., images were background and openings have been replaced 
with white) and would be instantly disregarded from the CNN output. This provided a total of 2,814 
image-slices and were used as training and validation (i.e., approx. 25% of them were used for 
validation), see (Fig. 3.3). Other slice-resolutions were also tested. The smaller resolutions provided 
more accurate models. This was due to the increased number of training and validation data.  

 
Fig. 3.3: Sample of the slices used to train and evaluate the model; Top: Original image slice; Bottom: Annotated blocks. 
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3.3. Convolutional Neural Networks 
In this research, the networks evaluated were the U-Net, DeepLabV3+ (Fig. 3.4), U-Net (SM), LinkNet 
(SM), and FPN (SM). The latter three (i.e., the SM’s) were generated through the python package called 
“Segmentation Models”, which includes: ready-to-use semantic-segmentation models, multiple 
backbones of renown architectures, and pretrained models for transfer learning. The training 
procedure involved only the use of the brick class since the dataset of other classes was not considered 
to be large enough. 

 
Fig. 3.4: Architecture of the highest performance model (Chen et al., 2018); a) DeepLabV3+ architecture; b) Modified 

XCEPTION backbone. 
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Multiple tests were conducted to identify the best combination of backbone, pretrained dataset, loss 
function, optimiser, and parameters (see Table 3.1), that would provide the most efficient model. The 
first test included a combination of different parameters except loss, optimiser, and activation 
function (Table 3.1). Every architecture was tested with the “Adam” optimiser and “Weighted-Cross-
Entropy” loss function. The learning-rate of the first test-sequence was equal to 5E-4 with a decay of 
5E-6 over 100 epochs. 

Table 3.1: Testing different parameters for each provided architecture (bold indicates best of each section). 

Architecture Model Backbone 
Val. Val. Val. Val. Val. 
Acc. F1 Precision Recall Loss 

- - - % % % % - 
U-Net #1 - 95.62 95 0.92 98.26 0.37 
U-Net #2 - 95.4 94.71 92.35 97.45 0.54 
U-Net #3 - 95.51 94.76 92.18 97.8 0.42 
U-Net #4 - 95.86 95.19 93.01 97.68 0.48 
U-Net #5 - 93.39 92.37 88.03 97.51 0.58 
U-Net #6 - 96.02 95.4 93.05 97.99 0.41 
U-Net #7 - 95.88 95.21 93.77 96.86 0.63 

U-Net (SM) #1 VGG16 95.1 94.3 92.1 96.78 0.65 
U-Net (SM) #2 VGG19 95.17 94.32 91.96 97.01 0.59 
U-Net (SM) #3 InceptionV3 95.37 94.6 94.06 95.38 0.97 

U-Net (SM) #4 Inception-
ResNetV2 89.07 72.46 72.9 75.83 1.23 

U-Net (SM) #5 MobileNet 95.83 95.19 93.79 96.78 0.69 
U-Net (SM) #6 ResNet50 94.65 93.88 91.06 97.09 0.59 
U-Net (SM) #7 SeresNet101 95.13 94.4 92.45 96.61 4.58 
U-Net (SM) #8 SeresNet152 94.77 94.09 90.69 97.96 4.21 
U-Net (SM) #9 ResNet152 94.74 93.85 91.2 96.96 0.64 
U-Net (SM) #10 MobileNet 95.98 95.24 93.64 97.02 0.61 
U-Net (SM) #11 MobileNet 95.94 95.26 93.41 97.31 0.56 
U-Net (SM) #12 MobileNet 95.77 95.09 93.13 97.25 0.59 

LinkNet (SM) #1 MobileNet 96.13 95.52 94.26 96.92 0.64 
LinkNet (SM) #2 MobileNet 95.91 95.31 93.4 97.41 0.55 
LinkNet (SM) #3 MobileNet 95.92 95.35 93.3 97.59 0.54 

FPN (SM) #1 MobileNet 95.99 95.42 93.32 97.71 0.59 
FPN (SM) #2 MobileNet 95.89 95.3 92.9 97.93 0.48 
FPN (SM) #3 MobileNet 96.07 95.53 93.45 97.77 0.53 
FPN (SM) #4 MobileNet 95.99 95.39 93.61 97.35 0.58 

DLV3+ #1 Xception 93.12 87.02 91.47 85.33 4.51 
DLV3+ #2 Xception 96.26 95.6 95.12 96.24 0.81 
DLV3+ #3 Xception 96.27 95.66 94.81 96.66 0.75 
DLV3+ #4 MobileNetV2 95.85 95.26 93.45 97.22 0.5 
DLV3+ #5 Xception 95.4 94.71 92.35 97.45 0.54 
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All architectures provided similar results (between 95.98% to 96.27% validation-accuracy), with 
DeepLabV3+ (#3) having the highest accuracy (96.27%). For each architecture, the parameters used 
for the optimal model were: 

a) U-Net (#6): Optimized using 64 output filters, 0.0005 L2-Regularization, 0.25 dropout, Batch-
Normalization, and “glorot-uniform” initializer.  

b) U-Net-SM (#10): 0.0005 L2-Regularization, “MobileNet” backbone, “ImageNet” Encoder-
Weights, “Sigmoid” activation function, and (256, 128, 64, 32, 16) decoder filters.  

c) U-Net-SM (#11) is like U-Net-SM (#10) except that (512, 256, 128, 64, 32) decoder filters were 
used.  

d) LinkNet-SM (#1): 0.0005 L2-Regularization, “MobileNet” backbone, “ImageNet” Encoder-
Weights, “Sigmoid” activation function, and (1024, 512, 256, 128, 64) decoder filters.  

e) FPN-SM (#3): 0.0005 L2-Regularization, “MobileNet” backbone, “ImageNet” Encoder-
Weights, “Sigmoid” activation function, 512 filters and 0.25 dropout.  

f) DeepLabV3+ (#3): 16 OS (feature-extractor output ratio), “Xception” backbone, “Pascal-Voc” 
pretrained weights, and “Sigmoid” activation. 

3.4. Loss Function 
The loss function was used to minimise the error during training and define the weights to reduce the 
loss during the next evaluation. The loss functions tested were Focal-Loss (FL), Weighted-Cross-
Entropy (WCE), F1-Loss (F1L), and Binary-Cross-Entropy (BCE). All cases used the “Adam” optimizer 
with learning-rate of 1E-4 and decay equal to 1E-6.  

Table 3.2: Test of loss functions (bold indicates best model of each section) 
    

Best of three of each model/loss combination 

Architecture Model Loss Epoch 
Val Val Val Val Val 

Accuracy F1 Precision Recall Loss 
- - - - % % % % - 

U-Net #6 FL 98 96.18 95.3 97.12 93.72 3241.99 
U-Net #6 WCE 78 95.44 94.69 92.77 96.86 0.66 
U-Net #6 F1L 97 96.09 95.22 95.6 95.09 0.05 
U-Net #6 BCE 92 96.27 95.57 96.12 95.14 0.13 

U-Net (SM) #10 FL 89 96.41 95.52 96.82 94.5 6022.23 
U-Net (SM) #10 WCE 74 95.99 95.28 94.36 96.35 0.97 
U-Net (SM) #10 F1L 74 96.08 95.32 95.98 94.81 0.1 
U-Net (SM) #10 BCE 99 96.52 95.79 96.5 95.21 0.18 

LinkNet (SM) #1 FL 99 96.06 95.11 97.17 93.29 4998.93 
LinkNet (SM) #1 WCE 80 96.07 95.25 94.3 96.41 0.92 
LinkNet (SM) #1 F1L 87 96.49 95.8 96.15 95.56 0.08 
LinkNet (SM) #1 BCE 95 96.54 95.83 96.24 95.49 0.17 

FPN (SM) #3 FL 93 96.36 95.55 96.74 94.53 5473.35 
FPN (SM) #3 WCE 87 96.21 95.5 93.95 97.2 0.78 
FPN (SM) #3 F1L 100 96.52 95.8 96.78 94.92 0.08 
FPN (SM) #3 BCE 85 96.58 95.88 96.36 95.49 0.19 

DLV3+ #3 FL 59 96.31 95.55 97.08 94.17 3632.67 
DLV3+ #3 WCE 83 96.09 95.47 93.94 97.15 0.57 
DLV3+ #3 F1L 69 96.45 95.77 96.53 95.13 0.04 
DLV3+ #3 BCE 97 96.65 96.03 96.53 95.62 0.15 
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Table 3.2 presents the best of three of each architecture/loss combinations. After evaluating all cases, 
the most efficient loss-function (highest validation-accuracy) was the BCE. However, it has been 
noticed that the highest validation-precision was typically acquired when using FL and the highest 
validation-recall when using WCE. Nonetheless, the target metric was the validation-accuracy. Thus, 
the optimal loss function was taken equal to the BCE. Furthermore, to exclude any error in the 
evaluation procedure of the loss-functions, a combination of different optimisers per loss-function 
was tested. However, the evaluation of the optimiser was only undertaken for the DeepLabV3+ 
architecture since it had the highest validation-accuracy for both tests. The remaining parameters 
were equal between the second and third tests. The two optimisers used herein were: a) Adam, 
Stochastic Gradient Descent (SGD); and b) RMSprop (RMSP). 

Table 3.3: Test of optimiser/loss combination (Bold indicates best of each section) 

    Best of three of each optimiser/loss combination 

Architecture Optimizer Loss Epoch 
Val Val Val Val Val 

Accuracy F1 Precision Recall Loss 
- - - - % % % % - 

DLV3+ SGD** FL 62 56.72 0 0 0 350036.3 
DLV3+ SGD FL 62 56.72 0 0 0 350036.3 
DLV3+ SGD** WCE 72 86.14 84.6 79.51 92.45 1.95 
DLV3+ SGD WCE 96 75.16 73.23 66.15 84.95 4.75 
DLV3+ SGD** F1L 96 76.52 74.38 68.73 84.36 0.26 
DLV3+ SGD F1L 100 72.47 67.84 63.72 74.88 0.33 
DLV3+ SGD** BCE 25 83.59 79.86 81.19 81.05 6.08 
DLV3+ SGD BCE 100 73.65 67.11 67.45 70.25 4.58 
DLV3+ RMSP* FL 55 94.93 93.75 96.22 91.67 5921.18 
DLV3+ RMSP FL 44 96.4 95.75 96.51 95.1 7827.02 
DLV3+ RMSP* WCE 46 94.09 93.1 92.58 94 1.48 
DLV3+ RMSP WCE 88 96.2 95.5 94.75 96.39 1.2 
DLV3+ RMSP* F1L 91 95.87 94.92 95.49 94.72 0.05 
DLV3+ RMSP F1L 56 96.72 96.09 96.81 95.47 0.04 
DLV3+ RMSP* BCE 76 95.84 94.9 95.36 94.79 0.26 
DLV3+ RMSP BCE 96 96.57 95.92 96.19 95.75 0.23 
DLV3+ Adam FL 59 96.31 95.55 97.08 94.17 3632.67 
DLV3+ Adam WCE 83 96.09 95.47 93.94 97.15 0.57 
DLV3+ Adam F1L 69 96.45 95.77 96.53 95.13 0.04 
DLV3+ Adam BCE 97 96.65 96.03 96.53 95.62 0.15 

* Momentum = 0.9 
** Momentum = 0.9, Nesterov = True 
Default (No Stars): Momentum = 0, Nesterov = False 

 

From Table 3.3, each optimiser provided the most efficient model with different loss function. So, the 
use of BCE as the optimal loss function was not universal. Using the SGD optimiser, the most efficient 
loss function was WCE (86.14% validation accuracy). With RMSP, the optimal loss function was F1L 
(96.72% validation accuracy). Using Adam, the highest score was obtained through BCE (96.65% 
validation accuracy). Also, from Table 3.3, it is concluded that the combinations (Optimiser/Loss) with 
the highest accuracy were the Adam-BCE and RMSP-F1L and had very similar accuracy. So, both have 
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been considered for the development of the final model. In contrast, the SGD optimiser was 
disregarded due to the low accuracy score along all loss functions.  

3.5. Final Model 
The optimal learning-rate used to adjust the final model and decide on the utilisation of F1L and BCE 
loss functions. RMSP was selected as the target optimiser, since it obtained the highest score, see 
(Table 3.3). Different learning-rate values were tested over 200 epochs. The decay used was equal to 
the Learning-Rate over the Max-Epoch. All models used the DLV3+ architecture with the Xception 
backbone, pretrained to the Pascal-VOC dataset (Table 3.4). 

Table 3.4: Testing different learning-rate values for the selection of the final model (bold indicates best of each section). 

    Best of three (DLV3+) 
Optimizer Loss Learning Epoch Val Val Val Val Val 

  Rate  Accuracy F1 Precision Recall Loss 
- - - - % % % % - 

RMSP F1L 1.00E-04 79 96.73 96.16 96.54 95.82 0.04 
RMSP F1L 2.00E-04 117 96.86 96.29 96.68 95.94 0.04 
RMSP F1L 5.00E-05 67 96.57 95.96 96.32 95.65 0.04 
RMSP F1L 0.0005 179 96.62 96.03 96.16 95.93 0.04 
RMSP BCE 1.00E-04 127 96.87 96.3 96.46 96.16 0.23 
RMSP BCE 2.00E-04 131 96.85 96.28 96.64 95.94 0.37 
RMSP BCE 5.00E-05 165 96.48 95.85 96.17 95.59 0.26 
RMSP BCE 0.0005 88 96.46 95.84 96.01 95.7 0.24 

 

   
Fig. 3.5: Graphs of best models; a) DLV3+ model with F1L loss function and learning rate of 2E-4; b) DLV3+ model with BCE 

loss function and learning rate of 1E-4. 

The highest score using F1L loss function was obtained with 2E-4 learning rate with validation accuracy 
equal to 96.86% (Table 3.4). The highest score using BCE loss function was obtained with 1E-4 learning 
rate with validation accuracy equal to 96.87% (Table 3.4). The validation accuracy of both models was 
very similar. Thus, the selection of the final model considered the progression of the loss on the 
accuracy/loss graphs (Fig. 3.5) and the visual representation of the validation set (Fig. 3.6 and Fig. 3.7). 
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Fig. 3.6: Evaluation sample from the F1L model; a) Original image-slice; b) Ground truth; c) CNN Output (AC: Accuracy; F1: 

F1-Score; R: Recall; PR: Precision) 

 
Fig. 3.7: Evaluation sample from the BCE model; a) Original image-slice; b) Ground truth; c) CNN Output (Metrics: AC: 

Accuracy, F1: F1-Score, R: Recall, PR: Precision) 

The output graph of the BCE model shows moderate overfitting to the dataset provided (Increasing 
validation-accuracy and validation-loss), which reveals that the BCE model may not be generalising as 
well as the model with F1L. Moreover, from the samples provided, the model with F1L has reduced 
noise on complex locations (i.e., images 1-3 in Fig. 3.6 and Fig. 3.7). Although using BCE the validation 
score was slightly higher in the model, the reduction of noise assisted with the detection of individual 
blocks on more complex images. Also, both models provided very accurate results for images with 
adequate resolution per block. Moreover, both were able to recognise openings and backgrounds 
exceptionally well, even for bricks with varied colour (i.e., images 4 and 8 in Fig. 3.6 and Fig. 3.7). So, 
the model with F1L loss-function was considered as the best model and adopted here. In more detail, 
the specified model has a classification error equal to 1.24% for the background and 1.52% for the 
blocks class (Fig. 3.8). Additionally, the model is aimed to be used for images that are simpler than the 
trained dataset. Thus, in practice, the CNN-output is expected to provide improved results. 
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Fig. 3.8: Confusion matrix; TN: True Negatives; FN: False Negatives; FP: False Positives; TP: True Positives (Model: DLV3+ 

with RMSP-F1L) 

3.6. Crack Detection 
As mentioned before, the crack detection adopted in this study used the most efficient model 
presented in Dais et al., (2021). Both patch classification and pixel wise segmentation was tested. 
However, for the purposes of this study, only the models for pixel wise segmentation were considered 
(Table 3.5). The architectures tested were: a) DeepCrack; b) DeepLabV3+; c) FCN based on VGG16; d) 
U-Net; and e) FPN. The backbones tested were: VGG16, ResNet (multiple), DenseNet (multiple), 
Inception, MobileNet, and MobileNetV2. Also, multiple loss functions were tested to identify their 
optimal parameters. The loss functions used were: a) Weighted-Cross-Entropy (WCE), b) Cross-
Entropy (CE), c) F1-Score-Loss (F1), and d) Focal-Loss (FL). All models included the use of the Adam 
optimiser since it provided the highest F1-Score. Transfer learning was also utilised to improve the 
accuracy of the detection using the ImageNet dataset. 

Table 3.5: Architectures tested for defect detection of masonry structures (bold indicates best models). 

       Validation Scores 

Network Pretrained Loss Parameters Model  
Size 

Analysis 
Time 

Best 
Epoch 

F1 
Score Recall Precision 

- [ImageNet] - [Millions] [MB] [Hours] - % % % 

DeepCrack No WCE 29.5 115.5 5.2 28 74 80.1 71.6 
DeepLabv3+ No WCE 41.3 162.2 5.6 26 74.9 79 73.8 
FCN-VGG16 No WCE 27.8 108.8 2.5 95 75.6 76.6 76.9 

U-net No WCE 34.5 135.1 5.8 75 75.7 78.9 75.7 
U-net-VGG16 Yes WCE 46.1 180.2 6 37 77.2 81.2 76.2 

U-net-ResNet34 Yes WCE 48 188.1 4.9 61 77.6 78.3 79.5 
U-net-ResNet50 Yes WCE 73.7 288.5 6.8 45 76.3 80.9 74.8 

U-net-Densenet121 Yes WCE 41.6 163.5 6.2 55 78.1 80.7 78.1 
U-net-Densenet169 Yes WCE 54.3 213.4 7.1 63 78.5 83.5 76.2 
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U-net-InceptionV3 Yes WCE 68.5 268.1 6.8 31 77.7 79.2 78.9 

U-net-MobileNet Yes WCE 37.8 147.9 4.8 45 79.6 79.9 81.4 
U-net-MobileNet No WCE 37.8 147.9 4.8 36 75.4 80.7 73.4 
U-net-MobileNet Yes CE 37.8 147.9 4.8 36 76.6 73 83 
U-net-MobileNet Yes F1 37.8 147.9 4.8 29 78.2 77.1 82 
U-net-MobileNet Yes FL 37.8 147.9 4.8 85 71.2 61.1 89.4 

U-net-MobileNetV2 Yes WCE 39.5 154.9 5.3 58 77.7 76.6 81.9 

FPN-VGG16 Yes WCE 32.2 125.8 5.6 79 77.9 82 76.2 
FPN-ResNet34 Yes WCE 38.3 150.2 5.2 36 78 81.5 77.2 
FPN-ResNet50 Yes WCE 42.1 164.8 5.8 27 77.2 81.4 75.8 

FPN-Densenet121 Yes WCE 24.6 97 6.1 31 79 83.6 77.2 
FPN-Densenet169 Yes WCE 30.6 120.8 6.6 59 78.6 80 79.5 
FPN-InceptionV3 Yes WCE 40 157.2 5.7 34 79.6 81.3 80.1 
FPN-MobileNet Yes WCE 20.8 81.4 4.6 40 79.5 79.5 81.7 

FPN-MobileNetV2 Yes WCE 19.9 78.3 4.8 49 78.5 76.7 82.7 

 

The architecture selected was the U-net-MobileNet with Adam optimiser and WCE loss function. The 
specified model achieved a validation F1-score equal to 79.6%, validation recall equal to 79.9%, and 
validation precision equal to 81.4%. The existing CNN-model was used to acquire the damage during 
the geometrical-model generation. Moreover, the dataset of the damage-detection model is similar 
to the block-detection model. Thus, it can be used directly to combine the results of both models 
(blocks and cracks) efficiently. The sample of the validation set used in the evaluation of the model is 
shown in Fig. 3.9. 

 
Fig. 3.9: Sample images from the crack detection model from (Dais et al., 2021); a) Original image-slice; b) Ground truth; c) 

CNN Output (Metrics: F1: F1-Score, RE: Recall, PR: Precision) 

3.7. Final Output 
To acquire the final output, image processing of the original image was undertaken. Initially the image 
was re-sized using the same methodology described in the Development of the database section (Eq. 
(34)). By combining the image slices directly to the image, distortion effects near the edges of the 
image-slice (Fig. 3.10: b) were observed. So, each slice assigned an overlap value. The best results were 
acquired using an overlap value of 50 pixels for an image slice of 224 × 224. The image was divided 
into sections of 124 × 124 pixels (224− 2 × 50) and included a white padding of 100 pixels (2 × 50). 
This effectively retained only the central section of each slice for use and improved the overall quality 
of the final output (Fig. 3.10: c). Furthermore, the use of the models to acquire the location of cracks 
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and masonry elements shown satisfactory results. Fig. 3.11 presents outputs from both models CNN 
(blocks and cracks) that were used for verification purposes i.e., not used during the 
training/evaluation phase. 

 
Fig. 3.10: Effect of using overlap while connecting output-slices; a) Original image; b) Direct connection of 224x224 pixel 

slices; c) Overlap of 50 pixels on 224x224 pixel slices. 

 

 
Fig. 3.11: Combined output of block and crack detection models; a) Original image; b) Block detection; c) Crack detection; d) 

Marked perimeter of detected elements. 
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3.8. Usage 
One important use of the damage detection framework proposed here is to assist engineers with the 
visual-inspection and documentation of masonry structures in their care. Using image processing, 
each individual crack was identified and measured. The isolation of white elements from the CNN 
output was succeeded by using watershed segmentation to assign a unique label to each crack (Fig. 
3.12: b). Using the individual labels of the segmentation, it was possible to acquire the area of each 
label by counting the total number of pixels. Each segmentation provided the linearization of its area 
(Fig. 3.12: c), which can be used to evaluate the length of the crack. Finally, the results obtained can 
be scaled to the real dimensions and provide realistic measurements of the crack properties by 
providing a scale factor (Table 3.6). The approximate-length (Skeleton (mm)) was acquired under the 
assumption that the length of each pixel is the average between its horizontal and diagonal distance. 

 
Fig. 3.12: Evaluation of damage; a) Marked cracks; b) Watershed segmentation; c) Linearization (skeleton). 

Table 3.6: Crack properties acquired using image-processing. 

Label Loc Min Loc Max Loc Mid Area Skeleton Area Skeleton 
(xmin,ymin) (xmax,ymax) (x,y) (pixels) (pixels) (mm²) (mm) 

1 [1908, 0] [2249, 189] [2079, 170] 13474 472 5072 350 
2 [923, 155] [1872, 817] [1397, 427] 37425 1482 14088 1065 
3 [753, 804] [913, 945] [775, 874] 5537 247 2084 178 
4 [568, 936] [739, 1072] [595, 993] 5675 272 2136 196 
5 [402, 1069] [428, 1220] [414, 1144] 3076 137 1158 98 
6 [302, 1215] [397, 1448] [343, 1325] 3971 229 1495 165 
7 [237, 1323] [289, 1448] [270, 1390] 2217 121 835 87 
8 [1843, 1348] [1869, 1448] [1856, 1398] 2190 79 824 57 

 

The main use of the feature-detection was aimed for the automatic development of geometrical 
models for documentation and numerical models for analysing the structural capacity of masonry 
structures. The methodology to convert binary images of masonry blocks and cracks, to CAD drawings, 
is further explained in Loverdos et al. (2021b) (see chapter 2).  

The algorithms described in the previous study used binary images acquired using simple 
photogrammetric applications (i.e., image blurring, image thresholding, edge detection). However, 
the use of simple image processing applications found to be not reliable and, in some cases, unusable 
(i.e., for large variations on illumination and/or colour (Fig. 3.13: c, e, and g)). Furthermore, the process 
requires to adjust the parameters of each image-processing function manually. The use of CNN, for 
the feature detection of masonry micro-geometry (i.e., geometry of individual masonry units and 
mortar), improves the results of the feature extraction by providing a better binarized output and 
automating the procedure (Fig. 3.13: d, f, and h). 
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For both applications (measurement of cracks and generation of geometrical model) the image is 
required to be either an orthorectified photo or an image captured vertically compared to the masonry 
element. This will ensure that the detected elements (i.e., blocks, cracks, openings) will have the same 
scale along the image used. 

 
Fig. 3.13: Comparison of Thresholding and CNN output; a) Blurred/grey image for thresholding; b) Original image for CNN; 

c) Detected blocks using thresholding; d) Detected blocks using CNN; e) Detected cracks using thresholding; f) Detected 
cracks using CNN; g) Perimeter of detected elements using thresholding; h) Perimeter of detected elements using CNN. 
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Moreover, the simplified shapes acquired, using the binarized output from the trained models, 
demonstrated great improvement when compared to binarized images acquired using image-
processing. The blocks were more evenly shaped and better aligned to the actual masonry bricks (Fig. 
3.14). This did not only improve the reliability of the numerical analysis, but also the geometric 
representation of the structure when used for representation in CAD environments. It should be noted 
that the original image used for the Fig. 3.13 and Fig. 3.14, was the same used for the generation of 
the numerical model in the previous study for comparison purposes. Additionally, the use of simple 
image-processing applications, for the feature detection, favours the specified image since the 
contrast between mortar and bricks is highly visible, without large changes to illumination/colour. For 
general use, the difference between the resultant output is expected to be larger. 

 
Fig. 3.14: Extracted blocks using the methodology described in Loverdos et al., (2021); a) Block-detection using image-

thresholding; b) Block-detection using CNN. 

3.9. Shape Quality 
The quality of the segmentation was evaluated to quantify the change between the ground truth and 
the output from either the CNN model or simple image-processing applications. The simple metrics 
included the accuracy, recall, precision, and F1-Score, as seen in the use of the CNN model.  

However, those metrics tend to check the overall quality of the output. Since the model was aimed to 
be used for the generation of geometrical models and documentation, additional metrics were 
included to quantify the quality of the block-shapes. The shape quality was estimated by calculating 
the coverage, error of area, and quantity of undefined blocks (Fig. 3.15). Each segmentation of the 
ground-truth was compared with the output of either CNN or image-processing to identify the same 
object in both images. The first step was to calculate the common area between the two objects (Eq. 
(36)). The coverage (Eq. (37)) was calculated by comparing the common-area between both objects 
(ground-truth and output) while the Area-Error was calculated by comparing the area between both 
objects (Eq. (38)). The quantity of undefined objects was the number of objects that didn’t match with 
a segmentation from the ground truth following certain conditions (i.e., the coverage must be similar 
to the area of the segmentation). The equations of the additional metrics are provided below: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂1𝑖𝑖 ꓵ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2𝑖𝑖 (36) 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 
(37) 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 − 1 (38) 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (39) 

, where 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂1𝑖𝑖 denotes any segmentation on ground truth,  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2𝑖𝑖 any segmentation on the 
output (CNN or Image-processing), 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1 the total area of the 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂1 in pixels, and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 the total 
area of 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂2 in pixels. Individual segmentations were obtained using watershed-segmentation 
with the binary image as mask. The conditions for segmentation, i.e., the same object as in the ground-
truth, were: 
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 Condition1 (Required): 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 > 0 (40) 
 Condition2 (Optional): 1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 ≤ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜1 (41) 
 Condition3 (Optional): 1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 ≤ 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜2 (42) 

, where the 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is any value between 0 to 1 and denotes the difference between the common 
area and the total area of the segmentation. The shape-analysis in this case used a Threshold value of 
0.2 (i.e., 80% of object area must be common). The first condition was used to verify that two objects 
have a common area (Eq. (40)). By using the second condition only (Eq. (41)), the evaluation 
considered objects that were erroneously merged (Fig. 3.15: c), which increased the area-error 
significantly. By using the third condition only (Eq. (42)), the evaluation considered segmentations that 
were erroneously broken into smaller elements. If multiple objects satisfy the conditions, then they 
were all included in the final common area. For this study, both optional conditions were used. Thus, 
for an object to be considered, must have a common area of at least 80% of both segmentations 
(ground-truth and output). Fig. 3.15 shows the undefined objects that did not match both images (Fig. 
3.15: a-b & Fig. 3.15: a-c). Furthermore, it demonstrates that the CNN output has marginally fewer 
undefined objects, since image-processing is prone to noise caused by the change in illumination and 
colour within the same image. Although watershed-segmentation can close open-segmentations (Fig. 
3.13: g), it is not always feasible. In Fig. 3.16, images were utilised during the validation phase of the 
model and are shown to compare the output acquired using image-processing. The method applied 
was the same as the one used to acquire the image in Fig. 3.13:c. The metrics for the complete 
evaluation of all images (Fig. 3.15 & Fig. 3.16), are shown in Table 3.7. 

 
Fig. 3.15: Comparing segmentation quality of CNN and Thresholding (Red: Unidentified blocks with large change to 

location/area): a) Ground-truth image (Annotated); b) CNN-Output compared with annotated; c: Thresholding-output 
compared with annotated. 

 
Fig. 3.16: Comparing segmentation quality of the train/validation set (Red: Unidentified blocks with large change to 
location/area): a) Original image; b) Ground-truth image (Annotated); c) CNN-Output compared with annotated; d) 

Thresholding-output compared with annotated. 



63 
 

Table 3.7: Metrics to quantify the segmentation quality of the output. 

Name 
Image1 Image2 

Acc. Recall Precision 
F1 Coverage 

(1) 
Area Missing 

(Gr. Truth) (Output) Score Error Error (1) 

- - - % % % % % % % 

Fig. 15: b Annotated CNN 95.68 94.63 99.78 97.13 94.4 -5.39 5.5 

Fig. 15: c Annotated Thresh. 94.76 96.68 96.55 96.62 96.7 -1.64 27.47 

Fig. 16: 1c Annotated CNN 83.63 75.24 97.65 84.99 97.31 0.76 44.44 

Fig. 16: 1d Annotated Thresh. 66.67 68.08 75.44 71.57 0 n.a. 100 

Fig. 16: 2c Annotated CNN 94.65 92.43 94.48 93.44 93.95 -2.11 50 

Fig. 16: 2d Annotated Thresh. 83.24 87.17 75.82 81.1 92.03 -4.8 75 

Fig. 16 :3c Annotated CNN 89.35 93.5 91.47 92.47 96.2 3.63 50 

Fig. 16: 3d Annotated Thresh. 70.97 76.69 80.83 78.71 94.27 3.58 87.5 

Fig. 16: 4c Annotated CNN 98.25 98.56 96.93 97.74 98.42 1.76 9.09 

Fig. 16: 4d Annotated Thresh. 70.7 95.07 57.08 71.33 95.46 12.58 72.73 

Fig. 16 :5c Annotated CNN 96.69 97.12 98.13 97.62 96.24 -1.66 16.67 

Fig. 16: 5d Annotated Thresh. 78.28 91.85 80.03 85.53 96.99 0.81 77.78 

Fig. 16: 6c Annotated CNN 96.29 97.63 97.77 97.7 97.91 0.28 10 

Fig. 16: 6d Annotated Thresh. 87.8 92.68 92.21 92.45 90.35 -7.01 70 

Fig. 16: 7c Annotated CNN 97.59 98.35 97.63 97.99 98.53 0.92 7.69 

Fig. 16: 7d Annotated Thresh. 69.58 92.77 67.98 78.47 95.14 -2.07 61.54 

Fig. 16: 8c Annotated CNN 98.22 98.17 97.99 98.08 97.21 -0.97 12.5 

Fig. 16: 8d Annotated Thresh. 92.14 98.58 86.42 92.1 95.68 8.01 50 
  Median CNN: 94.48 93.96 96.87 95.24 96.69 -0.31 22.88 

  Median Thresh: 79.35 88.84 79.15 83.1 94.58 0.29 69.11 

 

Most metrics provide similar values for both test cases of the damaged wall (Fig. 3.15). More 
specifically the accuracy on the CNN output was slightly higher, which explains the better 
representation of the segmentation (95.7% vs 94.8%). Although, the coverage in the CNN image was 
slightly lower for the objects that were detected correctly (94.4% vs 96.7%). Nonetheless, the missing 
error of the CNN image was much lower than the thresholding case (5.5% vs 27.5%), which was caused 
by the presence of multiple open shapes in the thresholding image (Fig. 3.15: c). On the CNN case, the 
bottom-left block was undefined due to the damage not separating the blocks completely (Fig. 3.15: 
b), as it is on the ground truth image (Fig. 3.15: a) and detecting the three broken elements as a single 
object. Also, it should be noted that the large value of the undefined blocks, in the thresholding case, 
would decrease the coverage and increase the area error, if they were allowed in the evaluation (Fig. 
3.15: c). Thus, a higher coverage does not correspond to an overall better quality of segmentation, 
since it relates to fewer elements. Furthermore, the image was favourable for block detection using 
thresholding, due to minimal noise, which explains the better fit of the validated objects. The results 
will vary depending on alterations to illumination and colour (Fig. 3.16). 

The metrics acquired for Fig. 3.16 demonstrate that the quality of shapes when using simple 
thresholding was detrimental for the accuracy of the model. This can be observed initially from the 
median accuracy, which was equal to 94.5% vs 79.3%, for the CNN and thresholding methods 
respectively. In general, thresholding provided marginally fewer validated blocks, as it was observed 
by the median missing error, which was equal to 22.9% vs 69.1%, for the CNN and thresholding 
methods respectively (Fig. 3.16: c, d). Furthermore, the overall fitting of the shapes was higher in the 
CNN case since the coverage calculated was 96.7% vs 94.6% for the CNN and thresholding methods 
respectively.  
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Moreover, simple image-processing methods can not recognise openings, damage, or background 
(Fig. 3.16: d4 & Fig. 16: d8). They are only able to identify either edges (edge detection) or pixel 
intensity (thresholding). Every image that contained locations of background, required modification 
before it was used. Thus, the use of CNN for the object detection was preferred for the current test-
case, due to its higher accuracy and reliability to identify correctly almost every object (Fig. 3.15: b), 
except for highly complex images (Fig. 3.16: c1, c2, c3). 

3.10. Conclusions 
This research is contributing towards automating procedures that engineers would require 
considerable amounts of effort, expertise, and time to achieve while at the same time minimises the 
human error.  For example, remote inspection is even more challenging for difficult to reach locations, 
where visual inspection may be required, but is challenging to implement. The study demonstrates 
that both damage and block detection can be achieved with adequately high accuracy by utilising deep 
learning approaches. Where the block-detection model achieved a validation-accuracy of 96.86% and 
the crack detection model an F1-Score of 79.6% (which can be improved by simply providing more 
annotated data). The quality of the binarized output has also been assessed showing that the CNN 
output outperforms simple image-processing functions even for clean images. Especially considering 
that simple image-processing applications do not differentiate between detected elements and 
background/openings. Additionally, deep learning methods allow for the improvement of the model 
by increasing the dataset used for training and validation. Consequently, the performance of the 
model can always be enhanced by acquiring additional samples of the classified elements. 

The main limitation of the demonstrated application of deep learning, for the detection of features in 
masonry structures, is that a similar sample should be provided during training of the model to detect 
specific features. I.E., to be able to reliably identify irregular masonry units, images with irregular 
masonry should be included in the dataset. Furthermore, features not shown in the image will not be 
identified by the model (i.e., cracks of extremely small size). Thus, the engineer must ensure that the 
desired features should be visible on the image-slice passed through the network. Lastly, the use of 
orthorectified images is important for the accurate evaluation of detected features (i.e., if used for 
numerical modelling, or crack measurements). 

Future work includes the implementation of the developed models to a framework that will be able 
to automatically generate numerical models and analyse changes on the structure in real time. This 
includes a detailed report of the measurement of detected defects on the structure. Currently only 
cracks are detected but additional classifications of defects are considered, such as spalling, 
vegetation, and discolouration. Additionally, the results obtained from the block/crack-detection can 
be coupled directly with algorithms for numerical modelling to automatically evaluate the crack 
patterns on the structure by performing numerical analysis or compare the results from inverse 
analysis by matching the outputs (from the block/crack detection models and evaluation method 
used, i.e., (Alessandri et al., 2015; Iannuzzo et al., 2018; Angelillo, 2019; Napolitano and Glisic, 2019; 
Tiberti et al., 2020)). In all cases, the capture procedure can be replaced by remote sensing 
applications, such as drones, to remotely capture image/video data paired with semantic 
segmentation for the identification of structural elements. Hence, providing a digital twin of the 
structure considered for real time monitoring. 
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Abstract  
The generation of numerical models for masonry structures is a time-costly procedure since it requires 
the discretization of a large quantity of smaller particles. Similarly, traditional visual inspection 
involves the cautious consideration of each element on a masonry construction. In both cases, each 
brick element needs to be considered individually. The work presented in this document intends to 
address the challenges associated with documenting individual masonry units on a structure by 
employing computer vision and convolutional neural networks (CNN). Specifically, it introduces a 
dynamic workflow that automatically detects masonry units and cracks, which are then utilized to 
create a geometric digital twin of masonry structures. The outcome is a collection of space coordinates 
and geometrical objects that represent the masonry entity and allow the comprehension of the object 
for documentation and structural assessment. This interoperability between architectural, structural, 
and structural analysis models paves the way to use engineering to create a smarter, safer, and more 
sustainable future for our existing infrastructures.  

 

Keywords: masonry, image processing, watershed transform segmentation, feature extraction, 
structural analysis, documentation. 
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4.1. Introduction 
Masonry is a commonly used construction which consists of placing individual masonry units (e.g., 
brick, concrete blocks, stones etc.) on top of each other and binding them together with mortar (i.e. 
a mixture of sand, binder such as cement or lime and water). A large portion of infrastructure that we 
are currently using is made of masonry. For example, masonry structures such as arch bridges and 
viaducts are typically over 100 years old. Over the years, these structures have attained damages (e.g. 
cracking, spalling) and changes to their geometry due to deterioration, subsidence, change of usage, 
which resulted in altering their load carrying capacity (McKibbins et al., 2006)). Failure of such 
infrastructure could lead to significant direct and indirect costs to the economy and society and could 
hamper rescue and recovery efforts. Without a strategic approach to caring for our ageing masonry 
infrastructure, we run the risk of over-investing in some areas while neglecting others that need our 
attention, or risk failing to address economic and societal needs. Therefore, it is important to develop 
accurate and data driven management plans for these structures to retain their usefulness and extend 
their lifespan. 

An essential element of infrastructure maintenance is structural inspection which must be conducted 
systematically and not only when there is a breakdown or failure (Sowden, 1990). The prime focus of 
structural inspection is public safety and prolonging the economic life of the structure. In addition, 
inspection should keep disruption to the users and third parties of the structure to a minimum. A 
typical inspection process gathers information from a structure with respect to defects and can record 
deterioration over time (Eaton, Edwards and Crapper, 2014). Traditional methods for structural 
inspection and surveying, of our cultural-heritage, rely on visual inspection and manual recording. 
However, manual recording of the structural condition is subjective, increases the risk of erroneous 
assessment, is time-consuming, and comes with large monetary-costs (Phares et al., 2004). 

Another important element of the masonry management plan is structural assessment, which aims to 
assess the structural capacity of a structure during its service life. In practice, structural assessments 
are usually conducted using traditional and standardised methods, despite knowledge that these 
methods often provide conservative estimates. In particular, over the last decades, there have been a 
significant effort to use advanced numerical methods of analysis and high-fidelity models to 
understand the performance of masonry infrastructure to different loading conditions (Lourenço, 
1996, 2013; D’Altri et al., 2020). Such methods range from macro-models, which consider the masonry 
as a singular element (continuum macro-models) or multiple elements not corresponding to the 
masonry pattern (discontinuum macro-modelling, (Caliò, Marletta and Pantò, 2012)) to micro-models 
that consider masonry as an assemblage of blocks and mortar joints (Asteris et al., 2015). Depending 
on the accuracy required, a discrete model (micro-model) can also consider the inclusion of the mortar 
as a physical element (detailed micro-modelling, (D’Altri et al., 2018; Sarhosis and Lemos, 2018)). In 
which case the analysis may provide more accurate results, regarding crack propagation on mortar, at 
the expense of computational effort. Thus, detailed micro-modelling is usually limited to small and 
simple structures. An alternative is the simplification of the model to consider the mortar as a zero-
thickness interface (simplified micro-modelling, (Sarhosis and Sheng, 2014; Sarhosis, Garrity and 
Sheng, 2015; Sarhosis, Forgács and Lemos, 2019)). In which case, the numerical model contains much 
fewer contact points, which decreases computational effort dramatically, while still retaining the 
accuracy of a discrete model. Moreover, modelling strategies can extend from 2D to 3D space. A 2d 
model is limited to a single plane but provides a quick assessment of the structural condition (Sarhosis 
and Sheng, 2014; Sarhosis and Lemos, 2018; Sarhosis, Forgács and Lemos, 2019; Segura et al., 2021). 
Alternatively, a 3d model can provide a more accurate and complete picture of the state of the 
structural-condition since it includes the physical interaction with all elements of the structure 
(Sarhosis et al., 2014; Forgács, Sarhosis and Bagi, 2017, 2018; D’Altri et al., 2018; Erdogmus et al., 
2019, 2020). However, 3d modelling comes with an enormous increase in computational time 
required to complete an analysis. 
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Although typical modelling strategies rely on idealised geometry, research in the literature 
demonstrated that higher precision of geometry, for both size and shape, leads to distinct and 
potentially more accurate results (Erdogmus et al., 2019; Ferrante et al., 2021; Kassotakis et al., 2021). 
However, the accurate definition of the masonry geometry is usually disregarded for simpler 
modelling techniques due to the effort required to produce such models. Concerning the geometry of 
masonry structures (typically complex with irregular shapes), drawings about the original design may 
not exist. Even if drawings do exist, might not actually represent the final construction aspect due to 
damage and permanent deformations that might have happened during its service life. Therefore, 
obtaining accurate geometric conditions of the structure and defects existing in them is of vital 
importance for the accuracy and reliability of such structural assessment models.  

Over the last decade, advances in photogrammetry and laser-scanning made it feasible to generate 
three dimensional records of the masonry geometry rapidly and accurately. Photogrammetry 
(Altuntas, Hezer and Kırlı, 2017; Historic England, 2017; Napolitano and Glisic, 2019) and laser scanning 
(Sithole, 2008; Historic England, 2018; Valero, Bosché and Forster, 2018; Valero et al., 2019) is often 
used to produce the 3d-point cloud data of masonry structures. Although useful for visual inspection 
and documentation, points cloud data require further post-processing if are to be used for the 
geometric definition of the structure. Some photogrammetric and laser scanning applications allow 
the generation of continuum macro-models in 3-dimensional space, but their accuracy is limited to a 
single object (Altuntas, Hezer and Kırlı, 2017; Bassier et al., 2019; Kalfarisi, Wu and Soh, 2020). Point-
based voxelisation of 3d point cloud data offers a solution by producing discontinuum macro-models 
of structures (Hinks et al., 2013), which allows the use of discrete analysis, but does not consider the 
effect of the masonry pattern or defects. 

Computer vision applications have also been used to generate BIM models (Building Information 
Modelling, (Volk, Stengel and Schultmann, 2014; Kassotakis and Sarhosis, 2021)), to assist with 
management of structural assets. Generation of BIM models is nowadays part of the development 
process of modern structures using specialized software (i.e., AutoCAD, Revit). Though, older 
constructions do not benefit from modern approaches to design/management of assets. However, 
PCD (point cloud data) acquired from photogrammetry or LiDAR can be used to generate HBIM 
(historical-BIM) models for existing structures (Andriasyan et al., 2020). Moreover, post-processing of 
the PCD can be used to automate the classification and reconstruction of structural elements on the 
BIM model (Bassier and Vergauwen, 2020). Furthermore, certain approaches are using the PCD to 
generate BIM models, which are then converted to numerical models for analysis (Barazzetti et al., 
2015; Rolin et al., 2019). Nonetheless, such methods are still limited to a macro-model approach. 

Image-processing is a powerful tool, which can be used to create detailed geometric records of the 
masonry micro-geometry with minimal effort using feature detection (Canny, 1986; Martin, Fowlkes 
and Malik, 2003; Arbeláez et al., 2011; Bora, 2017) and segmentation algorithms (Beucher, S.; Meyer, 
1993; Arbeláez et al., 2011; Kornilov and Safonov, 2018). Feature detection and segmentation has 
already been applied to identify the location of brick units from an image (Oses, Dornaika and 
Moujahid, 2014; Cluni et al., 2015; Brackenbury and Dejong, 2018) or 3D point cloud data (Sithole, 
2008; Valero, Bosché and Forster, 2018). However, in most cases their use proves challenging due to 
digital noise caused by the change in illumination, colour, and texture presented within the digital 
data. The research presented in (Valero, Bosché and Forster, 2018), showcased an efficient 
methodology to remove noise from the inner-region of detected masonry blocks. However, the 
procedure followed in their research is limited to concave shapes only. 

Now, machine learning (M.L.) applications have already seen use in structural engineering research 
due to the immerse potential it has to assist with visual inspection and monitoring applications 
(Spencer, Hoskere and Narazaki, 2019), especially in defect detection since it provides the means to 
identify, locate, and asses detected damages on structural elements. For example, (Valero et al., 2019) 
extracted statistical data from a 3D point-cloud and use them to train a M.L. algorithm for the 
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detection and classification of chromatic and geometric defects on ashlar masonry. Most typical 
applications of defect detection include the use of D.L. due its architecture, which allows the detection 
of complex features on unstructured data. For example, (Brackenbury, Brilakis and Dejong, 2019) 
proposed the use of GoogleNet-Inception-V3 algorithm for the classification and segmentation or 
mortar and defects of masonry elements, including the use transfer-learning. Each defect was 
classified separately as cracking, spalling, or vegetation. Moreove, (Kalfarisi, Wu and Soh, 2020) used 
Mask-RCNN and FRCNN-FED to detect bounding boxes that contain cracks on structures and 
performed pixel-wise segmentation within the detected areas. Furthermore, they transferred the 
segmented locations to a 3D reality-mesh object which was generated using photogrammetry. 
Recently, (Dais et al., 2021) tested different state-of-the-art CNN algorithms for the detection of cracks 
on masonry images. They investigated both patch-classification (with 95.3% accuracy) and semantic-
segmentation (with 79.6% f1-score) on pre-trained networks. In this way, cracks in masonry walls were 
accurately captured from images. 

One could argue that the use of CNN algorithms for the detection of brick/mortar is also necessary to 
provide a complete composition of the micro-geometry of masonry structures. In (Ibrahim, Nagy and 
Benedek, 2019), the authors proposed the use of U-Net for the segmentation of mortar of different 
types of masonry (including rubble). Furthermore, they also used watershed-transform for the 
isolation of each brick unit and extraction of its perimeter. Also, (Ergün Hatir and İnce, 2021) proposed 
the use of Mask-R-CNN for the classification and segmentation of masonry stones in ancient buildings. 
Each stone detected was classified to a different lithology based on their detected features (i.e., 
colour, texture). 

The purpose of this paper is to introduce the creation of an automated workflow for generating a 
comprehensive geometric digital twin, facilitating the documentation and structural assessment of 
masonry infrastructure through image-based data. In particular, the geometric digital twin of masonry 
infrastructure will include the location of masonry units and mortar as well as metrics of detected 
cracks in it. The detection of masonry units and cracks in the image was acquired using CNN (Dais et 
al., 2021; Loverdos and Sarhosis, 2022a). Regarding the acquisition of metrics of cracks, the 
methodology has been completely overhauled to acquire the precise measurements and not an 
approximation, compared to previous and other studies (Cabaleiro et al., 2017; Kalfarisi, Wu and Soh, 
2020; Loverdos and Sarhosis, 2022a). In addition, a feature-detection and feature-extraction 
methodology is proposed, which is able to identify the background in images and non-masonry 
elements (i.e., window openings, concrete lintel etc). The process is fully automatic and overpasses 
the difficulties discussed in (Loverdos et al., 2021a). Finally, the development of a novel methodology 
which allows common mesh processing functionalities of structural elements for the efficient 
structural analysis of masonry structures is proposed. 

4.2. Workflow for the geometric digital twin of masonry structures 
The complete algorithmic sequence includes multiple steps (Fig. 4.1) to derive the final models (e.g., 
geometrical digital twin and numerical model for the structural analysis of masonry structures). Each 
part of the workflow runs individually to allow the user to adjust the options provided, if required, 
without the need to re-apply previous packages. 

The first step is the selection and scale of the input image (Section 4.3). Any image quality can be used, 
but the workflow is designed to work with images captured vertically to the examined plane (step 1.1). 
Then, the input is scaled programmatically, to allow the generation of the scaled-geometry and precise 
evaluation of the metrics of cracks (Step 1.2, Figure 1).  

The second step is the feature-detection to acquire the binary-images of the micro-geometry of 
masonry (i.e., blocks, cracks, background; see Section 4.4-4.7). The location of the blocks and cracks is 
identified using CNN (steps 2.1-2.2, Figure 1). The remaining elements (i.e., background, masonry) are 
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derived from the source-image and the CNN outputs (steps 2.3-2.4, Fig. 4.1). The binary-images 
acquired from the feature-detection are combined to form the complete-structure (step 2.5, Fig. 4.1), 
which is used during the feature-extraction to generate the geometrical model. Each individual output 
of the feature-detection is post-processed separately (not shown in the workflow chart; applied on 
steps 2.1-2.5, Fig. 4.1), to improve the binary-image and subsequently the final-output (see Section 
4.7). The post-processed images do not replace the initial-output, to allow its modification without 
generating the image again.  

The third-step is the registration and measurement of the cracks (see Section 4.8). Those include the 
geometrical properties of each crack and their coverage regarding the overall masonry-area. It is 
worth mentioning that the step about the crack-measurements is not mandatory for the remaining 
steps of the workflow.  

The fourth-step is the feature-extraction of the detected-features in the form of generalized-polylines 
(see Section 4.9-4.10). It is initially starting by creating the watershed to provide separated labels for 
each element (step 4.1). It follows with segmentation-adjustments to include mortar/damage to the 
geometry and improve the output (step 4.2). Finally, the geometry is extracted in the form of contours 
and is adjusted to reduce the number of vertices and improve the general shape of every detected-
element (steps 4.3-4.4).  

The final-step relates to the development of the geometric digital twin that can be exported in a CAD 
based environment, where every element is separated to different layers/groups (i.e., blocks, cracks, 
background). Also, geometric information stored in the CAD based environment can be used as input 
in a numerical model (e.g., UDEC) for the structural analysis of masonry infrastructure (see Section 
4.11). The proposed method includes the generation of convex-mesh, optimized for numerical 
modelling to allow separation of blocks during the analysis and investigate crack propagation. 
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Fig. 4.1: Proposed workflow; The label-numbers denote the sequence-order, the red-lines denote mandatory-requirements, 

and the green-lines denote optional-requirements based on user input. 



72 
 

4.3. Image input and scaling 
The first step is the image input and scaling. The optimal input for the specific use of the framework 
is an orthorectified image (Fig. 4.2). The orthorectified image should be adjusted to have equal ratio 
of distance per pixel along the X-Y axes. Additionally, the ortho-projection should eliminate optical 
distortion. Additionally, the background of an orthorectified-image can be a uniform colour, which 
simplifies the detection of background i.e., openings. However, simple images (i.e., captured from a 
smartphone or DSLR) can also be used, if the captured angle is vertical to the plane examined. 

 
Fig. 4.2: Optimal input; a) 3D Model generated using the "RealityCapture" software; b) Orthorectified image. 

Image scaling is evaluated programmatically to ensure that the geometry extracted will resemble the 
dimensions of the structure under consideration. This is necessary for a realistic documentation and 
structural assessment. Furthermore, the scale acquired from this section is used to automate multiple 
variables/options during execution (i.e., automate image-resizing before passing through the 
network). The image-scale is obtained by selecting two points on the image and providing the real 
distance between the two locations (Eq. (43)). Images can be plotted using the matplotlib python 
package, since it allows to acquire the location in a non-integer form and provides the coordinates 
and pixel value at the cursor location. Furthermore, a plotted cross at the mouse location ensures that 
the points selected are positioned completely vertically or horizontally. 

 𝐼𝐼𝐼𝐼𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)/𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) (43) 

 
Fig. 4.3: Selection of points on image to evaluate the image scale. 

Alternatively, if the image has been acquired using photogrammetric-software, the image-scale may 
have a pre-specified value. This is possible since the orthorectified-image may have a specified scale 
in the form of units per pixel. 
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4.4. Block and crack detection 
Block and crack detection was applied using different CNN models for semantic segmentation. The 
block-detection model was developed in (Loverdos and Sarhosis, 2022a), while the crack-detection 
model in (Dais et al., 2021). The model for the block detection was created using the DeepLabv3+ 
architecture with a modified Xception backbone (Chen et al., 2018). The database includes 107 
annotated images of typical masonry with mortar, where the positive values represent the block units. 
Each image was divided into sections of 224x224x3, which provided 2,814 image slices that were used 
to train the network with 25% validation data. The parameters of the architecture were adjusted as 
follows: 16 OS (feature-extractor output ratio), “Xception” backbone, “Pascal-Voc” pre-trained 
weights, and “Sigmoid” activation. The optimiser of the highest performance model was RMSProp 
(RMSP) with F1-Loss function (F1L). The best model was trained for 200 epochs with a batch size of 8, 
learning rate of 2E-4, and decay equal to 1E-6. The block-detection model achieved a 96.86% 
validation accuracy, 96.29% validation F1-score, 96.68% validation precision, and 95.94% validation 
recall. 

The architecture of the crack-detection model is the U-Net with MobileNet as backbone. The database 
includes 351 photos of masonry walls with cracks and 118 without cracks. Each image was divided into 
sections of 224x224x3, resulting in 4,057 image slices used to train the network with 40% validation 
data. The optimiser of the highest performance model was Adam using Weighted Cross Entropy 
(WCE). The model was trained over 100 epochs with a batch size of 4 and a constant learning rate of 
5E-4. The crack-detection model achieved a validation F1-score of 79.6%, validation precision of 
79.9%, and validation recall of 81.4%. 

 
Fig. 4.4: Sample images of the database used for the training/validation of the block detection model. 

The methodology developed for the acquisition of the CNN-output was similar to the one presented 
in ((Loverdos and Sarhosis, 2022); Fig. 4.5). However, the methodology here has been modified to 
include the dynamic-resizing of the input-image based on the image-scale (Eq. (46)), which automates 
the process. 
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Fig. 4.5: Workflow: Acquiring the complete CNN-output. 

Initially, the image was resized (Eq. (47)) to the nearest upper/lower limit (Eq. (46)), to normalize 
block-resolution and improve detection (i.e., avoid slices with excessive number of blocks). A white 
padding was added to the resized-image with respect to the slice size and overlap value, to retain the 
original aspect ratio (Eq. (48)). The input was passed though the network in parts (slices) to improve 
the resolution of the output (i.e., 224x224x3 pixels). Each slice included an overlap (i.e., 50 pixels) with 
the aim to improve connectivity (i.e., retain only the inner-region of 124x124 pixels). Finally, all slices 
were combined to a single image, removing the added padding, and resized to the original size. 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(44) 

 Case #1 (Manual Resizing): 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐹𝐹𝑖𝑖 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
Used factors (adjustable): 𝐹𝐹1 = 2 & 𝐹𝐹2 = 4 

(45) 

 Case #2 (Dynamic Resizing): 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 = 𝐹𝐹𝑖𝑖 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
Used factors (adjustable): 𝐹𝐹1 = 200 & 𝐹𝐹2 = 600 

(46) 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖/𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 (47) 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 ) ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∗ 2 

𝑃𝑃𝑃𝑃𝑃𝑃1 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖/2) => 𝑃𝑃𝑃𝑃𝑃𝑃2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑃𝑃𝑃𝑃1 
Used factors (Adjustable): 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 50 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

(48) 

, where the 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 was used to adjust the size of the original-image and retain the aspect-ratio. 
The 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 were the dimensions of the image and the inner-region (the slice-size 
minus the overlap) of the slice respectively, calculated for every axis individually. 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the total-
padding of either axis, 𝑃𝑃𝑃𝑃𝑃𝑃1 is the left/top padding and 𝑃𝑃𝑃𝑃𝑃𝑃2 is the right/bottom padding. The final-
result is a grey-scale image, where the brighter regions indicate the location of either the detected 
blocks or cracks. The final-output was further post-processed to acquire the binarization and improve 
the result, before creating the final structure (see Section 4.7). Furthermore, the factors in Case #2 
(dynamic-resizing) resemble the units per pixel (Eq. (46)). Thus, a slice size of 224x224 pixels and 𝐹𝐹𝑖𝑖 of 
200, specifies a window of 1.12x1.12 meters² (1.12 = 224/200), when the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is provided in 
meters (Fig. 4.3: b). This ensures that every slice has adequate size and will contain several blocks. 
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Fig. 4.6: Complete CNN output (after combining all slices); a) Original image; b) Block-detection; c) Crack-detection. 

4.5. Definition of masonry and background 
The last part to define a masonry structure is the definition of the background and openings located 
at the structure. The background and openings should be removed from the geometrical model to 
ensure that the correct domain is considered in the numerical analysis. Optimally, a separate model 
could be trained to remove the background and openings from the final segmentation. However, the 
dataset for the background was not sufficiently large to train a new FCN-model. Thus, two different 
methods were proposed to remove the background/openings from masonry images (Fig. 4.7).  

 
Fig. 4.7:Workflow: Creating the masonry and background masks. 

The complete methodology to acquire the masonry and background-mask is provided below: 
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1. Masonry-Mask (combined-blocks): Dilation followed by erosion (image-opening) of the block-
detection output to combine all blocks (Fig. 4.8: c). The values used are provided in Eq. (49). 

2. Background-Mask (choose one option): 
2.1. No background: Empty array of zero values as background. 
2.2. Unfiltered-image: Inversion of the masonry-mask as background (Fig. 4.8: d). 
2.3. Filtered-image (white background): Threshold the original image to separate the structure 

from the background (Eq. (50), Fig. 4.9: b). 
 Masonry-Mask: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐹𝐹 ∗ 𝑀𝑀𝑀𝑀ℎ/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼,  𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 3𝑥𝑥3 

Used factors (adjustable): 𝐹𝐹 = 2 
(49) 

 Filtered-image threshold (adjustable): 𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = 0.95 = 242.25/255 (50) 

Where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is the iterations of the dilation/erosion, 𝑀𝑀𝑀𝑀ℎ is the mortar-thickness in the preferred 
units (i.e., in meters), 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is the size of the rectangular kernel used for erosion/dilation. Additionally, 
𝑇𝑇ℎ𝑙𝑙𝑙𝑙 is the binary threshold used to create the background mask. Furthermore, for most cases the 
mortar-thickness is assumed to be equal to 10mm. Additionally, the multiplication of 2 ∗ 𝑀𝑀𝑀𝑀ℎ in Eq. 
(49), effectively closes mortar-openings equal to 4 times the average mortar-width (i.e., 40mm). This 
ensures that larger gaps are also covered (Fig. 4.8: c). This step exports both the masonry (combined-
blocks, Fig. 4.8: c) and background (Fig. 4.8: d, Fig. 4.9: b). Both images are post-processed before 
generating the final structure (see Section 4.7). 

 
Fig. 4.8: Generating the background for unfiltered images; a) Original image; b) Output from the FCN-model (block 

detection); c) Masonry (combined-blocks) after dilation/erosion of blocks; d) Background after inversion of masonry. 
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Fig. 4.9: Generating the background for filtered images; a) Original image; b) Binarization using thresholding. 

4.6. Detection of non-masonry elements 
For simple cases where the original image doesn’t include additional structural elements (other than 
the blocks detected), then the geometry can be defined by using the block-mask only. However, if the 
structure includes other structural elements (i.e., steel, or concrete elements) not detected by the 
block-detection, then the structure image needs to be generated. 

 
Fig. 4.10: Workflow: Detection of non-masonry elements. 

The proposed methodology can be used to detect other structural elements only, if the masonry-
mask was not used to define the background (i.e., by not using the method described in (Fig. 4.8)). 
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This is because the masonry-mask is used to identify the location of additional elements instead of 
creating the background. The gap between the concrete and the blocks that generates the final-
structure is provided by applying an additional dilation to the masonry-image (Fig. 4.11: e) with 
width equal to the scaled mortar-thickness in pixels (Eq. (51)). The complete sequence that 
generates the final-structure is provided below: 

1. [Required] Create a copy of the blocks-mask as the structure-mask (Fig. 4.11: b).  
2. [Required] Create the modified-masonry-mask by applying an additional dilation equal to the 

expected mortar-thickness (Eq. (51), Fig. 4.11: c). 
3. [Required] Where the modified-masonry-mask is equal to 0, the value of the structure is 255. Skip 

this step if the background was created from the masonry-mask (chapter 4.5, step 2.2). 
4. [Optional] Where the damage-mask is equal to 0, the value of the structure is also 0 (used to 

ensure that broken blocks will produce multiple segmentations). 
5. [Required] Where the background-mask is equal to 0, the value of the structure is also 0. 

 Additional dilation for masonry-mask (circular kernel): 
 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑀𝑀𝑀𝑀ℎ/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼;  𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 3𝑥𝑥3 

(51) 

 

Fig. 4.11: Generating complete structure (if the image contains undetected elements); a) Original image; b) Output of the 
block-detection model; c) Masonry after dilation/erosion/dilation of blocks; d) Background mask using image thresholding; 

e) Final structure; f) Overlay of structure on image. 

4.7. Post-Processing of binary images to improve the geometry extraction. 
All binary images acquired are post processed to improve the binarized outputs and provide better 
shape definition (Fig. 4.12). This aims to improve the damage-evaluation and geometry-extraction. 
The post-processing of the images includes the binarization of outputs acquired from CNN, object 
removal by area and simple image-processing to separate and/or merge detected objects (using 
dilation -> erosion -> dilation sequence). Post-processing is applied on the following images (including 
typical options/actions): 

• Detected-blocks (Removal of small foreground objects, image-opening) 
• Detected-cracks (Removal of small foreground objects, image-closing) 
• Masonry (Removal of small foreground/background objects, image-closing) 
• Background (Removal of small foreground/background objects, image-closing) 
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• Final-Structure (Removal of small foreground objects, image-opening) 
 

 
Fig. 4.12: Workflow: Post-processing of image-masks 

The complete methodology is provided below. 

1. [Required] Binarize the image using thresholding (𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = 0.5, adjustable). 
2. [Optional] Small object removal based on the scaled pixel area. 

2.1. [Optional] Remove small objects from foreground (white pixels). 
2.2. [Optional] Remove small objects from background (black pixels). 

3. [Optional] Apply simple image-processing: Dilation/erosion/dilation in a sequence to separate or 
merge objects (i.e., either image-opening or closing by ignoring the first/last dilation). 

4. [Optional] Small object removal, based on pixel area (repeat step 2). Only used if image-processing 
is applied (step 3). 

The binarization threshold is equal to 0.5 (0.5 ∗ 255 = 127.5 pixel-intensity, step 1). However, this is 
adjustable in cases where an object is incorrectly defined, and a lower/higher value could produce 
more accurate output. The removal of small objects from either foreground or background (steps 2 & 
4), and before or after image-processing (step 3) is optional. Each foreground-object is isolated and 
evaluated in an empty-array. If the object doesn’t satisfy the area-requirement, the value of the pixels 
in that location are inverted. For background-objects the method is the same but is applied on an 
inverted binary-image, which is then inverted back to normal. The area-threshold can either be the 
area in pixels or the scaled-area in real-units (Eq. (52)). The area-threshold is typically given equal to 
0.0001m², with the aim to remove objects smaller than the area of the squared mortar-width.  

Normally is best to preserve small objects from the background of the blocks/structure due to the 
ability of watershed-transform to close open-segmentations, when paired with distance-transform 
(see Section 4.9). This is especially useful since in certain cases the block-detection output may have 
an open line representing the mortar. A higher area-threshold (of foreground) could remove small 
blocks that were defined incorrectly (i.e., by using an area-threshold equal to 1/5th of the typical brick). 
Furthermore, the small threshold assists on removing small objects that would mostly cause issues 
during geometry-extraction (see Section 4.10) and numerical analysis (Section 4.11).  

Additionally, simple image-processing usually considers a rectangular kernel of 3x3 size with 0/1/1 
(image-opening) or 1/1/0 (image-closing) iterations of dilation/erosion/dilation respectively. This aims 
to merge non-structural, mortar and crack entities that are barely separated. The application of post-
processing has varied results depending on the accuracy of the CNN output (blocks, cracks). The 
conversion of the scaled area-threshold to pixels can be obtained using equation 10: 

 Threshold of scaled-area: 𝑇𝑇ℎ𝑙𝑙𝑙𝑙′ = 𝑇𝑇ℎ𝑙𝑙𝑙𝑙/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑒𝑒2 
Area Threshold (Adjustable): 𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = 0.0001 𝑚𝑚2 

(52) 

4.8. Evaluation of the geometric properties of cracks 
The output of the crack-detection was used to acquire the geometrical-metrics of the individual cracks 
(Fig. 4.13). Those include the location, area, length, average-width, and coverage of each detected 
object (Fig. 4.14, Table 4.1). Previous research has shown how to acquire the approximate length of 
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the crack using image-processing (Cabaleiro et al., 2017; Kalfarisi, Wu and Soh, 2020; Loverdos and 
Sarhosis, 2022a). However, the methodology provided here is able to evaluate the precise metrics of 
individual cracks (assuming that their annotation is accurate).  

 
Fig. 4.13: Workflow: Evaluation of the geometric-properties of cracks. 

The complete procedure used for the “Crack Measurements” stage of the workflow is provided below: 

1. Acquire the damage-mask (Fig. 4.14b), masonry-mask (Fig. 4.8c), background-mask (Fig. 4.8d), and 
image-scale (Eq. (43)). 

2. Calculate the total-area by counting the non-zero pixels of masonry, non-zero pixels of cracks, zero 
pixels of background, and all pixels of the image (used for different coverage ratios). 

3. Perform watershed-transform (4-connectivity) using as input, markers, and mask the binarized-
image of cracks, to isolate and identify every object by label (Fig. 4.14: c). 

4. Loop over every label of the watershed-segmentation, ignoring label 0 (background). 
4.1. Isolate each crack to a new empty-array of equal size to the binarized image. 
4.2. Calculate the area by counting the pixels of the isolated-crack. 
4.3. Perform linearization to the isolated-crack to obtain its skeleton (Fig. 4.14: c). 
4.4. Perform border-following on the skeleton to obtain the correct order of the coordinates of 

the contour. Add the first vertex at the end of the extracted coordinates of the contour, if the 
first and last vertices are not equal. 

4.5. Calculate the length of the contour using the Pythagorean-theorem between every vertex. 
Retain only half the result since the border-following returns the perimeter (thus, doubling 
the line-length).  

4.6. Calculate the average-width by dividing the crack-area with the length.  
4.7. Calculate the coverage by dividing the area of the isolated-crack by the total-area of the 

masonry, cracks, inverted-background, and image. 
4.8. Identify the minimum and maximum coordinates of the isolated-crack to define its bounding-

box (i.e., [𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦], [𝑥𝑥𝑥𝑥𝑎𝑎𝑥𝑥,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦]). Acquire the middle-location of the crack by 
identifying the nearest-pixel of the skeleton at the centre of the bounding-box (i.e., [𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 +
𝑑𝑑𝑑𝑑/2,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑑𝑑𝑑𝑑/2], used for visualisation purposes). 

The skeleton of the cracks was acquired using the “Scikit-Image” function “morphology.skeletonize()” 
(step 4.3, Fig. 4.14: c). The accuracy of the obtained metrics depends highly on the accuracy of the 
crack-detection model (Table 4.1). The coverage provided depends on the total-area of the generated 
masonry-image (see Section 4.5, Fig. 4.8: c). However, the same method is used for the coverage over 
all the cracks, the whole structure (from background-mask), and the whole image. Furthermore, the 
metrics are scaled based on the image-scale where possible (Chapter 4.3, Eq. (43)). However, the 
length is calculated on a scaled-contour, since the vertical/horizontal scales may differ (step 4.5). 
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Fig. 4.14: Damage evaluation; a) Original-image; b) Output of the crack-detection model; c) Isolation and linearization of 

cracks using watershed-transform; d) Isolated-cracks labelled on original-image. 

Table 4.1: Metrics of cracks in a masonry wall (the location starts from the top-left side of the image). 

Label Location Area Length Width Area Length Width Coverage 
- (xMid, yMid) pixels pixels pixels meters² meters meters (M) % 
1 [2079, 170] 13474 495.853 27.173 0.0051 0.306 0.017 0.413 
2 [1397, 427] 37425 1571.955 23.808 0.0142 0.969 0.015 1.148 
3 [775, 874] 5537 258.012 21.46 0.0021 0.159 0.013 0.17 
4 [602, 1010] 5555 283.912 19.566 0.0021 0.175 0.012 0.17 
5 [414, 1144] 3076 142.627 21.567 0.0012 0.088 0.013 0.094 
6 [343, 1325] 3971 261.966 15.158 0.0015 0.161 0.009 0.122 
7 [270, 1390] 2217 137.811 16.087 0.0008 0.085 0.01 0.068 
8 [1856, 1398] 2190 79.657 27.493 0.0008 0.049 0.017 0.067 

 Total: 73445 3231.793 172.312 0.0278 1.992 0.106 2.252 

4.9. Watershed segmentation  
The watershed segmentation process is used to separate open-shapes (i.e., when the mortar-line 
between 2 blocks is open) and label the individual objects with a unique ID. The process presented 
here is an improved and simplified version of the procedure demonstrated in ((Loverdos et al., 2021a), 
Fig. 4.15). The main changes are the use of the CNN output (instead of edge-detection), the 
incorporation of the image-scale to automate mortar-generation, and exclusion of mortar at damaged 
locations. Those aspects improve not only the final-result but also fully automate the whole process, 
since it does not require any adjustments from the user. 
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Fig. 4.15: Workflow: Adjusted watershed-segmentation 

The complete sequence used to produce the “Watershed Segmentation” is provided below: 

1. Source: Either the blocks-mask or the structure-mask (Fig. 4.16: c). 
2. DT1: Acquire the distance-transform of the black area (used as input to WS, Fig. 4.16: d) 
3. DT2: Acquire the distance-transform of the white area (used for markers, Fig. 4.16: e) 
4. HMT: Perform h-minima-transform to the inverted DT2 (used for markers, Fig. 4.16: f) 
5. LM: Acquire the local-maxima from the inverted HMT (used for markers, Fig. 4.16: g) 
6. FM: Acquire the markers from the LM using 4-connectivity (final markers) 
7. WS: Perform watershed-segmentation using as input the DT1, as markers the FM, and as mask 

the background-mask (Fig. 4.16: i). 
The H-minima transform is using a custom function that replicates the MATLAB function. The 
segmentation process is using the “SciPy” library to generate the markers using the “ndimage.label()” 
function (which allows 4/8 connectivity). The watershed is applied using the “Scikit-Image” function 
“segmentation.watershed()”. The remaining processes are using the “OpenCV” package.  

This process is using the distance transform of the black area as input to watershed to ensure that 
each segmentation ends at the middle of the mortar (Fig. 4.16: d). Furthermore, the h-minima 
transform is used to remove false-minima and flatten the peaks (Fig. 4.16: f). A value of 5-pixels 
threshold for the h-minima transform is typically used, but for very low block-resolution; in other 
cases, a value of 3-pixels threshold may provide better results. 
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Fig. 4.16: Watershed-segmentation: a) Original image; b) Background mask; c) Binarized blocks; d) Distance transform of 
black area; e) Distance transform on white area; f) Inverted H-Minima transform; g) Local-Maxima of (f); h) Watershed-

segmentation (Input: [d], Markers: [g], Mask: [b]) i) Segmentation-lines on original image. 

Furthermore, the watershed-segmentation is adjusted to include the mortar and damage, using a 
unique-label that will be identified during the geometry-extraction. The complete process of the initial 
“Segmentation Adjustments” is provided below: 

8. [Optional] Where the damage-mask is 255, the value of the watershed is [-2]. Used only if the 
mortar avoids damaged locations (step 9). 

9. [Optional] Create the proposed mortar by marking the locations where two segmentations are 
connected (using a 2x2 ROI). Excluding background and optionally damaged locations (i.e., Labels 
[0], [-2]). Dilate the proposed-mortar with respect to the image-scale. 

10. [Optional] Include the filtered structure to improve the definition of mortar. The structure-mask 
is filtered using a dilated background to remove excessive mortar from the perimeter. 

11. [Optional] Where the final mortar-mask is 255 the value of the watershed is [-1]. 
12. [Required] Where the damage-mask is 255, the value of the watershed is [-2]. 
13. [Required] Where the background mask is 255, the value of the watershed is [0]. Use the dilated 

background-mask if the structure mask was used to create the mortar (step 10). 
 Mortar-line dilation (circular-kernel): 

 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = 𝑀𝑀𝑀𝑀ℎ/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 1, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1 
(53) 

Every step of the mortar-generation is optional (steps 8-11). For example, by ignoring the generation 
and application of the mortar-mask (i.e., step 11), the geometry-extraction will not include the mortar 
(Fig. 4.17: f), which is ideal for simplified micro-modelling using let’s say the discrete element method. 
Avoiding generating mortar at damaged locations is preferable when damage is present at blocks (step 
9), to avoid generating mortar where only the crack separates a block (Fig. 4.17: g). 
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Fig. 4.17: Including mortar and damage; a) Damage-mask; b) Proposed mortar #1; c) Proposed mortar #2 (excluding 
damaged locations); d) Generated mortar #1; e) Generated mortar #2; f) Adjusted segmentation without mortar; g) 

Adjusted segmentation with mortar #1; h) Adjusted segmentation with mortar #2. 

The original source of the watershed segmentation can be used to improve the definition of the 
mortar in the final watershed (step 10). The modification of the mortar-mask using the block-detection 
output was typically avoided. This is because the blocks-mask may contain noise (i.e., black spots 
inside the blocks), which produces inaccurate segmentation. However, because the post-processing 
removes efficiently small-spots (section 4.7) and due to the reliability of the CNN model, the blocks-
mask can be used in many cases to adjust the mortar-mask. Although, the post-processing options 
should be adjusted to remove small-objects of background from the final-structure (to avoid mortar 
within blocks). Additionally, the dilation of the background (step 10), to filter the imported mortar-
mask, is optional and is used to remove excessive-mortar from the perimeter of the structure (Fig. 
4.18: a). The iterations of the dilation depend on a case-by-case scenario using the smallest possible 
value to remove all excessive mortar from the perimeter. Furthermore, the use of the dilated-
background, to limit the watershed-segmentation (step 11) will generate a uniform distribution of 
mortar but will also decrease the structural perimeter (Fig. 4.18: c). 

 
Fig. 4.18: Imported-mortar (alternative method); a) Mortar-mask from structure (excluding background); b) Filtered mortar-

mask (excluding dilated-background); c) Adjusted segmentation with imported-mortar-mask. 

Moreover, the watershed-segmentation is again modified to avoid common issues with the geometry-
extraction (i.e., falsely detected end-points that define an interface). The simplified sequence is 
presented below (part of the “Watershed Adjustments”): 
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14. Watershed-Cleaning: Remove isolated pixels not connected with a segmentation in 4-
connectivity (i.e., if the pixel has a unique value compared to the vertical/horizontal pixels). 

15. Watershed-Corrections: Adjust the value of duplicate labels in the watershed (i.e., two 
segmentations having the same label). Store adjusted labels with their original value to identify 
the properties of materials (i.e., Eq. (54)). 

 Watershed Corrections: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = [𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂]. 

(54) 

4.10. Geometry extraction for BIM (Building Information Modelling) 
The geometry-extraction includes the extraction of coordinates of each detected-object (blocks, 
cracks, background), simplification of the extracted contours (generalization), and adjustments to the 
extracted-shape. Those aim to provide an accurate but efficient geometrical-model for either 
documentation of numerical analysis. Similar to the “Watershed Segmentation” section, the geometry 
extraction is an improved and simplified version of the process demonstrated in ((Loverdos et al., 
2021a), Fig. 4.19). The main change is the incorporation of the image-scale to automate every input 
required by the user. More details, about individual sections, are found in the original manuscript. 

 
Fig. 4.19: Workflow: Geometry extraction. 

The extraction of coordinates is applied to every interface between detected objects (i.e., connection 
between 2 objects), with end-points the points of the contour that define the start/end of the 
interface. This process does not extract the perimeter of the whole object, otherwise, the interface 
between 2 objects would be extracted twice. This would cause issues when a single interface would 
be modified separately from the other (i.e., during generalization). Furthermore, that would increase 
the distance between segmentations by 1-pixel. Thus, it would be impossible to simulate simplified 
micro-modelling (where the mortar is modelled as a zero-thickness interface). The simplified 
sequence, of the “Contour Detection” part of the workflow, is provided below: 

1. [Optional] Double the size of watershed segmentation by considering every pixel a square of 2x2 
size. Used to avoid merging U-shaped interfaces of 1-pixel width. 

2. Pad the modified watershed-segmentation by 1 pixel of zero value on every direction. 
3. Scan the image with a 2x2 ROI to identify interface-points (2+ labels) and end-points (3+ labels). 

Store the points with their position (top-left corner) and ID value (the unique values of the ROI). 
End-points are also broken to every combination of 2 labels and stored as interface-points. 

4. Separate the interface-points and end-points by every unique interface (of 2 labels).  
5. Isolate every interface to an empty array. Perform border-following to identify the correct order 

of the points of the interface.  
6. If the contour has 2+ end-points, store every section between end-points once (the border-

following returns the perimeter; thus, 2 occurrences of each section). If it has less than 2 end-
points, the whole contour is stored (closed-object). Each entry is stored in the “Line-List” with its 
ID (the 2 unique-labels). 

The border-following is provided by the “OpenCV” library using the command “findContours” (Suzuki 
and Abe, 1985).  
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Furthermore, each contour stored is adjusted to reduce the number of vertices (Fig. 4.20), improve 
the general shape (Fig. 4.21), and connect the interfaces to form closed-objects. The following 
sequence is part of the “Geometry Adjustments” part of the workflow: 

7. [Optional] If RDP generalization is used and the object is closed (i.e., less than 2 end-points), 
reform the contour to start from the point with the maximum distance from the first (ensures that 
the first point is a corner). 

8. [Optional] Generalize the contour using either RDP or the proposed algorithm in (Loverdos et al., 
2021a), using the scaled threshold provided in Eq. (55) (Fig. 4.20). 

9. [Optional] Relocate end-points attached to 3 blocks, so that the angular difference between 2 line-
segments that form ~180° is exactly 180° (Eq. (56), Fig. 4.21). Additional conditions are required 
to avoid flattening rubble/arch-lines. This must be applied 3x times to adjust all lines. 
Furthermore, this step is applied only if generalization is used. 

10. Connect open-interfaces (i.e., contours with 2 end-points) to form closed-shapes and store the 
combined contour. Closed-objects (i.e., contours with less than 2 end-points) are stored as is. Each 
entry is stored in the “Block-List” with its ID (segmentation-label). 

11. Test the area of the closed-objects and remove entries with area lower than the threshold, using 
the scaled threshold provided in Eq. (52). 

12. Remove interfaces that were not used in the final-list of closed-objects (from step 11). 
13. Scale every individual interface and closed-object to the real dimensions (Eq. (43)). 

 Scaled Threshold: 𝑇𝑇ℎ𝑙𝑙𝑙𝑙′ = 𝑇𝑇ℎ𝑙𝑙𝑙𝑙/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
Generalization Threshold (Adjustable):  
𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = 0.005 𝑚𝑚 (for higher accuracy) 
Or 𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = 0.01 𝑚𝑚 (for lower accuracy) 

(55) 

 Condition #1 (main):  |𝐴𝐴𝐴𝐴𝑖𝑖 − 180°| ≤ 𝑡𝑡𝑎𝑎 
Condition #2: |𝐴𝐴𝐴𝐴𝑗𝑗 − 90°| ≤ 𝑡𝑡𝑎𝑎; 𝑖𝑖 ≠ 𝑗𝑗; 

Condition #3: |𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 − 𝐴𝐴𝑡𝑡| ≤ 𝑡𝑡𝑎𝑎; 𝐴𝐴𝑡𝑡 = [0° ∨ 90° ∨ …∨ 360°]; 
Angular Threshold (Adjustable): 𝑡𝑡a = 20° 

(56) 

𝐴𝐴𝐴𝐴𝑖𝑖  is the largest angle formed between the 3 line-segments. 𝐴𝐴𝐴𝐴𝑗𝑗 is any remaining angle. 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the 
direction of the proposed flattened-line in the global coordinate system. The generalisation threshold 
of 𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = 0.01, is forced when the image-scale is close-to or higher-than 0.05 meters/pixel. 
Furthermore, the generalization with the RDP algorithm is applied using the “OpenCV” function 
“approxPolyDP” (Ramer, 1972; Douglas and Peucker, 1973). The area of the closed-objects is 
evaluated using the “Gauss's area formula”. 

Reforming the contour to start from a different location is only required when RDP is used for 
generalization (step 7), since the function is already incorporated in the proposed generalization-
algorithm in (Loverdos et al., 2021a). If the reformation of the contour is not used, the top-most point 
will be included in the generalized-contour and may form a triangular shape incorrectly. The 
generalization is required when the geometry is used to create numerical-models (step 8). Otherwise, 
the model will contain excessive detail, which will cause the analysis to fail. 
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Fig. 4.20: Generalization; a) Adjusted-contours (Red: End-points only); b) Generalized-lines (Red: All points); 1) Without 
mortar (Segmentation from Fig. 4.17:f); 2) With mortar (Segmentation from Fig. 4.18:c). 

The relocation of the end-points is applied only on end-points with exactly 3 unique and positive 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 labels (Eq. (54)). Additionally, the proposed conditions test the angle and direction of line-
segments and not the whole interface (step 9). Where a line-segment is formed by considering the 
end-point and the previous of the interface. The main condition tests if any angle formed between 2 
line-segments is ~180°. The 2nd condition tests if any remaining angular-difference is ~90°, to avoid 
flattening rubble/arch-lines. The 3rd condition ensures that the direction of the flattened-line (that 
forms 180°) is of multiples of 90°, to avoid flattening arch-lines.  

 
Fig. 4.21: Adjusting the geometry of generalized-lines (Magenta: Original lines) 

Finally, individual interfaces are connected because certain analysis software require closed-shapes 
to define the geometry (step 10), to filter blocks based on their area (steps 11-12), and to identify the 
location of closed objects (section 4.11; steps 4-6). However, mortar-blocks are excluded from forming 
closed-shapes, since their definition is unnecessary and unreliable. 

4.11. BIM to structural analysis of masonry structures 
The modelling procedure includes the generation of triangular mesh, identifying the location of every 
object in space, storing the geometry in a CAD file, and generation of the numerical-model (Fig. 4.23). 
The user is allowed to select either the contours or the generalized-lines to generate the model. 
Contours and generalized-lines are interchangeable for all parts of the methodology presented in this 
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sub-chapter (except for meshing). However, the generalized-lines are preferred since the contours 
contain excessive number of points. 

 
Fig. 4.22: Workflow: Acquire final polylines for CAD/DEM modelling. 

Optionally, the mesh is generated to investigate crack propagation (Fig. 4.23: a). This improves the 
procedure highly, since it ensures that every mesh element has a convex-shape. Mesh of concave-
shape could cause interlocking between mesh-elements and thus, overestimation of the structural 
capacity. The mesh can be generated for blocks, mortar, and/or damage. However, in most cases the 
failure is expected on the mortar. Thus, the presented case excludes meshing the bricks. It should be 
noted that the mesh should not be generated for the contours, since they contain too many vertices 
that need to be seeded. The size of the mesh and tolerance is adjustable based on the accuracy 
required (step 3). The complete procedure to generate the mesh is provided below: 

1. Loop over every closed-polyline in the “block-list”. 
1.1. Create the polygon for the polyline and store it in the “polygon-list”, including its ID. 

2. Loop over every polygon to adjust its shape. 
2.1. Subtract every other polygon from the selected polygon, to ensure the shapes don’t overlap. 

Update the old polygon with the adjusted-polygon. 
2.2. [Condition] Skip polygons that their subtraction would cause the new-polygon to have zero 

area (i.e., to retain inner-openings on materials). 
3. Loop over every polygon in the “polygon-list” to create the mesh. 

3.1. [Optional] Skip polygons with positive old-label (i.e., 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 > 0), to avoid meshing the bricks. 
3.2. The points that form the perimeter of the polygon are the initial outer-seeds.  
3.3. Create additional outer-seeds, between initial-seeds, every 𝑥𝑥1′ adjusted-distance (distance 

adjusted to fit evenly, i.e., 𝑥𝑥1 = 10𝑚𝑚𝑚𝑚). Only add seeds if the distance between the initial-
seeds is larger than 𝑥𝑥1. Do not add seeds that are near an outer-seed at 𝑥𝑥2 distance 
(tolerance value for corners, i.e., 𝑥𝑥2 = 0.1 ∗ 𝑥𝑥1). 

3.4. Create the seeds for the inner, in a bounding-rectangle covering the whole object, every 𝑥𝑥1 
distance (i.e., 5𝑥𝑥5 points to cover a bounding-rectangle of 40𝑥𝑥40𝑚𝑚𝑚𝑚). Do not add inner-
seeds that are near an outer-seed at 𝑥𝑥1 distance. 

3.5. Apply Delaunay triangulation using all seeds. Retain only the area of the triangulation that 
covers the polygon (Delaunay returns a large triangulated-rectangle). 

3.6. Loop over every mesh-element and extract the coordinates that form the perimeter. The 
extracted coordinates form the polyline of the mesh-element. 

3.7. Store the ID (block ID), polygon, and polyline of the mesh-element in the “mesh-list”. 
3.8. [Optional] Break-down the polyline into 3 lines and store them individually in the “mesh-line-

list”, along with its ID. Do not store sections that have the same coordinates as an existing 
line within the “mesh-line-list”. 

In certain cases, the location of every object is required to assign the groups to the numerical analysis 
software (i.e., when using lines to slice the model instead of closed-shapes). The locations are acquired 
from the polygon of every segmentation and every mesh object (Fig. 4.23: b & c). However, the 
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location acquired should be an inner-point and not the centroid. Mostly because the centroid may fall 
outside concave-shapes. The simplified procedure to acquire the locations is provided below: 

4. Loop over every polygon in the “polygon-list” and “mesh-list” to identify their location. 
4.1.  Acquire the inner-location of each polygon using the appropriate function (not centroid). 
4.2. Store the coordinates of the location in the “location1-list”, along with its ID (equal to block 

ID) and type of the object (i.e., mesh or segmentation). 
5. [Optional] Loop over every object in “block-list” to acquire its location from its segmentation 

(alternative method; may be used to assign the background). 
5.1. Isolate and linearize the individual segmentation to obtain its skeleton (i.e., Fig. 4.14: c). 
5.2. Acquire the location of the pixel closer to the middle of its bounding box. 
5.3. Store the scaled-location in the “location2-list”, along with its ID. 

6. [Optional] Scan every pixel in the watershed to identify the location of damage/mortar 
(alternative method; may be used to assign the mesh of mortar/damage). 
6.1. If the pixel-label is that of damage, store the scaled coordinates to the “location3-list”. 
6.2. If the pixel-label is that of mortar, store the scaled coordinates to the “location4-list”. 

The surface/polygon of each object is acquired using the “Shapely” function “Polygon()”. The 
modification of the surface is applied using the appropriate functions of the same package. The inner-
location of each object is acquired using the “representative_point()” function of “Shapely”. 

The user can select either the closed-shapes or the interfaces for the model. Certain numerical analysis 
programs require closed-shapes to generate an object. In that case, the mesh is designed using the 
“mesh-list” and “block-list”. However, if the numerical analysis program allows slicing, the interfaces 
can also be used and improve the generation speed, since the number of points provided is halved. In 
that case, the mesh is designed using the “mesh-line-list” and the “line-list”. The complete geometry 
is stored to a DXF file to allow compatibility with multiple numerical analysis programs (Fig. 4.23: d). 
Each object is assigned to a different layer, depending on the object’s old-ID (chapter 4.9, step 15).  

Then, the DXF file is converted to crack coordinates to allow integration with UDEC. The conversion 
from DXF to UDEC is accomplished with a companion program that reads the DXF file and acquires the 
coordinates and layer of every polyline (Fig. 4.23: e). This allows to adjust the CAD file before 
modelling, if required. The groups in UDEC are assigned using the inner-locations (step 4), of every 
object except the background. That’s because the inner-area of the background may contain the 
structure. The background is defined correctly by the middle-location of the linearized-segmentation 
(step 5). The conversion/reading of DXF files is accomplished using the “ezdxf” package in python.  

More specifically, the outputs acquired from the program are the following: 

• [Main] DXF file with the geometry of every object assigned to the appropriate layer. 
• [Main] CSV files of inner-locations of all objects (separated by material, step 4). 
• [Main] CSV files of the middle-locations of all objects (separated by material, step 5). 
• [Main] CSV files with the location of every pixel of mortar/damage (step 6). 
• [Main] CSV file with the location and geometric properties of cracks (Table 4.1). 
• [Companion] TXT files to generate the geometry in UDEC (separated by material). 
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Fig. 4.23: Creating the numerical model; a) Creating triangular mesh; b) Inner-locations of segmentations (excluding 

mortar); c) Inner-locations of mesh elements (mortar and damage); d) AutoCAD drawing of the geometry (layers assigned 
using the block ID); e) UDEC model for numerical analysis (groups assigned using the inner-locations). 

4.12. Case Study of Railway Bridge 
The entire workflow was tested on a real case study of the railway bridge located at Viaduct Ln, Leeds, 
UK. (Fig. 4.24). Regarding the structure itself, the specified bridge has undergone frequent renovations 
to replace deteriorated brickwork, which explains the varying levels of brick quality along the structure 
The structure also includes areas with other defects (e.g., mold, efflorescence, etc.), which provide a 
good example of possible outcomes. The size of the sample also demonstrates that the methodology 
can be applied to larger constructions. The input-image was acquired from the 3d-mesh, generated 
using photogrammetry, which allows to obtain realistic dimensions. The model was filtered, within 
the photogrammetry software, to remove background/openings (Fig. 4.24). The filtering of 
background/openings allows the identification of undetected elements using the methodology 
described in Fig. 4.11. The image was then imported to the proposed workflow. 

 
Fig. 4.24: Orthorectified image of a section of the railway bridge in Leeds, UK. 
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The output of the block-detection is the first examined (Fig. 4.25). Visually, renovated regions have 
excellent detection rate, while deteriorated regions have been classified sufficiently. Moreover, the 
model correctly identifies the brick-pattern on elements affected heavily by efflorescence. In contrast, 
locations affected by mold-discolouration have not been classified correctly, forming large gaps on 
the structure. Such severe cases were not used during training of the CNN model and thus, the model 
is exhibiting difficulties in identifying the brick-pattern. Nevertheless, the accuracy of the CNN model 
can be enhanced by incorporating samples of the specific defect. Likewise, foreground objects that 
cover the brickwork are not identified as bricks, which also forms large-gaps on the structure. Spalling 
and other defects have minimal effect on block-detection and thus, such locations are identified 
correctly. 

 
Fig. 4.25: Initial block-detection output, after post-processing to remove small foreground-objects (small white regions). 

Large gaps on the structure could cause either of the following issues. If the background is generated 
using the masonry-mask, then the structure will have gaps in those locations. Otherwise, if the 
background is generated by the white-regions of the image, then the gaps will be assigned to 
neighbour blocks. None of the aforementioned is appropriate. Thus, the preferable alternative is to 
assign an area to those gaps, using the method described in Fig. 4.11, and generate the structure-mask 
(Fig. 4.26). A possible solution is to modify manually the block-mask directly before the watershed-
segmentation. After post-processing (to cover the large-gaps), the final-structure is then ready for 
geometry extraction. 
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Fig. 4.26: Final structure used to generate the geometry (using the methodology described in section 4.6). 

The modelling method considered is the simplified micro-modelling, where the mortar is simulated as 
a zero-thickness interface. Detailed micro-modelling is avoided due to the large number of blocks in 
the structure, which would become much larger due to the mesh elements. A large number of 
interfaces would require much more time to generate the numerical model, would increase largely 
the computational time for the analysis, and the analysis may even fail to complete. Detailed micro-
modelling is mostly advised for smaller structures. Nonetheless, the output of the proposed workflow 
demonstrates impressive results (Fig. 4.27). The lines were flattened correctly to improve the output, 
without affecting arch-lines (Fig. 4.27: b, Eq. (56)). Furthermore, deteriorated regions have proper 
brick-shape. The few regions that have issues (merged-blocks) are locations where the mortar is barely 
visible or not visible at all.  
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Fig. 4.27: Final generalized-lines (Red-Points: Vertices of the lines); a) Overall view; b) Zoomed-in view. 

Finally, the CAD file is produced (Fig. 4.28), which can be used to import the geometry to a numerical 
analysis software (i.e., UDEC). If required, large-gaps can be adjusted in the CAD file (or in the analysis 
software directly), by dividing the regions with simple lines. Although, when the geometry is used only 
for simple documentation, gaps in the model highlight severely discoloured areas, proving useful for 
analysis. In which case, it is preferable to identify and assign a separate group for those regions, which 
may be part of future work. Moreover, the user has the option to use the interfaces instead of closed-
objects for the CAD model. In that case, the total number of vertices would be reduced since most 
interfaces are defined twice (interfaces between connected-elements). For instance, only 12,441 
vertices are required to describe the geometry in the form of interfaces, while 14,920 vertices are 
required to describe the geometry as closed-objects. It should be noted that only verified closed-
objects, or interfaces that are part of a closed object, are exported to the CAD file. The layers in CAD 
and the groups in UDEC (i.e., background, mortar, cracks, blocks), where assigned automatically during 
the “Modelling” part of the workflow (section 4.10). 
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Fig. 4.28: Geometrical model in AutoCAD (for simplified micro-modelling). 

4.13. Case Study of Simple Structure 
An additional case-study is shown to demonstrate the potential of the workflow on structures with 
higher mortar-visibility (Fig. 4.29). The following example is a simple structure, which was chosen 
because it contained both simple-pattern and arches above the opening. The orthorectified image was 
acquired using photogrammetry and was filtered to identify undetected-elements (similar to the 
previous case study; section 4.12) 

 
Fig. 4.29: Orthorectified image of simple structure. 
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In this case, the detection of block-elements is optimal (Fig. 4.30). There are some distorted units, but 
only those in close-proximity to foreground-objects. In that regard, the pipe (on the left side of the 
structural section) could be filtered out completely, if the 3d-mesh was generated using more photos 
of the area behind the pipe. For the specific case, most obstructed brick-units have been visualized, 
but not all to filter the pipe out completely. Additionally, the concrete-elements were identified 
automatically using the same procedure shown in section 4.6. 

 
Fig. 4.30: Block detection, after post-processing to identify the concrete-elements. 

The geometry-extraction demonstrates exceptional results, even for large structures with a great 
number of brick elements (Fig. 4.31). Moreover, the generalization algorithm reduced efficiently the 
number of vertices (to 12,231; see red points in Fig. 4.31). The shape of the blocks is also correctly 
defined, which should be coined partially to the line-adjustments applied by the provided algorithmic-
logic (Fig. 4.21). This is easier observed in the AutoCAD drawing (Fig. 4.32), which clearly shows the 
shape of the final generalized-lines. The results of this case-study demonstrate that the extracted-
geometry is mainly influenced by the quality of the binary-images (CNN output). Therefore, the 
primary enhancement that can be implemented for the presented method involves improving the 
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CNN models.

 
Fig. 4.31: Generalized lines on image (Red-Points: Vertices of the lines). 

 

 
Fig. 4.32: AutoCAD drawing of the structure. 
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4.14. Conclusions 
The work presented in this document demonstrates the potential of algorithmic solutions for 
evaluating and visually inspecting masonry structures. The novelty of the research is the complete 
combination of multidisciplinary approaches to identify and evaluate structural elements, on masonry 
structures, for the generation of geometrical models for digital twin or BIM applications. Those include 
but not limited to: Research in artificial intelligence for pattern-recognition and object-detection; 
image-processing for enhancement of object-detection and object-definition; and mathematical 
formulation for the object-definition, shape-enhancements, and shape-measurements. The major 
breakthrough is that the proposed approach offers a fully automated method to replace the manual 
process of visual inspection and assessment of masonry structures. 

The methodology can be applied for large-constructions, and even identify elements not detected by 
the CNN-models. The complete workflow is aimed for health-monitoring using stable cameras to 
record progress of crack propagation and displacements. It can even be used to produce automatically 
numerical-models, to inspect changes to the structural-capacity on-the-fly. It has been demonstrated 
that the accuracy of the extracted geometry largely depends on the performance of the CNN models. 
In which case, the outcome can be improved highly by including, in the dataset, annotated-images of 
the structure that the health-monitoring system is installed for. Other uses include a quick and 
unbiased overview of the state of the structure, with precise measurements of large crack-patterns. 
The software can also be utilized for comparing crack propagation between various time periods and 
generating detailed records of different metrics, especially useful for inaccessible locations (i.e., by 
taking advantage of unmanned-aerial-vehicles). 

The main limitation of the proposed system is the accuracy of the CNN-models used (section 4.4), 
which can be improved simply by enlarging the dataset. Especially with samples of similar cases of 
lower detection-rate (i.e., with areas affected by severe discolouration). Another limitation is the 
inability of the CNN-model to identify the brick-pattern behind foreground-objects (i.e., signs, pipes, 
vegetation, etc.). It is believed that the CNN algorithm has the capability to identify obstructed 
elements, since the CNN-architecture is able to identify local-features on the image (i.e., replicate the 
nearby pattern of brickwork). This may be possible by altering the dataset to include obstructed 
blocks, for valid regions only (i.e., not background). The last limitation of the workflow is that the 
procedure has been designed for 2D-ouptut. 3D-modelling is supported only for structures with equal 
depth along their plane (i.e., single-leaf walls). There are plans to translate the same methodology to 
3D-plane. However, that would require an additional step to capture the structure from different 
locations/angles and identify the 3d coordinates of every pixel (i.e., with the assistance of a 3D reality-
mesh; Fig. 4.2: a). 

Future-work may include classification of additional defects using CNN, such as vegetation, spalling, 
discolouration, etc. Those can be used during the evaluation of the geometric-properties of defects 
(section 4.8), to provide more data for the structure. Or even to exclude specific defects from the 
numerical-model, if deemed appropriate (i.e., black stains registered as cracks). Another improvement 
includes further-adjustments of the geometry (section 4.10; step 9), to apply minor-corrections to the 
shape of blocks (i.e., adjust the verticality of interfaces that are almost vertical). Furter work may also 
involve the automatic-adjustment of material-properties, of a specific region of the numerical model, 
based on the deterioration-level detected. Other improvements and future-work include the 
amendment of the limitations of the workflow by following the suggestions provided in the relevant 
paragraph. 
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5. Paper #4: Image2DEM: A geometrical digital twin generator for the 
detailed structural analysis of existing masonry infrastructure stock. 

 

Loverdos Dimitrios.1, Sarhosis Vasilis 1 

School of Civil Engineering, University of Leeds, LS2 9JT, Leeds, UK 

Abstract 
Assessing the structural performance of ageing masonry infrastructure is a complex task. Geometric 
characteristics and the presence of damage in masonry structures may influence greatly their rate of 
degradation and in-service mechanical response. Therefore, identifying approaches to assess the 
actual structural condition of these assets is vital. In the last ten years, advances in laser scanning and 
photogrammetry have started to drastically change the building industry since such techniques are 
able to capture rapidly and remotely digital records of objects and features in points cloud and image 
format. However, the direct and automatic exploitation of images for use as geometry in high fidelity 
models for structural analysis is limited. In this framework, the aim of this paper is to present the 
development of a software able to fully automate the “scan to structural modelling” procedure for 
the efficient and accurate structural assessment of ageing masonry infrastructure. “Image2DEM” is 
based on Python libraries with graphical interface. The images can be captured from DSLR (Digital 
Single-Lens Reflex) cameras, smartphones, or drones. The image selected is then imported to the 
program to detect and extract the masonry micro-geometry. The algorithm provides reliable detection 
using Artificial Intelligence. Convolutional Neural Networks (CNN) are used to identify the location of 
masonry units and cracks, with ~96% and ~80% accuracy, respectively. The geometry is extracted in 
the form of simplified lines to improve efficiency and reduce computational effort. The output is 
provided in DXF format for compatibility between different programs. Finally, the geometry extracted 
is converted to a numerical model for structural analysis. The proposed software has the potential to 
revolutionise the way we assess existing masonry infrastructure in the future. 
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5.1. Motivation and significance  
Masonry infrastructure, such as bridges, viaducts and tunnels form a significant part of the UK’s critical 
infrastructure stock; e.g. there are more than 70,000 masonry arch bridges which constitute over 40% 
of UK’s bridge stock (McKibbins et al., 2006). The majority of our masonry infrastructure is ageing, 
often well beyond 120 years, and showing significant signs of deterioration and damage. Weathering, 
demands of increasing load-intensity, axle-loads, and factors such as increased frequency of flood 
events due to climate change have introduced extreme uncertainty in the long-term performance of 
such infrastructure assets. Also, much of our masonry infrastructure has significant heritage and 
cultural value (e.g., the Grade II-listed Hungerford Canal Bridge, in Berkshire, England) and the UK has 
a policy to “retain and repair”, rather than “demolish and replace”. Failure of such infrastructure could 
lead to direct and indirect costs to the economy and society and hamper rescue and recovery efforts. 
For example, during the 2009 floods in Cumbria, three masonry arch bridges collapsed while nine were 
severely damaged, leading to nearly £34m in repair and replacement costs. The economic and societal 
impact were even larger, with increased travel time estimated to cost the economy almost £2m per 
week. In March 2017, approximately 200 tonnes of rubble fell on to the railway line when a masonry 
wall collapsed just outside Liverpool Lime Street station, which had the potential to crush or derail a 
passing train, with disastrous consequences. Therefore, there is an urgent need to better assess the 
in-service performance of ageing masonry infrastructure stocks, and to provide detailed and accurate 
data that will better inform maintenance programmes and asset management decisions. 

Assessing the structural performance of ageing masonry infrastructure is a complex task. Previous 
research has clearly demonstrated that the assessment methods currently used by the industry are 
antiquated and/or over-simplistic (Phares et al., 2004; McKibbins et al., 2006). For example, for the 
assessment of masonry arch bridges, the Military Engineering Experimental Establishment (MEXE) 
method of assessment is still in use, dates back to the 1940s, has very limited predictive capability, 
and offers little scope for future enhancement. Also, although the primary focus of past research has 
been into the prediction of structural failure of ageing masonry infrastructure, prediction of the 
service load above which incremental damage occurs is now a key priority for infrastructure owners, 
who are under increasing pressure to provide transport networks which are secure and resilient.  

Over the last three decades, significant efforts have been devoted to the development of numerical 
models to represent the complex and non-linear behaviour of masonry structures subjected to 
external loads (Lourenço, 1996, 2013; Asteris et al., 2015; D’Altri et al., 2020). Such models range from 
considering masonry as a continuum (macro-models), to the more detailed ones that consider 
masonry as an assemblage of units and mortar joints (micro-models; (Sarhosis and Sheng, 2014; 
Sarhosis et al., 2014; Sarhosis, Garrity and Sheng, 2015; D’Altri et al., 2018; Forgács, Sarhosis and Bagi, 
2018; Sarhosis and Lemos, 2018; Erdogmus et al., 2019; Sarhosis, Forgács and Lemos, 2019; Segura et 
al., 2021)). Since ageing masonry infrastructure is typically characterised by low bond strength, 
cracking is often a result of the de-bonding of the masonry units from the mortar joints. Given the 
importance of the masonry unit-to-mortar interface on the structural behaviour of aged masonry 
structures, micro-modelling approaches (i.e., those based on Discrete Element Method) are better 
suited to simulating their serviceability and load carrying capacity. However, a vital aspect when 
modelling masonry structures based on the micro-modelling approach is the accuracy in which the 
geometry of the masonry structure is transferred in the numerical model. So far, the geometry of 
masonry infrastructure is captured with traditional techniques (e.g., visual inspection and manual 
surveying methods) which are labour intensive and error prone. 

In the last ten years, advances in computer-vision, photogrammetry, and laser-scanning have started 
to drastically change the building industry. Especially since such techniques are able to capture rapidly 
and remotely digital records of objects and features in 2d-images (Sithole, 2008; Oses, Dornaika and 
Moujahid, 2014; Cluni et al., 2015; Brackenbury and Dejong, 2018; Bal et al., 2021) and point-
cloud/3D-mesh formats (Volk, Stengel and Schultmann, 2014; Barazzetti et al., 2015; Valero, Bosché 
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and Forster, 2018; Valero et al., 2019; Andriasyan et al., 2020; Bassier and Vergauwen, 2020). Even 
with the use of artificial intelligence for both 2d and 3d environments (Brackenbury, Brilakis and 
Dejong, 2019; Ibrahim, Nagy and Benedek, 2019; Spencer, Hoskere and Narazaki, 2019; Valero et al., 
2019; Kalfarisi, Wu and Soh, 2020; Dais et al., 2021; Ergün Hatir and İnce, 2021). Although some work 
has been done in transitioning from point cloud to structural analysis models those are limited to 
continuum macro-modelling (Korumaz et al., 2017; Bassier et al., 2019; Rolin et al., 2019; Funari et al., 
2021; Kassotakis and Sarhosis, 2021; Pepi et al., 2021), or discontinuum macro-modelling (Hinks et al., 
2013; Tiberti and Milani, 2020b). Thus, there are still many challenges to overcome, especially 
regarding the discretisation of the numerical models generated. Additionally, a prominent factor in 
the assessment of masonry infrastructure is the impact of existing pathologies, such as deformations 
and cracks. According to Heyman (Heyman, 1966), geometric changes and existing damage in masonry 
structures can greatly influence their rate of degradation and in-service mechanical response. The lack 
of convenient tools that enable image and point cloud data to be readily transformed for use in a 
structural analysis model has hindered uptake in the engineering community.  

In this framework, Loverdos and Sarhosis proposed a workflow to exploit images directly and 
automatically from ageing masonry infrastructure to generate geometrical digital twins which can be 
used for the structural assessment, inspection, and documentation (Loverdos et al., 2021a; Loverdos 
and Sarhosis, 2023b). The procedure is as follows. Initially, images can be captured using DSLR or a 
smartphone or from a drone. Any image from any source can be used. Images that include any 
background (random objects, sky, ground, etc) are also compatible. Orthorectified images (with equal 
height/width scale) and good resolution are preferred but are not necessary. Then, the image selected 
is imported to “image2DEM” software to detect and extract the masonry micro-geometry. The 
algorithm provides reliable detection using Artificial Intelligence. Convolutional Neural Networks 
(CNN) are used to identify the location of masonry units and cracks, with ~96% and ~80% accuracy, 
respectively (Dais et al., 2021; Loverdos and Sarhosis, 2022a, 2023a). Furthermore, background 
elements (non-masonry) are filtered out automatically. The geometry is then extracted in the form of 
simplified lines to improve efficiency and reduce computational effort and a “geometric digital twin” 
is created. Blocks, mortar, and cracks are assigned to different layers automatically. The mesh is 
optionally generated for blocks, mortar, and cracks. The output is provided in DXF format for 
compatibility between different CAD and BIM environment programs. Finally, the geometry extracted 
could be converted to numerical modelling software for the analysis of masonry structures. 
Furthermore, the mesh generated allows to investigate separation (loss of contact) during the 
analysis. To enhance simplicity, the elements are allocated to different groups depending on the layers 
assigned on the CAD file. 

5.2. Software description 
The main workflow of the software is simple (Fig. 5.1). Any image can be used to identify the micro-
geometry of masonry (i.e., blocks, cracks, background), using artificial-intelligence and image-
processing (Fig. 5.1; “Detection”). More specifically, blocks and cracks are detected using individual 
FCNs (Fully Convolutional Networks), while the background and other elements are detected using 
image-processing. Then, the geometry is extracted to a CAD file for documentation (Fig. 5.1; 
“Documentation”). Where each object is assigned to a separate layer automatically, based on the 
detection method used to generate the binary-image. Finally, the exported geometry is used to 
generate the numerical model of the structure (Fig. 5.1; “Analysis”), with a numerical-analysis 
software (such as UDEC, a discrete-element-method software). The numerical-model is used to 
evaluate the current state of the structure and estimate the maximum capacity. 
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Fig. 5.1: Workflow of the algorithm 

The graphical interface was developed to allow the user to easily select the modules that wants to run 
and allow the modification of the options of the software (Fig. 5.2). The GUI includes the ability to run 
all modules together, selected number of modules, or a single module (as seen on the left side of Fig. 
5.2). The options are adjusted as an imported text-file (seen on the right side of Fig. 5.2). This allows 
to include many variables on the software that adjust the final output. 

Regarding the main part of the software, there are multiple modules, each with a specific task. Those 
include: Functions to load and adjust the image (P1, P2); detect the micro-geometry of masonry (P5, 
P7, P9, P11); improvements to the binary-images using image-processing (P6, P8, P10, P12); damage-
evaluation in terms of their geometrical properties (P13); feature-extraction of the micro-geometry 
(P14, P15, P16, P17); and finally, model generation for CAD documentation or analysis (P18). A 
separate module is used to convert the CAD file to UDEC geometry ("DXF to UDEC"), although the DXF 
file can also be used to create the numerical model in most software. More specifically, all the modules 
of the program are described in the table below (Table 5.1): 
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Table 5.1: Separated modules of the program. 

P1 Load Image: Used to select an image with a file-browser. 
P2 Adjust Scale: Adjusts the scale of the image programmatically. 
P3 Detect Blocks: Detects blocks on image using CNN. 
P4 Adjust Blocks: Improves the blocks-mask using image-processing. 
P5 Detect Cracks: Detect cracks on image using CNN. 
P6 Adjust Cracks: Improves the cracks-mask using image-processing. 
P7 Detect Masonry: Detects the overall location of masonry by merging the detected blocks. 
P8 Adjust Masonry: Improves the masonry-mask using image-processing. 
P9 Detect Background: Identifies the background, either by image-thresholding (for white 

background), or by inverting the masonry-mask (for undefined background). 
P10 Adjust Background: Improves the background-mask using image-processing. 
P11 Create Structure: Creates the overall structure by combining all binary-images. It can be used 

to identify undefined elements, not detected by the block-detection (such as concrete 
beams). 

P12 Adjust Structure: Improves the structure-mask using image-processing. 
P13 Evaluate Cracks: Creates a CSV file with the geometric-properties of each isolated-crack (i.e., 

location, area, length, average-width, and coverage). 
P14 Create Segmentation: Applies watershed-segmentation to isolate detected blocks. 
P15 Adjust Segmentation: Adjusts the watershed-segmentation to include mortar and damage. 

Also, applies corrections to the watershed, to ensure the proper geometry-extraction. 
P16 Extract Contours: Extracts the micro-geometry of masonry as polylines (using the watershed). 
P17 Adjust Contours: Applies line-generalization to the extracted geometry (reducing the number 

of vertices of the polyline) and filters-out small elements with near zero-area. Furthermore, 
it adjusts the geometry to improve the general shape of the structure. Additionally, it 
generates the mesh, optimized for numerical-analysis, to investigate crack-propagation. 

P18 Create Model: Creates the DXF file of the geometry of the structure, with every material 
assigned to individual layer. Furthermore, it provides multiple CSV files with the inner-
location of every detected-object, separated by material.  

- DXF-to-UDEC: Convert the AutoCAD file to “fish” commands for analysis using UDEC. 
Separates materials to different groups (classifications). 

Where P1 and P2 are relevant to the “Capture” step; P3-P12 are part of the “Detection” step; P13-P18 
are part of the “Documentation” step; and finally, P18 and DXF-to-UDEC are relevant to the “Analysis” 
step (see Fig. 5.1). Those are further explained in the sections 5.3-5.6. 

Furthermore, the adjustable-options, provided in the GUI (Fig. 5.2: right-side), can be used to improve 
the quality of the final-output. However, the default values are appropriate for almost every case and 
do not need any adjustment. The only exceptions are a few basic options, which modify the 
geometrical-model to meet different needs, such as the inclusion of damage (cracks), mortar (for 
detailed micro-modelling), and background (if the masonry doesn’t cover the whole image). For 
example, if the structure is large, detailed micro-modelling is avoided since the model will be very 
complex and may cause the analysis to fail. In which case, the user should turn off the definition of 
mortar (“P0_Use_Mortar=False”) for simplified micro-modelling. 
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Fig. 5.2: Graphical Interface of the Software 

5.3. Step #1: Input Image 
Initially a representative image, of a masonry-structure, is captured and imported to the software 
using a browser-window typical to windows-applications (Fig. 5.2: P1). As it was mentioned earlier, 
any image can be used with the developed software. However, orthorectified images will provide 
higher accuracy in the “Documentation” and “Analysis” part of the software, due to equal-scale 
between the [x, y] axis and due to corrections to image-distortion caused by the camera lens (i.e., 
barrel effect). Orthorectified images can be produced using photogrammetry software, such as 
“Context Capture”. 

Additionally, the scale of the image is an important aspect of the process for multiple reasons. Firstly, 
it allows to automatically adjust most variables and thus, minimize user interaction with the GUI. An 
example of the automated adjustment of a variable is the resize-value of the image, before passing 
through the CNN networks. But more importantly, it allows the acquisition of the true dimensions of 
the structure. Those are used for the geometrical-model generation and for the evaluation of the 
geometric-properties of detected cracks. The scale of the image is acquired programmatically for 
convenience (Fig. 5.2: P2). More specifically, the scale is acquired by selecting two points on the input-
image and providing the distance between them (Fig. 5.3). 
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Fig. 5.3: Image scaling (in meters) 

5.4. Step #2: Object Detection 
Blocks on the image are detected using CNN for reliable detection with a validation accuracy equal to 
96.86% and validation F1-score of 96.3% (Fig. 5.2: P3; Fig. 5.4: a2). Similarly, the cracks are also 
detected using CNN with a validation F1-Score equal to 79.6% (Fig. 5.2: P5; Fig. 5.5: b). Both models 
were trained with images of typical masonry structures (i.e., not rubble), bonded with mortar. 

The overall location of masonry is detected automatically from the detected blocks (Fig. 5.2: P7), using 
simple image-processing functions (i.e., image-closing to combine the detected-blocks). The 
background is detected based on user-preference (Fig. 5.2: P9) and can be acquired either from the 
masonry-mask (Fig. 5.4: a3), or the white section of the image (Fig. 5.4: b3). 

The structure combines all the binary-images (Fig. 5.2: P11; blocks, cracks, masonry, background) and 
has the capability to identify undetected-elements automatically (Fig. 5.4: b4). More specifically, the 
areas that do not belong to either background or masonry are assigned as undetected-elements. 
However, the detection of other structural-elements can only be applied for images with white-
background, no-background at all, or a custom-background mask. This is due to the reason that the 
masonry-mask must be different from the background to identify undetected-elements.  
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Fig. 5.4: a] Detect Background: 1) Original Image; 2) Blocks; 3) Masonry; b] Detect Other Elements; 1) Original Image; 2) 

Blocks; 3) Background; 4) Final Structure 

The adjustment of the binary masks is using the same module with different arguments (Fig. 5.2: P4, 
P6, P8, P10, P12). They mostly remove small elements from either the background and/or foreground, 
based on the object-area (converting the number of pixels to scaled-area). Thus, ignoring the 
extraction of excessively small-elements that are possibly labelled-incorrectly. Those adjustments 
improve the output considerably. They are applied after each mask-detection to avoid repetition of 
the detection (Fig. 5.2: P3, P5, P7, P9, P11). Especially for blocks and cracks since their detection is 
slower due to the application of a CNN model (Fig. 5.2: P3, P5). 

5.5. Step #3: Documentation - Geometrical Model 
The detected cracks are used to acquire the geometric properties of each detected-defect (Fig. 5.2: 
P13). Each crack is isolated and measured individually using image-processing (Fig. 5.5). The 
calculation of the crack metrics is precise, assuming the accurate output of the crack-detection 
module. Those metrics can be used to assist engineers with the visual inspection of masonry 
structures. 

 
Fig. 5.5: Crack measurements; a) Image; b) Detected cracks; c) Overlay and labels of cracks. 

The acquired crack-metrics are the location, area, width, length, and coverage (Table 5.2). The 
coverage refers to the percentage coverage of the crack-area over the area of all defects or the overall 
masonry-area. The CSV file includes both scaled (i.e., in milometers) and unscaled (in pixels) values. 
However, only the scaled values are provided here due to size-limitation of the document width. 
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Table 5.2: Geometrical-properties of detected-cracks (the location starts from the top-left side of the image). 

Label Location Area Length Width Coverage Coverage 
- [xmid,ymid] Scaled Scaled Scaled Cracks Masonry 
(No) (pixels) (mm²) (mm) (mm) (%) (%) 
1 [251, 82] 2516 376 7 59.507 0.423 
2 [203, 176] 432 52 8 10.211 0.073 
3 [156, 216] 700 107 7 16.549 0.118 
4 [151, 251] 372 48 8 8.803 0.063 
5 [131, 267] 45 3 17 1.056 0.008 
6 [112, 280] 164 25 7 3.873 0.028 
  Total: 4229 607 53 100 0.71 

The detected geometry of masonry from the binary images is used to generate the geometrical model 
(Fig. 5.2: P14-18; Fig. 5.6). Initially, watershed-segmentation is used to isolate every individual block 
(Fig. 5.2: P14). The segmentation is then adjusted to include mortar and damage, but also to test that 
every separated-segmentation is assigned a unique-label (Fig. 5.2: P15). The geometry is then 
extracted in the form of polylines and is scaled to the real-dimensions for the precise documentation 
of the structure (Fig. 5.2: P16). The geometry is also simplified to reduce the number of vertices, so 
that it retains the minimum number of vertices that best describe each object (Fig. 5.2: P17), using a 
generalization algorithm (Fig. 5.6: a & b). The accuracy of the generalization is adjustable. The mesh is 
also generated to allow separation between objects and investigate crack-propagation, during the 
numerical analysis (Fig. 5.2: P18; Fig. 5.6: c & d). Finally, the generated geometry is exported to DXF. 
Both simplified micro-modelling (Fig. 5.6: b) and detailed micro-modelling (Fig. 5.6: d) are supported 
for the model-generation. 



108 
 

 
Fig. 5.6: geometrical model; a) Generalized-lines for simplified micro-modelling; b) AutoCAD drawing (simplified micro-

modelling); c) Generalized-lines for detailed micro-modelling; d) AutoCAD drawing (detailed micro-modelling). 

5.6. Step #4: Analysis – Numerical Model 
The final step is the generation of the numerical model of the structure in 2D (Fig. 5.2: DXF to UDEC; 
Fig. 5.8: b; Fig. 5.10:  b). For that the geometry, location, and classification of every object is required 
to define the model in UDEC. The geometry is defined by the DXF file (Fig. 5.8: a;  Fig. 5.10: a). The 
location is defined for every object separately and is considering an inner point within the area 
enclosed by its individual element. The location is also used to define the class of every object in the 
numerical model. This is required because in UDEC every individual element is generated by dividing 
an existing large-block into multiple parts. Thus, the initial classification (of the main block) is 
irrelevant.  

The classification of every object in the numerical-model is made using the inner-location of every 
object, except for the background where the segmentation-inner location is used instead. The reason 
why the segmentation-inner-location is used for the background is because the polyline of the outer-
background includes all the other objects as well (blocks, cracks, mortar, mesh-elements, etc.). Thus, 
using the segmentation location avoids the incorrect classification of an unspecified-object enclosed 
within the outer-background area. 

The geometry extracted is limited to 2D analysis in general. A simple 3D model can be generated under 
the assumption that every drawn-object has equal depth. Although, automatic generation of 3D 
models would require a lot of manual-effort to adjust the model for discrete numerical-analysis. 
Mostly because the inner-materials, block pattern, etc, cannot be detected from image and point-
cloud data (i.e., backfill, multi-leaf walls). However, regarding the use of the software for simple 
documentation, multiple faces can be extracted separately. 
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5.7. Output-Files and Folder-Structure 
The output folder-structure is divided into multiple-sections. The input-data used during the program-
execution are stored in the “Basic” folder. The user-adjustable options are stored in text-format in the 
“Data” folder. The “Images” folder includes figures of all the processes, aiming to identify issues with 
any part of the workflow. Additionally, the folder-structure includes an “Override” folder, which can 
be used to copy and manually-adjust the binary-images to improve the final-result. More specifically, 
any image with the keywords “Blocks”, “Cracks”, “Masonry”, “Structure”, will replace the original-
input during the program-execution.  

The “Results” folder contains the final-output from the crack-measurements and geometry-extraction 
(Fig. 5.2: P13 & P18). Those include the DXF file of the geometry, the CSV file of the crack-
measurements, and CSV files of the location of each element (separated by material and detection 
method). If the companion-program is used (Fig. 5.2: “DXF to UDEC”), the “Results” folder will include 
the TXT files of the complete-geometry in fish-commands (scripting-language of Itasca-software). 

The location of every object is extracted individually per class, in a csv file format. The location-
classifications are the following: blocks, block-mesh, mortar, mortar-mesh, damage, damage-mesh, 
and background. The location-types extracted are: Inner (inner location of the closed-polyline), centre 
(centroid of the closed-polyline), segmentation (inner location of the watershed-segmentation), and 
pixel (pixel location in scaled coordinates; for mortar/damage only). 

5.8. Illustrative example #1 
The following example is a section of the façade of the “Town House” in Leeds, UK (Fig. 5.7: a). The 
input is an orthorectified image generated using photogrammetry software (Fig. 5.7: b). The specific 
case was selected because it contained both arch and straight brick-pattern. The software produced 
an excellent drawing (Fig. 5.8: a), except for locations covered with foreground objects. More 
noticeable near the pipe on the left side of the image. The pipe could be filtered out, within the 
photogrammetry software, if more images were acquired from the side of the object. In which case, 
the bricks behind the pipe could be reconstructed fully. However, minor corrections can be applied to 
the drawing directly (Fig. 5.8: a (grey lines)); or alternatively, by manually-editing the binary-output of 
the block-detection algorithm (Fig. 5.2: P4), which is then placed in the “Override” folder to be used 
instead of the initial-output. Finally, the 2D geometry was then transferred to UDEC (Fig. 5.8: b), to 
allow the numerical evaluation of the structure using the discrete element method. The complete 
procedure took ~915 sec (for modules P1-P18). The largest amount of time was required by P15 (387 
sec). The time recorded is for an image-resolution of 4239x2594 pixels; Image-Scale of ~0.002 
meters/pixel; and 4,714 polylines that formed 1,577 individual blocks. The computer used is a laptop 
with i7-9750H CPU, RTX-2060 GPU with 6gb VRAM, and 16x2gb RAM. The computational-time can be 
largely optimised by allowing multi-core calculations on developed-algorithms used by the software. 
Currently, most developed-algorithms are only allowed single-core calculations. 
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Fig. 5.7: a) Sample of x173 images of the "Town House"; b) Orthorectified image of the Town House, Leeds, UK (Loverdos 

and Sarhosis, 2023b). 
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Fig. 5.8: a) Output of software - AutoCAD Drawing: Grey-lines were drawn manually, over problematic areas, to ensure in-

plane separation on the horizontal-axis during the numerical-analysis; b) Numerical model in UDEC (created using the 
supplementary program “DXF To UDEC”). 

5.9. Illustrative Example #2 
The following example is a masonry arch-bridge experiment that is being conducted at the laboratory 
of the University of Leeds (Fig. 5.9: a). The orthorectified image (Fig. 5.9: b) was acquired using 
photogrammetry software, after it produced a proper 3D model (reality-mesh). It can be observed 



112 
 

that the stair (presented in the original images; Fig. 5.9: a) was filtered-out from the 3D mesh (Fig. 5.9: 
b), which allows the detection of covered-bricks. Then the developed software was used to generate 
the AutoCAD drawing (Fig. 5.10: a) and subsequently, the numerical model in UDEC (Fig. 5.10: b). The 
block-detection demonstrates excellent results, especially considering the stained surface of the 
bricks (more noticeable in the middle-right side). The numerical model considers the discrete element 
method, and more specifically simplified micro-modelling, to investigate crack propagation in later 
stages of the experiment. The complete procedure took ~391sec (for modules P1-P18). The time 
recorded is for an image-resolution of 3,840x1899 pixels; Image-Scale of ~0.002 meters/pixel; and 
2,290 polylines that formed 766 individual blocks. 

 
Fig. 5.9: a) Sample of x1,217 images of the "Arch Bridge" used to generate the 3D mesh; b) Orthorectified image of masonry 

arch-bridge (laboratory experiment in UoL). 
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Fig. 5.10: a) Output of software - AutoCAD Drawing; b) Numerical model in UDEC (created using the supplementary 

program “DXF To UDEC”). 

5.10. Impact 
Network Rail (the UK railway authority) acknowledges that that current inspection methods are highly 
simplified and often not capable of reliably distinguishing between structures that can sustain further 
loads and those which cannot (Brown, 2024). The impact of “Image2DEM” toolkit is to improve the 
structural analysis of our “as is” existing masonry infrastructure. “Image2DEM” allows a non-expert 
user to generate the geometry and mesh required for the development of high-fidelity numerical 
models such as the ones with DEM and FEM starting from images of the structure under consideration. 
The toolkit considers apart from the segmentation of masonry units, the damages in the structures 
such as cracks and distortions originated due to ground subsidence as well as irregularities or missing 
bricks. Reliable inspection of infrastructure leads to more informed maintenance schemes, and 
potentially reduced unnecessary repair and strengthening interventions, which contributes 
significantly towards the UK’s “Net Zero” strategy (BEIS, 2021).  
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5.11. Conclusions 
The “Image2DEM” software is able to harness current developments in remote surveying methods 
and couple them with algorithms developed in Python based on Artificial Intelligence and Machine 
Learning to fully automate the “scan to structural modelling” procedure for the efficient and accurate 
and detailed structural analysis of our ageing masonry infrastructure stock. According to the method, 
first, images captured from smartphones or DSLR cameras are uploaded into our “Image2DEM” 
software. Using computer vision and Artificial Intelligence (AI) techniques, it is possible to detect 
masonry units (e.g., bricks, blocks) and cracks automatically. The “as is” geometry of the masonry 
structure generated, can then be extracted in the form of simplified lines (x, y coordinates) in a DXF 
format. Finally, DXF files can be used in numerical analysis software for their structural assessment. 
The ad-hoc graphical tools developed are able to segment individual bricks in a masonry structure and 
mesh the mortar between them for the structural analysis. This transition, from the physical to the 
digital environment, has the potential to provide a better understanding of the "as-is" condition of 
our existing masonry infrastructure and revolutionize the way structural analysis is conducted in the 
industry. Using efficient and accurate estimation of the “as is” structural condition of ageing masonry 
infrastructure, we are able to provide detailed and accurate data that will better inform maintenance 
programmes and asset management decisions. 
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Abstract  
Inspection and documentation of existing masonry-structures is a tedious and costly procedure. It 
usually requires Health and Safety reporting since the process usually involves an inspection engineer 
to access a structure that may be in close proximity of a busy railway line or road. Furthermore, it 
relies solely on the experience of the engineer that performs the inspection. However, nowadays, 
drones can be used to help engineers gather far more detail than conventional methods. Drones can 
be flown close to structures and get into areas that might be difficult or impossible to reach using 
traditional methods. The digital data gathered by drones can be used to generate very detailed 2D and 
3D models of bridges using photogrammetry. This paper presents a methodology for the automatic 
block and crack classification and segmentation of three-dimensional models of masonry structures. 
The classification is acquired automatically using CNN (Convolutional Neural Networks) on images 
captured directly from the 3D model. Hence, achieving high-accuracy with low-effort, especially when 
compared to alternative-methods that consider the classification of point-clouds. At present, the 
available classifications are blocks, cracks, mortar, and unspecified/other-elements. However, any 
other-class can be incorporated as long as the CNN-model is provided, which allows the expansion of 
the use-case of the algorithm to encompass any structural-material and defect. Lastly, this approach 
allows the manual-annotation of any classification, to allow the engineer to mark areas-of-interest 
that were not detected by the CNN-models (i.e., cracks). Thus, enabling the industrial-use of the 
project, by the means of a simplified annotation tool of any structure in 3D environment. In addition, 
the suitability of three commercial software (i.e., Context Capture; Metashape; and Reality Capture) 
for photogrammetry are examined with respect to their suitability for alignment, 3D mesh, and 
coloured-textures. 

 

Keywords: masonry, image processing, documentation, inspection, artificial intelligence, 
convolutional neural networks, reality mesh, 3D mesh. 
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6.1. Introduction 
Although one of the oldest construction methods, masonry is still commonly used due to its reliability 
and sustainability that it offers. Masonry structures consist of residential or commercial buildings and 
infrastructure such as masonry arch bridges. In fact, a large portion of the existing infrastructure in 
the UK is consisting of masonry arch-bridges (Sowden, 1990; McKibbins et al., 2006), many of which 
were constructed well beyond the 100 years period and form part of our cultural heritage. Frequent 
inspection of those structures is important to ensure their serviceability, which is often a manual 
process (Phares et al., 2004; Eaton, Edwards and Crapper, 2014). A process that is expensive in terms 
of workforce, financial, and time requirements. For the aforementioned reasons, improvements in 
automation and simplification of visual inspection have acquired large scientific and commercial 
interest (Spencer, Hoskere and Narazaki, 2019).  

Recently, the use of terrestrial laser scanning using LiDAR and structure from motion using images 
have been successfully used to create accurate digital records in the form of 3D point-cloud or reality-
mesh of existing structures at millimetre or even sub-millimetre level of accuracy (Altuntas, Hezer and 
Kırlı, 2017; Historic England, 2017, 2018; Kassotakis and Sarhosis, 2021).  Furthermore, the resultant 
point-cloud can be used to identify the location of specific structural elements, using artificial-
intelligence (e.g., (Bassier and Vergauwen, 2020) where classification of wall-objects from point-cloud 
data is presented). However, the manual annotation and training of machine-learning requires 
significant efforts due to the availability of the data and the complexity of annotation of point-clouds. 
Alternative methods consider the classification of defects on the reality-mesh itself (Kalfarisi, Wu and 
Soh, 2020). More specifically, the images that are used for the generation of the point-cloud and 
textures. However, this approach does not allow the manipulation of the 3-dimensional classification 
since it is applied on the texture of the model. Although not fully developed, those attempts have the 
capability to automate a large part of the visual-inspection, documentation, and assessment of 
existing structures. Future developments may increase the accuracy of the 3D classification with the 
inclusion of most structural types and materials and thus, improve applicability in commercial 
applications.  

A simpler approach is the use of semantic-segmentation, using deep-learning, for the classification of 
image-data, such as CNN and FCN, that provide a reliable solution to the automatic annotation of 
selected targets (Ronneberger, Fischer and Brox, 2015; Chen et al., 2018; Spencer, Hoskere and 
Narazaki, 2019). Those approaches have already been applied for the classification of the detailed 
geometry of masonry fabric, such the classification of masonry units (Ibrahim, Nagy and Benedek, 
2019; Ergün Hatir and İnce, 2021; Loverdos and Sarhosis, 2022a) and defects in masonry (Chaiyasarn 
et al., 2018; Ali, 2019; Brackenbury, Brilakis and Dejong, 2019; Wang et al., 2019; Dais et al., 2021). 
Due to the generation of photorealistic models from photogrammetry/LiDAR, the classification of the 
three-dimensional (3D) mesh may even consider the application of semantic-segmentation on image-
data instead of the classification of the point-cloud (Kalfarisi, Wu and Soh, 2020). The advantage of 
image-based methods is mainly the abundancy of image-data and the simplicity of the generation of 
annotated-data for training purposes. However, the classification of 3D data requires the 
development of a post-processing method to transfer the detection using semantic-segmentation to 
the 3D object. 

The classification of structures from point-cloud or reality-mesh has applications on the generation of 
BIM models (Volk, Stengel and Schultmann, 2014; Barazzetti et al., 2015; Andriasyan et al., 2020), for 
direct use with commercial packages. Additionally, it may be used for the generation of geometrically-
accurate three-dimensional numerical models (Kassotakis and Sarhosis, 2021), which are currently 
limited to either continuum macro-modelling (Korumaz et al., 2017; Bassier et al., 2019; Rolin et al., 
2019; Pepi et al., 2021) or discontinuum macro-modelling (Hinks et al., 2013; Kassotakis et al., 2020). 

This paper aims to present a methodology for generating a classified point cloud and mesh elements 
using a textured/coloured reality mesh model of a masonry-structure as input. Also, the classification 
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is image-based to take advantage of the availability of image-data from various sources (i.e., drone 
surveys, smartphone pictures), and existing CNN models already trained to such records. 

6.2. Workflow of the 3D classification 
The main-concept of the workflow is to apply object-detection on images, captured from the 3D-
model directly, and generate a 3D-point-cloud with classified points. The main advantage of this 
method is that it avoids the classification of 3D points cloud. Thus, achieving much higher accuracy 
with less effort. Especially when considering the scarcity of points cloud data compared to image-data, 
and the complexity of classifying a point-cloud in 3D. The complete workflow is provided below: 

• P1: Load Input (3D-Mesh with textures) 
• P2: Image Rendering from 3D-Mesh 
• P3: Block Detection on 2D Renders (CNN) 
• P4: Image Processing on Blocks 
• P5: Crack Detection on 2D Renders (CNN) 
• P6: Image Processing on masonry cracks 
• P7: Segmentation (All Classifications) 
• P8: 3D Point Extraction from Segmentation 
• P9: 3D Point Filtering 
• P10: Damage Evaluation 

The input to the software can be any mesh of masonry structure, with either textures or coloured-
vertices (P1). The renders are captured directly from the 3D-model by several imaginary-cameras 
(around the object), to cover the complete area (P2). Then, object-detection is applied on the image-
renders to identify originally the location of blocks and cracks using CNN (P3 & P5). The output of the 
object-detection is filtered using image-processing to improve the outcome (P4 & P6). Every 
classification is combined to a single segmentation (P7). The final-segmentation includes blocks, 
cracks, mortar, and other elements (concrete, lintel, windows, etc). Then, the 3D coordinates of every 
classified-pixel, of the segmentation, is extracted to form the initial point-cloud (P8). The points are 
then filtered to improve the final output (P9). Additionally, the 3D-points that form the cracks are 
meshed to evaluate their 3D geometrical-properties (i.e., length, width, area, centroid; P10). The 
complete list of outputs is provided below: 

• Output #1: Classified Point-Cloud (blocks, cracks, mortar, others) 
• Output #2: Mesh of Cracks (for visualisation and measurement) 
• Output #3: Crack Evaluation (spreadsheet of crack-geometry) 

6.3. Input: 3D Model (P1) 
The input to the sequence is any 3D model of masonry, with textures. Untextured models can also be 
used if they are coloured (coloured vertices). However, a good resolution texture is preferable since it 
provides the highest visual-quality for the file-size. A realistic and accurate 3D model of a structure 
can be acquired using either photogrammetry or laser-scanning with LiDAR. The 3D models, presented 
in this study, were developed using photogrammetry. Mainly due to the accessibility it offers, since it 
only requires a camera, and as a low-cost alternative to laser-scanning. 

The main model was generated using 1,217 images captured with a “Xiaomi Pocophone F2 pro” with 
64MP camera (Fig. 6.1). The overlap of the captured images was aimed to be at least 50%. Regarding 
the generation of the 3D model, 3 different photogrammetry software were tested to decide which 
one to be used. The photogrammetry software used in this study are: “Context Capture” from Bentley 
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Systems, “Metashape” from Agisoft, and “Reality Capture” from Capturing Reality. All programs 
provided excellent results but required different levels of user-interaction to successfully reconstruct 
the complete scene in 360°. The computer used for the alignment and reconstruction of the 3D mesh 
had I7-9750h CPU, Nvidia 2060 RTX GPU, and 2x16 GB of RAM. 

 
Fig. 6.1: Sample images used for photogrammetry of the full-scale masonry arch bridge constructed in the laboratory. 

6.3.1. Comparison of the Different Photogrammetric Software 
“Context Capture” involved minimal manual-manipulation from the user to create the final-mesh, 
including texturing. Also, it provided an excellent mesh and decent textures of the masonry arch-
bridge. A total of 4 control-points were assigned manually (in multiple images), to improve the 
alignment and scale the structure (Fig. 6.2a). The alignment required 66 minutes and the first 
reconstruction 256 minutes in medium accuracy (for a total of 322 mins, or 5:22 hrs). However, for 
larger models, “Context Capture” divides the final-mesh into tiles, since each tile must fit a pre-defined 
ram-size (i.e., 16gb by default). The specific model was divided into 115 tiles of 16 GBs ram-usage (Fig. 
6.2c). Rarely, this may cause some connection issues with the mesh-tiles, which probably could be 
resolved with manipulation of the model-options and with repetition of the procedure (Fig. 6.2: b). 
However, the main issue is that since the model is divided, the merging of the individual object 
requires large manual-effort, and the final-result is excessive in size, especially due to the large 
number of texture-images. That prohibits the visualisation and usage of the model as a single entity, 
in a simple manner, outside of the Bentley ecosystem. Bentley programs bypass this limitation by the 
use of a “Level-of-Detail” tree, for visualisation and use of the complete-mesh. 

“Metashape” required the highest manual-manipulation of the 3 programs to acquire the final-model. 
Although, it is the only program of those tested that allows the direct-manipulation of the tie-points 
and dense-point-cloud (i.e., deletion/filtering of points), it also provided the most tools to manipulate 
the output of every step of the procedure (alignment, reconstruction, etc.). The alignment also took 
advantage of four manual selected control points, to improve the result and scale the structure. 
Additionally, thirteen manual-markers were placed to provide the best alignment possible (including 
the 4 control-points), without of which, multiple components were generated, where none was 
complete. The alignment took 188 minutes in medium accuracy (112 mins matching-time, 76 mins 
alignment-time; Fig. 6.3a). The reconstruction lasted 132 minutes and produced 75.4 million faces 
(101 mins depth-map generation, 31 mins reconstruction). Finally, the texturing required 255 minutes 
(for a total of 575 mins, or 561 mins). The final mesh and textures have exceptional visual-quality (Fig. 
6.3c), although, that comes at the cost of a large amount of additional-time/manual-labour to achieve 
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the presented result, mainly due to the required number of manually-placed markers and the false-
surfaces it created due to small-misalignment of certain images (Fig. 6.3: b). 

The last of the photogrammetry software tested is “Reality Capture”. The default options of the 
software are sufficient for most user cases, which makes it a simple program to use, where rarely is 
any special-manipulation of the software options is needed (assuming a healthy set of images is 
provided; i.e., good overlap, resolution, coverage). Regarding the procedure, four control points were 
assigned to improve the alignment and scale the structure, on multiple images. The alignment initially 
generated 2 components, which were merged with the help of the 4 control-points (Fig. 6.4: a). The 
alignment required 37 minutes and the reconstruction 145 minutes (71 mins depth-map calculation, 
74 mins for meshing; Fig. 6.4b). An additional 59 minutes were necessary for the manipulation of the 
mesh for smoothing and simplification, which was not recorded for the other software. Colouring of 
the dense point-cloud and texturing of the mesh (Fig. 6.4c) lasted for 43 and 453 minutes respectively 
(for a total of 635 mins, or 10:35 hrs; excluding colouring and post-processing). It should be noted that 
the medium-accuracy for reconstruction would require around 12 to 20 hours, but never left to finish 
due to the excessive amount of time that was required. Instead, a modified preview-reconstruction 
was used, with disabled “use of sparce point-cloud” and “max vertices count” of 60 million. That 
produced a clean-mesh with a 27.9 million triangles, in only 145 minutes. 
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Fig. 6.2: Context Capture; a) Tie Points (alignment); b) Gap in mesh caused by the separation of tiles; c) Final textured-mesh. 
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Fig. 6.3: Metashape; a) Tie-points (alignment); b) Mesh distortion due to small-degree of misalignment; c) Final textured-

mesh (after smoothing). 
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Fig. 6.4: Reality Capture; a) Tie-points (alignment); b) Solid mesh; c) Final textured-mesh (after smoothing). 

6.3.2. Selection of Photogrammetry-Software 
Regarding the visual-quality of the mesh, the best mesh was provided by “Reality Capture”, followed 
closely by “Context Capture”, and then “Metashape”. A small comparison between the software, for 
a complex location of the model, is provided in Fig. 6.5. From Fig. 6.5, it can be observed that “Context 
Capture” generated the ladder almost completely (excluding a small hole and a small area at the very 
top), “Reality Capture” generated most of the ladder without holes, while “Metashape” has large 
sections missing. Although, “Metashape” provides a better mesh in the door-area. Furthermore, it is 
observed that “Metashape” has the smoothest surface of the wall, followed by “Reality Capture”, with 
last the model produced by “Context Capture”. Additionally, “Context Capture” has small holes in the 
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mesh in certain areas, between tiles (Fig. 6.2: b), although that may be resolved with repetition of the 
procedure and adjustment of the model-configuration.  

Regarding the textures, “Metashape” provided the best textures (visually), followed closely by “Reality 
Capture”. “Context Capture” had the lowest performance in that regard due to the division of the 
model in multiple tiles, which caused discrepancy between tiles. Regarding the complexity, “Context 
Capture” was the simplest to use followed by “Reality Capture”. Metashape required the highest 
manual-manipulation to provide similar results.  

Finally, all 3 produced good results but only the “Metashape” and “Reality Capture” models are 
useable for this case (since “Context Capture” produced too many tiles to create a useable model). 
Between the 2, the simplicity and performance of “Reality Capture” is preferred. Thus, the “Reality 
Capture” model is used for the remaining of the study. 

 
Fig. 6.5: Mesh comparison (before smoothing); a) Context-Capture; b) Metashape; c) Reality-Capture. 

6.4. Image-Capture from the 3D Model (P2) 
The objective of this section is to present the methodology for capturing images, surrounding the 
structure, directly from the 3D model. Those images will later be analysed using artificial-intelligence 
and image-processing. Multiple classes are derived from this procedure. Those are blocks, cracks, 
mortar, and unspecified/other elements. For that reason, 10 cameras are placed surrounding the 
structure to cover the whole surface. For most structures the 10 cameras are more than sufficient to 
cover the complete surface. However, since the structure is a complex one with distinctive features, 
3 additional cameras were placed within the arch to classify that region as well. The 3 manual-cameras 
are the only part of the algorithm not fully-automated (although, limited to specific cases). The 
complete camera properties are provided below: 

Table 6.1: Rendering-camera properties (the camera-order is important to filter the final-output of the classification). 

Cam 
- 

[No] 

Looking at 
- 
- 

From 
Mid. 

- 

Location 
(dx, dy, dz) 

[meters] 

Rotation 
(rx, ry, rz) 
[degrees] 

Capt. Size 
(x, y) 

[meters] 

Far-Plane 
(z) 

[meters] 
1 Front (South) False Auto (90, 0, 0) Auto Auto 
2 Back (North) False Auto (90, 0, 180) Auto Auto 
3 Left (West) False Auto (90, 0, 270) Auto Auto 
4 Right (East) False Auto (90, 0, 90) Auto Auto 
5 Top False Auto (0, 0, 0) Auto Auto 
6 Bottom False Auto (180, 0, 0) Auto Auto 

*7 Inner #1 (left-up) True (-0.2, 0, -0.8) (135, 0, 90) 3.0 1.5 
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*8 Inner #2 (right-up) True (-0.2, 0, -0.8) (135, 0, -90) 3.0 1.5 
*9 Inner #3 (bottom) True (0, 0, -0.5) (0, 0, 0) 3.5 1.5 
10 Diagonal #1 (SE) False Auto (45, 0, 45) Auto Auto 
11 Diagonal #2 (NE) False Auto (45, 0, 135) Auto Auto 
12 Diagonal #3 (NW) False Auto (45, 0, 225) Auto Auto 
13 Diagonal #4 (SW) False Auto (45, 0, 315) Auto Auto 

* Cameras and properties not suitable for every model. 

Certain toggles are available that simplify the process. For example, the toggle “From Middle” allows 
the location to be adjusted from the centroid of the model. The rotation is the camera-rotation to 
adjust where the camera is looking-at. The “Location” is the camera displacement from either the axis-
origin or model-centroid. The “Capture Size” is the length/width of the image, converted to meters. 
Lastly, the “Far Plane” is the maximum rendering-distance of the camera. Almost every camera is 
automated and does not require further adjustments per model-case. The only exceptions are the 
inner-cameras (Table 6.1: Cameras 7-9), where their properties are given manually. For every case, 
the quality of the renders is adjustable and depends on the accuracy required (Eq. (57)). It should be 
noted that where the capture-size is given (i.e., cameras 7-9), the resolution/size is adjusted to ensure 
that the image-scale remains the same across all renders (similar to Eq. (59)). 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0.002 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (57) 

6.4.1. Evaluation of the Camera Location 
For the automatic-location, the camera-radius is evaluated based on the size of the structure (Eq.(58)). 
Where [𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧, 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧] are the coordinates of the bounding-box of the 
structure. Furthermore, the resolution of the renders is also based on the size of the structure, to 
ensure that the whole structure will fit in the render under the given Image-scale. 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3𝐷𝐷 =  �((𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥)2 + (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦)2 + (𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧)2) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅:  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3𝐷𝐷 

(58) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷3𝐷𝐷 ∗ 1.1 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅:  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇/𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) 

(59) 

To find the exact-location, it is necessary to identify where the camera is looking at, given a rotation 
and depth (Eq. (60)). Where 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 and 𝑋𝑋𝑋𝑋𝑍𝑍𝑍𝑍 are the image and world-coordinates respectively. 𝐾𝐾 
is the intrinsic-matrix (or projection-matrix), 𝑃𝑃 is the extrinsic-matrix (or view-matrix). The camera is 
considered to be initially at the origin of the global-axis (𝑥𝑥𝑥𝑥𝑥𝑥 = [𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑] = [0,0,0]). After which, 
the camera is moved so that it looks-at the centroid of the structure (Eq. (61)).  

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑡𝑡𝑡𝑡 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = [𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌,𝑍𝑍𝑍𝑍, 1] = 𝑑𝑑𝑑𝑑𝑑𝑑(𝐾𝐾 ∗ 𝑃𝑃−1 ∗ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋) => 

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = [𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌,𝑍𝑍𝑍𝑍, 1] = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃 ∗ 𝐾𝐾−1 ∗ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋) 

(60) 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿:  

𝑥𝑥𝑥𝑥𝑥𝑥′ = −𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

(61) 

The rotation is given in Euler’s angles to create the rotation matrix (Eq. (62)). The order of the rotation-
matrix signifies the order of the rotation in the global-axis, where the last variable in the rotation 
matrix is applied first (i.e., 𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅) => 𝑟𝑟𝑟𝑟 → 𝑟𝑟𝑦𝑦 → 𝑟𝑟𝑟𝑟). Furthermore, the global-rotation is 
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equal to the inverse local rotation of the camera-axis (i.e., 𝑅𝑅𝑅𝑅𝑅𝑅𝑍𝑍𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿), where prior to 
any rotation, the global and local-axis are aligned. However, the local-axis rotation is more difficult to 
comprehend. Thus, only the global-axis is referenced in the equations. The rotation is combined with 
the translation-matrix to acquire the extrinsic-matrix. It should be noted that all matrices are 
appended a 4th column/row (including 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 and 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋; Eq. (60)), to allow their inverse calculation 
(i.e., [0,0,0,1]; Eq. (63), (64)). This reforms all matrices to either 4x1 or 4x4 shape. 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑥𝑥 ~ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 𝑃𝑃 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑇𝑇 ∗ 𝑅𝑅) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟): 𝑅𝑅 = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅) 

(62) 

 

𝑅𝑅𝑅𝑅 = �

1 0 0 0
0 cos(𝑟𝑟𝑟𝑟) − sin(𝑟𝑟𝑟𝑟) 0
0 sin(rx) cos(𝑟𝑟𝑟𝑟) 0
0 0 0 1

�   <=>   𝑅𝑅𝑅𝑅 = �

cos(𝑟𝑟𝑟𝑟) 0 sin (𝑟𝑟𝑟𝑟) 0
0 1 0 0

−sin(𝑟𝑟𝑟𝑟) 0 cos(ry) 0
0 0 0 1

� 

𝑅𝑅𝑅𝑅 = �

cos(𝑟𝑟𝑟𝑟) − sin(𝑟𝑟𝑟𝑟) 0 0
sin(𝑟𝑟𝑟𝑟) cos(rz) 0 0

0 0 1 0
0 0 0 1

�   <=>   𝑇𝑇 = �

1 0 0 𝑑𝑑𝑑𝑑
0 1 0 𝑑𝑑𝑑𝑑
0 0 1 𝑑𝑑𝑑𝑑
0 0 0 1

� 

(63) 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ~ 𝑂𝑂𝑂𝑂𝑂𝑂ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 

𝐾𝐾 = �

2/(𝑟𝑟 − 𝑙𝑙) 0 0 −(𝑟𝑟 + 𝑙𝑙)/(𝑟𝑟 − 𝑙𝑙)
0 2/(t − b) 0 −(𝑡𝑡 + 𝑏𝑏)/(𝑡𝑡 − 𝑏𝑏)
0 0 −2/(f− n) −(𝑓𝑓 + 𝑛𝑛)/(𝑓𝑓 − 𝑛𝑛)
0 0 0 1

� 

(64) 

The variables in the intrinsic-matrix define the view-area of the imaginary-camera (Eq. (64): left, right, 
bottom, top, near, far). Where the camera is assumed to be in the centre of the view-area (Eq. (65)). 
Normally the size of the view-box is equal to the scaled image-size. Additionally, the image-
coordinates can consider any location in the image and are provided within the range of [−1, +1]. 
However, since only the centre is needed, the view-box can be simplified (Eq. (66)). 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃-𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ~ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉-𝐵𝐵𝐵𝐵𝐵𝐵: 

𝑙𝑙 = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/2  <=>   𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/2 

𝑏𝑏 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/2  <=>  𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/2 

𝑛𝑛 = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/2  <=>  𝑓𝑓 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆/2 

(65) 

 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜): 

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 0 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2;  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 => 

𝑋𝑋𝑋𝑋 = 𝑌𝑌𝑌𝑌 = 0;  𝑍𝑍𝑍𝑍 = 1 

*For the not-simplified version of the image-properties see Eq. (73) and Eq. (74) 

(66) 

6.4.2. Dividing the Main Render (Sub-renders) 
One issue that could potentially arise, from large structures, is that the render-resolution may exceed 
the maximum-allowed and cause an error (Eq. (67)). Thus, if the initial-render exceeds the maximum 
resolution, the main-window is split into multiple-parts (Fig. 6.6, which ensures that each division is 
equal or less than the maximum-resolution. In this case, it is best to include an overlap to the new 
sub-render windows (Eq. (68); Fig. 6.6). That will increase the accuracy of the object-detection since 
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the divided-sections will retain some continuity. However, the overlap-area will not be considered 
during the point-extraction part of the workflow (section 6.7).  

 𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑):  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 8,192 𝑝𝑝𝑝𝑝 (67) 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤: 

𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 2 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)) 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/35) 

(68) 

Moreover, the new camera-coordinates lie within the image plane. The new centres are found by 
repeating Eq. (60), with different image-size (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1; Eq. (69)) and image-
coordinates (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋1; Eq. (70)). The camera rotation remains the same (𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟; Eq. (63)). However, 
the main-camera position is assigned as the initial-displacement (𝑥𝑥𝑥𝑥𝑥𝑥’; Eq. (70)) in the translation-
matrix (𝑇𝑇; Eq. (63)). The depth is irrelevant in this case (since 𝑍𝑍𝑍𝑍1 = 0), which is why it is given as any 
number (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1; Eq. (69)). Finally, each camera-centre can be calculated using the new image-size 
and coordinates (Eq. (71)). 

 𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑛𝑛𝑛𝑛) ∗ 𝑛𝑛𝑛𝑛 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

(69) 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚): 

𝑋𝑋𝑋𝑋1𝑖𝑖 = ((𝑛𝑛𝑛𝑛𝑖𝑖 + 0.5)/𝑁𝑁𝑁𝑁) ∗ 2 − 1 

𝑌𝑌𝑌𝑌1𝑗𝑗 = 1 − ((𝑛𝑛𝑛𝑛𝑖𝑖 + 0.5)/𝑁𝑁𝑁𝑁) ∗ 2 

𝑍𝑍𝑍𝑍1(𝑖𝑖,𝑗𝑗) = 0  <=>   [dx1, dy1, dz1] =  𝑥𝑥𝑥𝑥𝑥𝑥′ 

𝑛𝑛𝑛𝑛 = 𝑛𝑛𝑛𝑛 = [0, … ,𝑁𝑁𝑁𝑁 − 1];  𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 [𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛] ∈ 𝑅𝑅 

(70) 

 𝑁𝑁𝑁𝑁𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (𝑠𝑠𝑠𝑠𝑠𝑠-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟): 

𝑥𝑥𝑥𝑥𝑧𝑧1(𝑖𝑖,𝑗𝑗)
′ = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋1(𝑖𝑖,𝑗𝑗) = 𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃1 ∗ 𝐾𝐾1−1 ∗ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋1(𝑖𝑖,𝑗𝑗)) 

(71) 

The previously calculated resolution/size is for the main-render. The sub-renders have a different size, 
based on the resolution and divisions of the main render (Eq. (72)). The following are the values 
provided to the off-screen-renderer and are not used in any other calculation. 

 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠-𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅1/𝑁𝑁𝑁𝑁 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ∗ 2 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

(72) 
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Fig. 6.6: Sub-renders of camera #13, with overlap (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0.001). 

6.4.3. Camera Renders 
The cameras are using an orthographic projection (Fig. 6.7: a; Fig. 6.8), to control the scale of the image 
(meters/pixel). Otherwise, some elements in the image would be extremely small and avoid detection 
(see section 6.5). Additionally, the extraction of the 3D points, from the image, would have irregular 
intervals (see section 6.7). However, there are issues with the orthographic-render when the camera-
limits are in contact with the object (Fig. 6.7: a). In that case, part of the internal/far regions of the 
model are also rendered. Those regions also provide depth, and thus will not be filtered out from the 
object-detection and may provide inaccurate classifications. Rendering of the internal-side of the 
model can be avoided by enabling “backface-culling”, which improves the result but still renders the 
far-regions (Fig. 6.7: a). However, that would not be an issue if a perspective projection was used for 
the inner-renders (Fig. 6.7: b). Although, that would also mean that the image-scale would be 
unknown, alongside the aforementioned issues of a perspective-view. 

 

Fig. 6.7: Inner-Camera #7 (Axis in pixels); a) Orthographic render; b) Perspective render. 

Additionally, the order of the cameras is important for a specific filtering method of the 3D points 
acquired, after the object-detection (see section 6.8), where the higher numbered-cameras have 
lower-priority (i.e., diagonal renders; Fig. 6.8: a2). Evidently, the front, back, left, right, top, and 
bottom cameras are higher in the list since they provide vertical renders of the element examined and 
cover the most important surfaces (Table 6.1: Cameras 1-6; Fig. 6.8: a1). 
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Fig. 6.8: Camera renders (Axis in pixels; Colour-bar in meters); a1) Render of camera #1; b1) Depth-map of camera #1; a2) 
Render of camera #13; b2) Depth-Map of camera #13. 

The mesh is imported using the “Trimesh” package in python (i.e., “𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙()”). The rendering-
process is followed using the “pyrender” package (i.e., “𝑟𝑟 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂()”), 
with a camera-pose equal to the view-matrix (𝑃𝑃; Eq. (62)). However, “pyrender” provides incorrect 
depth-map (only for the orthographic-camera). That was corrected by making some minor-changes to 
the package and by importing the modified-package under a new name. The required-corrections are 
provided in (Nicastro, 2019). Any package that supports off-screen-renderer, orthographic-view, and 
depth-map can be used to replicate the process. However, the “trimesh-pyrender” pair was used 
because “trimesh” allows to import a mesh with multiple texture-files correctly. Where other 
packages require to re-assign the textures to the individual mesh-parts (when a single model-file has 
multiple texture-files). 

6.5. Object Detection (P3, P5) 
Each image-render is analysed to identify the location of blocks, cracks, and background. Those three 
classifications are enough to derive the classification of mortar and other-elements, later in the 
process (see Section 6.6.2). Thus, a complete segmentation will include block, cracks, mortar, other-
elements, and background. 
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6.5.1. Automatic Annotation (P3, P5) 
The background is identified automatically from the depth-map (Fig. 6.9). More specifically, where the 
depth is equal to zero (Fig. 6.8: b1), the background is equal to 255. This produces a binary-image 
where it shows the part of the render with infinite-depth. The background-mask is used to filter the 
remaining classifications. 

 

Fig. 6.9: Background detection (from depth-map). 

Furthermore, the blocks and cracks are identified using semantic-segmentation through the use of 
CNN (Fig. 6.10). Those models have been trained to a large number of manually annotated images of 
blocks and cracks, with 95.66% and 79.6% validation-F1-scrore respectively. The CNN-models used in 
this study are described in (Dais et al., 2021; Loverdos and Sarhosis, 2022a). However, since the 
structure has not been damaged, only the block-detection model is demonstrated. 

 

Fig. 6.10: Block-detection (using CNN model). 

6.5.2. Manual Annotation (Other) 
Manual-annotation has the potential to replace the automatic detection of background, blocks, and 
cracks. The aim is to allow the commercial use of the software for 3D-annotation, especially when the 
provided accuracy is not acceptable (i.e., for an inspection report), or to annotate only selected points-
of-interest. Although applied only to cracks, the proposed method can extend to any classification i.e. 
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missing bricks, vegetation etc. The crack pattern presented here is the one observed by testing the 
masonry arch bridge under static conditions in the laboratory (Fig. 6.11).  

 

Fig. 6.11: Recorded crack pattern after multiple tests on the experimental arch-bridge. 

Manual-annotation is applied using a companion-program that compares up to 4-images and 
generates a new-mask that marks the modified-locations. The main-components are the original-
render and modified-render (Fig. 6.12: a). Optionally, the background-mask and an extra-mask can be 
used to append to the results. The extra-mask can be an already existing-mask (i.e., result from crack-
detection), used to add existing-annotations. The complete sequence is presented below: 

1. Create a zero-array with size equal to the original-image (i.e., 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 1]).  
2. Where: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 255. 
3. [Optional] Where: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 > 0, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 255. 
4. [Optional] Where: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 > 0, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 0. 
* The comparison must consider only the first 3 layers of each image or else the New-Mask may be 
marked incorrectly if one image has a different number of layers. Furthermore, both images must use 
a lossless format (i.e., png). Otherwise, the 2-images will be different due to compression-artifacts. 
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Fig. 6.12: Generation of manual-annotated mask by image-comparison (the crack-formation is recorded manually); a) 

Modified-render (camera #1); Generated-mask of cracks. 

The adjusted-masks are added to an “Override” folder, so that they don’t replace/remove existing-
detections. Any image in the “Override” folder has priority over the typically-obtained masks. There is 
an “Override” folder assigned to every main-classification (background, blocks, cracks). Mortar and 
other-elements are excluded from this process since they are produced by combining the main-
classifications (Section 6.6.2). By overriding the background, the operator can exclude a specific area 
from classification; thus, create controlled-gaps to the final point-cloud (i.e., remove vegetation; 
section 6.7). Optionally, the program may skip/ignore automatic-classifications and use only those 
present in the “Override” folder for specified classifications (i.e., cracks), allowing the use of the 
software as a standalone annotation tool. 

6.6. Post-Processing of Masks (P4, P6, P7) 

6.6.1. Image-Processing (P4, P6) 
Image-processing is used to improve the output of the object-detection, by removing small-objects 
that are considered a leftover-artifact of the object-detection. This procedure is applied only on blocks 
and cracks, mostly because the remaining classifications are derived from blocks/cracks and thus if 
those are optimal their products will also be. The background-mask is excluded since their output is 
absolute and always show where a pixel targets empty-space, accurately. 

The application of the image-processing is the following: 
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1. [Required] Binarize the mask using thresholding (𝑡𝑡 = 0.5). 
2. [Optional] Removal of small objects below a given threshold (enabled). 

2.1. Remove small objects from the foreground (𝑡𝑡𝑡𝑡1 = 0.0004;  𝑡𝑡𝑡𝑡1 = 0.0001). 
2.2. Remove small objects from the background (𝑡𝑡𝑡𝑡2 = 0.0004;  𝑡𝑡𝑡𝑡2 = 0). 

3. [Optional] Apply dilation/erosion/dilation in this sequence (disabled in this case). 
4. [Optional] Repeat removal of small objects. Only applied if dilation/erosion/dilation has been used 

(disabled in this case). 
The identification of the size of each object (either foreground or background) is identified by 
generating the watershed-markers for each object and then counting the pixels of each label. The 
removal of small-objects is applied on the background-objects by inverting the mask and following the 
same methodology as for the foreground-objects. Then the image is inverted back to restore its 
original polarity. The blocks and cracks are filtered with a threshold of size 𝑡𝑡𝑡𝑡 = 0.0004𝑚𝑚² and 𝑡𝑡𝑡𝑡1 =
0.0001𝑚𝑚², respectively. However, the object-removal of background-cracks is not used (𝑡𝑡𝑡𝑡2 = 0), to 
preserve small gaps between crack-formations. On the contrary, the background-blocks are filtered in 
because watershed-segmentation is not applied on the blocks. If watershed-segmentation was 
applied on the blocks, to improve the output, the small-objects of background could be used to repair 
open-blocks. Additionally, the Lastly, the values provided are only suggestive and can be adjusted to 
suit different needs. Further information about the method can be found in (Loverdos and Sarhosis, 
2023b).  

6.6.2. Segmentation of All Classifications (P7) 
The segmentation is the part of the algorithm that combines all the classifications into a single array. 
This part also introduces the mortar/other classifications. The methodology follows a prespecified 
priority to ensure the merging of all classifications. This process is followed for every render (and sub-
render) individually. The complete procedure is provided below: 

1. [Masonry] Create the masonry-mask by applying image-closing on the blocks (dilation/erosion). 
1.1. [Corrections] Where: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 > 0,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 255; 
1.2. [Corrections] Where: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 > 0,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0. 

2. [Segmentation] Create a zeros-array equal in size to the original-render (i.e., 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 1]), as 
the segmentation-image. 
2.1. [Mortar class] Where: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 3. 
2.2. [Structural class] Where: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1. 
2.3. [Blocks class] Where: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 > 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2. 
2.4. [Cracks class] Where: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 > 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 4. 
2.5. [Background class] Where: 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0. 

The overall-performance of the block-detection/segmentation process provides better results with 
vertical-cameras (Fig. 6.13), as opposed to diagonal-cameras (Fig. 6.14). However, both will be used 
for the final point-cloud. Parts of the diagonal-cameras will cover small-gaps in the classified point-
cloud (section 6.7), while their inaccuracies will be filtered out (section 6.8). 
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Fig. 6.13: Segmentation overlay in 2D (Camera #1); Green: Blocks; Grey: Mortar; Red: Cracks; Blue: Others. 

 

Fig. 6.14: Segmentation overlay in 2D (Camera #13); Green: Blocks; Grey: Mortar; Blue: Others. 
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6.7. Point Extraction from Images (P8) 
The purpose of this section is to present the methodology used to extract the classified-pixels of the 
segmentation (Section 6.6.2) into 3D coordinates. The method is similar to the one followed to identify 
the world-coordinates of the camera-centre (Eq. (60)). Compared to the previous use-case, there are 
two differences. Firstly, the whole image-array is analysed. Thus, the image-size used must be 
representable of the real size (i.e., no simplification is applied). Secondly, the world-coordinates, 
acquired from the formula, are not modified. Where previously, the location was adjusted to ensure 
that the camera is looking at the model-centroid (Eq. (61)). 

The renders have the same XY-size to simplify the process (i.e., 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅; Eq. (73)). The size of 
the image refers to the scaled-size, converted to meters (i.e., SizeX, SizeY, SizeZ). The size is acquired 
from the resolution. Since the initial image-size was modified to ensure that the resolution is an 
integer, while retaining constant image-scale. Each pixel has its own image-coordinates, where the 
image-coordinates are the pixel-coordinates converted to [−1, +1] range (Eq. (74)). The image-axis 
starts from the top-left corner of the image. Thus, the sign of the Y-Y axis is reversed to account for 
that. Additionally, the image-pixels are given using the python convention, where the first row/column 
is the number 0 (i.e., 𝑋𝑋𝑃𝑃0 = 0,𝑌𝑌𝑃𝑃0 = 0). Each coordinate acquired is located in the middle of the pixel. 
Thus, the pixel value is adjusted to add half-a-pixel to the image-coordinates (i.e., 𝑋𝑋𝑋𝑋 + 0.5; Eq. (74)). 
The image-coordinates are given in an array that contains all the coordinates of the individual-image, 
which improves the calculation speed significantly (i.e., 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑒𝑒𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = 4 ∗ 𝑛𝑛;  𝑛𝑛 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅). 
Finally, the global-coordinates are determined using the same formula as previously (Eq. (75)), where 
the camera intrinsic/extrinsic properties (Eq. (62), (64)) are calculated using the new 
size/displacement values (Eq. (73)), but with the same camera-rotation used for the render 
(𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅,𝑅𝑅𝑅𝑅; Eq. (63)). 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:  
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 => 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ:  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = max(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ) ∗ 2 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷:  [𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑, 1] = 𝑥𝑥𝑥𝑥𝑥𝑥’ 

(73) 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋): 
[𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌,𝑍𝑍𝑍𝑍] ∈ [−1, … , +1] => 
𝑋𝑋𝑋𝑋 = 2 ∗ (𝑋𝑋𝑋𝑋 + 0.5)/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 1 
𝑌𝑌𝑌𝑌 = 1 − 2 ∗ (𝑌𝑌𝑌𝑌 + 0.5)/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
𝑍𝑍𝑍𝑍 = 2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ(𝑖𝑖,𝑗𝑗)/𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

(74) 

 𝑋𝑋𝑋𝑋𝑋𝑋𝑊𝑊(𝑖𝑖,𝑗𝑗) = 𝑑𝑑𝑑𝑑𝑑𝑑�𝑃𝑃 ∗ 𝐾𝐾−1 ∗ 𝑋𝑋𝑋𝑋𝑋𝑋𝐼𝐼(𝑖𝑖,𝑗𝑗)� (75) 

The final-output of the point-extraction is a collection of classified 3D points, that can be used as an 
overlay on top of the original model (Fig. 6.15). Using one of the many 3D modelling-tools (i.e., 
AutoCAD, Rhino), the generated point-cloud can be used for convenient visualisation of the structure 
under investigation. In this way, it is possible to assign different classifications to individual-layers and 
toggle any group to enhance visibility (i.e., by turning-off all layers but cracks), or even change the 
colour of the layer. Regarding the quality of the output, the unfiltered point-cloud demonstrates 
overlapping classifications (Fig. 6.15: b). This is caused by the classification of common areas between 
multiple renders. If the object-detection was ideal, the overlapping-classification would be minimal. 
However, the angular-renders have lower accuracy (compared to planar), causing the aforementioned 
issue. This is resolved almost fully in the following section (section 6.8), by filtering the points using 
simple-methods. 
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Fig. 6.15: Visualisation of extracted-points in Rhino7 (unfiltered; excluding damage); a) Overall view; b) Zoomed view. 

6.8. Point Filtering (P9) 
There are two steps in the filtering process. The first step is based on the camera-priority while the 
second one is based on classification-priority. The camera-priority filtering adds the points of the 
individual renders to a combined-pool but ignores points that are in close-proximity to an existing-
point already within the pool. Thus, each collection of extracted-points, from individual renders, is 
added to the pool one by one. The process starts with the first-camera and continues with the same-
order as the camera-order (section 6.4.1). There are 2 threshold values to evaluate the distance 
between existing and test-points. The first threshold-value compares the distance between the closest 
existing-point of a different-label to the test-point. The second threshold-value compares the closest 
existing-point of the same-label as the test-point. Each point in the collection is tested against every 
point in the pool. 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜 #1:𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 #1 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿): 𝑇𝑇ℎ𝑙𝑙𝑙𝑙1 = 0.99 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 #2 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿): 𝑇𝑇ℎ𝑙𝑙𝑙𝑙2 = 0.49 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

(76) 

After the points have been merged there may still be overlapping-classifications (depending on the 
threshold values used). The second filtering method is filtering the merged point-cloud, removing 
points in close-proximity to any point of a higher-priority label (Eq. (77)). The classification-priority is 
based on the expected accuracy of each classification. The output of the manual-annotation is 
considered the most accurate (cracks), followed by the output of the CNN model (blocks). The 
remaining classifications are acquired using simple array-operations (mortar, structural), and thus, are 
last in the priority list. 

 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑜𝑜𝑜𝑜 #2: 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎-𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 #3 (𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒-𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿): 𝑇𝑇ℎ𝑙𝑙𝑙𝑙3 = 0.99 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 → 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 → 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒] 

(77) 

Different threshold values were tested for all 3 thresholds. However, the ones suggested provided the 
most accurate results. For example, if only the label-priority is used (i.e., by using 𝑇𝑇ℎ𝑙𝑙𝑙𝑙1 = 0), the 
less accurate renders will force overestimation of the higher-priority labels (Fig. 6.16: a). Furthermore, 
those areas will contain both classifications, which is detrimental for visualisation. Even if the camera-
priority filtering-method is not applied (Eq. (76)), the same-label filtering should always be used to 
control the point-density of areas with the equal classification in multiple renders. When a lower 
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same-label threshold is used (i.e., 𝑇𝑇ℎ𝑙𝑙𝑙𝑙2 < 𝑇𝑇ℎ𝑙𝑙𝑙𝑙1; Eq. (76)), areas with equal label in multiple 
segmentations will have higher density. Thus, providing a visual difference of areas with higher 
classification-certainty. Higher density of higher certainty areas could be advantageous for more 
sophisticated filtering-methods. In general, if both filtering-methods are used, then the Label-priority 
filtering will not provide any substantial difference to the final-result (Eq. (77)). Except if the second 
filtering-method used a threshold smaller than any of the thresholds of the previous filtering-method 
(i.e., 𝑇𝑇ℎ𝑙𝑙𝑙𝑙3 < 𝑇𝑇ℎ𝑙𝑙𝑙𝑙1 or 𝑇𝑇ℎ𝑙𝑙𝑙𝑙3 < 𝑇𝑇ℎ𝑙𝑙𝑙𝑙2). Otherwise, all points will already satisfy the thresholds of 
the camera-priority filtering-method (Eq. (76)).  

 
Fig. 6.16: Comparison of filtering methods; a) Label-priority only (𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = [0,0.49,0.99]); b) Camera & label-priority 

(𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = [0.99,0.49,0.99]). 

The main disadvantage of this method is that locations near completely vertical-corners of the object 
(as seen by the render), that are classified incorrectly, may drag incorrectly classified-points to deeper 
areas (blue lines in Fig. 6.16: b). For example, the blue-lines formed (in Fig. 6.16: b) are caused by the 
segmentation of the camera #1 (Fig. 6.13). Where the top-side of the object is classified as structural 
instead of blocks. Those, incorrectly classified-pixels, generated incorrectly-classified points to the 
distance acquired by the depth-map. However, it is expected that a more advance filtering-method 
can resolve the aforementioned issue with ease, such as by adjusting the label of points that describe 
very thin objects (since the incorrect regions are thin/small). 

Nonetheless, the final-result, using both filtering-methods (i.e., 𝑇𝑇ℎ𝑙𝑙𝑙𝑙 = [0.99,0.49,0.99]), is accurate 
(Fig. 6.17 and Fig. 6.18). It can be observed that even the inner-region of the arch was classified 
appropriately (Fig. 6.18: Left). The same is valid for the overall surface of the structure. Where it is 
observed that the block-classification follows the shape of the brick accurately (Fig. 6.18: Right). 
Regarding the presentation of the results, the original-model can be included in the final-output to 
use the classified point-cloud as a type of 3d overlay (Fig. 6.17). Furthermore, any classified-group can 
be disabled (Fig. 6.17) or change its colour (Fig. 6.18), to enhance visualisation. 
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Fig. 6.17: Final classified point-cloud, excluding the structural-classification. 

 

Fig. 6.18: Detailing of classified point-cloud, excluding structural and cracks classifications. 

Lastly, the distance between points was tested using the “KDTree().query()” of the “SciPy” package, 
which provides the closest-point between 2 groups of points (testing and verified-points). The specific 
package was selected mainly because it allowed to ignore points further than a pre-specified distance 
(i.e., 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇ℎ𝑙𝑙𝑙𝑙 ∗ 1.1). Thus, not even providing an output for a large number of points. 
Furthermore, it allowed to limit the output to a single result per testing-point. Both features reduced 
the ram-requirements of the process and improved the computational-speed substantially, compared 
to other solutions (i.e., to minutes instead of hours). Especially important since every rendered-
camera was increasing the computational-time logarithmically. 
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6.9. Damage Evaluation (P10) 
The final-step of the proposed workflow creates the mesh of the classified point-cloud of cracks (Fig. 
6.19) and measures their geometric properties (Table 6.2; Table 6.3). The main-purpose, of the 
damage evaluation, is to assist with the automation of visual inspection in 3d space. It should be noted 
that the crack-classification shown here is provided manually (section 6.5.2). The CNN model was not 
used primarily because the structure did not exhibit noticeable damage but also to illustrate the 
simplicity of manual annotation for detecting cracks in 3D models. However, a crack-detection model 
is easily implementable (similar to the block-detection model). 

Initially, all points of cracks are converted to mesh using the ball-pivoting algorithm of “Open3D” 
(“o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting()”; Eq. (78)). Then the trimesh 
repair command is used to close holes of a single triangle element (“trimesh.repair.fill_holes()”), in 
case the mesh has holes from the ball-pivoting algorithm. This is combined with the “pymeshlab” 
command to close holes of larger openings (“ms.meshing_close_holes(maxholesize=10)”). The face-
normal and vertex-normals are also calculated using the “pymeshlab” (i.e., 
“ms.current_mesh().face_normal_matrix()”). 

 𝐵𝐵𝐵𝐵𝑙𝑙𝑙𝑙-𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = [1 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 2 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 3 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆] 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1.25 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

(78) 

 
Fig. 6.19: Classified point-cloud and mesh of cracks. 

Due to the radii-size of the ball-pivoting algorithm (Eq. (78)), which depends on the image-scale, each 
crack remains isolated. Thus, the bounding-box and area of each crack is easily identifiable (Table 6.2; 
Table 6.3). For the length, width, and inner-centroid, each crack-mesh is skeletonize using the 
“skeletor” package (). In more detail, the skeleton is used to acquire the vertices of the polyline of the 
skeleton and evaluate the length of the crack and thus, the average width (i.e., W=A/L; Table 6.3). The 
centroid is acquired from the skeleton-vertex closest to the centre of the bounding-box of the crack-
mesh. The area of each crack is compared to the area of all cracks and of that of the model, to acquire 
the coverage (Table 6.3). Thus, providing an important metric to evaluate the current condition of the 
structure. 
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Table 6.2: Initial geometric-properties of cracks. 

Crack Centroid Boundaries 
No xc yc zc xmin xmax ymin ymax zmin zmax 
- m m m m m m m m m 
1 2.65 1.328 1.251 0.854 5.464 -0.005 2.916 0.066 2 
2 3.38 1.567 1.258 3.18 3.566 0 2.903 1.187 1.364 
3 4.302 1.439 0.595 4.293 4.386 -0.002 2.899 0.584 0.67 
4 2.766 1.481 1.344 2.659 2.967 1.345 1.621 1.338 1.352 
5 5.042 2.904 0.388 4.69 5.416 2.901 2.907 0.212 0.586 
6 1.626 0.893 0.917 1.492 1.746 0.833 1.013 0.797 1.017 
7 4.722 2.905 0.102 4.682 4.752 2.903 2.909 -0.012 0.218 
8 2.424 1.57 1.303 2.322 2.523 1.511 1.629 1.279 1.324 
9 4.991 -0.001 0.103 4.962 5.028 -0.014 0.002 -0.01 0.216 

10 2.528 1.548 1.324 2.469 2.589 1.511 1.583 1.313 1.336 
11 2.509 1.169 1.323 2.465 2.529 1.131 1.185 1.314 1.331 
12 4.345 2.903 0.62 4.306 4.384 2.899 2.905 0.59 0.65 
13 2.208 0.001 1.749 2.204 2.212 -0.001 0.001 1.71 1.788 
14 2.246 0.001 1.676 2.242 2.25 -0.001 0.002 1.638 1.714 
15 2.705 1.175 1.343 2.668 2.742 1.171 1.179 1.34 1.346 

 

Table 6.3: Processed geometric-properties of cracks. 

Crack Basic Properties Coverage Inner Location 
No Area Length Width Cracks Model xin yin zin 
- m² m m % % m m m 
1 0.405 49.38 0.008 79.847 0.268 2.646 1.295 1.34 
2 0.036 4.463 0.008 7.17 0.024 3.372 1.569 1.26 
3 0.027 3.187 0.009 5.386 0.018 4.3 1.439 0.593 
4 0.01 1.172 0.009 2.041 0.007 2.767 1.519 1.348 
5 0.009 1.225 0.007 1.78 0.006 5.046 2.905 0.435 
6 0.005 0.687 0.008 1.019 0.003 1.633 0.898 0.924 
7 0.003 0.394 0.007 0.581 0.002 4.686 2.905 0.102 
8 0.003 0.362 0.008 0.567 0.002 2.424 1.567 1.305 
9 0.003 0.374 0.008 0.561 0.002 5.023 0.001 0.1 

10 0.002 0.203 0.008 0.328 0.001 2.526 1.549 1.324 
11 0.001 0.126 0.008 0.195 0.001 2.507 1.181 1.323 
12 0.001 0.098 0.009 0.168 0.001 4.345 2.903 0.62 
13 0.001 0.085 0.007 0.123 0 2.208 0.001 1.749 
14 0.001 0.084 0.007 0.121 0 2.245 0.001 1.678 
15 0.001 0.074 0.008 0.115 0 2.705 1.176 1.343 

Total 0.507 61.916 0.119 100 0.336 Model Area (m²):  150.884 
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6.10. Conclusions 
This paper presents the development of a simple but efficient workflow for the classification of 3D 
models of masonry structures using semantic-segmentation on renders captured by the program 
directly. This process offers a simplified approach compared to alternatives (i.e., classification of the 
point-cloud), with very high-accuracy (as seen by the results), where the software is used to classify 
any structural-material (if the appropriate CNN model is provided) and measure the geometric 
properties of detected-defects. 

The program developed can have applications for enhanced visualisation of existing-structures (by the 
means of discretisation of different materials), or automatic generation of computer graphics. Another 
application is the generation of discretized numerical-models for improved assessment of the 
structural condition. However, the main application of the developed software is to improve the 
manual process of visual inspection of heritage buildings and assist with the decision-making regarding 
renovation and rehabilitation methods. 

The main disadvantage of the proposed process is the inability of the software to identify all required 
cameras for complete classification (i.e., inside tunnels). In which case, the manual incorporation of 
additional camera-locations is a simple process, that could be improved. A lesser disadvantage is the 
incorrect-classification of a small number of points, as a leftover of the filtering processes. This is 
mainly due to the simplicity of the filtering process. Lastly, the detection-accuracy is dependent on 
the accuracy of the CNN model and every main material-classification requires its own independent 
model. 

Future work can include improvements to the process. For example, a dedicated algorithm to identify 
large openings on the model and incorporate the additional required cameras, automatically.  Another 
possible improvement is the integration of a more sophisticated algorithm for the filtering of classified 
points, improving the final output. Lastly, since the classification process is relying on CNN models, the 
increase of training-data will improve the classification accuracy directly. 
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7. Discussion 

The discussion chapter delves into a thorough examination of the results and findings derived from 
the methodologies presented in the previous chapters. These methodologies have facilitated the 
integration of computer vision, deep learning, and structural engineering, marking a significant 
advancement in the field of visualisation, inspection, and assessment of masonry structures. The 
journey outlined in this thesis spans from the creation of pioneering image processing-based 
frameworks for analysing 2D masonry structures to the expansion of these techniques into a 3D 
context. 

7.1. Artificial Intelligence (Publication #2) 
The aim of the initial application of artificial intelligence was to improve the detection of the micro-
geometry of masonry using either thresholding or canny-edge detection. In that regard, a CNN model 
for the block detection was developed and another model of crack detection was acquired from 
external research. In general, the accuracy of the detection improved highly, especially in the block-
detection model. Thus, the artificial intelligence models were used in all subsequent publications, after 
their development. 

7.1.1. Block Detection 
To create the block detection model, a dataset consisting of 107 annotated images of typical brickwork 
was employed for training and validation. This dataset yielded 2,814 image slices, each measuring 
224x224 pixels, with a 50-pixel overlap between slices. The overlap ensured that the accuracy of the 
edges will be equal to the inner areas, thus improving the result. The dataset was divided into training 
and validation sets with a ratio of 75% and 25%, respectively. Various CNN architectures (including 
UNET, LinkNET, FPN, and DLV3+), loss functions (such as WCE, FL, F1L, and BCE), optimizers (including 
SGD, RMSP, and Adam), and hyperparameters (e.g., Learning Rate and Decay) were tested, to identify 
the optimal combination. It was observed that the use of Focal-Loss demonstrated exceedingly high 
loss, but it is assumed to be a bug in the package itself. Mostly because the use of focal-loss didn’t 
hinder training and provided moderate accuracy in most cases. 

Among the models evaluated, the DLV3+ model with the RMSP optimizer, coupled with either the F1L 
or BCE loss functions, demonstrated the highest accuracy, approximately 96.86% for F1L and nearly 
96.87% for BCE (Validation Accuracy). Generally, the F1L model is favoured due to its ability to produce 
cleaner results with less noise, while the BCE model exhibited moderate overfitting in the 
accuracy/loss graph. Although combining the two models could potentially enhance accuracy, this 
approach has not yet been tested. 

The selection of architectural designs, optimizers, loss functions, and hyperparameters was influenced 
by existing literature in the field, as well as their availability. The choice of the validation accuracy 
metric is primarily driven by the fact that both marked (blocks) and unmarked areas (i.e., background, 
mortar, openings, structural) occupy a large portion of the image, rendering the F1 score less relevant. 
Additionally, precision and recall were less critical considerations, as the research aims to visualize 
precise geometry, assigning equal importance to marked and unmarked areas. Consequently, 
validation accuracy is deemed the most suitable metric. 

The quality of the output, of the block-detection model, was tested using a similar approach to IoU 
(Intersection over Union). However, instead of considering the intersection over the union (as in IoU), 
the new metrics consider the Intersection over each objects area. That change allows the evaluation 
of the objects separately (ground-truth vs detected), and thus filtering out objects based on user 
preference. In general, both were set to retain only objects that have both ratios equal to 80% and 
higher. The final metric used, to evaluate the quality of the shape, is the area-error, which was given 
as the ratio-difference of the ground-truth-area over the detected-area and was set to 20% maximum. 
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All metrics are used to test how many objects have proper shape, removing improper objects, aiming 
to compare the CNN method with the Image-processing methods (i.e., thresholding). The results 
demonstrated, that even in ideal photographs of masonry structures (i.e., visible change between 
materials), the CNN output is slightly more reliable. That difference is increasing, in favour to CNN 
method, with less ideal images of masonry. 

7.1.2. Crack Detection 
The original model's training involved 351 images with cracks and 118 images without cracks, resulting 
in 4,057 slices with cracks and 7,434 slices without cracks (slices without cracks were selected 
randomly from the pool). The final crack detection model was constructed utilizing the U-NET-
MobileNet architecture, the Adam optimizer, and the WCE loss function. The chosen performance 
metric for the crack detection model is the F1-score, primarily since marked areas (cracks) constitute 
only a small portion of the image. 

It's noteworthy that the accuracy of the crack detection model is moderate and has potential for 
significant improvement. However, generating sufficient annotated data for cracks presents 
challenges, as cracks cover a relatively small area of the image, and their shapes tend to be more 
irregular compared to typical bricks. However, the crack-detection model has not been evaluated or 
improved since it was externally sourced. 

7.2. 2D Workflow (Publications #1, 3, 4) 
The 2d workflow is used to generate geometrical and numerical models of masonry structures from a 
single 2d image. The output of the software also includes the generation of convex mesh, to 
investigate crack propagation (during the numerical analysis), and the geometric measurement of 
detected-defects. The inclusion of scaling to the manual parameters automated the completed 
workflow (other than the scaling itself; publication #3). The optimal input to the developed workflow 
is an orthorectified image (i.e., generated using photogrammetry) to ensure the accurate dimensions 
of the final-output. The 2D workflow was improved in every subsequent publication and the final 
result is a robust and reliable method for the precise documentation of masonry structures. 

7.2.1. Feature Detection (2D) 
Initially, the accuracy was limited since the detection was using either thresholding or edge-detection. 
In multiple cases, the application of the software was impossible since the images were not 
appropriate for the detection of blocks/cracks using image processing. However, this was improved 
highly with the incorporation of artificial intelligence for the detection of blocks and cracks (developed 
in publication #2 and applied in publication #3; chapter 3; section 7.1). The remaining classifications 
(mortar, structural, openings, background) were identified using image processing on the output of 
the CNN models. The accuracy of the remaining classifications is excellent. However, the separation 
of other structural elements (i.e., concrete, steel) with the openings/background requires a filtered 
image to identify the background area individually (i.e., white background colour). White background 
is generally acceptable since the output from photogrammetric applications can conveniently include 
white background, and thus, facilitate the identification of other structural elements. 

7.2.2. Mesh Generation (2D) 
The internal generation of mesh (section 4.11) allowed the investigation of crack-propagation and 
removed the necessity to create the mesh externally. The mesh generated is also always convex, which 
avoids expected issues with interlocking elements. The mesh-size tested for validation was equal to 
20mm and in the later subchapter 100mm (section 7.4). The smaller mesh-size is expected to provide 
more accuracy, since it allows for more complex paths of crack-propagation during the numerical 
analysis. 
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7.2.3. Damage Measurement (2D) 
The damage detected using CNN is measured to provide a reliable tool for the evaluation of damage 
in a structure (section 4.8). Those include the location, area, length, average width, and coverage of 
damage in the image provided. The coverage is providing the ratio of the damage area compared to 
the whole masonry area, structure, and image. The accuracy of the crack measurements is equal to 
±1 pixel, assuming an ideal detection from the CNN model. The damage-metrics can be used for the 
evaluation of damage on masonry structures since they denote the severity of damage and can 
identify important cracks individually (i.e., if the length, width, or area exceed a certain threshold 
provided). The output is given in .CSV format for convenience. 

7.2.4. Shape Adjustments (2D) 
The research used a generalization algorithm, developed specifically for the purpose of improving the 
workflow (section 2.3.2). The generalization algorithm developed reduces the number of vertices used 
to describe a detected object, while trying to retain an accurate representation of the object. Thus, 
improving the useability of the output for numerical analysis by reducing the complexity of the input. 
The difference between the developed and existing generalization algorithm (RDP), is that the 
developed algorithm can retain vertices that satisfy large horizontal-thresholds and not only vertical-
thresholds. Thus, retaining an accurate depiction of a small number of complex shapes (rarely 
appearing but may be important). Furthermore, the shape of the simplified models (mortar as a zero 
thickness interfaces) was improved by the development of an algorithm that checks and relocates 
vertices to improve the shape of the surface of connected objects (section 2.3.3), when they are 
expected to be straight (i.e., the upper surface of two connected blocks). The programming logic, 
behind the algorithm for the surface adjustments, adjusts only small angles. Since most masonry 
structures use typical brickwork (i.e., not rubble, with horizontal/vertical surfaces), the algorithm 
improves the output significantly. 

7.2.5. Computational time (2D) 
The 2D workflow provides extremely fast results, ranging from several seconds to several minutes 
(i.e., ~151s for the model in section 7.4), depending on image resolution, number of elements, 
selection of program options, and computational power (i.e., laptop with: i7-9750h CPU, Nvidia RTX 
2060, 32GB Ram). The parts that require the most time are the: Block detection (due to the DLV3+ 
complexity; ~26s); crack detection (Due to the CNN model; ~14s); segmentation adjustments (mainly 
due to segmentation corrections; ~33s); contour detection (mainly due to the point-detection; ~27s); 
and model generation (mainly due to mesh generation, but for finer meshes; ~6s). Although the 
external packages used may include multiprocessing capabilities, the developed algorithms do not 
currently incorporate multiprocessing. Therefore, the computational time can be significantly reduced 
if multiprocessing capabilities are integrated into the developed algorithms. Additionally, some 
processes may be programmatically optimized to improve their computational efficiency, especially 
since the programs were primarily designed for research purposes rather than commercial use. 

7.2.6. Improving traditional Inspection and Assessment Workflows (2D) 
The workflow developed can separate between materials and generate the accurate geometry of the 
target. Although there are defects/materials not identified explicitly, those can be added directly to 
workflow (i.e., in the form of additional CNN models) to provide a complete visualization of the 
structure. Since the materials can be identified and generate their boundaries (i.e., in the form of 
polylines), their metrics can be evaluated to identify locations of interest (such as the example of 
measurement of detected cracks; section 4.8). Thus, allowing for automatic and unbiased inspection 
of structures (i.e., by evaluating the length of cracks compared to the area of the structure). Lastly, 
the workflow can be used to automatically generate the numerical model of the structure (i.e., using 
a stationary camera), assess the structural integrity, and warn about potential issues. Thus, providing 
an automatic method for the assessment of masonry. 
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7.3. 3D Workflow (Publication #5) 
The 3D workflow generates the classified point cloud of the structure (blocks, mortar, structural, 
cracks), taking as input the textured/coloured 3D reality-mesh of a masonry structure. The workflow 
exploits previously developed algorithms for the classification, while translating the classified pixels 
to 3D points. Additionally, the 3D workflow has the ability to measure detected defects. The 
combination of the features allows the use of the developed workflow to improve automation in the 
inspection oof structures, but not numerical assessment since it cannot generate the 
geometrical/numerical model. 

7.3.1. Feature Detection (3D) 
The feature detection in the 3d workflow is applied using the CNN models developed in previous 
research (chapter 3), to identify blocks and cracks. The remaining classifications are detected using 
image-processing. The classification is applied on renders around the structure, captured 
automatically. The classified pixels are converted to classified points using transformation matrices. 
The 2D approach (for the classification) has multiple advantages compare to the alternative method 
(i.e., classification of point-clouds). Mainly, the acquisition of image-samples is faster and simpler than 
the acquisition of point-clouds of structures. Additionally, the generation of training/validation data is 
simpler since it is applied on the 2D plane. Those advantages allowed the developed workflow to 
provide a highly accurate result, with generally small effort (regarding the training/validation of the 
CNN models). 

7.3.2. Damage Measurements (3D) 
The detected cracks area meshed to measure their geometric properties, using a similar approach to 
the 2D workflow but with completely different algorithmic implementation (section 6.9). In this case, 
the 2D algorithms could not be applied on 3D, but the newly developed algorithms follow a similar 
notion. Initially the detected cracks are meshed with the aim to measure them. The area and location 
are the first metrics acquired (since they do not need any further action). Then, each individual mesh 
of cracks is linearised to measure their length and calculate their average width. Since the mesh 
generated is in 3D space, the reliability of the results is better than the 2D approach, since it considers 
cracks expanding to multiple planes. 

7.3.3. Computational time (3D) 
The computational time of the 3D workflow varies greatly (i.e., 6,640s for the model in section 6.8, 
with 13x cameras), depending on model size, resolution, selection of program options, and 
computational power. The parts of the workflow that take the longest time are the rendering of image 
captures (for 13x cameras; ~619s), block detection (using CNN; ~1,573s), crack detection (if CNN is 
used; ~2,016s), and point-combination (including camera-filtering but not point-filtering; ~1,703s). 
Similar to the 2D workflow, the developed algorithms do not incorporate multiprocessing. Thus, 
incorporating multiprocessing will reduce the computational time significantly. Moreover, certain 
processes can be programmatically optimized to enhance their computational efficiency, and 
consequently reduce computational time even further. 

7.3.4. Automating Traditional Inspection and Assessment Workflows (3D) 
Similar to the 2D approach, the workflow has the capability to assist with the visual inspection aspect, 
since the individual materials/defects can be identified and measured individually. However, not all 
materials/defects are detected. Although the addition of more materials/defects can easily be 
integrated within the workflow in the form of CNN models trained to identify them. That way, the 
workflow can provide a complete and unbiased inspection of structures. However, since the 
geometrical model is not generated, the workflow cannot assist with the numerical assessment of the 
structure to ensure its structural integrity. Future work may improve the workflow to add geometrical 
model generation (i.e., similar to crack meshing in section 6.9). 
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7.4. Validation of Image2DEM (2D) 
The final version of the 2D workflow has not been validated during the evolution of the procedure. 
Although the original workflow was verified in the first publication, that doesn’t include the detection 
using CNN and the internal mesh-generation. Thus, the complete process is tested in this section, to 
verify the applicability of the proposed workflow. 

7.4.1. Geometry 
The geometry selected, to investigate the workflow, is the same used during the validation in the 1st 
publication (section 2.5). The specific geometry was selected since it includes both mortar and 
damage, to verify all aspects of the workflow. The validation compares the idealised (created 
manually) against the generated geometry (generated by the software automatically). The geometry 
of the idealised model is the same as in the original publication, with the exception of the mortar-
mesh. The mesh was modified to resemble the mesh produced for the generated model. The seed for 
the mesh is equal to 100mm. That way the analysis is considerably faster (than using 10 or 20mm 
seed), at the cost of a small reduction in accuracy due to the large size of the mesh-seed (since finer 
mesh would produce more possible crack-propagation paths). The geometry was simplified using the 
dynamic generalisation-thresholds, with values equal to: 𝑉𝑉𝑉𝑉ℎ = 𝐻𝐻𝐻𝐻ℎ = 𝐿𝐿𝐿𝐿ℎ/2 = 0.01 (Eq. (55)); 
section 4.10). The generalisation produced a simplified model, while still retaining high geometrical-
accuracy. Additionally, the generated cracks-mask was substituted with the original cracks-mask, to 
ensure equal damage and enable a more accurate comparison. The main reason, for not utilizing the 
output of the CNN model, is that the crack-detection model is not a part of the broader research scope 
and therefore does not necessitate validation. 
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Fig. 7.1: Numerical model in UDEC7; a) Idealised Geometry; b) Generated Geometry. 

7.4.2. Numerical Analysis 
Similar to the numerical validation of the 1st publication, the damaged areas were removed 
completely to simulate the loss of material (Fig. 7.1; Fig. 7.3). As mentioned previously, the material, 
joint, and other properties of the model are the same as in the original work. The application of the 

a) 

 

b) 
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force was provided as a horizontal velocity of -0.01 m/s, acting at the green-plate on the top-right 
corner of the wall. 

Regarding the analysis itself, the model ran in total for 1sec mechanical time (or 0.1m). The force-
displacement graph, of the idealised and generated cases, shows very similar reaction to the applied 
force. In fact, the graphs are in general parallel, showing similar peak and reduction. The maximum 
force recorded is equal to 24.556kN (@1.01mm) and 26.729kN (@1.17mm; +8.8% force), for the 
idealised and generated cases respectively (Fig. 7.2). The difference in maximum load is small, 
although higher than the original comparison. However, the shape of the mortar-mesh is slightly 
different between the 2 cases (the idealised-mesh was designed by hand, to replicate the generated 
mesh). Additionally, the mesh is larger than the original model, which is assumed that it reduces the 
accuracy of the model. Nonetheless, the change in peak-load, between the models, is relatively small. 

The deformed-geometry, at 10mm displacement, demonstrates the same reaction to the applied 
force (Fig. 7.3). The formation of cracks is appearing at the same locations, for both cases. The type of 
failure is also the same between the 2 models, at multiple locations (i.e., rotation in the bottom-left 
and top-mid corners; sliding in the mid-left side). The only slight difference is the exact mesh-element 
separated, although the mesh is not the same between the 2 models anyway.  

The similarity between the 2 numerical models (of the idealized and generated geometries), 
showcases that the complete workflow can be used for the reliable assessment of masonry structures. 
Although a small difference in peak load was noted (+8.8% force), it is expected that the difference 
would be less significant if a finer mesh would be used. 

 
Fig. 7.2: Force-Displacement graph at 0.005 meters displacement (5secs). 
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Fig. 7.3: Deformations after 10mm displacement (x5 deformation factor); a) Idealised Model; b) Generated Model. 
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8. Conclusions 

The work presented in this thesis demonstrates efforts to automate typical inspection and assessment 
workflows, by incorporating an innovative approach that utilizes visual data of masonry structures. 
The novelty of the approach includes the identification and development of complex algorithms, with 
simplified user-application, to ensure their applicability in actual engineering conditions. Additionally, 
the study also investigates the use of the accurate geometry for the numerical assessment of masonry. 

The initial research focuses on generating CAD drawings and numerical models from 2D images of 
masonry structures (Chapter 2; Objective #1). Feature detection is applied using image processing 
operations, such as edge detection and thresholding, which are then converted into a collection of 
polylines. However, it was noticed that the detection of the micro-geometry of masonry is unreliable 
with image processing due to variations in colour, illumination, and brightness in the images. 
Additionally, it was observed that the CAD-generated mesh could cause issues during numerical 
analysis due to concavity in certain regions. The complete workflow was validated to ensure that the 
generated models could be used for numerical analysis, with exceptional results. 

The following research investigates the use of artificial intelligence for the detection of blocks and 
cracks using CNN (Chapter 3; objective #2; objective #4). The detection rate, compared to image 
processing operations, was found to be more accurate and reliable, thus addressing the major issue 
identified in the initial research (objective #3). The evaluation of detected cracks was also examined, 
but the acquired metrics for cracks were approximate. The CNN models, either generated during the 
research or acquired from external sources, were incorporated into the original algorithm (Chapter 4; 
objective #5), improving the accuracy of geometry generation from input images. The remaining 
classifications (mortar, structural, background) were estimated using image-processing on the CNN 
classifications (objective #6). However, the estimation of the structural elements is not always 
accurate since it does not separate between common structural materials (i.e., concrete, steel). 
Furthermore, the updated software included a new mesh generation that ensured the convexity of 
every mesh element, thereby enhancing accuracy during numerical analysis. The updated software 
also featured a more precise evaluation of the geometry of detected cracks (objective 7), by measuring 
the linearized cracks. Most user options were simplified with the inclusion of a scale parameter, which 
automated most software variables. The later publication incorporated a complete GUI layout 
(Chapter 5), further simplifying user input, with the only required input being the scale of the image 
(provided in the GUI). The quality of the geometry in the numerical model was validated in the 
supplementary chapter (see Chapter 7.4). The final/updated workflow resulted in a fast, reliable, and 
convenient method for generating 2D geometrical/numerical models of masonry structures from 
image-data. 

Furthermore, additional efforts were made to extend the application of the algorithms from 2D to a 
3D environment (Chapter 6; objective #8). An additional program was developed that leveraged deep 
learning and image processing techniques to identify the micro-geometry of masonry in a 3D 
environment. Since feature detection is applied using CNN on image data, the generation of training 
data is straightforward, accessible, and rapid compared to alternatives, such as the classification of 
point clouds. The final output is the generation of a classified point cloud of masonry structures, 
identifying the locations of masonry units, mortar, damage, and other structural elements. Similar to 
the 2D approach, damage is also measured to provide information about the structure's current 
condition (objective #9). As the geometric properties of damage are estimated in a 3D environment, 
the measurement is considered more accurate, accounting for continuity between different capture 
planes, assuming accurate detection of damaged areas. The methodology also includes a simple point 
filtering method to address common classification issues. However, the filtering method allows for a 
small number of mis-classified pixels, incorrectly classified due to proximity to a classified body, 
creating incorrect thin-lines (by dragging the classification to deeper depths than the classified body). 



150 
 

8.1. Possible Applications 
The applications of the developed algorithms are multiple and range from engineering to digital-
visualisation. The main purpose, of the initial work, is to generate high-accuracy numerical models 
with little effort. Mainly, to ensure the accurate assessment of the structural-integrity, in a timely 
manner. A secondary application of the algorithms is to assist engineers with the visual-inspection of 
heritage-structures by identifying the severity of damage. That can improve maintenance workflows 
in terms of physical labour, time-requirements, and monetary-costs. The proposed algorithms can also 
be used for documentation of the structure over specified time-intervals (for comparison between 
different time-periods). The documentation over specified-intervals can be fully automated with the 
use of drones (i.e., with programmable fly-routes) or stationary cameras, and thus, providing the 
means to generate a digital-twin of the structure. Other applications of the algorithm include the 
geometry generation for realistic visualisation on-demand (i.e., CAD, videogames, presentations). 

8.2. Advantages and Disadvantages 
The main advantage of the proposed algorithms is the speed and reliability that they offer for their 
applications. Since the feature-detection is applied using semantic segmentation with deep-learning, 
the acquisition of training data is simple, and thus, the improvement of the detection-accuracy. 
Acquiring training data is particularly straightforward in the case of the final publication (chapter 6), 
whereas the alternative approach necessitates obtaining and manually-annotating 3D point-clouds, 
which is both more challenging to acquire and more complex to annotate. Furthermore, the process 
has been highly automated and requires minimal manual input in both cases (2D and 3D algorithms). 

The main limitation of the algorithms proposed is the accuracy of the CNN models since they are the 
main source of feature-detection (blocks and cracks). The remaining classifications (background, 
openings, and other-structural-materials) are a result of image-processing that rely heavily on the 
initial classifications. More specifically, it has been noted that the trained models have reduced 
accuracy on identifying bricks on substantial discoloured regions, especially of dark colour. The 
inaccuracy of the model is reduced on discolouration of brighter colour. Additionally, the trained 
models cannot distinguish elements behind foreground-objects (i.e., labels, pipes). Furthermore, only 
blocks and cracks have been included on the possible classifications, and thus, the documentation 
cannot assign the regions of other materials (i.e., concrete, steel) and defects (i.e., discolouration, 
spalling). Lastly, the block-detection model has been trained mainly to typical brickwork, and thus, the 
detection of other types of masonry (i.e., stonework, rubble) is inaccurate.  

8.3. Future Work and Improvements 
The algorithms developed during the research can be improved, mainly in terms of output quality, 
useability, reliability, and performance. A minor improvement is the optimisation of the 2D shape 
extracted from blocks. Although an optimisation to the shape has already been applied, it considers 
only one pair of parallel lines (usually the longest side). Major improvements include the addition of 
more classification of defects (i.e., discolouration, spalling, vegetation), masonry types (i.e., 
stonework), and structural elements (i.e., concrete, steel). The inclusion of common materials and 
defects, to the feature-detection, would enhance the overall visualization of the structure and its 
structural condition. Furthermore, the 3D classification of the masonry structure can also consider the 
generation of a 3-dimensional numerical model, which would highly improve the workflow of 
assessment of masonry structures. Lastly, the point-filtering of the point-cloud may be improved with 
the application of a more complex filtering-method (i.e., by considering the neighbour classifications). 
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