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Abstract

The development of automatic methods for the early detection of cognitive impairment (CI)
has attracted much research interest due to its crucial role in helping people get suitable
treatment or care. People with CI may experience various changes in their facial cues, such
as eye blink rate and head movement.

This thesis aims to investigate the use of facial cues to develop an automatic system
for detecting CI using in-the-wild data. Firstly, the ’in-the-wild data’ term is defined, and
associated challenges are identified by analysing datasets used in previous work. In-the-wild
data can affect the reliability of the performance of state-of-the-art approaches. Second, this
thesis investigates the automatic detection of neurodegenerative disorder, mild cognitive
impairment and functional memory disorder, showing the applicability of detecting health
conditions with similar symptoms.

Then, a novel multiple thresholds (MTs) approach for detecting an eye blink rate feature
is introduced. This approach addresses in-the-wild data challenges by generating multiple
thresholds, resulting in a vector of blink rates for each participant. Then, the feasibility of
this feature in detecting CI is examined. Other features considered are head turn rate, head
turn statistical features, head movement statistical features and low-level features. The results
show that these facial features significantly distinguish different health conditions.

Next, the MTs approach is validated on a public dataset for people with depression,
achieving results comparable to related work. An evaluation of the system developed is
then carried out on a larger and more varied dataset for people with CI, which results in
extending the MTs approach to be participant-dependent. The findings show that it is feasible
to develop an automatic system for detecting CI by analysing facial cues using an in-the-wild
dataset. In conclusion, this thesis makes promising progress in improving the detection of CI
through low-cost and non-invasive approaches alternative to current expensive assessments.
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Chapter 1

Introduction

“Mental health affects every aspect of your life. It’s
not just this neat little issue you can put into a box.”

— Shannon Purser

1.1 Motivation

As people age, they can exhibit cognitive changes that are common and related to normal
ageing, such as difficulty recalling the names of people or places, taking longer to process
new information, and occasionally forgetting appointments or events (Ahmad et al., 2013;
Smith et al., 2022). When these changes cause a serious decline in certain cognitive functions
beyond what is expected from a person’s age, it can be diagnosed as cognitive decline.
Cognitive decline can be categorised into three different levels of cognitive decline: cognitive
impairment (CI), mild cognitive impairment (MCI) and dementia (van de Mortel et al., 2021).

CI is a broad term referring to any decline in cognitive function, which can range from
mild to severe and may progress to more advanced stages (Allan et al., 2017). Several changes
in mood, emotion, or behaviour can occasionally precede the progression of CI. MCI, which
is a specific type of CI, is the transitional stage between normal ageing and dementia. People
with MCI can experience a severe decline in memory, thinking and remembering important
events that are noticeable to themselves and their families, but it does not affect their activities
of daily living (Cermakova et al., 2020; Horackova et al., 2019; UCSF Memory and Aging
Center, 2020). Although those people are at high risk of developing dementia, others may
remain stable or improve (Petersen et al., 2018). Dementia is a progression of MCI and
aggravates over time, causing a significant decline in cognition that affects several cognitive
functions, such as memory, attention, learning capacity and language and causes a lack of
independence in activities of daily living (Kirk and Berntsen, 2018; UCSF Memory and
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Aging Center, 2020). Dementia can be caused by different conditions, such as Alzheimer’s
disease, which is the most common one, Vascular dementia and Parkinson’s disease. People
in the later stage of dementia might experience severe memory loss, communication issues,
significant changes in verbal and non-verbal behaviours, and even their ability to carry out
their activities of daily living. Consequently, people with severe dementia could be reliant on
others 24 hours a day for their care. In this thesis, both MCI and dementia will be referred to
as ‘CI’.

Worldwide, CI is regarded as the seventh most frequent cause of death and one of the
major causes of disability for older people (WHO, 2022). The impact of CI can be physical,
psychological, social and economic. This effect is not only restricted to the people who live
with CI but also affects their families, carers and society. WHO (2022) reported that there are
55 million people living with CI and that more than 60% of them live in developing countries.
This number is predicted to increase significantly to 78 million in 2030 and 139 million in
2050.

Diagnosing CI in its early stage is essential. There is no reliable test to diagnose CI due to
the overlap between the symptoms and the ageing factor (Travis et al., 1985). In order to help
make the diagnosis, doctors take a clinical history and a collateral history and examine the
patients. They undertake several other tests, most commonly structural brain scans (computed
tomography (CT) or magnetic resonance imaging (MRI)). If the diagnosis is not clear, extra
tests will be conducted, such as functional scans (fluorodeoxyglucose positron emission
tomography (FDG-PET) and single-photon emission computed tomography (SPECT)) and
cerebrospinal fluid analysis of protein biomarkers of Alzheimer’s disease (tau and amy-
loid) (Alberdi et al., 2016). These tests and procedures require multiple appointments for the
patient, are costly and take a lot of time and effort.

There are also cognitive tools that can be used by a neurologist based on the patient’s
condition to assess the CI severity, the most common of which are minimal mental sta-
tus examination (MMSE) (Folstein et al., 1975) and the Montreal cognitive assessment
(MoCA) (Nasreddine et al., 2005). MMSE is used to evaluate orientation to time and
space, attention, naming objects, calculation, repeating and remembering words. MoCA
is a screening test originally developed to identify MCI. It assesses short-term memory,
visuospatial abilities (e.g., a clock-drawing task), attention, concentration, working memory
(e.g., calculation), orientation and language (repeating words and naming animals).

In summary, there is no single clinical test or assessment that can be used to diagnose CI.
Some patients may have similar symptoms but do not have a neurological disease, which
makes a proper diagnosis quite complicated (Gifford and Cummings, 1999). Traditional tests,
including but not limited to MMSE, MoCA and interviewing the patient for testing the short-
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term and long-term memory, are dependent on the ability of the patients to remember and
interpret correctly their experiences. In addition, older testing methods are highly dependent
on the patients’ willingness to share their real emotions, symptoms, and cognition.

To remedy these shortcomings, clinicians have carried out research that employs the use of
facial behaviour to diagnose CI (Bouchard and Rossor, 2007). Here, a conversation between
the clinician and the patient is recorded using audio and video and then analysed to assess
different cues. They found that people with CI may experience a variety of facial behaviour
that can help to determine their cognitive state. Some facial cues may be seen in people with
CI, including reduced emotional expressiveness (smiling less frequently) and repetitive facial
behaviour (eye blinking excessively and head movement). Some clinicians found that people
with CI tend to have a higher blink rate than healthy controls (HC) (Jongkees and Colzato,
2016; Ladas et al., 2014) and tend to turn their heads more when asked a question (Fukui
et al., 2011; Larner, 2018; Soysal et al., 2017). However, studying such behaviours in a clinic
is relatively complex, costly in terms of time and effort and requires professional neurological
expertise. In addition, clinicians can face difficulties in keeping track of these cues from
recorded videos and analysing them manually for every participant taking into account the
high number of people who come to the clinic, which can take several weeks or months.
Therefore, a cost-effective tool is needed for the detection of CI.

Many studies have attempted to investigate the automatic detection of CI using acoustic
and speech features (Mirheidari et al., 2019; Petti et al., 2020; Walker et al., 2023). However,
few studies have investigated the automatic detection of CI using facial cues and achieved
good results. When such systems are moved from research into real-world deployment, the
performance of such systems may not be reliable because these studies used data recorded
in a lab-controlled environment. In order to develop such a tool that overcomes the above-
mentioned issues, it is very important to use data recorded in the wild– Chapter 3 will
discuss in-the-wild data in more detail. Such data includes many challenges that affect
the performance of the available state-of-the-art approaches. Developing such a tool using
in-the-wild data can help to open doors to developing a home-based application in the future.
In addition, it may help to encourage many patients suspected of having memory problems
to do the session at home, which is a comfortable environment for them. It can also help to
reduce the pressure on memory clinics. Moreover, it may help clinicians to save time and
effort in data collection, monitoring patient health, and diagnosing diseases.

Specific facial cues, eye blink rate (EBR) and head movement, convey important infor-
mation in assessing cognitive state. Nevertheless, investigating them using computer vision
approaches remains under-explored for CI detection. This thesis proposes an automatic
system for detecting CI by analysing facial features, including handling data recorded in
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the wild to reflect the approach’s performance when the assessment is made at home via an
application.

1.2 Thesis Aim

Increased attention has been paid to assistive technology and healthcare using computer
vision and machine learning techniques. However, few related works have explored the
integration of both fields to construct a clinical diagnostic application for people with memory
problems, such as CI (Gao et al., 2018; Leo et al., 2020; Zolfaghari et al., 2022). This thesis
is designed to demonstrate the benefits of this integration among different research fields
by using a robust computer vision toolkit to extract the facial landmarks of the participants,
calculating several visual features and then analysing them using machine learning classifiers
to give a final decision on a participant’s diagnostic group. This work can be considered an
important step towards helping doctors to use advanced technologies to save time and effort.

Diagnosing CI via video recordings is considered challenging due to the difficulty of
having access to suitable data for the extraction of visual features from the patient and
applying suitable machine learning techniques to detect the participant’s group. Two studies
have concentrated on finding ways to automatically detect CI from HC when the CI group
includes people with MCI and Alzheimer’s disease (Tanaka et al., 2017, 2016). This detection
often involves using different modalities, such as language, speech, one facial expression
(smile), and machine learning classifiers. Later, Tanaka et al. (2019) explored the performance
of using facial action units (FAUs) for detecting CI. These studies achieved good results.

Although some studies have attempted to investigate the visual modality, they used data
recorded in a lab-controlled environment. Their studies have been built on data that does not
reflect home-recording scenarios, where people at home feel more comfortable as they are
not provided with strict instructions about where to sit, how to sit, where to look, and what
device to use. These challenges can pose issues for applications developed based on data
recorded in a lab-controlled environment in terms of their performance and reliability.

This research aims to investigate the use of facial cues to develop an automatic system
for detecting CI using in-the-wild data. In order to achieve the aim of this research, three
research questions will be addressed, which are outlined as follows:

RQ.1 There is increasing interest in using in-the-wild datasets that contain many challenges
regarding the environment of the recordings and the participants’ behaviour to train and
evaluate their approaches (Belhumeur et al., 2013; Huang et al., 2008; Shen et al., 2015;
Zafeiriou et al., 2017). Therefore, several datasets have been collected as in-the-wild
data. However, there is no previous work examined what kind of challenges should
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be included in this type of data. In addition, there is no in-the-wild dataset for people
with health conditions. It is, therefore, important first to answer this question: What
are the kinds of challenges and diversity that should be included in those datasets
to make them as representative as possible of real-world environments?

RQ.2 A few studies have investigated the use of the visual modality in the automatic detection
of CI using data recorded in a lab-controlled environment. However, research to date
has not yet used in-the-wild data for healthcare research. Therefore, the next research
question is How can facial features be automatically detected in a robust way for
in-the-wild data?

RQ.3 According to the medical literature, patients with CI show a higher blink rate than HC.
Clinicians have also found that patients suspected of having CI are more likely to turn
their heads to the left or right as an indication of confusion and problems in memory.
Some studies have investigated the use of facial movements, such as facial expressions
and FAUs, in the automatic detection of CI. However, no work has automatically
investigated the use of the EBR and head movement features for CI detection. Thus,
how useful are eye blink rate and head movement for CI detection?

To answer these questions, this research will be carried out using two datasets recorded in
the wild for people with CI: the IVA18 and the IVA52 datasets. The IVA18 dataset consists of
18 participants split equally into 6 neurodegenerative disorder (ND), 6 MCI, and 6 functional
memory disorders (FMD). The IVA52 dataset includes 52 participants, divided into 11 ND,
10 MCI, 8 FMD and 23 HC. These datasets are described in more detail in Chapter 3.

1.3 Thesis Contributions

The contributions of this thesis can be summarised as follows:

Contribution 1: Analysing the challenges associated with ’in-the-wild data’ through
an examination of the challenges observed in existing datasets claiming to exhibit
in-the-wild properties.

Several attempts have been made to collect in-the-wild data due to its importance in devel-
oping state-of-the-art approaches with reliable performance for face detection and facial
landmark tracking (Belhumeur et al., 2013; Huang et al., 2008; Shen et al., 2015; Zafeiriou
et al., 2017). In-the-wild data can expose the true challenges in real-world scenarios, such as
background noise and having people with variations in gender, culture, colour, clothes and
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eyeglasses. Although extensive research has been carried out on collecting in-the-wild data,
no single study exists which provides the kind of challenges that should be included in such a
dataset. This research is the first to provide a summary of what the term ‘in-the-wild data’ can
cover, explaining the challenges involved regarding the recording environment, participants’
demographics, look and behaviour, and devices used. It also highlights the barriers and the
importance of collecting such data, taking into account the common challenges that would
be included in data to be considered in the wild, as described in Chapter 3. This contribution
addresses research question RQ.1.

Contribution 2: Investigating the use of in-the-wild data for people with CI.

In-the-wild video recordings for people with CI would enable the development of an approach
that handles such data to achieve good results with reliable performance. Previous researchers
have used data recorded in a lab-controlled environment to identify CI (Tanaka et al., 2017,
2016). Although their results were good, they were based upon data that does not represent
real-world scenarios. Therefore, the performance of their approaches may not be reliable for
the deployment environment.

This research uses in-the-wild data for people with CI, which can enlighten both computer
vision and healthcare research by increasing the knowledge of the relationship between these
two fields, and thus each field can benefit from the other. The datasets used in this research
– IVA18 and the IVA52 – were recorded in two different environments, a clinic and a home,
as described in Chapter 3. The most interesting aspect of the datasets is that the videos
were recorded without any restrictions on the participants and the environment settings.
The participants were not told how to sit and where to look during the session, and there
was no preparation for the light conditions and the distance with respect to the camera and
light. Each aspect of these challenges can affect the available techniques for facial landmark
prediction.

Contribution 3: Automatic detection of ND, MCI and FMD by analysing facial cues in
video recordings.

To date, research has mainly focused on detecting CI from HC using video recordings rather
than detecting several health conditions from each other (Tanaka et al., 2019, 2017, 2016). In
their work, ND and MCI were included in one group. This thesis contribution focuses on
investigating automatic methods for differentiating several health conditions (ND, MCI and
FMD) from each other using facial cues in video recordings. This task is a very challenging
task even for clinicians due to the overlap between these health conditions (Wakefield et al.,
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2018). This is novel because this study is the first to detect ND, MCI and FMD using
video recordings. The findings achieved could provide insight into the applicability of
detecting these different health conditions automatically from each other. In addition, this has
wide-ranging benefits for researchers and clinicians. For researchers, classifying these health
conditions from each other can help to improve their understanding, facilitate new discoveries,
and carry out studies that target particular conditions, resulting in more deeply focused and
efficient research outcomes. This contribution can also benefit clinicians by improving the
accuracy of the diagnosis, which will help clinicians with differentiating conditions with
similar symptoms from each other, and providing patients with the appropriate care and
treatment, resulting in much better resource management and more efficient patient care.
This contribution addresses research question RQ.3 and has been published in ACII 2021
(see details below). Chapters 4 and 6 present the results achieved in classifying these health
conditions from each other using facial features on the IVA18 and IVA52 datasets.

Contribution 4: Developing an approach for detecting EBR that is robust to in-the-wild
data.

In eye-blink detection, researchers typically use standard datasets to evaluate the performance
of their approaches (Fogelton and Benesova, 2016, 2018; Pan et al., 2007). However,
their approaches cannot detect eye blinks in data recorded in the wild, which consists of
considerable noise (this will be discussed in Chapter 3). This research uses in-the-wild data,
resulting in several challenges but not limited to: participants having variable distances with
respect to the camera during the session and participants sitting in non-optimal positions,
poor illumination, background noise and the appearance of other people in the camera
view. As a result, these challenges make EBR detection more challenging, as it relies on
calculating the eye openness ratio (eye aspect ratio, EAR), which uses the height and width
of the eyes (Soukupová and Cech, 2016). An eye blink is detected when the EAR value is
below a particular threshold, where the threshold is a value that determines when the eye is
open or closed. Determining the threshold for datasets with healthy individuals is relatively
straightforward because the participant sits relatively still in the video frames. However,
this way is not sufficient for datasets recorded in the wild, such as the dataset used in this
research (the IVA18 dataset). Therefore, an approach to detecting eye blinks using this type
of recording is essential for this research because people with memory problems may show
different spontaneous behaviour during a session, thus resulting in several challenges that
do not just affect eye-blink detection but even face detection (Taati et al., 2019). A novel
approach called the multiple thresholds (MTs) approach is proposed. This approach generates
multiple thresholds for detecting blinks, resulting in having a vector of blink rates calculated
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corresponding to a certain range of thresholds for every participant. This approach is more
robust to tackle in-the-wild data challenges.

Further evaluation was carried out to detect CI using a larger in-the-wild dataset (IVA52).
The experiments revealed abnormal behaviour in the classification results due to the variations
in the recording environments and the devices used (e.g., laptops and smartphones) in the
newly recorded data. Therefore, some improvements are made to overcome these challenges
and make the MTs calculations participant-dependent instead of calculating them over all
the participants’ minimums and maximums. This contribution addresses research questions
RQ.2 and RQ.3 and has been published in ACII 2021 (see details below). The details of this
contribution are explained in Chapter 4. The findings demonstrate the system’s applicability
for reliable CI detection in real-world settings, paving the way for deployment.

Contribution 5: Investigating the importance of the EBR and head movement features
as an indicator of CI.

Investigating the automatic detection of CI using the EBR and head movement cues could
confirm the work conducted in the medical literature and provide clinicians with a rapid
decision in the primary diagnosis. In the medical literature, several studies found that the
EBR in the people with CI group is abnormally higher than in the HC group (Albert et al.,
2011; Kocagoncu et al., 2022; Ladas et al., 2014; Taylor et al., 1999; Woodruff-Pak, 2001).
Head movement, particularly the head turn cue, has been shown to be an indicator of CI
because patients with CI often come with a partner or caregiver to seek support for answers
they cannot remember (Bouchard and Rossor, 2007; Larner, 2012). According to Fukui et al.
(2011), the head turn cue indicates a CI regardless of the partner’s presence.

To the best of our knowledge, this research is the first to use the EBR and head movement
cues for the automatic detection of CI using the IVA18 and IVA52 datasets ( see Chapter 4).
The findings of this work showed that detecting CI automatically in such data using these
cues is a promising area. The findings showed that ND and MCI participants have longer
blinks than FMD participants. This work could help clinicians save time and effort from
doing long procedures to measure this cue in order to diagnose the patient, considering the
large number of people who come to the clinic and the small number of people who agree to
do such sessions. This contribution addresses research question RQ.3 and has been published
in ACII 2021 (see details below).

The work described in Contributions 3 and this contribution was validated on a public
depression dataset due to the association between CI and depression (Muliyala and Varghese,
2010), and to compare the results with related work, as explained in Chapter 7. This
evaluation shows how particular features can help to provide performance comparable to
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related work that uses advanced techniques such as neural networks. This contribution and
its validation have been published in FG 2023 (see details below).

1.4 List of Publications

1. Fatimah Alzahrani, Bahman Mirheidari, Daniel Blackburn, Steve Maddock, and Heidi
Christensen. "Eye Blink Rate Based Detection of Cognitive Impairment Using In-
the-wild Data." In 2021 9th International Conference on Affective Computing and
Intelligent Interaction (ACII).

2. Fatimah Alzahrani, Bahman Mirheidari, Daniel Blackburn, Steve Maddock, and Heidi
Christensen. "Investigating Visual Features for Cognitive Impairment Detection Using
In-the-wild Data." In 2023 IEEE 17th International Conference on Automatic Face
and Gesture Recognition (FG).

1.5 Thesis Structure

Figure 1.1 presents a diagram of the organisation of this thesis along with the research
questions. The content of the following chapters is summarised as follows:

• Chapter 2: Background and Related Work. This chapter presents the nature of CI
in general, its stages from normal ageing to the progression of dementia, and its effect
on an individual in general and his/her non-verbal communication in particular. It
also illustrates a potential new direction of clinical assessment to assess and diagnose
related conditions using facial cues. It discusses different automatic techniques to
detect CI that include various methods and algorithms to detect CI. This chapter also
reviews the relevant literature on approaches for face detection, eye blink detection and
head movement estimation. Finally, the background on machine learning algorithms
and the evaluation metrics used in the literature and in this research is covered.

• Chapter 3: In-the-wild Data. This chapter focuses on analysing the challenges of
datasets with video recordings, identifying how the in-the-wild definition is different
from one dataset to another, the differences in the recordings settings and participant
behaviour, and how these differences affect the processing of the videos (RQ.1). It
includes a description of the main datasets used in this thesis (i.e., the IVA18 and IVA52

datasets) and compares them with datasets mentioned in related work.
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Fig. 1.1 Organisation of the thesis. The investigated research questions in each chapter of
this thesis are indicated (RQ: research question).

• Chapter 4: Eye Blink-Based Detection of Cognitive Impairment. This chapter
presents two approaches for the automatic detection of the EBR. The first uses a
single threshold to calculate the EBR based on the participant’s mean and the standard
deviation. The approach is evaluated on a standard dataset collected for eye blink
detection, used by many previous studies, and then applied to the IVA18 dataset for
people with memory problems. The second approach uses the minimum and maximum
values over all the participants to calculate MTs and results in multiple blink rates for
each participant (RQ.2 and RQ.3). The crucial advantage of the MTs approach is that
it overcomes the challenges in the IVA18 dataset. The performance of this approach is
tested on the IVA18 dataset and evaluated using Supervised machine learning classifiers.

• Chapter 5: Exploring the Robustness of the MTs Approach on the IVA52 Dataset.
This chapter evaluates the developed MTs approach described in Chapter 4 by applying
it to the IVA52 dataset of people with memory problems and an HC group (RQ.2 and
RQ.3). This evaluation led to improving the MTs approach and made it participant-
based instead of taking the minimum and maximum over all the participants. It involves
testing different approaches for the detection of outliers and carrying out different
classification tasks. The chapter ends with a discussion of the findings.

• Chapter 6: Head Movements Based Detection of Cognitive Impairment. This
chapter illustrates the features extraction of HTR, HTSF, HMSF and LLFs using
the IVA18 dataset (RQ.3). The performance of these features is evaluated for each
feature individually, and then the fusion of all features, including the EBR feature. This
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chapter also evaluates the performance when feature selection is applied to choose the
optimal features. Several supervised machine learning classifiers are used. This chapter
also evaluates those features by applying them to the extended dataset of people with
memory problems and HC group. It includes analysing the performance using machine
learning classifiers. It presents, discusses, and compares the obtained performance
with the IVA18 dataset.

• Chapter 7: Towards the Automatic Classification and Regression Analysis of
Depression. This chapter evaluates the performance of the approaches and features
explained in Chapters 4 and 6 by comparing the performance achieved with that
reported in related work. The evaluation consists of two tasks: classification and
regression (RQ.3). The classification detects depression, and the regression predicts
the severity of the depression. The chapter also presents, discusses and compares the
performance obtained with that reported in previous studies.

• Chapter 8: Conclusion and Future Work. The final chapter includes the conclusion
of the thesis and presents potential directions for future work.





Chapter 2

Background and Related Work

“Things not to say to someone with mental illness:
Ignore it. Forget about it. Fight it. You are

better than this. You are overthinking.”
— Nitya Prakash

Normal ageing is a process in which the body and brain gradually change over several
years. The changes range from eye trouble and hearing loss to memory loss and a decrease
in agility. As people age, they can experience cognitive changes that are common and related
to normal ageing, such as difficulty recalling names of people or places, taking longer to
process new information, and occasionally forgetting appointments or events (Ahmad et al.,
2013; Smith et al., 2022). Although the body and the brain begin to slow down in normal
ageing, a person’s intelligence remains relatively steady. Due to the high lack of awareness
worldwide, people may mistake cognitive impairment (CI) for age-related cognitive decline.
CI, however, can exhibit more frequent and disturbed symptoms. Figure 2.1 compares several
clinical symptoms between normal ageing and CI.

CI can progress to a pre-clinical stage of mild (MCI) and then to dementia, which
is irreversible and has no treatment. Hence, diagnosing it in its very early stage is very
important. However, there is no single clinical test. Available tests are complicated and time
and effort-consuming, as described in Chapter 1. This puts a heavy burden on health and
economic services. An objective screening method based on physiological and behavioural
cues is needed to improve the current objective screening method. Recently, research has
shown significant progress in utilising affective computing and social signal processing as
a diagnostic tool, especially for CI (Fei et al., 2019; Kunz et al., 2007; Tanaka et al., 2019,
2017). These methods particularly depend on face and body monitoring algorithms to capture
CI-related behavioural changes. In order to investigate how facial behaviour could be used
for CI detection, it is important to first understand what CI is and highlight prior work into
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associated facial behavioural cues to gain an understanding of how facial cues could be
employed to build a cost-effective tool for CI detection.

This chapter is organised as follows. Section 2.1 provides background information regard-
ing CI, its stages and symptoms. Section 2.2 discusses the significant role of facial behaviour
in human communication and the effect of CI on people’s facial behaviour. Section 2.3
reviews previous investigations concerning the detection of CI using facial cues. Section 2.4
presents a review of previous work on computer vision techniques designed to extract facial
cues. Section 2.5 gives a brief description of the machine learning techniques and evaluation
metrics used in this research. Section 2.6 then summarises the major limitations of previous
work and the key points of this chapter.

Ty
pi

ca
l A

ge
-R

el
at

ed
 C

ha
ng

es

Po
ss

ib
le

 S
ig

ns
 o

f D
em

en
tia

Trouble recalling people or places
occasionally

Occasional forgetting appointments or
events

Taking longer to process new
information

Sometimes losing track of a
conversation

Occasionally forgetting where an item
is

Not remembering the names of close
friends or relatives

Frequently forgetting appointments
and events

Trouble verbalising thoughts, frequent
pauses in conversations and
substituting common words

Repeating statement or questions
regularly

Consistently misplacing items

Becoming lost in familiar placesGetting lost in unfamiliar location

Close family members are more
concerned about memory loss

Patient more concerned about memory
loss

Fig. 2.1 Clinical differences between typical age-related changes and possible indicators of
dementia Smith et al. (2022).

2.1 Cognitive Impairment

CI can be defined as a condition that affects several functions, such as memory, attention,
changes in mood and difficulty speaking and understanding and recognising people and/or
places. A wide range of potential factors has been investigated in the pathology of CI
regarding sociodemographic-related factors, health and health behaviour-related factors,



2.1 Cognitive Impairment 15

and cardiovascular health-related factors, as depicted in Figure 2.2, (Bornstein et al., 2014;
Cermakova et al., 2020, 2017a,b; Horackova et al., 2019; Seblova et al., 2019).

Clinicians have divided the stages of developing Alzheimer’s disease (AD) or other types
of dementia into preclinical, MCI, and dementia (see Figure 2.3). The following will describe
MCI, in which the symptoms start to appear to the doctor; dementia, in which the symptoms
show significant change; and other important memory conditions that show similar symptoms
to MCI and dementia.

Cognitive Impairment

AgeSex/gender
Income

Education
Employment status

Sociodemographic Health & health
behaviour

Cardiovascular health

Obesity

Depression

Physical inactivity

Alcohol consumption

Stroke

High blood (sugar/ pressure/ cholesterol)

Drugs for (Diabetes mellitus/ high blood
pressure/ cholesterol)

Drugs for coronary disease

Sleep quality
Genetic

Inflammation

Smoking

Living with someone

Fig. 2.2 Potential factors that may cause cognitive impairment Seblova et al. (2019).

2.1.1 Mild Cognitive Impairment

MCI is the intermediate stage between normal ageing and AD or any other type of dementia.
Several causes can increase the risk of developing MCI, such as ageing and depression,
as shown in Figure 2.2. MCI’s symptoms can include frequently losing things, forgetting
appointments or events, difficulty in coming up with words and following a conversation
compared with people of the same age, and having trouble with managing finance. Whilst
people with MCI can progress into dementia, some people may become stable or even
improve (Petersen et al., 2018). The reason for this is unknown.



16 Background and Related Work
C

og
ni

tiv
e 

Im
pa

irm
en

t

Age (Years)

Normal aging

Mild

Moderate

Moderately Severe

Severe

Preclinical
Mild Cognitive

Impairment

Dementia

Before
symptoms

Early
symptoms

Cognitive changes are
concern to individual
and/or family
One or more cognitive
domains are impaired
significantly
Preserved activities of
daily life.

Silent phase: brain
changes without
measurable symptoms
Individual may notice
changes, but not
detectable on tests
A stage where the
patient knows, but the
doctor does not.

Severe cognitive
impairment affects
everyday abilities

Fig. 2.3 Progression of cognitive decline from normal ageing to dementia or Alzheimer’s
disease (Source: https://www.mind.uci.edu/dementia/mild-cognitive-impairment/).

2.1.2 Dementia

Dementia is a clinical syndrome that can significantly influence people’s ability to express
their feelings and complete everyday tasks. This results in unexpected behaviour and the loss
of independence in daily life (Beville, 2012; Kim and Kang, 2017; Kirk and Berntsen, 2018;
McKhann et al., 2011). There are several forms of dementia,such as AD, Vascular Dementia
(VaD), Mixed Dementia, dementia with Lewy bodies (DLB), Frontotemporal dementia
(FTD), Parkinson’s disease (PD), and other (e.g., Creutzfeldt-Jakob disease, depression and
multiple sclerosis), as depicted in Figure 2.4. It can be seen that the most common form of
dementia is AD, with about 62% of dementia cases.

Both types of AD and FTD are brain diseases that cause irreversible dementia and can be
referred to as neurodegenerative disorder (ND) (Bayles et al., 1987). There is an association
between the specific effects caused by dementia and which part of the brain is harmed because
each part of the brain is responsible for certain bodily functions, such as decision-making
and memory (Alz.org, 2019). These functions cannot perform well if damage occurs to
their specific brain areas. Most dementia types generally display similar symptoms, such as
difficulties in concentrating, language loss, memory loss, difficulties in answering questions,
declines in attention span, difficulties in completing sentences, depression and cognitive
decline (Kavé and Goral, 2018). In terms of non-verbal behaviour cues, some types of

https://www.mind.uci.edu/dementia/mild-cognitive-impairment/
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Alzheimer's Disease 

Vascular Dementia

Other (Creutzfeld-Jacob
disease, depression, and

multiple sclerosis)

Mixed Dementia

Dementia with Lewy Bodies 

Parkinson's Disease

Frontotemporal Dementia

Fig. 2.4 The different forms of dementia Foggin (2018).

dementia make people more emotional (they can become very happy or sad and tearful).
In addition, loss of blinking control in people with dementia was confirmed by (Ladas
et al., 2014) compared with controls. Regarding memory loss, dementia significantly affects
short-term rather than long-term memory (i.e. people with dementia usually forget recent
conversations or events) (Knopman et al., 2003; Soysal et al., 2017). This is why dementia
patients often rely on support from a partner or a caregiver (Fukui et al., 2011; Larner, 2005,
2012; Soysal et al., 2017).

2.1.3 Other Causes of Memory Complaints

Other causes of memory complaints can share the same symptoms of dementia, but these
conditions are reversible, unlike ND. These conditions can cause confusion for doctors due
to overlapping symptoms and can make the diagnosis very challenging. These conditions are
explained as follows:

• Functional memory disorder (FMD) is a major cause of memory issues. It is
caused by distress and distraction, which leads to difficulty in coping with a lot of
information, poor concentration and attention, and storing and retrieving memory con-
tents (Schmidtke et al., 2008). FMD can be referred to as a medical and psychological
syndrome without a physical cause. This condition can be treated and improved. FMD
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differs from cognitive dysfunction, which includes several psychiatric diseases, such
as depression, psychosis and dissociative states.

• Depression, which is one cause of dementia, can affect people’s cognition in a way
that may look like dementia symptoms. Depression can be referred to as either clinical
depression or a depressive disorder that affects mood, behaviour, thinking and emotions.
Those with depression lose interest in work and social activities (Association et al.,
2013). The many symptoms of depression include becoming more emotional, tearful,
hopeless and sad, having memory problems, sleeping and eating disturbances, a lack of
energy and thoughts of suicide (Association et al., 2013). The most common symptoms
in older people include memory loss, behavioural changes, decreased socialness and
increased thoughts of suicide. Generally, emotions such as sadness and hopelessness
can appear on a person’s face. A number of facial cues, such as eye movement, facial
expressions, head gestures and smile intensity, are associated with depression and
can be used to differentiate depressed people from healthy ones (Cohn et al., 2009;
Cummins et al., 2015; Scherer et al., 2013). Extensive research has shown that people
with depression have less and slower head movement than healthy individuals (Girard
et al., 2014) and exhibit reduced smile intensities and smile duration.

Even though several specialists may consider MCI similar to the early stage of dementia,
MCI symptoms can be improved and stabilised over time (Petersen et al., 2018). Hence
not every MCI patient develops AD, and the reason for this is unknown. Currently, early
diagnosis of CI involves many steps, such as taking a person’s medical history, physical
examination and tests for cognitive assessment (e.g., montreal cognitive assessment and
minimal mental status examination), which are conducted by an expert clinician, as explained
in detail in Chapter 1, Section 1.1. These approaches are complicated, costly in terms of
time and effort, and need professional neurological expertise. Clinicians have observed an
intrinsic relationship between CI and facial cues, and this will be covered in detail in the next
section.

2.2 Cognitive Impairment and Facial Behaviour

Diagnosing CI based on observable behavioural signals has not been fully embraced in
conventional neurology. However, interest in research in this field has been growing by
focusing on behavioural cues, particularly facial cues, for CI. Given the importance of early
diagnosis for this condition, the need for a multi-faceted approach to finding a true objective
cue is likely to be high. It is, therefore, necessary to review prior work on these facial cues,
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such as eye blink rate (EBR) (Ladas et al., 2014) and head movement (Larner, 2012; Soysal
et al., 2017), to identify CI.

To accomplish this, this section first considers the significance of facial behaviour in
human communication and how cognitive changes can have an impact on facial behaviour.
Second, it presents a review of some previous studies that employed the use of these facial
cues clinically for CI detection.

2.2.1 Facial Behaviour

Nonverbal behaviour is often seen as a form of human communication and a continual
signal that conveys essential information about people’s emotions, personalities and mental
states (Heylen, 2006; Richmond et al., 2008). Eye and head movements are considered
important to nonverbal behaviour in social communication and are associated with cognitive
state (Jongkees and Colzato, 2016; Nakano, 2015). Both have received significant attention.

Spontaneous eye blink is an unconscious expression which is communicated through the
frontal, parietal, and temporal brain regions (Mota and Lins, 2017). Simply, the term ‘eye
blink’ is defined as a reflex that rapidly closes and opens the eyelids. An eye blink usually
lasts between 100 and 400 milliseconds (Stern et al., 1984). It could be an incomplete blink
when the eye is partially closed, mostly due to dry eye syndrome (Portello et al., 2013). An
extended blink is when the eye closure lasts between 70 milliseconds and 1 second. Some
people blink many times in succession; for example, double or even quadruple blinks are
possible.

Moreover, a person’s EBR plays a significant role in eye movements, fixations, emotional
expressions and visual cognition (Delgado-García et al., 2002, 2003). Ageing affects the
average blink rate by increasing it from about 24/minute at age 40 to 49 years to 32/minute
at age 80 to 89 years (Sun et al., 1997). In addition, environment-related factors can affect
the blink rate and duration, such as temperature, brightness, air conditions and relative
humidity (Sun et al., 1997). Several studies have focused on studying eye blink in the context
of conditions affecting cognition (King and Michels, 1957; Ponder and Kennedy, 1927).

In terms of brain activity, a relationship has been found between eye blink and cognitive
state (Jongkees and Colzato, 2016; Nakano, 2015). Spontaneous eye blinks reflect cognitive
states, and certain activities can cause an increase in a person’s blink rate. For example, the
blink rate for a person increases during speaking (in adults) (von Cramon and Schuri, 1980),
conversation (Bentivoglio et al., 1997), memorising (De Jong and Merckelbach, 1990), stress,
positive mood and emotions, fatigue, pain, physical activity, disease and when expressing
anger or excitement (Chermahini and Hommel, 2012; De Padova et al., 2009; Ponder and
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Kennedy, 1927; Sun et al., 1997); and a person’s blink rate may decrease in visual tracking
and reading activities (Argilés et al., 2015; De Jong and Merckelbach, 1990).

Head movement plays a crucial role in facial behaviour. It is an easy cue to understand
and conveys valuable information. For instance, Maynard (1987) and Boholm and Allwood
(2010) studied the role of head movement during a conversation and communicative feedback
and observed that people usually tend to use particular head movements, such as nods in
a vertical direction (i.e., starting from up and then down, or down and then up), tilt by
leaning the head to one side, and head turn to the left or right side for expressing a positive
or negative attitude, asking for a turn (Hadar et al., 1984), indicating an acceptance or
rejection (Boholm and Allwood, 2010) and helping in assessing pain (Werner et al., 2018) or
mental status (Larner, 2012). Such facial cues have been investigated clinically for detecting
CI and early signs of dementia in the next section.

2.2.2 Facial Cues and Cognitive Impairment

In general, people with dementia’s facial expressions and emotions show significant changes
since their expressive abilities are maintained until the severe stages of the condition (Lee
et al., 2013, 2022). Studies have observed increased negative facial expressions, even in
mild AD (Heilman and Nadeau, 2022; Smith, 1995), and increased lip movements, blinking,
closed eyes and opening lips while in pain (Asplund et al., 1991; Jonell et al., 2021). Aside
from spontaneous facial expression research, expressions have also been studied during
painful medical procedures such as injections (Kunz et al., 2007). This research focuses on
two facial cues, EBR and head movement, which are explained as follows.

Eye blink Rate

Previous work has considered EBR as a reliable and easy biomarker to use for measuring
the brain’s central dopamine activity (DA) (Mackert et al., 1991; Taylor et al., 1999). DA
is associated with the early stages of MCI, which indicates that EBR is related to the early
stages of MCI. To explain in more detail, it is important to first understand the relationship
between dopamine and the early stages of MCI. Braak and Braak (1997) and Braak et al.
(2005) observed that neurofibrillary pathology in the very early stages of AD is initially
found in the entorhinal cortex and then develops in the area of the hippocampus and later
in the rest of the limbic system and other cortical areas, as shown in Figure 2.5. Due to the
importance of the entorhinal cortex and hippocampus in the episodic memory (Burianova
et al., 2010; Woodard et al., 2009), it is expected that episodic memory is impaired in the very
early stage of ND (i.e., the pre-clinical stage of MCI) (Kocagoncu et al., 2022). Dopamine
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is an important neurotransmitter in the hippocampus and the limbic system, so it is not
surprising that people with MCI can show a deficiency in DA, as reported previously (Albert
et al., 2011). From that, it is suggested that dopamine is directly associated with a number of
cognitive functions, such as episodic memory, learning and executive functions (Kok, 2022),
which constitute neuropsychological predictors of transformation from MCI to AD (Arnáiz
and Almkvist, 2003). Thus, changes in the dopamine system in AD may play a significant
role in the gradual cognitive deterioration seen in pathological ageing (Martorana et al.,
2010).

Fig. 2.5 Some parts of the limbic system play a significant role in episodic memory, including
the entorhinal cortex, hippocampus and dopamine neurotransmitter. Any abnormal behaviour
in the dopamine activity can lead to impaired memory and an increase in the eye blink rate
(EBR).

Ladas et al. (2014) employed the EBR to examine DA in MCI and figure out how DA is
associated with cognitive performance. They reported that MCI had considerably greater
EBR than healthy controls (HC). Their work is considered to have been the first in measuring
the EBR for the MCI group. On the other hand, relatively little research has looked into the
validity of EBR as a biological cue of DA in healthy elderly people (De Padova et al., 2009;
Goschke and Bolte, 2014; Sun et al., 1997). Ladas et al. (2014) also conducted a correlation
study with previous work in terms of the average age of their participants and their average
EBR. Importantly, previous studies involved participants with an average age of 65.22 years
(SD=11.2), which is quite similar to the average age of 67.52 years of the HC in (Ladas et al.,
2014)’s study. Regarding the EBR, the HC in previous work had an average EBR of 20.27
blinks/minute, which is nearly equal to the average EBR of 20.24 blinks/minute of the HC
group in (Ladas et al., 2014). Consequently, it could be reliably concluded that the EBR in
the MCI group was abnormally high rather than the contrary (the healthy group had a lower
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EBR than expected). This conclusion suggests an increase of DA in the central nervous
system. This finding of increased DA in the MCI group contradicts prior research that found
a decreased DA with ageing (Volkow et al., 1998) and in AD (Kemppainen et al., 2003).
However, this contradiction in findings may be consistent with the theory that an overall
neurotransmitter imbalance in the pre-clinical stage of MCI leads to a high blink rate for the
MCI group.

Head Movement

A number of clinicians have found that people having CI turn their heads frequently to their
accompanying person when asked a question (Bouchard and Rossor, 2007). In addition,
NHS Evidence Clinical Knowledge Summary reported that CI should be diagnosed "if,
when you ask the person a simple question, they immediately turn to their partner in the
so-called head-turning sign" (Bouchard and Rossor, 2007). Accordingly, several studies
have explored the prevalence and benefits of the head turn cue in diagnosis by conducting
prospective observational research of day-to-day clinical practice in a memory disorders
clinic. Accordingly, a number of cross-sectional studies suggested an association between
CI and head movement, in particular, the head turn (Fukui et al., 2011; Larner, 2005, 2012;
Soysal et al., 2017). Soysal et al. (2017) applied a geriatric assessment test, which is a
multidimensional test used to assess the functional ability, cognition, mental health, physical
health, social life and environment of a patient (Elsawy and Higgins, 2011). The researchers
assessed the head turn and attended with (AW) cues in addition to a geriatric assessment
test conducted on 529 patients with a mean age of 75.67 years. They found that people who
brought a caretaker/partner with them (+AW) had lower scores on all their tests, such as the
minimal mental status examination (MMSE), the Montreal cognitive assessment (MoCA)
and the cognitive state test (Babacan-Yildiz et al., 2013). Moreover, the results showed that
the head turn cue is affected by the partner’s presence, and both could be used as indicators
of CI.

In addition, Larner (2018) evaluated five signs mentioned in the previous work (Bonello
and Larner, 2016; Ghadiri-Sani and Larner, 2013; Larner, 2012, 2014b; Soysal et al., 2017)
to assess cognitive status: attended alone (AA), AW, head turn, applause 1 and la Maladie du
petit papier 2. The presence of CI was indicated by three signs: AW, applause and head turn.
However, the other two signs (AA and la Maladie du petit papier) were considered signs
of the absence of CI. The five signs were examined to compute three different metrics: the

1This is a neurological test which is also called the ‘Clapping test’ because the participants are asked to clap
their hands three times as fast as possible similar to the examiner’s demonstration (Bonello and Larner, 2016)

2Asking the patient to write his/her symptoms on paper or an iPad during the assessment in the clinics.
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number needed to diagnose (NND), the number needed to predict (NNP) and the number
needed to misdiagnose (NNM). The results proved that the NND and the NNP could be
useful for detecting CI, but there was a risk of misdiagnosis. These findings were consistent
with those of previous studies (Durães et al., 2018; Larner, 2012) that found the head turn and
AW were significant cues to identify the CI and AA as a cue of the absence of CI. Although
the partner’s presence could affect the head turn cue, other factors, such as gender and age,
may have an effect on the partner’s presence.

Factors found to influence the head turn and AW cues have been explored in several
studies, such as the type of dementia, gender and age (Fukui et al., 2011; Larner, 2014a;
Lövheim et al., 2009). Fukui et al. (2011), for example, investigated the incidence and severity
of the head turn cue in patients with AD-related disease (AD and MCI) and AD-non-related
disease (DLB, VaD and progressive supranuclear palsy(PSP)). They found the severity of
the head turn cue was significantly higher in the AD-related group, specifically the female
gender significantly contributed to the incidence and severity of the head turn cue. Fukui
et al. (2011) suggested that a possible explanation for their findings is that women at heart
feel easier to depending on someone else to face difficulties with them. In contrast, men feel
obligated to handle difficulties without help. Their explanation is consistent with previous
work that explored the differences between women and men with CI regarding the prevalence
of behavioural symptoms and found that depression and ‘help-seeking’ is more frequent in
women than men. However, regressive and aggressive behaviour is more frequent in men
than women (Lövheim et al., 2009). Furthermore, Larner (2014a) mentioned that age can
play a significant role in the presence of the partner.

On the other hand, those findings are contrary to those of previous studies, which
suggested that gender and age are independent of the partner’s presence (Holland and Larner,
2013; Larner, 2005). In addition, the head turn is a cue of CI regardless of the partner’s
presence (Fukui et al., 2011). The possible explanation for this is the different groups’
division because Fukui et al. (2011) considered only AD and MCI as one group and other
dementia types in another group, whereas Soysal et al. (2017) included all dementia types in
one group with MCI and AD. To date, the effect of a cultural factor on these factors and the
head turn cue has received scant attention in the research literature.

Diagnosis in clinics is considered costly in terms of money and time for the patients and
the clinics due to the high number of people who go to the clinic and the lack of clinicians to
interview and assess all of them. In addition, some people do not feel comfortable going to the
clinic and talking about their problems to a doctor. However, the facial cues discussed above
could have a wide potential for use as objective cues. They could be used as a low-cost and
low-effort tool for automatically capturing and analysing information from a large population
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and providing instant feedback and advice for patients (Scherer et al., 2013). Ultimately,
investigating objective facial cues could help to improve the accuracy of clinicians’ diagnoses
and reduce the socio-economic cost associated with this condition (Costanza et al., 2014;
JH Balsters et al., 2012).

2.3 Automatic Detection of Cognitive Impairment Using
Facial Cues

Numerous studies have attempted to automatically identify CI by employing computer vision
techniques with machine learning. However, few studies into CI detection have focused on
facial cues (e.g., eye movement, smile expression and facial action units) to demonstrate
the potential of their approaches (Barral et al., 2020; Fraser et al., 2019; Tanaka et al., 2017,
2016). This section reviews some studies that have explored some facial cues in CI detection.

2.3.1 Eye Movement

Eye movement changes can be very subtle, making detecting them difficult during standard
clinical assessment. Recently, however, they have attracted interest from researchers as
a valuable cue for detecting the CI (Beltrán et al., 2018; Endo et al., 2017). A range of
approaches have been used to detect CI, such as advanced eye-tracking technology (for a
review, see (Beltrán et al., 2018)) and computer vision techniques that detect the face and
then localise the iris during a video recording (Endo et al., 2017).

Eye movement tracking involves measuring saccadic and anti-saccadic eye movements
and gaze fixation because they hold rich information (Anderson and MacAskill, 2013).
Saccadic eye movement can be defined as a quick movement of the eye (taking 30–80 ms
to complete) and is gauged by looking at an object that appears in various locations on a
screen (Holmqvist et al., 2011). In contrast, anti-saccadic eye movement is gauged by the
cessation of gazing at a particular object and instead looking in the opposite direction. Gaze
fixation is maintaining the eyes’ concentration on a particular spot accurately. Gaze metrics
can be detected while reading, viewing pictures or movies, or performing other cognitive
tasks that require eye-hand coordination and visual memory recognition (Endo et al., 2017;
Lagun et al., 2011; Oyama et al., 2019). It is now well established from a variety of studies
that specific eye movement patterns can convey valuable information to distinguish people
with CI (Boucart et al., 2014; Pereira et al., 2014), including increased staring, increased
blinking and increased fixation instability, which means the difficulty of keeping the gaze on
a specific location (Coubard, 2016).
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Furthermore, many eye movement problems in people with dementia indicate cognition
deficiencies, such as visuospatial ability, attention, memory, inhibitory control and execu-
tive functioning (Coubard, 2016; Pereira et al., 2014). A primary factor influencing this
impairment in eye gaze for people with dementia is a lack of inhibitory control. To examine
inhibitory control deficits, different saccadic and anti-saccade tasks (Crawford et al., 2005;
Lagun et al., 2011) have been used to detect early deterioration during MCI and dementia.
People with dementia find some tasks very difficult, such as directing eye gaze towards a
stimulus and moving voluntary eye gaze away from a stimulus (Wilcockson et al., 2019).

2.3.2 Facial Expressions

Although some studies have been carried out on the automatic detection of CI using eye
movement, there have been just a few empirical investigations into other facial cues, such
as facial expressions and facial action units (FAUs), carried out by one Japanese research
group. Tanaka et al. (2016) proposed an approach to detecting CI from HC using data recorded
by an intelligent virtual agent (IVA). The dataset comprised 18 participants from whom the
researchers extracted audio-visual features (smile as a facial expression). Although the smile
feature did not show any significance, they reported a good performance in classifying people
with CI from HC with 94% accuracy using a support vector machine (SVM). However,
when Tanaka et al. (2017) increased the sample size to 29, they found that the smile feature
was significant and obtained an efficient performance with an accuracy of 93% using SVM.
They found that people with CI smiled more than HC. A possible explanation for this
finding could be that when people smile out of frustration, they are having trouble answering
questions (Hoque and Picard, 2011). One limitation is that their approach cannot be applied
to non-Japanese people because the researchers used a facial model based on Japanese
women to compare the facial expressions of the participants.

Subsequently, Tanaka et al. (2019) investigated the use of FAUs, introduced by Ekman
et al. (2002), extracted using the OpenFace toolkit to detect dementia on data with recordings
from 24 participants. Their findings showed that lip activity, FAUs and eye gaze were
significant features, with an accuracy of 82%. However, the data used was recorded in a
lab-controlled environment, which is expensive, requires a lot of effort, and does not represent
real-life scenarios.



26 Background and Related Work

2.4 Techniques for Extracting Facial Cues

The previous section reviewed related work in terms of the use of facial cues for dementia
detection. This section provides an analysis of several techniques that can be used for ex-
tracting facial cues: detection of eye blink and head movement estimation. Approaches for
eye blink detection include motion-based approaches, template matching-based approaches,
facial landmarks-based approaches and other approaches. For head movement estimation,
four approaches have been described: 2D appearance-based approaches, regression-based ap-
proaches, model-based 3D head registration approaches and deep learning-based approaches.

2.4.1 Eye Blink Detection

Eye blink detection is a major area of interest in various fields, such as e-learning, gaming,
assistive technologies, security, detecting fatigue and health care applications (Al-Rahayfeh
and Faezipour, 2013a; Azim et al., 2014; Dong and Wu, 2005; Li et al., 2018a; Li and Feng,
2019). A number of techniques have been developed for eye blink detection using computer-
vision-based approaches (Bacivarov et al., 2008; Fogelton and Benesova, 2018; Luo et al.,
2019). Two phases usually need to be considered to detect an eye blink: detecting the
position of the eyes and tracking them through the video frames recorded with a webcam (Al-
Rahayfeh and Faezipour, 2013a). Such datasets contain several challenges to accurate eye
tracking, which must be considered, such as determining the eye size and openness, as
described in Chapter 3.

This research focuses on prior work used on data collected with webcams. These
algorithms could help to pave the way for application on common devices (e.g., laptops and
smartphones) to decrease complexity, cost, and effort and increase simplicity, accessibility
and usability. Several approaches developed to detect blink are reviewed in the following
section based on eye optical flow motion, eye template matching and facial landmarks.
Table 2.1 compares the performance of previous studies for eye blink detection using different
datasets. The table is organised according to the type of approach used. Their results
generally are good, but the reason for this could be the nature of the datasets used to assess
their approaches, which were captured in a lab-controlled environment.

Motion-based Approaches

Several studies have attempted to detect eye blink based on eyelid motion. Motion vec-
tors usually calculate the changes from one frame to the next. Divjak and Bischof (2009)
employed eyelid motion for blink detection, which comprises several steps. First, the lo-
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cations of the participant’s face and the left and right eye were detected by three different
classifiers (Rosten and Drummond, 2006) approach. Second, they were tracked using a
Lucas-Kanade tracker (Tomasi and Kanade, 1991). When the person’s face is not frontal, the
classifier cannot detect it. Then, the optical flow motion for the face region was calculated
and normalised. Finally, adaptive thresholding was used to detect the blink. The authors
followed the study of (Heishman and Duric, 2007) to detect a blink with some modifications
in the calculation of the optical flow. The adopted approach comprised several steps: 1) the
optical flow was calculated for the face region, 2) because eyelid motion incorporates head
motions, compensation was performed based on the previously extracted head movement, 3)
normalising the optical flow due to the size of different faces, 4) the direction of the dominant
vertical eye movement was estimated and 5) adaptive thresholding of the processed flow
data was used to detect blinks. The approach was assessed on their data, which included
ten videos for three participants, recorded using a monitor-mounted webcam in an office
environment where the participant faced the camera. They achieved an average accuracy of
up to 91%. For general evaluation, their approach achieved 97% on the ZJU data (Pan et al.,
2007), which consisted of 80 videos for 20 participants.

Mohanakrishnan et al. (2013) explored motion vectors to detect blinks by calculating the
average motion vector and the similarity between each vector within the eye region. This
resulted in a threshold used to classify blinks with 97% accuracy on their dataset, including
4052 images and 203 blinks. Drutarovsky and Fogelton (2014) extracted six motion vectors
from the eye region and calculated the average motion and variance to feed to a state machine
(SM). There was an SM for each eye to determine whether the eye closure was a true blink
or not. Unlike Divjak and Bischof (2009), Drutarovsky and Fogelton (2014) considered the
challenge of small head movements in their approach.

Fogelton and Benesova (2016) developed the proposed approach by (Drutarovsky and
Fogelton, 2014) to overcome the problem of the variance in eye region size and head
movement using the motion vector-based approach, which was calculated by the Gunnar-
Farneback tracker in the eye region. The motion vectors were normalised by interocular
distance to resolve the differences in the eye region size. Then, normalised motion vectors
were fed to the SM with standard deviation and time constraints. An SM was used to identify
whether eye closure was a genuine blink or not. Their approach outperformed related work
on the ZJU dataset and the Eyeblink8 (Drutarovsky and Fogelton, 2014) dataset, which
included 8 videos, with F1-measure of 99% and 93.3%, respectively.

Fogelton and Benesova (2018) introduced a method for blink completeness detection.
First, they computed the motion vectors for the eye region using the dense optical flow
approach following (Farnebäck, 2003). Second, the vertical and horizontal components were
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employed with the time difference between the consecutive frames due to their significance
in the SM based on the previous work (Fogelton and Benesova, 2016). Then, they adopted
a bidirectional RNN architecture (Schuster and Paliwal, 1997) to classify each frame into
non-blink (0), complete blink (1) and incomplete blink (2). They reported the best results
on the majority of the public datasets (i.e., ZJU, Eyeblink8, Basler5 and Research nights)
compared to their previous work (Fogelton and Benesova, 2016).

Template Matching-based Approaches

Another method for determining eye closure and eye blink is to use an open eye tem-
plate (Chau and Betke, 2005; Grauman et al., 2001, 2003; Królak and Strumiłło, 2012). Grau-
man et al. (2001) detected the eyes by calculating the correlation coefficient over time. When
the correlation coefficient falls under a predefined threshold, re-initializing is triggered. Then,
the blink is detected based on the changes in the correlation coefficient between the actual
eye and the open-eye template and the actual eye and the closed-eye template. Finally, the
correlation coefficient is binarized into open and closed eyes. The focus of their work was on
people with disabilities.

Radlak and Smolka (2013) further developed the Weighted Gradient Descriptor (WGD) (Rad-
lak and Smolka, 2012), which calculates spatio-temporal derivatives per each pixel in the
eye region over time. The resulting vectors were averaged between consecutive frames into
positive and negative based on location (up or down). The two vectors were weighted and
used to calculate the vertical distance (the y-coordinates of those vectors) between their
origin points, which is called the waveform and is used as the input signal. Opening and
closing the eye were represented by positive and negative signal peaks. Then, the signal was
filtered, and a cut-off point with zero was used to identify the local minimum and maximum
peaks, representing the detected blinks. To assess their approach, they introduced a dataset
of five people using a Basler 100 fps camera, referred to as the Basler5 dataset (Radlak and
Smolka, 2012). They achieved up to 90% accuracy and reported 98.8% accuracy on ZJU. In
the evaluation, they only used the right eye of the participants.

Later, Malik and Smolka (2014) utilised a template matching approach that was computed
based on the Local Binary Patterns (LBP) technique. LBP is a descriptor used to capture
features of the eye region. First, an initial process was conducted to build an open-eye
template using several images where the eye was open and not moving. Then, this template
was used to compare the histogram of the LBP of the subsequent frames. After the signal
was filtered, the sharp peaks between the template and the histogram of the current frame
were considered to be detected blinks. The efficiency of their approach was measured on two
datasets, the ZJU and Basler5 datasets, with detection rates of 99% and 94.2%, respectively.
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Bhowmick and Mustafa (2021) and Kamanga and Lyimo (2022) also employed the open-
eye template matching approach and achieved an efficient performance. Even though Bhowmick
and Mustafa (2021) claimed that they used a dataset in real-world scenarios, they used the
Haar Cascade Classifier for face detection and the Camshift algorithm for face tracking, which
cannot handle challenging datasets, indicating that their dataset was not very challenging.

Facial Landmarks-based Approaches

A number of researchers have investigated the use of facial landmarks to facilitate eye
blink detection (Alghowinem et al., 2013a; Bacivarov et al., 2008; Soukupová and Cech,
2016). Bacivarov et al. (2008) proposed a statistical active appearance model (AAM), which
is a semi-automatic approach to detecting and tracking eye blink. This model was trained
on a manually selected image with different variations in the eye states (e.g., open, closed,
partially open). These images were annotated manually with 74 points in the eye region
before sending them to the eye AAM model. Then, the model could be used to detect and
track the eyes. They evaluated their model on two datasets: the Georgia Tech Face Database 3,
which included 750 images for 50 participants with 15 images for each participant and the
VidTIMIT Video dataset (Sanderson and Paliwal, 2004), which included 43 participants, and
reported accuracies of 96.87% and 100%, respectively.

Eye aspect ratio (EAR) is another approach for blink detection. Soukupová and Cech
(2016), developed an algorithm that worked in real-time applications with a standard camera
to detect the EBR. The algorithm was conducted by finding the eye region landmarks and
computing the EAR, which was then used in the SVM to determine whether the eye is open
or closed. Their algorithms performed well in tests with two different datasets. The simplicity
of their algorithm was clear, but there were some limitations in their work. First, making the
blink duration fixed for every participant as people are different in blink duration, especially
people with health conditions. Moreover, the head orientation was not considered, and neither
was the background noise. Finally, the study was completely dependent on annotated data.

Maior et al. (2020) adopted the EAR approach introduced by (Soukupová and Cech,
2016) to detect the eye blink by using 15 consecutive EARs for the machine learning model to
return one category (i.e., open eye, short blink or long). Three models were used to evaluate
these three categories: multilayer perception, random forest and SVM. They recorded 282
samples for 13 participants, including 109 for open eyes, 95 for short blinks, and 78 for long
blinks. They found that SVM gave the highest performance with an accuracy of 94.9%.

Other research teams, such as Navastara et al. (2020) and Utaminingrum et al. (2021), also
employed the EAR principle for eye blink detection. Utaminingrum et al. (2021) evaluated

3ftp://ftp.ee.gatech.edu/pub/users/hayes/facedb/



30 Background and Related Work

their work on 42 images for ten different participants and obtained an accuracy of 90.5%.
However, Navastara et al. (2020) investigated the use of EAR and the uniform local binary
pattern as combined features with SVM in the blink detection, and they achieved an accuracy
of 95.5% on a dataset collection from (Song et al., 2014). Dewi et al. (2022) also employed
the EAR approach following Soukupová and Cech (2016), but with some modifications.
They introduced a new threshold based on the EAR with the name Modified EAR, which
involved using the interquartile range to calculate the lower bound as a threshold.

Other Approaches

Several studies have attempted to explore other techniques. For example, Wang et al. (2017)
used the Contour Circle algorithm and Adaboost approach together to detect eye blink for
fatigue recognition. Their approach was evaluated on their dataset of five people recorded
for one minute in a laboratory environment with a blink detection accuracy of 96.6%. A
neural network is another approach to identifying the eye blink (de la Cruz et al., 2022;
de Lima Medeiros et al., 2022; Nanthini et al., 2022). Li et al. (2018c) proposed an approach
that used both convolutional neural networks (CNNs) and recurrent neural networks for eye
blink detection from a video to differentiate between the real talking face and the generated
one. They compared their performance to the EAR approach of (Soukupová and Cech,
2016) and reported a higher obtained performance of 99% on their dataset compared to 79%
using EAR. Even though the performance was higher by a significant margin, they used
Dlib for face detection and landmarks prediction. This indicates that the dataset used is not
challenging because Dlib can only detect frontal and semi-frontal faces.

de Lima Medeiros et al. (2022) used two models– CNNs and SVM– and introduced two
new datasets: the youtube eye-state classification (YEC) and the autonomus blink dataset
(ABD). Both models were trained using the YEC dataset and were evaluated on several
datasets, such as ZJU, Eyeblink8, talking face and ABD. Moreover, Gawande and Badotra
(2022) employed hybrid methods for eye blink detection using CNNs to accurately localise
the eye area and then used the EAR to determine the eye state (i.e., closed or open). Finally,
the blink is identified based on the calculated correlation coefficient, which is classified as
short and long blinks.
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Table 2.1 Comparison of performance for eye blink detection approaches when applied to
lab-controlled datasets (Note: the metrics used for performance are different.)

Paper Dataset

Reported
F-measure

(or as
otherwise

noted)

Motion-based Approach

Divjak and Bischof (2009)
Their dataset

ZJU
Accuracy=91.0%

97.0%

Mohanakrishnan et al. (2013) Their dataset Accuracy=96.9%

Drutarovsky and Fogelton (2014)
ZJU

Eyeblink8
Talking face

99.8%
99.9%
99.8%

Fogelton and Benesova (2016)
ZJU

Eyeblink8
99.0%
93.3%

Fogelton and Benesova (2018)

ZJU
Eyeblink8

Talking face
RN test set

Basler5

97.6%
91.0%
97.1%
87.9%
94.5%

Template Matching-based Approach

Grauman et al. (2001) 8 participants Accuracy=95.6%

Chau and Betke (2005) (Grauman et al., 2001) dataset Accuracy=95.3%

Radlak and Smolka (2012) Basler5 Accuracy=76.1%

Radlak and Smolka (2013)
Basler5

ZJU
Accuracy=83.4%
Accuracy=98.8%

Malik and Smolka (2014)
Basler5

ZJU
Accuracy=94.2%
Accuracy=99.2%

Bhowmick and Mustafa (2021) 50 participants Accuracy=97.3%

Kamanga and Lyimo (2022) ZJU Accuracy=96.5%
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Table 2.1 Continuation of Table 2.1

Facial Landmarks-based Approach

Bacivarov et al. (2008)
Georgia Tech Face Database

VidTIMIT
96.9%
100%

Maior et al. (2020) 13 participants 94.9%

Dewi et al. (2022)
talking face
Eyeblink8

95.0%
Precision=99.0%

Other Approaches

Wang et al. (2017) 5 participants 96.6%

Li et al. (2018b) CEW dataset (Song et al., 2014) 99.0%

de Lima Medeiros et al. (2022)

ZJU
Eyeblink8

Talking face
ABD

92.3%
86.9%
95.0%
92.6%

Gawande and Badotra (2022) (Alhakeem et al., 2020) dataset 92.0%

2.4.2 Head Movement Estimation

A considerable amount of literature has been published on automatic head movement estima-
tion (Abate et al., 2022; Khan et al., 2021). These studies have used different techniques,
making it difficult to organise them in a particular classification framework due to the over-
lapping between these techniques. The following section describes different techniques for
estimating head movement using 2D facial image properties and 3D face pose.

2D Appearance-based Approaches

In these approaches, there is an assumption about the strong relationship between a 3D face
pose and the 2D facial image properties. This relation is described by using many images and
techniques of statistical learning to train a model. Then, visual features are extracted from
the statistical distribution of the training images. The resulting model is used to differentiate
between different head poses or movements. This technique has been used in the past and has
shown very good results in (Burl and Perona, 1996; Firintepe et al., 2020; Jebara, 1995; Ma
et al., 2015; Qin et al., 2022). Some drawbacks could affect the performance of this approach
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and result in errors, such as head movement under extreme differences in illumination, facial
expressions, occlusions, participants with eyeglasses and facial hair.

Regression-based Approaches

These techniques use functional mapping from image space to different head poses. It
requires a set of labelled images for the training, and then a new model can be created to
discriminate head poses for new data (discrete or continuous). The main problem with these
techniques is that the regression tool may not learn a proper mapping due to the challenge
of the high dimensionality of the image. This issue can be resolved by using principal
component analysis or linear discriminant analysis to reduce image dimensionality and then
feed them to support vector regression (SVR) with efficient performance (Li et al., 2000,
2004). Previous studies used the localised gradient histograms with SVR and showed a better
performance (Murphy-Chutorian et al., 2007). Regression-based approaches can only be
used on low-dimensionality features. As a non-linear regression tool, neural networks were
also utilised in (Brown and Tian, 2002; Duda et al., 2006; Little et al., 2005). Although neural
networks are very efficient and straightforward to implement and update, the performance
drops significantly if the images are not annotated correctly.

Model-based 3D Head Registration Approaches

These techniques detect some points from a 2D image and project them onto a 3D face model.
For example, Alghowinem et al. (2013b) used the previously mentioned AAM (Bacivarov
et al., 2008) with pose from orthography and scaling with iterations (DeMenthon and Davis,
1995) approach to detect at least four points in a 2D image and then project them onto a 3D
model and then calculate the orientation and translation of the 3D model. Meyer et al. (2015)
estimated the head pose using measured depth data, which were registered to a morphable
model. Another study used a 3D morphable model and online 3D reconstruction to estimate
the full head pose (Yu et al., 2017). Similar work has been done by fitting only the face rather
than using the full head because of the low quality of depth data (Ghiass et al., 2015).

Deep Learning-based Approaches

Deep Learning approaches (DL), particularly CNNs, have achieved the highest performance
compared to feature-based machine learning approaches. Several issues and limitations
of the traditional machine learning approach were resolved by moving to DL (Baltrušaitis
et al., 2012; Baltrusaitis et al., 2018; Kuhnke and Ostermann, 2019; Ranjan et al., 2017).
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For example, (Baltrušaitis et al., 2012) proposed a 3D Constrained Local Model (CLM-
Z) to use depth and intensity information to detect facial features and track them across
video sequences. The depth information helped to mitigate the effect of poor illumination
and when there was no intensity in the signal due to lighting conditions. More recent
work by Baltrusaitis et al. (2018) outperformed the previous state-of-the-art techniques for
extracting facial landmarks, and head pose estimation. They used a Convolutional Experts
Constrained Local Model (CE-CLM) (Zadeh et al., 2017) for facial landmarks detection and
tracking. In the internal CE-CLM structure, a 3D representation of the facial landmarks was
calculated and then projected onto the image using an orthographic camera. Once the facial
landmarks had been detected, this helped to accurately estimate the different head poses by
solving the n point in the perspective approach (Hesch and Roumeliotis, 2011).

In reviewing the techniques mentioned above, in general, the performance of their
approaches gave good results. However, their approaches were evaluated on data recorded
in a lab-controlled environment for eye blink detection and on data recorded with some
challenges for head movement estimation. Those datasets will be described in more detail
in Chapter 3. Therefore, it is possible that their results do not reflect reliable performance.
In this thesis, for eye blink detection, the EAR approach (Soukupová and Cech, 2016) was
adopted due to the development of the facial landmark-based approaches in the field of
computer vision for such a task. Regarding head movement estimation, the deep learning-
based approach was used in this thesis due to the challenges in the dataset used, which will
be described in the following chapter.

2.5 Machine Learning Related Background

Machine learning is categorised as a sub-discipline of artificial intelligence. It aims to
automatically enhance the performance of the computer algorithms developed for a specific
task. There are several types of machine learning approaches, such as supervised learning,
semi-supervised learning, unsupervised learning, reinforcement learning and deep learn-
ing (Samuel, 1959). In supervised machine learning, the models are learned by an example.
It provides the machine learning with the input data X with output Y , which can be referred
to as training data, and returns a mapping function fx : X −→ Y that presents the relation
between X and Y . Then, the mapping function is used to classify the test data, which are
unseen samples. Support vector machine (SVM), k-nearest neighbours (KNN), logistic
regression (LR), and decision trees (DT) are examples of such approaches (Bishop and
Nasrabadi, 2006). An example of supervised learning is a disease diagnostic system.
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In unsupervised learning, machine learning takes a collection of unlabelled data X
and studies the correlations and the relationships of the data in order to create a model
that can take input data X , and either transforms it into another vector or value to solve a
problem. Two types fall under the umbrella of unsupervised learning, which are clustering
and dimensionality reduction. In clustering, the data is grouped into similar sets, and the
model returns the id of the cluster for each feature vector in data X . K-means and Gaussian
mixture model are examples of clustering (see Chapter 6). In dimensionality reduction,
the feature vector is reduced to fewer features than the input data X . An example of the
dimensionality reduction approach is the Recursive Feature Elimination Cross-Validation
(RFECV) (see Chapter 6). Reinforcement Learning in machine learning depends on rewards
and errors to learn from its environment. It is provided with a feature vector of a state as input
and outputs an action to execute in that particular state. It does this by exploring different
possibilities and evaluating each result to find the optimal action. Reinforcement learning
is designed for particular problems where decision-making is sequential, such as gaming,
playing, driving a car and robotics.

Deep learning is a sub-field of machine learning that uses multi-layer structures of neural
networks to build ’an artificial neural network’ that replicates the human brain and can
learn and make its own decisions. There are different types of deep learning models, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). These
algorithms are used for various tasks, and each one of them has its unique characteristics and
applications. CNNs algorithms are primarily developed for tasks involving image processing,
object detection and facial recognition. RNNs are algorithms that are designed specifically for
tasks involving processing sequential data. It is suitable for tasks involving natural language
processing, text generation, language translation and speech recognition.

The selection of the appropriate machine learning classifiers for this thesis depends on
both the data size and the objectives of this work. Following similar successful healthcare
research (Alghowinem et al., 2013a; Mirheidari et al., 2017; Tanaka et al., 2019, 2017), this
thesis employs SVM, KNN, LR and DT classifiers. These choices are based on the fact that
they usually do not require a sufficiently large amount of training data to work well, whereas
deep learning models do. The following explains the chosen classifiers in more detail.

2.5.1 Support Vector Machine

The SVM is a supervised machine learning algorithm, which is commonly used for different
classification tasks involving healthcare applications (Cummins et al., 2015; Tanaka et al.,
2017). When used in a regression problem, it is defined as support vector regression (SVR).
The goal of SVM is to find the optimal hyperplane in an N-dimensional space to classify the
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data points. An optimal hyperplane is a plane with a maximum margin from both classes.
The hyperplanes are decision-makers that help to differentiate the data points, and their
dimensions depend on the number of features. For instance, if the feature dimension is 2, the
hyperplane is just a line. However, if the number of features is 3, the hyperplane will be a
2-dimensional plane. The hyperplane with maximum margin is used to classify the test data.
The data points that are close to the maximum margin are called support vectors. These data
points affect the position and the orientation of the hyperplane, which means that removing
them will change the hyperplane position. Different kernels could be used with SVM, which
differ in their mapping approach for the data points. The common ones are linear, RBF and
polynomial kernels (Bishop and Nasrabadi, 2006). In the case of a non-linear kernel, the data
points are mapped into high dimensional space to be classified.

2.5.2 K-Nearest Neighbours

The KNN is a discriminative machine learning algorithm, which depends on a simple idea of
similarity. It is one of the most efficient supervised machine-learning algorithms that can be
used for classification and regression problems. The main technique is based on measuring
the distance between the data points using the Euclidean distance function because it is
widely known and used as a distance metric (Bishop and Nasrabadi, 2006; Murphy, 2012).
The distance values are sorted in ascending order. Then, the algorithm searches for the top k
values from the sorted distances that are close to the test data. Thus, these test data points are
assigned to that class. For a classification problem, majority voting is considered. However,
for the regression problem, the average of the label values is taken instead of the majority.

2.5.3 Logistic Regression

LR is a predictive algorithm based on the probability concept. It makes predictions of the
probability of an event occurring and then feeds these predictions into a sigmoid function to
map every prediction into a probability value between 0 and 1 (Murphy, 2012). The types
of LR are binary and multi-linear functions. The classification is done based on setting a
decision boundary (threshold). For instance, assume that there are two classes, A and B, and
that the decision of the data instance belongs to class A if the probability of this instance
is above a threshold value, which is 0.5. If the returned value is 0.7, the data instance is
classified as class A. However, if the value is 0.3, the observed instance is classified as
class B. The parameters of the LR are estimated from the training data using the maximum
likelihood estimation (MLE). This MLE is calculated using an optimisation algorithm, such
as gradient descent (Murphy, 2012). L1 and L2 regularisation strategies in LR are widely
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used and important to avoid overfitting. That is to say, regularisation could help to reduce the
error of generalising and provide better performance on an unseen dataset. The advantage of
LR is its simplicity, ease of implementation, and speed at classifying test data.

2.5.4 Decision Trees

A DT is a straightforward machine learning technique, easy to implement and interpret. It is
represented as a tree-like model of decisions, which involves splitting the data recursively
into smaller partitions based on various rules applied at the node level. This algorithm is
non-parametric and does not need any assumptions about space distribution. The cost of the
accuracy is calculated in each split, and the split with the lowest cost is chosen. That is why
it is called the ‘greedy algorithm’. The cost function tries to determine the branches (groups)
with identical responses. The optimal MLE is calculated using the greedy optimisation
algorithm to find the optimal modal of the tree. When there are many features, the number
of splits will be large, resulting in a huge tree and then overfitting. Therefore, the pruning
approach reduces the overfitting and the tree complexity by removing the branches with
low-importance features. DT can perform feature selection implicitly. However, the DT
classifier could show instability in cases, where small changes in the data could create a
completely different tree (Bishop and Nasrabadi, 2006).

2.5.5 Performance Evaluation

To measure the performance of those classifiers mentioned above, some metrics are used.
Thus, this section mainly reviews the metrics used for performance evaluation in data related
to healthcare. All the mentioned metrics, which are discussed, were used in this thesis.

Accuracy, Precision, Recall and F-measure

The most popular performance metrics for healthcare applications are accuracy, precision,
recall and F-measure. These metrics are calculated based on the number of true positive (TP),
true negative (TN), false positive (FP) and false negative (FN), which are defined as follows:

Accuracy =
(T P+T N)

(T P+T N +FP+FN)
(2.1)

Precision =
T P

(T P+FP)
(2.2)
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Recall =
T P

(T P+FN)
(2.3)

F-measure = 2 · Precision ·Recall
(Precision+Recall)

(2.4)

The accuracy measures the proportion of TP and TN in a whole population. Precision
measures the percentage of the TP from the predicted positive instances. However, recall
measures the percentage of actual positive that is labelled as positive. The F-measure can
be defined as the mean of its precision and recall and could be used when the data classes
are uneven. If there is an imbalanced data problem, unweighted accuracy, recall, precision
and F-measure are used (Fahad et al., 2021; Gupta et al., 2020). Unweighted accuracy is
significant because it offers each class equal weight. It is also not affected by minority classes.
The unweighted accuracy is known as the average equal accuracy of individual classes. The
individual class accuracy is calculated by the number of samples correctly predicted divided
by that class’s total number of samples. However, weighted accuracy is known as overall
accuracy and is calculated by the number of samples correctly predicted divided by the total
number of samples.

Confusion Matrix

To define the performance of a classification model, a confusion matrix is used, as shown
in Table 2.2. The confusion matrix provides a summary and a visualisation of classification
results. The percentages of correct and incorrect test instances are summarised for each class,
which is the key to the confusion matrix. The confusion matrix consists of TP, TN, FP and
FN (Gan, 2020).

Table 2.2 A confusion matrix.

Predicted

Positive Negative

Actual
Positive true positive (TP) false negative (FN)

Negative false positive (FP) true negative (TN)

Mean Absolute Error and Root Mean Squared Error

The most common metrics for summarising and assessing the quality of the machine learning
model include mean absolute error (MAE) and root mean squared error (RMSE). The MAE
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measures the error by subtracting the predicted value from the actual one, takes the absolute
value for the error value and then calculates the mean for all the error values. The equation
of MAE is presented in Equation 2.5, where n is the sample size, fi is the predicted value
and yi is the actual one.

MAE =
1
n

n

∑
i=1

| fi − yi| (2.5)

The RMSE can be defined as the standard deviation of the errors. It calculates the squared
values of the difference between the predicted value and the actual one, takes the average of
the squared values, and then the root of the value is considered, as shown in Equation 2.6.

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (2.6)

2.6 Summary

This chapter has reviewed previous work regarding the definition of CI, its potential causes,
and the stages of the progression from normal ageing and MCI to dementia. Then, the
effect of CI on people’s facial cues was described, and the vital role of these facial cues was
highlighted by discussing the factors that could have an effect on them. An insight into the
potential of automatic CI detection using facial cues was presented. In addition, techniques
for extracting facial cues were discussed. Then, the traditional supervised machine learning
classifiers and evaluation metrics utilised in previous work and in this thesis were explained.

Most studies in detecting CI have been carried out by only one Japanese research group,
using a few facial cues, such as eye movement, smile expression, eye gaze and FAUs.
However, those studies were limited in the number of participants and their usability in only
a particular country. A search of the medical literature revealed some studies which found
that EBR and head movement, specifically the head turn rate, are valuable cues to identify CI.
Very little is currently known about the effect of other facial cues in the automatic detection
of CI, and the use of different head movements has not been clinically or automatically
investigated.

The research to date has tended to focus on using a lab-controlled environment with
limited challenges included in the data capture process (e.g., poor illumination and slight
head movement) rather than using data recorded in the wild. Their approaches’ performance
has achieved very good results. However, when in-the-wild data is used, the performance
may dramatically decline because they do not consider the significant challenges and the
new variabilities that affect the performance and make the approach unreliable, especially for
healthcare applications. Therefore, using data that represents real-life scenarios is very im-
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portant to ensure reliable performance. According to the literature review, such data is called
‘in-the-wild data’. There is no agreed definition of this term, and Chapter 3 consequently
provides a definition of the term ‘in-the-wild data’ and presents more information about the
differences between the datasets used in previous work and a comparison with the dataset
used in this research.

The rest of this thesis will focus then on investigating these facial cues in detecting CI
using in-the-wild data for people with CI and related health conditions. In addition, this
investigation is designed to explore the association between CI and these facial cues. Whether
there are factors that can play a vital role in the presence of these cues or not will also be
discussed.



Chapter 3

Analysing the Challenges of In-the-wild
Data

“The advice I’d give to somebody that’s silently struggling
is, you don’t have to live that way. You don’t have to struggle

in silence. You can be un-silent. You can live well with a mental
health condition, as long as you open up to somebody about it,

because it’s really important you share your experience with
people so that you can get the help that you need.”

— Demi Lovato

3.1 Introduction

The previous chapter provided background information regarding cognitive impairment
(CI), other memory complaint causes that share similar symptoms, and their current clinical
and automatic detection approaches. The techniques for extracting facial cues and the
machine learning approaches used for relevant work were also described. Previous studies
have evaluated their approaches on datasets recorded in a lab-controlled environment and
achieved good results. However, the performance of their approaches may not be reliable
because of the lack of in-the-wild data for evaluating state-of-the-art techniques and for the
automatic detection of health conditions. In addition, most researchers used professional
cameras to record the data rather than common consumer devices (e.g., laptop webcams and
smartphones). Such professional cameras are not available in every home, are not affordable
and require expertise to use.

This chapter is structured into six sections. Section 3.2 provides a review of the datasets
used for evaluating state-of-the-art techniques (e.g., face detection, facial landmarks detection,
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eye blink detection and head movement estimation) and the automatic detection of health
conditions. These datasets’ respective data collection procedures and the challenges that
could affect their performance will also be discussed in Section 3.3. Section 3.4 describes
how previous work used the term ‘in-the-wild data’ and the kind of challenges and diversity
that may be involved. Section 3.5 briefly describes the data used for the research presented
in this thesis, the associated challenges and the reason for considering it as in-the-wild data.
In addition, a comparison will be made between the research dataset used and previous work
regarding the challenges. Finally, section 3.6 presents the conclusions of the chapter’s key
points.

3.2 Review and Categorisation of Datasets

Extensive research has shown that having a reliable approach or model depends on the dataset
used for evaluation. The assessment of an approach developed for a particular task usually
depends on each dataset’s variabilities. This section will describe 1) the commonly used
datasets for evaluating various computer vision tasks, such as face detection, face tracking,
eye blink detection, and head movement estimation, and 2) datasets specifically used for
people with health conditions.

3.2.1 Commonly Used Data

This section reviews datasets used to evaluate approaches developed for specific tasks: face
detection and tracking, eye blink detection and head movement estimation, which were
previously discussed in Chapter 2. Appendix A provide a brief description of each dataset,
including its purpose, population if indicated by the authors, the number of images or videos,
challenges, limitations and availability.

Face Detection and Tracking

Table 3.1 summarises information on each face detection dataset, including population,
the number of images, the source of mages and if it is indicated as in-the-wild according
to the authors. Several datasets, Labelled Faces in the Wild (LFW) (Huang et al., 2008),
Helen (Le et al., 2012), Labelled Face Parts in the Wild (LFPW) (Belhumeur et al., 2013)
and Menpo (Zafeiriou et al., 2017), have been used for training purposes, not for testing.
However, only 300 faces in the Wild (300-W) (Sagonas et al., 2013a), Annotated Faces in the
Wild (AFW) (Zhu and Ramanan, 2012) and the IJB-FL dataset (Kim et al., 2016), which is a
subset of the IARPA Janus Benchmark (IJB-A) (Klare et al., 2015), datasets have been used
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for evaluation. The IJB-FL and Menpo have extreme variation in the face pose. However, the
other datasets show small face pose variations, as shown in Figure 3.1. A sample of images
from these datasets is presented in Figure 3.2.

Table 3.1 Summary of commonly used data (frame-based) for face detection. A check-mark
is used as an indication of whether the dataset is in the wild based on the authors’ claim (W:
In-the-wild).

Data Images Source W

Helen 2330 Internet (Flickr) ✓

LFPW 3,000
Internet (Flickr,
Google, Yahoo) ✓

LFW 13,233 Internet ✓

300-W 600 Internet (Google) ✓

IJB-FL 180 Internet ✓

Menpo 14,845 Internet ✓

Fig. 3.1 The variations in the proportion of face pose of different in-the-wild data for face
detection purposes. The proportion of face poses is gathered from previous work Sagonas
et al. (2013a).

A considerable amount of literature has been published in the face alignment field. These
studies have shown rapid progress in enhancing the accuracy of landmarks detection and
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300-W Dataset (Helen, AFW, LFPW)

Menpo Dataset

Fig. 3.2 Sample of images from datasets for face detection.

algorithm speed. This development has been possible because of the availability of the
larger and in-the-wild datasets mentioned above (e.g., LFPW, Helen, AFLW, AFW, 300-W,
IJB-FL, and Menpo). This motivated other investigators to examine the performance of
their approaches to face tracking instead of using still images. Due to the lack of datasets
for facial landmarks tracking, different challenging datasets have been collected, such as
Rochester/UCSD-facial action coding system (RU-FACS) (Bartlett et al., 2006), YouTube
celebrities (Kim et al., 2008), 300 videos in the wild (300VW) (Shen et al., 2015), distracted
driver face (DDF) (Xiong and De la Torre, 2015) and naturalistic driving study (NDS) 1.
Table 3.2 summarises the information on each dataset used for face tracking, including
population, the number of images, length if it is a video, resolution, source of the videos
and if it is in-the-wild based on the authors. Figure 3.3 presents images from some of these
datasets. Appendix A gives a brief description of each one of them.

Measuring the performance of face detectors on in-the-wild datasets provides a useful
account of how the provided face detector model is good. However, a comparison between
these datasets regarding the different face detectors used and the performance obtained cannot
be conducted here for several reasons. The first reason is that different metrics are used,
such as root mean square error (Xiong and De la Torre, 2015) and normalised point-to-point
error (Baltrusaitis et al., 2018; Sagonas et al., 2014; Xiao et al., 2015; Yang et al., 2015).

1https://insight.shrp2nds.us/
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Table 3.2 Summary of commonly used data (video-based) for face tracking. A check-mark is
used as an indication of whether the dataset is in the wild based on the authors’ claim (W:
In-the-wild).

Data Population Videos Length Resolution (FPS) Source/Camera W

RU-FACS 29 29 - - - -

YouTube
Celebrities 47 1910 Avg < 3 secs - YouTube ✓

300-VW - 300 Avg=64 secs - (30)
YouTube and

SEMAINE database ✓

DDF 15 15 Avg=1 min - - -

NDS - 20 Avg=64 secs 360 x 240 (15) - -

YouTube Celebrities Dataset

300-VW Dataset

Fig. 3.3 Images from datasets for face tracking.

Although the metric used for measuring the error is calculated based on each video and
presented in a graph, the error score is not calculated by taking the mean from all the videos.
Some researchers reported the mean error for particular videos that perform better than
previous work (Sagonas et al., 2014). In addition, some studies have conducted qualitative
facial landmarks tracking results of particular frames (Xiong and De la Torre, 2015) instead
of calculating the error margin.

Eye blink Detection

To evaluate approaches for eye blink detection, a number of widely used datasets have
been established. This section will describe the datasets ZJU (Pan et al., 2007), Talking
face 2, Eyeblink8 (Drutarovsky and Fogelton, 2014), Basler5 (Radlak and Smolka, 2012) and

2htt p : //www− prima.inrial pes. f r/FGnet/data/01−TalkingFace/talking f ace.html
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Researcher’s Night (Fogelton and Benesova, 2016). The purpose of collecting these datasets
was solely eye blink detection, except for Talking face, which is built for facial landmarks
detection. They can be requested from https://www.blinkingmatters.com/research. None of
them is claimed to be ‘in-the-wild’. The details of each dataset are summarised in Table 3.3,
and a sample of images from these datasets are shown in Figure 3.4. In addition, different
published papers that have reported on the face detectors used and the results obtained from
different datasets are shown in Table 3.4. Generally, their approaches achieved good results,
taking into account that these datasets are not in the wild. It can be seen that previous work
used face detectors that cannot handle in-the-wild cases.

Table 3.3 Summary of commonly used datasets for eye blink detection. A check-mark is
used as an indication of whether the dataset is in the wild based on the authors’ claim (W:
In-the-wild, FSP: frame per second, RN: Researcher’s night, Avg: average, min:minutes, and
secs:seconds).

Data Population Videos Length Resolution (FPS) Camera W

ZJU 20 80 Avg = 5 secs 320 x 240 (30) LogitechPro5000 -

Talking face 1 1 2:46 mins 720 x 576 (25) - -

Eyeblink8 4 8 Avg = 5 mins 640 x 480 (30) Logitech C905 -

Basler5 5 - - 640 x 480 (100) Basler -

RN 15 38 38 - 640 x 480 (15) - -

RN 30 69 69 - 640 x 480 (30) - -

Eyeblink8 RN Talking 
face

ZJU

Fig. 3.4 Images from datasets for eye blink detection.

Head Movement Estimation

In addition, one study mentioned in the literature review has reviewed several studies that
had attempted to estimate head movement by evaluating their work on public datasets that
evolved in recent years to incorporate the complexity of environmental conditions (He et al.,
2022). A comprehensive list of these datasets is listed in Table 3.5, which are BU (La Cascia

https://www.blinkingmatters.com/research
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Table 3.4 Comparison between different face detector approaches and the performance of
the eye blink detection obtained grouped by data (SIM: selected images manually and RN:
Researcher’s night, SVM: support vector machine, LBP: local binary pattern).

Data Paper Videos Face Detector Performance

Z
JU

(Divjak and Bischof, 2009) 80 Lucas-Kanade algorithm Accuracy=97%
(Song et al., 2014) SIM Viola and Jones algorithm 97%

(Soukupová and Cech, 2016) 80 Intraface algorithm F1=95%

(Eddine et al., 2018) SIM LBP+SVM 95%

(Fogelton and Benesova, 2016) 80
CLandmark+

Viola–Jones algorithm F1=93.3%

(Zhao et al., 2018) SIM Viola–Jones algorithm 97%

(Fogelton and Benesova, 2018) 80
CLandmark+

Viola–Jones algorithm F1=97%

Ta
lk

in
g

fa
ce (Divjak and Bischof, 2009) 1 Lucas-Kanade algorithm Accuracy=88%

(Soukupová and Cech, 2016) 1 Intraface algorithm F1=95%

(Fogelton and Benesova, 2016) 1
CLandmark+

Viola–Jones algorithm F1=94%

(Fogelton and Benesova, 2018) 1
CLandmark+

Viola–Jones algorithm F1=97%

E
ye

bl
in

k8 (Fogelton and Benesova, 2016) 8
CLandmark+

Viola–Jones algorithm F1=93%

(Soukupová and Cech, 2016) 8 Intraface algorithm F1=95%

(Fogelton and Benesova, 2018) 8
CLandmark+

Viola–Jones algorithm F1=97%

B
as

le
r5

(Radlak and Smolka, 2012) 5 Eye area approximation 76%

(Radlak and Smolka, 2013) 5 Eye area approximation 83%

(Malik and Smolka, 2014) 5 LBP 94%

(Fogelton and Benesova, 2016) 5
CLandmark+

Viola–Jones algorithm F1=94%

R
N

(Fogelton and Benesova, 2016) 107
CLandmark+

Viola–Jones algorithm F1=80%

(Fogelton and Benesova, 2018) 107
CLandmark+

Viola–Jones algorithm F1=87%

et al., 2000), Annotated Facial Landmarks in the Wild (AFLW) (Koestinger et al., 2011),
ICT-3DHP (Baltrušaitis et al., 2012), and BIWI (Fanelli et al., 2013). These datasets are
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collected for head movement tracking, and a sample of images is presented in Figure 3.5.
Appendix A gives an overview of each. As mentioned above, the performance of the head
movement estimation models significantly depends on the quality of a dataset. Several
published papers reported the face detectors used, and the results obtained from different
datasets are set out in Table 3.6. In general, most studies achieved good results using these
datasets. However, their performance declined when applied to AFLW dataset because it is
in the wild.

Table 3.5 Summary of commonly used data for head movement estimation. A check-mark is
used as an indication of whether the dataset is in the wild based on the authors’ claim (W:
In-the-wild, FSP: frame per second and secs:seconds).

Data Population Images Length Resolution (FPS) Camera W
AFLW 25,993 21,997 - - Internet ✓

BU 5 200 7 secs 320 x 240 (30)
Magnetic Tracker +
Sony Handy-cam -

ICT-3DHP 10 1400 - -
Magnetic Tracker +

Kinect -

BIWI 20 15,000 - -
Magnetic Tracker +

Kinect -
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AFLW Dataset

Every participant 
shows several head
movements as in this 
images

BIWI Dataset

Fig. 3.5 Sample of images from datasets for head movement estimation.
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Table 3.6 Comparison between different face detector approaches grouped by data (Y: yaw,
P: pitch, R: roll, 3DMM: 3D Morphable Models, and RM: Regression Model).

Data Paper Face Detector Y-MAE P-MAE R-MAE

A
FL

W

(Xia et al., 2022) DL 5.15 4.49 2.15

(Rahmaniar et al., 2022) DL 5.10 4.51 2.59

(Chen et al., 2021) DL 5.49 23.81 17.26

(Barra et al., 2020) RM 3.11 4.82 2.25

(Khan et al., 2019) DL 4.25 4.89 3.20

(Hsu et al., 2018) DL 3.93 4.31 2.59

(Ranjan et al., 2017) DL 4.71 4.14 3.93

(Kazemi and Sullivan, 2014) Dlib 23.1 13.6 10.5

B
U

(Gou et al., 2022) 3DMM 4.80 4.60 3.00

(Gou and Ji, 2020) RT 5.10 4.30 3.20

(Khan et al., 2019) DL 2.10 2.90 2.20

(Baltrusaitis et al., 2018) DL 2.40 3.20 2.40

(Baltrušaitis et al., 2016) DL 2.80 3.30 2.30

(Wu et al., 2017) RM 4.90 5.30 3.10

IC
T-

3D
H

P

(Li et al., 2021) 3DMM 2.70 2.60 2.10

(Madrigal and Lerasle, 2020) 3DMM 4.19 3.88 4.33

(Khan et al., 2019) DL 2.60 3.20 2.70
(Baltrusaitis et al., 2018) DL 3.50 3.10 3.10

(Baltrušaitis et al., 2016) DL 3.60 3.60 3.60

B
IW

I

(Chen et al., 2023) DL 4.74 4.50 2.55

(Celestino et al., 2023) DL 3.81 3.78 2.73

(Rahmaniar et al., 2022) DL 3.27 3.19 2.43

(Barra et al., 2020) RM 6.21 3.95 4.16

(Yu et al., 2017) 3DMM 2.50 1.50 2.00

(Hsu et al., 2018) DL 4.01 5.49 2.93

(Kuhnke and Ostermann, 2019) DL 4.11 4.51 3.78
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3.2.2 Health Conditions Data

In terms of datasets for people with health conditions, several datasets with video recordings
are used by researchers. As was mentioned in the previous chapter, depression is another
condition that shares similar symptoms to CI. Also, a validation experiment will be conducted
using the public depression dataset described in Chapter 7. This section, therefore, reviews a
total of 13 datasets, eight for depression and five for CI, which are BlackDog (Alghowinem
et al., 2012), Oregon Research Institute (ORI) (Maddage et al., 2009), AVEC2013 (Valstar
et al., 2013), AVEC2014 (Valstar et al., 2014), DAIC-WoZ (Gratch et al., 2014), CHI-
MEI (Huang et al., 2016), Pittsburgh (Dibeklioğlu et al., 2017), BD (Çiftçi et al., 2018),
Osaka University dataset 2016 for dementia (OU2016) (Tanaka et al., 2016), OU2017 (Tanaka
et al., 2017), OU2019 (Tanaka et al., 2019), IVA18 and IVA52. Only five of the eight for
depression are publicly available (AVEC2013, AVEC2014, DAIC-WoZ, Pittsburgh and
BD). These datasets have been widely adopted in the reviewed studies for the detection of
depression. There are also privately released datasets for depression detection. However,
there are no available datasets with videos for CI for public use. The IVA18 and IVA52 datasets
will be described in detail in Section 3.5. Table 3.7 provides a summary of these datasets,
including the number of recruited participants, the type of assessment, video resolution,
availability and if it is in-the-wild data. Appendix A gives further details of these datasets.
As stated earlier, the focus is on the most popular ones.

Table 3.8 summarises the reviewed approaches, the face detectors used and the perfor-
mance obtained for depression detection for the most widely used datasets. It can be seen that
the Pittsburgh and AVEC2014 datasets are not very challenging due to the simple approaches
used for face detection, such as Viola & Jones, Dlib and AAM in AVEC2014 and AAM in
Pittsburgh. These approaches cannot detect faces in or near profile. In addition, AAM is not
a practical approach because it is participant-dependent. That is to say, this approach needs
to create a model and train it for each participant, which may require manual editing of the
landmarks in the training process. Thus, this approach is not fully-automatic. The use of two
approaches (Dlib and Openface) for face detection on in-the-wild data has been investigated
in this thesis, described in Chapter 4. The findings showed that using Dlib landmarks gave
better performance than Openface landmarks. A possible explanation for this might be that
Dlib only detects the face when it is frontal or semi-frontal otherwise, it loses track of the
face. However, Openface detects all the frames. This led to conclude that using the frames
where the face is frontal could achieve better results than using all the frames, including the
noisy ones. According to these results, the performance of a system may vary according to
the level of variability in the dataset. Therefore, it is possible that these results may not be
reproducible on a dataset recorded in the wild.
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Table 3.7 Summary of video data information for participants with health conditions. A
check-mark is used as an indication of whether the dataset is in the wild based on the authors’
claim (W: In-the-wild, FPS: frame per second).

Data Population (control) Ground truth Resolution (FPS) Availability W
BlackDog 60 (30) Clinical assessment 800x600 (24.94) Private -

ORI 8 (4) - - (30) Private -

AVEC2013 292 (-) Self-report 640 x 480 (30) Public -

AVEC2014 84 (-) Self-report 640 x 480 (30) Public -

DAIC-WoZ 189 (-) Self-report - Public -

CHI-MEI 26 (13) Clinical assessment 640x480 (30) Private -

Pittsburgh 49 (-) Clinical assessment 640x480 (29.97) Public -

BD 95 (46) Clinical assessment - (30) Public -

OU2016 18 (9) Clinical assessment - Private -

OU2017 29 (15) Clinical assessment - (30) Private -

OU2019 24 (12) Clinical assessment - (25) Private -

IVA18 18 (0) Clinical assessment Variable Private ✓

IVA52 52 (23) Clinical assessment Variable Private ✓

Table 3.8 shows a review of only these two datasets because other datasets are private for
ethical reasons and hence not available for other researchers to use for evaluation, as shown
in Table 3.7. In addition, DAIC-WOZ provides only feature sets for a researcher for public
use due to ethical reasons preventing them from sharing the video data.

3.3 Discussion and Limitations

An initial objective of the research in this thesis was to identify the meaning of the term
‘in-the-wild data’ by investigating what kinds of challenges have been reported by researchers
in relation to commonly used datasets for healthy individuals and datasets for people with
health conditions, as shown in Table 3.15 Section 3.5.5. Some of these datasets are referred
to as ‘in-the-wild’, and others, even if authors have not labelled them as ‘in-the-wild’, are still
challenging relating to the nature of the datasets’ recording environment and the challenges
included. This section will discuss the datasets described above according to the data type.
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Table 3.8 Comparison between different face detector approaches and the performance of
the depression detection obtained grouped by datasets (AAM: active appearance model,
KLT:kanade-tomasi-Lucas Tracker).

Data Paper Population Face Detector

Performance
in Accuracy (
or otherwise

noted)

Pi
tts

bu
rg

h

(Alghowinem et al., 2015) 38(19) AAM recall=94.7%
(Dibeklioğlu et al., 2015) 48 (-) ZFace 86.21%

(Dibeklioğlu et al., 2017) 48 (-)3 ZFace 72.59%

(Cohn et al., 2009) 107(41) AAM 76%

(Alghowinem et al., 2020) 38 (19) AAM 86.8%

AV
E

C
20

14

(Valstar et al., 2014) 50 (25) Viola & Jones 82%

(Senoussaoui et al., 2014) 50 (25) Viola & Jones 82%

(Alghowinem et al., 2015) 32 (16)4 AAM recall=68%

(Pampouchidou et al., 2016) 200 (166)5 KLT 74.5%

(Alghowinem et al., 2020) 32 (16) AAM 87.5%

(Jan et al., 2017) 300 DL MAE=6.68

(Zhou et al., 2019) 300 Dlib MAE=6.21

3.3.1 Commonly Used Data

For the more commonly used dataset, three different types of tasks are mostly considered:
face detection and tracking, eye blink detection and head movement estimation. Below, the
limitations for each of these types of dataset tasks are discussed.

The face detection datasets are mainly used for training models, not for testing systems.
The face poses variations are mostly frontal, with few images in which the face pose reaches
a maximum of +30◦ or a minimum of −30◦ degrees. It is interesting to note that, in all these
datasets, one or multiple filtering approaches, which are automatic, manual or both, are used
to detect the face. This filtering approaches use algorithms (e.g., Viola & Jones) which do
not detect the face when it is in or near profile (Belhumeur et al., 2013; Huang et al., 2008)
or when it is not greater than 500 pixels in width (Le et al., 2012). The most obvious finding
to emerge from the analysis is that these datasets are used to detect facial landmarks and not
track them within video frames. These datasets are available for public use.
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Face tracking datasets have been utilised for face tracking and recognition tasks, not
facial landmarks detection. Thus, the annotation of the facial landmarks is only available
in some of them. According to the authors’ claims, most of the datasets mentioned above
are considered in-the-wild data, except for the RU-FACS data, which is reported as having
been recorded in a lab-controlled environment, the NDS and the DDF datasets, which are
not categorised to be in-the-wild. The video length of the datasets is less than one minute,
which is very short. Previous work has not provided more details regarding the participants,
environment and device used, which would have helped to show the reality of the challenges
included in these datasets to allow for a fair comparison. In addition, the videos used for
performing facial landmark detection and tracking are very short, between 2 and 3 seconds
for most datasets and 1 minute for 300-VW data. This is because annotating facial landmarks
in videos is high-cost in terms of time and effort (Sagonas et al., 2013a).

In terms of the eye blink detection datasets, the previously mentioned datasets varied in
terms of the device used to record the data but not significantly, as the typical setup involved a
single camera monitoring the participant’s face. Notable exceptions were the setup employed
for ZJU, Eyeblink8, and Basler5, which used an external camera to capture high-quality
videos. Regarding the participant behaviour during the recording, the participants mostly
were frontal the entire time. Table 3.4 presents every study that has assessed its eye blink
detection approach grouped by the dataset used. It can be seen that most of the previous
work used the Viola-Jones algorithm (Viola and Jones, 2004) to detect and track facial
landmarks. This gives an indication of the simplicity of predicting the facial landmarks
from these datasets. In terms of dataset availability, the Talking face dataset is the only one
fully available for free download, whilst the rest of them need a signed End User License
Agreement (EULA) in order to get access for download.

Finally, datasets for head movement estimation are considered more challenging than
previous types of datasets regarding face pose variations. Most of these datasets have used
external devices from a commercial sensor, such as the Kinect with a magnetic tracker
transmitter attached to the participant’s head (BU, ICT) or a template-based head tracker
(BIWI). The specifications of the challenges for most of them are not clear. For example,
the ICT-3DHP dataset only mentioned the camera used to capture the participants and how
the data is annotated. In addition, the BU dataset lacks facial occlusion and contains no
information regarding the participant’s behaviour and the recording environment because
the focus was only on the time-varying illumination challenge. Although the AFLW dataset
is the only one that describes different challenges in their datasets, it is collected from the
Internet and not recorded as a video, like the previous datasets. One of the main limitations
of that dataset is that there is no annotation for the image if a facial landmark is not visible
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to the annotator. Taking all the above together, it is difficult to compare these datasets due
to the lack of information about the recording environment and the participants’ behaviour
during the recording.

3.3.2 Health Conditions Data

The previous section discussed the limitations of collecting healthy individuals’ data for
evaluation based on the purpose of the dataset. Such datasets are mostly collected from
the internet or in a lab-controlled environment. Therefore, those datasets were discussed
individually according to their purpose. On the other hand, data collection of participants
with health conditions, such as CI and depression, is a very challenging procedure of health
conditions detection research because it often requires recruiting participants from hospitals
and psychological or memory clinics. This section will discuss the datasets shown in Table 3.7
based on the recording equipment used, the sample size, their availability and the country,
which were collected as follows:

Recording Equipment: The type of recording equipment varied due to the different
organisations and labs that recorded these datasets. The difference is insignificant because
the set-up usually involved one camera capturing the participant’s face or body. However,
only the Pittsburgh dataset showed an exception by employing four hardware-synchronised
analogue cameras, two for capturing the head and shoulder of the participant, one for full
body recording and a fourth for monitoring the interviewer activity with two microphones
for speech recording.

Sample size: One of the important aspects of a dataset is the number of participants.
Most of the datasets for people with health conditions are relatively small, which is a common
problem and explained by the fact that collecting data for participants with memory problems
and dementia is very challenging. Only the AVEC2013 consists of 292 participants, but its
assessment was based on self-report, not clinical assessment.

Availability: In terms of the dataset availability, only the AVEC2013 and AVEC 2014 are
open for researchers to use in depression recognition studies. The DAIC-WoZ and Pittsburgh
are partly available for public use. All these datasets require a signed EULA to gain access for
download. However, most of the health conditions datasets have not been released publicly
due to privacy issues in the ethical guidelines.

Worldwide: Most of the datasets for people with health conditions were collected in the
USA, Europe and Japan. These datasets involved one or more modalities (audio, video, and
text). A considerable amount of literature has been published on depression datasets using
different modalities and the combination of modalities, which is audio and video, due to the
valuable information that can be obtained from videos (He et al., 2022; Pampouchidou et al.,
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2017). However, in the literature on dementia detection, most of the work has been conducted
using two modalities, audio and text. Only one Japanese research group has investigated the
use of video modality. To the best of our knowledge, this thesis is the first to explore the
video modality for CI detection in English.

Taking together all the factors mentioned above, most studies in the field of computer
vision for healthcare applications have focused only on evaluating their approaches on
a dataset recorded in a lab-controlled environment. Therefore, their approaches may not
achieve good performance if applied to the in-the-wild dataset, and as a result, the incapability
of their approaches to be generalised. The effect of these approaches on data recorded in the
wild remains unexplored. This current research aims to determine the extent to which it is
feasible to extract facial cues from data recorded in the wild for people with CI and whether
this can help to develop a home-based application in the future.

3.4 In-the-wild Data

A considerable amount of the relevant literature described in Chapter 2 has used data
recorded in a lab-controlled environment to evaluate work. Acquisition of such datasets in
particular environment settings has advantages for certain research areas, such as enabling
the researchers to control the variability of challenges in the dataset. In addition, researchers
in machine learning focus on developing their models to improve the performance of such
datasets. However, one of the main challenges for deploying models or approaches in
different settings, such as agriculture or healthcare, from the lab environment to the real
world is the lack of data with high and representative variability.

Sagar (2021) suggested that the focus for improving the performance of their models
should be data-centric rather than model-centric because data quality determines a good
model or approach. To study more general and unconstrained approaches in terms of the
computer vision field, videos or images of faces have to be gathered from highly diverse sets.
Although gathering data with a large number of variables in the lab in an attempt to build
such a dataset is possible, there are two main barriers to this approach. The first is that the
procedure for collecting such data is tremendously intensive. The second is the difficulty
of establishing which distributions of various parameters should be used to create the most
useful data.

The term ‘in-the-wild data’ has been used in many studies, particularly facial landmarks
detection and its related features, due to the need for a face detection model that can capture
faces in different cases. Huang et al. (2008) included images of people with variations in age
and a small variation in gender and ethnicity, a few images with poor lighting conditions,
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and small occlusions. Le et al. (2012) collected images with noisy backgrounds, facial
expressions, and variations in clothing and ethnicity. Belhumeur et al. (2013) gathered data
with images of variability, such as lighting, resolution, small occlusion, age, hairstyle and
ethnicity. Sagonas et al. (2013a) collected 300 indoor images and 300 outdoor images with
keywords like ‘party’, ‘conference’, ‘protests’, ‘football’ and ‘celebrities’. Koestinger et al.
(2011) gathered data that exhibited variations in age, ethnicity, gender, clothing, hairstyles,
facial expressions, and near-frontal and non-frontal faces. These experimental datasets are
rather controversial due to the lack of agreement on the kind of challenges to include in
in-the-wild data.

Research on this subject has been primarily restricted to limited challenges mostly related
to environmental conditions and people’s demographics (e.g., age and ethnicity). There
remains a lack of variety in other aspects related to the participants’ behaviour and envi-
ronmental conditions. This chapter suggests that ‘in-the-wild data’ should cover many of
the edge cases of the participants in terms of demographics, look and behaviour, environ-
ment conditions and consumer device used. The challenges regarding these participants,
environment and devices are summarised in Table 3.9.

The participant-based challenges are divided into demographics, look, and behaviour.
Demographic includes variations in age, gender and ethnicity. The variation in age consists
of children, young and young adults, adults and older people, depending on the purpose
of the dataset. Participant look consists of variations in clothing, hairstyle, makeup style
and glasses style. The glasses’ style comprises glasses reflection, frames and sunglasses
because reflection and frames may cause a problem in facial landmarks detection, especially
those in the eye region. For example, laptop and light reflections can appear on glasses, and
if the glasses’ frame is situated in the middle of the eyes, it makes it difficult to capture
the eye activities. In addition, sight sunglasses may affect performance in the prediction of
facial landmarks in the eye region due to the dark colour of this kind of glasses. Participant
behaviour includes facial expressions, the participants sitting in a non-optimal position with
respect to the camera and the light, a varied distance to the camera over time, spontaneous
small and large head movements, spontaneous body movements and hand movements on
the face. This behaviour is not commonly captured because researchers mostly depend on a
lab-controlled environment for video recording.

Most challenging datasets are built based on the environment-based aspect, which is the
most common one. This aspect includes low resolution, poor illumination, indoor or outdoor
environment and a noisy background in which furniture, animated cartoons, pictures and
people can appear behind the participant. A further challenge is the appearance of more
than one person in front of the camera if these people are closer to the camera than the
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Table 3.9 Potential challenges in in-the-wild dataset.

Participant-based

Demographics
(1) Variation in age
(2) Variation in gender
(3) Variation in ethnicity

Look
(4) Variation in clothing
(5) Variation in hairstyle
(6) Variation in glasses style
(7) Variation in makeup style

Behaviour
(8) Facial expressions
(9) Non-optimal position with respect to the camera
(10) Varied distance to the camera over time
(11) Non-optimal position with respect to the light
(12) Spontaneous small head movement
(13) Spontaneous large head movement
(14) Spontaneous body movement
(15) Hand movement on the face

Environment-based

(16) Low resolution
(17) Poor illumination
(18) Indoors environment
(19) Outdoors environment
(20) Noisy background (e.g., devices, animated carton, pictures, people and furniture)
(21) More than one person in front of the camera

Consumer Devices-based

(22) Smartphone camera
(23) Laptop camera
(24) Professional camera

participant. The final aspect is device-based, which consists of smartphones, laptops and
professional cameras. Most related studies have used professional camera devices to record
videos. However, smartphone and laptop webcams can result in considerable challenges of
the type mentioned above.
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In this section, the aspects of ‘in-the-wild data’ have been explained. The following
section will describe the datasets used in this thesis and then use the summary of the
challenges reviewed of in-the-wild data to examine this thesis’s datasets and a range of
previous studies’ datasets.

3.5 Data Used in this Research

This section first describes what type of datasets are used in this research and then why these
datasets can be considered in the wild.

3.5.1 Task

This study uses data provided by the Hallamshire Hospital Memory Clinic in Sheffield, UK.
Details of the experiment were given to every participant when he/she agreed to participate.
The videos are recorded using a laptop camera or a smartphone to capture each participant’s
face (and/or the accompanying person) (see Figure 3.6). The audio is recorded using
TascamT MDR− 40, which was placed on a table, and two microphones were attached to
the participants. The recorded videos are for people with different types of CI, MCI and
neurodegenerative disorder (ND), functional memory disorder (FMD) and healthy controls
(HC), as they answer memory-probing questions asked by an intelligent virtual agent (IVA).
The questions are of different types: open questions, closed questions, and compound
questions to asses participants’ long and short-term memory. The diagnostic details for every
participant are provided. Ethical approval for collecting and using this data was given by
the National Research Ethics Service (NRES) Committee South West-Central Bristol (Rec
number 16/LO/0737) in May 2016.

Fig. 3.6 A screen-shot that presents the IVA when it is in use (Mirheidari et al., 2018).

Table 3.10 shows the number of participants recorded every year for each group (i.e.,
ND, MCI, FMD and HC). Due to the difficulty of recording many participants, this research
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initially used 18 participants from IVA2016 because this was the only data provided by the
memory clinic at that time. This data will be referred to as IVA18 throughout the thesis. Then,
34 more participants were provided in 2021, including recordings from 2017 to 2021. This
data is referred to as IVA34. This data includes 23 HC but very few participants with health
conditions (i.e., 5 with ND, 4 with MCI and 2 with FMD), making it difficult to use the data
independently for the evaluation. Therefore, the IVA34 data is combined with the IVA18 data,
which results in a larger dataset with 52 participants, which is referred to as IVA52. The
following sections will describe these three datasets individually.

Table 3.10 The number of participants in different versions of the IVA
(2016/2017/2018/2020/2021) datasets with their diagnostic classes. (ND: neurode-
generative disorder, MCI: mild cognitive impairment, FMD: functional memory disorder and
HC: healthy controls).

ND MCI FMD HC Total

IVA2016 6 6 6 0 18

IVA2017 0 0 2 0 2

IVA2018 3 3 0 2 8

IVA2019 2 0 0 1 3

IVA2020 0 0 0 8 8

IVA2021 0 1 0 12 13

Total 11 10 8 23 52

3.5.2 IVA18 Dataset

This data includes a total of 18 participants who were recorded in 2016 (IVA2016), split
equally into 6 with ND, 6 with MCI and 6 with FMD. 4 were excluded because they have
depressive pseudodementia and 2 for whom the diagnosis was not clear. All participants are
in the age range 43 to 78– for more information about the demographic information, see
Table 3.11. The duration of the videos in total is 208 minutes (mean = 11.56 minutes). The
dataset is small, but this is a common issue in similar studies that involve human participants
in clinical settings, as explained previously. The participants were told that they could bring
someone with them, and, as a result, 6 of the 18 participants brought an accompanying person
with them (4 ND, 1 MCI and 1 FMD) (see Table 3.12). Therefore, some videos contain
four people: the participant, the accompanying person, the neurologist, and the person who
operates the laptop. Although the participants were not given any specific instructions as
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to where to look, the talking head on the screen will have been the most salient point on
which to look. This poses a challenge for video-based processing. The study under which
the recordings were done mostly focuses on speech processing and is the first research study
to be done using videos. It is worth mentioning that previous studies have focused more on
distinguishing dementia (regardless of the dementia type) from the HC group using video
data. On the other hand, this research differentiates between the three types of memory
problems (ND vs MCI vs FMD) as discussed in Chapters 4 and 6.

Table 3.11 Demographic information of the IVA2016 participants.

ND (n=6) MCI (n=6) FMD (n=6) Total (n=18)

Age 65.8 (+/-10.38) 63.3 (+/-8.96) 55.7 (+/- 8.94) 61.6 (+/-10.16)

Female 33.3% 33.3% 16.7% 27.8%

Data Challenges

When this data was recorded, it was not intended for video processing purposes. That is
why this data contains a high level of noise due to the lack of restrictions on the participants
and the environment with respect to the webcam position. In this research, this data is
referred to as in-the-wild data because it includes more conditions related to in-the-wild
data, such as a semi-dark or dark and noisy room, as will be discussed in Section 3.5.5.
In addition, spontaneous behaviour means that participants can act as they would in their
natural environment, such as moving about freely. A participant can continually change
the orientation of their face, rotate their body, and move closer to and further away from
the camera. Other people can also appear with the participant and move around too. In
addition, participants who wear glasses sometimes have their eyes obscured by the frames
or a reflection from the laptop on the glasses. The majority of the IVA18 data recordings
were recorded at 30fps. However, five recordings were done at 24fps, producing a different
resolution recording. These issues cause complications for automatic methods to extract
visual information from the data.

3.5.3 IVA34 Dataset

Data is collected in two different environments, a clinic and at home. People at home used
laptops and smartphones to do the recording. There are 34 videos (19 female and 15 male)
representing four groups: 5 participants with ND, 4 with MCI, 2 with FMD and 23 with
HC. The total duration of the videos is 538.59 minutes (mean = 9.79 minutes, SD = 5.54
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Table 3.12 Details about the participants of the IVA18 data by showing whether the participant
came with an accompanying person and on which side this person sat (on the right- or left-
hand side of the participant).

Participant Gender Age Condition Accompany? Which Side?

P01 M 43 FMD No -

P06 M 57 FMD No -

P07 F 45 FMD Yes Right

P08 M 65 MCI No -

P09 M 67 FMD No -

P10 M 58 FMD No -

P11 F 52 ND Yes Right

P12 M 63 MCI No -

P13 M 69 ND No -

P14 M 51 MCI NO -

P15 F 78 MCI Yes Right

P16 F 78 ND Yes Right

P17 M 64 FMD No -

P18 M 58 MCI No -

P19 F 65 MCI Yes Right

P21 M 76 ND No -

P22 M 63 ND Yes Left

P23 M 57 ND Yes Left

minutes). Eight participants were excluded from the study due to the difficulty of face
detection resulting from several challenges, such as a dark room and the partner interrupting
the participant multiple times during the session, the eyes of the participants not being visible
to the camera, two of them were wearing masks and the non-optimal angle of the participant
from the smartphone camera. Moreover, participants looked and talked most of the time to
the right side at the person who was operating the laptop.

As with the IVA18 data, in the clinic recordings, participants were told that they could
bring someone with them. Four out of the 13 participants recorded in a clinic brought
a caregiver or partner with them (3 ND and 1 MCI), in which all of them were female.
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Some videos, consequently, contain four people, as mentioned in the previous section. In
the home recordings, only 2 out of the 20 participants who made a home recording had a
caregiver/partner with them during the session (1 MCI and 1 HC). As the participants were
in their homes, the setting environment for the recording was either an office, a living room,
or a bedroom. Every participant shows a different challenge for the face detector because
he/she had the choice of which room to sit in, the distance and the angle from the camera,
the lights of the room on or off and whether to do the session during the day or at night time.

Tables 3.13 and 3.14 show the participants’ information, such as who was accompanied,
where his/her accompanying person sat, condition, age and gender. Of the seven participants
who were accompanied, four had ND, two had MCI, and one was from HC. According
to Larner (2012), Larner (2014b) and Soysal et al. (2017), coming with a partner or other
person and head-turns might be clinical cues of having a CI. This also has been shown in
experiments described in Chapter 6.

Table 3.13 Details about the participants of the IVA34 data that are recorded in the clinic.

Participant Gender Age Condition Accompany? Which Side?

P39 M 50 FMD No -

P40 F 58 FMD No -

P57 M 72 ND Yes -

P82 F 56 MCI No -

P84 F 67 MCI Yes Left

P89 M 55 HC No -

P98 F 63 ND Yes Left

P115 F 64 ND Yes Right

P116 M Unknown HC No -

P117 M Unknown ND No -

Patient 1 F Unknown MCI No -

Patient 2 M Unknown HC No -

Patient 4 F 78 ND Yes Right
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Table 3.14 Details about the participants of the IVA34 that are recorded at home.

Participant Gender Age Condition Accompany? Which Side?

P219 F Unknown HC No -

P222 F Unknown HC No -

P223 M Unknown HC No -

P226 F Unknown HC No -

P230 F Unknown HC No -

P261 M 68 MCI Yes Right

P264 F Unknown HC No -

P265 M Unknown HC No -

P268 F Unknown HC No -

P269 M Unknown HC No -

P270 F Unknown HC No -

P274 F Unknown HC No -

P276 F Unknown HC No -

P282 F Unknown HC No -

P350 F Unknown HC No -

P355 M Unknown HC No -

P356 M Unknown HC Yes Right

P357 M Unknown HC No -

P358 F Unknown HC No -

P359 M Unknown HC No -

Comparing IVA34 Data Challenges to IVA18 Data

As previously stated, the IVA18 data contains many challenges, such as low resolution,
different illumination, the appearance of many people in front of the camera, sitting at a
different distance from the camera, body movements and large head movements. These
challenges could also be seen in the extended data. The IVA34 data is more challenging
than IVA18 because the recordings were made at home and people used different devices
(laptops and smartphones). That is to say, the participants had more freedom and were more
comfortable choosing any room, sitting in a room while the lights were turned off, recording
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the session while the day/room lights were behind the participant, and noisy backgrounds,
including furniture such as the office table, library, pictures of people, and antiques. Setting
the laptop at any angle without any guidelines made one of the participants sit at a wrong
angle, make a face not facing the camera, or make part of the face not visible to the camera.
Some home-recorded videos were recorded using a smartphone, meaning the participant may
have a different angle view to the camera. In laptop recording, people usually sit in front of
the laptop or at an angle from the laptop. However, the eye’s position is looking toward the
camera. On the other hand, people who use their smartphones hold their phones at a lower
angle from their face, which makes their eyes look partly closed, and their head orientation is
different. In addition, people at this age need to wear eyeglasses, which also causes problems.
These challenges may lead to many problems that are resolved by removing some videos, as
explained above, and cropping some of them to exclude other people who appear closer to
the camera than the participants.

Although clinic recordings and home recordings share several challenges, the challenge
of people appearing with the participant in the camera view is more common in the clinic
recording than in home recordings. In the clinic recordings, at least two people appear on
camera: the person who operates the laptop and the participant. Two additional people may
appear on camera, as previously mentioned, the doctor and the partner, resulting in four
people visible in the video.

3.5.4 The IVA52 Dataset

Due to the small number of participants with health conditions in the IVA34 data, the IVA18

and IVA34 are combined to form the IVA52 dataset to evaluate the proposed approaches in
a larger dataset with a HC group. Table 3.10 shows the number of participants from the
different IVA datasets versions for each class and the total number of participants, which is
52, split into 11 with ND (45.5% female), 10 with MCI (50% female), 8 with FMD (25%
female), and 23 HC (52% female). Since the IVA (IVA2017/18/19/20/21) includes questions
that were not in the original version of the IVA2016, only the same asked question amongst
all the versions are included in this study.

3.5.5 Comparing this Research’s Dataset Challenges with Previous
Work’s Dataset Challenges

Table 3.15 shows the previously reviewed datasets organised according to their purpose in
rows and the in-the-wild data aspects based on participant, environment and device used
in columns. The reported challenges of these datasets are indicated by a check-mark. The
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check-mark is an indicator of the presence of this challenge in the dataset, not an indicator
of the degree of the challenge. For example, when a particular dataset includes more than
one particular ethnicity, it is check-marked as the same as a dataset with several ethicities. In
Table 3.15 below, the ‘W’ column contains a check-mark if that particular dataset has been
claimed to be in the wild by its authors. The main points of this table are summarised as
follows:

• Of the different aspects of in-the-wild data, most researchers have focused on the
recording environment by including images or videos with different illumination and
noisy background. However, a few of them have low image quality. The researchers
have collected challenging images, but Sagonas et al. (2016) suggested using videos
instead of images, which are more complicated to handle due to the unexpected
behaviour of the participants.

• In addition, most of the datasets are recorded in an indoor environment. However, only
some of them have recordings from both indoors and outdoors. These studies claim to
be in-the-wild data because of include images or video clips from indoor and outdoor
environments, which indicates the significance of this factor in creating this kind of
dataset.

• In the participant-based aspect, previous work has mainly focused on three challenges:
gender from the demographic category and facial expressions and spontaneous small
head movement from the behaviour category. Most of the previous work that included
facial expressions as one of the challenges have only "smile" expressions.

• Moreover, the small head movements are mostly not spontaneous, as people were
asked to move their heads for the video recordings, and the rest were images, and
as mentioned previously, videos are more challenging than images. Moreover, few
studies have focused on collecting data from people wearing glasses.

• Interestingly, no previous work has collected data for people with different behaviour,
as presented in the table. Previous datasets consisted of noisy backgrounds, such as
pictures, furniture or people, but no data had the issue of having other people closer to
the camera than the participant. Although a few datasets had people wearing glasses,
glasses-related issues have not been explored.

• In the device-based aspect, only one study mentioned that they used a laptop to record
the sessions. In contrast, other datasets have been collected from the internet as images
or using an external camera for the videos.
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• It is clear that these datasets are limited due to the lack of variations in the population’s
age and ethnicity.

• According to the ‘W’ column, nine datasets are claimed to be considered in the wild.
Figure 3.7 shows an analysis of the common challenges in these datasets based on their
authors regardless of the data type (i.e., images or videos) in the upper figure, which
resulted in 15 challenges. It can be seen that most of these datasets’ authors focused
mainly on including particular challenges during the data collection procedure, which
are variations in ethnicity, illumination, gender, clothing, hairstyle, facial expressions,
indoors and outdoors, and small head movement.

• Then, another analysis is conducted in order to compare these datasets in terms of
image-based data (7 datasets) and video-based data (2 datasets), as shown in the
bottom figure of Figure 3.7. According to the figure, image-based datasets included
more challenges than video-based datasets. The authors of the video-based datasets
are primarily interested in collecting datasets with variations in age and illumination,
wearing glasses and sunglasses, and small and large head movements.

• The more reasonable explanations of why video datasets lack many challenges are
1) the limited number of these datasets, 2) the videos are short, lasting from 3 to 60
seconds, and 3) the difficulty of annotating video data frame-by-frame.

• The IVA data used in this research covers most of the challenges described in Sec-
tion 3.4. This data can be considered more challenging than previous in-the-wild
video-based datasets because the videos are very long compared with the previous
work’s datasets and are recorded without any restriction on the participants or the
environment. For these reasons, participants can exhibit more spontaneous behaviour
during the session. The recordings are not made in a lab-controlled environment.

• In addition, Asgarian et al. (2019) and Taati et al. (2019) revealed that the performance
of state-of-the-art facial landmarks methods can be affected (less accurately or fail)
when it is evaluated on people with CI rather than healthy people. This provides an
insight into the limitation of these methods on the clinical population.

• Finally, it is very hard to build this kind of in-the-wild dataset due to the previously
mentioned points and procedures required to do such a task, especially recording
videos, because that comes with a high cost in time and effort.
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Fig. 3.7 Analysis of the common challenges of all the in-the-wild data according to these
datasets’ authors is shown in the upper figure, and the challenges that are image-based or
videos-based are shown individually in the bottom figure.
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3.6 Summary

The purpose of this chapter was to determine what kind of conditions should be included in
the data for it to be considered as in the wild. This chapter then reviewed different dataset
types: commonly used datasets for both healthy individuals and people with health conditions,
including their limitations. Then, the datasets used in this research were introduced, including
their challenges. A comparison of the challenges of this research dataset with the challenges
in previous work datasets was then made.

This work is the first to investigate this problem and lay the groundwork for future
research into collecting datasets based on in-the-wild conditions. This work has shown that
in-the-wild data involves several aspects based on the participant’s demographics, look and
behaviour, the environment and the device used. The existence of these aspects may have
variations in particular challenges. In addition, analysis of previous work datasets showed
that each dataset has weaknesses and strengths based on the purpose for which it is used.
However, this research has identified significant points which are similar for all the datasets
regardless of the dataset type: 1) some datasets have been used for a different reason from the
purpose for which they have been built, 2) there is a lack of information about the datasets in
terms of participant, environment and device used and 3) most of them used professional
devices to record the dataset.

In addition, this chapter has highlighted the most common challenges included in the
datasets which were claimed by their authors to be in the wild and found a difference between
the included challenges in terms of the type of the dataset (i.e., image-based or video-based).

Most researchers in the field of computer vision for healthcare applications have only
focused on evaluating their works on data recorded in a lab-controlled environment. This
work is the first to explore an in-the-wild dataset to detect particular health conditions. The
dataset used in this research may provide insights into 1) the importance of investigating
the detection of health conditions using datasets recorded in real-world scenarios and 2)
developing approaches that have reliable performance on such data. These insights gained
from this study could be of assistance to developing a home-based application in the future.

The rest of this research will be dedicated to investigating visual feature extraction,
applying them on the IVA18 dataset, and validating them on the AVEC2014 dataset to compare
the performance obtained in this research with related work. Finally, the methodology in
this research will be applied to the IVA52 dataset of people with CI and FMD. Table 3.16
presents where each dataset will be used in the following chapters.
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Table 3.16 Showing which data is used for each chapter.

ZJU IVA18 AVEC2014 IVA34 IVA52

Chapter 4 ✓ ✓

Chapter 5 ✓ ✓

Chapter 6 ✓ ✓ ✓

Chapter 7 ✓





Chapter 4

Eye Blink Based Detection of Cognitive
Impairment

“It’s ok not to be okay, but it’s not okay to stay that way.”
— Perry Noble

4.1 Introduction

The previous chapter provided an analysis of different datasets recorded in a lab-controlled
environment and in the wild. The analysis showed different kinds of challenges and how these
challenges have a severe impact on computer vision techniques in terms of the capability for
detecting facial features. This chapter will investigate an automatic approach to detecting eye
blink rate (EBR) using two datasets: the ZJU and the IVA18 datasets. The ZJU is a public
dataset used to evaluate the baseline system and compare the performance obtained with
related work. Then, the IVA18 is used to explore the feasibility of this approach in identifying
CI and related health conditions using the IVA18 dataset.

Eye blink is a major area of interest within the fields of security (Chen and Amayeh,
2019; Seha et al., 2019), human-computer interaction (Grauman et al., 2001), and assistive
technology and healthcare (Argilés et al., 2015; Bentivoglio et al., 1997; Chermahini and
Hommel, 2012; De Jong and Merckelbach, 1990; De Padova et al., 2009; Sun et al., 1997;
von Cramon and Schuri, 1980). A range of techniques have been developed for detecting eye
blinks, such as sensors (Al-Rahayfeh and Faezipour, 2013b), neural networks (Anas et al.,
2017; Cortacero et al., 2019; Fogelton and Benesova, 2018; Schillingmann and Nagai, 2015),
and eye aspect ratio (Soukupová and Cech, 2016); see Section 2.4.1 for more details.

The process of eye blink detection is a very challenging task for machines, especially for
in-the-wild data, because it can be adversely affected by conditions such as the recording
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environment, the devices used for recording, and the spontaneous behaviour of the participant.
A more detailed account of these conditions is given in Section 3.4. Various studies have
assessed the efficacy of eye blink detection using standard datasets, recorded in a lab-
controlled environment, and have obtained high performance. Such approaches, however,
may be unreliable precisely because they were conducted on data recorded in a lab-controlled
environment. Much less attention has been paid to eye blink detection using data recorded in
the wild.

Only a few studies have attempted to investigate the detection of cognitive impairment
(CI) based on the visual modality (Tanaka et al., 2019, 2017, 2016). Moreover, no previous
study which focused on detecting CI has investigated the EBR as a visual cue. As described
in Section 2.2.2, the EBR is linked to CI. Ladas et al. (2014) reported that people with mild
cognitive impairment (MCI) showed a higher rate of eye blinks than healthy people, and the
increase in their EBR was found to be associated with an increased risk of transition from
MCI to Alzheimer’s disease. Since eye blinks are an important cue of CI, they could be
affected by several factors related to ageing and environments (e.g., temperature, brightness,
air conditions, and relative humidity) (Sun et al., 1997). This chapter proposes a new
methodology for calculating the EBR for data recorded in the wild, which has not been
examined previously.

Figure 4.1 shows the workflow for automatic CI detection. Prior to face detection and
tracking, the pipeline includes the pre-processing phase for the video data to address some
of the in-the-wild data challenges, which is explained in Section 4.2.1. Next, face detection
and tracking are performed. Different features are then obtained from the video frames and
given to a supervised machine learning classifier to distinguish between the health conditions.
These classifiers are trained on a sample of the data and use the resulting model to classify
the new sample set. Section 2.5 gives details about the classifiers used and the evaluation
metrics.

The remainder of this chapter proceeds as follows. Section 4.2 describes the development
of an automatic eye blink detection system. Section 4.3 covers the evaluation for the baseline
and the proposed approach on the IVA18 dataset using a set of popular classifiers. Then, a
performance analysis of individual classes is conducted in Section 4.3.3.

4.2 Approaches to the Automatic Detection of EBR

These experiments examine the feasibility of automatically extracting eye blinks to detect
CI from IVA18 data. This aim involves developing a technique designed specifically for
in-the-wild data. The first and foremost step in achieving this aim is to develop a baseline
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Preprocessing
Phase

Video Data

Face Detection

Face Tracking

Feature Extraction
Phase

Classification
Phase

Label

Detection Tracking

Face foundFace found
Fail to locate face

Fail to locate face

Fig. 4.1 An overview of the automatic CI detection workflow, which includes the state
transitions for the face detection and tracking phase.

approach for detecting eye blinks and then evaluate the approach on standard data. The
baseline results could give an insight into the difficulty level of eye blink detection and the
classification problem with different classifiers using the same feature set.

As has been discussed in Chapter 2, although many researchers have utilised data recorded
in a lab-controlled environment to measure the performance of their approaches to eye blink
detection, their work may not perform as well on challenging data, like the IVA18 dataset,
described in Chapter 3. This chapter proposes a novel approach to detecting eye blinks using
multiple thresholds (MTs) to calculate the EBR. This approach addresses the complexities
of the eye blink phenomenon in in-the-wild data. These experiments were conducted on
the IVA18 dataset. The data details in terms of participants, diagnostic classes, and recording
settings can be found in Chapter 3.

This section describes two approaches to detecting EBR in a video frame: automatic
calculation of a threshold (the baseline system) and MTs approaches. In addition, this section
explores how these approaches are performed using two different facial landmarks tracking
techniques.
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4.2.1 Dataset Preprocessing

Data preprocessing involves data preparation, cleaning, normalisation, transformation, and
reduction (e.g., feature selection). This section briefly describes how raw data is prepared to
be usable and valuable for further facial feature extraction techniques. Prior to the feature
extraction phase, the IVA18 videos are preprocessed due to some people’s appearance with
the participant in front of the camera. These people are sometimes closer to the camera than
the participant. The process is conducted by cropping the height and width of the video
frames to detect only the participant while keeping the background noise. The cropping
operation resolves only one challenge and does not remove any other challenges to ensure the
data can still be thought of as being in the wild. Then, two different facial landmark tracking
techniques are used to extract the facial landmarks, which will be explained in the following
section.

4.2.2 2D Facial Landmarks Tracking

Facial landmark detection is challenging due to several factors: 1) participant-based factors
(e.g., facial expressions, facial occlusion and head poses), 2) environment-based factors (e.g.,
variation in illumination, low resolution and noisy background) and 3) device-based factors
(e.g., laptop and smartphone), as explained in details in Section 3.4. Many researchers have
used Dlib (King, 2009) and OpenFace (Baltrusaitis et al., 2018) to automatically detect the
locations of the facial key landmark points on images or videos (Ringeval et al., 2018, 2019;
Zhou et al., 2018). Both techniques can identify 68 facial key landmark points, as shown in
Figure 4.2. This section gives an overview of these two approaches by comparing them in
terms of functionality, their advantages and disadvantages and in what cases each is the best
approach.

Dlib

Dlib 1 is used for facial landmarks detecting and tracking. This detector is based on a
histogram of oriented gradients image descriptors and the linear support vector machine
(SVM), which, as proposed by (Dalal and Triggs, 2005), can be trained as an accurate
detector of human faces. The Labelled Faces in the Wild dataset (Huang et al., 2008) has
been used to train Dlib using 2,825 images.

This algorithm has several advantages, such as fast computation on the CPU, detecting
frontal and slightly non-frontal faces and working with small occlusions. However, several

1http://dlib.net
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Fig. 4.2 The 68 facial landmarks defining the face shape (Baltrušaitis et al., 2016) (left) and a
sample image with detected facial landmarks using Openface (right).

problems affect face detection using Dlib, such as poor illumination, low resolution, profiles
of faces or extreme poses, small or far away faces and substantial occlusion (Gupta, 2018).
Moving the laptop and screen angle variation can also cause problems. In addition, the
dataset is limited to a few children, a few people over the age of 80, no babies, a few women
and a few different ethnicities. This might affect the performance of the Dlib in face detection
on datasets with high variations of people of different genders, ethnicities and ages.

OpenFace

OpenFace 2 is a toolkit for facial behaviour analysis. It detects and tracks based on the
Convolutional Experts Constrained Local Model (Zadeh et al., 2017). In this chapter, it is
used for face detection and tracking because it is robust at detecting facial landmarks in more
realistic recordings with certain conditions, such as very poor lighting conditions and the
inclusion of profiled faces.

For training the model, a number of datasets were used, such as LFPW, Helen, the Menpo,
and Multi-PIE (Belhumeur et al., 2013; Gross et al., 2010; Le et al., 2012; Zafeiriou et al.,
2017). Then, it was evaluated the model on two public datasets: IJB-FL (Kim et al., 2016) and
300VW (Shen et al., 2015). The IJB-FL (Kim et al., 2016) is a subset of IJB-A (Klare et al.,
2015) and consists of 180 images (128 frontal and 52 profile faces). The 300-VW includes
64 videos. These datasets consist of images with faces in the wild (i.e. with variations in
illumination, different face poses, even extreme ones, indoor and outdoor environments and
different variations in the resolution of faces with slight and strong occlusions).

2https://github.com/TadasBaltrusaitis/OpenFace/
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In this research, both techniques are used for the IVA18 dataset to evaluate the performance
of the proposed approach when 1) only the frontal or semi-frontal facial images are used and
2) all the frames of the video, including the noisy ones and profile images, are used.

4.2.3 Feature Extraction

For over 40 years, many researchers have investigated approaches to eye detection and
tracking (Hansen and Ji, 2009). However, this task remains challenging due to the fact
that the eye appearance changes significantly across participants under different conditions,
such as facial expressions, occlusion by an object or self-occlusion, low resolution and light
conditions.

Neural network techniques have been employed to detect the eye status from images (Anas
et al., 2017; Han et al., 2018; Li et al., 2018c). Anas et al. (2017) employed a convolutional
neural networks (CNNs) approach to identify eye status (open/partially-opened/closed). They
trained their model on the Helen dataset, which includes facial images of participants of
different ages, genders, and ethnic origins (Le et al., 2012). In addition, the images have
variable resolution, illumination, and pose conditions. However, the Helen dataset is very
limited in closed-eye frames, which means that the eyes are mostly open. Additionally, they
validated their work on the ZJU dataset. They used precision and recall metrics, which
achieved 98% and 89.8%, respectively. Their work outperformed that of Kim et al. (2017),
who also utilised CNNs to detect the eye status and used two combined datasets to evaluate
their work: 1) their own dataset that was collected while the participant watched TV and
2) the ZJU dataset. They obtained an error rate of 0.23663% for detecting the eye status
as closed or open. Furthermore, Han et al. (2018) also proposed a CNNs approach and
evaluated their work on the ZJU dataset using precision and recall metrics which gave 94.4%
and 89.7%, respectively.

A considerable amount of literature has been published on eye detection using different
facial landmarks approaches (Baltrusaitis et al., 2018; Ouanan et al., 2016; Sagonas et al.,
2013b). These studies showed the importance of these landmarks as an initial step for
building or developing many applications ranging from biometric recognition to mental state
understanding. Thus, various methods have been proposed for eye blink detection based
on videos instead of processing an individual image to overcome the limitation of previous
work (Appel et al., 2016; Lalonde et al., 2007; Soukupová and Cech, 2016).

Fogelton and Benesova (2016) proposed an algorithm to detect an eye blink using a state
machine (SM) to determine the blink duration. For each eye, there is an SM, and a blink is
considered if at least one of the SMs detects a blink. The intervals of the detected eye blink
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from both eyes are merged to improve the precision of the eye blink detection. This is done
by calculating the intersection over union (IOU = (A∧B)/(A∨B), where A and B are the
blink intervals for both eyes). An IOU value greater than 0.2 is considered a blink. When
they evaluated their work on the ZJU dataset, they used the precision and recall metrics,
which gave 99.2% and 97.3%, respectively. Then, they enhanced their approach by using
dense optical flow to extract the feature and feed it to a recurrent neural network (Fogelton
and Benesova, 2018). They achieved 97.6% as an F-measure metric.

Soukupová and Cech (2016) developed an algorithm to localise the landmarks of the eye
region and calculate the eye aspect ratio (EAR), which was then used with the SVM to find
the eye status. They found that rapid small head movements could result in false values for
eye blink estimation, which indicates that even neural networks face issues in detecting eye
status with small head movements.

Many studies have employed the use of the EAR for calculating the EBR and achieved
very good performance, as described in Section 2.4, (Dewi et al., 2022; Maior et al., 2020;
Navastara et al., 2020; Utaminingrum et al., 2021). Following previous work, this thesis is,
therefore, adopted the EAR algorithm to estimate the eye blink (Soukupová and Cech, 2016).
To calculate the EBR, six eye landmarks (x,y), as shown in Figure 4.3, are used.

Fig. 4.3 Eye landmarks detected by Dlib.

Eq. 4.1 is used to calculate the EAR for both eyes for each frame. The average of both
eyes’ EAR is used. The conventional approach is to compare this averaged EAR with a
particular threshold to decide whether there is an eye closure (i.e., the EAR value is lower
than the given threshold) or not in each frame. For instance, Figure 4.4 shows the calculated
EAR for one participant from the ZJU dataset (see Chapter 3 for details). Here, the ZJU
participant has three blinks, i.e. where the calculated EAR drops below the steady state
threshold of 0.25. It is clear that a single threshold could be defined for this example that
would enable you to identify all the eye blinks. However, one particular threshold cannot
be applied to all the participants in the ZJU dataset, as shown in Figure 4.5. This figure
illustrates that each participant has a different EAR range, and therefore a threshold should
be calculated based on each participant’s EAR range.
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EAR =
∥p2− p6∥+∥p3− p5∥

2 · ∥p1− p4∥
(4.1)

Fig. 4.4 The calculated EAR values for one recording of a participant in the ZJU data. The
grey line is the threshold, the black dot and horizontal line are the manually annotated
blink and the green line: is the detected true blinks (M: manually annotated blink and A:
automatically detected blink ).

Fig. 4.5 An example of the calculated eye aspect ratio for two participants in the ZJU dataset
assuming 0.2 as the threshold.

Although it would be possible to define a threshold for each of the ZJU participants, for
more in-the-wild data, like the IVA18 dataset, this is not the case as shown in Figure 4.6
where the participant’s behaviour makes it difficult to define a threshold that would work
for the full file to identify eye blinks. In Figure 4.6, the location of the genuine eye blinks
is indicated using a black line after observing the video manually, frame by frame. What
can be clearly seen in this figure is the variability of dips in the EAR values that looks like a
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true blink. The grey line represents the threshold (i.e., 0.2) for determining the blink. The
blink results using this threshold are indicated by green and orange lines representing the
detected true and false blinks, respectively. It can be seen that four false blinks are detected
in addition to the three true detected blinks.

These false blinks resulted from challenges in the dataset, such as low resolution, particu-
larly in the eye region, low illumination, and because a monitor (showing a video animation)
can be seen in the background. Another possible explanation for this is that the base mean
of the EAR values does not appear to have a fixed value or a steady line as in the ZJU
data. Instead, the mean base fluctuates during the session for each participant, as shown
in Appendix B. Moreover, other factors, such as the blink’s speed, frequency, and length,
can vary significantly from one participant to another. For example, the EAR calculated
for people with health conditions, such as neurodegenerative disorder (ND) and MCI, may
show more false blinks due to the increase in head and body movements and tiredness, in
addition to the challenges mentioned previously (Fogelton and Benesova, 2016, 2018). These
challenges may increase the variation of the EAR values throughout the session. Thus, this
could affect the visual-based features, such as the EBR.

Fig. 4.6 The calculated EAR values for one recording of a participant in the IVA data. The
Grey line is the threshold, the Black dot and horizontal line: are the manual annotated blink,
the Orange dot and horizontal line are the detected false blink, and the Green line is the
detected true blinks (M: manually annotated blink and A: automatically detected blink ).
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4.2.4 State Machine

Previous work has used a state machine (SM) to determine if a genuine eye blink (defined as
the eye closure being longer than a certain number of consecutive frames) is detected (Al-
saeedi and Wloka, 2019; Drutarovsky and Fogelton, 2014; Fogelton and Benesova, 2016,
2018). There is a range of complications that must be considered. Previous studies have
given different values for the length of an eye blink – Stern et al. (1984) said that the eye
blink usually lasts from 100ms to 400ms, whereas De Padova et al. (2009) gave the value as
50ms to 400ms. In addition, an eye blink may be considered incomplete when the eyes are
partially closed (Portello et al., 2013) and an extended blink is between 70ms and 1s for fully
closed eyes (Rodriguez et al., 2013). Also, multiple blinks may happen in the same sequence,
such as double blinks, and even quadruple blinks can occur.

People with CI and related conditions may experience different behaviour regarding the
EBR and blink duration. Considering that the data is in-the-wild type, determining it is not
clear how long the blink duration in the SM should be. Therefore, different values for blink
duration are explored as follows:

• Type 1 – one frame or any number of consecutive frames having EAR values below
the threshold will be considered a blink.

• Type 2 – a sequence of two or more frames being below the threshold.

• Type 3 – a sequence of between two and 30 frames, inclusive, being below the threshold.
The range corresponds to approximately 60ms to 1s due to patients who may have a
long eye blink.

Figure 4.7 presents the finite SM used in this work with four states. ‘S0’ represents the
initial state, while "S1" represents waiting for the next frame where the current eye status is
"Eye Open". ‘S2’ represents an initial eye blink detection and the blink duration constraint,
which means waiting from at least n number of consecutive frames to any number of frames
(NoF) while the current eye status is ‘Eye Closed’. In this state, the previously mentioned
blink duration values are explored. In Type 1, for example, the ‘S2’ will wait for at least
n=1 frame or any NoF below the threshold to be considered a blink. For Type 2, the ‘S2’
will wait for at least n=2 frames or any NoF below the threshold to be considered a blink.
However, Type 3 is a bit different because it will wait for at least n=2 frames or any NoF to a
maximum of n=30 frames below the threshold to be detected as a blink. If the eye closure
is verified based on the SM Type, ‘S2’ will transit to ‘S3’, which indicates a valid blink by
changing the detected blink status to "True". In ‘S3’, if the current eye status is ‘Eye Open’,
the ‘S3’ will transit to "S1" as an indication of a new cycle of blink detection.
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S1 S3S2Start

Next frame

Type 1:  NoF >= 1
or

Type 2: NoF >= 2
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Type 3: (NoF >= 2) and (NoF <= 30)
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"Eye Closed"

 "Eye Closed"

S0 S1 S2

 "Eye Open" Initial eye blink
Eye blink verified

 "Eye Open"

 "Eye Open"
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Fig. 4.7 Finite state machine to determine a true blink (NoF: Number of Consecutive Frames).

4.2.5 Automatic Calculation of a Threshold (Baseline System)

As mentioned earlier, calculating the EBR is investigated based on two approaches: i)
calculating the EBR by an automatic setting of a single threshold (baseline) and ii) a novel
approach using MTs. Each approach is examined using the two different facial landmark
tracking techniques (Dlib and OpenFace) and the three SM types (1, 2 and 3).

This section presents a simple approach to constructing a baseline that depends on the
mean (µ) and the standard deviation (σ ) of the calculated EAR for each participant. This
approach calculates a single threshold based on the participant’s EAR µ and σ , so it is a
participant-dependent threshold. A blink is detected when the averaged EAR for both eyes is
below the µ of the EAR values minus half the σ . There is thus a separate EBR feature for
the whole video for each participant. The motivation behind constructing such an approach
for a baseline is to find a simple approach with good performance to compare it with the
MTs approach.

In the case of the IVA18 dataset, the single threshold approach exhibits several issues due
to the many challenges described in Chapter 3. Figure 4.8 presents the distribution of the
EAR values, which are calculated using the extracted eye landmarks of OpenFace. It shows
that the participants with ND or MCI have higher values of the EAR on the x-axis, which
indicates head movements or turns. The sub-figure for ND participants shows that the mean
of every participant on the histogram is close to the others, making the histograms overlap.
The sub-figure for participants with MCI has only a small difference in the mean between the
participants in the histogram. By contrast, the distribution of the EAR values for participants
with functional memory disorder (FMD) shows a large difference in the mean between the
participants on the histograms.
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Fig. 4.8 Histograms of the computed EAR value after the extraction of the eye landmarks
using the OpenFace toolkit. The X-axis of each sub-figure is cut-off at 1 to better illustrate
the behaviour. There are a tiny number of EAR values up to 2.5 for FMD, 33.85 for MCI,
and 13 for ND.
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In addition to the variation of the EAR mean among participants (i.e., inter-speakers),
intra-speaker variation can also be seen, as illustrated in Figure 4.9. This presents the
calculated EAR values for the entire video of two participants in the IVA18 dataset. For
participant P13, the EAR values range between 0.05 and 0.5 on the y-axis, whereas the values
for participant P23 range between 0 and 0.65. The EAR values of both participants show a
large degree of noise in the signal. These up-and-down fluctuations in signal quality make
detecting the blinks very difficult, and the mean changes over time for each participant.

Fig. 4.9 The variations in the calculated EAR mean over the time for two randomly selected
participants (P13) and (P23).
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4.2.6 Multiple Thresholds Approach

Previous researchers used standard datasets to evaluate their approaches (Fogelton and
Benesova, 2016, 2018; Pan et al., 2007). However, their approaches cannot detect eye
blink using in-the-wild data, which includes considerable challenges ( see Chapter C.22d).
The dataset used in this research consists of many challenges, such as low resolution, poor
illumination, participants having variable distances over time with respect to the camera,
noisy background, and large head movements (see Section 3.5). This results in making
the detection of the EBR considerably challenging. Another challenge is how to handle
datasets for people with health conditions (e.g., MCI and ND) because they may show
different spontaneous behaviours during the session, leading to more challenges that affect
face detection, not just EBR detection (Taati et al., 2019). This section, therefore, proposes
a novel approach that uses MTs to detect EBR. The motivation behind this approach is to
address these challenges of the in-the-wild dataset and the variations that cause problems for
the baseline system described in the previous section. Figure 4.10 illustrates the pipeline for
the MTs approach. The pipeline involves taking the maximum and minimum EAR across all
the participants to generate many thresholds of the whole video for each participant and then
calculating the EBR of each threshold. The two techniques of facial landmarks detection –
Dlib and OpenFace – are used to evaluate the proposed approach.

Eye aspect ratio

Facial landmarks
detection and tracking

Frame

Thresholds Blinks rates

Generating multiple thresholds
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Fig. 4.10 Pipeline of the multi-threshold EBR extraction approach for each participant.
Multiple thresholds (Tn) of the whole video for a participant are calculated, together with a
blink rate for each threshold (BRn).
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Dlib Landmarks: MTs are generated within a particular range of the y-axis. With a
minimum of 0.0 and a maximum of 0.7, a step size of 0.1 gives 0.0, 0.1, 0.2, ..., 0.6, which
gives 7 thresholds. A step size of 0.01 between 0.0 and 0.7 gives 70 thresholds, and a step
size of 0.001 between 0.0 and 0.7 gives 700 thresholds. These different numbers of thresholds
result in 7, 70, and 700 blink rates features, respectively.

Figure 4.11 illustrates the proposed approach on the two different kinds of datasets
mentioned previously in Section 4.2.5. When the MTs approach is applied to a participant in
the ZJU dataset using type 2 of the SM, it can be observed that most of the thresholds give the
correct number of blinks, which is three blinks. In contrast, applying the MTs approach to a
140-frame sample of a participant in the IVA18 dataset reveals that the number of detected
blinks is mostly different for each threshold. This indicates the difficulty of detecting the true
blinks from false ones and shows that using MTs could be a useful and efficient solution to
capture most of the blinks in data that involve high variation in the mean of the EAR over the
time of the session.

OpenFace Landmarks: MTs are calculated within the bounds of a certain range of the
y-axis. This range is from 0.0 to 34. Similar to Dlib as described above, the range is divided
into 7, 70 and 700 thresholds, leading to 7, 70 and 700 EBR features for each participant.
Interestingly, OpenFace exhibits very high values of the EAR (e.g., 34, 12 and 25) that
can be an indication of head turns or movements, occluded faces, or any issue from the
previously mentioned challenges in Section 3.5.2, whereas Dlib loses the facial landmark
tracking during those periods.

Another challenge in the data is the issue of EAR outlier values. Figure 4.12 shows
the calculated EAR using Dlib (orange) and OpenFace (blue) for an ND participant who
exhibits two extremely high values, which are indicated with a red rectangle. These abnormal
values are considered outliers. It can be seen clearly that Dlib lost the facial landmark
tracking for a number of frames in the red rectangle. In data mining applications, outlier
detection is commonly used to detect and remove or ignore anomalous data points from
the data (Tukey et al., 1977). The outliers are addressed by considering any value above
(µ +(3×σ)) as an outlier, where σ is the standard deviation. After the outlier calculation
for each participant, the minimum outlier is 0.65, which is rounded to 0.7, making the new
range for all participants to generate MTs from 0.0 to 0.7 (previously 0.0 to 34). Any number
above 0.7 is then considered an outlier.

4.2.7 Classification and Evaluation Metrics

The classification involves a binary classification (ND/MCI, ND/FMD and MCI/FMD) and
a three-class classification (ND/MCI/FMD), the results of which are reported in the next
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Fig. 4.11 The generated multiple thresholds for two participants: one participant from the
ZJU dataset and one from the IVA18 dataset. Thresholds are indicated by horizontal dotted
lines. The column to the right of each sub-figure gives the number of detected blinks (NoB)
for each threshold.

section. First, the setting for a baseline of each classification problem is established. In this
experimental work, the performance of different supervised machine learning classifiers is
investigated: SVM with linear (L-SVM) and RBF (RBF-SVM) kernels, logistic regression
(LR), k-nearest neighbours (kNN), and decision trees (DT). Traditional classifiers are selected
instead of deep learning models due to the size of the data. The parameters are optimised
for each classifier using a grid-search from Scikit-learn with held-out data to enhance the
classification accuracy. Participant-independent, stratified cross-validation (CV) with 3-fold
is used for each classifier. After estimating the parameters with the highest CV accuracy
for each fold, they are averaged across all folds. For the SVM with Linear and RBF
kernels, the regularization parameter (C) and the gamma coefficient are set to 2000 and 10,
respectively. For LR parameters, the penalty multi-class and regularization are set to L2 and
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Fig. 4.12 EAR calculated for ND participant (P23) using Dlib (orange) and OpenFace (blue).

2000, respectively. For kNN, the number of neighbours is 8 with uniform as weight. For
DT, the minimum numbers of splits are set to 3 and 11 for 3-class and 2-class classification,
respectively.

The IVA18 data used in this chapter consists of 18 participants (ND: 6, MCI: 6, and
FMD: 6). Thus, for evaluation, participant-independent, stratified CV with six-folds is used
because CV is a common technique for evaluating machine learning models and showing the
reliability of the results for small datasets (Murphy, 2012). In each fold, three participants
are held out as a test set, and all the remaining participants are used in the training set.
Each fold is split to maintain the sample distribution in each class. The confusion matrix
shows the prediction outcomes and is usually utilised to analyse the classification results
because it helps to visualise its outcomes. The performance for each classifier is the average
performance across all the test sets. Since the data is balanced, the accuracy metric is used.
For more information about the classifiers and evaluation metrics, see Section 2.5.

4.3 Experimental Results

4.3.1 Baseline System

The single automatic threshold approach is first evaluated on a standard dataset (ZJU).
Multiple annotators, following different guidelines (e.g., ignoring any blink at the beginning
or the end of the videos and counting double blinks as one blink), have annotated this dataset
in order to provide a ground truth annotation of blinks, as shown in Table 4.1. For the work
in this thesis, the annotation and video files are visually inspected. Fogelton and Benesova
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(2016) claimed that the total number of blinks in this dataset is 261, but a further 4 blinks (at
the beginnings and ends of files) are added to this annotation, resulting in a total of 265 blinks.
The observed difference in the number of blinks is because the annotators of Fogelton and
Benesova (2016) have excluded any blinks lying at the beginnings and ends of the video files.
In this chapter, the blinks at the videos’ beginnings and ends are counted as two different
blinks. Moreover, double blinks are counted as two different blinks, following the approach
in (Drutarovsky and Fogelton, 2014; Fogelton and Benesova, 2016). In eye blink detection,
the average of both eyes is taken. For example, Radlak et al. (2015) detected eye blinks using
only the right eye of the participant on the ZJU dataset.

The baseline score is calculated based on 79 of the 80 videos. One video was omitted
due to the face angle of one of the participants being upward, and thus Dlib was unable
to track the facial landmarks from the frames. The performance of the single threshold is
measured using precision, recall, and f-measure metrics following related work (Drutarovsky
and Fogelton, 2014; Fogelton and Benesova, 2016, 2018). Table 4.1 shows the results.
The average f-measure is 92.5%, which means that the baseline approach can detect blinks
correctly. Even though the single threshold approach is very simple, the obtained result is
considered very good. A possible explanation for this might be that this dataset does not
include head movement and eye occlusion.

Comparison to Related Work

Previously, researchers have used the same ZJU dataset for their evaluation. Unfortunately,
often, their procedures for evaluation are either not described well, or the source code is not
available to allow direct comparison. Even though their evaluation procedures are different,
Table 4.1 presents an approximate comparison using precision, recall and f-measure. It can
be seen that the baseline approach gave the highest recall score, which means that it is able
to detect each genuine blink with a score of 100%.

Table 4.1 The performance of eye blink detection on ZJU for the baseline approach compared
to related work. GT: ground-truth, DB: detected blink, TP: true positive, FP: false positive,
and FN: false negative.

Study Precision Recall F-measure GT DB TP FP FN

Soukupová and Cech (2016) 99.2% 97.3% 95.2% 261 256 254 2 7
Anas et al. (2017) 98.0% 89.8% 93.7% 213 193 190 3 23

Baseline 97.8% 100% 92.5% 265 271 265 6 0

Several previous studies only used the f-measure metric to measure the performance
of their experiments. Table 4.2 presents a comparison of eye blink detection performance
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between the baseline approach and previously published approaches on the ZJU dataset.
Although the achieved performance is less than the f-measure achieved in previous work, it
is still comparable to theirs because of the simplicity of the approach that does not include
advanced techniques (i.e., neural networks).

Table 4.2 The performance of EBR detection on ZJU (F-measure) for the baseline approach
compared to related work (WGD: weighted gradient descriptor, ZCDA: zero-crossing detec-
tion algorithm, SD: standard deviation, and NN: neural network).

Study F-measure Approach

Radlak and Smolka (2013) 99.2% WGD + ZCDA
Soukupová and Cech (2016) 95.2% SVM

Anas et al. (2017) 93.7% NN
Fogelton and Benesova (2018) 97.6% NN

Baseline 92.5% Mean + SD

As stated previously, the motivation behind constructing the single threshold approach
as a baseline is to find a simple approach with sufficient performance to compare it with
the MTs approach. The performance of the single threshold on ZJU is 92.5%, which is
considered acceptable performance to be used on the IVA18 data as a baseline system.

Applying the Baseline Approach to the IVA18 Dataset

The baseline approach is applied to the IVA18 dataset to differentiate the ND, MCI and FMD
classes. To accomplish this, three types of SM are explored as mentioned in Section 4.2.4.
The experimental results for the different classification problems using the baseline and MTs
approaches are shown in Tables 4.3 and 4.4, respectively. Differentiating two groups, such
as the ND/MCI and MCI/FMD, using the baseline approach gives only results close to the
chance level, 58% and 50%, respectively. These two tasks are considered very challenging
even in the clinic (Wakefield et al., 2018). For the three-way problem, using Dlib landmarks
achieved an accuracy of 61% compared with 50% using OpenFace landmarks. It can be seen
that using different types of SM does not show a significant difference in the performance of
the classifiers.

4.3.2 The MTs Approach

The performance of the proposed MTs approach is investigated on multi-class classifications:
ND/MCI/FMD, ND/MCI, ND/FMD and MCI/FMD, as shown in Table 4.4. The performance
obtained using the MTs approach achieved the highest accuracy in the three-way classification



92 Eye Blink Based Detection of Cognitive Impairment

Table 4.3 Classification accuracy in percentages (%) when using the baseline threshold
approach with different classifiers: (Linear−SV M1,rb f−SV M2,kNN3,LR4, and DT 5) for
IVA data.

SM Technique ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

Type 1
Dlib 564 581,4 751,3,4 831,2,4

OpenFace 504 754 751,2,4 501,4,5

Type 2
Dlib 615 584 833 831,2,3,4

OpenFace 503,4 674 752,4 501,3,4,5

Type 3
Dlib 563,5 501,2,3,4,5 833 831,3,4

OpenFace 504 754 751,2,3,4 501,3,4,5

compared to the baseline system using Dlib and OpenFace landmarks with 89% and 78%,
respectively. For Dlib landmarks, types 2 and 3 of the SM and 70 threshold features give
the best performance with an accuracy of 89%, 83%, 100%, and 92% for ND/MCI/FMD,
ND/MCI, ND/FMD and MCI/FMD classes using L−SV M1. These results are significantly
better than the baseline results. A significant difference is found between the baseline and
the MTs approach with (p<0.05).

For OpenFace landmarks, type 3 of the SM and 700 features obtained the highest accuracy
with 72%, 100%, 92%, and 92% for ND/MCI/FMD, ND/MCI, ND/FMD and MCI/FMD
classes, respectively, using DT 5. From table 4.4, it can be seen that using SD to remove the
outliers helps to improve only the three-way problem with 78% accuracy using DT 5 and 7
features for each participant. The accuracy of the classifiers is significantly improved from
the baseline results, and the difference between the two approaches’ results is considered
statistically significant with (p<0.05). The MTs methodology is intuitively simple, but it
provides efficient results.

The results show the importance of EBR on its own as a feature to distinguish between
CI types. Prior studies have utilised visual and audio-visual features for detecting CI from
healthy people. For example, Tanaka et al. (2019) achieved 94% as accuracy by employing
only the visual modality. In addition, Tanaka et al. (2016) and Tanaka et al. (2017) obtained
93% accuracy using SVM and 82% using LR in CI detection after combining language,
speech, and visual features. Although their results are good, their works show limitations,
such as limited data size, the data being recorded in a lab-controlled environment, and the
participants being limited to only Japanese people. Unlike prior studies that considered ND
and MCI as one group, the research described in this thesis focuses on differentiating among
people with ND, MCI and FMD. Even though this work used a small dataset, the data used
includes in-the-wild scenarios.
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Table 4.4 Classification accuracy in percentages (%) when using the novel MTs approach
using different classifiers: (Linear−SV M1,rb f −SV M2,kNN3,LR4, and DT 5) for IVA data.

SM Technique Threshold No. ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

Type 1

Dlib 7 581,3,4 584 831,4 831

70 721 671 924,5 924

700 721 671 924 831,4

OpenFace 7 333 503 502,3 421,2,3,4

70 501,3,4 751,4 754 501,2,3,4

700 561 582,3,5 833 921

OpenFace with SD 7 441,4 581,2,3 831,3 755

70 561 583 833 921

700 441,2,3 583 833 925

Type 2

Dlib 7 674 672 921 831

70 891 831 1001,5 921,4

700 784 754,5 1005 924

OpenFace 7 333 503,4 502,3,4 421,3,4

70 441,2,4 671,3,4 751,3,4 501,2,3,4

700 503 503,4,5 831,4 671,3,5

OpenFace with SD 7 503,5 503,4 832,4 675

70 503,4 585 8324 925

700 614 503 832 925

Type 3
Dlib 70 891 831 1001,5 921,4

OpenFace 700 725 1005 921 925

OpenFace with SD 7 785 674 831,2 921

4.3.3 Analysis

As explained above, this study compares the performance of two different facial landmark
tracking techniques to handle data recorded in the wild. The findings of this work show
that the performance of CI detection was better when using Dlib landmarks than OpenFace
landmarks. This result can be explained by the fact that Dlib only detects frontal and semi-
frontal frames and removes noisy frames, whereas OpenFace detects all the frames. As
previously mentioned, the high values of the EAR could be an indication of head movements,
turns, or any one of the challenges described in Chapter 3. The results of this study show that
removing those frames using an outlier detection approach (OpenFace with SD) improves
only the three-way classification problem, which is still less than the achieved accuracy using
Dlib.

In order to understand more about the performance of the classifiers, a confusion matrix
is used. Figure 4.13 shows that when using both techniques (Dlib and Openface), ND and
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FMD are predicted correctly. However, some MCI participants appeared to be predicted
as ND when OpenFace was used. These results indicate that MCI is the most challenging
class to classify from ND in two-way and three-way classification problems. A possible
explanation for this might be that people with MCI experience an increase in EBR related to
memory problems, and this increase may indicate a risk of progression from MCI to ND,
which is in line with the results of a previous study (Ladas et al., 2014).

Fig. 4.13 Confusion matrix for the three-way classification (ND vs. MCI vs. FMD) using
DLib and OpenFace (rows: true labels and columns=predicted labels).

4.4 Summary

This chapter has described a research that was undertaken to detect dementia and related
conditions by designing an approach for calculating EBR using in-the-wild data. Given the
challenge of data recorded in the wild, experiments were carried out to investigate: 1) the
possibility of calculating EBR using this kind of data and 2) the feasibility of this approach
for automatically classifying CI and related conditions.

This research has presented a novel MTs approach for EBR data that could be used for
CI detection. This investigation used two different facial landmark techniques – Dlib and
OpenFace – to explore their performance on the kind of data recorded in the wild. The results
confirmed that Dlib landmarks gave better results than Openface landmarks, especially in
three-way classification, with an accuracy of 89% using Dlib and 78% using OpenFace. The
findings have shown the significance of EBR as a cue to distinguish ND, MCI, and FMD from
each other. The reason behind these results is that Dlib only detects facial landmarks when
the face is frontal or semi-frontal, otherwise, it loses track of these landmarks, which is the



4.4 Summary 95

opposite of OpenFace, which detects all the frames. According to these results, we can infer
that using the frames in which the face is facing the camera could give better performance
than also including the noisy frames.

The most important limitation of this study lies in the fact that the size of the dataset was
limited. This issue is common in any study that involves human-participant data (Tanaka
et al., 2017, 2016). However, collecting human participants with CI and related conditions
is more challenging than healthy individuals’ data. Further work needs to be carried out
in order to validate the obtained results on a larger dataset, which will be described in the
following chapter. After that, more visual features will be investigated for the IVA18 dataset
and then evaluated on a larger dataset.





Chapter 5

Exploring the Robustness of the MTs
Approach on the IVA52 Dataset

“The most beautiful people we have known are those who have
known defeat, known suffering, known struggle, known loss,

and have found their way out of the depths. These persons have
an appreciation, sensitivity, and understanding of life that fills

them with compassion, gentleness, and deep loving concern.
Beautiful people do not just happen.”

— Elisabeth Kübler-Ross

5.1 Introduction

The previous chapter developed a robust multiple thresholds (MTs) approach to extract
the eye blink rate (EBR) and overcome the issues involved in in-the-wild data ( IVA18),
as described in Section 3.5. This chapter evaluates the methodology of the EBR feature
extraction on a larger dataset, referred to as IVA52. This dataset consists of both the IVA18

dataset, which was used previously in Chapter 4, and the IVA34 dataset, which includes new
additional recordings of participants with neurodegenerative disorder (ND), mild cognitive
impairment (MCI), functional memory disorder (FMD) and healthy controls (HC), described
in Section 3.5. The IVA34 dataset varies in a number of ways from IVA18. In particular,
it is recorded in a number of different environments, such as clinics and homes, using
different devices (e.g., laptops and smartphones). These two datasets are combined due to
the small number of participants in the three groups in the IVA34. This evaluation, therefore,
involves assessing the extent to which the performance of this methodology is affected by
increasing the data size and variations in the recording environments and the devices used.
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The participants’ behaviour in the IVA34 dataset is first analysed and then compared with
participants’ behaviour in the IVA18 dataset in terms of the EBR feature. This chapter also
examines additional classification tasks between different groups and combinations of groups
in order to allow direct comparison with related work (Tanaka et al., 2019, 2017, 2016).

The chapter is organised into six main sections. Section 5.2 covers the analysis of the
calculated eye aspect ratio (EAR). Section 5.3 investigates the use of the MTs approach
on the IVA52 dataset. Section 5.4 shows the results achieved using the MTs approach.
Section 5.5 presents the different improvements to the MTs approach to address the increased
variation in the IVA52 dataset. Section 5.6 demonstrates the results of several experiments
on the MTs approach and for different classification tasks. Finally, Section 5.7 contains a
discussion and a conclusion.

5.2 Analysing the Calculated EAR

In this chapter, the IVA52 dataset is used, which is described in detail in Chapter 3. Prior to
the facial landmarks tracking, the dataset is pre-processed, as described in Chapter 4. Then,
the EAR is calculated for each frame using the eyes’ landmarks. This section provides an
analysis of the participants’ behaviour in the new IVA34 dataset in terms of the EAR and then
compares it with the IVA18 dataset.

5.2.1 General Behaviour of the IVA34 Participants

Chapter 3 outlined the main in-the-wild conditions for the IVA34 dataset and compared the
difference in the conditions when the videos were recorded at home or in the clinic. Figure 5.1
shows the EAR calculated for some participants in the IVA34 who recorded their session in
the clinic and at home using laptop and smartphone devices. The rest of the participants’
figures are presented in Appendix C. The figure shows extremely high values, which are
mainly the result of the variations in the recording environments (e.g., clinic and home), the
variation in the device used (e.g., laptop and smartphone), and many challenges independent
of the recording environment, such as the participants’ behaviour during the session, which
are explained in Chapter 3. It can be seen that the bottom figure, which represents a video
recorded at home using a smartphone, shows many high values compared with the upper
figures due to issues related to the use of this kind of device. An example issue is participants
holding their phones at a lower angle from their face, which makes their eyes look partly
closed. This difference may affect the calculation of the EAR from those calculated using
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laptop-recorded data. These challenges lead to false calculations in the eyes’ landmarks and
loss of tracking of the facial landmarks.
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Fig. 5.1 An example of the calculated EAR values for different participants who made the
recording in a clinic and at home.

5.2.2 Comparing IVA34 with IVA18

To analyse the IVA34 further and understand the difference between this dataset and the IVA18

dataset, the EBR feature is calculated for each participant based on the EAR. The results are
shown in Figures 5.2 and 5.4 as a histogram presenting the EBR feature on the x-axis and
the frequency on the y-axis. These figures show all the participants across the two datasets
( IVA18 on the left and IVA34 on the right) for each of the diagnostic labels: ND, MCI, FMD
and HC.

Figure 5.2 shows that the three groups of the IVA34 dataset (right column) have a similar
pattern to the extracted EBR features as the HC group in Figure 5.4. That is to say, most
of the features are skewed to the left and lie on the zero value on the x-axis, indicating
that their EAR range is small. For instance, the calculated EAR values of participants P39
and P40 are shown in Figure 5.3 and can be compared with the extracted EBR features in
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Figure 5.2. Figure 5.3 shows that the range of the EAR is very small. This indicates that
the eyes of the participants appear very small in the video in which the EAR is calculated.
When the MTs approach is applied to them, based on the minimum and maximum over all
participants (minimum = 0 and maximum = 20), there would be thresholds resulting in zero
or very close to zero values because their EAR ranges from 0.21 to 0.39 and 0.20 to above
2.0. Consequently, only two to three thresholds would give meaningful results for the EBR
values that are not zero or close to zero when the number of thresholds is 7. However, when
the number of thresholds is 70 or 700, the number of features with zero or very close to zero
values is going to increase.

Comparing the different diagnostic classes, generally, the FMD class shows the highest
number of zeros, whereas ND shows the lowest number of zeros. This may have been caused
by the participants’ movements during the session, which causes a lot of noise in the signal.
The MCI shows more zero values than ND but fewer zero values than FMD. In terms of
comparing IVA34 with IVA18, the IVA34 participants P39 and P40 show higher frequency
values on zero or close to zero from participants of IVA18 with the same class. One reason for
this is suggested above, which is related to the observed small eye regions of the participant,
and another reason is the low resolution (poor video quality). P01 from IVA18 displays the
same issues (low resolution, small eye region), which is why high counts are seen on zero
value on the x-axis of the histogram. In addition, having high counts on zero or close to zero
from MCI participants of IVA34 more than IVA18 with the same class is observed. The same
observation is seen for the ND class from both IVA18 and IVA34. These observations indicate
that the range of EAR values for the IVA34 participants is smaller than the IVA18 data.
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Fig. 5.2 Histogram plots show the data distribution based on the class from IVA18 (left
column) and IVA34 (right column) data recorded in different recording environments using
laptop and smartphone (Part 1).
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Fig. 5.3 The calculated EAR for two participants with FMD from IVA34. The horizontal
lines in the plots represent the calculated thresholds for these participants.
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Fig. 5.4 Histogram plots showing the data distribution of healthy control group from IVA34
data recorded in different recording environments using laptop and smartphone (Part 2).
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Figure 5.5 shows the mean (blue) and the 3rd SD (orange) of each participant. Notably,
the mean and the SD of participants in IVA18 are higher than in IVA34, which confirms
the previous observations that the IVA34 participants have a lower range of the EAR than
the participants in IVA18. Taking all the above evidence together, the proposed approach
that worked for IVA18 (see Chapter 4) cannot achieve a high-performance on IVA34 due to
the new challenges. This requires improvements to the MTs approach to overcome these
challenges.
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Fig. 5.5 The mean and the 3rd SD of every participant in both datasets, IVA18 (left) and IVA34
(right).

5.3 Investigating the MTs Approach

This section focuses on evaluating the MTs approach on a larger dataset. As stated in Chap-
ter 4, the MTs approach generates many thresholds using the minimum and maximum EAR
over all the participants (OAP). However, in this chapter, the definition of MTs is evolved to
become participant-dependent (PD) due to the issues mentioned above related to the calcu-
lation of the EAR in the IVA34 dataset. It calculates the thresholds based on the minimum
and maximum for each participant, which will be explained later in Section 5.5. Throughout
this chapter, the abbreviation MTs-OAP will be used to refer to multiple thresholds using
the OAP approach and the abbreviation MTs-PD will be used to refer to multiple thresholds
using the PD approach.

The IVA34 data includes a small number of participants in the three categories, 2 partic-
ipants with FMD, 4 with MCI, 5 with ND and the rest are HC. Therefore, the IVA34 data
is combined with IVA18 to experiment with a large dataset ( IVA52). Three main sets of
experiments are carried out to explore the performance of the MTs-OAP approach using
the combined dataset IVA52. Firstly, a three-way (ND, MCI and FMD) classification task is
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conducted on the IVA52 data to compare its results directly with those of the IVA18 dataset
results. Then, two-way classification tasks are conducted by dividing the data into an HC
group and memory problems (MP) group, which are the ND, MCI and FMD classes. A final
set of experiments divides the data into a dementia (D) group, containing the ND and MCI
classes, and a Non-D group, including the FMD and HC classes.

5.4 Experiment: MTs-OAP Approach

This section describes the testing of the performance of the MTs-OAP approach in classifying
memory-related problems (MP) and HC from each other. A discussion of the purpose, data,
classifiers used and results obtained is then presented.

5.4.1 Feature Extraction and Classifiers

In this chapter, the MTs-OAP approach with type 2 of the state machine (SM), which is
described in Chapter 4, is used to detect the EBR to enable a faster run-time and the many
experiments needed to test the system performance on the MTs-OAP approach. Firstly,
the MTs-OAP is tested in a three-way classification (ND, MCI, and FMD). The same four
classifiers as were used when testing IVA18 performance in the previous chapter are used
again here: SVM with linear kernel, logistic regression (LR), k-nearest neighbour (KNN)
with Uniform weight, and decision trees (DT). Using the same classification task and the
same classifiers allows a fair and direct comparison between the IVA18 and the combined
data IVA52 results. The IVA18 data includes 6 with ND, 6 with MCI, and 6 with FMD,
and the combined data IVA52 includes 11 with ND, 10 with MCI, 8 with FMD and 23
HC. The classifiers are trained using the Python Scikit-learn package. The classification
is participant-independent-stratified k-fold cross-validation. Some hyper-parameter values
are optimised using a grid search, and the rest are set to their default values. For each
classifier, four metrics are computed, accuracy, recall, precision and F-measure. Details of
the calculation of these metrics can be found in Section 2.5.

5.4.2 Results

Table 5.1 and Figure 5.6 present the classification results for the IVA18 and the combined
data IVA52 with DT. The results are above the chance level and show that the IVA18 results
outperform the IVA52 dataset results. The IVA18 gave the best results using 700 thresholds
with 61% accuracy, while the combined data needed a smaller number of thresholds to
achieve the best performance with 52% accuracy. The reason behind this result can be the



5.4 Experiment: MTs-OAP Approach 105

imbalanced data in the three groups. From the confusion matrix, the combined data helps to
improve only the prediction of the ND class, whereas the predictions of the FMD and MCI
are reduced. Most of the incorrectly classified labels are for MCI, mostly as ND. This shows
that the MCI group can be challenging to distinguish from the ND group, even in the clinic.
This may indicate an issue related to the MTs-OAP approach. To confirm this assumption,
two more experiments are conducted.

Table 5.1 Classification results for the three-way problem when the MTs-OAP approach with
SD is used on IVA52 and compared to the results obtained on IVA18 using type 2 of the SM.

Data No. of thresholds Accuracy Precision Recall F-measure

IVA18 700 61% 63% 61% 61%

IVA52 70 52% 49% 51% 47%

``````````````̀Normalised?
Dataset

IVA18 IVA52

Non-normalised

Normalised

Fig. 5.6 Confusion matrix for the three-way classification between ND, MCI and FMD using
type 2 of the SM and 70 thresholds to compare the predictions between IVA18 in (a) and
IVA52 in (b). (rows: true labels and columns: classified labels).

Next, two two-way classification tasks are investigated since the IVA52 data includes
many HC participants. The first two-way classification task involves dividing the data into
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two groups: HC and MP. The experiment is carried out on a different number of thresholds,
and the highest results are obtained using the KNN, as shown in Table 5.2 and depicted in
Figure 5.7. The metrics in the table may, at first glance, be considered very good. However,
when these results are analysed using the confusion matrix shown in Figure 5.7, they show
that the incorrectly classified participants from the MP group are all new participants from
the IVA34 dataset (2 FMD, 4 MCI, and 5 ND).

Table 5.2 Classification results for the two-way problem (HC vs. MP) using the MTs-OAP
approach on IVA52 with type 2 of the SM (OAP:over all the participants, MP: includes ND,
MCI and FMD).

No. of thresholds Accuracy Precision Recall F-measure

7 80% 80% 80% 79%

70 79% 83% 79% 77%

700 80% 84% 81% 79%

(a) (b) (c)

Fig. 5.7 Confusion matrix for the two-way classification between HC and MP using a different
number of features or thresholds (a) 7 features, (b) 70 features, and (c) 700 features. (rows:
true labels and columns: classified labels)

The second two-way classification task investigated is performed to classify people with
D from Non-D people. The data is divided into D and Non-D. The D group consists of two
groups: MCI:10 and ND:11. The Non-D group includes HC:23 and FMD:8. Table 5.3 and
Figure 5.8 show the classification results for the different numbers of thresholds. The KNN
classifier achieves the highest scores in all metrics using 70 and 700 features. Like the first
sub-experiment, the incorrectly classified labels of the D are from the new data (4 with MCI
and 5 with ND). However, the misclassified labels from the HC group are from the IVA18

data (3 with FMD).
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These two experiments confirm the assumption from the three-way classification task
result and the previously mentioned observation when the mean and the SD of the EAR for
each participant in IVA18 and IVA34 individually were calculated and exhibited a difference
between the two datasets. The difference between them is that the EAR’s mean and SD
for the IVA18 participants are higher than those of the IVA34 participants, and that is why
participants with MP are misclassified every time as HC. The low mean and SD of the IVA34

participants’ EAR are a result of small pixels occupying the eye region and some challenges
mentioned above. Consequently, several issues appeared, such as 1) the prediction of the MCI
class from the three-way classification and 2) the incorrect prediction for all the new data
from the two-way classifications. For that reason, the MTs approach needs to be improved to
overcome the new challenges from the new data. The next section explores and discusses the
improvements in the MTs approach.

Table 5.3 Classification results of the two-way problem (Non-D vs. D) using the MTs-OAP
approach on IVA52 with type 2 of the SM.

No. of thresholds Accuracy Precision Recall F-measure

7 75% 75% 72% 73%

70 78% 79% 74% 75%

700 78% 79% 74% 75%

(a) (b) (c)

Fig. 5.8 Confusion matrix for the two-way classification between D and Non-D using a
different number of features or thresholds, (a) 7 features, (b) 70 features and (c) 700 features.
(rows: true labels, columns: classified labels, D: ND/MCI and Non-D: HC/FMD)
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5.5 Investigating the MTs-PD Approach

The MTs-PD approach described above is developed to overcome the new challenges by
addressing the challenges of having a very small range of EAR values and making the
threshold calculation PD rather than taking the minimum and maximum EAR OAP. As stated
previously, the IVA52 data includes many challenges that resulted in many extremely high
values in the EAR. In addition, calculating the mean and the 3rd SD of each participant using
the EAR showed a significant difference between the IVA18 and the IVA34 datasets. Another
approach for determining the upper boundary (UB) is, therefore, explored: the interquartile
range (IQR), which will be described in the following section. A comparison between the
UB of the IQR approach and the 3rd SD approach is shown in Figure 5.9 for the individual
participants in the IVA18 and IVA34 datasets.

Considering the above-mentioned problems and the variation in the recording environ-
ments and devices used in the dataset, three experiment setups are conducted, as shown
in Figure 5.10. Experiment setup 1 measures the effect of the SD and IQR approaches
in removing the outliers. Then, the performance is measured on two-way and three-way
classification tasks using the IVA52 dataset, as in the previous section. Experiment setup 2
measures the effect of the variability according to the recording environment. This involves
splitting the HC group into different sets based on the challenges, starting with the videos
that are close to a clinic recording, then videos recorded at home using a laptop with more
challenges and ending with videos recorded at home using smartphones. The performance is
measured on two-way classification tasks: MP vs. HC and D vs. non-D. Finally, experiment
setup 3 is carried out on a combination of two-way and four-way classification tasks.
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Fig. 5.9 Comparison between the 3rd SD and the UB of the IQR using both of them on both
datasets; IVA18 (left) and IVA34 (right).



5.6 Experiment: MTs-PD Approach 109

Experimental Setups: MTs-PD Approach

Purpose

Outliers
Detection Setup

Groups

Max-Min
SD (LB-UB)
SD (Min-UB)

IQR

ND vs. MCI vs. FMD
MP vs. HC

ND/MCI vs. FMD/HC

SD (Min-UB)
IQR

MP vs. HC
ND/MCI vs. FMD/HC

SD (Min-UB)
IQR

ND vs. MCI vs. FMD
ND vs. MCI
ND vs. FMD
MCI vs. FMD
ND vs. HC
MCI vs. HC
FMD vs. HC

Experiment Setup 1
Measuring the Performance

of the SD and IQR

Experiment Setup 2
Investigates the Effect of

the Recording Environment
Variability

Experiment Setup 3
Four-way and Two-way

Classification tasks

Fig. 5.10 The three different experimental setups using the MTs-PD approach.

5.6 Experiment: MTs-PD Approach

5.6.1 Feature Extraction and Classifiers

The MTs-PD approach is investigated using three different setups to calculate the thresholds,
which result in different patterns of the EBR feature. These different setups are described in
the following section with the results obtained. The performance of the same four classifiers
and metrics used in the previous experiment are utilised again. Only one classifier result
is shown here to enable a direct comparison with the previous experimental setup. The
hyper-parameters are optimised using a grid search; the rest are set to their default values.
Participant-independent-stratified K-fold cross-validation is used.

5.6.2 Results

Experiments are carried out based on different setups: Min-Max, SD and IQR, which are
explained as follows:

• Min-Max setup: This takes the minimum and maximum values of the EAR for each
participant. However, taking the whole signal into account does not show encouraging
results, as shown in Tables 5.4, 5.5, and 5.6, even in the IVA18 results presented in
Chapter 4. Hence, an approach to determine the appropriate data UB is required to
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ignore the extreme values as outliers. The most common approaches to finding the
outliers, which are used in several previous studies are based on the standard deviation
(SD) (Yang et al., 2018) and the IQR (Rousseeuw and Croux, 1993). These approaches
are used here to find the UB of this data.

• SD (LB-UB) setup: this calculates the lower boundary (LB) and UB values of the
EAR as mean +/- three times the SD (Simmons et al., 2011). The general equations for
calculating the threshold are presented in Equations 5.1 and 5.2. Other studies used
more aggressive choices by using mean +/- 2 or 2.5 times SD, indicating an outlier
level of 0.62% and 2.28%.

LB = Mean−a∗SD (5.1)

UB = Mean+a∗SD (5.2)

The mean and the SD are calculated to determine the outlier values and a is a control
parameter determined by the user. When the value is small, more values will be
included in the range of the LB and UB. The most common value of a is 3 because
the number of outliers is expected to be small (Yang et al., 2019). This approach also
did not show good results, as can be seen in Tables 5.4, because the LB calculation
included values that were lower than the needed range. For example, if the minimum
value of EAR for a particular participant equals 0.2, the LB value for this participant,
taking the mean into account, could be equal to or less than 0.0, which will generate
thresholds that do not include useful information for calculating, and their EBR values
are zeros.

• SD (Min-UB) setup: this only differs from the previous set-up in calculating the
LB as the minimum EAR value. This change helps to give a better performance in
the two-way classification in Table 5.5 that distinguishes people with MP from HC.
However, Table 5.4 shows no improvements in the results obtained from the three-way
classification task, whereas the performance in classifying the D class from the Non-D
class is reduced, as shown in Table 5.6. Therefore, another approach to determine the
UB is employed to enhance the results.

• IQR setup: this is defined as the difference between the 75th and 25th percentiles of
the data. These values are called Q1 and Q3, respectively. The IQR approach is used
because it is very robust in detecting outliers and is not sensitive to high values. The
IQR equation to compute the threshold is:

IQR = Q3−Q1 (5.3)
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UB = Q3+b∗ IQR (5.4)

The most common value of b is 1.5 (Simmons et al., 2011). When the performance
is tested using the IQR to determine the UB, the three-way classification results are
improved, as can be seen in Table 5.4. In addition, the two-way classification that
differentiates people with ND and MCI from HC and FMD shows better performance
than using SD (see Table 5.6). However, the performance in classifying HC from MP
decreases compared to the performance obtained using the SD.

It was assumed that IQR would be the feasible solution that would give the highest
performance because the approach is insensitive to extreme values and could capture only the
useful information from the EAR values and result in a very good performance. However, the
results contradict this assumption for some classification tasks. In fact, it appears that extreme
values play a key role in the classification. In other words, the extreme values may show a
pattern that helps to differentiate these classes from each other more than when the range only
includes the main signal. More investigation is carried out for these different setups because
the IQR is not concluded to be a feasible method to use for the next step. Accordingly, two
sub-experiments are performed to analyse the previous results and determine which method
for determining the UB could be used for the different classification tasks. Experiment setup
1 measures the performance of the SD and IQR approaches by varying their factors a and b.
Experiment setup 2 measures the effect of the variability of the recording environment by
reducing the number of participants in the HC group to include only the good data for which
recording settings are close to the IVA18 data.

Experiment Setup 1: Measuring the Performance of the SD and IQR Approaches

In this experiment, a range of factors for both approaches are explored to show how they will
perform. The varied range of the factor for both approaches, SD and IQR, is investigated via
three classification tasks: a three-way problem (ND vs. MCI vs. FMD) and two two-way
problems (HC vs. MP) and (HC/FMD vs. ND/MCI). The range is from 1 to 3 and is
increased by increments of 0.5 (e.g., 1, 1.5, 2, 2.5, 3). Four metrics are calculated from each
classification task, and the same classifier used previously for each classification task is again
used in this experiment to enable a fair and direct comparison.

Table 5.7 presents the results of varying the factor range of the SD and IQR approaches
in the three-way classification. The results indicate that using IQR to determine the UB helps
to improve the system’s performance better than SD. However, SD shows no improvement
by varying the factor, which is reflected in the confusion matrices shown in Figure 5.11. The
highest results are obtained when factor b equals 1.5, 2.5 and 3. The difference between the
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Table 5.4 Classification results of the three-way problem (ND vs. MCI vs. FMD) when
the MTs-PD approach is applied to IVA52 with type 2 of the SM and linear support vector
machine (NoT: number of thresholds).

NoT Approach Accuracy Precision Recall F-Measure

7

Min-Max 31% 31% 31% 35%
SD (LB-UB) 38% 33% 38% 36%
SD (Min-UB) 38% 33% 38% 36%

IQR 49% 64% 54% 47%

70

Min-Max 53% 51% 52% 51%
SD (LB-UB) 45% 45% 45% 45%
SD (Min-UB) 44% 49% 47% 49%

IQR 46% 47% 48% 47%

700

Min-Max 52% 51% 52% 51%
SD (LB-UB) 55% 55% 55% 55%
SD (Min-UB) 44% 47% 45% 49%

IQR 49% 50% 52% 51%

Table 5.5 Classification results of the two-way problem (HC vs. MP) when the MTs-PD
approach is applied to IVA52 with type 2 of the SM and linear support vector machine (NoT:
number of thresholds).

NoT Approach Accuracy Precision Recall F-Measure

7

Min-Max 69% 69% 69% 68%
SD (LB-UB) 75% 76% 75% 74%
SD (Min-UB) 74% 71% 71% 71%

IQR 66% 66% 65% 65%

70

Min-Max 69% 69% 69% 69%
SD (LB-UB) 74% 74% 71% 71%
SD (Min-UB) 78% 76% 75% 75%

IQR 68% 67% 67% 67%

700

Min-Max 69% 69% 69% 68%
SD (LB-UB) 73% 74% 71% 71%
SD (Min-UB) 76% 73% 73% 73%

IQR 68% 67% 67% 67%

IQR and SD results is significant. Table 5.9 and Figure 5.13 also show that the IQR approach
has a better performance than the SD approach, especially at factor b = 2, but no significant
difference in the results between the IQR and SD.
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Table 5.6 Classification results of the two-way problem (D vs. Non-D) when the MTs-PD
approach is applied to IVA52 with type 2 of the SM and linear support vector machine (NoT:
number of thresholds).

NoT Approach Accuracy Precision Recall F-Measure

7

Min-MAx 63% 63% 62% 62%
SD (LB-UB) 63% 67% 65% 60%
SD (Min-UB) 58% 60% 60% 75%

IQR 58% 60% 60% 75%

70

Min-MAx 74% 74% 73% 71%
SD (LB-UB) 71% 76% 71% 67%
SD (Min-UB) 64% 65% 65% 63%

IQR 71% 73% 73% 72%

700

Min-MAx 78% 77% 77% 77%
SD (LB-UB) 79% 79% 79% 79%
SD (Min-UB) 64% 65% 65% 63%

IQR 67% 67% 67% 67%

On the other hand, the classification task HC vs. MP shows that the SD approach gives
a better performance than IQR for all the variations, which is the opposite result to that of
the two classification task mentioned above (see Table 5.8 and Figure 5.12). From the table
and the confusion matrix, it can be seen that the SD gives the highest performance when it
equals 1.5. The difference between the results obtained using SD and IQR is considered to
be statistically significant.

From the results obtained above, more analysis is needed by investigating the confusion
matrices for one of the previous classification tasks to understand the difference between the
performances obtained. Consequently, the HC vs. MP classification task is chosen because it
includes all groups, and there is a significant difference between the IQR and SD results even
when their factors are varied.

Figure 5.12 shows that the common misclassified labels are not from a specific dataset
(i.e., IVA18 or IVA34). The incorrect prediction between MP and HC is due to the variation
in the recording environments and the devices used. These variations lead to high variations
in the range of the EAR calculations that could affect the detection of participants with MP
from HC. Interestingly, the HC participants are misclassified when the factor of the SD
increases, while the MP participants are correctly classified. For instance, MP participants
are classified incorrectly when the factor of the SD is a=1, although HC participants are
classified correctly.
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Table 5.7 Classification results of the three-way problem (ND vs. MCI vs. FMD) using a
range of values for SD and IQR to find the factor with the highest performance score. These
approaches are tested on 70 thresholds.

Factor Approach Accuracy Precision Recall F-Measure

1
SD (Min-UB) 44% 31% 40% 32%

IQR 49% 51% 51% 51%

1.5
SD (Min-UB) 44% 31% 40% 32%

IQR 53% 58% 53% 52%

2
SD (Min-UB) 44% 31% 40% 32%

IQR 50% 51% 48% 45%

2.5
SD (Min-UB) 44% 31% 40% 32%

IQR 53% 58% 53% 52%

3
SD (Min-UB) 44% 31% 40% 32%

IQR 53% 58% 53% 52%

XXXXXXXXXXXXApproach
Factor

1 1.5 2 2.5 3

SD

IQR

Fig. 5.11 The confusion matrices for the three-way classification (ND vs. MCI vs. FMD)
using two approaches to detect the UB with a range of factors applied to 70 thresholds (rows:
true labels and columns: classified labels).

Experiment Setup 2: Investigates the Effect of Variability in the Recording-Environments

In this experiment, an investigation is carried out to explore the effect of including a subset
of HC participants in a clinic-like environment and increasing the number of HC participants
by adding more data to include more in-the-wild data. The HC group is divided into 5 sets:
set 1 includes 9 participants of HC who were recorded at a clinic or at home that is close in
terms of the recording environment to clinic recordings, set 2 includes an additional 5 HC
participants who used a laptop, set 3 is the combination of set 2 with 4 more HC participants



5.6 Experiment: MTs-PD Approach 115

Table 5.8 Classification results of the two-way problem (HC vs. MP) using a range of values
for SD and IQR to find the factor with the highest performance score. These approaches are
tested on 70 thresholds or features using KNN with uniform as weight(MP= includes ND,
MCI and FMD).

Factor Approach Accuracy Precision Recall F-Measure

1
SD (Min-UB) 77% 78% 77% 75%

IQR 63% 61% 61% 61%

1.5
SD (Min-UB) 81% 80% 80% 79%

IQR 65% 63% 63% 63%

2
SD (Min-UB) 78% 76% 76% 75%

IQR 69% 67% 67% 67%

2.5
SD (Min-UB) 78% 76% 76% 75%

IQR 68% 67% 67% 67%

3
SD (Min-UB) 78% 76% 76% 75%

IQR 68% 68% 67% 67%

XXXXXXXXXXXXApproach
Factor

1 1.5 2 2.5 3

SD

IQR

Fig. 5.12 The confusion matrices for the two-way classification (HC vs. MP) using two
approaches to detect the UB with a range of factors applied to 70 features or thresholds (MP:
includes ND, MCI and FMD, rows: true labels, columns: classified labels).

who used a laptop and set 4 consists of 5 HC participants who used a smartphone. To test the
performance, the SD approach uses two factors: default a = 3 and the one that achieved the
highest performance from previous results a = 1.5.

From the previous confusion matrix analysis, one of the clinic’s participants (Pat2) is
classified incorrectly for all of the SD and IQR factors variations in both of the two-way
classification tasks: HC vs. MP and D vs. Non-D. Hence, this participant is removed,
resulting in nine participants of HC. However, participant P89 is misclassified only for
all the IQR factors in the D vs. Non-D classification task. As mentioned above, the
different environments and devices for recording can affect the EAR range between the
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Table 5.9 Classification results of the two-way problem (D vs. Non-D) using a range of values
for SD and IQR to find the factor with the highest performance score. These approaches are
tested on 70 thresholds or features using KNN with uniform as weight.

Factor Approach Accuracy Precision Recall F-Measure

1
SD (Min-UB) 63% 62% 59% 58%

IQR 62% 64% 63% 63%

1.5
SD (Min-UB) 67% 66% 63% 63%

IQR 71% 72% 71% 71%

2
SD (Min-UB) 64% 64% 62% 62%

IQR 74% 74% 73% 73%

2.5
SD (Min-UB) 67% 66% 65% 65%

IQR 71% 72% 71% 71%

3
SD (Min-UB) 64% 64% 61% 61%

IQR 69% 70% 68% 69%

XXXXXXXXXXXXApproach
Factor

1 1.5 2 2.5 3

SD

IQR

Fig. 5.13 The confusion matrices for the two-way classification D vs. Non-D using two
approaches to detect the UB with a range of factors applied to 70 features or thresholds (rows:
true labels and columns: classified labels).

participants with MP (e.g., ND, MCI and FMD) from IVA18 and IVA34. Participant Pat2 is
misclassified due to his behaviour that is observed in the EAR values that is close to the ND
group in the IVA34 dataset, while P89’s behaviour is close to the ND and MCI groups and
misclassified in only one classification task. From the analysis above, nine HC participants
whose recordings have a clinic-like environment to use with the clinic recordings for MP are
chosen as set 1 in order to find out whether such recordings for HC participants can make a
difference in improving the classification results or not.

Table 5.10 and Figure 5.14 show that using all the HC participants leads to a decrease
in the performance of detecting participants with MP (e.g., ND, MCI, and FMD). However,
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Table 5.10 Classification results of the two-way problem (HC vs. MP) using two factors
for SD a= 3, the default value, and a = 1.5, the factor with the highest performance. The
classification is done on 9 participants, and every time increases, the number of HC by
combining more data (MP= includes ND, MCI and FMD groups; set 1= 9 participants of HC
who were recorded at the clinic or at home in conditions close to clinic recordings; set 2=
with an additional 5 participants with HC who used a laptop; set 3= is the combination of set
2 with 4 more participants with HC who used a laptop; set 4= 5 participants of HC who used
a smartphone).

Factor HC Number Accuracy Precision Recall F-measure

3

Set1 85% 78% 78% 78%
Set1+Set2 79% 76% 75% 76%
Set1+Set3 73% 72% 73% 72%
Set1+Set4 82% 79% 79% 79%

All HC participants 78% 76% 75% 75%

1.5

Set1 82% 75% 80% 77%
Set1+Set2 77% 76% 79% 76%
Set1+Set3 75% 75% 76% 74%
Set1+Set4 82% 79% 83% 80%

All HC participants 81% 82% 79% 79%

XXXXXXXXXXXXFactor
HC number

Set1 Set1+Set2 Set1+Set3 Set1+Set4 All HC participants

a = 3

a = 1.5

Fig. 5.14 The confusion matrices for the two-way classification HC vs. MP using two factors
for the SD to detect the UB with different number of HC participants and uses 70 features or
thresholds (MP: includes ND, MCI and FMD, rows: true labels, columns: classified labels).

when the number of HC participants is reduced to 9 participants, the performance of the
system is improved in detecting MP, whereas the detection of HC decreases, as shown in the
confusion matrix. This shows that the variations in the recording environments could affect
the performance of the system. The results also show that using SD with factor 3 improves
the detection of MP more, whereas using a low factor value of 1.5 enhances the prediction of
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HC from MP. These results confirm the previous observation from analysing the confusion
matrix of the HC vs. MP classification task.

Adding 5 more HC participants (Set1+Set2) improves the HC classification from MP
with accuracy from 64% to 78% using a = 3. In contrast, adding all the HC participants
(Set1+Set3) who recorded the session using the laptop caused a decline in the performance
of the system of predicting MP from HC in percentage from 86% to 69% using factor a = 3.
When the 9 participants of HC are combined with 5 participants who did the session using
smartphones (Set1+Set4), it gives better performance of the system even than using only Set
1.

A comparison of Figure 5.12 with Figure 5.14 shows that several participants are classified
incorrectly even with reducing the number of HC; P57, P117, and P21 from the ND group;
P84 from the MCI group; and P01, P07, P17, and P39 from the FMD group. Participants
P117, P01 and P17 are misclassified in every division of the data and factor except for factor
a = 3. Moreover, HC participants are classified incorrectly when factor a is greater than 1.5.

A third sub-experiment setup is performed on a four-way and a combination of two-way
classification problems.

Experiment Setup 3: Four-way and Two-way Classification Tasks

The previously described approaches are evaluated in two experiments: four-way classifi-
cation (ND vs. MCI vs. FMD vs. HC) and two-way classification (ND vs. MCI, ND vs.
FMD, MCI vs. FMD, ND vs. HC, MCI vs. HC, FMD vs. HC). These classification tasks
are investigated using both the SD and IQR approaches, with the default factor for each one
and the factors with the highest performance. The four-way classification results of using
both the SD and IQR approaches with their default factors and the ones that give the highest
performance are shown in Table 5.11. From Table 5.11, it can be seen that the IQR achieves
the highest performance, and that changing the factor shows no difference in the obtained
results. It is observed that the detection of participants with MP (e.g., ND, MCI, and FMD)
is better when the IQR is used. In contrast, the performance decreases when the SD is used,
especially for FMD participants classified as HC and MCI. This observation confirms the
conclusion reached in the previous chapter that classifying FMD participants is challenging
even in the clinic. On the other hand, using the SD improves the detection of the HC group
from MP group. It can be seen that the SD’s UB makes it challenging to distinguish between
ND and MCI.

In the two-way classification, the experiment is examined from two aspects: differen-
tiating people with MP from each other (ND vs. MCI, ND vs. FMD, MCI vs. FMD) and
distinguishing each group with MP from HC (ND vs. HC, MCI vs. HC, FMD vs. HC).
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Table 5.11 Classification results of four-way classification (ND vs. MCI vs. FMD vs. HC)
using two factors for SD a= 3 as the default value and a = 1.5 as the factor with the highest
performance, and for IQR b= 1.5 as the default value and b=2 as the factor with the highest
performance. These approaches are tested on 70 thresholds or features using linear SVM.

Factor Approach Accuracy Precision Recall F-measure

a,b =1.5
SD (Min-UB) 44% 35% 43% 38%

IQR 49% 53% 49% 49%

a=3, b=2
SD (Min-UB) 42% 32% 41% 35%

IQR 49% 54% 49% 49%

The first aspect that classifies people with memory-related problems from each other is
investigated, and the obtained results are shown in Table 5.12. As mentioned above, IQR
gives better results in classifying MP classes. The highest performance between the three
classification tasks is achieved with 72% to classify ND and MCI from each other. Using the
SD causes an incorrect classification for all of the FMD group regardless of the factor value,
as presented in Figure 5.15.

The confusion matrix results for the four-way and two-way problems are observed with
the plots of the EAR for each participant based on their class. They show that when there are
many fluctuations above the line where most of the EAR values lay, the participants tend to
be classified as ND. However, when these fluctuations lay below the line, the participants
tend to be classified as MCI. For instance, an FMD participant (P40) is classified as ND.
Participants P01 and P10 are classified as MCI regardless of the method, SD or IQR, when
the four-way classification is done.

In the two-way problem (ND vs. FMD), FMD participants (P01, P07, P09, and P40)
are consistently detected as ND regardless of the approach used and the factor value. The
rest of the FMD participants (P06, P10, P17 and P39) are classified as ND when the SD
approach is used. The rest of the FMD participants (P06, P10, P17 and P39) are classified
as ND only when the SD approach is used. This is because the SD cut the upper part of the
EAR values for these classified participants as ND and the ND participants, making the EAR
characteristics for both classes close to each other. When the two-way classification MCI vs.
FMD is analysed, FMD participants P01, P06, P09, P10, and P40 are classified as MCI using
either the SD or the IQR approaches. Other participants of FMD (P07, P17, and P39) are
detected as MCI using the SD approach, which results from cutting the upper part of both
participants’ MCI and FMD, making their EAR behaviour look similar to each other.

The second aspect of the two-way classification is testing the system performance in
classifying every class with MP from the HC class (ND vs. HC, MCI vs. HC, and FMD vs.
HC). Table 5.13 shows the results of the system performance in each classification task for
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Table 5.12 Classification results of the two-way classification (ND vs. MCI, ND vs. MCI,
and MCI vs. FMD) using two factors for SD, a= 3 as the default value, and a = 1.5 as the
factor with highest performance, and for IQR, b= 1.5 as the default value, and as b=2 the
factor with highest performance. These approaches are tested on 70 thresholds or features
using linear SVM (Fact.= factor; Appr.= Approach).

Classes Approach Accuracy Precision Recall F-measure

ND vs. MCI
SD (Min-UB) 67% 68% 67% 66%

IQR 72% 72% 72% 71%

ND vs. FMD
SD (Min-UB) 56% 29% 50% 37%

IQR 69% 68% 66% 66%

MCI vs. FMD
SD (Min-UB) 54% 28% 50% 36%

IQR 67% 70% 64% 63%

XXXXXXXXXXXXApproach
Classes

ND vs. MCI ND vs. FMD MCI vs. FMD

SD

IQR

Fig. 5.15 The confusion matrices for the two-way classification (ND vs. MCI, ND vs. MCI,
and MCI vs. FMD) for both the SD and the IQR , using 70 features or thresholds (In
confusion matrix, rows: true labels and columns: classified labels).

both approaches and different factor numbers. It can be seen that using the SD approach gives
a much better performance than the IQR approach. In ND vs. HC, increasing the threshold
range gives better classification performance from factor a = 1.5 with an accuracy of 69% to
a = 3 with 78%. In contrast, reducing the threshold range from a = 3 to a = 1.5 enhances the
performance from 78% to 89%, respectively. In FMD vs. HC, the SD approach has the same
performance when the factor changes. It can be seen in Figure 5.16 that the predictions of



5.6 Experiment: MTs-PD Approach 121

these classes for both approaches explain which class is classified much better. It is observed
that using the SD with a high factor (a=3) increases the detection of ND participants from
the HC group.

In contrast, the HC participants could be detected better using IQR regardless of the factor
value. Although MCI and HC are detected significantly using the SD with a low factor value
(a = 1.5), only two participants are classified incorrectly, as seen in the confusion matrix.
Interestingly, it can be seen that none of the MCI participants are ever confused with HC
participants when the IQR approach is used.

Regarding the FMD vs. HC classification, the HC participants are much better detected
from the FMD group when the SD factor a = 1.5 or 3, and the IQR factor b = 2. The best
factor for detecting FMD from HC is achieved using the high value of the SD factor (a =
3), with only two FMD participants confused with the HC group. Taking all these findings
into account, SD with a high factor value could help the model in the training phase to learn
by capturing a pattern that could distinguish between these classes with MP from the HC
group. It can be seen that using a low value for the factor results in a model that confuses
the two classes and cannot classify them from each other. In contrast, the detection of HC
from other classes such as ND and FMD is much better when the IQR is used. It captures a
smaller range than the SD, which leads to finding features from the model that identifies the
HC from other classes.
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Approach (factor) ND vs. HC MCI vs. HC FMD vs. HC

SD (a=1.5)

IQR (b=1.5)

SD (a=3)

IQR (b=2)

Fig. 5.16 The confusion matrices for the two-way classification (ND vs. HC, MCI vs. HC,
and FMD vs. HC) for both the SD and IQR with their default factors and the ones with
highest performance, using 70 features or thresholds (In confusion matrix, rows: true labels
and columns: classified labels).

When the third quartile of the IQR approach is used to determine the UB, several
classification tasks show better performance than when the 3rd SD is used. However, there
are also several classification tasks that show better performance when the 3rd SD is used than
the IQR approach. Table 5.14 summarises the different classification tasks and which UB
determining approach achieves the best performance with the significance test p-value. The
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table shows that the IQR approach achieves a better performance on most classification tasks
that detect people with MP (ND/MCI/FMD) and the four-way classification. The difference
between the SD and IQR results is considered to be statistically significant. However, the SD
approach shows a higher performance when any class of people with MP is classified from
HC. MCI can be distinguished from HC better than the ND and FMD groups.

Table 5.14 All the classification tasks and the approach to UB determination that achieved the
highest performance in the t-test to show the significant difference between the highest ob-
tained results using the IQR and the SD (⋆: statistically significant; ⋆⋆: extremely statistically
significant).

Classification Task Best IQR or SD? P-value
ND vs. MCI vs. FMD vs. HC IQR 0.04*

ND vs. MCI vs. FMD IQR 0.02*
ND vs. MCI IQR 0.0003**
ND vs. FMD IQR 0.02*
MCI vs. FMD IQR 0.03*

ND vs. HC SD 0.002*
MCI vs. HC SD 0.01*
FMD vs. HC SD 0.0004**
MP vs. HC SD 0.0001**

D vs. Non-D IQR 0.0001**

To conclude, when the classification tasks are between the MP (ND, MCI, and FMD), the
IQR captures a good EBR behaviour that improves the classification task. On the other hand,
when the classification tasks are carried out between any health condition with a memory
problem, the SD performs better at capturing behaviour that can distinguish between healthy
people and any health condition. The reasons for this can be related to the data variations in
the recording environments and the previously mentioned challenges that lead to a different
EAR range behaviour and the data size. Therefore, further work needs to be done on a larger
dataset.

5.7 Discussion and Conclusion

In this study, experiments were conducted to investigate the feasibility of using the MTs
approach on the extended data given the variations in the recording environments and of
classifying people with MP (ND, MCI and FMD) and HC as a four-way, three-way and
a combination of two-way problems. When the MTs-OAP approach was applied to the
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combined dataset IVA52, it showed an issue in the prediction of MCI participants, who were
all classified as ND. Even applying the approach of the two-way classification to distinguish
HC from any memory-related problem classes showed that all the new data was misclassified
as HC. The reason behind this was the variation in the recording environments and the
different devices used - laptops and smartphones. In addition, the mean and the SD of the
new data participants were lower than in the IVA18 data.

As a consequence of these issues, the MTs-OAP was improved by making the MTs
calculation PD (i.e., the thresholds for each participant were calculated based on their
minimum and maximum values). However, using the maximum did not show good results
because it took the very extreme values into account and resulted in many zero or close-to-
zero EBR values. Therefore, the SD approach to determine the UB and LB was utilised. This
approach showed better results than the min-max method, but the LB caused an issue by
including more unneeded thresholds that resulted in many zero values. Thus, the LB was
considered the minimum value of the EAR. Then, the performance was measured based on
the new setup for the three-way and two-way classification tasks. The resulting performance
showed improvements only in classifying HC from MP, which could have been due to the
SD sensitivity of extreme values and thus affected the UB calculation.

To overcome the problem of the SD, the IQR approach was investigated to determine
the UB because it is very robust in handling data with extreme values. The IQR improved
only the performance of the three-way classification and the prediction of the D group from
the Non-D group. Moreover, the IQR achieved better results even in the four-way (e.g., ND
vs. MCI vs. FMD vs. HC) and two-way classification tasks that predicted ND, MCI and
FMD from each other, whereas SD did not perform well, and the results were reflected in the
confusion matrix when the classification task involved FMD. The confusion matrix showed
that all FMD participants were misclassified, indicating the difficulty in distinguishing FMD
from either ND or MCI.

On the other hand, when the HC was classified from either ND, MCI, or FMD, the SD
gave relatively better results than IQR. This shows that IQR was better for classification
tasks related only to MP. However, SD was better to use on a classification that involved
classifying HC from any memory-related problems. That is to say, the SD range was larger
than IQR, and this could help to capture better patterns to be able to predict HC from other
classes, whereas the IQR range could help to capture a pattern between the memory-related
problems classes (e.g., ND, MCI and FMD).

Classifying these three classes, ND, MCI, and FMD, from each other in three-way and
two-way classification tasks was very challenging because previous studies had only classified
dementia regardless of the type from healthy controls. This study showed promising results
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using only one feature, EBR. The results could be improved by investigating the performance
with other visual features, and this will be described in the next chapter.



Chapter 6

Head Movement Based Detection of
Cognitive Impairment

“You are not alone. You are seen.
I am with you. You are not alone.”

— Shonda Rhimes

6.1 Introduction

The previous chapter focused on eye blink rate (EBR) to differentiate neurodegenerative
disorder (ND), mild cognitive impairment (MCI), functional memory disorder (FMD) and
healthy controls (HC). This chapter investigates an additional visual cue, head movement, in
detecting CI and related health conditions on the IVA18 dataset. Then, the system is evaluated
on a larger dataset, IVA52, which is a combination of IVA18 and IVA34 datasets, as described
in Chapter 3.5. A growing body of literature recognises the importance of head movement
in human communication (Boholm and Allwood, 2010; Hadar et al., 1984; Maynard, 1987;
Mehrabian, 2017). It is the easiest non-verbal cue to understand and conveys rich information.
Previous work has investigated the role of head movement during conversation (Maynard,
1987) and communicative feedback (Boholm and Allwood, 2010) and found that people often
use nods (up then down, or down then up), tilt (leaning the head to one side), and head turn
(left then right, or right then left) for emphasising a word and for yielding or asking for a turn
in the conversation (Hadar et al., 1984), indicating an agreement or disagreement (Boholm
and Allwood, 2010), expressing a positive or negative attitude, showing how anxious a
person is (Mehrabian, 2017), helping in assessing pain in patients (Werner et al., 2018) and
evaluating mental state (Larner, 2005, 2012).
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Given its importance in social communication, head movement analysis is increasingly
important in applied computer vision. Recently, a number of studies developed automatic
facial behaviour analysis tools that involve head movement (Al-Rahayfeh and Faezipour,
2013b; Baltrusaitis et al., 2018) to facilitate the understanding of a person’s mental status,
such as slower head movements, less change of head position and longer duration of looking
down and to the right in depression (Alghowinem et al., 2013b), longer duration of looking
down in post-traumatic stress disorder (Stratou et al., 2013), slower head movements as a
suicidal cue (Laksana et al., 2017), and reduced head movement in schizophrenia (Jiang et al.,
2022). Other fields have benefited from the automatic analysis of facial behaviour, including
education (McDaniel et al., 2007) and the automotive industries (Busso and Jain, 2012).

So far, head movement analysis focusing on CI has received scant attention in the medical
research literature. A number of cross-sectional studies have suggested an association
between CI and a particular head movement, which is the head turn (Fukui et al., 2011;
Larner, 2005, 2012, 2014b). Larner (2005, 2012, 2014b) and Soysal et al. (2017) found that
the number of head turns and the presence of a partner or other people with the patient can
be considered clinical cues for CI and dementia. In addition, Fukui et al. (2011) showed that
the head turn cue indicates CI regardless of a partner’s presence. These studies showed that
the head turn cue is a strong cue on its own. This difference in the findings may be due to
the different ways in which the researchers divided the participants into groups. Fukui et al.
(2011) divided the participants into two groups: AD-related, which included Alzheimer’s
disease (AD) and MCI, and AD-nonrelated, representing dementia with Lewy bodies (DLB),
progressive supranuclear palsy (PSP), and vascular dementia (VaD), whereas Soysal et al.
(2017) considered both AD-related and AD-nonrelated as one group.

Very little attention has been paid to investigating the automatic detection of CI using
head movement. This thesis, therefore, aims to explore the relationship between CI and head
movement cues and assess the significance of this behaviour in identifying CI and related
health conditions. This research explores, for the first time, the automatic detection of CI
based on the head turn cue and more general head movement analysis and explains how these
cues can be effective in measuring the severity of CI. In addition, this is the first study to use
data recorded in the wild involving people with health conditions.

This chapter first analyses the head movement data in Section 6.2. Then, Section 6.3
covers the feature extraction of the head movement and describes the feature fusion of head
movement with the EBR feature, previously explained in Chapter 4. Section 6.4 provides a
brief overview of the classifiers and evaluation metrics used in this research. The research
findings are covered in Sections 6.5. Section 6.6 evaluates the system on the IVA52 dataset.
The findings are then discussed in 6.7. Section 6.8 finally presents a summary of the chapter.
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6.2 Analysing Head Movement

In this chapter, the IVA18 and IVA52 datasets are used, which are the same as were used in
Chapter 4. After the data has been pre-processed as described in Section 4.2.1, the OpenFace
toolkit for facial landmarks tracking, presented in the previous chapter, was used to track
the facial landmarks and estimate the head movement for each frame. This resulted in three
Euler angles: pitch, yaw and roll (see Figure 6.1). This section provides an analysis of the
participants’ behaviour in terms of head movement for the IVA18 and IVA34 datasets, which
can be influenced by their health condition, the presence of a partner, recording environments
and devices used. Then, the analysis of the IVA34 dataset is compared with the analysis of
the IVA18 dataset. In addition, this section describes the challenges observed in the head
movement data.

Fig. 6.1 Head movement showing the three degrees of freedom: pitch, yaw, and roll, adopted
from Arcoverde Neto et al. (2014).

6.2.1 Analysing Participants’ Behaviour for the IVA18 Dataset

Figure 6.2 presents the head movement data (i.e., Euler Angles: pitch, yaw, and roll)
of six participants, two participants in each group. The three calculated angles of the
head orientation are analysed for each group. Appendix B.2.3 shows figures for all of the
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participants in each group. The x-axis and y-axis represent the session duration and the angle
value, respectively.

The first row of Figure 6.2 shows the general pattern of participants with FMD. It can be
seen that the pitch angle, which declines significantly for several participants, could indicate
that they move their heads up trying to recall or think of the answer. The middle row of the
figure shows that the head movement of participants with MCI differs from those with FMD
in several respects. Participants with MCI show an increase in head turns and head movement
than participants with FMD. Moreover, high variations often appear during most sessions,
and the head faces downwards more than upwards. The most obvious difference is in the
pitch angle, which increases significantly (head faces downwards) for some participants,
which might indicate a state of thinking or difficulty recalling a memory. What stands out in
the third row of the figure, which is for participants with ND, is the high rate of variations of
the head movement from the other two groups throughout the whole session. In particular,
the head turn rate (HTR) increases more with higher values in the direction of where the
accompanying person or the doctor sits, and the direction of pitch value does not seem
specific to any one direction.

Interestingly, the presence of a partner factor plays a crucial role in increasing the
participants’ head turns and movement, as shown in the right-hand column of the figure
for participants who came with an accompanying person. The impact of this factor can be
seen more in participants with ND (P11, P16, P22 and P23), who have higher HTR than the
other two groups, MCI and FMD. In addition, the MCI group has higher HTR than the FMD
group, which can be seen in participants with MCI (P15 and P19) and FMD (P07). These
observations indicates that increases in the HTR may relate to the severity of the CI, which
means that when an MCI participant has a very high HTR, it could signify a progression
state from MCI to AD (Durães et al., 2018; Larner, 2018).

6.2.2 Analysing Participants’ Behaviour for the IVA34 Dataset

Figure 6.3 shows the estimated head movement in the three angles of pitch, yaw and roll of
eight participants, two in each group (ND, MCI, FMD, HC). These three angles are analysed
for each group. Appendix B.2.3 shows figures for all of the participants in each group. The
x-axis and y-axis represent the video frames and the angle value, respectively. The first row
of Figure 6.3 presents the general pattern of HC participants. Most HC participants tend to
move their heads up during the session, indicating a memory recall or thinking of an answer.
The second row in the figure presents the head movement for participants with FMD, which
show different behaviour from each other. It is, however, difficult to make an analysis from
the data for only two participants. The third row in the figure shows the head movement
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(a) FMD (b) FMD

(c) MCI (d) MCI

(e) ND (f) ND

Fig. 6.2 The calculated pitch, yaw and roll values for participants with FMD, MCI and ND.

of participants with MCI. It can be seen that these participants, especially participant P84,
show a significant increase in head turns and movement than participants with FMD and
HC. The reason for this is the partner presence factor because that participant came with a
partner. In addition, the head turns can be seen to the left side where the partner sat. The
fourth row, which is for participants with ND, shows a higher variation in head turns than
both of the other groups because all of them came with partners, which is the same reason
for the MCI participant. The HTR, particularly, increases more in the direction of where the
accompanying person sits, and there is no particular direction of the pitch value.

Taking all the analysis mentioned above, the partner presence plays a significant role in
increasing the head turn and movement of a participant, which is consistent with the previous
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analysis for the IVA18 dataset described in Chapter 6. In addition, the HC participant in
the IVA34 dataset shows similar behaviour to the FMD group in terms of pitch direction.
The IVA34 dataset includes many challenges, as explained in Chapter 3, that result in
extremely high values as outliers in the head movement calculation, as shown in Figure ??.
This problem is resolved by detecting and removing any value that is ±90◦ and then using a
linear interpolation approach to fill the gaps where the outliers are.
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Fig. 6.3 An example of the estimated three angle values for different participants based on
their diagnostic class (first row: HC participants, second row: FMD participants, third row:
MCI participants and fourth row: ND participants).
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6.2.3 Challenges Observed in the Head Movement Data

Head movement estimation has been studied by many researchers using different approaches (Bal-
trusaitis et al., 2018; He et al., 2022; Hsu et al., 2018; Khan et al., 2019; Kuhnke and Os-
termann, 2019). Redondo-Cabrera et al. (2016) found several challenges that can lead to
false positive values in the calculation of the head movement. The types of false values are
categorised as: (1) correct if the error is < 15◦, (2) opposite if the error is > 165◦, (3) nearby
if the error is [15◦,30◦]; and (4) other for all other situations. In the IVA18 data, two types
of these false values are observed, which are other and opposite. In this section, the terms

‘opposite’ and ‘other’ are referred to as ‘outlier’ and ‘false head turn’, respectively. The
following gives an example of the observation and analysis conducted on one participant.

False Head Turn

The video of this participant is observed frame-by-frame in terms of whether the high values
indicated genuine HTs or not. Figure 6.4 presents the yaw angle over time for participant
P11. Both subfigures show a head turn. The observed high value (in the left-hand figure) is a
genuine turn that involves fast head movement to the right side. However, the high values of
the estimated angle (in the right-hand figure) are a false head turn due to the effect of the
face being occluded by a piece of paper. This may show how much occlusion issues have
affected the calculation of the head movement depending on the amount of the occlusion and
how the efficiency of facial landmarks is detected. When the occlusion is reasonably small, it
will not cause a problem. However, the occlusion values of the head pose and movement
angles would not be reliable.

This issue can be seen in the IVA18 data due to the nature of the recording settings and
cannot be resolved unless each video is manually inspected frame-by-frame to check whether
each head movement is true or false. However, the proportion of this kind of false head
movement value was found to be very small after the videos were manually observed. It is
therefore assumed that their impact is minimal.

Outliers

Another issue is the high values that exceed the normal range for head movements, which is
±90◦. Unlike the previous issue of determining whether a head movement is true or not, the
latter issue can be resolved, as will be described as follows.

Three participants in the IVA18 data have a problem related to the estimated head pose an-
gles, resulting in extremely high values, which can be regarded as outliers. These participants
were one from the MCI group and two from the ND group. Outliers are unreliable values that
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(a) True head turn (b) False head turn

Fig. 6.4 A zoomed part of the detected frames of participant P11 in the IVA18 dataset to show
the detected yaw value when there is a true head turn (a) and a false head turn (b).

may appear due to the calculation when a participant covers his/her face with his/her hands,
as shown in Figure B.7a for participant P11. Figures B.6c, B.7a, and B.7b in the Appendix
show that these values are above 120◦, which cannot be true given it is impossible to move
the head more than about 90◦ (Gourier et al., 2004; Gross et al., 2008). A test is, therefore,
carried out to determine the limit of the head movement, which the Openface can capture
by recording short videos of myself during the day and at night to measure how moving
the head in different lighting conditions may affect the calculation of head movement (see
Appendix B). The experiment shows that fast head movement and head movement in poor
lighting conditions can result in outlier values.

The data outliers that must be addressed are caused by an extreme head movement that
is difficult to deal with using OpenFace. They are detected and removed when the value of
the pitch, yaw or roll angle is ±90◦, following previous work (Cao et al., 2018; Huang et al.,
2008; Koestinger et al., 2011; Liu et al., 2016). Then, a linear interpolation process is used to
fill in the gaps where outliers occur, as shown in Figure 6.5.

6.3 Feature Extraction

This section describes the extraction of four types of visual features: head turn rate (HTR),
head turn statistical features (HTSF), which is related to the HTR feature, head movement
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Fig. 6.5 An example of linear interpolation for a roll angle for a participant with MCI

statistical features (HMSF) and low-level features (LLFs) (see Figure 6.6). Each feature type
is explained in detail in the following sections.

The Blue Box for
Head Pose Estimation

Frame

Head Movement Features

Preprocessing

Video Data

Face Detection

FaceTracking

Feature Extraction

Classification

Label Head Turn Rate (HTR) +  
Head Turn Statistical Features

(HTSF) 

Low-Level Features (LLF)

Facial Landmarks
Detection and Tracking

 Head Movement Statistical
Features (HMSF)

Fig. 6.6 Pipeline of the extraction of the head movement features for each participant.
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6.3.1 Extraction of Head Turn Rate Feature (HTR) and Head Turn
Statistical Features (HTSF)

As stated above, many medical researchers have utilised the head turn cue to investigate its
association with a decline in the CI (Fukui et al., 2011; Larner, 2012, 2014b; Soysal et al.,
2017). This cue is adopted in this work to explore an automatic approach for its extraction
and then CI detection. This exploratory study can help to obtain further in-depth information
on the relationship between the head turn cue and CI and the possible factors that may have
an effect on this cue. As explained above, OpenFace was used to extract the yaw angle
for each participant. With this angle, the head turn to the left or right side is detected, and
additional features are related to each detected head turn.

The SciPy 1 package is used to detect signal peaks and corresponding parameters values,
following similar studies (Wei et al., 2021; Zheng et al., 2020). The algorithm of peak
detection takes the yaw angle as input and searches for the local maxima by a simple
comparison of intensity. The following properties are used to select a subset of the peaks: peak
prominence, peak height and peak width. Peak prominence measures a peak’s significance
based on its intrinsic height and relative location from surrounding peaks, as shown in
Figure 6.7. The definition of height and width can be found in the same figure. Throughout
the yaw angle example, the same parameter is used for peak detection with prominence =
±45◦, which means that any value below or above 45◦ is considered a peak. Each detected
peak counts as a head turn. The HTR is calculated by dividing the number of head turns by the
number of frames. More derivative features related to the peak detection are extracted, such
as the actual values of peak prominence, peak heights, peak widths and the distances between
peaks, because they may be useful for identifying a pattern of head turns to differentiate the
groups from one another.

Then, statistical features, the mean, Standard Deviation (SD) and Variance (Var), are
calculated for each derived feature. These statistical features are used as complementary cues
with HTR and are referred to as HTSF (see Table 6.1). Previous work has used these kinds
of statistical features (Lee et al., 2020; Valstar et al., 2014, 2013).

6.3.2 Extraction of the Head Movement Statistical Features (HMSF)

Many researchers have used head movement for depression detection (Alghowinem et al.,
2013b; Ringeval et al., 2018, 2019). However, no research has been conducted to investigate
the association between head movement and CI. This research investigates the head movement
as a cue to evaluate its effectiveness in automatically identifying CI. Following similar related

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find peaks.html
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Fig. 6.7 Examples of peak detection in the SciPy python package. (top) a diagram depicting
the peak prominence definition., which is defined as the vertical line between the peak and
the lowest contour line (the grey line), and (bottom) peak detection from the yaw angle of
one random participant.

work (Alghowinem et al., 2013b), this section explores the use of all the angles of the three
head movements (i.e., pitch, yaw, and roll), including the velocity and acceleration for each
angle. The velocity is defined as angular velocity (ω) that measures how fast the object
rotates over time (Kimball, 1917). The angular velocity can be calculated as angle per unit
time, e.g., radiance per second (θ/t). The angular acceleration (α) is the change in the
angular velocity per unit time. Based on this definition, the equation is α = ∆ω/∆t. Then,
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Table 6.1 Description of each head movement feature

Feature type Feature description Feature Abbrev.
(dimension)

Head turn (yaw)

head turn rate HTR (1 X 1)

head turn statistical features:
head turn prominence-mean, prominence-SD,

prominence-Var, height-mean, height-SD,
height-Var, width-mean, width-SD,

width-Var, distance-mean, distance-SD,
and distance-Var.

HTSF (1 X 12)

Head movement statistical
features (pitch, yaw, and roll)

minimum, maximum, mean, range,
SD, and Var are calculated for each

angle, velocity and acceleration vector.
HMSF (9 X 6)

Low-level features
(frame-by-frame)

the three angles, velocity, and acceleration LLF (9 X 12)

the following statistical features for each angle, velocity, and acceleration are calculated:
mean, SD, variance, range, maximum and minimum, as shown in Table 6.1. This results in
54 features (6 x 9), referred to as HMST.

6.3.3 Extraction of the Low-Level Features (LLFs)

Features previously explained are calculated per video. However, another approach to
extracting features is based on a frame-by-frame analysis, referred to as low-level features
(LLFs). One of the problems with using frame-by-frame features is the variable length of
videos. To resolve this issue, a Gaussian mixture model (GMM) is used, dimensionality
reduction technique (Bishop and Nasrabadi, 2006; Murphy, 2012). This technique takes
features with high dimensionality and reduces them to a lower dimension. Alghowinem et al.
(2013b) and Alghowinem et al. (2015) have used a similar approach.

A GMM approach calculates the probability of each datapoint being generated from
a mixture of a finite number of Gaussian distributions. Each Gaussian is identified by
k ∈ 1, ...,K, where K is the number of clusters of the LLF. In the mixture, each Gaussian k
consists of three parameters: a mean (µ), a covariance (∑) and a mixing probability (π). The
µ represents its centre, the ∑ represents its width, and the π defines the size of the Gaussian
function, whether big or small. Each Gaussian describes the data included in each cluster.

The mixing probabilities must match this condition in Eq. 6.1:
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K

∑
k=1

πk = 1 (6.1)

The optimal parameters need to be determined to ensure that each Gaussian fits the
datapoint of each cluster. To achieve this, an expectation maximization (EM) algorithm is
needed to estimate unknown variables by observing and deriving them from other observed
values. The EM algorithm is used to maximise the likelihood with two steps that need to be
calculated: the Expectation step (E-step) and the Maximisation step (M-step). In the E-step,
the posterior value of unknown data needs to be estimated.

Eq. 6.2 can be used to calculate the posterior distribution γ of every Gaussian for each
datapoint znk in Eq. 6.3. This equation uses a Bayes’ rule where π is a prior weight, N is the
number of observations, and xn is observation n:

p(x) =
K

∑
k=1

πkN(x|µk,∑
k
) (6.2)

γ(znk) =
πkN(xn|µk,∑k)

∑
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j=1 π jN(xn|µk,∑k)

(6.3)

Then, the M-step calculates the initial parameters, which are the mean, the covariance
and the weights in Eq. 6.4, 6.5 and 6.6, respectively, and then sums these parameters for each
Gaussian and the marginal likelihood for maximising in Eq. 6.7, and 6.8, respectively, for
each Gaussian using the following equations:
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The data is represented as xn with dimension (m×d); m is the number of frames, and d is
the number of features given to the fitting method. The first E-step in the fitting method does
the initialisation of the means and covariances to calculate gamma, the posterior distribution
(γ). Then, the M-step takes the initial parameters and re-calculates them, corresponding to
Eq. 6.4, 6.5, and 6.6 based on the new γ value and the xn. After they have been calculated,
they are used to calculate the lower bound corresponding to Eq. 6.9.

6.3.4 Normalisation

Certain pre-processing steps on the inputs of the classifier model and targets can make training
the model more efficient by transforming inputs into a much better format for the model
(Jayalakshmi and Santhakumaran, 2011). Prior to the training phase, the normalisation of the
raw input data can have a great impact later on the training and the model performance. It can
scale each input feature of the data into a particular range to reduce bias within the classifier
model from one input feature to another, and speed up the training time. Several popular
techniques can be used, such as Z-Score, Min-Max, Median and Sigmoid Normalisation.

In this research, normalisation is carried out for all features to scale them, which leads
to Mean = 0 and SD = 1 using a Min-Max scaler (see Figure 6.8). This approach, which
is a linear transformation, transfers each feature to a range between 0 and 1. This kind of
normalisation can preserve the relationships in the data and only change the data scale. It
does not affect the outliers.

6.3.5 Feature Fusion

Performance is measured using each feature individually and then when fused, as shown in
Figure 6.8. The features are fused by concatenating them in several ways: EBR + HTR, EBR
+ HTR + HTSF, EBR + HMSF, and finally, the fusion of all the facial features. The fusion
of features can improve the classification performance over using just one feature and can
provide more helpful information for small datasets such as the one used in this study.
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Fig. 6.8 Pipeline of the visual features normalisation, fusion and selection.

6.3.6 Feature Selection

Feature selection includes selecting the most important features in a classification problem
and removing the irrelevant ones (Bishop and Nasrabadi, 2006). The effects of applying
feature selection to the combined features are then evaluated. Therefore, feature selection
is considered one of the feasible solutions that can help to reduce the training time and the
overfitting and thus to improve the classifier’s performance. A number of feature selection
methods for classification purposes can be divided into three categories: filters, wrappers and
embedded methods (Guyon et al., 2002; Pudjihartono et al., 2022). The main differences
between these approaches are 1) if the feature selection depends on the classifier or not, 2)
the metrics used for evaluation, 3) the complexity of the computation, and 4) the potential to
detect the dependencies between features.

Filter-based approaches use various statistical tests (e.g., the chi-squared test, person
correlation and t-test) to measure their correlation with the class and use feature ranking as an
evaluation metric. Wrapper-based approaches (e.g., recursive feature elimination, KBest and
randomised hill climbing) select a subset of features with the best performance for the chosen
classifier and use this classifier’s performance as an evaluation metric. Embedded-based
approaches (e.g., random forest and lasso (L1)) integrate the feature selection process and the
model construction into a single step– the classifier adjusts its parameters during the training
phase by measuring the appropriate weight provided for each feature to result in the best
accuracy of classification.
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Pudjihartono et al. (2022) stated that choosing which feature selection method is best to
use depends on the dataset used and the aim of the researcher. For instance, if the researcher’s
goal is to quantify the most significant features to uncover the biological mechanism behind
a particular disease, then filter-based methods are the best to use because they can provide
a ranked list of the most computationally efficient features. However, when the feature
dimensionality in the dataset is relatively low (e.g., tens to hundreds of features), then
wrapper-based methods are likely to provide the best performance, such as KBest and
Recursive feature elimination cross-validation (RFECV). This research has explored t-test,
KBest, and RFECV approaches for feature selection and found that the RFECV gave the
highest performance. RFECV is, therefore, adopted in this research because it implicitly
considers feature dependencies, which involve interaction with the classifier and redundancies
during the feature selection process. In addition, it provides better performance than filter-
based methods and produces the best feature set instead of a ranked list of features. RFECV
is a common method that obtains the important features, ranks them, discards the irrelevant
ones, and re-fits the model until a particular number of features remains. The feature selection
is applied to every feature fusion mentioned previously in Section 6.3.5.

6.4 Analysis and Evaluation

Classification

As was explained in Section 4.2.7, classification involves binary and multi-class classification
problems. The same classifiers used previously as described in Section 4.2.7 are used in this
chapter: support vector machine learning classifier (SVM) with both linear kernels (L-SVM)
and RBF (RBF-SVM), k-nearest neighbours (KNN) with uniform and distance weights,
logistic regression (LR) and decision trees (DT). The hyper-parameters are optimised for
each classifier using a grid search to find the best parameter. Participant-independent-stratified
cross-validation (CV) is used. The best-performing parameters are estimated for each fold,
and then the average is taken across all the folds. CV with 6-fold is used for each classifier.

The evaluation is then conducted using a participant-independent-stratified CV with
6-folds, as described in Section 4.2.7. In each fold, three participants are held out as a
test set, and all the remaining participants are used in the training set. Each fold is split to
maintain the sample distribution in each class. Confusion matrices are used to analyse the
classification results. Since the data is balanced, the accuracy metric is used.
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Statistical Analysis

The extracted statistical features of the head movement from the IVA18 data can provide
valuable information about behavioural patterns. Statistical significance tests are, therefore,
conducted across the ND, MCI and FMD groups. The analysis is carried out as a binary
task (ND/MCI, ND/FMD, and MCI/FMD). The first step in this process is to perform a
parametric test to determine whether the feature is normally distributed or not (Siebert and
Siebert, 2017). Several statistical tests can be used to test the normality of the data, such as
the Shapiro-Wilk test (SW), D’Agostino’s K-squared test and a Quantile-Quantile Plot. The
SW test is used in this research, which uses the frequency of the data to test the normality.
This test is preferred for limited data size (Shapiro and Wilk, 1965). Then, a parametric
test (two-tailed T-test) is used for normally distributed features, and a non-parametric test
(the Wilcoxon T-test) is used for features that do not follow a normal distribution, with a
significance of P = 0.05.

6.5 Experimental Results on the IVA18 Dataset

As stated earlier, the specific objective of this study is to investigate visual features to
differentiate between ND, MCI and FMD. This section presents the experimental results
of the 3-way and 2-way classification problems on the IVA18 dataset. The performance is
measured using: 1) individual features (i.e., HTR, HTSF, HMSF and LLF) with statistical
analysis, 2) feature fusion of the head movement and the EBR features, which was described
in Chapter 4, and 3) feature selection for each level of fusion. Finally, a feature dimensionality
transformation is conducted on the LLF (i.e., the angles, velocities and accelerations).

6.5.1 Effect of Head Movement Features

The performance of each feature is investigated with several machine learning classifiers.
Table 6.2 presents the results of the classification accuracy for 3-way and 2-way classification
problems. It is clear from the table that the best results obtained are with the HTR+HTSF,
at 67% for the 3-way classification problem. Some features are better at distinguishing
particular 2-way problems. For example, the HTR feature achieves 92% in classifying ND
from FMD, whereas HMSF gives 83% in classifying MCI from FMD. Moreover, people with
ND turn their heads more than those with FMD, and the accompanying person’s presence
plays a crucial role, as shown in Figure 6.2.
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Table 6.2 Classification accuracy in percentage (%) of 3-way and 2-way classification tasks
for the IVA18 dataset measuring the system performance using individual features with
different classifiers (superscripts indicate the classifier: L−SV M1, RBF −SV M2, kNN3, LR4

and DT 5).

Feature No. of features ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

HTR 1 562 672 922 581,3,4

HTR+HTSF 13 672 503 751,2,3 672

HMSF 54 502 672 583 831,4

6.5.2 Statistical Analysis

Table 6.3 shows the resulting features of the two tests, T-test and Wilcoxon, that may help
to understand the most significant features that can distinguish between two groups. For
the ND/MCI group, the t-test shows that the SD and Var of the yaw angle and velocity are
statistically significant. This means that the participants with ND significantly vary the yaw
angle and velocity due to long head turns and movement. For the ND/FMD group, only the
SD of the yaw angle is considered statically significant to distinguish between the two groups.
This indicates that participants with ND have longer head turns and movement than those in
the MCI and FMD groups.

Table 6.3 Significant T-test and Wilcoxon test results of HMSF features (T=T-test,
W=Wilcoxon test).

Classes Feature P-value (T/W)

ND/MCI
SD of yaw angle .04 (T)

Var of yaw velocity .05 (T)

ND/FMD SD of yaw angle .04 (T)

MCI/FMD
Min. of pitch angle .02 (W)

Min. of pitch velocity .02 (W)

Mean of pitch velocity .04 (T)

Mean of pitch angle .05 (T)

In the MCI/FMD group, the mean pitch angle and velocity are statistically significant.
This shows that participants with MCI have a lower mean value than those with FMD after
these features are observed. This suggests that MCI participants tend to look down more
and show slower head movement than FMD participants. On the other hand, the 32 features
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tested using a Wilcoxon test resulted in only two features, minimum pitch angle and velocity,
which are statistically significant and indicate that participants with MCI move their heads
down a lot.

6.5.3 Effect of Feature Fusion

Feature fusion performance is measured by combining: 1) EBR+HTR, 2) EBR+HTR+HTSF,
3) EBR+HMSF, and 4) fusion of all features. The fusion of EBR with other features is carried
out by investigating the performance using the SM and different thresholds: 7, 70, and 700.
Table 6.4 provides the experimental results. It is clear that the feature fusion of EBR+HTR
and EBR+HTR+HTSF improves the performance in differentiating ND and MCI with an
accuracy of 75%, compared with 67% when all the visual features are combined. In addition,
the combinations of EBR+HTR+HTSF and EBR+HMSF show the best results obtained for
the MCI/FMD groups with 92% compared with the performance of individual features at 67%
in HTR+HTSF and 83% in HMSF. The performance of combining EBR+HTR+HTSF gives
92% in distinguishing ND and FMD. ND/MCI can be classified with 75% using any fusion
type except the fusing of EBR+HMSF features. It can be seen that feature fusion mainly
helps in differentiating 2-way problems (ND/MCI and MCI/FMD), which is an indicator of
the importance of these hand-crafted visual features, especially the EBR, HTR and HTSF, to
capture the differences between these groups.

Table 6.4 Classification accuracy in percentage (%) of 3-way and 2-way classification
tasks for the IVA18 dataset measuring the system performance using feature fusion, and
feature selection with different classifiers (superscripts indicate the classifier: L− SV M1,
RBF −SV M2, kNN3, LR4 and DT 5).

Feature No. of features ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

EBR+HTR 8 785 751,4 752,5 583

Feature selection 3 611,4,5 501,2,4,5 831,4 921,2,4

EBR+HTR+HTSF 83 722 752 921,2 922

Feature selection 40 782 832 831,2,3,4 922

EBR+HMSF 124 672 672 832 922

Feature selection 61 672 672 831,2,4 921,2,4

EBR+HTR+HTSF+HMSF 137 721 751,2,4 834 831,2,4

Feature selection 116 721 751,2,4 834 831,4
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6.5.4 Effect of Feature Selection

Feature selection is then performed using the RFECV approach, which is applied to every
feature fusion, as shown in Table 6.4. The table shows that feature selection for the fusion of
EBR+HTR+HTSF improves the 3-way classification accuracy from 72% to 78%. Moreover,
the feature selection of feature fusion for EBR+HTR gives better performance in some
2-way problems, such as ND/FMD and MCI/FMD, compared with their performance before
the feature selection. For example, the classification of ND/FMD (and MCI/FMD) groups
improved from 75% to 83% and from 58% to 92%, respectively, using only EBR with
HTR. However, using HTR and HTSF with EBR enhances the accuracy from 75% to
83% for ND/FMD groups, respectively. Feature selection shows some improvements in
the performance, but it was not significant compared to their performance without feature
selection. This shows that each feature has its contribution to the classification. However,
the effect of feature selection is significant compared with the performance of individual
features, such as HTR, HTR+HTSF and HMSF.

6.5.5 Effect of Low-Level Features

A GMM is used to transform the LLFs’ sequences into equal lengths. To do this, it is
important to know how many clusters are needed, but firstly, it is important to use a test
to assess whether the cluster number is the optimal one or not. The Bayesian information
criterion (BIC) is therefore used to determine the optimal number of clusters. This criterion
is a built-in function in the estimator of Scikit-Learn’s GMM. It is used to select a model
from a finite set of models and is based on the likelihood function. The likelihood function
can be increased by adding parameters, which can lead to overfitting. The BIC addresses
this by proposing a penalty term to test the models. If the BIC value is lower, the penalty is
lower, hence a better model.

After the parameters have been tuned, the optimal number of components will correspond
to the minimum value of the BIC score. The BIC, in this case, shows that the optimal number
of components is 24 components (see Figure 6.9). Then, a GMM model is built for each
participant using 24 components, resulting in (9×24) as the feature dimension. After that,
the models are given to several supervised machine learning classifiers. The results obtained
are presented in Table 6.5. The table shows that the GMM gives accuracy scores above the
chance-level and the highest accuracy score is 74% for classifying ND/FMD groups from
each other. The features produced from GMM does not show any significant increase in
accuracy compared to previous features: HTR, HTSF and HMSF. The difference between
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the GMM obtained results and the highest accuracy score achieved in the feature selection of
EBR+HTR+HTSF in Table 6.4 is statistically significant (p = 0.02).
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Fig. 6.9 The Bayesian information criterion (BIC) scores for GMM using different numbers
of components.

Table 6.5 Classification accuracy in percentage (%) of the 3-way and 2-way classification
tasks for the IVA18 dataset measuring the system performance using the means and the
variance of 24 GMM components for the LLFs. (Superscripts indicate the classifier: L−
SV M1, RBF −SV M2, kNN3, LR4 and DT 5).

Feature No. of features ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

LLFs 24 483 665 745 672

6.6 Evaluating the System on the IVA52 Dataset

As stated earlier, this chapter presents an evaluation of the head movement features on a
larger dataset to distinguish between ND, MCI, FMD and HC. This section presents the
classification results of the four-way, three-way and the combination of two-way tasks.
Performance is measured using individual features HTR, HTSF and HMSF.

In this experiment, a three-way classification task (ND vs. MCI vs. FMD) and several
two-way classification tasks (ND vs. MCI, ND vs. FMD and MCI vs. FMD) are carried out
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using the same four classifiers used when testing IVA18 in order to enable a fair comparison
between the results obtained with the results reported in previous section. Then, a four-way
classification task and more combinations of two-way classification tasks are explored. Four
metrics are calculated for each classifier: accuracy, precision, recall and F-measure.

6.6.1 Three-way and Two-way Classification Tasks

Table 6.6 presents the classification accuracy results for three-way and two-way classification
tasks. It can be seen that the highest results obtained are for the HTR+HTSF features, at
59% for the three-way classification problem and 92% for ND vs. FMD. Moreover, the
use of HMSF features achieves 62% and 90% accuracy in distinguishing ND from MCI
and MCI from FMD, respectively. A comparison is then carried out between the results
obtained using the IVA52 dataset and the IVA18 results, reported in Section 6.5. Table 6.7
shows the results achieved in both datasets using the same classifiers as used in the IVA18

dataset. In general, it is clear from the table that the performance decreases when the IVA52

dataset is used. However, the HTR+HTSF feature gave the highest accuracy results for the
three-way classification problems in both datasets. Some features are better at classifying
particular two-way problems. For instance, the HTR+HTSF feature achieves 92% accuracy
in classifying ND from FMD using the IVA52 dataset. In addition, the HTR feature gave
72% accuracy in differentiating MCI from FMD. These results confirm the findings set out
in Chapter 6.5 that people with ND tend to turn their heads more than those with FMD,
resulting from the presence of an accompanying person.

6.6.2 Four-way and Two-way Classification Tasks

As stated earlier, the head movement features are evaluated in two classification tasks: four-
way classification problems (ND vs. MCI vs. FMD vs. HC) and two-way classification
problems, including ND vs. HC, MCI vs. HC and FMD vs. HC. Further, two-way classifica-
tion problems are then investigated to differentiate participants with memory problems (MP)
from HC. Then, the data is divided into an HC group and an MP group, consisting of ND,
MCI and FMD. Another classification task is then conducted to classify participants with
dementia from HC and FMD. The data is, therefore, divided into the dementia group (D) and
the non-dementia group (Non-D). The D includes ND and MCI and the Non-D includes FMD
and HC. Table 6.8 presents the results of the four-way and two-way classification problems.
It is clear from the table that HTR and HTR+HTSF, which is the derivative features from the
HTR, are considered informative features. It is also shown that classifying FMD from HC is
the most challenging classification problem.
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Table 6.6 Classification accuracy of three-way and two-way classification tasks for the IVA52
dataset measuring the system performance using individual features with the KNN classifier.
The number of features is indicated between the parentheses ().

Classification Task Feature Accuracy Precision Recall F-measure

ND/MCI/FMD
HTR (1) 45% 31% 46% 37%

HTR+HTSF (13) 59% 60% 58% 58%

HMSF (54) 53% 59% 55% 53%

ND/MCI
HTR (1) 53% 51% 51% 46%

HTR+HTSF (13) 52% 52% 50% 69%

HMSF (54) 62% 62% 62% 62%

ND/FMD
HTR (1) 73% 76% 70% 71%

HTR+HTSF (13) 92% 89% 89% 89%

HMSF (54) 69% 68% 66% 66%

MCI/FMD
HTR (1) 71% 72% 73% 72%

HTR+HTSF (13) 67% 71% 69% 66%

HMSF (54) 90% 92% 88% 88%

Table 6.7 Classification accuracy in percentages (%) of the three-way and two-way classifi-
cation tasks for the IVA18 and the IVA52 datasets measuring the system performance using
individual features with different classifiers (superscripts indicate the classifier: L−SV M1,
RBF −SV M2, kNN3, LR4 and DT 5).

Dataset Feature ND/MCI/FMD ND/MCI ND/FMD MCI/FMD

IVA18

HTR 562 672 922 583

HTR+HTSF 672 503 753 672

HMSF 502 672 583 831

IVA52

HTR 382 522 562 723

HTR+HTSF 592 523 923 632

HMSF 342 482 693 531

6.7 Discussion

The findings show the importance of visual cues, such as the head movement and LLFs
features, in differentiating between ND, MCI and FMD with 78% accuracy. The feature
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Table 6.8 Classification accuracy of four-way and two-way classification tasks for the IVA52
dataset measuring the system performance using individual features with the KNN classifier.
The number of features is indicated between the parentheses.

Classification Task Feature Accuracy Precision Recall F-measure

ND/MCI/FMD/HC
HTR (1) 45% 46% 42% 59%

HTR+HTSF (13) 48% 50% 46% 53%

HMSF (54) 44% 45% 44% 44%

MP/HC
HTR (1) 72% 71% 71% 71%

HTR+HTSF (13) 64% 63% 62% 62%

HMSF (54) 73% 73% 72% 72%

D/Non-D
HTR (1) 69% 66% 64% 64%

HTR+HTSF (13) 75% 72% 71% 72%

HMSF (54) 73% 70% 70% 70%

ND/HC
HTR (1) 83% 85% 84% 85%

HTR+HTSF (13) 72% 77% 73% 73%

HMSF (54) 74% 75% 74% 74%

MCI/HC
HTR (1) 74% 74% 74% 74%

HTR+HTSF (13) 69% 68% 68% 68%

HMSF (54) 69% 68% 68% 68%

FMD/HC
HTR (1) 67% 65% 64% 64%

HTR+HTSF (13) 45% 25% 44% 32%

HMSF (54) 58% 59% 58% 58%

selection of the HTR+HTSF combined with EBR is the only case in which the performance
shows an improvement. However, other feature types of feature fusion show improvements
in the performance of particular classes. A possible explanation for this could be that every
feature has its contribution in differentiating the three classes (Bishop and Nasrabadi, 2006).

Figure 6.10 shows that confusion mostly happens in the MCI and ND groups. Two
participants from the MCI group are incorrectly classified as FMD because neither of them
is moving their heads a lot. Interestingly, the same two participants are predicted as ND
from their EBR. Although the ND participants are correctly classified using the EBR feature,
two ND participants are identified incorrectly as MCI using the feature fusion. This rather
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Fig. 6.10 Comparison in terms of the performance between the eye blink rate (EBR) and
the feature fusion of all features (EBR+HTR+HTSF+HMSF) for the IVA18 dataset using a
confusion matrix (rows: true labels and columns: predicted labels).

contradictory result may be because one does not have an accompanying partner, and the
other has a partner but did not turn his head often.

These possible sources of error could have been caused by the lack of diagnostic details
about what dementia type the participants have. This information could help in error analysis
because people with some particular types of dementia may not show a head turn cue, such as
VaD and DLB (Fukui et al., 2011). This information is essential for developing an automatic
tool to handle the overlapping diseases, such as AD, VaD, DLB, and behavioural variant
frontotemporal dementia (FTD).

Looking more closely at the interaction between gender, age and whether a partner is
present is of interest. Figure 6.11 shows the number of participants who attended with a
partner and those who attended alone according to group, gender and age. Larner (2012,
2018) and Tyson et al. (2019) suggested that ‘attending with’ is an additional cue to the head
turn due to its effect on the latter. In accordance with the previous work results, Figures B.5,
B.6, and B.7 show that participants who came with a partner generally show significant head
turns and movements, which is consistent with related work findings (Durães et al., 2018;
Larner, 2012). Moreover, they suggested that the presence of head turn indicates CI and
AD. In contrast, Fukui et al. (2011) found that the presence of the head turn cue indicates CI
whether he/she attended with a partner or came alone. The findings of this research, while
preliminary, seem to be consistent with other research, which found that increases in EBR
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and head turn or movements can indicate a higher risk of progression to AD (Durães et al.,
2018; Ladas et al., 2014; Larner, 2018). It is also assumed that gender and age may play a
vital role in the HTR.

In the IVA18 data, all of the female participants came with a partner regardless of their
diagnostic class, whilst only two men from the ND class came with partners, as shown in
Figure 6.11. Moreover, in the IVA34 data, all the female participants who came with partners
have health conditions, but only two males from MCI and HC classes came with a partner.
Fukui et al. (2011) investigated the severity and the incidence of the head turn cue on 125
patients by observing whether the patients showed a head turn cue during a cognitive test,
which is the revised Hasegawa Dementia Rating Scale, which takes about 10 minutes, and
found that the females tended to bring a partner. Their findings showed that women find it
easier to depend on someone else when they face difficulties, whereas men feel obligated to
deal with difficulties without help. Previous work compared men and women with CI in terms
of the prevalence of behavioural symptoms and found that ‘help-seeking’ and depression are
more frequent in women (Lövheim et al., 2009). However, men showed more regressive and
aggressive behaviours than women. Those findings contradict those of previous work that
found the partner presence is independent of the gender (Holland and Larner, 2013; Larner,
2005) but dependent on the age (Larner, 2014a). Moreover, Larner (2005) reported that the
head turn indicates a CI regardless of gender or age. However, there is no information on
whether these factors are affected by other external factors such as culture.

These findings are in accord with those of recent studies indicating that head movement
can provide rich information in differentiating ND, MCI, FMD and HC. This may be helpful
in gauging the severity of the CI and whether participants have a higher risk of progression
to AD. However, caution must be applied with a small sample size, such as the dataset used
in this research, as the findings might not be generalisable.

6.8 Summary

This chapter has investigated the feasibility of automatically detecting ND, MCI and FMD
using the head movement features on the IVA18 and then evaluated the system on a larger
dataset ( IVA52) with many variations in the recording settings and devices used. This
investigation involved analysing the participants’ behaviour and the challenges observed in
the head movement data. Moreover, the performance for the IVA18 dataset was measured
using each feature individually, the fusion of these head features with the EBR feature, and
then when the features were selected, and the LLFs. Then, the system was evaluated on
the IVA52 dataset to differentiate ND, MCI, FMD and HC groups by four-way, three-way and
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a combination of two-way problems. Finally, the findings have been analysed and compared
with related work.

For the IVA18 dataset, the findings showed that identifying ND/MCI and MCI/FMD
using the HTR was challenging, with an accuracy of 67%. These classification problems
are challenging cases even in the clinic. However, the classification of ND/FMD using the
same feature achieved high performance, with an accuracy of 92%. The HMSF identified
the MCI/FMD better than the HTR feature with an accuracy of 83%. The reason for this
is that the features of the three angles were very informative. The results also showed how
the fusion of these visual features is significant for classifying ND, MCI and FMD with an
accuracy of 78%. It also showed that the LLFs (frame-by-frame) features did not enhance the
performance for the 3-way and 2-way classification problems compared with other features.

It was found that the same features, which gave the highest results on the IVA18 dataset,
obtained the highest accuracy results for the three-way problem and the two-way ND vs.
MCI problem in the IVA52 datasets. In addition, the features of HTR and HTR+HTSF helped
to perform better in the two-way classification problems ND vs. FMD and MCI vs. FMD.
The two-way classification problem MCI vs. FMD showed a decrease in performance after
increasing the size of the dataset using the HMSF feature. However, it showed increased
accuracy when the HTR feature was employed. The four-way and two-way classification
problems also showed good accuracy results, and FMD vs. HC was a challenging task.

The generalisability of these results is subject to certain limitations, for instance, the
small dataset size and the lack of some diagnostic information, such as the type of MCI or
ND that the participants have. Despite these limitations, investigating these visual features
in the detection of CI lays the groundwork for future research into CI detection based on
specific visual features using in-the-wild data to build a reliable system instead of having
high performance in lab-controlled data that does not reflect real-life data. The next chapter
will validate the work in this chapter and Chapter 4 on a public dataset to compare the results
achieved with related work.
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Fig. 6.11 Analysis of the HTR based on participants’ group, gender, and age (AW: Attend
with, and AA: attend alone).





Chapter 7

Towards the Automatic Classification and
Regression Analysis of Depression

“And sometimes I have kept my feelings to myself
because I could find no language to describe them in.”

— Marianne Dashwood

7.1 Introduction

In the previous chapters, the system for detecting cognitive impairment was introduced
and evaluated on data recorded in the wild for people with cognitive impairment (CI) and
related conditions. Despite the issues caused by the nature of the data recording settings (i.e.,
in-the-wild scenarios), a robust feature extraction method was developed to overcome these
challenges. This method was used to extract visual features, such as eye blink rate (EBR),
head turn rate (HTR), head turn statistical features (HTSF) and head movement statistical
features (HMSF) and then feed them to the classifiers. The performance obtained showed
promising results (see Chapters 4 and 6).

This chapter will explore the performance of the system by applying it to a widely
used depression dataset and will then compare its performance with those reported in
related studies, not to compete with state-of-the-art approaches (Jan et al., 2014; Kaya
et al., 2014; Pérez Espinosa et al., 2014; Valstar et al., 2014). The dataset comprises two
tasks: classification, which distinguishes between depressed and non-depressed people, and
regression, which predicts depression severity. These tasks are appropriate for the aim of this
current study, which is generalisability within individual datasets because the IVA18 dataset
and the depression dataset differ in several factors that may impact the generalisation. These
factors are the difference in the data collection procedure, the duration of the session for
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each participant in each dataset, the hardware used and the recording environments. These
experiments could give insight into the efficiency of the approaches described in previous
Chapters 4 and 6, which involves evaluating the performance using the same feature sets and
classifiers.

Since depression might affect people’s behaviour, a considerable amount of literature
has been published on the automatic detection of depression using visual behaviour (He
et al., 2022; Pampouchidou et al., 2017; Ringeval et al., 2019). A number of techniques
have been developed to detect depression using facial cues, such as EBR (Alghowinem et al.,
2015; Gupta et al., 2014; Zhou et al., 2015) and head movement analysis (Alghowinem
et al., 2020; Morency et al., 2015; Ringeval et al., 2018, 2019; Zhou et al., 2015) due to the
strong correlation between these facial cues and depression. People with depression may
not exhibit help-seeking behaviour for several reasons, such as fear of the associated stigma,
embarrassment, and a preference for self-reliance (Gulliver et al., 2010). Other factors that
could cause that behaviour are the cost, location and service availability (Draucker, 2005;
Kuwabara et al., 2007; McCann and Lubman, 2012). Moreover, problems related to not
seeking help include a lack of awareness of the benefits of seeking help and an unwillingness
to express emotion (Gulliver et al., 2010) because people with depression can tend to avoid
communicating with others and telling them what they are going through because they believe
that nobody can understand them or because they do not know how to express what they
feel (Ellgring, 2007). Employing visual-based approaches can benefit a doctor’s diagnosis by
providing an objective diagnostic aid system because estimating the severity of someone’s
depression can often be difficult (Nemeroff, 2007). In addition, a visual-based approach
might be considered language-independent (Gogate et al., 2020; Papakostas et al., 2017;
Pusdekar and Chhaware, 2014), which is helpful if the participants show an unwillingness to
talk about themselves due to one of the factors listed above.

The rest of this chapter is organised into three main sections. Section 7.2 describes and
analyses the dataset. Section 7.3 presents the results and then discusses them. Section 7.4
then presents the summary of the chapter.

7.2 Experiments

This section outlines the data and presents all the details regarding the features used in the
experiments. The extracted features are then analysed. The classifiers and regressors used
are then described and, finally, the feature selection is described.
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7.2.1 Data

The videos used are from the audio-visual emotion challenge 2014 (AVEC 2014) dataset (Val-
star et al., 2014). It consists of 300 videos recorded individually of German speakers using
a webcam and microphone. The participants completed two tasks: answering questions
(Freeform task) and reading a paragraph aloud (Northwind task). For each task, a total of
150 videos were recorded, ranging from six seconds to four minutes and eight seconds in
duration. The sessions took place in several quiet settings. Some participants made more
than one recording, with two weeks between the recordings. There is only one participant in
each video clip. The age of the participants ranges from 18 to 63 years old; the average is
31.5 years old.

Every recording was labelled with a single score for the severity level of the depression
based on the BDI-II scale (Beck et al., 1996) and a self-report consisting of 12 question-
and-answer scores from 0 to 3, with the total score ranging from 0 to 63. This gives four
categories of depression, as presented in Table 7.1. Figure 7.1 shows an example of one
participant with different levels of depression severity, which are recorded in challenging
scenarios using a webcam. The reason for having one participant with such different levels of
depression could be the different recording times. In this chapter, only the Freeform data with
150 videos is used as Ebert et al. (1996) found no difference in the EBR between depressed
and non-depressed people in the reading task. In addition, Alghowinem et al. (2013a) showed
that depressed and non-depressed people had almost the same EBR. However, a difference
was found in the eye blink duration when answering a question task. That is why only the
Freeform task data is used in this study. The distribution of the levels of depression severity
in the AVEC 2014 data (Freeform task) is presented in Figure 7.2. The organizers of the
AVEC 2014 challenge divided the data equally into train, development and test partitions.

Table 7.1 The score range of each depression level.

Score Range

0 - 13 Minimal

14 - 19 Mild

20 - 28 Moderate

29 - 63 Severe
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Fig. 7.1 Examples of facial images for one participant with different depression levels (BDI–II
scores of 6, 19, and 33 from left to right) from AVEC 2014 Valstar et al. (2014)

Fig. 7.2 The distribution of the depression severity level for the training partition of the
Freeform task in the AVEC 2014 dataset.

7.2.2 Analysing the Signal

Prior to the detection of facial landmarks, the AVEC 2014 data does not require any pre-
processing operation, unlike the IVA18 data. Therefore, the first step to perform is the facial
landmarks prediction for each video frame. This is implemented automatically using the
OpenFace toolkit1. From the output of the OpenFace, the eye aspect ratio (EAR) is computed
for both eyes’ landmarks for each frame. The average of both eyes’ EAR is used (see
Chapter 4 for more detail). In addition, the estimated three angles, pitch, yaw and roll,
of the head pose are used to calculate the HTR, HTSF and HMSF features, as described

1https://github.com/TadasBaltrusaitis/OpenFace/
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in Chapter 6. Three of the 150 videos needed some pre-processing operations due to the
participant and face detector issues. For example, Figure 7.3 shows when the participant left
the chair and led to a line of one constant value, which is a repeated value from the last time
the face was detected. Then, a head turn to the left led to a high value of the EAR of 4.22,
which confirms the observations in Chapter 4 when it is found that extremely high values
are assumed to be head turns. This issue is fixed by removing this line of repeated values
when the participant was not there. All features are normalised to have zero mean and unit
variance. The following sub-sections present an analysis of the calculated EAR and the head
movements.

Fig. 7.3 The calculated EAR for participant P247 in the Freeform task, which shows the
states where the participant left the chair and turned her head.

Analysing the Calculated EAR

Figure 7.4 shows the calculated EAR for two participants in the AVEC 2014 dataset. It also
shows that the EAR is challenging, and the number of blinks cannot be inspected without
seeing the videos. This leads to observing the data visually for all of the clips and determining
the percentage of the challenging data for the eye blink detection task based on the number of
challenging videos and the total number of videos. After observing the data for the Freeform
task, determining whether the drifts represent blinks or not can be difficult without watching
the video to check. Around 81.33% of the data is considered challenging. Thus, the multiple
thresholds (MTs) approach could be used for such data, as described in Chapter 4.
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Fig. 7.4 Examples of the calculated EAR for two participants in the AVEC 2014 data doing
the Freeform task.

Analysing the Estimated Angles of the Head Movement

This section analyses the Euler angles of the head movements for the AVEC 2014 data to
show the participants’ different behaviour when doing the Freeform task (i.e., answering
questions). It also shows an additional motive to the previously mentioned ones to exclude
the Northwind data. Figure 7.5 shows line plots of the pitch, yaw and roll angles, indicating
the head movements throughout the videos for three participants. These three participants
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were chosen to illustrate the variety of participants’ behaviour during this task. The figure
shows that the participants exhibit head movements and turns when performing the Freeform
task. However, the average of the angles of the head movements in the Freeform data is
significantly lower than in the IVA18 data.
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Fig. 7.5 Examples of the calculated three angles for the Freeform task.
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The same issues were observed for the three participants from the Freeform data, as
described above, which exist in the head movements, which can be seen in Figure 7.6.
Observing this data shows that the three participants from the Freeform data present a problem
related to the estimated head pose angles. This problem is addressed by automatically
removing repeated or zero values, as described above. Another problem related to the
estimated angles is the extremely high values that resulted from either the head movements
angle being difficult to detect even by OpenFace or when the participant left the chair. This
problem is resolved by using linear interpolation where the outlier values appear, as illustrated
in Figure 7.6.

(a) Before Interpolation (b) After Interpolation

(c) Pitch Angle (d) Roll Angle

Fig. 7.6 An example of the original signal of the head movements and after the linear
interpolation operation for roll and pitch angles for a participant.

7.2.3 Classification

As stated previously, two tasks are explored: classification for detecting depressed from
non-depressed people and regression for determining the severity of depression. This section
describes the classification task, and the next section presents the regression task. For the clas-
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sification, several machine learning classifiers are used to measure the performance: support
vector machine with Linear (L-SVM) and RBF kernels (RBF-SVM), logistic regression (LR),
k-nearest neighbours (KNN) and decision trees (DT). The hyper-parameter values are set
based on a grid search, and the rest of the parameters are set to the default values (Pedregosa
et al., 2011). The data in this task is divided into two groups: the non-depressed group (NDG)
and the depressed group (DG), where the threshold used for the BDI-II here is 13, which
means that any participant with a score above 13 is depressed, as predefined in Table 7.1.
Table 7.2 shows the number of participants in each group based on the task and the partition.
The test set is held out consisting of 50 video clips (NDG:25 and DG:25), whereas the two
remaining sets, train and development sets, are used individually and combined as a training
set, including 50 and 100 video clips, respectively. The two sets are combined to increase
the training set. For the evaluation, accuracy, precision, recall, and F-measure metrics are
calculated for each classifier. The accuracy metric is adopted because the test set contains
balanced data.

Table 7.2 Presenting the number of participants in each group for the classification task
(NDG: non-depressed group, DG: depressed group).

Task Partition Number of NDG Number of DG

FreeForm
Training 26 24

Development 26 24

Testing 25 25

7.2.4 Regression

The regression task is conducted to predict the score of depression severity. To do this, three
regressors are used, support vector regression with both kernels, Linear (L-SVR) and RBF
(RBF-SVR), and KNN with both weights and DT. These regressors are for evaluating the
performance and comparing it with related work. The train and test sets are split, as described
previously in the classification task. Following related work, two metrics are used to measure
the prediction of depression severity, which are the mean absolute error (MAE) and the root
mean squared error (RMSE). Details about these equations are described in Section 2.5
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7.2.5 Feature Selection

The recursive feature elimination cross-validation (RFECV) algorithm is adopted to improve
the performance of the classification and regression results. This algorithm is popular due to
its simplicity of use and configuration. It is known that RFECV is very efficient in selecting
the optimal features in the training data, as described in Section 6.3.6. The number of features
to select is a significant hyper-parameter to the performance. This could, therefore, be done
automatically by RFECV via cross-validation evaluation for different feature numbers, which
will then select the optimal number of features with the best mean score. The base algorithm
can be evaluated to find which model gives the best result. For this study, the model with
the best mean result is chosen for the feature selection. This process is applied to the
classification and regression tasks.

7.3 Results and Discussion

As stated previously, this chapter aims to validate the method used in this research and enable
comparison with related work. This section presents the results of the experiments for the
two tasks: classification and regression. The performance achieved for each task is compared
with related work.

7.3.1 Depression Detection

The performance of depression classification is measured for each feature individually, with
feature fusion and when applying feature selection.

Feature Extraction and Classifiers

As stated earlier, the MTs approach calculates the thresholds based on the participants’ overall
minimums and maximums. Due to the high extreme values, the third standard deviation (SD)
is used to remove them. After using the new range from the SD, different feature numbers
based on the thresholds number of 5, 50, and 500 result in 5, 50 and 500 features using
different state machine (SM) types. In addition, the HTR, the HTSF and the HMSF are also
extracted. Then, they are fed to supervised machine learning classifiers. The classifiers used
are the same used ones in the previous chapters and in related work (Alghowinem et al.,
2020; Gupta et al., 2014; Zhou et al., 2015) to allow direct and fair comparison: SVM with
linear kernel, LR, KNN with uniform weight and DT. The Python Scikit-learn package is
used to train the models. The train and test sets are described in Section 7.2.3.
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Results

Table 7.3 illustrates the best classification results for each feature based on different training
sets: train, development and the combination of the train and development sets. The results
show that the EBR feature using the MTs achieves the highest accuracy score in detecting
depression, with 68% of accuracy when the train set and the combined train and development
sets as a training set are used. They also show that the EBR gives the highest precision score
of 71% when the train+development as a training set is used and gives the highest F-measure
score of 68% when only the train set is used as the training set. In addition, the HMSF also
achieved good performance at 64% when the training set was larger with 100 video clips.
In contrast, the HTR feature, either alone or combined with HTSF, gives 50%, a chance
level. This indicates that depressed people may not turn their heads to the left and right often,
which is in line with (Alghowinem et al., 2013b).

Table 7.3 Classification results in percentage (%) of depression for the AVEC 2014 data on
the test partition for testing each feature individually with different classifiers. (superscripts
indicate the classifier: L− SV M1, RBF − SV M2, kNN3, LR4, DT 5, i: is the number of
consecutive frames, Dev: Development).

Feature Training set No. of features Accuracy Precision Recall F-measure

EBR
Train

50
i=2:6 681 69 68 68

Dev
5

i=2:4 565 56 56 56

Train+Dev
5

i=2:6 685 71 68 67

HTR
Train 1 503,4,5 50 50 37
Dev 1 501,2,4 50 50 33

Train+Dev 1 502,3,4 50 50 42

HTR+HTSF
Train 13 503,4,5 50 50 37
Dev 13 521 76 52 38

Train+Dev 13 503 50 50 42

HMSF
Train 54 623 69 62 58
Dev 54 623 61 60 59

Train+Dev 54 643 64 64 64

The effect of carrying out feature fusion is then explored, and the results are shown
in Table 7.4. The performance of feature fusion is measured by combining: 1) EBR +
HTR, 2) EBR + HTR + HTSF, 3) EBR + HMSF and 4) all features. The results show that
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the fusion of the EBR with HTR and the fusion of the EBR and HTR+HTSF gives the
highest accuracy, 68%. The fusion of all the features did not improve the performance of
the previously mentioned results. Although the feature selection RFECV method is used
to improve the performance, choosing the most contributed feature using feature selection
did not help to improve the performance in detecting depression. The reason for this could
be that the dimension of the combined feature vector (117 features) is not that large, and
all the features contribute significantly to the classification task. Interestingly, the highest
results are achieved when the eye blink duration is long, up to 26 consecutive frames below
the threshold (i=2:26), shown in Table 7.4. A previous study by Alghowinem et al. (2013a)
found that people with depression tend to have long blinks.

Table 7.4 Classification results in percentage (%) of depression for the AVEC 2014 data
on the test partition for testing feature fusion and feature selection with different classifiers.
(Superscripts indicate the classifier: L− SV M1, RBF − SV M2, kNN3, LR4, DT 5, i: is the
number of consecutive frames, Dev: Development).

Feature Training set No. of features Accuracy Precision Recall F-measure

EBR+HTR
Train

51
i=2:26 683 68 68 68

Dev
501

i=2:6 604 60 60 60

Train+Dev
501

i=2:18 683 69 68 68

EBR+HTR+HTSF
Train

63
i=2:26 683 68 68 68

Dev
513

i=2:6 583 58 58 58

Train+Dev
513

i=2:16 584 61 58 55

EBR+HMSF
Train

554
i=2:12 644 67 64 63

Dev
104

i=2:3 642 64 64 64

Train+Dev
59

i=2:6 663 66 66 66

EBR+HTR+HTSF+HMSF
Train

567
i=2:12 664 68 66 65

Dev
117

i=2:3 642 64 64 64

Train+Dev
117

i=2:6 663 66 66 66

Selected features (RFECV) Train+Dev
47

i=2:6 643 64 64 64
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Comparing Performance with Related Work

A comparison between the performance achieved in this research and that in previous work
for depression detection on the AVEC 2014 dataset is illustrated in Table 7.5. Accuracy
and recall metrics are used because Senoussaoui et al. (2014) used the accuracy metric
while Alghowinem et al. (2015) used the recall metric to measure the performance. The
performance of the accuracy and recall metrics in the work described in this chapter is
similar, so their performances could be used to compare with those reported in previous work.
However, any comparison is complicated because previous work differs from the experiments
described in this chapter in a number of important ways. For instance, Senoussaoui et al.
(2014) used the development set to measure the performance of their approach, whereas
this work used the test set. Senoussaoui et al. (2014) showed good results in differentiating
depressed from non-depressed people with 82% accuracy using the development partition as
a test set. This differs from the findings presented here that achieved about 68% accuracy
using the test partition as a test set.

Table 7.5 Depression classification results compared to other methods on AVEC2014 and the
number of features (in parentheses) (Dev: Development, Rec: recall metric).

Paper Classification Approach
(No. of video clips) Classifier Feature (No. of features)

Accuracy
(or as

otherwise
noted)

Senoussaoui et al. (2014) Dev (50) RBF-SVM
Features, based
on LGBP-TOP 82.0%

Alghowinem et al. (2015) LOO Cross-validation (32) RBF-SVM
Eye Activity (31) Rec (81.3%)

Head Pose (29) Rec (68,8%)

Feature fusion (60) Rec (75.0%)

Feature selection (12) Rec (68.8%)

The proposed approach Train-test (150)
L-SVM EBR (50) 68.0%

KNN
HTR+HTSF (13) 50.0%

HMSF (54) 64.0%

Feature fusion (117) 66.0%

Feature selection (47) 64.0%

On the other hand, Alghowinem et al. (2015) used only 32 video clips from the Freeform
task. This is because they were interested in analysing childhood storytelling to match their
interviews from their dataset. In addition, they adopted the leave-one-out cross-validation
approach for the classification task, which is different from the approach used in this chap-
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ter. Differences between the results reported by Alghowinem et al. (2015) and those in
this thesis may have been influenced by the differences previously mentioned. However,
both Alghowinem et al. (2015) and this thesis work share a number of key features. Firstly,
both agree that eye features are significant and achieve the highest performance compared to
head-related features. Moreover, the feature selection did not improve the performance of the
classifier. Even though the hand-crafted features, which are used, are simple, they achieved
encouraging results.

7.3.2 The Severity of Depression Detection

Besides detecting depression, estimating the severity of the depression is implemented by
estimating the BDI-II score for each participant. In this task, the performance is measured
for each feature individually, combined and when applying feature selection.

Feature Extraction and Regressors

The same features used in the classification task described previously are explored. These
features are given to a number of regressors: SVR with Linear and RBF kernels, KNN with
uniform weight, and DT. The Python Scikit-learn package is used to train the models. The
train and test sets are described previously in Section 7.2.4.

Results

For regression, two metrics are used to measure the performance, RMSE and MAE, following
the related work to compare the results obtained directly with theirs. Table 7.6 presents
the results of depression severity regression for each feature individually. Interestingly, the
best results are obtained using the HMSF, with 8.872 and 10.789 for MAE and RMSE,
respectively. This indicates that head movements could play a significant role in estimating
the severity level of depression.

The performance of feature fusion is measured, as described above. The fusion of the
EBR with other features implies using type 3 of the SM with a different number of thresholds
(i.e., 5, 50 and 500). The experimental results are shown in Table 7.7. It can be seen that
the fusion of all the features achieves the best results with MAE and RMSE, which resulted
from increasing the training set size from 50 video clips to 100 using both partitions: training
and development. Notably, the best result is obtained when the EBR features are computed
using five features and the number of consecutive frames is from at least two to a maximum
of 5 frames. Alghowinem et al. (2013a) found that people with depression have a longer
average duration of eye closure than healthy controls due to potential fatigue or the person is
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Table 7.6 Results of depression regression on testing partition using each feature individually.
The mean absolute error (MAE) and root mean square error (RMSE) are used to measure the
performance (linear−SV R1,rb f −SV R2,kNN3,DT 4,KR5, i: is the number of consecutive
frames, Dev: Development).

SM Type/Feature Training set No. of features RMSE MAE

EBR
Train

500
i=2:25 11.283 9.46

Dev
5

i=2:9 14.203 12.21

Train+Dev
50

i=2:28 12.683 9.69

HTR
Train 1 11.642 9.54
Dev 1 11.573 9.77

Train+Dev 1 11.575 9.50

HTR+HTSF
Train 13 11.652 9.54
Dev 13 11.521 9.53

Train+Dev 13 11.534 9.55

HMSF
Train 54 11.631 9.74
Dev 54 11.143 9.47

Train+Dev 54 10.793 8.87

trying to avoid eye contact. Also, the number of non-depressed people is larger than that of
depressed people in the AVEC 2014 dataset. Considering all the factors mentioned above,
when the length of the eye closure is small with almost five consecutive frames, it may help
to distinguish non-depressed from depressed people. Alghowinem et al. (2013b) and Zhou
et al. (2015) reported that head movement is a significant cue in detecting depression.

Comparing Performance with Related Work

In this chapter, the research focuses only on the visual-based approaches for depression
regression. The performance obtained is compared with related work that also used the
AVEC 2014 dataset. The visual features performance is comparable to related work that used
advanced techniques (e.g., neural networks). Even though previous work employed advanced
techniques, hand-crafted features are used in this current research because of the small size
of the data. It can be seen from Table 7.8 that the approach in this thesis outperforms that
of the previous work that used hand-crafted features (Jan et al., 2014; Kaya et al., 2014;



7.3 Results and Discussion 173

Table 7.7 Results of depression regression on the testing partition for features fusion and
selection. The mean absolute error (MAE) and root mean square error (RMSE) are used
to measure the performance (linear− SV R1,rb f − SV R2,kNN3,DT 4, i: is the number of
consecutive frames, Dev: Development).

Feature Training set No. of features RMSE MAE

EBR+HTR
Train

501
i=2:25 11.303 9.47

Dev
6

i=2:9 13.823 11.50

Train+Dev
51

i=2:10 11.743 9.50

EBR+HTR+HTSF
Train

513
i=2:14 12.562 9.75

Dev
513

i=2:10 12.023 10.04

Train+Dev
18

i=2:5 11.102 9.18

EBR+HMSF
Train

59
i=2:6 11.662 9.94

Dev
59

i=2:9 10.793 8.97

Train+Dev
554

i=2:21 12.292 9.93

EBR+HTR+HTSF+HMSF
Train

72
i=2:3 11.662 9.93

Dev
117

i=2:3 11.493 9.55

Train+Dev
72

i=2:5 10.463 8.31

Selected features (RFECV) Train+Dev
45

i=2:5 10.233 8.10

Valstar et al., 2014). In addition, the proposed approach achieved better results than several
methods that use audio and video data (Pérez Espinosa et al., 2014). The last four proposed
models, which were built based on deep learning techniques, outperform other methods; in
particular, Jan et al. (2017) achieved the best results among other methods in terms of RSME
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with 8.04, and Zhou et al. (2019) obtained the best results among other solutions in terms of
MAE with 6.21.

Table 7.8 Depression regression results compared to other methods on AVEC2014 (Test Set)
(PLS: partial least square, LinearReg: linear regression, DNN: deep neural networks).

Paper Approach Regressor RMSE MAE

Valstar et al. (2014) (Baseline) Hand-crafted features SVR 10.86 8.86

Jan et al. (2014) Hand-crafted features PLS+LR 10.50 8.44

Kaya et al. (2014) Hand-crafted features PCA+MPGI 10.27 8.20

The proposed approach Hand-crafted features KNN 10.23 8.10

Zhu et al. (2017) DNN DNN 9.55 7.47

Jan et al. (2017) DNN PLS+LR 8.04 6.68

Zhou et al. (2018) DNN DNN 8.43 6.37

Zhou et al. (2019) DNN DNN 8.39 6.21

A strong relationship between eye movements and depression recognition has been
reported in the literature. When researchers used a frame that included only the eye region
and fed this to convolutional neural networks, the best-obtained regression results were
comparable to those obtained using other face regions (Zhou et al., 2019). Together these
results provide important insights into the importance of these hand-crafted features and their
ability to provide valuable information. However, the results are affected by the imbalanced
training data, as shown in Figure 7.2. In other words, the training partition has a larger
number of people with no depression than people with depression (mild, moderate, or severe
depression levels).

The possible explanation for having less performance than deep learning techniques
is that hand-crafted features such as the EBR and head movements require long videos to
capture important information, whereas the AVEC 2014 dataset’s video clips are short. There
are, in fact, fewer frames in the training and development partitions than in the test partition
(see Table 7.9). Finally, as stated at the beginning of this chapter, the main goal is to validate
this research’s approach on a public dataset and explore its feasibility, not to compete with
state-of-the-art approaches.
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Table 7.9 The number of frames in each set of the AVEC 2014 dataset.

Training Development Testing Total

94,981 80,190 119,880 295,051

7.4 Conclusion

In this chapter, work to validate the proposed approach on a standardised depression dataset
was conducted by investigating the use of hand-crafted features, such as the EBR with
the MTs approach, the HTR, the HTSF and the HMSF. This investigation involved two
tasks: classification and regression. For the classification task, the EBR achieved the highest
performance in identifying depressed from non-depressed people, with 68% accuracy. The
HTR, with or without HTSF, gave a chance-level performance, which is in agreement with the
results obtained by Alghowinem et al. (2013b), who found that people with depression tend
not to turn their heads to the left or right side, but downwards. The feature fusion performed
better than only the HMSF. However, feature selection did not enhance the performance
of the classifiers. Importantly, these findings seem to be consistent with those of previous
studies, which found that these cues could be used as indicators of depression (Alghowinem
et al., 2020; Gupta et al., 2014; Ringeval et al., 2019; Zhou et al., 2015)

In terms of the regression task, the HMSF gave the best results when each feature was
tested individually. However, when the visual features were combined, they achieved the
highest performance and using the feature selection improved the performance. The results
indicate that using a combination of all these feature vectors is important to improve the
regression performance due to the small data size. These results are consistent with those
of Zhou et al. (2019), who found that motion in the eye region showed significant performance
in estimating the severity of depression. That is why the eye blink is considered an important
feature. It was observed from all the experiments that the performance of those visual
features is comparable to related work that used advanced techniques. In addition, the results
showed that using only visual-based approaches could achieve performance comparable to
the state-of-the-art approaches in the challenge of AVEC 2014, which used both audio and
video modalities. Issues with this dataset are its small size, short video clips and imbalanced
training data set. Despite the relatively limited sample, this work offers valuable insights into
the importance of these visual cues in healthcare applications.
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Conclusion

"There is hope, even when your brain tells you there isn’t."
— John Green

This thesis has investigated the feasibility of using facial features, specifically eye blink
rate (EBR), head turn rate (HTR), head turn statistical features (HTSF) and head movement
statistical features (HMSF), for automatically detecting cognitive impairment (CI) using
in-the-wild video data. This kind of data can pose several challenges, such as low resolution,
poor illumination, participants’ spontaneous behaviour during the session and noisy back-
ground. These challenges can lead to losing the participant’s face, resulting in calculating
false values for the facial landmarks and the head movements. This can become more chal-
lenging in the case of the appearance of more than one person in the camera view because the
accompanying person can be closer to the camera than the participant him/herself, making
the face detector detects only that person instead of the participant. This thesis, therefore,
aims to develop a system for automatic CI detection. This system was conducted in three
steps. The first step was to conduct a pre-processing operation for the videos that contained
the appearance of people closer to the camera view than the participant. The second step was
the feature extraction of facial cues. The third step was to feed these features to classifiers,
producing a label for each participant.

In order to achieve this aim, this research was divided into three tasks. The first task
focused on investigating the system for CI detection, as mentioned above, on a small dataset of
people with CI. The second task focused on evaluating this research work on a larger dataset
of people with CI and healthy controls (HC) with more variation in in-the-wild conditions.
The third task involved validating the specific approach in this research on a public dataset
to enable a comparison of the performance of this work with related work. Section 8.1
summarises how these tasks were investigated, along with the findings. Section 8.2 presents
the potential directions of future work.
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8.1 Summary of Thesis

Three research questions were investigated to achieve the tasks mentioned above:

1. What are the kinds of challenges and diversity that should be included in in-the-
wild datasets to make them as representative as possible of real-world environments?
(Chapter 3)

2. How can facial features be automatically detected in a robust way for in-the-wild data?
(Chapters 4 and 5)

3. How useful are eye blink rate and head movement for CI detection? (Chapters 4, 5, 6
and 7)

First, Chapter 3 presented that the ‘in-the-wild data’ term should cover many of the
edge cases of the participants in terms of demographic, look and behaviour, environmental
conditions and device used (RQ.1). Then, it provided a review of different types of commonly
used datasets for healthy individuals and people with health conditions, including their
limitations. There was a lack of information about the challenges included in those datasets
in terms of the definition of in-the-wild data, and most of them used professional cameras
to record the data. Regarding the datasets for people with health conditions, most previous
researchers evaluated their work on data recorded in a lab-controlled environment. This
chapter also highlighted the importance of collecting in-the-wild datasets and the barriers to
doing that.

Chapter 3 also introduced the datasets used in this research: IVA18, IVA34, and IVA52,
which was a combination of IVA18 and IVA34. A comparison of the challenges of these
datasets with those used in previous work was made. This comparison helped to show how
these research datasets comprised in-the-wild data. It also demonstrated that these research
in-the-wild datasets are the first kind to be used in both the computer vision and healthcare
fields to automatically detect health conditions. This helped to provide insight into the
significance of using such a dataset to develop a home-based application in the future.

Chapter 4 described the three steps mentioned above by starting to conduct a pre-
processing operation on the video recordings of the IVA18 dataset. Then, two facial landmarks
tracking techniques, Dlib and the OpenFace, were used to estimate the facial landmarks and
then used the eyes’ landmarks to calculate the eye aspect ratio (EAR). The IVA18 dataset can
be considered an in-the-wild dataset, which, as described in Chapter 3, could affect the EBR
calculation because it depends on the EAR. Therefore, Chapter 4 presented a novel multiple
thresholds (MTs) approach to calculate the EBR feature for the IVA18 dataset (RQ.2). This
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approach calculates multiple thresholds for blink detection, resulting in having multiple
blinks for a specific range for each participant. This approach is more robust for in-the-wild
data challenges. This approach was investigated using Dlib and OpenFace, to explore the
performance on such an in-the-wild dataset. After the EBR was calculated, it was fed to
classifiers. The results showed that Dlib facial landmarks gave better results than OpenFace,
with an accuracy of 89% and 78%, respectively, for a three-way classification problem.
The findings showed that EBR is a valuable indicator for differentiating neurodegenerative
disorder (ND), mild cognitive impairment (MCI) and functional memory disorder (FMD)
(RQ.3).

The MTs approach was then evaluated using a larger dataset for people with CI ( IVA52).
First, the feasibility of using the MTs approach on the IVA52 data was investigated for
classifying people with ND, MCI, FMD and HC in four-way, three-way and a combination of
two-way problems. When the MTs approach was applied to the combined dataset, it showed
an issue related to the classification of the newly added recordings ( IVA34) by classifying all
of them incorrectly. The reason behind this was the variation in the recording environments
and the devices used, resulting in having a lower mean and SD of the IVA34 participants
than those in the IVA18 dataset. The MTs approach was, therefore, further developed to
overcome these issues by calculating the threshold participant-dependent (PD) threshold (i.e.,
the thresholds for each participant were calculated based on their minimum and maximum
values) instead of using the overall participants’ maximum and minimum (RQ.2 & RQ.3).
Then, different outlier setup approaches were used to deal with the extremely high values in
the calculated EAR. The results showed improvements in the performance of the classification
for the four-way, three-way and the combination of two-way problems.

Next, Chapter 6 described the first attempt to examine the feasibility of automatically
detecting ND, MCI and FMD using head movement features, which was conducted on
the IVA18 dataset (RQ.3). The features extracted were the HTR, the HTSF, the HMSF and
the low-level features (LLFs). The performance was measured using each feature individually,
the fusion of these head movement features with the EBR feature, and then when the feature
selection was applied, and the LLFs. The results showed that some classification problems
were considered challenging. For example, classifying ND vs. MCI and MCI vs. FMD using
the HTR feature achieved an accuracy of only 67%, whereas classifying ND from FMD gave
a good accuracy score of 92%. The use of the HMSF feature achieved high performance
in differentiating MCI from FMD, with an accuracy of 83%. The feature fusion helped to
improve the classification results of a three-way problem with an accuracy of 78%.

On the other hand, the LLFs did not improve the classification results for three-way
and two-way problems compared with other features. The findings suggested a relationship
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between increasing HTR and the progression of MCI and dementia to Alzheimer’s disease.
It was also found that the presence of an accompanying person plays a significant role
in increasing the HTR. The findings were very encouraging for data recorded in the wild
compared with data recorded in a lab-controlled condition.

The feasibility of the head movement features, HTR, HTSF and HMSF, for the automatic
CI detection on IVA52 was explored (RQ.3). The experiment involved classification problems
that were a combination of four-way, three-way and two-way problems. The results showed
that the features that achieved the highest accuracy in the IVA52 dataset were the same
features that obtained the highest performance in the IVA18. It was clear that the HTR feature
and its derivative features (HTSF) gave the highest performance in classifying three-way and
ND from FMD with an accuracy of 59% and 92%, respectively. It also showed that using the
HMSF features gave the highest performance in classifying ND from MCI and MCI from
FMD, with an accuracy of 62% and 90%, respectively. This indicates that HTR+HTSF is a
very valuable cue for differentiating CI from other health conditions. Moreover, the HMSF
could help to differentiate health conditions with similar symptoms. Finally, the classification
problems showed promising results for the other two-way problems. However, it showed that
classifying FMD from HC was a very challenging case with a 67% accuracy in comparison
with other classification problems when ND was classified from HC with 83% accuracy and
MCI from HC with a 74% accuracy. The findings provided an insight into the difficulty of
classifying these four health conditions from each other compared to previous work that had
investigated only one two-way classification problem: classifying CI (regardless of CI type
and including MCI and ND as one group) from HC. They also provided insight into the value
of such facial features for detecting health conditions using in-the-wild data.

The MTs approach used in Chapter 4 was validated in Chapter 7 using a public depression
dataset (AVEC 2014). The aim of this was to examine the applicability of the findings to
another condition that shares similar symptoms to those of CI (RQ.3). This investigation
used the EBR with the MTs approach and head movement features, HTR, HTSF, and HMSF,
which was described in Chapter 6. The validation involved two tasks, classification and
regression. In terms of classification, the results showed that the EBR feature classified
the depressed group (DG) from the non-depressed group (NDG), with an accuracy of 68%.
However, the HTR features achieved an accuracy of only a chance level because people
with depression do not usually turn their heads to the left or right side, only downward, to
avoid eye contact with the interviewer (Fossi et al., 1984). It was found that the feature
selection did not show any enhancement in the results compared with the individual feature
results. For the regression task, only the HMSF achieved the highest results when individual
features measured the performance. The feature fusion did not improve the performance until
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feature selection was applied. The findings showed that employing all features contributed
significantly to improving the performance of the regression. To conclude, the performance
obtained using these hand-crafted features was comparable to that reported in previous
studies that had used advanced techniques (i.e., neural networks). It was also shown that
facial features were comparable to the state-of-art approaches that employed both modalities
(audio and video).

In conclusion, this thesis has far-reaching benefits for researchers and clinicians. It can
improve their understanding of these health conditions, facilitate novel discoveries, and
improve detection accuracy. This can result in the ability to differentiate between different
health conditions that share similar symptoms and conduct more deeply focused and efficient
research outcomes, which lead to providing patients with suitable care and treatment.

8.2 Scope for Future Work

This thesis is the first to investigate different health conditions (ND, MCI, FMD and HC)
using facial features from video recordings. Thus, this can be a start for researchers to conduct
more deep investigations because there are more challenges and areas of improvement that
need to be tackled and more aspects to be discovered in the detection of CI to enhance the
overall performance of the system. Several possible future work areas for this research are
suggested below.

Increasing the size of the dataset

The number of participants with health conditions in the IVA52 dataset needs to be increased
by recruiting and recording more participants with ND, MCI and FMD from both genders
with matched ages. Having more data will give an opportunity to conduct more investigations
based on health condition, gender and the presence of a partner, which may help to improve
the classification results. As a result of various issues with video recordings in the IVA52

dataset that led to some of them having to be excluded, data should be recorded with some
instructions for the participants to allow for the accurate detection of eye landmarks in in-the-
wild data. The aim of these instructions is to reduce the false values of the eye landmarks
detection that result in high values for the EAR because the face detector loses track of
the facial landmarks. The instructions should detail how the participants should sit and the
room’s lighting or the use of daylight. For instance, they should sit in front of the laptop or
smartphone, and their faces should appear very clearly in the camera, and they should sit in a
room with good light, which should not be behind the participant or directly on top of the
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participant’s head. These cases result in a dark area for the face region, which makes eye
detection very difficult and can result in false values for eye landmarks detection.

Annotating and analysing the dataset

According to Taati et al. (2019), state-of-the-art approaches for face and facial landmark
detection fail or have lower performance when applied to datasets for elderly people with CI.
Further work can be carried out by allocating ample time for annotating the eye status (i.e.,
closed, open, partially open), head movement and every existing condition in terms of the
participant’s look and behaviour and environment in each video frame for each participant.
Since the dataset is very challenging, conducting deep analyses of such datasets will help
to 1) understand why those approaches had such performance and 2) paint a full picture of
the reason for any performance obtained using any approach for capturing particular facial
features.

Investigating deep learning techniques

After collecting more data, another approach could be used for exploring the classification
performance of different deep learning models. This investigation could be conducted by
training a neural network model on those facial features. In addition, they could be trained
on video frames by evaluating the performance using the whole frame cropped to include
only the participant’s face and in which the frame is divided into three parts: upper (forehead
and eyebrows), middle (the eyes region) and lower (the mouth). Dividing the frames into
parts this way could help to determine which part of the face plays a crucial role in the
classification performance.

In this thesis, the initial preprocessing phase for the IVA dataset is conducted manually.
However, there is potential to automate this step by employing deep learning techniques
to extract facial features from each frame of the participant’s face. The next step involves
calculating the cosine similarity among these facial features for each frame of the same
participant. A feature vector representing a neutral and clear facial expression is established
as a reference point for comparison with other feature vectors from different frames. The
resulting values will indicate the dissimilarity or similarity between the facial features, with
a range of -1 to 1, where 1 signifies identical vectors, and -1 signifies opposite vectors. This
approach may be useful in finding the frames where the patient’s face is not in the camera
view and the frames that represent only the patient.
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Investigating more facial features

In this thesis, EBR and head movement features were examined. There are more derivative
features related to each one of them. For example, more features can be extracted for each
eye blink detected, such as the blink’s duration and frequency. The blink duration can be
measured by the time interval from the eyelids closing and reopening. Blink frequency
determines how many times a person can blink within a particular time frame. It is calculated
using the time intervals between genuine detected blinks. These features can be calculated
using the MTs approach. More features can be extracted regarding head movements, such
as calculating the minimum, maximum, range and average duration of looking: right, left,
up and down, and tilting clockwise and anti-clockwise for all head movements. Also, the
total number of changes in looking direction for pitch, yaw, roll and all movements can be
investigated. Exploring more facial features, eye gaze, facial expressions and facial action
units, could all help to enhance the classification results. It would also be beneficial for the
system’s performance if facial landmarks are employed to extract features, such as facial
expressions and statistical features.

Investigating multi-modal system

The applicability of building a multi-modal system to enhance the performance of the
classification could be investigated. A multi-modal system could be built in different ways by
investigating speech-based features and then combining them with facial features, which may
result in a language-independent multi-modal system. It could also be built by investigating
the combination of language, speech, audio and facial features as one multi-modal system.

Developing an application for CI detection

Work has already been carried out to develop a system for detecting early signs of dementia
and FMD (CognoSpeak 1) (Brewer et al., 2021; Mirheidari et al., 2022; O’Malley et al.,
2021). It uses speech technology and machine learning to extract features of a person’s
speech and use them to detect CI. The promising results of the current research obtained
in this thesis could be integrated with the CognoSpeak system. This would help to achieve
the purpose of this research, which is to have a tool which is low in cost, effort and time,
non-invasive, accessible by other people, and capable of being used in a patient’s home.

1www.cognospeak.com
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Appendix A

Reviewing Previous Work’s Datasets

The following section reviews two types of datasets: commonly used datasets to evaluate state-
of-art techniques (e.g., face detection and tracking, eye blink detection and head movement
estimation) and health conditions datasets. Each dataset is briefly described, including its
purpose, whether it is in the wild according to the authors or not, the number of the population
if mentioned, the number of images or videos, challenges, limitations and availability.

A.1 Commonly Used Data

A.1.1 Face Detection and Tracking

• The LFW dataset is collected for investigating face recognition in unconstrained
environments. The authors refer to it as an in-the-wild dataset with 13,233 images of
5,749 famous figures. The images include a few children, very few people older than
80, and a few women. Several conditions, such as poor illumination, large head pose,
low resolution and other vital factors, represent a minor part of LFW. This dataset
is limited in the representation of some groups; there are no babies and only a small
proportion of some ethnicities. In addition, it does not contain images with strong
occlusion. More importantly, the authors mentioned that the size of this dataset is
small to consider as evidence of good performance in evaluating a particular approach.
The dataset is available at http://vis-www.cs.umass.edu/lfw/.

• The Helen dataset is collected for facial component localisation. It is in-the-wild data,
according to the authors, with 2330 images. It is constructed in several steps: selecting
2330 images with high resolution and large variations and including many people from
different cultures. Then, a face detector is used to filter the selected subset to include

http://vis-www.cs.umass.edu/lfw/
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images with large faces (i.e., greater than 500 pixels in width). The subset is manually
filtered further to remove profile views, false positives and low-quality images. For
each image, a cropped version is created to include the face and a small proportion of
the background. The face is not always at the centre of the image. A cropped image
may contain more than one person. Every image is annotated manually to localise
the eyes, nose, mouth, eyebrows and jaw-line using Amazon Mechanical Turk. This
dataset has several limitations, such as using multiple filtering approaches to exclude
false positives, profile views, faces less than 500 pixels in width, and low-resolution
images. It is available at http://www.ifp.illinois.edu/~vuongle2/helen/.

• The AFW dataset is built for face detection, pose estimation and facial landmarks
detection. According to the authors, this data is considered in the wild and consists
of 250 images with 468 faces. It is collected from Flicker images with variations in
the background, face poses and appearances, such as ageing, makeup, skin colour,
facial expressions and sunglasses. It is annotated in terms of the faces’ bounding
box, poses and landmarks. For each face, a bounding box is determined, six facial
landmark points are annotated (i.e., the centre of the eyes, the tip of the nose, the
two corners and the centre of the mouth), and the yaw and pitch angles of each pose
are added. The data is limited to the size of the dataset and, more importantly, the
lack of information in terms of the challenges in this dataset. The dataset is available
at https://datasets.activeloop.ai/docs/ml/datasets/afw-dataset/.

• The LFPW dataset is collected for facial landmarks localisation. According to the
authors, it is in-the-wild data with 3000 images of faces collected from the Internet,
particularly Google, Flickr and Yahoo. These 3000 faces were detected. Then, any
image incorrectly detected or near-profile face was excluded from the subset. Finally,
every image was annotated with 35 points on each face by Amazon Mechanical Turk.
The images include faces where hair, sunglasses or glasses may occlude the eye, and a
hat, a cigarette, a hand, or a microphone may cover some parts of the face. Some facial
landmarks may be occluded by facial hair, and some may exhibit a strong shadow
across some face parts. There are images with facial expressions, and faces can have
makeup, be made up theatrically or no makeup. This dataset’s limitations are similar
to those mentioned for the Helen dataset. For example, a filtering approach to exclude
false positives, profile views or near profile views, and low-quality images. A sample
of this dataset is available at https://neerajkumar.org/databases/lfpw/.

• The 300-W face dataset is collected to measure the facial landmark detectors’ feasi-
bility in handling in-the-wild conditions. According to the authors, it is in-the-wild

http://www.ifp.illinois.edu/~vuongle2/helen/
https://datasets.activeloop.ai/docs/ml/datasets/afw-dataset/
https://neerajkumar.org/databases/lfpw/
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data, comprising 300 indoor and 300 outdoor images. It is gathered from the Internet
using tags such as ’party’, ’conference’, ’protests’, ’football’, and ’celebrities’. This
data includes a higher proportion of partially-occluded faces than the other datasets.
It covers more facial expressions, such as ’neutral’, ’smile’, ’surprise’, or ’scream’,
compared with other in-the-wild datasets, such as Helen and LFPW, that include only
’smile’ expressions. In addition, it consists of a similar pose proportion to that in
AFW and variations in background, illumination and image quality. The ground truth
is created using a semi-automatic method to annotate facial landmarks, following
previous work (Sagonas et al., 2013c; Tzimiropoulos et al., 2012). This dataset is
limited in the number of partially occluded faces and the small number of images used
for testing. It is available at https://ibug.doc.ic.ac.uk/resources/300-W/.

• The IJB-FL dataset is a subset of IJB-A (Klare et al., 2015), which is a benchmark
for face recognition and consists of variation in image conditions, ethnicities and full
poses. This data is referred to as in-the-wild data. The authors took a sample of
180 images from IJB-A, of which 128 are frontal and 52 are profile. This dataset is
annotated manually with about 68 facial landmarks depending on the face visibility.
This data differs from the previous ones because it includes several images in a non-
frontal pose. It is also limited by the lack of information regarding its challenges,
which would be helpful for comparing it with other datasets. The dataset is available
at http://face.nist.gov.

• The Menpo dataset is constructed for facial landmarks localisation and addresses
the limitations of previous in-the-wild datasets (i.e., 300W and 300-VW, which will
be described later). The limitations of the previous datasets are that they include few
images with faces in extreme poses, and the test set consists of a very small number of
images, about 600. Hence, Menpo data includes a training set with 5658 semi-frontal
and 1906 profile images and a test set with 5335 frontal and 1946 profile images. The
profile images are annotated manually with up to 39 landmarks. For semi-frontal im-
ages, the annotation has been conducted using a semi-automatic approach. Finally, the
faces in the images are cropped using the landmarks and provided for training and test
purposes. This data is also limited by the lack of information in terms of its challenges,
which would be helpful for comparing it with other datasets. It is available at https://
ibug.doc.ic.ac.uk/resources/2nd-facial-landmark-tracking-competition-menpo-ben/.

• The RU-FACS dataset is collected for the facial action unit recognition task. It
contains 33 videos of different participants recorded in a lab-controlled environment.
Each video lasts for about 2 minutes. This dataset is limited by the lack of information

https://ibug.doc.ic.ac.uk/resources/300-W/
http://face.nist.gov
https://ibug.doc.ic.ac.uk/resources/2nd-facial-landmark-tracking-competition-menpo-ben/
https://ibug.doc.ic.ac.uk/resources/2nd-facial-landmark-tracking-competition-menpo-ben/
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in terms of the challenges in this dataset, which could be helpful to compare with other
datasets.

• The YouTube Celebrities dataset is collected for face tracking and recognition task.
The authors claimed that the data is from real-world scenarios, so it can be referred to
as an in-the-wild dataset, consisting of 1910 sequences of 47 celebrities in an interview
or TV show. It includes variations in face pose, occlusion and illumination. It is
captured at 25 fps, which is the reason for including videos with low resolution. Most
of the videos are less than 15 seconds long. This dataset has the same limitation
as the previous datasets, which is the lack of information in terms of the challenges
in it, which would be helpful for comparing it with other datasets. It is available
at http://seqamlab.com/youtube-celebrities-face-tracking-and-recognition-dataset/.

• The 300-VW dataset is built for the facial landmark tracking task. The authors claimed
that it is in-the-wild, and it includes 300 videos collected mostly from YouTube and 12
clips from the SEMAINE database (McKeown et al., 2011). Each video shows only
one person and is captured at 30 fps, and the number of frames in total is 218559. The
average duration of the videos is 64 seconds. The authors divided the data into three
categories. Category one contains videos of people in good-environmental conditions,
various head poses, and occlusions by glasses or beards. Category two includes
videos of people recorded in various illuminations and dark rooms, and displaying
facial expressions with small head poses. Category three consists of videos recorded
in unconstrained conditions, such as variations in illumination, occlusions, facial
expressions, head poses and makeup. This dataset is limited by the lack of information
regarding the participants’ behaviour, look, demographics, and background. It is
available at https://ibug.doc.ic.ac.uk/resources/300-VW/.

• The DDF dataset is constructed for face tracking from profile to profile. The authors
did not state whether the data is in-the-wild or not. The dataset contains 15 videos
with a total of 10,822 frames. Each video displays one participant pretending to be
distracted while driving in a stationary vehicle or indoor environment. 12 videos of 15
are recorded with participants sitting inside a vehicle; five of them participants were
recorded at nighttime and under infrared (IR) light, and the other seven were recorded
under natural lighting. The remaining three participants are recorded indoors. This
dataset is also limited by the lack of information about its challenges.

• The NDS dataset is also constructed for face tracking from profile to profile. Again,
the authors did not state whether this data is in-the-wild or not. It consists of 20 subse-

http://seqamlab.com/youtube-celebrities-face-tracking-and-recognition-dataset/
https://ibug.doc.ic.ac.uk/resources/300-VW/
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quences of drivers’ faces recorded during a drive between two areas, the Blacksburg,
VA and Washington, DC, areas. It is considered more challenging than the DDF dataset
due to the videos’ lower spatial and temporal resolution. Each video lasts for one
minute and is captured at 15 fps with a resolution of 360 x 240. Both the DDF and
NDS datasets include many faces in near-frontal or profile faces (±90◦ yaw, ±50◦

pitch), many frames under extreme IR lighting conditions and occlusion by sunglasses.
However, this data is still limited by the lack of information about its challenges.

A.1.2 Eye Blink Detection

• The ZJU dataset is recorded in a lab-controlled environment and includes 80 videos
of 20 participants, each lasting only a few seconds. For each participant, there are
four clips: frontal view without glasses, frontal with thin and black frame glasses, and
upward view without glasses. The participants were asked to blink spontaneously at
normal speed. The videos are collected by LogitechPro5000, a generic web camera,
and captured at 30 fps. There are very short blinks, which last for two frames, indicating
that the videos are not captured using 30 fps the whole time. The participants are still
and without any head movement.

• The Talking face dataset is recorded in a lab-controlled environment and consists of
one video of one participant sitting and talking in front of the camera. The participant
shows one facial expression, smiling, but without any head or body movements. The
background was a blue wall. The video is captured at 25 fps for a total of 2:46 minutes.

• In the Eyeblink8 dataset, although the videos are recorded in a home environment,
the participants are still and only show smiling expressions. It consists of eight videos
of four participants (one wearing glasses). The videos are collected by a Logitech
C905 camera at 30fps.

• The Basler5 dataset is recorded in a lab-controlled environment. It consists of 5
participants who were sitting at a close distance to the camera and in a lab-controlled
environment. The videos are collected by a high-speed Basler camera at 100 fps.

• The Researcher’s Night dataset is recorded at an event called Researcher’s Night
2014, at which people are asked to read an article or blink during the recording. It
is collected in a cluttered environment and has 107 videos of different people. The
videos are captured at 15 and 30 fps. The recordings include around 20% of people
wearing glasses, a little head movement or touching their faces.
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A.1.3 Head Movement Estimation

• The BU dataset is recorded in a lab-controlled environment and includes only 200
images for five participants, which is the major disadvantage of this dataset. The
collection is conducted in two sessions: one in which the illumination is uniform
and another in which the illumination varied with complex scenarios regarding the
appearance of the face. Head rotations are recorded using a magnetic tracker attached
to each participant’s head as aground truth, whilst the test set was recorded via a
Sony Handy-cam. Both the quality of the images and the annotations are considered
to be low. This dataset is limited to frontal faces and other important factors (e.g.,
eyeglasses, facial hair, etc.). In addition, with some furniture and computers in a
typical lab-controlled environment, some approaches showed a lower accuracy, which
indicates that a noisy background could affect the performance of a model.

• The AFLW dataset is designed for facial landmarks localisation and head movement
tracking. According to the authors, it is considered a challenging dataset collected
from the Internet in nine different lighting conditions and in the wild. It consists of
21,997 images for 25,993 faces. This dataset includes frontal and non-frontal images
showing different facial expressions, variations in face appearance and environment-
related factors. The facial landmarks and the head poses are manually annotated.
However, no annotation is provided when a facial landmark is not visible. In addition,
the annotations provided and the image quality are low. It is available on request at
http://lrs.icg.tugraz.at/research/aflw/.

• The ICT-3DHP dataset is collected using the Kinect device for the test set and the
ground truth is recorded using a magnetic tracker attached to each participant’s head.
This dataset, therefore, includes both RGB and depth data. It consists of only 10
participants, and the number of videos is 10, which is about 1400 frames. The head
rotations for the three angles are recorded. It is then annotated using a Polhemus
FASTRAK flock of birds tracker, which results in low-quality in the ground-truth
annotation. They mentioned that their dataset is limited to a few images with roll angle.
There is no information about the dataset challenges or the recording environment.

• The BIWI dataset is collected in a lab-controlled environment based on a recording
setting, which involved the participants sitting in front of a Kinect camera at a distance
of 1 meter indoors in a living room environment. The recordings contain 20 participants
(4 people with glasses). The total number of frames is 15,000. The participants turn
their heads to exhibit all possible yaw and pitch angles. The head orientation for

http://lrs.icg.tugraz.at/research/aflw/


A.2 Health Conditions Data 217

these angles varies (e.g., yaw with ±75◦, pitch with ±60◦, and roll with ±50◦). The
head movement data are automatically annotated, and this lead to medium-quality of
ground-truth annotation is medium. This data is limited to only a few images with roll
angles and lacks more information about the participants and the environment.

A.2 Health Conditions Data

• The BlackDog dataset is collected by the BlackDog Institute, an organisation focusing
on clinical research in Australia. A total of 80 participants are recorded with ages
rangeing from 21 to 75, but only 60 of them are used in order to reduce the variability by
including only English speakers. The participants are interviewed and asked questions
from eight groups of questions, requiring them to explain and describe happy and sad
events. Only the participants who met the criteria of Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV) (Carter, 2014) diagnostic rules were
chosen.

• In the ORI dataset, video recordings of eight participants are selected with ages
ranging between 12 and 19 years. It includes a one-hour video recording for every
participant based on three family interactions: event planning, problem-solving and
family consensus interaction. According to the authors, all of the selected participants
are white, and none wore eyeglasses during the recording sessions.

• The AVEC2013 dataset is an audio-visual depression dataset recorded using a human-
computer interaction for people performing several tasks. It includes 340 videos for
292 participants with ages ranging from 18 to 63 years, with an average of 31.5 years.
It is recorded using a webcam and a microphone and is captured at 30 fps with a
resolution of 640 x 480. Only one person appears in each clip, and some participants
recorded more than one clip. The dataset organiser provided only part of this dataset,
150 video clips, split equally into training, development and test sets. This dataset is
available for researchers at this location http://avec2013-db.sspnet.eu.

• The AVEC2014 dataset is selected partially from the AVEC2013 dataset. It includes
300 videos for 84 participants. Only one person appears in each clip and some
participants recorded more than one clip. The dataset consists of only two tasks:
Freeform (answering questions) and Northwind (reading a passage). Each task has
three partitions: 50 clips for training, 50 for development and 50 for the test.

 http://avec2013-db.sspnet.eu
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• The DAIC-WoZ database is collected by four interviews based on semi-structured
clinical interactions: Face-to-Face, Teleconference, Wizard-of-Oz and Automated. The
data consists of 189 audio and video clips and physiological data, such as galvanic
skin response, electrocardiogram, and respiration. The verbal and non-verbal features
are annotated for this data. The text modality is also collected during the sessions. It is
available for researchers like the AVEC2013 and AVEC2014 datasets. The data can be
found at http://dcapswoz.ict.usc.edu.

• The CHI-MEI database consists of audio and video modalities collected by a clinician
for 26 participants in the CHI-MEI Medical Center, Taiwan. It is collected based on
six discrete videos designed in order to arouse the participant’s ability to express
their emotions through their faces and speech answers, covering disgust, fear, sadness,
surprise, anger, and happiness.

• The Pittsburgh dataset includes 57 participants (34 females and 23 males) with age
ranges from 19 to 65 years with a mean of 39.65 years. This data is recorded during
clinical treatment for depression, and the participants had to meet the criteria for Major
Depressive Disorder, which is assessed for each participant at 1, 7, 13, and 21 weeks.
This data is open access for researchers, but details of only 49 of the participants are
available for public use due to changes in the original diagnosis and missing clips or
audio.

• The BD dataset consists of 95 participants (46 patients and 49 healthy controls) with
ages ranging from 18 to 60 years. The data is recorded based during semi-structured
interviews by the SKIP-TURK. Two different measurements (i.e., the young mania
rating scale (YMRS) and the 10-item Montgomery—Asberg depression rating scale
(MADRS)) are used to assess the depressive features on particular days (0, 3, 7, 14
and 28). Each day, the audio and videos are recorded, and then each video clip and
audio are labelled by YMRS/MADRS ratings. This data is adopted in AVEC2018.

• The OU2016 dataset consists of 20 participants. Ten are recorded at the Osaka
University Hospital (the dementia group), and the other ten are recorded at the Nara
Institute of Science and Technology (healthy controls). Participants with dementia
are diagnosed at a very early stage of dementia by expert doctors based on the DSM-
IV (Carter, 2014) at the hospital of Osaka University. The data is recorded using a
laptop (Surface Pro 3), and the distance between the laptop and the participant was
constant. For analysis and research, two participants are removed due to diagnosis
issues, resulting in 18 participants (9 with dementia and 9 without).

http://dcapswoz.ict.usc.edu
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• In the OU2017 dataset, 33 Japanese participants (16 with dementia and 17 healthy
controls) are recruited. Prior to the recording, the participants sign a consent form. 29
participants are selected, but four were excluded due to diagnosis problems. The de-
mentia group includes participants with mild cognitive impairment (MCI) or dementia
who have been diagnosed by an expert clinician at the Osaka University Hospital.

• The OU2019 dataset includes 24 participants (12 with dementia and 12 without) with
an age average of about 75 years. The dementia group includes Alzheimer’s disease
(AD), normal pressure hydrocephalus (NPH), one MCI, and AD+NPH. Psychiatrists
diagnose the participants at the Osaka University Hospital.
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Dlib vs. OpenFace

B.1 The Distribution of the EAR

Figure B.1 presents the distribution of the EAR values, which are calculated using the
extracted eyes landmarks of Dlib and OpenFace. Figures B.1a B.1c and B.1e show that
the ranges reached 0.55, 0.65 and 0.5, respectively, whereas Figures B.1b B.1d and B.1f
shows that the ranges reached 2.5, 33.85 and 13, respectively, on the x-axis. However,
the range was cut off to reach a maximum of one to make the histograms clear. It shows
that the participants with dementia or MCI have higher values of the EAR on the x-axis,
which indicates head movements or turns. Figures B.1c and B.1d show that the mean of
every participant on the histogram was close to others, making the histograms overlap. The
participants in Figures B.1e and B.1f had only a small difference in the mean between them.
By contrast, the histograms for Figures B.1a and B.1b show a large difference in the mean
between the participants for Dlib and OpenFace on the histograms.
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(a) Dlib (b) OpenFace

(c) Dlib (d) OpenFace

(e) Dlib (f) OpenFace

Fig. B.1 Histograms of the computed EAR after the extraction of the eye landmarks using
Dlib in figures (a), (c) and (e), and OpenFace toolkit in figures (b), (d) and (f). The X-axis of
OpenFace figures (b), (d), and (f) ranged to about 2.5, 33.85, and 13, respectively. However,
the range was cut off to one for them to make clear visualisation of the histograms.
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B.2 The Head Movements

B.2.1 Examples of the Head Pose Estimation using Dlib and OpenFace
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Fig. B.2 The estimated yaw values of participants from different groups using both facial
landmarks tracking techniques:OpenFace and Dlib.
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B.2.2 Self-test for Measuring the Maximum and Minimum Angles to
Capture by OpenFace

Figures B.3 and B.4 show the calculated three angles for different recordings at day and night
times, respectively. It can be seen that when there is a high value, there is a small picture
from the recording indicates the head orientation. Notably, the angle values are higher when
the recording is made at night time. This may be affected by the low illumination in the room
and rapid head movements that cause a dark side in the frame, which results in failure in
the prediction of the angle value. From that, any value that is greater than[−90,+90] is an
outlier value, and that value is going to be linearly interpolated.

(a) (b)

(c) (d)

Fig. B.3 The calculated three angles for self-test videos at day time. The plots show several
pictures describe the head orientation state when the angle value is high.
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(a) (b)

(c) (d)

Fig. B.4 The calculated three angles for self-test videos in poor lighting conditions. The
subfigures show several pictures describing the head orientation state when the angle value is
high.
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B.2.3 The Calculated Three Angles of Head Movements for the IVA18

Dataset

(a) (b)

(c) (d)

(e) (f)

Fig. B.5 The calculated three angles pitch, yaw, and roll values for each participant with
FMD. The highlighted segments indicate the participant’s turn to answer.



228 Dlib vs. OpenFace

(a) (b)

(c) (d)

(e) (f)

Fig. B.6 The calculated three angles pitch, yaw, and roll values for each participant with MCI.
The highlighted segments indicate the participant’s turn to answer.
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(a) (b)

(c) (d)

(e) (f)

Fig. B.7 The calculated three angles pitch, yaw, and roll values for each participant with ND.
The highlighted segments indicate the participant’s turn to answer.





Appendix C

The IVA34 Dataset

C.1 The Calculated EAR for the IVA34 Dataset
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Fig. C.1 The calculated EAR values of different participants from data recorded at the clinic
after removing the unnecessary data from the beginning and the end of the session (part 1).
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Fig. C.2 The calculated EAR values of different participants from data recorded at the clinic
after removing the unnecessary data from the beginning and the end of the session (part 2).
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Fig. C.3 The calculated EAR values of different participants from data recorded at the clinic
after removing the unnecessary data from the beginning and the end of the session (part 3).
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Fig. C.4 The calculated EAR values of different participants from data recorded at home
after removing the unnecessary data from the beginning and the end of the session (part 1).
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Fig. C.5 The calculated EAR values of different participants from data recorded at home
after removing the unnecessary data from the beginning and the end of the session (part 2).
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Fig. C.6 The calculated EAR values of different participants from data recorded at home
after removing the unnecessary data from the beginning and the end of the session (part 3).
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Fig. C.7 The calculated EAR values of different participants from data recorded at home
after removing the unnecessary data from the beginning and the end of the session (part 4).
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C.2 Thresholds Calculation for EAR using SD and IQR
Approaches
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Fig. C.9 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA18 dataset (Part 1).
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Fig. C.11 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA18 dataset (Part 2).
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Fig. C.13 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA18 dataset (Part 3).
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Fig. C.15 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA34 dataset (Part 1).



242 The IVA34 Dataset

0.0 0.5 1.0
EBR (70 Features) ×10 2

0

10

20

30

40

50

60

Co
un

t

P98

(a)

0.0 0.5 1.0
EBR (70 Features) ×10 2

0

10

20

30

40

50

60

Co
un

t

P98

(b)

0.0 0.5 1.0
Frames ×104

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ey
e 

As
pe

ct
 R

at
io

Patient 2

(c)

0.0 0.5 1.0
Frames ×104

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Ey
e 

As
pe

ct
 R

at
io

Patient 2

(d)

0 3 6
EBR (70 Features) ×10 3

0

10

20

30

40

50

60

Co
un

t

Pat2

(e)

0 3 6
EBR (70 Features) ×10 3

0

10

20

30

40

50

60

Co
un

t

Pat2

(f)

Fig. C.17 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA34 dataset (Part 2).
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Fig. C.19 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA34 dataset (Part 3).
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Fig. C.21 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA34 dataset (Part 4).
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Fig. C.23 The EAR with the calculated thresholds using the 3rd SD and IQR (1st row) and
histogram figures show the EBR feature distribution (2nd row) for several participants in
the IVA34 dataset (Part 5).
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