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Abstract

In the field of medical imaging, ”shape generation” refers to the compu-
tational techniques employed to create accurate and detailed representa-
tions of anatomical structures/organs. Shape generation plays a crucial
role in medical imaging, profoundly impacting clinical applications and dia-
gnostics. Accurate representation of anatomical structures is essential for
disease detection, treatment planning, personalized medicine, and compu-
tational modelling. Leveraging machine learning and computational mod-
elling opens avenues for valuable insights through In-Silico Clinical Trials
(ISCTs).

In ISCTs, virtual populations of anatomical shapes are vital for eval-
uating clinical devices. These populations must capture anatomical and
physiological variability while remaining plausible to ensure meaningful and
reliable results. By generating virtual shape populations, researchers can
simulate and assess medical interventions, accelerating the development of
improved therapies and devices. However, constructing generative models
faces challenges due to the fact that real-world anatomical shapes, derived
from different subjects, exhibit varying topological structures and, in gen-
eral, there is no topological correspondence among shapes from different
subjects. The present study focuses on generating representative popula-
tions of anatomical shapes to overcome these obstacles.

This thesis aims to address the challenges associated with shape match-
ing and generation by introducing an unsupervised probabilistic deep gener-
ative model, applicable to datasets including shape surface mesh data with
varying topological structures and the absence of correspondences. The pro-
posed framework leverages graph representations to capture the geometric
characteristics of anatomical shapes and incorporates advanced techniques
in geometric deep learning. By employing these algorithms, the framework
is able to establish a learnable set of vertex-wise correspondences between
shapes in the latent space while learning/constructing a population-derived
atlas model. Subsequently, the model generates virtual populations of ana-
tomical shapes that closely resemble real-world data. This novel generat-
ive framework is designed to handle variable topology in anatomical struc-
tures across patients/input shapes and successfully synthesises anatomically
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plausible virtual populations with significant variability in shape and diverse
topologies. These capabilities expand the potential applications of the ap-
proach in computational medicine and make it well-suited for ISCTs. Fur-
thermore, the experimental results on image-derived mesh datasets show
the superiority of the proposed approach as the synthesised virtual ana-
tomical shape populations are more plausible (i.e. higher specificity) and
capture a greater degree of variability (i.e. generalisation) in shape than
those generated by the baseline shape models.
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1.1 Significance of Anatomical Shape Modeling in Medical Imaging

1.1 Significance of Anatomical Shape Modeling in Med-
ical Imaging

Medical imaging techniques play a pivotal role in the diagnosis and management of
various diseases and conditions. Among the crucial factors contributing to the efficacy
and accuracy of medical imaging is the accurate representation of shape and anatomy.
Therefore representation of shape and anatomy within medical images provides critical
insights into human health.

Modelling of anatomical shapes provides three-dimensional (3D) shape represent-
ation of the inner body structures and organs, making them widely used tools for
diagnosis, treatment, surgical planning, and medical training [4–7]. In the clinic, the
physical interaction with models facilitates learning anatomy and how different struc-
tures interact spatially in the body. The use of anatomical models in simulation-based
training reduces the risks involved in surgical interventions, resulting in a better patient
experience and reduced healthcare costs. Such reconstructions can be also used for
Computer-Assisted Diagnosis (CAD), radiation therapy planning, prosthesis milling,
and volumetric measurements. Over the last few decades, numerous shape analysis
techniques have been developed for modelling the human anatomy from medical im-
ages [8]. These methods have become a mainstay in medical image analysis, not only
because they can provide priors for segmentation, but because they can also quantify
shape changes between subjects and populations [9, 10]. Thus, a significant focus of
medical imaging research is on representing the organ structures.

1.2 Why Shape Generation Matters?

In light of recent advances in machine learning, it is useful to develop a data-driven
and learning-based shape analysis framework that can utilize large amounts of data and
incorporate prior knowledge. Recent advances in neural networks have revolutionized
many fields of medical data analysis.

Artificial intelligence (AI) models are critical technologies for the infrastructure of
any modern healthcare system. These AI models are often trained using a population
of real patient data to assist with the computer-aided diagnosis [11], risk stratification
[12, 13], and prediction of the disease trajectories [14, 15]. However, patient privacy
concerns are a significant obstacle which hinders healthcare providers from sharing their

2



1.2 Why Shape Generation Matters?

repository of patient data for reliable training of the AI models [16, 17]. One possible
remedy is to use artificial generative models capable of generating synthetic datasets
resembling the actual data distribution [18].

Moreover,in recent years, the growing complexity and diversity of medical devices
and technologies have posed significant challenges in evaluating and optimising their
design and clinical applications. While clinical trials are ideal for such evaluations,
they are not always practical due to various constraints, such as ethical limitations,
costs, time requirements, difficulties in recruiting enough subjects, or a lack of ground
truth (knowledge of the patient’s exact anatomy and condition). In-Silico Clinical
Trials (ISCTs) are prime examples of applications that can significantly benefit from
synthetic data and offer an alternative way to evaluate medical devices virtually [1].

In ISCTs, computational models are used to create virtual cohorts of data for as-
sessing the safety and efficacy of new drugs and the performance of medical devices
[19, 20]. ISCTs, therefore, offer the potential to investigate the performance of medical
devices across a broader range of patient characteristics than is feasible for a real clin-
ical trial. These trials could help refine, reduce, and partially replace in vivo clinical
trials. In contrast to actual patients, computational models are characterized by their
exact anatomy, providing a ”gold standard” or ”ground truth” to evaluate the efficiency
of medical devices quantitatively. For instance, in medical imaging, ISCTs replace the
human subject with virtual digital phantoms, the imaging system with virtual sim-
ulated scanners, and the clinical interpretation with virtual interpretations. Figure
1.1 illustrates an ISCT framework for medical imaging. ISCTs permit researchers to
answer fundamental questions quickly and cost-effectively using precise controls and
known ground truth, which are only possible in a virtual environment. As a result
of these virtual trials, new and existing imaging technologies are objectively evaluated
in terms of their utility and diagnostic accuracy, while minimising any potential risks
(e.g., radiation dose).

More specifically, in-silico trials of medical devices are an advanced technology that
has the potential to revolutionize the design, development, or even regulatory evaluation
of the devices used to treat pathologies. The availability of virtual populations is
essential for conducting large-scale in-silico trials of medical devices. The lack of clinical
data poses a barrier to setting up population-based in silico trials, thus the development
of generative models of anatomy, representative of real-world patient populations is a
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Figure 1.1: Conducting in-silico trials of medical imaging devices; Simulation of imaging
processes (top) using virtual imaging trials (bottom) [1].

prerequisite for ISCTs. In order to overcome this limitation, generative models can be
used to create larger data-driven synthetic datasets.

Furthermore, synthesising three-dimensional (3D) shapes of human anatomy has
various other applications in medical restorations. Generation of high-quality artificial
shapes can improve the diversity of the design of medical implant templates to benefit
a more extensive range of patients in need of prosthetics and restorations. For ortho-
paedics implant design, Shen et al. [21] use the symmetric nature of the skeletal system
to build patient-specific repaired pelvis models and manufacture the implants. How-
ever, symmetry information is not always accessible. In an orthodontics application,
Barone et al. [22] utilise a combination of dental CAD templates and patient-specific
jaw anatomy to synthesise 3D shapes of the individual missing tooth. More recently,
Kodym et al. [23] proposed a deep learning-based 3D shape reconstruction method that
generates a variety of synthetic shapes for skull defects at various stages of treatment
to restore the protective and aesthetic function of the patient's skull.
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1.3 Virtual Population Modeling

As discussed in Section 1.2, machine learning methods combined with computational
modelling and simulation bring the possibility of gaining valuable information about
new therapies and medical devices through ISCTs. Therefore, virtual populations of
anatomical shapes (typically represented as computational meshes) are a key enabler
for conducting ISCTs of clinical devices. More specifically, ISCTs require the genera-
tion of virtual patient populations that effectively capture significant anatomical and
physiological variability, representative of target patient populations. This enables a
meaningful in-silico assessment of device performance. The present study focuses on
the challenge of generating representative populations of anatomical shapes.

Medical data acquisition and processing often require some manual intervention.
Most techniques aim to provide a spatial description of segmented organs of interest
and, typically, transform them into meshes which can be incorporated into models
that are patient-specific or representative of large populations [24]. Clinical image
segmentation is a time-consuming process and can be affected by observer variability.
Even though machine learning approaches have shown promising results [25, 26], these
models do not have high generalization ability if the object of interest is not frequent in
the population. Therefore, it is concluded that building rich or descriptive generative
shape models from inconsistent anatomical structures is challenging for several reasons.

First, because, real-world anatomical shapes derived from different subjects do not,
in general, have topological correspondence. This poses a significant challenge for ex-
isting techniques to generate coherent, anatomically plausible shape populations. In
addition, most techniques demand access to large volumes of training data contain-
ing the same semantic parts or shapes in each training sample. The process would
require expensive and laborious annotation of medical imaging data to ensure anatom-
ical shapes of interest can be accurately extracted from each subject or sample. Also, it
can still be computationally challenging to create synthetic samples that are clinically
meaningful and fully represents the characteristics of each individual patient. There-
fore, this study aims to address the problem of generating virtual patient cohorts of
anatomical geometries (e.g. Left Ventricle (LV), liver), these models allow us to per-
form in-silico clinical trials on the so-called digital twins [26, 27]. The approaches used
to build virtual populations can be categorised into data-driven and clinically-driven
methods. The descriptive statistics techniques that rely on the geometrical variability
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of the samples, refer to data-driven [28]. In contrast, clinically-driven approaches re-
quire virtual cohorts with underlying clinical characteristics and typically depend on
the anatomical or functional properties of the organ of interest [29]. These approaches
are further discussed in Chapter 2.

1.4 Shape Representation

To construct shape models of human anatomy, organs first need to be segmented from
the medical volume data and then transformed into a processible shape representa-
tion. Structured (triangulated meshes) and unstructured point-based representations
of shape are the most popular for constructing shape models, due to their simplicity
and flexibility. The type of shape representation also influences the choice of method
for registering shapes, modelling shape variability, and eventually shape generation.

Shape as defined by [30], refers to the geometric information remaining after an
object has been normalized in terms of rotation, scaling, and translation. In the lit-
erature, shapes have been represented using a variety of data structures, for instance,
Point Distribution Models (PDM) [31], volumetric signed distance functions [32], point
sets [33], or oriented point clouds [34]. PDM is the simplest and most generic method
used for representing shapes and is comprised of a collection of points distributed over
an object’s surface, as well as the connectivity between the points. Early attempts to
train PDMs relied on manually specified landmarks that delineated shapes of interest.
However, such an approach is prohibitively expensive for large data sets with 3D ana-
tomical structures. The point set results from a procedure that reduces the density
of points on the object surface in the voxel image. A triangulation of the point set
defines a surface mesh and can be used to cover the surface area in between the points.
Indeed, surface meshes are composed of polygonal faces, often triangles, that cover an
object's surface. Although point cloud learning has shown remarkable results in shape
representation, the topology of shape is neglected, which poses significant challenges
in the 3D shape understanding problem and cannot guarantee the structural accuracy
of the generated results. However, this study is motivated by a more compact yet
powerful way of representing shape using triangulated surface meshes that can be nat-
urally modelled via graphs with arbitrary connectivities. Presenting shapes as graphs
involves representing the geometry and connectivity of shapes using graph structures.
In this representation, the vertices of the graph correspond to specific points on the
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shape, and the edges capture the relationships between these points. Modelling the
triangular meshes as graphs allows learning surface features such as smoothness and
curvatures via edge information. In general, graphs represent shapes with structured
connectivity, capturing spatial relationships, while point clouds lack this structural in-
formation, making them less suitable for shape analysis and generation. Graph-based
representations are particularly powerful in capturing both local and global character-
istics of shapes. They offer a flexible framework for applying graph-based algorithms
and techniques for shape analysis, matching, and generation.

A triangular mesh presented as a graph is a representation of a three-dimensional
surface in which each vertex of the mesh corresponds to a node in the graph, and each
edge of the mesh forms an edge in the graph. The triangular mesh is composed of a col-
lection of triangles, where each triangle is defined by three vertices connected by edges.
In the corresponding graph representation, the nodes represent these vertices, and the
edges of the graph connect adjacent vertices, essentially capturing the connectivity and
spatial relationships of the surface. This graph-based representation allows for efficient
and structured analysis of the mesh and is commonly used in various shape analysis
and modelling applications.

Traditional graph generative models focus mainly on modelling the statistical prop-
erties of the graphs such as degree distributions [35–40]. Due to their simplicity, these
approaches are not capable of constructing specific graphs representing certain prop-
erties such as water-tightness of meshes representing surfaces derived from organs of
the human body. Hence, developing data-driven mesh generation techniques that learn
directly from a set of observed meshes, modelled as graphs, remains as an open chal-
lenge.

1.5 Thesis Contributions and Overview

Given that the morphology of organs across a population is highly heterogeneous, mod-
elling and generating these shape variations in a virtual population is a challenging task.
The increasing availability of large-scale medical imaging datasets has enabled these
underlying shape variations in the population to be modelled more accurately. Due to
the computational challenges of working with large sample sizes, traditional methods
for shape analysis can be limited in practical application [8].

In the field of shape processing, finding a meaningful shape correspondence is a
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fundamental shape analysis task and is considered a challenging problem in numer-
ous geometry processing applications, including shape generation [41]. Hence, more
specifically, the aim is to develop a shape generative model that can be trained us-
ing a population of surface meshes with no correspondence and inconsistent struc-
tures (including the number of vertices and their connections) without employing any
pre-processing step. This thesis addresses the data-driven generative shape modelling
(virtual population modelling) with the two following specific objectives:

• Targeting an important challenge of processing shapes and presenting a dense cor-
respondence between shapes when there are topology differences between them.
A novel unsupervised deep learning framework that can directly learn corres-
pondences from a population of spatially aligned training meshes having variable
topology in anatomical structures across patients/input samples.

• Presenting a data-driven generative model for generating virtual populations of
anatomical shapes that capture sufficient variability while remaining plausible. A
framework with the capability to generate a virtual population of realistic syn-
thetic shapes/meshes with variable mesh topology in anatomical structures. This
approach enables the generation of anatomical shapes that are both diverse and
realistic, facilitating a more comprehensive exploration of anatomical variability
in virtual populations.

The proposed solutions to the objectives as mentioned above, are presented in Chapters
4 and 5, which represent the specific contributions. Each of these chapters is an ad-
aptation of the articles that are under review, or already published in a peer-reviewed
conference/journal papers.

The rest of this thesis is organized as follows:

• Chapter 2 focuses on exploring geometric deep learning methods and provides a
comprehensive review of existing research on shape generation and shape match-
ing. This chapter specifically examines the approaches used for generating shapes,
with and without graph representations.

• Chapter 3 presents a baseline generative shape model based on traditional tech-
niques. Furthermore, the chapter presents the datasets and evaluation metrics
used in the study, ensuring a comprehensive and thorough evaluation of the per-
formance of the generative shape model. By providing such a detailed overview,
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this chapter sets the stage for subsequent chapters in the study, where the gener-
ative shape model is utilised to address specific research questions and objectives.

• Chapter 4 introduces a novel unsupervised deep generative model designed to
generate virtual anatomical shapes by leveraging geometry and surface features
from different-sized training shapes. The framework presented in this chapter em-
ploys an innovative approach by leveraging graph convolutional neural networks
and attention mechanisms to derive a learnable set of correspondences across the
population. Using this framework, a population-derived atlas mesh infers in a
computationally closed and efficient way.

• Chapter 5 presents an end-to-end deep learning generative framework to tackle the
limitation of the model presented in Chapter 4, presenting higher specificity and
generalisability. This novel framework is designed to jointly learn precise refinable
shape matching and generation on 3D surface mesh data while constructing a
population-derived atlas. The expansion of the model into a joint clustering
generative model enhances its capabilities in comprehensive shape analysis and
synthesis. By incorporating multiple atlases (which leads to variable topology
modelling), the model achieves a more comprehensive representation of shape
anatomy, resulting in more reliable and robust outcomes. Moreover, in anatomical
modelling, there are many cases where it is necessary to model the organs/objects
of variable topologies, to accommodate topological changes.

• Finally, Chapter 6 concludes the thesis and discusses the outlook and future work.
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2.1 Introduction

Most human anatomy exhibits considerable inter-person variability both in terms of
its shape and function, which significantly impacts the effectiveness of disease preven-
tion, diagnosis, and treatment. It is highly beneficial for clinical practice to model
shape anatomy and capture this variability using data-driven methods, as this enables
population-specific shape analysis and disease diagnosis. Although traditional statist-
ical shape models have been widely used for this purpose, deep learning has become
increasingly popular lately.

Many fields in medical image analysis have recently been revolutionized by the
introduction of deep neural networks [42]. These approaches are able to learn com-
plex, hierarchical feature representations that are superior to hand-crafted features in
a wide range of medical imaging applications. In shape analysis, learning a shape
representation may also offer advantages in shape analysis when compared to working
with predefined parameterisations like point distribution models [31], medial represent-
ations [43], and diffeomorphisms [44]. The success of neural networks in image analysis
is mainly due to the use of convolutional layers that benefit from the shift-invariance
properties of images [45]. In spite of this, deep networks are still largely unexplored
in medical shape analysis, mainly because point clouds and meshes do not have a
Euclidean or grid-like structure underlying them.

This chapter discusses deep learning techniques in a non-Euclidean domain, also
known as geometric deep learning. The technical background in geometric deep learning
is covered in section.2.2, followed by a review of the existing work on general shape
generation with and without graph representations.

2.2 Deep Learning on Non-Euclidean Data

The majority of the deep learning achievements over recent years have relied heavily
on properties of convolutional neural networks [46]: local connectivity, weight sharing,
and shift-invariance. Since those layers are defined on inputs with a grid-like structure,
they cannot be easily applied to non-Euclidean domains such as discrete manifolds or
(embedded) graphs. However, a large amount of data in the real world can be nat-
urally represented as irregular structures, e.g. graph data or meshes. By applying
traditional convolutional neural networks to this kind of data, a number of relevant
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(a) Convolution on Euclidian data
(e.g. 2D image). Pixels in an image
are treated as nodes in a graph, with
filter sizes determining their neigh-
bours. The 2D convolution uses the
weighted average of the red node’s
pixel values, along with those of its
neighbours where the neighbours of a
node are ordered and have a fixed size.

(b) Convolution on non-Euclidian data
(e.g. graph). The graph convolutional op-
eration can be simplified by taking the av-
erage of the node features of the red node
and its neighbours to get a hidden repres-
entation of the red node. Different from
Euclidian data, there is no order in the
neighbours of a node, and the size of the
neighbours is variable.

Figure 2.1: Illustration examples of convolution on (a) Euclidian data and (b) non-
Euclidian data [2].

tasks can be improved significantly. As an emerging field, graph networks have had
an enormous impact on many technological domains. A large amount of information
coming from disciplines such as chemistry, biology, genetics, and healthcare is not suit-
able for vector-based representation and instead requires complex data structures. Due
to their inherent ability to capture relationships between entities, graphs can be ex-
tremely useful in many of these applications where relational information needs to be
encoded between variables. Therefore, special attention has been paid to the general-
isation of Graph Neural Networks (GNN), (also called geometric deep learning), into
non-structural (unordered) and structural (ordered) situations. Recently, deep learning
on graphs has become an interesting research topic [2] with helpful applications in the
molecule and social network analysis [47, 48], 3D mesh classification and shape corres-
pondence [49], modelling the behaviour of dynamic interacting objects [50] and graph
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generative models [51–53]. A graph convolution, for example, can be generalized from a
2D convolution. As shown in Figure 2.1, an image is a special case of a graph in which
pixels are connected by adjacent pixels. Graph convolution can also be performed by
averaging neighbourhood information for nodes, similar to 2D convolution.

2.2.1 Graph Construction

Graphs are non-Euclidean data structures that model a set of vertices and their rela-
tionships via edges. Many complex data structures in the real world can be naturally
represented as graphs. Hence, the data-driven generation of synthetic graphs will have
an exciting impact in various fields including computer vision and computational ana-
tomy.

Mathematically, a graph is represented as G = (V, E) where V is a set of nodes
and E is the set of edges, and N = |V |, M = |E|. Let vi ∈ V denote a node and
eij = (vi, vj) ∈ E denote an edge. The adjacency matrix A is derived as a N × N

matrix with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E. A graph may have node
attributes X, where X ∈ RN×D is a node feature matrix with xv ∈ RD representing
the feature vector of a node v. Meanwhile a graph may have edge attributes Xe, where
Xe ∈ RM×C is an edge feature matrix with Xe

v,u ∈ RC representing the feature vector
of an edge (v, u).

The Laplacian matrix of a graph is defined as L = D −A, where D is a diagonal
matrix of node degrees and Dii = ∑

j Ai,j . It is common to present the Laplacian
matrix in three following forms, Combinatorial Laplacian:

L = D−A (2.1)

Symmetric Normalized Laplacian:

Lsym = D− 1
2 LD− 1

2 = IN −D− 1
2 AD− 1

2 (2.2)

and Random Walk Normalized Laplacian:

Lrw = D−1L = IN −D−1A (2.3)

The Laplacian matrix L is symmetric and positive-semidefinite for an undirected graph
G, and dimension of the eigenspace is N . For each of the three forms of Laplacian
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matrix, the representation of the elements of matrix is given by:

Li,j =


deg(vi) if i = j,

−1 if i ̸= j and vi is adjacent to vj ,

0 otherwise.
(2.4)

where deg(vi) is the degree of the vertex i. The elements of Lsym are defined by

Lsym
i,j =


1 if i = j and deg(vi) ̸= 0,

−1√
deg(vi)deg(vj)

if i ̸= j and vi is adjacent to vj ,

0 otherwise.

(2.5)

Next, the elements of Lrw are given by:

Lrw
i,j =


1 if i = j and deg(vi) ̸= 0,

−1
deg(vi) if i ̸= j and vi is adjacent to vj ,

0 otherwise.
(2.6)

The normalized graph Laplacian matrix possesses the property of being real symmetric
positive semidefinite. With this property, the normalized Laplacian matrix can be
decomposed as L = UΛUT, where U ∈ RN×N is the matrix of eigenvectors ordered by
eigenvalues, Λ presents the diagonal matrix of eigenvalues (spectrum), where Λii = λi,
0 = λ0 ≤ λ1 ≤ ... ≤ λN−1. The eigenvectors of the normalized Laplacian matrix form
an orthonormal space, in mathematical words, UT U = I.

Since the Laplacian matrix is a discrete Laplacian operator, it is natural to use the
Laplacian matrix and its eigenvectors to define the Fourier transform of the graph in
the spectral method. In graph signal processing a graph signal x ∈ RN is a feature
vector of all nodes of a graph. The graph Fourier transform to a signal x is defined
as F(x) = UT x also, the inverse graph Fourier transform is defined as F−1(x̂) = Ux̂
and x̂ denotes the resulted signal from the graph Fourier transform. The graph Fourier
transform projects the input graph signal to the orthonormal space where the basis is
formed by eigenvectors of the normalized graph Laplacian.

2.2.2 Graph Convolutional Neural Networks

In recent years, geometric deep learning [45] has emerged as a set of methods that
aims to extend existing neural networks through graph theory and define convolution
operations for deep neural networks that can handle irregular inputs. In order to
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generalize the traditional convolution operation from images or grids to graphs, the key
is to learn a function f which is capable of aggregating the features xi from node vi and
its neighbours vj 's features xj . Thus, a new representation of node vi can be presented.
For the l-th graph convolution layer, we denote the input node representations of all
nodes by the matrix Y(l−1) and the output node representations Y(l).

The existing work in this field can be broadly categorized into two subsets: Spectral
and Spatial filtering approaches. The former is based on spectral graph theory [54], in
which the eigenvalues of a graph’s Laplacian matrix are interpreted as node frequencies
[55]. Similar to Fourier domain filtering of traditional signals, they are filtered in the
spectral domain, where the graph convolutional operation is interpreted as removing
noise from graph signals. In the latter subset, the spatial approaches, convolution is
performed in local Euclidean neighbourhoods w.r.t local positional relations between
points. Where for example polar, spherical and Cartesian coordinates can be used to
represent local positional relations between nodes. In this subsection, we will focus
on the technical background of major spectral-based and spatial-based graph neural
networks.

2.2.2.1 Spectral-based Graph Convolutional Networks

The convolution theorem states that the Fourier transform of convolution is the product
of Fourier transforms, by analogy to the graph and puts in the definition of the Fourier
transform on the graph. Now, the graph convolution of the input signal x with a filter
g ∈ RN is defined as:

x ∗G g = F−1 (F(x)⊙ F(g)) = U
(
UT x⊙UT g

)
(2.7)

where ⊙ denotes the Hadamard product (element-wise). If we denote a filter as gθ =
diag(UT g), then the spectral graph convolution is simplified as

x ∗G gθ = UgθUT x (2.8)

We can understand gθ as a function of the eigenvalues of x, i.e. gθ(Λ). Evaluating
Equation 2.8 is computationally expensive, due to multiplication with the eigenvector
matrix U (O(|V |2)). The Spectral-based graph convolutional networks all follow the
definition in Equation 2.8, and the most critical difference between the different frame-
works lies in the design of filter gθ.
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Bruna et al. [56] proposed the first spectral-based graph convolutional neural net-
work (Spectral GCN), which assumed the filter gθ = Θi,j is a diagonal matrix filled
with learnable parameters. The graph convolutional layer of Spectral GCN is defined
as

Y(l)
:,j = σ

fl−1∑
i=1

UΘ(l−1)
i,j UT Y(l−1)

:,i

 ; (j = 1, 2, ..., fl) (2.9)

where l is the layer index, fl−1 is number of input channels and fl is number of output
channels. Y(l−1) ∈ RN×fl−1 represents the input graph signal, Y(0) = X, and σ is a
non-linearity function (e.g. Rectified Linear Unit (ReLU)) applied on the vertex-wise
function values. Though Spectral GCNs make significant theoretical contributions,
they have several major drawbacks due to the eigen decomposition of the Laplacian
matrix. First, the eigenbasis of a graph changes with a perturbation. Second, due to the
coefficients of each spectral filter being based on the basis and the Laplacian of a graph,
the learned filters can not be applied to graphs with different structures. Third, since
a filter defined in the spectral domain is not naturally localized, translations are costly
(i.e. O(|V |3)) due to the O(|V |2) multiplication with the graph Fourier basis. In further
works, ChebNet [57] and GCN* [58] 1, several approximations and simplifications are
made to reduce the computation complexity to O(|E|).

In general, any polynomial of order k can be expanded with a Chebyshev polyno-
mial. Defferrard et al. [57] proposed ChebNet framework that approximates the filter
gθ by Chebyshev polynomials of the diagonal matrix of eigenvalues (gθ = ∑K−1

k=0 θkTk(Λ̃)),
where Λ̃ = 2 Λ

λmax
−In ∈ [−1, 1] and λmax denotes the largest eigenvalue of L. θ ∈ RK is

now a vector of Chebyshev coefficients. The Chebyshev polynomials in recursive form
are defined by Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x. Thus the
convolution of filter gθ and signal x is defined as:

x ∗G gθ = U
(

K−1∑
k=0

θkTk(Λ̃)
)

UT x =
K−1∑
k=0

θkTk(L̃)x (2.10)

where L̃ = 2 L
λmax

− IN. This expression is now K-localized, as it is a Kth-order
polynomial in the Laplacian, which means that it is dependent only on nodes that are
at maximum K steps away from the central node (K-hop neighbourhood). Therefore,
the complexity of evaluating Equation 2.10 is O(|E|), i.e. linear in the number of edges.

1As GCN is used to represent broad graph convolutional neural networks in the study, we name
this particular method GCN* to avoid ambiguity.
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2.2 Deep Learning on Non-Euclidean Data

In Graph Convolutional Network (GCN*) [58], Kipf et.al. introduced a first-order
approximation of ChebNet (i.e. operating filters on 1-hop neighbourhoods of the graph).
Assuming K = 1 and λmax = 2 , Equation 2.10 is simplified as

x ∗G gθ = θ0x− θ1D− 1
2 AD− 1

2 x (2.11)

GCN further considers a unified hypothesis θ = θ0 = −θ1, to prevent overfitting due
to an excessive number of parameters; leading to the following definition of graph
convolution

x ∗G gθ = θ(In + D− 1
2 AD− 1

2 )x (2.12)

To use multi-channels of inputs and outputs in GCN operation, Equation 2.9 can
be modified as

Y = X ∗G gθ = f
(
ĀXΘ

)
(2.13)

where Ā = IN + D− 1
2 AD− 1

2 and f(.) is an activation function. Using In + D− 1
2 AD− 1

2

empirically causes numerical instability to GCN. To address this problem, GCN applies
a normalization trick to replace Ā = IN + D− 1

2 AD− 1
2 by Ā = D̃− 1

2 ÃD̃− 1
2 with

Ã = A + IN and D̃ii = ∑
j Ãi,j . Therefore the layer-wise propagation rule in Equation

2.14 can be written as:

Y(l) = f
(
D̃− 1

2 ÃD̃− 1
2 Y(l−1)Θ(l−1)

)
(2.14)

where Θ(l−1) ∈ Rfl×fl−1 is a layer-specific trainable weight matrix, Y(l−1) ∈ RN×fl−1

and Y(l) ∈ RN×fl represent the input and output graph signals respectively.
Further, Li et.al. [59] showed that GCN* convolutions are simply a form of Lapla-

cian smoothing, which combines the features of a vertex and its neighbours. The
smoothing operation makes the features of vertices in the same cluster similar, which
is the key reason why GCN*s present promising results, but it also brings potential
concerns of oversmoothing with many convolutional layers.

2.2.2.2 Spatial-based Graph Convolutional Networks

A spatial convolution refers to the direct execution of convolution operations on a graph.
Similar to the convolutional operation of a conventional CNN on an image, spatial-based
methods define graph convolutions based on the spatial relationships among nodes.
Images can be considered as a special form of a graph with each pixel representing a
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node. The pixels are directly connected to their neighbours, as shown in Figure 2.1(a).
A filter is applied to a 3× 3 patch by taking the weighted average of pixel values of the
central node and its neighbours across each channel. Similarly, in spatial-based graph
convolutions, the representation of the central node is convolved with the representation
of its neighbours to obtain an updated representation of the central node as shown in
Figure 2.1(b).

Considering that the size of traditional convolution kernels is fixed, a neighbourhood
of a fixed size is required to perform traditional convolution on a graph. However, as
graphs are irregular structured data, nodes in a graph usually have different numbers of
neighbourhoods as opposed to data with a regular grid structure. From a spatial per-
spective, GCN can be viewed as collecting feature information from the neighbourhood
of a node. Therefore, Equation 2.13 in node states can be expressed as

yv = f

(
∑

u∈{N(v)∪v}
Āv,uxu)Θ

 ∀v ∈ V. (2.15)

where N(v) illustrates the neighbors of a node v.
In spatial-based approaches, graph convolutions are defined by aggregating inform-

ation. The idea has been inherited from recurrent-based Graph Neural Networks (e.g.
[60]), where each node exchanges information with its neighbours until equilibrium has
been reached. The first work towards spatial-based GCNs is the Neural Network For
Graphs (NN4G) [61]. NN4G performs graph convolutions by summing up the neigh-
bourhood information of each node directly. Over each layer, residual connections and
skip connections are also used to memorize information. As a result, the spatial-based
convolution of NN4G is defined as

Y(l) = f

(
XW(l−1) +

i−1∑
i=1

AY(l−1)Θ(l−1)
)

, (2.16)

which resembles the form of GCN* [58]. In contrast to GCN*, NN4G uses an unnor-
malized adjacency matrix, which may potentially lead to numerical instability.

Mixture Model Network (MoNet) [62] is a spatial-domain method to extend CNN
architectures on non-Euclidean domains such as graphs and manifolds. This approach
formulates convolutions as template matchings with local intrinsic patches on graphs or
manifolds. Some spatial-based methods disregard the relative positions between nodes
and their neighbours when integrating neighbor's information. To address this, MoNet
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2.2 Deep Learning on Non-Euclidean Data

assigns different weights to a node's neighbours and introduces a pseudo-coordinate
system to determine the relative position between a node and its neighbour. Once
the relative position between two nodes is known, a weight function maps the relative
position to the relative weight between these two nodes. In this framework, for each
vertex v, a d-dimensional vector of pseudo-coordinates u(xv, xv′ ) correlates v and points
v

′ ∈ N(v) in its neighborhood. It constructs the patch operator as the following general
form:

Dj(xv)f =
∑

v′ ∈N(v)

wj
(
u(xv, xv′

)
f(v′), j = 1, ..., J (2.17)

where J represents the dimensionality of the extracted patch, WΘ(u) = (w1(u), ..., wJ(u))
is a weighting function (kernel) parameterized by learnable parameters Θ, and each
Gaussian kernel is defined as

wj(u) = exp
(−1

2 (u− µj)T Σ−1
j (u− µj)

)
, (2.18)

where Σj and µj are learnable d× d and d× 1 covariance matrix and mean vector of
a Gaussian kernel, respectively. Equations 2.17 and 2.18 can thus be interpreted as a
Gaussian Mixture Model (GMM). Thus, the generalised form of the spatial convolution
on non-Euclidean domains is given by using a template-matching process:

(f ∗ g)(xv) =
J∑

j=1
gjDj(xv)f. (2.19)

Dj(xv)f can be regarded as a patch on the graph and template g is the filter acting
on patch. Under the MoNet framework, several existing approaches for manifolds
such as Geodesic Convolutional Neural Network (GCNN) [63], SplineCNN [49], and for
graphs such as GCN* [58], Diffusion-Convolutional Neural Network (DCNN) [64] can
be generalized as special instances of MoNet by constructing non-parametric weight
functions. MoNet additionally proposes a Gaussian kernel with learnable parameters
to learn the weight function adaptively. SplineCNN [49] follows the same framework
(i.e. Equation 2.19), but uses a different convolution kernel based on B-splines.

Local filters [62, 63] are defined by hard-coded local pseudo-coordinates over the
graph, which may not be optimal. As opposed to previous works, Verma et.al [3],
further introduced Feature-Steered Network (FeaStNet), a spatial-based graph convo-
lution operator that exploits the learning features from the preceding network layer to
dynamically determine the association between filter weights and graph neighbourhood,
rather than relying on static predefined local pseudo-coordinate systems.
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(a) (b)

Figure 2.2: (a) Illustration of a standard CNN, representing the parameters as a set
M = w × h weight matrices. Each weight matrix is associated with a single relative
position in the input patch. (b) Feature-Steered graph convolution network [3], where
each node (e.g. i) in the input patch is softly associated to each of the M weight
matrices based on their features using qm(xi, xj).

In traditional Convolutional Neural Networks (CNNs), the convolutional filter weights
are defined in a set of M = w × h weight matrices Wm ∈ RE×D, where each weight
matrix is utilized to project input features x ∈ RD to output features y ∈ RE (see
Figure 3.2(a)). Thus pixel-wise convolution can be expressed as follows:

yv = b +
M∑

m=1
Wmxn(m,v), (2.20)

where b ∈ RE denotes a vector of bias terms, and n(m, v) gives the index of the neighbor
in the m-th relative position w.r.t pixel v. In FeaStNet [3], a soft correspondence
map (/assignment) qm(xv, xj) is made for the j-th neighbour of a node v, rather than
assigning each neighbour to a single weight matrix (see Figure 3.2(b)). Therefore, the
output of the convolutional operator can be defined as

yv = b +
M∑

m=1

1
|Nv|

∑
j∈Nv

qm(xv, xj)Wmxj , (2.21)

where a translation-invariant correspondence operator qm(xv, xj) learns to dynamically
assign xj to the m-th learnable weight matrix Wm, using a soft-max over a linear
transformation of the local feature vectors,

qm(xv, xj) ∝ exp
(
uT

mxv + pT
mxj + cm

)
, (2.22)

where um, pm and cm are parameters of the linear transformation. Further in Chapter
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4, this spatial-based graph convolution operator is utilized to establish correspondences
between shapes.

2.2.2.3 Comparison between the Spectral and Spatial convolutional filter-
ing approaches

In this section, the differences between the spectral and spatial convolutional approaches
are discussed as follows:

First, the spectral approaches all assume information is encoded only in connectiv-
ity, edge weights, and node features. Although this may be true for general graphs, it
does not hold for embedded graphs or meshes, where the relative positions of nodes
provide additional information, which can be taken into account in Spatial-based meth-
ods. Second, spectral filtering approaches rely on the eigen-decomposition of the graph
Laplacian. However, this decomposition is often unstable, any perturbations to a graph
lead to a change of eigenbasis, making generalizations across different shapes challen-
ging [62]. In contrast, spatial-based models perform graph convolution locally on each
node, making it possible to share weights across multiple locations. Third, spectral-
based models are less efficient than spatial-based models. Due to the computation
cost of spectral-based models changing with graph size, they are not scalable to large
graphs or parallelizable. Moreover, for the spectrorization-based method, the eigen-
decomposition operation is required, which has a significant impact on the time and
computational costs. In contrast, spatial-based approaches enable models to deal with
large graphs and perform convolution operations directly on graphs by clustering neigh-
bouring nodes. Finally, the most important difference exploited in this study is the
ability of spatial-based methods to handle inconsistent graph populations, while most
spectral-based approaches are limited to fixed graph structures.

2.3 Generative Shape Modeling

Learning graph generative models is a challenging task for deep learning and has wide
applicability to a range of domains. However current deep neural methods suffer from
limited scalability. Developing an effective graph generative model depends on repres-
enting a distribution over graphs. Basically, the idea behind the representation learning
approaches is to learn a mapping that embeds nodes, or entire (sub)graphs, as points
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in a low-dimensional vector space Rd. The goal is to optimize this mapping so that
geometric relationships in the embedding space reflect the structure of the original
graph. After optimizing the embedding space, the learned embeddings can be used as
feature inputs for downstream machine learning tasks. In addition, real-world graphs
are not inherently corresponding which makes it challenging to process due to different
topological structures.

Generative shape modelling using surface representations often involves two funda-
mental aspects of Shape matching (or Establishing correspondences) and Generation.
More specifically, the framework follows establishing point-to-point spatial correspond-
ences between various shapes (hence deriving a consistent representation across the
training data) and deriving a generator that learns from the unified shape representa-
tions and samples new instances. Hence, to review the related works, first, these two
aspects are investigated.

2.3.1 Establishing Correspondences

Shape matching typically refers to the problem of establishing a set of meaningful
point-wise correspondences between shapes, which is often a difficult task because the
structures need to be understood at both the local and global scales.

A large body of research has been dedicated to registration of shapes as point
sets. However, the majority of these methods restrict generalization to input point sets
with identical cardinality. These works can be broadly categorized into three different
groups:

The first group of methods [65, 66] model the point sets as instantiations from
underlying probability distributions and minimize a distance over those distributions
to derive the spatial transformations between various shapes. These methods use soft-
assignment of correspondences, which means assigning correspondences between all
points according to some probability. Coherent point drift (CPD) [65] is a well-known
algorithm for point set registration, based on Gaussian mixture model (GMM). To
evaluate the transformation, CPD imposes a motion coherence constraint over the
velocity field. This algorithm provides the possibility of performing matching on a
subset of the points while computing the transformation. CPD model's performance is
restricted by a number of commonly known obstacles. Firstly, deformation involving a
high degree of freedom is difficult to model efficiently. Moreover, due to the complexity
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of deformations, the optimization can easily get stuck in local optima. The Procrustes
method is also used for shape analysis in [67]. Given the correspondences, this method
will align two sets of landmarks. In contrast, our method does not require initial
landmarks to establish correspondences between pairs of shapes.

The second class of methods aim to estimate point correspondences during the
alignment process. These different family of registration methods, in contrast to the
first class (e.g. CPD), use binary assignments of correspondences. Besl et al. [68] pro-
posed a simple and efficient method for 3D shape registration. The Iterative Closest
Point (ICP) algorithm is used to estimate correspondences based on the closest geo-
metric neighbour, while the algorithm converges to a local optimal alignment between
two point clouds. Although the standard ICP algorithm is an efficient method in a
wide range of applications, it suffers from the slow convergence and sensitivity to ini-
tial alignment, noise, outliers and partial overlap. Research in [69] has been presented
to address these problems. The ”Deep ICP” method in [70] represented an advanced
extension of the traditional Iterative Closest Point algorithm, leveraging deep learning
techniques. In deep ICP, neural networks are employed to enhance the accuracy and
robustness of point cloud registration. The method combined the iterative refinement
principle of ICP with the representational power of deep neural networks, allowing for
more effective handling of complex and non-rigid deformations in 3D point clouds. In
contrast, we consider the structures of the shapes within the context of the graphs
that can benefit from connectivities over both local and global scales to derive reliable
correspondences between a pair of shapes. Unlike a local-search algorithm such as ICP,
our method utilized both local and global contexts based on features that are extracted
using a Graph Convolutional Network (GCN) and an attention module.

The third class involves the methods that represent correspondences simply as re-
lationships between two datasets, without considering the geometric features. These
approaches estimate a pairwise assignment between vertices using graph matching.
The proposed method in [71] models correspondences in a probabilistic manner and
computes a vertex-to-vertex probabilistic assignment. Another group of methods, pro-
posed in [72, 73] make use of the deterministic optimization technique that explores
the quadratic assignment problem to establish correspondence between two point sets.

More recent works on graph matching are based on deep learning methods to find the
optimal point-to-point correspondences [74–76]. These approaches develop supervised
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graph matching networks based on displacement rather than a registration task. How-
ever, the proposed graph matching methods are performed offline and remain unaltered
during shape generation. Further, Bai et.al. in [77, 78] proposed a pair-wised graph
matching framework which was a learning-based framework rather than a pairwise
graph distance computation. These methods, however, are only capable of calculating
similarity scores between whole graphs due to their use of spectral-based graph convolu-
tion techniques. To aggregate neighbour information, they employed multi-scale GCN
layers and then calculated multiple similarity matrices which increases time complexity
for large-scale graphs.

2.3.2 Shape Generation

This study focuses on generating virtual populations of anatomical shape represented
as a 3D surface mesh (i.e. graph). While several previous studies have proposed image-
based generative models for capturing anatomical variability across populations, we
restrict our discussion of relevant literature on previous studies that utilize statistical
or generative shape modelling

Statistical Shape Models (SSMs) are established tools to capture morphological vari-
ations over a training set using point distribution models. A straightforward method to
statistically gather considerable natural variability of training shapes, making it very
common to use for generating virtual populations. Most SSM-based generative ap-
proaches aimed to preserve the topology of segmented anatomical structures through
model-constrained image segmentation techniques, using SSMs as shape priors. How-
ever, a detailed discussion of these methods is beyond the scope of this study; further
information can be found in the review by Heimann et al. [79].

Synthetic anatomical shapes can be generated by sampling SSMs implementing
variants of Principal Component Analysis (PCA) on shape spaces. In SSM training
using (PCA), point-based representations of shape are the most prevalent used, due
to their simplicity and independence from topology. Cootes et al. presented the best
well-known SSM methods, the Active Shape models [31] and Active Appearance models
[80]. PCA-based statistical shape modelling has been extensively used for generating
virtual populations of anatomy [33, 81], quantitative shape analysis for computer-aided
diagnosis [82] and in model-based segmentation [83, 84]. Statistical shape modelling,
i.e., data-driven methods, has been used in some studies to investigate correlations
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between anatomical phenotypes and shape. For instance, Cosentino et al. in [85] ex-
plored the aortic morphology and the associations between the shape and function of
aortic valves, using shape modes linked to specific aneurysmal aortic morphological fea-
tures. A SSM-based model is proposed in [86] to describe the morphological variability
of the paediatric left ventricle and examine its relationship with biometric parameters,
and identify obesity-associated adverse anatomical remodelling. Using a subset of land-
marks as predictors, Syrkina et al. [87] and Blanc et al. [88] employed a conditional
SSM to estimate the shape of the unseen landmark points. Nevertheless, these studies
rely on parametric methods in which: i) shapes are parameterized by landmarks, and
ii) point-to-point correspondence must be achieved between input shapes. Gooya et al.
[33] proposed a generative model for shapes from point clouds without point corres-
pondences using a mixture of PCA models, however, the connectivities of the points
were discarded. We can summarise, a pre-requisite for PCA-based SSMs is point-wise
correspondence across the population of training shapes and the same cardinality of
shapes across all samples in the training population.

A number of recent advances in deep learning have demonstrated that deep neural
networks can be used as powerful generative models for both images and geometric data
(e.g. point clouds, meshes, graphs), as they are capable of learning rich hierarchical
representations of the data [89]. A systematic approach for generative modelling is
to sample synthetic instances from a probability density function (pdf) that has been
fitted to observed real data. Hence, a significant body of research in this area focuses on
learning a distribution of given graphs and generating synthetic graphs by Generative
Adversarial Networks (GANs) [90] and Variational AutoEncoders (VAEs) [91]. These
methods present a promising framework for generating data with fixed topology.

A few studies [92–95] have adopted these approaches for generating virtual popula-
tions of anatomy. Danu et al. [94] employed deep generative models (VAE and GAN)
for generating voxelised vessel surfaces, where they represented the unstructured sur-
face mesh as a three-dimensional image. Therefore, it becomes inherently compatible
with the standard convolutional neural network architecture. Although, the results
show potential on employing deep neural network based generative models on three-
dimensional surfaces, they are not able to deal with the complex data structures.

More recently, a deep learning framework for anatomical shapes analysis is presented
in [95], and demonstrated its application for discriminative and generative tasks. This
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method proposes a conditional generative model, where the condition vector controls
generative processes. This approach operates on unordered point clouds, with fixed
cardinality, without requiring the correspondences between them. While the synthetic
shapes appear realistic, it is difficult to determine how real the randomly generated
shapes are, since only the generalization ability of the model is presented and any
other criteria have not been considered to assess the virtual population. Presenting
cardiac biventricular anatomy as point clouds, Beetz et al. [92] proposed a geometric
deep learning method for generating populations of realistic biventricular anatomies.
The generation of personalized anatomies is further enhanced by adding subpopulation-
specific characteristics as conditional inputs. It is worth noting that these approaches
rely on point-cloud representations which cannot leverage surface information encoded
in meshes. Using binary masks of aortas as inputs, Romero et al. [93] explored the
generation efficiency of the generative adversarial network (GAN). This method spe-
cifically addresses the generation of a cohort of patients meeting a specific clinical
criterion without having access to a reference sample of that phenotype.

Recently, multiple methods have been proposed to generate non medical 3D shapes.
Extending SSMs, Nash et al. propose ShapeVAEs [34] by training a VAE that learns
part-segmented 3D objects from oriented point clouds. However, like conventional
SSMs, the method needs a dense set of known point-to-point correspondences. Litany
et al. in [96] present a generative model based on convolutional operators used for
deformable shape completion from partial shapes. Ranjan et al. introduce CoMA, a
model constructed from spectral graph convolutions using Chebyshev filters [97]. Due to
spectral-based convolution, which relies on fixed graph structures, this method cannot
be generalized to inconsistent graph populations. To generate high-quality 3D shapes,
Yang et al. introduce DSG-Net, a VAE network that learns a disentangled structured
and geometric mesh representation in a synergistic manner [98]. Deep learning based
on variational autoencoders is also employed in [99] for mesh generation. All of these
methods can only be applied to data with the same graph structure. Ben-Hamu et
al. [100] proposed a GAN based 3D shape generative model by first deriving a tensor
representation for genus-zero shapes using multi charts covering the shapes. However,
the method requires a weak supervision in the form of prior sparse correspondences
provided by the user. Moreover, unfolding the 3D shapes on image-like structures
(such as the geometry images proposed in [101]) can be a complex and non-differentiable
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procedure. Nash et al. in [102] proposed PolyGen, a generative model that is trained
on 3D polygon meshes. The method converts the shapes into a sequence of vertices and
uses transformer networks [103] to predict tokens in the sequence. The method shows
promising results using samples available in ShapeNet datasets. However, there is no
guarantee the generated meshes are closed and water-tight, which is often necessary for
human organs in medical imaging applications.

Diffusion generative modelling is an innovative approach to generative modelling
that focuses on optimising the diffusion process to generate data samples [104]. This
technique is particularly effective for complex data distributions like images, audio, or
3D meshes. In generative models like Generative Adversarial Networks (GANs) or Vari-
ational Autoencoders (VAEs), generating samples involves iteratively refining random
noise to resemble the desired data distribution. Diffusion generative modelling takes a
different route by directly modelling the process of transforming a simple distribution
into the desired data distribution through a diffusion process [104]. Some recent studies
in [105, 106] used these techniques for generating 3D mesh models. Luo et al. in [106]
formulate the point cloud generation as a denoising process, which is implemented as
a Markov chain. For any 3D point, it trains a network to predict the point’s gradient
that is used to move the point to the high-density area. A method called MeshDiffu-
sion is introduced for generative 3D mesh modelling in [105]. The method utilised a
score-based generative model, which means it learns the mesh generation process dir-
ectly through the gradient of a score function. This approach enables MeshDiffusion
to generate high-quality 3D meshes with complex structures and detailed features. Al-
though diffusion modelling provides a coherent framework for modelling complex data
distributions, allowing for flexible and controlled generation, challenges arise in terms
of training stability, memory and computational demands, as well as the interpretabil-
ity of noise introduced during the diffusion process. Careful tuning of hyperparameters
and addressing mode capture limitations are essential for harnessing the full potential
of diffusion models in 3D shape generation tasks.

2.4 Conclusion

Graphs are used to represent shapes in this study, so geometric deep learning, which is
a generalization of deep neural networks for non-Euclidean domains (such as graphs),
is the first topic discussed in this chapter. A comprehensive review of two different
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categories of geometric deep learning: Spectral-based and Spatial-based methods was
presented. The spatial-based methods are capable of handling inconsistent graph pop-
ulations, while the spectral-based approaches are limited to unified graph structures.
Spatial-based models have also been shown to provide additional information (e.g.
relative positions of vertices) rather than just spectral information. The important
differences between spectral and spatial graph convolution methods will be exploited
in this study.

This chapter also discussed generative shape modeling, which involves establishing
correspondences and generating shapes. In the past few decades, a considerable amount
of research has been dedicated to the registration of shapes as point sets and establish-
ing point-to-point correspondences. These methods, however, have a number of limit-
ations, including their ability to work only with input sets with the same cardinality,
being supervised (required initial landmarks), and the use of a local search algorithm.
Another group of works used graph matching to establish correspondences, most of
which used displacement and were done offline and remained unchanged throughout
the generation of shapes. Furthermore, a wide range of research on the generation of
both medical and non-medical shapes was reviewed.

In summary, existing works on shape generative modeling using graphs are valuable
but often require specific conditions, such as training datasets with identical graph con-
nectivity and a fixed number of vertices, supervised vertex-to-vertex correspondences,
and unfolding the meshes into image-like structures or a linearising of the graphs into
sequences, which can be complex.
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Chapter 3

Baseline Generative Shape Model: Datasets,
Evaluation Metrics, and Performance Analysis
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3.1 Datasets

The previous chapter provided a detailed review of generative shape modelling and the
related challenges in this field. Based on this, this chapter proceeds to introduce the
baseline generative shape model, which serves as a baseline for this study. Additionally,
the datasets and evaluation metrics utilised are also presented to enable a thorough and
comprehensive assessment of the performance of the generative shape model.

3.1 Datasets

The anatomical shapes are derived from real clinical images. The proposed methods are
applied to two clinical datasets comprising actual 3D surface mesh datasets (represented
as grid graphs) obtained from Cardiac Magnetic Resonance (CMR) and liver Computed
Tomography (CT) images.

In this study, the impact of two factors on generative models is assessed: (i) the size
of training data, and (ii) the variability of shapes among individuals in the population.
Therefore, two datasets with a different number of shapes and various complexities in
the structure are used to assess the model’s versatility and performance. A large dataset
of left ventricle shapes is used because of their unique structural geometry (inner and
outer wall of the left ventricle in a 3D shape). In addition, a small set of liver shape
datasets is utilised where liver shapes include large morphological variations in their
geometry.

Left Ventricle (LV)

LV shapes were derived from cardiac magnetic resonance (CMR) images available in the
UK Biobank [107] under access application number 11350. This dataset was available
in the CISTIB lab from the study in [108]. The experiments are performed on 1000 LV
surface meshes prepared using the method described in [108]. All utilized LV graphs
are related to the end-diastolic phase of the cardiac cycle. Mesh cardinalities vary from
1000 to 2000 points.

Liver

3D liver shapes are obtained from the public CT-ORG image dataset from The Cancer
Imaging Archive (TCIA) [109]. This dataset consists of 140 CT scans, each with multi
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organs labelled. These organs were automatically segmented by morphological image
processing or manually by clinical experts. The images come from a wide variety of
sources, including abdominal and full-body; contrast and non-contrast; low-dose and
high-dose CT scans. 131 images are dedicated CTs, and the remaining 9 are the CT
component taken from PET-CT exams. This makes the dataset ideal for training and
evaluating deep learning algorithms, which ought to perform well in a wide variety of
conditions.

To prepare the required training graph dataset, liver meshes are reconstructed from
CT scans of 139 patients. To simplify computation, the input slices are first down-
sampled with a factor of 0.5 in the plane and spatial resolutions. Next, the 3D surface
reconstruction is done using the MarchingCube algorithm, [110] which is a method to
extract a surface of interest from a voxel dataset. It is worth noting that patients
included in the CT-ORG image dataset were selected based on the presence of lesions
in one or more of the labelled organs. The majority of the images in the dataset depict
liver lesions, including both benign and malignant cases. As a result, the prepared liver
mesh dataset encompasses both normal and abnormal cases. Mesh cardinalities vary
from 300 to 3000 points.

3.1.1 Pre-Alignment of Shapes

All structures under consideration need to be rigidly registered with respect to each
other, in order to filter out rotation, translation and isometric scaling effects. This is
done because the objects may have different orientations in the Euclidean space and
therefore their shapes cannot be initially compared. For each dataset, the 3D shapes
from all subjects are first aligned using a rigid point set registration described in [65].
Then, the shape coordinates are normalised to the range of [0, 1] for all of the aligned
datasets.

3.2 Evaluation Metrics

In general, validation involves evaluating whether a model accurately represents the
physical process it intends to depict, and if the model’s predictions are comparable
to those of the actual system. It is worth mentioning that a model cannot be valid-
ated completely, but rather there is a collection of evidence indicating that the model
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produces consistent outcomes within a specific range of conditions or parameters [111].
As discussed in Chapter 1, this study follows data-driven approaches to building vir-

tual populations, where virtual patients are generated by sampling from distributions.
However, the random generation of individuals does not guarantee that the resulting
anatomic case will be physiologically plausible or will belong to the actual population.
Therefore, in virtual population modelling, while the model should capture adequate
variability within the population, it is necessary to evaluate each member of the model
in order to ensure their physiological plausibility. A detailed review in [112] explored
methods and findings related to the generation of synthetic medical data. The review,
discussing both data fidelity and privacy aspects, provides valuable insights into the
challenges and outcomes of creating synthetic medical datasets. Based on this research,
we have considered ”Visualisation”, ”Distance metrics” and ”Statistical metrics” to
evaluate the method and assess the plausibility of generated samples in this study. For
the quantitative assessment of the generative models, the performance of generation is
evaluated in terms of generalisation, specificity, and clinical relevance metrics.

3.2.1 Generalisation and Specificity

To numerically evaluate the model, two criteria, generalization and specificity, have
been proposed in the literature to assess the generation and correspondence quality
[33, 113, 114]. The generalisation ability of a generative model indicates the capability
of the model to represent unseen samples and thus capture the variability in shapes
based on its error when reconstructing unseen actual test data [113]. Specifically,
unseen test shapes are first reconstructed using the trained shape models investigated.
Subsequently, distance metrics are evaluated between the actual and reconstructed test
shapes [113].

The specificity of a model quantifies the quality of the newly generated instances
when compared with the training data. A distance is measured between each gener-
ated sample in the virtual population and the closest/most similar shape in the actual
population. This measure is useful to quantify how similar the randomly generated
samples are to the actual samples in the training data.

To quantify the generalisation and specificity errors, the data is split into training
and test subsamples. Three distance measures Hausdorff distance (HD), minimum
Euclidean distance (ED) and its symmetric distance (ED∗) are considered to report
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generalisation and specificity [33].
Hausdorff distance (HD) is measured to determine how different the two shapes

gk and g
′
k are: HD(gk, g

′
k) = max(max

p∈gk

min
q∈g

′
k

∥p− q∥2 , max
q∈g

′
k

min
p∈gk

∥p− q∥2). In addi-

tion, the average of minimum Euclidean distance between two sets gk and g
′
k is meas-

ured as ED(gk, g
′
k) = 1

Nk

∑
p min
q∈g

′
k

∥p− q∥2, and its symmetric distance ED∗(gk, g
′
k) =

ED(g′
k, gk). Distances ED/ED∗ measure how two graphs are similar on the average

basis but are not suitable for detecting differences in the details of gk and g
′
k, while

Hausdorff distance is a lightweight yet nuanced similarity measure to assess the close-
ness of two graphs.

3.2.2 Clinical Relevance

Inspired by [93], this section presents acceptance criteria for assessing the clinical rel-
evance of the virtual cohorts synthesised using the models investigated in this study.

Given the actual cohort, the acceptance rate A determines the percentage of syn-
thetic samples in virtual cohorts with biomarkers (e.g. volume indices), within a con-
fidence interval of the distribution of the biomarkers indices observed in the actual
population. Specifically, the clinical acceptance rate A is used as an additional metric
to assess the anatomical plausibility of virtual synthesised cohorts. The motivation be-
hind this is to maintain the clinically significant volumetric indices in the synthesized
cohorts, with respect to the reference (actual) population.

To compute the acceptance rate A, three different confidence intervals are con-
sidered. First, [min, max] interval presents the range of the observed biomarkers in the
actual population and we refer to the associated acceptance function as Ar.

As a second acceptance criterion, a sort of outlier rejection is conducted based on
the dispersion observed in the original cohort. More precisely, intervals that accumulate
95% of the probability of finding each biomarker are defined. A Chebyshev's inequality
is applied when the actual distribution of the different biomarkers is unknown. Assum-
ing unimodality, Chebyshev's inequality establishes the 95% confidence interval M±3B

are defined, based on the corresponding mean (µ), standard deviation (σ) and the mode
(M) observed in the actual population. 1 Here, B =

√
σ2 + (M − µ)2 measures the

1The same interval contains, at least, 91% of the probability density of the distribution if unimod-
ality cannot be assumed.
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variability across the data and the acceptance function for these criteria is referred to
as AM .

In the third acceptance criterion, a normal distribution of the biomarkers is as-
sumed. Dealing with real-world populations, it is reasonable to assume that some of
the biomarkers have a Gaussian distribution. Relying on Chebyshev's inequality, the
confidence interval µ ± 2σ is defined where about 95% of the samples lie within two
standard deviations from the mean and denote the corresponding acceptance function
Aµ.

Table 3.1 presents the values of the statistics for the biomarkers proposed in LV
and liver datasets and the resulting intervals defined by the three acceptance criteria.

3.3 Baseline Generative Shape Model

This section aims at presenting a baseline shape generation model. A method for auto-
matic shape generation of anatomy structures of interest, using statistical models of
shape. Due to this, the first step towards the construction of SSMs is establishing point-
wise correspondence (i.e. shape matching) across a training set of shapes. Following
the registration of a group of shapes using any of the methods discussed in the previous
chapter, the estimated posterior probabilities are employed to establish soft correspond-
ences, which in turn are used to train SSMs by the baseline model. More specifically,
the baseline generative model introduced in this chapter combines a Registration-based
Shape Matching procedure with a PCA-based SSM model, referred to as RSMP. The
process of the RSMP generation framework involves two steps: (1) presenting shape
matching (i.e. establishing correspondences) and structural normalisation, and (2)
SSM-fitting. The former is first used to align training shapes to an assumed template
shape and establish correspondences. The estimated correspondences are subsequently
projected to training shapes and present structurally normalized regressed shapes.

Here, the basic theory of Coherent Point Drift point-set registration [65] is first
presented and then a normalization procedure is considered by regression of shapes on
the template model. A brief introduction to the fundamental theory underlying the
proposed PCA-based statistical shape models is subsequently provided. Furthermore,
the assessment of shape quality presented by the baseline model is demonstrated.
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3.3 Baseline Generative Shape Model

3.3.1 Point-Set Registration: Coherent Point Drift

Coherent point drift (CPD) is a widely used pair-wise point set registration technique,
capable of recovering rigid, affine, and non-rigid transformations. In this chapter, this
method is utilised to address the difficult problem of establishing point-wise corres-
pondences (i.e. shape matching) by estimating rigid registration (rigid spatial trans-
formations).

In point cloud rigid registration, the goal is to align two or more point clouds by
applying transformations such as translation, rotation, and scaling. Rigid registration
assumes that the point clouds represent objects that undergo rigid transformations,
meaning the shape of the object remains unchanged while only its position and ori-
entation change. Thus, by employing rigid registration methods for shape matching,
the model establishes point-wise correspondences while maintaining the variability of
shapes and preventing deformation throughout the registration process. This is crucial
in shape matching and generative modelling as it ensures that the shape of the object
remains unaltered, which is essential for achieving accurate and meaningful results.

The key aspect of the CPD algorithm is that it considers the problem of point-set
registration, one of probability density estimation, where one point-set, represented by
Gaussian mixture model (GMM) components, is fitted to the second point-set (con-
sidered as data points) by likelihood maximisation, using the Expectation-Maximisation
(EM) algorithm for optimisation. The GMM posterior probability for a given data point
is maximised when two point sets are aligned and the correspondence is obtained.

The GMM probability density function is

p(x) =
M+1∑
m=1

p(ym)p(x|ym), (3.1)

where the points in Y represent the GMM centroids, and those in X represent the
data points generated by GMM. In an EM-based probabilistic pair-wise registration
method, it is assumed that the data points defining the fixed shape (i.e. point set) X =
{xn}Nn=1 are independent and identically distributed (i.i.d) and that a noisy observation
is derived from a Gaussian distribution centered at a point within the moving point set
Y = {ym}Mm=1. The correspondence probability between data points xn and ym defined
as the posterior probability of the GMM centroid given the data point: p(ym|xn) =
p(ym)p(xn|ym)/p(xn).

Considering, equal weighted components and an additional uniform distribution
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3.3 Baseline Generative Shape Model

term p(x|M +1) = 1
N to account for noise and outliers in the point-sets, the probability

density function (pdf) for a GMM is represented by:

p(xn|Y, θ) = w

N
+ (1− w)

M∑
m=1

p(xn|ym, θ)
M

, (3.2)

where w, 0 ≤ w ≤ 1 denotes the weight of the uniform distribution; N the number of
points in the fixed point set and M the number of points in the moving point set (or
number of GMM components), also

p(xn|ym, θ) = 1
(2πσ2)D/2

exp− ∥x−T(ym,θ)∥2

2σ2 , (3.3)

illustrates the likelihood probability of a point x sampled from GMM components
centred at Tym. D is the dimensionality of point sets, T denotes the desired spatial
transformation which can be rigid, similar, affine or non-rigid. θ represents the set of
all model parameters, including transformations T, centroid positions ym and variance
σ2.

Under the i.i.d assumption, the log-likelihood function for all data points can be
expressed as a product of the individual conditional probability functions p(xn|ym, θ);

p(X|Y, θ) =
N∑

n=1
ln(p(xn|Y, θ)). (3.4)

Registration parameters can be estimated by maximising the log-likelihood of the ob-
served data points xn with respect to the unknown parameters θ, (using gradient-based
optimisation techniques). Alternatively, the EM algorithm may be used to estimate re-
gistration parameters θ by minimising the expectation of negative log-likelihood func-
tion Q(θi|θi−1), as described by Equation 3.6. Therefore, in this case, analytical solu-
tions exist for updating estimates of the model and transformation parameters, at each
EM-iteration. Throughout this section the current iteration is denoted as i.

θi = argmax
θ

p(X|Y, θ) ≡ argmin
θ

Q(θi|θi−1) (3.5)

where

Q(θi|θi−1) = −
N∑

n=1

M∑
m=1

p(ym|xn, θi−1)ln(p(xn|ym, θi)) (3.6)

Q also serves as an upper bound for the negative log-likelihood function, which is min-
imised instead of the latter due to its intractable solution. In the EM algorithm, the
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3.3 Baseline Generative Shape Model

minimisation of Q is achieved by iteratively alternating between E-step and M-steps
until the convergence. In the E-step, the previous iteration’s estimate for the model’s
parameters θi−1, are used to compute the posterior probabilities p(ym|xn), which rep-
resent the probability of correspondences between mixture components centred at yn

and point set xn. These posterior probabilities are computed using Bayes’ theorem as:

E-step : pi−1(ym|xn) = p(ym)p(xn|ym)
p(xn)

= exp
− 1

2

∥∥∥xn−T(ym,θi−1)
σ2

∥∥∥2

∑M
m=1 exp

− 1
2

∥∥∥xn−T(ym,θi−1)
σ2

∥∥∥2

+ (2πσ2)D/2 wM
(1−w)N

(3.7)

where, for rigid point set registration, T(ym; θ) = sRym + t; θ = {s, R, t}

M-step : θi = argmin
θ

Q(θi|θi−1)

= argmin
θ

1
2σ2

N∑
n=1

M∑
m=1

p(ym|xn, θi−1) ∥xn −T(ym, θ)∥2 (3.8)

+ D

2 ln(σ2)
N∑

n=1

M∑
m=1

p(ym|xn, θi−1) (3.9)

In summary, the E-step computes the posterior probabilities of the GMM compon-
ents, the M-step updates estimates for the model and transformation parameters, based
on the computed posterior probabilities. The algorithm iteratively alternates between
these two steps until a convergence criterion is reached. Presenting shapes as point
clouds, posterior probabilities in Equation 3.7 give the correspondence between shapes
and template shape.

3.3.2 Statistical Shape Models

In Section 2.3.2 PCA-based Statistical Shape Models are discussed to generate syn-
thetic shapes (represented as point clouds). The technique of PCA is explained here
to describe the statistical variations of shapes [31]. The mean shape of this set of nor-
malized aligned shapes is calculated, and modes of shape variation are computed using
PCA. PCA reduces data by geometrically projecting them onto lower dimensions called
principal components, intending to find the best summary of the data using a limited
number of components.

38



3.3 Baseline Generative Shape Model

Having a dataset with a consistent number of points becomes a crucial aspect in
training SSMs using PCA. It is vital to maintain a uniform number of data points
across the samples to enable effective analysis of shape variations and the construction
of a meaningful model through PCA. Consequently, to achieve this consistency and
enhance the success of SSM training with PCA, a structurally normalisation process is
considered, which facilitates the creation of structurally normalised training data based
on point-to-point correspondences.

For a training set of K shapes (k = 1, ..., K), each shape described by Nk points. The
geometric features in shape k are denoted by xk ∈ RNk×3. Regarding the CPD method,
the normalized aligned shapes h are estimated as demonstrated in Equation 3.10, using
the correspondence map P (i.e. posterior probabilities derived from Equation 3.7). The
estimation of P occurs after aligning each shape to the template model (with N points),
and T denotes the corresponding similarity transformation.

hj =
∑Nk

i=1 P T
ji Txi∑Nk

i=1 Pji

, j = 1, ..., N (3.10)

It subsequently enables the creation of a structurally normalised training dataset, es-
sential for training SSMs through PCA.

Therefore, to illustrate PCA-based SSM, a training set of K shapes is used, rep-
resented as structurally normalized point clouds hk, where the shapes have a uniform
number of N points. The geometric features of the point j in shape k are denoted by
hkj ∈ R3, hkj = (xkj , ykj , zkj) with j = 1, ..., N and k = 1, ..., K.

Using rigid CPD registration, all nuisance pose parameters (such as translation,
rotation, and scaling) have been removed. Due to the specific class of shapes covered
by this set, the presence of inter-point correlation will consistently be observed. Thus,
shape representations could account for point correlations. A reduction in dimension-
ality could be achieved if some point movements were correlated.

More specifically, let {hk}Kk=1 be the set of all training shapes in matrix form, we are
interested in the mean shape h̄ and covariance matrix C of h is calculated as follows:

gµ := h̄ = 1
K

K∑
k=1

hk (3.11)

C = 1
K − 1

K∑
k=1

(hk − h̄)(hk − h̄)T (3.12)
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In summary, the shape covariance is represented in a low-dimensional space. The
PCA of the shape produces L eigenvectors U = [u1, ..., uL], and corresponding eigen-
values (i.e. modes of shape variations) Λ = diag(λ1, ..., λL) of the covariance matrix
computed via Singular Value Decomposition. Hence, assuming the shape class follows
a multi-dimensional Gaussian probability distribution, the synthetic shape gsyn can be
approximated from the following linear generative model:

gsyn := h ≈ h̄ + Ub (3.13)

b = UT (h− h̄) (3.14)

where vector b ∈ RL represents the set of parameters used to generate variations in
shape, and restricted to |bi| ≤ β

√
λi; we set β = 3 to capture 99.7% of shape variability.

3.4 Experimental Results

The shape matching procedure using point set registration-based methods is discussed
in Section 3.3.1. By using a Registration-based Shape Matching (RSM) method, which
represents shapes as point sets, point-to-point correspondence is calculated by aligning
all moving point sets to a fixed one using Equation 3.7. Then it is followed by the
domain transformation using Equation 3.10.

Figure 3.1 visualises shape matching results obtained using registration-based method
[65] for some examples of LV and liver datasets. In this figure, the number of points
for template shapes was 1093 and 1025 for LV and livers respectively.

The findings show that there are certain details that are not captured in the in-
dicated landmarks. This is because the registration is not naturally a learning-based
method, it computes a transformation while encouraging the displacement vectors to
point in similar directions. Thus, to find a dense correspondence between two shapes
(represented as point sets), matching can be performed with only a subsample of points
and can be applied on all points. Moreover, the evaluation of the obtained shapes in the
template domain compared to the actual shape is conducted for test shapes, employing
two distance measures: Hausdorff distance (HD) and Chamfer distance (CD).

The accuracy of shapes obtained by RSM in the fixed domain is summarised in
Table 3.2. The high standard deviation values observed for the liver indicate a lack
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Figure 3.1: Visualisation of some shape matching results obtained by registration-
based methods described in Section 3.3.1. Some landmarks are highlighted with
red arrows. (a) Cyan-coloured meshes present input LV shapes with cardinality
1586, 1539, 1455, 1150 and 1039 respectively from left to right. Grey-coloured shapes
are the normalised meshes with a cardinality of 1093. (b) Cyan-coloured meshes present
input liver shapes with cardinality 1532, 1338, 1278, 1030 and 1365 respectively from left
to right. Grey-coloured shapes are the normalised meshes with a cardinality of 1025.

of robustness in capturing complex shape variabilities across different subjects. This
implies that the liver shape model generated by the RSM method may not effectively
handle the intricate variations present in liver shapes among individuals. The reason
for this is that these methods tend to enforce rigid transformations uniformly across the
entire shape, neglecting the local variations and shape intricacies that may be crucial
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(a) LV (b) Liver

Figure 3.2: The Cumulative Explained Variance (CEV) and the shape variation ex-
plained by each of the principal components of the feature vector in the space defined
by the PCA, in order of importance. (a) The first 13 modes explain 95% of the total LV
shape variation. (b) The first 10 modes explain 95% of the total liver shape variation.

for establishing accurate point-to-point correspondences.
In statistical shape modelling, in order to obtain a set of representative shapes, the

selected modes must be able to explain a large percentage of the total shape variation.
The cumulative explained variance (CEV) is the relative cumulative frequency of the
eigenvalues sorted in descending order.

CEV(l) =
∑l

i=1 λi∑L
i=1 λi

; 1 ≤ l ≤ L (3.15)

where L is the total number of modes and CEV(l) gives the cumulative explained
variance up to the l-th mode.

Figure 3.2 shows the variance associated with each of the principal components (i.e.

Table 3.2: Shape matching quality assessment for RSM method using two distance
metrics HD and CD (mean ± std) in [mm].

LV Liver
HD 8.11± 2.13 35.09± 14.55
CD 12.04± 2.63 256.46± 211.57
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Mean-3 SD +3 SD

Mode 1

Mode 2

Mode3

Mode 4

Mode 5

Figure 3.3: Representation of the mean ±3 standard deviation (SD) of the first five
modes of variation in the 3D shape models of left-ventricle.
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modes), and the CEV by considering the first l = 16 features of the PCA for LV and
liver shapes. The first 13 and 10 variation modes can explain 95% of the anatomical
variability in the observed samples LV and liver respectively.

The modes of variation in PCA for shapes provide insights into the most prominent
and distinct patterns of shape variability within the datasets. As an example, Figures
3.3 and 3.4 visualise the variation of LV and liver shapes respectively, in the first
five modes and presents the significant patterns of shape variability observed within
the dataset. These modes capture the primary directions or axes along which shapes
exhibit the most substantial changes.

In Figure 3.3, the first five modes of variation in PCA for Left Ventricle (LV) shapes
present the following changes: The first mode of variation captures the overall size of
the LV shape, indicating that it is the most prominent source of variation in the dataset.
The second mode captures contraction in specific regions of the LV, such as changes in
the width of the ventricular chamber.

The third mode of variation reveals additional shape variations that include changes
in curvature, bulging, or concavity in specific regions of the LV, such as alterations
in the shape of the ventricular walls. The fourth mode of variation captures shape
changes that are independent of the previous three modes. These changes correspond
to specific asymmetries or localized deformations within the LV shape, such as uneven
thickening of the ventricular walls or variations in the shape of the apex. The fifth
mode of variation represents further independent shape changes that are distinct from
the previous four modes. These changes include alterations in the overall size or volume
of the LV, rotation, or variations in specific regions that deviate from the mean shape
in a unique manner.

Further in Figure 3.4, variations of the mean shape in the first five dominant modes
by ±3 Standard Deviation (SD) are shown for the liver. The first mode of variation
captures changes in liver size, where positive values indicate smaller and negative values
represent larger liver shapes. The second mode of variation illustrates the shape changes
that are most prominent after accounting for the mean shape. It can be seen that it
presents variations in the length or height of the liver shape. The third mode of variation
reveals shape changes related to the curvature or bulging of specific regions within the
liver. In the fourth mode, the liver shape changes due to specific asymmetries or
deformations. And the fifth mode of variation captures additional shape changes and

44



3.4 Experimental Results

Mean-3 SD +3 SD

Mode 1
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Figure 3.4: Representation of the mean ±3 standard deviation (SD) of the first five
modes of variation in the 3D shape models of the liver.

morphological features that are independent and distinguishable from the preceding
four modes.

To synthesise virtual cohorts using the RSMP model, the PCA-based shape model
generates samples by uniformly sampling coordinates in the low-dimensional principal
sub-space within the defined interval of [−3λi,−3λi], λi represents the eigenvalue of the
i-th principal component, corresponding to the eigenvector spanning the principal sub-
space. Figure 3.5 displays the assessment results of the RSMP generative shape frame-
work with uniform sampling (RSMP(Uni)) based on the generalisation and specificity
criteria across three different distances. Generalisation ability provides an assessment
of the variability in shape that is captured by the principal sub-space representations.
Specificity focuses on determining the anatomical plausibility of the synthesized vir-
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LV
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Figure 3.5: Generalisation and Specificity errors (in [mm]) of the RSMP(Uni) model
with different principal components L. The first and second rows illustrate results on
LV and liver datasets, respectively. The plots show the performance of the models
with L values smaller than 32. In each row, HD, ED and ED∗ distances are reported
from left to right. For each model, the markers, dotted lines and, arrows indicate the
associated average, confidence ellipse, and the direction of the maximum variability (in
error values for test and synthetic data) respectively, for training with various numbers
of components.

tual shape cohorts. It measures how well the generated shapes align with realistic
anatomical structures.

As shown in Figure 3.5, the observed variations in errors (indicated by arrows)
demonstrate that, in most cases, both generalization and specificity errors decrease.
This indicates that the model tends to achieve high performance. The figure illus-
trates that with an increasing number of principal components, there is an increase
in the captured variability in shape (i.e. lower generalisation errors) while it indic-
ates minimal changes in specificity errors across the majority of planes. This implies
that the RSMP(Uni) generative model can produce realistic shapes for any number of
components, while also capturing a greater range of variability with higher numbers of
components.

In order to quantify the clinical relevance of synthesised shape populations (defined
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Table 3.3: Clinical acceptance rates A [in %] achieved by RSMP(Uni) generative model
for LV and liver volumes.

RSMP(Uni)

LV
Ar : A[min,max] 93.95
AM : AM±3B 67.15
Aµ : Aµ±2σ 47.75

Liver
Ar : A[min,max] 67.63
AM : AM±3B 70.50
Aµ : Aµ±2σ 37.41

in Section 3.2), Table 3.3 presents the efficiency of RSMP(Uni) method as assessed
through different acceptance criteria. The statistical shape model RSMP assumed
that rigidly aligned point sets lie within a Euclidean space and establish point-to-point
correspondences. The hypothesized linearity of the model allows for using causal PCA
and has proven to be a pragmatic solution for many shape matching tasks. However,
in the presence of large shape variations (like liver samples), the non-linearity of the
shape space demands more sophisticated analyses. As a result, for datasets with higher
morphological features, these methods may generate virtual samples with low clinical
relevance.

3.5 Discussion and Conclusion

This chapter introduces the RSMP baseline generative model, which represents shapes
as point sets. The model is a PCA-based statistical shape model that establishes point-
to-point correspondences using registration-based shape matching methods.

Point set rigid registration methods facilitated the establishment of point-to-point
correspondences between shapes. Rigid registration methods, while widely used in
aligning shapes, have inherent limitations when it comes to establishing point-to-point
correspondences. These methods primarily rely on rigid transformations involving
translations, rotations, and scalings. However, they often struggle to capture non-linear
deformations or shape variations beyond the scope of rigid transformations.

The main issue with rigid registration methods lies in their assumption of global
shape similarity, neglecting local variations that may occur within the shapes. Due to
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this oversimplification, these methods may fail to accurately establish correspondences
between corresponding points in shapes with complex deformations. Moreover, rigid
registration methods do not possess the flexibility to account for shape variability that
can arise from factors such as articulation, non-rigid deformations, or anatomical differ-
ences among subjects. These methods tend to enforce rigid transformations uniformly
across the entire shape, neglecting the local variations and shape intricacies that may
be crucial for establishing accurate point-to-point correspondences (shown in Figure
3.1).

Moreover, PCA-based SSM models have limitations in capturing complex variations
due to multiple factors, as demonstrated in the obtained results shown in the Figure
3.3.

• Linearity assumption: PCA-based SSMs assume that shape variations can be
modeled as linear combinations of a set of principal components. This linearity
assumption may not hold in cases where shape variations exhibit non-linear or
more intricate patterns. Consequently, PCA-based models may not be able to
fully capture and represent the complex non-linear shape variations present in
the data.

• Limited representational capacity: PCA-based SSMs are limited by the number
of principal components used to represent shape variations. In practice, only
a subset of principal components that capture the most dominant variations is
typically utilised due to computational constraints and the need for dimensionality
reduction. As a result, PCA-based models may not capture fine-grained or subtle
variations that require a larger number of components to accurately represent.

• Inability to handle out-of-sample variations: PCA-based SSMs are constructed
based on a training dataset, and their performance may deteriorate when applied
to shapes that exhibit variations not well-represented in the training data. These
models rely on the assumption that the training data sufficiently covers the range
of shape variations encountered in the real world. However, if the shape variations
in the test or unseen data significantly differ from those in the training data,
the PCA-based model may fail to accurately capture and represent these out-of-
sample variations.

• Shape correlations: PCA-based SSMs assume that shape variations are uncorrel-
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ated, meaning that each principal component captures independent shape vari-
ations. However, in reality, shapes often exhibit correlated variations, where
changes in one part of the shape are associated with changes in other parts.
PCA-based models may struggle to capture such correlated shape variations,
leading to limitations in their ability to represent complex shape relationships
and dependencies.

In general, it is important to address these limitations to ensure that shape models
accurately capture the full range of shape variations, enabling more reliable and precise
analysis and interpretation of shapes in various applications such as shape generation.
To overcome these limitations, deep learning-based approaches for shape matching and
generation have been proposed in Chapter 4 and Chapter 5. These methods aim to
achieve two goals: first, to capture complex deformations and enable more accurate
point-to-point correspondences. Second, to capture more intricate and non-linear shape
variations, offering improved performance and representation capabilities compared to
PCA-based SSMs (e.g. RSMP baseline model) in capturing complex shape variability.
It excels at capturing complex shape variability while maintaining plausible shapes.
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Chapter 4

A Geometric Deep Learning Framework for
Generation of Shape as Graphs Using Graph
Convolution and Attention Mechanisms:
Leveraging Geometry and Surface Features
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4.1 Introduction

4.1 Introduction

In this chapter, a probabilistic approach for generating virtual shape populations from
the inconsistent dataset is proposed. The lack of consistent tensor-like representa-
tion across the training graphs poses significant methodological challenges which are
addressed here. This is achieved through an unsupervised deep learning method embed-
ded in Attention-based Shape Matching and Generation networks (ASMG). A shape
matching network derives a learnable set of correspondences using graph embedding
techniques, employing a synergy of graph convolutional and attention networks. This
is followed by a graph normalisation process over a population and atlas shape learn-
ing in an EM-like framework. Subsequently, a generative network learns a probability
density function from a set of structurally normalised graphs in the 3D space. Figure
4.1 illustrates the flowchart of the proposed generative model in this chapter.

In the process of developing or selecting generative shape models for specific applic-
ations, and sampling strategies for the synthesis of virtual cohorts of anatomy from the
former, it is common to make design choices that maintain a balance/trade-off between
the variability in shape captured (relative to target/real patient populations) and the
anatomical plausibility of the instances synthesised, in the virtual cohorts. In-silico
trials require balancing shape variability and anatomical plausibility in synthesised vir-
tual cohorts, as cohorts with high variability may contain unrealistic shapes that are
unrepresentative of native anatomy. Therefore, it is essential to generate a plausible
variant of data while local detailed information on the shape is preserved. This leads
to the introduction of models that realistically describe the anatomy and its variation
in the population.

This chapter advocates synthesising cohorts in a manner that maximizes variability
and plausibility in synthesised anatomical shapes, and therefore,

• It is imperative to model accurate and realistic shapes in the attention-based
shape matching (GCN-ATT) network. To this end, in this chapter, two variants
of the GCN-ATT are presented: (1) where representations of vertices are only
defined by geometric features (i.e. spatial positions of points); and (2) hybrid
representations of vertices defined by spatial positions of points, with the associ-
ated vertex normal vectors. The former is of particular interest in this chapter
(henceforth referred to as sGCN-ATT), while the latter serves to highlight the
capability of the presented work for preserving more morphological details and
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4.2 ASMG Model

Figure 4.1: Schematic showing our geometric deep learning framework for shape match-
ing and generation. Different-sized actual shapes first go through the shape matching
phase, in which, the network derives a learnable set of correspondences and learns
population-derived atlas shape, then flows into the generation network, and finally pro-
duces the realistic synthetic 3D shapes.

variation (referred to as hGCN-ATT).

• Based on the study in [93] that explored the benefits and drawbacks of different
sampling strategies, a Gaussian sampling strategy is employed in a generative
network in order to generate virtual anatomical shape chimeras.

4.2 ASMG Model

Problem Statement: Given a set of observed surface meshes, our goal is to develop
a shape generative model using a graph representation.1 Let gk = (Vk, Ek) be the k-th
graph specified by a set of its vertices and edges, with |Vk| = Nk vertices and Ek be the
set of edges, connecting the vertices. The sparse adjacency matrix Ak ∈ {0, 1}Nk×Nk

represents the edge connections. The training will be assumed to be a set of graphs
G = {gk}Kk=1. Assume that the features of the vertex v in graph k are denoted by
xkv ∈ Rdx and that the matrix Xk ∈ RNk×dx aggregates all of the node feature vectors
for the graph k. It is further assumed that in the sGCN-ATT network, the position
of each vertex in a mesh is characterized by spatial features (i.e. dx = 3); while in
the hGCN-ATT network, the vertex representation is denoted by the concatenation of
the 3D vertex coordinate and surface normal vectors (i.e. dx = 6). The corresponding

1The term ”graph” will be used to refer to shapes/meshes later on in this study.
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4.2 ASMG Model

Table 4.1: Commonly used notations.

Notations Descriptions
K Number of observations.
k Observed grah.
µ Atlas (i.e. template) graph.
g A graph.
g′ A smoothed normalised graph.
V The set of nodes in a graph.
v A node v ∈ V .
E The set of edges in a graph.
eij An edge eij ∈ E.
Nv The neighbors of a node v.
A The graph adjacency matrix.
N The number of nodes, N = |V |.
dx The dimension of a node feature vector.
dz The dimension of a latent node feature vector.
X ∈ RN×dx The feature matrix of a graph.
xv ∈ Rdx The feature vector of the node v.
xkv The feature vector of the node v in the k-th graph.
Z ∈ RN×dz The latent feature matrix of a graph.
zv ∈ Rdz The latent feature vector of the node v.
h ∈ RN×dh The feature matrix of a normalised graph.
h′ ∈ RN×dh The feature matrix of a smoothed normalised graph.
hkv The feature vector of the node v in the k-th normalised

graph.
h′

kv The feature vector of the node v in the k-th smoothed
normalised graph.

Φk ∈ [0, 1]Nµ×Nk Vertex-wise correspondence (i.e. attention map)
between graph gk and gµ.

Z′ ∈ RL The latent vector of a smoothed normalised graph.
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Figure 4.2: Overview of the proposed ASMG framework for graph generation from a
graph population with different graph structures.

stochastic latent variable of v is also introduced and denoted as zkv ∈ Rdz , summarised
in a matrix Zk ∈ RNk×dz . Unless particularly specified, the notations used in this
chapter are illustrated in Table 4.1.

Figure 4.2 shows a diagram of the proposed method, where a hierarchical framework
is trained to generate shapes by minimizing the following cost function

L(H′
, Xµ,ψ,ψ

′) = L1(H′
, Xµ) + L2(ψ,ψ

′). (4.1)

First, a graph convolutional encoder network (GCN) (parameterised by {θ}) com-
putes the nodal embedding vectors in the latent space. These embedding vectors are
used to compute the attention weights and the pair-wise correspondences across the
vertices of the training and template graphs. The template graph model initiates with
a canonical shape and iteratively updates as will be explained in Section 4.2.1.

This results in normalising the structure of input meshes such that each normalised
gk is now represented as the kth column of a matrix H = (hk)K

k=1. Given the latter, L1

(refers to shape matching) is minimised to refine the corresponding smoothed shapes
(stored as columns of H′), and the atlas µ, which normalises the structures of the input
meshes. Next, L2 (refers to generation) is minimised to train a variational auto-encoder
(parameterised by {ψ,ψ

′}) using the structure normalised graphs. The overall cost is
iteratively minimised in L1 in each step until convergence is achieved (see Algorithm
1). Algorithm 1 is described in the general context. It can be employed for both
s/hGCN-ATT settings.

In this study, a correspondence map is employed for structural normalization, spe-
cifically to transform a graph from the actual domain to the atlas domain. This trans-
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4.2 ASMG Model

Algorithm 1 atlas shape learning and establishing correspondences
gµ.Initialise()
Zk ← GCNθ.Eval();∀gk ∈ G

while error ≥ 0.001 do
Zµ ← GCNθ.Eval()
Φk ← Attention(Zk, Zµ)
hk ← ΦkXk

h′
k.Initialise()← hk

while error ≥ 0.001 do
h′

k ←< ∂L11, ∂h′
k >= 0

end while
Xµ ←< ∂L12, ∂Xµ >= 0

end while

formation involves transferring the vertex graph positions from the actual domain to
the atlas domain. This process is applied in both settings 1 and 2, where the framework
establishes a correspondence map from different graph representations (either spatial
or hybrid).

In the rest of the study, the atlas graph is indicated as gµ, and its matrix repres-
entation is denoted by Xµ. In the following, each loss term is explained in more detail.

4.2.1 Attention-based Shape Matching (ASM)

The purpose of this section is to develop a novel learning-based shape matching ap-
proach that leverages graph neural networks and attention mechanisms. More specific-
ally, as illustrated in Figure 4.2, the correspondences between graphs are computed
in the latent space using a GCN followed by an attention module (named GCN-ATT
network), and the graph structures are normalised across the population.

Presenting the 3D surface mesh as a graph, this matching procedure aims to determ-
ine correspondence based on the similarity measure of local node embeddings without
requiring to solve an optimization problem during inference. To compute nodal embed-
dings, graph neural networks enable us to efficiently and flexibly aggregate information
through graph nodes and edges, which generate a powerful representation of shapes.
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4.2 ASMG Model

Once the graph embedding is learned, an attention mechanism is applied to those em-
bedded features to learn correspondence across the population as illustrated in Figure
4.3.

The process is a forward-backwards regression of graph datasets on the template
model (i.e. atlas graph) in an EM-like framework. This method finds simultaneously
the atlas shape and the correspondence functions to warp this atlas into each one of
the observed shapes. Indeed, this algorithm iteratively updates the vertex-to-vertex
correspondences and template graph model using node embedded information in the
point clouds Zk.

This method builds a template graph model, that is representative of a graph en-
semble and vertex-to-vertex correspondences between the template and each training
graph. The framework allows us to structurally normalise the given training graph
dataset with different connectivities on a unique template graph, gµ, with cardinality
|Vµ| = Nµ.

4.2.1.1 Computing the vertex-wise correspondences

The attention mechanism is first introduced by Vaswani et.al in [103]. Attention mech-
anisms are generally employed to encourage the models to focus on certain parts of
input data [115]. Hence, in this study, a soft attention mechanism is incorporated into
the matching procedure to determine where and what shape matching should focus on.
The model is designed to identify essential features for learning informative represent-
ations of graphs in Graph Convolutional Networks (GCN). Additionally, it computes
significant relationships, such as vertex-to-vertex correspondences, between the learned
representations by measuring the similarity of local node embeddings (as illustrated in
Figure 4.3). Therefore, the attention mechanism guides the latent embeddings Z to
be conducted in a more concentrated way and thus generates a more accurate corres-
pondence map. To achieve this, first, the latent embeddings of nodes Zk = Ψθ(Xk, Ak)
and Zµ = Ψθ(Xµ, Aµ), are computed by a shared graph neural network Ψθ for the
observed graph gk and the atlas graph gµ, respectively. The embeddings are normal-
ised using Zµ =

(
z(µ)

i /|z(µ)
i |
)Nµ

i=1
and Zk =

(
z(k)

i /|z(k)
i |
)Nk

i=1
. Next, for every gk, the soft

correspondence (i.e. soft attention maps) is obtained, as the mapping function in the
embedded-space paradigm

Φk = Softmax(λZµZT
k ), (4.2)
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Figure 4.3: Illustration of the proposed attention-based shape matching procedure
which finds the vertex-wise correspondence between two shapes by measuring similar-
ities between the nodal embeddings.

where Φk ∈ [0, 1]Nµ×Nk and hyper-parameter λ is inverse variance of {ZµZT
k }Kk=1. The

attention structure in Equation 4.2 allows discovering (dis)similarities between the tem-
plate graph and input instance in the latent space. A detailed description of graph
convolutional neural network Ψ is given in Section 4.2.1.3.

4.2.1.2 Normalising Graph Structures (Regression on Atlas)

The soft correspondence matrix is a map from the node function space F(RNk) to node
function space F(RNµ) thus allows for domain transformations. Having the estimated
vertex-to-vertex correspondences in Φ = {Φk}Kk=1, for every input graph gk, a struc-
turally normalised graph(/shape) is represented as hk ∈ RNµ×dh using a soft attention
mechanism (hk := ϕkXk). Soft attention is implemented to focus more on the relevant
features of the shape. In soft attention, irrelevant areas are discredited by multiplying
the corresponding shape features with a low weight. Hence, to obtain shapes in the
template domain (i.e to warp the atlas shape to each observed shape), the soft atten-
tion mechanism directly passes node geometric features vector x along with the soft
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4.2 ASMG Model

correspondences

hkj =
Nk∑
i=1

ϕjixki ; j = {1, ..., Nµ}, (4.3)

where hkj is a dh dimensional feature vector corresponding to j-th node in the k-th
normalised graph and the weights ϕji are i-th element of the j-th row on the matrix Φk.
The structure normalised shapes can be represented as the columns of the matrix H.
Having H, the cost L1 can be minimised, which consists of two parts L1 = L11 + L12,
serving the purposes described below:

Shape smoothing using graph Laplacian: The normalised graphs obtained
using Equation 4.3 do not generally result in smooth shapes and may present noisy
surfaces. To establish smoother shapes, for every shape (represented by hk), a corres-
ponding secondary shape g′, with matrix representation h′

k is derived , by minimising
the following cost function,

L11(H′) = 1
2

K∑
k=1

Nµ∑
j=1
|h′

kj − hkj |2 + γ

2

Nµ∑
j=1

Nµ∑
q=1

ajq|h
′
kj − h′

kq|2. (4.4)

This cost function employs a Laplacian term to enhance smoothness where ajq are
elements of the adjacency matrix Aµ, and γ is a hyper-parameter. Equation 4.4 can
be iteratively optimised w.r.t. the h′

kj
1 resulting in

h′
kj

(i+1)
←

hkj + γ
∑

q∈Nkj
h′

kq

(i)

1 + γ
∑

q∈Nkj
ajq

; ∀j ∈ Nµ (4.5)

where i indexes iteration steps, and Nkj is the set of neighbours of j-th vertex with
cardinality |Nkj | (see appendix A.1 for a full description). This Laplacian smoothing
consists in moving every vertex of the mesh towards the average location of its topolo-
gical adjacent vertices. Applying Equation 4.5 multiple times shrinks the shape slightly
but mainly smooths sharp details. In order to maintain shapes as close to their real
counterparts as possible, the selected graphs are smoothed using i steps of Laplacian
smoothing until they reach error = ∑Nµ

j=1 |h
′
kj − hkj |2 > 0.001 (as shown in Algorithm

1). As a result, each smoothed normalised shape g′
k is presented by matrix feature

representation h′
k ∈ RNµ×dh . Finally, a generation network in Section 4.2.2 learns a

probability density function from a set of {g′
k}Kk=1 graphs, which allows us to generate

cohorts of artificial shapes.
1A closed-form solution can be obtained as shown in Appendix A.1
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4.2 ASMG Model

Deriving the atlas µ: Having the smooth shape representation in H′ , a matrix
representation Xµ for the atlas graph gµ is inferred by minimising the following cost
which, similar to L11, entails a Laplacian term for smoothness

L12(Xµ) = 1
2

K∑
k=1

Nµ∑
j=1
|h′

kj − xµj |2 + γ

2

Nµ∑
j=1

Nµ∑
q=1

ajq|xµj − xµq|2 (4.6)

This cost is iteratively optimised with respect to Xµ.1 Starting from an initial template
shape X(0)

µ , a new template X(i+1)
µ is iteratively computed from X(i)

µ according to

x(i+1)
µj ←

∑
k h′

kj + γ
∑

q∈Nµj
x(i)

µq

K + γ
∑

q∈Nµj
ajq

; ∀j ∈ Nµ (4.7)

where xµj is a feature vector corresponding to j-th node in the atlas graph and γ =
Nµ/max (Nµj). The atlas shape gµ is built with a fixed adjacency matrix Aµ so that only
the vertex positions are optimised and the connectivity of nodes is preserved. K + 1
virtually regressed graphs are obtained by computing these correspondences for all
irregular input graphs with different structures. Therefore, this method builds an atlas
shape/graph model, which is labeled as the template here. Algorithm 1 describes the
atlas graph learning and establishing correspondences in our model. L2-norm error is
considered for iterative computation in Equation 4.7 and Equation 4.5. The algorithm
starts from a canonical shape X(0)

µ for the atlas. In subsequent iterations, the atlas is
initialized using the updated representation from the previous iteration. This process
repeats, with the atlas being refined in each iteration to better capture the anatomical
variability in the dataset. This allows the atlas to adapt to the nuances and complexities
of the dataset. In general, this iterative process of atlas learning allows the model to
adapt to the variability in the dataset, resulting in a representative atlas.

4.2.1.3 Graph Convolutional Neural Network (Ψ)

Section 4.2.1.1 described how embedded features from graph convolutional neural net-
works contribute to establishing correspondences. Graph embedding refers to the ap-
proach of learning latent feature representations for the nodes or edges in a graph.
The basic principle is to learn encodings for the nodes in the network such that the
similarity in the embedding space reflects the similarity in the graph [116]. A detailed

1A closed-form solution can be obtained as shown in Appendix A.2

59



4.2 ASMG Model

explanation of the proposed graph convolutional neural network Ψ is presented in this
section.

In order to capture both local and global structural information, deep neural net-
work Ψ uses a variational graph autoencoder architecture parameterized by {θ,θ

′}.
Basically, a variational graph autoencoder is a framework for unsupervised learning on
graph-structured data based on variational autoencoders [91]. Here, the variational
graph autoencoder network Ψ takes the adjacency matrix A and node features X as
input and tries to recover the feature matrix X through the hidden layer embeddings
Z (further described in Equation 4.11). This network is trained in an unsupervised
manner by maximising the Evidence Lower Bound (ELBO) LΨ w.r.t. the variational
parameters:

LΨ(θ,θ
′) =

K∑
k=1

(Eqθ(Zk|Xk,Ak)[log p
θ

′ (Xk|Zk, Ak)]︸ ︷︷ ︸
Lrec

−wkl DKL[qθ(Zk|Xk, Ak) ∥ p(Zk)]︸ ︷︷ ︸
Lreg

).

(4.8)
This loss function is composed of a ”reconstruction term”, that tends to make the
encoding-decoding scheme as performant as possible, and a ”regularisation term”, that
tends to regularise the organisation of the latent space. Where DKL is the Kullback-
Leibler divergence (KL divergence) between the approximate posterior qθ(Zk|Xk, Ak)
and the prior distribution p(Zk), weighted by wkl. Unit Gaussian distribution defines
a prior distribution p(Zk) = ∏Nk

i=1 N(zki; 0, I).
The inference model is parameterised by graph convolutional layers as:

qθ(Zk|Xk, Ak) =
Nk∏
i=1

q(zki|Xk, Ak)

with q(zki|Xk, Ak) = N(zki|mki, diag(σ2
ki))

(4.9)

wherem = GCNlayerm(X, A) is the matrix of mean vectorsmn and logσ = GCNlayerσ
(X, A). The decoder decodes the latent variables into 3D shapes by

p
θ

′ (Xk|Zk, Ak) =
Nk∏
i=1

p(xki|Zk, Ak). (4.10)

As discussed in Section 2.2.2, the spatial-based approaches in graph convolutions
are able to handle inconsistent graph populations, where the convolution is performed
in local Euclidean neighbourhoods. While the spectral-based approaches use domain-
dependent Fourier bases, so generalisation is limited to inputs with identical graph
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4.2 ASMG Model

connectivity. This problem is avoided by working directly in the spatial domain. Hence,
the spatial-based graph convolution layers are considered to build a neural network Ψ
capable of dealing with different-sized graph populations which learn a latent space for
establishing vertex-wise correspondences.

Spatial-based Feature-Steered graph (FeaSt) convolution proposed in [3] is utilised
to construct the network layers and to infer the probability distributions in Equation
4.8. These convolution layers locally perform graph convolutions on each node (the
details are discussed in Section 2.2.2.2). That is, the convolution operator learns fea-
tures from the preceding network layer to dynamically determine the correspondences
between filter weights and graph neighbourhood, rather than relying on static pre-
defined local pseudo-coordinate systems. For each node v, on graph k, the output of
the FeaSt convolution operator defines the latent embedding vectors using

zkv = b + 1
|Nkv|

∑
n∈Nkv

M∑
m=1

qm(xkv, xkn)Wmxkn, (4.11)

where b is a learnable bias and Nkv is the set of neighbours of the v-th vertex, on graph
k, with cardinality |Nkv|. The convolution operator also dedicates a soft correspond-
ences of qm(xkv, xkn) (in Equations 2.22) to learn assignment xkn to m-th learnable
weight matrix Wm.

In this chapter, the proposed geometric deep learning network Ψ is employed in two
variants: sGCN and hGCN.

Setting 1-sGCN

In the first scenario, the feature representation of shape is only defined by the spatial
position of points, that lie in 3D Euclidean space. A feature matrix is denoted by X
whose i-th row is xi = (xi, yi, zi) (i.e. dx = 3). Therefore, the embedding network
Ψ (named sGCN in this scenario) computes nodal embeddings from the variable-size
graphs by minimising ELBO in Equation 4.8, where the reconstruction loss is the
squared Euclidean distance (L2-norm) between real and reconstructed shapes by the
decoder: Lrec = 1

2
∑K

k=1
∑Nk

i=1 ∥xrec
ki − xki∥2. X and Xrec denote the input shape fea-

tures and its reconstruction respectively.
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4.2 ASMG Model

Setting 2-hGCN

In more complex anatomical structures, spatial features may not be sufficient to de-
scribe the details, therefore more powerful feature representation is achieved by hybrid
representation. This hybrid representation in GCN results in the extraction of richer
latent features. Hybrid representation is driven by both spatial node positions and
their associated normal vectors. First, a brief discussion on vertex normal is presented
here:

To leverage surface information in triangular meshes, vertex normals can be used
to represent surface features along with geometry features in triangular meshes. Each
vertex on the triangle mesh is assigned a normal vector, whose direction is determined
by the underlying surface. Vertex normals are traditionally estimated from a local
neighbourhood of surrounding face normals using some form of local averaging [117].

The most widespread estimation of the vertex normal which is referred to as Mean
Weighted Equally (MWE), is introduced by Gouraud [118] as

nMW E =
∑f

t=1 nt

|
∑f

t=1 nt|
(4.12)

where nt is the face normal of triangle t and f is the total number of triangles that
share a common vertex for which the vertex normal is to be estimated. However, in this
algorithm, resulting normal vectors depend on the meshing of the surface since the nor-
mal of each adjacent facet contributes equally to the vertex normal. Consequently, the
normals will change if the meshing changes for example through adaptive tessellation
of a deforming surface.

In order to obtain a result that depends only on the local vertex geometry and not
on the meshing, the spatial contribution of each facet must be considered. Therefore, a
vertex normal approximation that incorporates the geometric contribution of each facet
(refers as Mean Weighted by Angle (MWA)) is proposed in [119]. In this algorithm,
vertex normal is defined as

nMW A =
∑f

t=1 αtnt

|
∑f

t=1 αtnt|
(4.13)

where αt is the angle between two edges em and em+1 of a face t sharing the vertex.
In hybrid representation, embedding network Ψ (named hGCN in this scenario)

learns combined embeddings of geometry and surface. The feature matrix is a ho-
rizontal concatenation of the vertex geometries and vertex normals and represented
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4.2 ASMG Model

by X where i-th row is xi = (xi, yi, zi, nx
i , ny

i , nz
i ) (i.e. dx = 6) and normal vec-

tors n are computed using Equation 4.13. To minimise the loss function in Equa-
tion 4.8, Lrec = 1

2
∑K

k=1
∑Nk

i=1 ∥xrec
ki − xki∥2 and the regularisation term consists of

DKL and the normal consistency loss; Lreg = wklDKL[qθ(Zk|Xk, Ak) ∥ p(Zk)] +
wnorm

∑K
k=1

∑
p∈grec

k
(1−∥nkp∥2) where p is the vertex on the k-th reconstructed graph.

Further, to regress shapes on the atlas and reconstruct the structurally normalised
shape by soft attention mechanism hk := ϕkX1:3

k .
Once the encoder-decoder pair has been trained, the decoder is essentially tossed

away, while the encoder acts as a feature extractor for establishing vertex-wise corres-
pondence, associating to each input X, an embedding matrix Z.

4.2.2 Generative Modeling

Here, a generation network (designed in β-VAE framework) is trained to derive a pdf
from the set of normalised graphs. The probability of node variations is approximated
in the latent space Z′

k ∈ RL via a posterior qψ(Z′
k|h

′
k). The likelihood of the observed

population is estimated by drawing samples from this approximate posterior probab-
ility. The variational lower bound L2 is optimised w.r.t the variational parameters
ψ,ψ

′ :

L2(ψ,ψ
′) =

K∑
k=1

(E
qψ(Z′

k|h′
k

)[log p
ψ

′ (h′
k|Z

′
k)]− βDKL[qψ(Z′

k|h
′
k) ∥ p(Z′

k)]), (4.14)

where h′
k presents graph geometric features after normalisation process (in Section

4.2.1) and the first term is a reconstruction error which computes the squared Eu-
clidean distance (L2-norm) between input and reconstructed shapes by the decoder.
DKL denotes the Kullback-Leibler divergence and computes the divergence between
the Gaussian prior N(0, I) and posterior distributions of the latent space Z′ and the
KL divergence is weighted by hyperparameter β. Novel shape samples are generated
by simply sampling from the prior normal distribution and using the sample as the
input to the decoder, which converts that into a random synthetic mesh having the
same connectivity as the atlas.
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4.3 Results and Discussion

Table 4.2: The detailed information on the generative model ASMG for two different
settings, where matrices C and n denote vertices locations and vertices normals re-
spectively, ⊕ means a concatenation of matrices.

Setting GCN network Ψ ATT mechanism
sGCN-ATT-VAE X = C (i.e. dx = 3) h := ϕX (i.e. dh = 3)
hGCN-ATT-VAE X = C

⊕
n (i.e. dx = 6) h := ϕX1:3 = ϕC (i.e. dh = 3)

4.3 Results and Discussion

This section presents the experimental settings and the evaluation of the proposed
framework using real image-derived clinical datasets discussed in Chapter 3. Two data-
sets with a different number of shapes and different complexities in the structure are
used to evaluate the model’s versatility and to explore different aspects of the model.
The proposed algorithm covers the left-ventricular shapes and complex liver shapes. A
large test set of 200 LV cases and a small test set of 28 liver cases are used to assess
the generalisability of ASMGs compared to baseline RSMP models, using both limited
and large training sets.

The proposed generative model ASMG is investigated in two different settings. A
more detailed illustration of these settings can be found in Table 4.2.

Experimental Setup

All experiments are carried out using Python v.3.8.0, PyTorch, and PyTorch Geometric
[120]. In the training phase, ADAM optimizer [121] is used. The network Ψ uses
the spatial-base graph convolution layers with 64, 64, 128, dz-dim hidden layers for the
encoder (which are mirrored for the decoder) with convolutional filter weight matrices
of size 8. More specifically, inspired by [3] the spatial-based graph convolution operator
(named feature-steered convolutional operator) is used where the operator dynamically
assigns filter weights to the node’s neighbourhoods according to the features learned
by the network. All the internal layers use batch normalisation and Leaky ReLU as
activation layers. The structure of this network is also shown in Table 4.3. The learning
rate and wkl are empirically set to 1e−3, and wnorm is 1e−2. The Laplacian weighting
factor γ in Equation 4.4 is empirically set to 50. In addition, the iterative optimization
in Equation 4.7 starts from a canonical shape for the atlas. Finally, fully-connected
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Table 4.3: The structure of network Ψ, where N denotes the cardinality of input shape,
dz = 128 and dx = 3 or 6 for s/hGCN settings.

Layer Filter weight
matrix size

Input size Output size

Spatial GCN 8 N × dx N × 64
Batch Norm - N × 64 N × 64
Spatial GCN 8 N × 64 N × 64
Batch Norm - N × 64 N × 64
Spatial GCN 8 N × 64 N × 128
Batch Norm - N × 128 N × dz

Spatial GCN (µ) 8 N × dz N × dz

Spatial GCN (logσ) 8 N × dz N × dz

Spatial GCN 8 N × dz N × 128
Batch Norm - N × 128 N × 128
Spatial GCN 8 N × 128 N × 64
Batch Norm - N × 64 N × 64
Spatial GCN 8 N × 64 N × 64
Batch Norm - N × 64 N × 64
Spatial GCN 8 N × 64 N × dx

layers are used in the structure of the β-VAE network with the same number of hidden
units for the encoder and decoder. Encoder architecture is fully-connected layers of
size 512, 256, 768, 128, L, and LeakyReLU is used after every layer. The decoder is a
mirrored version of the encoder. In the training phase, the learning rate is set to lr =
1e−3, scheduled with stepsize = 100 and gamma = 0.5. The β values for LV and liver
datasets are empirically set as 2e−6 and 2e−3, respectively. Tuning the parameters, (like
regularization weights β and wkl) in the variational autoencoder networks is a crucial
step in balancing the reconstruction and regularization terms in the loss function. The
β parameter controls the strength of the regularization term, which influences the
disentanglement of the learned latent space. As beta increases, the regularization term
becomes more dominant in the overall loss. This higher emphasis on regularization
encourages the model to learn more disentangled and compact representations in the
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latent space.

4.3.1 Evaluation of GCN-ATT Network Performance

In this section, the performance of the ASM shape matching network (i.e., (s/h)GCN-
ATT) is evaluated, which involves the establishment of probabilistic vertex-to-vertex
correspondences between the constructed template and each training graph, followed
by the regression of the input mesh graphs on the atlas and the normalisation of their
structure.

Correspondence Quality

Validation of results produced by correspondence algorithms is a very complex prob-
lem since ground-truth correspondences are unavailable. The most common validation
without using a ground-truth correspondence is a visual assessment of results and only a
few criteria have been proposed in the literature to evaluate the correspondence quality
[41]. Figures 4.4 and 4.5 present the quality assessment for vertex-to-vertex correspond-
ences of some landmark points (pink) on two examples of LV and liver shapes. The
meaningful vertex-to-vertex correspondences between the atlas and each case shape are
visualized using blue lines and the colour-coded vertices on the shapes, quantify the
soft attention map (i.e. established vertex-to-vertex correspondences). Those vertices
in yellow are most likely to correspond to the landmarks. Results demonstrate that
the established correspondences by sGCN-ATT network are meaningful for anatomical
landmarks on LV shapes (e.g. endocardial, epicardial and LV base and apex) and im-
portant anatomical landmarks on liver shapes (e.g. landmarks that visualise the liver
as a triangle).

Additional qualitative results on the LV and liver datasets are presented in Figure
4.6 and Figure 4.7, respectively. The colour-coded shapes aid in visually understanding
the spatial relationships between points in different shapes and their corresponding
vertices. In our method, two scenarios, sGCN-ATT and hGCN-ATT, are used to
predict vertex-to-vertex correspondences for each shape, resulting in shape matchings
among the collection of shapes. The corresponding points between the atlas (colour-
code) and obtained shapes g′ are shown with the same colour.
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Figure 4.6: Qualitative shape matching results using the ASM method (in s/hGCN-
ATT settings) on the LV dataset. The atlas shape is shown merely for visualisation
purposes (colour code).
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Figure 4.7: Qualitative shape matching results using the ASM method (in s/hGCN-
ATT settings) on the liver dataset. The atlas shape is shown merely for visualisation
purposes (colour code).
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(a) LV

(b) Liver

Figure 4.8: Visualization of the shape regressions and graph Laplacian smoothing. The
results are presented for the LV and liver samples. In each shape categroy, the top and
bottom present the regressed (hk) and smoothed shapes (h′

k) obtained using Equation
(4.3) and Equation (4.5), respectively.

Evaluation of Graph Normalisation (Regression on Atlas)

In this section, the performance of the GCN-ATT network in regressing the input mesh
graphs on the atlas and normalising their structure is evaluated.

To demonstrate the efficacy of the Laplacian smoothing on the regressed graphs,
some examples of different LV and liver shapes are shown in Figure 4.8. In each
category, the first row presents the estimated shapes before the smoothing (i.e. hk’s),
and the second row shows the corresponding smoothed h′

k obtained with Equation 4.5.
It can be observed that adequate details are preserved while surface imperfections are
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4.3 Results and Discussion

largely eliminated in the smoothed meshes. This can be important to improve the
overall quality of the generated samples.

The accuracy of the shape matching procedure was evaluated by investigating the
proposed attention-based shape matching (ASM) framework in two settings (s/hGCN-
ATT) and comparing them with the rigid Registration-based Shape Matching (RSM)
method proposed in [65], which is a point set registration method. This comparison
highlights the benefits of the graph representation of shapes and the attention mechan-
isms for the shape matching procedure. Hence, the correspondence maps obtained from
different methods RSM and (s/h)GCN-ATT, are utilised to transform actual shapes gk

from the domain RNk to RNµ . The qualitative results are presented in Figures 4.9 and
4.10 with quantitative results shown in Table 4.4.

For a qualitative evaluation, Figure 4.9 and Figure 4.10 visualise some examples of
the network input (gk) and normalised surface mesh (g′

k) for five sample cases on the LV
and liver dataset respectively, obtained from the different methods. Visual inspection
of results shows that normalised shapes obtained from our framework (especially with
hybrid representation) are more realistic and present meaningful correspondences for
anatomical landmarks on LV shapes (e.g. endocardial, epicardial, LV base, and apex)
and liver shapes, whereas the results obtained from RSM show some disorders and
lack details on both datasets. When comparing normalised shapes in the atlas domain
(grey-colored) with cyan-colored shapes in the actual domain, it becomes evident that
methods unable to establish accurate correspondences (such as RSM) are unable to
effectively present normalized shapes in the atlas domain. Generally, the RSM method
struggles to delineate some landmarks on the LV and liver shapes (shown by red arrows).

The quality of obtained shapes in the template domain was further evaluated using
two distance metrics: Hausdorff distance (HD) and Chamfer distance (CD). Table
4.4 summarises the accuracy of the test shapes in the template domain obtained by
different methods on LV and liver datasets (i.e. the 200 LV and 28 liver cases test set).
Obtained results show that our similarity-based method (ASM) maintains high ac-
curacy when compared with the registration-based method. These results suggest that
the hybrid representation scenario (i.e hGCN-ATT model) produces more accurate fea-
tures derived from the GCN network Ψ, thus providing high-quality correspondences.
This enhancement is attributed to the hGCN-ATT network’s capability to explicitly
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Figure 4.9: Examples show the comparison between different shape matching
approaches RSM and ASM (s/hGCN-ATT) for deriving correspondence on the
LV dataset. Cyan-coloured meshes present input gk with cardinality Nk =
1586, 1539, 1455, 1150 and 1039 respectively from left to right. Grey-coloured shapes are
the normalised meshes g′

k with cardinality Nµ = 1093 obtained from different methods.
Notice endocardial, epicardial, LV base, and apex landmarks. Some of the landmarks
are shown by red arrows.

encode surface information by representing shapes as graphs. By achieving lower mean
Hausdorff and Chamfer distances, our method demonstrates good normalisation qual-
ity in arbitrary target domains, while the low standard deviation values demonstrate
its robustness. This is because, representing shapes as graphs, our method followed an
efficient spatial-based geometric deep learning strategy and considered a learning-based
fully-differentiable shape matching procedure that aimed to reach a data-driven neigh-
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Figure 4.10: Examples show the comparison between different shape matching
approaches RSM and ASM (s/hGCN-ATT) for deriving correspondence on the
liver dataset. Cyan-coloured meshes present input gk with cardinality Nk =
1532, 1338, 1278, 1030 and 1365 respectively from left to right. Grey-coloured shapes
are the normalised meshes g′

k with cardinality Nµ = 1025 obtained from different meth-
ods. Red arrows highlight some landmarks.

Table 4.4: Shape Matching Quality: comparison between different methods using two
distance metrics HD and CD (mean ± std) in [mm]. Bold values show a significant
difference between the methods with a p-value < 0.001 using the statistical paired
t-test.

ASM
RSM sGCN-ATT hGCN-ATT

LV
HD 8.11± 2.13 8.32± 1.77 6.43± 1.44
CD 12.04± 27.63 9.91± 1.54 9.85± 0.94

Liver
HD 35.09± 14.55 32.79± 10.16 27.30± 7.71
CD 254.46± 211.57 139.66± 82.66 94.75± 35.99
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bourhood between matched node pairs without the need to solve any optimisation.
The RSM model which is based on point cloud representation of shapes, and uses re-
gistration for shape matching, under-performed compared to the ASM (s/hGCN-ATT)
models generally on both datasets, in line with results from Figures 4.9 and 4.10. It
can be concluded that a significant role is played by the graph representation of shapes
and the attention mechanisms in the shape matching process.

Impact of Atlas Resolution

In this section, the sensitivity of GCN-ATT network performance to the atlas resolution
is evaluated. Figure 4.11 shows the accuracy of regressed shapes on atlases with different
resolutions over LV and liver datasets where the Hausdorff distance (HD) is considered
to report the accuracy of the shapes after normalising their structures using established
vertex-to-vertex correspondences (in the sGCN-ATT setting). It can be seen that low-
resolution atlas shapes negatively impact the accuracy and reliability of the shape
normalisation process. For the LV dataset, Nµ = 1093 is the high-performance model.
For the more complex liver dataset, the resolution is further increased. The results
indicate a preference for a higher resolution atlas for the graph normalisation process,
and HD is roughly constant between Nµ = 1025 and Nµ = 4125. However, Nµ = 1025
is the simplest model which presents an accurate description for liver shapes.

The performance slightly degrades at the highest resolution for LV shapes, but this
is not observed for liver shapes. This can be attributed to the specific anatomical
characteristics, shape variability in the test dataset, and dataset properties of these
organs. Additionally, in some cases, higher-resolution atlas shapes may introduce noise
or ambiguity due to smaller anatomical details that are not consistent across different
LV shapes. This can lead to errors in the shape regression(/structure normalisation)
process.

A population-derived atlas (with the optimised resolution) within our deep learning
framework (i.e. s/hGCN-ATT) is illustrated in Figure 4.12 on both LV and liver data-
sets. As expected, the constructed atlas by hGCN-ATT network presents more details.
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At
la
s

Figure 4.11: Impact of atlas resolution on graph regression on the atlas, and normalising
their structures using established vertex-to-vertex correspondences for all population
samples of LV and liver datasets. Boxplots with line connecting mean values for each
group show the higher resolution atlases outperform the low-resolution ones.

4.3.2 Evaluation of Generation

Given a set of structurally normalised meshes, featuring the same connectivity of the
template mesh, a VAE is trained for shape generation. In this section, the performance
of the proposed generation model is evaluated by measuring the fidelity of synthetic data
in terms of variability and plausibility. By doing so, this section evaluates whether the
different generative shape models investigated in this chapter can be used to synthes-
ise virtual cohorts, capturing the variability and plausibility in anatomical shape (i.e.
measuring generalisation and specificity metrics), and clinically relevant anatomical in-
dices observed in an actual population. The baseline statistical shape model, named
RSMP, which is a registration-PCA-based generative model presented in Chapter 3, is
compared with the proposed generative model.

In [93], a comprehensive quantitative analysis was conducted to evaluate the ad-
vantages and disadvantages of applying different sampling techniques for PCA-based
shape models. This analysis was performed to generate virtual cohorts of the aortic root
and vessel. Romero et al. concluded that uniform sampling within the learned latent
space or principal sub-space increases shape variability within cohorts. However, the
cohorts with large variability may contain unrealistic shapes, unrepresentative of native
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sGCN-ATT hGCN-ATT

(a) LV atlas

sGCN-ATT hGCN-ATT

(b) Liver atlas

Figure 4.12: The population-derived atlas reconstructed from the (a) LV and (b) liver
datasets in two different settings s/hGCN-ATT.

anatomy/naturally occurring variations, as shown in Chapter 3. On the other hand,
Gaussian sampling to generate latent vectors that represent virtual shape instances in
PCA-based shape models ensures greater plausibility in the synthesised virtual cohorts.
Hence, anatomical shape virtual cohorts are synthesised by Gaussian sampling in VAE
structure using the generative shape models proposed in this Chapter (i.e. ASMG:
(s/h)GCN-ATT-VAE). Similarly, for a fair comparison, virtual cohorts are synthesised
by RSMP generative model using Gaussian sampling in PCA.

Generalisability and Specificity

A quantitative assessment in terms of generalisation and specificity is first provided to
numerically evaluate the model. Three distance measures Hausdorff distance (HD),
minimum Euclidean distance (ED) and its symmetric distance (ED∗) described in
Chapter 3, are considered to report generalisation and specificity.

First, the generalisation and specificity metrics for model selection are explored,
and the optimum latent dimensionality in the proposed generative model is determ-
ined. Model selection identifies the best GCN-ATT-VAE model when applied to two
datasets featuring the highest performance in the synthetic shape generation. More
specifically, models that demonstrate concurrently low specificity and generalisation
errors are generally desired (models positioned closer to the lower left corner in the
generalisation-specificity planes). In Figure 4.13, by varying the dimension of the lat-
ent space (L), three distance measures HD, ED and ED∗ report the model specificity
and generalisation (in the sGCN-ATT-VAE setting). For each model, the markers,
dotted lines, and arrows indicate the associated average, confidence ellipse, and the
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Li
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r

LV

Figure 4.13: Generalisation and Specificity errors (in [mm]) of the ASMG model with
different values of latent dimension L. The first and second rows illustrate results on
LV and liver datasets, respectively. The plots show the performance of the models
with L values smaller than 64. In each row, HD, ED and ED∗ distances are reported
from left to right. For each model, the markers, dotted lines and, arrows indicate the
associated average, confidence ellipse, and the direction of the maximum variability (in
error values for test and synthetic data) respectively, for training with various latent
dimensions. A high-performance model illustrates simultaneous small generalisation
and specificity errors.

direction of the maximum variability in error values respectively. As shown, in the
majority of panels, for L = 16 a more specific model with high generalisation ability
is selected. While there is a tendency for both generalisation and specificity errors to
decrease as shown in the direction of error variability.

Furthermore, in Tables 4.5 and 4.6, the generative performance of the ASMG model
is compared with the baseline statistical shape model RSMP. A fair evaluation was
ensured by retaining the same latent dimension (L = 16) for baseline generative models.
Table 4.5 summarises the generalisation ability for ASMG methods investigated in this
chapter and the RSMP baseline model, for LV and liver datasets. It is observed that for
two datasets, the (s/h)GCN-ATT-VAE models significantly outperform RSMP in the
majority of distances. This is because our attention-based shape matching maintains
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Table 4.5: Generalisation ability: comparison between generative models in terms of
generalisation ability using three distance metrics HD, ED and ED∗ (mean ± std) in
[mm]. Bold values present their performance are significantly better than those of the
RSMP model, with a p-value < 0.001.

ASMG
RSMP sGCN-ATT-VAE hGCN-ATT-VAE

LV
HD 8.02± 2.14 7.99± 1.83 7.50± 1.50
ED 2.15± 0.20 2.11± 0.14 2.28± 0.18
ED∗ 2.38± 0.24 2.36± 0.17 2.50± 0.15

Liver
HD 35.94± 14.61 32.44± 6.86 31.86± 6.50
ED 7.72± 2.24 8.09± 1.56 7.22± 1.8
ED∗ 10.51± 3.83 9.98± 1.44 8.62± 1.91

high accuracy in the training normalised shapes, therefore the generative model presents
lower errors when reconstructing unseen actual test data. Also, compared to PCA,
which is a linear projection of shapes onto lower-dimensional subspaces, our generative
model is based on graph convolution networks and β-VAE, which can capture non-linear
variations in shapes. Therefore, (s/h)GCN-ATT-VAE models are capable of capturing
the higher variability of the seen (training) data, and generalising to, or explaining,
unseen (testing) data.

In Table 4.6, specificity errors for LV and liver datasets are presented in three dis-
tance metrics HD, ED and ED∗, in order to assess the anatomical plausibility of
synthesised shapes obtained by (s/h)GCN-ATT-VAE and RSMP generative models.
It is observed that the highest specificity (i.e. lower specificity errors) of all methods
investigated, across both LV and liver structures, is achieved by the ASMG model. Due
to lower specificity errors, our similarity-based generative model presents more realistic
synthesised shapes when compared with the model based on registration. The lower
specificity error can be explained as follows: considering shapes as graphs support our
unsupervised shape matching framework to learn better disentangled latent represent-
ations and thus derive a more effective form of soft correspondences between shapes,
which in turn preserves more details during the normalisation process. As a result,
shapes generated from structurally normalised populations have a greater degree of
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Table 4.6: Specification ability: comparison between generative models in terms of
specificity using three distance metrics HD, ED and ED∗ (mean ± std) in [mm].
Bold results present their performance is significantly better than those of the RSMP
model, with a p-value < 0.001.

ASMG
RSMP sGCN-ATT-VAE hGCN-ATT-VAE

LV
HD 6.57± 0.69 5.82± 0.70 5.60± 0.72
ED 2.34± 0.20 2.18± 0.13 2.19± 0.15
ED∗ 2.62± 0.19 2.47± 0.18 2.50± 0.12

Liver
HD 31.84± 3.53 24.83± 1.80 24.51± 1.73
ED 8.53± 0.79 6.59± 0.43 6.50± 0.34
ED∗ 7.09± 2.97 6.50± 1.68 8.28± 0.58

plausibility.
Figure 4.14 visualises the general model performance of three models for the same

values of L on the LV (top row) and the liver datasets (bottom). Distances ED/ED∗

measure how two shapes are similar on the average basis but are not suitable to de-
tect differences in the details of gk and g

′
k, while Hausdorff distance is a lightweight

yet nuanced similarity measure to assess the closeness of two graphs. Therefore, when
it comes to drawing conclusions about the general model performance, the Hausdorff
distance is a more appropriate metric. The results show that in the majority of the aver-
age distances, the (s/h)GCN-ATT-VAE model (especially with hybrid representation)
outperforms the statistical shape model RSMP, and obtained the highest performance,
due to smaller concurrent specificity and generalisation errors.

Moreover, the average distances (i.e. square markers) in specificity metric are sig-
nificantly lower for all trained (s/h)GCN-ATT-VAE models compared to others, (p-
value< 0.01), indicating that the accuracy of newly generated instances by generative
(s/h)GCN-ATT-VAE model are higher and this model presents more realistic synthetic
shapes in both datasets.

Purple ellipses are wider than other ellipses in most panels, indicating greater vari-
ability in specificity errors for the generated samples using RSMP models. The RSMP
generative model is therefore less robust when it comes to synthesising shapes.
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Figure 4.14: Generalisation and Specificity errors (in [mm]) of the RSMP and s/hGCN-
ATT-VAE models with same values of latent dimension L = 16. The first and second
rows present the results on LV and liver datasets, respectively. In each row, HD, ED

and ED∗ distances are reported from left to right. For each model, the markers and
dotted lines indicate the associated average and confidence ellipse, and the direction
of the maximum variability (in error values for test and synthetic data) respectively.
A high-performance model illustrates simultaneous small generalisation and specificity
errors.

As indicated by its high specificity error (average value) in the majority of panels,
the RSMP model generates less realistic samples for LV and liver shapes than the
other generative models. This is because the CPD computes a transformation while
encouraging the displacement vectors to point in similar directions. Thus, to find a
dense correspondence between g1 and g2, matching be found with only a subsample of
g1 and g2 and can be applied on all points. In contrast, s/hGCN-ATT computes the
attention-derived correspondences using learned nodal embedding vectors from a deep
spatial graph convolution network; which not only aggregates local features through the
convolution filter operators in the spatial domain but also captures the global structural
information by using deep architecture. Based on the findings, it can be inferred that
even with a smaller training set (such as the liver dataset), the (s/h)GCN-ATT-VAE
method can produce acceptable generation results. This is attributed to the generative
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VAE model’s ability to capture intricate global shape variations, in contrast to the
statistical shape models relying on PCA-based approaches.

Of particular importance to note is that hGCN-ATT-VAE, which estimated corres-
pondences based on hybrid representations of shape also shows lower genralisation er-
rors than sGCN-ATT-VAE model, which utilised only spatial features for shape match-
ing. This indicates that the hGCN-ATT-VAE models can capture a greater degree of
shape variability for each dataset than afforded by RSMP, and correspondingly can
synthesise more diverse (in terms of shape) virtual shape populations than the latter.

Clinical Relevance

After performing the generative models on the actual cohort G of size K, a synthetic
cohort G∗ with the same size has been generated. For all the anatomical shapes in the
synthetic cohorts, the biomarkers (i.e. volume indices) are computed.

Given the actual cohort G = {gk}Kk=1, the different acceptance rates A (described in
Section 3.2.2) are computed to measure the percentage of synthetic samples in virtual
cohorts G∗ that contain volume indices, within a confidence interval of the volume
indices distribution observed in the real population. In addition, the measurement
of similarity between shapes refers to the evaluation of likeness between the volumes.
The resulting volume indices distributions are presented in Figure 4.15 by means of
violin charts, for LV and liver datasets. In this figure, the distributions of biomarkers
are shown on the actual samples, alongside with those generated using the different
methods: RSMP, sGCN-ATT-VAE and hGCN-ATT-VAE. As it is mentioned earlier in
this chapter, the statistical shape model RSMP used the Gaussian sampling strategy.

As shown in this figure, horizontal lines indicate the boundaries of the different
acceptance criteria: Ar, with dotted lines, Aµ, with dash-doted lines, and AM with
dashed lines. Comparing actual to synthetic distributions for volume variables show
that our ASMG generative model (i.e. s/hGSN-ATT-VAE) generates more clinically
relevant and realistic samples from the population of the LV and liver while capturing
sufficient variability.

For the liver dataset, the method shows reliable results but can not generate a large
variety of samples. It is because the liver dataset includes a wide range of volumetric
variation in a small training set which imposes more challenges in generative model
training.
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4.3 Results and Discussion

Table 4.7: Clinical acceptance rates A [in %] achieved by different generative models
for LV and liver volumes.

ASMG
RSMP sGCN-ATT-VAE hGCN-ATT-VAE

LV
Ar : A[min,max] 99.75 100 99.98
AM : AM±3B 86.75 98.10 98.67
Aµ : Aµ±2σ 65.85 88.65 88.85

Liver
Ar : A[min,max] 96.40 100 100
AM : AM±3B 100 100 100
Aµ : Aµ±2σ 98.56 100 100

Also, despite further morphological variability across the liver shapes, our model
considers a unique atlas shape, a limitation that will be addressed in Chapter 5. PCA-
based generative model RSMP, with higher generalisation and specificity errors, is
reflected in the unrealistic distributions observed for volume indices in the synthesised
virtual populations. The figure shows that the statistical shape model RSMP generates
distributions of the LV and liver volumes that surpass the range defined by Ar, higher
variability than that observed in the actual cohort.

Table 4.7 shows the efficiency of each method measured using the different accept-
ance criteria. The clinical acceptance rates of LV and liver virtual cohorts synthesised
by our generative model are higher than the statistical shape RSMP method. The
higher specificity of the ASMG generator models is complemented by their ability to
better preserve key clinical indices in the synthesised virtual cohorts than the RSMP
model, as evidenced by the higher clinical acceptance rates achieved for each relevant
index evaluated (refer to Table 4.7). Synthetic liver shapes generated by the ASMG
model meet all defined criteria, making them clinically relevant. The results demon-
strate that the acceptance rates of hGCN-ATT-VAE model across the LV volume in-
dices are consistently higher than those of sGCN-ATT-VAE. This confirms the results in
Figure 4.14 that our generative model when considering ”spatial” and ”surface” inform-
ation (i.e hGCN-ATT-VAE) outperforms those that only rely on spatial features (i.e
sGCN-ATT-VAE). Hence, spatial position alone is inadequate as a descriptor for shape
matching and generation. The hGCN-ATT-VAE framework is therefore more suitable
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4.4 Conclusion and Limitations

Figure 4.16: Examples of virtual (LV/liver) samples generated by the ASMG generator
model.

for ISCTs that require higher statistical fidelity based on anatomical characteristics.
Figure 4.16 provides a visualization of the generated (synthetic) samples by the

ASMG model, showcasing anatomical shapes that are realistic at an individual level.

4.4 Conclusion and Limitations

In this chapter, a novel unsupervised probabilistic deep generative model is proposed for
generating virtual anatomical shapes from training shapes of various topologies. The
lack of consistent tensor-like representation across the training shapes poses significant
methodological challenges that were aimed to be addressed here. The structures of the
shapes within the context of the graphs were considered, and an unsupervised graph-
based generative model was developed to generate numerous realistic synthetic shapes
from graph datasets with no vertex-to-vertex correspondences.

In contrast to existing works on shape generative modelling that requires datasets
with fixed topology and supervised vertex correspondences, an unsupervised deep learn-
ing framework was proposed to establish dense shape correspondences across the train-
ing data in the latent space. This approach implicitly solves the shape correspondence
problem in the latent space and eliminates the need for initial shape correspondence.
This happened by considering the connectivities between vertices via latent vertex rep-
resentations derived from a spatial graph convolutional network. The latent vertex
representations are used to iteratively compute the attentions between the vertices of
the training samples and a template mesh, and subsequently regress the input meshes
onto the latter. The convergence of this procedure results in a set of structurally nor-
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4.4 Conclusion and Limitations

malised meshes, featuring the same connectivity of the template mesh, which are used
to train a variational autoencoder for data generation.

The study demonstrated the suitability and applicability of the proposed generative
model in conducting ISCTs, with virtual cohorts, through a comparative analysis. The
results indicated that hybrid representations of shapes provided substantial improve-
ments over spatial representation in terms of anatomical validity in the estimated cor-
respondences. This improvement can be attributed to the network’s ability to explicitly
encode both spatial and surface information of the shapes. It was shown that consid-
ering vertex connectivities (i.e., representing shapes as graphs rather than point sets)
leads to improved shape correspondences and generation compared to point-based re-
gistration methods. By modelling meshes as graphs, the proposed framework exploited
a richer representation due to the edge information and addressed limitations observed
in the traditional point set based methods. Therefore the proposed attention-based
shape matching outperformed registration-based methods.

The model’s versatility was studied by applying it to a dataset with a wide range of
variability across the provided population, and the influence of data scarcity on model
performance was explored. The framework was validated on real image-derived clinical
datasets that included a large range of LV cardiac data and a small dataset of liver
samples. The results summarized the ability of the proposed framework to generate
realistic LV meshes, based on a large training population from UKB. Importantly, it also
showed reliable results for liver shapes, given a much smaller training population, and
in the presence of relatively large morphological variations. These results, moreover,
were significantly better than those based on PCA. This is because the VAE is a non-
linear probabilistic generator and is able to capture the shape variations with a higher
flexibility.

In this proposed framework, a refinement strategy on node embeddings was not con-
sidered. These features are obtained in the deep GCN and thus can be task-optimised
in a more general end-to-end framework, to preserve more morphological details in nor-
malised shapes and increase the plausibility of virtual samples. Although the proposed
framework enables learning from graph populations featuring disparate connectivities,
the generated meshes have the same connectivity, defined by the atlas. Our method
considered a unique atlas for each shape category and regressed all shapes, regardless
of morphological variations on the atlas. This certainly will have increased distance
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errors and diminished fidelity. These limitations will be addressed in Chapter 5.
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Chapter 5

An End-to-End Deep Learning Framework for
Refinable Shape Matching and Generation:
Enhancing Specificity and Generalisability
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5.1 Introduction

5.1 Introduction

The proposed ASMG shape generative framework in Chapter 4 constructed a tem-
plate/atlas in the form of a mean shape (or mesh) and structurally normalised different-
sized observed shapes with the option of leveraging a registration of the observed shape
to the atlas. However, the framework can be improved by considering some points,
which will result in higher performance.

The matching process in ASMG does not consider a refinement strategy for embed-
dings to establish correspondences between nodes. Aside from that, in the regression
process (for graph normalisation), the distance between the constructed atlas and each
observed shape is taken into account regardless of how closely the normalised shape re-
sembles the actual shape. Consequently, some morphological details may be overlooked
during graph normalization, affecting the variability and plausibility of synthesised
shapes. These limitations are addressed in this chapter.

The Atlas Refinable Attention-based Shape Matching and Generation network (Atlas-
R-ASMG) is proposed here. It is a framework that allows for the joint learning of
high-quality refinable shape matching and generation on 3D surface mesh data while
also constructing a population-derived atlas model during the process.

The contributions include:

• An all-in-one deep learning framework for atlas construction, shape matching and
generation using geometric deep learning and attention mechanism;

• A robust refinable attention-based shape matching system which improves over
baseline shape matching models, relying on both geometric and surface features
of the shape;

• A method for on-the-fly construction of a population-derived atlas within a deep
learning framework;

• An unsupervised probabilistic deep learning framework to compute vertex-wised
correspondences among the shapes, and generate high quality meshes in the atlas
domain, without significantly sacrificing shape details.

• Generating plausible virtual population of shapes from different-sized shapes.
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5.2 Atlas-R-ASMG model
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Figure 5.1: Overview of the Atlas Refinable Attention-based Shape Matching and Gen-
eration network (Atlas-R-ASMG) framework for shape generation from different-sized
shapes.

• The model possesses the capability to function as a joint clustering generative
model, implying that it combines both clustering and generative modelling tech-
niques within a unified framework. By extending as a joint clustering generative
model, the model gains the ability to leverage the complementary strengths of
clustering and generative modelling, leading to improved performance and more
comprehensive analysis in various applications.

Although the proposed generative framework is demonstrated here on the left vent-
ricle and liver structures, it is generic in design and can be applied similarly to other
anatomical shape ensembles.

5.2 Atlas-R-ASMG model

Problem Statement: A graph g = (V, A, X) consists of a finite set of nodes V =
{1, 2, ..., N}, an adjacency matrix A ∈ {0, 1}N×N . Suppose each vertex has a D-
dimensional feature vector, we use X ∈ RN×D to denote the graph’s node feature
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5.2 Atlas-R-ASMG model

matrix with each row representing a vertex.
Consider a graph dataset G = {gk}Kk=1 containing K shapes with different cardinal-

ities. Each gk represents a 3D surface shape with cardinality |Vk| = Nk. The goal is to
train a learning framework that promotes two critical characteristics of the generated
shapes: high-quality shape matching and anatomical plausibility. The former improves
the quality of the correspondence map through the nodal embedding while the lat-
ter ensures that each normalised shape in the atlas domain is as close to its actual
counterpart as possible, and thus promotes the plausibility of randomly synthetised
shapes.

This framework is presented for endowing deep generative models with anatomical
plausibility reasoning. Atlas-R-ASMGN extends the ASMG framework (in Chapter 4)
to jointly construct a population-derived atlas while training a model to perform high-
quality attention-based shape matching and generation using a refinement strategy. As
illustrated in Figure 5.1, the Atlas-R-ASMGN pipeline comprises two primary com-
ponents, shape matching and generation, which are jointly trained in an end-to-end
manner. The initial component of the pipeline involves establishing correspondence
maps across the training data using an unsupervised probabilistic refinable attention-
based shape matching network. This process simultaneously finds the atlas shape and
warps it into each observed shape, referred to as normalisation of shape structures
(i.e., domain transformation) within the 3D space. By doing so, the atlas topology is
preserved. This normalisation procedure ensures a consistent representation of shapes
across different instances, accommodating structural variations, and facilitating effect-
ive shape matching. The second component involves a generative network that learns
a probability density function based on a set of structurally normalised shapes. This
generative network captures the underlying distribution of the normalised shapes in the
3D space, enabling the generation of new shapes that adhere to the learned distribution.

To ensure topological plausibility and accuracy, a refinement procedure is incor-
porated into the pipeline (see the green dotted line). This iterative refinement step
addresses errors in vertex-wise correspondences and shape normalisations, progress-
ively improving the alignment and matching of shapes. The refinement strategy plays
a crucial role in enhancing the overall performance and accuracy of the pipeline, par-
ticularly in scenarios where a single pass of the model without refinement may not be
sufficient.
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5.2 Atlas-R-ASMG model

Through the end-to-end training process, the Atlas-R-ASMGN pipeline effectively
learns to fit a population-derived atlas shape to the training data. This population-
derived atlas serves as a comprehensive reference template, encapsulating the common
features and variations observed within the dataset. The integration of the refinement
procedure and the population-derived atlas contributes to improved shape matching,
generation, and overall performance, surpassing the capabilities of a single pass of the
Atlas-R-ASMGN model.

5.2.1 Refinable Attention-based Shape Matching (R-ASM)

Shape matching refers to the problem of establishing meaningful structural corres-
pondences of nodes between two or more shapes by taking both node similarities into
account. The shape matching procedure is modeled in close analogy to related ap-
proaches in Chapter 4, by computing refinable similarities between nodal embeddings
in the atlas shape and the observed shape.

Feature extraction network

Analogous to previous approaches in Chapter 4, graph convolutional neural (GCN) net-
work Ψ performs feature extraction. The purpose of this network is to learn embedding
features from an input shape which is useful for the normalisation task (normalising
shapes structures by warping them to an atlas shape). The feature extraction net-
work is built by exploiting the ability of spatial-based geometric deep learning methods
to handle inconsistent shape populations, where the convolution is performed in local
Euclidean neighborhoods.

Hence, analogous to Section 4.2.1.3 variational graph auto-encoder models with
spatial-based graph convolution layers are used to build the network Ψ (parametrised
by trainable weights {θ,θ

′}). It takes the adjacency matrix A and node features X as
input and tries to recover the feature matrix X through the hidden layer embeddings
Z. Given the template/atlas gµ and observed shapes gk, nodal embeddings Zµ and Zk

are computed by a shared graph neural network Ψ as

{Zk, Zµ} = Ψ{θ,θ′ }(gk, gµ) (5.1)

where
Zk = Ψθ(Xk, Ak) and Zµ = Ψθ(Xµ, Aµ). (5.2)
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5.2 Atlas-R-ASMG model

This inference model calculates embeddings via the spatial-based graph convolutional
layers and each layer performs graph convolution locally on each node by Equation 2.21.
That is, the convolution operator learns features from the preceding network layer to
dynamically determine the association between filter weights and graph neighbourhood,
rather than relying on static predefined local pseudo-coordinate systems.

Similar to Chapter 4, the feature extraction network Ψ can be presented in two
different settings: sGCN and hGCN. The former refers to where representations of
vertices are only defined by spatial features, while the latter serves as hybrid repres-
entations of vertices defined by spatial positions of points, with the associated vertex
normal vectors.

Attention module

Once the graph embedding is learned, an attention mechanism is applied to those em-
bedded features to learn correspondence across the population. Domain transformation
can therefore be performed using the established correspondences. Thus, an ATT mod-
ule is proposed to learn the mapping from the node function space F(RNk) to F(RNµ)
and to project shapes to the atlas domain as,

g′
k = ATT (Zk, Zµ︸ ︷︷ ︸

ϕk

, gk), (5.3)

where gk ∈ F(RNk) and g′
k ∈ F(RNµ). Each structurally normalised shape g′

k is presen-
ted by matrix feature representation h′

k. More specifically, the soft correspondence
(i.e. attention maps) ϕk ∈ [0, 1]Nµ×Nk is obtained as the mapping function in the
embedded-space paradigm by Φk = Softmax(λZµZT

k ) (Equation 4.2), given latent node
embeddings Zk ∈ RNk×F and Zµ ∈ RNµ×F . Subsequently, this module uses a soft at-
tention mechanism as a shape domain transformer, which normalises shape structures
using Equation 4.3. Therefore all the samples of training shapes will structurally be
normalised into the function space F(RNµ).

In the training phase, a refinement strategy is employed to avoid finding false cor-
respondences and present plausible shapes in the atlas domain. Indeed, the refinement
procedure is used to optimise the GCN network (Ψ) to improve the quality of corres-
pondences and the fit of the normalised shapes in relation to the actual shapes. The
details are described in Section 5.2.3.
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5.2 Atlas-R-ASMG model

5.2.2 Generation Network

Next, a variational auto-encoder as a generation network G (parameterised by {ψ,ψ
′})

is trained using the structure normalised shapes to generate synthetic shapes gsyn as;

{gsyn} = G{ψ,ψ
′ }(g′

k). (5.4)

This network consists of fully-connected layers in a β−VAE format. Novel shape
samples are generated by simply sampling from the prior normal distribution and using
the sample as input to the decoder G{ψ′}, which converts it into a random synthetic
shape with the same connectivity as the atlas.

A forward pass through the network via feature extractor network (Equation 5.1),
Attention module (Equations 5.3 ) and Generation network (Equation 5.4) can be
expressed concisely as:

gsyn = G{ψ,ψ
′ }

(
ATT

(
Ψ{θ,θ′ }(gk, gµ), gk

))
(5.5)

A graphical representation of the Atlas-R-ASMG generative model is shown in
Figure 5.15(a), showing the hypothesised dependencies between variables.

5.2.3 Unsupervised Loss

The overall unsupervised loss is composed of three parts: feature extraction loss (LΨ),
refinement loss (LRef ), and generation loss (LG);

L = LΨ + LRef + LG (5.6)

where LΨ and LRef are associated with shape matching procedure and LG refers to
generation process (see Figure 5.1). In the following, each loss term is explained in more
detail. Refinement refers to the optimisation of the shape matching network weights
in the training phase for establishing correspondences and normalising the shape with
arbitrary cardinality (e.g. atlas’s cardinality).

Feature extraction loss: An ELBO loss is used for unsupervised learning of the
embedding network Ψ, i.e.,

LΨ(θ,θ
′) =



1
2
∑K

k=1
∑Nk

i=1 ∥xrec
ki − xki∥2 − wklDKL[qθ(Zk|Xk, Ak) ∥ p(Zk)] Ψ:sGCN

1
2
∑K

k=1
∑Nk

i=1 ∥xrec
ki − xki∥2 − wklDKL[qθ(Zk|Xk, Ak) ∥ p(Zk)]

+wnorm
∑

p∈grec
k

(1− ∥nkp∥2) Ψ:hGCN
(5.7)
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5.2 Atlas-R-ASMG model

where network Ψ (named sGCN) learns embeddings of the spatial information and
node feature matrix X denotes the Cartesian geometry of nodes, whose i-th row is xi =
(xi, yi, zi). The network Ψ (named hGCN) learns combined embeddings of geometry
and surface. The feature matrix X is a horizontal concatenation of vertex geometries
and vertex normals and i-th row represented by xi = (xi, yi, zi, nx

i , ny
i , nz

i ) where n
denotes a normal vector. Hyperparameters wkl and wnorm are set empirically.

Optimising the network Ψ, the model can provide the normalised shapes g′
k. How-

ever, unlike the ASMG model in Chapter 4, Atlas-R-ASMG model minimises an addi-
tional loss (LRef ) to refine these structurally normalised shapes.

Refinement loss: Shape matching incorporates a refinement strategy to avoid
finding false correspondences while projecting shapes onto the atlas domain. To achieve
this, the loss LRef encourages accurate transformation of shape gk to the atlas domain
by:

LRef =
K∑

k=1
wcdCD(gk, g′

k) + wlapLlap(g′
k) (5.8)

where Chamfer Distance (CD) [122] measures the distance of vertices between two
graphs: CD(g, g′) = ∑

xi∈g ming′∥xi−h′
j∥2+∑h′

j∈g′ ming∥xi−h′
j∥2. The Laplacian loss

Llap is a regularization term that encourages neighbouring vertices to move coherently,
reducing mesh self-intersections and allowing for smoother surface reconstructions [123].
Given j-th vertex on k-th graph, and neighbouring vertices q, where q ∈ Nkj , it is
defined as:

Llap =
K∑

k=1

Nµ∑
j=1

(h′
kj −

∑
q∈Nkj

1
|Nkj |

h′
kq). (5.9)

This is constructed as the difference of the position vertex and the mean over all
neighbouring vertices. The weights associated with the terms in the loss function (wcd

and wlap) are hyperparameters that are set empirically.
Therefore, the hyperparameters of the shape matching model are adjusted to min-

imise both losses LΨ and LRef .
Generation loss: In order to generate synthetic shapes the loss function LG follows

the original loss of the β-VAE, where hyperparameter β makes a balance between low
reconstruction error and high latent space quality, which emphasizes discovering disen-
tangled latent factors. This generative network derives a pdf from the set of normalised
graphs. The probability of node variations is approximated in the latent space Z′

k ∈ RL
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5.2 Atlas-R-ASMG model

via a posterior qψ(Z′
k|h

′
k). By drawing samples from this approximate posterior prob-

ability, the likelihood of the observed population is estimated. The variational lower
bound LG is optimised w.r.t the variational parameters ψ,ψ

′ :

LG(ψ,ψ
′) =

K∑
k=1

(E
qψ(Z′

k|h′
k

)[log p
ψ

′ (h′
k|Z

′
k)]− βDKL[qψ(Z′

k|h
′
k) ∥ p(Z′

k)]), (5.10)

where h′
k ∈ RNµ×3 presents graph geometric features after normalisation process (in

Section 4.2.1) and the first term is a reconstruction error which computes the squared
Euclidean distance (L2-norm) between input and reconstructed shapes by the decoder.
DKL denotes the Kullback-Leibler divergence and computes the divergence between
the Gaussian prior N(0, I) and posterior distributions of the latent space Z′ and the
KL divergence is weighted by β.

5.2.4 Atlas Construction

Inspiration is drawn from the atlas construction in Chapter 4, where the projected
shapes are averaged to form a common atlas space and create an atlas. The shape
matching and the generation are trained jointly, and the normalised shapes g′

k and atlas
shape gµ are updated at the end of each epoch by warping the training shape to atlas
space via a forward pass of Atlas-R-ASMG and averaging across the samples. Similar
to Chapter 4, the atlas (represented by the feature matrix Xµ) is reconstructed by
minimising the following cost function, which entails a Laplacian term for smoothness

Lµ = 1
2

K∑
k=1

Nµ∑
j=1
|h′

kj − xµj |2 + γ

2

Nµ∑
j=1

Nµ∑
q=1

ajq|xµj − xµq|2 (5.11)

where and ajq are elements of the adjacency matrix Aµ. Starting from an initial canon-
ical atlas shape X(0)

µ , a new atlas X(i+1)
µ is iteratively computed from X(i)

µ according
to

x(i+1)
µj ←

∑
k h′

kj + γ
∑

q∈Nµj
x(i)

µq

K + γ
∑

q∈Nµj
ajq

; ∀j ∈ Nµ (5.12)

where γ = Nµ/max (Nµj), we build the atlas shape gµ with a fixed adjacency matrix Aµ

so that the vertex positions are optimised while preserving the topology of the atlas.
At the end of each training epoch, a forward pass through the network (Equation

5.5) is used to warp each training case to the atlas space. The updated atlas shape at
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the end of each epoch, (i > 0) in Equation 5.12, is utilised during the following epoch
for computing the losses LΨ (Equation 5.7) and LRef (Equation 5.8).

Unlike the atlas derivation in the ASMG model (Chapter 4), where an atlas of
the training shape is learned during model training, in this model, we simultaneously
construct atlases of the training shapes and correspondences during model training.

In contrast to the ASMG model presented in Chapter 4, the current model involves
the joint construction of atlases for the training shapes and refined correspondence
maps during the model training. The refinement procedure focuses on re-ranking false
correspondences and representing more plausible shapes in the atlas domain.

5.3 Results and Discussion

A number of experiments were conducted to evaluate the performance of the generative
shape models proposed in this chapter and compare them against each other and the
model proposed in Chapter 4 and RSMP in Chapter 3. Left ventricle shapes derived
from CMR images available in the UK Biobank and liver shapes derived from the CT
image dataset are utilized for training and validating the framework. The experimental
setup is similar to the ASMG framework. For both datasets, wKL is set to 1e−3. For
the LV dataset, the hyperparameters wcd and wlap are empirically set to 1. For the liver
dataset, wcd = 1 and wlap = 1.2. The optimal value for β was achieved by empirically
decreasing the values from 2e−3 to 2e−6 for the LV dataset and from 1e−3 to 2e−3 for
the liver dataset.

The method is evaluated in terms of both its matching (i.e., correspondence estab-
lishment) and generation performances, which analyze the performance of individual
components of the method.

5.3.1 Evaluation of Shape Matching

This section investigates the qualitative and quantitative performance of our Refinable
Attention-based Shape Matching (R-ASM) method. For the experimental evaluation,
two different settings, s/hGCN-ATT, are considered. The obtained results in Chapter
4 demonstrated that using surface information for node representation (in the hGCN
networks) results in more accurate features derived from the network, which, in turn,
provides a high-quality correspondence. The benefits of the refinement strategy are
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Figure 5.2: Qualitative shape matching results using the R-ASM method on the LV
dataset. The atlas shape is shown merely for visualisation purposes (colour code).
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Figure 5.3: Qualitative shape matching results using the R-ASM method on the liver
dataset. The atlas shape is shown merely for visualisation purposes (colour code).
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highlighted by evaluating the performance of both s/hGCN-ATT models utilising the
refinement strategy.

The qualitative results on the LV dataset are shown in Figure 5.2, and the results on
the liver dataset are presented in Figure 5.3. The colour-coded shapes in these figures
aid in visually understanding the spatial relationships between vertices in different
shapes and how they correspond to each other. In these figures, the R-ASM method (in
two settings s/hGCN-ATT) predicts vertex-to-vertex correspondences for each shape
to obtain shape matchings among a collection of shapes. The corresponding points
between the atlas (colour-code) and obtained shapes g′ are shown with the same colour.

Additional qualitative results over the five LV and liver cases are summarised in
Figure 5.4 and Figure 5.5 respectively. The correspondence maps obtained from dif-
ferent methods are utilised to transform actual input shapes gk from the domain RNk

to RNµ . Visual inspection of results shows that the improvement was achieved with a
refinement strategy over the ASM. By employing a trainable refinement procedure, the
R-ASM network effectively captures meaningful similarities between shapes, resulting
in more plausible normalised shapes in the atlas domain compared to the obtained
shapes by ASM network. This highlights the benefit of deriving refinable nodal embed-
ding and shape matching for both s/hGCN-ATT settings. The R-ASM model in the
hGCN-ATT setting achieves the best results, where the normalised shapes g′ obtained
for cases with either Nk > Nµ or Nk < Nµ preserve more anatomical details, avoid
disorders, and closely resemble the related actual shape g. The red arrows highlight
differences in certain landmarks. In particular, as shown in Figure 5.5, R-ASM in the
hGCN-ATT setting effectively captures variation and local details on the more complex
dataset (i.e. liver) with substantially fewer training data. It is therefore more suitable
where a high degree of fidelity is required based on anatomical characteristics.
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Figure 5.4: Examples show the comparison between different shape matching ap-
proaches ASM and R-ASM (in two settings s/hGCN-ATT) for deriving correspond-
ence on the LV dataset. Cyan-coloured meshes present input gk with cardinality
Nk = 1586, 1539, 1455, 1150 and 1039 respectively from left to right. Shapes g′

k are
the normalised meshes with cardinality Nµ = 1093 obtained from different methods
in the s/hGCN-ATT settings. Notice endocardial, epicardial, LV base, and apex land-
marks.
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Figure 5.5: Examples show the comparison between different shape matching ap-
proaches ASM and R-ASM (in two settings s/hGCN-ATT) for deriving correspond-
ence on the liver dataset. Cyan-coloured meshes present input gk with cardinality
Nk = 1532, 1338, 1278, 1030 and 1365 respectively from left to right. Shapes g′

k are the
normalised meshes with cardinality Nµ = 1025 obtained from different methods in the
s/hGCN-ATT settings. Red arrows highlight some landmarks.
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5.3 Results and Discussion

A computational anatomical atlas should map the structure of the organs across
different domains, e.g. different scales of observation, multimodal information sources,
across patient populations [81]. Atlases combining multiple sources and a number of
individuals provide a powerful tool for describing shapes from a statistical and visual
point of view. Figure 5.6 illustrates a population-derived atlas across different domains
within the Atlas-R-ASMG deep learning framework (i.e. s/hGCN-ATT) on both LV
and liver datasets. The LV atlas provides a statistical average pattern from a large-
scale LV population from the CMR image dataset. The liver atlas, on the other hand,
is built from small liver datasets that come from multi-modality images (including CT
and PET-CT).

The accuracy of the shape matching procedure is evaluated by comparing the R-
ASM method with the rigid Registration-based Shape Matching (RSM) proposed in
[65], which represents shape as point clouds, and ASM (in Chapter 4). The purpose
of this evaluation is to analyze the importance of surface representation of shapes, as
well as refinement strategy in attention-based shape matching. To project different-
sized actual shapes onto the atlas domain, each method learns a correspondence map
from node space F(RNk) to F(RNµ). Table 5.1 summarises the accuracy of the test
shapes (the 200 LV cases and 28 liver cases test set), in the atlas domain obtained by
different methods on LV and liver datasets, where the quality of the obtained shapes
is assessed using two distance metrics: Hausdorff distance (HD) and Chamfer distance
(CD). The R-ASM method outperforms the RSM and ASM methods across all the
metrics. It means the R-ASM framework presents high-quality shapes in the arbitrary
atlas domains, by achieving lower mean HD and CD, while the lower standard deviation
values indicate its robustness. The refinement improves the quality of the normalised
shapes over the sGCN-ATT and hGCN-ATT settings in terms of HD and CD which
is visualised in Figures 5.4 and 5.5. The lower HD/CD metrics of the hGCN-ATT
compared to the sGCN-ATT reflects the observation that the sGCN-ATT is still sus-
ceptible to producing topological errors which can be rectified by refinement procedure
(see lavender-coloured shapes in Figures 5.4 and 5.5).

The improvement achieved with refinement over the attention-based shape match-
ing(ASM) is also illustrated in Figures 5.7 and 5.8. The scatter plots show distance
metrics HD and CD of ASM and R-ASM models on the LV and liver test cases in two
different settings. In both settings on both LV and liver shapes, the minority of samples
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5.3 Results and Discussion

Figure 5.7: Scatter plots showing HD (left) and CD (right) results of attention-based
shape matching frameworks in [mm], with ”sGCN-ATT” setting, on the 200 LV and
28 liver cases test set, comparing the ASM (x−axis) versus refinable model R-ASM
(y−axis). The green/red gradients indicate an increase/decrease in performance with
refinement. Refinement generally improves HD and CD of attention-based shape match-
ing results. Degradation is observed for some LV/liver cases in terms of HD, whereas
improvements in HD can be significant.

have degradation in the metrics, while outliers are generally corrected, particularly for
the metric CD. The higher performance of the R-ASM model compared to ASM is ob-
served across both settings. The improvement is particularly achieved in cases where
the inputs to the network are not rich (i.e. sGCN-ATT settings with spatial features
inputs in Figure 5.7).
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Figure 5.8: Scatter plots showing HD(left) and CD (right) results of attention-based
shape matching frameworks in [mm], with ”hGCN-ATT” setting, on the 200 LV and
28 liver cases test set, comparing the ASM (x−axis) versus refinable model R-ASM
(y−axis). The green/red gradients indicate an increase/decrease in performance with
refinement. In the majority of cases, HD and CD of the attention-based shape matching
results are improved with refinement. Degradation is observed for some LV/liver cases
in terms of HD, whereas improvements in HD can be significant.

Generally, it is observed that high-quality shapes in arbitrary atlas domains are
demonstrated by the R-ASM method through achieving lower HD and CD metrics.
Furthermore, the values are less spread out (i.e. lower standard deviation), indicating
that the R-ASM method is highly robust and is capable of handling a variety of different
morphologies.
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5.3 Results and Discussion

5.3.2 Evaluation of Generation

The method’s generative capabilities are investigated in terms of generalisation and
specificity, demonstrating its ability to synthesise virtual populations of realistic shapes
with volumetric measurements in line with actual clinical indices.

5.3.2.1 Generalisability and Specificity

The generalisability of a model is its ability to capture the variability of the seen data
(training) and to generalize that to, or explain, the unseen data (testing). Figure 5.9
illustrates generalisation ability of models investigated in this chapter for LV and liver
datasets, and compares them with other models. In generative shape models, gener-
alisability can be assessed by evaluating the error in reconstructing unseen test data,
thus analyzing the model’s ability to explain unseen shapes and offering insights into
the overall variability in shapes. Therefore in Figure 5.9, boxplots present generalisa-
tion errors in three metrics: HD, ED and ED∗(in [mm]) while ASMG and Atlas-R-
ASMG models are implemented in s/hGCN-ATT-VAE settings. It is observed that
Atla-R-ASMG(h) models significantly outperform RSMP for all the metrics on both
datasets, while the Atla-R-ASMG(s) models significantly outperform the PCA-based
model RSMP for the majority of metrics. This is due to the limitation of PCA-based
models. These models are prone to overfitting to limited training data, thus not being
able to accurately represent anatomies that lie outside of the training distribution, and
reconstruction of unseen anatomical structures can subject to significant (large-scale)
and subtle (small-scale) variations. Additionally, generalisation error values associated
with Atlas-R-ASMG models are consistently lower when compared with those in ASMG
models. The Atlas-R-ASMG(h) model significantly outperformed the RSMG(h) model.
Hence, learning rich node feature representation and refinable frameworks is beneficial
for presenting models with good generalisability. The Atlas-R-ASMG(h) models are
able to capture a greater degree of shape variability for each structure (e.g. LV and
liver) than afforded by other models and thereby can synthesise more diverse (in terms
of shape) virtual anatomical shape populations than the latter.

In order to quantify the anatomical plausibility of synthesised virtual shape popu-
lations, specificity errors are employed. The distance between each generated sample in
the virtual population and the closest (or most similar) shape in the actual population
is measured to calculate these values. Boxplots in Figure 5.10 illustrate the specificity
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5.3 Results and Discussion

errors obtained for virtual (LV/liver) populations synthesised using different models.
Errors HD, ED, and ED∗ are quantified for each structure. Results show that for most
metrics, Atlas-R-ASMG significantly outperformed RSMP across the two structures.

For both datasets, the highest specificity (i.e. lower specificity errors) was achieved
by Atlas-R-ASMG(h), and its performance was improved compared to ASMG(h). By
refining nodal embeddings in an end-to-end framework, rich latent representations can
be learned in graph convolutional networks, and the model is able to capture more
details in the shape matching and normalisation process. As a result, the VAE generator
is then trained with more plausible shapes. Intuitively, this forces a greater degree of
plausibility in the shape samples generated from the trained model.

5.3.2.2 Clinical Relevance

A clinical acceptance rate A is used as an additional metric to assess virtual cohort
anatomical plausibility. It is motivated by the need to preserve clinically relevant
anatomical volumetric indices in the synthesised cohorts (as compared to the reference
actual population).

Analogous to Chapter 4, given actual cohorts G, we assess the clinical relevance
of LV/liver virtual cohorts G∗ synthesised using the models investigated in this study.
To this end, three acceptance rates Ar, Aµ and AM (defined in Section 3.2.2) are
utilised. Acceptance criteria measure how likely it is that synthesised samples in a
virtual population with biomarkers (like volume indices) reflect the distribution of the
actual biomarker indices. The statistical description of each structure index in the
whole population is summarised in Table 3.1. The distribution of LV/liver volume
indices is illustrated in Figure 5.11 for the actual samples and those generated using
different generative models RSMP, ASMG, and Atlas-R-ASMG. In the figure, s/hGCN-
ATT-VAE settings are referred to as s/h and horizontal lines mark the bounds for the
different acceptance criteria. As shown in Figure 5.11, comparing the actual to synthetic
distributions for volume variables, the Atlas-R-ASMG model (especially for hGCN-
ATT-VAE) generates realistic synthetic populations for LV and liver volumes, while
capturing sufficient variability. This is consistent with the specificity errors summarised
in Figure 5.10. Intuitively, the investigated methods generate distributions of (LV/liver)
biomarkers that follow the range defined by Ar, presenting reasonable shape variability.
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5.3 Results and Discussion

Figure 5.11: Violin plots for the distribution of LV and liver volume indices on the actual
samples, alongside with those generated using different methods: RSMP, ASMG(s/h)
and Atlas-R-ASMG(s/h). Horizontal lines mark the confidence intervals for the differ-
ent acceptance criteria.

Figures 5.12 and 5.13 show the anatomy of three synthetic LV and livers within
different acceptance intervals. In Figure 5.12, LV shape g∗

1 meets Ar, AM and Aµ, g∗
2

meets Ar and AM but not Aµ and g∗
3 only meets Ar. For liver shapes, in Figure 5.13,

g∗
1 and g∗

2 meets all of the criteria and g∗
3 meets AM and Aµ but not Ar.
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Volume = 190.31

𝑔!∗

Volume = 185.05

𝑔#∗

Volume = 163.04

𝑔$∗

Figure 5.12: Examples of three synthetic LV shapes generated by Atlas-R-ASMG(h)
model, with decreasing feasibility of the biomarkers according to the acceptance func-
tions. From left to right: g∗

1 is accepted by all of the criteria; g∗
2 is only rejected by

Aµ but not by the other acceptance functions; and g∗
3 is rejected by Aµ and AM but

accepted by Ar.

Volume = 1373.24

𝑔!∗

Volume = 826.32

𝑔#∗

Volume = 1098.23 

𝑔$∗

Figure 5.13: Examples of three synthetic LV shapes generated by Atlas-R-ASMG(h)
model, with decreasing feasibility of the biomarkers according to the acceptance func-
tions. From left to right: g∗

1 and g∗
2 are accepted by all of the criteria; g∗

3 is only rejected
by Ar but not by the other acceptance functions.
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5.3 Results and Discussion

Table 5.2: Clinical acceptance rates A [in %] achieved by different generative models
for LV and liver volumes.

RSMP ASMG(s) ASMG(h) Atlas-R-ASMG(s) Atlas-R-ASMG(h)

LV
Ar 99.75 100 99.98 100 100
AM 86.75 98.10 98.67 99.12 99.65
Aµ 65.85 88.65 88.85 91.47 95.85

Liver
Ar 96.40 100 100 100 99.28
AM 100 100 100 100 100
Aµ 98.56 100 100 100 100

Table 5.2 summarises the acceptance rates A calculated for LV and liver structures
in synthesised virtual cohorts. The clinical acceptance rates of LV/liver virtual cohorts
synthesised by the proposed generative models are higher than the statistical shape
RSMP model. Furthermore, the values estimated for Atlas-R-ASMG are consistently
higher than those obtained from ASMG across the LV volume indices, and there is no
huge difference between the values obtained for liver indices.

In conclusion, the results demonstrate that the four models (ASMG(s/h), Atlas-R-
ASMG(s/h)) in the proposed generative shape framework better preserves the clinical
relevance of anatomical indices (within a 95% confidence interval of the observed values
in the actual population) compared to PCA-based models. As PCA-based models (e.g.
RSMP) are linear projections of shape data onto a lower-dimensional subspace, they
are not capable of capturing non-linear variations in shapes. Thus, models trained
using such approaches have limited generalisation capacity and specificity (as shown
in Figure 5.9 and Figure 5.10) and correspondingly, synthesised virtual cohorts have
limited anatomical plausibility, as evidenced by the results in Table 5.2. The VAE-
based graph convolutional generative shape models (e.g. ASMG and Atlas-R-ASMG),
on the other hand, are able to capture non-linear variations in shapes, resulting in
virtual cohorts with a greater degree of specificity/anatomical plausibility (as shown
in Figure 5.10 and Table 5.2) as well as a better generalisation to unseen shapes (see
Figure 5.9).

Amongst the VAE-based shape models investigated in this study, the Atlas-R-
ASMG(h) generator model allows for refinement of the derived nodal embeddings from
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5.3 Results and Discussion

(a)

(b)

Figure 5.14: Examples of virtual (LV/liver) samples generated by the Atlas-R-ASMG
generator model.
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5.4 Joint Clustering Generative Shape Model

hybrid representation, in order to optimise the alignment of training shapes on the atlas.
This process mitigates disorder in the latent space, which can result in spurious corres-
pondences. Additionally, it improves the accuracy of shape normalisation, preserving
the plausibility of shapes. This enables the the Atlas-R-ASMG(h) generator models to
generate virtual cohorts with better specificity/anatomical plausibility (refer to Figure
5.10) and provide better fidelity in preserving the distributions of clinically relevant
LV/liver indices in the synthesised virtual cohorts relative to the actual population (as
shown in Table 5.2).

Figure 5.15 demonstrates a visualisation of the generated (synthetic) samples by the
Atlas-R-ASMG. One can observe the generated meshes demonstrate a level of shape
variation that closely resembles that of the actual population for both the left ventricle
(LV) and liver shapes. Simultaneously, they retain realistic anatomical shapes at an
individual level.

5.4 Joint Clustering Generative Shape Model

In medical applications, some organs population (like the liver) show large variations
in shape between different individuals. To get a better understanding of the normal
and pathological functioning of the shape, it is important to preserve and capture these
variations in the shape analysis process. In order to analyze morphological variability,
it is possible to cluster shape populations into subgroups with more localized modes
of variability. In medical imaging, for instance, this approach may be useful from an
application point of view; rather than largely deforming a single mean shape, each
subgroup can be associated with a specific disorder, age, gender, etc., with local means
representing more natural average anatomy. In addition, in ISCTs, providing realistic
precise synthetic shapes can improve shape-based risk assessment and treatment plan-
ning. In the development of products such as implants or customized instrumentation,
it is crucial to meet the anatomy related morphological needs of a patient as precisely
as possible, since otherwise, the outcome of medical intervention may not meet patient
expectations.

The proposed ASMG and Atlas-R-ASMG schemes considered a unique atlas for
each shape category and relied on regressing all shapes (regardless of morphological
variation) on a common atlas where correspondence metrics can be computed. Al-
though the proposed frameworks enable learning from graph populations featuring dis-

113



5.4 Joint Clustering Generative Shape Model

parate connectivities, the generated meshes have the same connectivity, defined by the
atlas. However, when the population of shapes shows large variability in appearance
and anatomical structure it becomes arduous to come up with a unique atlas that is
representative of all the rest. This certainly can increase distance errors and diminish
fidelity.

In this section, the aim is to address these limitations by presenting a ”joint cluster-
ing generative” shape model and introducing multi-atlas over a specific organ, where
atlases have different topological structures. Incorporating the ”multi-atlas” shape
matching procedure within the framework improves the establishment of the corres-
pondence. This allows for grouping shapes into meaningful clusters based on their
similarity measures, making it easier to analyze and understand variation and complex
spatial relationships. Furthermore, by incorporating multi-atlas construction with vari-
able topologies, the generative model gains the capability to synthesise virtual shape
populations exhibiting diverse topological variations. Therefore, the generative model
can generate more morphological variability of shapes, due to the presenting different
shape clusters. This is particularly useful in cases where vertex-to-vertex correspond-
ences be challenging or inaccurate due to occlusions or variations in point density.
Overall, this model is able to (1) cluster shapes by capturing similarity between them,
(2) preserve small details of the input shapes by assigning the best atlas (i.e. best to-
pology) to each observed shape, and (3) generate a multi-resolution virtual population
of organ anatomies.

This framework, referred to as the Multi-Atlas Refinable Attention-based Shape
Matching Generative model (mAtlas-R-ASMG), represents an extension of the pre-
liminary ideas introduced in Section 5.2. In an atlas-based generative model, the
framework provides a map of vertex correspondences between the training shape and
the atlas, to structurally normalise shapes (in the shape matching process). To im-
prove the generation quality, a set of atlases is constructed instead of a single atlas
for shape normalisation. The results are then combined to create the best agreement
shape matching (i.e., structure normalisation). The best agreement can be found by a
weighted clustering procedure.

When a set of atlases is available for shape matching, weighted clustering provides
a simple and efficient method to identify the best atlas matching (i.e. the best topology
for representing the actual shape) and preserve more details in the shape matching pro-
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Figure 5.15: Graphical model representation of (a) the Atlas-R-ASMG generative
model, and (b) joint clustering generative model (mAtlas-R-ASMG). The observed
variables are shown with shaded circles and hyper-parameters are indicated by solid
small circles/on the arrows. Other variables and parameters are shown with white
circles. Please refer to the text for a detailed explanation.

cess. Each atlas is used for establishing vertex-wise correspondences and then structure
normalisation of actual shapes. The selection of the optimal atlas, which represents the
most suitable topological structure for describing the shape variation, is determined for
each shape through a voting process. This voting is based on a shape-based weight,
calculated as a function of the distance between the structurally normalised shape and
the atlas.

5.4.1 Clustering Scheme

Assuming an unlabeled shape set G = {gk}Kk=1 is projected into M clusters. The shape
set {gµm}Mm=1 illustrates the average shapes (i.e. atlases) in each cluster with matrix
representation Xµm ∈ RNµm ×3.

Projecting each shape on different atlases, the framework presents M clusters of
structurally normalised shape populations where each population presents K shape in
the resolution |V | = Nµm . The shape g

′m
k denotes normalised shape k in the cluster m

and wkm is its associated weight.
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5.4 Joint Clustering Generative Shape Model

The weights elements wkm are defined as follows:

wkm = e−αdkm∑M
m=1 e−αdkm

(5.13)

where normalised shape g
′m
k is presented by the geometric feature matrix h′m

k ,dkm

presents the mean squared error between each normalised shape and mean shape in
each cluster: dkm = 1

|Nµm |
∑

j |h
′m
kj − xµmj |2; and α is a hyperparameter that controls

the de-weighting degree in terms of dissimilarity. Therefore, a higher weight is assigned
to a shape that is more similar to the m-th atlas. Shape-wise weights are denoted
as vector wk ∈ RM , and weight matrix W = (w1, w2, ..., wK)T fulfills the constraint∑

m∈M wkm = 1;∀k ∈ K.
Similar to Equation 5.14, atlas shapes are reconstructed by minimising the following

cost function,

Lµ = 1
2

M∑
m=1

K∑
k=1

Nµm∑
j=1

wkm|h
′m
kj − xµmj |2 + γm

2

Nµm∑
j=1

Nµm∑
q=1

aµm pq|xµmj − xµmq|2 (5.14)

where aµm jq are elements of the adjacency matrix Aµm (demonstrates the topological
structure of m-th cluster). Starting from an initial canonical atlas shape X(0)

µm , a new
atlas X(i+1)

µm is iteratively computed from X(i)
µm according to

x(i+1)
µmj ←

∑
k wkmh′m

kj + γm
∑

q∈Nµmj
x(i)

µmq∑
k wkm + γm

∑
q∈Nµmj

aµm jq

; ∀j ∈ Nµm ;∀m ∈M (5.15)

where xµmj is a feature vector corresponding to j-th node in the m-th atlas graph and
γm = Nµm/max (Nµmj). The atlas shape gµm is built with a fixed adjacency matrix Aµm ,
ensuring that the vertex positions are optimised while preserving the topology of the
atlas. The process of initializing atlases relies on canonical shapes informed by clinical
experts’ knowledge. Incorporating expert insights adds significant value, allowing the
model to present more clinically relevant clusters that capture the expected variations
in anatomical organs. This initialization ensures that the atlas is rooted in domain-
specific understanding, enhancing the model’s ability to generate synthetic shapes that
align with the intricacies observed in medical imaging data [124]. The utilization of
expert knowledge in the initialization phase contributes to the robustness and clinical
relevance of the subsequent multi-clustered learning process.

Consequently, the population can generate M atlas shapes with diverse topolo-
gies/cardinalities, showcasing variations in shapes. This approach addresses the limit-
ation of relying on a single atlas shape for normalising real shapes, which may overlook
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certain details. By deriving multiple atlas shapes, the method captures a broader range
of shape variations, enhancing the accuracy and comprehensiveness of the analysis.

5.4.2 Generative Modeling

To generate virtual populations with variable topology in anatomical structures, a
multi-generative model is trained based on different clusters of shape populations. More
specifically, for M clusters, our framework presents M generative models where each
generative network (designed in β-VAE structure) is trained to derive a pdf from a set
of normalised graphs. Therefore, similar to the Section 5.2.2, for the m-th generative
model, we optimize the variational lower bound LGm w.r.t the variational parameters
ψm,ψ

′
m:

LGm(ψm,ψ
′
m) =

K∑
k=1

(E
qψm

(Z′m
k

|h′m
k

[log p
ψ

′
m

(h′m
k |Z

′m
k )]

− βmDKL[qψm
(Z′m

k |h
′m
k ) ∥ p(Z′m

k )]); ∀m ∈M, (5.16)

where h′m
k denotes the geometric features of k-th shape from m-th cluster. The prob-

ability of node variations is approximated in the latent space Z′m
k ∈ RL via a posterior

qψm
(Z′m

k |h
′m
k ). By drawing samples from this approximate posterior probability, we

estimate the likelihood of the observed population. To generate novel shape samples,
we simply sample from the prior normal distribution p(Z′m

k ) = N(0, I) and use the
sample as the input to the decoder, which converts that into a random synthetic mesh
having the same connectivity as the m-th atlas (i.e. Nµm).

Considering Equation 5.13, the shape that is more relevant to cluster m assigns
a higher weight, so that it will influence the m-th generative model more than other
generative models. Hence, the lost function in Equation 5.16, can be rewritten as

LGm = 1
2

K∑
k=1

wkm

Nµm∑
j=1

∥∥∥h′m
k

rec

j − h′m
k j

∥∥∥2
− βmDKL[qψm

(Z′m
k |h

′m
k ) ∥ p(Z′m

k )]

 (5.17)

where h′m
k and h′m

k

rec denote the input shape and the its reconstruction respectively.
Figure 5.15(b) is a graphical representation of the joint clustering generative model
considered in this section, which shows the hypothesised dependencies of the variables.
To create a virtual population of shape with ”variable topology” in anatomical struc-
tures, given the dependencies of the variables, ancestral sampling [125] is used to draw
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Table 5.3: Shape matching quality in mAtlas-R-ASM model with different number of
atlases (i.e. M) on liver shapes. Values show the performance of the model using two
distance metrics HD and CD (mean ± std) in [mm]. Bold values show a significant
difference between the methods with a p-value < 0.001 using the statistical paired
t-test.

M = 1 M = 3 M = 5
HD 20.21± 6.35 18.07± 6.39 17.33± 5.43
CD 58.14± 21.96 33.64± 12.33 33.84± 10.93

3D surface mesh samples from our generative model. Samples are drawn from models
of M clusters with L latent dimension.

5.4.3 Experimental Results and Discussion

As discussed earlier in Section 5.4, joint clustering generative models excel in scenarios
where large variability exists in appearance and anatomical structure within the shape
population. They enhance the generative model’s capability to synthesise virtual shape
populations with diverse topological variations. The liver is a complex organ known for
exhibiting significant morphological variations among individuals, making it an ideal
candidate for shape clustering and generative analysis. Hence, in this section, the liver
dataset ie employed to evaluate the joint-clustering generative model and explore the
promising approach of multi-atlas construction along with its benefits.

For experimental settings, hyperparameter α = 1
std(d) which is experimentally found

appropriate. Here the vector dk ∈ RM , and distance matrix d = (d1, d2, ..., dK)T . To
build a multi-generative framework, M VAE generative networks share hidden layers.
Since earlier results in Section 5.3 demonstrated significant improvements in anatomical
validity with hybrid representations of shapes, the hybrid representation is employed
in the experimental settings for this section. The joint-clustering generative model
combines the power of clustering algorithms with generative modelling techniques to
achieve accurate shape matching and domain transformation for shape analysis and
generation. By leveraging both clustering and generative modeling, this approach can
effectively capture the inherent structures and variations present in the liver dataset.
Table 5.3 summarises the accuracy of liver shapes in the shape matching procedure
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proposed in the joint-clustering generative model. The quality of the obtained shapes
is assessed using two distance metrics: Hausdorff distance (HD) and Chamfer distance
(CD). The obtained results show that the multiple reference atlases can help improve
the accuracy of regressed shapes in different atlas domains. Multiple atlases posit-
ively impact the accuracy, reliability, and robustness of the shape matching process by
achieving lower mean and standard deviation Hausdorff and Chamfer distances.

By incorporating information from multiple atlases, the model can consider a wider
range of anatomical variations, leading to improved matching and, consequently, gener-
ation outcomes. Figure 5.16 demonstrates some examples of obtained results for shape
matching using multi-atlas clustering (e.g. M = 5). In each part, the first and second
rows present shapes and the slice-mask images constructed from them, respectively. To
accurately evaluate the shapes in different clusters according to the ground-truth mask,
masks from the 3D normalised shapes are extracted in different clusters. 1 The simil-
arity and distance between the extracted mask and their corresponding ground-truth
are measured using the Dice Similarity Coefficient (DSC) and Intersection over Union
(IoU) metrics. The first column shows the input shape/mask and the rest present norm-
alised shapes/masks in different clusters. The weighted clustering algorithm presented
in Section 5.4.1 finds the best atlas (green colour) for deriving vertex-to-vertex corres-
pondences. The following table presents the values of dk in [mm] and wk as given in
Equation 5.13 for M = 5 for shapes. Additionally, it includes the DSC and IoU metrics
for masks.

To test accuracy in different clusters, two metrics: DSC and IoU are defined as:

DSC = 2 |A ∩B|
|A|+ |B| (5.18)

IoU = |A ∩B|
|A ∪B|

(5.19)

where A is the mask related to the input shape and B shows the mask constructed
from the obtained shape (based on established correspondences within each cluster).
The visual inspection of the results in Figure 5.16 shows that, for each input shape,
the winning cluster presents a richer representation of liver anatomy. In addition, the
numerical results indicate that the winning cluster is characterized by reduced distances

1The ”vtkPolyDataToImageStencil” class is used to convert polydata (e.g surface mesh) into an
image stencil. The ground truth image of the actual shape g is considered as a reference vtkImage to
match the polydata shape g′m with.
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151.1950167.6661277.8301230.204833.4221𝑑 ↓	

0.19820.17910.09070.12170.4103w ↑

0.96750.96330.96740.96670.9677DSC ↑

0.93710.92930.93690.93560.9374IoU ↑

Cluster 5Cluster 4Cluster 3Cluster 2Cluster 1Input

(a) Cluster 1

247.9251107.6714205.1174106.5243180.6635𝑑 ↓	

0.1160.27680.15160.27880.1764w ↑

0.96010.96260.96380.96800.9562DSC ↑

0.92340.92800.93020.93800.9161IoU ↑

Cluster 5Cluster 4Cluster 3Cluster 2Cluster 1Input

(b) Cluster 2

281.5244318.8008221.3773263.6840336.5668𝑑 ↓	

0.19710.15660.28580.22010.1403w ↑

0.93600.92400.95140.92710.9230DSC ↑

0.87950.85880.90730.86420.8570IoU ↑

Cluster 5Cluster 4Cluster 3Cluster 2Cluster 1Input

(c) Cluster 3

447.4217385.5603653.3057419.4966433.6566𝑑 ↓	

0.19910.29170.05580.23660.2168w ↑

0.95110.95400.95040.95130.9405DSC ↑

0.90680.91200.90560.90710.8877IoU ↑

Cluster 5Cluster 4Cluster 3Cluster 2Cluster 1Input

(d) Cluster 4

77.4586188.7720447.6724229.6202265.0753𝑑 ↓	

0.43310.21780.04400.16920.1359w ↑

0.96370.96000.95720.95870.9504DSC ↑

0.93000.92300.91790.92070.9055IoU ↑

Cluster 5Cluster 4Cluster 3Cluster 2Cluster 1Input

(e) Cluster 5

Figure 5.16: Examples of clustering results on liver datasets, using the Multi-atlas
clustering method with M = 5 clusters, for establishing shape matching. Arrows
indicate the direction of metric improvement. Bold numbers are the best for a given
metric/parameter.
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Figure 5.17: Generalisation and Specificity errors (in [mm]) of the mAtlas-R-ASMG
model with different values of cluster m. Three distance measures HD, ED and ED∗

report the model specificity and generalisation. Boxplots with the line connecting mean
values for each group show multi-atlases outperform the single-atlas approaches.

between the input and atlas, as well as higher weights denoted by w. These findings
align with the higher DSC and IoU metrics observed.

To assess the impact of shape clustering and multi-atlas construction in generative
modelling, Figure 5.17 illustrates generalisation and specificity errors of the clustering
generative model (i.e. mAtlas-R-ASMG) with different number of clusters.

The results suggest a preference for a higher number of clusters, with most errors
remaining relatively consistent within the range of M = 3 to M = 5. However, it’s
important to note that, given the limited size of the liver shape dataset, it may not be
sensible to increase the number of clusters to very high values. In Figure 5.17, it can be
observed that the clustering generative model improves generalisation and specificity
metrics (i.e. lower concurrent specificity and generalisation errors for the majority of
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distances). This occurs through various mechanisms. Firstly, it effectively captures
complex patterns and relationships within the data by considering multiple clusters.
This allows the model to better represent the inherent variability and diversity in the
dataset, enabling it to generalise well to unseen shapes and enhance specificity metrics.
Additionally, the clustering generative model can incorporate prior knowledge about the
class structure (such as initial templates). By leveraging this prior knowledge, the model
can guide the clustering and generative modelling process to capture relevant aspects
of the data, characteristics or patterns specific. This integration of prior knowledge
enhances the model’s generalisation capabilities and improves specificity by identifying
class-specific features more accurately.

More importantly, the presented mAtlas-R-ASMG model can be seen as an ensemble
of individual clustering and generative models. Each cluster is associated with a specific
model and their outputs are combined or weighted to make synthetic shapes. This
ensemble approach mitigates errors or biases associated with individual models, leading
to improved generalisation and specificity by leveraging the collective knowledge of
multiple models.

5.5 Conclusion

An end-to-end unsupervised generative framework named Atlas Refinable Attention-
based Shape Matching and Generation (Atlas-R-ASMG) was introduced in this chapter.
The objective of this framework was to jointly learn accurate refinable shape matching
and generation on 3D surface mesh data while simultaneously constructing a population-
derived atlas. The Atlas-R-ASMG network incorporates attention mechanisms to se-
lectively attend to relevant regions of the input data, thereby facilitating precise shape
matching. By leveraging attention mechanisms and a refinement procedure, the net-
work is able to effectively establish refined shape matching within the 3D surface mesh
data, capturing detailed correspondences between different instances. Furthermore, the
framework integrates a generative component, enabling it to generate new shapes that
adhere to the learned distribution. This generative capability proves valuable for tasks
such as synthesising new shapes that conform to the population’s learned characterist-
ics.

In the learning process, the Atlas-R-ASMG framework constructs a population-
derived atlas. This atlas serves as a comprehensive reference template, encapsulating
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the common features and variations prevalent within the population of 3D surface mesh
data. The construction of a population-derived atlas specific to the dataset under ana-
lysis enables the framework to effectively handle the inherent diversity and complexity
of the data, thereby facilitating more accurate shape matching and generation.

The ability of the model to extend as a joint clustering generative model (called
mAtlas-R-ASMG) holds numerous advantages. It allows for comprehensive analysis and
understanding of shapes by capturing both local patterns within clusters and global
shape population distribution. Additionally, it facilitates shape synthesis and aug-
mentation by generating new samples with ”variable topologies” that closely resemble
the original population. Multi-atlas construction and clustering allow the model to
learn matching with diverse atlases, enabling it to handle a wide range of variations
and achieve more robust correspondences compared to single-atlas approaches. This
makes the model particularly valuable when dealing with datasets, like the liver data-
set, that exhibit significant morphological variations, including variations in shape and
size. Multi-atlas construction inherently addresses uncertainty by taking into account
multiple potential matches (i.e. correspondences). This can be particularly beneficial
for complex shapes, as it allows the model to handle cases with regions that are chal-
lenging to find correspondences accurately. By using clustering shapes into multiple
atlases, the model can provide more reliable and robust results.

Training a joint-clustering generative model using multi-atlas construction can en-
hance the generalisation capabilities of the model. The inclusion of multiple atlases
provides a richer representation of shape anatomy, enabling the model to generalise
well to unseen shapes and adapt to new patient data. In conclusion, the framework
possessed the ability to generate synthetic shapes at variable topology in anatomical
structures, realistically replicating shapes from training data that had different topolo-
gies.
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6.1 Summary and Achievements

This thesis focused on developing an unsupervised probabilistic deep learning frame-
work to cope with the challenges associated with shape matching and generation,
presenting a virtual population of anatomical shapes. In particular, this study presen-
ted algorithms and methods for generating virtual anatomical shapes resembling actual
data. The main contributions of the thesis are outlined in the following paragraphs.

As ”graphs” represented shapes in this study, first, Chapter 2 focused on explor-
ing the field of geometric deep learning, which extends deep neural networks to non-
Euclidean domains like graphs. The chapter provided a comprehensive review of two
categories of geometric deep learning: Spectral-based and Spatial-based methods. The
distinctions between spectral and spatial graph convolution methods are emphasized
and utilised in this study. The chapter also examined generative shape modelling,
including establishing correspondences and generating shapes. It focused on the lim-
itations of point-based methods (e.g. point-set registration) and graph matching for
establishing correspondences. A wide range of research on generating medical and
non-medical shapes was reviewed, concluding the existing works on shape generative
modeling using graphs are valuable but require supervision and specific conditions, such
as consistent connectivity and fixed vertex cardinality in training datasets.

Chapter 3 presented a baseline generative model, which is a PCA-based statistical
shape model used in point-set registration-based shape matching methods to estab-
lish point-to-point correspondences. The chapter highlights the limitations of rigid
registration methods, which primarily rely on rigid transformations and struggle to
capture non-linear deformations and complex shape variations. Additionally, the draw-
backs of PCA-based Statistical Shape Models are examined, including the linearity
assumption, limited representational capacity, inability to handle out-of-sample vari-
ations, and the challenge of capturing shape correlations. To address these limitations,
deep learning-based approaches for shape matching and generation are proposed in sub-
sequent chapters, aiming to capture complex deformations, non-linear shape variations,
and improve the representation capabilities compared to PCA-based SSMs.

In Chapter 4, a novel unsupervised deep generative model was proposed for gen-
erating virtual anatomical shapes. The aim was to address methodological challenges
caused by the lack of consistent tensor-like representation across training shapes. A
graph-based generative model was developed to generate realistic synthetic shapes from
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graph datasets with variable topologies and without vertex-to-vertex correspondences.
Unlike existing shape generative modeling approaches, which require fixed mesh/graph
topology (i.e. mesh triangle connectivity should be identical) and supervised vertex cor-
respondences, the proposed framework has the capability to handle variable topologies
within the training shape dataset and establishes a learnable set of shape correspond-
ences in the latent space through an unsupervised deep learning approach. The process
involved a forward-backward regression of shape datasets on the template model, known
as the atlas shape, within an Expectation-Maximisation-like framework. This method
simultaneously determined the atlas shape and the vertex-wise correspondence func-
tions necessary to warp the atlas into each observed shape. The convergence of the
iterative procedure resulted in structurally normalised meshes, which are then used to
train a variational autoencoder for data generation.

By incorporating the spatial-based graph convolutional networks that consider the
connectivities between vertices, the proposed model exhibited superior performance
in terms of anatomical validity and shape correspondences, surpassing point-based re-
gistration approaches. The study demonstrated the suitability and applicability of
the proposed generative model in conducting ISCTs, with virtual cohorts, through a
comparative analysis. The versatility and performance of the generative model were
demonstrated through applications to datasets with wide variability and limited data.
However, the chapter also acknowledged limitations such as the need for refinement
strategies and the use of a single atlas for all shape categories, which could affect
fidelity and distance errors.

Finally, Chapter 5 introduced an end-to-end unsupervised generative framework,
the Atlas Refinable Attention-based Shape Matching and Generation network (Atlas-
R-ASMG). The proposed model, combining refinable shape matching, generative mod-
eling, and population-derived atlas construction, contributed to the advancement of
understanding, analyzing, and synthesising 3D surface mesh data. This end-to-end
framework aimed to learn accurate refinable shape matching and generation on 3D
surface mesh data while constructing a population-derived atlas. By incorporating
attention mechanisms and a refinement strategy, the network selectively attends to rel-
evant regions, enabling precise learnable shape correspondences and capturing detailed
correspondences. Additionally, the framework included a generative component, allow-
ing it to generate new shapes adhering to the learned distribution. The construction
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of a population-derived atlas facilitates handling the diversity and complexity of the
data, leading to more accurate shape matching and generation.

The identified merits of the proposed generative models in this study suggested that
for conducting in-silico trials using synthesised virtual cohorts, certain generalisations
can be made regarding their suitability in different scenarios. Specifically, utilising
hybrid features in the refinement strategy and the virtual anatomical cohorts derived
from them proves to be more suitable in scenarios where greater statistical fidelity is
needed for the enrolled virtual patients, particularly in terms of relevant anatomical
phenotypes.

The model’s ability to extend as a joint clustering generative model (mAtlas-R-
ASMG) offers advantages such as comprehensive shape analysis, and synthesis, as well
as handling variations and achieving robust correspondences. Multi-atlas construction
and clustering enhance the model’s generalisation and specificity capabilities and ad-
dress uncertainty, particularly beneficial for complex shapes. Training a joint-clustering
generative model using multi-atlas construction improves the model’s ability to gener-
alise to unseen shapes and adapt to new patient data. This novel generative framework
was designed to handle variable topology in anatomical structures across patients/input
samples and successfully synthesised anatomically plausible virtual populations with
”diverse topologies”. These capabilities broaden the potential applications of the ap-
proach in computational medicine and make it well-suited for in-silico trials. In various
medical scenarios, it becomes necessary to model organ/objects with variable topology.
One such example is osteoarthritis (OA), which leads to the erosion of articulating car-
tilage in load-bearing joints, resulting in changes in the object’s topology. To effectively
model such objects, the shape model must be flexible enough to accommodate these
topological changes, which can be provided by the mAtlas-R-ASMG model.

In the exploration of relevant literature within the field of generative modelling,
this study has rigorously evaluated the proposed generative model using established
metrics. Drawing from the comprehensive landscape of generative model assessment,
we have employed a multifaceted approach, considering metrics that encompass fidel-
ity, diversity, and generalization. Specifically, the evaluation framework incorporates
commonly utilized metrics such as specificity and generalization, crucial for synthes-
izing anatomical shapes. Additionally, distance metrics have been applied to measure
dissimilarity, offering insights into how well the generated shapes align with real-world
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data. Symmetric metrics have been instrumental in assessing the model’s ability to
capture inherent symmetry in anatomical structures. Furthermore, the utilization of
statistical metrics contributes to presenting the clinical relevance of the synthesized
population. This holistic evaluation strategy ensures a nuanced understanding of the
generative model’s performance in diverse dimensions.

6.2 Limitations and Future Research Directions

Although the proposed approach facilitates synthesis of anatomical virtual cohorts using
inconsistent training data, there are some limitations and potentials that give rise to
interesting future research directions.

The framework has been evaluated using two different datasets of anatomical shapes,
with both large and limited numbers of patients, consisting of normal and pathological
cases. The LV shape dataset derived from UKB CMR images demonstrates homogen-
eous cohorts. The UKB CMR dataset lacks the complete range of variability in image
quality and CMR protocols found in diverse clinical environments. Additionally, the
dataset primarily consists of data from a healthy population within a specific age group.
While the data includes some pathological cases, it may not capture the full spectrum
of pathological patterns present in other clinical settings that are not currently repres-
ented by the UKB cohort. Furthermore, the versatility of the model can be evaluated
by applying it to LV shape datasets derived from various image data sources, including
heterogeneous cohorts.

Moreover, the model can be tested on different anatomical shapes that exhibit
diverse variables in their shapes. Exploring the model’s performance and adaptability
across these different scenarios would provide valuable insights and contribute to its
comprehensive evaluation and potential enhancements. This opens up exciting avenues
for future research in assessing the model’s effectiveness in handling shape variations
across multiple datasets and organ types with varying characteristics.

Despite the use of comprehensive metrics in this study, evaluating generative model-
ling for anatomical shapes proves challenging due to the intricate nature of anatomical
structures. This complexity arises from the need to balance multiple factors such as
fidelity to real-world shapes, diversity in generated samples, and generalization across
different anatomies. Additionally, assessing the clinical relevance and utility of the
synthesized shapes adds another layer of complexity to the evaluation process. The

128



6.2 Limitations and Future Research Directions

challenge lies in developing metrics that can effectively capture these aspects and align
with the specific requirements of medical applications. However, there are exciting op-
portunities for future work to evaluate the model more comprehensively from various
perspectives and in diverse applications.

The proposed generative model served as a unified framework for constructing a
virtual population of single structural shape anatomies. In the case of synthesising
multi-part anatomies, like biventricular, two independent generative models can be
utilised to generate plausible virtual left ventricle (LV) and right ventricle (RV) struc-
tures. However, an important concern that needs to be addressed is ensuring the
correct alignment of the synthesised LV and RV shapes. Specifically, it is crucial to
avoid topological errors such as gaps or intersections at the interface between the two
structures. These types of errors would constitute anatomically implausible variations
in shape and must be carefully addressed during the synthesis process. Such issues may
be addressed by incorporating supplementary geometric and/or topological constraints
into the learning process, which can be explored in future work.

Hence, a potential research direction involves extending the framework as a gen-
erative shape compositional framework to synthesise multi-part structures, such as
biventricular or whole heart anatomies. This expansion would enable the framework
to generate complex anatomical structures composed of multiple interconnected parts.
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A.1 Shape smoothing using Laplacian over hk

Optimization of L11 in Equation 4.4 written as

< ∂L11, ∂h′
k > =

K∑
k=1

Nµ∑
j=1
|h′

kj − hkj |+ γ

Nµ∑
j=1

Nµ∑
q=1

ajq|h
′
kj − h′

kq| = 0 (A.1)

= h′
kj − hkj + γ

∑
q

ajqh′
kj − γ

∑
q

ajqh′
kq = 0 (A.2)

and;

h′
kj + γ

∑
q

ajqh′
kj = hkj + γ

∑
q

ajqh′
kq (A.3)

Therefore, Equation 4.4 can be iteratively optimised w.r.t. the h′
kj resulting in

h′
kj

(i+1)
←

hkj + γ
∑

q∈Nkj
h′

kq

(i)

1 + γ
∑

q∈Nkj
ajq

(A.4)

A.2 Optimising the template shape in a closed form solu-
tion

Optimization of L12 in Equation 4.6 written as

< ∂L12, ∂Xµ > =
K∑

k=1

Nµ∑
j=1

(|h′
kj − xµj |+ γ

Nµ∑
j=1

Nµ∑
q=1

ajq|xµq − xµj |) = 0 (A.5)

=
K∑

k=1
(|h′

kj − xµj |+ γ

Nµ∑
q=1

ajq|xµq − xµj |) = 0 (A.6)

Considering a degree matrix Dii = K + γ
∑

q∈Ni
aiq and Aij = γaij , Equation A.5 can

be written as [D−A]Xµ = h′ and

Xµ = [D−A]−1 h′ (A.7)

where h′ =
(
h′T

j

)
, Xµ =

(
xT

µj

)
, and h′

j = ∑K
k=1 h′

kj ; j = {1, ..., Nµ}.
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sitioning systems for human anatomy,” Technology, vol. 2, no. 01, pp. 36–43,
2014.

[45] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geo-
metric deep learning: going beyond euclidean data,” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[47] B. Knyazev, X. Lin, M. R. Amer, and G. W. Taylor, “Spectral multigraph
networks for discovering and fusing relationships in molecules,” arXiv preprint
arXiv:1811.09595, 2018.

[48] J. Jung, H.-M. Park, and U. Kang, “Balansing: Fast and scalable generation of
realistic signed networks.,” in EDBT, pp. 193–204, 2020.

[49] M. Fey, J. Eric Lenssen, F. Weichert, and H. Müller, “Splinecnn: Fast geomet-
ric deep learning with continuous b-spline kernels,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 869–877, 2018.

[50] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational
inference for interacting systems,” arXiv preprint arXiv:1802.04687, 2018.

[51] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small
graphs using variational autoencoders,” in International Conference on Artificial
Neural Networks, pp. 412–422, Springer, 2018.

[52] J. You, R. Ying, X. Ren, W. Hamilton, and J. Leskovec, “Graphrnn: Generating
realistic graphs with deep auto-regressive models,” in International conference on
machine learning, pp. 5708–5717, PMLR, 2018.

137



REFERENCES

[53] R. Liao, Y. Li, Y. Song, S. Wang, C. Nash, W. L. Hamilton, D. Duvenaud,
R. Urtasun, and R. S. Zemel, “Efficient graph generation with graph recurrent
attention networks,” arXiv preprint arXiv:1910.00760, 2019.

[54] F. R. Chung and F. C. Graham, Spectral graph theory, vol. 92. American Math-
ematical Soc., 1997.

[55] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-dimensional
data analysis to networks and other irregular domains,” IEEE signal processing
magazine, vol. 30, no. 3, pp. 83–98, 2013.

[56] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” arXiv preprint arXiv:1312.6203, 2013.

[57] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in neural information
processing systems, pp. 3844–3852, 2016.

[58] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[59] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional networks
for semi-supervised learning,” in Thirty-Second AAAI conference on artificial
intelligence, 2018.

[60] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model,” IEEE transactions on neural networks, vol. 20,
no. 1, pp. 61–80, 2008.

[61] A. Micheli, “Neural network for graphs: A contextual constructive approach,”
IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 498–511, 2009.

[62] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein,
“Geometric deep learning on graphs and manifolds using mixture model cnns,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5115–5124, 2017.

138



REFERENCES

[63] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic convo-
lutional neural networks on riemannian manifolds,” in Proceedings of the IEEE
international conference on computer vision workshops, pp. 37–45, 2015.

[64] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,” Advances
in neural information processing systems, vol. 29, 2016.

[65] A. Myronenko and X. Song, “Point set registration: Coherent point drift,”
IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 12,
pp. 2262–2275, 2010.

[66] X. Ma, S. Xu, J. Zhou, Q. Yang, Y. Yang, K. Yang, and S. H. Ong, “Point set
registration with mixture framework and variational inference,” Pattern Recogni-
tion, vol. 104, p. 107345, 2020.

[67] N. Duta, A. K. Jain, and M.-P. Dubuisson-Jolly, “Automatic construction of 2d
shape models,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 5, pp. 433–446, 2001.

[68] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor
fusion IV: control paradigms and data structures, vol. 1611, pp. 586–606, Inter-
national Society for Optics and Photonics, 1992.

[69] J. Zhang, Y. Yao, and B. Deng, “Fast and robust iterative closest point,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[70] W. Lu, G. Wan, Y. Zhou, X. Fu, and S. Song, “Deepicp: An end-to-end
deep neural network for 3d point cloud registration. arxiv 2019,” arXiv preprint
arXiv:1905.04153, 1905.

[71] R. Zass and A. Shashua, “Probabilistic graph and hypergraph matching,” in 2008
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE,
2008.

[72] S. Gold, A. Rangarajan, C.-P. Lu, S. Pappu, and E. Mjolsness, “New algorithms
for 2d and 3d point matching: pose estimation and correspondence,” Pattern
recognition, vol. 31, no. 8, pp. 1019–1031, 1998.

139



REFERENCES

[73] H. Chui and A. Rangarajan, “A new point matching algorithm for non-rigid re-
gistration,” Computer Vision and Image Understanding, vol. 89, no. 2-3, pp. 114–
141, 2003.

[74] R. Wang, J. Yan, and X. Yang, “Learning combinatorial embedding networks for
deep graph matching,” in Proceedings of the IEEE/CVF international conference
on computer vision, pp. 3056–3065, 2019.

[75] A. Zanfir and C. Sminchisescu, “Deep learning of graph matching,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2684–
2693, 2018.

[76] Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual knowledge graph align-
ment via graph convolutional networks,” in Proceedings of the 2018 conference
on empirical methods in natural language processing, pp. 349–357, 2018.

[77] Y. Bai, H. Ding, Y. Sun, and W. Wang, “Convolutional set matching for graph
similarity,” arXiv preprint arXiv:1810.10866, 2018.

[78] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn: A neural
network approach to fast graph similarity computation,” in Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, pp. 384–
392, 2019.

[79] T. Heimann and H.-P. Meinzer, “Statistical shape models for 3d medical image
segmentation: a review,” Medical image analysis, vol. 13, no. 4, pp. 543–563,
2009.

[80] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 23, no. 6,
pp. 681–685, 2001.

[81] A. A. Young and A. F. Frangi, “Computational cardiac atlases: from patient to
population and back,” Experimental physiology, vol. 94, no. 5, pp. 578–596, 2009.
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