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Abstract

Characterisation of nuclear waste in the current time is well organised and each radioac-
tive waste is disposed of or stored in an interim facility depending on the type of the
waste. Characterised nuclear waste is expected to be documented and kept for records
to be checked regularly according to the IAEA regulations. However, uncharacteristic
nuclear waste is still found, especially, old nuclear waste that was stored at a time when
documentation of the materials was not required. Moreover, some historical nuclear
waste might contain heterogeneous contents of different types of radioactive materials.
This dictates an efficient technique to resolve these issues by characterising disposed
and/or stored unrecorded nuclear waste. Such techniques to investigate these nuclear
waste drums without opening them are valuable to reduce the cost and the hazard of
being contacted with unidentified radioactive materials. Muon Scattering Tomogra-
phy (MST) technique has significantly increased in importance as a non-destructive
imaging method of nuclear waste. In the past few decades, a significant amount of
research has shown the efficacy of MST as an imaging method. However, there are
still several areas that require further development in MST technique to contribute
to nuclear waste management. An efficient imaging algorithm is requested to image
and identify nuclear waste in a few hours. This thesis shows a method of optimising
imaging performances of the common algorithms. This thesis shows that dividing the
volume of interest by rectangular voxels with a side length of 10 mm and height of
30 mm improves the discrimination power of the imaging method. The ASR algorithm
performance increased in the ability to distinguish between a 10 cm side length of
uranium cube from an equally-sized lead cube with a contrast-to-noise ratio (CNR)
value of 3.2 ± 0.1, compared to the CNR value of 2.2 ± 0.07 when using cubic voxels
with a side length of 10 mm. Following localising high-Z materials inside nuclear waste
drums, identifying these materials in a few hours is possible. It was shown that this
thesis introduces two new algorithms for material classification applications which are
the Hybrid (HB) and the High Angle Statistics Reconstruction (H-ASR) algorithms.
It was shown that the H-ASR algorithm is able to identify 10 cm and 5 cm cubes of
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uranium from lead in 3 and 4.5 hours, respectively.
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Chapter 1

Introduction

Imaging and scanning techniques are some of the most popular methods for investi-
gating objects, especially hidden ones located in inaccessible places, such as volcanos
and pyramids. Historically, imaging has been efficiently used in the medical field as
a diagnostic tool to scan the interior of the human body by applying computed to-
mography (CT) or X-rays [1]. Recently, imaging has led to the discovery of a hidden
chamber inside the great pyramid of Khufu using cosmic muon radiography [2]. Addi-
tionally, cosmic muon radiography has been applied to monitor and study large bodies
(e.g. active volcanoes’ internal structures) [3]. In the past decade, several applications,
such as archaeological, infrastructural and nuclear waste management applications,
have applied non-destructive assay methods to investigate objects in various industrial
fields.

In nuclear waste management, the non-destructive assay of nuclear waste makes is
a highly valuable technique for characterising radioactive materials inside well-shielded
nuclear waste packages. It significantly reduces the cost and the risk of exposure to
ionising radiation that might occur when opening nuclear waste packages manually for
investigation. It is necessary to characterise nuclear waste carefully to keep records of
radioactive waste and dispose of it safely. The challenges of characterisation of complex
conditioned radioactive waste include the possibility that conditioned waste comprises
parts from various sources, the potential presence of a shield matrix and the potential
for the physical structure of conditioned waste to change because of incineration or
corrosion.

Many non-destructive imaging techniques can be used for studying nuclear waste
packages contents. These techniques can be divided into two main categories: passive
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Introduction 3

and active scanning/imaging. Passive scanning measures heat or radiation emissions
originating from radioactive materials inside a waste drum. For instance, calorimetry
is a passive technique in which the heat produced by radioactive materials is calculated
quantitatively to estimate the total radioactivity inside the investigated waste drum.
Calorimetry also detects neutrons and gamma rays as signs of the presence of materials
that emit gamma rays and neutrons during nuclear decay (e.g. uranium). However,
gamma rays and neutrons can be stopped and absorbed by the shielding material;
hence, a shield can prevent the classification of materials.

Active scanning usually involves external artificial particle sources that travel
through the volume of interest to measure the beam’s absorption or scatter on the other
side of the object. For example, X-ray imaging is an active technique in which high-
energy photon sources are placed on one side of the object of interest, and detectors are
placed on the other side to detect the photons’ flux rate. Thus, when relatively higher
absorption rates are detected, they can be interpreted as photon beams encountering
high-density materials. Using artificial radiation sources can be expensive, and this
radiation can be stopped by the shielding matrix in a nuclear waste drum.

Muon scattering tomography (MST) is classified as a passive technique because
it does not require an artificial source to scan the volume of interest. This technique
employs cosmic muons, which are naturally occurring particles originating from cosmic
rays. These particles reach the Earth’s surface and have the extraordinary ability to
penetrate both small and large structures. This method will be used in this thesis to
address several challenges in the imaging and classification of heterogeneous materials
stored in nuclear waste packages. The volume of interest is usually placed between
two muon tracking systems to register incoming and outgoing muons. When muons
travel through dense materials, they undergo multiple Coulomb scattering (MCS),
which results in deflecting in their directions. The scattering information is then used
to generate a 3D image of the volume of interest. Moreover, cosmic muons have a
high penetration level that gives them the ability to travel through several hundred
metres of rock before being absorbed, which is far beyond the penetration levels of
both gamma rays and X-rays.

Several studies have demonstrated the feasibility of using MST to produce a 3D
density map of well-shielded high-Z materials [4, 5]. However, it could be challenging to
distinguish between materials with similar characteristics, such as uranium and lead.
Uranium and lead have similarities in their atomic numbers, which are 92 and 82,
respectively. Moreover, MST does not rely on a focused beam of muons directed to
the object of interest, so they cannot be controlled by a human. Accordingly, imaging
hidden objects may require a long period (weeks) of exposure to muons. This thesis
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addresses many of these limitations as contributions to the development of the use of
MST to investigate and monitor nuclear waste packages and for other applications.

Chapter 2 introduces the characteristics of cosmic muon particles and the benefits
of exploiting them as an imaging source in muon tomography. The chapter also intro-
duces the theory regarding muon particles interactions with matter. Then, the chapter
summarises the current state of theoretical and experimental knowledge regarding the
muon tomography technique, expounding on the interpretation of detecting cosmic
muons in particle detectors. After that, the chapter presents a brief history of the
muon tomography method use in various fields. Chapter 3 presents and discusses the
state of the art of muon tomography as a technique in several applications. Chapter 4
describes muon detectors and the simulation method in detail, including simulation of
cosmic muons arriving from the atmosphere and muon trajectory track fitting. It also
describes the simulations of two types of nuclear waste packages. Chapter 5 describes
the principles of the reconstruction algorithms most commonly applied to produce 3D
density maps of volumes of interest. It also discusses each algorithm’s strengths and
limitations, leading to an optimisation of these already developed algorithms.

Then, chapter 6 covers the development and optimisation of the reconstruction
algorithm covered in chapter 5, leading to the development of a novel reconstruction
algorithm. The new developed algorithms are then used in machine learning applica-
tions to classify materials inside nuclear waste drums in Chapter 6. Finally, chapter 7
concludes the thesis by summarising the findings and contributions.





Chapter 2

Cosmic ray and theory

This chapter provides an overview of the characteristics of cosmic muons and the
theoretical justification for the feasibility of using cosmic muons in imaging techniques.
Moreover, it briefly explains the theoretical background of how cosmic muons interact
with matter via MCS. Finally, it summarises the history of cosmic muons use in the
investigation of small and large bodies and how the properties of muons have been
exploited in the development of scanning/imaging technology.

2.1 Cosmic rays

Cosmic muons are naturally occurring particles that originate from cosmic rays and
belong to the lepton family. Most cosmic rays that interact with the upper atmosphere
of the Earth are protons (85%), alpha particles (12%) and electrons (2%), and the
remainder comprises heavy nuclei [6]. This primary flux interacts with atoms in the
Earth’s atmosphere, consequently creating mesons and baryons that either continue
interacting or decay into muons (µ), neutrinos (ν) and electrons. However, muons are
mainly produced from pion (π) decay [6].

π+ −→ µ+ + νµ (2.1)

π− −→ µ− + ν̄µ (2.2)

6
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Figure 2.1: Schematic of a particle shower originating from cosmic rays. This shows
several charged pions (π+ and π−) and neutral pions (π0). The charged pions decay
into muons and their associated neutrino or antineutrino.

2.2 Muon Particles

A muon is an elementary leptonic particle that is a part of the lepton family. Like
other leptonic particles, muons participate only in the weak interaction and not in the
strong interaction. Muons also are unstable fermions particles that have a spin of 1

2 ,
and decay through the weak interaction into an electron (e−) or positron (e+) along
with associated neutrinos as follows:

µ+ −→ e+ + νe + ν̄µ (2.3)

µ− −→ e− + νµ + ν̄e (2.4)

where νe is an electron neutrino, νµ is a muon neutrino, ν̄µ is a muon antineutrino, and
ν̄e is an electron antineutrino. At sea level, the muon flux is approximately 1 muon
per cm2 per min [7]. Cosmic muons have a relatively large mass (207 times that of an
electron): 105.6583745 ± 0.0000024 MeV [7]. Because of their long lifetime (2.1969811
± 0.0000022 µ sec) compared to other unstable particles, muons have the highest
probability of passing through the atmosphere and reaching the Earth’s surface with
high energy [7]. According to classical physics laws, muons with relativistic speed can
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travel a distance of only approximately 660 m, which means that muons cannot reach
the Earth’s surface. However, the special theory of relativity supports the argument
that muons can survive and reach the ground and beyond. Time dilation allows muons
to travel a distance much longer than 660 m in the Earth’s reference frame. This also
explains muons’ ability to travel through several hundred metres of rock before being
absorbed, which is far beyond the penetration level of both gamma rays and X-rays. In
practise, a muon’s range in a body of standard rock is measured in units of kilometre-
water-equivalent (km.w.e.), which 1 km.w.e. is equal to 105 g/cm2 of standard rock.
Figure 2.2 indicates the vertical muon intensity as a function of the depth in the rock.

At an energy loss level, muons deposit approximately 2 GeV of their energy into
the air during the journey to the Earth’s surface. Muons reach sea level with a mean
energy of around 4 GeV, with angular distributions approximately proportional to cos2θ

where θ is the zenith angle [7]. Figure 2.3 shows the spectrum of muons at sea level at a
zenith angle 75◦ (opened-diamond points) and 0◦ (all other points). This figure shows
that muons with low energy at higher zenith angles are most likely to decay before
reaching the Earth’s surface; hence, it is expected to see few muons with low energy at
high zenith angles. The muon flux for applications like overburden measurements can
be approximated by Gaisser formula [8]:

dIµ

dE
≂

0.14E−2.7
µ

cm2 s sr GeV

[
1

1 + 1.11 Eµ cosθ
115 GeV

+ 0.054
1 + 1.11 Eµ cosθ

850 GeV

]
(2.5)

where the factor of 115 GeV parameterises the contribution of pions (π), and the factor
of 850 GeV parameterises the contribution of kaons (k). This equation assumes that
both muons decay and the curvature of the Earth are negligible and only valid for
muons with E > 100

cos θ
GeV and θ (zenith angle) less than 70 degrees.

2.3 Muon Interactions In Matter

The concept of detecting high-energy charged particles is based on the fact that
charged particles deposit some of their energy into the detector materials. This means
that charged particles passing through matter continuously interact with the matter’s
medium, leading to a loss of energy. This loss of energy is primarily caused by inelastic
collisions between the charged particles and the electrons present in the atoms of the
detector material. These collisions lead to the transfer of some of the particles’ energy
into a form of ionisation or excitation processes within the matter’s medium.

In principle, the mechanisms of energy loss could vary depending on the nature of
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Figure 2.2: Muon flux versus depth in rock (measured in km in water; 1 km.w.e = 105

g cm−2 of standard rock). The inset represents muons’ intensity in ice and water [7].

the incident particle and the matter’s physical properties. The mean stopping power for
heavy particles (e.g. high-energy cosmic muons) travelling through matter is provided
by the following equation [7]:

⟨−dE/dx⟩ = a(E) + b(E) (2.6)

where E is the total energy, a(E) represents the ionisation energy loss, and b(E) is the
sum of contributions from Bremsstrahlung, pair production and photo-nuclear effects
to the energy loss of a particle in matter. When E ≲ 100 GeV, the b(E) is ≲ 1% of
a(E) [17].

Energetic cosmic muons are like other charged particles that lose some or all
of their energy when passing through matter. This loss of energy, or the material’s
stopping power, is described as a mean rate in a unit of MeV g−1 cm2 for muons and
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Figure 2.3: Muon spectrum at sea level, weighted by the momentum at two different
angles. The diamonds (♢) represent θ= 75◦ [9], and the rest are for θ= 0◦ (♦ [10], ■
[11], ▼ [12], ▲ [13], ×, + [14], ◦ [15], • [16])[7].

other heavy particles by the Bethe–Bloch equation [18]:

〈
− dE

dx

〉
= Kz2Z

A

1
β2

[
1
2 ln

2mec
2β2γ2WMax

I2 − β2 − δ(βγ)
2

]
(2.7)

For particles in the range of 0.1 ≲ βγ ≲ 1000, this equation provides the mean rate
of energy loss with an accuracy of a few percent [18]. Where K is equal to 4πNAr

2
emec

2

(≃ 0.307075 MeV mol−1cm2), NA is Avogadro’s number, re is the electron’s radius, mec
2

is the electron’s mass × c2 (∼ 0.510998928 MeV), where c is the speed of light, β = v/c

where v is the muon speed, γ is the Lorentz factor which is equal to 1/
√

1 − β2, z
is the charge number, Z is the atomic number, A is the mass number and I is the
mean excitation energy. The expression δ(βγ) is the density effect correction for the
ionisation energy loss. The variable WMax represents the maximum energy transfer to
an e (electron) occurring in a single collision [18]. For a particle with mass (M), WMax

is provided by the following equation:
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WMax = 2mec
2β2γ2

1 + 2γme/M + (me/M)2 (2.8)

Figure 2.4 indicates the stopping power for positive muons in copper as a function of

Figure 2.4: Muon energy loss as a function of their momentum is given by (βγ = p/Mc)
for positive muons in copper. The solid curves represent the total stopping power, which
reaches a minimum in the region labelled “Minimum ionisation”. The mass stopping
power in this region is about 1.4 MeV cm2g−1. [7].

muon momentum. Cosmic muons are minimum-ionising particles, as are most relativis-
tic particles which have rates of mean energy loss close to the minimum [7]. The energy
loss rate in the “minimum ionising” region is almost constant and varies based on the
absorber materials (see Figure 2.5), e.g. for copper is approximately 1.4 MeV cm2g−1.
Since muons are charged particles, they are likely to accelerate or decelerate when pass-
ing through the electric fields created by the atomic nuclei and atomic electrons of the
material. Hence, muons emit radiation known as (Bremsstrahlung), and consequently
lose energy when travelling through matter. Regardless, Bremsstrahlung effects con-
tribute to the muons’ energy loss; nevertheless, their contributions are not significant
because the muon has a large mass compared to electrons [7].

In theory, a cross-section (emission probability (σ)) of the bremsstrahlung effect
is proportional to the particle’s radius (rp). For example, an electron’s cross-section is
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Figure 2.5: The mass stopping power, as a function of the atomic number Z, in the
region of minimum ionisation is plotted for several materials with atomic numbers
ranging from 7 to 100 [7].

calculated as follows:
σ ∝ r2

e (2.9)

where re is inversely proportional to the square of the electron’s mass [7]:

r2
e ≃ ( e2

4πε0mec2 )2 (2.10)

Therefore, the large mass of the muon compared to that of electrons (∽ 207
me), explains that cosmic muons lose much less energy in the matter they traverse
through than electrons do. However, for high-energy particles, including cosmic muons,
ionisation becomes less important, and radiative processes become dominant in the
contribution of the loss of energetic cosmic muons energy. Figure 2.6 shows the radiative
process’s significant contributions to muons energy loss in iron [7].

In summary, cosmic muons lose a small portion of their energy when traversing
through matter, mostly due to electronic stopping power (ionisation and excitation).
In principle, the sum of all contributions of all muon inelastic scatterings in matter is
used to calculate a material’s electronic stopping power.

Moreover, in addition to inelastic scattering with the atomic electrons, cosmic
muons interact with nuclei in matter via Coulomb scattering as they travel through it.
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Figure 2.6: The contributions of bremsstrahlung, pair production and photo-nuclear
interactions in muon energy loss in the material of iron [7].

The scattering that occurs because of this interaction is considered elastic scattering
because the energy loss due to Coulomb scattering is negligible. However, this inter-
action can lead to high proportions of muons experiencing deflections because of the
effects of elastic collisions. These deflections, even when very small, have been exploited
by muon tomography to image objects of interest (detailed in the next section). The
next section also explains the theoretical background of using cosmic muon scattering
to extrapolate information about the matter through which muons pass using the MST
technique.

2.4 Muon Tomography Techniques

Generally, muon tomography can be classified into two types: muon scattering to-
mography and muon radiography. Muon scattering tomography uses muon scattering
information to produce a 3D image of the investigated object, whereas muon radiog-
raphy uses information regarding the muon flux before and after travelling through an
object to understand the investigated object’s physical structure. Figure 2.7 shows an
example of the experimental set-up for both methods.
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Figure 2.7: Schematic visualisation of both methods of muon tomography. The orange
arrows represent cosmic muons passing through a volume of interest that contains a
high-Z material (the black box). In the illustration of muon absorption radiography,
the grey arrows represent the absorbed or attenuated cosmic muon.

2.4.1 History of Muon Tomography

In 1955, the early days of using cosmic muons to investigating object’s properties, the
absorption information of muons was studied by E. P. George [19] to estimate the
thickness of the overburden above an underground tunnel in Australia. A few years
later, a new approach of using cosmic muons in an actual imaging technique using the
same technology as X-ray radiography was introduced and called muon radiography.
The first attempt at using muon radiography as an imaging technique was in 1970
during the search for a possible hidden chamber in the pyramid of Chephren [20]. The
images produced in muon radiography, reflect the increases or decreases in numbers of
muons after passing through investigated objects. These numbers are usually compared
to some simulation-based (“Monte-Carlo”) expectation. A brief background of the
concept of muon radiography will be explained in section (2.4.2).

At the beginning of the twenty-first century, Los Alamos National Laboratory
(LANL) introduced the imaging method of muon scattering tomography [21]. Unlike
muon radiography, muon scattering tomography uses information about muon scatter-
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ing angles to produce a 3D image of the volume of interest. The first reconstructed
3D image of an object produced experimentally by MST is shown in Figure 2.8. It
also shows a Monte Carlo simulation output of the same object simulated and recon-
structed, and it successively agrees with the experimental output [21]. The test object
was a tungsten cylinder with a radius and height of 5.5 and 5.7 cm, respectively.

Since then, the muon tomography technique has been shown to be an effec-
tive technique in many different applications, such as civil infrastructure, volcanology,
archaeology and nuclear waste identification. In the last decades, many applications
across the globe have proposed the use of muon radiography or muon scattering tomog-
raphy for imaging purposes. Several examples of both methods of muon tomography
applications that have justified the feasibility of the muon tomography technique will
be presented in the next chapter.

Figure 2.8: The reconstructed images of a tungsten cylinder with a radius of 5.5 cm
and a height of 5.7 cm. The outputs also show images of two supporting steel rails.
The inset plot shows almost identical width distributions of scattering angles for muons
passing through the tungsten cylinder for the experimental and simulation data [21].

2.4.2 Muon Absorption Radiography

In theory, muon radiography works similarly to the principle of X-ray radiography.
The imaging set-up for an X-ray works by placing an X-ray source on one side of
the object of interest (e.g., patient) and an X-ray detector on the other side. Then,
the transmitted X-rays are measured after passing through the patient’s body [22].
X-rays are more likely to be absorbed in varying degrees by different parts of the
human body, e.g. dense bones absorb more X-rays than soft tissue [22]. This reveals
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the presence of a high-absorber material inside the inspected object. However, X-rays
cannot pass through all objects because they can be stopped by shielding materials of
small thickness.

The limitations of imaging shielded objects by X-rays can be avoided by using
cosmic muons, which have a higher level of penetration through matter. For example,
they can pass through approximately 10–100 metres of rock. The muon absorption or
transmission imaging method is based on the energy loss of muons when they interact
with the matter through which they travel. When a muon passes through matter, it
might be absorbed because of the loss of its energy (explained in section 2.3). The
transmission level is defined as the ratio between the muons flux detected by the muon
detectors after passing through the object of interest and the detected flux when the
detectors are free from the object. A one-sided detector system is placed behind or
in the shadow of the inspected object to measure the attenuated muon flux distribu-
tions passed through the object. The muon flux interacts with the investigated object
depending on the object’s thickness (x) and density (ρ). The number of muons that
manage to pass through the investigated object is the object’s opacity (ϱ). Opacity is
defined as the amount of matter that muons encounter during their travel throughout
the object of interest. The opacity is expressed in units of [g · cm−2] and can be calcu-
lated using the integrated object’s density and the length of the muon’s path through
the object:

ϱ =
∫
ρ dx (2.11)

The number of muons that pass through an object is higher if they travel through an
object with low opacity. To reconstruct a 3D image of the inspected structure, the
detectors can be moved around the object to collect data from several points of view.
The transmission imaging mode uses a single muon detector placed downstream of the
object of interest to detect the muons that pass through the object. An example of a
muon radiography set-up is illustrated in Figure 2.9.

The attenuation level of muons inside an object depends on the object’s physical
and chemical properties. For instance, the inspected object’s thickness and density
can influence the number of muons that successfully pass through the object. Thus,
it is possible to generate a density map for the inspected structure by measuring the
transmitted muon flux through the structure. Muon radiography exploits the free
availability of cosmic muons with high penetration levels to image and study large
bodies, such as volcanoes.
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Figure 2.9: A depiction of the muon absorption radiography concept for imaging vol-
canoes [23].

2.4.3 Muon Scattering Tomography

Despite the fact that cosmic muons have a large mass, they can undergo multiple
scattering events as they travel through matter. These scattering events are interpreted
according to the fact that muons are charged particles; hence they interact with the
nuclei present in the medium of matter via Coulomb’s law. This results in MCS, the
scattering of muons through the matter. The multiple scattering of muons throughout
the matter leads to the creation of a random walk pattern, where the muon changes
its directions several times. A representation of an incident particle random walk is
indicated in Figure 2.10. It also shows that when a muon travels through matter, it
might exit the matter in a different direction from its direction when it entered the
matter. Thus, the scattering angle here is defined as the angle between the entry and
exit points.

In principle, a muon’s scattering angle is inversely proportional to the radiation
length (Xo) of the material through which the muon passes. Statistically, the distribu-
tion of the projected scattering angles of the muons through a material with a thickness
of X is approximately Gaussian, with width σ given by the following equation:

σ ≈ 13.6MeV

βcp
z

√
X/Xo(1 + 0.038 ln(X/Xo)) (2.12)

where βc is the muon velocity, p is the muon momentum [24, 25], z is the muon’s
charge, and Xo is the mean distance through a material that an electron must traverse
to reduce its energy by a factor of 1/e, and it is determined in units of (g · cm−2) using
the following equation:
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Figure 2.10: A representation of the random walk due to MCS events, where s, ψ and
y are random variables [7].

Xo ≈ 716.4 A g cm−2

Z(Z + 1)ln(287/
√
Z)

(2.13)

where Z is the atomic number, A is the mass number and ρ is the density [7]. Unlike
other imaging techniques, such as CT, which employ a focussed narrow beam aimed
at a target, MST simply places the volume of interest between two tracking systems
to reconstruct the muon’s trajectories as they enter and exit the object (see Figure
2.11). To produce a 3D density map of the investigated volume, multiple layers of
the muon tracking system are arranged in the X–Z and Y–Z planes to register the
muon hit positions. Reconstruction of the 3D trajectories of the muons entering and
exiting the volume of interest can be obtained. Hence, by using the information on the
muon trajectories to calculate their scattering angles across the volume of interest, a
3D density map of the volume can be produced.

Regardless of a material’s thickness, according to equations 2.12 and 2.13, cosmic
muons are highly sensitive to the proprieties of the materials through which they pass,
specifically the radiation length of the material. Consequently, the radiation length is
inversely proportional to the atomic number, which explains the importance of using
cosmic muon as a source in MST. Different elemental properties are listed in Table 2.1,
which clearly shows that the radiation length (g· cm−2) of materials decreases as atomic
numbers increase. Theoretically, a large scattering angle of muons passing through a
volume might be caused by the presence of a high-Z material in the volume. Thus, all
regions containing high-, medium- and low-Z materials inside a volume of interest can
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be identified.

Figure 2.11: Schematic depicting a generic muon scattering tomography system com-
prising tracking chambers placed above and below a volume of interest containing a
cube of high-Z material in green. The solid red lines represent the trajectories of the
incoming and outgoing cosmic muons.

2.5 Summary

Non-destructive imaging techniques are classified into two main types: passive and
active. Muon tomography is a passive technique that does not require an artificial
radioactive source. The current state of knowledge about muon tomography as an
imaging/scanning technique has developed significantly since its first use in 1970. The
characteristics of cosmic muons with high-penetrating power that are naturally avail-
able everywhere make them a valuable resource for investigating well-shielded large
and small bodies.

The theoretical background explained in this chapter includes the fundamental
and general background of cosmic muons interactions with matter. More detailed
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Material Z ρ (g/cm3) Xo (cm) Xo ( g · cm−2)

H2 (gas) 1 8.376 × 10−5 7.527 × 105 63.04

B 5 2.370 22.23 52.68

Na 11 0.9710 28.56 27.74

S 16 2.000 9.748 19.50

Ca 20 1.550 10.42 16.14

Cu 29 8.960 1.436 12.86

Sr 38 2.540 4.237 10.76

Ag 47 10.50 0.8543 8.97

Cs 55 1.873 4.434 8.31

Tb 65 8.230 0.8939 7.36

W 74 19.30 0.3504 6.76

Pb 82 11.35 0.5612 6.37

U 92 18.95 0.3166 6.00

Pu 94 19.84 0.2989 5.93

Table 2.1: Atomic number, density and radiation length for different materials. The
radiation length values are provided in both (cm) and in (g· cm−2), and Xo is weighted
by density for the first case [7, 26].

information is available that explains cosmic particles interactions with matter in depth
[7, 18]. Muon radiography has exploited the principle of muon energy loss in matter
that leads to muon flux attenuation. Additionally, muon scattering tomography has
exploited the nature of the MCS theory regarding the interactions of muons with matter
and used muons to identify materials.





Chapter 3

Applications of Muon Tomography

The applications of muon tomography can be classified into two main types depending
on the imaging mode: muon absorption/transmission (explained in section 2.4.2) and
muon scattering (explained in section 2.4.3) applications. This chapter reviews pre-
vious studies using muon tomography as an imaging tool in both modes for different
applications. The strengths and limitations of both imaging modes are also briefly
highlighted.

3.1 Applications of Absorption Radiography

Since the 1950s, the muon absorption radiography has shown potential as a non-
destructive method to view the inside of large structures by producing a density map
of the structure of interest. The basic concept of muon radiography with the powerful
characteristics of cosmic muons has prompted researchers and commercial establish-
ments to use this method in imaging and monitoring large structures. This section
highlights some of the recent applications that have resulted in promising conclusions
regarding the feasibility of applying muon radiography as an imaging and scanning
technique.

3.1.1 Archaeological and Volcanology Applications

The high-penetrating level of cosmic muons through objects gives archaeologists and
volcanologists the opportunity to study the inside of ancient large pyramids and to mon-

22
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itor active volcanoes, respectively. In 1970, the first attempt to use muon absorption
radiography was made when scanning the second pyramid of Chephren, searching for
an unknown chamber [20]. The measurement of cosmic muons that travelled through
the pyramid were compared to the data obtained from simulations, as the pyramid had
been simulated without any unknown chamber. The presence of the unknown chamber
was not suggested as there were no differences observed between the experimental and
simulated data. It was expected that more muons would cross the pyramid if there
was a region with a lower density (unknown chamber) compared to the surrounded
rock density. In the study by [27], the measurement of cosmic muon flux was applied
to investigate the roof of the Grotta Gigante, a natural cave located near Trieste in
Italy. The muon detector was positioned inside the cave, and then the measured muon
flux obtained inside the cave was compared to a computed expected muon flux. The
expected muon flux was calculated for zenith angles ranging from θ ≥ 0◦ to θ ≤ 70◦,
and for azimuth angles spanning from ϕ ≥ 0◦ to ϕ ≤ 360◦. The study revealed several
anomalies in the rate between the measured and expected muon flux, suggesting that
a variation in density in the region defined by ϕ > 210◦ to ϕ < 230◦ and θ > 55◦ to
θ < 60◦ [27].

Recently, a similar study was conducted in 2017 to scan/image the inside of
the pyramid of Khufu in Egypt [2]. The discovery of a large void in this pyramid
was achieved using three different muon detectors: nuclear emulsion films, scintillator
hodoscopes and micro-pattern gaseous detectors. Information regarding the detector
characteristics is summarised in Table 3.1. The nuclear emulsion and the scintillator
hodoscope detectors were placed inside a known chamber in the pyramid (Queen’s
chamber), while the gaseous detector was placed outside the pyramid near the pyra-
mid’s base.

The outputs of the nuclear emulsion detector are shown in Figure 3.1, indicating
the 2D histograms (a and b) of the muon flux that were detected at two positions, NE1
and NE2, in the Queen’s chambers and in a narrow corridor called Niche, respectively.
The density maps showed an increase in the detected muons that passed through known
chambers, e.g. the King’s chamber (A) and the Grand Gallery (B), as well as the newly
discovered void highlighted by a white rectangle. Figures (c) and (d) show the results
of Monte Carlo simulations showing the known chambers. The figures labelled in (e)
and (f) are the slices of the angular regions of 0.4 ≤ tan θy < 0.7, indicating the newly
detected void with an excess of number of muons in two regions: the new void and the
known Grand Gallery corridor, labelled in B.
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Characteristics Nuclear Emulsion Hodoscopes Gaseous Detector

Developer Nagoya University KEK1 CEA2

Spatial Resolution 1 µm 10 mm 450 µm

Height 0.2 mm ∼ 1 to 1.5 m 60 cm

Active Area 75 cm × 60 cm (NE1)
90 cm × 50 cm (NE2) 1.2 m × 1.2 m 50 cm × 50 cm

Power Supply No 300 W 35 W
1 High Energy Accelerator Research Organisation.
2 Commissariat a l’Energie Atomique et aux Energies Alternatives .

Table 3.1: The general properties of the muon detectors contributing to the discovery
of the new void in Khufu’s pyramid. NE1 and NE2 are the chosen positions of the
nuclear emulsion films in the Queen’s Chamber [2].

Figure 3.1: Nuclear emulsion outputs from imaging Khufu’s pyramid. Figures (a) and
(b) are the 2D histograms of the detected cosmic muon flux, the Z axis represents the
muon count with the units of muon per cm2 per day per steradian at two positions,
the Queen’s chamber (NE1) and the ‘Niche’ (NE2), which are both known chambers.
Figures (e) and (f) indicate the excess of the detected muons flux within the highlighted
angular regions of 0.4 ≤ tan θy < 0.7 [2].

Meanwhile, two gaseous telescopes were placed in front of the north side of the
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pyramid facing the direction of one of the known chambers (the Grand Gallery). The
two telescopes (‘Alhazen’ and ‘Brahic’) were placed close to each other to combine
the muon flux data detected by both detectors. The results of using gaseous detectors
confirmed the presence of an unknown void in the same place claimed by the University
of Nagoya. Statistically, a significant excess in the number of muons was detected in
two regions inside the pyramid: the known Grand Gallery and the new void. The
statistical excess of muon flux was found to be 8.4 σ and 5.8 σ for the Grand Gallery
and the new void, respectively [2]. Figure 3.2 shows the density maps (in a and d) of
the muon flux that traversed through a part of the suspected region in the pyramid.
The regions of interest are highlighted in black-dotted rectangles within the density
maps, and then they have been horizontally sliced. Figures (b) and (c) indicate the
excess of muon flux in the upper and lower highlighted regions in the density map (a),
respectively.

Figure 3.2: The gaseous detector outputs from imaging of the Khufu pyramid. Figures
(a) and (d) are the 2D histograms of the detected cosmic muon flux in a logarithmic
scale at two positions: by Alhazen (G1) and by Brahic (G2). Figures (b) and (c) are
the slices of the upper and lower highlighted regions, respectively, in (a), showing the
excess of the detected muon flux by Alhazen. Figures (g) and (h) show the detector
positions and the angular area of the observed muon flux excess through the Grand
Gallery in red cones and through the new void in yellow cones [2].
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Muon radiography has also been shown to be a possible technique to image or
monitor the internal structure of volcanoes. In the last decade, several research groups
in geo-science have applied muon radiography to investigate volcanoes across the world,
e.g. [28, 29, 30, 31] and more recently in [32]. In 2012, the muon radiography method
was used to investigate a famous active volcano in Guadeloupe, which is called La
Soufrière [33]. A telescope made of three scintillator matrices was used. The telescope
was installed on the southern side of the lava dome, which is called Ravine Sud (location
1), and was then moved to a place called Roche Fendue on the eastern side of the dome
(location 2). Figure 3.3 shows the average density as density anomalies relative to a
reference density obtained from the muon flux detected at the two locations. The
2D density maps show that the structure of the lava dome is a combination of low-,
medium- and high-density regions. The massive lava appeared in the higher density
regions with an average density of ∽ 1.9 g · cm−3 ( labelled RF1 and RF5). The regions
labelled RF4 and RF2 have low densities, which correspond to a known void (cave) and
a hydrothermal area, respectively, with an average density of ∽ 1.1 g · cm−3. There
is also a visible dense rock with intermediate density in the region of RF3, situated
between the two low-density regions of RF4 and RF2 [33].

Recently, the results of three years of monitoring the largest active volcanic moun-
tain in Italy, Mount Etna, have been published [34]. Muon detectors were used to
observe any possible anomalies within the internal structure of Etna mountain. The
muon telescope used in this study consisted of three positions-sensitive modules, each
module built with 99 scintillating bars with a dimension of 1 cm × 1 cm × 100 cm and
with a total active area of 1 m2 [34]. The telescope was placed northeast of the vol-
canic crater to detect the muon flux that managed to cross the structure of the volcano.
Simultaneously, the telescope also registered the muon flux coming from the opposite
direction without any obstacle and then registered it as open-sky data. The alteration
of densities in the inspected volcano over three years of exposure time was observed,
as shown in Figure 3.4. The results were plotted in a scale of R values obtained from
the daily average of the ratio between the muon flux that crossed the volcano structure
and the data of the muon flux of the open-sky setup. This research led to an early
observation of a cavity under the roof of the northeast crater in 2017 before its collapse
at the end of the year. This void can be observed in the 2017 figure with higher R
values compared to the surrounding regions. This abnormality resulted in an excess of
muon flux travelling through a structure with a low density (the new void).
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Figure 3.3: The density maps obtained from the muon flux detected by the muon
telescope at two designated locations: Ravin sud (above) and Roche Fendue (bottom).
Both maps show the heterogeneity in the density structure of the inspected volcano.
The Z bar represents the average density relative to the determined reference density
of each figure (stated in the title of the figure). RF2 and RF4 regions correspond to
structures with low densities, which are the hydrothermal area and the large known
cave, respectively [33].

3.1.2 Civil Engineering Applications

Muon radiography has also contributed to monitoring and imaging large structures
in civil engineering fields, such as tunnels, towers and mining sites. It is necessary
to regularly monitor civil infrastructures, especially historical sites that people still
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Figure 3.4: Comparison of the 2D muographic images of the Etna volcano produced
in 2017 (upper), in 2018 (middle) and in 2019 (bottom). The density maps represent
a scale of R values that were calculated from the muon flux information before and
after travelling through the volcano structure. The abnormality of high R values in
2018 compared to 2017 correspond to the roof structure, which collapsed at the end of
2017. The pictures on the right-hand side are birds-eye views of the crater [34].
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visit, to avoid any potential hazard. In recent years, many experiments have yielded
promising results of using muon radiography in this field, e.g. imaging water towers
in [35], an ancient mine in [36] and Carbon Capture and Storage (CCS) reservoir
monitoring [37]. More recently, in 2020, a study was performed to check a railway
infrastructure of a disused tunnel called Alferton Old Tunnel in Nottinghamshire [38].
The tunnel was built in the 19th century with a total length of 770 m. The muon
radiography technique was applied using two layers of plastic scintillators with an
active area of 30 cm × 90 cm. The detector system was installed in the back of a van,
and the muon flux data were taken in ten-metre interval patterns alongside the tunnel.
The muon flux information was obtained by summing the triggers recorded by the
detector system and was then converted to muon rate values (muon per 30 minutes)
[38]. The information of the typical muon flux in the area was measured without any
obstacles several times before recording the data inside the tunnel.

Figure 3.5 shows the results of the measured, expected and inferred muon rate
per 30 minutes as a function of distance along the tunnel. As shown by the figure,
the muon rate significantly dropped after entering the tunnel from either entrance.
This is expected as the information from the topographical survey stated that the
overburden increases gradually into the tunnel; however, despite the broad agreement
of the measured muon rate with the expected rate, the regions between (150-200 m)
and (600-700 m) showed an unexpected measurement rate compared to the expected
rate. This is due to the limitations of the topographic data that had been collected in
a straight line above the whole tunnel [38]. Because the detection method of the muon
detector was based on an angular range, the detected muons might have encountered
a larger or smaller overburden away from the straight line, leading to an inaccurate
estimation of the muon flux information. This abnormality was corrected by estimating
the overburden thickness using the open-sky measurements and the muon flux that
crossed a particular region.

As a result, the inferred muon rate showed excellent agreement with the measured
muon rate, except for the three known open shaft regions. The statistical excess of the
muon rate in the regions of the open shafts was found to be about 10.0 σ [38]; however,
the main finding of this study is the observation of a significant excess of the muon
rate between 75 m and 80 m when compared to the inferred rate. This abnormality
in the muon rate could be a sign of changes in the overburden structure of this region,
which then was identified as a hidden shaft (see Figure 3.6).
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Figure 3.5: Comparisons between the measured muon rate (in the black triangle)
and both the expected and inferred muon rates in blue-dashed and red-solid lines,
respectively. The excess of the measured muon rate between 75 m and 80 m was
identified as a hidden shaft. The anomalies in the measured muon rate at 350 m do
not represent any change in the overburden in this region and were reported to be due
to a fault in the detectors’ system cables [38].

3.2 Applications of muon scattering tomography

The technique of muon scattering tomography (MST) was first introduced in 2003 by
[21]. Since then, it has been shown to be an effective method in several applications,
such as safeguarding and nuclear waste characterisation applications. Unlike muon
radiography, the MST method is designed to investigate small- and medium-sized bod-
ies placed between two tracking systems. This setup limits the size of the volume of
interest to the gap between the tracking systems. This also means that the volume of
interest is more controlled and does not require the further information that is needed
for muon radiography, e.g. muon flux information. Furthermore, the concept of muon
scattering method does not significantly rely on the count of muons crossing the vol-
ume under investigation. Thus, the inspection time can be much faster compared to
the muon radiography method. This section highlights the state-of-the-art of MST
technique. Examples of different studies across the globe that have applied MST as an
imaging tool have proved the feasibility of the MST method for several applications,
which are briefly presented in this section.
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Figure 3.6: Comparisons between the measured muon rate and both the expected and
inferred muon rates at the region of interest between 40 m and 120 m. The excess of
the measured muon rate between 75 m and 80 m is highlighted by a yellow rectangle,
which has been identified as a hidden shaft [38].

3.2.1 Safeguards applications

Globally, the safeguards security system works against any potential misuse of special
nuclear materials (SNM) and spent nuclear fuel (SNF) for nuclear weapon purposes
[39]. Scanning thousands of shipment containers that cross borders requires a quick
and reliable method to prevent any smuggling of SNM. In 2003, the MST technique
was first used by Los Alamos National Lab (LANL) to scan commercial objects, such
as containers and cars [21]. The study showed promising results of using MST to detect
high-Z materials hidden inside a large volume of low-Z materials. This technique has
attracted the attention of several research groups across the world. Examples of studies
in which muon tracking systems and reconstruction algorithms in the scanning/imaging
field were developed include [5, 40], and more recently, [41, 42]. A few years later, the
LANL built a large muon tracker consisting of 12 layers of a muon tracking system with
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Figure 3.7: Comparisons between the X-Y slice from the mean scattering angles output
images of the clean engine (left), the engine with a 10 cm side-length cube of Pb
(middle) and the subtraction (right) [43].

six layers above the volume of interest and six layers below it. The system consists
of long drift tubes with a length, diameter and spatial resolution of 365 cm, 5 cm
and 450 µm, respectively. The detectors were arranged to provide information related
to muon trajectories crossing through the system in the X-Z and Y-Z planes [43].
Figure 3.7 shows the results of testing the MST detector system to locate a high-Z
material (Pb) hidden inside an engine of a small passenger car. The volume of interest
was divided into a cubic-voxel with a side-length of 20 mm, and then each voxel was
weighted by the mean scattering angle of each muon crossing the given voxel. After less
than three hours of muon exposure time, the lead cube was located inside the engine
using the scattering information of muons travelling through the inspected engine;
however, hours of exposure time is not efficient for safeguard inspection purposes.

Additional Monto Carlo simulations were performed to understand the timescale
of muon exposure needed to identify any threat embedded inside a cargo van. Several
scenarios were simulated for a cargo van carrying a tungsten cube with side-length of
10 cm embedded between different non-hazardous materials. A 3D density map of the
van’s contents was obtained using the Maximum Likelihood/Expected Maximisation
(ML/EM), which is detailed in [44]. The results of all scenarios were compared by
using Receiver Operating Characterisation (ROC) curves, which plot the true positive
(detection rate) against the false negative rate. On a statistical level, the ROC curves
help to understand the capability of the detector system to locate the tungsten cube at
several scanning times (see Figure 3.8). Statistically, this study showed that the MST
detector system is able to identify the tungsten cube in 90 seconds.

In 2018, a prototype of a large portal muon detector was built by [45] to scan
a whole standard 20-foot commercial container. Figure 3.9 shows the design of the
detector setup suggested for the large muon portal project. The system consists of
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Figure 3.8: Comparison between ROC curves obtained from average scattering density
information to detect a 10 cm side-length tungsten cube inside a cargo van for several
hours of muon exposure time. The curves for 90, 120, and 180 seconds overlap, with
an area under the curve almost equal to 1.0, indicating a very good identification level
[43].

eight layers of position-sensitive modules that provide the muon hit positions in the
X and Y planes. Each layer consists of six modules with a dimension of (1 × 3 m2)
and total active area of 18 m2. The ability of the system to detect high-Z materials
inside a large six-foot container was tested by placing a set of lead blocks with total
size of 10 cm × 10 cm × 40 cm at Z = 215 cm. The scattering density information was
calculated using the Point of Closest Approach algorithm (PoCA), which is explained
in chapter 5 (see Section 5.1). Figure 3.10 shows the 2D tomographic images of the
container’s content at different planes along the vertical direction (Z). The lead cubes
are clearly detected at the expected locations between 205 and 225 cm. For safeguard
applications, it is important to determine how much data are needed to detect high-Z
materials embedded inside an inspected container. Figure 3.11 indicates that 200,000
muon tracks is enough to flag the contents of the container with a density higher than
expected. According to this study, the number of tracks can be achieved in ∽ 4 hours
of muon exposure time, which is too much time to scan a single container.
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Figure 3.9: Schematic of the suggested design of MST for the muon portal project to
scan shipment containers [45].

Figure 3.10: Comparisons between the 2D tomographic images of the container’s con-
tents in sections for the regions inside the container between 185 cm and 265 cm with
a total of 80 cm in the vertical direction [45].

3.2.2 Building maintenance applications

The maintenance of civil construction is necessary to keep facilities safe and to mitigate
any disturbance or issues in the future. For instance, defects in parts of steelwork
configurations within Reinforced Cement-Concrete (RCC) bodies could cause disasters
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Figure 3.11: Comparisons between the X-Y slice of the reconstructed 2D images of the
container’s contents using 200,000 tracks (above) and 400,000 tracks (below) [45].

over time. Several non-invasive technologies have been applied to image/assess civil
infrastructure bodies, such as the ultrasound method [46] and Ground Penetrating
Radar (BPR) [47]; however, the penetration ability of these conventional methods
through materials can be limited to a few centimetres. Recently, several research
groups have applied the MST technique to scan rebars within RCC bodies, e.g. in [48].

In [49], simulations studies were performed to investigate the capability of the
MST method to detect several common issues that might occur in RCC bodies. A
few cases have been considered in this study, such as internal degradation within the
concrete (voids) and corrosion of the iron rebars. Two identical muon tracking systems
with a spatial resolution of 0.2 mm were placed above and below the volume of interest.
Each tracking system consisted of multiple layers of a gaseous detector with an active
area of 600 mm × 600 mm, providing muon trajectories in the X-Y planes.

Figure 3.12 shows the simulated module of the RCC structure, which was made
of rebar with a length and diameter of 24 cm and 3 cm, respectively, embedded along
the X-axis inside a concrete body with a dimension of 25 cm× 10 cm× 10 cm. The rust
in the model was a composition of Fe2O3 with a density of 5.25 g/cm3 and was placed
in three regions as rings with a thickness that varied from 2.25 to 4.5 mm around the
rebar. The density of the concrete and the normal steel rebar was 2.3 and 7.87 g/cm3,
respectively. This results in ∆ ρ ∽ 2.6 g/cm3 between the normal rebar and the rusted
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one.

The scattering densities within the volume of interest were reconstructed using
the PoCA algorithm, which will be discussed in chapter 5 (see Section 5.1). The
scattering densities were projected along the X- and Y-axis, and then each pixel in
the 2D plane was weighted using the information of the projected angles (θx and θy).
Figures 3.13 and 3.14 show the 2D reconstructed images of the normal rebar in (a) and
the rusted bar in (e). The colour-scale bar represents the discriminator values of each
pixel. Hence, these values were used to apply the Pattern Recognition Method (PRM)
algorithm to generate scores of filtered discriminator values, called the PRM score.

A high PRM score of the inspected region means that the reconstructed image
is more likely to be different from that of the normal image (a reference image). The
PRM scores were produced by comparing the discriminator values of all regions in the
reconstructed image of the inspected rebar ( figure (e)) to the discriminator values of
all regions of the reference image (figure (a)). Consequently, all pixels containing fewer
discriminator values compared to the reference image were neglected by PRM. The
image of the rebar was re-reconstructed according to the PRM scores, as can be seen
in (figures (b) and (f)), and the neglected and approved pixels are shown in grey and
red, respectively. The PRM scores of the rusted regions show the ability of the MST
to detect any abnormality in the rebar, with a score of 1.48 and 4.45 when imaging
defected rebars by corrosion with a thickness of 2.25 and 4.5 mm, respectively.

Figure 3.12: The module of the defective rebar was simulated and placed in the centre
of a Reinforced Cement-Concrete (RCC) body, aligning it with its central axis [49].

3.2.3 Nuclear waste imaging and characterisation applications

Globally, radioactive waste materials come from different kinds of facilities, such as
nuclear reactors, research and medical facilities. The chemical proprieties of radioactive
waste can vary in terms of concentrations of radionuclides as well as in its physical form
[50]. According to the safety rules of radioactive waste disposal and management, it is
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Figure 3.13: (left) the reconstructed image of a normal rebar inside a concrete matrix,
(right) the PRM-filtered image of the normal rebar [49].

Figure 3.14: (left) the reconstructed image of a defective rebar with corrosion with a
thickness of 4.5 mm, (right) the PRM-filtered image of the defective rebar [49].

required that radioactive waste should be characterised and classified before disposing
of it in short or long term storage facilities [51]. The International Atomic Energy
Agency (IAEA) has classified radioactive waste into six classes depending on the level
of radioactivity. Hence, radioactive waste can be high-level waste (HLW), intermediate-
level waste (ILW), low-level waste (LLW), very low-level waste (VLLW), very short-
lived waste (VSLW) and exempt waste (EW) [50].

HLW composites have a large number of radionuclides and have a level of activity
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(> 104-106 TBq/m3) that is high enough to produce a significant amount of heat due
to the radioactivity decay process [50]. For example, spent nuclear fuel and any other
by-products of waste from nuclear fuel reprocessing are considered HLW. While, ILW is
classified as any waste composites of long-lived radionuclides in an amount that requires
a high degree of shielding to be isolated from the biosphere, such as alpha-emitting
radionuclides. It also classifies any highly contaminated waste as ILW, such as parts of
a reactor core, resins and filters that are used to treat the reactor water system. LLW
composites of limited quantities of long-lived radionuclides have a relatively low level
of activity or short-lived radionuclides with high levels of activity. LLW also contains
contaminated materials that have been used during routine clean-up and maintenance
operations at nuclear reactor plants, e.g. protective clothing, plastics and mops.

VLLW does not require high shielding, such as materials with low levels of activity
that come from dismantling nuclear sites (soils, bricks, steel items and rubble) [50].
VSLW mainly contains radionuclides with very short half-lives, and they can be stored
until their radioactivity decreases to the level of clearance. For instance, such materials
come from research and medical facilities, e.g.192Ir. EW can be any waste that achieves
the criteria for clearance and an exception from the regularity control of radiation
protection rules, and they can be handled without protection.

Radioactive materials are usually disposed of and stored depending on the reg-
ulations and their class of radioactivity. In general, there are many nuclear waste
packages designed to store or transfer specific classes of nuclear waste, and they can
be either dry or wet storage. The wet storage facilities are usually contain water pools
to cool down heat generated from HLW, while dry storage facilities use the natural
air to dissipates heats [52]. Furthermore, nuclear waste packages vary in size, shape,
shielding and thickness. Examples of typical small packages are shown in Figure 3.15,
and they are used to accommodate LLW and ILW within concrete shielding. These
small drums are usually made of stainless steel or carbon steel with a height and a
diameter of 850 mm and 570 mm, respectively, for a 200-litre drum.

Larger nuclear waste packages have also been designed for safe transportation or
the interim storage of HLW, such as spent fuel assemblies. As HLW generates heat,
it might undergo cooling procedures ( ∽ years) before moving to dry storage facilities
[50]; however, this procedure can be avoided with the availability of a self-cooling cask,
such as CASTOR® (Cask for Storage and Transport Radioactive Material) [53]. Several
CASTOR casks are designed and built in Germany by Gesellschaft für Nuklear-Service
(GNS). Figure 3.16 shows three different designs of the CASTOR cask, namely V/19,
V/52 and HAW28M, with a cylindrical body made of ductile iron. The V/52 Castor
has been designed for the transport and storage of SNF assemblies that come from a
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Figure 3.15: Examples of cylindrical drums with a capacity of 200 litres (left) with
an internal diameter of 560 mm and a capacity of 400 litres (right) with an internal
diameter of 770 mm used to store LLW and ILW. The 200-litre drum is made of stainless
steel, and the 400 litre is made of carbon steel [51].

boiling water reactor (BWR) with a height of 455 cm and a total diameter of 244 cm.

The standards and modern regulations for disposing of and storing radioactive
waste are well-understood. These regulations have been established to control and
mitigate any potential hazard to the environment and public that might be posed by
nuclear waste facilities; however, in the early nuclear era, the development of nuclear
reactor technologies was dominant, and concerns about nuclear waste were considered
insignificant [54]. Many old disposal sites have issues, such as poorly documented
data about the disposed materials. This could include a lack of information about
the concentrations and the form of the disposed radionuclides at the site. Moreover,
it is possible that old packages could have a heterogeneous mixture of waste forms or
classes. Hence, the retrieval of old nuclear waste packages is necessary to re-classify
this waste appropriately according to modern regulations [54].

Several techniques can be used to characterise unknown radioactive or non-
radioactive materials in old nuclear waste. The basic method of examining old waste
packages is by opening them and examining the materials chemically and physically to
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Figure 3.16: CASTOR casks are designed for specific types of fuel assemblies and
HLW: a V/19 CASTOR cask (left) with a cavity diameter of 148 cm designed to
accommodate up to 19 fuel assemblies from pressurised water reactors (PWR). In the
middle, a V/52 CASTOR with a cavity diameter of 148 cm designed to accommodate
52 fuel assemblies from BWR. On the right is the high-active waste (HAW) CASTOR
for HLW from the reprocessing of SNF with a cavity diameter of 135 cm [53].

measure their activity. This method is classified by IAEA as destructive assay (DA)
[55]. To avoid the risk of exposure to radioactive materials and the cost of opening
nuclear waste packages, non-destructive techniques are more practical in the character-
isation of well-shielded nuclear waste. The ways to check nuclear waste packages non-
destructively could be either a non-destructive examination (NDE) or a non-destructive
assay (NDA) [55]. The NDE method is used to examine the mechanical and physical
structures of the package. NDA is a characterisation system applied to determine the
concentration of radionuclide activity in a waste package.

NDA systems can be either active or passive techniques. Active techniques involve
artificial particle sources to probe the inspected object, e.g. X-ray radiography and
the neutron induced-fission imaging technique. X-ray radiography is sensitive to the
thickness and the density of the object it is crossing. Hence, a high-energy source
is used that is placed close to the inspected object, and a detector is placed on the
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opposite side to detect the photons that manage to cross the object. By using the
information of transmitted/attenuated photons, a dense or high-Z material can be
located inside nuclear waste packages [56]. Induced-fission imaging can also be used
to identify specific materials, such as plutonium and uranium, as the neutrons could
induce fission in both materials. Gamma-rays are emitted as a result of the nucleus
fission process with a unique energy for each material. Thus, depending on the energy
of the emitted gamma rays, the material can be identified; however, these techniques
are less efficient due to high costs, in addition hazard might occur due to exposure to
the artificial source used.

A passive technique uses information of radiation and/or heat emitted by the
object and does not require any artificial particle sources, e.g. calorimetry. Briefly, the
calorimetry technique exploits the fact that HLW generates heat inside the package,
and the amount of heat can be used to estimate the total radiation rate of the disposed
HLW. Measuring radiation information produced as a result of the natural decay of
uranium and plutonium is another example of passive techniques. For example, the
energies of detected gamma-rays can be used to determine the material; however, these
techniques are less efficient, especially with the presence of high-shielding materials,
as gamma-rays could be absorbed by the shielding material. The MST technique
is considered to be a passive method as it uses cosmic muons to scan the inspected
object. In addition, MST can overcome the limitations of the conventional methods
because cosmic muons can cross through the high-shielding of nuclear waste packages.
Moreover, MST is sensitive to high-Z materials, such as uranium, plutonium and lead,
so it can locate well-shielded materials.

In the past decade, there has been an increase in the number of research groups
and commercial companies that develop and commercialise the technology of MST
system in nuclear waste imaging. On a commercial level, Lynkeos Technology Ltd
developed Muon Imaging System (MIS) for imaging services like nuclear waste con-
tainers [57]. Lynkeos Technology based on the UK and it was started as a spin-out by
a group of nuclear researchers at the University of Glasgow. Figure 3.17 illustrates the
commercial Lynkeos MIS system, which is composed of four detector modules. Two
modules are positioned above the volume of interest, while two modules are placed
below it. These detectors are used to reconstruct the trajectories of muons as they
pass through the volume of interest. Each detection plane consists of a single layer of
plastic scintillating fibers arranged in orthogonal directions. In each direction, there
are two overlapping layers of fibers, with each layer containing 512 fibers, resulting
in a total of 1024 fibers for each detection layer. Each module provides information
about the muon signals in the X-Z and Y-Z directions, resulting in a total of 8 muon
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Figure 3.17: The MIS system, constructed and installed at the Lynkeos facilities,
consists of four detector modules, each with an active area of 106.6 cm × 106.6 cm
[57].

hit trajectories corresponding to the 4 detector modules. An example of imaging high-
Z materials embedded inside a 500-liter ILW waste drum using the MIS is shown in
Figure 3.18. In the experimental setup, the system utilized a total of approximately
25 million cosmic muons to image a small cylinder of uranium with a diameter and
height of 2 cm and 3 cm, respectively (see Figure 3.18 (a)). Additionally, the system
was tested using small pieces of lead with dimensions of about 9 cm × 4 cm × 2 cm
(see Figure 3.18 (b)). In both cases, the system successfully reconstructed an image
of the 500-liter drum, providing a clear image of the internal structure containing the
small pieces of lead and uranium [57].

In [58], a simulation study was performed to investigate the ability of the MST
method to image high- and low-Z materials inside small steel drum (26 litres). A vari-
ety of several materials with different shapes and sizes was embedded within concrete
shielding inside the drum. Figure 3.19 shows the simulated drum containing a cylin-
drical uranium rod with a radius and height of 1 cm and 10 cm, respectively. A sheet
of uranium was also simulated with a dimension of 0.5 cm × 10 cm × 10 cm. Several
tungsten coins with different sizes were embedded within the concrete matrix between
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Figure 3.18: The X-Y slice outputs of the uranium cylinder (left), and the lead pieces
(right) inside a 500-litre ILW drum using the Lynkeos MIS system [57].

the uranium rod and an enclosure filled with air. The simulated muon detector sys-
tem used in this study consisted of two tracking systems with a total of 12 layers of
Resistive Plate Chambers (RPCs), six layers above the inspected drum and six layers
below it. Each system provides six muon trajectories positioned in the X-Y plane,
three positioned in the X-axis and three positioned in the Y-axis.

The RPCs have an intrinsic spatial resolution of 450 µm and total active area
of 100 cm × 100 cm. Figure 3.20 shows a 3D reconstructed image of the inspected
drum, indicating all the hidden objects except the smallest coin of tungsten (1 cm
radius and thickness). The 3D image was reconstructed using data collected over a
span of 2 weeks. During this time, the drum was scanned in four distinct positions:
its default orientation and three subsequent rotations around the x-axis, each sepa-
rated by 90◦. The image of the drum content was reconstructed using the binned
clustering algorithm (BC), which is explained in detail in chapter 5 (see Section 5.1).
Additional simulations of uranium sheets with a thickness of 0.5 cm and several side-
lengths ranging from 4 to 10 cm were performed to understand the ability of MST to
reconstruct the target objects [58]. An edge finding method was applied to measure
the size of the reconstructed uranium sheets. Hence, the ability of MST to reconstruct
the hidden object can be measured in terms of size resolution. This study showed
that a 5 mm thickness of uranium sheets could be reconstructed with a resolution of
1.2 ± 0.37 mm. Figure 3.21 shows the reconstructed sizes of the uranium sheets with
a thickness of 0.5 cm and side-lengths ranging from 4 to 10 cm as a function of the
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Figure 3.19: A simulated drum of a standard ILW nuclear package with a length and
a diameter of 50 cm and 26 cm, respectively. The drum contents are a variety of
simulated high-Z and low-Z materials. The high-Z materials are simulated in different
shapes (coins, sheets and rods). All the drum contents are embedded in concrete
shielding [58].

real simulated sizes. After 32 days of muon exposure time, the results showed a good
agreement between the reconstructed and the real sizes of the target uranium sheets.

In some cases, many countries store LLW and ILW in steel packages with added
pure bitumen to fill the empty volume, or sometimes, they mix the waste with bitumen.
When bitumen is irradiated by the radioactive materials, this leads to the production
of hydrogen inside the drum [59]. Hydrogen combines to form gas bubbles, leading to
the swelling of the drum’s contents with a possibility of leaking radioactive waste to the
environment. In [60], the ability of the MST technique to locate low-density materials
(gas bubbles) inside nuclear waste packages was tested. Various sizes of cylindrical
gas bubbles were simulated and placed in the centre of a smulated waste drum. The
dimensions of the simulated gas bubbles were between 50.27 and 21237.17 cm3, with a
radius and length of 2 cm and 4 cm, respectively, for the smallest bubble.

The gas bubbles were simulated with a density of 0.0012 g/cm3, and the bitumen
was replaced with concrete with a density of 2.3 g/cm3. The muon detector used in
this study consisted of two identical tracking systems with six layers of RPCs above
the simulated drum and six layers below it. Each tracking system consisted of three
layers providing muon trajectory information in the X-plane and three layers providing
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Figure 3.20: A 3D reconstructed image of the simulated nuclear waste drum. The
contents of the drum are clearly visible apart from the tungsten coin with a thickness
and radius of 1 cm. The light-yellow regions represent the concrete matrix [58].

Figure 3.21: The reconstructed sizes of uranium sheets with a thickness of 0.5 cm
versus the real simulated sizes with a thickness of 0.5 cm and side-lengths between
4 cm and 10 cm. The muon exposure time was equivalent to 32 days [58].
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muon trajectory information in the Y-plane [60].

The drum’s contents were reconstructed using the BC algorithm, which will be
discussed in section 5.1.3, as can be seen in Figure 3.22, in which higher discriminator
values correspond to low-Z materials. The distributions in Figure 3.22 represent the
average discriminator of the drum’s contents when filled with gas and concrete with
values of µdiscr = 10.244 ± 0.003 and µdiscr = 10.069 ± 0.003, respectively [60]. These
results were produced using 159 million simulated muons, and their momentum was
considered as known and without any smearing.

Figure 3.22: The discriminator distributions obtained using the BC algorithm of the
drum contents. The black solid line represents the discriminator output when the
drum is filled with gas, and the blue-dashed line represents the discriminator when the
drum is filled with concrete. The higher discriminator corresponds to the lower density
material [60].

On a quantitative level, comparing the mean discriminator values of the drum
contents with gas bubbles to the drum contents without bubbles helps to locate low-Z
materials inside the drum. Figure 3.23 shows the results of three studies assuming
the presence of gas bubbles in two scenarios and one scenario with the absence of gas
bubbles. The mean discriminator values when locating 4.4 litres of gas bubbles in
the centre of the drum exceeded the discriminator values of the concrete matrix [60].
There was an increase in the discriminator values in the regions that contained two
bubbles with a volume of 2.2 litres inside the drum. The study showed that measuring
the volume of gas bubbles of 2.0 litres or more using MST is possible with a relative
uncertainty of 1.55 ± 0.77 [60].
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Figure 3.23: The mean discriminator values as a function of the position along the
x-axis of three simulations of drums containing: an empty concrete-filled drum, a
concrete-filled drum with a 4.4-liter gas bubble placed in the centre of the drum, and
a concrete-filled drum with two equally-sized gas bubbles placed in different positions
inside the drum [60].

3.3 Summary

Many limitations of conventional imaging methods have been overcome with the de-
velopment of MT technology. Within the last decade, MT has been extensively used
in the applications of archaeology, volcanology, civil engineering and nuclear waste
characterisation. Investigating well-shielded objects ideally requires a non-destructive
method, especially when dealing with hazardous materials, such as radioactive mate-
rials in nuclear waste packages. Using a non-invasive technique to assay nuclear waste
packages could reduce the cost involved in opening the investigated packages as well
as could mitigate any potential risk of being exposed to ionising radiation. MST is a
non-destructive imaging method that has proven valuable for imaging hidden objects
in many applications, such as nuclear safeguards and nuclear waste characterisation.
Muon radiography has also contributed on the understanding of the structural densities
of inaccessible structures, e.g. volcanoes. In 2017, a large void was discovered inside
the pyramid of Khufu through muon radiography using the muon flux information that
crossed through the pyramid.

Many studies have already shown the possibility of using the MST method to
overcome challenges in the field of nuclear waste management. Even when using the
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current state-of-the-art muon tomography, many aspects of this technology still require
development and research to overcome the current limitations of MST. In particular,
in classifying nuclear waste and imaging low-Z materials.





Chapter 4

Simulations and data analysis

As it is difficult to have access to real nuclear waste, all data presented in this chapter is
based on Monte Carlo (MC) simulations. These data have been taken using a simulated
muon scattering tomography (MST) system. This system is simulated with a detector
setup that matches the physical properties of a real mobile MST detector. The mobile
MST system, briefly described in section 4.1, was built for the CHANCE Horizon-2020
project [61] to address unsolved issues related to the characterization of nuclear wastes
inside a different types of waste packages. The CHANCE project applied several non-
destructive assay (NDA) techniques, including muon scattering tomography. Thus,
performing simulations is useful to show feasibility studies before spending efforts on
the MST system.

This Chapter describes the simulation method in detail (section 4.2), including
simulation of cosmic muons arriving from the atmosphere, tracking systems, and muon
trajectory track fitting. This section will also describe the simulations of two types of
nuclear waste packages, a small-steel drum and a large nuclear waste cask, namely, a
CASTOR V/52.

4.1 Muon detectors: The CHANCE system

The principle of muon scattering tomography requires measuring the space coordinates
of muon trajectories that cross the volume of interest. Hence, a set of muon detectors
is positioned above and below the volume of interest. As cosmic muons are charged
particles, they can be detected by several kinds of detectors, including gaseous de-
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tectors. The detection setup in the CHANCE system is based on multiple layers of
gaseous detectors with a total sensitive area of approximately 1.8 m× 1.8 m. The
gaseous detectors used in the system are a combination of Drift Chambers (DCs) [62],
and Resistive Plate Chambers (RPCs) [63]. Additional polystyrene scintillator panels
are used as triggers, indicating a signal when muons cross through the tracking system.

4.1.1 Resistive plate chamber

The RPC module used in the CHANCE system was built by the University of Bris-
tol, with a spatial resolution of ∽ 0.35 mm [63]. It designed in a rectangular shape
with dimensions of a 180 cm × 58 cm. The main detection unit in the detector is a
glass resistive plate chamber which contains a gas-mixture with a gap of 2 mm. The
gas gap is protected by two sheets of glass placed above and below the glass spacer,
(see Figure 4.1). The chamber is flushed with a gas mixture consisting of ∽ 95% of
Tetrafluoroethane (Freon), and ∽ 5% of Iso-butane. A printed circuit board (PCB)
containing 320 strips with 1.5 mm pitch is glued on the top of the chamber to provide
the readout position information in one direction. The RPC contains two electrode
plates above and below the gas volume, high-voltage is applied between the two elec-
trodes. As muons are charged particles, they hence ionise the gas mixture inside the
RPC. This results in a signal induced on the strips due to electrical charge drifting
to an electrode plate. The position of the crossed muons through the RPC can be
extracted by collecting the signal on several strips.

4.1.2 Drift chamber

The DC module used in the CHANCE system was built by the Atomic Weapon Es-
tablishment (AWE) in collaboration with University of Manchester, and operated by
the University of Sheffield, with a spatial resolution of ∽ 2 mm. The drift chamber
was designed in a rectangular-shape with dimensions of a 180 cm × 60 cm. The main
unit of the drift chamber consists of two PCB boards with cathode strips, separated
by a 15 mm gap. The PCB boards are attached to an aluminum support frame with
thickness of 12.5 mm. In the centre of the unit, a single anode wire is positioned along
the length of the DC, which makes a 625 mm horizontal distance between the anodes of
the neighbouring DCs. The anode wire is operated at voltage of ∽ 6000 V, while the
cathodes are operated at voltage of ∽ 4000 V. The gas gap between the PCB boards
is flushed with a gas mixture consists of mainly argon (92.5%), carbon dioxide (5%),
and methane (2.5%). An interaction within the gas mixture medium occurs when a
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Figure 4.1: A disassembled diagram indicating the structure of the RPC detector [63].

muon passes through the DC, resulting in the liberation of electrons. The liberated
electrons drift toward the anode, leading to an induced signal within the anode that
can be detected by the system’s electronics. The drift time is defined as the time
difference between the trigger signal and the time taken for the electrons to reach the
anode, (see Figure 4.2). The information of the drift time (Td), and the drift velocity
(Vd) can be used to determine the muon hit position (x) in one direction x = Td × Vd.
It is expected that interactions of muons occurring close to the wire will have a short
drift time, given that the electric field near the anode is strong and the velocity is at
its maximum, (see Figure 4.2).

4.2 Monte Carlo Simulations

In muon tomography/radiography applications, imaging structures located in inac-
cessible or hazardous sites using computational simulations is a very useful tool to
understand both the efficacy of the detectors and the feasibility of the project. Addi-
tionally, accurate computational simulations of proposed experiments reduce the cost
and minimise exposure to potential hazards that might occur during the real experi-
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Figure 4.2: From [62], an example of the drift time distribution across multiple layers
of drift chambers. The distribution peaked after 5.1 µ s, representing a delay time
from the triggers, was set to electronic readout [62].

ment. Cosmic muons simulated using MC simulation start by considering the charac-
teristics of muons at specific coordinates, such as altitude and latitude. This results in
determination of the distributions for muon trajectories and energies, and from these
distributions the initial state for each muon can be drawn randomly. This can be es-
tablished using many available cosmic ray libraries in high-energy physics tools, (see
below). Then, the subsequent phase of the simulation involves transporting the ini-
tialized muons in which this process is managed by common transport software, (see
below).

Simulations of the MST system were performed using a cosmic ray simulation
platform (CRESTA) [64] built on the Geant4 high-energy particle physics simulation
toolkit [65]. The Geant4 toolkit is developed for the simulation of the interactions of
particles with matter, including scattering, Bremsstrahlung, ionisation, and pair pro-
duction processes. Geant4 can be used to design complex structures for experimental
prototypes by combining many simple geometrical shapes. For example, any material
can be placed with chosen volume at any position in space with its characteristics
parameters being defined such as density and atomic number. Based on the mate-
rial data, the differential cross-sections for several muon interactions, e.g. ionization,
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Figure 4.3: The CHANCE muon scattering tomography system. Two tracking systems
are shown above and below the volume of interest. Each tracking system consists of 4
layers of RPCs, and 6 layers of DCs. The plastic scintillator panels are also shown in
the upper system.

can be computed for muons with different energy levels in matter. Hence, tables rep-
resenting the average energy loss can be generated by integrating the cross-sections.
Subsequently, the energy loss during transport can be derived from these tables.

A simulated detector is configured to capture charged particles, such as muons.
The design of a charged particle-sensitive detector can be constructed to mirror the
actual detector and positioned at any point in space. The actual detector properties
such as the spatial resolution can be set by adding a smearing factor to the MC truth.
To simulate a detector with an efficiency that matches the real detector, a fraction of
the detected muons in the detector structure is discarded.

In this thesis, cosmic muons were generated by the cosmic-ray shower library
(CRY) [66]. The CRY software developed a model of the Earth’s atmosphere and used
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MCNPX [67] to simulate primary protons with an energy range between 1 GeV and 100
TeV at the top of the atmosphere. These simulations generate a shower of secondary
particles, including cosmic muons. The energy distributions of the simulated cosmic
muons were benchmarked against data of published cosmic muon measurements, see
Figure 4.4. Since the distributions of cosmic ray particles depend on the elevation,
the particle showers are provided in the CRY library at three specific altitudes. The
available altitudes are at sea level, 2.1 km, and 11.3 km. All the distributions of the
cosmic muon in this thesis were chosen to be at sea level elevation.

Figure 4.4: The muon spectrum, as obtained by using Monte Carlo simulations in blue
squares. The red squares show the data muon spectrum measured by [12]. Both data
show the muon spectrum at sea level [66].

4.2.1 The MST detector system

As explained in section 2.4.3, muon scattering tomography requires two tracking detec-
tors to register the incoming and outgoing muons. The system consists of two identical
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detector systems placed above and below the volume of interest with a gap of 105 cm
when investigating the small cemented-matrix drum. The two tracking systems are
placed with a gap of 580 cm apart when investigating the large CASTOR cask.

Each tracking system is arranged in 10 layers: six layers of Drift Chambers (DC)
and four layers of Resistive Plate Chambers (RPC) with spatial resolutions of ∼ 2 mm
and ∼ 0.35 mm, respectively (see Figure 4.5). The 10 layers detectors are arranged to
provide muon trajectories in the x and y planes: five layers placed in the X-Z plane and
five layers are rotated by 90 degrees to provide muon hits in the Y-Z plane. The RPCs
layers were placed in two pairs, with a vertical distance of 1151.6 mm, and the spacing
between the X-Y planes was 50.8 mm in each pair. The DCs layers were placed in
three pairs with vertical distance of 325 mm, and the spacing between the X-Y planes
was 65 mm in each pair.

The detectors record muon hit position information, while the scintillator detec-
tors provide a trigger of when a muon has passed through the system. The RPCs and
DCs detectors were simulated with structures and dimensions that match the actual
sizes of the real detectors. The structures of the real RPCs and the DCs detectors are
briefly described in this chapter (see Section 4.1). This simulated system will be used
to reconstruct a variety of materials which have different atomic numbers embedded
inside two different types of nuclear waste packages with different shielding types and
sizes.

Figure 4.5: Diagram of the simulated tracking system with active area of approximately
2 m × 2 m, indicating 4 layers of RPCs (in green) and 6 layers of DCs (in blue and
red). The light blue panels represent the scintillator triggering system.
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4.2.2 Track fitting

Since cosmic muons arrive at the detector from different angular directions, there is the
possibility to detect multi-muon events, in which multiple muons might be detected
after a single trigger event. In reality, these multiple muon tracks can be identified by
doing all possible linear fits of the hit positions in the detector layers. The best track fits
can be then distinguished as the most likely real muon tracks. At the simulation level,
multi-muon events are not created, therefore, each event in simulation corresponds to
a single muon. It is possible that muons experience a few scatters with the detector
structures, however, these scatters are neglected. Therefore the muon tracks that cross
through the detector layers are approximated as straight lines. Consequently, a straight
line is fitted between the muon hit positions in the detector layers, thus the incoming
and outgoing muon tracks can be reconstructed. The tracks of incoming and outgoing
muons are used to measure variables like muon scattering angle and offset of the muon
path after traveling through the investigated volume.

The hit positions of muons in the detector layers were stored and analyzed using
a ROOT program [68]. The track fitting method is used in [69] for fitting 3 muon hit
points in a smaller muon detector system. The detector system described in section
4.2.1 provides 10 points on X-Z and Y-Z planes of the muon hit positions for the upper
detectors ( 4 points on RPCs and 6 points on the DCs). For each muon, the total hit
points obtained by the whole system is 20 points in the X-Z and Y-Z planes. In order
to verify that a correct muon track is present, a straight line fit is performed through
each 5 hit points in the upper detectors in the x-direction. Similarly, the muon track in
the y-direction was also checked by performing a straight line fit through every 5 points
in the y-direction in the upper detectors. This step is also repeated separately for the
5 muon hits in the x and y directions for the lower detectors. A further condition on
the fit is applied to confirm the muon track which only considers 5 points fits with a χ2

value lower than a cutoff value (2000). The cutoff value of 2000 is associated with the
chance detectors system. The default cutoff of 2000 was chosen based on graphs that
plot the differences between the MC true and the reconstructed direction or location.
Then, all the combined 20 hit points in the x and y directions for both upper and lower
detectors are fitted simultaneously. The condition of χ2 of the final fit between the
upper and lower hit points was also applied, in which all tracks with χ2 value greater
than the cutoff are neglected. The combined tracks work according to the assumption
that the upper and lower tracks share a point called a vertex.

The hit positions are fitted with 7 parameters which are: 3 positions of the vertex
in 3D coordinates, 2 parameters for the track slopes for the upper and lower tracks
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in the x directions, and 2 parameters for the track slopes for the upper and the lower
tracks in the y-direction. This is obtained by defining an energy function (E) as follows:

E = Ex + Ey (4.1)

Where Ex and Ey the energy function in the x-plane and y-plane, respectively. The
(Ex) is given by:

Ex =
5∑

i=1

(hi − (vx + ku,x · (zi − vz)))2

σ2
hi

+
10∑

i=6

(hi − (vx + kl,x · (zi − vz)))2

σ2
hi

(4.2)

where i is the number of muon hit positions, hi is the measured hit positions, ku,x and
kl,x are the track slopes in the x-plane for the upper and lower detectors, respectively,
vx, vy, vz are the vertex positions in 3D dimension. While zi, and σhi

are the detector
position in the z-plane and the error in the measurement of hi, respectively.

Despite the inaccuracy in the assumption of the single scattering vertex between
the upper and lower tracks, this was seen as a useful approximation. Figure 4.6 indi-
cates the principle of this assumption (single vertex) and is detailed in section (5.1.1).

Figure 4.6: Schematic showing the principle of reconstructing the common point (ver-
tex) between the incoming and outgoing tracks.

4.2.3 Simulation of Nuclear Waste Packages

The algorithmic methods detailed in section 5.1 are applied to the MC simulations to
investigate their performance in distinguishing high-Z materials stored inside different
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shielding matrices. Two nuclear waste packages were considered in this study: a small
cemented-matrix nuclear waste drum and a large ductile-iron shielded V/52 CASTOR
cask.

The small waste drum simulates the disposal of a mixture of radioactive wastes
surrounded by a concrete matrix. The drum is made of steel (∼ 92% iron and 2%
carbon) of 96 cm length and 57.4 cm diameter. It is filled with concrete to a total
diameter of 52.4 cm (see Figure 4.7). The density of simulated stainless steel and
concrete are 8.05 g/cm3, and 2.3 g/cm3, respectively. The properties of the materials
used to build the drum were taken from the Geant4 database.

To understand the effects of shielding thickness on the algorithmic outputs, a large
V/52 CASTOR cask with denser shielding type has also been simulated (see Figure
4.8). The cylinder-shaped V/52 cask is made of ductile-iron (∼ 94% iron, 0.033%
carbon, 0.004% copper) with a density of 7.1 g/cm3, a height of 5.54 m and a total
diameter of 2.44 m. A cavity of 1.42 m diameter and 4.55 m height inside the centre
of the cask is designed to accommodate the baskets for the fuel assemblies, which are
surrounded by nearly 1 m of ductile-iron shielding. The cavity is designed to store 52
baskets that accommodate UO2 ( ∼ 88.2 % uranium and 11.8 oxygen) fuel assemblies
that originate from Boiling Water Reactors (BWR). The simulated box-shaped baskets
have a length of 4.48 m and are arranged across a grid of eight columns and eight rows.
A pair of trunnions is also simulated at the top and the end bottom of the CASTOR.
These trunnions are bolted and only be used for the attachment of handling equipment.

Figure 4.7: The simulated cement-matrix steel drum. The thickness of the cap and the
base are 4.5 cm and 3.5 cm, respectively.
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(a) (b)

Figure 4.8: (a) top and (b) side views of the simulated V/52 CASTOR cask accom-
modating the 52 waste baskets. Examples of various baskets accommodating various
contents are showed, such as uranium oxide fully-loaded, uranium oxide half-loaded,
empty and non-standard contents (in yellow). The lid and the base removed for visu-
alisation purposes.

4.3 Muon momentum measurement

In MST imaging technology, the muon momentum plays a crucial role and is often
used in muon reconstruction algorithms as a normalization factor for the scattering
angle of muons. This normalization in simulation setup is performed to prevent the
misinterpretation of the presence of high-Z materials when, in reality, low momen-
tum muons significantly scatter in low-Z materials. Experimentally, it is not directly
possible to measure muon momentum using the Time of Flight (TOF) method, as
this demands alternative, high-precision, and expensive detectors with excellent time
resolution. Alternatively, the muon momentum might be estimated in the future us-
ing a Cherenkov detector [70]. In recent years, several studies proposed methods of
measuring muon momentum on simulated or experimental data. For example, for
MST technique, a method that exploits the mechanism of Multiple Coulomb Scatter-
ing (MCS) to measure muons momentum that crosses through known materials, e.g.
the detector structure materials. Subsequently, radiation length information is used
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to calculate the scattering angles of muon between two or multiple consecutive detec-
tor layers (see Figure 4.9). Then the muon momentum can be calculated using the
width of the scattering angles. However, the momentum is poorly estimated using this
method, and it can be improved by adding several layers of dense materials to increase
the scattering events, this is for example explained in [71]. As this thesis is based

Figure 4.9: Schematic of the muon momentum measurement method showing the
principle of estimating muon momentum using multiple Coulomb scattering across the
detector materials (known materials) [71].

on simulation studies, and for investigating the effects of muon momentum in all the
reconstruction algorithms (explained in detail in the next chapter), the default setup of
the momentum information used in this thesis involves adding a 50% Gaussian smear
to the MC truth momentum. Based on the findings in [43], this thesis opted for this
method because it suggests that the muon momentum can be estimated with about
50% precision using residuals from a detector with three-layer track fit . Additional
approaches include comparing the results using the MC truth momentum to the results
obtained from the default setup of muon momentum information, as well as removing
the momentum information.
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4.4 Summary

This chapter described the simulations performed on MST systems using cosmic muons
and nuclear waste packages. The structure of the MST detector was described and the
track fitting process of each muon between the upper and the lower track systems is
also explained. The detectors were simulated with physical structure, dimension, and
spatial resolutions that match the RPCs and DCs which make up a real experimental
tracking system. Moreover, the default setup of using muon momentum information
for this thesis is briefly demonstrated. These simulations will be applied to investigate
the ability of MST system and several reconstruction algorithms to image and classify
well-shielded materials in chapters 5, and 6, respectively.





Chapter 5

Muon reconstruction algorithms

Performing Monto Carlo (MC) simulation studies to image nuclear waste using the
Muon Scattering Tomography (MST) technique and associated algorithms can help to
identify materials that disposed/stored within the shielding matrix. Reconstructing a
3D image of the volume of interest can be adversely affected by several factors, such
as a thicker and/or higher-density shielding matrix. Detailed simulation studies are
required to extract information about the roles of each variable, and how it enhances
or degrades the performance of the MST technique.

Section 5.1 describes the techniques of three common reconstruction algorithms,
as well as a statistical analysis method which is described in 5.2 to evaluate the perfor-
mances of the MST and the algorithms used quantitatively using the contrast-to-noise
ratio (CNR) method [72]. This helps to to evaluate the efficacy of the feature resolution
outputs when imaging different materials with different atomic numbers inside differ-
ent nuclear waste packages. It also helps to understand the limitations of the previous
reconstruction algorithm methods in the characterization of nuclear waste materials.
Section 5.4 demonstrates the performance results of the chosen algorithms in differen-
tiating between two regions inside the volume of interest. Specifically, regions inside
a small cemented-matrix drum in section 5.4.1, and regions inside the large-scale V52
CASTOR in section 5.4.2.

64
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5.1 Muon reconstruction algorithms

The muon trajectories are reconstructed using dedicated algorithms. In this chapter,
we consider three frequently-used algorithms; the simple Point of Closest Approach
(PoCA) algorithm [73] (see section 5.1.1), the Angle Statistics Reconstruction (ASR)
algorithm [74] (see section 5.1.2), and the Binned Clustering (BC) algorithm [69] (see
section 5.1.3). In MST, it is common that the reconstruction algorithms divide the
volume of interest into a 3D cubic-voxel grid with a side length of typically 10 mm for
each voxel. However, multiple alternative approaches in the shape of the 3D voxels were
investigated in addition to the default cubic-voxels, (see section 5.2). These approaches
were considered depending on the size of the volume of interest ( the distance between
the upper and the lower muon tracker). Finally, a discriminator score for each voxel is
then extracted from all the muon trajectories that have traversed through the volume
of interest. Subsequently, all regions containing high-Z, medium-Z, and low-Z material
inside the volume of interest can be identified.

This section will explain in detail the methods used by the three reconstruction
algorithms considered in this work. In addition, an example of imaging a tungsten cube
with a side length of 10 cm embedded inside a small nuclear waste drum will be used
to compare the performance of each algorithm (see Figure 5.1). In order to visualise
the tungsten cube inside the drum, the 3D map produced by each algorithm is sliced
into a 2D projection in a plane through the centre of the cube. Examples of the 2D
projected outputs of all algorithms will be shown when using cubic and rectangular
voxel grids, with dimension of (10 cm × 10 cm × 10 cm, and 10 cm × 10 cm × 30 cm,
respectively).

Figure 5.1: a 10 cm side length tungsten cube placed in the centre of a simulated
cement matrix nuclear waste drum.
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5.1.1 Point of closest approach

As an algorithmic reconstruction imaging method, the Point of Closest Approach
(PoCA) algorithm is a straightforward method that offers less analytical complexity and
hence faster imaging times, which makes it commonly used in MST techniques. PoCA
assumes that when a muon travels through the voxellized volume (a 3D voxel grid), it
undergoes multiple scatterings, which are then approximated to a single scattering at
a single position (vertex). This single scattering position is located by extrapolating
the entrance and exit points of muon tracks through the volume of interest, see Figure
5.2. The voxel containing the minimum distance between the tracks is defined as the
single scattering occurrence voxel as follows:

• Define 3D grid voxels in the volume of interest, which are used to store the 3D
image values.

• For each muon, the trajectories are determined using linear interpolation of the
detector hits from both the incoming and outgoing muon paths.

• The calculated muon trajectories are extrapolated within the 3D cubic voxel grid.

• The distances between the two trajectories are calculated, and the point at which
both trajectories become the closest is considered as the position where the single
scatter occurs.

• The voxel containing this single vertex is weighted by the scattering angle of that
muon.

In theory, the muon is likely to have a large scattering angle when it encounters high-
Z material inside the investigated volume. Inside the 3D cubic voxel grid, a value
is attributed to each voxel which is determined by weighting the average angle for all
muon trajectories whose point of closest approach is located in that voxel, this value will
be referred to henceforth as the PoCA discriminator. Using this PoCA discriminator,
materials with a high Z can be distinguished from other materials with a lower Z
(see Figure 5.3). However, the PoCA method is susceptible to introducing noise as a
result of the assumption that a single large scatter has taken place (see, e.g., Figure
5.4(a)). This assumption has a number of weaknesses, e.g., some muon tracks might
be incorrectly extrapolated and some PoCA points may occur outside the volume of
interest. Such instances of muon track mis-reconstruction within the volume of interest
can lead to inaccurate information which may be interpreted as an extreme scattering
vertex inside a voxel.
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Figure 5.2: 2D representation of the PoCA method concept: (a) illustrates the stochas-
tic path of a muon through the volume of interest. (b) depicts a straight line as an
approximation of the muon’s path crossing through selected voxels. (c) demonstrates
the extrapolation of incoming and outgoing muon trajectories through the voxels, iden-
tifying the voxel that contains the point of closest approach (PoCA). (d) highlights the
selected voxel containing the PoCA, assigning a signal to this voxel and zero to all
other voxels [71].

Statistically, the smearing noise on the vertical direction inherited from the mis-
reconstruction of the scattering vertex can be slightly reduced by using a rectangular
voxel grid (see Section 5.2.2) with dimensions of (10 mm × 10 mm × 30 mm), see Fig-
ure 5.4 (b). However, we shall avoid the bias of the human eye when reading the
output by testing the algorithm’s output statistically. This will be explained in detail
in section 5.2.

5.1.2 Angle statistical reconstruction algorithm

Unlike the PoCA method, the ASR algorithm assumes that when a muon travels
through the 3D voxel grid, it is likely to experience many small scatters. The ASR
thus avoids the underlying assumption of the PoCA algorithm that a muon only scat-
ters inside a single voxel. The ASR algorithm was developed to mitigate the effects of
using the PoCA method’s inaccurate approximation of the muon trajectories. This has
been achieved by applying a minimum chosen distance (Dr) between the reconstructed
muon trajectories and the centre (c) of a voxel, therefore only voxels that lie within the
chosen distance are considered. Any voxel that is located beyond the chosen distance
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Figure 5.3: Comparison of distributions of the PoCA algorithm discriminator, for
10 cm cubes of uranium, lead, copper, iron, and concrete. Higher discriminator values
correspond to higher Z materials. The 3D voxel grid containing these distributions is
cubic with a side length of 10 mm.

(a) (b)

Figure 5.4: The 2D projected PoCA output of the tungsten cube inside the small drum
using (a) a cubic voxel grid and (b) a rectangular voxel grid. The exposure time was
12 days equivalent.
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Dr will be neglected. The minimum distance is determined by:

Dr = max(min ||a(z) − c||,min ||b(z) − c||) (5.1)

where a(z) and b(z) represent the fitted trajectories of the incoming and the outgoing
muons, respectively. A threshold distance (dth) is chosen. Ideally (dth) is the same

Figure 5.5: 2D illustration of the ASR method: ♦ denotes the reconstructed vertex,
the closest approach point of the incoming (a(z)) and outgoing (b(z)) trajectories, rep-
resented by red-dashed lines. The • symbol marks the voxel centre, and all grey voxels
with centres within distance dth from either trajectory contribute to the weighting of
the ASR discriminator scores.

size as a voxel so that all voxels that have Dr < dth will be assigned a discriminator
score. For each voxel and each muon with momentum of (p), the projected scattering
angles on the x-axis and y-axis (θx and θy respectively) are used to generate two scores
S1=(|θx| · p̃) and S2=(|θy| · p̃), where p̃ is the muon’s momentum according to p̃ = P

Pnorm

, where Pnorm = 3 GeV/c . This is repeated for all muons passing through the object
of interest resulting in a distribution of the S1 and S2 scores for each voxel. Scores
are only added to a voxel’s distribution if the entering/exiting muon trajectories pass
within dth of the voxel.

This method ensures that not just a single voxel is weighted, but rather all voxels
are taken into account depending on their proximity to the incoming and outgoing
muon paths, as follows:
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• Define 3D grid voxels in the volume of interest, which are used to store the 3D
image values.

• For each voxel, v, generate an empty list Sv ={}.

• Determine a minimum distance (a threshold), typically is equal to to the voxel
size.

• For each muon, define the incoming a(z) and outgoing muon b(z) lines to detected
hit positions, and fit the two lines via least square.

• For each muon, calculate the projection of the deflection angles along x and y

planes.

• Generate scores, S1=(|θx| · p̃) and S2=(|θy| · p̃), where p̃ is the muon’s momentum
according to p̃ = P

Pnorm
, where Pnorm = 3 GeV/c.

• Choose all voxels, such that the center of these voxels is within a certain proximity
( dth = the voxel size) to either the incoming or outgoing tracks.

• Append the S1 and S2 scores to the list Sv.

• Sort the kvth value of Sv in ascending order, where kv is equal to q × n, where q
and n are the size of Sv, and a chosen quartile, respectively.

• For each voxel v, the final score will be the value of kv.

For each voxel the final distribution of scores is taken and an ASR discriminator score is
assigned to be that of the third quartile (0.75) of the distribution, this value will subse-
quently be referred to in this thesis as the ASR discriminator. These final discriminator
scores are used to locate voxels in which high-Z materials might be present. Figure 5.6
shows the ASR discriminator distributions for several materials, higher discriminators
correspond to high-Z material.

Figure 5.7(a) demonstrates how, by excluding outlier events with extreme scat-
tering, the ASR algorithm has successfully reduced noise resulting in a clearer image
of the tungsten block. Moreover, increasing the vertical height of each voxel boosts the
clarity of the reconstructed image, (see Figure 5.7(b)).
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Figure 5.6: Comparison of distributions of the ASR algorithm discriminator, for 10 cm
cubes of uranium, lead, copper, iron, and concrete. Higher discriminator values corre-
spond to higher Z materials. The 3D voxel grid containing these distributions is cubic
with a side length of 10 mm.

5.1.3 Binned Clustering Algorithm

The BC algorithm [69] is based on the fact that the density of high angle scattering
vertices is higher in high-Z materials. After assigning the scattering vertices to a voxel,
the scattering angles are ordered and only the N most highly scattered vertices are
considered to calculate the metric distance between two vertices weighted by their
scattering angle. Voxels containing a number of vertices less than N are neglected.
The choice of N is important as it can effect the reconstructed image. For instance,
a higher value of N might cause a distortion of the reconstructed image as a result of
removing more voxels containing lower number of vertices than the chosen N .

For each pair of vertices vi and vj within the investigated volume, a weighted
metric distance, m̃ij is determined by:
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(a) (b)

Figure 5.7: The 2D projected ASR output of the tungsten cube inside the small drum
using (a) a cubic voxel grid and (b) a rectangular voxel grid. The exposure time was
12 days equivalent.

m̃ij = ||Vi − Vj||
(θip̃i) · (θj p̃j)

(5.2)

where, θi , θj are the scattering angles for muons i and j respectively of vertices
vi and vj. While Vi represents the position of the scattering vertex vi and Vj represents
the position of the scattering vertex vj. For muon i, pi is the muon momentum of
scattering vertex (vi) and p̃i is the muon momentum according to p̃i = Pi

Pnorm
where

Pnorm = 3 GeV/c. This algorithm uses the density of the PoCA high-angle scattering
vertices as follows:

• Define 3D grid voxels in the volume of interest, which are used to store the 3D
image values.

• For each voxel, generate three empty lists Sθ={}, Spos={} and Sdisc={}.

• Calculate the scattering angle, θ, from the incoming and outgoing muon tracks
information using the PoCA single scatter assumption.

• For each muon, append the scattering angle (θ) and the scattering vertex position
to Sθ and Spos, respectively. Here, S is the voxel that contains the single scattering
vertex.

• For all S voxels, sort the scattering vertices in the lists (Sθ and Spos) by descending
normalised θ.
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• Choose a value ofN and discard all S voxels containing a number of vertices< N .

For each S voxel, and for every of the
(

N
2

)
= N !

2!(N−2)! pairs of vertices, vi and
vj:

• Calculate the weighted metric between Vi and Vj (m̃ij) using equation 5.2.

• Calculate the values of log(m̃ij), and fill the histogram with these values.

• Append the values of log(m̃ij) distribution to the list Sdisc.

• Sort the values of log(m̃ij) distribution in the list Sdisc in ascending order.

• Calculate the median of the values of log(m̃ij) distribution in the list Sdisc, this
will serve as the final discriminator value for the S voxel.

The median of the distribution of log(m̃ij) inside a voxel is used as the discrim-
inator value for that voxel and this value will be referred to in this thesis as the BC
discriminator. This is expected to be lower if the target is a high-Z material as the
average distance between high scattering vertices is smaller and the scattering angles
higher in high-Z materials. Conversely, if the target is a low-Z material, the median
would be higher (see Figure 5.8). The BC discriminator output for imaging the tung-
sten cube inside the waste drum demonstrates good contrast when compared to the
background (see Figure 5.9(a)). However, using the rectangular voxel grids results in
less variation in the concrete matrix region, (see Figure 5.9(b)).

5.2 Performance Tests

5.2.1 Contrast-to-Noise Ratio (CNR)

One of the principal aims of this study is to undertake a quantitative comparison of
the algorithms discussed above, to facilitate this, a method to quantitatively compare
the outputs of all of the algorithms to each other was developed. The contrast to noise
ratio (CNR) method is thus applied to compare an algorithm’s ability to differentiate
between two distinct regions (e.g. a region containing high-Z material against the
matrix material) in the reconstructed image of the investigated object.
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Figure 5.8: Comparison of distributions of the BC algorithm discriminator, for 10 cm
cubes of uranium, lead, copper, iron, and concrete. Higher discriminator values corre-
spond to lower Z materials. The 3D voxel grid containing these distributions is cubic
with a side length of 10 mm.

To assess the reconstructed image quality, the so-called Contrast-to-Noise Ratio
(CNR) method was employed to evaluate the efficacy of the considered algorithms in
differentiating between low-contrast, medium-contrast, and high-contrast regions inside
the investigated volume.

A high CNR value indicates that the algorithm is able to distinguish well between
the two regions under comparison. Similarly, a low CNR value suggests that the
algorithm under consideration is unable to make a distinction between the compared
regions. The CNR value for two regions, A and B, is calculated to understand the
feature resolution of the MST system and algorithm under consideration, and is given
by:

CNR = |µA − µB|√
σ2

A + σ2
B

(5.3)

where µA is the mean of region A’s signal and µB is the mean of region B’s signal.
Here σA and σB are the standard deviations of the signals in region A and region B,



Muon reconstruction algorithms 75

(a) (b)

Figure 5.9: The 2D projected BC output of the tungsten cube inside the small drum
using (a) a cubic voxel grid and (b) a rectangular voxel grid. The BC algorithm
considered the 18 most scattered tracks per voxel for 12 days of exposure time.

respectively.

5.2.2 Geometrical Voxel Shape

In MST, dividing the volume of interest into cubic voxels is a popular approach. Here,
this thesis introduces a new approach by changing the voxels’ shape to rectangular
voxels. In addition to the default cubic voxels with a side length of 10 mm, alternative
approaches were considered by increasing the voxel’s height from 10 to 40 mm, in 10 mm
intervals. This allows us to understand the effects of the vertical smearing inherited
from the approximation of the scattering vertex position throughout the volume of
interest. Three simulated MST muon track data cross three waste drums: an empty
drum with only a concrete matrix, and two drums containing a 10 cm cube of uranium
and lead in the centre of the drum, respectively. The exposure time for the three
simulations was 8 days equivalent. For each simulation, four images of the target cube
inside the drum have been reconstructed using four different 3D voxel-grids. The X-
and Y-dimension of each voxel is set to be 10 mm, and the height of the voxel used to
reconstruct the four images are respectively 10, 20, 30, and 40 mm.

Figure 5.10 shows the discriminator distributions of the uranium cube as a signal
and the lead cube as a background for all algorithms considered in this study. Other
comparisons were performed between the uranium cube as a signal and an equally-
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sized concrete cube as a background. The quality of the four images was tested by
comparing the uranium and lead distributions using the CNR method. The CNR
value between the uranium and lead distributions increased for all algorithms when
using the rectangular voxel grid with a height of 30 mm, see Figure 5.11. For example,
the ASR algorithm produces a CNR value between uranium and lead approximately
45% higher than the CNR result when using the 10 mm voxel height, with values of
3.2 ± 0.1, and 2.2 ± 0.07, respectively. The comparison between uranium and concrete
also shows the same trend for all methods with the best CNR value being obtained
when using a 30 mm voxel height. Henceforth, for the small steel drum analysis a voxel
size of 10 mm × 10 mm × 30 mm will be used.

Figure 5.10: From the left: the discriminator distributions inside voxels with height of
10, 20, 30 and 40 mm, respectively. The signal in green are voxels containing 10 cm
side-length uranium and background in red are voxels containing lead cube. The top,
middle and the bottom discriminator distributions are calculated using the PoCA, the
BC, and the ASR algorithms, respectively. The exposure time was 8 days equivalent.
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Figure 5.11: Comparison of the CNR value as a function of the voxel height of all
algorithms when differentiating between a 10 cm side-length uranium cube against an
equally-sized lead cube. The inset shows the CNR values when comparing uranium
against concrete. The highest CNR value has been highlighted with a grey box.

5.2.3 Minimum CNR (mCNR) value

When comparing results from the imaging of different materials in both the small steel
drum and CASTOR V/52 cask a consistent metric to compare results is required. The
concept of a specific metric, namely a “minimum CNR” (mCNR) is thus introduced to
distinguish between two regions. Good quality of the reconstructed images is highly
desirable in this study. Hence, in this chapter, the study has applied two conditions
to determine the mCNR values for all methods and to differentiate between region A
and region B.:

• The structures of regions A and B must be fully reconstructed (method’s dis-
criminator > 0).

• The mean discriminator of region A must be separated from that for region B by
at least σA +σB (see Equation 5.4) where σA and σB are the errors (the standard
deviations) on the discriminators for regions A and B respectively, i.e.:
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µA − µB > σA + σB (5.4)

The mCNR value is defined by the minimum CNR value produced by each algorithm
in which two comparable regions can be distinguished from each other regardless of
the muon exposure time. Mathematically this is equivalent to saying that the 2 dis-
crimination methods under consideration are separated by more than the sum of their
(statistical) errors for that particular configuration. To avoid the position effects on the
discriminator values, the target materials were placed individually in the centre of the
drum, and then two simulations were performed of muon tracks that cross two waste
drums containing a 10 cm side-length cube of uranium and lead, respectively. Four
muon exposure times were considered for each simulation: 24, 15, 12, and 9 hours, see
Figure 5.12. Based on the conditions set out in the study for determining the mCNR
value, it has been statistically shown that this value is independent of the method
used. Therefore, the ASR algorithm was selected for determining the mCNR value, as
it yielded the clearest 2D image of the tungsten cube in Figure (5.7b). The mCNR
value is calculated by comparing the uranium discriminator as a signal distribution
against the lead discriminator as a background distribution. The results showed that
after 24 and 15 hours of muon exposure time, the distributions of signal against back-
ground can achieve the mCNR value conditions with a value of 2 and 1.4, respectively.
After 12 hours, the signal and background distributions are separated by less than their
statistical errors, with CNR values of 1.1. Henceforth, the mCNR value to differentiate
between any comparable regions is assigned to be 1.4 for all algorithms.

Figure 5.12: From the left: the ASR discriminator distributions of uranium and lead
after 24, 15, 12, and 9 hours of muon exposure time. The histogram titles indicates
the corresponding CNR value.
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5.3 Small drum studies

In order to perform an initial assessment of performance of the various MST algorithms
we considered an array of five cuboid materials of differing atomic number and density
(see Table 5.1) which are embedded inside a small cemented matrix waste drum. The
material cubes each have side length of 10 cm and they are aligned with the central
(cylindrical) axis of the drum (see Figure 5.13).

Figure 5.13: The five cubes of material each with a side of length 10 cm, placed within
a concrete matrix inside a steel drum. From the left: Aluminium, Iron, Copper, Lead
and Uranium. The orange squares represent the chosen background regions from both
the side and central areas of the drum.

Target Material Atomic Number (Z) Density g/cm3

Uranium 92 18.95

Lead 82 11.35

Copper 29 8.96

Iron 26 7.87

Aluminium 11 2.699

Table 5.1: Characteristics of the target materials under consideration.

For each algorithm described in section 5.1, the 3D density map of the drum
contents is sliced into a 2D projection (through the centre of the drum in the x − y

plane) and then the regions inside the drum are located based on the discriminator
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score for each method. Comparing each of the five regions to the background region
should reveal the ability of each algorithm to locate high-density, medium-density and
low-density materials inside the drum. For example, the CNR values which compares
the copper region and the background region determines the ability of each algorithm
to distinguish the copper cube within the background regions. Similarly, comparing
two regions that contain materials with almost similar atomic numbers and densities
(copper and iron) aid understanding of the efficacy of each algorithm.

The size and location of material within the drum may also affect the algorithm’s
performance. Hence, three simulations of the same materials were done with different
sizes and locations of the target materials, namely cubes with side dimensions of 7 cm,
10 cm and 13 cm. The positions of the materials are classified as central, semi-central
and side locations, as illustrated in Figure 5.13.

5.4 Results and Discussion

5.4.1 Application of the CNR test to a small nuclear waste
drum

The three reconstruction algorithms discussed earlier were each used to image five
target materials that varied in density from 2.699 g/cm3 (aluminium) to 18.59 g/cm3

(uranium). Furthermore, the dependence of the results on the size of the target mate-
rials and the muon exposure time was also considered.

5.4.1.1 Size and location dependence

In order to avoid the limitations of some reconstruction algorithms in cases of short
exposure times, this section will compare the performance of all methods with a fixed
muon exposure time. The performance of each method is represented here by the CNR
value between two different regions after 12 days of muon exposure time. The sliced
outputs shown in Figure 5.14 are taken through the 3D density maps along the centre of
the drum. In this case the target materials are of size 10 cm × 10 cm × 10 cm inside the
waste drum. The outputs clearly show that all three reconstruction methods are able
to locate high-Z materials (U and Pb) shielded by the concrete matrix. Whereas the
PoCA method can only reconstruct a partial image of the medium-Z target materials
(Cu and Fe). For the low-Z target material, all methods are unable to separate the
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(a) (b)

(c) (d)

Figure 5.14: (a) Target materials inside the simulated drum. X-Y slice outputs through
the 3D density map from applying the (b) PoCA, (c) ASR, and (d) BC algorithms
respectively. The exposure time was 12 days equivalent. The BC algorithm considered
the 18 most scattered tracks per voxel (N).

aluminium cube from the background, which is expected because the aluminium has
similar density to the concrete.

Figure 5.15 shows the CNR results of all algorithms used after 12 days of muon
exposure when comparing the five target materials, namely uranium, lead, copper,
iron, and aluminium individually against the regions that have background signals.
The ASR algorithm showed the best performance when comparing the regions that
contained a high-Z material (uranium) cube against the background regions. In the
case of a 10 cm cube the BC method produces a 42% lower CNR value of 6.0 ± 0.1
compared to the CNR value of 10.4 ± 0.2 produced by the ASR algorithm.
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(a) (b)

(c)

Figure 5.15: Comparison of the CNR values of the (a) PoCA, (b) BC and (c) ASR
algorithms when differentiating between different target materials and background for
target materials with side lengths of 7, 10, and 13 cm. Results are for 12 days of muon
exposure time. The horizontal dashed line represents the minimum CNR value used
to distinguish the target material inside the drum.

The PoCA method is affected by the single-scattering assumption, which leads
to adding more noise which reduces the CNR values between the compared regions
inside the drum. For example, for 10 cm sided cubes the PoCA algorithm has only
been able to distinguish the uranium and lead from the background with relatively low
CNR values of 3.3 ± 0.1 and 2.4 ± 0.12, respectively.

The results from comparing the regions containing copper and uranium reveal
that the ASR algorithm is the most capable of differentiating between medium-Z and



Muon reconstruction algorithms 83

high-Z materials with a CNR value of 7.1 ± 0.3, which is 108% better than the CNR
value produced for the comparable regions by the BC method. In terms of the size
dependence, the CNR results from comparing the target regions showed that the ASR
is more likely to be affected by the target region’s size. For example, comparing lead
cubes against background regions showed an increase in the CNR values from 6.5 ± 0.4
to 13.4 ± 0.2 when the side-length of the lead cube is increased from 7 cm to 13 cm.
While the CNR values in the BC method showed a steady decline as the side-length
of the lead cube decreased from 13 cm to 7 cm dropping from 5.3 ± 0.12 to 4.0 ± 0.1.
This indicates the efficacy of the BC method as it relies on calculating the vertices
density within a comparable region.

5.4.1.2 Dependence on muon exposure time

An additional variable of muon exposure time, i.e. the number of muons contributing
to each simulation, must be considered to to fully interpret the CNR values mentioned
above. Figure 5.16 shows the output density maps produced by the ASR and BC
algorithms after 2, 4, and 8 days of exposure time for the same target materials inside
the small waste drum.

The ASR algorithm produces images of the target materials with greater clarity
even when the exposure time is as short as 1 day. This clarity in the reconstructed
image is ascribed to the fact that outsider events with large scattering angles are not
included in the weights of the voxel. The ASR method maintained its capability of
distinguishing between the uranium cube and the background region with CNR values
of 9.8 ± 0.2 and 6.6 ± 0.2 after 8 and 2 days of muon exposure time, respectively.

The performance of the BC algorithm is significantly reduced when the imaging
time is reduced to 2 days of muon exposure (see Figure 5.16(e)). For instance, the
medium-Z materials (Cu and Fe) have become indistinguishable from the background
regions, with CNR values of just 1.1 ± 0.04 and 0.86 ± 0.05 for the copper and iron
targets, respectively. However, high-Z materials can still be differentiated from the
background with CNR values of 2.8 ± 0.15 and 2.1 ± 0.12 respectively when comparing
uranium and lead respectively against the background regions.

Generating tomographic images of the target materials can be achieved with fewer
cosmic muons by using the ASR algorithm, e.g. after 12 hours of muon exposure time,
this gives approximately 800,000 muons . By using the ASR method, the MST system
can separate uranium and lead from background regions in only 12 hours of muon
exposure time with CNR values of 4.0 ± 0.2 and 3.0 ± 0.15 respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: Comparison of feature resolution of the target materials with a side length
of 10 cm reconstructed by the BC algorithm (left) and by the ASR algorithm (right)
after 8 (top), 4 (middle), and 2 (bottom) days of muon exposure. The BC algorithm
considered the 12, 6 and 4 most scattered tracks per voxel for 8, 4 and 2 days of
exposure time, respectively.
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(a) (b)

(c)

Figure 5.17: Comparison of the CNR values produced by the (a) PoCA, (b) BC and
(c) ASR algorithms for different materials of 10 cm side-length as a function of the
muon exposure time. The horizontal dashed line represents the minimum CNR value
used to distinguish the target material inside the drum.

With a muon exposure time of 24 hours or less the BC algorithm is affected by the
muon track cut parameter (N) in which most voxels containing the background region
do not have enough scattering vertices, and they were discarded automatically by the
algorithm. For this reason, the CNR values are set to 0.0 as one of the comparable re-
gions was not reconstructed. A summary of the CNR values for 10 cm side-length cubes
of uranium, lead, copper and iron as a function of muon exposure time is illustrated
in Figure 5.17.
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5.4.1.3 Influence of the spatial resolution

In addition to muon momentum information, the discriminator values in each voxel of
all algorithms described in section 5.1 are calculated by mainly using the information
of the muons’ scattering angles. The BC and PoCA algorithms use (θ) and the ASR
algorithm uses (θx and θy). Firstly, the CNR values between the target regions listed
in tables 5.1 were measured according to the primary scattering angle information
obtained from the simulated default system setting described in section 4.2.1. The
angular resolution depends on the hit resolution of the detectors. To understand the
influence on the angular resolution of the hit position resolution, a study was performed
which considered degrading the drift chamber and the RPC hit position resolutions by
20, 50, 80, and 100% which, in turn, impacts the angular resolution of the system.
Clearly the angular resolution of this system is dominated by the RPCs however, since
the simulation represented an actual empirical system then for the sake of completeness
both detector system resolutions were doubled.

Figure 5.18 shows examples of the BC outputs of a 10 cm side-length tungsten
cube after degrading the spatial resolutions by 50% and 100%. The cube structure
is easily distinguishable in both figures. However, there is a more variation in the
discriminator values of the background matrix in the 100 % degraded resolution image
of the drum. Furthermore, the reconstructed image of the cube appears to be sharper
when using the default detector resolutions (see Figure 5.9(b)).

The results of additional simulations of the MST detector with degraded spatial
resolutions have been performed with both fixed muon exposure time (4 days) and
material size (10 cm side-length). Figure 5.19 shows the CNR results comparing the
4 target materials against the background regions, using the PoCA(a), BC(b), and
ASR(c) algorithms.

The quality of the reconstructed images has been slightly affected by degrading
the detector resolutions, especially when comparing the medium-Z materials against
the background. For example, the ability of the detector system to differentiate between
lead with 10 cm side-length and equally-sized background regions is slightly degraded
from a CNR value of 7.3 ± 0.1 to 5.75 ± 0.22, when using the ASR algorithm. However,
even with poor detector resolutions, all of the target materials reconstructed by the
ASR can be easily distinguished, e.g., the copper and the iron cubes can be separated
from the background regions with CNR values of 2.8 ± 0.2 and 2.3 ± 0.2, respectively.

Regardless of the muon exposure time, the detector’s capability to reconstruct
images of the target materials using the PoCA and BC methods remains above the
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Figure 5.18: A 10 cm side length tungsten cube placed in the centre of a simulated
cement matrix nuclear waste drum. The 2D projected BC outputs of the same cube
inside the small drum using (left) the detector system after degrading the RPC and
DC position resolutions to 0.525 and 3 mm and (right) to 0.7 and 4 mm respectively.
The voxels containing the background regions have more variation of the reconstructed
image in the later system. The exposure time was 12 days equivalent.

mCNR value when comparing high-Z materials against the background regions.

The system’s capability to distinguish materials is not significantly impaired even
when using RPCs with a degraded position resolution of 700 microns. Hence, the
simulated detector configuration is able to generate tomographic images of shielded
high-Z and medium-Z materials with fewer muons when using the ASR method (4
days of muon exposure time). With a shorter exposure time (12 hours), the detector
system starts to lose its ability to separate copper from the background with a CNR
value of 1.1 ± 0.05, when using the ASR method. However, the system is still able
to discriminate high-Z materials, such as uranium, from the background with a CNR
value of 3.3 ± 0.1 (see Figure 5.20).

5.4.2 CASTOR drum studies

In a second study, a CASTOR V/52 nuclear waste container was simulated (see Section
4.2.3) in order to assess so-called “diversion” scenarios whereby small amounts of fissile
material is illegally diverted. Again, the performance of the different muon tomography
reconstruction algorithms was considered and compared using the CNR metric. The
CASTOR V/52 nuclear waste drum accommodates fuel assembly baskets. A number
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(a) (b)

(c)

Figure 5.19: Comparison of the CNR values produced by the (a) PoCA, (b) BC and
(c) ASR algorithms for different materials of 10 cm side-length as a function of the
muon detector resolutions. The results obtained using the default detector setup are
highlighted with a grey box. The horizontal dashed line represents the minimum CNR
value used to distinguish the target material inside the drum. The exposure time was
4 days equivalent.

of scenarios were simultaneously considered in the simulation, (see Table 5.2), namely
diversion of the nuclear fuel (modelled as uranium oxide) and replacement with lead
or copper. A further fuel basket was intentionally left empty. The CNR test was
subsequently extended to understand whether the performance of each algorithm would
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Figure 5.20: The 2D projected output of the target materials with a side length of
10 cm reconstructed by the ASR algorithm using the default detector resolution (left)
and after degrading the RPC and DC position resolutions to 0.7 and 4 mm respectively
(right). The exposure time was 12 hours equivalent.

be affected by a thicker and more shielded cask. As it was seen in the small drum study
that using rectangular voxels shape has optimised all algorithms performances, hence, a
rectangular shaped voxel also used here with dimension of 20 mm × 20 mm × 500 mm,
(see Figure 5.22).

Basket Content Number of Baskets Density g/cm3

Uranium Oxide (Fully-loaded) 48 10.97

Uranium Oxide( Half-loaded) 2 10.97

Lead 1 11.35

Copper 1 7.87

Empty 1 0.0012

Table 5.2: Details of the target materials placed inside the simulated CASTOR V/52
waste drum.

The CNR test conveys information about the feature resolution of the algorithms
in order to distinguish the contents of each basket individually and separate abnormal
baskets (e.g., an empty basket) from the UO2 fully-filled baskets. The feature resolution
can be tested by comparing the CNR value for a basket that accommodates UO2 fuel
assemblies with that for another basket filled with pellets of materials classified as non-
hazardous, such as lead or copper. To test the size resolution, two randomly-chosen
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Figure 5.21: Top view of the V/52 CASTOR, showing all the baskets and labelling
them with numbers from 1 to 52 (the lid and the base are removed for illustrative
purposes).

baskets had up to 50% of their normal capacity unloaded. Half of the fuel assembles
are removed from different positions inside each half-loaded basket, either from the
side or the central-mounted fuel assemblies; comparing two regions of the half-loaded
basket to the fully loaded basket assesses the ability of the algorithm to detect any
irregularities within the basket to be evaluated.

For each of the non-standard (part loaded/material exchanged) baskets the com-
parison is made by calculating the discriminator for that basket and comparing it to
the average discriminator for the eight neighbouring fully-loaded baskets.
It is important to understand the effect that the location of the fuel assembly basket

inside the cask has on the CNR values for each algorithm. Hence, the target (ab-
normal) basket will be classified depending on its location inside the cask as either a
central-area or side-area basket. Abnormal baskets are either filled with non-hazardous
materials, half-loaded UO2 fuel assemblies, or are completely empty. For the side-area
basket study a single abnormal basket was placed in the side area of the cask (basket
no. 7, see Figure 5.21) and then compared with the eight fully loaded fuel assembly
baskets surrounding it for each of the fill scenarios detailed above (see Figure 5.21).
Similar simulations for the same materials placed in a basket located in the central
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Figure 5.22: Comparison of the CNR value as a function of voxel height of all algo-
rithms when differentiating between an empty basket against the eight surrounding
fully loaded baskets. The grey box highlights the considered voxel height hereafter.
The horizontal dashed-line represents the minimum CNR value in which the compara-
ble regions could be distinguished from each other. Exposure time = 30 days.

area (basket no. 30) of the cask were also carried out for the central-area studies.
Finally, for each target basket, the final value of the CNR is obtained by calculating
the average of the CNR values measured when the material is positioned in the side
and central areas of the cask.

5.4.3 Results and Discussion

This section presents the results of an extended study of the feature resolution of the
reconstructed images in the presence of thicker and denser shields. Again, a number of
scenarios are considered, namely a single target basket that is half-loaded with either
UO2 or a single target basket fully-loaded with either copper or lead pellets. The feature
resolution is quantitatively represented here by the CNR value between the single target
basket of interest and the eight fully-loaded UO2 baskets that surround it. The PoCA
and BC algorithms could not distinguish the empty basket from the eight neighbouring,
fully loaded baskets with CNR values of 0.9 ± 0.1 and 0.6 ± 0.05, respectively. The
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Figure 5.23: (a) top-view of the V/52 CASTOR showing four baskets which con-
tain irregular contents. Comparison of the imaging of the cask’s contents produced
by the ASR algorithm when considering (b) 75%, (c) 50% and (d) 25% of the ASR
discriminator in each voxel, respectively. The solid and dashed green boxes indicate
the half-loaded baskets, while the solid and dashed black boxes indicate the baskets
that contain no pellets and copper pellets, respectively.The exposure time was 30 days
equivalent.

CNR values produced using several height of voxels showed that the incapability of
these methods in imaging contests of V52 CASTOR, see Figure 5.22. It was shown that
a fluctuation of the CNR values produced by the PoCA and the BC algorithms. This
is likely caused by the PoCA assumption which approximates multiple scattering to
one single instance of scattering, which results in poor approximation of the scattering
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locations. This also impacts on the feature resolution capabilities of the BC algorithm
which uses the scattering location of PoCA algorithm. This assumption mainly affects
the vertical positions of the muon scattering, as the momentum component of the
cosmic ray muons is much larger in the vertical direction; hence, fluctuations in the
clustering values occur.

The ASR algorithm succeeds in minimising the smearing noise that results from
the PoCA assumption. The performance of the ASR improved when the voxel height
was increased from 30 mm to 500 mm, resulting in a 108% increase in the CNR values.
Additional quantiles of 25% and 50% of the ASR discriminator distributions in each
voxel are considered (see Figure 5.23). Comparing the empty basket with the eight
surrounding fully loaded baskets produces a CNR value of 2.8 ± 0.4 when 75% of the
discriminator distributions were taken in each voxel. However, considering the 25%
quantile of each voxel distribution improves the CNR value to 5.0 ± 0.3. Therefore,
hereon all quoted CNR results will use the ASR[25%] value.

Figure 5.24: Comparison of the CNR values produced by the ASR discriminator when
considering 25%, 50% and 75% of voxel’s distributions after 30 days of muon exposure.
The horizontal dashed-line represents the minimum CNR value in which the compara-
ble regions could be distinguished from each other.
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(a) (b) (c)

(d) (e) (f)

Figure 5.25: Comparison of the feature resolutions of the contents of basket number 30
when only 25% of the ASR discriminator’s distributions are considered in each voxel.
All figures indicate basket number 30 accommodating (b) no pellets, (c) fully-loaded
with Pb pellets, (d) fully-loaded with Cu pellets, (e) half-sided and (f) half-centred.
The exposure time was 30 days equivalent.

Figure 5.24 shows a comparison using 25%, 50% and 75% quantiles of the ASR
distributions inside each voxel after 30 days of muon exposure time. As expected,
the CNR values increase as the quantile decreases, the improvement being greatest for
those material combinations where there is the greatest level of discrimination. The
X-Y projections of the 52 baskets accommodating 51 full-loaded baskets with UO2

fuel assemblies and one basket (number 30) accommodating the target materials are
shown in Figure 5.25. Testing the size reliance of the target material was achieved
by comparing half-loaded baskets to the eight baskets surrounding it. This shows the
ability of the ASR method to separate the irregular contents of the basket. The CNR
values from comparing half-unloaded (centered) and half-unloaded (sided) baskets to
the eight fully loaded baskets appear to be just above the minimum distinguishable
CNR level of 1.9 ± 0.2 and 1.6 ± 0.3, respectively. As expected, the regions of the
basket filled with lead pellets and the surrounding baskets are not distinguishable (CNR
= 0.35 ± 0.05) due to the similarity of lead and UO2 densities.

It is possible to use the CNR test to rapidly evaluate how the detector performance
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might be affected when one of the operating conditions, such as the muon exposure
time, is changed. The output density map of the ASR discriminator is shown in
Figure 5.26 for between 4 and 20 days of muon exposure time. After 11 days of muon
exposure time, the noise in the reconstructed density map renders the half-loaded
baskets indistinguishable, with CNR values of 1.05 ± 0.2 and 0.93 ± 0.25 when half
of the fuel assemblies are unloaded from the centre of the basket and from the side of
the basket, respectively.

(a) (b)

(c) (d)

Figure 5.26: Comparison of the imaging the cask’s contents produced via the ASR
algorithm when considering 25% of the ASR discriminator in each voxel after (a) 20,
(b) 11, (c) 8 and (d) 4 days of muon exposure time, respectively. The solid and dashed
green boxes in indicate the half-loaded baskets, while the solid and dashed black boxes
indicate the baskets that contain no pellets and copper pellets, respectively.
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After 4 days of muon exposure time, the density maps are constrained by the de-
tector’s angular resolution and the fuel assemblies inside the image are smeared by the
neighbouring baskets. Finally, in terms of the detector resolutions, the MST detector
maintained its performance in locating the empty basket from the surrounding neigh-
bouring fully-loaded baskets, after degrading the system’s resolutions. For instance,
after sixteen days of muon exposure time, the ability of the detector system to separate
the empty basket from the eight surrounded baskets is degraded from a CNR value of
2.8 ± 0.2 to 2.2 ± 0.115, 2.0 ± 0.23, and 1.65 ± 0.25, when degrading the detectors’
position resolutions by factors of 20, 50 and 80%, respectively. Figure 5.27 indicates
the 2D outputs of the CASTOR contents with fifty one fully loaded baskets and a one
empty basket (basket number 30) when using the default system’s resolutions and the
50% degraded resolutions.

Figure 5.27: The 2D projected output of the target baskets reconstructed by the ASR
algorithm using the default detector resolution (left) and after degrading the RPC and
DC position resolutions by 50% of their default resolutions (right). The exposure time
was 16 days equivalent.

5.5 Conclusion

A quantitative method was conducted to evaluate the performance of an empirical
MST detector system in differentiating between high-Z and medium-Z materials. The
CNR method was applied to assay three reconstruction algorithms in terms of their
ability and limitations to differentiate between chosen target materials of different sizes,
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positioned in different locations inside a small-cemented matrix drum and a large-scale
CASTOR V/52 cask.

For the small drum, the CNR results conclude that the BC and the ASR algo-
rithms were sufficiently capable of locating and differentiating between regions con-
taining high-and medium-Z materials with side-lengths of 7, 10, and 13 cm against 4
regions containing background signal. The BC method performance improves gradu-
ally as the target material size increases with CNR values of 5.5 ± 0.2, 6.0 ± 0.12 and
7.1 ± 0.12 for 7, 10, and 13 cm side length uranium cubes, respectively. However, this
performance degrades significantly, and the ability of the BC method is constrained,
when the muon exposure time was shortened to two days with CNR values of 1.1 ± 0.04
and 0.9 ± 0.05 for copper and iron compared to background regions. This rendered
the medium-Z materials indistinguishable from the background.

The ASR algorithm was shown to be more efficient in investigating target materi-
als in a short time. All the materials investigated by the ASR lie above the distinguish-
able level (except Aluminium) even when the muon exposure time is as short as 2 days,
with CNR values of 6.6 ± 0.2, 5.5 ± 0.1, 3.2 ± 0.15 and 2.6 ± 0.1 when comparing 10
cm side-length of uranium, lead, copper, and iron against background regions. Despite
degrading the detector resolution to 700 micron for the RPCs and 4 mm for the DCs,
the detector system has maintained the ability to separate the copper cube with 10 cm
side-length from the background regions with a CNR value of 2.8 ± 0.2 after 4 days of
muon exposure.

For the larger V/52 cask, the PoCA and the BC method failed to locate any of
the irregular baskets that had 100% of their capacity unloaded, with CNR values of
0.9 ± 0.1 and 0.6 ± 0.05. The ASR method has been shown to be a good candidate
for examining large and well-shielded materials. The ASR discriminator worked well
to decrease the effects of the PoCA single-scatter assumption, and it demonstrated
the ability to locate any irregularity within the fuel assemblies, such as empty, half-
unloaded, and basket composite copper pellets. It was shown that the simulated detec-
tor system can locate any empty basket, whether it is located in the side or the centre
of the cask, with a CNR value of 5.0 ± 0.3. Despite degrading the detector resolution
to 525 microns for the RPCs and 3 mm for the DCs, the detector system has displayed
the capability of the system in identifying the missing contents of any basket with a
CNR value of 2.0 ± 0.23. The ability of the ASR algorithm to detect half-unloaded
baskets is limited by the angular resolution of the detector when the cask’s content is
investigated with an exposure time of 11 days or less.





Chapter 6

Development of Reconstruction
Algorithms for Materials
Identification

Algorithms are important in the muon scattering tomography (MST) technique and
are required to reconstruct a density map of the volume of interest. Several algo-
rithms, most commonly the point of closest approach (PoCA), binned clustering (BC),
and angle statistical reconstruction (ASR) algorithms, have already been proposed for
imaging nuclear waste materials. The ability of these algorithms to reconstruct the
muon trajectories was tested numerically in the previous chapter. The ability of MST
in imaging well-shielded materials was shown in Chapter 5, and the strengths and lim-
itations of the previous algorithms were addressed in Chapter 5. Promising results of
ASR and BC algorithms in separating high- and medium-Z materials from the shield-
ing matrix were also shown. The optimised previous algorithms showed the capability
of localising the material’s positions inside the drum with good approximation.

In this chapter, further work on the original ASR method is performed to improve
the original ASR algorithm performance in material classification and is presented in
Section 6.1. In addition, a new reconstruction algorithm is built to strengthen the
ability of MST to identify materials for nuclear waste characterisation. This chapter
introduces a new imaging method that builds on the concept of both ASR and BC
algorithms (see Section 6.2). The position information of waste materials is obtained
with good resolution using the new imaging methods. Subsequently, once the materials
are localised, the next step is to identify them for nuclear waste characterisation. Clas-
sification between materials that have similarities in their properties, such as atomic

99
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number, is challenging. Such materials are with ∆ Z ≤ 10.0, e.g. uranium and lead
(92U against 82Pb). This chapter also provides a method of classification of materi-
als with similarities in Z number. A discrimination method between uranium, lead,
and tungsten (92U , 82Pb, and 74W ) is presented. Furthermore, the performance of
the discrimination method was also extended to discriminate between high-Z materials
with ∆ Z = 3.0, such as astatine 77Ir and 74W . The principle of this study is to
gather information on specific materials that are highly likely to be present in nuclear
waste drums. Hence, any unknown objects could be imaged and compared with the
“reference materials”; thus, the target object could be discriminated.

Section (6.3.3) describes the method of using the multi-variate analysis (MVA)
classifier tool [75] to discriminate between the object of interest using MST data. It
also presents the performance of several classifiers in combination with the considered
algorithms in discriminating between high-Z materials. The results of the discrimi-
nation between high-Z materials with different object sizes are presented in Section
(6.7). Furthermore, the discrimination method is tested for different sizes of materials
and several exposure times to understand the effects of the size and the scale time
for each algorithm to discriminate between high-Z materials. Section (6.7) presents
the results of using MST to identify materials according to the differences between
their Z numbers. This chapter also investigates the effects of muon momentum on
the algorithms’ performance in terms of discrimination between high-Z materials. As
explained in Chapter 4, the default measurement of muon momentum in this thesis
is using smeared momentum with 50% as it is used in [76, 77]. Two additional ap-
proaches of muon momentum information to the default set-up are considered in this
study, including Monte Carlo (MC) true momentum, and with no momentum infor-
mation. Finally, the discussion and conclusion are given in Sections (6.7) and (6.8),
respectively.

6.1 High-angle statistics algorithm

This section presents an optimisation of the original ASR algorithm developed by [74],
which was previously explained in (Section 5.1.2). The sophisticated method of the
ASR algorithm is the concept of determining which voxels along the muon path to
apply discriminator scores throughout the volume of interest. This was achieved by
defining a minimum distance (Dr) between the centre of a voxel (c) and the incoming
and outgoing track fit lines, a(z) and b(z), respectively, and determined as;
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Dr = max(min ||a(z) − c||,min ||b(z) − c||) (6.1)

A discriminator score is assigned to all voxels with Dr less than a chosen threshold
distance (dth = voxel’s size). The discriminator scores are calculated using the projected
angles (θx and θy), which are mathematically related to the deflected angle (θ) by
(tan2θ = tan2θx+tan2θy). Using the magnitudes of the projected angles as independent
variables provides access to more information on the scattering vertices in each voxel.
Then, the final scores are assigned to all selected voxels as the third quartile of the
distribution of the scores. This method showed promising results in imaging high-Z
materials; thus, further steps were taken to optimise the ASR method.

Here, following the argument of the availability of muon scattering information
obtained by the ASR method in each voxel. It is reasonable to consider a fixed number
of scattering vertices in each voxel. For example, considering only N of the most scat-
tered vertices per voxel might reduce the statistical error of the discriminator scores in
each voxel. The scattering vertices in each voxel are sorted according to the projected
angles of the corresponding muon, and the vertices with N of the largest scattering
angles are kept. Any voxel containing a number of vertices less than N will be automat-
ically discarded. Hence, an optimised version of the ASR algorithm is defined, which
is a modification of the original ASR algorithm and is referred to as the high-angle
statistics reconstruction (H-ASR) algorithm.

Algorithm setup

• Define 3D grid voxels in the volume of interest.

• For each voxel, v, generate an empty list Sv={}.

• Determine a minimum distance (a threshold), dth, typically is equal to the voxel
size.

For each muon

• Define the incoming l(z) and outgoing l(z) lines to detected hit positions, and fit
the lines via least square.

• Calculate the projection of the deflection angles along x plane (θx) and y plane
(θy).

• Sort vertices by descending normalized projected angles.
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• Consider only the N high-ranked vertices, and generate scores, s1 = |θx|p̃ and
s2 = |θy|p̃, where p̃ is the momentum according to p̃= p

pnorm
, where pnorm = 3 GeV,

and p is the muon momentum.

• Choose all voxels, such that the centre of these voxels is within a certain proximity
( dth = the voxel size) to either the incoming or outgoing tracks.

• Append the s1 and s2 scores to the list Sv.

• Sort the kvth value of Sv in ascending order, where kv is equal to q × n, where q
and n are the size of Sv, and a chosen quartile, respectively.

• For each voxel v, the final score will be the value of kv.

Figure 6.1: Comparison of flow charts indicating the final discriminator values assigned
to each voxel for both the ASR (black arrow) and HASR algorithms (red-dashed arrow).
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(a) (b)

Figure 6.2: The distribution of the number of vertices as a function of the position
along X-axis. Higher number of vertices in the centre indicates the position of the
uranium cube. The horizontal lines indicate the considered N showed in Figure 6.3.

(a) (b)

Figure 6.3: The 2D projected output of the uranium cube with a side length of 20
cm reconstructed by the H-ASR algorithm when considering the 38 most scattered
vertices (left) and the most 70 scattered vertices (right). The exposure time was 24
hours equivalent.

The fixed number N of scattering vertices is chosen according to a fixed muon exposure
time. For 24 hours of muon exposure time, each voxel with dimension of (10 mm
× 10 mm × 30 mm) contains a concrete matrix, with an average between 50 and 70



Development of Reconstruction Algorithms for Materials Identification 104

scattering vertices. However, as it is seen in Figure 6.4 voxels contain high-Z materials,
with a number between 80 and 130 vertices per voxel. This means that for 24 hours
of exposure time, some voxels containing concrete matrix are discarded if the N ≥ 70,
as these voxels do not have enough scattering vertices; thus, these voxels are removed
from the reconstructed image, see Figures 6.3 and 6.2.

Figure 6.4: Comparison of distributions of the number of scattering vertices inside
20 cm cubes of uranium in blue, and inside equally-sized concrete matrix in red. Higher
number of vertices corresponding to the vertices within the uranium cube.

For high values of N , it is understandable to see improvement in the contrast
between high-Z materials and the shielding matrix, as more voxels containing the
shielding materials are removed from the image, as these voxels fall below the cut.
Furthermore, a high value of N also might underestimate the size of high-Z materials
in the vertical direction, as the number of scattering vertices decreases due to muon
absorption, and hence more voxels fall below the N cut. For this reason, the chosen N
for 1, 2, and 4 days of muon exposure time are 38, 76, and 152, respectively.

A comparison of imaging a uranium cube with a side length of 20 cm embedded
in a small nuclear waste drum using the ASR and the H-ASR algorithms is shown in
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Figure 6.5. The figures show slices of the algorithm’s discriminator through (xy) and
(zy) directions, for the original ASR (left), the H-ASR with N = 380 (middle), and
the H-ASR with N = 500 (right). The output of the ASR algorithm showed vertical
smearing along the z direction, which is caused by the uncertainty in the scattering
vertices for muons with small scattering angles along the z direction. This smearing
along the z direction is reduced using the H-ASR algorithm, which is shown in Figure
6.5 after applying the N factor. However, choosing a high value of N ≥ 500 for 10 days
of muon exposure time affects the reconstructed image along the vertical direction, as
more voxels do not have a number of vertices n < N ; hence these voxels are eliminated.
As a result, the size of the uranium cube along the z is underestimated. For this, the
H-ASR algorithm considered 380 scattered vertices per voxel for 10 days of muon
exposure time.

Figure 6.5: xy (above) and yz (below) slices of a 20-cm-side-length uranium cube from
the ASR algorithm output (left), the H-ASR algorithm output when N = 380 (middle),
and the H-ASR algorithm output when N = 500 (right). The ASR algorithm clearly
shows smearing effects along the z direction; this smearing is caused by uncertainty
in the scattering vertex along the vertical direction for muons with small scattering
angles.
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Figure 6.6: Comparison of distributions of the ASR (top) and the H-ASR (bottom)
for 20-cm cubes of uranium and lead. The H-ASR considered the 380 most scattered
vertices per voxel. The red and yellow dashed lines, respectively, represent the mean
of the discriminator distribution for lead and uranium cubes.

Examples of the discriminator distributions of the ASR and H-ASR algorithms
inside voxels containing 20 cm uranium and lead cubes are shown in Figure 6.6. Com-
paring the data set in the distributions clearly shows that the data in the H-ASR
distributions of uranium and lead cubes are closely clustered around their mean, which
in theory means a lower statistical error (σ). Statistically, applying the fixed number
N of scattering vertices in each voxel reduced the errors in the discriminator distribu-
tions. Figure 6.7 compares the value of σ calculated using the ASR and the HASR
discriminator distributions inside voxels containing uranium and lead cubes as a func-
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tion of muon exposure time. Finally, in addition to the material distributions, more
variables are extracted from the 3D density map of the inspected volume produced
by the H-ASR algorithm and are considered to be used for material classification in
Section (6.3).

Figure 6.7: Comparison of error (σ) values in the discriminator distributions for voxels
containing uranium and lead by the ASR and the H-ASR algorithms as a function of
muon exposure time. The values of σ are reduced using the H-ASR after considering
the 190, 152, 114, 76, 38, 18, and 14 most scattering vertices per voxel for muon
exposure times of 120, 96, 72, 48, 24, 12, and 9 hours, respectively.

6.2 Hybrid algorithm

Based on the contrast to noise ratio (CNR) results shown in Chapter 5, a new algorithm
was built based on a combination of the principles of BC and ASR algorithms. The BC
algorithm is based on the fact that the density of high-angle scattering vertices is higher
in high-Z materials. This can be explained as it only considers a fixed number of high
scattering vertices (N) to calculate the metric distance between a pair of scattering
vertices (vi, and vj) weighted by their scattering angle. In contrast, the density of high
scattering angle vertices is expected to be lower in medium- and low-Z materials.

For each pair of vertices vi and vj within the investigated volume, a weighted
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metric distance, m̃ij, is determined by

m̃ij = ||Vi − Vj||
(θip̃i) · (θj p̃j)

(6.2)

where θi and θj are the scattering angles for muons i and j, respectively, in vertices vi

and vj. While Vi represents the position of the scattering vertex vi and Vj represents
the position of the scattering vertex vj. For muon i, pi is the muon momentum of
scattering vertex (vi) and p̃i is the muon momentum according to p̃i = Pi

Pnorm
, where

Pnorm = 3 GeV/c.

The median of log(m̃ij) is set as the final discriminator for each voxel. This
principle gives the BC method a good degree of localising different Z materials and
thus can be a benefit in materials classification. However, as previously discussed, the
principle of the BC algorithm in section 5.1.3 is that it uses the assumption of a single-
scattering vertex assumed by the PoCA method. This makes it prone to additional
noise due to the poor approximation of the scattering vertex position and, as a result,
affects the material’s classification performance of the BC algorithm.

The PoCA approximation of the scattering vertex was obviated by the ASR
method by accounting for all voxels within a minimum distance (Dr) of the muon
tracks reconstructed before and after the inspected volume, as discussed in the previous
section. As a result, the noise inherited by the PoCA assumption was significantly
reduced. The ASR method offers a good degree of accuracy in reconstructing the muon
trajectories through the volume of interest. In theory, it is reasonable to combine
the strengths of the BC (density of the scattering vertices) and the ASR (accurate
scattering vertices reconstruction); hence, following the argument in this section, a
new method is built and defined as the HyBrid (HB) algorithm.

Algorithm setup:

• Define 3D grid voxels in the volume of interest, which are used to store the 3D
image values.

• For each voxel, generate three empty lists vθ={}, vpos={} and vdisc={}.

• For each muon, define the incoming a(z) and outgoing b(z) tracks to detected hit
positions, and fit the lines via least square.

• Choose a threshold distance, dth, typically is equal to the side-length of the voxel
size.
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• For each voxel, v, determine Dr, and scattering vertices with Dr > dth are dis-
carded.

• Calculate the scattering angle, θ, from the incoming and outgoing muon tracks
information.

• For each muon, append the scattering angles (θ) and the scattering vertices po-
sition to vθ and vpos, respectively. Here, v is all voxels containing vertices with
Dr < dth.

• For all v voxels, sort the scattering vertices in the lists vθ and vpos in descending
order by normalised scattering angle (θ).

• Choose a value of N .

• Keep only the N largest scattering angles, any voxel containing a number of
vertices < N , are automatically discarded.

For each voxel, and for every of the
(

N
2

)
= N !

2!(N−2)! pairs of vertices, vi and
vj:

• Calculate the weighted metric between Vi and Vj (m̃ij) using equation 6.2.

• Calculate the values of log(m̃ij), and fill the histogram with these values.

• Append the values of log(m̃ij) distribution to the list vdisc.

• Sort the values of log(m̃ij) distribution in the list vdisc in ascending order.

• The final discriminator value for the v voxel is calculated in ascending order (final
discriminator value = n × q), where n is the number of entries in the list vdisc

and q is the chosen quartile, e.g. if q = 0.5, the median value is chosen as the
final discriminator value.

The main principle of the HB algorithm is to overcome the main limitation of the BC
method, which is not primarily caused by the calculation of the BC discriminator itself.
However, it is inherited from using the single-vertex assumption of PoCA. In addition
to this assumption of localising the scattering vertices, selecting the number of vertices
as a track cut in each voxel would make it challenging to reconstruct low-Z materials
in a short exposure time (∽ minutes). For example, in Section 5.4.1.2, the BC method
fails to reconstruct medium- and low-Z materials in short muon exposure time, as
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the muon track cut N condition discarded all voxels containing a number of vertices
less than considered N . In theory, the single-vertex assumption can be obviated by
applying discriminator scores to all voxels (with Dr < dth) along the muon’s path.
Subsequently, more scattering vertex information is gained in each voxel, which means
that the N factor becomes more applicable in the case of short muon exposure time.

In the case of the HB method, more scattering vertex events are expected to
occur in each voxel; this should resolve the BC failure of reconstructing of low-density
materials in such a short muon exposure time. However, the relation between the
clusters’ density of scattering vertices and the Z number of the reconstructed material
is kept in the HB method as voxels containing high-Z material expect a higher density
of scattering vertices than voxels containing medium- and low-Z materials.

Figure 6.8: xy (above) and yz (below) slices of a 20 cm-side-length uranium cube from
the BC algorithm output (left), the HB algorithm output when N = 20 (middle), and
the HB algorithm output when N = 250 (right). The BC algorithm clearly shows
smearing effects along the z direction; this smearing is caused by uncertainty in the
scattering vertex along the vertical direction for muons with small scattering angles.

A comparison of imaging a uranium cube with a side length of 20 cm embedded
in a small nuclear waste drum using the BC and HB algorithms is shown in Figure
6.8. The figures show slices of the algorithms’ discriminator through (xy) and (zy)
directions, for the BC method (left), the HB with N = 20 (middle), and the HB with
N = 250 (right).
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Vertical smearing along the z direction is shown in the BC output, which is
caused by the uncertainty in the scattering vertices for muons with small scattering
angles along the z direction. However, the reconstructed image in the yz direction is
less affected by the HB method output. This can be understood as the HB discrim-
inator scores are used as a number of the most scattered vertices N of the discrimi-
nator distribution in each voxel. Similar to the H-ASR algorithm, vertical smearing
is slightly reduced when considering the higher N of the most scattering vertices per
voxel. Figure 6.9 shows examples of the discriminator distributions of the BC (top)

Figure 6.9: Comparison of distributions of the BC (top) and the HB (bottom) for
20 cm cubes of uranium and lead. Both methods considered 20 most scattered vertices
per voxel. The red and yellow dashed lines, respectively, represent the mean of the
discriminator distribution for lead and uranium cubes.

and HB (bottom) algorithms inside voxels containing 20 cm uranium and lead cubes.
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Higher discriminator values correspond to lead cubes. Even though the HB method
can separate the comparable distributions by increasing the N factor, the N of most
scattered vertices is kept the same for both algorithms. Moreover, choosing a very
high number of N could lead to an underestimation of the target’s size, especially in
the vertical direction. This can be seen in Figure 6.8 (bottom right) and the uranium
cube is shrunk when the number of scattering vertices rose to 250 for 10 days of muon
exposure time. Even though the HB method offers more scattering vertices in each
voxel, as this chapter compares the HB discrimination performance to that of the BC
algorithm, the N number will be kept as it was used in the BC algorithm, example in
[77]. To avoid human-eye bias, the errors of the voxel distribution containing uranium
and lead are calculated for different exposure times (see Figure 6.10). The errors in the
distributions produced by the HB showed that the HB method was slightly affected
by reducing the exposure time. The BC showed a sharp increase in the errors of the
distribution of the material when the exposure times were lower than 24 hours. Finally,
the HB algorithm is applied in this thesis to classify nuclear waste materials in the next
section.

Figure 6.10: Comparison of error (σ) values in the discriminator distributions for
voxels containing uranium and lead by the BC and HB algorithms as a function of
muon exposure time. The values of σ grow significantly for muon exposure time of less
than 24 hours. Both algorithms considered 10, 8, 6, 5, 4, and 4 most scattered vertices
per voxel for 120, 96, 72, 48, 24, and 12 hours, respectively. Notice that for 9 hours of
muon exposure, the 4 most scattered vertices are also chosen for both algorithms.
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6.3 Discrimination materials for nuclear waste char-
acterisation

Classification of waste materials was performed using MVA classifiers, which were
trained and analysed using TMVA, a CERN ROOT package . Multiple classifiers are
available in TMVA, and they can be trained simultaneously. All classifiers’ perfor-
mances can be compared quantitatively using a receiver operating characteristic curve
(ROCc). This can be performed by plotting a curve of a true positive rate against a
false positive rate, and the area under the curve (AUC) is calculated. The true pos-
itive rate corresponds to the classifier correctly identifying the signal, while the false
positive rate corresponds to the classifier incorrectly identifying the background as a
signal. The AUC value indicates the performance of the classifiers applied, in which
the perfect classifier produces AUC with a value of 1.0. Conversely, when the classifier
produces an AUC equal to 0.5, this indicates that the data were randomly classified.
In this thesis, an AUC produced by a classifier with a minimum value of 0.95 will be
considered a good discriminator performance. The statistical error of the AUC values
will be calculated using the 95% confidence intervals used by Hanlley and McNeil [78].
More details of simulated waste materials, muon momentum information, and MVA
classifiers are presented in this section.

6.3.1 Simulation of High-Z Materials

All the materials used for materials classification were simulated using Geant4 with
the same settings, as described in 4.2, of simulation cosmic muon, MST detectors, and
waste drums. The materials were simulated mainly in cubic shapes with different side
lengths of 20, 10, and 5 cm. The materials considered here have Z > 70, specifically,
uranium, lead iridium, and tungsten. In terms of data-taking time, different exposure
times were also compared to understand the scanning time of waste drums depending
on the size of the waste materials.
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Figure 6.11: An example of a 20-cm-side-length uranium cube used for materials clas-
sification by MVA classifiers.

6.3.2 Muon momentum information

Muon momentum is an important variable in the simulated MST data and classification
analysis, (see section 4.3). The most common methods were used in MST data analysis,
as in [69, 76, 77]. These methods were used in this chapter as follows: a Monte-Carlo
truth momentum, adding smearing of random values of Gaussian distributions with
50% of the truth momentum (default set-up), and with no momentum information.
The default set-up uses the 50% smeared momentum for the results stated in this
chapter, except where stated of using the two other methods.

6.3.3 Multi-variate Analysis

The MVA classifiers use a combination of several variables of data to classify between
any two or more comparable materials. To test the classifiers’ performances available
in TMVA, 10 days of muon exposure time simulations of two nuclear waste drums
containing uranium and lead cubes with side lengths of 20 cm were performed. Only
the data inside the voxels containing the comparable cubes were passed to the MVA
classifier. The outputs of the MST track data reconstructed by the BC, HB, ASR, and
H-ASR algorithms were individually passed to the MVA classifier. The N factor of the
BC, HB, and H-ASR were, respectively, set to 20, 20, and 380.

The MVA classifiers allow the use of a number of input variables with no limits.
In this chapter, the variables considered for the MVA classifiers were extracted from the
outputs of the BC, HB, ASR, and H-ASR algorithms. The main variables were obtained
from each algorithm output, e.g. the discriminator’s value distribution (see Figures 6.6
and 6.9), the distributions of the scattering angles (θ, θx, and θy), and the muon
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momentum distributions. Furthermore, additional variables were extracted from the
discriminator’s value distribution of each algorithm by re-binning these distributions
into 25 bins and then calculating the normalised bin counts to be used as additional
input variables.

Figure 6.12: Comparison of distributions of the log(m̃ij)) produced by the HB method
for a voxel containing uranium (left) and lead (right). The blue-dashed line represents
the median of the distributions, which is set as the discriminator value in the HB
algorithm output image.

As explained in the algorithm methods, each algorithm assigns discriminator
values for each voxel. The BC and HB algorithms use the median of log(m̃ij); however,
the bin counts used as input variables were calculated using the distribution of log(m̃ij),
(see Figure 6.12 for the HB log(metric) distribution). These bin counts were used
as input variables for the application of the MVA materials classification. Example
distributions of some of these variables used for the MVA classifiers to classify between
uranium and lead are shown in Figure 6.13.

The ASR and the H-ASR use the third quartile of the discriminator value distri-
bution in each voxel. These final distributions of the ASR and H-ASR methods were
used to calculate the bin counts and then used as additional variables for the MVA
classifiers (Figure 6.14 indicates the H-ASR discriminator distribution). Figure 6.15
shows an example of the bin count input variables inside voxels containing uranium
and lead for the H-ASR method, which was used to train the MVA classifier. All the
described variables, including the main and the additional, were used as inputs into
the MVA to discriminate between the uranium cube as a signal and the lead cube as a
background. The data sets were trained using multiple MVA methods, and the perfor-
mance of each method was quantified using the ROC curve. The ROC curve used to
understand the performance of each MVA method is a plot of a background rejection
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Figure 6.13: Comparison of some bin count distributions of the HB method used as
input variables to train the MVA classifiers. These distributions were extracted from
the normalised bin counts shown in Figure 6.12. The green line represents voxels
containing a 20 cm uranium cube (set as a signal), and the red line represents voxels
containing an equally sized lead cube (set as a background).

Figure 6.14: Comparison of distributions of the H-ASR discriminator for a voxel con-
taining uranium (left) and lead (right). The normalised bin counts of these distributions
are calculated and passed to the MVA classifiers.

against the signal efficiency (see Figures 6.17 and 6.18). The AUC results reveal the
most suitable MVA method for training the data sets, which is expected to produce
the highest AUC compared to the other methods. The ROC curve interprets the clas-
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Figure 6.15: Comparison of some bin count distributions of the H-ASR method used as
input variables to train the MVA classifiers. These distributions were extracted from
the normalised bin counts, as shown in Figure 6.14. The green line represents voxels
containing a 20 cm uranium cube (set as a signal), and the red line represents voxels
containing an equally sized lead cube (set as a background).

sification performance of each MVA method when applied to the BC, HB, ASR, and
H-ASR algorithm variables to discriminate between the signal and the background.

6.4 MVA methods

6.4.1 Boosted Decision Tree (BDT)

The BDT method classifies events by constructing a decision tree (see Figure 6.16),
which can be visualized as a ”flow-chart”, starting at the root node from the top.
From this root node, the classifier divides the data into a sequence of binary splits,
each determined by the distinguishing variables. At every node, the next branch is
chosen based on a cut-off point on one of these variables, continuing in this process
until the final leaf node is reached. During this process, repeated “yes” or “no” decisions
are made for each individual variable until a final determination of either ”signal” or
”background” is achieved.
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6.4.2 Gradient-Boosted Decision Tree (BDTG)

Using a single tree in the BDT method makes it susceptible to statistical fluctuations
in the training sample. This vulnerability can be countered by creating a forest of
trees, which consists of a large number of trees. Further steps can be taken to enhance
the classifier performance, one of which is using the gradient-boosted decision tree
(BDTG). The BDTG method augments the BDT method’s efficiency by merging the
weak classifiers from the trees into a unified, stronger classifier.

Figure 6.16: Schematic representation of the decision-tree structure illustrates the
principle: starting at the root node, the data branches out based on the input variables
Vi. At each node, the input variable that best separates the data into signal and
background categories after the designated cut-off is applied. The tree culminates in
terminal nodes labeled as “S” for signal or “B” for background, depending on the
predominant category of events within those nodes.

6.4.3 Multi-Layer Perceptron (MLP)

The MLP method is natural artificial neural network (ANN). It basic structure con-
sists of 1 input layer, ≥ 2 hidden layers and an output layer, with 1 or more nodes
(“neurons”) for each layer. The data or features are input into the input layer, and
they progress in a feed-forward manner through the hidden layers to the output layer.
The output layer provides the final classification result.
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6.4.4 Linear Discriminant analysis (LD)

The basic principle of the LD method is using a linear model in classification between
data, in which project the data into lower-dimensional space in a way that maximise
the separation between classes. The term “linear” indicates that the linear discriminant
function (yx) is linear with respect to the parameters β as y(x) = x⊤β + β0, where β0

represents the bias. Hence, the yx ≥ 0 is classified as a signal, while those with yx < 0
are categorized as background.

6.4.5 Fisher Linear Discriminant and Boosted Fisher

The principle of the Fisher method is almost similar the LD method principle, in which
it aims to maximize the separation between the classes. Basically, it seeks to find a
linear combination between of variables that best separates 2 or more classes. An
improved method of the original Fisher method is called “BoostedFisher”. The process
of Boosting is a general ensemble method that creates a strong classifier from multiple
iterations of a weak classifier. The idea is to apply a sequence of weak classifiers (e.g.
in the Fisher classifiers) iteratively. Thus, each new classifier focuses on the events that
were misclassified by the previous ones.

6.4.6 Likelihood

The Likelihood method is a probabilistic approach to classification. Based on the
training data, and for or each input variable, separate histograms are created for signal
and background classes. From these histograms, the probability density functions
(PDFs) for signal and background of the input variables. The likelihood (Li) for an
event to be either signal or background is computed by multiplying the probability
of all its variables: Ls = Πips(xi), Lb = Πipb(xi), where ps(xi) and pb(xi) are the
probabilities of the ith variable for signal and background.

6.4.7 Functional Discriminant Analysis (FDA)

The FDA is a classification method in which it fits function to the data to achieve
maximum separation between the signal and background classes. It aims to determine
the function parameters, such that the output of the function provides a clear discrim-
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ination between the classes. The FDA GA uses a Genetic Algorithm (GA) to optimise
the parameters of the discrimination function of the FDA method.

The BDTG was shown to be the most suitable method with AUC results of
0.851, 0.987, 0.999, and 1.0 when applied to the BC, HB, ASR, and H-ASR algorithms,
respectively, (see Figures 6.17 and 6.18). Hence, the BDTG is applied as the default
MVA method for the materials classification hereafter.

(a) (b)

Figure 6.17: The ROCc plots of background rejection as a function of signal efficiency
for multiple TMVA methods when applied to the BC algorithm variables in (a) and
when applied to the HB algorithm variables in (b). The most suitable MVA methods
are listed from top to bottom. As the HB algorithm is compared to the BC algorithm,
the two high-ranked MVA methods are applied to the HB algorithm variables, see
Table 6.1.

6.5 MVA binary and non-binary classifiers

The MVA classifiers are applied to identify voxels containing signals from voxels that
contain background. In terms of binary classification, the classifier assigns one data set
of voxel variables as a signal and another data set of voxel variables as a background.
The non-binary classification designates a single data-set voxel variable as a signal and
multiple data-set voxel variables as a background. In both cases, the classifier tries to
separate signal voxels from background voxels. Hence, when the classifier is applied to
a “random voxel”, it can correctly classify the voxel contents as a signal or background
depending on the contents’ variables and the performance of the classifier.
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(a) (b)

Figure 6.18: The ROCc plots of background rejection as a function of signal efficiency
for multiple TMVA methods when applied to the ASR algorithm variables in (a) and
when applied to the H-ASR algorithm variables in (b). The most suitable MVA meth-
ods are listed from top to bottom. As the H-ASR algorithm is compared to the ASR
algorithm, the two high-ranked MVA methods are applied to the H-ASR algorithm
variables, see Table 6.1.

The TMVA classifiers split the data randomly into two equally sized sets, which
are “training” and “testing” sets. The classifier is trained on the training set, and
then it checks over-training by applying it to the testing sets. The classifier plots
two distributions of signal and background for both training and testing data sets
as a classifier response (see Figures 6.17) and 6.18). It also calculates a cut value
(optimum cut) where all values above this point are assigned as “signal-likeliness” and
all responses below the optimum cut are assigned as a “background-likeliness”. The
optimum cut for two classes can be calculated using ROC curve which corresponds to
the point positioned at the furthest top-right point. At this position, the combination
of signal efficiency and background rejection is likely maximized. The optimum cut
is defined in TMVA as the point at which the signal efficiency and the background
rejection (1 − background efficiency) are equalised. This point in the ROC curve
corresponds to the point that has a maximum Youden index [79], in which this point
is defined as signal efficiency + background rejection − 1. On the ROC curve, the
Youden index is the distance between the ROC curve and the diagonal line connecting
the points (0, 1) and (1, 0), measured vertically from the curve to this diagonal.

In machine learning, over-training is a frequent issue in classification models. This
means that over-training occurrs when the model performs poorly when the “unseen-
data” is applied to the model, compared to performance when the test data is applied
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Cube Size 20 cm × 20 cm × 20 cm

Algorithm

TMVA method
BDTG BDT

HASR 1.0 1.0

ASR 0.999 0.998

HB 0.987 0.985

BC 0.851 0.85

Table 6.1: AUCs of the ROC curves for background rejection, plotted as a function of
signal efficiency, for the top two high-ranked MVA methods when applied to variables
from the HASR, ASR, HB, and BC algorithms (see Figures 6.17 and 6.18).

to train the model. Subsequently, the capability of the classifier is significantly reduced
in terms of discriminating events compared to the performance when the “training”
data-set is applied. This can lead to a misinterpretation of the classifier’s efficacy when
evaluated using the training data. This can be addressed by reducing the statistical
fluctuation by providing more samples of training data. Furthermore, over-training
can also be occurred in some classification methods, as some method like Boosted
Decision Tree (BDT) is more prone to a degree of over-training. However, this can
be mitigated using some technique, e.g. nodes with little discriminatory power in
the tree can be removed through the process of “pruning” nodes [75]. In addition to
the visual comparison between the classifier outputs of training and testing data-set
distributions, a further test (a Kolmogorov–Smirnov test) is performed to check over-
training quantitatively. This test revealed how the training distributions fit the testing
distributions. The values produced by the Kolmogorov–Smirnov test showed that some
over-training took place, especially in the classifier’s responses when using the BC and
the H-ASR data-set variables (see Figures 6.19 and 6.20).

6.6 Muon momentum effects on materials classifi-
cation

To understand the effects of muon momentum information on material classification,
binary uranium/lead BDTG classifiers are trained using voxel variables containing a
20 -cm-side-length uranium cube against voxel variables containing an equally sized
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Figure 6.19: The TMVA “over-training” check output for the uranium/lead classifier
when applying the BC variables (left) and the HB variables (right). The plots indicate
the MVA signal and background output distributions for the training sets in blue and
red circles, respectively. Similarly, the MVA output distributions of the testing sets are
overlaid with the training sets in blue and red lines for the signal and the background,
respectively.

Figure 6.20: The TMVA “over-training” check output for the uranium/lead classifier
when applying the ASR variables (left) and the H-ASR variables (right). The plots
indicate the MVA signal and background output distributions for the training sets
in blue and red circles, respectively. Similarly, the MVA output distributions of the
testing sets are overlaid with the training sets in blue and red lines for the signal and
the background, respectively.

lead cube. The voxels containing the uranium cube are designated as a signal, and
the others containing the lead cube are assigned as background. The classifiers were
trained using MST data corresponding to 10 days of muon exposure time reconstructed
by the BC, HB, ASR, and H-ASR algorithms. For each reconstruction algorithm,
three classifiers were trained using input variables, including the considered approaches
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of muon momentum information explained in Section 6.3.2. In terms of materials
identification, the performances of the two developed algorithms (the HB and the H-
ASR) were compared to the original algorithms in which the HB method was compared
to the BC method and the H-ASR method was compared to the ASR method.

The performance of each algorithm was quantified by plotting ROCs and calcu-
lating the AUCs when applying the algorithms’ input variables when using MC truth
momentum, 50% Gaussian smeared momentum, and by removing all the information
of the muon momentum (see Figures 6.21, 6.22 and 6.23).

The performance of the HB method showed a significant increase in the AUC val-
ues compared to the BC performance, with AUCs, respectively, equalling 99.5 ± 0.2%
and 91.9 ± 0.75% when using the MC truth momentum. In the case of the default
approach of the 50% smeared momentum, the BC method was slightly affected by
the smearing in the momentum information with AUC = 87.2 ± 0.9%, while the
HB method maintained its discrimination performance with AUC = 99.0 ± 0.3%
showing that the discriminator power of the HB was not significantly affected by
the smeared momentum. Furthermore, the HB method also showed good perfor-
mance in uranium/lead classification even when the muon momentum information
was entirely removed with AUC = 90.4 ± 0.85%. Conversely, the ability of the BC
method to discriminate the signal from the background was significantly reduced, with
AUC = 77.5 ± 1.2%.

It is expected that using the ASR and H-ASR methods showed almost identi-
cal discriminator power of the classifier for such a long exposure time (10 days). In
the case of using the MC truth momentum, the discriminating power of the classifier
was the same, with AUCs = 99.9 ± 0.01% and 99.9 ± 0.004% when using voxels’
variables of the ASR and the H-ASR, respectively. It also showed that the classifiers’
performance was not affected in the case of using the 50% smeared momentum with
AUCs = 99.9 ± 0.05% and 99.9 ± 0.02% for the ASR and the H-ASR voxel variables,
respectively.

The AUC of the ROC produced using the H-ASR and the ASR methods showed
no effects in the case of removing the momentum information with a value of 99.9 ± 0.02%
and 99.9 ± 0.06%, respectively. As shown, a longer exposure time is enough for both
algorithms to boost the classifier discriminating power to almost 100%. However, when
using the ASR voxel variables with the default scenario of the muon momentum and
reducing the exposure time to 12 hours, the classifier’s discriminating power decreased
to 96.7 ± 0.5%. Conversely, the classifier’s discriminating power for the H-ASR method
did not reduce as much as in the ASR method, with AUC = 98.0 ± 0.4% (see Figure
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(a)

Figure 6.21: Comparison of the MVA training outputs for the uranium/lead classifier
produced using the BC algorithm variables (top left) and the HB algorithm variables
(top right). The vertical dashed line represents the optimum cut, which is the point
at which signal efficiency and background rejection are equalised, (see section 6.5).
The bottom figures show the ROC curves for uranium (signal) vs. lead (background)
classifiers using the BC (bottom left) and HB (bottom right) algorithms. The ROC
curves and the AUC information are shown for three muon momentum approaches:
the MC truth momentum in blue, the 50% Gaussian smeared momentum in green, and
when using no momentum information in red.
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6.24).

The performance of the MVA classifier showed better discrimination power when
trained on the MST muon track data extracted from the HB method compared to the
data of the BC algorithm. For this reason, the HB algorithm is applied for materials
classification in this chapter. Moreover, in this thesis, algorithms have been developed
for using them to identify high-Z materials in such a short exposure time. The MVA
classifiers showed that the MST muon track data extracted from the H-ASR algorithm
is more powerful, with fewer muons compared to those track data extracted from the
ASR method. Hence, the H-ASR muon track data is applied for the MVA classifier
hereafter as a second method in addition to the HB algorithm’s muon track data.

In terms of muon momentum information, the AUCs of the ROCs created with
the three different momentum approaches suggest that the muon momentum informa-
tion is important in materials classifications. Removing the momentum information
significantly reduces the discriminating power, especially when using the muon track
data of the BC. In addition, using the HB algorithm data showed a reduction in the
discriminating power. However, a 50% smeared momentum scenario indicated that the
classifier performance was very close to the performance of the MC truth momentum.
For this, the default set-up with smeared momentum is applied in this chapter as the
chosen MVA method.

6.7 Results and discussion

As discussed in the previous section, the MVA classifier is able to discriminate a 20-
cm uranium cube from a 20 cm lead cube. This section presents the results of the
classification of high-Z materials with smaller materials and shorter exposure time.
All classifiers will be trained using the simulated MST track data reconstructed by
the HB and H-ASR algorithms. These MST data were used in training the MVA
classifier explained in Section 6.3. The results of the binary classification method are
also discussed.

6.7.1 Binary classification of high-Z Materials

The binary classification method was applied to discriminate between different waste
drum contents, including uranium, lead, tungsten, and iridium. All the considered ma-
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(a)

(b) (c)

Figure 6.22: Comparison of the MVA training outputs for the uranium/lead classifier
produced using the ASR algorithm variables (top left) and the H-ASR algorithm vari-
ables (top right). The vertical dashed line represents the optimum cut, which is the
point at which signal efficiency and background rejection are equalised, (see section
6.5). The bottom figures show the ROC curves for uranium (signal) vs. lead (back-
ground) classifiers using the ASR (bottom left) and H-ASR (bottom right) algorithms.
The ROC curves and the AUC information are shown in green for the default muon
momentum approach: the 50% Gaussian smeared momentum.

terials were placed in the centre of the waste drum aligned with the drum central axis.
This minimises the effects of the positions of the material, where sided objects expect
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(a) (b)

(c) (d)

Figure 6.23: The four figures show the ROC curves for uranium (signal) vs. lead
(background) classifiers using the ASR (top) and H-ASR (bottom) algorithms. The
ROC curves and the AUC information are shown for two muon momentum approaches:
the MC truth momentum in blue, and when using no momentum information in red.
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Figure 6.24: Comparison of the ROC curves and the AUC information, respectively,
shown in green and blue when using the ASR and the H-ASR for the uranium/lead
classifier after 12 hours of muon exposure time.

fewer muons to cross through them. Moreover, this allows for a better understanding
of the classification performances of the classifiers.

All the considered materials studied in this section were simulated in a cubic
shape with a side length of 5 and 10 cm. Any cubes with a side length of less than
5 cm were not studied due to the fact that the amount of scattering vertices inside
these cube sizes was not enough to train the classifier. However, a method used in
[76] of adding a few centimetres from the area around the cubes’ edge can help gather
enough information for the classifiers. In other words, the classifiers can be trained
to discriminate between two bigger concrete volumes containing materials with small
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cubes. However, this chapter considers only scattering vertices information within the
actual cube size.

6.7.1.1 Exposure time dependence

It was already reported in the previous section that almost perfect discrimination
between uranium and lead could be obtained for larger cubes. This perfect discrimi-
nation was obtained after 10 days of exposure time, with AUCs = 99.9 ± 0.02% and
99.0 ± 0.3% when using the H-ASR and HB algorithms, respectively. This power
of discrimination was not degraded when investigating smaller materials in such short
times (∽ hours). The AUC for smaller cubes after shorter muon exposure times showed
that good discrimination between uranium and cubes could be obtained in a few hours’
time (see Figure 6.25 (a)). For example, by using the H-ASR muon track data for dis-
criminating between 10 cm × 10 cm × 10 cm cubes, a good discrimination level can
be reached in 3 hours with AUC = 95.0 ± 2.0%.

Moreover, adding one more hour of muon exposure increased the discrimination
level to 98.6 ± 1.0%. The discrimination power between uranium and lead reduced
slightly after 2 hours of exposure time with AUC = 92.2 ± 2.5%. The AUC values
produced for the smaller cubes (5 cm × 5 cm × 5 cm) showed a degree of reduction in
the discrimination power between uranium and lead, with AUCs = 94.6 ± 6.5% and
93.6 ± 7.1%, respectively, after 4 and 3 hours of muon exposure time. AUC obtained for

Cube Size 10 cm × 10 cm × 10 cm 5 cm × 5 cm × 5 cm

Time ( h)

Classifiers
U/Pb U/W U/Pb U/W

2 92.2 ± 2.5 81.5 ± 3.7 87.0 ± 10.1 73.8 ±13.8

3 95.0 ± 2.0 91.3 ±2.6 93.6 ± 7.1 88.2 ±9.7

4 98.6 ± 1.0 97.0 ± 1.5 94.6 ± 6.5 91.9 ± 8.0

Time to reach ≥ 95 % 3 hours 4 hours 4.5 hours 6 hours

Table 6.2: AUCs of different ROC curves (see Figure 6.25) obtained by the MVA clas-
sifier using the H-ASR algorithm variables to discriminate between uranium against
lead and uranium against tungsten. The results showed different volumes of the com-
parable cubes and several short exposure times (hours). The last row shows times to
reach good discrimination (AUC = 95.0%) between the comparable materials.
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classifying 10 cm-side-length uranium against tungsten was slightly lower, with values
of 97.0 ± 1.5% and 91.3 ± 2.6%, respectively, after 4 and 3 hours of muon exposure time.
This is expected because of the high similarities in densities of tungsten and uranium
with a difference of ∆ ρ = 0.95, while ∆ ρ between uranium and lead is equal to 7.6.
According to the results of the uranium/tungsten classifier, it is noticeable that the
AUC values increased with more hours of taking data time. The discrimination power of
the uranium/tungsten classifier improves, with AUC values climbing from 81.5 ± 3.7%
to 97.0 ± 1.5% after 2 and 4 hours of muon taking data time (see Figure 6.25 (b)).
There was also significant improvement in the performances in distinguishing between
the smaller cubes with AUC values increasing from 73.8 ± 13.8% to 91.9 ± 8.0%,
respectively, after 2 and 4 hours of muon exposure time. A summary of the AUC
values for the classification of uranium/lead and uranium/tungsten for different sizes
and muon exposure times is shown in Table 6.2.

(a) (b)

Figure 6.25: ROC plots of the true positive rate as a function of the false positive rate
for 10 cm × 10 cm × 10 cm uranium/lead binary classifier in (a) using the H-ASR
variables. ROC plots shown in (b) are for 10 cm × 10 cm × 10 cm uranium/tungsten
binary classifier using the H-ASR variables. All ROC curves are shown in red, green,
and blue after 2, 3, and 4 hours of muon exposure times, respectively.

It is expected that the classification of materials using the HB algorithm variables
needs longer muon exposure time. This is because the HB is based on calculating
the metric distances between each pair of scattering vertices in each voxel containing
the compared materials. As expected, voxels containing high-Z or dense materials
will have a higher density of high scattering vertices. This makes it challenging for
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the MVA classifiers to discriminate between two or more materials with similarities
in their properties in such a short time. The results of applying the voxel variables
obtained by the HB method to the MVA binary classifier showed that a longer time
(16 hours) is needed to discriminate between 10 cm side length uranium against lead
with AUC = 95.6 ± 1.8%. The improvements in classifier capability grow slowly with
increasing muon exposure time. For example, the AUCs obtained from ROC curves
after 6 hours of taking MST data were equal to 87.1 ± 3.2%, and it took 12 hours
to reach a value of 92.7 ± 2.4% (above 90%). For smaller cubes with a side length
of 5 cm, the classifier needs 24 hours of muon exposure time to discriminate between
uranium and lead with AUC =96.0 ± 5.6%.

As already mentioned regarding the challenge of classification between uranium
and tungsten, the results showed that the classifier needs 20 hours to separate 10-
cm-side-length uranium from tungsten with AUC = 96.1 ± 1.7%. A summary of
the AUC values for the classification of uranium/lead and uranium/tungsten for 10-
cm-side-length cubes and several muon exposure times is shown in Table 6.3. The
discrimination power was also affected when the cube material was reduced to 5 cm in
the uranium/tungsten classifier case. The AUCs yielded when discriminating smaller
uranium and tungsten cubes were equal to 82.1 ± 11.8%, 82.8 ± 11.6%, 83.6 ± 11.3%,
88.1 ± 9.7%, and 93.7 ± 7.0% after 12, 16, 20, 24, and 26 hours of muon exposure
time.

Cube Size 10 cm × 10 cm × 10 cm

Time ( h)

Classifiers
U/Pb U/W

6 87.1 ± 3.2 77.4 ± 4.1

8 87.8 ± 3.1 81.1 ±3.8

12 92.7 ± 2.4 88.8 ± 3.0

16 95.6 ± 1.8 91.7 ± 2.5

Time to reach ≥ 95 % 16 hours 20 hours

Table 6.3: AUCs of different ROC curves (see Figure 6.26) obtained by the MVA
classifier using the HB algorithm variables to discriminate between uranium against
lead and uranium against tungsten. The results showed for the 10 cm× 10 cm × 10 cm
cubes and also for several exposure times (hours). The last row shows the times to
reach good discrimination (AUC = 95.0%) between the comparable materials.
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Even though the ∆ρ factor has affected the discrimination performance of the
classifier, it is also worth mentioning that the number of muons crossing the smaller
cubes also played a big role in reducing the discrimination power. This is reasonable
as the classifier only considers the muons that crossed through the target materials.
This can be seen when comparing the AUC results of the 10 cm side length cube with
a volume of 1000 cm3 to the 5 cm side length cubes with a volume of 125 cm3. For
example, the classifier performance was reduced by approximately 9.5% when using the
H-ASR voxel variables to classify 125 cm3 uranium from tungsten in 2 hours of muon
exposure time compared to the performance when the cubes’ volume was 1000 cm3.
However, the percentage of reduction in performance was lower (∽ 5%) when the
exposure time increased to 4 hours.

(a) (b)

Figure 6.26: ROCc plots of the true positive rate as a function of the false positive
rate for 10 cm × 10 cm × 10 cm uranium/lead binary classifier in (a) using the HB
variables. ROCc plots shown in (b) are for 10 cm × 10 cm × 10 cm uranium/tungsten
binary classifier using the HB variables. All ROC curves are shown in black, red, green,
and blue after 6, 8, 12, and 16 hours of muon exposure time, respectively.

6.7.1.2 Atomic number dependencies

As seen in the previous section, good discrimination power was achieved between mate-
rials with ∆ Z = 10.0 and 18.0 for uranium/lead and uranium/tungsten, respectively.
Even though the ∆ Z between uranium and tungsten is larger, the similarities in their
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densities make the discrimination between those materials more challenging than the
discrimination between uranium and lead. Furthermore, MVA classifiers are trained to
test the ability of the H-ASR and HB methods to distinguish between materials with
lower ∆ Z factor. Examples of several ROCs for materials with ∆ Z equal to 3, 5, and
8, respectively, for iridium/tungsten, lead/iridium, and lead/tungsten binary classifiers
are shown in Figure 6.27. A summary of the AUC values in Figure 6.27 obtained after
6 hours of muon exposure time is shown in Table 6.3.

Cube Size 10 cm × 10 cm × 10 cm

Algorithm

Classifiers
Pb/Ir Pb/W Ir/W

HASR 95.6 ± 1.8 95.3 ± 1.9 94.6 ± 2.0

HB 88.9 ± 2.9 87.9 ±3.1 85.7 ± 3.3

∆ Z 5 8 3

∆ ρ 11.07 7.95 3.12

Table 6.4: AUCs of different ROC curves (see Figure 6.27) obtained by the MVA
classifier using the H-ASR and HB algorithm variables to discriminate between lead
against iridium, lead against tungsten, and iridium against tungsten. The results
showed for the 10 cm × 10 cm × 10 cm cubes and for 6 hours of muon exposure time.
The characteristics of the considered materials are also shown.

The ∆ Z factor is important in materials classification, especially when using
the H-ASR voxel variables for the classifiers. For example, the AUC value produced
for the lead/tungsten classifier is equal to 95.3 ± 1.9%, which is slightly lower than
the AUC value when classifying materials with ∆Z ≥ 10.0 (uranium/lead and ura-
nium/tungsten). The classifier needs only 4 hours to reach ≥ 97.0 to discriminate
between materials with ∆Z ≥ 10.0 (see Table 6.2). However, discriminating between
lead/tungsten took 6 hours of muon exposure time to reach the discrimination level of
95%. Moreover, the classification result between iridium and tungsten also showed a
small reduction in the discriminating power of the classifier, with AUC = 94.6 ± 2.0%.
The iridium/tungsten classifier is the most challenging among the other classifiers, as
the characteristics of the materials have similarities with ∆Z = 3 and ∆ ρ = 3.12.

The case of using the HB variables is different as the classification of the materials
most likely depends on the density of the target materials. This can be seen in the
results of the uranium/tungsten classifier vs. the iridium/tungsten classifier. The
difference in the Z number between uranium and tungsten is large (∆Z= 18); however,
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the AUC value of distinguishing uranium from lead in 6 hours of time is equal to
77.4 ± 4.1%. Once the ∆ρ factor increases between the comparable materials, the
discrimination power improves gradually. For example, the ability of the classifier
using the HB variables increased to 85.7 ± 3.3%, 87.9 ± 3.1%, and 88.9 ± 2.9% when
the gaps between the densities grew to 3.12, 7.95, and 11.07, respectively.

(a) (b)

Figure 6.27: ROCc plots of the true positive rate as a function of the false positive rate
for 10 cm × 10 cm × 10 cm lead/iridium, lead/tungsten, and iridium/tungsten binary
classifiers in (a) using the H-ASR variables after 6 hours of muon exposure time. ROCc
plots shown in (b) are for the same classifiers using the H-ASR variables after 4 hours
of exposure time. All ROCc plots shown are plotted after 6 hours of exposure time.

6.7.2 Non-binary classification of high-Z materials

The ability of the developed algorithms to discriminate (binary-classifiers) between
different high-Z materials stored globally in the different waste drums was shown in
the previous section. Here, a non-binary classifier refers to a classifier trained on
two or more classes, where it differentiates one signal from two or more background
classes. Further MVA classifiers were performed to discriminate between waste high-Z
materials stored in the same drum. As both algorithms are able to localise the materials
inside the drum with good resolution in a few hours, classification of materials locally
is applicable. The material cube each had a side length of 10 cm and was aligned
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with the central (cylindrical) axis of the drum (see Figure 6.28). Two MVA non-
binary classifiers were trained using the H-ASR variables and the HB variables that
distinguished uranium signals from tungsten and lead backgrounds.

It is important to mention that the non-binary classifier might need a longer
exposure time compared to the binary classification discussed in the previous section.
This is caused by the fact that the materials positioned on the side area of the drum
expect fewer muons compared to the materials in the centre of the drum.

Figures 6.29 and 6.30 indicate the MVA non-binary classifiers responses when
using H-ASR and HB variables, respectively. The classifier response outputs were
used to plot ROC curves and then calculate the AUCs to evaluate the ability of each
method to discriminate uranium from background cubes. The AUCs of the training
ROC showed that uranium is easily discriminated from the lead cube in 12 hours of
muon exposure time with AUC = 96.5 ± 1.6% when applying the H-ASR voxel variable
information. The training ROC when using the HB variables produces an AUC value
of 90.6 ± 4.0% in 12 hours, which is below the selected good discriminating level.
However, with a longer exposure time (48 and 96 hours), the discrimination power of the
non-binary uranium/lead classifier performs nearly perfectly, with AUC = 99.0 ± 0.85%
and 99.5 ± 0.5%, respectively, (see Figure 6.31). This is probably due to the method

Figure 6.28: Illustrative of the simulated cubic materials inside the steel drum; each
cube has a side length of 10 cm. The centre-to-centre distance between the signal cubes
(uranium) to the background cubes (lead and tungsten) was set to 30 cm.

of the HB algorithm to calculate the scattering vertices in each voxel, in which the
more muons cross the materials, the higher scattering density inside the highly dense
materials would occur. The results of AUCs produced using the H-ASR variables
suggest that the H-ASR method is faster to reach good discrimination in a short
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exposure time (see Figure 6.31).

The training ROC plots for the uranium/tungsten non-binary classifier indicate
that the H-ASR method is able to separate uranium from tungsten in 12 hours with
AUC = 95.8 ± 1.8%. However, the HB method does not perform well in such a short
muon exposure time with AUC = 78.5 ± 4.0%. The performance of the classifier is
expected to be under a good separation level due to the high similarity of the materials
densities. Moreover, the position of comparable materials might contribute to reducing
the non-binary classifier. This is reasonable as the target materials placed in the centre
of the drum would expect more muons to cross through it due to the angular acceptance
of the detector.

Figure 6.29: Comparison of the MVA training outputs for uranium–lead/tungsten non-
binary classifier produced using the H-ASR algorithm variables. The vertical dashed
line represents the optimum cut, which is the point at which signal efficiency and
background rejection are equalised. The green line represents the uranium signal dis-
tribution output, while the red and blue lines represent the background, which are lead
and tungsten, respectively.
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Figure 6.30: Comparison of the MVA training outputs for uranium–lead/tungsten
non-binary classifier produced using the HB algorithm variables. The vertical dashed
line represents the optimum cut, which is the point at which signal efficiency and
background rejection are equalised. The green line represents the uranium signal dis-
tribution output, while the red and blue lines represent the background, which are lead
and tungsten, respectively.

(a) (b)

Figure 6.31: ROCc plots of the true positive rate as a function of the false positive
rate for 10 cm × 10 cm × 10 cm uranium/lead non-binary classifier in (a) using the
H-ASR variables after several muon exposure times. The ROCc plots shown in (b) are
for the same classifiers using the HB variables after several exposure times. The AUC
value information is stated in blue, green, and red for the uranium/lead classifier after
96, 48, and 12 hours of muon exposure time.
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(a) (b)

Figure 6.32: : ROCc plots of the true positive rate as a function of the false positive
rate for 10 cm × 10 cm × 10 cm uranium/tungsten non-binary classifier in (a) using
the H-ASR variables after several muon exposure times. The ROCc plots shown in (b)
are for the same classifiers using the HB variables after several exposure times. The
AUC value information is stated in blue, green, and red for the uranium/lead classifier
after 96, 48, and 12 hours of muon exposure time.

6.8 Conclusion

This chapter presented two new algorithms that were built and developed to avoid
the previous limitations of the reconstruction algorithm in the materials’ classification
field. The first algorithm is the HB built to avoid the BC algorithm limitation, and the
second algorithm is the H-ASR, which is built to optimise the original ASR algorithm.
It also demonstrated that combining the TMVA tool and the MST technique is effective
in investigating nuclear waste contents. It was shown in this chapter that the HB
algorithm significantly boosted the materials classification power of MST compared
to the default BC algorithm. This is seen in applying the MVA binary classifier to
discriminate between 20-cm-side-length uranium from an equally sized lead cube. The
minimum AUCs of the ROCcs were assigned as 95% to discriminate between two or
more materials.

The training ROC curves showed results of AUCs with values of 99.0 ± 0.3% and
AUC = 90.0 ± 0.85% when using the HB variable data with 50% Gaussian smeared
muon momentum and without momentum information, respectively. The results when
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using the BC variables data of 10 days equivalent exposure time showed inability of the
BC algorithm to discriminate between uranium and lead with AUCs = 87.2 ± 0.9%, and
77.5 ± 1.2%, in the case of using 50% smeared momentum and without momentum
information, respectively. Moreover, the classification power of the classifier when
trained on the BC variables failed to reach the minimum discrimination level, even
when using the MC truth momentum, with AUC = 91.8 ± 0.75%.

In terms of muon momentum information, the results reported in this chapter
showed that momentum information is not necessary to achieve the minimum dis-
crimination level using the H-ASR algorithm in materials classification. The MVA
binary classifier trained on the H-ASR variables after 10 days of equivalent exposure
time showed almost perfect discrimination power when using MC truth momentum,
with AUC = 99.9 ± 0.01%. Moreover, when removing all the momentum informa-
tion, the AUC results were still above the good discrimination level with a value of
99.9 ± 0.06%. After a short exposure time, the 20-cm uranium/lead binary classifier
was enhanced when using 12 hours of the H-ASR variables to train the classifier, with
AUC = 98.2 ± 0.4%. The classifier performance was compared when the ASR variables
were used to train the classifier with AUC = 96.7 ± 0.5%.

The H-ASR algorithm is seen to be feasible for discriminating between high-
Z materials in a few hours of muon exposure time. The ability of the MVA classifier
trained on the H-ASR variables to discriminate between materials with high similarities
in their properties was tested for a short exposure time. For cubic materials with a
dimension of 10 cm × 10 cm × 10 cm, the muon detector system used in this thesis
needs 3 hours for the U/Pb binary classifier using the H-ASR variables. Moreover,
classification between high-Z materials with almost similar density (U/W) needs only
4 hours of muon exposure time to go beyond the good discrimination level with AUC
= 97.0 ± 1.5%, using the H-ASR method variables.

The MVA classifier trained on variables extracted from the HB algorithm is more
sensitive to the materials’ densities. The AUCs produced by the U/Pb binary classifier
achieved a good discrimination level in 16 hours of muon exposure time.

The classifiers are also used to train the HB and H-ASR variables to discriminate
materials stored inside the same waste drum. The H-ASR algorithm requires only 12
hours of muon exposure time to separate uranium from other background materials,
such as lead and tungsten. The MVA non-binary classifier trained using the H-ASR
variables can distinguish uranium from lead and tungsten with AUCs of 96.5 ± 1.6%.,
and 95.8 ± 1.8%.





Chapter 7

Conclusion

The characterisation of nuclear waste materials needs to be addressed to make them
safe for disposal or long-term storage. Before waste materials can be sent to dis-
posal/storage facilities, their classification must be considered, including whether they
are high-level waste (HLW), intermediate-level waste (ILW), or low-level waste (LLW).
Information about the contents of old radioactive waste packages or packages with
heterogeneous conditioned radioactive content must also be collected. Several destruc-
tive /non-destructive technologies can be used to classify nuclear waste materials. This
thesis proposed muon scattering tomography technology (MST) as a non-destructive
imaging method to image or classify well-shielded nuclear waste in two types of nuclear
waste packages, namely, small steel drums and V/52 CASTOR casks.

In recent years, MST technology has been sufficiently used as a viable method
for investigating well-shielded materials. This thesis has covered a wide range of re-
construction algorithm methods connected by the general motivation to use the MST
technique for imaging, scanning, and classifying nuclear waste materials. The MST
technique exploits the fact that cosmic muons can traverse through large or dense ob-
jects. As cosmic muons travel through objects, they undergo multiple Coulomb scat-
tering (MCS). Scattering angle values vary depending on the objects that the muons
crossed through (e.g., larger scattering angles are expected when muons cross dense or
high-Z materials). The distributions of the scattering angles are used to image/classify
hidden bodies of waste materials.

Chapter 5 described the most common previously developed reconstruction algo-
rithms used in MST, namely, the Binned Clustering (BC) [69], Point of Closest Ap-
proach (PoCA) [73], and Angle Statistics Reconstruction (ASR) algorithms [74]. These
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algorithms were quantitatively evaluated in terms of each method’s abilities to differ-
entiate between specific regions within the volume of interest. To differentiate between
regions inside a 3D image output of each method, these algorithms were tested using
simulated MST data cross through high-Z, medium-Z, and low-Z materials encased in
a concrete-matrix small drum and in a large V/52 cask.

A new method for dividing the volume of interest into a rectangular-shaped voxel
was introduced in chapter 5, and this new method was applied to optimise the per-
formances of all algorithms regarding the imaging of well-shielded materials. It was
documented that statistical errors in the voxels were reduced by increasing the voxel
height from 10 mm to 30 mm. For example, a contrast to noise ratio (CNR) value
produced by the BC method to distinguish between the 10 cm side length cubes of
uranium and lead encased in concrete matrix increased from 0.8 ± 0.1 to 1.4 ± 0.05.
This was improved by 75% when applying the new method of changing the shape of
the voxels. When discriminating between uranium and lead, the ASR algorithm’s per-
formance is also improved when considering the new voxel shape, with a 45% increase
in the CNR values, from 2.2 ± 0.07 to 3.2 ± 0.1.

After optimising the old algorithms performances in imaging hidden objects using
the MST technique, further developments were made to maximise some of the recon-
struction algorithms performance abilities regarding the use of various nuclear waste
imaging methods. A new reconstruction algorithm method was developed to combine
the strong proprieties of the BC and ASR algorithms, and was denoted as the hybrid
algorithm (HB). Another version of the ASR algorithm was also developed based on
the ASR method and was denoted as the H-ASR algorithm.

In chapter 6, the new algorithms were applied in the classification of high-Z
materials with varying sizes. Because some high-Z materials have similarities in their
atomic and nuclear properties, it was shown that when using previous methods, such
as the BC algorithm, it might be impossible to discriminate between high-Z materials
in a short time. This was demonstrated by the performance of a 20 cm uranium/lead
binary classifier trained on the BC variables, which resulted in AUC = 90.6 ± 0.8%
after 10 days of muon exposure time. Training the classifier on the HB variables for
the same exposure time produced AUC = 99.2 ± 0.2%. Good discrimination levels
were achieved in 16 and 20 hours while using materials with ∆ ρ = 7.6 (U/Pb) and
0.95 (U/W), respectively for 10 cm × 10 cm × 10 cm cubes. The classifier performed
better when using the H-ASR variables, reaching a good separation level in 4.5 and 6
hours while distinguishing a 5 cm side length with U/Pb and U/W binary classifiers,
respectively. The non-binary classifiers needed a longer exposure time, reaching a good
separation level in 12 hours for both U/Pb and U/W, when using the H-ASR variables.
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Thesis findings

The results documented in this thesis demonstrated that it is possible to image and
discriminate between high-Z materials using the MST technique in a few hours. The
procedure starts by localising the materials with a good quality of the reconstructed
image of the high-Z and medium-Z. materials. Once the material positions are known,
they can be discriminated from one another in a few hours using combinations of
multivariate analysis (MVA) that include information on the HB and H-ASR variables.

The results also showed that the geometrical shape of the voxel enhances the
algorithm’s performance in general. It also showed that limitations inherited from the
“single-scattering” assumption were prevented using the HB and H-ASR methods in
the classification of high-Z materials. For example, in [77], discrimination between
20 cm side-length uranium and lead produced an AUC of 81.1 (the statistical error
was not provided) when 10 days’ worth of equivalent data from the BC algorithm
was used inside a cubic voxel with 10 mm side lengths. However, using methods that
remove the single-scattering assumption improves the classifier’s classification power to
a discrimination level ≥ 95% with AUCs = 95.6 ± 1.8% and 95.0 ± 2.0% in 16 hours
and 3 hours using the HB and the H-ASR variables, respectively.

Future work

Future work is required to continue investigating the classification of high-Z materials
without any previous knowledge of the location of the these objects inside drums. This
can be done by first filtering out the shielding matrix, as most drum dimensions are well-
known, and then by applying machine learning, such as k-mean clustering algorithms,
to identify non-filtered voxels that contain high-Z or dense materials. Furthermore,
as disposed materials do not necessarily have a cubic shape or a regular shape, more
work needs to be performed to test the MST method for identifying materials with
different shapes. In summary, this thesis has documented good results while using
MST technology for the classification of nuclear waste materials. As the results were
obtained using simulated data, the next step will be to apply the methods used in this
thesis experimentally. Finally, it is recommended that work in the field of imaging and
classifying nuclear waste materials using MST continue, especially with a focus on the
highlighted research points mentioned in this section.





Appendix A: The MVA
classification Methods

Here, the hyper-parameters sets for the MVA methods used for materials classification
in chapter 6.

Boosted Decision Trees (BDT)

• Maximum tree depth: 3

• Smallest fraction of training events in a leaf node: 5%.

• Gradient boosting learning rate: 0.01

• Grid points utilized for optimal variable division: 20.

Gradient-Boosted Decision Tree (BDTG)

• Maximum tree depth: 3

• Smallest fraction of training events in a leaf node: 5%.

• Gradient boosting learning rate: 0.01

• Grid points utilized for optimal variable division: 20.

146



Appendix B: Additional Figures for
Materials Identification

(a) (b)

Figure 7.1: Comparison of distributions of the ASR discriminator for a voxel containing
uranium (left) and lead (right). The normalised bin counts of these distributions are
calculated and passed to the MVA classifiers.
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Figure 7.2: Comparison of some bin count distributions of the ASR method used as
input variables to train the MVA classifiers. These distributions were extracted from
the normalised bin counts. The green line represents voxels containing a 20 cm uranium
cube (set as a signal), and the red line represents voxels containing an equally sized
lead cube (set as a background).

Figure 7.3: Comparison of distributions of the log(m̃ij)) produced by the BC method
for a voxel containing uranium (left) and lead (right). The blue-dashed line represents
the median of the distributions, which is set as the discriminator value in the BC
algorithm output image.
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Figure 7.4: Comparison of some bin count distributions of the BC method used as input
variables to train the MVA classifiers. The green line represents voxels containing a
20 cm uranium cube (set as a signal), and the red line represents voxels containing an
equally sized lead cube (set as a background).
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Figure 7.5: Comparison of distributions of the number of scattering vertices inside
10 cm cubes of uranium in blue, and inside equally-sized concrete matrix in red. Higher
number of vertices corresponding to the vertices within the uranium cube.
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